

“current_book”
2017/8/27
23:44
page ii
#2

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

MIT Lincoln Laboratory Series

Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs, Jeremy Kep-
ner and Hayden Jananthan

Perspectives in Space Surveillance, edited by Ramaswamy Sridharan and Antonio F. Pensa

Perspectives on Defense Systems Analysis: The What, the Why, and the Who, but Mostly
the How of Broad Defense Systems Analysis, William P. Delaney

Ultrawideband Phased Array Antenna Technology for Sensing and Communications Sys-
tems, Alan J. Fenn and Peter T. Hurst

Decision Making Under Uncertainty: Theory and Practice, Mykel J. Kochenderfer

Applied State Estimation and Association, Chaw-Bing Chang and Keh-Ping Dunn

MIT Lincoln Laboratory is a federally funded research and development center that applies
advanced technology to problems of national security. The books in the MIT Lincoln Lab-
oratory Series cover a broad range of technology areas in which Lincoln Laboratory has
made leading contributions. The books listed above and future volumes in this series re-
new the knowledge-sharing tradition established by the seminal MIT Radiation Laboratory
Series published between 1947 and 1953.

“current_book”
2017/8/27
23:44
page iii
#3

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Mathematics of Big Data
Spreadsheets, Databases, Matrices, and Graphs

Jeremy Kepner and Hayden Jananthan

The MIT Press
Cambridge, Massachusetts
London, England

“current_book”
2017/8/27
23:44
page iv
#4

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

© 2018 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and
retrieval) without permission in writing from the publisher.

This book was set in LATEX by the authors.

Printed and bound in the United States of America.

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1312831. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

This work is sponsored by the Assistant Secretary of Defense for Research and
Engineering under Air Force Contract FA8721-05-C-0002. Opinions, interpretations,
recommendations and conclusions are those of the authors and are not necessarily
endorsed by the United States Government.

MATLABr is a trademark of The MathWorks, Inc. and is used with permission. LEGOr
is a trademark of the LEGO Group of companies. Reference to commercial products,
trade names, trademarks or manufacturer does not constitute or imply endorsement.

Library of Congress Cataloging-in-Publication Data is available.

ISBN:
10 9 8 7 6 5 4 3 2 1

“current_book”
2017/8/27
23:44
page v
#5

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

for

Alix

Jemma

Lekha

“current_book”
2017/8/27
23:44
page vi
#6

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page vii
#7

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Contents

Preface xiii

About the Authors xvii

About the Cover xix

Acknowledgments xxiii

I APPLICATIONS AND PRACTICE 1

1 Introduction and Overview 3

1.1 Mathematics of Data 3
1.2 Data in the World 5
1.3 Mathematical Foundations 9
1.4 Making Data Rigorous 14
1.5 Conclusions, Exercises, and References 16

2 Perspectives on Data 19

2.1 Interrelations 19
2.2 Spreadsheets 20
2.3 Databases 22
2.4 Matrices 25
2.5 Graphs 27
2.6 Map Reduce 29
2.7 Other Perspectives 30
2.8 Conclusions, Exercises, and References 31

3 Dynamic Distributed Dimensional Data Model 37

3.1 Background 37
3.2 Design 38
3.3 Matrix Mathematics 39
3.4 Common SQL, NoSQL, NewSQL Interface 40
3.5 Key-Value Store Database Schema 41
3.6 Data-Independent Analytics 44
3.7 Parallel Performance 49
3.8 Computing on Masked Data 50
3.9 Conclusions, Exercises, and References 53

“current_book”
2017/8/27
23:44
page viii
#8

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

viii Contents

4 Associative Arrays and Musical Metadata 57

4.1 Data and Metadata 57
4.2 Dense Data 58
4.3 Dense Operations 60
4.4 Sparse Data 62
4.5 Sparse Operations 63
4.6 Conclusions, Exercises, and References 65

5 Associative Arrays and Abstract Art 69

5.1 Visual Abstraction 69
5.2 Minimal Adjacency Array 71
5.3 Symmetric Adjacency Array 73
5.4 Weighted Adjacency Array 75
5.5 Incidence Array 75
5.6 Conclusions, Exercises, and References 78

6 Manipulating Graphs with Matrices 81

6.1 Introduction 81
6.2 Matrix Indices and Values 86
6.3 Composable Graph Operations and Linear Systems 89
6.4 Matrix Graph Operations Overview 96
6.5 Graph Algorithms and Diverse Semirings 105
6.6 Conclusions, Exercises, and References 108

7 Graph Analysis and Machine Learning Systems 115

7.1 Introduction 115
7.2 Data Representation 116
7.3 Graph Construction 118
7.4 Adjacency Array Graph Traversal 120
7.5 Incidence Array Graph Traversal 122
7.6 Vertex Degree Centrality 126
7.7 Edge Degree Centrality 129
7.8 Eigenvector Centrality 129
7.9 Singular Value Decomposition 133
7.10 PageRank 136
7.11 Deep Neural Networks 138
7.12 Conclusions, Exercises, and References 140

II MATHEMATICAL FOUNDATIONS 145

8 Visualizing the Algebra of Associative Arrays 147

8.1 Associative Array Analogs of Matrix Operations 147
8.2 Abstract Algebra for Computer Scientists and Engineers 150
8.3 Depicting Mathematics 151

“current_book”
2017/8/27
23:44
page ix
#9

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Contents ix

8.4 Associative Array Class Diagrams 153
8.5 Set 154
8.6 Semiring 155
8.7 Linear Algebra 157
8.8 Ordered Sets 160
8.9 Boolean Algebra 162
8.10 Associative Array Algebra 164
8.11 Conclusions, Exercises, and References 164

9 Defining the Algebra of Associative Arrays 169

9.1 Operations on Sets 169
9.2 Ordered Sets 175
9.3 Supremum and Infimum 177
9.4 Lattice 181
9.5 The Semirings of Interest 186
9.6 Conclusions, Exercises, and References 189

10 Structural Properties of Associative Arrays 193

10.1 Estimating Structure 193
10.2 Associative Array Formal Definition 194
10.3 Padding Associative Arrays with Zeros 197
10.4 Zero, Null, Zero-Sum-Free 198
10.5 Properties of Matrices and Associative Arrays 199
10.6 Properties of Zero Padding 201
10.7 Support and Size 207
10.8 Image and Rank 208
10.9 Example: Music 209
10.10 Example: Art 211
10.11 Properties of Element-Wise Addition 213
10.12 Properties of Element-Wise Multiplication 217
10.13 Array Multiplication 221
10.14 Closure of Operations between Arrays 227
10.15 Conclusions, Exercises, and References 228

11 Graph Construction and Graphical Patterns 233

11.1 Introduction 233
11.2 Adjacency and Incidence Array Definitions 234
11.3 Adjacency Array Construction 240
11.4 Graph Construction with Different Semirings 248
11.5 Special Arrays and Graphs 253
11.6 Key Ordering 256
11.7 Algebraic Properties 261
11.8 Subobject Properties 262
11.9 Conclusions, Exercises, and References 264

“current_book”
2017/8/27
23:44
page x
#10

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

x Contents

III LINEAR SYSTEMS 269

12 Survey of Common Transformations 271

12.1 Array Transformations 271
12.2 Identity 274
12.3 Contraction 289
12.4 Stretching 293
12.5 Rotation 296
12.6 Conclusions, Exercises, and References 299

13 Maps and Bases 303

13.1 Semimodules 303
13.2 Linear Maps 307
13.3 Linear Independence and Bases 309
13.4 Existence of Bases 312
13.5 Size of Bases 313
13.6 Semialgebras and the Algebra of Arrays 317
13.7 Conclusions, Exercises, and References 320

14 Linearity of Associative Arrays 323

14.1 The Null Space of Linear Maps 323
14.2 Supremum-Blank Algebras 326
14.3 Max-Blank Structure Theorem 334
14.4 Examples of Supremum-Blank Algebras 338
14.5 Explicit Computations of x(A,w) for Supremum-Blank Algebras 342
14.6 Conclusions, Exercises, and References 348

15 Eigenvalues and Eigenvectors 351

15.1 Introduction 351
15.2 Quasi-Inverses 353
15.3 Existence of Eigenvalues for Idempotent Multiplication 359
15.4 Strong Dependence and Characteristic Bipolynomial 360
15.5 Eigenanalysis for Irreducible Matrices for Invertible Multiplication 367
15.6 Eigen-Semimodules 373
15.7 Singular Value Decomposition 378
15.8 Conclusions, Exercises, and References 385

16 Higher Dimensions 389

16.1 d-Dimensional Associative Arrays 389
16.2 Key Ordering and Two-Dimensional Projections 392
16.3 Algebraic Properties 398
16.4 Subarray Properties 400
16.5 Conclusions, Exercises, and References 402

“current_book”
2017/8/27
23:44
page xi
#11

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Contents xi

Appendix: Notation 405

Index 413

“current_book”
2017/8/27
23:44
page xii
#12

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page xiii
#13

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Preface

Big is not absolute; it is relative. A person can be big relative to other people. A person
is tiny compared to a mountain and gigantic compared to an ant. The same is true of data.
Data is big relative to data that is easy to handle using current approaches. A few rows of
data in a spreadsheet can be big if existing approaches rely on human visual inspection.
Likewise, all data ever typed by humans can be small for a system designed to handle all
data flowing over all communication networks.

Big Data describes a new era in the digital age in which the volume, velocity, and variety
of data is rapidly increasing across a wide range of fields, such as internet search, health-
care, finance, social media, wireless devices, and cybersecurity. These data are growing at
a rate well beyond our ability to analyze them. Tools such as spreadsheets, databases, ma-
trices, and graphs have been developed to address these challenges. The common theme
amongst these tools is the need to store and operate on data as whole sets instead of as
individual data elements. This book describes the common mathematical foundations of
these data sets (associative arrays) that apply across many applications and technologies.
Associative arrays unify and simplify data, leading to rapid solutions to volume, velocity,
and variety problems. Understanding the mathematical underpinnings of data will allow
the reader to see past the differences that lie on the surface of these tools and to leverage
their mathematical similarities to solve the hardest big data challenges. Specifically, un-
derstanding associative arrays reduces the effort required to pass data between steps in a
data processing system, allows steps to be interchanged with full confidence that the re-
sults will be unchanged, and makes it possible to recognize when steps can be simplified
or eliminated.

A modern professional career spans decades. It is normal to work in many fields, with
an ever-changing set of tools applied to a variety of data. The goal of this book is to
provide you, the reader, with the concepts and techniques that will allow you to adapt to
increasing data volume, velocity, and variety. The ideas discussed are applicable across the
full spectrum of data sizes. Specific software tools and online course material are referred
to in this book and are freely available for download [1, 2]. However, the mathematical
concepts presented are independent of the tools and can be implemented with a variety of
technologies. This book covers several of the primary viewpoints on data (spreadsheets,
databases, matrices, and graphs) that encompass data and applications spanning a large
part of human activity. Spreadsheets are used by more than 100 million people every day.
Databases are used in nearly every digital transaction on Earth. Matrices and graphs are
employed is most data analysis.

“current_book”
2017/8/27
23:44
page xiv
#14

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

xiv Preface

The purpose of collecting data is not simply to fill archives, but to generate insight that
leads to new solutions of practical problems. Nothing handles big like mathematics. Math-
ematics is at ease with both the infinite and the infinitesimal. For this reason, a mathemat-
ical approach to data lies at the very heart of the scientific method

theory + experiment = discovery

Mathematics is theory made manifest. Likewise, data is the principal product of exper-
iment. A mathematical approach to data is the quickest path to bringing theory and ex-
periment together. Computers are the primary tools for this merger and are the “+” in the
above formula that transforms mathematics into operations and data into computer bits.

This book will discuss mathematics, data, and computations that have been proven on
real-world applications: science, engineering, bioinformatics, healthcare, banking, finance,
computer networks, text analysis, social media, electrical networks, transportation, and
building controls. The most interesting data sets that provide the most enthralling examples
are extremely valuable and extremely private. Companies are interested in this data so they
can sell you the products you want. Using this data, companies, stores, banks, hospitals,
utilities, and schools are able to provide goods and services that are tailored specifically to
you. Fortunately, such data is not readily available to be distributed by anyone who wishes
to write a book on the topic. Thus, while it is possible to talk about the results of analyzing
such data in general terms, it will not be possible to use the data that is most compelling to
you and to the global economy. In addition, such examples would quickly become outdated
in this rapidly moving field. The examples in the book will be principally drawn from art
and music. These topics are both compelling, readily shared, and have a long history of
being interesting. Finally, it is worth mentioning that big data is big. It is not possible
to use realistically sized examples given the limitations of the number of characters on a
page. Fortunately, this is where mathematics comes to the rescue. In mathematics one can
say that

c(i) = a(i) + b(i)

for all i = 1, ...,n and know this to be true. The ability to exactly predict the large-scale
emergent behavior of a system from its small-scale properties is one of the most powerful
properties of mathematics. Thus, while the examples in this book are tiny compared to real
applications, by learning the key mathematical concepts, the reader can be confident that
they apply to data at all scales. That a few mathematical concepts can span a diverse set of
applications over many sizes is perhaps the most fundamental idea in this book.

This book is divided into three parts: I – Applications and Practice, II – Mathematical
Foundations, and III – Linear Systems. The book will unfold so that a variety of readers
can find it useful. Wherever possible, the relevant mathematical concepts are introduced
in the context of big data to make them easily accessible. In fact, this book is a practical
introduction to many of the more useful concepts found in matrix mathematics, graph

“current_book”
2017/8/27
23:44
page xv
#15

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

xv

theory, and abstract algebra. Extensive references are provided at the end of each chapter.
Wherever possible, references are provided to the original classic works on these topics,
which provide added historical context for many of these mathematical ideas. Obtaining
some of these older texts may require a trip to your local university library.

Part I – Applications and Practice introduces the concept of the associative array in prac-
tical terms that are accessible to a wide audience. Part I includes examples showing how
associative arrays encompass spreadsheets, databases, matrices, and graphs. Next, the as-
sociative array manipulation system D4M (Dynamic Distributed Dimensional Data Model)
is described along with some of its successful results. Finally, several chapters describe ap-
plications of associative arrays to graph analysis and machine learning systems. The goal
of Part I is to make it apparent that associative arrays are a powerful tool for creating in-
terfaces to data processing systems. Associative array-based interfaces work because of
their strong mathematical foundations that provide rigorous properties for predicting the
behavior of a data processing system.

Part II – Mathematical Foundations provides a mathematically rigorous definition of as-
sociative arrays and describes the properties of associative arrays that emerge from this
definition. Part II begins with definitions of associative arrays in terms of sets. The struc-
tural properties of associative arrays are then enumerated and compared with the properties
of matrices and graphs. The ability to predict the structural properties of associative arrays
is critical to their use in real applications because these properties determine how much
data storage is required in a data processing system.

Part III – Linear Systems shows how concepts of linearity can be extended to encompass
associative arrays. Linearity provides powerful tools for analyzing the behavior of associa-
tive array transformations. Part III starts with a survey of the diverse behavior of associa-
tive arrays under a variety of transformations, such as contraction and rotation, that are the
building blocks of more complex algorithms. Next, the mathematical definitions of maps
and bases are given for associative arrays that provide the foundations for understanding
associative array transformations. Eigenvalues and eigenvectors are then introduced and
discussed. Part III ends with a discussion of the extension of associative arrays to higher
dimensions.

In recognition of the severe time constraints of professional readers, each chapter is
mostly self-contained. Forward and backward references to other chapters are limited, and
key terms are redefined as needed. The reader is encouraged to consult the table of contents
and the index to find more detailed information on concepts that might be covered in less
detail in a particular chapter. Each chapter begins with a short summary of its content.
Specific examples are given to illustrate concepts throughout each chapter. References are
also contained in each chapter. This arrangement allows professionals to read the book at
a pace that works with their busy schedules.

“current_book”
2017/8/27
23:44
page xvi
#16

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

xvi Preface

While most algorithms are presented mathematically, when working code examples are
required, these are expressed in D4M. The D4M software package is an open-source tool-
box that runs in the MATLAB, GNU Octave, and Julia programming languages. D4M
is the first practical implementation of associative array mathematics and has been used
in diverse applications. D4M has a complete set of documentation, example programs,
tutorial slides, and many hours of instructional videos that are all available online (see
d4m.mit.edu). The D4M examples in the book are written in MATLAB, and some famil-
iarity with MATLAB is helpful, see [3–5] for an introduction. Notationally, associative
arrays and their corresponding operations that are specifically referring to the D4M use of
associative arrays will be written using sans serif font, such as

C = A + B

Likewise, associative arrays and their corresponding operations that are specifically refer-
ring to the mathematical use of associative arrays will be written using serif font, such
as

C = A⊕B

A complete summary of the notation in the book is given in the Appendix.
This book is suitable as either the primary or supplemental book for a class on big data,

algorithms, data structures, data analysis, linear algebra, or abstract algebra. The mate-
rial is useful for engineers, scientists, mathematicians, computer scientists, and software
engineers.

References

[1] J. Kepner, “D4M: Dynamic Distributed Dimensional Data Model.” http://d4m.mit.edu.

[2] J. Kepner, “D4M: Signal Processing on Databases – MIT OpenCourseWare online course.”
https://ocw.mit.edu/resources/res-ll-005-d4m-signal-processing-on-databases-fall-2012, 2011.

[3] D. J. Higham and N. J. Higham, MATLAB Guide. SIAM, 2005.

[4] C. B. Moler, Numerical Computing with MATLAB. SIAM, 2004.

[5] J. Kepner, Parallel MATLAB for Multicore and Multinode Computers. SIAM, 2009.

“current_book”
2017/8/27
23:44
page xvii
#17

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

About the Authors

Jeremy Kepner is a MIT Lincoln Laboratory Fellow. He
founded the Lincoln Laboratory Supercomputing Center and
pioneered the establishment of the Massachusetts Green High
Performance Computing Center. He has developed novel big
data and parallel computing software used by thousands of sci-
entists and engineers worldwide. He has led several embedded
computing efforts, which earned him a 2011 R&D 100 Award.
Dr. Kepner has chaired SIAM Data Mining, the IEEE Big Data
conference, and the IEEE High Performance Extreme Com-
puting conference. Dr. Kepner is the author of two bestselling
books, Parallel MATLAB for Multicore and Multinode Com-
puters and Graph Algorithms in the Language of Linear Alge-
bra. His peer-reviewed publications include works on abstract

algebra, astronomy, astrophysics, cloud computing, cybersecurity, data mining, databases,
graph algorithms, health sciences, plasma physics, signal processing, and 3D visualization.
In 2014, he received Lincoln Laboratory’s Technical Excellence Award. Dr. Kepner holds
a BA degree in astrophysics from Pomona College and a PhD degree in astrophysics from
Princeton University.

Hayden Jananthan is a mathematics educator. He is a certi-
fied mathematics teacher and has taught mathematics in Boston
area public schools. He has also taught pure mathematics in a
variety of programs for gifted high school students at MIT and
at other institutions of higher learning. Hayden has been a re-
searcher at MIT Lincoln Laboratory, supervising undergradu-
ate researchers from MIT and CalTech, and authored a number
of peer-reviewed papers on the application of mathematics to
big data problems. His work has been instrumental in defining
the mathematical foundations of associative array algebra and
its relationship to other branches of pure mathematics. Hayden
holds a BS degree in Mathematics from MIT and is pursuing a
PhD in pure mathematics at Vanderbilt University.

“current_book”
2017/8/27
23:44
page xviii
#18

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page xix
#19

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

About the Cover

This book presents a detailed description of how associative arrays can be a rigorous math-
ematical model for a wide range of data represented in spreadsheets, databases, matrices,
and graphs. The goal of associative arrays is to provide specific benefits for building data
processing systems. Some of these benefits are

Common representation — reduces data translation between steps
Swapping operations — allows improved ordering of steps
Eliminating steps — shortens the data processing system

4

3

2

1

common
representation

swap
operations

eliminate
steps

standard
approach

Figure 1
Structures of various complexity with various simplifications. Level 1 is the most complex and is analogous to
the standard approach to building a data processing system. Levels 2, 3, and 4 apply additional simplifications to
the structure that are analogous to the benefits of applying associative arrays to data processing systems.

“current_book”
2017/8/27
23:44
page xx
#20

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

xx About the Cover

Figure 2
Plans for building different structures. The plans specify the required color used for each building block. A
builder uses a collection of building blocks and the corresponding plan to build the structure.

Each of the above benefits can significantly reduce the effort required to build a data
processing system. The benefits are cumulative. A common representation allows the
swapping of operations that further enables the elimination of steps.

Although these benefits are realized by exploiting the rigorous mathematics of associa-
tive arrays, they can be understood through a simple everyday analogy. Consider the task
of assembling a structure with a child’s toy, such as LEGOr bricks. Figure 1 shows four
examples of such a structure arranged from most complicated at the bottom (level 1) and
to least complicated at the top (level 4). Between each of the structures a simplification has
been made. At the bottom (level 1), the structure is made with a complex set of different
colored pieces, and this structure is analogous to the standard approach to building a data
processing system in which every piece must be precisely specified. A simplification of
the structure can be achieved by making all the middle pieces common, see level 2. Like-
wise, the structure is further simplified if the edge pieces holding the middle pieces can be
swapped, see level 3. Finally, eliminating pieces simplifies the structure, see level 4.

“current_book”
2017/8/27
23:44
page xxi
#21

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

xxi

1 2 3 4
0.2

0.4

0.6

0.8

1

common
representation

swap
operations

eliminate
steps

standard
approach

re
la

tiv
e

ef
fo

rt
20%

35%

40%

Figure 3
The relative effort required to build the different structures shown in Figure 1 from the plans shown in Figure 2.
As expected, simpler structures require less effort to build.

Intuitively, it is apparent that a simpler structure is easier to build. This intuition can be
confirmed by a simple experiment. Figure 2 shows the plans for each of the structures in
Figure 1. Given a set of pieces and the corresponding plan from Figure 2, it is possible to
time the effort required for a person to assemble the pieces from the plan. Figure 3 shows
representative relative efforts for these tasks and confirms our intuition that simpler struc-
tures require less effort to build. Of course, it is a huge conceptual leap to go from building
a structure out of a child’s toy to the construction of a data processing system. However, it
is hoped that the mathematics presented in this text allows the reader to experience similar
benefits.

“current_book”
2017/8/27
23:44
page xxii
#22

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page xxiii
#23

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Acknowledgments

There are many individuals to whom we are indebted for making this book a reality. It is
not possible to mention them all, and we would like to apologize in advance to those we
may not have mentioned here due to accidental oversight on our part. The development
of the Mathematics of Big Data has been a journey that has involved many colleagues
who have made important contributions along the way. This book marks an important
milestone in that journey with the broad availability and acceptance of a tabular approach
to data. Our own part in this journey has been aided by numerous individuals who have
directly influenced the content of this book.

This work would not have been possible without extensive support from many leaders
and mentors at MIT and other institutions. We are particularly indebted to S. Anderson, R.
Bond, J. Brukardt, P. Burkhardt, M. Bernstein, A. Edelman, E. Evans, S. Foster, J. Heath,
C. Hill, B. Johnson, C. Leiserson, S. Madden, D. Martinez, T. Mattson, S. Pritchard, S.
Rejto, V. Roytburd, R. Shin, M. Stonebraker, T. Tran, J. Ward, M. Wright, and M. Zissman.

The content of this book draws heavily upon prior work, and we are deeply grateful to our
coauthors S. Ahalt, C. Anderson, W. Arcand, N. Arcolano, D. Bader, M. Balazinska, M.
Beard, W. Bergeron, J. Berry, D. Bestor, N. Bliss, A. Buluç, C. Byun, J. Chaidez, N. Chiu,
A. Conard, G. Condon, R. Cunningham, K. Dibert, S. Dodson, J. Dongarra, C. Faloutsos,
J. Feo, F. Franchetti, A. Fuchs, V. Gadepally, J. Gilbert, V. Gleyzer, B. Hendrickson, B.
Howe, M. Hubbell, D. Hutchinson, A. Krishnamurthy, M. Kumar, J. Kurz, B. Landon,
A. Lumsdaine, K. Madduri, S. McMillan, H. Meyerhenke, P. Michaleas, L. Milechin, B.
Miller, S. Mohindra, P. Monticciolo, J. Moreira, J. Mullen, H. Nguyen, A Prout, S. Rein-
hardt, A. Reuther, D. Ricke, A. Rosa, M. Schmidt, V. Shah, A. Shcherbina, D. Sherrill, W.
Song, S. Sutherland, P. Wolfe, C. Yee, and A. Yerukhimovich.

The production of this book would not have been possible without the efforts of D.
Granchelli, M. Lee, D. Ryan, and C. Savage. The authors would also like to thank the
many students, colleagues, and anonymous reviewers whose invaluable comments signifi-
cantly improved this book.

Finally, we would like to thank our families for their support and patience throughout
this journey.

“current_book”
2017/8/27
23:44
page xxiv
#24

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

xxiv Acknowledgments

“current_book”
2017/8/27
23:44
page 1
#25

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

I APPLICATIONS AND PRACTICE

“current_book”
2017/8/27
23:44
page 2
#26

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 3
#27

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1 Introduction and Overview

Summary

Data are stored in a computer as sets of bits (0’s and 1’s) and transformed by data processing
systems. Different steps of a data processing system impose different views on these sets of
bits: spreadsheets, databases, matrices, and graphs. These views have many similar math-
ematical features. Making data rigorous mathematically means coming up with a rigorous
definition of sets of bits (associative arrays) with corresponding operations (addition and
multiplication) and showing that the combination is a reasonable model for data processing
in the real world. If the model is accurate, then the same mathematical representations can
be used across many steps in a data processing system, thus simplifying the system. Like-
wise, the mathematical properties of associative arrays can be used to swap, reorder, and
eliminate data processing steps. This chapter presents an overview of these ideas that will
be addressed in greater detail in the rest of the book.

1.1 Mathematics of Data

While some would suggest that data are neither inherently good nor bad, data are an es-
sential tool for displacing ignorance with knowledge. The world has become “data driven”
because many decisions are obvious when the correct data are available. The goal of data—
to make better decisions—has not changed, but how data are collected has changed. In the
past, data were collected by humans. Now, data are mostly collected by machines. Data
collected by the human senses are often quickly processed into decisions. Data collected by
machines are dormant until the data are processed by machines and acted upon by humans
(or machines). Data collected by machines are stored as bits (0’s and 1’s) and processed by
mathematical operations. Today, humans determine the correct mathematical operations
for processing data by reasoning about the data as sets of organized bits.

Data in the world today are sets of bits stored and operated on by diverse systems. Each
data processing system has its own method for organizing and operating on its sets of bits
to deliver better decisions. In most systems, both the sets of bits and the operations can be
described precisely with mathematics. Learning the mathematics that describes the sets of
bits in a specific processing system can be time-consuming. It is more valuable to learn the
mathematics describing the sets of bits that are in many systems.

The mathematical structure of data stored as sets of bits has many common features.
Thus, if individual sets of bits can be described mathematically, then many different sets

“current_book”
2017/8/27
23:44
page 4
#28

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4 Chapter 1 Introduction and Overview

Figure 1.1
Tables have been used since antiquity as demonstrated by the Table of Dionysius Exiguus (MS. 17, fol. 30r, St.
John’s College, Oxford University) from the Thorney Computus, a manuscript produced in the first decade of the
12th century at Thorney Abbey in Cambridgeshire, England.

of bits can be described using similar mathematics. Perhaps the most intuitive way to
organize a set of bits is as a table or an associative array. Associative arrays consisting of
rows, columns, and values are used across many data processing systems. Such arrays (see
Figure 1.1) have been used by humans for millennia [1] and provide a strong foundation
for reasoning about whole classes of sets of bits.

Making data rigorous mathematically means combining specific definitions of sets of
bits, called associative arrays, with the specific operations of addition and multiplication,
and showing that the combination makes sense. Informally, “makes sense” means that the
combination of associative arrays and operations behave in ways that are useful. Formally,
“makes sense” means that the combination of associative arrays has certain mathematical
properties that are useful. In other words, utility is the most important aspect of making
data rigorous. This fact should be kept in mind as these ideas are developed throughout the

“current_book”
2017/8/27
23:44
page 5
#29

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.2 Data in the World 5

Data!

sets!
of!

bits!

spreadsheets!

databases!

matrices!

graphs!

Associative Arrays!

Figure 1.2
Data are sets of bits in a computer. Spreadsheets, databases, matrices, and graphs provide different views for
organizing sets of bits. Associative arrays encompass the mathematical properties of these different views.

book. All the mathematics of data presented here have been demonstrated to be useful in
real applications.

1.2 Data in the World

Data in the world today can be viewed from several perspectives. Spreadsheets, database
tables, matrices, and graphs are commonly used ways to view data. Most of the benefits
of these different perspectives on data can be encompassed by associative array mathemat-
ics (or algebra). The first practical implementation of associative array mathematics that
bridges these perspectives on data can be found in the Dynamic Distributed Dimensional
Data Model (D4M). Associative arrays can be understood textually as data in tables, such
as a list of songs and the various features of those songs. Likewise, associative arrays can
be understood visually as connections between data elements, such as lines connecting
different elements in a painting.

Perspectives on Data
Spreadsheets provide a simple tabular view of data [2]. It is estimated that more than 100
million people use a spreadsheet every day. Almost everyone has used a spreadsheet at one
time or another to keep track of their money, analyze data for school, or plan a schedule
for an activity. These diverse uses in everyday life give an indication of the power and
flexibility of the simple tabular view of data offered by spreadsheets.

As the number of rows and columns in a table grows beyond what can be easily viewed,
then a database [3] can be used to store and retrieve the same tabular information. Databases
that organize data into large related tables are the most commonly used tool for storing and

“current_book”
2017/8/27
23:44
page 6
#30

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6 Chapter 1 Introduction and Overview

parse!

set of
bits

spread
sheet database!

matrix

graph

ingest! query! analyze!

Figure 1.3
The standard data processing steps often require different perspectives on the data. Associative arrays enable a
common mathematical perspective to be used across all the steps.

retrieving data in the world. Databases allow separate people to view the data from differ-
ent locations and conduct transactions based on entries in the tables. Databases play a role
in most purchases. In addition to transactions, another important application of databases
is the analysis of many rows and columns in a table to find useful patterns. For example,
such analysis is used to determine if a purchase is real or fake.

Mathematics also uses a tabular view to represent numbers. This view is referred to as a
matrix [4], a term first coined by English mathematician James Joseph Sylvester in 1848
while working as an actuary with fellow English mathematician and lawyer Arthur Cayley
[5]. The term matrix was taken from the Latin word for “womb.” In a matrix (or womb
of numbers), each row and column is specified by integers starting at 1. The values stored
at a particular row and column can be any number. Matrices are particularly useful for
comparing whole rows and columns and determining which ones are most alike. Such a
comparison is called a correlation and is useful in a wide range of applications. For exam-
ple, matrix correlations can determine which documents are most like other documents so
that a person looking for one document can be provided a list of similar documents. Or, if
a person is looking for one kind of document, a correlation can be used to estimate what
products they are most likely to buy.

Mathematical matrices also have a concept of sparsity whereby numbers equal to zero
are treated differently from other numbers. A matrix is said to be sparse if lots of its values
are zero. Sparsity can simplify the analysis of matrices with large numbers of rows and
columns. It is often useful to rearrange (or permute) the rows and columns so that the
groups of nonzero entries are close together, clearly showing the rows and columns that
are most closely related.

Humans have an intuitive ability to understand visual relationships among data. A com-
mon way to draw these relationships is a through a picture (graph) consisting of points
(vertices) connected by lines (edges). These pictures can readily highlight data that are
connected to lots of other data. In addition, it is also possible to determine how closely
connected two data elements are by following the edges connecting two vertices. For ex-
ample, given a person’s set of friends, it is possible to suggest likely new friends from their
friends’ friends [6].

“current_book”
2017/8/27
23:44
page 7
#31

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.2 Data in the World 7

Artist Date Duration Genre
053013ktnA1 Bandayde 2013-05-30 5:14 Electronic
053013ktnA2 Kastle 2013-05-30 3:07 Electronic
063012ktnA1 Kitten 2010-06-30 4:38 Rock
082812ktnA1 Kitten 2012-08-28 3:25 Pop

A	

Figure 1.4
Tabular arrangement of a collection of songs and the features of those songs arranged into an associative array
A. That each row label (or row key) and each column label (or column key) in A is unique is what makes it an
associative array.

Interestingly, graphs can also be represented in a tabular view using sparse matrices.
Furthermore, the same correlation operation that is used to compare rows and columns
in a matrix can also be used to follow edges in a graph. The duality between graphs
and matrices is one of the many interesting mathematical properties that can be found
among spreadsheets, databases, matrices, and graphs. Associative arrays are a tool that
encompasses the mathematical properties of these different views of data (see Figure 1.2).
Understanding associative arrays is a valuable way to learn the mathematics that describes
data in many systems.

Dynamic Distributed Dimensional Data Model
The D4M software (d4m.mit.edu) [7, 8] is the first practical implementation of the full
mathematics of associative arrays that successfully bridges spreadsheets, databases, ma-
trices, and graphs. Using associative arrays, D4M users are able to implement high per-
formance complex algorithms with significantly less effort. In D4M, a user can read data
from a spreadsheet, load the data into a variety of databases, correlate rows and columns
with matrix operations, and visualize connections using graph operations. These opera-
tions correspond to the steps necessary to build an end-to-end data processing system (see
Figure 1.3). Often, the majority of time spent in building a data processing system is in the
defining of the interfaces between the various steps, which normally requires a conversion
from one mathematical perspective of the data to another. By using the same mathematical
abstraction across all steps, the construction time of a data processing system is signifi-
cantly reduced. The success of D4M in building real data processing systems has been a
prime motivation for formalizing the mathematics of associative arrays. By making asso-
ciative arrays mathematically rigorous, it becomes possible to apply associative arrays in a
wide range of programming environments (not just D4M).

Associative Array Intuition: Text
Associative arrays derive much of their power from their ability to represent data intuitively
in easily understandable tables. Consider the list of songs and the various features of those
songs shown in Figure 1.4. The tabular arrangement of the data shown in Figure 1.4 is
an associative array (denoted A). This arrangement is similar to those widely used in

“current_book”
2017/8/27
23:44
page 8
#32

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8 Chapter 1 Introduction and Overview

V02!

V01!

V03!

V04!

V05!

V06!

V07!

V08!

V09!

V10!

V11!

V13!

V14!V12!

V15!

V16!

V17!

V18!

V19!

V20!

Figure 1.5
Abstract line painting (XCRS by Ann Pibal) showing various colored lines. The intersections and terminations of
the lines are labeled vertices (V01,...,V20) and have been superimposed onto the painting in white letters.

spreadsheets and databases. Figure 1.4 does contain one property that distinguishes it from
being an arbitrary arrangement of data in a two-dimensional grid. Specifically, each row
key and each column key in A is unique. This property is what makes A an associative
array and allows A to be manipulated as a spreadsheet, database, matrix, or graph.

An important aspect of Figure 1.4 that makes A an associative array is that each row and
column is identified with a string called a key. An entry in A consists of a triple with a row
key, a column key, and a value. For example, the upper-left entry in A is

A('053013ktnA1 ', 'Artist ') = 'Bandayde '

In many ways, associative arrays have similarities to matrices where each entry has a row
index, column index and a value. However, in an associative array the row keys and the
column keys can be strings of characters and are not limited to positive integers as they
are in a matrix. Likewise, the values in an associative array are not just real or complex
numbers and can be numbers or strings or even sets. Typically, the rows and columns
of an associative array are represented in sorted order such as alphabetical ordering. This
ordering is a practical necessity to make retrieval of information efficient. Thus, in practice,
associative array row keys and column keys are orderable sets.

Associative Array Intuition: Graphics
Associative arrays can be visualized as relations between data elements, which are de-
picted as lines connecting points in a painting (see Figure 1.5). Such a visual depiction of

“current_book”
2017/8/27
23:44
page 9
#33

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.3 Mathematical Foundations 9

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

V01 6
V02 6 6 1 1 1 1
V03 6
V04 6
V05 6 6 1 1
V06 6 6 1 1
V07 6 6 1 1
V08 6
V09 1
V10 1 1
V11 1 1 1 1
V12 1
V13 1 1 1 1
V14 1
V15 1
V16 1 1 1 1 1 1
V17 1
V18 1
V19 1
V20 1

A
Figure 1.6
Square symmetric associative array representation of the edges depicted in Figure 1.5; each value represents the
number of edges connecting each pair of vertices.

relationships is referred to mathematically as a graph. The points on the graph are called
the vertices. In the painting, the intersections and terminations of the lines (or edges) are
called vertices and are labeled V01,...,V20. An associative array can readily capture this
information (see Figure 1.6) and allow it to be manipulated as a spreadsheet, database,
matrix, or graph. Such analysis can be used to identify the artist who made the painting [9]
or used by an artist to suggest new artistic directions to explore.
In Figure 1.6, each value of the associative array stores the count of edges going between
each pair of vertices. In this case, there are six pairs of vertices that all have six edges
between them

(V01,V02), (V02,V03), (V04,V05), (V05,V06), (V06,V07), (V07,V08)

This value is referred to as the edge weight, and the corresponding graph is described
as a weighted-undirected graph. If the edge weight is the number of edges between two
vertices, then the graph is a multi-graph.

1.3 Mathematical Foundations

Data stored as sets of bits have many similar mathematical features. It makes sense that if
individual types of sets can be described mathematically, then many different sets can be
described using similar mathematics. Perhaps the most common way to arrange a set of
bits is as a table or an associative array. Associative arrays consisting of rows, columns,
and values are used across many data processing systems. To understand the mathematical
structure of associative arrays requires defining the operations of addition and multiplica-

“current_book”
2017/8/27
23:44
page 10
#34

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10 Chapter 1 Introduction and Overview

tion and then creating a formal definition of associative arrays that is consistent with those
operations. In addition, the internal structure of the associative array is important for a
range of applications. In particular, the distribution of nonzero entries in an array is often
used to represent relationships. Finally, while the focus of this book is on two-dimensional
associative arrays, it is worth exploring those properties of two-dimensional associative
arrays that extend into higher dimensions.

Mathematical Operations
Addition and multiplication are the most common operations for transforming data and also
the most well studied. The first step in understanding associative arrays is to define what
adding or multiplying two associative arrays means. Naturally, addition and multiplication
of associative arrays will have some properties that are different from standard arithmetic
addition

2 + 3 = 5

and standard arithmetic multiplication

2×3 = 6

In the context of diverse data, there are many different functions that can usefully serve the
role of addition and multiplication. Some common examples include max and min

max(2,3) = 3

min(2,3) = 2

and union, denoted ∪, and intersection, denoted ∩

{2}∪ {3} = {2,3}

{2}∩ {3} = ∅

To prevent confusion with standard addition and multiplication, ⊕will be used to denote as-
sociative array element-wise addition and ⊗will be use to denote associative array element-
wise multiplication. In other words, given associative arrays A, B, and C, that represent
spreadsheets, database tables, matrices, or graphs, this book will precisely define corre-
sponding associative array element-wise addition

C = A⊕B

associative array element-wise multiplication

C = A⊗B

and associative array multiplication that combines addition and multiplication

C = AB

“current_book”
2017/8/27
23:44
page 11
#35

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.3 Mathematical Foundations 11

The above array multiplication can also be denoted ⊕.⊗ to highlight its special use of both
addition and multiplication

C = A ⊕.⊗ B

Finally, array transpose is used to swap rows and columns and is denoted

AT

That these operations can be defined so that they make sense for spreadsheets, databases,
matrices, and graphs is what allows associative arrays to be an effective tool for manipu-
lating data in many applications. The foundations of these operations are basic concepts
from abstract algebra that allow the ideas of addition and multiplication to be applied to
both numbers and words. It is a classic example of the unforeseen benefits of pure math-
ematics that ideas in abstract algebra from the 1800s [10] are beneficial to understanding
data generated over a century later.

Formal Properties
It is one thing to state what associative arrays should be able to represent and what opera-
tions on them are useful. It is another altogether to prove that for associative arrays of all
shapes and sizes that the operations hold and maintain their desirable properties. Perhaps
the most important of these properties is coincidentally called the associativity property,
which allows operations to be grouped arbitrarily. In other words,

(A⊕B)⊕C = A⊕ (B⊕C)

(A⊗B)⊗C = A⊗ (B⊗C)

(AB)C = A(BC)

The associativity property allows operations to be executed in any order and is extremely
useful for data processing systems. The ability to swap steps or to change the order of
processing in a system can significantly simplify its construction. For example, if arrays
of data are entering a system one row at a time and the first step in processing the data
is to perform an operation across all columns and the second requires processing across
all rows, this switching can make the system difficult to build. However, if the processing
steps possess the property of associativity, then the first and second steps can be performed
in a different order, making it much easier to build the system. [Note: the property of
associativity should not be confused with the adjective associative in associative array; the
similarity is simply a historical coincidence.]

“current_book”
2017/8/27
23:44
page 12
#36

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12 Chapter 1 Introduction and Overview

Another powerful property is commutativity, which allows arrays in an operation to be
swapped

A⊕B = B⊕A
A⊗B = B⊗A
(AB)T = BTAT

If operations in data processing systems are commutative, then this property can be directly
translated into systems that will have fewer deadlocks and better performance when many
operations are run simultaneously [11].

To prove that associative arrays have the desired properties requires carefully studying
each aspect of associative arrays and verifying that it conforms to well-established math-
ematical principles. This process pulls in basic ideas from abstract algebra, which at first
glance may feel complex, but when presented in the context of everyday concepts, such as
tables, can be made simple and intuitive.

Special Arrays and Graphs
The organization of data in an associative array is important for many applications. In
particular, the placement of nonzero entries in an array can depict relationships that can also
be shown as points (vertices) connected by lines (edges). These diagrams are called graphs.
For example, one such set of relationships is those genres of music that are performed by
particular musical artists. Figure 1.7 extracts these relationships from the data in Figure 1.4
and displays it as both an array and a graph.

Certain special patterns of relationships appear frequently and are of sufficient interest to
be given names. Modifying Figure 1.7 by adding and removing some of the relationships
(see Figure 1.8) produces a special array in which each row corresponds to exactly one
column. Likewise, the graph of these relationships shows the same pattern, and each genre
vertex is connected to exactly one artist vertex. This pattern of connections is referred to
as the identity.

Modifying Figure 1.7 by adding relationships (see Figure 1.9) creates a new array in
which each row has a relationship with every column. Likewise, the graph of these rela-
tionships shows the same pattern, and each genre vertex is connected to all artist vertices.
This arrangement is called a biclique.

In addition, to the identity and the biclique patterns, there are a variety of other patterns
that are important because of their special properties. For example, the square-symmetric
pattern (see Figure 1.6), where the row labels and the column labels are the same and the
pattern of values is symmetric around the diagonal, indicates the presence of an undirected
graph. Understanding how these patterns manifest themselves in associative arrays makes
it possible to recognize these special patterns in spreadsheets, databases, matrices, and
graphs. In a data processing system, recognizing that the data has one of these special

“current_book”
2017/8/27
23:44
page 13
#37

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.3 Mathematical Foundations 13

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1
Pop 1
Rock 1

Electronic!

Pop!

Rock!

Bandayde!

Kastle!

Kitten!

Figure 1.7
Relationships between genres of music and musical artists taken from the data in Figure 1.4. The array on the
left shows how many songs are performed for each genre and each artist. The graph on the right shows the same
information in visual form.

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1
Pop 1
Rock 1

Electronic!

Pop!

Rock!

Bandayde!

Kastle!

Kitten!

Figure 1.8
Modifying Figure 1.7 by removing some of the relationships results in a special array where each row corresponds
to exactly one column. The graph of these relationships has the same pattern, and each genre vertex connects to
exactly one artist vertex. This pattern is referred to as the identity.

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1 1
Pop 1 1 1
Rock 1 1 1

Electronic!

Pop!

Rock!

Bandayde!

Kastle!

Kitten!

Figure 1.9
Modifying Figure 1.7 by adding relationships produces a special array in which each row has a relationship with
every column. The graph of these relationships shows the same pattern, and each genre vertex is connected to all
artist vertices. This collection is referred to as a biclique.

patterns can often be used to eliminate or simplify a data processing step. For example,
data with the identity pattern shown in Figure 1.7 simplifies the task of looking up an artist
given a specific genre or a genre given a specific artist because there is a 1-to-1 relationship
between genre and artist.

Higher Dimensions
The focus of this book is on two-dimensional associative arrays because of their natural
connection to spreadsheets, databases, matrices, and graphs, which are most commonly
two-dimensional. It is worth examining the properties of two-dimensional associative ar-
rays that also work in higher dimensions. Figure 1.10 shows the data from Figures 1.7,
1.8, and 1.9 arranged in a three-dimensional array, or tensor, using an additional dimen-

“current_book”
2017/8/27
23:44
page 14
#38

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14 Chapter 1 Introduction and Overview

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

1
1

1
1 1

1
1

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1 1
Pop 1 1 1
Rock 1 1 1 Free

Atlantic

Elektra

Figure 1.10
Data from Figures 1.7, 1.8, and 1.9 arranged in a three-dimensional array, or tensor, using an additional dimension
corresponding to how the music was distributed.

sion corresponding to how the music was distributed. Many of the structural properties of
arrays in two dimensions also apply to higher-dimensional arrays.

1.4 Making Data Rigorous

Describing data in terms of rigorous mathematics begins with combining descriptions of
sets of bits in the form of associative arrays with mathematical operations, such as addition
and multiplication, and proving that the combination makes sense. When a combination of
sets and operations is found to be useful, it is given a special name so that the combination
can be referred to without having to recall all the necessary definitions and proofs. The
various named combinations of sets and operations are interrelated through a process of
specialization and generalization. For example, the properties of the real numbers

R = (−∞,∞)

are in many respects a specialization of the properties of the integers

Z = {. . . , −1,0,1, . . .}

Likewise, associative arraysA are a generalization that encompasses spreadsheets, databases,
matrices, and graphs. To prove this generalization requires building up associative arrays
from more fundamental combinations of sets and operations with well-established mathe-
matical properties. These combinations include well-defined sets and operations, such as
matrices, addition and multiplication of matrices, and the generalization of matrix entries
to words and numbers.

Matrices, Combining Matrices, and Beyond
If associative arrays encompass the matrices, then many of the useful behaviors that are
found in matrices may also be found in associative arrays. A matrix is a two-dimensional

“current_book”
2017/8/27
23:44
page 15
#39

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.4 Making Data Rigorous 15

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1
Pop 1
Rock 1

El
ec
tro
ni
c

Po
p

R
oc
k

Bandayde 1
Kastle 1
Kitten 1 1

⊕.⊗ =

El
ec
tro
ni
c

Po
p

R
oc
k

Electronic 2
Pop 1 1
Rock 1 1

Figure 1.11
Correlation of different musical genres using associative array multiplication ⊕.⊗.

arrangement of numbers with specific rules on how matrices can be combined using ad-
dition and multiplication. The property of associativity allows either addition or multipli-
cation operations on matrices to be performed in various orders and to produce the same
results. The property of distributivity provides a similar benefit to certain combinations of
multiplications and additions. For example, given matrices (or associative arrays) A, B,
and C, these matrices are distributive over addition ⊕ and multiplication ⊗ if

A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)

An even stronger form of the property of distributivity occurs when the above formula also
holds for the matrix multiplication that combines addition and multiplication

A(B⊕C) = (AB)⊕ (AC)

As with the associativity property, the distributivity property enables altering the order of
steps in a data processing system and can be used to simplify its construction.

The property of distributivity has been proven for matrices in which the values are num-
bers and the rows and columns are labeled with positive integers. Associative arrays gen-
eralize matrices to allow the values, rows, and columns to be numbers or words. To show
that a beneficial property like distributivity works for associative arrays requires rebuild-
ing matrices from the ground up with a more general concept for the rows, columns, and
values.

Multiplication
Multiplication of associative arrays is one of the most useful data processing operations.
Associative array multiplication can be used to correlate one set of data with another set
of data, transform the row or column labels from one naming scheme to another, and
aggregate data into groups. Figure 1.11 shows how the different musical genres can be
correlated by artist using associative array multiplication.

For associative array multiplication to provide these benefits requires understanding how
associative array multiplication will behave in a variety of situations. One important situ-
ation occurs when associative array multiplication will produce a result that contains only
zeros. It would be expected that multiplying one associative array by another associative

“current_book”
2017/8/27
23:44
page 16
#40

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16 Chapter 1 Introduction and Overview

array containing only zeros would produce only zeros. Are there other conditions under
which this is true? If so, recognizing these conditions can be used to eliminate operations.

Another important situation is determining the conditions under which associative array
multiplication will produce a result that is unique. If correlating musical genre by artist
produces a particular result, will that result come about only with those specific associative
arrays or will different associative arrays produce the same result? If multiplying by certain
classes of associative arrays always produces the same result, this property can also be used
to reduce the number steps.

Eigenvectors
Knowing when associative array multiplication produces a zero or unchanging result is
very useful for simplifying a data processing system, but these situations don’t always
occur. If they did, associative array multiplication would be of little use. A situation that
occurs more often is when associative array multiplication produces a result that projects
one of the associative arrays by a fixed amount along a particular direction (or eigenvector).
If a more complex processing step can be broken up into a series of simple eigenvector
projection operations on the data, then it may be possible to simplify a data processing
system.

1.5 Conclusions, Exercises, and References

This chapter has provided a brief overview of the remaining chapters in the book with the
goal of making clear how the whole book ties together. Readers are encouraged to refer
back to this chapter while reading the book to maintain a clear understanding of where they
are and where they are going.

This book will proceed in three parts. Part I: Data Processing introduces associative ar-
rays with real examples that are accessible to a variety of readers. Part II: Data Foundations
describes the properties of associative arrays that emerge and provides a mathematically
rigorous definition of associative arrays. Part III: Data Transformations extends the con-
cepts of linear systems to encompass associative arrays.

Exercises

Exercise 1.1 — Refer to the array in Figure 1.4.

(a) Compute the number of rows m and number of columns n in the array.

(b) Compute the total number of entries mn.

(c) How many empty entries are there?

(d) How many filled entries are there?

Remember the row labels and column labels are not counted as part of the array.

“current_book”
2017/8/27
23:44
page 17
#41

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

1.5 Conclusions, Exercises, and References 17

Exercise 1.2 — Refer to the painting in Figure 1.5.

(a) Count the total number of vertices.

(b) One line passes through six vertices, list the vertices on this line.

(c) There are three triangles in the pictures, list the vertices in each triangle.

Exercise 1.3 — Refer to the associative array in Figure 1.6.

(a) Why is the array called square?

(b) Why is the array called symmetric?

(c) Sum the rows and the columns and find the row and column with the largest sum?

Exercise 1.4 — Refer to the array and graph in Figure 1.7.

(a) Compute the number of rows m and number of columns n in the array.

(b) How many genre vertices are in the graph? How many artist vertices are in the graph?.

(c) Compute the total number of entries mn in the array.

(d) How many empty entries are there in the array?

(e) How many filled entries are there in the array?

(f) How many edges are in the graph?

Exercise 1.5 — Consider arrays A, B, and C and element-wise addition denoted by ⊕ and
element-wise multiplication denoted by ⊗.

(a) Write an expression that illustrates associativity among A, B, and C.

(b) Write an expression that illustrates commutativity among A, B, and C.

(c) Write an expression that illustrates distributivity among A, B, and C.

Exercise 1.6 — List some of the earliest examples of humans using tables to store infor-
mation. Discuss how those instances are similar and different from how humans use tables
today.

Exercise 1.7 — List some of the different perspectives that can be used to view data. How
are these different perspectives similar and different?

Exercise 1.8 — What is the main goal of a data processing system? What are the advan-
tages to a common mathematical view of data as it flows through a data processing system?

Exercise 1.9 — What are the two main mathematical operations that are performed on
data? Speculate as to why these are the most important operations.

“current_book”
2017/8/27
23:44
page 18
#42

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

18 Chapter 1 Introduction and Overview

Exercise 1.10 — What is the main goal of rigorously defining mathematical operations on
associative arrays?

References

[1] F. T. Marchese, “Exploring the origins of tables for information visualization,” in Information Visualisation
(IV), 2011 15th International Conference on, pp. 395–402, IEEE, 2011.

[2] D. J. Power, “A history of microcomputer spreadsheets,” Communications of the Association for Information
Systems, vol. 4, no. 1, p. 9, 2000.

[3] K. L. Berg, T. Seymour, and R. Goel, “History of databases,” International Journal of Management & Infor-
mation Systems (Online), vol. 17, no. 1, p. 29, 2013.

[4] “Khan academy - intro to the matrices.” http://www.khanacademy.org/math/algebra2/alg2-matrices/basic-
matrix-operations-alg2/v/introduction-to-the-matrix. Accessed: 2017-04-08.

[5] A. Cayley, “A memoir on the theory of matrices,” Philosophical transactions of the Royal society of London,
vol. 148, pp. 17–37, 1858.

[6] M. Zuckerburg, “Facebook and computer science.” Harvard University CS50 guest lecture, Dec. 7 2005.

[7] J. V. Kepner, “Multidimensional associative array database,” Jan. 14 2014. US Patent 8,631,031.

[8] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz,
A. McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed dimensional data
model (D4M) database and computation system,” in Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, pp. 5349–5352, IEEE, 2012.

[9] C. R. Johnson, E. Hendriks, I. J. Berezhnoy, E. Brevdo, S. M. Hughes, I. Daubechies, J. Li, E. Postma, and
J. Z. Wang, “Image processing for artist identification,” IEEE Signal Processing Magazine, vol. 25, no. 4,
2008.

[10] R. Dedekind, “Über die komposition der binären quadratischen formen,” in Über die Theorie der ganzen
algebraischen Zahlen, pp. 223–261, Springer, 1964.

[11] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler, “The scalable commutativity rule:
Designing scalable software for multicore processors,” ACM Transactions on Computer Systems (TOCS),
vol. 32, no. 4, p. 10, 2015.

“current_book”
2017/8/27
23:44
page 19
#43

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2 Perspectives on Data

Summary
Spreadsheets, databases, matrices, and graphs all use two-dimensional data structures in
which each data element can be specified with a triple denoted by a row, column, and value.
Spreadsheets provide a simple tabular view of data and are the most commonly used tool
for analyzing data in the world. Databases that organize data into large related tables are the
world’s most commonly used tool for storing and retrieving data. Databases allow separate
people to view the data from different locations and conduct transactions based on entries
in the tables. Relational databases are designed for highly structured transactions and often
have hundreds of distinct tables that are connected by many relation tables. In a matrix,
each row and column is specified by integers starting at 1. The values stored at a particular
row and column can be any number. Matrices are particularly useful for comparing whole
rows and columns and determining which ones are most alike. A common way to show
visual relationships among data is through a picture consisting of vertices connected by
edges. These graphs are often represented in spreadsheets and databases as sparse adjacency
matrices or as sparse incidence matrices. This chapter reviews the historical development
of spreadsheets, databases, matrices, and graphs, and lays the foundation for viewing all of
these data structures as associative arrays.

2.1 Interrelations

As sets of bits move through a data processing system, they are viewed from different per-
spectives by different parts of the system. Data often are first parsed into a spreadsheet
form, then ingested into a database, operated on with matrix mathematics, and presented
as a graph of relationships. A large fraction of the effort of developing and maintaining
a data processing system goes into sustaining these different perspectives. Thus, it is de-
sirable to minimize the differences between these perspectives. Fortunately, spreadsheets,
databases, matrices, and graphs are all two-dimensional representations whereby each data
element is specified by a row, column, and value. Using this common reference point,
many technologies have been developed to bridge the gaps between these different per-
spectives (see Figure 2.1). Array programming languages, beginning with A Programming
Language (APL) [1] and branching out to Matlab, Octave, R, Python, and Julia have be-
come a standard approach for manipulating matrices (both dense [2, 3] and sparse [4])
since the 1990s. Many of these languages have had direct support for spreadsheet manip-
ulation for nearly as long. An even stronger connection exists between spreadsheets and

“current_book”
2017/8/27
23:44
page 20
#44

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

20 Chapter 2 Perspectives on Data

spreadsheets!

graphs! databases!

matrices!array!
language!

sc
at
te
r!

pl
ot
!

relational!
database!

array!
store!

key-value!
store!

adja
cenc

y!

incid
ence

!

Figure 2.1
Spreadsheets, databases, matrices, and graphs have spawned many concepts that exploit the deeper underlying
connections that exist between them.

relational databases. A prime example is the SAP enterprise resource planning package
(www.sap.com), which is the dominant software used for accounting and payroll manage-
ment throughout the world. SAP relies on seamless integration between SQL databases
and spreadsheets. More recently, spreadsheets have incorporated adjacency matrices to
manipulate and visualize graphs by using their built-in plotting capabilities [5]. Perhaps
the largest recent development has been the introduction of key-value store databases [6]
that are specifically designed to store massive sparse tables and are ideal for storing graphs.
Array store databases [7] have taken sparse tables a step further by also including first-class
support of matrix operations on those data. The deep connection between graphs and sparse
matrices [8] has been recognized to such an extent that it has led to the development of new
standards for bringing these fields together [9–17].

That so much has been achieved by exploiting the underlying connections between
spreadsheets, databases, matrices, and graphs is strong motivation for understanding their
formal mathematical unification. The remainder of this chapter will present the core idea
that each perspective uses to organize data. An emphasis will be placed on their common
two-dimensional representations that will be the basis of their unification by associative
arrays, which will be covered in subsequent chapters. Finally, an overview of some of the
perspectives on data is presented.

2.2 Spreadsheets

Spreadsheets are the most widely used tool for analyzing data in the world because they
provide an to understand tabular view of data. The history of electronic spreadsheets [18]
begins at the dawn of the computer age in the early 1960s [19]. LANPAR, the LANguage
for Programming Arrays at Random, was invented in 1969 and was patented in 1983 [20].
Broadly available electronic spreadsheets began with the release of VisiCalc in the late
1970s [21, 22]. Lotus 1-2-3 developed by Mitch Kapor for the IBM PC became the most

“current_book”
2017/8/27
23:44
page 21
#45

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.2 Spreadsheets 21

Figure 2.2
American computer magnates Steve Jobs (1955–2011) (left), co-founder of Apple Computer Inc., and Bill Gates,
co-founder of Microsoft, as they take questions at a press conference to announce Microsoft’s Excel software
program at Tavern on the Green, New York, New York, May 2, 1985. (Photo by Andy Freeberg/Getty Images).

widely used spreadsheet in the early 1980s [23]. Microsoft Excel was first announced
by Apple Computer founder Steve Jobs and Microsoft founder Bill Gates at New York’s
Tavern on the Green on May 2, 1985 (see Figure 2.2). “Excel has 16,000 rows and 256
columns,” Gates said during the announcement [24] that may mark the dawn of the big
data era.

It is estimated that more than 100 million people use a spreadsheet every day. Almost
everyone has used a spreadsheet at one time or another to keep track of their money, ana-
lyze data for school, or plan a schedule for an activity. These diverse uses in everyday life
give an indication of the power and flexibility of the tabular view of data offered by spread-
sheets. Figure 2.3 shows some of the various applications of spreadsheets for analyzing
two-dimensional data, such as personnel records, finances, and coordinates. What is even
more impressive is that these diverse data can be stored in the same spreadsheet and still
be easily understood and manipulated by most humans.

The flexibility of spreadsheets is derived from their representation of each data element
as a triple consisting of an orderable row key, an orderable column key, and value that can
be a number or word. This triple allows the spreadsheet to consistently and efficiently or-
ganize an enormous variety of two-dimensional data. Individual spreadsheet technologies
often have their own row and column labeling system, such as 1A or R1C1. Common
formats for exchanging spreadsheet data, such as comma-separated values (.csv files) and
tab-separated values (.tsv files), allow the row keys and column keys to be arbitrarily spec-
ified by the user. These formats have been around since the advent of digital computing
[25].

“current_book”
2017/8/27
23:44
page 22
#46

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

22 Chapter 2 Perspectives on Data

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414

AA BB CC DD EE FF GG HH II JJ KK
1 2 2 1 Code Name Job Date $ in bank
2 3 3 2 A0001 Alice scientist 2000 Jan 01 $11,700
2 3 3 2 B0002 Bob engineer 2001 Jan 01 $10,600
1 2 2 1 C0003 Carl mathematician 2002 Jan 01 $10,200

2003 Jan 01 $8,600
2004 Jan 01 $10,400
2005 Jan 01 $10,600

y=10 6 12 18 2006 Jan 01 $10,900
y=8 5 10 15 2007 Jan 01 $12,300
y=6 4 8 12 2008 Jan 01 $12,600
y=4 3 6 9 2009 Jan 01 $9,000
y=2 2 4 6 2010 Jan 01 $10,600
y=0 1 2 3 2011 Jan 01 $11,700

x=0 x=5 x=10

Figure 2.3
Diverse uses of spreadsheets for organizing arrays of two-dimensional data: a matrix (upper left), personnel
records (upper middle), finances (right), and coordinates (lower middle).

The ability of spreadsheets to store diverse data is why they are often the perspective
of choice for organizing raw sets of bits when they first enter a data processing system.
Spreadsheets impose minimal requirements on the data, only that the data be organizable in
small tabular chunks. The benefit of using spreadsheets in this first step is that the raw sets
of bits fall within a well-defined perspective that is readily viewable and understandable.

2.3 Databases

As the number of rows and columns in a table grows beyond what can be easily viewed,
a database can be used to store and retrieve the same tabular information. Databases that
organize data into large related tables have been the most frequently used tool for storing
and retrieving data in the world since the 1960s [26, 27]. Databases enable data to be
viewed by different people at different locations and transact business by updating entries
in shared tables. Databases play a role in most purchases. In addition to transactions,
another important application of databases is the analysis of many rows and columns in a
table to find useful patterns. Such analyses are routinely used to determine if a purchase is
real or potentially fraudulent.

The modern development of databases effectively begins with relational or SQL (Struc-
tured Query Language) databases [28, 29] which have been the standard interface to databases
since the 1980s and are the bedrock of electronic transactions around the world. More re-
cently, key-value stores (NoSQL databases) [30] have been developed for representing
large sparse tables to aid in the analysis of data for Internet search. As a result, the major-
ity of the data on the Internet is now analyzed using key-value stores [31–33]. In response
to the same data analysis challenges, the relational database community has developed a

“current_book”
2017/8/27
23:44
page 23
#47

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.3 Databases 23

Code NameID JobID
1 A0001 1 1
2 B0002 2 2
3 C0003 3 1

Name
1 Alice
2 Bob
3 Carl

Job
1 scientist
2 engineer

Figure 2.4
Relational databases use multiple tables to create relations between data. Here a list of names and a list of job
titles are related by a third table.

new class of array store (NewSQL) databases [34–37] to provide the features of relational
databases while also scaling to very large data sets.

Relational Databases (SQL)
Relational databases store data in multiple tables in which each table contains rows or
records. Each record consists of a set of values corresponding to the different columns in
the table. Relational databases are designed to support multi-party transactions. They have
rigorous mechanisms for ensuring that transactions are carried out in the proper order and
that data are never lost. Relational databases also structure data by defining exactly the
type of data that can go into each entry in the database.

Relational databases are well suited for financial data (right side of Figure 2.3). For
personnel records (upper middle of Figure 2.3), a relational database could store the data
as they are shown, but often the data would be broken up into three tables (see Figure 2.4).
One table would hold a list of names and another table would hold a list of job titles. This
arrangement allows both the names and the job titles to be tightly controlled, and only valid
names and job titles can be inserted into these tables. A third table would then hold the
relations between the names and the job titles. Each row of this third table would consist of
the code, an index to a name, and an index to a job title. A common schema for relational
databases is to have several distinct primary tables that are connected to each other by
many relation tables.

Relational databases are most often accessed by using standard SQL syntax, which is
inspired by relational algebra that defines mathematical operations for selection and for
combining rows and columns from different tables. Interestingly, and not surprisingly,
advanced relational algebra [38] uses a number of mathematical concepts that are used in
associative arrays.

“current_book”
2017/8/27
23:44
page 24
#48

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

24 Chapter 2 Perspectives on Data

ra
bb
it

sn
ak
e

tu
rtl
e

fu
n.
co
m
/d
oc
.h
tm

ho
m
e.
co
m
/d
oc
.h
tm

pe
ts
.c
om

/d
oc
.h
tm

ra
bb
its
.c
om

/d
oc
.h
tm

sn
ak
es
.c
om

/d
oc
.h
tm

tu
rtl
es
.c
om

/d
oc
.h
tm

fun.com/doc.htm 1 1 1 1 1 1 1
home.com/doc.htm 1 1 1 1 1 1 1
pets.com/doc.htm 1 1 1 1 1 1 1

rabbits.com/doc.htm 1 1
snakes.com/doc.htm 1 1
turtles.com/doc.htm 1 1

total 4 4 4 1 1 1 4 4 4

Figure 2.5
Example of the kind of data used for searching large numbers of linked documents. Each row represents a
document and each column represents either a word in the document or a link to another document.

Key-Value Stores (NoSQL)
Searching for information on the Internet created a need for a whole new kind of data
storage system less focused on transactions and more focused on analysis of data. In
particular, storage systems were needed that could ingest many documents and index the
words in these documents and their links to other documents.

These key-value stores are often referred to as NoSQL databases because they differ in
many ways from relational databases (SQL). Figure 2.5 shows one example of the kind of
data employed in searching a large number of linked documents. Each row is a document
and each column is either a word in the document or can be a link to another document.
If a person wants to look for documents relating to the word rabbit, the search can be
done by selecting the corresponding column in Figure 2.5 to find the rows (or documents)
containing the word rabbit. However, to rank these documents requires looking at the links
in the documents. In this simple example, the document with the largest number of links
pointing toward it (rabbits.com/doc.html) could be ranked highest.

Key-value stores need to ingest and index very large quantities of document data. They
are designed to be simple so they can be very fast and very large. Typically, a key-value
store will keep a sorted list of keys and then have a set of values associated with those keys.
In Figure 2.5 the keys correspond to the rows and columns and the value is the value. For
example, the first few key-value pairs in Figure 2.5 could be

(fun.com/doc.htm rabbit,1)

(fun.com/doc.htm snake,1)

(fun.com/doc.htm turtle,1)

In a key-value store, only the rows and columns with entries are stored, so the tables can be
very sparse so that most rows and columns are mostly empty. Little structure is imposed,

“current_book”
2017/8/27
23:44
page 25
#49

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.4 Matrices 25

10 6 12 18

9

8 5 10 15

7

6 4 8 12

5

4 3 6 9

3

2 2 4 6

1

0 1 2 3
0 1 2 3 4 5 6 7 8 9 10

x!

y!

Figure 2.6
Coordinate data from Figure 2.3 (lower middle) organized in an array store. The array store table has two dimen-
sions x and y ranging from 0 to 10. To conserve space, only the non-empty entries are stored.

and keys and values can be any number or word. Furthermore, the type of analyses done
on the data are often more complex than simply looking up rows or columns. Matrix
algorithms are often used to compute the most relevant documents for a search.

Array Stores (NewSQL)
Sensor data from cameras, medical devices, and sound systems often consist of large quan-
tities of numbers that are best organized in multidimensional arrays. Databases are well
suited for organizing and accessing these data, and a new class of array store databases
(NewSQL) has been developed to address these new patterns of data. Figure 2.6 shows
how the coordinate data (lower middle) from Figure 2.3 (lower middle) could be organized
in an array store. The array store table consists of two dimensions x and y that range from
0 to 10. Only the non-empty entries are stored.

2.4 Matrices

Mathematics also uses a tabular view to represent numbers. This view is referred to as
a matrix. In a matrix, each row and column index is given by pairs of integers starting
at (1,1). The value stored at a given row and column index is typically a real number.
Matrices are particularly valuable for comparing entire rows and columns and determining
which rows or columns are most alike. Such a comparison is called a correlation and
is useful in a wide range of applications. For example, matrix correlations can determine

“current_book”
2017/8/27
23:44
page 26
#50

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

26 Chapter 2 Perspectives on Data

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

unit circle
A * unit circle
A = AT > 0
eigvec(A)
A * eigvec(A)

u = unit circle
Au
A

(1.1,0.5)

(0,0)

(0.5,1.1)

(1.6,1.6)

v = eigvec(A)
Av

area =
det(A)

Figure 2.7

The matrix multiplication properties of the 2×2 matrix A =

0.5 1.1
1.1 0.5

.
which documents are most like other documents so that a person looking for one document
can also be given a list of similar documents.

The correlation of two matrices A and B is computed using matrix multiplication AB
or more formally A ⊕.⊗ B. Because of its usefulness across many applications, much of
matrix mathematics is devoted to the study of matrix multiplication. Consider the 2× 2
matrix

A =

1 2

1 0.5 1.1

2 1.1 0.5

What happens to A when it is multiplied with other matrices is shown in Figure 2.7. A is
depicted as the blue parallelogram on which the uppermost point (1.6,1.6) corresponds to
the sum of the rows (or columns) of A. The circle of radius 1 is depicted in green and is
designated the unit circle.

Let u be any point lying on the green line. Au is the product of A with u and is shown
as the green dashed ellipse. The green dashed ellipse represents how A distorts the unit
circle. Note that the green dashed ellipse touches the corners of the blue parallelogram and

“current_book”
2017/8/27
23:44
page 27
#51

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.5 Graphs 27

is tangent to the sides of the blue parallelogram at that point. The long axis of the green
dashed ellipse points directly at the upper rightmost point of the parallelogram.

The points on the unit circle that align with the axis of the green dashed ellipse are show
by the black square. These points are given a special name called the eigenvectors of the
matrix A. Multiplication of A by any point along these eigenvectors will only stretch the
eigenvectors. All other points, when multiplied by A, will be stretched and rotated. The
red box shows what happens when the eigenvectors of A are multiplied by A. The red
box corresponds exactly to the axis of the green dashed ellipse. The length of the sides of
the red box determine how much stretching occurs along each direction of the eigenvector.
The long axis implies that points along this eigenvector will become longer. The short axis
indicates that points along this eigenvector will become shorter.

The ratio of the area of the red box to the black box is equal to the ratio of the area of
the green dashed ellipse to the green solid circle. This ratio is equal to the area of the blue
parallelogram and is called the determinant.

While not all 2× 2 matrices behave as shown in Figure 2.7, many do. In particular,
many of the matrices that are relevant to the kinds of data represented with spreadsheets,
databases, and graphs have the properties shown Figure 2.7. Furthermore, these properties
hold as the matrix grows (they just get harder to draw).

2.5 Graphs

Humans have an intuitive ability to understand visual relationships. A common way to
draw these relationships is through a picture (graph) consisting of points (vertices) con-
nected by lines (edges). These pictures can readily highlight data that are connected to lots
of other data. In addition, it is also possible to determine how closely connected two data
elements are by following the edges connecting two vertices. For example, given a person’s
set of friends, it is possible to suggest likely new friends from their friend’s friends.

Graphs are one of the most pervasive representations of data and algorithms [39]. Graphs
are often stored in spreadsheets and databases as various sparse matrices. The two most
common types are the adjacency matrix and the incidence matrix. In an adjacency matrix
A, each row and column represents vertices in the graph, and setting A(i, j) = 1 denotes an
edge from vertex i to vertex j. The same correlation operation that is used to compare rows
and columns in a matrix can also be used to follow edges in a graph. Figure 2.8 shows
this graph/matrix duality. On the left of Figure 2.8 is a graph with 7 vertices and 12 edges.
The neighbors of the vertex Alice can be found by following all the edges that lead out
of Alice to the vertices Bob and Carl. This graph operation is called breadth-first search
(BFS). On the right of Figure 2.8 is an adjacency matrix representation of the same graph.
Multiplying the transpose of adjacency matrix AT by a vector v containing a nonzero entry
only at Alice results in another vector whose nonzero entries correspond to the neighbors

“current_book”
2017/8/27
23:44
page 28
#52

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

28 Chapter 2 Perspectives on Data

Alice!

Carl!

Bob!
A!

Bob!

Carl!

Alice!

ou
t-v

er
te

x!

in-vertex!T

= !

v	 A v	T

Figure 2.8
The relationships among 7 vertices and 12 edges depicted as a graph (left) and its corresponding adjacency
matrix (right). The neighbors of the vertex Alice can be found by following the edges (left) or by multiplying the
adjacency matrix with the appropriate vector (right).

of Alice: Bob and Carl. Many graph algorithms leverage the close link between graphs
and matrices to exploit matrix mathematics in their algorithms [8]. The most well-known
example is the Google PageRank algorithm [40], which rates web pages on the basis of the
first eigenvector of the Internet weblinks adjacency matrix.

Graph Construction
Graph construction, a fundamental operation in the data processing pipeline, is typically
done by multiplying the incidence associative array representations of a graph, Eout and
Ein, to produce an adjacency associative array of the graph that can be processed with
a variety of machine learning clustering techniques. Suppose G is a (possibly directed)
weighted graph with a set of edges K and vertex set

Kout∪Kin

where Kout is the set of vertices with out edges and Kin is the set of vertices with in edges.
In addition, let the set of possible values associated with the edge be drawn from a set V .

The two incidence associative arrays of G are the out incidence array

Eout : K ×Kout→ V

and the in incidence array
Ein : K ×Kin→ V

To be incidence arrays requires
Eout(k,kout) , 0

if edge k goes out of vertex kout and

Ein(k,kin) , 0

if edge k goes into vertex kin.

“current_book”
2017/8/27
23:44
page 29
#53

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.6 Map Reduce 29

Given a graph G with vertex set Kout∪Kin, an associative array

A : Kout×Kin→ V

is an adjacency array of the graph G if and only if

A(kout,kin) , 0

implies kout is adjacent to kin. In a directed graph, this means that

A(kout,kin) , 0

if there is an edge starting at vertex kout and ending at vertex kin.
Let G be a graph with out and in incidence arrays Eout and Ein, respectively. An entry of

A = ET
outEin

called
A(kout,kin)

for kout ∈ Kout and kin ∈ Kin may be expressed as

A(kout,kin) =
⊕
k∈K

ET
out(kout,k)⊗Ein(k,kin)

where T denotes the transpose operation. For ET
outEin to be the adjacency array of G, the

entry A(kout,kin) must be nonzero exactly when vertex kout has an edge to vertex kin.

2.6 Map Reduce

One of the simplest and most popular approaches to analyzing data is to map the same
function to different inputs, such as files, and then to take the different outputs and reduce
them together into a single output. This map reduce paradigm [41, 42] has been widely
used in many systems and can naturally be expressed in terms of array multiplication

C = AB = A ⊕.⊗ B

In this notation, ⊗ approximately corresponds to the map applied to each pair of inputs, and
⊕ approximately corresponds to the reduce function applied to the outputs. This approach
can be extended to performing computations on database analysis systems that have table
reader functions and table writer functions [43]. The table reader function corresponds to
reading data and performing the map function, while the table writer function corresponds
to the reduce function.

“current_book”
2017/8/27
23:44
page 30
#54

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

30 Chapter 2 Perspectives on Data

2.7 Other Perspectives

The four perspectives described here are by no means the only ways to view data. Spread-
sheets, databases, matrices, and graphs have been combined in a variety of ways in a
range of technologies. Some of the most richly implemented examples include Linda tu-
plespaces, SPARQL resource description frameworks (RDFs), R labeled matrices, Matlab
table objects, and the Spark resilient distributed data set (RDD).

The Linda [44] tuplespace data model and parallel programming paradigm is one of the
most innovative systems in data modeling and computation. In Linda, data values are
tuples that have many similarities to associative array triples. For example, two edges
in Figure 2.8 could be represented as the tuples (Alice,Bob,1) and (Alice,Carl,1). Tuples
with more than three attributes appear similar to a dense associative array with each row
representing a distinct tuple and each column a distinct dimension. Linda defines four
primary operations on its tuplespaces: rd, in, out, and eval. rd selects a specified tuple
from a tuplespace. rd is similar to looking up an entry in an associative array. in selects
a tuple from a tuplespace and returns it and removes it from the tuplespace. in looks up
an entry in an associative array and then substracts that entry from the associative array
after it is has been found. out inserts a specified tuple into a tuplespace. out is similar to
adding a new entry to an associative array via addition. eval selects a specified tuple and
then performs operations on the values from that tuple. eval is similar to a user-defined ⊕
or ⊗ operation on an associative array.

RDF was developed by the W3 (World Wide Web) Consortium [45] to provide a general
mechanism for modeling relationships between objects typically found on the Internet. In
RDF, a relationship is specified with a triple denoted (subject, predicate, object). In graph
terminology, the subject is the start vertex, the object is the end vertex, and the predicate
labels the edge. In database terminology, a table row is the subject, the table column
name is the object, and the predicate is the table value. For example, if the two edges
in Figure 2.8 represented author citations, they could be represented using RDF triples as
(Alice,cited,Bob) and (Alice,cited,Carl). The Simple Protocol And RDF Query Language
(SPARQL) [46] was likewise developed by the W3 Consortium to provide a mechanism
for querying RDF data in a manner similar to how SQL can be used to query a database
table.

The concept of assigning the string row and column keys to a matrix has been used
in a number of environments. In the R programming language [47] the colnames and
rownames functions allow users to assign these values to matrix. The Matlab language
has a similar concept in its table objects. Likewise, in the Spark RDD [48], the filename
and row number form an implicit row key, and the columns can be explicitly labeled.

Furthermore, nearly all modern programming languages have a mechanism for asso-
ciating one set of strings with another. Examples from more recent programming envi-

“current_book”
2017/8/27
23:44
page 31
#55

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.8 Conclusions, Exercises, and References 31

ronments include Perl associative arrays [49], C++ maps, Python dictionaries [50], and
Java hashmaps [51]. Other earlier instances include SNOBOL (StriNg Oriented and sym-
BOlic Language) tables [52], MUMPS (Massachusetts General Hospital Utility Multi-
Programming System) arrays [53], REXX (REstructured eXtended eXecutor) associative
arrays [54], and Lua tables [55]. The mathematically rigorous associative arrays described
in this book encompass and extend all of these representations.

2.8 Conclusions, Exercises, and References

This chapter described the primary perspectives used in data processing systems for orga-
nizing data. Spreadsheets, databases, matrices, and graphs all heavily use two-dimensional
perspectives on data that can be captured by row, column, and value triples. A variety of
technologies merge aspects of these perspectives. For example, array languages merge the
matrix and spreadsheet perspectives. Associative arrays provide the mathematical basis for
merging all four of these perspectives. The Dynamic Distributed Dimensional Data Model
(D4M) is the first practical implementation of associative arrays and will be described in
the next chapter.

Exercises

Exercise 2.1 — Figure 2.3 shows four arrays of two-dimensional data: a matrix (upper
left), personnel records (upper middle), finances (right), and coordinates (lower middle).

(a) Compute the number of rows m and number of columns n in the array.

(b) Compute the total number of entries mn.

(c) How many empty entries are there?

(d) What are the types of entries in each cell. Are they real numbers, integers, words,
dollars, ... ?

Remember the row labels and column labels are not counted as part of the array.

Exercise 2.2 — Refer to Figure 2.4.

(a) What is the Name associated with NameID = 2?

(b) What is the Job associated with JobID = 1?

Exercise 2.3 — Refer to Figure 2.5.

(a) Compute the number of rows m and number of columns n in the array.

(b) Compute the total number of entries mn.

(c) How many empty entries are there?

“current_book”
2017/8/27
23:44
page 32
#56

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

32 Chapter 2 Perspectives on Data

(d) How many non-empty entries are there?

Exercise 2.4 — Refer to Figure 2.6.

(a) Compute the number of rows m and number of columns n in the array.

(b) Compute the number of non-empty rows m and number of non-empty columns n in the
array.

(c) List the non-empty row keys and the non-empty column keys.

(d) Compute the total number of entries mn.

(e) Compute the total number of entries in the non-empty rows and columns mn.

(f) How many empty entries are there?

(g) How many non-empty entries are there?

(h) List the triple corresponding to the largest value in the array.

Exercise 2.5 — Refer to Figure 2.7.

(a) Describe a relation of the blue parallelogram to the red rectangle.

(b) Describe a relation of the red rectangle to the black square.

(c) Describe a relation of the red rectangle to the green dashed ellipse.

(d) Describe a relation of the green dashed ellipse to the blue parallelogram.

Exercise 2.6 — Refer to Figure 2.8.

(a) How many edges go into the vertex Alice and how many edges leave the vertex Alice?

(b) How many edges go into the vertex Bob and how many edges leave the vertex Bob?

(c) How many edges go into the vertex Carl and how many edges leave the vertex Carl?

Exercise 2.7 — From your own experience, describe data you have put into a spreadsheet
and how you used those data. Why was a spreadsheet the right tool for that task?

Exercise 2.8 — Why were key-value stores developed? How do key-value stores differ
from relational databases?

Exercise 2.9 — Describe one method for understanding how a specific matrix behaves
during matrix multiplication.

Exercise 2.10 — Draw the graph represented by the adjacency matrix in Figure 2.5.

Exercise 2.11 — Compare and contrast spreadsheets, databases, matrices, and graphs.

“current_book”
2017/8/27
23:44
page 33
#57

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.8 Conclusions, Exercises, and References 33

References

[1] K. E. Iverson, “A programming language,” in Proceedings of the May 1-3, 1962, spring joint computer
conference, pp. 345–351, ACM, 1962.

[2] C. Moler, MATLAB Users’ Guide. University of New Mexico, 1980.

[3] C. B. Moler, Numerical Computing with MATLAB. SIAM, 2004.

[4] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab: Design and implementation,” SIAM
Journal on Matrix Analysis and Applications, vol. 13, no. 1, pp. 333–356, 1992.

[5] M. A. Smith, B. Shneiderman, N. Milic-Frayling, E. Mendes Rodrigues, V. Barash, C. Dunne, T. Capone,
A. Perer, and E. Gleave, “Analyzing (social media) networks with nodexl,” in Proceedings of the fourth
international conference on Communities and technologies, pp. 255–264, ACM, 2009.

[6] A. Cordova, B. Rinaldi, and M. Wall, Accumulo: Application Development, Table Design, and Best Practices.
"O’Reilly Media, Inc.", 2015.

[7] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov, D. L. Wang,
M. Balazinska, J. Becla, J. Becla, D. DeWitt, B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker, and
S. Zdonik, “A demonstration of SciDB: a science-oriented DBMS,” Proceedings of the VLDB Endowment,
vol. 2, no. 2, pp. 1534–1537, 2009.

[8] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra. SIAM, 2011.

[9] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos, J. Feo, J. Gilbert, J. Gonzalez, B. Hen-
drickson, J. Kepner, C. Leiseron, A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker, S. Wal-
lach, and A. Yoo, “Standards for graph algorithm primitives,” in High Performance Extreme Computing
Conference (HPEC), pp. 1–2, IEEE, 2013.

[10] T. Mattson, “Motivation and mathematical foundations of the GraphBLAS,” IPDPS Graph Algorithms Build-
ing Blocks, 2014.

[11] J. Gilbert, “Examples and applications of graph algorithms in the language of linear algebra,” IPDPS Graph
Algorithms Building Blocks, 2014.

[12] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: Unifying data-
parallel and graph-parallel analytics,” arXiv preprint arXiv:1402.2394, 2014.

[13] D. Mizell and S. Reinhardt, “Effective graph-algorithmic building blocks for graph databases,” IPDPS Graph
Algorithms Building Blocks, 2014.

[14] J. Kepner and V. Gadepally, “Adjacency matrices, incidence matrices, database schemas, and associative
arrays,” IPDPS Graph Algorithms Building Blocks, 2014.

[15] S. Maleki, G. Evans, and D. Padua, “Linear algebra operator extensions for performance tuning of graph
algorithms,” IPDPS Graph Algorithms Building Blocks, 2014.

[16] A. Buluç, G. Ballard, J. Demmel, J. Gilbert, L. Grigori, B. Lipshitz, A. Lugowski, O. Schwartz, E. Solomonik,
and S. Toledo, “Communication-avoiding linear-algebraic primitives for graph analytics,” IPDPS Graph Al-
gorithms Building Blocks, 2014.

[17] A. Lumsdaine, “Standards: Lessons learned,” IPDPS Graph Algorithms Building Blocks, 2014.

[18] D. J. Power, “A history of microcomputer spreadsheets,” Communications of the Association for Information
Systems, vol. 4, no. 1, p. 9, 2000.

[19] R. Mattessich, “Budgeting models and system simulation,” The Accounting Review, vol. 36, no. 3, pp. 384–
397, 1961.

[20] R. K. Pardo and R. Landau, “Process and apparatus for converting a source program into an object program,”
Aug. 9 1983. US Patent 4,398,249.

[21] D. Bricklin and B. Frankston, Reference Manual: VisiCalc computer software program. Personal Software,
Inc., 1979.

“current_book”
2017/8/27
23:44
page 34
#58

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

34 Chapter 2 Perspectives on Data

[22] R. Ramsdell, “The power of VisiCalc,” BYTE Magazine, vol. 5, no. 11, p. 190, 1980.

[23] G. Williams, “Lotus develoment corporations’s 1-2-3,” BYTE Magazine, vol. 7, no. 12, p. 182, 1982.

[24] J. Pournell, “Computing at chaos manner,” BYTE Magazine, vol. 10, no. 9, p. 347, 1985.

[25] IBM, IBM FORTRAN Program Products for OS and the CMS Component of VM/370 General Information.
IBM Corporation, 1972.

[26] K. L. Berg, T. Seymour, and R. Goel, “History of databases,” International Journal of Management & Infor-
mation Systems (Online), vol. 17, no. 1, p. 29, 2013.

[27] G. O’Regan, “History of databases,” in Introduction to the History of Computing, pp. 275–283, Springer,
2016.

[28] E. F. Codd, “A relational model of data for large shared data banks,” Communications of the ACM, vol. 13,
no. 6, pp. 377–387, 1970.

[29] M. Stonebraker, G. Held, E. Wong, and P. Kreps, “The design and implementation of INGRES,” ACM Trans-
actions on Database Systems (TODS), vol. 1, no. 3, pp. 189–222, 1976.

[30] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[31] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available key-value store,” ACM SIGOPS operat-
ing systems review, vol. 41, no. 6, pp. 205–220, 2007.

[32] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[33] L. George, HBase: The Definitive Guide: Random Access to Your Planet-Size Data. " O’Reilly Media, Inc.",
2011.

[34] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik, “C-Store: a column-oriented DBMS,” in Proceedings
of the 31st international conference on Very large data bases, pp. 553–564, VLDB Endowment, 2005.

[35] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. Abadi, “H-store: a high-performance, distributed main memory transaction pro-
cessing system,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499, 2008.

[36] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear, “The Vertica analytic
database: C-Store 7 years later,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1790–1801, 2012.

[37] M. Stonebraker and A. Weisberg, “The VoltDB main memory DBMS,” IEEE Data Engineering Bulletin,
vol. 36, no. 2, pp. 21–27, 2013.

[38] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,” in Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 31–40, ACM, 2007.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, vol. 6. MIT press
Cambridge, 2001.

[40] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Computer networks and
ISDN systems, vol. 30, no. 1, pp. 107–117, 1998.

[41] J. Anderson and B. Reiser, “The LISP tutor,” BYTE Magazine, vol. 10, no. 4, pp. 159–175, 1985.

[42] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of the
ACM, vol. 51, no. 1, pp. 107–113, 2008.

[43] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo implementation of server-side sparse matrix
multiply in the Accumulo database,” in High Performance Extreme Computing Conference (HPEC), pp. 1–7,
IEEE, 2015.

“current_book”
2017/8/27
23:44
page 35
#59

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

2.8 Conclusions, Exercises, and References 35

[44] N. Carriero and D. Gelernter, “Linda in context,” Communications of the ACM, vol. 32, no. 4, pp. 444–458,
1989.

[45] O. Lassila and R. R. Swick, “Resource description framework (RDF) model and syntax specification,” W3C
Recommendation, vol. REC-rdf-syntax-19990222, 1999.

[46] E. Prudh́ommeaux and A. Seaborne, “SPARQL query language for RDF,” W3C Recommendation, Jan. 15
2008.

[47] M. J. Crawley, The R Book. John Wiley & Sons, 2012.

[48] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with
working sets,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[49] L. Wall, T. Christiansen, and J. Orwant, Programming Perl. "O’Reilly Media, Inc.", 2000.

[50] M. Lutz, Learning Python. "O’Reilly Media, Inc.", 2013.

[51] D. Flanagan, Java in a Nutshell. "O’Reilly Media, Inc.", 2005.

[52] D. J. Farber, R. E. Griswold, and I. P. Polonsky, “Snobol, a string manipulation language,” Journal of the
ACM (JACM), vol. 11, no. 1, pp. 21–30, 1964.

[53] J. Bowie and G. O. Barnett, “MUMPS–an economical and efficient time-sharing system for information
management,” Computer programs in biomedicine, vol. 6, no. 1, pp. 11–22, 1976.

[54] M. F. Cowlishaw, “The design of the REXX language,” IBM Systems Journal, vol. 23, no. 4, pp. 326–335,
1984.

[55] R. Ierusalimschy, W. Celes, L. de Figueiredo, and R. de Souza, “Lua: uma linguagem para customizaçao de
aplicaçoes,” in VII Simpósio Brasileiro de Engenharia de Software–Caderno de Ferramentas, p. 55, 1993.

“current_book”
2017/8/27
23:44
page 36
#60

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 37
#61

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3 Dynamic Distributed Dimensional Data Model

Summary

The Dynamic Distributed Dimensional Data Model (D4M) software (d4m.mit.edu) is the
first practical implementation of the full mathematics of associative arrays that successfully
bridges spreadsheets, data-bases, matrices, and graphs. Associative arrays allow D4M users
to implement complex algorithms with less effort than required by standard approaches.
D4M brings the power of matrix mathematics directly to bear on both string and numeric
data stored in spreadsheets, databases, and graphs. Using D4M, it is possible to develop
a general-purpose sparse matrix schema for representing diverse data, such as document
citations, webpages, computer networks, genetic sequence information, and social media.
A common schema for diverse data has enabled a new class of analytics to be developed
that can be applied generically to diverse data in a domain-independent manner to correlate
data sets, detect outliers, and filter high-value data from low-value data. D4M leverages the
decades of work on high performance linear algebra to enable high performance database
interfaces that have achieved record-breaking database performance. This chapter highlights
the features and technical successes of D4M in order to motivate understanding associative
arrays at a deeper mathematical level.

3.1 Background

The development of the mathematical concept of associative arrays began in 1992 when
Visual Intelligence Corporation developed the first webpage with dynamic content [1].
This system used a beta release of the first popular web browser (Mosaic) developed at
the University of Illinois National Center for Supercomputing Applications by Marc An-
dreessen. The Visual Intelligence web system allowed the user to invoke programs from
the browser that constructed user-defined queries to a relational database. The database
query results were then parsed by programs to generate webpages that were then displayed
in the browser. Prior to this system, nearly all webpage content was static. At this time,
it was apparent that a tabular data structure that could be passed between browser, pro-
grams, and databases would simplify both the design and construction of web-based data
processing systems.

In 1998, the founders of Google (Sergey Brin and Larry Page) released their web search
engine that used matrix mathematics to rank webpages [2]. They also laid the foundation
for a new style of key-value store database for indexing webpages called Google Bigtable.

“current_book”
2017/8/27
23:44
page 38
#62

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

38 Chapter 3 Dynamic Distributed Dimensional Data Model

The design of Google Bigtable was released in 2006 [3]. Many other organizations used
this design to construct their own key-value store databases [4]. The U.S. National Security
Agency developed its own key-value store database and released it to MIT in 2009 [5, 6]
and to the Apache Foundation in 2011 [7] under the name Apache Accumulo.

The duality between the canonical representation of graphs as abstract collections of
vertices and edges and a sparse adjacency matrix representation has been a part of graph
theory since its inception [8, 9]. Matrix algebra has been recognized as a useful tool in
graph theory for nearly as long (see [10] and references therein, in particular [11–17]).
However, matrices were not traditionally used for practical computing with graphs, in part
because dense two-dimensional arrays are not an efficient representation of a sparse graph.
With the growth of efficient data structures and algorithms for sparse arrays and matrices, it
has become possible to develop practical array-based approaches to computation on large,
sparse graphs [18].

In 2010, researchers at MIT recognized the need for an environment that allowed spread-
sheets, databases, matrices, and graphs to work together seamlessly, and they developed
the mathematical concept of the associative array. The D4M software that implemented
the mathematics of associative arrays was developed in 2010 and publicly released in 2012
as part of the nine-lecture MIT Lincoln Laboratory course Signal Processing on Databases
(techtv.mit.edu/collections/d4m-class).

The name associative array derives from the Perl programming language data structure
that allowed a string to be used as an index into an array [19]. The concept of using a
string as an index in an array can also be found in Python dictionaries, Java hashmaps, and
many other programming languages. The D4M mathematical associative array extends this
concept by adding matrix operations that are mathematically closed so that any operation
on an associative array produces another associative array.

3.2 Design

The D4M software (d4m.mit.edu) [20, 21] is the first practical implementation of asso-
ciative array mathematics that successfully bridges spreadsheets, databases, matrices, and
graphs. Associative arrays allow D4M users to implement high performance complex al-
gorithms with significantly less effort than when using other implementation approaches.
In D4M, a user can read data from a spreadsheet, load the data into a variety of databases,
correlate rows and columns with matrix operations, and visualize relationships among the
data using graph operations. These operations correspond to the steps necessary to build
an end-to-end data processing system (see Figure 3.1). Often, the majority of time needed
to build a data processing system is spent in the interfaces between the various steps, which
normally require a conversion from one mathematical perspective to another. By using a
common mathematical abstraction across all steps, the construction time of a data process-

“current_book”
2017/8/27
23:44
page 39
#63

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.3 Matrix Mathematics 39

parse!

set of
bits

spread
sheet database!

matrix

graph

ingest! query! analyze!

Figure 3.1
The standard steps in a data processing system often require different perspectives on the data. D4M associative
arrays enable a common mathematical perspective to be used across all the steps.

ing system is significantly reduced. The success of D4M in building real data processing
systems has been a prime motivation for formalizing the mathematics of associative arrays.
By making associative arrays mathematically rigorous, it becomes possible to implement
associative arrays in a wide range of programming environments (not just in D4M).

The D4M software has provided a unified approach to these data structures that is based
on intuitive ideas about what a user would expect when combining and manipulating data
from all of these domains. In D4M, the unifying mathematical object is referred to as
an associative array. Associative arrays have enabled D4M users to achieve a number of
breakthroughs that are described in the subsequent sections.

3.3 Matrix Mathematics

D4M enables the power of matrix mathematics to be applied to both numeric and string
data stored in spreadsheets, databases, and graphs. D4M allows diverse data to be easily
represented in an intuitive manner. D4M enables complex algorithms to be represented
succinctly with as much as a 50x reduction in code volume compared to traditional envi-
ronments [21, 22].

To illustrate the use of D4M, consider the associative array A consisting of rows of
documents and columns of terms shown in Figure 3.2. A common search operation on
documents is to start with a term and then provide suggestions for additional terms. One
approach to generating these suggestions is facet search. In this context, a facet search
selects the subset of documents containing a set of terms and then computes the histogram
of all the terms in this document subset. A facet search is particularly useful in helping
a user build searches by providing guidance as to the most popular remaining terms as
the search narrows. Facet search is a highly dynamic query because it is not possible to
compute the histograms of all the subsets of keywords in advance.

Facet search in D4M begins with defining set of terms k in the table

k = 'UN Carl '

Next, all documents that contain these terms are found by selecting the corresponding
columns in A, summing the columns together, finding the resulting rows with more than

“current_book”
2017/8/27
23:44
page 40
#64

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

40 Chapter 3 Dynamic Distributed Dimensional Data Model

Figure 3.2
Facet search in D4M. Associative array A stores a list of documents as rows and their terms as columns. Selecting
terms UN and Carl indicates that the documents c.pdf and e.ppt contain both. Selecting the documents c.pdf
and e.ppt and summing the occurrences of their terms retrieves the facets DC and Bob.

one entry, and assigning these rows to a new associative array B. All of these operations
can be carried out in a single line of D4M code

B = sum
(
A(:,k),2

)
> 1

Finally, the histogram of terms in the subset of documents that contains all the terms in k
is computed via array multiplication of the transpose of the column vector B with A

F = transpose(B)∗A

This complex query can be performed efficiently in just two lines of D4M code that perform
two database queries (one column query and one row query). Implementing a similar query
using standard programming environments such as Java and SQL takes hundreds of lines
of code and hides the inherent mathematical properties of the operation.

3.4 Common SQL, NoSQL, NewSQL Interface

Relational or SQL (Structured Query Language) databases have been the de facto inter-
face to databases since the 1980s and are the bedrock of electronic transactions around the
world. More recently key-value stores (NoSQL databases) have been developed for repre-
senting large sparse tables to aid in the analysis of data for Internet search. As a result, the

“current_book”
2017/8/27
23:44
page 41
#65

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.5 Key-Value Store Database Schema 41

majority of the data on the Internet are now analyzed using key-value stores. In response to
the data analysis challenges, the relational database community has developed a new class
of array store (NewSQL) databases to provide the features of relational databases while
also scaling to very large data sets.

This diversity of databases has created a need to interoperate between them. Associative
arrays can provide an abstraction that works with all of these classes of databases. D4M
has demonstrated this capability [23, 24]. One example is in the field of medicine, where
a SQL database might be used for patient records, a NoSQL database for analyzing the
medical literature, and a NewSQL database for analyzing patient sensor data.

3.5 Key-Value Store Database Schema

Using D4M, it was possible to create a general sparse matrix database schema [25] for
representing diverse data such as documents [22], citation graphs [26], computer networks
[27–29], genetic sequence information [30, 31], and social media [32]. The D4M schema
is now widely used throughout the Apache Accumulo database community that supports a
wide range of government applications.

The D4M schema is best explained in the context of a specific example. Micro-blogs
(such as Twitter) allow their users to globally post short messages. Micro-blogs are used
by many humans and machines. Each micro-blog entry consists of a message and meta-
data. The simplest way to view an entry in a key-value store table is as a triple of strings
consisting of a row key, a column key, and a value that corresponds to the entries of a
sparse matrix. In the case of a micro-blog entry, a triple might be

(31963172416000001,user|getuki,1)

The above triple denotes that the micro-blog entry with row key 31963172416000001
was from the user called getuki. As is often the case in the D4M schema, the value of
1 is used to simply denote the existence of the relationship, and the value itself has no
additional meaning.

Figure 3.3 shows how a four-table D4M schema can be applied to micro-blog data. The
message text is stored in one column in the TedgeTxt table. All the message metadata such
as its status (stat|), the message author (user|), the time the message was sent (time|),
and the parsed text of the message (word|) are stored in the Tedge table such that each
column|value pair is a unique column. Combining the column and the value makes the
resulting Tedge table very sparse. Storing the transpose of the metadata in the TT

edge table
indexes every unique string in the data set and allows it to be looked up quickly. The sums
of the unique column|value pairs are stored using an accumulator column labeled Degree
in the TedgeDeg table. The sum table enables efficient query planning by allowing queries to
estimate the sizes of results prior to executing queries. The row keys are stored in a flipped

“current_book”
2017/8/27
23:44
page 42
#66

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

42 Chapter 3 Dynamic Distributed Dimensional Data Model

08805831972220092 1 1 1 1 1 1

75683042703220092 1 1 1 1

08822929613220092 1 1 1

…

Degree 9 3 8 5 6 7 7 4 6 7 3 3 9 6 4 1

08805831972220092 @mi_pegadejeito Tipo. Você fazer uma plaquinha pra mim, ...

75683042703220092 Wait :)

08822929613220092 null

…

sta
t|2

00
sta

t|3
01

sta
t|3

02

tim
e|2

01
1-

sta
t|4

03

wor
d|@

mi...
wor

d|T
ipo

.

us
er

|M
ich

...

us
er

|bi
mo..

.
us

er
|P

en
...

us
er

|…

wor
d|V

oc
ê

Tedge/Tedge tim
e|2

01
1-

tim
e|2

01
1-

tim
e|n

ull

Column Key

R
ow

 K
ey

wor
d|n

ull

wor
d|W

ait

TedgeDeg Row Key

text

R
ow

 K
ey

TedgeTxt

T

Figure 3.3
The D4M schema applied to micro-blog data consists of four tables. The text of the message is stored as one
column in the TedgeTxt table. All the metadata (stat|, user|, time|) and the parsed text (word|) are stored in Tedge
such that each column|value pair is a unique column. Note: some of the column names have been truncated in the
figure for display purposes. Storing the transpose of the metadata in TT

edge creates an index to every unique string
in the data set and allows it to be selected efficiently. The sums of the unique column|value pairs are stored using
an accumulator column labeled Degree in the TedgeDeg table. The sum table allows query planning by enabling
queries to estimate the sizes of their results prior to executing queries. Flipping the row keys allows for efficient
load balancing while the table grows and in turn splits across multiple servers.

format to allow for efficient load balancing as the table grows and is split (or sharded)
across multiple database servers.

The D4M schema is designed to exploit a number of specific features found in key-value
stores. These include

Row Store — Most key-value stores are row-oriented, so any row key identifier, such as
31963172416000001, can be looked up quickly. However, looking up a column,
such as user|getuki), or value, such as 1, requires a complete scan of the table and can
take a long time if there are a lot of data in the table. The D4M schema addresses this
limitation by storing both the table (Tedge) and its transpose (TT

edge), allowing any row
or column to be looked up quickly.

Sparse — Key-value storage is sparse. Only non-empty columns are stored in a row. This
arrangement is critical because many of the data sets that key-value stores are used on
are naturally represented as extremely sparse tables.

Unlimited Columns — Key-value stores can add new columns with no penalty. This criti-
cal capability of key-value stores is heavily exploited by the D4M schema. It is often
the case that there are more unique columns than rows.

Arbitrary Text — Rows, columns, and values in a key-value store can often be arbitrary
byte strings. This data type is very useful for storing numeric data, such as counts, or

“current_book”
2017/8/27
23:44
page 43
#67

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.5 Key-Value Store Database Schema 43

multilingual data, such as unicode. For example, consider the following micro-blog
entry

identifier stat time user text
10000061427136913 200 2011-01-31 06:33:08 getuki ハスなう

In a traditional database, the above entry would be represented by one row in a four-
column table. In the D4M schema this entry is represented in the Tedge table by the
following four triples with flipped row keys:

(31963172416000001,stat|200,1)
(31963172416000001,time|2011-01-31 06:33:08,1)
(31963172416000001,user|getuki,1)
(31963172416000001,word|ハスなう,1)

Collective Updates — Key-value stores can perform simultaneous updates to tables that
can update many triples at the same time. It is often optimal to have many triples in a
single update.

Accumulators — Key-value stores can modify values at insert time. For example, if the
triple (word|ハスなう,Degree,1) were inserted into the TedgeDeg table and the table
entry already had a value of (word|ハスなう,Degree,16), then the key-value store can
be instructed that any such collision on the column Degree should be handled by con-
verting the strings 16 and 1 to numeric values, adding them, and then converting them
back to a string to be stored as (word|ハスなう,Degree,17). An accumulator column
is used to create the TedgeDeg column sum table in the D4M schema. The TedgeDeg sum
table provides several benefits. First, the sum table allows tally queries like “how many
tweets have a specific word” to be answered trivially. Second, the sum table provides
effective query planning. For example, to find all tweets containing two words, one first
queries the sum table to determine which word is the least popular before proceeding
to query the transpose table (TT

edge). By scanning for the least popular word first, this
significantly reduces the amount of data that would need to be processed.

Parallel — Key-value stores are highly parallel. At any given time, it is possible to have
many processes inserting and querying the database.

Distributed — Key-value stores use distributed storage. As the tables become large, they
are broken up into pieces that can be stored on different servers.

Partitions — Tables in key-value stores are partitioned (or sharded) into different pieces at
specific row keys that are called splits. As a table increases in size, a key-value store
will automatically pick splits that keep the pieces approximately equal. If the row key
has a time-like element to it (as does the micro-blog identifier), then it is important to
convert it to a flipped format so that the most rapidly changing digits are first. This
process will cause inserts to be spread across all the servers.

“current_book”
2017/8/27
23:44
page 44
#68

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

44 Chapter 3 Dynamic Distributed Dimensional Data Model

The power of the D4M schema is that it can be applied to almost any type of data that
can be represented in a tabular fashion. In addition, new columns or new data sets can be
added without making any changes to the schema. The resulting schema allows any unique
string to be found quickly.

3.6 Data-Independent Analytics

The last decade has seen amazing progress on the primary data challenges: volume, veloc-
ity, variety, and veracity. Key-value stores and the map-reduce parallel programming model
have enabled enormous volumes of data to be stored and processed. NoSQL databases al-
low these data to be ingested, indexed, and queried at high velocity. Graph analytics and
machine learning provide mechanisms for analyzing and extracting value from a wide va-
riety of data. Finally, new cryptographic approaches are starting to address ever-increasing
security (aka veracity) concerns.

In the context of this extraordinary progress, the core issue of data preparation is now
emerging as a major hurdle. The general recognition that a significant fraction of raw data
records have known flaws that need to be addressed by data preparation has led to many
professionals spending the majority of their time cleaning up data [33]. The challenge of
developing tools and technologies to address data cleaning can be significantly aided by
placing data onto a common mathematical framework [34].

A similar hurdle occurred early on in the digital sensor era. At the onset of digitization,
digital data from sensors or communication systems were treated in a highly application-
specific manner. The recognition that large classes of digital data could be represented as
a regularly spaced time series of digitally encoded numbers provided a common frame-
work for processing data across a range of applications. More specifically, the concept
that time series data could be represented mathematically by a vector allowed the field
of digital signal processing to rigorously formalize a range of general-purpose concepts
for preparing, cleaning up, and analyzing noisy data from a wide range of applications.
The mathematical foundations of digital signal processing have stood the test of time and
remain a cornerstone of modern communication and sensor processing systems.

A common schema that handles diverse data has enabled the development of analytics
that can be applied generically to a variety of data in a domain-independent manner to
allow correlating data sets, detecting outliers, and selecting high-value data and separating
them from low-value data [32].

Comparing two data sets to determine how they are the same is one of the most common
data processing operations. Identifying genetic sequence information from biological or-
ganisms is one common application of this technique. Associative arrays provide a natural
mechanism for both representing and correlating genetic data. Figure 3.4 [30, 31] shows
two sets of genetic data (RNA) that are represented as associative arrays. One data set

“current_book”
2017/8/27
23:44
page 45
#69

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.6 Data-Independent Analytics 45

 VOLUME 20, NUMBER 1, 2013 � LINCOLN LABORATORY JOURNAL 87

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

Associative array composability can be further
grounded in the mathematical closure of semirings (i.e.,
linear algebraic “like” operations) on multidimensional
functions of infinite, strict, totally ordered sets (i.e., sorted
strings). In addition, many of the linear algebraic properties
of fuzzy algebra can also be directly applied: linear inde-
pendence [17], strong regularity [18], and uniqueness [19].

Software Performance
Triple-store databases are a new paradigm of database
designed to store enormous amounts of unstructured
data. They play a key role in a number of large Internet
companies (e.g., Google Big Table, Amazon Dynamo,
and NetFlix Cassandra). The open-source Accumulo and
HBase databases (both of which use the Hadoop distrib-

uted file system) are both based on the Google Big Table
design. Accumulo was developed by the National Secu-
rity Agency and is widely used in the intelligence com-
munity. Accumulo has been tested and shown to scale
well on very large systems. The highest published Accu-
mulo performance numbers are from Lincoln Labora-
tory’s LLGrid team [6]. The LLGrid team demonstrated
650,000 inserts per second using eight dual-core nodes
and 4,000,000 inserts per second using eight 24-core
nodes (Figure 6).

Algorithm Performance
High-performance triple-store databases can acceler-
ate DNA sequence comparison by replacing computa-
tions with lookups. The triple-store database stores the

RNA reference set
Reference bacteria Unknown bacteria

Collected sample

A1

A1 A2'

A2

Re
fe

re
nc

e
se

qu
en

ce
 ID

Un
kn

ow
n

se
qu

en
ce

 ID

Sequence word (10-mer)Sequence word (10-mer)

Re
fe

re
nc

e
se

qu
en

ce
 ID

Unknown sequence ID

SeqID
G6J0L4R01AUYU3
G6J0L4R01DLKJM
G6J0L4R01D0SEN
G6J0L4R01EOS3L

SeqID
AB000106.1_1-1343
AB000278.1_1-1410
AB000389.1_1-1508
AB000390.2_1-1428

sequence
ggaatctgcccttgggttcgg
caggcctaacacatgcaagt
ttgatcctggctcagattgaa
catgcaagtcgagcggaaac

sequence
TAGATACTGCTGCCTCCCG
TTTTTTTCGTGCTGCTGCCT
TTATCGGCTGCTGCCTCCC
AGGTTGTCTGCTGCCTCTA

FIGURE 4. Sequence alignment via sparse matrix multiplication. DNA sequences hashed into words (10-mers) can
be readily expressed as sparse matrices. The alignment of two sets of sequences can then be computed by multiply-
ing the two matrices together.

A1A2!
T

 VOLUME 20, NUMBER 1, 2013 � LINCOLN LABORATORY JOURNAL 87

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

Associative array composability can be further
grounded in the mathematical closure of semirings (i.e.,
linear algebraic “like” operations) on multidimensional
functions of infinite, strict, totally ordered sets (i.e., sorted
strings). In addition, many of the linear algebraic properties
of fuzzy algebra can also be directly applied: linear inde-
pendence [17], strong regularity [18], and uniqueness [19].

Software Performance
Triple-store databases are a new paradigm of database
designed to store enormous amounts of unstructured
data. They play a key role in a number of large Internet
companies (e.g., Google Big Table, Amazon Dynamo,
and NetFlix Cassandra). The open-source Accumulo and
HBase databases (both of which use the Hadoop distrib-

uted file system) are both based on the Google Big Table
design. Accumulo was developed by the National Secu-
rity Agency and is widely used in the intelligence com-
munity. Accumulo has been tested and shown to scale
well on very large systems. The highest published Accu-
mulo performance numbers are from Lincoln Labora-
tory’s LLGrid team [6]. The LLGrid team demonstrated
650,000 inserts per second using eight dual-core nodes
and 4,000,000 inserts per second using eight 24-core
nodes (Figure 6).

Algorithm Performance
High-performance triple-store databases can acceler-
ate DNA sequence comparison by replacing computa-
tions with lookups. The triple-store database stores the

RNA reference set
Reference bacteria Unknown bacteria

Collected sample

A1

A1 A2'

A2

R
e
f
e
r
e
n
c
e

s
e
q

u
e
n
c
e

I
D

U
n
k
n
o
w

n

s
e
q

u
e
n
c
e

I
D

Sequence word (10-mer)Sequence word (10-mer)

R
e
f
e
r
e
n
c
e

s
e
q

u
e
n
c
e

I
D

Unknown sequence ID

SeqID
G6J0L4R01AUYU3
G6J0L4R01DLKJM
G6J0L4R01D0SEN
G6J0L4R01EOS3L

SeqID
AB000106.1_1-1343
AB000278.1_1-1410
AB000389.1_1-1508
AB000390.2_1-1428

sequence
ggaatctgcccttgggttcgg
caggcctaacacatgcaagt
ttgatcctggctcagattgaa
catgcaagtcgagcggaaac

sequence
TAGATACTGCTGCCTCCCG
TTTTTTTCGTGCTGCTGCCT
TTATCGGCTGCTGCCTCCC
AGGTTGTCTGCTGCCTCTA

FIGURE 4. Sequence alignment via sparse matrix multiplication. DNA sequences hashed into words (10-mers) can
be readily expressed as sparse matrices. The alignment of two sets of sequences can then be computed by multiply-
ing the two matrices together.

A2!

 VOLUME 20, NUMBER 1, 2013 � LINCOLN LABORATORY JOURNAL 87

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

Associative array composability can be further
grounded in the mathematical closure of semirings (i.e.,
linear algebraic “like” operations) on multidimensional
functions of infinite, strict, totally ordered sets (i.e., sorted
strings). In addition, many of the linear algebraic properties
of fuzzy algebra can also be directly applied: linear inde-
pendence [17], strong regularity [18], and uniqueness [19].

Software Performance
Triple-store databases are a new paradigm of database
designed to store enormous amounts of unstructured
data. They play a key role in a number of large Internet
companies (e.g., Google Big Table, Amazon Dynamo,
and NetFlix Cassandra). The open-source Accumulo and
HBase databases (both of which use the Hadoop distrib-

uted file system) are both based on the Google Big Table
design. Accumulo was developed by the National Secu-
rity Agency and is widely used in the intelligence com-
munity. Accumulo has been tested and shown to scale
well on very large systems. The highest published Accu-
mulo performance numbers are from Lincoln Labora-
tory’s LLGrid team [6]. The LLGrid team demonstrated
650,000 inserts per second using eight dual-core nodes
and 4,000,000 inserts per second using eight 24-core
nodes (Figure 6).

Algorithm Performance
High-performance triple-store databases can acceler-
ate DNA sequence comparison by replacing computa-
tions with lookups. The triple-store database stores the

RNA reference set
Reference bacteria Unknown bacteria

Collected sample

A1

A1 A2'

A2

R
e
f
e
r
e
n
c
e

s
e
q

u
e
n
c
e

I
D

U
n
k
n
o
w

n

s
e
q

u
e
n
c
e

I
D

Sequence word (10-mer)Sequence word (10-mer)

R
e
f
e
r
e
n
c
e

s
e
q

u
e
n
c
e

I
D

Unknown sequence ID

SeqID
G6J0L4R01AUYU3
G6J0L4R01DLKJM
G6J0L4R01D0SEN
G6J0L4R01EOS3L

SeqID
AB000106.1_1-1343
AB000278.1_1-1410
AB000389.1_1-1508
AB000390.2_1-1428

sequence
ggaatctgcccttgggttcgg
caggcctaacacatgcaagt
ttgatcctggctcagattgaa
catgcaagtcgagcggaaac

sequence
TAGATACTGCTGCCTCCCG
TTTTTTTCGTGCTGCTGCCT
TTATCGGCTGCTGCCTCCC
AGGTTGTCTGCTGCCTCTA

FIGURE 4. Sequence alignment via sparse matrix multiplication. DNA sequences hashed into words (10-mers) can
be readily expressed as sparse matrices. The alignment of two sets of sequences can then be computed by multiply-
ing the two matrices together.

A1!

Figure 3.4
Sequence alignment via associative array multiplication. Genetic sequences hashed into words (10-mers) can be
readily expressed as sparse associative matrices in which each row represents the name of the sequence and each
column represents each unique genetic word. A reference set of known genetic data (left) can be compared with
a set of unknown genetic data (right) by multiplying together their corresponding associative arrays. The result
(bottom) is another associative array that has rows of known genetic sequence that are found in the columns of
the unknown genetic sequence.

consists of reference sequences while the other is an unknown set of sample sequences.
The rows of the associative arrays correspond to the labels of each sequence. The columns
correspond to each unique combination of 10 RNA bases (a 10-mer). A value of 1 in the as-
sociative array indicates that a particular 10-mer was found in a specific labeled sequence.
The correlation of the two sequences can be accomplished by a simple associative array
multiplication.

This same correlation technique can be applied across many domains and can be used
to correlate words across documents, diseases across patients, and domain names across
computer network packets.

Correlating data is often done to find the best match between two data sets. In Figure 3.4,
the goal is to determine the species of the organisms in the sample by comparing the sample
sequence with a reference species sequence. A common feature of these data is that there
are some sequences that are common and appear in many species and some sequences that
are rare and appear in a few species. If the goal is to determine the best match, then the

“current_book”
2017/8/27
23:44
page 46
#70

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

46 Chapter 3 Dynamic Distributed Dimensional Data Model

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

degree

N
(d

eg
re

e)

50% 2%

!"#$%&'(#''%

!"
#$

%&

'((&&&&&&&&&&&&&&&&&&&&&&&&&&&'('&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'()&&&&&&&&&&&&&&&&&&&&&&&&&&&'(*&&&&&&&&&&&&&&&&&&&&&&&&&&&'(+&&&&&&&&&&&&&&&&&&&&&&&'(,&
-./0..&

'(
(&&
&&&
&&&
&&&
&&&
&&&
&&&
'(

'&
& &&&
&&&
&&&
&&&
&&&
&&&
&&&
&'
()
&&&
&&&
&&&
&&&
&&&
&&&
&&&
&&&
'(

* &&
&&&
&&&
&&&
&&&
&&&
&&&
'(

+ &&
&&&
&&&

N
or

m
al

iz
ed

 R
un

 T
im

e

0

1

Fig. 1. Degree distribution of the unique k-mers in the unique bacterial RNA
sequences. Vertical lines indicate the percent of data distribution. The data is
dominated by few common words, or “super-nodes.” Increasing the percentage
of data used drastically increases the run time as shown by the red curve.

style algorithm that leverages the sparse linear algebra and
computational power of the Dynamic Distributed Dimensional
Data Model (D4M). First defined in [19], D4M Rapid Analysis
of Genetic Sequences (D4RAGenS) has been modified to in-
clude the data subsampling performance techniques described
in [20] and [21]. The key idea is the segmentation of genetic
sequences into short k-mers for easy and efficient string
comparison with a basic matrix multiplication in D4M.

Furthermore, with two run modes, Fast and Wise,
D4RAGenS undertakes the problems of organism identification
and read classification resulting in a simple, but rigorous
detection method that scales with increasing data volume.
Results from several in silico test datasets are compared with
current algorithms.

II. METHODS

A. D4M

The Dynamic Distributed Dimensional Data Model is an
environment for Matlab developed at MIT Lincoln Laboratory
that blends techniques from sparse linear algebra, graph theory,
and abstract algebra to create triple-store format associative
arrays. With the triple store format, the arrays can have strings
and/or numerics as the row, column, or value keys, allowing for
easy data querying. The structure of associative arrays allows
for easy parallelization and increased computation capacity
with minimal extra code. Additionally, all standard mathemat-
ical operations of multiple associative arrays are composable,
and result in an associative array [24].

The associative array architecture of D4M provides the
tools necessary to create a rapid sequence alignment algorithm
that takes advantage of simple mathematical properties.

B. Sequence comparison

During processing, typical NGS systems segment input
DNA sequences into a relatively short length (typically 150-
450 base pairs (bp) long). The short segments, called reads,
are amplified to increase concentration, and then the DNA
sequence is determined. The PacBio instrument can generate

8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Common Words Using the Least Common 2% of the Data

N
o
rm

a
liz

e
d
 C

o
m

m
o
n
 W

o
rd

s

Non Matches

Family Matches

Genus Matches

Species Matches

Fig. 2. Normalizing the hit counts by the subsampled sequence length acts as
a filter for signal and noise. Matches resulting in true organism identification
(green points) have high normalization values, while false positives (red points)
are clustered around low normalized values.

read lengths up to 20,000 bp, but with a lower base accuracy.
Sequences are then characterized by comparisons to known
DNA, RNA, and protein sequences. DNA and RNA sequence
comparisons are the focus of this paper.

Comparing just two sequences as strings is typically an
order N2 computational problem. An alternative to string
comparison is converting sequences into sparse vector repre-
sentations and using the mathematical dot product operation as
a measure of identity. Sequences are split into nonredundant
overlapping 10 base pair (bp) k-mers, or words and used
as vector indices. A vector dot produce yields the number
of common words between the two sequences. Furthermore,
parallel comparisons of sets of sequences with K unknown
sequences of length N to M reference sequences (order (K x
M) x N2) is computed with only a sparse matrix multiplication.

Word length is chosen to optimize the algorithm sensitivity
and array sparseness. The four DNA bases and 10 bp per word
leads to a domain of 410 (1,048,576) unique words. Long DNA
sequences are divided into segments of 1,000 bp with a 100
bp overlap prior to word formation. This maximum segment
length and domain size leads to a 1 in 1,000 chance of random
word matches between unrelated sequences.

C. Subsampling of k-mers

The D4M graph-linear algebra duality allows for the cre-
ation of a bipartite graph between unique words and sequence
identifiers. An edge exists between the vertex sets if that word
is contained in the sequence, and the word degree identifies
the frequency of use. In random sequences, all words occur
with the same frequency. DNA however, is not random and
common words represent highly conserved sequences that are
present in many organisms (e.g. ribosomal RNA genes). The
nonrandom and repetitive nature of DNA is highlighted in the
degree distribution of the words (Figure 1), which shows the
data is dominated by few words of high frequency.

Frequent word use hampers the identification performance
with extraneous data, numerous false positives, and long
computation times. Removal of these supernodes results in

Figure 3.5
Degree distribution of the unique 10-mers in the unique bacterial RNA sequences. Vertical lines indicate the
percentage of data. The data is dominated by a few common 10-mers. Increasing the percentage of data used
drastically increases the run time as shown by the red curve.

common sequences are not useful and can be eliminated from the comparison in advance.
Figure 3.5 [35] shows the statistical distribution of 10-mers in a large reference database.
It also shows the computing time required to compare against different fractions of the
database. Interestingly, a good match can still be found with a fraction of the total data.

This same data sampling technique can be applied to a wide variety of applications.
It is often the case that the most common words in a document are not very important
in comparing two documents. In fact, there are standard sets of “stop” words that are
often eliminated from document analysis in order to improve comparisons. Likewise, for
computer networks, certain sites can be ignored because they are so common that they
indicate little about the patterns in the network traffic. In all of these cases, the approach
of eliminating the most common occurrences can be used to accelerate the algorithm or
improve the quality of the analysis.

A common distribution that is observed in many social and computer network data sets
is the power law distribution [36]. In a graph, a power law distribution means that a small
number of vertices have a large number of edges and a large number vertices have a small
number of edges. For example, a small number of websites have many other websites that
link to them, while a large number of websites have only a few websites that link to them
[37]. This principle has also been referred to as the Pareto principle [38], Zipf’s Law [39],
or the 80-20 rule [40]. A power law distribution for a random variable d, is defined to be

p(d) ∝ d−α

“current_book”
2017/8/27
23:44
page 47
#71

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.6 Data-Independent Analytics 47

in vertices A

ou
t v

er
tic

es

din
p(
d i
n)

103

102

101

100

100 101 102 103 104 105

-αin

105

104

103

102

101

100

100 101 102 103

p(
d o
ut
) -αout

dout

Figure 3.6
Adjacency array for a power law distributed random graph with corresponding in and out degree distributions.

When d represents the degree of the vertex in a graph which is the number of edges con-
nected to the vertex, then p(d) is proportional to the number of vertices in the graph that
have degree d. An illustrative example of 10,000 randomly generated points drawn from a
power law distribution with exponent α = 1.8 is shown in Figure 3.6. The graph consists of
mout vertices connected to nin vertices. The adjacency array of the graph shown on the left
has mout rows and nin columns. The out degree dout is the sum of nonzero entries in each
row. The in degree din is the sum of the nonzero entries in each column. The distributions
p(dout) and p(din) are shown on the top right and bottom right of Figure 3.6. In both cases,
these distributions obey a power law, meaning that there are a few vertices with many edges
and many vertices with a few edges.

Power law distributions are found in a wide range of data sets. Modeling data as a
power law can be a useful tool for predicting the size and distribution of a data set and for
identifying unusual data elements [41, 42].

The process of putting data into a sparse associative array using the D4M schema often
reveals structures in the data that can be used to understand the data independent of their
domain [32]. Figure 3.7 shows the sparse associative array representation of a business
process database with 2.5 million entries. There are approximately 50 columns in the
original database table. Following the D4M schema, each column and each value of the
original table have been appended to create a new column in the sparse associative array
E. Each of the original columns can be seen in the different column patterns in Figure 3.7.
The entire associative array E has m non-empty rows, n non-empty columns, and nnz
nonzero entries. [Note: underlined quantities refer to properties of associative arrays that

“current_book”
2017/8/27
23:44
page 48
#72

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

48 Chapter 3 Dynamic Distributed Dimensional Data Model

Figure 3.7
Sparse associative array representation of using the D4M schema of 2.5 million entries from a business process
database. There are approximately 50 columns in the original database table that are visible as different patterns
of columns in the associative array.

are restricted to the non-empty rows and non-empty columns of the associative array.]
Each sub-associative array Ei corresponds to a column i in the original database table and
will have mi non-empty rows, ni non-empty columns, and nnzi nonzero entries. These
quantities are linked by several formulas. The entire associative array can be constructed
by combining the sub-associative arrays of different sizes via element-wise associative
array addition

E =
⊕

i

Ei

The total number of non-empty rows is less than or equal to the sum of the non-empty rows
of the sub-associative arrays

m ≤
∑

i

mi

The total number of non-empty columns is the sum of the non-empty columns of the sub-
associative arrays

n =
∑

i

ni

The total number of nonzero entries is the sum of the nonzero entries of the sub-associative
arrays

nnz =
∑

i

nnzi

The distinction between
⊕

and
∑

is defined precisely in Chapter 10.11. For now, it
is sufficient to know that

⊕
allows associative arrays of different sizes to be combined

together.
The different patterns of data in each Ei can be deduced by examining mi, ni, and nnzi

and comparing these values to m, n, and nnz. There are several characteristic patterns of
data. Once the pattern has been identified, a model for the data can be constructed that can
be compared with the real data to reveal outliers or omissions in the data. The most readily

“current_book”
2017/8/27
23:44
page 49
#73

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.7 Parallel Performance 49

apparent pattern is the identity pattern (see Figure 1.8) whereby each row in Ei corresponds
to exactly one column in Ei. In an exact identity pattern, the following relations hold

m = mi = ni = nnzi

In other words, the number of non-empty rows, non-empty columns, and nonzero entries
in Ei are equal to the number of non-empty rows in E. A more interesting situation occurs
when the data exhibit a pattern that is near the identity pattern

m ≈ mi ≈ ni ≈ nnzi

If Ei is found to be close to the identity pattern, then the ways that Ei differs from an exact
identity can often be very informative. For example, if there are more non-empty rows in
E than in Ei

m > mi

then it is likely that data are missing from Ei. If there are fewer non-empty rows in Ei than
non-empty columns in Ei

mi < ni

then it is likely that data were added inadvertently. Finally, if there are more non-empty
rows in Ei than non-empty columns in Ei

mi > ni

then it is likely that there are duplicate rows. Such pattern analysis is a powerful method
for detecting unusual data entries in a way that is independent of the specifics of the appli-
cation.

3.7 Parallel Performance

D4M utilizes the many years of effort on optimizing linear algebra performance to enable
database interfaces that have achieved world records in database performance [43–45].

Key-value store databases are designed to handle unstructured data of the type found in
document analysis, health records, bioinformatics, social media, computer networks, and
computer logs. Often these data are represented as large graphs of nodes and edges. The
Graph500 benchmark [46] is designed to test a computer’s ability to process graph data.
Graph500 contains a high performance, scalable graph generator that efficiently generates
large power law graphs which are graphs with a few nodes with many edges and many
nodes with a few edges. Figure 3.8 shows the near-perfect scalability achieved by D4M on
inserting Graph500 data into a high performance key-value store database.

Achieving full performance on a key-value store database requires exploiting its ability
to run well on parallel computers. Good parallel performance requires ensuring that there is

“current_book”
2017/8/27
23:44
page 50
#74

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

50 Chapter 3 Dynamic Distributed Dimensional Data Model

100 101 102 103 104
105

106

107

108

109

ingest processes

da
ta

ba
se

 in
se

rts
/s

ec
on

d

1
2
4
8
16
32
64
128
216

S
erver nodes

Figure 3.8
Ingest performance versus number of ingest processors for different instances of a key-value store database with
different numbers of servers (see legend), demonstrating linear performance scaling.

sufficient parallelism in the application, load balancing the application across different parts
of the system, and minimizing communication between processors. The techniques for
achieving high performance on a key-value store are similar to the techniques for achieving
high performance on other parallel computing applications.

D4M works seamlessly with the pMatlab [47, 48] parallel computing environment, which
allows high performance parallel applications to be constructed with just a few lines of
code. pMatlab uses a single-program-multiple-data (SPMD) parallel programming model
and sits on top of a message passing interface (MPI) communication layer. SPMD and MPI
are the primary tools used in much of the parallel computing world to achieve the highest
levels of performance on the world’s largest systems (see hpcchallenge.org). These tools
can also be used for achieving high performance with a key-value store database.

3.8 Computing on Masked Data

Increasingly, data processing systems must address the confidentiality, integrity, and avail-
ability of their data. Data-centric protections are particularly useful for preserving the
confidentiality of the data. Typical defenses of this type include encrypting the communi-
cation links between users and the data processing system, encrypting the communication
links between the data sources and the data processing system, encrypting the data in the
file system, and encrypting data in the database. These approaches are all significant steps

“current_book”
2017/8/27
23:44
page 51
#75

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.8 Computing on Masked Data 51

src_ip|128.0.0.1 src_ip|192.168.1.2 srv_ip|157.166.255.18 srv_ip|208.29.69.138 srv_ip|74.125.224.72

log_id|100 1 1

log_id|200 1 1

log_id|300 1 1 1

Use as id
row

Create columns for
each unique dense
column/value pair

bgdjbeaddcbb pjdmjpcggdib qlhnlrjkgkoh rstpwrqqiwtr swvuzzvzjyux

eqkrihkp nxujqeox jdxgtxib

byzzrrpo skasemic zfvfvfek

cjytgntp clssgcuq ziurycfn jsbmcbnl

Rows:
DET

Columns:
OPE

Values:
RND

Dense Table

Sparse Table

Masked Table

log_id src_ip srv_ip
001 128.0.0.1 208.29.69.138

002 192.168.1.2 157.166.255.18

003 128.0.0.1 74.125.224.72
208.29.69.138

Figure 3.9
Masking network data records. Dense data are made sparse by using the D4M schema that is widely used in the
key-value store database community. Dense table column names and values are appended to make columns in
the sparse table, which moves most of the semantic content into the rows and columns. The sparse table is then
masked by using a variety of encryption schemes depending upon the desired application. In this figure, the rows
are masked using DET, the columns are masked using OPE, and the values are masked using RND.

forward in improving the confidentiality of a data processing system. However, all of these
approaches require that the data be decrypted to be used inside the data processing sys-
tem. Decryption requires that the passwords to the data be available to the data processing
system, thus exposing the data to any attacker able to breach the boundaries of the system.

One vision for a secure data processing system is to have data sources encrypt data
prior to transmittal to the system, have the data processing system operate on the data
in encrypted form, and only allow authorized users the passwords to decrypt the answer
for their results. Such a system makes the underlying big data technologies oblivious to
the details of the data. As a result, the data and processing can reside in an untrusted
environment while still enhancing the confidentiality of the data and results.

Computing on Masked Data (CMD) takes a step toward this vision by allowing basic
computations on encrypted data. CMD combines efficient cryptographic encryption meth-
ods with an associative array representation of data. This low-computation cost approach
permits both computation and query while revealing only a small amount of information
about the underlying data. The overhead of CMD is sufficiently low (2x) to make it fea-
sible for big data systems. Currently, many big data systems must operate on their data
in the clear. CMD raises the bar by enabling some important computations on encrypted

“current_book”
2017/8/27
23:44
page 52
#76

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

52 Chapter 3 Dynamic Distributed Dimensional Data Model

data while not dramatically increasing the computing resources required to perform those
operations.

Several cryptographic tools could be used to build a system like CMD. First, fully ho-
momorphic encryption (FHE) allows for arbitrary analytic computations to be performed
on encrypted data without decryption and while preserving semantic security of the data
so that no information about the data is leaked other than its length. FHE has been an
active topic of research since its discovery [49]. Nevertheless, the best currently available
schemes [50] have an overhead of 105 or more, making them too slow for use in practical
big data systems.

If it is feasible to allow a limited amount of information about the encrypted data to be
revealed, a much more efficient alternative to using FHE is to design protocols that leverage
less secure cryptographic techniques to carry out queries on encrypted data. One exam-
ple is CryptDB [51], which constructs a practical database system capable of handling
most types of SQL queries on encrypted data. It uses deterministic encryption (DET),
which always encrypts the same data to the same ciphertext, to enable equality queries;
order-preserving encryption (OPE), which encrypts data in a way that preserves the orig-
inal order of the data to enable range queries; and additively homomorphic encryption
(HOM+), which enables summing values directly on encrypted data to perform basic an-
alytics. Several other protocols for achieving alternative trade-offs between leakage and
efficiency have also been proposed [52–54]. Additional solutions include using techniques
for secure multi-party computation [55, 56], but these techniques require further improve-
ment to achieve the required performance.

By leveraging the computational difficulty of unpermuting a sparse matrix, D4M can
provide a new secure computing technique that allows data to be analyzed while they are
in encrypted form [57]. The standard CMD use case is as follows (see Figure 3.9). First,
users transform their data into associative arrays following the D4M schema. Then, the
components of the associative array’s rows, columns, and values are masked using different
encryption schemes; this process induces a permutation on rows and columns as they are
restructured in lexicographic order by their masks. At this point, the masked data structure
can optionally be distributed to a system in the encrypted form. Next, algebraic operations
are performed on the masked associative arrays. Finally, the results are collected by the
user and unmasked.

Figure 3.9 demonstrates some of the masks that can be used in CMD: DET for the rows
(since range queries on rows are not required), OPE for the columns (which allows for
range queries), and RND (a semantically secure encryption scheme) for the values. An-
other option would be to use an additively homomorphic encryption scheme (HOM+) if
the values require summing.

“current_book”
2017/8/27
23:44
page 53
#77

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.9 Conclusions, Exercises, and References 53

3.9 Conclusions, Exercises, and References

D4M is the first practical instantiation of the fully developed mathematics of associative
arrays. Using D4M it is possible to accelerate the development of data processing systems.
D4M can be used to analyze a variety of data, create high performance database systems,
protect information, and even reason about the incompleteness of a data set. The effec-
tiveness of associative array algebra as implemented in D4M indicates that spreadsheets,
databases, matrices, and graphs can be linked at a much deeper mathematical level. The
later chapters of the book will formalize the algebra of associative arrays by extending the
ideas of sparse matrix algebra to more abstract mathematical concepts, such as semirings
and tropical algebras (see [58] and references therein). This formalization will show how
these diverse data representations are all different facets of a single unifying algebra. The
next chapters will continue to explore associative arrays in a variety of contexts to illustrate
the many varied and useful properties of associative arrays. This exploration will build in-
tuition that will be invaluable for understanding the formalized mathematics of associative
arrays.

Exercises

Exercise 3.1 — Download and install the D4M software package (d4m.mit.edu) by fol-
lowing the instructions in the README.txt file.

Exercise 3.2 — Run the example programs in

examples/1Intro/1AssocIntro/

Exercise 3.3 — Run the example programs in

examples/1Intro/2EdgeArt/

Exercise 3.4 — Run the example programs in

examples/2Apps/1EntityAnalysis/

References

[1] J. Kepner, “Summary of bugs database,” 1993. Visual Intelligence Corporation.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Computer networks and
ISDN systems, vol. 30, no. 1, pp. 107–117, 1998.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[4] A. Khetrapal and V. Ganesh, “Hbase and hypertable for large scale distributed storage systems,” Dept. of
Computer Science, Purdue University, pp. 22–28, 2006.

“current_book”
2017/8/27
23:44
page 54
#78

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

54 Chapter 3 Dynamic Distributed Dimensional Data Model

[5] D. Sherrill, J. Kurz, and C. McNally, “Toward a scalable knowledge space on the cloud,” in High Performance
Embedded Computing Workshop (HPEC), MIT Lincoln Laboratory, 2010.

[6] G. Condon, J. Hepp, B. Landon, D. Sherrill, M. Yee, J. Allen, Y. Cao, B. Corwin, R. Delanoy, and N. Edst,
“Taking advantage of big data,” R&D Magazine R&D 100 Awards, 2013.

[7] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs, and B. Rinaldi, “YCSB++:
benchmarking and performance debugging advanced features in scalable table stores,” in Proceedings of the
2nd ACM Symposium on Cloud Computing, p. 9, ACM, 2011.

[8] D. König, “Graphen und matrizen (graphs and matrices),” Mat. Fiz. Lapok, vol. 38, no. 1931, pp. 116–119,
1931.

[9] D. König, Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie der Streckenkom-
plexe, vol. 16. Akademische Verlagsgesellschaft mbh, 1936.

[10] F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969.

[11] G. Sabidussi, “Graph multiplication,” Mathematische Zeitschrift, vol. 72, no. 1, pp. 446–457, 1959.

[12] P. M. Weichsel, “The Kronecker product of graphs,” Proceedings of the American mathematical society,
vol. 13, no. 1, pp. 47–52, 1962.

[13] M. McAndrew, “On the product of directed graphs,” Proceedings of the American Mathematical Society,
vol. 14, no. 4, pp. 600–606, 1963.

[14] H. Teh and H. Yap, “Some construction problems of homogeneous graphs,” Bulletin of the Mathematical
Society of Nanying University, vol. 1964, pp. 164–196, 1964.

[15] A. Hoffman and M. McAndrew, “The polynomial of a directed graph,” Proceedings of the American Mathe-
matical Society, vol. 16, no. 2, pp. 303–309, 1965.

[16] F. Harary and C. A. Trauth, Jr, “Connectedness of products of two directed graphs,” SIAM Journal on Applied
Mathematics, vol. 14, no. 2, pp. 250–254, 1966.

[17] R. A. Brualdi, “Kronecker products of fully indecomposable matrices and of ultrastrong digraphs,” Journal
of Combinatorial Theory, vol. 2, no. 2, pp. 135–139, 1967.

[18] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra. SIAM, 2011.

[19] L. Wall, T. Christiansen, and J. Orwant, Programming Perl. "O’Reilly Media, Inc.", 2000.

[20] J. V. Kepner, “Multidimensional associative array database,” Jan. 14 2014. US Patent 8,631,031.

[21] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz,
A. McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed dimensional data
model (D4M) database and computation system,” in Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, pp. 5349–5352, IEEE, 2012.

[22] J. Kepner, W. Arcand, W. Bergeron, C. Byun, M. Hubbell, B. Landon, A. McCabe, P. Michaleas, A. Prout,
T. Rosa, D. Sherrill, A. Reuther, and C. Yee, “Massive database analysis on the cloud with D4M,” in High
Performance Extreme Computing Conference (HPEC), pp. 1–5, IEEE, 2012.

[23] S. Wu, V. Gadepally, A. Whitaker, J. Kepner, B. Howe, M. Balazinska, and S. Madden, “Mimicviz: Enabling
visualization of medical big data,” Intel Science & Technology Center retreat, Portland, OR, 2014.

[24] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L. Edwards, M. Hubbell, P. Michaleas,
J. Mullen, A. Prout, A. Rosa, C. Yee, and A. Reuther, “D4M: bringing associative arrays to database engines,”
in High Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2015.

[25] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun, M. Hubbell, P. Michaleas, J. Mullen,
D. O’Gwynn, A. Prout, A. Reuther, A. Rosa, and C. Yee, “D4M 2.0 schema: A general purpose high perfor-
mance schema for the Accumulo database,” in High Performance Extreme Computing Conference (HPEC),
pp. 1–6, IEEE, 2013.

[26] B. A. Miller, N. Arcolano, M. S. Beard, J. Kepner, M. C. Schmidt, N. T. Bliss, and P. J. Wolfe, “A scal-
able signal processing architecture for massive graph analysis,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pp. 5329–5332, IEEE, 2012.

“current_book”
2017/8/27
23:44
page 55
#79

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

3.9 Conclusions, Exercises, and References 55

[27] M. Hubbell and J. Kepner, “Large scale network situational awareness via 3d gaming technology,” in High
Performance Extreme Computing Conference (HPEC), pp. 1–5, IEEE, 2012.

[28] S. M. Sawyer, B. D. O’gwynn, A. Tran, and T. Yu, “Understanding query performance in Accumulo,” in
High Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2013.

[29] S. M. Sawyer and B. D. O’Gwynn, “Evaluating Accumulo performance for a scalable cyber data processing
pipeline,” in High Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2014.

[30] J. Kepner, D. Ricke, and D. Hutchinson, “Taming biological big data with D4M,” Lincoln Laboratory Jour-
nal, vol. 20, no. 1, 2013.

[31] S. Dodson, D. O. Ricke, and J. Kepner, “Genetic sequence matching using D4M big data approaches,” in
High Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2014.

[32] V. Gadepally and J. Kepner, “Big data dimensional analysis,” in High Performance Extreme Computing
Conference (HPEC), pp. 1–6, IEEE, 2014.

[33] M. Soderholm, “Big data’s dirty little secret,” Datanami, July 2 2015.

[34] M. Soderholm, “Five steps to fix the data feedback loop and rescue analysis from ‘bad’ data,” Datanami,
Aug. 17 2015.

[35] S. Dodson, D. O. Ricke, J. Kepner, N. Chiu, and A. Shcherbina, “Rapid sequence identification of poten-
tial pathogens using techniques from sparse linear algebra,” in Symposium on Technologies for Homeland
Security (HST), IEEE, 2015.

[36] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science, vol. 286, no. 5439,
pp. 509–512, 1999.

[37] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the internet topology,” in ACM
SIGCOMM computer communication review, vol. 29.4, pp. 251–262, ACM, 1999.

[38] V. Pareto, Manuale di Economia Politica, vol. 13. Societa Editrice, 1906.

[39] G. K. Zipf, The psycho-biology of language. Houghton, Mifflin, 1935.

[40] F. M. Gryna, J. M. Juran, and L. A. Seder, Quality Control Handbook. McGraw-Hill, 1962.

[41] J. Kepner, “Perfect power law graphs: Generation, sampling, construction and fitting,” in SIAM Annual
Meeting, 2012.

[42] V. Gadepally and J. Kepner, “Using a power law distribution to describe big data,” in High Performance
Extreme Computing Conference (HPEC), pp. 1–5, IEEE, 2015.

[43] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner, A. McCabe, P. Michaleas, J. Mullen,
D. O’Gwynn, A. Prout, A. Reuther, A. Rosa, and C. Yee, “Driving big data with big compute,” in High
Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2012.

[44] R. Sen, A. Farris, and P. Guerra, “Benchmarking Apache Accumulo bigdata distributed table store using its
continuous test suite,” in Big Data (BigData Congress), 2013 IEEE International Congress on, pp. 334–341,
IEEE, 2013.

[45] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M. Hubbell, P. Michaleas, J. Mullen,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Achieving 100,000,000 database inserts per second using Accu-
mulo and D4M,” in High Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2014.

[46] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and A. Krishnamurthy, “Designing scalable
synthetic compact applications for benchmarking high productivity computing systems,” Cyberinfrastructure
Technology Watch, vol. 2, pp. 1–10, 2006.

[47] N. Travinin Bliss and J. Kepner, “’pmatlab parallel matlab library’,” The International Journal of High Per-
formance Computing Applications, vol. 21, no. 3, pp. 336–359, 2007.

[48] J. Kepner, Parallel MATLAB for Multicore and Multinode Computers. SIAM, 2009.

[49] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in STOC, vol. 9, pp. 169–178, 2009.

“current_book”
2017/8/27
23:44
page 56
#80

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

56 Chapter 3 Dynamic Distributed Dimensional Data Model

[50] H. Perl, M. Brenner, and M. Smith, “Poster: an implementation of the fully homomorphic smart-vercauteren
crypto-system,” in Proceedings of the 18th ACM conference on Computer and communications security,
pp. 837–840, ACM, 2011.

[51] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protecting confidentiality with en-
crypted query processing,” in Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, pp. 85–100, ACM, 2011.

[52] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner, “Highly-scalable searchable symmet-
ric encryption with support for boolean queries,” in Advances in Cryptology–CRYPTO 2013, pp. 353–373,
Springer, 2013.

[53] M. Raykova, A. Cui, B. Vo, B. Liu, T. Malkin, S. M. Bellovin, and S. J. Stolfo, “Usable, secure, private
search,” IEEE Security & Privacy, vol. 10, no. 5, pp. 53–60, 2012.

[54] P. Pal, G. Lauer, J. Khoury, N. Hoff, and J. Loyall, “P3s: A privacy preserving publish-subscribe middleware,”
in ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Pro-
cessing, pp. 476–495, Springer, 2012.

[55] A. C. Yao, “Protocols for secure computations,” in Foundations of Computer Science, 1982. SFCS’08. 23rd
Annual Symposium on, pp. 160–164, IEEE, 1982.

[56] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic fault-tolerant
distributed computation,” in Proceedings of the twentieth annual ACM symposium on Theory of computing,
pp. 1–10, ACM, 1988.

[57] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A. Yerukhimovich, and R. K. Cunningham,
“Computing on masked data: a high performance method for improving big data veracity,” in High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2014.

[58] B. De Schutter and B. De Moor, “The qr decomposition and the singular value decomposition in the sym-
metrized max-plus algebra revisited,” SIAM review, vol. 44, no. 3, pp. 417–454, 2002.

“current_book”
2017/8/27
23:44
page 57
#81

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4 Associative Arrays and Musical Metadata

Summary

Musical databases provide a ready data source for illustrating associative array concepts. In
a dense representation, an associative array looks like a standard spreadsheet or database
table that lists each song along with its properties. Sub-arrays can be selected using associa-
tive array indexing, array multiplication, and element-wise multiplication. Sub-arrays can
be combined using addition and intersected using element-wise multiplication. A sparse
representation of the data is useful for correlating different properties of the music, such as
the song writers and the song genres. This chapter illustrates the practical application of
associative array operations in the specific context of tabular text data drawn from a musical
database.

4.1 Data and Metadata

An important concept in categorizing information is the distinction between data and meta-
data. The term metadata was first coined by Philip Bagley [1] to refer to data that is used
to describe data. One of the clearest examples of the concept of data and metadata can
be found in music. In a musical context, musical data usually refers to the lyrics, score,
or recording of a performance and may consist of many words, notes, or sounds. Musical
metadata typically refers to information associated with the music such as its title, author,
year of composition, dedication, inspiration, performer, and producer.

Musical data has been written down for millennia. Hurrian Hymn No. 6 discovered in
Syria [2] is believed to be over 3,000 years old. Metadata in the form of song titles, dedi-
cations, or instructions on performance are likely just as old. The Book of Psalms found in
the Hebrew Bible and the Christian Old Testament contains 150 songs (or Psalms) that are
thought to be over 2,000 years old. Over 100 of the Psalms begin with metadata indicating
musical direction, the type of instrument to be used, type of composition, and dedications.
Even in this early work, the challenge keeping metadata consistent and connected with its
data is apparent as much of the Psalms metadata is incomplete [3].

As musical collections have increased over human history, the need for more organized
musical metadata has become essential to allow performers and listeners to find the music
they wish to perform and hear. The process of formalization of music metadata took place
at the great public libraries of the late 1800s. In America, these libraries included Brook-

“current_book”
2017/8/27
23:44
page 58
#82

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

58 Chapter 4 Associative Arrays and Musical Metadata

Artist Date Duration Genre Label Release Track Type Writer
031013ktnA1 Kitten 2013-03-10 3:57 Rock Free Yesterday Yesterday (What's Love) Single Chad Anderson;Chloe Chaidez;Julian Chaidez
053013ktnA1 Bandayde 2013-05-30 5:14 Electronic Free Cut It Out Remixes Sugar (Bandayde Remix) Single Julian Chaidez;Nicholas Johns
053013ktnA2 Kastle 2013-05-30 3:07 Electronic Free Cut It Out Remixes Cut It Out (Kastle Remix) Single Barrett Rich
063012ktnA1 Kitten 2010-06-30 4:38 Rock The Control Group Kill The Light Kill The Light EP Chad Anderson;Chloe Chaidez
063012ktnA1 Kitten 2012-06-30 3:28 Rock Atlantic Cut It Out/Sugar Cut It Out Single Chad Anderson;Chloe Chaidez;Julian Chaidez
063012ktnA2 Kitten 2010-06-30 3:18 Rock The Control Group Kill The Light Chinatown EP Chad Anderson;Chloe Chaidez
063012ktnA2 Kitten 2012-06-30 3:46 Rock Atlantic Cut It Out/Sugar Sugar Single Chad Anderson;Chloe Chaidez
063012ktnA3 Kitten 2010-06-30 3:21 Rock The Control Group Kill The Light Johnny;Johnny;Johnny EP Chad Anderson;Chloe Chaidez
063012ktnA4 Kitten 2010-06-30 2:43 Rock The Control Group Kill The Light Allison Day EP Chad Anderson;Chloe Chaidez
063012ktnA5 Kitten 2010-06-30 4:07 Rock The Control Group Kill The Light Kitten With A Whip EP Chad Anderson;Chloe Chaidez
082812ktnA1 Kitten 2012-08-28 3:25 Pop Atlantic Cut It Out Cut It Out EP Chad Anderson;Chloe Chaidez;Julian Chaidez
082812ktnA2 Kitten 2012-08-28 3:13 Pop Atlantic Cut It Out Japanese Eyes EP Chad Anderson;Chloe Chaidez
082812ktnA3 Kitten 2012-08-28 4:45 Pop Atlantic Cut It Out G# EP Chad Anderson;Chloe Chaidez
082812ktnA4 Kitten 2012-08-28 3:46 Pop Atlantic Cut It Out Sugar EP Chad Anderson;Chloe Chaidez
082812ktnA5 Kitten 2012-08-28 4:24 Pop Atlantic Cut It Out Junk EP Chad Anderson;Chloe Chaidez;Julian Chaidez
082812ktnA6 Kitten 2012-08-28 6:10 Pop Atlantic Cut It Out Christina EP Chad Anderson;Chloe Chaidez
093012ktnA1 Kitten 2013-09-30 4:55 Electronic;Pop Elektra Records Like A Stranger Doubt LP Chad Anderson;Chloe Chaidez
093012ktnA2 Kitten 2013-09-30 3:34 Electronic;Pop Elektra Records Like A Stranger I'll Be Your Girl LP Chad Anderson;Chloe Chaidez
093012ktnA3 Kitten 2013-09-30 4:33 Electronic;Pop Elektra Records Like A Stranger Yesterday LP Chad Anderson;Chloe Chaidez;Julian Chaidez
093012ktnA4 Kitten 2013-09-30 5:13 Electronic;Pop Elektra Records Like A Stranger Like A Stranger LP Chad Anderson;Chloe Chaidez
093012ktnA5 Kitten 2013-09-30 3:44 Electronic;Pop Elektra Records Like A Stranger King Of Kings LP Chad Anderson;Chloe Chaidez
093012ktnA6 Kitten 2013-09-30 3:00 Electronic;Pop Elektra Records Like A Stranger Graffiti Soul LP Chad Anderson;Chloe Chaidez
093012ktnA7 Kitten 2013-09-30 5:45 Electronic;Pop Elektra Records Like A Stranger Cathedral LP Chad Anderson;Chloe Chaidez
093012ktnA8 Kitten 2012-09-16 3:13 Japanese Eyes Japanese Eyes Single Chad Anderson;Chloe Chaidez

Artist Date
082812ktnA1 Kitten 2012-08-28
082812ktnA2 Kitten 2012-08-28
082812ktnA3 Kitten 2012-08-28

Date Duration Genre
082812ktnA2 2012-08-28 3:13 Pop
082812ktnA3 2012-08-28 4:45 Pop
082812ktnA4 2012-08-28 3:46 Pop

A2 = A('082812ktnA2 : 082812ktnA4 ',
 'Date Duration Genre ')

A1 = A('082812ktnA1 : 082812ktnA3 ',
 'Artist Date ')

A

Figure 4.1
D4M associative array A representation of a dense table of data from a music database. Row keys are an ordered
set of music track identifiers. The column keys are an ordered set of the fields in the database. Sub-arrays A1 and
A2 are selected using Matlab-style notation with ranges of row keys and sets of column keys.

lyn Public Library, the Boston Public Library, the Peabody Institute, the Lenox Branch of
the New York Public Library (NYPL), the Newberry Library, Harvard University, Forbes
Library, and the Library of Congress [4]. The work of these early music librarians stan-
dardized the categorization of music and musical metadata and is the basis of most modern
musical databases. More recently, machine learning has greatly enhanced musical meta-
data by enabling automatic labeling of music to identify genres [5], instruments [6], and
even the emotions experienced by the listener [7].

Metadata often receives the most attention in data analysis because it is the basis for find-
ing and retrieving information and is the most readily understandable by humans. Thus,
many of the examples in this text deal with metadata. However, is is worth emphasiz-
ing, that the mathematics of associative arrays applies to both data and metadata without
distinction.

4.2 Dense Data

Associative arrays in the Dynamic Distributed Dimensional Data Model (D4M) define
their operations based on what feels intuitive to users. D4M is often used on large datasets
stored in tables with many rows and columns. However, for illustrative purposes, it is

“current_book”
2017/8/27
23:44
page 59
#83

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4.2 Dense Data 59

08
28
12
kt
nA
1

08
28
12
kt
nA
2

08
28
12
kt
nA
3

082812ktnA1 1
082812ktnA2 1
082812ktnA3 1

Ar
tis
t

D
at
e

082812ktnA1 1 1
082812ktnA2 1 1
082812ktnA3 1 1

A1 = 	

A1 = 	

⊗ A 	

Ar
tis
t

D
at
e

Artist 1
Date 1⊕.⊗ A ⊕.⊗	

Figure 4.2
Selection of a sub-array A1 from A shown in Figure 4.1 via array multiplication (top) by the appropriate diagonal
arrays and via element-wise multiplication (bottom) with an array of all 1’s.

sufficient to understand the behavior of associative arrays in the context of a small example.
Consider the small 25× 10 associative array A of music data shown in Figure 4.1, where
song identification strings are the leftmost column (or row key) and the corresponding
artist, length, and genre data are stored in the other columns. This table could easily be
stored in a spreadsheet or a database.

The first behavior of A that makes it an associative array is that each row and column is
labeled with a string called a key. An entry in A is defined by a triple consisting of a row
key, a column key, and value. For example, the first entry in A is defined as

A('031013ktnA1 ', 'Artist ') = 'Kitten '

Associative arrays are similar to matrices in that each entry is defined by a row index,
column index, and a value, except that in an associative array the row and the column
are not limited to positive integers and can be strings of characters. Likewise, the values
can be numbers or strings or even sets. As a matter of practice, the row and columns are
always represented in some sorted order such as lexigraphic ordering. This ordering is not
a strict requirement of an associative array, but it is necessary as a practical matter to make
retrieval of information efficient. Thus, associative array row keys and column keys each
need to be orderable sets.

D4M users have found having sorted row and column keys a very intuitive way to think
about tabular data. This approach directly maps to NoSQL databases and some NewSQL
databases that employ a tuple in a similar way. SQL database tables also have a row key
and column key, but the row key is often hidden from the user. However, since underlying
relational algebra in SQL is based on sets, SQL tables map into associative arrays quite
well. Spreadsheets often have their own row and column labeling systems, such as A1

“current_book”
2017/8/27
23:44
page 60
#84

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

60 Chapter 4 Associative Arrays and Musical Metadata

A1 	+ 	A2 =	
Artist Date Duration Genre

082812ktnA1 Kitten 2012-08-28
082812ktnA2 Kitten 2012-08-28 3:13 Pop
082812ktnA3 Kitten 2012-08-28 4:45 Pop
082812ktnA4 2012-08-28 3:46 Pop

Artist Date Duration Genre
082812ktnA1 Kitten 2012-08-28
082812ktnA2 Kitten 3:13 Pop
082812ktnA3 Kitten 4:45 Pop
082812ktnA4 2012-08-28 3:46 Pop

Date
082812ktnA2 2012-08-28
082812ktnA3 2012-08-28

A1 	 | 	A2 =	

A1 	- 	A2 = 	

A1 	& 	A2 = 	
Figure 4.3
D4M operations performed on the sub-arrays A1 and A2 as defined in Figure 4.1. From top to bottom, the
operations are addition +, logical or |, subtraction −, and logical and &. The +, |, and − operations result in a
new associative array that is the union of the row and column keys, while the & operation produces an associative
array that is the intersection.

or R1C1, but these labels can be confusing, and users just as often prefer to have table
entries identified by user-defined row and column keys. Finally, as will be discussed in
later sections, graphs are often defined by labeled vertices with labeled edges, and so as-
sociative arrays naturally allow this information to be incorporated into adjacency array
representations of graphs (see Figure 4.6).

4.3 Dense Operations

Perhaps the most widely used operations on spreadsheets, databases, graphs, and matrices
are extracting and inserting sub-spreadsheets, sub-databases, sub-graphs, and sub-matrices.
One of the most interesting properties of an associative array is how sub-arrays are han-
dled. In Figure 4.1, the sub-arrays A1 and A2 are extracted from A with Matlab-style index
notation for ranges and sets of keys. In this example, rows are selected by a range of keys,
and the columns are selected by a distinct set of keys. As expected, the row keys and
column keys are carried along into the sub-array. In addition, associative arrays allow the
same sub-array selection to be performed via array multiplication or element-wise multi-
plication (see Figure 4.2). The duality between array selection and array multiplication
allows this essential operation to be manipulated in the same manner as other algebraic
operations.

Inserting, or assigning, values to an associative array can also be carried out via simple
addition. For example, given the associative array

A3('093012ktnA8 ', '093012ktnA8 ') = 'New Wave '

“current_book”
2017/8/27
23:44
page 61
#85

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4.3 Dense Operations 61

Ar
tis

t|B
an

da
yd

e
Ar

tis
t|K

as
tle

Ar
tis

t|K
itt

en
Da

te
|2

01
0-

06
-3

0
Da

te
|2

01
2-

08
-2

8
Da

te
|2

01
2-

09
-1

6
Da

te
|2

01
3-

05
-3

0
Da

te
|2

01
3-

09
-3

0
Da

te
|2

01
3-

10
-0

3
G

en
re

|E
le

ct
ro

ni
c

G
en

re
|P

op
G

en
re

|R
oc

k
La

be
l|A

tla
nt

ic
La

be
l|E

le
kt

ra
 R

ec
or

ds
La

be
l|F

re
e

La
be

l|T
he

 C
on

tro
l G

ro
up

Re
le

as
e|

Cu
t I

t O
ut

Re
le

as
e|

Cu
t I

t O
ut

 R
em

ixe
s

Re
le

as
e|

Cu
t I

t O
ut

/S
ug

ar
Re

le
as

e|
Ja

pa
ne

se
 E

ye
s

Re
le

as
e|

Ki
ll T

he
 L

ig
ht

Re
le

as
e|

Li
ke

 A
 S

tra
ng

er
Re

le
as

e|
Ye

st
er

da
y

Ty
pe

|E
P

Ty
pe

|L
P

Ty
pe

|S
in

gl
e

W
rit

er
|B

ar
re

tt
Ri

ch
W

rit
er

|C
ha

d
An

de
rs

on
W

rit
er

|C
hl

oe
 C

ha
id

ez
W

rit
er

|J
ul

ia
n

Ch
ai

de
z

W
rit

er
|N

ich
ol

as
 J

oh
ns

031013ktnA1 1 1 1 1 1 1 1 1 1
053013ktnA1 1 1 1 1 1 1 1 1
053013ktnA2 1 1 1 1 1 1 1
063012ktnA1 1 1 1 1 1 1 1 1
063012ktnA2 1 1 1 1 1 1 1 1
063012ktnA3 1 1 1 1 1 1 1 1
063012ktnA4 1 1 1 1 1 1 1 1
063012ktnA5 1 1 1 1 1 1 1 1
082812ktnA1 1 1 1 1 1 1 1 1 1
082812ktnA2 1 1 1 1 1 1 1 1
082812ktnA3 1 1 1 1 1 1 1 1
082812ktnA4 1 1 1 1 1 1 1 1
082812ktnA5 1 1 1 1 1 1 1 1 1
082812ktnA6 1 1 1 1 1 1 1 1
093012ktnA1 1 1 1 1 1 1 1 1 1
093012ktnA2 1 1 1 1 1 1 1 1 1
093012ktnA3 1 1 1 1 1 1 1 1 1 1
093012ktnA4 1 1 1 1 1 1 1 1 1
093012ktnA5 1 1 1 1 1 1 1 1 1
093012ktnA6 1 1 1 1 1 1 1 1 1
093012ktnA7 1 1 1 1 1 1 1 1 1
093012ktnA8 1 1 1 1 1 1

E1 = E(:,'Genre|A : Genre|Z ') E2 = E(:,'Writer|A : Write|Z ')

E

Figure 4.4
D4M sparse associative array E representation of a table of data from a music database. The column key and the
value are concatenated with a separator symbol (in this case |) resulting in every unique pair of column and value
having its own column in the sparse view. The new value is usually 1 to denote the existence of an entry. Column
keys are an ordered set of database fields. Sub-arrays E1 and E2 are selected with Matlab-style notation to denote
all of the row keys and ranges of column keys.

this value can be assigned or inserted into A via

A = A + A3

Thus, it is simple to pull out pieces of an associative array and put them back where they
were taken from because their global keys are preserved. In addition, these operations
can be performed both algebraically and by standard sub-array referencing techniques.
Associative array row and column keys relieve the user of the burden of having to keep
track of both the relative position and the meaning of their rows and columns. Users of
D4M have found this behavior of associative array row and column keys both intuitive and
desirable.

There are many intuitive ways to combine the associative arrays. Figure 4.3 illustrates
combining associative arrays A1 and A2 from Figure 4.1. From top to bottom, the op-
erations are addition +, logical or |, subtraction −, and logical and &. In this particular
example, the +, |, − operations produce a new associative array whose set of row and
columns keys is the union of the sets of row and column keys found in A1 and A2. In short,

“current_book”
2017/8/27
23:44
page 62
#86

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

62 Chapter 4 Associative Arrays and Musical Metadata

 W
rit

er
|B

ar
re

tt
R

ic
h

W
rit

er
|C

ha
d

An
de

rs
on

W
rit

er
|C

hl
oe

 C
ha

id
ez

W
rit

er
|J

ul
ia

n
C

ha
id

ez
W

rit
er

|N
ic

ho
la

s
Jo

hn
s

Genre|Electronic 1 7 7 2 1
Genre|Pop 13 13 3
Genre|Rock 6 6 1

E1 ⊕.⊗ 	E2 = 	T

Figure 4.5
Correlating the music writers with the music genres can be accomplished by multiplying E1 and E2 as defined in
Figure 4.4. This correlation is performed using the transpose operation T and the array multiplication operation
⊕.⊗. The resulting associative array has row keys taken from the column keys of E1 and column keys taken from
the column keys of E2. The values represent the correlation, or the number of common music tracks, between the
input arrays.

associative arrays lift the constraint that exists in matrix algebra that all matrices have ap-
parently equal numbers of rows and columns in order for them to be combined. The &
operation results in an associative array that is the intersection of the row and column keys
found in A1 and A2 and illustrates a fundamental property of associative arrays: empty
rows or empty columns are not stored. Empty rows and empty columns are removed from
the result and only non-empty rows and non-empty columns are kept.

All the examples in Figure 4.3 involve two entries that overlap

A('08281ktnA2 ', 'Date ') = '2012-08-28 '

A('08281ktnA3 ', 'Date ') = '2012-08-28 '

How these values are combined is determined by the rules of the value set. Tradition-
ally, linear algebra is defined on the standard numeric field where the values are real (or
complex) numbers and the operations are standard arithmetic addition and arithmetic mul-
tiplication. Associative arrays provide a broader selection of potential sets to choose from,
the details of which are at the heart of this book and will be discussed in due course.

4.4 Sparse Data

Figure 4.1 shows a standard dense view of data that is commonly used in spreadsheets
and SQL databases. Figure 4.4 shows a sparse view of the data that is commonly used in
NoSQL databases, NewSQL databases, graphs, and sparse linear algebra [8]. In the sparse
view, the column key and the value are concatenated with a separate symbol (in this case |)

“current_book”
2017/8/27
23:44
page 63
#87

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4.5 Sparse Operations 63

Genre!

Electronic!

Pop!

Rock!

Writer!
Barret Rich!

Chad Anderson!

Julian Chaidez!

Chloe Chaidez!

Nicholas Johns!
Figure 4.6
Graph representation of the result of the associative array multiplication shown in Figure 4.5. The bipartite graph
shows the strengths of connections between sets of music genre vertices and music writer vertices. The width of
the edge between vertices is proportional to the number of music tracks of a particular genre and writer.

so that every unique pair of column and value has its own column in the sparse view. The
new value is usually 1 to denote the existence of an entry.

4.5 Sparse Operations

The power of the sparse view can be seen in a several ways. First, the structure of the
data set becomes readily apparent from visual inspection. Both rare and popular columns
are easy to spot. Second, and perhaps more importantly, correlating the data or construct-
ing graphs from the data can be accomplished via array multiplication. For example, in
Figure 4.4, the columns corresponding to music genre are placed in the sub-array E1 and
the columns corresponding to music writer are placed in the sub-array E2. The correlation
between music genre and music writer is then computed by array multiplication of the two
associative arrays (see Figure 4.5). The result is a new associative array in which the row
keys are the genre, the columns keys are the writer, and the value shows how many tracks
there are that correspond to a particular genre and writer.

The resulting associative array can also be viewed as a graph from a set of vertices
corresponding to genres to a set of vertices corresponding to writers where the thickness
of the lines (or edge weights) is proportional to the number of tracks between vertices (see
Figure 4.6). The graph in Figure 4.6 also illustrates the concept of a bipartite graph that
connects two sets of vertices (genres and writers) with no edges within these sets. In this
context, E can be viewed as a graph incidence array whereby every hyper-edge in the larger
graph is represented by a row and the result of multiplying the two sub-arrays E1 and E2 is
an adjacency array of the sub-graph corresponding to the genre vertices and writer vertices
represented by the sub-arrays.

Associative arrays allow a variety of array multiplication operations. By returning to the
dense view of the data shown in Figure 4.1, it is possible to define an array multiplication

“current_book”
2017/8/27
23:44
page 64
#88

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

64 Chapter 4 Associative Arrays and Musical Metadata

A1 	∪.∪ 	A2 = 	
Date Duration Genre

Artist Kitten;2012-08-28;Kitten;2012-08-28; Kitten;3:46;Kitten;4:24; Kitten;Pop;Kitten;Pop;
Date 2012-08-28;2012-08-28;2012-08-28;2012-08-28; 2012-08-28;3:46;2012-08-28;4:24; 2012-08-28;Pop;2012-08-28;Pop;

T

Figure 4.7
Transpose T and array multiply ∪.∪ performed on the sub-arrays A1 and A2 as defined in Figure 4.1. The output
is an associative array whose row keys are taken from the column keys of A1 and whose column keys are taken
from the column keys of A2. The values represent the concatenation (or union) of the values in the input arrays
where a semicolon (;) is used to separate the values.

∪.∪ whereby the output values are sets representing the union (or concatenation) of the
values of the input arrays (see Figure 4.7).

Even more exotic array multiplications can be constructed. In Figure 4.5, the values cor-
respond to the number of music tracks with a specific genre and writer. Another very useful
array multiplication is one in which the resulting values are sets containing the correspond-
ing intersecting row and column keys (see Figure 4.8). Such an array multiplication not
only provides information on the strongest correlations, but makes it possible to look up
the precise music tracks that produced the correlation. This behavior is sometimes referred
to as pedigree-preserving computation because information on the source of the informa-
tion is preserved through the computation. This computation is in contrast to a standard
array multiplication in which the source information is lost.

All of the above array multiplications represent specific choices of the element-wise
addition operation ⊕ and the element-wise multiplication operation ⊗ over a value set V .
The general version of this array multiplication can be written as

C = AB = A ⊕.⊗ B

or more specifically
C(k1,k2) =

⊕
k3

A(k1,k3)⊗B(k3,k2)

where the row and column keys k1, k2, and k3 are elements of the sets

k1 ∈ K1

k2 ∈ K2

k3 ∈ K3

and A, B, and C are associative arrays that map from pairs of keys to values in the set V

A : K1×K3→ V

B : K3×K2→ V

C : K1×K2→ V

“current_book”
2017/8/27
23:44
page 65
#89

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4.6 Conclusions, Exercises, and References 65

Writer|Julian Chaidez Writer|Nicholas Johns
Genre|Electronic 053013ktnA1;093012ktnA3; 053013ktnA1;
Genre|Pop 082812ktnA1;082812ktnA5;093012ktnA3;
Genre|Rock 031013ktnA1;

E1 ∪.⊗ 	E2(:,'Writer|J : Writer|Z ') = 	T

Figure 4.8
Transpose T and array multiplication ∪.⊗ performed on the array E1 and a sub-array of E2 as defined in Figure 4.4.
The resulting array has row keys taken from the column keys of E1 and column keys taken from E2. The values
of each entry hold the intersecting keys from the array multiplication.

Array multiplication is very similar to traditional matrix multiplication because matrix
multiplication is a special case of array multiplication in which ⊕ is traditional arithmetic
addition +, ⊗ is traditional arithmetic multiplication × over the real numbers R, and the
row and columns keys are sets of integers

K1 = {1, . . . ,m}

K2 = {1, . . . ,n}

K3 = {1, . . . , `}

In this case, traditional matrix multiplication can be written as the more familiar notation

C = AB = A +.× B

or more specifically
C(i, j) =

∑
k

A(i,k)×B(k, j)

where the row and column indices i, j, and k are elements of the sets

i ∈ {1, . . . ,m}

j ∈ {1, . . . ,n}

k ∈ {1, . . . , `}

4.6 Conclusions, Exercises, and References

Databases of music provide a rich source of data for illustrating associative array concepts.
There are two predominant ways to represent data in associative arrays: dense and sparse.
In the dense representation, an associative array is very similar to a standard spreadsheet or
database table. Each row is a record and each column is a field. Selecting sub-arrays can be
be accomplished with associative array indexing, array multiplication, and element-wise
multiplication. Sub-arrays can be combined using addition. Sub-arrays can be intersected
using element-wise multiplication. In a sparse representation of the data, every unique field

“current_book”
2017/8/27
23:44
page 66
#90

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

66 Chapter 4 Associative Arrays and Musical Metadata

and value in the record is a unique column in the associative array. The sparse view is very
useful for correlating different musical properties, such as the song writers with the song
genres. These correlations can also be depicted as graphs from one set of vertices (genres)
to another set of vertices (writers).

Exercises

Exercise 4.1 — Refer to Figure 4.1 and for each array A, A1, and A2

(a) Compute the number of rows m and number of columns n in the arrays.

(b) Compute the total number of entries mn.

(c) Compute how many empty entries there are.

(d) Compute how many non-empty entries there are.

(e) What are the values of A('063012ktnA2 ', 'Track '), A1(1,1), and A2(3,3)?

Exercise 4.2 — Refer to Figure 4.3 and for the top, middle, and bottom arrays depicted

(a) Compute the number of rows m and number of columns n in the arrays.

(b) Compute the total number of entries mn.

(c) Compute how many empty entries there are.

(d) Compute how many non-empty entries there are.

Exercise 4.3 — Refer to Figure 4.4 and for each array E, E1, and E2

(a) Compute the number of rows m and number of columns n in the arrays.

(b) Compute the total number of entries mn.

(c) Compute how many empty entries there are.

(d) Compute how many non-empty entries there are.

(e) Which genre(s) and artist(s) are affiliated with the most tracks?

Exercise 4.4 — Refer to Figure 4.6.

(a) Compute the number of edges in the graph.

(b) What is the maximum possible number of edges between the genres and the writers?

(c) How many of the possible edges are not in the graph?

Check your answers by referring to Figure 4.5.

Exercise 4.5 — Write down a dense associative array representing some of the properties
of your favorite music.

“current_book”
2017/8/27
23:44
page 67
#91

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

4.6 Conclusions, Exercises, and References 67

Exercise 4.6 — Select two sub-arrays using array indexing, array multiplication, and element-
wise multiplication.

Exercise 4.7 — Combine two sub-arrays using addition.

Exercise 4.8 — Combine two sub-arrays using element-wise multiplication.

Exercise 4.9 — Write down a sparse associative array representing some of the properties
of your favorite music.

Exercise 4.10 — Correlate two properties of the music using array multiplication of sparse
sub-arrays.

References

[1] P. R. Bagley, “Extension of programming language concepts,” tech. rep., University City Science Center, 1968.

[2] E. Laroche, “Notes sur le panthéon hourrite de ras shamra,” Journal of the American Oriental Society, pp. 148–
150, 1968.

[3] A. Pietersma, “David in the greek psalms,” Vetus Testamentum, vol. 30, no. Fasc. 2, pp. 213–226, 1980.

[4] C. J. Bradley, “Classifying and cataloguing music in american libraries: A historical overview,” Cataloging &

classification quarterly, vol. 35, no. 3-4, pp. 467–481, 2003.

[5] T. Li, M. Ogihara, and Q. Li, “A comparative study on content-based music genre classification,” in Proceed-
ings of the 26th annual international ACM SIGIR conference on Research and development in informaion
retrieval, pp. 282–289, ACM, 2003.

[6] P. Herrera-Boyer, G. Peeters, and S. Dubnov, “Automatic classification of musical instrument sounds,” Journal
of New Music Research, vol. 32, no. 1, pp. 3–21, 2003.

[7] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, “Multi-label classification of music into emotions,”
in ISMIR, vol. 8, pp. 325–330, 2008.

[8] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun, M. Hubbell, P. Michaleas, J. Mullen,
D. O’Gwynn, A. Prout, A. Reuther, A. Rosa, and C. Yee, “D4M 2.0 schema: A general purpose high perfor-
mance schema for the Accumulo database,” in High Performance Extreme Computing Conference (HPEC),
pp. 1–6, IEEE, 2013.

“current_book”
2017/8/27
23:44
page 68
#92

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 69
#93

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

5 Associative Arrays and Abstract Art

Summary

An essential element to data representation is the ability to abstract important elements and
enable viewing data at different scales. Associative arrays are well suited for depicting data
in summary or in detail. The vertices and edges of a graph can be represented in an asso-
ciative array. The two primary representations of graphs are adjacency arrays and incidence
arrays. Adjacency arrays can be computed from incidence arrays via array multiplication.
This chapter depicts these important visual representational properties of associative arrays
using a work of abstract art as an example.

5.1 Visual Abstraction

A common step in analyzing the relationships among data is abstracting the data into a vi-
sual form that preserves key concepts and eliminates unimportant items. Graphs consisting
of vertices and edges are a powerful tool for enabling visual abstraction. Among the most
well-known early formal applications of graph theory is Leonhard Euler’s famous “Seven
Bridges of Konigsberg” problem [1], which asks if there is path across all seven bridges
of the City of Konigsberg that crosses each bridge only once. The first step in solving
the problem is to visually abstract the islands, river banks, and bridges of the city into a
simplified graph of vertices and edges.

The process of reducing a real world visual scene to a simplified composition of vertices
is easily appreciated in abstract art [2]. Reducing a real-world environment to its essential
edges built on earlier Cubist geometric approaches initiated by Pablo Picasso and Georges
Braque, but provided the necessary break with the physical world to create completely
abstract representations [3, 4]. This view of abstraction was championed by The Dutch De
Stijl artists and its most noted member, Piet Mondrian, who believed

“ ... through horizontal and vertical lines constructed with awareness, but not with calcula-
tion, led by high intuition, and brought to harmony and rhythm, these basic forms of beauty,
supplemented if necessary by other direct lines or curves, can become a work of art, as strong
as it is true ... ” [5, 6]

In many respects, the above quote also eloquently captures how a mathematician tries to
create abstract mathematical models of the world. The relationships that can be depicted
in a graph go beyond what can be depicted by abstracting a view of the real world. For-
tunately, artists have continued to extend abstraction to include inspirations from architec-

“current_book”
2017/8/27
23:44
page 70
#94

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

70 Chapter 5 Associative Arrays and Abstract Art

V01

V03 V08

V10 V04

V12

V09 V20

Figure 5.1
Simplified two-toned depiction of the abstract line-art painting (XCRS by Ann Pibal). In this view, there appear
to be six edges with eight termination vertices labeled V01, V03, V04, V08, V09, V10, V12, and V20.

V0
3

V0
8

V1
0

V1
2

V2
0

V01 1
V04 1 1
V08 1
V09 1
V10 1

A	
Figure 5.2
A minimal associative array representation A of the edges depicted in Figure 5.1.

ture, graphic design, in addition to landscape [7]. These modern artworks can depict the
fuller range of multi-hyper-directed-weighted graphs that are representable by associative
arrays; multi- in that the graph can have multiple identical edges; hyper- in that an edge
can connect more than two vertices; directed- because the edges can have direction; and
weighted- because the edges can have a weight or label.

An important aspect of an effective abstraction is the ability to support data exploration
at difference scales. One effective approach to data exploration can be summed up in the
phrase “overview first, zoom and filter, then details on demand” [8]. Essential to this
approach is the ability to view data at different scales. From a distance, the details of
the data should appear blurry, but the overall picture should be clear. Likewise, when
the data are viewed up close, additional details should jump out. Visually, this scenario

“current_book”
2017/8/27
23:44
page 71
#95

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

5.2 Minimal Adjacency Array 71

V0
1

V0
3

V0
4

V0
8

V0
9

V1
0

V1
2

V2
0

V01 1
V03 1
V04 1 1
V08 1 1
V09 1
V10 1 1
V12 1 1
V20 1

V0
1

V0
4

V0
8

V0
9

V1
0

V03 1
V08 1
V10 1
V12 1 1
V20 1

V0
3

V0
8

V1
0

V1
2

V2
0

V01 1
V04 1 1
V08 1
V09 1
V10 1

⊕	 =	

A	 AT
!

Figure 5.3
Calculation of the square-symmetric representation of the edges from Figure 5.1 using associative array addition.

is analogous to moving from a fuzzy black-and-white depiction of a picture to a clear
multicolor depiction of the same picture. It is important that the mathematics of associative
arrays have this same property.

5.2 Minimal Adjacency Array

Figure 5.1 depicts a simple, two-toned version of an abstract line painting. This illustration
is analogous to viewing data in its lowest-resolution form. Figure 5.1 can be approximated
as a graph with six edges with eight termination vertices V01, V03, V04, V08, V09, V10,
V12, and V20. The edges can be represented as pairs of vertices (V01, V03), (V04, V08),
(V04, V12), (V08, V10), (V09, V20), and (V10, V12). Likewise, these vertices can be the
rows and columns of an associative array.

Figure 5.1 can be represented as a 5× 5 associative array (see Figure 5.2) where the
existence of an edge between two vertices is denoted by a 1 in the corresponding row and
column. This representation of a graph is referred to as an adjacency array. Because the
edges in the picture have no particular direction, each edge can be represented as one of
two possible pairs of vertices. For example, the first edge could be listed as either (V01,
V03) or (V03, V01). This type of graph is referred to as undirected because the edge
has no particular direction, and the starting vertex and the ending vertex of the edge are
unspecified. Furthermore, the only thing that is known about the edge is that it exists, and
so the only values that can be assigned to the edge are either 0 or 1. Such a graph is said
to be unweighted because there is no particular weight on the edges. All edges that exist
are the same. Combined, these two attributes of the graph would cause it to be categorized
as an undirected-unweighted graph. Such a graph is among the simplest graphs and is
extensively used in a variety of graph algorithms [9].

“current_book”
2017/8/27
23:44
page 72
#96

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

72 Chapter 5 Associative Arrays and Abstract Art

V02!

V01!

V03!

V04!

V05!

V06!

V07!

V08!

V09!

V10!

V11!

V13!

V14!V12!

V15!

V16!

V17!

V18!

V19!

V20!

Figure 5.4
Multitone depiction of an abstract edge painting (XCRS by Ann Pibal) showing various edges. The intersec-
tions and terminations of the edges are labeled with vertices (V01,...,V20) that have been superimposed onto the
painting with white letters.

V0
2

V0
3

V0
5

V0
6

V0
7

V0
8

V1
0

V1
1

V1
3

V1
4

V1
6

V1
7

V1
8

V1
9

V2
0

V01 1
V02 1 1 1 1 1
V04 1
V05 1 1 1
V06 1 1 1
V07 1 1 1
V09 1
V10 1
V11 1
V12 1
V13 1
V15 1
V16 1

A
Figure 5.5
A minimal associative array representation A of the edges depicted in Figure 5.4.

“current_book”
2017/8/27
23:44
page 73
#97

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

5.3 Symmetric Adjacency Array 73

V0
2

V0
3

V0
5

V0
6

V0
7

V0
8

V1
0

V1
1

V1
3

V1
4

V1
6

V1
7

V1
8

V1
9

V2
0

V01 1
V02 1 1 1 1 1
V04 1
V05 1 1 1
V06 1 1 1
V07 1 1 1
V09 1
V10 1
V11 1
V12 1
V13 1
V15 1
V16 1

V0
1

V0
2

V0
4

V0
5

V0
6

V0
7

V0
9

V1
0

V1
1

V1
2

V1
3

V1
5

V1
6

V02 1
V03 1
V05 1
V06 1
V07 1
V08 1
V10 1
V11 1 1 1
V13 1 1 1
V14 1
V16 1 1 1 1 1
V17 1
V18 1
V19 1
V20 1

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

V01 1
V02 1 1 1 1 1 1
V03 1
V04 1
V05 1 1 1 1
V06 1 1 1 1
V07 1 1 1 1
V08 1
V09 1
V10 1 1
V11 1 1 1 1
V12 1
V13 1 1 1 1
V14 1
V15 1
V16 1 1 1 1 1 1
V17 1
V18 1
V19 1
V20 1

⊕ =

A AT

Figure 5.6
Construction of a square-symmetric representation of the edges depicted in Figure 5.4 via associative array addi-
tion.

Figure 5.2 captures all that is known about the vertices and edges in Figure 5.1, but
it is not necessarily the most convenient form to work with. It is often desirable that
the associative array representation of an undirected graph be square so that it has equal
numbers of row and columns, and be symmetric so that entries for any possible vertex pairs
could represent an edge. Computing the square-symmetric representation of an undirected
graph can be accomplished by simply adding the associative array to its transpose. For
example, if the associative array in Figure 5.1 is denoted A and its transpose is denoted
AT, then the square-symmetric representation of the graph can be computed via

A⊕AT

This operation is depicted in Figure 5.3 and results in an 8×8 associative array.

5.3 Symmetric Adjacency Array

As data become higher resolution with more gradations, additional details become appar-
ent. Features that were blurred together begin to separate into distinct elements. Figure 5.4
depicts the multitoned painting shown in Figure 5.2.
Many of the vertices in Figure 5.2 split into the multiple vertices in Figure 5.4

V01→ {V01,V15}
V03→ {V03,V17}
V04→ {V04,V05,V18}
V08→ {V07,V08,V19}
V12→ {V12,V13,V14}

The increased clarity also makes apparent five new vertices V02, V06, V11, V13, and V16.
Simply connecting these vertices results in 23 undirected edges. A 13× 15 associative
array representation of Figure 5.4 is shown in Figure 5.5.

“current_book”
2017/8/27
23:44
page 74
#98

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

74 Chapter 5 Associative Arrays and Abstract Art

V02!

V01!

V03!

V04!

V05!

V06!

V07!

V08!

V09!

V10!

V11!

V13!

V14!V12!

V15!

V16!

V17!

V18!

V19!

V20!

Figure 5.7
Abstract line painting (XCRS by Ann Pibal) showing various colored lines. The intersections and terminations of
the lines are labeled vertices (V1,...,V20) and have been superimposed onto the painting in white letters.

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

V01 6
V02 6 6 1 1 1 1
V03 6
V04 6
V05 6 6 1 1
V06 6 6 1 1
V07 6 6 1 1
V08 6
V09 1
V10 1 1
V11 1 1 1 1
V12 1
V13 1 1 1 1
V14 1
V15 1
V16 1 1 1 1 1 1
V17 1
V18 1
V19 1
V20 1

A
Figure 5.8
Square-symmetric associative array representation A of the edges depicted in Figure 5.7. Each value represents
the number of edges connecting each pair of vertices.

“current_book”
2017/8/27
23:44
page 75
#99

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

5.4 Weighted Adjacency Array 75

The square-symmetric representation of the edges is constructed in the same manner
as in the prior section by adding the 13× 15 associative array to its 15× 13 transpose to
produce a 20×20 associative array with 46 non-empty entries (see Figure 5.6).

5.4 Weighted Adjacency Array

A color representation of the picture shows that there are more details in Figure 5.7 than just
edges connecting the vertices. For example, some edges appear to have multiple vertices
associated with them.

The square-symmetric associative array representation of the edges can be augmented
to capture some of this information. In Figure 5.8, each value of the associative array
represents the number of edges going between each pair of vertices. In this case, there are
six pairs of vertices that all have six edges between them

(V01, V02), (V02, V03), (V04, V05), (V05, V06), (V06, V07), (V07, V08)

This value is referred to as the edge weight, and the corresponding graph is described as a
weighted-undirected graph. If the edge weight specifically represents the number of edges
between two vertices, then the graph is a multi-graph.

5.5 Incidence Array

The edges in Figure 5.7 have additional properties, including specific colors for each edge:
blue, silver, green, orange, and pink. Note: some of the color differences are subtle, but for
the purposes of this discussion the colors can be thought of as arbitrary labels on the edges.
There are also multiple edges going between the same vertices. Some of the edges appear
to lie on top of each other and so there is an order to the edges. All of these properties
should be captured in the corresponding associative array representation. Including this
information in the associative array requires additional labels. Figure 5.9 adds a label
based on the edge color to each of the straight edges in the picture.

The additional information expressed about the edges cannot be represented in an adja-
cency array in which the rows and columns are vertices. In particular, hyper-edges that
connect more than two vertices cannot be represented with an adjacency array. A different
representation is required in which each row represents an edge and the columns represent
the different possible attributes of an edge. This representation is referred to as an inci-
dence array. Figure 5.10 is an associative array representation of an incidence array with
hyper-edges.

“current_book”
2017/8/27
23:44
page 76
#100

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

76 Chapter 5 Associative Arrays and Abstract Art

B1
,S
1,
G1
,O
1,
O2
,P
1!

B2
,S
2,
G2
,O
3,
O4
,P
2!

P3!

P5!

P6!

P7!

P8!

P4!

O5!

Figure 5.9
Edge labeling of each straight edge based on the color of the edge.

Color O
rd
er

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

B1 blue 2 1 1 1
B2 blue 2 1 1 1 1 1
G1 green 2 1 1 1
G2 green 2 1 1 1 1 1
O1 orange 1 1 1 1
O2 orange 1 1 1 1
O3 orange 1 1 1 1 1 1
O4 orange 1 1 1 1 1 1
O5 orange 1 1 1 1 1 1 1
P1 pink 3 1 1 1
P2 pink 3 1 1 1 1 1
P3 pink 3 1 1 1 1
P4 pink 3 1 1
P5 pink 3 1 1 1
P6 pink 3 1 1 1
P7 pink 3 1 1 1
P8 pink 3 1 1 1
S1 silver 2 1 1 1
S2 silver 2 1 1 1 1 1

E
Figure 5.10
Associative array representation of the incidence array E of the hyper-edges depicted in Figure 5.9.

“current_book”
2017/8/27
23:44
page 77
#101

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

5.5 Incidence Array 77

E(:,'V01 ... V20 ')T 	
	
	
E(:,'V01 ... V20 ') 	
 	

=	⊕.⊗	

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

V01 6 6 6
V02 6 9 6 1 1 1 1 1 1 1 1
V03 6 6 6
V04 6 6 6 6 6
V05 6 7 6 6 6 1 1
V06 1 6 6 7 6 6 1 1 1 1
V07 6 6 6 7 6 1 1 1
V08 6 6 6 6 6
V09 1 1 1 1 1 1
V10 1 2 1 1 1
V11 1 1 1 1 2 1 1 1 1
V12 1 1 1
V13 1 1 1 1 2 1
V14 1 1 1 1
V15 1 1 1
V16 1 1 1 1 1 1 1 4 1 1 1 2
V17 1 1 1
V18 1 1 1
V19 1 1 1 1
V20 1 1 1 1 1 2 1 2

Figure 5.11
Computation of the vertex adjacency array via array multiplication of the incidence array E shown in Figure 5.10.
For this computation, only the columns associated with the vertices are selected. The values indicate the number
of times a given pair of vertices shares the same edge. The values differ from those shown in Figure 5.8 because
the edges are hyper-edges.

Edges that connect many vertices are called hyper-edges. A graph with both multi-edges
and hyper-edges is referred to as a multi-hyper-graph (or hyper-multi-graph). Associative
array representations of incidence arrays can capture the full range of properties found
in most any graph. Adjacency arrays can be constructed from incidence arrays via array
multiplication. For example, if the incidence array depicted by the associative array in
Figure 5.9 is denoted E and its transpose is denoted ET, then the adjacency array of the
vertices can be computed via

ET ⊕.⊗ E

This operation is depicted in Figure 5.11 and results in a 20× 20 square-symmetric asso-
ciative array in which each value is the number of times a pair of vertices (denoted by a
row and a column) share the same edge.

For a graph with hyper-edges, the vertex adjacency array is not the only adjacency array
that can be computed from the incidence array. The edge adjacency array can also be
computed via

E ⊕.⊗ ET

This operation is depicted in Figure 5.12 and results in a 19× 19 square-symmetric asso-
ciative array in which each value stores the number of times a given pair of edges (denoted
by a row and a column) shares the same vertex. The values differ from those shown in
Figure 5.8 because the edges in 5.10 are hyper-edges so that one edge can connect more
that two vertices.

“current_book”
2017/8/27
23:44
page 78
#102

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

78 Chapter 5 Associative Arrays and Abstract Art

B1 B2 G
1

G
2

O
1

O
2

O
3

O
4

O
5

P1 P2 P3 P4 P5 P6 P7 P8 S1 S2

B1 3 3 3 3 1 3 1 1 3
B2 5 5 5 5 1 5 1 1 5
G1 3 3 3 3 1 3 1 1 3
G2 5 5 5 5 1 5 1 1 5
O1 3 3 3 3 1 3 1 1 3
O2 3 3 3 3 1 3 1 1 3
O3 5 5 5 5 1 5 1 1 5
O4 5 5 5 5 1 5 1 1 5
O5 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 2 1 1
P1 3 3 3 3 1 3 1 1 3
P2 5 5 5 5 1 5 1 1 5
P3 1 4 1 1
P4 1 1 1 1 1 1 1 2 1 1
P5 1 1 1 1 1 1 1 1 3 1
P6 1 3 1 1
P7 1 1 1 1 1 1 1 3 1 1
P8 1 1 1 1 2 1 1 1 4 1
S1 3 3 3 3 1 3 1 1 3
S2 5 5 5 5 1 5 1 1 5

E(:,'V01 ... V20 ') 	
	
	
E(:,'V01 ... V20 ')T 	
 	

=	⊕.⊗	

Figure 5.12
Calculation of the edge adjacency array using array multiplication of the incidence array E shown in Figure 5.10.
For this computation, only the columns associated with the vertices are selected. The values indicate the number
of times a given pair of edges shares the same vertex.

5.6 Conclusions, Exercises, and References

Associative arrays can be used for showing both a summary or the details of data. A graph
consisting of unweighted, undirected edges can be easily captured with a minimal adja-
cency array. The full symmetric adjacency array can be computed by adding the minimal
adjacency array with its transpose. A more detailed graph might have multiple edges be-
tween vertices and can be summarized by setting to the adjacency array values that are the
number of edges between any two vertices. An even more detailed description of a graph
can be constructed by accounting for hyper-edges between vertices. An incidence array
representation of a graph is well suited for capturing all of these details. The adjacency
array can be calculated from the incidence array via array multiplication of the incidence
array with its transpose.

Exercises

Exercise 5.1 — Refer to Figure 5.1.

(a) What type of graph is this? Directed/undirected, weighted/unweighted, hyper, multi
and why?

(b) Compute the number of vertices and edges in the graph.

(c) What is the maximum possible number of edges between the vertices (not including
self-edges)?

(d) How many of the possible edges are not in the graph?

Exercise 5.2 — Refer to Figure 5.3 and for each array A, AT, and A⊕AT

“current_book”
2017/8/27
23:44
page 79
#103

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

5.6 Conclusions, Exercises, and References 79

(a) Compute the number of rows m and number of columns n in the arrays.

(b) Compute the total number of entries mn.

(c) Compute how many zero entries there are.

(d) Compute how many non-empty entries there are, and explain how the values relate to
each other.

Exercise 5.3 — Refer to Figure 5.6 and for each array A, AT, and A⊕AT

(a) Compute the number of rows m and number of columns n in the arrays.

(b) Compute the total number of entries mn.

(c) Compute how many empty entries there are.

(d) Compute how many non-empty entries there are, and explain how the values relate to
each other.

Exercise 5.4 — Refer to Figure 5.11 and explain how the (a) 3×3, (b) 5×5, and (c) 3×3
dense blocks of non-empty values along the diagonal of the array relate back to vertices
and edges in the paintings in Figure 5.7 and 5.9.

Exercise 5.5 — Refer to Figure 5.12 and explain how the dense row and column corre-
sponding to edge O5 of the array relates back to the vertices and edges in the paintings in
Figure 5.7 and 5.9.

Exercise 5.6 — Write down an associative array representing an incidence array of only
the pink edges from Figure 5.10. Compute the vertex adjacency array and the edge adja-
cency array from this incidence array.

Exercise 5.7 — Select a picture of your own choosing. Label the vertices and the edges.
Write down an associative array representing the incidence array of the picture. Compute
the vertex adjacency array and the edge adjacency array from this incidence array.

References

[1] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Commentarii academiae scientiarum
Petropolitanae, vol. 8, pp. 128–140, 1736.

[2] R. Zimmer, “Abstraction in art with implications for perception,” Philosophical Transactions of the Royal
Society of London B: Biological Sciences, vol. 358, no. 1435, pp. 1285–1291, 2003.

[3] A. H. Barr Jr, Cubism and Abstract Art, exhibition catalog. New York: Museum of Modern Art, 1936. jacket
cover: diagram of stylistic evolution from 1890 until 1935.

[4] A. Schmidt Burkhardt, “Shaping modernism: Alfred barr’s genealogy of art,” Word & Image, vol. 16, no. 4,
pp. 387–400, 2000.

[5] P. Mondrian, 1914. Letter written to H. Bremmer.

“current_book”
2017/8/27
23:44
page 80
#104

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

80 Chapter 5 Associative Arrays and Abstract Art

[6] P. Mondrian, H. Holtzman, and M. S. James, The New Art–The New Life: The Collected Writings of Piet
Mondrian. Thames and Hudson, 1987.

[7] A. Pibal, 2016. Personal communication.

[8] B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Visual
Languages, 1996. Proceedings., IEEE Symposium on, pp. 336–343, IEEE, 1996.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, vol. 6. MIT press
Cambridge, 2001.

“current_book”
2017/8/27
23:44
page 81
#105

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6 Manipulating Graphs with Matrices

Summary

Associative arrays have many properties that are similar to matrices. Understanding how
matrices can be used to manipulate graphs is a natural starting point for understanding
the mathematics of associative arrays. Graphs represent connections between vertices with
edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence
matrices. Adjacency matrices are often easier to analyze while incidence matrices are often
better for representing data. Fortunately, the two are easily connected by matrix multiplica-
tion. A key feature of matrix mathematics is that a very small number of matrix operations
is sufficient to manipulate a very wide range of graphs. Furthermore, matrix mathematics
enables graph algorithms to be written as linear systems, enabling many graph operations
to be reordered without changing the result. This chapter provides specific formula and ex-
amples for the manipulation of graphs via matrices and lays the ground work for extending
these operations into the broader domain of associative arrays.

6.1 Introduction

Matrix-based computational approaches have emerged as one of the most useful tools for
analyzing and understanding graphs [2]. Likewise, because graphs are also often used to
study non-numeric data such as documents, graphs have a strong connection to associative
arrays. Thus, matrix-based approaches to graphs are a good starting point for introducing
matrix mathematics concepts that are important to the deeper mathematics of associative
arrays. The foundational concepts for matrix-based graph analysis are the adjacency ma-
trix and incidence matrix representations of graphs. From these concepts, a more formal
definition of a matrix can be constructed. How such a matrix can be manipulated depends
on the types of values the matrix holds and the operations allowed on those values. More
importantly, the mathematical properties of the operations on the values of the matrix de-
termine the operations that can be performed on the whole matrix.

The mathematical development of graphs and matrices, along with their corresponding
operations to represent larger collections of data, is a continuation of a process that dates
to the earliest days of computing. The initial connection of bits (0’s and 1’s) with logical

This chapter is partially adapted from [1] and is reproduced with permission from the IEEE.

“current_book”
2017/8/27
23:44
page 82
#106

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

82 Chapter 6 Manipulating Graphs with Matrices

operations such as and, or, and xor was laid out by George Boole [3, 4] and inspired Claude
Shannon’s early work on using digital circuits for controlling switches in communication
networks [5]. Charles Babbage’s concept for a general purpose Analytical Engine [6] went
beyond simple logical operations and envisioned computations on integers and rational
numbers using +, ×, −, and /. Babbage’s work inspired other computing pioneers, such
as Percy Ludgate [7], Leonardo Torres y Quevedo [8], and Vannevar Bush [9], to design
practical systems to implement these data representations and mathematical operations that
could be built using electrical technologies [10].

The ability to digitize analog signals allowed sensor data to be processed by a com-
puter. Claude Shannon’s pioneering work on information theory [11] enabled the lossless
communication of digital data over a lossy network. The representation of a signal as a
vector of bits naturally led to the definition of mathematical operations on those vectors.
Among these vector operations was the idea of filtering one vector in with another vector
(or matrix), and this concept became the foundation of the field of digital signal processing
[12].

The power of the rigorous pairing of data and operations in the form of a general abstract
data type was first fully described by Barbara Liskov [13] and has become the basis of
most modern programming languages.

Computational Benefits
Graphs are among the most important abstract data structures in computer science, and
the algorithms that operate on them are critical to applications in bioinformatics, computer
networks, and social media [14–18]. Graphs have been shown to be powerful tools for
modeling complex problems because of their simplicity and generality [19, 20]. For this
reason, the field of graph algorithms has become one of the pillars of theoretical computer
science, informing research in such diverse areas as combinatorial optimization, complex-
ity theory, and topology. Graph algorithms have been adapted and implemented by the
military, commercial industry, and researchers in academia, and have become essential in
controlling the power grid, telephone systems, and, of course, computer networks.

As the size of graphs increases the time to analyze them can become prohibitive. One
approach to addressing these computation challenges is to implement graph algorithms on
a parallel computer. However, parallel graph algorithms are difficult to implement and
optimize [21–26]. Irregular data access patterns and high communication found in graph
algorithms mean that even the best algorithms will have parallel efficiencies that decrease
as the number of processors is increased [27, 28]. Recent work on communication-avoiding
algorithms, and their applications to graph computations [29, 30], might defer but cannnot
completely eliminate the parallel computing bottleneck. Consequently, novel hardware
architectures will also be required [31–33]. A common matrix-based graph processing

“current_book”
2017/8/27
23:44
page 83
#107

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.1 Introduction 83

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

ou
t-v
er
te
x!

in-vertex!

Figure 6.1
(left) Seven-vertex graph with 12 edges. Each vertex is labeled with an integer. (right) 7×7 adjacency matrix A
representation of the graph. A has 12 nonzero entries corresponding to the edges in the graph.

interface provides a useful tool for optimizing both software and hardware to provide high
performance graph applications.

The duality between the canonical representation of graphs as abstract collections of
vertices and edges and a matrix representation has been a part of graph theory since its
inception [34, 35]. Matrix algebra has been recognized as a useful tool in graph theory for
nearly as long (see [36] and references therein, in particular [37–43]). Likewise, graph-
based approaches have also been very useful in matrix calculations [44–46]. The modern
description of the duality between graph algorithms and matrix mathematics (or sparse
linear algebra) has been extensively covered in the literature and is summarized in the
cited text [2]. This text has further spawned the development of the GraphBLAS math
library standard (GraphBLAS.org) [47] that has been developed in a series of proceedings
[48–55] and implementations [56–62].

Graphs and matrices extend the aforementioned computing concepts far beyond individ-
ual bits and allow vast collections of data to be represented and manipulated in the same
manner and with the same rigor. In this context, the most useful representation of graphs
will be as adjacency matrices, typically denoted A, and as incidence (or edge) matrices,
typically denoted E.

Adjacency Matrix: Undirected Graphs, Directed Graphs, and Weighted Graphs
Given an adjacency matrix A, if

A(i, j) = 1

then there exists an edge going from vertex i to vertex j (see Figure 6.1). Likewise, if

A(i, j) = 0

then there is no edge from i to j. Adjacency matrices have direction, which means that
A(i, j) is not necessarily the same as A(j, i). Adjacency matrices can also have edge
weights. If

A(i, j) = v , 0

“current_book”
2017/8/27
23:44
page 84
#108

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

84 Chapter 6 Manipulating Graphs with Matrices

then the edge going from i to j is said to have weight v. Adjacency matrices provide a
simple way to represent the connections between vertices in a graph. Adjacency matrices
are often square, and both out-vertices (rows) and the in-vertices (columns) are the same
set of vertices. Adjacency matrices can be rectangular, in which case the out-vertices
(rows) and the in-vertices (columns) are different sets of vertices. If there is no overlap
between the out-vertices and in-vertices, then such graphs are often called bipartite graphs.
In summary, adjacency matrices can represent many graphs, which include any graph with
any set of the following properties: directed, weighted, and/or bipartite.

Incidence Matrix: Multi-graphs and Hyper-graphs
An incidence, or edge matrix E, uses the rows to represent every edge in the graph, and the
columns represent every vertex. There are a number of conventions for denoting an edge
in an incidence matrix. One such convention is to use two incidence matrices

Eout(k, i) = 1 and Ein(k, j) = 1

to indicate that edge k is a connection from i to j (see Figure 6.2). Incidence matrices are
useful because they can easily represent multi-graphs and hyper-graphs. These complex
graphs are difficult to capture with an adjacency matrix. A multi-graph has multiple edges
between the same vertices. If there was another edge, k′, from i to j, this relationship can
be captured in an incidence matrix by setting

Eout(k′, i) = 1 and Ein(k′, j) = 1

(see Figure 6.3). In a hyper-graph, one edge can connect more than two vertices. For
example, to denote edge k has a connection from i to j and j′ can be accomplished by also
setting

Ein(k, j′) = 1

(see Figure 6.3).
E′in(k, j′) = 1

Thus, an incidence matrix can be used to represent a graph with any set of the following
graph properties: directed, weighted, multi-edge, and/or hyper-edge.

“current_book”
2017/8/27
23:44
page 85
#109

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.1 Introduction 85

1!

2!
3!

4!

5!

6!

7!
8!

9!

10!
11! 12!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

4! 5! 6! 7!3!2!1! 4! 5! 6! 7!3!2!1!
in-vertex!out-vertex!

ed
ge

 n
um

be
r!

Eout	 Ein	
1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

ed
ge

 n
um

be
r!

Figure 6.2
(left) Seven-vertex graph with 12 edges. Each edge is labeled with an integer; the vertex labels are the same as in
Figure 6.1. (middle) 12×7 incidence matrix Eout representing the out-vertices of the graph edges. (right) 12×7
incidence matrix Ein representing the in-vertices of the graph edges. Both Estart and Ein have 12 nonzero entries
corresponding to the edges in the graph.

1!

2!
3!

4!

5!

6!

7!
8!

9!

10!
11! 12!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

4! 5! 6! 7!3!2!1! 4! 5! 6! 7!3!2!1!

ed
ge

 n
um

be
r!

Eout	 Ein	
1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

ed
ge

 n
um

be
r!

13!

in-vertex!out-vertex!

Figure 6.3
Graph and incidence matrices from Figure 6.2 with a hyper-edge (edge 12) and a multi-edge (edge 13). The graph
is a hyper-graph because edge 12 has more than one in-vertex. The graph is a multi-graph because edge 8 and
edge 13 have the same out- and in-vertex.

“current_book”
2017/8/27
23:44
page 86
#110

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

86 Chapter 6 Manipulating Graphs with Matrices

6.2 Matrix Indices and Values

A typical matrix has m rows and n columns of real numbers. Such a matrix can be denoted
as

A ∈ Rm×n

The row and column indices of the matrix A are

i ∈ I = {1, . . . ,m}

and
j ∈ J = {1, . . . ,n}

so that any particular value A can be denoted as A(i, j). The row and column indices
of matrices are sets of natural numbers I, J ⊂ N. [Note: a specific implementation of
these matrices might use IEEE 64-bit double-precision floating point numbers to represent
real numbers, 64-bit unsigned integers to represent row and column indices, and the com-
pressed sparse rows (CSR) format or the compressed sparse columns (CSC) format to store
the nonzero values inside the sparse matrix.]

Matrices can be defined over a wide range of scalars. Some common classes of scalar
are as follows. A matrix of complex numbers

C = {x + y
√
−1 | x,y ∈ R}

is denoted
A ∈ Cm×n

A matrix of integers
Z = {. . . , −1,0,1, . . .}

is denoted
A ∈ Zm×n

A matrix of natural numbers
N = {1,2,3, . . .}

is denoted
A ∈ Nm×n

Using the above concepts, a matrix is defined as the following two-dimensional (2D)
mapping

A : I× J→ S

where the indices I, J ⊂ Z are finite sets of integers with m and n elements, respectively,
and

S ∈ {R,Z,N, . . .}

“current_book”
2017/8/27
23:44
page 87
#111

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.2 Matrix Indices and Values 87

is a set of scalars. Without loss of generality, matrices over arbitrary scalars can be denoted

A ∈ Sm×n

A vector is a matrix where either m = 1 or n = 1. A column vector is denoted

v ∈ Sm×1

A row vector is denoted
v ∈ S1×n

A scalar is a single element of a set
s ∈ S

and has no matrix dimensions.

Scalar Operations: Combining and Scaling Graph Edge Weights
Matrix operations are built on top of scalar operations. The primary scalar operations are
standard arithmetic addition, such as

1 + 1 = 2

and arithmetic multiplication, such as

2×2 = 4

These scalar operations of addition and multiplication can be defined to be a wide variety
of functions. To prevent confusion with standard arithmetic addition and arithmetic mul-
tiplication, ⊕ will be used to denote scalar addition and ⊗ will be used to denote scalar
multiplication. In this notation, standard arithmetic addition and arithmetic multiplication
of real numbers

a,b,c ∈ R

where
⊕ ≡ + and ⊗ ≡ ×

results in
c = a⊕b implies c = a + b

and
c = a⊗b implies c = a×b

Generalizing ⊕ and ⊗ to a variety of operations enables a wide range of algorithms on
scalars of all different types (not just real or complex numbers).

“current_book”
2017/8/27
23:44
page 88
#112

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

88 Chapter 6 Manipulating Graphs with Matrices

Scalar Properties: Composable Graph Edge Weight Operations
Certain ⊕ and ⊗ combinations over certain sets of scalars are particularly useful because
they preserve desirable mathematical properties of linear systems such as additive commu-
tativity

a⊕b = b⊕a

multiplicative commutativity
a⊗b = b⊗a

additive associativity
(a⊕b)⊕ c = a⊕ (b⊕ c)

multiplicative associativity
(a⊗b)⊗ c = a⊗ (b⊗ c)

and the distributivity of multiplication over addition

a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c)

The properties of commutativity, associativity, and distributivity are extremely useful
properties for building graph applications because they allow the builder to swap opera-
tions without changing the result. Example combinations of ⊕ and ⊗ that preserve scalar
commutativity, associativity, and distributivity include (but are not limited to) standard
arithmetic

⊕ ≡ + ⊗ ≡ × a,b,c ∈ R

max-plus algebras
⊕ ≡max ⊗ ≡ + a,b,c ∈ R∪{−∞}

max-min algebras
⊕ ≡max ⊗ ≡min a,b,c ∈ [0,∞]

finite (Galois) fields such as GF(2)

⊕ ≡ xor ⊗ ≡ and a,b,c ∈ {0,1}

and the power set of the set of integers

⊕ ≡ ∪ ⊗ ≡ ∩ a,b,c ⊂ Z

The above pairs of operation are all classes of mathematics ofter referred to as a semiring.
Semirings are an important part of associative arrays and are discussed at length in sub-
sequent chapters. Other functions that do not preserve the above properties (and are not
semrings) can also be defined for ⊕ and ⊗. For example, it is often useful for ⊕ or ⊗ to pull
in other data, such as vertex indices of a graph.

“current_book”
2017/8/27
23:44
page 89
#113

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.3 Composable Graph Operations and Linear Systems 89

6.3 Composable Graph Operations and Linear Systems

Associativity, distributivity, and commutativity are very powerful properties that enable
the construction of composable graph algorithms with all the properties of linear systems.
Such linear operations can be reordered with the knowledge that the answers will remain
unchanged. Composability makes it easy to build a wide range of graph algorithms with
just a few functions. Given matrices

A,B,C ∈ Sm×n

let their elements be specified by

a = A(i, j)

b = B(i, j)

c = C(i, j)

Commutativity, associativity, and distributivity of scalar operations translates into similar
properties on matrix operations in the following manner.

Additive Commutativity — Allows graphs to be swapped and combined via matrix element-
wise addition (see Figure 6.4) without changing the result

a⊕b = b⊕a implies A⊕B = B⊕A

where matrix element-wise addition

C = A⊕B

is given by
C(i, j) = A(i, j)⊕B(i, j)

Multiplicative Commutativity — Allows graphs to be swapped, intersected, and scaled via
matrix element-wise multiplication (see Figure 6.5) without changing the result

a⊗b = b⊗a implies A⊗B = B⊗A

where matrix element-wise (Hadamard) multiplication

C = A⊗B

is given by
C(i, j) = A(i, j)⊗B(i, j)

Additive Associativity — Allows graphs to be combined via matrix element-wise addition
in any grouping without changing the result

(a⊕b)⊕ c = a⊕ (b⊕ c) implies (A⊕B)⊕C = A⊕ (B⊕C)

“current_book”
2017/8/27
23:44
page 90
#114

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

90 Chapter 6 Manipulating Graphs with Matrices

Multiplicative Associativity — Allows graphs to be intersected and scaled via matrix element-
wise multiplication in any grouping without changing the result

(a⊗b)⊗ c = a⊗ (b⊗ c) implies (A⊗B)⊗C = A⊗ (B⊗C)

Element-Wise Distributivity — Allows graphs to be intersected and/or scaled and then com-
bined or vice versa without changing the result

a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c) implies A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)

Matrix Multiply Distributivity — Allows graphs to be transformed via matrix multiply and
then combined or vice versa without changing the result

a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c) implies A(B⊕C) = (AB)⊕ (AC)

where matrix multiply
C = AB = A ⊕.⊗ B

is given by

C(i, j) =
⊕̀
k=1

A(i,k)⊗B(k, j)

for matrices with dimensions

A ∈ Sm×`

B ∈ S`×m

C ∈ Sm×n

Matrix Multiply Associativity — Another implication of scalar distributivity is that graphs
can be transformed via matrix multiplication in any grouping without changing the
result

a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c) implies (AB)C = A(BC)

Matrix Multiply Commutativity — In general, AB , BA. Some examples in where AB =

BA include when either matrix is all zeros, either matrix matrix is the identity matrix,
both matrices are diagonal matrices, or both matrices are rotation matrices with the
same axis of rotation.

0-Element: No Graph Edge
Sparse matrices play an important role in graphs. Many implementations of sparse matrices
reduce storage by not storing the 0 valued elements in the matrix. In adjacency matrices,
the 0 element is equivalent to no edge from the vertex that is represented by the row to the
vertex that is represented by the column. In incidence matrices, the 0 element is equivalent
to the edge represented by the row not including the vertex that is represented by the

“current_book”
2017/8/27
23:44
page 91
#115

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.3 Composable Graph Operations and Linear Systems 91

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊕ "

⊕ "

4!

2!1!

5!7!
= !

= !

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊕ "

⊕ "

4!

2!1!

5!7!
= !

= !

Figure 6.4
Illustration of the commutative property of the element-wise addition of two graphs and their corresponding
adjacency matrix representations.

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊗"

⊗"

2!

7!
= !

= !

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊗"

⊗"

2!

5!7!
= !

= !

Figure 6.5
Depiction of the commutative property of the element-wise multiplication of two graphs along with their adja-
cency matrices.

“current_book”
2017/8/27
23:44
page 92
#116

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

92 Chapter 6 Manipulating Graphs with Matrices

column. In most cases, the 0 element is standard arithmetic 0, but in other cases it can
be a different value. Nonstandard 0 values can be helpful when combined with different
⊕ and ⊗ operations. For example, in different contexts 0 might be +∞, -∞, or ∅. For any
value of 0, if the 0 element has certain properties with respect to scalar ⊕ and ⊗, then the
sparsity of matrix operations can be managed efficiently. These properties are the additive
identity

a⊕0 = a

and the multiplicative annihilator
a⊗0 = 0

There are many combinations of ⊕ and ⊗ that exhibit the additive identity and multi-
plicative annihilator. Some of the more important combinations of these semirings that are
used throughout the book are carefully described as follows.

Arithmetic on Real Numbers (+.×) — Given standard arithmetic over the real numbers

a ∈ R

where addition is
⊕ ≡ +

multiplication is
⊗ ≡ ×

and zero is
0 ≡ 0

which results in additive identity

a⊕0 = a + 0 = a

and multiplicative annihilator
a⊗0 = a×0 = 0

Max-Plus Algebra (max.+) — Given real numbers with a minimal element

a ∈ R∪{−∞}

where addition is
⊕ ≡max

multiplication is
⊗ ≡ +

and zero is
0 ≡ −∞

“current_book”
2017/8/27
23:44
page 93
#117

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.3 Composable Graph Operations and Linear Systems 93

which results in additive identity

a⊕0 = max(a, −∞) = a

and multiplicative annihilator

a⊗0 = a + −∞ = −∞

Min-Plus Algebra (min.+) — Given real numbers with a maximal element

a ∈ R∪{∞}

where addition is
⊕ ≡min

multiplication is
⊗ ≡ +

and zero is
0 ≡∞

which results in additive identity

a⊕0 = min(a,∞) = a

and multiplicative annihilator

a⊗0 = a +∞ =∞

Max-Min Algebra (max.min) — Given non-negative real numbers

R≥0 = {a ∈ R | 0 ≤ a <∞} = [0,∞)

where addition is
⊕ ≡max

multiplication is
⊗ ≡min

and zero is
0 ≡ 0

which results in additive identity

a⊕0 = max(a,0) = a

and multiplicative annihilator

a⊗0 = min(a,0) = 0

“current_book”
2017/8/27
23:44
page 94
#118

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

94 Chapter 6 Manipulating Graphs with Matrices

Min-Max Algebra (min.max) — Given non-positive real numbers

R≤0 = {a ∈ R | −∞ < a ≤ 0} = (−∞,0]

where addition is
⊕ ≡min

multiplication is
⊗ ≡max

and zero is
0 ≡ 0

which results in additive identity

a⊕0 = min(a,0) = a

and multiplicative annihilator

a⊗0 = max(a,0) = 0

Galois Field (xor.and) — Given a set of two numbers

a ∈ {0,1}

where addition is
⊕ ≡ xor

multiplication is
⊗ ≡ and

and zero is
0 ≡ 0

which results in additive identity

a⊕0 = xor(a,0) = a

and multiplicative annihilator

a⊗0 = and(a,0) = 0

Power Set (∪.∩) — Given any subset of integers

a ⊂ Z

where addition is
⊕ ≡ ∪

“current_book”
2017/8/27
23:44
page 95
#119

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.3 Composable Graph Operations and Linear Systems 95

multiplication is
⊗ ≡ ∩

and zero is
0 ≡ ∅

which results in additive identity

a⊕0 = a∪∅ = a

and multiplicative annihilator
a⊗0 = a∩∅ = ∅

The above examples are a small selection of the operators and sets that form semirings
that are useful for building graph algorithms with linear systems properties. Many more are
possible. The ability to change the scalar values and operators while preserving the overall
behavior of the graph operations is one of the principal benefits of using matrices for graph
algorithms. For example, relaxing the requirement that the multiplicative annihilator be
the additive identity, as in the above examples, yields additional operations, such as

Max-Max Algebra (max.max) — Given non-positive real numbers with a minimal element

a ∈ R≤0∪{−∞}

where addition is
⊕ ≡max

multiplication is (also)
⊗ ≡max

and zero is
0 ≡ −∞

which results in additive identity

a⊕0 = max(a, −∞) = a

Min-Min Algebra (min.max) — Given non-negative real numbers with a maximal element

a ∈ R≥0∪{∞}

where addition is
⊕ ≡min

multiplication is (also)
⊗ ≡min

“current_book”
2017/8/27
23:44
page 96
#120

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

96 Chapter 6 Manipulating Graphs with Matrices

and zero is
0 ≡∞

which results in additive identity

a⊕0 = min(a,∞) = a

6.4 Matrix Graph Operations Overview

The main benefit of a matrix approach to graphs is the ability to perform a wide range of
graph operations on diverse types of graphs with a small number of matrix operations. The
core set of matrix functions has been shown to be useful for implementing a wide range
of graph algorithms. These matrix functions strike a balance between providing enough
functions to be useful to application builders while being few enough that they can be
implemented effectively. Some of these core matrix operations and some example graph
operations they support are describe subsequently.

Building a Matrix: Edge List to Graph
A foundational matrix operation is to build a sparse matrix from row, column, and value
triples. Constructing a matrix from triples is equivalent to graph construction from vectors
of out-vertices i, in-vertices j, and edge weight values v. Each triple(

i(k), j(k),v(k)
)

corresponds to edge k in the graph. Directed graphs can be represented as triples of vectors
i, j, and v corresponding to the nonzero elements in the sparse matrix. Constructing an
m×n sparse matrix from vector triples can be denoted

C = Sm×n(i, j,v,⊕)

where

i ∈ I`

j ∈ J`

v ∈ S`

are all ` element vectors, and S denotes a set of scalar values. The optional ⊕ operation
defines how multiple entries with the same row and column are handled. Other variants
include replacing any or all of the vector inputs with single-element vectors. For example

C = Sm×n(i, j,1)

“current_book”
2017/8/27
23:44
page 97
#121

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.4 Matrix Graph Operations Overview 97

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

6!

4!

3!

2!1!

5!7!

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!T

ou
t-v
er
te
x!

Figure 6.6
Transposing the adjacency matrix of a graph switches the directions of its edges.

would use the value of 1 for nonzero matrix values. Likewise, a row vector can be con-
structed using

C = Sm×n(1, j,v)

and a column vector can be constructed using

C = Sm×n(i,1,v)

The scalar value type of the sparse matrix can be further specified using standard matrix
notation. For example, a sparse matrix containing real numbers can be specified via

C = Rm×n(i, j,v)

Extracting Tuples: Graph to Vertex List
It is just as important to be able to extract the row, column, and value triples corresponding
to the nonzero elements in a sparse matrix, which is equivalent to listing the edges in a
graph. Extracting the nonzero triples from a sparse matrix can be denoted mathematically
as

(i, j,v) = A

“current_book”
2017/8/27
23:44
page 98
#122

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

98 Chapter 6 Manipulating Graphs with Matrices

Transpose: Swap Out-Vertices and In-Vertices
Transposing a matrix has the effect of swapping the out-vertices and the in-vertices of a
graph. Swapping the rows and columns of a sparse matrix is a common tool for changing
the direction of vertices in a graph (see Figure 6.6). The transpose is denoted as

C = AT

or more explicitly
C(j, i) = A(i, j)

where

A ∈ Sm×n

C ∈ Sn×m

Transpose also can be implemented using triples as follows

(i, j,v) = A

C = Sn×m(j, i,v)

Matrix Multiplication: Breadth-First-Search and Adjacency Matrix Construction
Perhaps the most useful matrix operation is matrix multiplication, which can be used to
perform a number of graph traversal operations, such as single-source breadth-first search,
multisource breadth-first search, and weighted breadth-first search.

Matrix multiplication can be used to implement a wide range of graph algorithms. Ex-
amples include finding the nearest neighbors of a vertex (see Figure 6.7) and constructing
an adjacency matrix from an incidence matrix (see Figure 6.8). In its most common form,
matrix multiplication using standard arithmetic addition and multiplication is given by

C = AB

or more explicitly

C(i, j) =
∑̀
k=1

A(i,k)B(k, j)

where

A ∈ Rm×`

B ∈ R`×n

C ∈ Rm×n

“current_book”
2017/8/27
23:44
page 99
#123

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.4 Matrix Graph Operations Overview 99

6!

4!

3!

2!1!

5!7!

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

in
-v

er
te

x!

out-vertex!T

= !

v	 A v	T

Figure 6.7
(left) Breadth-first-search of a graph starting at vertex 4 and traversing to vertices 1 and 3. (right) Matrix-vector
multiplication of the adjacency matrix of a graph performs the equivalent operation.

Matrix multiplication has many important variants that include non-arithemetic addition
and multiplication

C = A ⊕.⊗ B

where

A ∈ Sm×`

B ∈ S`×n

C ∈ Sm×n

and the notation ⊕.⊗ makes explicit that ⊕ and ⊗ can be other functions.
One of the most common uses of matrix multiplication is to construct an adjacency ma-

trix from an incidence matrix representation of a graph. For a graph with out-vertex inci-
dence matrix Eout and in-vertex incidence matrix Ein, the corresponding adjacency matrix
is

A = ET
outEin

The individual values in A can be computed via

A(i, j) =
⊕

k

ET
out(i,k)⊗Ein(k, j)

Matrix Multiplication: Combining and Scaling Edges
Standard matrix multiplication on real numbers first performs scalar arithmetic multiplica-
tion on the elements and then performs scalar arithmetic addition on the results. The scalar
operations of addition ⊕ and multiplication ⊗ can be replaced with other functions. This
replacement can be formally denoted as

C = A ⊕.⊗ B

“current_book”
2017/8/27
23:44
page 100
#124

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

100 Chapter 6 Manipulating Graphs with Matrices

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v

er
te

x!

in-vertex!

1!

3!
2!

4!
5!
6!
7!

edge number!

ou
t-v

er
te

x!

Eout	

4! 5! 6! 7!3!2!1!
in-vertex!Ein	

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

ed
ge

 n
um

be
r!

T

= !⊕.⊗	

4! 5! 6! 7!3!2!1! 8! 9! 10!11!12!

Figure 6.8
Construction of an adjacency matrix of a graph from its incidence matrices via matrix-matrix multiply. The entry
A(4,3) is obtained by combining the row vector ET

out(4,k) with the column vector Ein(k,3) via matrix product

A(4,3) =
12⊕

k=1
ET

out(4,k)⊗Ein(k,3).

or more explicitly

C(i, j) =
⊕̀
k=1

A(i,k)⊗B(k, j)

where

A ∈ Sm×`

B ∈ S`×m

C ∈ Sm×n

In this notation, standard matrix multiply can be written

C = A +.× B

where S→ R. Other matrix multiplications of interest include max-plus algebras

C = A max.+ B

or more explicitly
C(i, j) = max

k

{
A(i,k) + B(k, j)

}
where S = R∪{−∞}; min-max algebras

C = A min.max B

or more explicitly
C(i, j) = min

k

{
max(A(i,k),B(k, j))

}

“current_book”
2017/8/27
23:44
page 101
#125

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.4 Matrix Graph Operations Overview 101

where S = [0,∞); the Galois field of order 2

C = A xor.and B

or more explicitly
C(i, j) = xor

k

{
and

(
A(i,k),B(k, j)

)}
where S = {0,1}; and power set of the set of integers

C = A ∪.∩ B

or more explicitly
C(i, j) =

⋃
k

A(i,k)∩B(k, j)

where S = P(Z).

Extract: Selecting Sub-Graphs
Extracting a sub-matrix from a larger matrix is equivalent to selecting a sub-graph from
a larger graph. Selecting sub-graphs is a very common graph operation (see Figure 6.9).
This operation is performed by selecting out-vertices (row) and in-vertices (columns) from
a matrix A ∈ Sm×n

C = A(i, j)

or more explicitly
C(i, j) = A

(
i(i), j(j)

)
where

i ∈ {1, ...,mC}

j ∈ {1, ...,nC}

i ∈ ImC

j ∈ JmC

select specific sets of rows and columns in a specific order. The resulting matrix

C ∈ SmC×nC

can be larger or smaller than the input matrix A. This operation can also be used to replicate
and/or permute rows and columns in a matrix.

Extraction can also be implemented with matrix multiplication as

C = S(i) A ST(j)

“current_book”
2017/8/27
23:44
page 102
#126

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

102 Chapter 6 Manipulating Graphs with Matrices

A(i,j)	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

ou
t-v
er
te
x!

in-vertex!

Figure 6.9
Selection of a 4-vertex sub-graph from the adjacency matrix via selecting subsets of rows and columns i = j =

(1,2,4,7).

where S(i) and S(j) are selection matrices given by

S(i) = SmC×m(
{1, ...,mC}, i,1

)
S(j) = SnC×n({1, ...,nC}, j,1

)
Assign: Modifying Sub-Graphs
Assigning a matrix to a set of indices in a larger matrix is equivalent to inserting or mod-
ifying a sub-graph into a graph. Modifying sub-graphs is a very common graph opera-
tion. This operation is performed by selecting out-vertices (row) and in-vertices (columns)
from a matrix C ∈ Sm×n and assigning new values to them from another sparse matrix,
A ∈ SmA×nA

C(i, j) = A

or more explicitly
C
(
i(i), j(j)

)
= A(i, j)

where

i ∈ {1, ...,mA}

j ∈ {1, ...,nA}

i ∈ ImA

j ∈ JnA

select specific sets of rows and columns.
The additive form of this operation can be implemented with sparse matrix multiplication

as
C = ST(i) A S(j)

“current_book”
2017/8/27
23:44
page 103
#127

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.4 Matrix Graph Operations Overview 103

where S(i) and S(j) are selection matrices given by

S(i) = SmA×m(
{1, ...,mA}, i,1

)
S(j) = SnA×n({1, ...,nA}, j,1

)
Element-Wise Addition and Element-Wise Multiplication: Combining Graphs, Intersecting
Graphs, and Scaling Graphs
Element-wise addition of matrices and element-wise multiplication of matrices are among
the main ways to combine and correlate matrices. These matrix operations are in many
ways equivalent to graph union and intersection. Combining graphs along with adding their
edge weights can be accomplished by adding together their sparse matrix representations

C = A⊕B

where
A,B,C ∈ Sm×n

or more explicitly
C(i, j) = A(i, j)⊕B(i, j)

where i ∈ {1, ...,m}, and j ∈ {1, ...,n}.
Intersecting graphs along with scaling their edge weights can be accomplished by element-

wise multiplication of their sparse matrix representations

C = A⊗B

where
A,B,C ∈ Sm×n

or more explicitly
C(i, j) = A(i, j)⊗B(i, j)

where i ∈ {1, ...,m}, and j ∈ {1, ...,n}.

Kronecker: Graph Generation
Generating graphs is a common operation in a wide range of graph algorithms. Graph
generation is used in testing graph algorithms, in creating graph templates to match against,
and for comparing real graph data with models. The Kronecker product of two matrices is
a convenient, well-defined matrix operation that can be used for generating a wide range
of graphs from a few a parameters [63, 64].

“current_book”
2017/8/27
23:44
page 104
#128

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

104 Chapter 6 Manipulating Graphs with Matrices

i
i

“current_book” — 2015/10/20 — 22:23 — page 91 — #115 i
i

i
i

i
i

7.17. Element-Wise Addition and Element-Wise Multipication: Combining Graphs, Intersecting Graphs, Scaling Graphs91

or more explicitly
C(i(i), j(j)) = A(i , j)

where i 2 {1, ...,NA}, j 2 {1, ..., MA}, i : I NA and j : J MA select specific sets of rows and
columns.

The additive form of this operation can be implemented using sparse matrix multiply
as

C �= ST(i) A S(j)

where S(i) and S(j) are selection matrices given by

S(i) = SNA⇥N ({1, ...,NA}, i, 1)
S(j) = SMA⇥M ({1, ..., MA}, j, 1)

7.17 Element-Wise Addition and Element-Wise Multipication:
Combining Graphs, Intersecting Graphs, Scaling
Graphs
Combining graphs along with adding their edge weights can be accomplished by adding
together their sparse matrix representations

C = A � B

where A,B,C : SN⇥M or more explicitly

C(i , j) = A(i , j) � B(i , j)

where i 2 {1, ...,N}, and j 2 {1, ..., M}.
Intersecting graphs along with scaling their edge weights can be accomplished by

element-wise multiplication of their sparse matrix representations

C = A ⌦ B

where A,B,C : SN⇥M or more explicitly

C(i , j) = A(i , j) ⌦ B(i , j)

where i 2 {1, ...,N}, and j 2 {1, ..., M}.

7.18 Kronecker: Graph Generation
Generating graphs is a common operation in a wide range of graph algorithms. Graph
generation is used in testing graphs algorithms, creating graph templates to match against,
and to compare real graph data with models. The Kronecker product of two matrices is a
convenient and well-defined matrix operation that can be used for generating a wide range
of graphs from a few a parameters [Chakrabarti 2004, Leskovec 2005].

The Kronecker product is defined as follows [Van Loan 2000]

C=A ⌦� B=

0
BBB@

A(1,1)⌦B A(1,2)⌦B ... A(1, MA)⌦B
A(2,1)⌦B A(2,2)⌦B ... A(2, MA)⌦B

...
...

...
A(NA, 1)⌦B A(NA, 2)⌦B ... A(NA, MA)⌦B

1
CCCA

=!

=

A! B! C!

P!

i
i

“current_book” — 2015/10/20 — 22:23 — page 91 — #115 i
i

i
i

i
i

7.17. Element-Wise Addition and Element-Wise Multipication: Combining Graphs, Intersecting Graphs, Scaling Graphs91

or more explicitly
C(i(i), j(j)) = A(i , j)

where i 2 {1, ...,NA}, j 2 {1, ..., MA}, i : I NA and j : J MA select specific sets of rows and
columns.

The additive form of this operation can be implemented using sparse matrix multiply
as

C �= ST(i) A S(j)

where S(i) and S(j) are selection matrices given by

S(i) = SNA⇥N ({1, ...,NA}, i, 1)
S(j) = SMA⇥M ({1, ..., MA}, j, 1)

7.17 Element-Wise Addition and Element-Wise Multipication:
Combining Graphs, Intersecting Graphs, Scaling
Graphs
Combining graphs along with adding their edge weights can be accomplished by adding
together their sparse matrix representations

C = A � B

where A,B,C : SN⇥M or more explicitly

C(i , j) = A(i , j) � B(i , j)

where i 2 {1, ...,N}, and j 2 {1, ..., M}.
Intersecting graphs along with scaling their edge weights can be accomplished by

element-wise multiplication of their sparse matrix representations

C = A ⌦ B

where A,B,C : SN⇥M or more explicitly

C(i , j) = A(i , j) ⌦ B(i , j)

where i 2 {1, ...,N}, and j 2 {1, ..., M}.

7.18 Kronecker: Graph Generation
Generating graphs is a common operation in a wide range of graph algorithms. Graph
generation is used in testing graphs algorithms, creating graph templates to match against,
and to compare real graph data with models. The Kronecker product of two matrices is a
convenient and well-defined matrix operation that can be used for generating a wide range
of graphs from a few a parameters [Chakrabarti 2004, Leskovec 2005].

The Kronecker product is defined as follows [Van Loan 2000]

C=A ⌦� B=

0
BBB@

A(1,1)⌦B A(1,2)⌦B ... A(1, MA)⌦B
A(2,1)⌦B A(2,2)⌦B ... A(2, MA)⌦B

...
...

...
A(NA, 1)⌦B A(NA, 2)⌦B ... A(NA, MA)⌦B

1
CCCA

Figure 6.10
Kronecker product of the adjacency matrix of two bipartite graphs A and B results in a graph C with two bipartite

sub-graphs. The P
= notation is used to indicate that the adjacency matrix C has been permuted so that the two

bipartite sub-graphs are more apparent.

The Kronecker product is defined as follows [65]

C = A ⊗OB =

A(1,1)⊗B A(1,2)⊗B ... A(1,MA)⊗B
A(2,1)⊗B A(2,2)⊗B ... A(2,MA)⊗B

...
...

. . .
...

A(NA,1)⊗B A(NA,2)⊗B ... A(NA,MA)⊗B

where

A ∈ SmA×nA

B ∈ SmB×nB

C ∈ SmAmB×nAnB

More explicitly, the Kronecker product can be written as

C
(
(iA−1)mA + iB, (jA−1)mA + jB

)
= A(iA, jA)⊗B(iB, jB)

The element-wise multiply operation ⊗ can be user defined so long as the resulting opera-
tion obeys the aforementioned rules on element-wise multiplication such as the multiplica-
tive annihilator. If element-wise multiplication and addition obey the conditions specified
in in the previous sections, then the Kronecker product has many of the same desirable

“current_book”
2017/8/27
23:44
page 105
#129

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.5 Graph Algorithms and Diverse Semirings 105

properties, such as associativity

(A ⊗OB) ⊗OC = A ⊗O (B ⊗OC)

and element-wise distributivity over addition

A ⊗O (B⊕C) = (A ⊗OB)⊕ (A ⊗OC)

Finally, one unique feature of the Kronecker product is its relation to the matrix prod-
uct. Specifically, the matrix product of two Kronecker products is equal to the Kronecker
product of two matrix products

(A ⊗OB)(C ⊗OD) = (AC) ⊗O (BD)

The relation of the Kronecker product to graphs is easily illustrated in the context of
bipartite graphs. Bipartite graphs have two sets of vertices, and every vertex has an edge to
the other set of vertices but no edges within its own set of vertices. The Kronecker product
of such graphs was first looked at by Weischel [38], who observed that the Kronecker
product of two bipartite graphs resulted in a new a graph consisting of two bipartite sub-
graphs (see Figure 6.10).

6.5 Graph Algorithms and Diverse Semirings

The ability to change ⊕ and ⊗ operations allows different graph algorithms to be imple-
mented using the same element-wise addition, element-wise multiplication, and matrix
multiplication operations. Different semirings are best suited for certain classes of graph
algorithms. The pattern of nonzero entries resulting from breadth-first-search illustrated
in Figure 6.7 is generally preserved for various semirings. However, the nonzero values
assigned to the edges and vertices can be very different and enable different graph algo-
rithms.

Figure 6.11 illustrates performing a single-hop breadth-first-search using seven semirings
(+.×, max.+, min.+, max.min, min.max, max.×, and min.×). For display convenience,
some operator pairs that produce the same result in this specific example are stacked. In
Figure 6.11, the starting vertex 4 is assigned a value of .5 and the edges to its vertex
neighbors 1 and 3 are assigned values of .2 and .4. Empty values are assumed to be the
corresponding 0 of the operator pair. In all cases, the pattern of nonzero entries of the
results are the same. In each case, because there is only one path from vertex 4 to vertex 1
and from vertex 4 to vertex 3, the only effect of the ⊕ of operator is to compare the nonzero
output of the ⊗ operator with 0. Thus, the differences between the ⊕ operators have no
impact in this specific example because for any values of a

a⊕0 = 0⊕a = a

“current_book”
2017/8/27
23:44
page 106
#130

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

106 Chapter 6 Manipulating Graphs with Matrices

= A vT

+.×
.1

.2

max.+

.7

.9

min.+
max.×

.1

.2

min.×max.min
.2

.4

min.max
.5

.5

.5.5

.4

.2

A
1

3
2

4
5
6

4 5 6 7321

in
-v

er
te

x

out-vertexT v
.2

.4

7

Figure 6.11
(top left) One-hop breadth-first-search of a weighted graph starting at vertex 4 and traversing to vertices 1 and 3.
(top right) Matrix representation of the weighted graph and vector representation of the starting vertex. (bottom)
Matrix-vector multiplication of the adjacency matrix of a graph performs the equivalent operation. Different pairs
of operations ⊕ and ⊗ produce different results. For display convenience, some operator pairs that produce the
same values in this specific example are stacked.

The graph algorithm implications of different ⊕.⊗ operator pairs is more clearly seen in
the two-hop breadth-first-search. Figure 6.12 illustrates graph traversal that starts at vertex
4, goes to vertices 1 and 3, and then continues on to vertices 2, 4, and 6. For simplicity,
the additional edge weights are assigned values of .3. The first operator pair +.× provides
the product of all the weights of all paths from the starting vertex to each ending vertex.
The +.× semiring is valuable for determining the strengths of all the paths between the
starting and ending vertices. In this example, there is only one path between the starting
vertex and the ending vertices, so +.×, max.×, and min.× all produce the same results. If
there were multiple paths between the start and end vertices, then ⊕ would operate on more
than one nonzero value and the differences would be apparent. Specifically, +.× combines
all paths while max.× and min.× select either the minimum or the maximum path. Thus,
these different operator pairs represent different graph algorithms. One algorithm produces
a value that combines all paths while the other algorithm produces a value that is derived
from a single path.

“current_book”
2017/8/27
23:44
page 107
#131

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.5 Graph Algorithms and Diverse Semirings 107

= AA vT T

.03

.03

.06

1.0

1.0

1.2

.2

.2

.3

.5

.5

.5

.03

.03

.06

.3

+.×
max.+
min.+

max.×
min.×max.min min.max

.5.5

.4

.2

A
1

3
2

4
5
6

4 5 6 7321

in
-v

er
te

x

out-vertexT v
.2

.4

7

.3

.3

.3

.3

.3

Figure 6.12
(top left) Two-hop breadth-first-search of a weighted graph starting at vertex 4 and traversing to vertices 1 and
3 and continuing on to vertices 2, 4, and 6. (top right) Matrix representation of the weighted graph and vector
representation of the starting vertex. (bottom) Matrix-matrix-vector multiplication of the adjacency matrix of a
graph performs the two-hop breadth-first-search operation. Different pairs of operations ⊕ and ⊗ produce different
results. For display convenience, some operator pairs that produce the same result in this specific example are
stacked.

A similar pattern can be seen among the other operator pairs. max.+ and min.+ compute
the sum of the weights along each path from the starting vertex to each ending vertex
and then select the largest (or smallest) weighted path. Likewise, max.min and min.max
compute the minimum (or maximum) of the weights along each path and then select the
largest (or smallest) weighted path.

A wide range of breadth-first-search weight computations can be performed via matrix
multiplication with different operator pairs. A synopsis of the types of calculations illus-
trated in Figures 6.11 and 6.12 is as follows

+.×— Sum of products of weights along each path; computes the strength of all connec-
tions between the starting vertex and the ending vertices.

max.×— Maximum of products of weights along each path; computes the longest product
of all of the connections between the starting vertex and the ending vertices.

min.×— Minimum of products of weights along each path; computes the shortest product
of all of the connections between the starting vertex and the ending vertices.

“current_book”
2017/8/27
23:44
page 108
#132

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

108 Chapter 6 Manipulating Graphs with Matrices

max.+ — Maximum of sum of weights along each path; computes the longest sum of all
of the connections between the starting vertex and the ending vertices.

min.+ — Minimum of sum of weights along each path; computes the shortest sum of all
of the connections between the starting vertex and the ending vertices.

max.min — Maximum of minimum of weight along each path; computes the longest of all
the shortest connections between the starting vertex and the ending vertices.

min.max — Minimum of maximum of weight along each path; computes the shortest of
all the longest connections between the starting vertex and the ending vertices.

6.6 Conclusions, Exercises, and References

Matrices are a powerful tool for representing and manipulating graphs. Adjacency matrices
represent directed-weighted-graphs with each row and column in the matrix representing
a vertex and the values representing the weights of the edges. Incidence matrices repre-
sent directed-weighted-multi-hyper-graphs with each row representing an edge and each
column representing a vertex. Perhaps the most important aspects of matrix-based graphs
are the mathematical properties of commutativity, associativity, and distributivity. These
properties allow a very small number of matrix operations to be used to construct a large
number of graphs. These properties of the matrix are determined by the element-wise
properties of addition and multiplication on the values in the matrix.

Exercises

Exercise 6.1 — Refer to Figure 6.1.

(a) What type of graph is this? Directed/undirected, weighted/unweighted, hyper, and/or
multi?

(b) How is the type of graph apparent from the graph?

(c) How is the type of graph apparent from the adjacency matrix?

Exercise 6.2 — Refer to Figure 6.3.

(a) What type of graph is this? Directed/undirected, weighted/unweighted, hyper, and/or
multi?

(b) How is the type of graph apparent from the graph?

(c) How is the type of graph apparent from the adjacency matrix?

Exercise 6.3 — How does Figure 6.4 illustrate the additive identity property?

Exercise 6.4 — How does Figure 6.5 illustrate the multiplicative annihilator property?

“current_book”
2017/8/27
23:44
page 109
#133

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.6 Conclusions, Exercises, and References 109

Exercise 6.5 — Pick non-commutative ⊗ and ⊕ functions on the real numbers and write
an example for each, demonstrating that the functions are non-commutative.

Exercise 6.6 — Pick non-associative ⊗ and ⊕ functions on the real numbers and write an
example for each, demonstrating that the functions are non-associative.

Exercise 6.7 — Pick non-distributive ⊗ and ⊕ functions on the real numbers and write an
example demonstrating that the functions are non-distributive.

Exercise 6.8 — For semirings ⊗ distributes over ⊕

a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c)

For some values of a,b,c it is also true that ⊕ distributes over ⊗

a⊕ (b⊗ c) = (a⊕b)⊗ (a⊕ c)

Show that these values are a = 0 or a⊕b⊕ c = 1.

Exercise 6.9 — Take a graph from your own experience and write down its adjacency
matrix (see Figure 6.1) and its incidence matrices (see Figure 6.2).

Exercise 6.10 — Using the adjacency matrix from the previous exercise, compute the
nearest neighbors of a vertex by using vector matrix multiplication (see Figure 6.7).

Exercise 6.11 — Using the incidence matrices from the previous exercise, compute the
adjacency matrix by using matrix multiplication (see Figure 6.8).

Exercise 6.12 — Compute the degree distribution of matrices A, B, and C in Figure 6.10.

Exercise 6.13 — For matrices, element-wise addition⊗ distributes over element-wise mul-
tiplication ⊕

A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)

For some values of A,B,C it is also true that ⊕ distributes over ⊗

A⊕ (B⊗C) = (A⊕B)⊗ (A⊕C)

Show that these values are
A = 0 or A⊕B⊕C = 1

where 0 is a matrix of all zeros and 1 is a matrix of all ones.

Exercise 6.14 — For matrices, elementwise addition ⊗ distributes over array multiplica-
tion ⊕.⊗

A ⊕.⊗ (B⊕C) = (A ⊕.⊗ B)⊕ (A ⊕.⊗ C)

“current_book”
2017/8/27
23:44
page 110
#134

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

110 Chapter 6 Manipulating Graphs with Matrices

For some values of A,B,C it is also true that ⊕ distributes over ⊕.⊗

A⊕ (B ⊕.⊗ C) = (A⊕B) ⊕.⊗ (A⊕C)

Show that these values are
A = 0 or A⊕B⊕C = I

where 0 is a matrix of all zeros and I is the identity matrix.

References

[1] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine,
H. Meyerhenke, S. McMillan, J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson, “Mathematical
foundations of the GraphBLAS,” in High Performance Extreme Computing Conference (HPEC), pp. 1–9,
IEEE, 2016.

[2] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra. SIAM, 2011.

[3] G. Boole, The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning.
Philosophical Library, 1847.

[4] G. Boole, An Investigation of the Laws of Thought: On which are Founded the Mathematical Theories of
Logic and Probabilities. Dover Publications, 1854.

[5] C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Electrical Engineering, vol. 57, no. 12,
pp. 713–723, 1938.

[6] L. F. Menabrea and A. K. C. of Lovelace, “Sketch of the analytical engine invented by charles babbage, esq,”
Bibliotheque Universelle de Geneve, vol. 82, 1842.

[7] P. Ludgate, “On a proposed analytical machine,” Scientific Proc. Royal Dublin Society, vol. 12, no. 9, pp. 77–
91, 1909.

[8] T. y. Quevedo, “Ensayos sobre automatica-su definition. extension teorica de sus aplicaciones,” Revista de la
Real Academia de Ciencias Exactas, Fisicas y Naturales, vol. 12, pp. 391–418, 1913.

[9] V. Bush, “Instrumental analysis,” Bulletin of the American Mathematical Society, vol. 42, no. 10, pp. 649–
669, 1936.

[10] B. Randell, “From analytical engine to electronic digital computer: The contributions of ludgate, torres, and
bush,” Annals of the History of Computing, vol. 4, no. 4, pp. 327–341, 1982.

[11] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile Computing and Com-
munications Review, vol. 5, no. 1, pp. 3–55, 2001.

[12] B. Gold and C. M. Rader, Digital Processing of Signals. McGraw-Hill, 1969.

[13] B. Liskov and S. Zilles, “Programming with abstract data types,” ACM Sigplan Notices, vol. 9, no. 4, pp. 50–
59, 1974.

[14] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel computing,” Parallel computing,
vol. 26, no. 12, pp. 1519–1534, 2000.

[15] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader, “Massive streaming data analytics: A case study with clus-
tering coefficients,” in Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, pp. 1–8, IEEE, 2010.

[16] D. Ediger, J. Riedy, D. A. Bader, and H. Meyerhenke, “Tracking structure of streaming social networks,” in
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Sym-
posium on, pp. 1691–1699, IEEE, 2011.

“current_book”
2017/8/27
23:44
page 111
#135

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.6 Conclusions, Exercises, and References 111

[17] J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable multi-threaded community detection in social net-
works,” in Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, pp. 1619–1628, IEEE, 2012.

[18] J. Riedy and D. A. Bader, “Multithreaded community monitoring for massive streaming graph data,” in
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th In-
ternational, pp. 1646–1655, IEEE, 2013.

[19] E. Bergamini, H. Meyerhenke, and C. L. Staudt, “Approximating betweenness centrality in large evolving
networks,” in 2015 Proceedings of the Seventeenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 133–146, SIAM, 2015.

[20] E. Bergamini and H. Meyerhenke, “Approximating betweenness centrality in fully dynamic networks,” In-
ternet Mathematics, vol. 12, no. 5, pp. 281–314, 2016.

[21] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High performance data structure for streaming
graphs,” in High Performance Extreme Computing Conference (HPEC), pp. 1–5, IEEE, 2012.

[22] D. Ediger and D. A. Bader, “Investigating graph algorithms in the bsp model on the cray xmt,” in Parallel
and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,
pp. 1638–1645, IEEE, 2013.

[23] A. McLaughlin and D. A. Bader, “Revisiting edge and node parallelism for dynamic gpu graph analytics,”
in Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pp. 1396–
1406, IEEE, 2014.

[24] A. McLaughlin and D. A. Bader, “Scalable and high performance betweenness centrality on the gpu,” in Pro-
ceedings of the International Conference for High performance computing, networking, storage and analysis,
pp. 572–583, IEEE Press, 2014.

[25] A. McLaughlin, J. Riedy, and D. A. Bader, “Optimizing energy consumption and parallel performance for
static and dynamic betweenness centrality using gpus,” in High Performance Extreme Computing Conference
(HPEC), pp. 1–6, IEEE, 2014.

[26] C. L. Staudt and H. Meyerhenke, “Engineering parallel algorithms for community detection in massive net-
works,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 1, pp. 171–184, 2016.

[27] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication and indexing: Implementation and
experiments,” SIAM Journal on Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[28] A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, and S. Williams, “Exploiting
multiple levels of parallelism in sparse matrix-matrix multiplication,” SIAM Journal on Scientific Computing,
vol. 38, no. 6, pp. C624–C651, 2016.

[29] G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and S. Toledo, “Communication
optimal parallel multiplication of sparse random matrices,” in Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures, pp. 222–231, ACM, 2013.

[30] E. Solomonik, A. Buluc, and J. Demmel, “Minimizing communication in all-pairs shortest paths,” in Parallel
& Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pp. 548–559, IEEE, 2013.

[31] W. S. Song, J. Kepner, H. T. Nguyen, J. I. Kramer, V. Gleyzer, J. R. Mann, A. H. Horst, L. L. Retherford,
R. A. Bond, N. T. Bliss, E. Robinson, S. Mohindra, and J. Mullen, “3-d graph processor,” in Workshop on
High Performance Embedded Workshop (HPEC), MIT Lincoln Laboratory, 2010.

[32] W. S. Song, J. Kepner, V. Gleyzer, H. T. Nguyen, and J. I. Kramer, “Novel graph processor architecture,”
Lincoln Laboratory Journal, vol. 20, no. 1, pp. 92–104, 2013.

[33] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner, “Novel graph processor architecture, prototype system,
and results,” in High Performance Extreme Computing Conference (HPEC), pp. 1–7, IEEE, 2016.

[34] D. König, “Graphen und matrizen (graphs and matrices),” Mat. Fiz. Lapok, vol. 38, no. 1931, pp. 116–119,
1931.

“current_book”
2017/8/27
23:44
page 112
#136

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

112 Chapter 6 Manipulating Graphs with Matrices

[35] D. König, Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie der Streckenkom-
plexe, vol. 16. Akademische Verlagsgesellschaft mbh, 1936.

[36] F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969.

[37] G. Sabidussi, “Graph multiplication,” Mathematische Zeitschrift, vol. 72, no. 1, pp. 446–457, 1959.

[38] P. M. Weichsel, “The Kronecker product of graphs,” Proceedings of the American mathematical society,
vol. 13, no. 1, pp. 47–52, 1962.

[39] M. McAndrew, “On the product of directed graphs,” Proceedings of the American Mathematical Society,
vol. 14, no. 4, pp. 600–606, 1963.

[40] H. Teh and H. Yap, “Some construction problems of homogeneous graphs,” Bulletin of the Mathematical
Society of Nanying University, vol. 1964, pp. 164–196, 1964.

[41] A. Hoffman and M. McAndrew, “The polynomial of a directed graph,” Proceedings of the American Mathe-
matical Society, vol. 16, no. 2, pp. 303–309, 1965.

[42] F. Harary and C. A. Trauth, Jr, “Connectedness of products of two directed graphs,” SIAM Journal on Applied
Mathematics, vol. 14, no. 2, pp. 250–254, 1966.

[43] R. A. Brualdi, “Kronecker products of fully indecomposable matrices and of ultrastrong digraphs,” Journal
of Combinatorial Theory, vol. 2, no. 2, pp. 135–139, 1967.

[44] S. Parter, “The use of linear graphs in gauss elimination,” SIAM review, vol. 3, no. 2, pp. 119–130, 1961.

[45] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal, vol. 23, no. 2, pp. 298–
305, 1973.

[46] J. R. Gilbert, “Predicting structure in sparse matrix computations,” SIAM Journal on Matrix Analysis and
Applications, vol. 15, no. 1, pp. 62–79, 1994.

[47] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos, J. Feo, J. Gilbert, J. Gonzalez, B. Hen-
drickson, J. Kepner, C. Leiseron, A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker, S. Wal-
lach, and A. Yoo, “Standards for graph algorithm primitives,” in High Performance Extreme Computing
Conference (HPEC), pp. 1–2, IEEE, 2013.

[48] J. Kepner, “GraphBLAS special session,” in High Performance Extreme Computing Conference (HPEC),
IEEE, 2013.

[49] T. Mattson, “Workshop on graph algorithms building blocks,” IPDPS, 2014.

[50] T. Mattson, “GraphBLAS special session,” in High Performance Extreme Computing Conference (HPEC),
IEEE, 2014.

[51] T. Mattson, “Workshop on graph algorithms building blocks,” IPDPS, 2015.

[52] A. Buluç, “GraphBLAS special session,” in High Performance Extreme Computing Conference (HPEC),
IEEE, 2015.

[53] T. Mattson, “Workshop on graph algorithms building blocks,” IPDPS, 2016.

[54] A. Buluç and S. McMillan, “GraphBLAS special session,” in High Performance Extreme Computing Con-
ference (HPEC), IEEE, 2016.

[55] A. Buluç and T. Mattson, “Workshop on graph algorithms building blocks,” IPDPS, 2017.

[56] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implementation, and applications,” The Inter-
national Journal of High Performance Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[57] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz,
A. McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed dimensional data
model (D4M) database and computation system,” in Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, pp. 5349–5352, IEEE, 2012.

[58] K. Ekanadham, B. Horn, J. Jann, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, G. Tanase, and H. Yu,
“Graph programming interface: Rationale and specification,” tech. rep., IBM Research Report, RC25508
(WAT1411-052) November 19, 2014.

“current_book”
2017/8/27
23:44
page 113
#137

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

6.6 Conclusions, Exercises, and References 113

[59] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo implementation of server-side sparse matrix
multiply in the Accumulo database,” in High Performance Extreme Computing Conference (HPEC), pp. 1–7,
IEEE, 2015.

[60] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke, and P. Dubey, “Graphpad: Opti-
mized graph primitives for parallel and distributed platforms,” in Parallel and Distributed Processing Sym-
posium, 2016 IEEE International, pp. 313–322, IEEE, 2016.

[61] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock: A high-performance graph
processing library on the gpu,” in Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, p. 11, ACM, 2016.

[62] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan, “Gbtl-cuda: Graph algorithms and
primitives for gpus,” IPDPS Graph Algorithms Building Blocks, pp. 912–920, 2016.

[63] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for graph mining,” in Proceedings of
the 2004 SIAM International Conference on Data Mining, pp. 442–446, SIAM, 2004.

[64] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic, mathematically tractable graph gener-
ation and evolution, using Kronecker multiplication,” in European Conference on Principles of Data Mining
and Knowledge Discovery, pp. 133–145, Springer, 2005.

[65] C. F. Van Loan, “The ubiquitous Kronecker product,” Journal of computational and applied mathematics,
vol. 123, no. 1, pp. 85–100, 2000.

“current_book”
2017/8/27
23:44
page 114
#138

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 115
#139

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7 Graph Analysis and Machine Learning Systems

Summary

Machine learning systems encompass the entire process of parsing, ingesting, querying, and
analyzing data to make predictions. The ability of a system to make good predictions is
bound by the quantity and quality of the data delivered by the data preparation steps to the
modeling and analysis steps. In real-world machine learning systems, the data preparation
typically consumes 90% of the effort and cost. Associative arrays provide a natural mathe-
matical framework for representing data through all the steps of a machine learning system.
Key steps in a machine learning system include graph construction, graph traversal, and
identification of unusual vertices via eigenvalues, singular values, and other metrics (such
as PageRank). The benefits of associative arrays for machine learning systems are not lim-
ited to data preparation. Associative arrays also provide a natural framework for modeling
decision making data, such as the network weights used to describe a deep neural network.
This chapter describes in detail several examples of associative array based algorithms for
implementing these steps in a machine learning systems.

7.1 Introduction

Machine learning describes the broad area of analysis and classification of data to create
models for making predictions and has been a foundation of artificial intelligence since
its inception [2–9]. Typical applications include categorizing document queries so that
new queries provide more meaningful results, looking for correlations between patient
outcomes in medical records, and detecting anomalies in computer networks. A complete
machine learning system addresses all the tasks required to parse, ingest, query, and an-
alyze data to make predictions (see Figure 7.1). In a machine learning system, machine
learning algorithms are most commonly utilized in the data preparation that typically in-
cludes the analysis of the data and the resulting predictions. Data preparation processing
in a machine learning system typically includes all steps from acquiring the data to getting
the data ready for modeling and analysis.

The machine learning algorithms employed in the modeling and analysis steps in ma-
chine learning systems is well-described in the academic literature. A wide range of algo-
rithms are used to model the data and make predictions. These algorithms include decision

This chapter is partially adapted from [1] and is reproduced with permission from the IEEE.

“current_book”
2017/8/27
23:44
page 116
#140

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

116 Chapter 7 Graph Analysis and Machine Learning Systems

trees [10], artificial neural networks [11], support vector machines [12], Bayesian networks
[13], genetic algorithms [14], and clustering [15]. The ability of these analyses to make
good predictions is limited by the quantity and quality of the data processed in the data
preparation steps. Most machine learning algorithms rely on statistical techniques to es-
timate the values of model parameters. The ability to make statistically accurate model
parameter estimates is directly related to the quantity of data. Furthermore, a machine
learning model only can work if it accurately represents the data. Noise, errors, and clutter
in the data that are outside the model statistical distributions need to be addressed in the
data preparation. In addition, the more non-modeled data can be eliminated in the data
preparation, the more the algorithm can use the data to focus on the problem of interest.

For real machine learning systems, the data preparation can dominate the processing and
may consume 90% of the effort and cost. The general recognition that a significant frac-
tion of raw data records have known flaws that need to be addressed by data preparation
has led many professionals to spend the majority of their time cleaning up data [16]. The
challenge of developing tools and technologies to address data cleaning is significantly
aided by placing data into a common mathematical framework so that such tools can op-
erate independent of the specific application domain [17]. The variety of data preparation
approaches for enabling machine learning systems include data representation, graph cre-
ation, graph traversal, and graph statistics. In many cases, well-designed data preparation
can significantly reduce the complexity of the machine learning algorithm and allow a sim-
pler algorithm to be used. The remainder of this chapter will be focused on how associative
arrays can be used to implement these approaches.

7.2 Data Representation

An intuitive way to represent large unstructured datasets such as documents or social net-
works is through a graph representation. In such a representation, graph vertices can repre-
sent users or events and edges can represent the relationship between vertices. Many recent
efforts have looked at the mapping between graphs and linear algebra. In such a mapping,
graphs are often represented as sparse arrays, such as associative arrays or sparse matrices
using a graph schema.

This chapter looks at common classes of graph analytics that are used in machine learn-
ing applications and provides an initial set of graph algorithms recast as associative array
operations. Further, these algorithms have been described so as to work on alternate semir-
ing structures that replace traditional arithmetic addition and multiplication with more gen-
eral binary functions denoted ⊕ and ⊗. This flexibility allows a wide variety of graph al-
gorithms to be represented by using the aforementioned building blocks of element-wise
addition, element-wise multiplication, and array multiplication.

“current_book”
2017/8/27
23:44
page 117
#141

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.2 Data Representation 117

parse

set of
bits

spread
sheet database

matrix

graph

ingest query analyze

data preparation modeling

Figure 7.1
A machine learning system covers the whole process of parsing, ingesting, querying, and analyzing data to make
predictions. Each part of the process uses data representations that can be encompassed by associative arrays.
Data preparation processing typically covers all steps from acquiring the data to conditioning the data for analysis.
Modeling usually includes all the analysis of the conditioned data.

Associative arrays are used to describe the relationship between multidimensional en-
tities using numeric/string keys and numeric/string values. Associative arrays provide a
generalization of sparse matrices. Formally, an associative array A is a map from sets of
keys K1×K2 to a value set V with a semiring structure

A : K1×K2→ V,

where (V,⊕,⊗,0,1) is a semiring with addition operator⊕, multiplication operator⊗, additive-
identity/multiplicative-annihilator 0, and multiplicative-identity 1. In the subsequent algo-
rithms, V is the set of real numbers, ⊕ is standard arithmetic addition + and ⊗ is standard
arithmetic multiplication ×. The corresponding array operations are element-wise addition

C = A⊕B = A + B

or more explicitly
C(k1,k2) = A(k1,k2) + B(k1,k2)

element-wise multiplication
C = A⊗B

or more explicitly
C(k1,k2) = A(k1,k2)×B(k1,k2)

scalar multiplication
C = a⊗B = aB

or more explicitly
C(k1,k2) = aB(k1,k2)

and array multiplication
C = A ⊕.⊗ B = AB

“current_book”
2017/8/27
23:44
page 118
#142

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

118 Chapter 7 Graph Analysis and Machine Learning Systems

or more explicitly
C(k1,k2) =

∑
k

A(k1,k)×B(k,k2)

As a data structure, associative arrays return a value, given a key tuple, and constitute a
function between a set of key pairs and a value space. In practice, every associative array
can be created from an empty associative array by adding values. With this definition, it
is assumed that only a finite number of key tuples will have nonzero values and that all
other tuples will have a default value of 0 (the additive-identity/multiplicative-annihilator).
Further, the associative array mapping should support operations that resemble operations
on ordinary vectors and matrices, such as matrix multiplication. In practice, associative
arrays support a variety of linear algebraic operations, such as summation, union, intersec-
tion, and multiplication. Summation of two associative arrays, for example, that do not
have any common row or column key performs a union of their underlying nonzero keys.

Database tables are exactly described using the mathematics of associative arrays [18].
In the D4M schema [19], a table in a database is an associative array. In this context,
the primary difference between associative array data structures and sparse matrix data
structures is that associative array entries always carry their global row and column labels
while sparse matrices do not. Another difference between associative arrays and sparse
matrices is that sparse matrices explicitly carry empty rows or columns while associative
arrays do not. However, for practical purposes, associative arrays are often implemented
using sparse matrices that have been augmented with additional metadata on the rows,
columns, and values.

7.3 Graph Construction

In many machine learning applications, representing the data as a graph is the primary
tool for categorizing data. For example, in social media it is desirable to know who a
particular person’s “friends” are. These friends are learned from the data by constructing
the appropriate graph. Of course, there are often many ways to represent data as a graph,
and determining the correct graph is a key challenge.

Constructing the right graph requires putting data into a common frame of reference so
that similar entities can be compared. The associative arrays described in the previous
subsection can be used to represent a variety of graphs using many different databases. A
few commonly used graph schemas [18] are discussed below.

Adjacency Array
In this schema, data are organized as a graph adjacency array that can represent directed or
undirected weighted graphs. Rows and columns of the adjacency array represent vertices,
and values represent weighted edges between vertices. Adjacency arrays provide a great

“current_book”
2017/8/27
23:44
page 119
#143

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.3 Graph Construction 119

deal of functionality and are one of the more common ways to express graphs through
matrices. For a graph with m edges, the adjacency array A is defined as

A(k1,k2) =

v there is an edge from vertex k1 to k2

0 there is no edge from vertex k1 to k2

where v ∈ V is the weight of the edge from k1 to k2. The number of nonzero entries in A is
m.

Incidence Array
The incidence array representation is capable of representing more complex graphs than
an adjacency array representation. Specifically, the incidence array representation of a
graph can represent both multi-graphs (graphs with multiple edges between the same set
of vertices) and hyper-graphs (graphs with edges connecting more than two vertices). In
the incidence array representation, array rows correspond to edges, and array columns
represent vertices, with nonzero values in a row indicating vertices associated with the
edge. The value at a particular row-column pair represents the edge weight. There are
many representations for the incidence array, and a common format is described below.

Suppose a graph is a directed-weighted-multi-hyper-graph with m edges taken from an
edge set K and vertex set Kout ∪Kin, where Kout is the set of vertices with outgoing edges
and Kin is the set of vertices with incoming edges.

The out-vertex incidence array of the graph is denoted by

Eout : K ×Kout→ V

and satisfies the condition that for all edges k ∈ K and vertices kout ∈ Kout

Eout(k,kout) , 0

if and only if edge k is directed outward from vertex kout. The number of rows with nonzero
entries in Eout is equal to the number of edges in the graph m. Likewise, the number of
columns with nonzero entries in Eout is equal to the number of vertices with out-edges in
the graph, nout.

The in-vertex incidence array of the graph is denoted by

Ein : K ×Kin→ V

and satisfies the condition that for all edges k ∈ K and vertices kin ∈ Kin

Ein(k,kin) , 0

if and only if edge k is directed inward to vertex kin. The number of rows with nonzero
entries in Ein is equal to the number of edges in the graph m. The number of columns with
nonzero entries in Ein is equal to the number of vertices with in-edges in the graph nin.

“current_book”
2017/8/27
23:44
page 120
#144

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

120 Chapter 7 Graph Analysis and Machine Learning Systems

The incidence array and the adjacency array are often linked by the formula

A = ET
outEin

The above equations provide useful mechanisms for rewriting algorithms by using either
the incidence array or the adjacency array.

D4M Schema
The D4M 2.0 Schema [19] described in Chapter 3.5 (see Figure 3.3) provides a four as-
sociative array solution {Tedge,TT

edge,Tdeg,Traw} that can be used to represent diverse data
as four database tables. The edge tables, Tedge and TT

edge, contain the full semantic infor-
mation of the dataset using an adjacency array or incidence array representation. Storing
both the array and its transpose allows rapid access to any row or any column for both
row-oriented and column-oriented databases. From the schema described in [19], a dense
database can be converted to a sparse representation by exploding each data entry into
an associative array where each unique column-value pair is a column. The Tdeg array
maintains a count of the degrees of each of the columns of Tedge. Traw is used to store
the raw data. A more thorough description of the schema is provided in [19]. Once the
data are in sparse array form, the full machinery of linear algebraic graph processing and
machine learning can be applied. Linear algebraic operations applied on associative arrays
can produce many useful results. For example, addition of two associative arrays repre-
sents a union, and the multiplication of two associative arrays represents a correlation. In
the D4M schema, either an adjacency array or incidence array representation of graph data
can be operated on efficiently in real systems.

7.4 Adjacency Array Graph Traversal

Graphs represent relationships among data. Exploring these relationships involves starting
at one vertex and following its edges to find other connected vertices. A common machine
learning use of graphs that is found in social media applications is to suggest new friends to
a user by analyzing their existing interests and friendships. Breadth-first search is perhaps
the simplest and most important operation for exploring and traversing a graph. Breadth-
first search finds the nearest neighbors of vertices in a graph. Array multiplication can
be used to perform breadth-first search and many other graph traversal operations. This
flexibility is one of the principal benefits of the array-based approach as it provides many
different solutions to choose from to solve the same graph traversal problem. The ability
to create many different algorithms to solve the same graph problem is a direct result of
the linear system properties of associative arrays. Given an adjacency array of a directed
graph A and a diagonal array of source vertices V, the neighboring vertices of V can be
found via many different combinations of A and V.

“current_book”
2017/8/27
23:44
page 121
#145

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.4 Adjacency Array Graph Traversal 121

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

V01 6 6 6
V02 6 9 6 1 1 1 1 1 1 1 1
V03 6 6 6
V04 6 6 6 6 6
V05 6 7 6 6 6 1 1
V06 1 6 6 7 6 6 1 1 1 1
V07 6 6 6 7 6 1 1 1
V08 6 6 6 6 6
V09 1 1 1 1 1 1
V10 1 2 1 1 1
V11 1 1 1 1 2 1 1 1 1
V12 1 1 1
V13 1 1 1 1 2 1
V14 1 1 1 1
V15 1 1 1
V16 1 1 1 1 1 1 1 4 1 1 1 2
V17 1 1 1
V18 1 1 1
V19 1 1 1 1
V20 1 1 1 1 1 2 1 2

=	

V1
1

V1
6

V11 1
V16 1

V1
1

V1
6

V02 1 1
V05 1
V06 1 1
V07 1
V09 1 1
V10 1
V11 2 1
V13 1
V14 1
V15 1
V16 1 4
V17 1
V18 1
V19 1
V20 1 2

A

V

A V

Figure 7.2
Breadth-first search of the graph represented by the adjacency array A of the graph in the painting shown in
Figure 5.11. The values in V indicate the number of times a given pair of vertices share the same edge. The
starting vertices of the search V11 and V16 are stored in the array V. The neighbors of the vertices in V are
computed via the array multiplication AV.

V02! V06!

V07!

V09!

V10!

V13!

V14!

V15!

V17!

V20!

V05!

V18!

V19!

V11! V16!

Figure 7.3
Result of breadth-first search starting at vertices V11 and V16.

“current_book”
2017/8/27
23:44
page 122
#146

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

122 Chapter 7 Graph Analysis and Machine Learning Systems

The vertices of edges ending with row keys of V can by obtained via

AV

indexmatrix!transpose The vertices of edges starting with row keys of V can by obtained
via

ATV or VTA

The vertices of edges ending with the column keys of V can by obtained via

AVT or VAT

The vertices of edges starting with column keys of V can by obtained via

VA

Furthermore, if the graph is undirected and the source array is symmetric so that

A = AT or V = VT

then all of the following graph traversal expressions can be used to obtain the neighbors of
the vertices in V

AV or ATV or VTA or AVT or VAT or VA

The above expressions allow different operations to be swapped in order to optimize a
machine learning system.

Figures 7.2 and 7.3 illustrate breadth-first search of the undirected graph represented by
the adjacency array A from Figure 5.11. The starting vertices for the search are stored
in the array V. The neighbors of the vertices in V are found by an array multiplication
AV. The values in A show how many times a given pair of vertices have the same edge.
It is worth recalling that the adjacency array A represents a graph with hyper-edges that
connect more than one vertex with the same edge. An undirected hyper-edge that connects
3 vertices looks the same in an adjacency array as 6 standard directed edges and 3 self-
edges or 9 edges total. Likewise, an undirected hyper-edge that connects 5 vertices looks
the same in an adjacency array as 20 standard directed edges and 5 self-edges or 25 edges
total.

7.5 Incidence Array Graph Traversal

Graph traversal can also be performed with array multiplication by using incidence arrays
Eout and Ein. Using incidence arrays for graph traversal is a two-step process. The first
step is obtaining the set of edges that contain a set of vertices. The second step is to use
the set of edges to find the neighbor vertices associated with the first set of vertices.

“current_book”
2017/8/27
23:44
page 123
#147

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.5 Incidence Array Graph Traversal 123

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

B1 1 1 1
B2 1 1 1 1 1
G1 1 1 1
G2 1 1 1 1 1
O1 1 1 1
O2 1 1 1
O3 1 1 1 1 1
O4 1 1 1 1 1
O5 1 1 1 1 1 1
P1 1 1 1
P2 1 1 1 1 1
P3 1 1 1 1
P4 1 1
P5 1 1 1
P6 1 1 1
P7 1 1 1
P8 1 1 1
S1 1 1 1
S2 1 1 1 1 1

=

V1
1

V1
6

V11 1
V16 1

V1
1

V1
6

O5 1 1
P3 1
P6 1
P7 1
P8 1

E

V
E V

Figure 7.4
First half of a breadth-first search of a graph given by the incidence array E. The values in E indicate that the
vertex key in the column shares the edge key labeled in the row. The starting vertices for the search V11 and V16
are stored in the array V. The edges of the vertices in V are computed using array multiplication EV.

P3!

P6!

P7!

P8!

V11! V16!O5!

Figure 7.5
Result of the first half of a breadth-first search of an incidence array identifying the edges connected to vertices
V11 and V16.

“current_book”
2017/8/27
23:44
page 124
#148

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

124 Chapter 7 Graph Analysis and Machine Learning Systems

B1 B2 G
1

G
2

O
1

O
2

O
3

O
4

O
5

P1 P2 P3 P4 P5 P6 P7 P8 S1 S2

V01 1 1 1 1 1 1
V02 1 1 1 1 1 1 1 1 1
V03 1 1 1 1 1 1
V04 1 1 1 1 1 1
V05 1 1 1 1 1 1 1
V06 1 1 1 1 1 1 1
V07 1 1 1 1 1 1 1
V08 1 1 1 1 1 1
V09 1
V10 1 1
V11 1 1
V12 1
V13 1 1
V14 1
V15 1
V16 1 1 1 1
V17 1
V18 1
V19 1
V20 1

=

V1
1

V1
6

O5 1 1
P3 1
P6 1
P7 1
P8 1

V1
1

V1
6

V02 1 1
V05 1
V06 1 1
V07 1
V09 1 1
V10 1
V11 2 1
V13 1
V14 1
V15 1
V16 1 4
V17 1
V18 1
V19 1
V20 1 2

ET

E V

ET E V

Figure 7.6
Second half of a breadth-first search of the graph shown by the incidence array E. The values in EV are the edges
that contain the starting vertices V11 and V16. The vertex neigbors of the vertices in V are computed using the
array multiplication ETEV.

O5!

P3!

P6!

P7!

P8!

V11! V16!V02! V06!

V07!

V09!

V10!

V13!

V14!

V15!

V17!

V20!

V05!

V18!

V19!

Figure 7.7
Result of the second half of the breadth-first search of the incidence array identifying the vertices connected to
the set of edges {O5, P3, P6, P7, P8}.

“current_book”
2017/8/27
23:44
page 125
#149

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.5 Incidence Array Graph Traversal 125

Given a diagonal array of source vertices V, the edges ending with row keys of V can by
obtained via

EinV or VTET
in

The edges starting with row keys of V can by obtained via

EoutV or VTET
out

The edges ending with the column keys of V can by obtained via

EinVT or VET
in

The edges starting with column keys of V can by obtained via

EoutVT or VET
out

Furthermore, if the graph is undirected, then

Eout = Ein = E

and the resulting source array is symmetric, which implies that

V = VT

then all of the following expressions are equivalent and can be used to find the neighbors
of V

ETEV or (EV)TE or VTETE

The ability to exchange the above expressions can be very useful for optimizing the per-
formance of a machine learning system.

Figures 7.4 and 7.5 shows the initial part of a breadth-first search on an undirected graph
described by the incidence array E from Figure 5.10. The values in E indicate whether or
not a given vertex shares a given edge. The starting points of the search are held in the
array V. The edges of the vertices in V can be computed via the array multiplication EV.

After the set of edges containing a set of vertices has been obtained, these edges can be
used to obtain the neighbor vertices, thus completing the graph traversal. The vertices of
edges ending with row keys of V can by obtained via

ET
outEinV or VTET

inEout

The vertices of edges starting with row keys of V can by obtained via

ET
inEoutV or VTET

outEin

The vertices of edges ending with the column keys of V can by obtained via

ET
outEinVT or VET

inEout

“current_book”
2017/8/27
23:44
page 126
#150

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

126 Chapter 7 Graph Analysis and Machine Learning Systems

The vertices of edges starting with column keys of V can by obtained via

ET
inEoutVT or VET

outEin

Additional expressions can be obtained by exploiting the transpose identity

ATBT = (BA)T

Likewise, because array multiplication is associative

A(BC) = (AB)C

there are many other possible expression for the above graph traversals. Furthermore, if
the graph is undirected and the source array is symmetric, then the above graph traversal
expressions are equivalent to following expressions

ETEV or (EV)TE or VTETE

The above relations can be used to optimize a machine learning system by changing the
order of operations.

Figures 7.6 and 7.7 illustrate the second half of the breadth-first-search of an undirected
graph depicted by the incidence array E from Figure 5.10. The starting vertices for the
search are stored in the array V. The edges of the vertices in V are found by the array
multiplication EV. The neighbors of the vertices in V are computed ETEV.

7.6 Vertex Degree Centrality

A graph of relationships among vertices can be used to determine those vertices that are
most important or most central to the graph. Algorithms that are used to determine the
importance of different nodes are referred to as centrality metrics. In machine learning
applications, centrality metrics can be used to categorize information and spot new trends.
For example, if the most important vertices in a graph change over time, then this change
can indicate an important new trend in the data or a new source of error in the data.

A simple way to categorize data in a graph is by identifying the most popular vertices
(supernodes) in the graph and the least popular vertices (leaf nodes). Of the many centrality
metrics, the simplest is degree centrality, which assumes the importance of a vertex is
proportional to the number of edges going into or coming out of a vertex.

“current_book”
2017/8/27
23:44
page 127
#151

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.6 Vertex Degree Centrality 127

D
eg

V01 1
V02 1
V03 1
V04 1
V05 1
V06 1
V07 1
V08 1
V09 1
V10 1
V11 1
V12 1
V13 1
V14 1
V15 1
V16 1
V17 1
V18 1
V19 1
V20 1

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

V01 6 6 6
V02 6 9 6 1 1 1 1 1 1 1 1
V03 6 6 6
V04 6 6 6 6 6
V05 6 7 6 6 6 1 1
V06 1 6 6 7 6 6 1 1 1 1
V07 6 6 6 7 6 1 1 1
V08 6 6 6 6 6
V09 1 1 1 1 1 1
V10 1 2 1 1 1
V11 1 1 1 1 2 1 1 1 1
V12 1 1 1
V13 1 1 1 1 2 1
V14 1 1 1 1
V15 1 1 1
V16 1 1 1 1 1 1 1 4 1 1 1 2
V17 1 1 1
V18 1 1 1
V19 1 1 1 1
V20 1 1 1 1 1 2 1 2

=	

D
eg

V01 18
V02 29
V03 18
V04 30
V05 33
V06 36
V07 34
V08 30
V09 6
V10 6
V11 10
V12 3
V13 7
V14 4
V15 3
V16 16
V17 3
V18 3
V19 4
V20 10

A A

Figure 7.8
Vertex degree centrality of the graph depicted by the adjacency array A from the painting shown in Figure 5.11.
The values in A indicate how many pairs of vertices share the same edge. The degree centrality of the vertices is
computed by the array multiplication A1, where 1 is a vector of all 1’s.

V02!
(29)!

V01!
(18)!

V03!
(18)!

V04!
(30)!

V05!
(33)!

V06!
(36)!

V07!
(34)!

V08!
(30)!

V09!
(6)!

V10!
(6)!

V11!
(10)!

V13!
(7)!

V14!
(4)!

V12!
(3)!

V15!
(3)!

V16!
(16)!

V17!
(3)!

V18!
(3)!

V19!
(4)!

V20!
(10)!

Figure 7.9
Output of the vertex degree centrality operation depicted in Figure 7.8. The degree centrality of each vertex is
listed in parentheses below the vertex label. Vertex V06 has the highest degree centrality because it is linked to
the most vertices via the most edges.

“current_book”
2017/8/27
23:44
page 128
#152

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

128 Chapter 7 Graph Analysis and Machine Learning Systems

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

B1 1 1 1
B2 1 1 1 1 1
G1 1 1 1
G2 1 1 1 1 1
O1 1 1 1
O2 1 1 1
O3 1 1 1 1 1
O4 1 1 1 1 1
O5 1 1 1 1 1 1
P1 1 1 1
P2 1 1 1 1 1
P3 1 1 1 1
P4 1 1
P5 1 1 1
P6 1 1 1
P7 1 1 1
P8 1 1 1
S1 1 1 1
S2 1 1 1 1 1

De
g

B1 3
B2 5
G1 3
G2 5
O1 3
O2 3
O3 5
O4 5
O5 6
P1 3
P2 5
P3 4
P4 2
P5 3
P6 3
P7 3
P8 4
S1 3
S2 5

D
eg

V01 1
V02 1
V03 1
V04 1
V05 1
V06 1
V07 1
V08 1
V09 1
V10 1
V11 1
V12 1
V13 1
V14 1
V15 1
V16 1
V17 1
V18 1
V19 1
V20 1

=

E E

Figure 7.10
Edge degree centrality of the graph whose incidence array is E. The edge degree centrality of the vertices is
calculated via the array multiplication E1, where 1 is a vector of all 1’s.

B
1,

S1
,G

1,
O

1,
O

2,
P1

(3

)

B
2,

S2
,G

2,
O

3,
O

4,
P2

(5

)

O5
(6)

P3
(4)

P5
(3)

P6
(3)

P7
(3)

P8
(4)

Figure 7.11
Output of the edge degree centrality operation depicted in Figure 7.10. The edge degree centrality of each edge
is listed in parentheses below the edge label. Edge O5 has the largest edge degree centrality because this edge
connects to the most vertices.

“current_book”
2017/8/27
23:44
page 129
#153

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.7 Edge Degree Centrality 129

Given an adjacency array A, the degree centrality can be easily be computed by multi-
plying by a vector of all 1’s (see Figures 7.8 and 7.9). Vertex V06 has the highest degree
centrality because it is connected to the most vertices by the most edges. Vertex V06 is
connected to vertices V04, V05, V06, V07, and V08 by six edges. Vertex V06 is con-
nected to vertices V01, V06, V09, V11, V13, and V14 by one edge. Thus, the degree of
V06 is

(5×6) + (6×1) = 36

7.7 Edge Degree Centrality

In addition to determining important vertices in a graph, it can also be of interest to deter-
mine important edges in a graph. In a hyper-graph where edges can connect more than one
vertex, it is a simple matter to compute the number of vertices associated with each edge
by multiplying the incidence array by a vector of 1’s.

Figures 7.10 and 7.11 show the calculation of the edge centrality. Not surprisingly, edge
O5 emerges as the edge with the highest edge centrality because it cuts across the length
of the picture. As with degree centrality, edge centrality can be useful for identifying
interesting edges, although it is most commonly used for identifying anomalies in the data.
For example, an edge that connects to the most vertices may be the result of an error in
how the data were collected.

7.8 Eigenvector Centrality

Other centrality metrics are explicitly linear algebraic in their formulation. For example,
eigenvector centrality assumes that each vertex’s centrality is proportional to the sum of
its neighbors’ centrality scores. Eigenvector centrality is equivalent to scoring each vertex
based on its corresponding entry in the principal eigenvector. Recall, that an eigenvector v
of a square array A satisfies

Av = λv

The principal eigenvector is the vector that has the largest value of λ. In many cases, the
principal eigenvector can be computed via the power method. Starting with an approxima-
tion of the principal eigenvector as a random positive vector v0 with entries between 0 and
1, this approximation can be iteratively improved via

v1 =
Av0

‖Av0‖

or more generally

vi+1 =
Avi

‖Avi‖

“current_book”
2017/8/27
23:44
page 130
#154

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

130 Chapter 7 Graph Analysis and Machine Learning Systems

where ‖ ‖ denotes the Euclidean norm, given by the square root of the sum of squares. The
above computation can be performed for a specific number of iterations or until v satisfies
any of a number of convergence criteria (such as the changes in v between iterations are
below a threshold).

Figure 7.12 shows the first four and final iterations of such a calculation performed by
using the adjacency array depicted in Figures 7.2 and 7.8. The final eigenvector highlights
vertices V04, V05, V06, V07, and V08, which form a tightly coupled block in the adja-
cency array. This block of vertices is easily visible in the array because the vertices are
listed sequentially in the array. If the vertices were listed randomly, the block would be
difficult to see, but the eigenvector centrality would still highlight these vertices in the same
way. Thus, the eigenvector centrality allows blocks of vertices to be pulled out indepen-
dent of how they are ordered in the array. As with other centrality metrics, the eigenvector
centrality can highlight vertices of interest as well as vertices to be ignored. It is not un-
common for the vertices identified by the largest principal eigenvector to be connected with
a large background group of vertices that are not of great interest. It may be the case that
the vertices associated with lower eigenvectors provide more useful information on what
is happening in a graph.

It is not uncommon for different centrality metrics to produce results with some similar-
ities. For example, in this particular graph, the first eigenvector places high value on one
set of vertices with high degree centrality: {V04, V05, V06, V07, V08}. In contrast, the
first eigenvector places a lower value on a number of vertices that have high degree central-
ity: {V01, V02, V03}. These vertices are highlighted in the second principal eigenvector
(see Figure 7.13). The eigenvectors of the adjacency array can be thought of as the sets
of vertices that will attract random travelers on the graph. The first principal eigenvector
highlights the set of vertices a random traveller is most likely to visit. The second principal
eigenvector highlights the set of vertices a random traveller is next most likely to visit.

Geometrically, the concept of how a graph affects a random traveller on a graph can be
seen in how the adjacency array transforms a set of points that are on a sphere. The points
on the sphere represent different starting vertex probabilities of a random traveller. In one
dimension, such a sphere is just two points, -1 and +1. In two dimensions, such a sphere
is a set of points lying on a circle of radius 1. In three dimensions, the unit sphere is a set
of points lying on a sphere of radius 1. In higher dimensions, the unit sphere is the set of
points that satisfy

‖v‖ = 1

“current_book”
2017/8/27
23:44
page 131
#155

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.8 Eigenvector Centrality 131

v0 v1 v2 v3 ... v∞

V01 0.56 0.29 0.24 0.17 ... 0.01
V02 0.85 0.46 0.35 0.24 ... 0.03
V03 0.35 0.29 0.24 0.17 ... 0.01
V04 0.45 0.27 0.36 0.40 ... 0.43
V05 0.05 0.30 0.38 0.42 ... 0.45
V06 0.18 0.36 0.42 0.44 ... 0.45
V07 0.66 0.32 0.39 0.42 ... 0.45
V08 0.33 0.27 0.36 0.40 ... 0.43
V09 0.90 0.09 0.06 0.04 ... 0.02
V10 0.12 0.10 0.04 0.02 ... 0.00
V11 0.99 0.17 0.08 0.04 ... 0.02
V12 0.54 0.06 0.03 0.01 ... 0.00
V13 0.71 0.13 0.04 0.02 ... 0.00
V14 1.00 0.08 0.02 0.01 ... 0.00
V15 0.29 0.03 0.01 0.00 ... 0.00
V16 0.41 0.21 0.12 0.08 ... 0.06
V17 0.46 0.03 0.01 0.00 ... 0.00
V18 0.76 0.03 0.02 0.02 ... 0.02
V19 0.82 0.05 0.03 0.02 ... 0.02
V20 0.10 0.15 0.09 0.06 ... 0.04

Figure 7.12
Iterative computation of the eigenvector centrality (first principal eigenvector) of the graph given by the adjacency
array in Figure 5.11). The eigenvector centrality highlights the largest set of strongly connected vertices: {V04,
V05, V06, V07, V08}.

It is difficult to draw the 20-dimensional sphere corresponding to the adjacency array in
Figures 7.2 and 7.8. It is simpler to explain in two dimensions. Consider the 2×2 array

A =

1 2

1 0.5 1.1

2 1.1 0.5

Figure 7.14 shows how points on the unit circle are transformed by the adjacency array A.
A is depicted as the blue parallelogram on which the uppermost point (1.6,1.6) corresponds
to the sum of the rows (or columns) of A. The circle of radius 1 is depicted in green and is
referred to as the unit circle.

Let u be any point lying on the green line. Au is the array multiplication of A with u and
is shown as the green dashed ellipse. The green dashed ellipse represents how A distorts the
unit circle. Note that the green dashed ellipse touches the corners of the blue parallelogram
and is tangent to the sides of the blue parallelogram at that point. The long axis of the green
dashed ellipse points directly at the upper rightmost point of the parallelogram.

“current_book”
2017/8/27
23:44
page 132
#156

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

132 Chapter 7 Graph Analysis and Machine Learning Systems

v(2)

V01 0.53
V02 0.65
V03 0.53
V04 -0.03
V05 -0.03
V06 0.02
V07 -0.02
V08 -0.03
V09 0.04
V10 0.04
V11 0.05
V12 0.04
V13 0.05
V14 0.01
V15 0.00
V16 0.05
V17 0.00
V18 0.00
V19 0.00
V20 0.05

Figure 7.13
Second principal eigenvector of the adjacency array A of the graph from Figure 5.11. The second principal
eigenvector highlights the second largest set of strongly connected vertices: {V01, V02, V03}.

The points on the unit circle that align with the axis of the green dashed ellipse are shown
by the black square. These points are given a special name called the eigenvectors of the
matrix A. Multiplication of A by any point along these eigenvectors will only stretch the
eigenvectors. All other points, when multiplied by A, will be stretched and twisted. The
red box shows what happens when the eigenvectors of A are multiplied by A. The red box
corresponds exactly to the axis of the green dashed ellipse. The lengths of the sides of the
red box determine how much stretching occurs along each direction of the eigenvector and
are called the eigenvalues.

The long axis means that points lying along this eigenvector will become longer. The
short axis means that points lying along this eigenvector will become shorter. The ratio
of the area of the red box to the black box is equal to the ratio of the area of the green
dashed ellipse to the area of the green solid circle. This ratio is equal to the area of the
blue parallelogram and is called the determinant. While not all 2× 2 matrices behave as
shown in Figure 7.14, many do. In particular, many of the matrices that are relevant to
the kinds of data represented with spreadsheets, databases, and graphs have the properties
shown Figure 7.14. Furthermore, these properties hold as the array grows (they just get
harder to draw).

The largest eigenvalue identifies the eigenvector that has the strongest impact on a ran-
dom traveller on a graph. This eigenvector is referred to as the principal eigenvector. In

“current_book”
2017/8/27
23:44
page 133
#157

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.9 Singular Value Decomposition 133

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

unit circle
A * unit circle
A = AT > 0
eigvec(A)
A * eigvec(A)

u = unit circle
Au
A

(1.1,0.5)

(0,0)

(0.5,1.1)

(1.6,1.6)

v = eigvec(A)
Av

area =
det(A)

Figure 7.14

The properties of the 2×2 array A =

0.5 1.1
1.1 0.5

. Solid green line represents the points on the unit circle.

graph terms, the principal eigenvector can be thought of as the principal direction a random
traveller will be pushed towards as they traverse the graph. The eigenvalue of the principal
eigenvector shown in Figure 7.12 is 30.7. The eigenvalue of the second principal eigen-
vector shown in Figure 7.13 is 19.3. Thus, in the 20-dimensional space represented by the
vertices of the graph, the longest axis will have a length of 30.7, and the second longest
axis will have a length of 19.3.

Finally, it is worth mentioning that a 20-vertex graph can have no more than 20 eigenvec-
tors and may have fewer than 20 eigenvectors. For example, the graphs in Figures 7.2 and
7.8 have approximately 9 eigenvectors. Any attempt to add additional eigenvectors would
produce a vector that can be constructed by combining the eigenvectors that already exist.

7.9 Singular Value Decomposition

The eigenvector centrality can be readily computed on square adjacency arrays, but it is
more difficult to apply to rectangular incidence arrays for which there is just as much need
to identify vertices. Given an incidence array E, there are two complementary ways to
construct square arrays from E

ETE

“current_book”
2017/8/27
23:44
page 134
#158

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

134 Chapter 7 Graph Analysis and Machine Learning Systems

1 2 3 4 5 6 7 8 9
B1 .4 .1 .1
B2 .4 .1
G1 .4 .1 .1
G2 .4 .1
O1 .4 .1 .1
O2 .4 .1 .1
O3 .4 .1
O4 .4 .1
O5 .1 .2 -.7 .6 -.1 .2 .1
P1 .4 .1 .1
P2 .4 .1
P3 -.3 .7 -.4 .4 .2 .2
P4 .2 -.1 .3 -.1 -.1 -.9
P5 .2 -.2 .4 -.2 -.7 -.5 .2
P6 -.3 -.4 -.4 -.1 .1 .7
P7 .1 -.3 -.3 -.4 -.3 .4 -.6
P8 .1 -.3 -.3 -.2 .4 -.7 -.2
S1 .4 .1 .1
S2 .4 .1

1 2 3 4 5 6 7 8 9
1 11
2 8.8
3 5.3
4 4.4
5 3.4
6 2.9
7 2.9
8 2.7
9 2.2

√Λ 	 1 2 3 4 5 6 7 8 9
V01 .5 .2 -.1 -.1 .2 .1 .2
V02 .6 -.2 .1 .1 -.4 -.2 -.4
V03 .5 .2 -.1 -.1 .2 .1 .2
V04 .4 .1 .1 .1
V05 .5 -.1 -.3 -.2 .3 -.3
V06 .5 -.1 .1 .4 -.1 .1 .1 .1
V07 .5 -.1 -.1 .3 -.5
V08 .4 .1 .1 .0 .1
V09 -.3 .4 .1 .1
V10 -.2 .4 -.3 .3 .1 -.6
V11 .1 -.4 .3 .1 .3 .3 .3
V12 -.1 .2 -.1 -.5 -.4 .2
V13 -.2 .5 -.3 -.2 -.2 .4
V14 -.1 .3 -.2 .3 .1 .2
V15 -.1 -.2 -.3 -.1 .1 .5
V16 .1 .1 -.6 -.5 -.2 -.1
V17 -.1 -.2 -.3 -.1 .1 .5
V18 -.1 -.1 -.3 -.2 .3 -.5
V19 -.1 -.2 -.1 .3 -.5 -.2
V20 -.3 -.1 .3 .1 -.1 -.1

U	 V	

Figure 7.15
Singular value decomposition (SVD) of the incidence array E shown in Figure 7.4. The columns of U are the
left singular vectors of E, the columns of V are the right singular vectors of E, and the diagonal values of the
diagonal array

√
Λ are referred to as the singular values of E. The arrays are dense. All the values in the arrays

are rounded to the nearest tenth to highlight the structure of the arrays. The quantities are linked by the formula
E = U

√
ΛVT.

and
EET

Specific examples of the computation of these arrays are shown in Figures 5.11 and 5.12.
The eigenvalues and eigenvectors of the square array ETE satisfy

(ETE)u = λu

or
(ETE)U = ΛU

where the diagonal elements of the diagonal array Λ are the eigenvalues λ and the columns
of array U are the eigenvectors u. Likewise, the eigenvalues and eigenvectors of the square
array EET satisfy

(EET)v = λv

or
(ETE)V = ΛV

where the diagonal elements of the diagonal array Λ are the eigenvalues λ and the columns
of array V are the eigenvectors v.

The eigenvalues and eigenvectors of the square arrays ETE are EET are connected by the
formula

E = U
√

Λ VT

“current_book”
2017/8/27
23:44
page 135
#159

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.9 Singular Value Decomposition 135

U(:,1) √Λ(1,1) V(:,1)T = 	

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

B1
B2 2 2 2 2 2
G1
G2 2 2 2 2 2
O1
O2
O3 2 2 2 2 2
O4 2 2 2 2 2
O5 1 1 1 1 1
P1
P2 2 2 2 2 2
P3
P4
P5
P6
P7
P8
S1
S2 2 2 2 2 2

Figure 7.16
Approximation of incidence array E shown in Figure 7.4 via the array multiplication of the largest left singular
vector U(:,1) and the largest right singular vector V(:,1). The array is dense. All values have been rounded to the
nearest integer to more clearly show the structure of the array.

V04!

V05!

V06!

V07!

V08!

B2
,S
2,
G2
,O
3,
O4
,P
2!

Figure 7.17
The specific sets of vertices {V04,V05, V06, V07, V08} and edges {B2,S2, G2, O3, O4, P2} that are high-
lighted by the computation shown in Figure 7.16.

“current_book”
2017/8/27
23:44
page 136
#160

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

136 Chapter 7 Graph Analysis and Machine Learning Systems

In the above formula, the columns of U are referred to as the left singular vectors of
E, the columns of V are referred to as the right singular vectors of E, and the diagonal
values of the diagonal array

√
Λ are referred to as the singular values of E. The entire

formula is referred to as the singular value decomposition, or SVD, of E [20–22]. The
SVD provides information on the structure of non-square arrays in a manner similar to
how the eigenvalues and eigenvectors can be used to describe the structure of a square
array. Figure 7.15 provides an example of the SVD for the array E shown in Figure 7.4.
As with the eigenvalues, there are only 9 singular vectors.

The SVD can be a useful for tool for creating an approximation of an overall graph by
multiplying the largest left and right singular values via

U(:,1)
√

Λ(1,1) V(:,1)T

Figure 7.16 shows this calculation for the incidence array E in Figure 7.4. The specific
sets of vertices {V04,V05, V06, V07, V08} and edges {B2,S2, G2, O3, O4, P2} that are
highlighted by this computation are shown in Figure 7.17. Thus, from the perspective of
the SVD, this combination of vertices and edges is the strongest single component in the
graph.

7.10 PageRank

Perhaps the most well-known centrality metric is PageRank, which was developed by
Google founders Sergey Brin and Larry Page to rank webpages [23].

The algorithm was originally applied to rank webpages for keyword searches. The algo-
rithm measures each webpage’s relative importance by assigning a numerical rating from
the most important to the least important page within the set of identified webpages. The
PageRank algorithm analyzes the topology of a graph representing links among webpages
and outputs a probability distribution used to represent the likelihood that a person ran-
domly clicking on links will arrive at any particular page.

This algorithm was originally applied specifically to rank webpages within a Google
search. However, the mathematics can be applied to any graph or network [24]. The
algorithm is applicable to social network analysis [25], recommender systems [26], biol-
ogy [27], chemistry [28], and neuroscience [29]. In chemistry, this algorithm is used in
conjunction with molecular dynamics simulations that provides geometric locations for a
solute in water. The graph contains edges between the water molecules and can be used to
calculate whether the hydrogen bond potential can act as a solvent. In neuroscience, the
brain represents a highly complex vertex/edge graph. PageRank has recently been applied
to evaluate the importance of brain regions from observed correlations of brain activity.
In network analysis, PageRank can analyze complex networks and sub-networks that can
reveal behavior that could not be discerned by traditional methods.

“current_book”
2017/8/27
23:44
page 137
#161

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.10 PageRank 137

PageRank
V01 0.056
V02 0.098
V03 0.056
V04 0.062
V05 0.073
V06 0.082
V07 0.076
V08 0.062
V09 0.030
V10 0.038
V11 0.050
V12 0.024
V13 0.044
V14 0.030
V15 0.029
V16 0.074
V17 0.029
V18 0.021
V19 0.024
V20 0.043

Figure 7.18
PageRank of the adjacency array A of the graph derived from the painting from Figure 5.11. PageRank highlights
two vertices that are the centers of their respective blocks of vertices: V02 and V06.

The adjacency matrix for the original PageRank algorithm used webpages for the rows
and the webpages to which they linked for the columns. Furthermore, each value in the
adjacency matrix is normalized by its out-degree centrality, which prevents webpages with
lots of links from having more influence than those with just a few links. PageRank simu-
lates a random walk on a graph with the added possibility of jumping to an arbitrary vertex.
Each vertex is then ranked according to the probability of landing on it at an arbitrary point
in an infinite random walk. If the probability of jumping to any vertex is 0, then this rank
is simply the principal eigenvector of

Ã(k1,k2) =
A(k1,k2)
dout(k1)

where dout is the array of out-degree centralities

dout = A1

The PageRank algorithm assumes the probability of randomly jumping to a different vertex
is 1− c ∼ 0.15. In this case, the principal eigenvector can be calculated using the power

“current_book”
2017/8/27
23:44
page 138
#162

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

138 Chapter 7 Graph Analysis and Machine Learning Systems

Figure 7.19
Typical network elements i and j showing connection weights w (reproduced from [3]).

method. Rearranging terms, the power method computation for PageRank becomes

vi+1 = cvT
i Ã +

1− c
n

∑
k1

vi(k1)

PageRank integrates the effects of multiple blocks of vertices that are represented by dif-
ferent eigenvectors. Figure 7.18 shows the PageRank of the adjacency array A of the graph
in the painting depicted in Figure 5.11. PageRank highlights vertices V02 and V06 that
are at the center of the blocks of vertices selected by the principal and second eigenvectors.

PageRank is closely related to the eigenvector centrality. In fact, let v(1) be the first
eigenvector of the array

cAT +
1− c

m
where m is the number of rows (or columns) in the array. The eigenvector v(1) will agree
with PageRank v when each is normalized by their absolute value norm which is the sum
of the absolute value of all of their elements.

v(1)∑
k |v(1)(k)|

=
v∑

k |v(k)|

7.11 Deep Neural Networks

The final stage of a machine learning system of involves using all the processed inputs to
make a decision or provide a label on the inputs. Deep neural networks (DNNs) are one
of the most common approaches used to implement this final decision stage in a machine
learning system.

Using biologically inspired neural networks to implement machine learning was the topic
of the first paper presented at the first machine learning conference in 1955 [2, 3] (see Fig-
ure 7.19). At this time, it was recognized that direct computational training of neural
networks was computationally infeasible [8]. The subsequent manyfold improvement in
neural network computation and theory has made it possible to train neural networks that
are capable of better-than-human performance in a variety of important artificial intelli-

“current_book”
2017/8/27
23:44
page 139
#163

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.11 Deep Neural Networks 139

Input
Features

Output
Categories

Edges
Object Parts

Objects

y0 W0
b0

W1
b1

W2
b2

W3
b3

y2 y3

y4

y1
Hidden Layers

Figure 7.20
Four layer (L = 4) deep neural network architecture for categorizing images. The input features y0 of an image are
passed through a series of network layers Wk=0,1,2,3, with bias terms bk=0,1,2,3, that produce scores for categories
yL=4. (Figure adapted from [44]).

gence problems [30–33]. Specifically, the availability of large corpora of validated data
sets [34–36] and the increases in computation spurred by games [37–40], have allowed the
effective training of large deep neural networks (DNNs) with 100,000s of input features, N,
and hundreds of layers, L, that are capable of choosing from among 100,000s categories,
M (see Figure 7.20).

The connection between graphs and DNNs lies in the standard matrix representation
of graphs. In theory, the flexible semiring computations provided by associative arrays
may provide an convenient way for representing massive DNNs on both conventional and
custom computing hardware [41–43].

The primary mathematical operation performed by a DNN is the inference, or forward
propagation, step. During inferences an input feature vector Y0 is turned into a vector YL

containing the score on each of the potential categories. Inference is executed repeatedly
during the training phase to determine both the weight matrices Wk and the bias vectors bk

of the DNN. The inference computation shown in Figure 7.20 is given by

yk+1 = h(Wkyk + bk)

where h() is a non-linear function applied to each element of the vector. A commonly used
function is the rectified linear unit (ReLU) given by

h(y) = max(y,0)

which sets values less than 0 to 0 and leaves other values unchanged. When training a
DNN, it is common to compute multiple yk vectors at once in a batch that can be denoted

“current_book”
2017/8/27
23:44
page 140
#164

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

140 Chapter 7 Graph Analysis and Machine Learning Systems

as the matrix Yk. In matrix form, the inference step becomes

Yk+1 = h(WkYk + Bk)

where Bk is a replication of bk along columns.
If h() were a linear function, then the above equation could be solved directly and the

computation could be greatly simplified. However, current evidence suggests that the non-
linearity of h() is required for a DNN to be effective. Interestingly, the inference computa-
tion can be rewritten as a linear function over two different semirings

yk+1 = Wkyk ⊗bk ⊕0

or in matrix form
Yk+1 = WkYk ⊗Bk ⊕0

where the ⊕ = max and ⊗ = +. The computations of Wkyk and WkYk are computed over
the standard arithmetic +.× semiring

S 1 = (R,+,×,0,1)

while the ⊕ and ⊗ operation are performed over the max.+ semiring

S 2 = (R∪{−∞},max,+, -∞,0)

Thus, the ReLU DNN can be written as a linear system that oscillates over two semirings
S 1 and S 2. S 1 is the most widely used of semirings and performs standard correlation
between vectors. S 2 is also a commonly used semiring for selecting optimal paths in
graphs. Thus, the inference step of a ReLU DNN can be viewed as combining correlations
of inputs to select optimal paths through the neural network.

7.12 Conclusions, Exercises, and References

The flexibility of associative arrays to represent data makes them ideal for capturing the
flow of data through a machine learning system. A common first step in a machine learning
system is the construction of a graph. Associative arrays readily support both adjacency
array and incidence array representations of graphs. Traversing a graph in either represen-
tation can be performed via array multiplication. Likewise, computing the statistics of a
graph can also be accomplished via array multiplication. The analysis of the graph to find
and categorize vertices of interest (or vertices to be eliminated) can be performed using
a variety of algorithms, such as eigenvalues, singular values, PageRank, and deep neural
networks. All of these algorithms are readily implemented with associative array algebra.

“current_book”
2017/8/27
23:44
page 141
#165

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.12 Conclusions, Exercises, and References 141

Exercises

Exercise 7.1 — Refer to Figure 7.1.
(a) Describe some of the typical steps in a machine learning system?
(b) Compare data preparation vs. modeling?
(c) Comment on where most of the effort goes in building a machine learning system.

Exercise 7.2 — What is the formal mathematical definition of an associative array?

Exercise 7.3 — Compare the kinds of graphs that be represented with adjacency arrays
and incidence arrays?

Exercise 7.4 — Write six equivalent array multiplication expressions for doing graph traver-
sal with an adjacency array A of an undirected graph and an array of starting vertices V.

Exercise 7.5 — Refer to Figure 7.2. Describe how the results of the array multiplication
VA differ from those in the figure.

Exercise 7.6 — Take a graph from your own experience and write down its adjacency
matrix.

Exercise 7.7 — Using the adjacency matrix from the previous exercise, find the nearest
neighbors of two vertices by using array multiplication.

Exercise 7.8 — Using the adjacency matrix from the previous exercise, compute the out-
degree centrality and the in-degree centrality by using array multiplication. Comment on
the significance of the high out-degree and in-degree vertices.

Exercise 7.9 — Using the adjacency matrix from the previous exercise, employ the power-
method to compute the first eigenvector. Comment on the significance of the vertices with
highest first eigenvector values.

Exercise 7.10 — Using the adjacency matrix from the previous exercise, employ the power-
method to compute the PageRank. Comment on the significance of the vertices with high-
est PageRank values.

References

[1] J. Kepner, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, and H. Tufo, “Enabling massive deep neural
networks with the GraphBLAS,” in High Performance Extreme Computing Conference (HPEC), pp. 1–9,
IEEE, 2017.

[2] W. H. Ware, “Introduction to session on learning machines,” in Proceedings of the March 1-3, 1955, western
joint computer conference, pp. 85–85, ACM, 1955.

[3] W. A. Clark and B. G. Farley, “Generalization of pattern recognition in a self-organizing system,” in Pro-

“current_book”
2017/8/27
23:44
page 142
#166

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

142 Chapter 7 Graph Analysis and Machine Learning Systems

ceedings of the March 1-3, 1955, western joint computer conference, pp. 86–91, ACM, 1955.

[4] O. G. Selfridge, “Pattern recognition and modern computers,” in Proceedings of the March 1-3, 1955, western
joint computer conference, pp. 91–93, ACM, 1955.

[5] G. Dinneen, “Programming pattern recognition,” in Proceedings of the March 1-3, 1955, western joint com-
puter conference, pp. 94–100, ACM, 1955.

[6] A. Newell, “The chess machine: an example of dealing with a complex task by adaptation,” in Proceedings
of the March 1-3, 1955, western joint computer conference, pp. 101–108, ACM, 1955.

[7] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the dartmouth summer research
project on artificial intelligence, august 31, 1955,” AI magazine, vol. 27, no. 4, p. 12, 2006.

[8] M. Minsky and O. G. Selfridge, “Learning in random nets,” in Information theory : papers read at a sympo-
sium on information theory held at the Royal Institution, London, August 29th to September 2nd, pp. 335–347,
Butterworths, London, 1960.

[9] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the IRE, vol. 49, no. 1, pp. 8–30, 1961.

[10] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–106, 1986.

[11] R. Lippmann, “An introduction to computing with neural nets,” IEEE Assp magazine, vol. 4, no. 2, pp. 4–22,
1987.

[12] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural processing
letters, vol. 9, no. 3, pp. 293–300, 1999.

[13] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine learning, vol. 29,
no. 2-3, pp. 131–163, 1997.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-
ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[15] B. Karrer and M. E. Newman, “Stochastic blockmodels and community structure in networks,” Physical
Review E, vol. 83, no. 1, p. 016107, 2011.

[16] M. Soderholm, “Big data’s dirty little secret,” Datanami, July 2 2015.

[17] M. Soderholm, “Five steps to fix the data feedback loop and rescue analysis from ‘bad’ data,” Datanami,
Aug. 17 2015.

[18] J. Kepner and V. Gadepally, “Adjacency matrices, incidence matrices, database schemas, and associative
arrays,” IPDPS Graph Algorithms Building Blocks, 2014.

[19] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun, M. Hubbell, P. Michaleas, J. Mullen,
D. O’Gwynn, A. Prout, A. Reuther, A. Rosa, and C. Yee, “D4M 2.0 schema: A general purpose high perfor-
mance schema for the Accumulo database,” in High Performance Extreme Computing Conference (HPEC),
pp. 1–6, IEEE, 2013.

[20] E. Beltrami, “Sulle funzioni bilineari,” Giornale di Matematiche ad Uso degli Studenti Delle Universita,
vol. 11, no. 2, pp. 98–106, 1873.

[21] C. Jordan, “Mémoire sur les formes bilinéaires,” Journal de mathématiques pures et appliquées, vol. 19,
pp. 35–54, 1874.

[22] G. W. Stewart, “On the early history of the singular value decomposition,” SIAM review, vol. 35, no. 4,
pp. 551–566, 1993.

[23] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Computer networks and
ISDN systems, vol. 30, no. 1, pp. 107–117, 1998.

[24] D. F. Gleich, “Pagerank beyond the web,” SIAM Review, vol. 57, no. 3, pp. 321–363, 2015.

[25] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or a news media?,” in Proceedings
of the 19th international conference on World wide web, pp. 591–600, ACM, 2010.

“current_book”
2017/8/27
23:44
page 143
#167

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

7.12 Conclusions, Exercises, and References 143

[26] Y. Song, D. Zhou, and L.-w. He, “Query suggestion by constructing term-transition graphs,” in Proceedings
of the fifth ACM international conference on Web search and data mining, pp. 353–362, ACM, 2012.

[27] J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert, “Generank: using search engine technology for
the analysis of microarray experiments,” BMC bioinformatics, vol. 6, no. 1, p. 233, 2005.

[28] B. L. Mooney, L. R. Corrales, and A. E. Clark, “Molecularnetworks: An integrated graph theoretic and data
mining tool to explore solvent organization in molecular simulation,” Journal of computational chemistry,
vol. 33, no. 8, pp. 853–860, 2012.

[29] X.-N. Zuo, R. Ehmke, M. Mennes, D. Imperati, F. X. Castellanos, O. Sporns, and M. P. Milham, “Network
centrality in the human functional connectome,” Cerebral cortex, vol. 22, no. 8, pp. 1862–1875, 2012.

[30] R. Lippmann, “An introduction to computing with neural nets,” IEEE Assp magazine, vol. 4, no. 2, pp. 4–22,
1987.

[31] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted gaussian mixture mod-
els,” Digital signal processing, vol. 10, no. 1-3, pp. 19–41, 2000.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural net-
works,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[34] J. P. Campbell, “Testing with the yoho cd-rom voice verification corpus,” in Acoustics, Speech, and Signal
Processing, 1995. ICASSP-95., 1995 International Conference on, vol. 1, pp. 341–344, IEEE, 1995.

[35] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,” 1998.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–
255, IEEE, 2009.

[37] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial intelligence, vol. 134, no. 1-2, pp. 57–83,
2002.

[38] M. P. McGraw-Herdeg, D. P. Enright, and B. S. Michel, “Benchmarking the nvidia 8800gtx with the cuda
development platform,” HPEC 2007 Proceedings, 2007.

[39] A. Kerr, D. Campbell, and M. Richards, “Gpu performance assessment with the hpec challenge,” in HPEC
Workshop 2008, 2008.

[40] E. A. Epstein, M. I. Schor, B. Iyer, A. Lally, E. W. Brown, and J. Cwiklik, “Making watson fast,” IBM Journal
of Research and Development, vol. 56, no. 3.4, pp. 15–1, 2012.

[41] W. S. Song, J. Kepner, H. T. Nguyen, J. I. Kramer, V. Gleyzer, J. R. Mann, A. H. Horst, L. L. Retherford,
R. A. Bond, N. T. Bliss, E. Robinson, S. Mohindra, and J. Mullen, “3-d graph processor,” in Workshop on
High Performance Embedded Workshop (HPEC), MIT Lincoln Laboratory, 2010.

[42] W. S. Song, J. Kepner, V. Gleyzer, H. T. Nguyen, and J. I. Kramer, “Novel graph processor architecture,”
Lincoln Laboratory Journal, vol. 20, no. 1, pp. 92–104, 2013.

[43] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner, “Novel graph processor architecture, prototype system,
and results,” in High Performance Extreme Computing Conference (HPEC), pp. 1–7, IEEE, 2016.

[44] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations,” in Proceedings of the 26th annual international conference
on machine learning, pp. 609–616, ACM, 2009.

“current_book”
2017/8/27
23:44
page 144
#168

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 145
#169

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

II MATHEMATICAL FOUNDATIONS

“current_book”
2017/8/27
23:44
page 146
#170

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 147
#171

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8 Visualizing the Algebra of Associative Arrays

Summary

Associative arrays have analogs of most matrix operations. Demonstrating this analogy
formally requires a variety of abstract algebra objects, such as sets, semirings, linear algebra,
ordered sets, and Boolean algebra. Building on these abstract algebra objects leads to the
formal concept of an associative array algebra. The relationships between and among these
mathematical objects can be visually depicted using class diagrams, which are used to depict
similar relationships in software. This chapter graphically describes the interrelationships
among the mathematical objects necessary for defining associative algebra and provides the
intuition necessary to formally understand these objects.

8.1 Associative Array Analogs of Matrix Operations

Chapter 6 provided an overview of the primary matrix operations in terms of graph manip-
ulations. Given non-negative integer indices

i ∈ I = {1, . . . ,m}

and
j ∈ J = {1, . . . ,n}

and a set of values V (such as the real numbersR), then matrices can be viewed as mappings
between these sets of indices and their corresponding scalars. Using this terminology, the
m×n matrices A, B, and C, can be written as

A : I× J→ V

B : I× J→ V

C : I× J→ V

The product of a scalar v ∈ V with a matrix can be written

C = vA = v⊗A where C(i, j) = vA(i, j) = v⊗A(i, j)

The corresponding element-wise addition of the above matrices is written

C = A⊕B where C(i, j) = A(i, j)⊕B(i, j)

“current_book”
2017/8/27
23:44
page 148
#172

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

148 Chapter 8 Visualizing the Algebra of Associative Arrays

Likewise, the corresponding element-wise multiplication (or Hadamard product) of the
above matrices is written

C = A⊗B where C(i, j) = A(i, j)⊗B(i, j)

Finally, matrix multiplication, which combines element-wise addition and element-wise
multiplication, is written

C = AB = A ⊕.⊗ B where C(i, j) =
⊕
k∈K

A(i,k)⊗B(k, j)

where A, B, and C are matrices (or mappings)

A : I×K→ V

B : K × J→ V

C : I× J→ V

When the value set V of an associative array is equipped with two binary operations ⊕
and ⊗, the associative array equivalents of the matrix operations can be written with the
identical notation.

Associative arrays extend matrices in many ways. A few of the more notable extensions
are as follows. First, the value set V is not limited to a “field”, the numbers for which the
ordinary rules of arithmetic apply, and can likewise be much broader to include words or
strings. Finally, associative arrays have an implicit sparseness such that only the nonzero
entries in an associative array are stored. For an associative array, the dimensions of row
keys (K1) or column keys (K2) are often large, but the actual sizes of the rows or columns
that have nonzero entries are often small compared to the dimensions of the row or column
keys.

Second, associative array row and column indices (or keys) are not limited to integers
(such as with I, J, and K above) and can be any finite set with ordered values; meaning
that the values are ordered with some understood relation. The transition from integer sets
I and J to more general key sets k1 ∈ K1 and k2 ∈ K2 results in associative arrays A, B, and
C, that are written as

A : K1×K2→ V

B : K1×K2→ V

C : K1×K2→ V

The product of a scalar v ∈ V with an associative array can be written

C = vA = v⊗A where C(k1,k2) = vA(k1,k2) = v⊗A(k1,k2)

“current_book”
2017/8/27
23:44
page 149
#173

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.1 Associative Array Analogs of Matrix Operations 149

The equivalent element-wise addition of the above array is written

C = A⊕B where C(k1,k2) = A(k1,k2)⊕B(k1,k2)

Similarly, the corresponding element-wise multiplication of the above arrays is written

C = A⊗B wjere C(k1,k2) = A(k1,k2)⊗B(k1,k2)

Finally, array multiplication, which combines element-wise addition and element-wise
multiplication, is written

C = AB = A ⊕.⊗ B where C(k1,k2) =
⊕
k3∈K3

A(k1,k3)⊗B(k3,k2)

where A, B, and C are associative arrays

A : K1×K3→ V

B : K3×K2→ V

C : K1×K2→ V

Example 8.1

In Figure 4.3, the top three operations +, |, − correspond to element-wise addition
⊕, while the bottom operation & corresponds to the element-wise multiplication ⊗.
Likewise, the *, CatKeyMul, and CatKeyVal operations depicted in Figures 4.5,
4.7, and 4.8 all correspond to array multiplication ⊕.⊗.

Users of associative arrays are particularly interested in operations where the underly-
ing operations ⊕ and ⊗ are “well-behaved,” and where the array multiplication is “linear”
relative to scalar multiplication and element-wise addition. Operations are deemed “well-
behaved” when they satisfy the associative identities

A⊕ (B⊕C) =(A⊕B)⊕C
A⊗ (B⊗C) =(A⊗B)⊗C

A(BC) =(AB)C

and the commutative identities

A⊕B =B⊕A
A⊗B =B⊗A

“current_book”
2017/8/27
23:44
page 150
#174

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

150 Chapter 8 Visualizing the Algebra of Associative Arrays

Element-wise multiplcation and array multiplication are considered to be linear if they
also satisfy the distributive identities

A⊗ (B⊕C) =(A⊗B)⊕ (A⊗C)

A(B⊕C) =AB⊕AC

When defined using two operations ⊕ and ⊗ on the value set V , the array operations only
satisfy the above conditions if associativity, commutativity, and distributivity of ⊗ over ⊕
hold for V as well. These properties are desirable because they allow one to carry a large
amount of algebraic intuition from linear algebra into the realm of associative arrays. They
also imply the following properties of scalar multiplication

u(vA) = (uv)A
u(vA) = v(uA)

(u⊕ v)A = (uA)⊕ (vA)

u(A⊕B) = (uA)⊕ (uB)

where u,v ∈ V .
Determining when two operations ⊕ and ⊗ on the value set V result in well-behaved

associative arrays is the subject of much of the remainder of this text. Delving into this
question requires understanding the properties of V and then proving the appropriate ab-
stract algebra concepts. Ultimately, these proofs lead to a well-defined associative array
algebra.

8.2 Abstract Algebra for Computer Scientists and Engineers

The foundational properties of an associative array value set V are those of mathematical
sets. Sets are based on specific mathematical principles that are deeply ingrained into
human thinking [1]. The first is the concept of distinct or different objects or elements. If
there are two kitchens or two bedrooms in a building, it is intuitively understood that they
are distinct [2]. People do not confuse one kitchen with two kitchens or one bedroom with
two bedrooms. Likewise, when there are two kitchens and another kitchen is added, it is
clear that there are three kitchens and not three of something else. Adding another kitchen
does not change the fact that these are kitchens. Furthermore, it doesn’t matter what order
the kitchens are added together. If there are two kitchens and one kitchen is added that is
the same as having one kitchen and adding another two kitchens. Finally, if two kitchens
are added to one bedroom, it is clear that there are not three kitchens or three bedrooms,
but three rooms. Thus “threeness” is something that is somehow independent of whether
something is a kitchen or a bedroom.

“current_book”
2017/8/27
23:44
page 151
#175

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.3 Depicting Mathematics 151

Figure 8.1
A floor plan of a house using standard architectural symbols for walls, doors, and windows. A floor plan provides
a simple depiction of how the rooms are laid out in a house.

These mathematical principles are so intuitive that they require little explanation. In fact,
other species are believed to share these mathematical concepts with humans [3]. However,
for more difficult questions, further explanations are required. Such questions include what
does it mean to have zero bricks? Can zero bricks be added to two bricks? What happens
if bricks are taken away? What if more bricks are taken away than are already there? What
does it mean to split a brick into two halves? When two bricks are added to one hammer,
how does the result become three objects?

Mathematicians explore and answer these questions through a process of creating defi-
nitions of mathematical concepts, making conjectures about the properties that can be in-
ferred from these concepts, creating logical arguments that prove the conjectures, at which
point the conjectures become theorems. A theorem can then be used as the basis of other
conjectures or proofs. This process has been likened to building a house: the builder starts
with a foundation and builds each floor (theorem) one on top of the other. The house anal-
ogy is only somewhat accurate because in building a real house there is generally a good
idea of what the final house will look like and what its end purpose is. In mathematics, the
house is being built, but no one really knows what it will end up looking like.

8.3 Depicting Mathematics

Computer programmers construct computer programs using a process with some similar-
ities to how mathematicians construct mathematics. Classical computers only do binary

“current_book”
2017/8/27
23:44
page 152
#176

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

152 Chapter 8 Visualizing the Algebra of Associative Arrays

Legend	
	
	
	
	
	

Object Name	
object elements	
object operations	

inherits from	

Figure 8.2
A class diagram represents a class of objects as a rectangle with three specific areas. The top area lists the name of
the object in bold. The middle area lists the elements attributed to the object. The bottom area lists the operations
that can be performed on the elements. Arrows indicate that one object inherits elements and operations from
another object.

operations on zeros and ones. Computer programs are merely complex combinations of
these much simpler binary operations. If computer programmers could only write pro-
grams directly in terms of binary operations, then it would only be possible for humans to
write the very simplest of programs. Computer programmers have become masters of cre-
ating classes of programming objects that build on top of each other [4–6]. These classes
allow programmers to create more complex programs by creating and extending a few ob-
jects. In particular, all modern computer programming extensively utilizes a mechanism
by which two different classes of objects can be viewed as extensions of a single more
general class of object. The process by which two rocks and one bird can be viewed as
three objects is at the very foundation of modern computer software.

Building a house to suit a purpose requires architectural drawings such as floor, site,
elevation, and cross-section drawings (see Figure 8.1). Architectural drawings are used by
architects for a number of purposes: to develop a design idea, to communicate concepts,
to establish the merits of a design, to enable construction, to create a record of a completed
building, and to make a record of a building that already exists. To effectively communicate
these ideas, architectural drawings use agreed-upon formats and symbols [7]. A floor plan
of house is not a house, nor does the floor plan tell a builder how to build a house, but a
floor plan does provide a way to visually describe the rooms that will be in the house.

Building a computer program to suit a purpose requires diagrams such as class, activity,
component, deployment, and use-case diagrams. Diagrams of computer programs are used
by programmers for several purposes: to develop a design idea, to communicate concepts,
to establish the merits of a design, to enable construction, to create a record of a completed
program, and to make a record of a program that already exists. To effectively communi-
cate these ideas, computer programmers use agreed-upon formats and symbols such as the
Universal Markup Language (UML) [8]. One of the most commonly used UML diagrams
is a class diagram (see Figure 8.2). A UML class diagram depicts a class of objects as a
rectangle with three areas. The top area lists the name of the object in bold. The middle
area lists the elements attributed to the object. The bottom area lists the operations that can
be performed on the elements. Arrows indicate that one object inherits elements and op-
erations from another object. Class diagrams of computer programs are not programs, nor

“current_book”
2017/8/27
23:44
page 153
#177

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.4 Associative Array Class Diagrams 153

Kitchen	
sink	
run water	

Room	
door	
open	

Bedroom	
bed	
make bed	

Figure 8.3
A class diagram showing that kitchens and bedrooms are both rooms, but are also distinct objects. All rooms
have doors that can also be opened. Both kitchens and bedrooms inherit from rooms, so they also have doors that
can be opened. In addition, kitchens have sinks that run water, and bedrooms have beds than can be made.

do they tell the programmer how to write a program, but class diagrams provide a simple
visual description of the objects that will be in the program.

UML class diagrams can be effective tools for representing the relationships among ob-
jects in other disciplines. Figure 8.3 depicts that kitchens and bedrooms are both two types
of rooms. Rooms have doors that can be opened. Because kitchens and bedrooms inherit
characteristics from rooms, they also have doors that can be opened. Kitchens also have
sinks that run water, and bedrooms also have beds than can be made.

8.4 Associative Array Class Diagrams

Mathematics does not have a standardized diagram for depicting the elements of a math-
ematical object or proof. However, class diagrams can be used to describe mathematical
objects in a simplified manner. Class diagrams of mathematics are not proofs, nor do they
tell the mathematician how to write the proof, but class diagrams do provide a way to vi-
sualize all of the objects that will be in the proof. Using class diagrams, it is possible to
summarize the interrelationships among the 32 mathematical objects that are used to define
the algebra associative arrays. For those who want to understand the algebra of associative
arrays at a practical level, the visual depiction of these objects enables the understanding of
the properties and eliminates the need to memorize the detailed definitions of each object.

A rapid overview of the important mathematical objects for defining associative arrays
is presented subsequently. Wherever possible, the individuals most associated with these
mathematical objects are mentioned to provide additional context. The development of
these mathematical objects spans much of the mathematics that was developed in the 1800s
and 1900s. The principal centers of work in these areas were found in Germany, France,
and England, and later in the United States.

“current_book”
2017/8/27
23:44
page 154
#178

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

154 Chapter 8 Visualizing the Algebra of Associative Arrays

8.5 Set

The foundation of modern mathematics is modern set theory, which traces its beginning to
the seminal paper by Russian-German mathematician George Cantor [9]. Some of Cantor’s
methods were different from the approaches advocated by Polish-German mathematician
Leopold Kronecker who was a leading mathematician at the University of Berlin (the cen-
ter of mathematics research at the time). These disagreements were a significant challenge
for Cantor and exacerbated his mental illness, but ultimately Cantor’s approach to set the-
ory became widely accepted. It would not be possible to rigorously encompass all the
aspects of set theory that are relevant to this work. Thus, only a cursory description can be
provided here.

The early development of set theory led to the observation of a number of paradoxes.
The most well-known paradox is attributed to the British earl, humanitarian, Nobel lau-
reate, and mathematician Bertrand Russell, who proposed the paradox “the set of all sets
that are not members of themselves” [10]. The initial reaction to Russell’s paradox was
skepticism [11], but ultimately his paradox was accepted and led to a better definition of
set theory. The foundations, or axioms, of set theory used as the basis of associative arrays
were developed by German mathematician Ernst Zermelo [12] and German-Israeli mathe-
matician Abraham Fraenkel [13]. Zermelo was a lecturer and assistant of Nobel physicist
Max Planck at the University of Gottingen before he switched his interests to set theory.
Fraenkel went on to became the first dean of mathematics at Hebrew University.

Sets are mathematical objects that contain elements and support several operations. Ex-
amples of set operations include equality, subsets, intersection, union, set difference, carte-
sian product (the creation of pairs of elements), the power set (the set of all subsets), and
cardinality (the number of elements). For a standard set V with distinct element v ∈ V ,
there are a number of standard operations

• U = V means that U and V have the same elements
• U ⊂ V denotes that U is a subset of V
• U ∩V denotes the intersection of sets U and V
• U ∪V denotes the union of sets U and V
• U \V denotes the difference of sets U and V
• U ×V denotes the cartesian product of sets U and V
• P(V) is the power set of V
• |V | is the cardinality of V

In a standard set, order is not important, nor are duplicates counted, and there is no un-
derlying structure. The fact that sets have no underlying structure provides an empty slate
from which to build upon and is why sets are the basis of modern mathematics.

“current_book”
2017/8/27
23:44
page 155
#179

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.6 Semiring 155

Object
v : Object
=

Set
V = {u, v, w, …}
u, v, w, … : Object
=, ⊂, ∩, ∪, \, ×, (), | |P

Figure 8.4
Class diagram depicting the relationship between an object and a set.

Sets are built from elements, which are themselves mathematical objects that admit an
equality operation so that an element can know itself. The relationship of sets and objects
can be summarized in the class diagram shown in Figure 8.4. The definition is recursive.
The element of a set is a mathematical object that has one element, which is also an object.

8.6 Semiring

Semirings are the primary mathematical object of interest for associative arrays. It is un-
clear if the term ring was meant to evoke an association among or a looping back of the
elements of a set. Semi in this context means inverse elements are not required, such as
fractions or negative numbers, but they may exist. A zero-sum-free semiring implies that
there are no inverses. Thus, a semiring implies a collection of elements and corresponding
operations without inverse elements. The term ring is attributed to German mathematician
David Hilbert [14]. Hilbert was the leading professor of mathematics at the University of
Gottingen during its zenith as the world’s leading center of mathematical research. Much
of the mathematics that will be subsequently described is a result of the work done at the
University of Gottingen. Tragically, Hilbert had to witness the dismantling of his life’s
work during the 1930s.

The journey from sets to semirings is done in a well-defined series of steps. Each step
adds properties that result in the definition of a new mathematical object. The class diagram
shown in Figure 8.5 summarizes the relationships among these mathematical objects.

The journey to a semiring begins by defining a closed binary operation ⊗ such that

u⊗ v ∈ V

A set with this property is referred to as a magma. Regrettably, the origin of the term
magma is unclear. Magma is mentioned by the pseudonymous Nicolas Bourbaki collec-
tive of French mathematicians [15] and may come from the French word for a jumble
or unstructured collection, which is consistent with its mathematical usage. If the binary

“current_book”
2017/8/27
23:44
page 156
#180

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

156 Chapter 8 Visualizing the Algebra of Associative Arrays

Set
V = {u, v, w, …}
u, v, w, … : Object
=, ⊂, ∩, ∪, \, ×, (), | |

Magma

 u ⊗ v ∈ V

Semigroup

u ⊗ (v ⊗ w) = (u ⊗ v) ⊗ w

Commutative Monoid

u ⊗ v = v ⊗ u

Monoid
1 ∈ V
1 ⊗ v = v ⊗ 1 = v

Group
v-1 ∈ V
v-1 ⊗ v = v ⊗ v-1 = 1

Commutative Group

u ⊗ v = v ⊗ u

Semiring
0,1 ∈ V
⊗ Monoid (identity 1)
⊕ Commutative Monoid (identity 0)
0 ⊗ v = v ⊗ 0 = 0
u ⊗ (v ⊕ w) = (u ⊗ v) ⊕ (u ⊗ w)
(v ⊕ w) ⊗ u = (v ⊗ u) ⊕ (w ⊗ u)

Commutative Semiring

⊗ Commutative Monoid
 u ⊗ v = v ⊗ u

P

Figure 8.5
Class diagram depicting the construction of a semiring mathematical object.

operation in a magma has the additional property of being associative so that

u⊗ (v⊗w) = (u⊗ v)⊗w

then the mathematical object is a semigroup. In this case, a semigroup can be viewed
as a group but with fewer properties. In this context, the prefix semi (as in semigroup,
semiring, semimodule, or semialgebra) generally indicates that the object does not require
inverse elements v−1 where

v⊗ v−1 = 1

The first documented use of the term semi-groupe is attributed to the French mathematician
and independent scholar Jean Armand Marie Joseph de Seguier [16].

Including in a set the identity element 1 implies that

v⊗1 = v

A semigroup with an identity element is referred to as a monoid. Mono is a prefix meaning
1 and so it is natural that a monoid is distinguished by having an identity element (often
denoted 1). The first recorded use of the term is associated with the French-American
mathematician Claude Chevalley [17]. Extending a monoid to include the commutative

“current_book”
2017/8/27
23:44
page 157
#181

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.7 Linear Algebra 157

property so that
u⊗ v = v⊗u

results in a commutative monoid.
The aforementioned mathematical objects have so far been defined with respect to a

single operation ⊗. Matrix mathematics and associative arrays require two operations ⊗
and ⊕. A semiring has two operations with two identity elements 1 and 0, where 1 is the
identity element with respect to ⊗ and 0 is the identity element with respect to ⊕. More
formally, a semiring contains a monoid ⊗ and a commutative monoid ⊕. To complete the
definition requires specifying how ⊗ and ⊕ interact. For a semiring, 0 has the annihilator
property

v⊗0 = 0

and ⊗ distributes over ⊕ such that

u⊗ (v⊕w) = (u⊗ v)⊕ (u⊗w)

Traditional arithmetic with ⊕ ≡ +, ⊗ ≡ × includes the properties of a semiring (along with
other properties that make it a different mathematical object). One of the more interesting
semirings is the tropical semiring (⊕ ≡max, ⊗ ≡ +), which derives its name from the trop-
ical location of one its early pioneers, Brazilian mathematician Imre Simon [18]. Finally,
a semiring where ⊗ is commutative is referred to as a commutative semiring.

A group is one of the foundational objects of abstract mathematics. A group extends a
monoid by including inverse elements v−1 (or −v) where

v⊗ v−1 = 1

or
v⊕−v = 0

The French mathematican Evariste Galois is credited as the first to use the modern term
group (groupe in French). Galois’ most formal definition of the group is spelled out in a
letter written to a colleague on the eve of the duel that at age 29 would take his life [19]. A
commutative group extends a group by requiring the binary operation to be commutative.
Commutative groups are also called Abelian groups, an honor bestowed by French math-
ematician Camille Jordan on Norwegian mathematician Niels Henrik Abel for his early
contributions to group theory. Tragically, like Galois, Abel also died at a young age (26)
on the eve of obtaining his first stable job as a professor at the University of Berlin.

8.7 Linear Algebra

Associative arrays have many properties that are similar to linear algebra. The journey
from a semiring to associative arrays is informed by linear algebra, which is more formally

“current_book”
2017/8/27
23:44
page 158
#182

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

158 Chapter 8 Visualizing the Algebra of Associative Arrays

Commutative Group

u ⊗ v = v ⊗ u

Semiring
0,1 ∈ V
⊗ Monoid (identity 1)
⊕ Commutative Monoid (identity 0)
0 ⊗ v = v ⊗ 0 = 0
u ⊗ (v ⊕ w) = (u ⊗ v) ⊕ (u ⊗ w)
(v ⊕ w) ⊗ u = (v ⊗ u) ⊕ (w ⊗ u)

Ring
-v ∈ V
⊕ Commutative Group
 -v ⊕ v = v ⊕ -v = 0

Commutative Ring

⊗ Commutative Monoid
 u ⊗ v = v ⊗ u

Field

⊗ Commutative Group
 ignore 0-1

Semimodule
v = [v(1),…,v(n)]
⊗ Scalar Multiplication
⊕ Commutative Monoid
w = c ⊗ v implies w(i) = c ⊗ v(i)
w = u ⊕ v implies w(i) = u(i) ⊕ v(i)

Module
V : Ring
⊕ Commutative Group

Vector Space
V : Field
⊕ Commutative Group

Semialgebra

⊗ Array Hadamard Product or
⊕.⊗ Array Product
C = A ⊗ B implies 	
 C(i,j) = A(i,j) ⊗ B(i,j)
C = A ⊕.⊗ B implies 	
 C(i,j) = ⊕k A(i,k) ⊗ B(k,j)

Associative Array Algebra
K1 : Finite Strict Totally Ordered Set
K2 : Finite Strict Totally Ordered Set
V : Semiring
A : K1× K2→	V
(Semiring)	

Algebra over a Field
V : Field
(Linear Algebra)

Figure 8.6
Class diagram of an algebra over a field (linear algebra).

referred to as an algebra over a field. Figure 8.6 shows the class diagram depicting the
relationships among the mathematical objects that start with a semiring and end up with
linear algebra.

So far, the descriptions of the mathematical objects have been limited to operations on
elements of sets. Organizing these elements into vectors u, v, and w with appropriate scalar
multiplication

w = c⊗v where w(i) = c⊗v(i)

and element-wise addition

w = u⊕v where w(i) = u(i)⊕v(i)

results in a new mathematical object called a semimodule.
Extending a semimodule to matrices by including an element-wise (Hadamard) product

C = A⊗B where C(i, j) = A(i, j)⊗B(i, j)

or a matrix product

C = AB = A ⊕.⊗ B where C(i, j) =
⊕

k

A(i,k)⊗B(k, j)

results in a semialgebra.
The term matrix was first coined by English mathematician James Joseph Sylvester in

1848 while hew was working as an actuary with fellow English mathematician and lawyer

“current_book”
2017/8/27
23:44
page 159
#183

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.7 Linear Algebra 159

Arthur Cayley [20]. Sylvester would later be the tutor of Florence Nightingale and go on
to become the first mathematician at Johns Hopkins University. The term matrix was taken
from the Latin word for “womb”; perhaps to evoke the concept of a womb of numbers.

A ring extends a semiring by replacing its commutative monoid operation ⊕ with a com-
mutative group. The commutative group ⊕ in a ring also requires additive inverses satisfy-
ing

v⊕−v = 0

be included in the set V . A commutative ring extends a ring by replacing the monoid
operation ⊗ with a commutative monoid that satisfies

u⊗ v = v⊗u

A commutative ring is nearly equivalent to the normal arithmetic that is used in everyday
transactions. The mathematics of adding, subtracting, multiplying, and dividing decimal
numbers is done with a mathematical object referred to as a field. A field extends a commu-
tative ring by replacing the commutative monoid operation ⊗ with the commutative group
operation. The commutative group ⊗ in a field also requires multiplicative inverses satisfy-
ing v⊗v−1 = 1 be included in the set V . Furthermore, the zero inverse 0−1 is excluded from
the set V . The term field is attributed to American mathematician and founder of the Uni-
versity of Chicago mathematics department Eliakim Hastings Moore [21]. Moore chose
the English word field as a substitute for the German word zahlenkorper (body of numbers)
coined by German mathematician Richard Dedekind (Gauss’ last student) in 1858 [22].

Extending a semimodule by replacing the commutative monoid operation ⊕ with the
commutative group operation satisfying

u⊕v = v⊕u

where the value set V also includes inverse elements

v⊕−v = 0

results in a module. The term module is also attributed to Dedekind, who translated his
own German term modul into the French term module [23].

The most commonly used form of vector mathematics is associated with the vector space
mathematical object that extends a module by replacing the ring in the module with a field.
The term vector space was used in the 1880s by English physicist Oliver Heaviside [24],
who first wrote Maxwell’s equations of electromagnetism in terms of vector terminology.
The mathematical definition of a vector space (linear space) was first described by Italian
mathematician Giuseppe Peano [25], who made many contributions to the axiomatization
of mathematics.

Linear algebra (algebra over a field) is a short step from a semialgebra or a vector space.
Linear algebra extends a semialgebra by replacing the semiring with a field. Likewise, lin-

“current_book”
2017/8/27
23:44
page 160
#184

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

160 Chapter 8 Visualizing the Algebra of Associative Arrays

Set
V = {u, v, w, …}
u, v, w, … : Object
=, ⊂, ∩, ∪, \, ×, (), | |

Partially Ordered Set

 u ≤ v or v ≤ u for some u, v

Totally Ordered Set

u ≤ v or v ≤ u for all u, v

Strict Totally Ordered Set

u<v, v<u, or v=u for all u, v

Strict Partially Ordered Set

u < v or v < u for some u, v

Lattice

∧ (infimum) ∨ (supremum)

Finite Strict Totally Ordered Set

|V| < ∞

P

Figure 8.7
Class diagram depicting the relationships between various ordered sets.

ear algebra extends a vector space by including either an element-wise product or matrix
product. The first book entitled Linear Algebra was written in 1882 by Ottoman mathe-
matician and general Hussein Tevfik Pacha [26]. The formalization of linear algebra was
developed by many others, including Giuseppe Peano and David Hilbert.

8.8 Ordered Sets

Many of the interesting semirings for associative arrays depend strongly on the ordering
of the elements in the value set. Likewise, for practical reasons, the row and column keys
of an associative array are also ordered sets. The journey from a set to a finite strict totally
ordered set passes through a number of mathematical objects. Figure 8.7 shows the class
diagram of the relationships among the mathematical objects starting with a set and ending
up with a strict totally ordered set.

The key concept for ordering the elements of set is extending an ordinary set with the ≤
relation. A set is said to be partially ordered if

v ≤ v

for every v ∈ V (reflexitivity), if

u ≤ v and v ≤ u

implies
v = u

“current_book”
2017/8/27
23:44
page 161
#185

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.8 Ordered Sets 161

for every u,v ∈ V (anti-symmetry), and if

u ≤ v and v ≤ w

implies
u ≤ w

for every u,v,w ∈ V (transitivity). While some elements in the set V can be compared, not
all pairs u,v must be comparable, and it is not required that

u ≤ v or v ≤ u

for every u,v ∈ V .
The term poset [27] is an abbreviation for partially ordered set and is credited to Ameri-

can mathematician and Harvard professor Garrett Birkhoff (who was the son of American
mathematician and Harvard professor George Birkhoff). If any two u,v ∈ V are compara-
ble, so u ≤ v or v ≤ u, then the set is said to be totally ordered [27, p2]. A totally ordered
set extends a partially ordered set by stipulating that all elements can be compared.

The ≤ operator does not distinguish between = and <. A strict partially ordered set ex-
tends (in the UML sense) a partially ordered set by specifying that there are some elements
u,v ∈ V where

u ≤ v but not v ≤ u

so that u < v. The above condition implies that some elements in the set V are less than
other elements. If for every pair u,v ∈ V there is exactly one of

u = v or u < v or v < u

then the set is defined to be a strict totally ordered set. Including the condition that the
set V has a finite number of elements results in a finite strict totally ordered set of the type
that is required to make the row keys and column keys of an associative array work in
practice. Specifically, the fact that all elements are comparable means that the elements
can be sorted and enables the efficient retrieval of the rows or columns of an associative
array.

The ≤ relation naturally leads to the question of whether in a partially or totally ordered
set V two elements have a least upper bound ∧ (infimum) and a greatest lower bound ∨
(supremum). The existence of these bounds extends partially and totally ordered sets to
become mathematical objects referred to as lattices. Lattice theory began when Dedekind
published the two fundamental papers that brought the theory to life well over 100 years
ago [28, 29]. Lattices are better behaved than partially ordered sets lacking these bounds
[30].

“current_book”
2017/8/27
23:44
page 162
#186

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

162 Chapter 8 Visualizing the Algebra of Associative Arrays

Lattice

∧ (infimum) ∨ (supremum)

Bounded Lattice
0,1 ∈ V
0 ∨ v=v 0 ∧ v=0
1 ∧ v=v 1 ∨ v=1

Distributive Lattice

u ∨(v ∧ w) =
 (u ∨ v) ∧ (u ∨ w)
u ∧(v ∨ w) =
 (u ∧ v) ∨(u ∧ w)

Bounded Distributive Lattice

Heyting Algebra

⇒
w=u⇒v implies w is greatest
such that u ∧ w ≤ v

Boolean Algebra

¬
u ∧ ¬u = 0
u ∨ ¬u = 1

Complete Lattice
∧U, ∨U ∈ V for all U ⊂ V

Complete Heyting Algebra

Figure 8.8
Class diagram depiction of Boolean algebra.

8.9 Boolean Algebra

Boolean algebra is one of the most important mathematical objects of the digital era. The
term Boolean algebra is named English-Irish mathematician and University of Cork pro-
fessor George Boole, who laid the foundations of the field [31, 32]. In the preface of his
1847 book, Boole states

What may be the final estimate of the value of the system, I have neither the wish nor the
right to anticipate.

Little did Boole know that all of the functionality of digital computers would be based on
the mathematics he pioneered.

Associative arrays work effectively with a wide range of value sets with various prop-
erties, including Boolean algebra. Boolean algebras have two values 0 and 1; two binary
operations ∧ (called “infimum”) and ∨ (called “supremum”); and a negation operation ¬.
Figure 8.8 shows the class diagram that starts by extending lattices and leads to Boolean
algebra.

A lattice has a pair of operations, and how these operations interact defines much of its
behavior. Given elements u,v,w ∈ V in a lattice, the lattice is a distributive lattice if the ∨
operation distributes over the ∧ operation

u∨ (v∧w) = (u∨ v)∧ (u∨w)

“current_book”
2017/8/27
23:44
page 163
#187

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.9 Boolean Algebra 163

Semiring
0,1 ∈ V
⊗ Monoid (identity 1)
⊕ Commutative Monoid (identity 0)
0 ⊗ v = v ⊗ 0 = 0
u ⊗ (v ⊕ w) = (u ⊗ v) ⊕ (u ⊗ w)
(v ⊕ w) ⊗ u = (v ⊗ u) ⊕ (w ⊗ u)

Semialgebra

⊗ Array Hadamard Product or
⊕.⊗ Array Product
C = A ⊗ B implies 	
 C(i,j) = A(i,j) ⊗ B(i,j)
C = A ⊕.⊗ B implies 	
 C(i,j) = ⊕k A(i,k) ⊗ B(k,j)

Associative Array Algebra
K1 : Finite Strict Totally Ordered Set
K2 : Finite Strict Totally Ordered Set
V : Semiring
A : K1× K2→	V
(Semiring)	

Finite Strict Totally Ordered Set

|V| < ∞

Figure 8.9
Class diagram depiction of an associative array algebra.

and if the ∧ operation distributes over the ∨ operation

u∧ (v∨w) = (u∧ v)∨ (u∧w)

This behavior is beyond that of what is typically found in a semiring, whereby ⊗ distributes
over ⊕

u⊗ (v⊕w) = (u⊗ v)⊕ (u⊗w)

but ⊕ does not distributes over ⊗

u⊕ (v⊗w) , (u⊕ v)⊗ (u⊕w)

If the elements 0 and 1 are the bounds of the lattice such that for v ∈ V

v∨0 = v

and
1∧ v = v

then the lattice is said to be a bounded lattice. Combining the properties of a distributive
lattice and a bounded lattice produces a bounded distributive lattice.

A lattice is said to be a complete lattice if the infimum
∧

U and supremum
∨

U exist for
every subset U ⊂ V .

“current_book”
2017/8/27
23:44
page 164
#188

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

164 Chapter 8 Visualizing the Algebra of Associative Arrays

Given a pair of elements u,v ∈ V that are part of a bounded distributive lattice, it is
reasonable to ask what is the greatest element w ∈ V such that

u∧w ≤ v

This element is denoted
w = u⇒ v

and the inclusion of the⇒ operator defined above results in a Heyting algebra (pronounced
"hating algebra") named after Dutch mathematician and University of Amsterdam profes-
sor Arend Heyting, who pioneered the concept [33]. If the lattice in a Heyting algebra is
complete, then it is a complete Heyting algebra.

A Boolean algebra (V,∧,∨,¬,0,1) is formed from a Heyting algebra by adding the ¬
operation with the complementary properties

v∨¬v = 1 , v∧¬v = 0

8.10 Associative Array Algebra

The previously described mathematical objects lay the foundation for associative arrays,
which extends three mathematical objects: semiring, semialgebra, and finite strict totally
ordered sets (see Figure 8.9). Associative arrays extend a semialgebra by allowing the row
and column sets to be any strict totally ordered sets. Likewise, the value set of an associa-
tive array is a semiring. Furthermore, associative arrays themselves are also semirings.

The class diagram of all the mathematical objects needed to build an associative array
algebra is shown in Figure 8.10. Class diagrams of mathematics are not proofs, nor do they
show the mathematician how to create the proof, but class diagrams do provide a visual
guide to the objects that will be in the proof. The class diagrams can serve as helpful
reminders of the larger context of these objects and how they relate to associative arrays.

8.11 Conclusions, Exercises, and References

The properties of matrix mathematics are grounded in the abstract algebra objects whose
formalization was the focus of much of mathematics in the past century. Demonstrating
that these properties carry over into associative arrays requires defining associative array
algebra in a similar manner. Associative array operations and matrix operations have many
similarities. Sets, semirings, linear algebra, ordered sets, and Boolean algebra all have
properties that build upon each other. The relationships between and among these mathe-
matical objects can be shown visually with class diagrams, which are used to depict similar
relationships in software.

“current_book”
2017/8/27
23:44
page 165
#189

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.11 Conclusions, Exercises, and References 165

O
bj

ec
t

v
: O

bj
ec

t
= M

ag
m

a

 u
 ⊗

 v
 ∈

 V

Se
m

ig
ro

up

u
⊗

 (v
 ⊗

 w
) =

 (u
 ⊗

 v
) ⊗

 w

C
om

m
ut

at
iv

e
M

on
oi

d

u
⊗

 v
 =

 v
 ⊗

 u

M
on

oi
d

1
∈

 V
1
⊗

 v
 =

 v
 ⊗

 1
 =

 v

G
ro

up
v-1

 ∈
 V

v-1
 ⊗

 v
 =

 v
 ⊗

 v
-1

 =
 1

C
om

m
ut

at
iv

e
G

ro
up

u
⊗

 v
 =

 v
 ⊗

 u

Se
m

ir
in

g
0,

1
∈

 V
⊗

 M
on

oi
d

(id
en

tit
y

1)
⊕

 C
om

m
ut

at
iv

e
M

on
oi

d
(id

en
tit

y
0)

0
⊗

 v
 =

 v
 ⊗

 0
 =

 0

u
⊗

 (v
 ⊕

 w
) =

 (u
 ⊗

 v
) ⊕

 (u
 ⊗

 w
)

(v
 ⊕

 w
) ⊗

 u
 =

 (v
 ⊗

 u
) ⊕

 (w
 ⊗

 u
)

C
om

m
ut

at
iv

e
Se

m
ir

in
g

⊗
 C

om
m

ut
at

iv
e

M
on

oi
d

 u

 ⊗
 v

 =
 v

 ⊗
 u

R
in

g
-v

 ∈
 V

⊕
 C

om
m

ut
at

iv
e

G
ro

up

 -v
 ⊕

 v
 =

 v
 ⊕

 -v
 =

 0

C
om

m
ut

at
iv

e
R

in
g

⊗
 C

om
m

ut
at

iv
e

M
on

oi
d

 u

 ⊗
 v

 =
 v

 ⊗
 u

Fi
el

d

⊗
 C

om
m

ut
at

iv
e

G
ro

up

 ig
no

re
 0

-1

Se
m

im
od

ul
e

v
=

[v
(1

),…
,v

(n
)]

⊗
 S

ca
la

r M
ul

tip
lic

at
io

n
⊕

 C
om

m
ut

at
iv

e
M

on
oi

d
w

 =
 c

 ⊗
 v

 im
pl

ie
s w

(i)
 =

 c
 ⊗

 v
(i)

w
 =

 u
 ⊕

 v
 im

pl
ie

s w
(i)

 =
 u

(i)
 ⊕

 v
(i)

M
od

ul
e

V
 :

Ri
ng

⊕
 C

om
m

ut
at

iv
e

G
ro

up

Ve
ct

or
 S

pa
ce

V
 :

Fi
el

d
⊕

 C
om

m
ut

at
iv

e
G

ro
up

Se
m

ia
lg

eb
ra

⊗
 A

rra
y

H
ad

am
ar

d
Pr

od
uc

t o
r

⊕
.⊗

 A
rra

y
Pr

od
uc

t
C

 =
 A

 ⊗
 B

 im
pl

ie
s 	

 C
(i,

j)
=

A
(i,

j)
⊗

 B
(i,

j)
C

 =
 A

 ⊕
.⊗

 B
 im

pl
ie

s 	
 C

(i,
j)

=
⊕

k A
(i,

k)
 ⊗

 B
(k

,j)

A
ss

oc
ia

tiv
e A

rr
ay

 A
lg

eb
ra

K
1 :

 F
in

ite
 S

tri
ct

 T
ot

al
ly

 O
rd

er
ed

 S
et

K
2 :

 F
in

ite
 S

tri
ct

 T
ot

al
ly

 O
rd

er
ed

 S
et

V

 :
Se

m
iri

ng
A

: K
1×

 K
2→

	V
(S

em
iri

ng
)	

A
lg

eb
ra

 o
ve

r a
 F

ie
ld

V
 :

Fi
el

d
(L

in
ea

r A
lg

eb
ra

)

Pa
rt

ia
lly

 O
rd

er
ed

 S
et

 u
 ≤

 v
 o

r v
 ≤

 u
 fo

r s
om

e
u,

 v

To
ta

lly
 O

rd
er

ed
 S

et

u
≤

v
or

 v
 ≤

 u
 fo

r a
ll

u,
 v

St
ri

ct
 T

ot
al

ly
 O

rd
er

ed
 S

et

u<
v,

 v
<u

, o
r v

=u
 fo

r a
ll

u,
 v

St
ri

ct
 P

ar
tia

lly
 O

rd
er

ed
 S

et

u
<

v
or

 v
 <

 u
 fo

r s
om

e
u,

 v

La
tti

ce

∧
 (i

nfi
m

um
)

 ∨
 (s

up
re

m
um

)

Bo
un

de
d

La
tti

ce
0,

1
∈

 V
0
∨

 v
=v

 0
 ∧

 v
=0

1
∧

 v
=v

 1
 ∨

 v
=1

D
ist

ri
bu

tiv
e

La
tti

ce

u
∨

(v
 ∧

 w
) =

 (
u
∨

 v
) ∧

 (u
 ∨

 w
)

u
∧

(v
 ∨

 w
) =

 (
u
∧

 v
) ∨

(u
 ∧

 w
)

Bo
un

de
d

D
ist

ri
bu

tiv
e

La
tti

ce

H
ey

tin
g

A
lg

eb
ra

⇒ w
=u
⇒

v
im

pl
ie

s w
 is

 g
re

at
es

t
su

ch
 th

at
 u

 ∧
 w

 ≤
 v

Bo
ol

ea
n

A
lg

eb
ra

¬ u
∧

 ¬
u

=
0

u
∨

 ¬
u

=
1

C
om

pl
et

e
La

tti
ce

∧
U

, ∨
U

 ∈
 V

 fo
r a

ll
U

 ⊂
 V

C
om

pl
et

e
H

ey
tin

g
A

lg
eb

ra

Fi
ni

te
 S

tr
ic

t T
ot

al
ly

 O
rd

er
ed

 S
et

|V
| <

 ∞

Se
t

V
 =

 {
u,

 v
, w

, …
}

u,
 v

, w
, …

 :
O

bj
ec

t
=,

 ⊂
, ∩

, ∪
, \

, ×
,

 (
),

 |
|

P

Fi
gu

re
8.

10
C

om
pl

et
e

U
M

L
de

pi
ct

io
n

of
m

at
he

m
at

ic
al

ob
je

ct
s

un
de

rp
in

ni
ng

as
so

ci
at

iv
e

ar
ra

y
al

ge
br

a.
T

hi
s

di
ag

ra
m

in
te

gr
at

es
th

e
U

M
L

de
pi

ct
io

n
of

se
ts

(F
ig

ur
e

8.
4)

,
se

m
ir

in
gs

(F
ig

ur
e

8.
5)

,s
em

im
od

ul
es

(F
ig

ur
e

8.
6)

,o
rd

er
ed

se
ts

(F
ig

ur
e

8.
7)

,B
oo

le
an

al
ge

br
a

(F
ig

ur
e

8.
8)

,a
nd

as
so

ci
at

iv
e

ar
ra

y
al

ge
br

a
(F

ig
ur

e
8.

9)
.

“current_book”
2017/8/27
23:44
page 166
#190

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

166 Chapter 8 Visualizing the Algebra of Associative Arrays

Exercises

Exercise 8.1 — Assume bathrooms also have a doors and sinks, but also have toilets that
flush. Draw a picture showing how a bathroom could be added to the class diagram in
Figure 8.3.

Exercise 8.2 — List the standard properties of a set.

Exercise 8.3 — Based on Figure 8.5, describe the properties that are added to the follow-
ing objects when they go from

(a) semigroup to monoid

(b) monoid to commutative monoid

(c) monoid to group

(d) group to commutative group

Exercise 8.4 — Based on Figure 8.6, describe the objects that each of the following ob-
jects inherits from

(a) ring

(b) commutative ring

(c) field

(d) module

(e) vector space

Exercise 8.5 — Based on Figure 8.7, describe the properties that are added to the follow-
ing objects when they go from

(a) set to partially ordered set

(b) partially ordered set to totally ordered set

(c) partially ordered set to strict partially ordered set

(d) strict partially ordered set to strict totally ordered set

Exercise 8.6 — Can Figure 8.10 be drawn on sheet of paper such that no lines cross?

Exercise 8.7 — Given the formulation for associative array multiplication where ⊕ is stan-
dard arithmetic addition and ⊗ is standard arithmetic multiplication

C(k1,k2) =
∑
k3

A(k1,k3)×B(k3,k2)

use the associative array A in Figure 5.2 to compute the following via array multiplication

“current_book”
2017/8/27
23:44
page 167
#191

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

8.11 Conclusions, Exercises, and References 167

(a) AA

(b) (AA)T

Exercise 8.8 — Using small associative arrays and ⊕ ≡ max and ⊗ ≡ min, write down
examples that illustrate the associativity property of element-wise addition, element-wise
multiplication, and array multiplication.

Exercise 8.9 — Using small associative arrays and ⊕ ≡ max and ⊗ ≡ min, write down
examples that illustrate the commutativity property of element-wise addition and element-
wise multiplication.

Exercise 8.10 — Using small associative arrays and ⊕ ≡ max and ⊗ ≡ min, write down
examples that illustrate the distributivity property of element-wise multiplication with
element-wise addition and array multiplication with element-wise addition.

Exercise 8.11 — Drawing from your own experience, select a topic you know well and
create a class diagram illustrating relationships in that topic.

References

[1] C. R. Gallistel and R. Gelman, “Non-verbal numerical cognition: From reals to integers,” Trends in cognitive
sciences, vol. 4, no. 2, pp. 59–65, 2000.

[2] C. B. Boyer and U. C. Merzbach, A History of Mathematics. John Wiley & Sons, 2011.

[3] K. Macpherson and W. A. Roberts, “Can dogs count?,” Learning and Motivation, vol. 44, no. 4, pp. 241–251,
2013.

[4] A. Goldberg and D. Robson, Smalltalk-80: the Language and its Implementation. Addison-Wesley Longman,
1983.

[5] B. Stroustrup, The C++ Programming Language. Addison-Wesley, 1986.

[6] K. Arnold and J. Gosling, “The java programming language,” 1996.

[7] “United States National CAD standard.” http://www.nationalcadstandard.org. Accessed: 2017-04-08.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide. Addison Wesley,
1998.

[9] G. Cantor, “Ueber eine eigenschaft des inbegriffs aller reellen algebraischen zahlen,” Journal für die reine
und angewandte Mathematik, vol. 77, pp. 258–262, 1874.

[10] B. Russell, “Letter to Gottlob Frege,” June 16 1902.

[11] G. Frege, “Letter to Bertand Russell,” June 22 1902.

[12] E. Zermelo, “Untersuchungen über die grundlagen der mengenlehre. i,” Mathematische Annalen, vol. 65,
no. 2, pp. 261–281, 1908.

[13] A. Fraenkel, “Zu den grundlagen der cantor-zermeloschen mengenlehre,” Mathematische annalen, vol. 86,
no. 3, pp. 230–237, 1922.

[14] D. Hilbert, Zahlbericht (Report on the theory of numbers). Springer, 1987.

[15] N. Bourbaki, P. M. Cohn, and J. Howie, Algebra. Hermann Paris, 1974.

“current_book”
2017/8/27
23:44
page 168
#192

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

168 Chapter 8 Visualizing the Algebra of Associative Arrays

[16] J.-A. de Séguier, Éléments de la théorie des groupes abstraits. Gauthier-Villars Paris, 1904.

[17] C. Chevalley, Fundamental Concepts of Algebra, vol. 7. Academic Press, 1957.

[18] I. Simon, “Recognizable sets with multiplicities in the tropical semiring,” in Mathematical Foundations of
Computer Science 1988, pp. 107–120, Springer, 1988.

[19] E. Galois, “Lettre à auguste chevalier,” May 29 1832.

[20] A. Cayley, “A memoir on the theory of matrices,” Philosophical transactions of the Royal society of London,
vol. 148, pp. 17–37, 1858.

[21] E. H. Moore, “A doubly-infinite system of simple groups,” Bulletin of the American Mathematical Society,
vol. 3, no. 3, pp. 73–78, 1893.

[22] W. Scharlau, “Unpublished algebraic works of Dedekind, Richard from his Gottingen era 1855-1858,”
Archive for History of Exact Sciences, vol. 27, no. 4, pp. 335–367, 1982.

[23] R. Dedekind, “Sur la théorie des nombres entiers algébriques,” Bulletin des Sciences mathématiques et as-
tronomiques, vol. 1, no. 1, pp. 207–248, 1877.

[24] O. Heaviside, “Lxii. on resistance and conductance operators, and their derivatives, inductance and per-
mittance, especially in connexion with electric and magnetic energy,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 24, no. 151, pp. 479–502, 1887.

[25] G. Peano, Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann: preceduto dalla operazioni
della logica deduttiva, vol. 3. fratelli Bocca, 1888.

[26] H. T. Pacha, Linear Algebra. Constantinople, 1882.

[27] G. Birkhoff, G. Birkhoff, G. Birkhoff, E.-U. Mathématicien, and G. Birkhoff, Lattice Theory, vol. 25. Amer-
ican Mathematical Society New York, 1948.

[28] R. Dedekind, “Über zerlegungen von zahlen durch ihre grössten gemeinsamen theiler,” in Fest-Schrift der
Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pp. 1–40, Springer, 1897.

[29] R. Dedekind, “Über die von drei moduln erzeugte dualgruppe,” Mathematische Annalen, vol. 53, no. 3,
pp. 371–403, 1900.

[30] G.-C. Rota, “The many lives of lattice theory,” Notices of the AMS, vol. 44, no. 11, pp. 1440–1445, 1997.

[31] G. Boole, The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning.
Philosophical Library, 1847.

[32] G. Boole, An Investigation of the Laws of Thought: On which are Founded the Mathematical Theories of
Logic and Probabilities. Dover Publications, 1854.

[33] A. Heyting, Die formalen Regeln der intuitionistischen Mathematik. Verlag der Akademie der Wis-
senschaften, 1930.

“current_book”
2017/8/27
23:44
page 169
#193

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9 Defining the Algebra of Associative Arrays

Summary

The overarching properties of associative arrays are determined by the underlying proper-
ties of the values of the entries in an associative array. The properties of the values are
determined by the formal definitions of the underlying mathematical objects. Understanding
these mathematical objects requires some of the terminology of modern abstract algebra,
with particular emphasis on semirings. Many of the interesting semirings for associative
arrays depend strongly on the ordering of the elements in the value set. For this reason,
the general terminology and theory of lattices are explained. This chapter rigorously de-
fines the mathematical objects necessary to construct associative arrays and culminates with
definitions of the semirings of greatest interest for practical data analysis applications.

9.1 Operations on Sets

The previous chapter provided an overview of the mathematical objects necessary for as-
sociative arrays. This chapter begins the process of defining these objects more rigorously.

The foundational object of abstract algebra is a set that is defined by axioms. The set
axioms that are most relevant to associative arrays are the Zermelo-Fraenkel-Choice (ZFC)
axioms (see [1–3] for definitions and examples, therein).

Extensionality — Two sets U and V are equal if and only if they have the same elements.
Regularity — Every set V contains an element v disjoint from V so that v∩V = ∅.
Schema of Specification — Any definable subclass of a set is a set. If f is a definable rule

on the elements of a set V , then V f = {v ∈ V | f (v)} is also a set.
Pairing — If U and V are sets, then the set of this pair of sets {U,V} is also a set.
Union — The union of all of the elements of a set

⋃
v∈V v is a set.

Schema of Replacement — If f is a definable function on the elements of set V , then f (V)
is also a set.

Infinity — The set of natural numbers N = {0,1,2, . . .} exists.
Power Set — The power set P(V) of a set V exists.
Choice — For every set V , there is binary relation that well orders the elements of V .

A binary operation ⊗ on a set V is a map V ×V → V . An arbitrary binary operation
is of limited utility, and it is helpful to put conditions on these maps. For any elements

“current_book”
2017/8/27
23:44
page 170
#194

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

170 Chapter 9 Defining the Algebra of Associative Arrays

u,v,w ∈ V , these properties typically include associativity

(u⊗ v)⊗w = u⊗ (v⊗w)

commutativity
u⊗ v = v⊗u

the existence of an identity
v⊗1 = 1⊗ v = v

and the existence of inverses
v⊗ v−1 = v−1⊗ v = 1

These properties are particularly nice because they make computation much simpler and
provide for algebraic manipulation of expressions and equations. There exists specific
terminology for sets equipped with binary operations that satisfy some or all of the above
properties.

Associativity is particularly useful because it allows expressions like

u⊗ v⊗w

to be regarded unambiguously, allowing the definition of a repeated ⊗ operation and mak-
ing exponents possible, such as

v⊗ v⊗ v = v3

For this reason, associativity will be one of the first assumptions applied to any binary op-
eration being considered. The existence of an identity is useful because it is a precursor to
the existence of inverse elements and shows up regularly even when there are not inverses.
The utility of associativity and an identity motivates the following definitions [4]

Definition 9.1
Monoid

A set V with a binary operator ⊗ is a monoid, denoted (V,⊗,1), if

1. (u⊗ v)⊗w = u⊗ (v⊗w) for every u,v,w ∈ V (associativity) and
2. there exists an element 1 ∈V such that v⊗1 = 1⊗v = v (existence of an identity).

V is typically called the underlying set of the monoid (V,⊗,1).
If ⊗ also satisfies the identity

u⊗ v = v⊗u

for every u,v ∈V (commutativity), then (V,⊗,1) is said to be a commutative monoid.

“current_book”
2017/8/27
23:44
page 171
#195

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.1 Operations on Sets 171

Definition 9.2
Group

If (V,⊗,1) is a monoid, and v is an element of V , then an element v−1 of V is said to
be an inverse of v if

v⊗ v−1 = v−1⊗ v = 1

When there exists an inverse for every element of V , the monoid (V,⊗,1) is said to
be a group.
If ⊗ also satisfies the identity

u⊗ v = v⊗u

for every u,v ∈ V (commutativity), then group (V,⊗,1) is said to be a commutative
group.

Example 9.1

The set of natural numbers N = {0,1,2, . . .} combined with the binary addition op-
erator + and identity element 0 forms a commutative monoid (N,+,0).

Example 9.2

The set of natural numbersN= {0,1,2, . . .} combined with the binary multiplication
operator × and identity element 1 forms a commutative monoid (N,×,1).

The commutative monoids (N,+,0) and (N,×,1) are not groups, as no element has an
inverse except the identity element. No natural number can be added to another natural
number and equal 0 except 0 + 0 = 0. Likewise, no natural number can be multiplied by
another natural number and equal 1 except 1×1 = 1.

Having looked at a single binary operation on a set, it is now useful to look at sets with
two binary operations. A common property used to connect a pair of binary operations ⊗
and ⊕ is the distributive property. A pair of binary operations is said to be left distributive
when

u⊗ (v⊕w) = (u⊗ v)⊕ (u⊗w)

and right distributive when

(u⊕ v)⊗w = (u⊗w)⊕ (v⊗w)

where
u,v,w ∈ V

A pair of operations is called distributive if it is both left and right distributive.

“current_book”
2017/8/27
23:44
page 172
#196

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

172 Chapter 9 Defining the Algebra of Associative Arrays

It is also typical to require that any identity element 0 of ⊕ satisfies the property that

0⊗ v = v⊗0 = 0

The above properties motivate the formal definition of a semiring.

Definition 9.3
Semiring

[5] A semiring denoted
(V,⊕,⊗,0,1)

is a set V equipped with two binary operations, addition

⊕ : V ×V → V

and multiplication
⊗ : V ×V → V

which satisfy the following axioms for any u,v,w ∈ V

1. (V,⊕,0) is a commutative monoid and (V,⊗,1) is a monoid.
2. u⊗ (v⊕w) = (u⊗ v)⊕ (u⊗w) and (v⊕w)⊗u = (v⊗u)⊕ (w⊗u) (distributivity).
3. 0 annihilates V: v⊗0 = 0⊗ v = 0.

When (V,⊗,1) is a commutative monoid, the semiring (V,⊕,⊗,0,1) is said to be a
commutative semiring.

Definition 9.4
Ring

When (V,⊕,0) is a commutative group the semiring (V,⊕,⊗,0,1) is said to be a ring.
When the ring (V,⊕,⊗,0,1) is also a commutative semiring, then it is called a com-
mutative ring.

Definition 9.5
Field

If both (V,⊕,0) and (V \ {0},⊗,1) are commutative groups, then (V,⊕,⊗,0,1) is said
to be a field.

“current_book”
2017/8/27
23:44
page 173
#197

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.1 Operations on Sets 173

Example 9.3

The standard arithmetic that is first taught to children is a semiring, and this is the
“standard” semiring structure on N. More specifically, the set of natural numbers
N = {0,1,2, . . .} combined with standard addition + and multiplication × has addi-
tive identity 0 and multiplicative identity 1. Combined together, the set, operations,
and properties form the commutative semiring

(N,+,×,0,1)

Example 9.4

The set integers Z = {. . . , −1,0,1, . . .} with standard addition + and multiplication ×
is a ring

(Z,+,×,0,1)

Z supports a ring because all Z includes all the additive inverses, such as 1+ −1 = 0.

Example 9.5

The set of matrices A ∈ Sm×m with entries in the ring (S,⊕,⊗,0,1) is also a ring.
Specifically, these matrices with element-wise matrix addition ⊗, element-wise ma-
trix multiplication ⊗, additive identity 0, and ones matrix 1 form a ring

(Sn×m,⊗,⊕,0,1)

Example 9.6

The set of matrices A ∈ Sm×m with entries in the ring (S,⊕,⊗,0,1) is also a ring.
Specifically, the m×m matrices with element-wise matrix addition ⊗, matrix mul-
tiplication C = A⊕.⊗B, additive identity 0, and identity matrix I form a ring

(Sn×n,⊕,⊕.⊗,0, I)

Example 9.7

The set R+ = [0,+∞) of non-negative real numbers with standard addition +, mul-
tiplication ×, additive identity 0, and multiplicative identity 1 forms a commutative
semiring

(R+,+,×,0,1)

but not a ring. This is the “standard” semiring structure on R+.

“current_book”
2017/8/27
23:44
page 174
#198

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

174 Chapter 9 Defining the Algebra of Associative Arrays

natural!
numbers! integers!

rational numbers!
!
!
!
!
!
!

irrational!
numbers!

real numbers!
!
!
!

!
!
!
!
!
!

complex numbers!
!
!
!
!
!
!

!
!
!
!
!
!

strict .!
totally . !

ordered .!
sets .!!"

#
$

%

Figure 9.1
Venn diagram depiction of the relationship between various sets of numbers: N ⊂ Z ⊂ Q ⊂ R ⊂ C. The sets that
have a unique ordering are shown inside the dotted region.

Example 9.8

The set of rational numbers Q = {m/n | n , 0,m,n ∈ N}, with standard addition +

and multiplication × is a field
(Q,+,×,0,1)

Example 9.9

The set of real numbers R = (−∞,+∞), with standard addition + and multiplication
× is a field

(R,+,×,0,1)

Example 9.10

The set of complex numbers C = {x+y
√
−1 | x,y ∈ R}, with standard complex addi-

tion + and complex multiplication × is a field

(C,+,×,0,1)

The above examples deal with a variety of sets that will be important in the subsequent
chapters. The sets include the natural numbers

N = {0,1,2, . . .}

the integers
Z = {. . . , −1,0,1, . . .}

“current_book”
2017/8/27
23:44
page 175
#199

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.2 Ordered Sets 175

the rational numbers
Q = {m/n | n , 0,m,n ∈ N}

(where equivalent fractions are identified), the real numbers

R = (−∞,+∞)

and the complex numbers
C =

{
x + y

√
−1 | x,y ∈ R

}
The aboves sets have the following subset relationships

N ⊂ Z ⊂ Q ⊂ R ⊂ C

These subset relationships are shown in Figure 9.1. These sets are all common choices
for the value set V in an associative array. An additional important characteristic on sets is
the ordering of the elements of the set with respect to the < operation. A set with a unique
order to the elements is referred to as a strict totally ordered set. These sets can include
non-numeric elements, such as words or strings, and are a common choice for the value set
V in an associative array. Furthermore, the row key and column key sets K1 and K2 must
be strict totally ordered sets in order to guarantee efficient implementations. The properties
of different orderings on sets are discussed in greater detail in the next section.

9.2 Ordered Sets

The examples given above of semirings are all extremely interconnected, being based on
subsets of the complex numbers C. Other examples make use of the ordering properties of
the underlying sets [6]. As with binary operators on a set, the possible orders on a set are
restricted by additional properties [7].

Definition 9.6
Partially Ordered Set

A partially ordered set V , also denoted (V,≤), is a set V with a relation ≤, called
the partial order, on V satisfying

Reflexitivity — v ≤ v for every v ∈ V ,
Antisymmetry — u ≤ v and v ≤ u implies u = v for every comparable pair u,v ∈ V ,

and
Transitivity — u≤ v and v≤w implies u≤w for every comparable triple u,v,w ∈ V .

“current_book”
2017/8/27
23:44
page 176
#200

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

176 Chapter 9 Defining the Algebra of Associative Arrays

Definition 9.7
Totally Ordered Set

A totally ordered set (V,≤) is a partially ordered set (V,≤) such that for every pair
u,v ∈ V , either u ≤ v or v ≤ u, a property called totality. If neither u ≤ v nor v ≤ u
holds, then u and v are incomparable. When the partial order ≤ is total, ≤ is called
a total order.

Example 9.11

The natural numbers with standard less-than-or-equal-to are a totally ordered set
(N,≤).

Example 9.12

The integers with standard less-than-or-equal-to are a totally ordered set (Z,≤).

Example 9.13

The rational numbers with standard less-than-or-equal-to are a totally ordered set
(Q,≤).

Example 9.14

The real numbers with standard less-than-or-equal-to are a totally ordered set (R,≤
).

Example 9.15

The complex numbers with the dictionary order x + y
√
−1 ≤ z + w

√
−1 (so either

x ≤ z or x = z and y ≤ w) are a partially ordered set (C,≤).

Example 9.16

The words {blue, green, orange, pink, red, silver, white} sorted lexicographically
are a totally ordered set.

Figure 9.2 depicts some of the properties of ordered sets from Figure 5.10. Recall that
Figure 5.10 depicted a series of colored lines whose layering implies constraints on the
order that the colors were painted. These colors form a partially ordered set. From the
painting, certain orderings are imposed as a requirement. For example, the order must

“current_book”
2017/8/27
23:44
page 177
#201

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.3 Supremum and Infimum 177

infimum

<
white

red

orange

blue greensilver

pink

<

supremum

Figure 9.2
Hasse diagram of partially ordered sets from the color orderings listed in Figure 5.10. The sets form a partially
ordered set. Comparable pairs are marked with dotted lines. The top of the diagram is denoted the supremum and
the bottom is denoted the infimum.

begin with the white of the canvas, followed by the red of the background, followed by
orange, then some ordering of blue, silver, green, and finally pink. This constraint means
that a compatible ordered list of colors can be generated by first starting with

white < red < orange < pink

and then inserting any ordering of blue, silver, and green between orange and pink. There
are six possible total orderings constructible from the partial ordering. In Figure 9.3, the
colors are arranged to form all the totally ordered sets in which all of the colors are now
comparable. The proposed orders are compatible with that in Figure 9.2.

9.3 Supremum and Infimum

Ultimately, it is intended that the ordering on a partially ordered set give rise to two binary
operations that make the partially ordered set into a semiring. While at first it may not
be clear what these operations might be in the general case, in the specific case of totally
ordered sets, it is simpler. Given two elements u,v ∈ V in a totally ordered set with total
order operation ≤, the totality condition states that either u ≤ v or v ≤ u. In particular, it is
guaranteed that one element is at least as large as the other and that one is at most as small

“current_book”
2017/8/27
23:44
page 178
#202

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

178 Chapter 9 Defining the Algebra of Associative Arrays

infimum

<

blue

green

white

red

orange

silver

pink
<

supremum

infimum

<

silver

green

white

red

orange

blue

pink

<

supremum

infimum

<

green

silver

white

red

orange

blue

pink

<

supremum

infimum

<

blue

silver

white

red

orange

green

pink

<

supremum

infimum

<
silver

blue

white

red

orange

green

pink

<

supremum

infimum

<

green

blue

white

red

orange

silver

pink

<

supremum

Figure 9.3
Hasse diagrams of totally ordered sets from the color ordering listed in Figure 5.10. The orders are compatible
with those in Figure 9.2. The top of each Hasse diagram is the supremum and the bottom is the infimum.

as the other. In effect, there exists a maximum and minimum of the set {u,v}. The maximum
of {u,v} is denoted max(u,v) while the minimum is denoted min(u,v).

The above description of maximum and minimum leads naturally to the question: when
do such a maximum and minimum exist? More specifically, given two elements u,v ∈ V
in a partially ordered set, does there exist a maximum or minimum? If there were such
a maximum, then either u ≤ v or v ≤ u, depending on whether v or u were the maximum,
respectively. Such a maximum implies that (V,≤) is totally ordered. However, there are
partial orders that are not total orders, such as is shown in Figure 9.2. A simple mathemat-
ical example is the power set of a simple set like {0,1} with respect to the subset operation
⊂

P({0,1}) = {∅, {0}, {1}, {0,1}}

“current_book”
2017/8/27
23:44
page 179
#203

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.3 Supremum and Infimum 179

In the above set,
{0} ⊂ {0,1} and {0,1} 1 {0}

which satisfies the requirements of a total order. Likewise,

{1} ⊂ {0,1} and {0,1} 1 {1}

also satisfies the requirements of a total order. However,

{0} 1 {1} and {1} 1 {0}

shows that ⊂ does not satisfy the requirements of a total order. Thus (P({0,1}),⊂) is
partially ordered but not totally ordered. In this case, it is still possible to ask whether there
exists a smallest element greater than u and v, and likewise a greatest element smaller than
u and v.

Definition 9.8
Supremum

Let (V,≤) be a partially ordered set and U a subset of V . The notion of the least
element in V greater than all of U is as follows. v is an upper bound of U if u ≤ v
for all u ∈ U, and is the supremum or least upper bound if it is the smallest among
all upper bounds. It is denoted by∨

U or
∨
u∈U

u or supU

Definition 9.9
Infimum

Let (V,≤) be a partially ordered set and U a subset of V . The notion of the greatest
element in V less than all of U is as follows. v is a lower bound of U if v ≤ u for
all u ∈ U, and is the infimum or greatest lower bound if it is the largest among all
lower bounds. It is denoted by∧

U or
∧
u∈U

u or inf U

The concepts of supremum and infimum extend to functions. Figure 9.4 depicts a mono-
tonically increasing function f that preserves supremum and infimum. In particular, given
inputs xi and outputs f (xi)

x1 =

4∧
n=1

xn and x4 =

4∨
n=1

xn

“current_book”
2017/8/27
23:44
page 180
#204

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

180 Chapter 9 Defining the Algebra of Associative Arrays

x xx1 2 3 4x

x1f()

x2f()

x3f()

4xf()

meet

joinsupremum!

infimum!

Figure 9.4
Monotonically increasing function that preserves supremum and infimum.

and

f (x1) =

4∧
n=1

f (xn) and f (x4) =

4∨
n=1

f (xn)

so

f

 4∧
n=1

xn

 =

4∧
n=1

f (xn) and f

 4∨
n=1

xn

 =

4∨
n=1

f (xn).

Therefore, f preserves suprema and infima.
Figure 9.5 depicts a function that is not monotonically increasing and does not preserve

suprema and infima . In particular, given inputs xi and outputs f (xi)

x1 =

4∧
n=1

xn and x4 =

4∨
n=1

xn

but

f (x3) =

4∧
n=1

f (xn) and f (x2) =

4∨
n=1

f (xn)

so

f

 4∧
n=1

xn

 , 4∧
n=1

f (xn) and f

 4∨
n=1

xn

 , 4∨
n=1

f (xn).

Therefore, f does not preserve suprema or infima.

“current_book”
2017/8/27
23:44
page 181
#205

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.4 Lattice 181

x xx1 2 3 4x

x2f()

3xf()

x4f()
1xf()

meet join

meet

joinsupremum!

infimum!

infimum! supremum!

Figure 9.5
Example of a function that is not monotonically increasing and does not preserve supremum and infimum.

9.4 Lattice

Not every partially ordered set has a supremum or an infimum for all subsets of the under-
lying set. For example, the set

V =
{
∅, {0}, {1}

}
with the operation ⊂ is a partially ordered set (V,⊂), but

{
{0}, {1}

}
is a subset of V which has

no supremum.
For this reason, it is necessary to restrict the partially ordered sets being examined in

order to ensure the existence of such infima and suprema.

Definition 9.10
Supremum Semilattice

A supremum semilattice (U,∨) is a partially ordered set (U,≤) in which for every
two elements u,v ∈ U the least upper bound u∨ v exists. ∨ is referred to as the
supremum operation.

Definition 9.11
Infimum Semilattice

An infimum semilattice (U,∧) is a partially ordered set (U,≤) in which for every
two elements u,v ∈ U the greatest lower bound u∧ v exists. ∧ is referred to as the
infimum operation.

“current_book”
2017/8/27
23:44
page 182
#206

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

182 Chapter 9 Defining the Algebra of Associative Arrays

Definition 9.12
Lattice

A lattice [8]
(U,∧,∨)

is a partially ordered set (U,≤) that is both an infimum semilattice and a supremum
semilattice.

Note the following elementary properties of ∨ and ∧.

Lemma 9.1

Monotonicity of Supremum and Infimum with Fixed Element

Suppose u,v,w are elements in a lattice U and u ≤ v. Then

w∧u ≤ w∧ v and w∨u ≤ w∨ v

That is, taking ∧ or ∨ with a fixed element is a monotonic function.

Proof. See Exercise 9.7. �

There is an equivalent way to describe lattices via an algebraic definition rather than
the above order-based definition. The algebraic properties of the infimum and supremum
operations may determine the partial order ≤. These properties are

1. Associativity for all u,v,w ∈ U

u∨ (v∨w) = (u∨ v)∨w and u∧ (v∧w) = (u∧ v)∧w

2. Commutativity for all u,v ∈ U

u∨ v = v∨u and u∧ v = v∧u

3. Idempotence for all u ∈ U
u∧u = u∨u = u

4. Absorbency for all u,v ∈ U

u∧ (u∨ v) = u = u∨ (u∧ v)

Given any set U and operations ∨,∧ that satisfy the above properties, it is possible to define
≤ by declaring u ≤ v if and only if

u∧ v = u

“current_book”
2017/8/27
23:44
page 183
#207

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.4 Lattice 183

or equivalently
u∨ v = v

The above properties imply that ≤ is a partial order, as shown in [9].

Example 9.17

Every totally ordered set is a lattice, with supremum max and infimum min.

Example 9.18

Every power set P(V) (the set of subsets of V) is a lattice with supremum operation
∪, infimum operation ∩, and partial order operation ⊂.

Example 9.19

N equipped with the divisibility relation is a lattice with supremum the least com-
mon multiple and infimum the greatest common divisor.

The infimum and supremum operations within a lattice are well-behaved, but these are
insufficient to ensure that a lattice is a semiring. In particular, the existence of identities and
distributivity shrinks the class of partially ordered sets that fulfill the necessary properties.
To get an idea of the order properties a lattice must have in order to have identities, note
that if for every u ∈ U

u∨0 = u

then it follows that
0 ≤ u

meaning that 0 is the minimum of the lattice when considered as a partially ordered set.
Similary, if for every u ∈ U

u∧1 = u

then
u ≤ 1

and 1 is the maximum.

Definition 9.13
Bounded Partial Order

A partially ordered set (U,≤) is said to be bounded if there exists elements 0 and 1
in U such that 0 ≤ u ≤ 1 for every element u ∈ U.

“current_book”
2017/8/27
23:44
page 184
#208

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

184 Chapter 9 Defining the Algebra of Associative Arrays

Definition 9.14
Bounded Lattice

A bounded lattice U, denoted
(U,∨,∧,0,1)

contains an element 0 and an element 1 such that u∧ 0 = u∨ 1 = u for any u ∈ U.
Notice here that it follows from the above axioms that u∨ 1 = 1 and u∧ 0 = 0.
Equivalently, a bounded lattice is a bounded partially ordered set that is also a
lattice.

Example 9.20

The power set P(U) is an example of a bounded lattice with maximum U and
minimum ∅.

Example 9.21

N ordered by divisibility is bounded with maximum 0 and minimum 1.

Example 9.22

Every bounded totally ordered set is a bounded lattice, such as R∪{−∞,∞}.

Distributivity, unlike the existence of identity elements, does not have an enlightening
order characterization, prompting the following straightforward definition.

Definition 9.15
Distributive Lattice

A lattice U is distributive if it obeys the distributive property, whereby

u∧ (v∨w) = (u∧ v)∨ (u∧w) and u∨ (v∧w) = (u∨ v)∧ (u∨w)

A bounded distributive lattice (U,∨,∧,0,1) forms two commutative monoids (U,∨,0)
and (U,∧,1) in which ∨ and ∧ distribute over each other. The only remaining property that
(U,∨,∧,0,1) would need to fulfill to be a semiring is for it to satisfy the identities

u∧0 = 0 and u∨1 = 1

which follow immediately from the fact that 0 is the minimum and 1 the maximum. Thus,
(U,∨,∧,0,1) and (U,∧,∨,1,0) are both semirings.

“current_book”
2017/8/27
23:44
page 185
#209

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.4 Lattice 185

A supremum semilattice (U,∨) with a minimum 0 or an infimum semilattice (L,∧) with a
maximum 1 are nearly semirings since, by idempotence, associativity, and commutativity,
it follows that

u∨ (v∨w) = (u∨u)∨ (w∨ v)

= u∨ (u∨ (w∨ v))

= u∨ ((u∨w)∨ v)

= u∨ (v∨ (u∨w))

= (u∨ v)∨ (u∨w)

and similarly for ∧, showing that ∨ and ∧ naturally distribute over themselves. However,
it is not the case that 0∨ u = 0 or 1∧ u = 1 in general, so (L,∨,∨,0,0) and (L,∧,∧,1,1)
are not semirings, only lacking the property that the additive identity be a multiplicative
annihilator.

Topping off this hierarchy of lattice structures is the Boolean algebra [10].

Definition 9.16
Boolean Algebra

A Boolean algebra U, also denoted

(U,∨,∧,¬,0,1)

is a bounded distributive lattice (U,∨,∧,0,1) with a unary operation

¬ : U → U

satisfying

De Morgan’s Law — [11]
¬(u∧ v) = ¬u∨¬v

Double Negation Elimination —
¬¬v = v

Law of the Excluded Middle —
¬v∨ v = 1

Law of Noncontradiction —
¬v∧ v = 0

“current_book”
2017/8/27
23:44
page 186
#210

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

186 Chapter 9 Defining the Algebra of Associative Arrays

Example 9.23

P(U) ordered by ⊂ is an example of a Boolean algebra, where ¬u is given by uc,
the complement of u relative to U.

Pushing the existence of binary suprema and infima to arbitrary suprema and infima
produces a slightly different kind of lattice structure.

Definition 9.17
Complete Lattice

A complete lattice U is a lattice in which for every subset U′ ⊂ U the least upper
bound

∨
U′ and the greatest lower bound

∧
U′ exist.

Example 9.24

P(V) with the subset ordering and R∪{−∞,∞} are complete lattices.

9.5 The Semirings of Interest

Currently, the D4M software instantiation of associative arrays provides the following
“well-behaved” binary operations on the entries of associative arrays: +, ×, max, and
min on the real numbers; max and min on bounded totally ordered (BTO) sets; ∪ and ∩
on power sets; logical & and logical | on the set {0,1} and more generally set suprema ∨
and set infimum ∧ on a distributive lattice. Combining certain pairs of these operations
implies that V forms a commutative semiring under the ⊕ and ⊗ operations, denoted by
(V,⊕,⊗,0,1), where 0 is the additive identity and 1 is the multiplicative identity, which
ensures that the resulting algebra will be well-behaved. “Semi” in the context of rings,
modules, and algebras implies all the properties of these objects except that the existence
of additive inverses is not required. Which of these pairs of operations (insofar as such pairs
make sense) distribute over each another has largely been dealt with in Sections 9.1 and 9.4
or involve simple counterexamples. Table 9.1 shows the relevant sets, their corresponding
operations (and their D4M equivalents), and the combinations that form semirings.

This table can be checked easily, and since the proofs confirming them are elementary or
by definition, the proofs are only outlined here. The no entries can be checked via simple
counterexamples, and the yes entries are mostly straightforward to see. Since F is a field,
× distributes over +. Likewise, it is a well-known and elementary fact that max and min
are mutually distributive, as are ∪ and ∩, and ∨ and ∧. + distributes over max and min

“current_book”
2017/8/27
23:44
page 187
#211

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.5 The Semirings of Interest 187

because, by the definition of an ordered field, for any elements u,v,w such that u ≤ v, then

u + w ≤ v + w

× does not distribute over min and max when negative numbers are involved, since mul-
tiplication by a negative number reverses the ordering of two numbers. However, when
dealing with a set of non-negative real numbers, it holds that for non-negative reals u,v,w
that u ≥ v implies

uw ≥ vw

Thus, over the set of non-negative real numbers, multiplication distributes over min and
max.

A main objective is to study the properties of well-behaved associative arrays that are rel-
evant to practical implementation (such as D4M), and it is reasonable to focus on proving
statements about the algebraic properties of the semirings induced by pairs of operations
exhibiting linear behavior. Table 9.1 shows these semirings of interest; every ‘yes’ is an
instance of a semiring structure.

Example 9.25

The max-plus algebras

(F∪{−∞,∞},max,+, −∞,0)

and
(F∪{−∞,∞},min,+,∞,0)

where F is an ordered field such as Q or R.
+ is defined on F∪{−∞,∞} by setting

−∞+ u = u + −∞ = −∞

for every
u ∈ F∪{−∞,∞}

and
u +∞ =∞+ u =∞

for all
u ∈ F∪{∞}

Then −∞ is a multiplicative annihilator, and it can be verified by case-by-case
computation that addition remains associative, commutative, and distributes over
max.

“current_book”
2017/8/27
23:44
page 188
#212

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

188 Chapter 9 Defining the Algebra of Associative Arrays

Table
9.1

T
he

sem
irings

ofinterest.D
istributivity

of
⊗

over
⊕

overfields,bounded
totally

ordered
sets

(B
TO

set),pow
ersets

(P
set),and

bounded
distributive

lattices
(B

D
L

attices),and
relevantintersections

of
these

dom
ains.

T
he

intended
intersection

of
the

Field
and

B
TO

Setdom
ains

are
the

extensions
of

ordered
fields

w
here

a
form

alm
inim

um
−∞

and
form

alm
axim

um
∞

have
been

added.
T

he
algebraic

properties
of

−∞
and
∞

are
explained

in
E

xam
ple

9.25.
A

blank
celldenotes

that
there

is
no

relevantdom
ain

in
w

hich
these

operations
exist,“no”

im
plies

that
⊗

does
notdistribute

over
⊕

,and
“yes”

im
plies

that
⊗

does
distribute

over
⊕

.
∗:m

ultiplication
in
R

distributes
overm

ax
and

m
in

w
hen

the
dom

ain
is

restricted
to

the
non-negative

reals.
†:although

distributivity
holds,the

additive
and

m
ultiplicative

identities
are

the
sam

e,so
the

additive
identity

cannotbe
a

m
ultiplicative

annihilator,so
this

pairof
operations

fails
to

give
a

sem
iring.

D
om

ain
Field

Field
B

TO
Set

B
TO

Set
P

Set
P

Set
B

D
L

attice
B

D
L

attice

M
atlab

+
.∗

m
ax

m
in

union
intersect

|
&

⊕
\
⊗

+
×

m
ax

m
in

∪
∩

∨
∧

Field
+

+
no

yes
no

no

Field
.∗

×
no

no
no

no

B
TO

Set
m

ax
m

ax
yes

yes
∗

yes
†

yes

B
TO

Set
m

in
m

in
yes

yes
∗

yes
yes
†

P
Set

union
∪

yes
†

yes

P
Set

intersect
∩

yes
yes
†

B
D

L
attice

|
∨

yes
†

yes

B
D

L
attice

&
∧

yes
yes
†

“current_book”
2017/8/27
23:44
page 189
#213

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.6 Conclusions, Exercises, and References 189

Example 9.26

The Max-Min and Min-Max Algebras

(V,max,min, −∞,∞)

and
(V,min,max,∞, −∞)

where V is a totally ordered set with order ≤, minimum value −∞, and maximum
value∞. In Figure 4.1 the set V is defined as the set of all entries in the array A, and
it is given the max-min algebra by equipping V with the lexicographical ordering.

Example 9.27

The power set algebras
(P(V),∪,∩,∅,V)

and
(P(V),∩,∪,V,∅)

where V is an arbitrary set and P(V) is the power set of V . With V as the set of all
entries in the array A of Figure 4.1, the power set algebra can be defined on P(V),
as is done in Figure 4.3.

In later chapters, the semirings in Table 9.1 will be referred to collectively as the semir-
ings of interest. Understanding the behavior of the array operations defined using these
semirings will largely be a matter of investigating questions similar to those found in linear
algebra.

9.6 Conclusions, Exercises, and References

Proving the properties of associative arrays requires that the formal definitions of the un-
derlying mathematical objects be specified. These definitions include operations on sets,
ordered sets, supremum and infimum, and lattices. From these properties, the various
semirings of interest can be selected for further study.

“current_book”
2017/8/27
23:44
page 190
#214

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

190 Chapter 9 Defining the Algebra of Associative Arrays

Exercises

Exercise 9.1 — For the constant α = 3 and associative arrays A, B, and C given by

A =

a b c

1 7 2 1

2 0 3 3

, B =

a b c

1 4 2 5

2 1 0 1

, C =

1 2 3 4

a 3 2 1 0

b 0 1 2 3

c 0 1 0 1

perform the following computations over the value set V = N with operations ⊕ ≡ + and
⊗ ≡ ×

(a) α⊗A

(b) A⊕B

(c) A⊗B

(d) A ⊕.⊗ C

Exercise 9.2 — For the constant α = 3 and associative arrays A, B, and C given by

A =

a b c

1 7 2 1

2 −∞ 3 3

, B =

a b c

1 4 2 5

2 1 −∞ 1

, C =

1 2 3 4

a 3 2 1 −∞

b −∞ 1 2 3

c −∞ 1 −∞ 1

perform the following computations over the value set V = R∪ {−∞,∞} with operations
⊕ ≡max and ⊗ ≡min

(a) α⊗A

(b) A⊕B

(c) A⊗B

(d) A ⊕.⊗ C

Exercise 9.3 — For the constant α = 3 and associative arrays A, B, and C given by

A =

a b c

1 7 2 1

2 ∞ 3 3

, B =

a b c

1 4 2 5

2 1 ∞ 1

, C =

1 2 3 4

a 3 2 1 ∞

b ∞ 1 2 3

c ∞ 1 ∞ 1

perform the following computations over the value set V = R∪ {−∞,∞} with operations
⊕ ≡min and ⊗ ≡max

“current_book”
2017/8/27
23:44
page 191
#215

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

9.6 Conclusions, Exercises, and References 191

(a) α⊗A
(b) A⊕B
(c) A⊗B
(d) A ⊕.⊗ C

Exercise 9.4 — For the constant α = 3 and associative arrays A, B, and C given by

A =

a b c

1 7 2 1

2 −∞ 3 3

, B =

a b c

1 4 2 5

2 1 −∞ 1

, C =

1 2 3 4

a 3 2 1 −∞

b −∞ 1 2 3

c −∞ 1 −∞ 1

perform the following computations over the value set V = R∪ {−∞,∞} with operations
⊕ ≡max and ⊗ ≡ +

(a) α⊗A
(b) A⊕B
(c) A⊗B
(d) A ⊕.⊗ C

Exercise 9.5 — For the constant α = {0} and associative arrays A, B, and C given by

A =

1 2

a ∅ {0}

b {1} ∅

, B =

1 2

a {0,1} {2}

b ∅ {0}

, C =

a

1 {0}

2 {0,2}

perform the following computations over the value set V = P({0,1,2}) with operations
⊕ ≡ ∪ and ⊗ ≡ ∩

(a) α⊗A
(b) A⊕B
(c) A⊗B
(d) A ⊕.⊗ C

Exercise 9.6 — Show that ⊕.⊗ distributes over ⊕ (element-wise addition) if and only if ⊗
distributes over ⊕ in V .

Exercise 9.7 — Prove Lemma 9.1.

Exercise 9.8 — It is possible to combine several semirings

(V1,⊕1,⊗1,01,11), . . . , (Vn,⊕n,⊗n,0n,1n)

“current_book”
2017/8/27
23:44
page 192
#216

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

192 Chapter 9 Defining the Algebra of Associative Arrays

by taking the product
∏n

i=1 Vi and defining ⊕ and ⊗ component-wise

(v1, . . . ,vn)⊕ (w1, . . . ,wn) = (v1⊕1 w1, . . . ,vn⊕n wn)

(v1, . . . ,vn)⊗ (w1, . . . ,wn) = (v1⊗1 w1, . . . ,vn⊗n wn)

Show that
(∏n

i=1 Vi,⊕,⊗,0,1
)

with ⊕ and ⊗ defined as above and 0 = (01, . . . ,0n), 1 =

(11, . . . ,1n) is a semiring.

References

[1] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy, Foundations of set theory, vol. 67. Elsevier, 1973.

[2] T. Jech, Set theory. Springer Science & Business Media, 2013.

[3] K. Kunen, Set Theory an Introduction to Independence proofs, vol. 102. Elsevier, 2014.

[4] J. Rotman, An Introduction to the Theory of Groups, vol. 148. Springer Science & Business Media, 2012.

[5] J. S. Golan, Semirings and their Applications. Springer Science & Business Media, 2013.

[6] B. S. Schröder, Ordered Sets. Springer, 2003.

[7] B. Dushnik and E. W. Miller, “Partially ordered sets,” American journal of mathematics, vol. 63, no. 3,
pp. 600–610, 1941.

[8] G. Grätzer, General Lattice Theory. Springer Science & Business Media, 2002.

[9] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge university press, 2002.

[10] S. Givant and P. Halmos, Introduction to Boolean Algebras. Springer Science & Business Media, 2008.

[11] P. Johnstone, “Conditions related to De Morgan’s law,” Applications of sheaves, pp. 479–491, 1979.

“current_book”
2017/8/27
23:44
page 193
#217

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10 Structural Properties of Associative Arrays

Summary

Associative arrays have a number of important properties that can be used to describe their
structure. These properties include dimension, total number of elements, number of nonzero
elements, density, sparsity, size, image, and rank. Of particular interest is how these prop-
erties behave under element-wise addition, element-wise multiplication, and array multipli-
cation. The properties that are the most predictable are typically the properties that are most
convenient to work with when using associative arrays in real applications. This chapter uses
the formal definition of associative arrays to explore the properties of associative arrays with
respect to these operations.

10.1 Estimating Structure

A key aspect of modern data processing systems is the required data storage for the inputs,
intermediate results, and the outputs. Ideally, the data storage decreases after each step
in a data processing system. Data processing that inadvertently causes the data storage
requirements to increase significantly is a common source of error in real-word systems.
For many data processing systems, understanding the necessary storage has become as
importanct as numerical accuracy. Many data processing systems analyze sparse data that
are dominated by unstored zero values. The storage of zero values can be eliminated
because element-wise addition and element-wise multiplication with zero always produce
the same results without requiring computation

a⊕0 = a

a⊗0 = 0

Furthermore, the above calculations can be performed without loss of accuracy. Thus, a
data processing system with mostly zero values might perform relatively few calculations
that impact numerical accuracy. In contrast, the data storage requirements of sparse data
can be dramatically impacted with relatively incidental calculations. For example, if ⊕ is
equivalent to logical &, then for two sparse associative arrays A and B, the associative array
C resulting from their element-wise addition is dense because all common zero values will
become one

C = A⊕B

“current_book”
2017/8/27
23:44
page 194
#218

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

194 Chapter 10 Structural Properties of Associative Arrays

Avoiding such operations that may dramatically increase the required data storage is criti-
cal to developing effective data processing systems.

Estimating the data storage required by an associative array can often be achieved by
predicting the pattern of nonzero entries in the associative array or the number of edges in
the corresponding graph. This pattern is often referred to as the structure of the associative
array, matrix, or graph. The storage required is usually highly correlated with this structure.
How the storage required depends upon the parameters of the system is often called the
memory complexity or storage complexity [1, 2]. Historically, sparse matrix algorithms
have often begun with a step that estimates the structure of the output from the structure
of the inputs [3–6]. This structural step is then followed by a step that does the numerical
computation with a static data structure. For a survey see [7] and references therein. The
structural step can also be used to optimize the numerical step on a parallel computer [8].
Structural prediction can also be significantly aided by graph theory [9–11].

This chapter begins by reiterating the mathematical definition of an associative array and
provides additional definitions for structural terms. Wherever possible, associative array
structural terms are defined in a manner that is consistent with their matrix equivalents. The
rest of the chapter provides a variety of observations on the structural properties of associa-
tive arrays with respect to the three core operations: element-wise addition, element-wise
multiplication, and array multiplication.

10.2 Associative Array Formal Definition

The previous chapters have motivated the use of semirings in the context of associative
arrays. Semirings lead naturally to the following definition of an associative array as a
mathematical object. Associative arrays can have d-dimensions. Without loss of generality,
the d = 2 case is most common and will often be referred to as an associative array when
there is no ambiguity. Two-dimensional associative arrays are used to describe most of the
properties of associative arrays, but it can be assumed that all of these properties also hold
for d-dimensional associative arrays unless otherwise noted.

Definition 10.1
Associative Array

An associative array is a map from a pair of strict totally ordered key sets K1 and
K2 to a value set V with a semiring structure

A : K1×K2→ V

that has a finite number of nonzero elements and where (V,⊕,⊗,0,1) is a semiring.

“current_book”
2017/8/27
23:44
page 195
#219

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.2 Associative Array Formal Definition 195

From here onward, whenever “array” is used, “associative array” is implicitly meant.
Given a set of keys

K1×K2

and a commutative semiring
(V,⊕,⊗,0,1)

the set of all two-dimensional associative arrays over these keys and values is denoted

A(K1,K2;V)

or, when understood by the context, simply A.

Example 10.1

Familiar examples are the associative arrays encountered in Figure 4.1

A,A1,A2 : K ×K→ V

where K is the set of all alphanumeric strings. V is the set of all alphanumeric
strings representing the music data entries in the table A ordered lexicographically,
so V has the max-min algebra. The nonzero values of A1 and A2 are what are
presented in the figure. All other values are zero and are not displayed.

Example 10.2

m×n matrices over a field or more generally a ring (V,⊕,⊗,0,1) are maps

A : {1, . . . ,m}× {1, . . . ,n} → V

Letting K1 = {1, . . . ,m} and K2 = {1, . . . ,n} and recognizing that all rings are semir-
ings, it follows that matrices over a ring are examples of two-dimensional associa-
tive arrays.

Example 10.3

The associative zero array
0 ∈ A

is defined by
0(k) = 0

for every key tuple k ∈ K1×K2.

“current_book”
2017/8/27
23:44
page 196
#220

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

196 Chapter 10 Structural Properties of Associative Arrays

Example 10.4

For k′ ∈ K1×K2, the associative unit arrays

ek′ ∈ A

are defined by

ek′ (k) =

1 if k = k′

0 if k , k′

Example 10.5

The empty array ∅ : ∅→ V is simply the empty set ∅ since there are no elements in
∅×V = ∅. An array that is not equal to the empty array is said to be a non-empty
array.

A common notation to define two-dimensional associative arrays A : K1 ×K2 → V is to
make use of matrix notation when the sizes of K1 and K2 are small finite numbers. Here,
A is represented via an array with the rows labelled by the non-empty row elements of K1,
the columns labelled by the non-empty column elements of K2, and the entry in row k1 and
column k2 being the value of A(k1,k2).

Example 10.6

Let
K1 = {fries,pizza,soda} and K2 = {cost,quantity}

and consider the associative array

A : K1×K2→ R≥0

defined by

A =

cost quantity

fries 1.00 200

pizza 5.00 12

soda 1.50 3

Specific entries in this above associative array can be written

A(pizza,quantity) = 12 and A(soda,cost) = 1.50

“current_book”
2017/8/27
23:44
page 197
#221

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.3 Padding Associative Arrays with Zeros 197

10.3 Padding Associative Arrays with Zeros

An associative array, when the domain is fixed, is determined by its nonzero values. For
this reason, it would be expected that extending the domain and defining the extension to be
zero at these added points would not affect the information that the original array conveys.
Thus, padding an array with zeros should not present problems. Given two associative
arrays

A : K1×K2→ V

B : K′1×K′2→ V

then B is said to be a zero padding of A if the key space of A is a subset of the key space
of B

K1×K2 ⊂ K′1×K′2

and all the nonzero entries in A are also in B. In other words

A(k1,k2) = B(k1,k2)

for all k1 ∈ K1 and k2 ∈ K2. Finally, all other entries in B are zero. That is

B(k′1,k
′
2) = 0

for k′1 < K1 and k′2 < K2.
A zero padding of an associative array is an extension of the array that is zero for all the

new key tuples. Because the corresponding values of the new key tuples are automatically
decided, a zero padding is uniquely identified by its domain. Given

A : K1×K2→ V

and
K1×K2 ⊂ K′1×K′2

the unique zero padding of A to the new key tuples K′1×K2 is denoted

A′ = padK′1×K′2
A

Example 10.7

Every associative array A : K1×K2→ V is a zero padding of itself

A = padK1×K2
A

Notationally, it is often convenient to simplify the key tuples of an associative array from
K1 ×K2 to K ×K to K2. If K1 and K2 share a total ordering ≤, then this simplification of

“current_book”
2017/8/27
23:44
page 198
#222

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

198 Chapter 10 Structural Properties of Associative Arrays

notation can be easily done with zero padding. Given

A : K1×K2→ V

where K1 and K2 have a compatible total order ≤ so that the total orders on K1 and K2 give
the same ordering of elements in K1 ∩K2, then the key tuples of (A) can be made square
by letting

K = K1∪K2

and zero padding A
A = padK×KA

The resulting associative array can now be written as

A : K2→ V

By zero padding as necessary, the array operations ⊕,⊗,⊗.⊕ become defined between
any two arrays.

10.4 Zero, Null, Zero-Sum-Free

As a data structure that returns a value if given some number of keys, the associative array
clearly constitutes a function between a set of key tuples and a value space. Furthermore,
in practice every associative array is constructed from an empty associative array by adding
and deleting nonzero values. Thus, it can be assumed that any associative array will only
have values assigned to a finite number of key tuples and that the remaining keys will have
some default null value 0. This assumption motivates including in the associative array
definition a condition requiring that their be a finite number of nonzero entries.

Furthermore, as explained above, these maps should support operations that resemble
those on ordinary vectors and matrices, such as matrix multiplication, matrix addition,
and element-wise multiplication. Thus, the value space is assumed to have a commutative
semiring structure. The default null value of the array is defined as algebraically equivalent
to the 0 value of the semiring

Using 0 as the default for all unspecified values raises the issue of how to distinguish
between a value that is explicitly 0 and a value that is unspecified. Some approaches to
fixing this issue include adding a pseudo-identity value null to the semiring V with the
property that for every v ∈ V

v⊕null = null⊕ v = v

and
null⊗null = null⊗ v = v⊗null = null⊕null = null

“current_book”
2017/8/27
23:44
page 199
#223

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.5 Properties of Matrices and Associative Arrays 199

It can be checked that V ∪ {null} is a commutative semiring with additive identity null.
Associative arrays do not make a distinction between null and 0, but acknowledge the
possibility to correct the issue with this approach. The term null is standard in the relational
database community where it is distinct from 0. In practice, in any specific application
context, the distinction between null and 0 can almost always be addressed via practical
workarounds.

The definition of a semiring does not require the existence of additive inverses

v⊕−v = 0

However, semirings do not exclude the existence of additive inverses. There are contexts
in which excluding additive inverses can be useful for analyzing associative array mathe-
matics and optimizing their implementations. In a zero-sum-free semiring

u⊕ v = 0

implies u = v = 0 for all elements u,v ∈ V . Correspondingly, zero-sum-free semirings have
the property that for u,v , 0

u⊕ v , 0

The above property is useful for predicting the number of nonzero entries in an associative
array and can be helpful in implementing associative array algorithms.

10.5 Properties of Matrices and Associative Arrays

Matrices and two-dimensional associative arrays have many similarities and some subtle
differences. It is informative to explore these properties. For the purpose of this compari-
son, let the matrix A be the mapping

A : I× J→ V

from the index sets
I = {1, . . . ,m}

and
J = {1, . . . ,n}

to the semiring V . The number of elements in I and J are denoted m = |I| and n = |J|. In
associative arrays, because of the large key space, it is often desirable to focus on rows
and columns that have nonzero entries and ignore the rows and columns that are entirely
zero. Associative array properties that deal with only the nonzero rows and columns are
underlined. For example, let I be the indices of the non-empty rows and J be the indices of
the non-empty columns. The number of elements in I and J are denoted m = |I| and n = |J|.

“current_book”
2017/8/27
23:44
page 200
#224

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

200 Chapter 10 Structural Properties of Associative Arrays

Likewise, let the associative array A be the mapping

A : K1×K2→ V

from the strict totally ordered key sets K1 and K2 to the semiring V . The number of
elements in the key sets K1 and K2 is denoted m = |K1| and n = |K2|. Furthermore, let K1
be the keys of the non-empty rows and K2 be the keys of the non-empty columns. The
number of elements in K1 and K2 are denoted m = |K1| and n = |K2|.

The comparable properties of matrices and associative arrays that are of interest to ex-
plore include

dim — dimensions of the rows and columns

dim(A) = (m,n)

total — number of values
total(A) = mn

support — pairs of indices or keys corresponding to nonzero values

support(A)

nnz — number of nonzero values

nnz(A) = |support(A)|

density — fraction of values that are nonzero

density(A) =
nnz(A)
total(A)

sparsity — fraction of values that are zero

sparsity(A) = 1−density(A)

size — number of non-empty rows and columns

size(A) = m×n

total — number values in the non-empty rows and columns

total(A) = m n

density — fraction of values in non-empty rows and columns that are nonzero

density(A) =
nnz(A)
total(A)

sparsity — fraction of values in non-empty rows and columns that are zero

sparsity(A) = 1−density(A)

“current_book”
2017/8/27
23:44
page 201
#225

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.6 Properties of Zero Padding 201

Table 10.1
The impact of zero padding on the properties of matrices and associative arrays.

property formula zero padding
dim m×n increases
total mn increases
support support(A) same
nnz nnz(A) same
density nnz(A)/total(A) decreases
sparsity 1−density(A) increases
size m×n same
total m n same
density nnz(A)/total(A) same
sparsity 1−density(A) same
image Av for all v same
rank rank(A) same

image — all possible points that can be generated by multiplying A by any vector v

image(A) = {w | there exists v with w = Av}

rank — the minimum number of linearly independent vectors needed to create image(A)

rank(A)

Usage of the term rank shall implicitly assume that it exists and that a linearly indepen-
dent generating set of vectors also exists.

10.6 Properties of Zero Padding

As defined above, the properties of matrices and associative arrays are equivalent. One in-
teresting aspect of these properties is how they behave under zero padding (see Table 10.1).
The properties that remain under zero padding are often the properties that are most useful
for associative arrays. The proofs of the zero padding properties summarized in Table 10.1
are provided in this section.

For each of the following proofs of the properties in Table 10.1, let

A : K1×K2→ V

be an array and
B : K′1×K′2→ V

be a zero padding of A. Furthermore, let the dimensions of A and B be

m = |K1| n = |K2| m′ = |K′1| n′ = |K′2|

“current_book”
2017/8/27
23:44
page 202
#226

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

202 Chapter 10 Structural Properties of Associative Arrays

The main fact used in the proofs below of the properties in Table 10.1 is that

B(k1,k2) , 0

if and only if
(k1,k2) ∈ K1×K2

and
A(k1,k2) , 0

Thus it is required that
B(k1,k2) = 0

for all
(k1,k2) < K1×K2

for B to be a zero padding of A, and so

(k1,k2) ∈ K1×K2

if
B(k1,k2) , 0

Moreover, B agrees with A on K1×K2, so

A(k1,k2) = B(k1,k2) , 0

if (k1,k2) ∈ K1×K2.

dim
By definition of a zero padding

K1 ⊂ K′1 and K2 ⊂ K′2

Thus
m = |K1| ≤ |K′1| = m′

and
n = |K2| ≤ |K′2| = n′

showing that
(m,n) ≤ (m′,n′)

total
From the argument for dim above, it is known that

m ≤ m′ and n ≤ n′

“current_book”
2017/8/27
23:44
page 203
#227

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.6 Properties of Zero Padding 203

Thus
mn ≤ m′n′

support
As above

B(k1,k2) , 0

if and only if
(k1,k2) ∈ K1×K2

and
A(k1,k2) , 0

Thus, the support of B is exactly that of A.

nnz
In the zero padding B, every nonzero entry corresponds uniquely to a nonzero entry in A.
Thus

nnz(A) = nnz(B)

density
Because

total(A) ≤ total(B)

and
nnz(A) = nnz(B)

then
nnz(A)
total(A)

≥
nnz(B)
total(B)

sparsity
Because

density(A) ≥ density(B)

this implies that
−density(A) ≤ −density(B)

and thus that
1−density(A) ≤ 1−density(B)

“current_book”
2017/8/27
23:44
page 204
#228

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

204 Chapter 10 Structural Properties of Associative Arrays

size
Suppose that the row in B corresponding to the index k1 ∈ K′1 has a nonzero value in it,
then there is a k2 ∈ K′2 such that

B(k1,k2) , 0

but then
(k1,k2) ∈ K1×K2

and
A(k1,k2) , 0

and so row k1 in A also has a nonzero value in it. The above argument shows that

m′ ≤ m

The same argument can be repeated for the columns to show that

n′ ≤ n

Likewise, the reverse inequalities are also true

m ≤ m′

and
n ≤ n′

which follows from the fact that B extends A, so if

A(k1,k2) , 0

then
B(k1,k2) , 0

Combining the inequalities results in

m = m′

and
n = n′

total
Since m = m′ and n = n′ then

mn = m′n′

density
Because

nnz(A) = nnz(B)

“current_book”
2017/8/27
23:44
page 205
#229

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.6 Properties of Zero Padding 205

and
total(A) = total(B)

it follows that their quotients are also equal, thus

density(A) = density(B)

sparsity
Since density(A) and density(B) are equal

1−density(A) = 1−density(B)

so that
sparsity(A) = sparsity(B)

image
Here, zero padding does not literally keep the images the same, but they are closely related
in that the image of B is determined by the image of A by simply padding the vectors with
zeros. Recall that if

Av = u

then v is an n-tuple (indexed by K2) and u is an m-tuple indexed by K1. If v is an n′-tuple
(indexed by K′2), then in the product Bv

B(k1,k2)⊗v(k2) = 0

regardless of the value of v(k2) as long as

(k1,k2) < K1×K2

Thus w(k1) = 0 whenever k1 < K1. When k1 ∈ K1

v(k1) =
⊕
k2∈K′2

B(k1,k2)⊗v(k2)

=
⊕
k2∈K2

B(k1,k2)⊗v(k2)

=
⊕
k2∈K2

A(k1,k2)⊗v(k2)

In other words, if v′ is the result of removing those entries of v corresponding to indexes
not in K2, then u is Av′ padded with zeroes for the entries of K′1 not in K1.

“current_book”
2017/8/27
23:44
page 206
#230

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

206 Chapter 10 Structural Properties of Associative Arrays

rank
The assignment process described above for turning the image of A into the image of B is
actually a linear isomorphism of image(A) onto image(B). This isomorphism retains the
dimensions of A. Thus, rank(A) = rank(B).

From the above descriptions and proofs, it is clear that dimension and size are closely
related properties. Size is always less than or equal to dimension, so that

m ≤ m

and
n ≤ n

In practical settings, it is common for a matrix to have few empty rows or empty columns.
The dimensions of a matrix are often similar to its size suggesting

m . m

and
n . n

For associative arrays, the number of row and column keys is usually far larger than the
row or column size so that

m� m

and
n� n

For example, if the keys were “twenty-character strings,” the key space might have

25620 = 2160 = 1461501637330902918203684832716283019655932542976

elements.
Total and total are also closely related and have similar relationships. It is always the

case that for both matrices and associative arrays

m n ≤ mn

It is common practice for matrices to be constructed so that

m n . mn

Likewise, for associative arrays
m n� mn

“current_book”
2017/8/27
23:44
page 207
#231

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.7 Support and Size 207

The number of nonzeros and the support are closely related since the number of nonzeros
is equal to the number of entries in the support

nnz(A) = |support(A)|

Both nnz and support are independent of zero padding, and the above relationship is always
true for both matrices and associative arrays.

Density and sparsity depend on the total number of entries. An associative array may
often have a very large total number of entries, in which case the density will be very low
and the sparsity will be very high.

Density and sparsity depend on the total number of entries in the non-empty rows and
columns, and so are similar for both matrices and associative arrays.

Both image and rank are unaffected by zero padding and are equivalent for matrices and
associative arrays.

10.7 Support and Size

One of the defining properties of an associative array is that it has a finite number of
nonzero entries. The set of key tuples in an associative array with nonzero values is referred
to as the support of the associative array. Given an associative array

A : K1×K2→ V

the support(A) is the set of key tuples

support(A) = {(k1,k2) ∈ K1×K2 | A(k1,k2) , 0}

More generally, the support() function maps associative arrays to a set of key tuples

support : A→P(K1×K2)

Projecting support(A) onto each of its dimensions produces the following notion of the size
of an associative array.

Definition 10.2
Size of Array

Given a non-empty two-dimensional array A ∈ A, the size of the first dimension
is the number of row keys corresponding to nonzero entries, and the size of the
second dimension is the number of column keys corresponding to nonzero entries.

size(A) = (size(A,1),size(A,2)) =

(number of k1
such that there is k2
with A(k1,k2) , 0

,
number of k2

such that there is k1
with A(k1,k2) , 0

)

“current_book”
2017/8/27
23:44
page 208
#232

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

208 Chapter 10 Structural Properties of Associative Arrays

Given a two-dimensional associative array A : K2→ V , the first coordinate of size(A,1)
is called the “number of rows” while the second coordinate size(A,2) is called the “number
of columns.”

Example 10.8

Recall the arrays A,A1,A2 : K2→ V encountered in Figure 4.1

size(A) = (24,9)

size(A1) = (3,2)

size(A2) = (3,3)

Example 10.9

If A is an m× n matrix over a ring or an m× n matrix over a field, then size(A) =

(m,n) if every row and column of A has at least one nonzero element.

Example 10.10

The zero array 0 ∈ A has size(0) = (0,0).

Example 10.11

The unit arrays ek ∈ A, where k ∈ K1×K2, have size(ek) = (1,1).

10.8 Image and Rank

The rank of a matrix is the dimension of the column and row space of a matrix, or, equiv-
alently, the dimension of the image. That is, rank(A) is the number of unique vectors
required to generate the row-space, where the row-space is all vectors produced by linear
combinations of {

A(1, :),A(2, :), . . . ,A(m, :)
}

Likewise, the rank and is also the number of unique vectors required to generate the
column-space. The column-space is all vectors produced by linear combinations of{

A(:,1),A(:,2), . . . ,A(:,n)
}

For matrices, the rank has a number of interesting properties. For example, because the
rank is the same for both the row space and the column space of a matrix, then for any
matrix A

rank(AT) = rank(A)

“current_book”
2017/8/27
23:44
page 209
#233

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.9 Example: Music 209

A more important result is the rank-nullity theorem

Theorem 10.1

Rank-Nullity

[12–15] For any m×n matrix A with entries in a field, if X is the set of vectors x
for which

Ax = 0

then
rank(A) + dim(X) = n

The set X in Theorem 10.1 is called the null space of A and dim X is called the nullity of
A. If an m×n matrix A has m0 empty rows and n0 empty columns, then A has a row space
of dimension at most

m = m−m0

and a column space of dimension at most

n = n−n0

Furthermore, since
m = size(A,1)

and
n = size(A,2)

then
rank(A) ≤min(m,n)

For associative arrays, rank can be defined analogously. The rank of an associative array is
the dimension of the column and row space of an associative array.

10.9 Example: Music

Figure 10.1 from Chapter 4 shows a sparse associative array E of music tracks and various
features of each track. Each track is a row key and each feature is a column key.

The dimensions of this associative array are very large if the array includes all strings
under a specific length. If the row keys are limited to 10-character printable ASCII strings
and the column keys are limited to 28-character printable ASCII strings, then dimensions

“current_book”
2017/8/27
23:44
page 210
#234

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

210 Chapter 10 Structural Properties of Associative Arrays

Ar
tis

t|B
an

da
yd

e
Ar

tis
t|K

as
tle

Ar
tis

t|K
itt

en
Da

te
|2

01
0-

06
-3

0
Da

te
|2

01
2-

08
-2

8
Da

te
|2

01
2-

09
-1

6
Da

te
|2

01
3-

05
-3

0
Da

te
|2

01
3-

09
-3

0
Da

te
|2

01
3-

10
-0

3
G

en
re

|E
le

ct
ro

ni
c

G
en

re
|P

op
G

en
re

|R
oc

k
La

be
l|A

tla
nt

ic
La

be
l|E

le
kt

ra
 R

ec
or

ds
La

be
l|F

re
e

La
be

l|T
he

 C
on

tro
l G

ro
up

Re
le

as
e|

Cu
t I

t O
ut

Re
le

as
e|

Cu
t I

t O
ut

 R
em

ixe
s

Re
le

as
e|

Cu
t I

t O
ut

/S
ug

ar
Re

le
as

e|
Ja

pa
ne

se
 E

ye
s

Re
le

as
e|

Ki
ll T

he
 L

ig
ht

Re
le

as
e|

Li
ke

 A
 S

tra
ng

er
Re

le
as

e|
Ye

st
er

da
y

Ty
pe

|E
P

Ty
pe

|L
P

Ty
pe

|S
in

gl
e

W
rit

er
|B

ar
re

tt
Ri

ch
W

rit
er

|C
ha

d
An

de
rs

on
W

rit
er

|C
hl

oe
 C

ha
id

ez
W

rit
er

|J
ul

ia
n

Ch
ai

de
z

W
rit

er
|N

ich
ol

as
 J

oh
ns

031013ktnA1 1 1 1 1 1 1 1 1 1
053013ktnA1 1 1 1 1 1 1 1 1
053013ktnA2 1 1 1 1 1 1 1
063012ktnA1 1 1 1 1 1 1 1 1
063012ktnA2 1 1 1 1 1 1 1 1
063012ktnA3 1 1 1 1 1 1 1 1
063012ktnA4 1 1 1 1 1 1 1 1
063012ktnA5 1 1 1 1 1 1 1 1
082812ktnA1 1 1 1 1 1 1 1 1 1
082812ktnA2 1 1 1 1 1 1 1 1
082812ktnA3 1 1 1 1 1 1 1 1
082812ktnA4 1 1 1 1 1 1 1 1
082812ktnA5 1 1 1 1 1 1 1 1 1
082812ktnA6 1 1 1 1 1 1 1 1
093012ktnA1 1 1 1 1 1 1 1 1 1
093012ktnA2 1 1 1 1 1 1 1 1 1
093012ktnA3 1 1 1 1 1 1 1 1 1 1
093012ktnA4 1 1 1 1 1 1 1 1 1
093012ktnA5 1 1 1 1 1 1 1 1 1
093012ktnA6 1 1 1 1 1 1 1 1 1
093012ktnA7 1 1 1 1 1 1 1 1 1
093012ktnA8 1 1 1 1 1 1

E

Figure 10.1
D4M sparse associative array E representation of a table of data from a music database. The column key and the
value are concatenated with a separator symbol (in this case |) so that every unique pair of column and value has
its own column in the sparse view. The new value is usually 1 to denote the existence of an entry. Column keys
are an ordered set of database fields.

of E are

m = 9510 ≈ 1019

n = 9528 ≈ 1055

Likewise, the total number of values is also very large

mn = 9510×9528 = 9538 ≈ 1075

The number of nonzero values in E is a much smaller number

nnz(E) = 375

Correspondingly, the density of E is very small

density(E) = 375/9538 ≈ 10−73

and the sparsity is effectively 1

sparsity(E) = 1−density(E) ≈ 1−10−73 ≈ 1

“current_book”
2017/8/27
23:44
page 211
#235

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.10 Example: Art 211

In general, if the number of nonzero values is bounded, then the density will approach 0
and the sparsity will approach 1 as the square of the dimensions increases. The support of
E is the set of 375 row and column key tuples corresponding to the nonzero values of E

support(E) = {(053013ktnA1,Artist|Bandayde),

(053013ktnA2,Artist|Kastle),

(031013ktnA1,Artist|Kitten),

. . .}

Figure 10.1 only displays the non-empty rows and non-empty columns so the size of E are
number of rows and columns seen in the figure

m = 22

n = 90

The total number of values in the non-empty rows and columns is

total(E) = m n = 22×90 = 1980

The density of E is
density(E) = 375/1980 ≈ 0.21

which is far more informative than the density, and indicates that approximately 21% of
the values shown in Figure 10.1 are nonzero. Likewise, the sparsity of E is

sparsity(E) = 1−375/1980 ≈ 0.79

and shows that approximately 79% of the values displayed in Figure 10.1 are nonzero.

10.10 Example: Art

Figure 10.2 taken from Chapter 5 depicts a sparse associative array E of edges from a line
art painting along with various features of each edge. Each edge is a row key and each
edge feature is a column key.

The associative array dimensions are very large if the array has all strings under a specific
length. If the row keys are limited to 2-character printable ASCII strings and the column
keys are limited to 7-character printable ASCII strings, then dimensions of E are

m = 952 = 9025

n = 957 ≈ 1014

In addition, the total number of values is also very large

mn = 952×957 = 959 ≈ 1018

“current_book”
2017/8/27
23:44
page 212
#236

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

212 Chapter 10 Structural Properties of Associative Arrays

Color O
rd
er

V0
1

V0
2

V0
3

V0
4

V0
5

V0
6

V0
7

V0
8

V0
9

V1
0

V1
1

V1
2

V1
3

V1
4

V1
5

V1
6

V1
7

V1
8

V1
9

V2
0

B1 blue 2 1 1 1
B2 blue 2 1 1 1 1 1
G1 green 2 1 1 1
G2 green 2 1 1 1 1 1
O1 orange 1 1 1 1
O2 orange 1 1 1 1
O3 orange 1 1 1 1 1 1
O4 orange 1 1 1 1 1 1
O5 orange 1 1 1 1 1 1 1
P1 pink 3 1 1 1
P2 pink 3 1 1 1 1 1
P3 pink 3 1 1 1 1
P4 pink 3 1 1
P5 pink 3 1 1 1
P6 pink 3 1 1 1
P7 pink 3 1 1 1
P8 pink 3 1 1 1
S1 silver 2 1 1 1
S2 silver 2 1 1 1 1 1

E
Figure 10.2
Associative array E representation of the incidence matrix of the hyper-edges depicted in Figure 5.9.

The corresponding number of nonzero values in E is significantly less

nnz(E) = 109

Likewise, the density of E is extremely small

density(E) = 109/957 ≈ 10−16

and the sparsity is almost exactly 1

sparsity(E) = 1−density(E) ≈ 1−10−16 ≈ 1

The support of E is the set of 109 row and column key tuples specifying the nonzero values
of E

support(E) = {(B1,Color),

(B2,Color),

(G1,Green),

. . .}

Figure 10.2 only shows non-empty rows and non-empty columns so the size of E are the
number of rows and columns shown in the figure

m = 19, n = 21

“current_book”
2017/8/27
23:44
page 213
#237

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.11 Properties of Element-Wise Addition 213

Table 10.2
The implications of element-wise addition on the properties of matrices and associative arrays for values that are
a semiring. It is assumed that the semiring is zero-sum-free.

property formula C = A⊕B
dim m×n dim(C) = dim(A) = dim(B)
total mn total(C) = total(A) = total(B)
support support(C) support(C) = support(A)∪ support(B)
nnz nnz(C) nnz(C) ≥max

(
nnz(A),nnz(B)

)
≤ nnz(A) + nnz(B)

density nnz(C)/total(C) density(C) ≥max
(
density(A),density(B)

)
≤ density(A) + density(A)

sparsity 1−density(C) sparsity(C) ≤min
(
sparsity(A),sparsity(B)

)
≥ sparsity(A) + sparsity(B)

size m×n size(C) ≥max
(
size(A),size(B)

)
≤ size(A) + size(B)

total m n total(C) ≥max
(
total(A), total(B)

)
≤ total(A) + total(B)

image Cv for all v image(C) ⊂ image(A)⊕ image(B)
rank rank(C) rank(C) ≤ rank(A) + rank(B)

The total number of values in the non-empty rows and columns is

total(E) = m n = 19×21 = 399

The density of E is
density(E) = 109/399 ≈ 0.27

which provides more information than the density and shows that approximately 27% of
the values in Figure 10.2 are nonzero. Likewise, the sparsity of E is

sparsity(E) = 1−109/399 ≈ 0.73

and indicates that approximately 73% of the values displayed in Figure 10.2 are nonzero.

10.11 Properties of Element-Wise Addition

How the properties behave under element-wise addition is shown in Table 10.2. The prop-
erties that are the best understood after element-wise addition are naturally the easiest to
analyze and use with associative arrays. The proofs of the element-wise addition properties
given in Table 10.2 are as follows.

“current_book”
2017/8/27
23:44
page 214
#238

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

214 Chapter 10 Structural Properties of Associative Arrays

Definition 10.3
Element-Wise Addition

Given associative arrays
A,B : K1×K2→ V

define

C = A⊕B : K1×K2→ V by C(k1,k2) = A(k1,k2)⊕B(k1,k2)

dim
Element-wise addition does not change dimension.

total
Element-wise addition does not change dimension; therefore, total, which is the product of
the dimensions, does not change.

support
For any v, v⊕0 = v. However, in some semirings, there are nonzero u and v with u⊕ v = 0.
Semirings in which this cannot occur are zero-sum-free.

Theorem 10.2

support of Element-Wise Addition

For any matrices or associative arrays A and B

support(A⊕B) ⊂ support(A)∪ support(B)

If V is zero-sum-free, then

support(A⊕B) = support(A)∪ support(B)

Proof. See Exercise 10.10. �

It is important to note that there are associative arrays A and B where

support(A)∩ support(B) 1 support(A⊕B)

For example, if the entries in the associative array are characters, then it might make sense
to consider them as living in the finite ring Z256, which under addition is the cyclic group
Z/256Z [15]. In this setting, 100 + 156 = 0, for example, so if A has all entries 100 and B
has all entries 156, then A⊕B = 0, and support(A)∪ support(B) 1 support(A⊕B).

“current_book”
2017/8/27
23:44
page 215
#239

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.11 Properties of Element-Wise Addition 215

nnz
Since nnz is the cardinality of the support, the following theorem can be proven.

Theorem 10.3

nnz of Element-Wise Addition

For any matrices or associative arrays A and B

nnz(A⊕B) ≤ nnz(A) + nnz(B)

If V is zero-sum-free then, then

max
(
nnz(A),nnz(B)) ≤ nnz(A⊕B)

Proof. See Exercise 10.11. �

density
Density is a straightforward transformation of nnz and total.

sparsity
Sparsity is a straightforward transformation of nnz and total.

size
Consider size in a manner similar to nnz.

Theorem 10.4

size of Element-Wise Addition

If A and B are matrices or associative arrays, then

size(A⊕B) ≤ size(A) + size(B)

Note that +,≤,max are evaluated element-wise. If V is zero-sum-free, then

max
(
size(A),size(B)

)
≤ size(A⊕B)

Proof. See Exercise 10.12. �

total
Using size allows finding total by using its definition.

“current_book”
2017/8/27
23:44
page 216
#240

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

216 Chapter 10 Structural Properties of Associative Arrays

Table 10.3
The result of element-wise multiplication on the properties of matrices and associative arrays for values that are
a semiring. Making the assumption that the semiring is zero-sum-free does not affect the below properties in this
case. It will, however, be assumed that the semiring has no zero divisors so that if a⊗b = 0, then a = 0 or b = 0.

property formula C = A⊗B
dim m×n dim(C) = dim(A) = dim(B)
total mn total(C) = total(A) = total(B)
support support(C) support(C) = support(A)∩ support(B)
nnz nnz(C) nnz(C) ≤min

(
nnz(A),nnz(B)

)
density nnz(C)/total(C) density(C) ≤min

(
density(A),density(B)

)
sparsity 1−density(C) sparsity(C) ≥max

(
sparsity(A),sparsity(B)

)
size m×n size(C) ≤min

(
size(A),size(B)

)
total m n total(C) ≤min

(
total(A), total(B)

)
rank rank(C) rank(C) ≤ rank(A)rank(B)

image
Given two sets X and Y of vectors, write X⊕Y for the set {x⊕ y | x ∈ X,y ∈ Y}.

Theorem 10.5

image of Element-Wise Addition

For any matrices or associative arrays A and B,

image(A⊕B) ⊂ image(A)⊕ image(B)

Proof. See Exercise 10.13. �

rank
The previous theorem can also be used to show that rank is subadditive, or

Theorem 10.6

rank of Element-Wise Addition

For any matrices or associative arrays A and B,

rank(A⊕B) ≤ rank(A) + rank(B)

Proof. See Exercise 10.14. �

“current_book”
2017/8/27
23:44
page 217
#241

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.12 Properties of Element-Wise Multiplication 217

10.12 Properties of Element-Wise Multiplication

How the properties are affected by element-wise multiplication is shown in Table 10.3.
The properties that are the most well-defined after element-wise multiplication are often
the easiest to use with associative arrays. The proofs of the element-wise multiplication
properties listed in Table 10.3 are described in the rest of this section.

Definition 10.4
Element-Wise Multiplication

Given
A,B : K1×K2→ V

define

C = A⊗B : K1×K2→ V by C(k1,k2) = A(k1,k2)⊗B(k1,k2)

dim
Element-wise multiplication does not change dimension.

total
Element-wise multiplication does not change dimension; therefore, total, which is the
product of the dimensions, does not change.

support
For any v, v⊗0 = 0. However, in some semirings, there are nonzero u and v with u⊗ v = 0,
called zero divisors. This is not true for fields and gives the following result.

Theorem 10.7

support of Element-Wise Multiplication

For any matrices or associative arrays A and B,

support(A⊗B) ⊂ support(A)∩ support(B)

If V has no zero divisors, then

support(A⊗B) = support(A)∩ support(B)

Proof. See Exercise 10.15. �

“current_book”
2017/8/27
23:44
page 218
#242

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

218 Chapter 10 Structural Properties of Associative Arrays

It is worth noting that there are associative arrays A and B that have

support(A⊗B) (support(A)∩ support(B)

For example, if the entries in the associative array are characters, then it might make sense
to consider them as living in the finite ring Z256. In this case, since 162 = 0, an associative
array with all nonzero entries 16 could have its element-wise multiplication square be all 0.

nnz
Since nnz is the cardinality of the support, it is possible to prove the following theorem
about nnz.

Theorem 10.8

nnz of Element-Wise Multiplication

For any matrices or associative arrays A and B

nnz(A⊗B) ≤min
(
nnz(A),nnz(B)

)
Proof. See Exercise 10.16. �

density
Density is a straightforward transformation of nnz and total.

sparsity
Sparsity is a straightforward transformation of nnz and total.

size
Size can be considered in a manner similar to nnz by using the set of nonzero rows and
columns. The proof here is shortened because it is very similar to the proofs of Theorems
10.2, 10.3, and 10.4.

Theorem 10.9

size of Element-Wise Multiplication

If A and B are matrices or associative arrays, then

size(A⊗B) ≤min
(
size(A),size(B)

)

“current_book”
2017/8/27
23:44
page 219
#243

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.12 Properties of Element-Wise Multiplication 219

Proof. See Exercise 10.17. �

total
Using size allows finding total by using its definition.

rank
The image of A⊗B is not as revealing, but its rank has the following property.

Theorem 10.10

rank of Element-Wise Multiplication

For any matrices or associative arrays A and B

rank(A⊗B) ≤ rank(A) rank(B)

Proof. The proof will proceed in two steps. The first will be to show that the arrays A and
B may be written as sums of rank 1 arrays, where the number of such rank 1 arrays is at
most the rank of A and B, respectively. Let

Ã(:,1), . . . , Ã(:,r)

be a basis for image(A), where r = rank(A). Let A(:, j) be the j-th column of A. By the
definition of a basis, each column A(:, j) is a linear combination of the basis vectors with
coefficients Â(j,k) ∈ V such that

A(:, j) =

r⊕
k=1

Â(j,k)⊗ Ã(:,k)

More specifically

A(i, j) =

r⊕
k=1

Â(j,k)⊗ Ã(i,k)

or, because ⊗ is commutative

A(i, j) =

r⊕
k=1

Ã(i,k)⊗ Â(j,k)

Thus, all of A can be constructed via the array multiplication

A = ÃÂT =

r⊕
k=1

Ã(:,k)Â(:,k)T

Now
Ã(:,k)Â(:,k)T

“current_book”
2017/8/27
23:44
page 220
#244

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

220 Chapter 10 Structural Properties of Associative Arrays

is the product of a column vector and a row vector. If it can be shown that this has rank 1,
then the proof is complete. But this is immediate from the fact that Ã(:,k) is a basis for the
column space of

Ã(:,k)Â(:,k)T

since the columns of this matrix are scalar multiples coming from Â(:,k)T of Ã(:,k). Now
let

A =

rank(A)⊕
k=1

Ã(:,k)Â(:,k)T

and

B =

rank(B)⊕
k′=1

B̃(:,k′)B̂(:,k′)T

where the Ã(:,k), B̃(:,k′) are column vectors and Â(:,k)T, B̂(:,k′)T are row vectors. The
element-wise product is linear, following from distributivity of ⊗ over ⊕ in V , and so

A⊗B =

rank(A)⊕
k=1

Ã(:,k)Â(:,k)T

⊗
rank(B)⊕

k′=1

B̃(:,k′)B̂(:,k′)T

=

rank(A)⊕
k=1

rank(B)⊕
k′=1

(
Ã(:,k)Â(:,k)T

)
⊗

(
B̃(:,k′)B̂(:,k′)T

)
Note that((

Ã(:,k)Â(:,k)T
)
⊗

(
B̃(:,k′)B̂(:,k′)T

))
(i, j) = Ã(i,k)⊗ Â(k, j)⊗ B̃(i,k′)⊗ B̂(k′, j)

The commutativity of ⊗ allows the terms in the above expression to be reordered and
regrouped as (

Ã(i,k)⊗ B̃(i,k′)
)
⊗

(
Â(j,k)T⊗ B̂(j,k′)T

)
Thus (

Ã(:,k)Â(:,k)T
)
⊗

(
B̃(:,k′)B̂(:,k′)T

)
=

(
Ã(:,k)⊗ B̃(:,k′)

) (
Â(:,k)T⊗ B̂(:,k′)T

)
and so

A⊗B =

rank(A)⊕
k=1

rank(B)⊕
k′=1

(
Ã(:,k)⊗ B̃(:,k′)

) (
Â(:,k)T⊗ B̂(:,k′)T

)
The above equation shows that A⊗B is a sum of rank(A)rank(B) rank 1 arrays. By the
sub-additivity property of rank, it is confirmed that

rank(A⊗B) ≤ rank(A)rank(B)

�

“current_book”
2017/8/27
23:44
page 221
#245

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.13 Array Multiplication 221

Table 10.4
The impact of matrix-multiplication on the properties of matrices and associative arrays with semiring values.
Assuming that the semiring is zero-sum-free or has no zero divisors has minimal effect on the properties below.

property formula C = A B = A ⊕.⊗ B
dim m×n dim(C) =

(
dim(A,1),dim(B,2)

)
total mn total(C) = dim(A,1) dim(B,2)
nnz nnz(C) nnz(C) ≤ total(C)
density nnz(C)/total(C) density(C) ≤ 1
sparsity 1−density(C) sparsity(C) ≤ 1
size m×n size(C) ≤

(
size(A,1),size(B,2)

)
rank rank(C) rank(C) ≤min

(
rank(A), rank(B)

)
≥ rank(A) + rank(B)−dim(A,2)

10.13 Array Multiplication

How the properties change under array multiplication is shown in Table 10.4. The proper-
ties that are the most consistent after array multiplication are usually the simplest to apply
to associative arrays. The proofs of the array multiplication properties shown in Table 10.4
are described as follows.

Definition 10.5
Array Multiplication

Array multiplication, which combines element-wise addition and element-wise
multiplication, is written

C = AB = A ⊕.⊗ B

and defined by
C(k1,k2) =

⊕
k3∈K3

A(k1,k3)⊗B(k3,k2)

where A, B, and C are associative arrays

A : K1×K3→ V

B : K3×K2→ V

C : K1×K2→ V

dim
An m×n matrix or associative array times an n×m matrix or associative array produces an
n×n matrix or associative array.

“current_book”
2017/8/27
23:44
page 222
#246

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

222 Chapter 10 Structural Properties of Associative Arrays

total
This is the same as dimension for matrices and follows naturally from size for associative
arrays.

support
There is little to be observed about the support of AB. It is possible to have

support(AB) (support(A)∩ support(B)

or
support(AB)) support(A)∪ support(B)

or anywhere in between. An example of the first case is

A = B =

0 1

0 0

with

AB =

0 1

0 0

2

=

0 0

0 0

in which

support(A)∩ support(B) = {(1,2)}

and
support(AB) = ∅

An example of the second case is

A = B =

0 1

1 1

with

AB =

0 1

1 1

2

=

1 1

1 2

so that

support(A)∪ support(B) = {(1,2), (2,1), (2,2)}

and
support(AB) = {(1,1), (1,2), (2,1), (2,2)}

Two examples of the third case include

A = B = AB = I

“current_book”
2017/8/27
23:44
page 223
#247

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.13 Array Multiplication 223

and

A =

1 0

0 0

 ,B =

1 1

0 1

with

AB =

1 1

0 0

in which

support(AB) = {(1,1), (1,2)}

which is between
support(A)∩ support(B) = {(1,1)}

and
support(A)∪ support(B) = {(1,1), (1,2), (2,1)}

nnz
In the same way that there is not much to say about support, there also is not much to say
about nnz. Indeed, the examples given to show that the support of AB can vary a lot also
show that it is possible for nnz(AB) to be larger than max

(
nnz(A),nnz(B)

)
, or to be smaller

than min
(
nnz(A),nnz(B)

)
, or in between them.

density
Because little can be said about nnz, likewise, not much can be said about density.

sparsity
Because little can be said about nnz, likewise, not much can be said about sparsity.

size
Although the relationship between size and nnz has already been described, this description
does not say much about size because most of the relations of interest are inequalities, and
if it can be shown that a1 < b1, a2 < b2, and b1 < b2, this says little about the relationship
between a1 and a2. The same example used to show that it is possible for

nnz(AB) < min
(
nnz(A),nnz(B)

)
works for size as well. Let

A = B =

 1 1

−1 −1

“current_book”
2017/8/27
23:44
page 224
#248

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

224 Chapter 10 Structural Properties of Associative Arrays

then

size(AB,1) = size

 1 1

−1 −1

2

,1

= size

0 0

0 0

 ,1

= 0

< 3

= min(3,3)

= min

size

 1 1

−1 −1

 ,1
 ,size

 1 1

−1 −1

 ,1

= min(size(A,1),size(B,1))

and the same holds for showing that it is possible

size(AB,2) < min
(
size(A,2),size(B,2)

)
Theorem 10.11

size of Array Multiplication

For any matrices over a field or associative arrays A and B

size(AB,1) ≤ size(A,1) and size(AB,2) ≤ size(B,2)

Proof. See Exercise 10.18. �

The obvious extensions to this are

size(AB,2) ≤ size(A,2) and size(AB,1) ≤ size(B,1)

The above extensions, however, do not hold, if

A =

1 0

1 0

 , B =

1 1

1 1

 , C =

1 1

0 0

then

AB = BC =

1 1

1 1

but

size(AB,2) > size(A,2) and size(BC,1) > size(C,1)

“current_book”
2017/8/27
23:44
page 225
#249

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.13 Array Multiplication 225

rank
Rank obeys

rank(A) + rank(B)−n ≤ rank(AB) ≤min
(
rank(A), rank(B)

)
The left inequality, known as Sylvester’s Inequality, is a special case of Frobenius’s in-
equality.

Lemma 10.12

Frobenius’s Inequality

[13] For any matrices A,B, and C with dimensions such that ABC is defined, then

rank(AB) + rank(BC) ≤ rank(ABC) + rank(B)

This above lemma leads to the following theorem

Theorem 10.13

Sylvester’s Inequality

For any two n×n matrices A and B

rank(A) + rank(B)−n ≤ rank(AB)

Proof. Applying Frobenius’s inequality to A, I, and B gives

rank(A) + rank(B) = rank(AI) + rank(IB)

≤ rank(AIB) + rank(I)

= rank(AB) + n

Rearranging the above expressions gives

rank(A) + rank(B)−n ≤ rank(AB)

as desired. �

The above proof gives, as a special case, the following corollary.

Corollary 10.14

Rank n Matrices Closed under Array Multiplication

The set of n×n rank n matrices is closed under multiplication.

“current_book”
2017/8/27
23:44
page 226
#250

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

226 Chapter 10 Structural Properties of Associative Arrays

Proof. Suppose A and B are rank n, n× n matrices. Then AB is n× n, so the rows of AB
are

{A(1, :),A(2, :), . . . ,A(n, :)}

The above are n row vectors and can be generated by n vectors through linear combination,
so

rank(AB) ≤ n

Furthermore
rank(AB) ≥ rank(A) + rank(B)−n = n + n−n = n

so
rank(AB) = n

�

The right equality follows straightforwardly from the rank-nullity theorem, and from the
fact that rank does not change under transposition.

Theorem 10.15

rank of Array Multiplication

For any n×n matrices A and B

rank(A) + rank(B)−n ≤ rank(AB) ≤min
(
rank(A), rank(B)

)
Proof. By Theorem 10.13, the left-hand side is

rank(A) + rank(B)−n ≤ rank(AB)

Now, if
Bv = 0

then
ABv = A0 = 0

so
ker(B) ⊂ ker(AB)

where ker(B) is the set of all vectors v that satisfy

Bv = 0

Likewise, where ker(AB) is the set of all vectors v that satisfy

ABv = 0

“current_book”
2017/8/27
23:44
page 227
#251

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.14 Closure of Operations between Arrays 227

Thus, if X is a set of vectors that generates via their linear combination ker(AB), X will
also necessarily generate all the vectors in ker(B). Hence

dim
(
ker(B)

)
≤ dim

(
ker(AB)

)
and so

rank(AB) = n−dim
(
ker(AB)

)
≤ n−dim

(
ker(B)

)
= rank(B)

Since the row rank and column rank are the same, and transposition swaps rows and
columns, for any matrix M (including A and AB) it is known that

rank
(
MT

)
= rank(M)

and since
(AB)T = BTAT

then
rank(AB) = rank

(
(AB)T

)
= rank

(
BTAT

)
≤ rank

(
AT

)
= rank(A)

This means that
rank(AB) ≤ rank(B)

and
rank(AB ≤ rank(A)

and so the right-hand side is
rank(AB) ≤min(A,B)

Thus
rank(A) + rank(B)−n ≤ rank

(
AB) ≤min(rank(A), rank(B)

)
as desired. �

10.14 Closure of Operations between Arrays

One of the major motivations for the precise definition of an associative array given in
Definition 10.1 was the collection of the operations of scalar multiplication, element-wise
multiplication, element-wise addition, and array multiplication. However, it must still be
shown that the definitions used to define these operations return associative arrays, namely
that they fulfill the finite-support condition.

Let
A,B : K1×K2→ V

and
C : K2×K3→ V

“current_book”
2017/8/27
23:44
page 228
#252

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

228 Chapter 10 Structural Properties of Associative Arrays

be arrays. The element 0 in the semiring (V,⊕,⊗,0,1) necessarily fulfills the identity

0⊗ v = 0 = v⊗0

for every value v ∈ V by the definition of a semiring. Thus

size(vA) =

size(A) v , 0

(0,0) v = 0

Additionally, for element-wise multiplication, there are the inequalities

size(A⊗B,1) ≤min
(
size(A,1),size(B,1)

)
size(A⊗B,2) ≤min

(
size(A,2),size(B,2)

)
For element-wise addition, there are the inequalities

size(A⊕B,1) ≤ size(A,1)⊕ size(B,1)

size(A⊕B,2) ≤ size(A,2)⊕ size(B,2)

Finally, in the case of array multiplication

size(AC,1) ≤ size(A,1)

size(AC,2) ≤ size(C,2)

The above observations show that the finite-support condition holds for each of the result-
ing associative arrays.

10.15 Conclusions, Exercises, and References

There are a number of important properties that describe associative arrays. These prop-
erties include dimension, total number of elements, number of nonzero elements, density,
sparsity, size, image, and rank. Of particular interest is how these properties behave under
element-wise addition, element-wise multiplication, and array multiplication. The proper-
ties that are the most consistent are often the properties that are most useful to work with
for associative arrays.

Exercises

Exercise 10.1 — Is the following map an associative array? Why or why not? If the map
is an associative array, give its size.

A : {0,1}× {0,1,2} → R∪{−∞,∞}

“current_book”
2017/8/27
23:44
page 229
#253

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.15 Conclusions, Exercises, and References 229

given by

A =

0 1 2

0 0 ∞ 1

1 −∞ 8 π

where R∪{−∞,∞} is equipped with

(a) the min-max tropical algebra

(b) the max-plus algebra

Exercise 10.2 — Is the following map an associative array? Why or why not? If the map
is an associative array, give its size.

B : K1×K2→ R+

with B(k1,k2) = 1 for all k1 ∈ K1 and k2 ∈ K2.

Exercise 10.3 — Is the following map an associative array? Why or why not? If the map
is an associative array, give its size.

(a) C =

1 2 3

1 7 2 1

2 0 3 3

(b) D =

1 2 3

1 4 2 5

2 1 0 1

(c) E =

1 2 3 4

1 3 2 1 0

2 0 1 2 3

3 0 1 0 1

Exercise 10.4 — Is the following map an associative array? Why or why not? If the map
is an associative array, give its size.

F : {1,2}× {1,2} → {blue, red}

given by

F =

1 2

1 blue red

2 red blue

“current_book”
2017/8/27
23:44
page 230
#254

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

230 Chapter 10 Structural Properties of Associative Arrays

Exercise 10.5 — Is the following map an associative array? Why or why not? If the map
is an associative array, give its size.

(a) G =

1 2

1 ∅ {0}

2 {1} ∅

(b) H =

1 2

1 {0,1} {2}

2 ∅ {0}

(c) I =

1

1 {0}

2 {0,2}

Exercise 10.6 — Show that the following maps fulfill the inequalities in Section 10.14,
where A,B,C, and c are given by

A =

1 2 3

1 7 2 1

2 0 3 3

, B =

1 2 3

1 4 2 5

2 1 0 1

, C =

1 2 3 4

1 3 2 1 0

2 0 1 2 3

3 0 1 0 1

and c = 3, where V = R∪{−∞,∞} is equipped with the max-plus algebra.

Exercise 10.7 — Show that the following maps fulfill the inequalities in Section 10.14,
where A,B,C, and c are given by

A =

1 2 3

1 7 2 1

2 0 3 3

, B =

1 2 3

1 4 2 5

2 1 0 1

, C =

1 2 3 4

1 3 2 1 0

2 0 1 2 3

3 0 1 0 1

and c = 3, where V = R∪{−∞,∞} is equipped with the tropical max-min algebra.

Exercise 10.8 — Show that the following maps fulfill the inequalities in Section 10.14,
where A,B,C, and c are given by

A =

1 2

1 ∅ {0}

2 {1} ∅

, B =

1 2

1 {0,1} {2}

2 ∅ {0}

, C =

1

1 {0}

2 {0,2}

“current_book”
2017/8/27
23:44
page 231
#255

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

10.15 Conclusions, Exercises, and References 231

and c = {0}, where V = P({0,1,2}) is equipped with the standard semiring structure.

Exercise 10.9 — Prove the inequalities in Section 10.14.

Exercise 10.10 — Prove Theorem 10.2.

Exercise 10.11 — Prove Theorem 10.3.

Exercise 10.12 — Prove Theorem 10.4.

Exercise 10.13 — Prove Theorem 10.5.

Exercise 10.14 — Prove Theorem 10.6.

Exercise 10.15 — Prove Theorem 10.7.

Exercise 10.16 — Prove Theorem 10.8.

Exercise 10.17 — Prove Theorem 10.9.

Exercise 10.18 — Prove Theorem 10.11.

Exercise 10.19 — Prove that if K1×K2 is infinite, then there does not exist an identity for
element-wise multiplication.

Exercise 10.20 — Prove that if K ×K is infinite, then there does not exist an identity for
array multiplication.

Exercise 10.21 — Element-wise multiplication, element-wise addition, and array multi-
plication operations have been defined between two arrays

A : K1×K2→ V

and
B : K′1×K′2→ V

when there are additional conditions imposed on their domains. For element-wise multi-
plication, and element-wise addition, it is necessary that

K1×K2 = K′1×K′2

in order for
A⊗B

and
A⊕B

to be defined. For array multiplication, it is necessary that K2 = K′1 for AB to be defined.

“current_book”
2017/8/27
23:44
page 232
#256

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

232 Chapter 10 Structural Properties of Associative Arrays

Exercise 10.21 — Expand the definitions of element-wise multiplication and element-wise
addition to include the more general case where K1×K2 and K′1×K′2 are possibly distinct,
producing an associative array with domain

(K1∪K′1)× (K2∪K′2)

(a) Do the same with array multiplication.

(b) Show that given any zero array

0 : K′1×K′2→ V

the generalized array addition A⊕0 is a zero padding of A.

References

[1] A. Buluc and J. R. Gilbert, “On the representation and multiplication of hypersparse matrices,” in Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pp. 1–11, IEEE, 2008.

[2] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication and indexing: Implementation and
experiments,” SIAM Journal on Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[3] A. George and E. Ng, “An implementation of Gaussian elimination with partial pivoting for sparse systems,”
SIAM Journal on Scientific and Statistical Computing, vol. 6, no. 2, pp. 390–409, 1985.

[4] T. F. Coleman and A. Pothen, “The null space problem II. algorithms,” SIAM Journal on Algebraic Discrete
Methods, vol. 8, no. 4, pp. 544–563, 1987.

[5] A. George and E. Ng, “On the complexity of sparse QR and LU factorization of finite-element matrices,”
SIAM Journal on Scientific and Statistical Computing, vol. 9, no. 5, pp. 849–861, 1988.

[6] J. R. Gilbert and M. T. Heath, “Computing a sparse basis for the null space,” SIAM Journal on Algebraic
Discrete Methods, vol. 8, no. 3, pp. 446–459, 1987.

[7] M. Benzi, “Preconditioning techniques for large linear systems: a survey,” Journal of computational Physics,
vol. 182, no. 2, pp. 418–477, 2002.

[8] J. W. Liu, “Computational models and task scheduling for parallel sparse Cholesky factorization,” Parallel
Computing, vol. 3, no. 4, pp. 327–342, 1986.

[9] J. R. Gilbert, “Predicting structure in sparse matrix computations,” SIAM Journal on Matrix Analysis and
Applications, vol. 15, no. 1, pp. 62–79, 1994.

[10] E. Cohen, “Structure prediction and computation of sparse matrix products,” Journal of Combinatorial Opti-
mization, vol. 2, no. 4, pp. 307–332, 1998.

[11] L. Grady and E. L. Schwartz, “Faster graph-theoretic image processing via small-world and quadtree topolo-
gies,” in Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–360, IEEE Computer Society;
1999, 2004.

[12] G. Strang, “The fundamental theorem of linear algebra,” The American Mathematical Monthly, vol. 100,
no. 9, pp. 848–855, 1993.

[13] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, vol. 2. Siam, 2000.

[14] G. Strang, Introduction to Linear Algebra, vol. 5. Wellesley-Cambridge Press, Wellesley, MA, 2009.

[15] M. Artin, Algebra. New York: Pearson, 2010.

“current_book”
2017/8/27
23:44
page 233
#257

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11 Graph Construction and Graphical Patterns

Summary

Graph construction, a fundamental operation in a data processing system, is typically done
by multiplying the incidence array representations of a graph, Ein and Eout, to produce an
adjacency array of the graph, A, that can be processed with a variety of algorithms. Vari-
ous mathematical criteria can be used to determine if the product A = ET

outEin will be the
adjacency array of the graph. An adjacency array of a graph can have certain patterns that
are termed special matrices. Examples of useful patterns include the concepts of diagonal,
off-diagonal, symmetric, skew-symmetric, upper and lower triangular, block, and block di-
agonal. Many of these patterns are also relevant when matrices are generalized to associative
arrays. This chapter formally defines the relationships among adjacency arrays, incidence
arrays, special matrices, and their corresponding graphs, all of which have properties that
can be used to eliminate steps in a data processing pipeline.

11.1 Introduction

Adjacency arrays, typically denoted A, have much in common with adjacency matrices.
Likewise, incidence arrays or edge arrays, typically denoted E, have much in common with
incidence matrices [2–5], edge matrices [6], adjacency lists [7], and adjacency structures
[8]. The powerful link between adjacency arrays and incidence arrays via array multipli-
cation is the focus of the first part of this chapter.

The discussion of adjacency arrays and incidence arrays is readily illustrated with a va-
riety of special matrices. The field of special matrices analyzes matrices with particular
properties. These matrices have been the object of study since the first definition of matri-
ces (see [9] and references therein). Among these properties are the structure of zero and
nonzero elements in a matrix. These matrix structures come in many varieties, such as

Bidiagonal — Nonzero along main diagonal and an adjacent diagonal and 0 elsewhere [10]
Block Diagonal — Nonzero in blocks along the diagonal and 0 elsewhere [11, 12]
Convergent — Becomes 0 when raised to higher powers [13]
Diagonal — 0 outside main diagonal [14]
Diagonalizable — Transformable to a diagonal matrix [15, 16]

This chapter is partially adapted from [1] and is reproduced with permission from the IEEE.

“current_book”
2017/8/27
23:44
page 234
#258

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

234 Chapter 11 Graph Construction and Graphical Patterns

Exchange — 1 along main anti-diagonal and 0 elsewhere [17]
Hessenberg — 0 below (above) the lower (upper) main adjacent diagonal [18, 19]
Identity — 1 along main diagonal and 0 elsewhere [20]
Jacobi — Nonzero along main diagonal and both adjacent diagonals and 0 elsewhere [21]
Permutation — Each row and each column contains a single 1 and is 0 elsewhere [22]
Shift — 1 on an adjacent main diagonal and 0 elsewhere [23]
Signature — ±1 along the main diagonal and 0 elsewhere [24]
Triangular — 0 either above or belong the main diagonal [25]
Zero — All values are 0 [20]

In each of the above special matrices, the pattern of zeroes and nonzero elements implies
a different graph. However, the graph properties are not independent of the ordering of the
rows and columns in the matrix. In the case of associative arrays, the ordering of the rows
and columns is determined by the order function of their respective row and column key
sets. Thus, special matrices, graphs, and order functions on row and column key sets are
all closely related and are discussed in detail in the second half of the chapter.

11.2 Adjacency and Incidence Array Definitions

Associative arrays derive much of their power from their ability to represent data intu-
itively in easily understandable tables. Two properties of associative arrays in particular
are different from other two-dimensional arrangements of data. First, each row and column
key in an array is unique and sortable, allowing rows and columns to be queried efficiently.
Secondly, because associative array implementations store no rows or columns that are
entirely empty, insertion, selection, and deletion of data can be performed by element-
wise addition, element-wise multiplication, and array multiplication. These properties are
manifest in the representation of an associative array.

Associative arrays can represent graphs through both incidence and adjacency arrays.

Definition 11.1
Adjacency Array

Let G be a (directed, weighted) graph G with vertex set Kout∪Kin, where Kout and
Kin are the sets of vertices with outgoing and incoming edges, respectively.
The array

A : Kout×Kin→ V

is an adjacency array of G if there is an edge from kout to kin if and only if

A(kout,kin) , 0

“current_book”
2017/8/27
23:44
page 235
#259

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.2 Adjacency and Incidence Array Definitions 235

Definition 11.2
Standard Adjacency Array

If G is a weighted (directed) graph then

A : Kout×Kin→ V

is the standard adjacency array if A(kout,kin) is equal to the weight of the edge
from kout to kin, if there is such an edge, and 0 otherwise.
If G is not weighted, then the standard adjacency array is defined in the same way,
with weights assumed to be 1.

There can be multiple adjacency arrays for a given graph. Whenever the adjacency array
is spoken of, it is assumed to mean the standard adjacency array.

Definition 11.3
Incidence Array

Let G be a (directed, weighted, multi, hyper) graph with edge set K and vertex set
Kout∪Kin, where Kout and Kin are the sets of vertices with outgoing and incoming
edges, respectively.
Arrays

Eout : K ×Kout→ V and Ein : K ×Kin→ V

are out-vertex and in-vertex incidence arrays of G, respectively, if

Eout(k,kout) , 0 and Ein(k,kin)

if and only if edge k is directed outward from vertex kout and inward to vertex kin.

There can be multiple distinct out-vertex (in-vertex) incidence arrays for a given graph.
Graphs have been discussed in the preceding text, but to supplement the formal definition

of an associative array, it is useful to formally define what it means to be a graph.

Definition 11.4
Undirected Graph

An undirected graph
G = (K,E)

consists of a set K whose elements are called vertices and a set E whose elements
are unordered pairs of vertices {k,k′} called edges.

“current_book”
2017/8/27
23:44
page 236
#260

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

236 Chapter 11 Graph Construction and Graphical Patterns

An undirected graph can be thought of geometrically as a set of vertices in K, where each
edge

{k,k′} ∈ E

represents an edge between vertex k and k′. In addition, the standard adjacency array A of
an undirected graph obeys the transpose identity

A = AT

Example 11.1

An undirected line graph G = (K,E) can be constructed with vertice and eges

K = {1, . . . ,n} and E = {{k,k + 1} | 1 ≤ k < n}

This graph forms a sequential, undirected line through all of the vertices. A graph
drawing of this line graph for n = 4 and its standard adjacency array are

1 2

34

A =

1 2 3 4

1 1

2 1 1

3 1 1

4 1

Example 11.2

An undirected loop graph G = (K,E) can be constructed with vertices and edges

K = {1, . . . ,n} and E = {{k,k + 1} | 1 ≤ k < n}∪ {(n,1)}

This graph forms a sequential, undirected loop through all of the vertices. A graph
drawing of this graph for n = 4 and its standard adjacency array are

1 2

34

A =

1 2 3 4

1 1 1

2 1 1

3 1 1

4 1 1

“current_book”
2017/8/27
23:44
page 237
#261

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.2 Adjacency and Incidence Array Definitions 237

Definition 11.5
Directed Graph

A directed graph
G = (K,E)

consists of a set K whose elements are called vertices and a subset E of K × K
whose elements (kout,kin) are called edges.

A directed graph is as a set of vertices where an edge

(kout,kin) ∈ E

is an arrow directed from vertex kout to vertex kin.
By convention, every vertex will either be an out-vertex, so has an edge directed outward

from that vertex, or an in-vertex, so has an edge directed inward to that vertex. Hence, it is
assumed that K = Kout∪Kin where Kout and Kin are the sets of out-vertices and in-vertices.
In terms of the adjacency arrays, this is merely the fact that zero rows and columns can be
assumed to have been removed.

Example 11.3

A directed line graph G = (Kout∪Kin,E) can be constructed with vertices

Kout = {1, . . . ,n−1} and Kin = {2, . . . ,n}

and edges
E = {(k,k + 1) | 1 ≤ k < n}

This (directed) graph forms a sequential, directed line through all of the vertices.
A graph drawing of this line graph for n = 4 and its standard adjacency array are

1 2

34

A =

2 3 4

1 1

2 1

3 1

“current_book”
2017/8/27
23:44
page 238
#262

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

238 Chapter 11 Graph Construction and Graphical Patterns

Example 11.4

A directed loop graph G = (Kout∪Kin,E) can be constructed with vertices

Kout = {1, . . . ,n} and Kin = {1, . . . ,n}

and edges
E = {(k,k + 1) | 1 ≤ k < n}∪ {(n,1)}

This graph produces a sequential, directed loop through all of the vertices. A graph
drawing of this graph for n = 4 is

1 2

34

A =

1 2 3 4

1 1

2 1

3 1

4 1

Definition 11.6
Weighted Directed Graph

A weighted directed graph

G = (Kout∪Kin,E,W : E→ V)

is a directed graph (Kout∪Kin,E) along with a weight function

W : E→ V

which assigns to each edge a non-zero value in the semiring (V,⊕,⊗,0,1).

A weighted directed graph can be interpreted visually as a set of vertices where each
edge

(kout,kin) ∈ Kout×Kin

represents an arrow pointing from vertex kout to vertex kin that has a nonzero value v ∈ V
assigned to the edge.

The standard adjacency array of a weighted graph G is the extension of the weight func-
tion to all pairs in Kout ×Kin. In other words, the weight function is the restriction of the
standard adjacency array to the set of edges.

“current_book”
2017/8/27
23:44
page 239
#263

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.2 Adjacency and Incidence Array Definitions 239

In a graph drawing, the weight function is represented by labeling the arrow representing
the edge with the weight of the edge.

Example 11.5

A weighted directed graph G = (Kout∪Kin,E,V) can be constructed with vertices

Kout = Kin = {Boston,Cambridge,Salem}

and edges

E = {(Boston,Cambridge), (Cambridge,Boston),

(Cambridge,Salem), (Salem,Cambridge)}

where the weights are the shortest driving distances between these cities This graph
has the graph drawing

Salem Cambridge Boston

22.8

24.4

2.9

3.1

The adjacency array for this weighted directed graph is

A =

Boston Cambridge Salem

Boston 3.1

Cambridge 2.9 24.4

Salem 22.8

Example 11.6

The graph of a 3×3 matrix over some polynomial ring

A =

1 2 3

1 1 x

2 x

3 x2

has the vertices G = K = {1,2,3} and edges E = {(1,1), (1,2), (2,2), (3,1)} with
weight function given by the restriction of A to E.

“current_book”
2017/8/27
23:44
page 240
#264

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

240 Chapter 11 Graph Construction and Graphical Patterns

Example 11.7

The graph of the unit array e(k1,k2) : K2→ V again has K as the set of vertices, but
with a single edge connecting k1 and k2.

11.3 Adjacency Array Construction

Incidence arrays are often readily obtained from raw data. In many cases, an associative
array representing a spreadsheet or database table is already in the form of an incidence
array. However, to analyze a graph, it is often convenient to represent the graph as an
adjacency array. Constructing an adjacency array from data stored in an incidence array
via array multiplication is one of the most common and important steps in a data processing
system.

Given a graph G with vertex set Kout∪Kin and edge set K, the construction of adjacency
arrays for G relies on the assumption that ET

outEin is an adjacency array of G. This as-
sumption is certainly true in the most common case, where the value set is composed of
non-negative reals and the operations ⊕ and ⊗ are arithmetic plus + and arithmetic times
×, respectively. However, one hallmark of associative arrays is their ability to contain as
values nontraditional data. For these value sets, ⊕ and ⊗ may be redefined to operate on
non-numerical values. For example, for the value of all alphanumeric strings, with

⊕ ≡max

⊗ ≡min

it is not immediately apparent in this case whether ET
outEin is an adjacency array of the

graph whose set of vertices is Kout ∪Kin. In the subsequent sections, the criteria on the
value set V and the operations ⊕ and ⊗ are presented so that

A = ET
outEin

always produces an adjacency array [1, 26].
For the purpose of establishing the minimum criteria for graph construction, this section

will not assume a full commutative semiring structure for the value set. All that will be
required is that the value set V be closed under two binary operations ⊕ and ⊗ and that
V contains the identity elements of these operations, denoted 0 and 1, respectively. As-
sociativity, commutativity, and distributivity are not required. However, in most practical
applications these properties will hold.

“current_book”
2017/8/27
23:44
page 241
#265

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.3 Adjacency Array Construction 241

Moreover, the graphs dealt with can be even more general by allowing for multiple di-
rected edges between two vertices.

Definition 11.7
Directed Multigraph

A directed multigraph
G = (Kout∪Kin,K)

consists of a set of vertices Kout∪Kin and a set K whose elements are called edges,
where each edge is assigned a source in Kout and a target in Kin.

Directed multigraphs allow for multiple directed edges between two vertices. This has
no effect on the definitions of incidence arrays or adjacency arrays.

Theorem 11.1

Constructing Adjacency Array from Incidence Arrays (Directed Multigraphs)

Let V be a set with closed binary operations ⊕,⊗ with identities 0,1 ∈ V . Then the
following are equivalent:

(i) ⊕ and ⊗ satisfy the properties

(a) Zero-Sum-Free: a⊕b = 0 if and only if a = b = 0,

(b) Zero-Divisor-Free: a⊗b = 0 if and only if a = 0 or b = 0, and

(c) 0 is Annihilator for ⊗: a⊗0 = 0⊗a = 0.

(ii) If G is a directed multigraph with out-vertex and in-vertex incidence arrays
Eout : K ×Kout→ V and Ein : K ×Kout→ V , then ET

outEin is an adjacency array
for G.

Proof. For ET
outEin to be the adjacency array of G, the entry A(kout,kin) must be nonzero

if and only if there is an edge from kout to kin, which is equivalent to saying that the entry
must be nonzero if and only if there is a k ∈ K such that

ET
out(kout,k) , 0

Ein(k,kin) , 0

Taken altogether, the above pair of equations implies

“current_book”
2017/8/27
23:44
page 242
#266

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

242 Chapter 11 Graph Construction and Graphical Patterns

⊕
k∈K

ET
out(kout,k)⊗Ein(k,kin) , 0

if and only if

ET
out(kout,k) , 0 and Ein(k,kin) , 0 (11.1)

This equivalence is shown to imply the desired algebraic properties of ⊕,⊗. It is equivalent
to the statement ⊕

k∈K

Eout(k, x)⊗Ein(k,y) = 0

if and only if

@k ∈ K such that Eout(k, x) , 0 and Ein(k,y) , 0

The above statement is in turn is equivalent to for all k ∈ K⊕
k∈K

Eout(k, x)⊗Ein(k,y) = 0

if and only if

Eout(k, x) = 0 or Ein(k,y) = 0

This expression may be split up into two conditional statements. The first condition is that
for all k ∈ K ⊕

k∈K

Eout(k, x)⊗Ein(k,y) = 0

implies

Eout(k, x) = 0 or Ein(k,y) = 0 (11.2)

The second condition is that for all k ∈ K

Eout(k, x) = 0 or Ein(k,y) = 0

implies⊕
k∈K

Eout(k, x)⊗Ein(k,y) = 0 (11.3)

“current_book”
2017/8/27
23:44
page 243
#267

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.3 Adjacency Array Construction 243

Lemma 11.2

Zero-Sum-Free is Necessary

Equation 11.2 implies that V is zero-sum-free.

Proof. Suppose there exist nonzero v,w ∈ V such that v⊕w = 0, or that nontrivial additive
inverses exist. Then consider the graph

a b

k1

k2

with incidence arrays

Eout =

a

k1 v

k2 w

 Ein =

b

k1 1

k2 1

It is the case that

ET
outEin(b,a) = (v⊗1)⊕ (w⊗1)

= v⊕w

= 0

which contradicts Equation 11.2. Therefore, no such nonzero v and w may be present in
V , meaning it is necessary that V be zero-sum-free. �

Lemma 11.3

Zero-Divisor-Free is Necessary

Equation 11.2 implies that V is zero-divisor-free.

Proof. Suppose there exist nonzero v,w ∈ V such that v⊗w = 0. Then consider the graph

a b
k

with incidence arrays

Eout =
[a

k v
]

Ein =
[b

k w
]

“current_book”
2017/8/27
23:44
page 244
#268

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

244 Chapter 11 Graph Construction and Graphical Patterns

It is the case that

ET
outEin(a,b) = Eout(k,a)⊗Ein(k,b)

= v⊗w

= 0

which contradicts Equation 11.2. Therefore, no such v and w may be present in V , so V is
zero-divisor-free. �

Lemma 11.4

0 Annihilates is Necessary

Equation 11.3 implies that 0 annihilates V under ⊗.

Proof. A first proof uses the result of Lemma 11.2. Consider the graph

a b c d
k1 k2 k3

with incidence arrays

Eout =

a b c

k1 v 0 0

k2 0 v 0

k3 0 0 v

 Ein =

b c d

k1 v 0 0

k2 0 v 0

k3 0 0 v

It is the case that

ET
outEin(a,c) = (v⊗0)⊕ (0⊗ v)⊕ (0⊗0) = 0 (11.4)

Then, by Lemma 11.2, it follows that v⊗0 = 0× v = 0⊗0 = 0.
A second proof avoids the use of Lemma 11.2. First consider the graph

a b c
k1 k2

with incidence arrays

Eout =

a b

k1 v 0

k2 0 v

 Ein =

b c

k1 v 0

k2 0 v

It is the case that

ET
outEin(a,c) = (v⊗0)⊕ (0⊗ v) = 0 (11.5)

“current_book”
2017/8/27
23:44
page 245
#269

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.3 Adjacency Array Construction 245

Then using Equation 11.4 with Equation 11.5 it follows that 0⊗0 = 0.
Next consider the graph

a b c d

e

k1 k2 k3

k4

with incidence arrays

Eout =

a b c

k1 v 0 0

k2 0 v 0

k3 0 0 v

k4 v 0 0

Ein =

b c d e

k1 v 0 0 0

k2 0 v 0 0

k3 0 0 v 0

k4 0 0 0 v

It is the case that

ET
outEin(a,c) = (v⊗0)⊕ (0⊗ v)⊕ (0⊗0)⊕ (v⊗0) = 0 (11.6)

Then using Equation 11.4 with Equation 11.6, it follows that v⊗ 0 = 0. Using this in
Equation 11.5 gives the final desired equality 0⊗ v = 0.

�

Conversely, Theorem 11.1(i) is sufficient for Theorem 11.1(ii) to hold. Assume that zero
is an annihilator, V is zero-sum-free, and V is zero-divisors-free. Zero-sum-freeness and
the nonexistence of zero divisors means that there exists k ∈ K such that

Eout(k, x) , 0 and Ein(k,y) , 0

implies⊕
k∈K

Eout(k, x)⊗Ein(k,y) , 0

which is the contrapositive of Equation 11.2. In addition, since zero is an annihilator, it is
the case that for all k ∈ K

Eout(e, x) = 0 or Ein(e,y) = 0

implies⊕
k∈

Eout(k, x)⊗Ein(k,y) = 0

which is Equation 11.3. As Equation 11.2 and Equation 11.3 combine to form Equa-
tion 11.1, it is established that the conditions are sufficient for Equation 11.1. �

“current_book”
2017/8/27
23:44
page 246
#270

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

246 Chapter 11 Graph Construction and Graphical Patterns

The remaining product of the incidence arrays that is defined is ET
inEout. The above

requirements will now be shown to be necessary and sufficient for the remaining product
to be the adjacency array of the reverse of the graph. Recall that the reverse of G is the
graph Ḡ in which all the arrows in G have been reversed. Let G be a graph with incidence
matrices Eout and Ein.

Corollary 11.5

Constructing Adjacency Array of Reverse from Incidence Arrays

Condition (i) in Theorem 11.1 are necessary and sufficient so that ET
inEout is an

adjacency matrix of the reverse of G.

Proof. See Exercise 11.4. �

Among those structures which satisfy the algebraic requirements of Theorem 11.1 in-
clude semirings which are both zero-sum-free and have no zero divisors, such as N and
R≥0 with standard addition and multiplication or any bounded linearly ordered set with
supremum and infimum.

There are also structures which are not semirings but nevertheless satisfy the require-
ments of Theorem 11.1, such as N with the operations

n⊕m =

m if n = 0 or m = 0

n + 1 otherwise
and n⊗m =

0 if n = 0

n if m = 1

m if n = 1

m2 otherwise

Then ⊕ has identity 0, n⊕m = 0 implies n = m = 0, ⊗ has identity 1, n⊗m = 0 implies at
least one of n,m is 0, and 0⊗ n = n⊗ 0 = 0. However, neither ⊕ nor ⊗ are associative or
commutative, and ⊗ does not distribute over ⊕, as the following computations show.

(1⊕1)⊕1 = 3 1⊕ (1⊕1) = 2

1⊕2 = 2 2⊕1 = 3

(2⊗3)⊗4 = 4 (2⊗3)⊗4 = 16

2⊗3 = 4 3⊗2 = 9

2⊗ (1⊕1) = 4 (2⊗1)⊕ (2⊗1) = 3

(1⊕1)⊗2 = 4 (1⊗2)⊕ (1⊗2) = 3

Non-examples, however, include the max-plus algebra and power set algebras (assuming
more than one element).

“current_book”
2017/8/27
23:44
page 247
#271

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.3 Adjacency Array Construction 247

Restricting the class of the graphs involved removes the necessity of being zero-sum-free.

Corollary 11.6

Constructing Adjacency Array from Incidence Arrays (Directed Graphs)

Let V be a set with closed binary operations ⊕,⊗ with additive identity 0 ∈ V . Then
the following are equivalent:

(i) ⊕ and ⊗ satisfy the properties

(a) Zero-Divisor-Free: a⊗b = 0 if and only if a = 0 or b = 0, and

(b) 0 is Annihilator for ⊗: a⊗0 = 0⊗a = 0.

(ii) If G is a directed graph with out-vertex and in-vertex incidence arrays Eout :
K×Kout→ V and Ein : K×Kout→ V , then ET

outEin is an adjacency array for G.

Proof. The implication (ii) =⇒ (i) follows from the proof of (i) =⇒ (ii) given in Theo-
rem 11.1 since the graphs constructed in the proofs of Lemma 11.3 and Lemma 11.4 are
directed graphs.

As in the proof of Theorem 11.1, in proving (i) =⇒ (ii) it is enough to show that Equa-
tion 11.2 ⊕

k∈K

Eout(k, x)⊗Ein(k,y) = 0

implies

Eout(k, x) = 0 or Ein(k,y) = 0

and Equation 11.3

Eout(k, x) = 0 or Ein(k,y) = 0

implies⊕
k∈K

Eout(k, x)⊗Ein(k,y) = 0

in a directed graph G.
Since there can be at most a single edge directed from x to y, this means that there is at

most a single edge k such that

Eout(k, x) , 0 and Ein , 0

“current_book”
2017/8/27
23:44
page 248
#272

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

248 Chapter 11 Graph Construction and Graphical Patterns

with
Eout(k′, x) = 0 or Ein(k′,y) = 0

for all other edges k′. Since 0 is an annihilator, each of the terms

Eout(k′, x)Ein(k′,y)

are equal to 0, so
0 = Eout(k, x)Ein(k,y)

Since V is zero-divisor-free, it follows that either

Eout(k, x) = 0 or Ein(k,y) = 0

This proves that Equation 11.2 holds.
Conversely, the proof that Equation 11.3 holds follows exactly as in the proof of Theo-

rem 11.1. �

The criteria guarantee an accurate adjacency array for any dataset that satisfies them,
regardless of value distribution in the incidence arrays. However, if the incidence arrays
are known to possess a certain structure, it is possible to circumvent some of the conditions
and still always produce adjacency arrays. For example, if each key set of an undirected
incidence array E is a list of documents and the array entries are sets of words shared
by documents, then it is necessary that a word in E(i, j) and E(m,n) has to be in E(i,n)
and E(m, j). This structure means that when multiplying ETE using ⊕ = ∪ and ⊗ = ∩, a
nonempty set will never be “multiplied” by or intersected with a disjoint nonempty set.
This condition eliminates the need for the zero-product property to be satisfied, as every
multiplication of nonempty sets is already guaranteed to produce a nonempty set. The
array produced will contain as entries a list of words shared by those two documents.

Though the criteria ensure that the product of incidence arrays will be an adjacency array,
they do not ensure that certain matrix properties hold. For example, the property

(AB)T = BTAT

may be violated under these criteria, as (ET
outEin)T is not necessarily equal to ET

inEout. (For
this matrix transpose property to always hold, the operation ⊗ would have to be commuta-
tive.)

11.4 Graph Construction with Different Semirings

The ability to change ⊕ and ⊗ operations allows different graph adjacency arrays to be
constructed with the same element-wise addition, element-wise multiplication, and array
multiplication syntax. Specific pairs of operations are best suited for constructing certain
types of adjacency arrays. The pattern of edges resulting from array multiplication of

“current_book”
2017/8/27
23:44
page 249
#273

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.4 Graph Construction with Different Semirings 249

G
en

re
|E

le
ct

ro
ni

c
G

en
re

|P
op

G
en

re
|R

oc
k

W
rit

er
|B

ar
re

tt
R

ic
h

W
rit

er
|C

ha
d

An
de

rs
on

W
rit

er
|C

hl
oe

 C
ha

id
ez

W
rit

er
|J

ul
ia

n
C

ha
id

ez
W

rit
er

|N
ic

ho
la

s
Jo

hn
s

031013ktnA1 1 031013ktnA1 1 1 1
053013ktnA1 1 053013ktnA1 1 1
053013ktnA2 1 053013ktnA2 1
063012ktnA1 1 063012ktnA1 1 1
063012ktnA2 1 063012ktnA2 1 1
063012ktnA3 1 063012ktnA3 1 1
063012ktnA4 1 063012ktnA4 1 1
063012ktnA5 1 063012ktnA5 1 1
082812ktnA1 1 082812ktnA1 1 1 1
082812ktnA2 1 082812ktnA2 1 1
082812ktnA3 1 082812ktnA3 1 1
082812ktnA4 1 082812ktnA4 1 1
082812ktnA5 1 082812ktnA5 1 1 1
082812ktnA6 1 082812ktnA6 1 1
093012ktnA1 1 1 093012ktnA1 1 1
093012ktnA2 1 1 093012ktnA2 1 1
093012ktnA3 1 1 093012ktnA3 1 1 1
093012ktnA4 1 1 093012ktnA4 1 1
093012ktnA5 1 1 093012ktnA5 1 1
093012ktnA6 1 1 093012ktnA6 1 1
093012ktnA7 1 1 093012ktnA7 1 1

093012ktnA8 1 1

E1 E2

Figure 11.1
Incidence arrays of music writers and music genres E1 and E2 as defined in Figure 4.4 for different tracks of
music.

incidence arrays is generally preserved for various semirings. However, the nonzero values
assigned to the edges can be very different and enable the construction different graphs.

For example, constructing an adjacency array of the graph of music writers connected to
music genres from Figure 4.4 begins with selecting the incidence subarrays E1 and E2 as
shown in Figure 11.1. Array multiplication of ET

1 with E2 produces the desired adjacency
array of the graph. Figure 11.2 illustrates this array multiplication for different operator
pairs ⊕ and ⊗. The pattern of edges among vertices in the adjacency arrays shown in
Figure 11.2 are the same for the different operator pairs, but the edge weights differ. All
the nonzero values in E1 and E2 are 1. All the ⊗ operators in Figure 11.2 have the property

0⊗1 = 1⊗0 = 0

for their respective values of zero be it 0, −∞, or ∞. Likewise, all the ⊗ operators in
Figure 11.2 also have the property

1⊗1 = 1

except where ⊗ = +, in which case
1⊗1 = 2

The differences in the adjacency array weights are less pronounced than if the values of
E1 and E2 were more diverse. The most apparent difference is between the +.× semiring

“current_book”
2017/8/27
23:44
page 250
#274

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

250 Chapter 11 Graph Construction and Graphical Patterns

W
rit

er
|B

ar
re

tt
R

ic
h

W
rit

er
|C

ha
d

An
de

rs
on

W
rit

er
|C

hl
oe

 C
ha

id
ez

W
rit

er
|J

ul
ia

n
C

ha
id

ez
W

rit
er

|N
ic

ho
la

s
Jo

hn
s

Genre|Electronic 1 7 7 2 1
Genre|Pop 13 13 3
Genre|Rock 6 6 1

Genre|Electronic 2 2 2 2 2
Genre|Pop 2 2 2
Genre|Rock 2 2 2

Genre|Electronic 1 1 1 1 1
Genre|Pop 1 1 1
Genre|Rock 1 1 1

Genre|Electronic 1 1 1 1 1
Genre|Pop 1 1 1
Genre|Rock 1 1 1

Genre|Electronic 1 1 1 1 1
Genre|Pop 1 1 1
Genre|Rock 1 1 1

E1 +.× E2 = T max.×
min.×

E1 +.× E2 = T +.×

E1 +.× E2 = T max.+
min.+

E1 +.× E2 = T max.min

E1 +.× E2 = T min.max

Figure 11.2
Creating a graph of music writers related to music genres can be computed by multiplying E1 and E2 as defined in
Figure 11.1. This correlation is performed using the transpose operation T and the array multiplication operation
⊕.⊗. The resulting associative array has row keys taken from the column keys of E1 and column keys taken from
the column keys of E2. The values represent the weights on the edges between the vertices of the graph. Different
pairs of operations ⊕ and ⊗ produce different results. For display convenience, operator pairs that produce the
same values in this specific example are stacked.

and the other semirings in Figure 11.2. In the case of +.× semiring, the ⊕ operation +

aggregates values from all the edges between two vertices. Additional positive edges will
increase the overall weight in the adjacency array. In the other pairs of operations, the ⊕
operator is either max or min, which effectively selects only one edge weight to use for
assigning the overall weight. Additional edges will only impact the edge weight in the
adjacency array if the new edge is an appropriate maximum or minimum value. Thus, +.×

constructs adjacency arrays that aggregate all the edges. The other semirings construct
adjacency arrays that select extremal edges. Each can be useful for constructing graph
adjacency arrays in an appropriate context.

“current_book”
2017/8/27
23:44
page 251
#275

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.4 Graph Construction with Different Semirings 251

G
en

re
|E

le
ct

ro
ni

c
G

en
re

|P
op

G
en

re
|R

oc
k

W
rit

er
|B

ar
re

tt
R

ic
h

W
rit

er
|C

ha
d

An
de

rs
on

W
rit

er
|C

hl
oe

 C
ha

id
ez

W
rit

er
|J

ul
ia

n
C

ha
id

ez
W

rit
er

|N
ic

ho
la

s
Jo

hn
s

031013ktnA1 3 031013ktnA1 1 1 1
053013ktnA1 1 053013ktnA1 1 1
053013ktnA2 1 053013ktnA2 1
063012ktnA1 3 063012ktnA1 1 1
063012ktnA2 3 063012ktnA2 1 1
063012ktnA3 3 063012ktnA3 1 1
063012ktnA4 3 063012ktnA4 1 1
063012ktnA5 3 063012ktnA5 1 1
082812ktnA1 2 082812ktnA1 1 1 1
082812ktnA2 2 082812ktnA2 1 1
082812ktnA3 2 082812ktnA3 1 1
082812ktnA4 2 082812ktnA4 1 1
082812ktnA5 2 082812ktnA5 1 1 1
082812ktnA6 2 082812ktnA6 1 1
093012ktnA1 1 2 093012ktnA1 1 1
093012ktnA2 1 2 093012ktnA2 1 1
093012ktnA3 1 2 093012ktnA3 1 1 1
093012ktnA4 1 2 093012ktnA4 1 1
093012ktnA5 1 2 093012ktnA5 1 1
093012ktnA6 1 2 093012ktnA6 1 1
093012ktnA7 1 2 093012ktnA7 1 1

093012ktnA8 1 1

E1 E2

Figure 11.3
Incidence arrays from Figure 11.1 modified so that the nonzero values of E1 take on the values 1, 2, and 3.

The impact of different semirings on the graph adjacency array weights are more pro-
nounced if the values of E1 and E2 are more diverse. Figure 11.3 modifies E1 so that a
value of 2 is given to the nonzero values in the column Genre|Pop and a values of 3 is
given to the nonzero values in the column Genre|Rock.

Figure 11.4 shows the results of constructing adjacency arrays with E1 and E2 using
different semirings. The impact of changing the values in E1 can be seen by comparing
Figure 11.2 with Figure 11.4. For the +.× semiring, the values in the adjacency array rows
Genre|Pop and Genre|Rock are multiplied by 2 and 3. The increased adjacency array
values for these rows are a result of the ⊗ operator being arithmetic multiplication × so that

2⊗1 = 2×1 = 2

3⊗1 = 3×1 = 3

For the max.+ and min.+ semirings, the values in the adjacency array rows Genre|Pop
and Genre|Rock are larger by 1 and 2. The larger values in the adjacency array of these

“current_book”
2017/8/27
23:44
page 252
#276

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

252 Chapter 11 Graph Construction and Graphical Patterns

W
rit

er
|B

ar
re

tt
R

ic
h

W
rit

er
|C

ha
d

An
de

rs
on

W
rit

er
|C

hl
oe

 C
ha

id
ez

W
rit

er
|J

ul
ia

n
C

ha
id

ez
W

rit
er

|N
ic

ho
la

s
Jo

hn
s

Genre|Electronic 1 7 7 2 1
Genre|Pop 26 26 6
Genre|Rock 18 18 3

Genre|Electronic 2 2 2 2 2
Genre|Pop 3 3 3
Genre|Rock 4 4 4

Genre|Electronic 1 1 1 1 1
Genre|Pop 1 1 1
Genre|Rock 1 1 1

Genre|Electronic 1 1 1 1 1
Genre|Pop 2 2 2
Genre|Rock 3 3 3

Genre|Electronic 1 1 1 1 1
Genre|Pop 2 2 2
Genre|Rock 3 3 3

E1 +.× E2 = T max.×
min.×

E1 +.× E2 = T +.×

E1 +.× E2 = T max.+
min.+

E1 +.× E2 = T max.min

E1 +.× E2 = T min.max

Figure 11.4
Building a graph of music writers connected with the music genres can be accomplished by multiplying E1 and
E2 as defined in Figure 11.3. The correlation is computed with the transpose operation T and array multiplication
⊕.⊗. The resulting associative array has row keys taken from the column keys of E1 and column keys taken from
the column keys of E2. The values represent the weights on the edges between the vertices of the graph. Different
pairs of operations ⊕ and ⊗ produce different results. For display convenience, operator pairs that produce the
same values in this specific example are stacked.

rows is due to the ⊗ operator being arithmetic addition + resulting in

2⊗1 = 2 + 1 = 3

3⊗1 = 3 + 1 = 4

For the max.min semiring, Figure 11.2 and Figure 11.4 have the same adjacency array
because E2 is unchanged. The ⊗ operator corresponding to the minimum value function
continues to select the smaller nonzero values from E2

2⊗1 = min(2,1) = 1

3⊗1 = min(3,1) = 1

“current_book”
2017/8/27
23:44
page 253
#277

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.5 Special Arrays and Graphs 253

In contrast, for the min.max semiring, the values in the adjacency array rows Genre|Pop
and Genre|Rock are larger by 1 and 2. The increase in adjacency array values for these
rows is a result of the ⊗ operator selecting the larger nonzero values from E1

2⊗1 = max(2,1) = 2

3⊗1 = max(3,1) = 3

Finally, for the max.× and min.× semirings, the values in the adjacency array rows Genre|Pop
and Genre|Rock are increased by 1 and 2. Similar to the +.× semiring, the larger adja-
cency array values for these rows are a result of the ⊗ operator being arithmetic multipli-
cation × resulting in

2⊗1 = 2×1 = 2

3⊗1 = 3×1 = 3

Figures 11.2 and 11.4 show that a wide range of graph adjacency arrays can be con-
structed via array multiplication of incidence arrays over different semirings. A synopsis
of the graph constructions illustrated in Figures 11.2 and 11.4 is as follows

+.×— Sum of products of edge weights connecting two vertices; computes the strength
of all connections between two connected vertices.

max.×— Maximum of products of edge weights connecting two vertices; selects the edge
with largest weighted product of all the edges connecting two vertices.

min.×— Minimum of products of edge weights connecting two vertices; selects the edge
with smallest weighted product of all the edges connecting two vertices.

max.+ — Maximum of sum of edge weights connecting two vertices; selects the edge with
largest weighted sum of all the edges connecting two vertices.

min.+ — Minimum of sum of edge weights connecting two vertices; selects the edge with
smallest weighted sum of all the edges connecting two vertices.

max.min — Maximum of the minimum of weights connecting two vertices; selects the
largest of all the shortest connections between two vertices.

min.max — Minimum of the maximum of weights connecting two vertices; selects the
smallest of all the largest connections between two vertices.

11.5 Special Arrays and Graphs

In the study and applications of matrices, certain structures that a given matrix exhibits are
important; these matrices are typically termed “special matrices.” For example, the ideas
corresponding to diagonal, off-diagonal, symmetric, skew-symmetric, upper and lower tri-
angular, block, and block diagonal are all useful to consider over an appropriate matrix.

“current_book”
2017/8/27
23:44
page 254
#278

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

254 Chapter 11 Graph Construction and Graphical Patterns

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!

6!

2!

3!

4!1!

7!5!

G	

Figure 11.5
Permutation adjacency matrix A and corresponding graph G consisting of vertices with exactly one in-edge from
another vertex and exactly one out-edge to another vertex.

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!

3!

1!

7!5!

G	

Figure 11.6
Partial permutation adjacency array A and corresponding graph G consisting of a subset of vertices with exactly
one in-edge from another vertex and exactly one out-edge to another vertex.

With the generalization to associative arrays, it is worth examining which of these struc-
tures can be generalized to arrays.

The various structures on a matrix can be grouped into order relations, algebraic rela-
tions, and subobject relations; the first includes such notions as diagonal, off-diagonal, and
upper and lower triangular; the second includes symmetric, skew-symmetric, and Hermi-
tian; and the last includes block matrices and block diagonal.

An additional perspective on this concept is the adjacency matrix of a graph as defined
and described in previous chapters, and the definition of a graph from a matrix. This corre-
spondence can be extended to the more general scenario of a two-dimensional associative
array. Looking at the graph of such an array provides visual intuition as to the meaning of
these structures.

The structure of the nonzero entries in an associative array can be impacted by the or-
dering of the row keys and the column keys. A square array is diagonal (see Figure 11.7)
if

A(k1,k2) , 0 if and only if k1 = k2

“current_book”
2017/8/27
23:44
page 255
#279

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.5 Special Arrays and Graphs 255

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!

6!

2!

3!

4!1!

7!5!

G	

Figure 11.7
Diagonal adjacency array A and corresponding graph G consisting of vertices with self-edges.

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!

3!

1!

7!5!

G	

Figure 11.8
Partial diagonal adjacency array A and corresponding graph G consisting of a subset of vertices with self-edges.

and is a partial diagonal array (see Figure 11.8) if

A(k1,k2) , 0 implies k1 = k2

The graph equivalent of diagonality is that a two-dimensional array

A : K2→ V

is diagonal if and only if the graph of A consists of only self-loops, whereas off-diagonality
means that the graph of A is a line graph.

Example 11.8

The array

E(031013ktnA1 : 053013ktnA2,ArtistlBandayde : ArtistlKitten)

in Figure 4.4 is partially diagonal.

“current_book”
2017/8/27
23:44
page 256
#280

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

256 Chapter 11 Graph Construction and Graphical Patterns

A square array is a permutation array (see Figure 11.5) if each row and column has
exactly one nonzero entry that has a value of 1

A(k1,k2) = 1 if and only if A(k1,K2 \ {k2}) = 0 and

A(K1 \ {k1},k2) = 0

Likewise, an array is a partial permutation array (see Figure 11.6) if each row and column
has no more than one nonzero entry that has a value of 1

A(k1,k2) = 1 implies A(k1,K2 \ {k2}) = 0 and

A(K1 \ {k1},k2) = 0

11.6 Key Ordering

In the definition of an associative array A, row keys and column keys are orderable, but the
ordering function is left unspecified. To specify the order, let an associative array A have a
pair of linear orders <1 and <2 on K1 and K2 such that for distinct

k1,k′1 ∈ K1 and k2,k′2 ∈ K2

then
k1 <1 k′1 or k′1 <1 k1

and
k2 <2 k′2 or k′2 <2 k2

Also, assume that K1 and K2 are finite.
For the same reason that it is possible to permute just the rows or just the columns of a

matrix, there can be distinct orderings on each of the row space and the column space; in
other words <1 is not the same as <2 in general even if K1 = K2.

There are order-isomorphisms

f : K1→ {1, . . . ,m} and f ′ : K2→ {1, . . . ,n}

Lemma 11.7

Finite Linearly-Ordered Sets are Order-Isomorphic to Initial Segments of N

Suppose K is a finite set with < a strict total order on K. Then there exists an
order-isomorphism

f : {1, . . . ,n} → K

Proof. See Exercise 11.10. �

“current_book”
2017/8/27
23:44
page 257
#281

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.6 Key Ordering 257

With this in mind, each of K1 and K2 can be assumed to be of the form {1, . . . ,m} and
{1, . . . ,n} with the standard orderings and an array

A : K1×K2→ V

can be replaced with an array

{1, . . . ,m}× {1, . . . ,n} → V

by composing A with an order isomorphism

{1, . . . ,m}× {1, . . . ,n} → K1×K2

The resulting array is called the matrix associated with A (with respect to <1 and <2).
Ordering the keys leads to a new notion of diagonality.

Definition 11.8
Ordered Diagonal

Suppose A : K1 ×K2 → V is an array with K1,K2 finite and strict totally ordered
by <1,<2, respectively. Let B : {1, . . . ,m} × {1, . . . ,n} → V be the matrix associated
with A with respect to <1,<2.
Then A is ordered (partially) diagonal if and only if B is (partially) diagonal.

An array with specified orderings may be diagonal but not ordered diagonal, or ordered
diagonal but not diagonal.

The notions of triangularity can also be defined by passing to the associated matrix. This
necessitates a definition in the case of a matrix. B : {1, . . . ,m} × {1, . . . ,n} → V is upper
triangular (see Figure 11.9 left) if

B(k1,k2) , 0 if and only if k1 ≤ k2

and is partially upper triangular (see Figure 11.9 right) if

B(k1,k2) , 0 implies k1 ≤ k2

Likewise, B is lower triangular (see Figure 11.10 left) if

B(k1,k2) , 0 if and only if k2 ≤ k1

and is partially lower triangular (see Figure 11.10 right) if

B(k1,k2) , 0 implies k2 ≤ k1

“current_book”
2017/8/27
23:44
page 258
#282

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

258 Chapter 11 Graph Construction and Graphical Patterns

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!
A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!

Figure 11.9
(left) Upper triangular adjacency array where every vertex has at least one edge with every other vertex. (right)
Partially upper triangular adjacency array where a subset of vertices has at least one edge with every other vertex
in the subset.

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!
A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!
ou
t-v
er
te
x!

in-vertex!

Figure 11.10
(left) Lower-triangular adjacency array where every vertex has at least one edge with every other vertex. (right)
Partially lower triangular adjacency array where a subset of vertices has at least one edge with every other vertex
in the subset.

Definition 11.9
Ordered Triangular

Suppose A : K1 ×K2 → V is an array with K1,K2 finite and strict totally ordered
by <1,<2, respectively. Let B : {1, . . . ,m} × {1, . . . ,n} → V be the matrix associated
with A with respect to <1,<2.
Then A is ordered (partially) upper/lower triangular if B is (partially) upper/lower
triangular.

The use of the prefix “ordered” is to ensure that the role of the orderings <1 and <2 is
explicit and highlights the fact that K1 and K2 are being identified using those orderings.
A diagonal array satisfies A(k1,k2) , 0 if and only if k1 = k2, whereas being an ordered
diagonal array would instead only say that k1 and k2 have the same placement in K1 and K2

“current_book”
2017/8/27
23:44
page 259
#283

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.6 Key Ordering 259

relative to <1 and <2, respectively. When the role of the orderings is understood, “ordered”
can be removed.

Example 11.9

If A is ordered diagonal under some orderings of K1 and K2, then it is also partially
upper and lower triangular.

In practice, a more useful notion is that of a weakly triangular array. Informally, for
arrays weak triangularity provides the ability to either push the elements in each column or
row upwards or to the right and permute the columns or rows to create an upper or lower
triangular matrix.

The definition of weakly triangular makes use of two functions that indicate how many
rows and columns have a size of at least a certain value. Specifically, the number of rows
with more than n nonzero entries is given by

rowA(n) = |{k1 | size(A(k1, :),2) > n}

Likewise, the number of rows with more than m nonzero entries is given by

colA(m) = |{k2 | size(A(:,k2),1) > m}

The array A with m non-empty rows and n non-empty columns is said to be weakly upper
triangular if for

N = max(m,n)

and
p ∈ {0, . . . ,N}

there are at most
p + 1− colA(N − p + 1)

elements of K1 such that for each of these elements k the set

supp(A)∩ ({k}×K2)

has size N − p. A is weakly lower triangular if for

p ∈ {0, . . . ,N}

there are at most
p + 1− colA(N − p + 1)

elements of K2 such that for each of these elements k the set

supp(A)∩ (K1×{k})

“current_book”
2017/8/27
23:44
page 260
#284

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

260 Chapter 11 Graph Construction and Graphical Patterns

has size N − p.
The graph-theoretic interpretation of weak triangularity for an associative array A : K2→

V is to say that if
N = max

{
size(A,1),size(A,2)

}
with row as above, then A is weakly upper triangular if for each p such that

0 ≤ p ≤ N

there are at most
1 + p− colA(N − p + 1)

elements of K with exactly N− p edges out of those elements, and weakly lower triangular
if for each p such that

0 ≤ p ≤ N

there are at most
1 + p− rowA(N − p + 1)

elements of K with exactly N − p edges into those elements.

Example 11.10

The array A : {1,3,5,7}× {2,4} → N defined by

A =

2 4

1 1 2

3 1

5 1

7 1

is weakly lower triangular because there is at most

max{0,0 + 1− row(4−0 + 1)} = 1 row of size 4−0 = 4
max{0,1 + 1− row(4−1 + 1)} = 1 row of size 4−1 = 3
max{0,2 + 1− row(4−2 + 1)} = 2 rows of size 4−2 = 2
max{0,3 + 1− row(4−3 + 1)} = 3 rows of size 4−3 = 1
max{0,4 + 1− row(4−4 + 1)} = 1 row of size 0

Example 11.11

The arrays E1 and E2 in Figure 4.4 are weakly lower triangular, but neither are
weakly upper triangular.

“current_book”
2017/8/27
23:44
page 261
#285

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.7 Algebraic Properties 261

Example 11.12

The matrices

1 2 3 4

1 {0} ∅ {1,2} {0,1}

2 ∅ {0,1} {2} {0,2}

3 {0,1,2} ∅ ∅ {1}

 and

1 2

1 π ∞

2 −∞ −∞

3 0 −∞

are both weakly lower triangular, with the second also weakly upper triangular.

There is a close relationship between weak upper triangularity and weak lower triangu-
larity.

Lemma 11.8

Transpose flips Weakly Upper and Lower Triangularity

A matrix A is weakly upper triangular if and only if its transpose AT is weakly
lower triangular.

Proof. See Exercise 11.11. �

11.7 Algebraic Properties

Algebraic relational structures refers to structures that are defined by the algebraic proper-
ties that a square two-dimensional array A : K2→ V has as a binary operation on K taking
values in V . Commutativity is symmetry of the matrix and anti-commutativity (V is a ring)
is that of skew-symmetry of the matrix. A two-dimensional square associative array A is
symmetric if

A(k1,k2) = A(k2,k1)

Example 11.13

Every symmetric matrix is an example of a symmetric two-dimensional array, as is
every diagonal array.

Skew-symmetry and Hermitian properties of a matrix in general cannot be extended to
associative arrays since they depend upon the codomain V having additive inverses. The
possible nonexistence of inverses is the distinguishing quality of semirings from rings.
Similarly issues exist with the notion of complex conjugation. For this reason, to expand

“current_book”
2017/8/27
23:44
page 262
#286

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

262 Chapter 11 Graph Construction and Graphical Patterns

these notions to associative arrays, additional assumptions would need to be made on V .
For example, if V is a ring, then the associative array A is said to be skew-symmetric if

A(k1,k2) = −A(k2,k1)

Similarly, when V is a sub-semiring of C closed under complex conjugation, then the
associative array A is said to be Hermitian if

A(k1,k2) = A(k2,k1)

where z = x− y
√
−1 is the complex conjugate of the complex number z = x + y

√
−1.

11.8 Subobject Properties

Subobject relational structures implies the ability to represent a matrix as an array of sub-
matrices possibly satisfying one of the order-relational or algebraic-relational structures
above. The first step is to define what the analog of submatrices are in the context of
associative arrays.

Definition 11.10
Subarray

Given an associative array
A : K1×K2→ V

the associative array
B : K′1×K′2→ V

is said to be a subarray of A if

K′1×K′2 ⊂ K1×K2

and B agrees with A on K′1×K′2.

Because the block structure of a matrix is typically used in reference to its structure,
allowing arbitrary subarrays would prevent the blocks from being meaningfully ordered,
even when K1 and K2 are explicitly ordered. For this reason, K1 and K2 are required to be
partitioned into closed intervals [k,k′] = {k′′ | k ≤ k′′ ≤ k′}. Writing

K1 = [k1,k2]∪ · · ·∪ [k2p−1,k2p]

K2 = [k′1,k
′
2]∪ · · ·∪ [k′2q−1,k

′
2q]

“current_book”
2017/8/27
23:44
page 263
#287

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.8 Subobject Properties 263

where

k1 ≤ k2 ≤1 · · · ≤1 k2p−1 ≤ k2p

k′1 ≤ k′2 ≤2 · · · ≤2 k′2q−1 ≤ k′2q

then the partitions

K1 = {[k1,k2], . . . , [k2p−1,k2p]}

K2 = {[k′1,k
′
2], . . . , [k′2q−1,k

′
2q]}

can be ordered by

[k1,k2] ≤1 · · · ≤1 [k2p−1,k2p]

[k′1,k
′
2] ≤2 · · · ≤2 [k′2q−1,k

′
2q]

Definition 11.11
Block Associative Array and Associated Block Structure Map

Suppose K1 and K2 are finite totally-ordered sets. A (two-dimensional) block as-
sociative array is an associative array

A : K1×K2→ V

coupled with a pair of partitions K1,K2 of K1 and K2 into closed intervals.
The associated block structure map is the associative array

A′ :K1×K2→ A

defined by
A′

(
[k1,k′1], [k2,k′2]

)
= padK1×K2

A|[k1,k′1]×[k2,k′2]

or that
(
[k1,k′1], [k2,k′2]

)
is sent to the subarray of A determined by [k1,k′1]× [k2,k′2]

which has been zero padded.

The orderings on K1 and K2 give orderings on K1 and K2, respectively. As such, it
makes sense to speak of the “n-th element” of Ki.

Because K1 and K2 are finite, A(K1,K2;V) forms a semiring itself under element-wise
(Hadamard) multiplication, and so the associated block structure map

A′ :K1×K2→ A

is a well-defined associative array. This is the reason the subarrays A|[k1,k′1]×[k2,k′2] are zero
padded.

“current_book”
2017/8/27
23:44
page 264
#288

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

264 Chapter 11 Graph Construction and Graphical Patterns

By combining the notions of the associated block structure map and the matrix associated
with the key orderings, it is possible to define the notions of block diagonality and block
triangularity.

Definition 11.12
Block Diagonal, Triangular

A block associative array
A : K1×K2→ V

with the partitions (K1,K2) is block (partially) diagonal or block (partially) up-
per/lower triangular if the associated block structure map

A′ :K1×K2→ A

is ordered (partially) diagonal or ordered (partially) upper/lower triangular, respec-
tively.

11.9 Conclusions, Exercises, and References

Graph construction is a key operation for data processing and is typically performed by
multiplying the incidence array representations of a graph Ein and Eout. The result is an
adjacency matrix of the graph A that can be further processed with a variety of techniques.
Various mathematical criteria ensure the product A = ET

outEin is the adjacency array of the
graph. An adjacency matrix of a graph can have certain patterns that are typically termed
special matrices. The concepts of diagonal, off-diagonal, symmetric, skew-symmetric,
upper and lower triangular, block, and block diagonal are all examples of useful patterns.
These patterns are also relevant when matrices are generalized to associative arrays.

Exercises

Exercise 11.1 — Consider Example 1. Is A symmetric? If so, why?

Exercise 11.2 — Consider Example 3 and Example 4. Describe and explain the differ-
ences in their adjacency arrays.

Exercise 11.3 — Consider the conditions in (i)(a), (i)(b), and (i)(c) in Theorem 11.1. For
each condition explain why it is necessary for the construction of adjacency arrays from
incidence arrays.

(a) Zero-sum-free

(b) No zero divisors

“current_book”
2017/8/27
23:44
page 265
#289

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.9 Conclusions, Exercises, and References 265

(c) 0 annihilator

Exercise 11.4 — Prove Corollary 11.5.

Exercise 11.5 — Compute the size,m and n and number of nonzeros (nnz) in

(a) Figure 11.1 E1

(b) Figure 11.1 E2

(c) Figure 11.2 E1 +.× ET
1

(d) Comment on any similarities among these quantities

Exercise 11.6 — For each of the array multiplications in Figure 11.2, state the value rep-
resented by the blank spaces in the result

(a) E1 +.× ET
1

(b) E1 max.+ ET
1

(c) E1 min.+ ET
1

(d) E1 max.min ET
1

(e) E1 min.max ET
1

(f) E1 max.× ET
1

(g) E1 min.× ET
1

Exercise 11.7 — Take a graph from your own experience and write down its adjacency
array and its incidence arrays.

Exercise 11.8 — Using the adjacency array from the first exercise, compute the nearest
neighbors of a vertex by using array multiplication. Select different functions for ⊗ and ⊕
and see how they affect the result.

Exercise 11.9 — Using the incidence arrays from the previous exercise, compute the ad-
jacency array by using array multiplication. Select different functions for ⊗ and ⊕ and see
how they affect the result.

Exercise 11.10 — Prove Lemma 11.7.

Exercise 11.11 — Prove Lemma 11.8.

References

[1] H. Jananthan, K. Dibert, and J. Kepner, “Constructing adjacency arrays from incidence arrays,” IPDPS Graph
Algorithms Building Blocks, 2017.

“current_book”
2017/8/27
23:44
page 266
#290

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

266 Chapter 11 Graph Construction and Graphical Patterns

[2] R. H. Bruck and H. J. Ryser, “The nonexistence of certain finite projective planes,” Canad. J. Math, vol. 1,
no. 191, p. 9, 1949.

[3] D. Fulkerson and O. Gross, “Incidence matrices and interval graphs,” Pacific journal of mathematics, vol. 15,
no. 3, pp. 835–855, 1965.

[4] D. Fulkerson and O. Gross, “Incidence matrices and interval graphs,” Pacific journal of mathematics, vol. 15,
no. 3, pp. 835–855, 1965.

[5] G. Fisher and O. Wing, “Computer recognition and extraction of planar graphs from the incidence matrix,”
IEEE Transactions on Circuit Theory, vol. 13, no. 2, pp. 154–163, 1966.

[6] F. Freudenstein and L. Dobjansky, “Some applications of graph theory to the structural analysis of mecha-
nisms,” ASME Transaction Journal of Engineering for Industry, vol. 89, no. 1, pp. 153–158, 1967.

[7] L. D. Bodin and S. J. Kursh, “A detailed description of a computer system for the routing and scheduling of
street sweepers,” Computers & Operations Research, vol. 6, no. 4, pp. 181–198, 1979.

[8] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on computing, vol. 1, no. 2,
pp. 146–160, 1972.

[9] M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics. Courier Corporation, 2008.

[10] M. Gu and S. C. Eisenstat, “A divide-and-conquer algorithm for the bidiagonal svd,” SIAM Journal on Matrix
Analysis and Applications, vol. 16, no. 1, pp. 79–92, 1995.

[11] H. D. Patterson and R. Thompson, “Recovery of inter-block information when block sizes are unequal,”
Biometrika, pp. 545–554, 1971.

[12] A. Y. Ng, M. I. Jordan, Y. Weiss, et al., “On spectral clustering: Analysis and an algorithm,” in NIPS,
vol. 14.2, pp. 849–856, 2001.

[13] C. D. Meyer, Jr and R. J. Plemmons, “Convergent powers of a matrix with applications to iterative methods
for singular linear systems,” SIAM Journal on Numerical Analysis, vol. 14, no. 4, pp. 699–705, 1977.

[14] R. A. Brualdi, S. V. Parter, and H. Schneider, “The diagonal equivalence of a nonnegative matrix to a stochas-
tic matrix,” Journal of Mathematical Analysis and Applications, vol. 16, no. 1, pp. 31–50, 1966.

[15] L. N. Trefethen, “Pseudospectra of matrices,” Numerical analysis, vol. 91, pp. 234–266, 1991.

[16] A. Ziehe, P. Laskov, G. Nolte, and K.-R. MÃžller, “A fast algorithm for joint diagonalization with non-
orthogonal transformations and its application to blind source separation,” Journal of Machine Learning
Research, vol. 5, no. Jul, pp. 777–800, 2004.

[17] C. Ballantine, “Products of involutory matrices. i,” Linear and Multilinear Algebra, vol. 5, no. 1, pp. 53–62,
1977.

[18] J. H. Wilkinson and J. H. Wilkinson, The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press Oxford,
1965.

[19] Z. Bai and J. Demmel, “On a block implementation of hessenberg multishift qr iteration,” International
Journal of High Speed Computing, vol. 1, no. 01, pp. 97–112, 1989.

[20] A. Cayley, “A memoir on the theory of matrices,” Philosophical transactions of the Royal society of London,
vol. 148, pp. 17–37, 1858.

[21] C. De Boor and G. H. Golub, “The numerically stable reconstruction of a jacobi matrix from spectral data,”
Linear Algebra and Its Applications, vol. 21, no. 3, pp. 245–260, 1978.

[22] J. L. Stuart and J. R. Weaver, “Matrices that commute with a permutation matrix,” Linear Algebra and Its
Applications, vol. 150, pp. 255–265, 1991.

[23] H.-L. Gau, M.-C. Tsai, and H.-C. Wang, “Weighted shift matrices: Unitary equivalence, reducibility and
numerical ranges,” Linear Algebra and its Applications, vol. 438, no. 1, pp. 498–513, 2013.

[24] N. J. Higham, “J-orthogonal matrices: Properties and generation,” SIAM review, vol. 45, no. 3, pp. 504–519,
2003.

“current_book”
2017/8/27
23:44
page 267
#291

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

11.9 Conclusions, Exercises, and References 267

[25] W. Givens, “Computation of plain unitary rotations transforming a general matrix to triangular form,” Journal
of the Society for Industrial and Applied Mathematics, vol. 6, no. 1, pp. 26–50, 1958.

[26] K. Dibert, H. Jansen, and J. Kepner, “Algebraic conditions for generating accurate adjacency arrays,” in MIT
Undergraduate Research Technology Conference (URTC), pp. 1–4, IEEE, 2015.

“current_book”
2017/8/27
23:44
page 268
#292

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 269
#293

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

III LINEAR SYSTEMS

“current_book”
2017/8/27
23:44
page 270
#294

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 271
#295

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12 Survey of Common Transformations

Summary

A central feature of array multiplication is its ability to transform the values of an array. The
ability to use a variety of ⊕ and ⊗ operations in different combinations significantly extends
the flexibility of array transformations. Visualizing and deriving 2×2 transformations of the
unit circle over various semirings provides valuable intuition on these transformations. Most
general transformations can be viewed as a composition of identity, contraction, expansion,
stretching, and rotation transformations. The diversity of shapes produced by these trans-
formations reveals the many interesting patterns, which are even more impressive given that
these transformations obey the properties of semirings, such as associativity, distributivity,
and identities. The diversity of these behaviors under simple array transformation also serves
to motivate the reexamination of other matrix concepts in subsequent chapters. This chapter
visually depicts the enormous diversity of “linear” behavior that can be exhibited by diverse
semirings and sets the stage for exploring these behaviors more rigorously in Part III of the
book.

12.1 Array Transformations

The ability to change ⊕ and ⊗ operations allows different graph algorithms to be imple-
mented using the same element-wise addition, element-wise multiplication, and array mul-
tiplication operations. Different semirings are best suited for certain classes of graph algo-
rithms. The breadth-first-search behavior illustrated in Figure 6.7 is generally preserved for
various semirings, but the values of the nonzero values assigned to the edges and vertices
can be very different (see Figures 6.11 and 6.12). Likewise, the pattern of edges in a graph
adjacency array produced by multiplying two incidence arrays is usually preserved for dif-
ferent semirings, but the exact values associated with those edges vary (see Figures 11.1,
11.2, 11.3 and 11.4).

The matrix multiplication properties of max.min, min.max, max.+, and min.+ semirings
have received extensive attention (see [1–6] and references therein). Prior work on these
semirings has focused on developing their mathematical properties. Depicting or visual-
izing the actual transformation performed by matrix multiplication in these semirings has
not occurred. Visualizing matrix transformations provides important intuition for guiding
their practical application [7–10]. This chapter depicts these transformations, for the first
time, in order to provide this intuition.

“current_book”
2017/8/27
23:44
page 272
#296

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

272 Chapter 12 Survey of Common Transformations

A useful way to see the impact of changing semirings is by plotting the transformation
of the unit circle by various 2×2 arrays A. Let the unit circle be represented by the 2×n
unit circle array U

U =

1 2 3 ··· n

x 1 cos(φ) cos(2φ) · · · cos(2π−φ)

y 0 sin(φ) sin(2φ) · · · sin(2π−φ)

where φ = 2π/n is the angular offset between two neighboring points on the unit circle,
U(x, :) is the row vector of the x-coordinates of the points, and U(y, :) is the row vector of
all y-coordinates of the points.

-1 0 1

-0.5

0

0.5

1
+.×

-1 0 1 2

-0.5

0

0.5

1

1.5

max.+

-1 0 1

-1

0

1
min.+

-1 0 1

-0.5

0

0.5

1
max.min

-1 0 1

-0.5

0

0.5

1
max.×

-1 0 1

-0.5

0

0.5

1
min.max

-1 0 1

-0.5

0

0.5

1
min.×

Figure 12.1
Transformation of points on the unit circle (green circle) via array multiplication by a 2×2 associative array (blue
square), resulting a new set of points (black dots). The titles of each plot list the ⊕ and ⊗ operators used in the

array multiplication. The array values

1 0
0 1

 correspond to the identity transformation in the +.× semiring.

Perhaps the simplest transformation is by the 2×2 identity array of the +.× semiring

A = I+.× =

x y

x 1 0

y 0 1

“current_book”
2017/8/27
23:44
page 273
#297

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.1 Array Transformations 273

In this instance, array multiplication of U by A results in no change to U

AU = A ⊕.⊗ U
= I+.× +.× U
= U

The above transformation is depicted in Figure 12.1(top, center). Array multiplication by
I+.× results in no change to U when the +.× semiring is used. Figure 12.1 shows there is
a significant change to U when I+.× is used with other semirings. These transformations
are just a small sample of the enormous flexibility offered by combining different pairs of
operations. What is most impressive is that these transformations all obey the properties
of semirings such as associativity, distributivity, and identities, which allow them to be
combined and scaled to create a wide range of algorithms.

From the perspective of graphs, Figure 12.1 illustrates how the values of two edges lead-
ing into the same vertex are transformed by traversing these edges with a given semiring
and with values specified by I+.×. Using I+.× to traverse these edges in the +.× semiring
leaves these edges untouched. Likewise, using I+.× to traverse these edges in the max.+
semiring adds a constant to the resulting edge values and then selects the maximum value.
For a given application, it is necessary to understand the analytic techniques to select the
semiring and the values so as to achieve a desired application goal.

Up to this point, the focus of the discussion of semirings has been on their properties as
they pertain to associative arrays, with less attention given to the actual arithmetic of semir-
ing calculations. It is worthwhile to review this arithmetic in the context of some simple
examples to illustrate the detailed analytic calculations that can be utilized to determine the
behavior of a given transformation. For a given semiring, the transformations of the unit
circle are often consistent within quadrants of the plane. These quadrants can be defined
as sets I, II, III, and IV of column keys of the unit circle array U as follows

Quadrant I — (positive, upper right, northeast quadrant)

I = { j | 0 ≤ U(x, j) ≤ 1 and 0 ≤ U(y, j) ≤ 1}

For the unit circle, these points correspond to angles in the range

0 ≤ φ ≤ 0.5π

Quadrant II — (upper left, northwest quadrant)

II = { j | −1 ≤ U(x, j) ≤ 0 and 0 ≤ U(y, j) ≤ 1}

For the unit circle, these points correspond to angles in the range

0.5π ≤ φ ≤ π

“current_book”
2017/8/27
23:44
page 274
#298

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

274 Chapter 12 Survey of Common Transformations

Quadrant III — (negative quadrant, lower left, southwest quadrant)

III = { j | −1 ≤ U(x, j) ≤ 0 and −1 ≤ U(y, j) ≤ 0}

For the unit circle, these points correspond to angles in the range

π ≤ φ ≤ 1.5π

Quadrant IV — (lower right quadrant, southeast quadrant)

IV = { j | 0 ≤ U(x, j) ≤ 1 and −1 ≤ U(y, j) ≤ 0}

For the unit circle, these points correspond to angles in the range

1.5π ≤ φ ≤ 2π

The subsequent discussion enumerates, derives, and visualizes these transformations of the
unit circle for each semiring and for each quadrant. These analyses can be used to deduce
the behavior of semiring transformations in many contexts.

12.2 Identity

As previously mentioned, array multiplication by I+.× results in no change to U when the
+.× semiring is used, but this is not expected to be the case when I+.× is used over other
semirings. To preserve the identity transformation

AU = U

would have required setting A to the identity of each semiring as follows

Imax.+ =

x y

x 0 −∞

y −∞ 0

 Imax.min =

x y

x ∞ −∞

y −∞ ∞

 Imax.× =

x y

x 1 0

y 0 1

Imin.+ =

x y

x 0 ∞

y ∞ 0

 Imin.max =

x y

x −∞ ∞

y ∞ −∞

 Imin.× =

x y

x 1 ∞

y ∞ 1

The above identity arrays are a direct result of the definitions of the 0 and 1 elements of their
corresponding semirings. Analysis of these identity arrays provides some insight into the
broader behavior of these semirings. The I+.× has the advantage that it is easily computed
in a wide variety of semirings. Thus, additional insight can be obtained by analyzing
the behavior of semirings when multiplying by the I+.× identity array. The subsequent
sections carefully derive the transformation I+.× for each quadrant to explain the resulting
visual depiction of the transformation. This consistent enumeration provides the reader

“current_book”
2017/8/27
23:44
page 275
#299

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 275

with the necessary tools to analyze more complicated transformations. As a result of the
analysis, many symmetries emerge whereby certain quadrants are have similarities. These
similarities are often very useful in applying these concepts to real data as they can allow
for significant simplifications. For example, certain transformations in certain semirings
will always project a quadrant to a well-defined point or set of points, and can be used in a
real data processing system to simplify or eliminate steps entirely.

Multiplication Over max.+
Multiplying the unit circle U by I+.× in the max.+ semiring is shown in Figure 12.1(middle,
left) and performs the following transformation

x y

x 1 0

y 0 1

 max.+ U =

1 ··· n

x max
(
U(x, :) + 1,U(y, :) + 0

)
y max

(
U(x, :) + 0,U(y, :) + 1

)
In the positive quadrant (I), the center of the unit circle is shifted to (1,1) because (x+1,y+

1) are always greater than (x,y), so that

max
(
U(x, I) + 1,U(y, I) + 0

)
= U(x, I) + 1

and
max

(
U(x, I) + 0,U(y, I) + 1

)
= U(y, I) + 1

resulting in

I+.× max.+ U(:, I) =

I

x U(x, I) + 1

y U(y, I) + 1

The quadrant I max.+ transformation is visualized as a simple shift of the points up and to
the right of their starting positions

In the upper left quadrant (II), the unit circle projects itself onto its y values because the y
values are all greater than their corresponding x values

max
(
U(x, II) + 1,U(y, II) + 0

)
= U(y, II)

“current_book”
2017/8/27
23:44
page 276
#300

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

276 Chapter 12 Survey of Common Transformations

since
sin(φ) ≥ cos(φ) + 1

for
0.5π ≤ φ ≤ π

The y values are simply offset by 1 because

max
(
U(x, II) + 0,U(y, II) + 1

)
= U(y, II) + 1

resulting in

I+.× max.+ U(:, II) =

II

x U(y, II)

y U(y, II) + 1

The quadrant II max.+ transformation is thus an offset projection of the unit circle points
onto the line y = x + 1

In the negative quadrant (III), the transformation is similar to the transformation in the
positive quadrant (I) since the center point of the unit circle is moved to (1,1) because
(x + 1,y + 1) is always greater than (x,y), so that

max
(
U(x, III) + 1,U(y, III) + 0

)
= U(x, III) + 1

and
max

(
U(x, III) + 0,U(y, III) + 1

)
= U(y, III) + 1

resulting in

I+.× max.+ U(:, III) =

III

x U(x, III) + 1

y U(y, III) + 1

Thus, the quadrant III max.+ transformation is similar to the quadrant I transformation and
appears as linear shifting of the points to the upper right of their starting position by a fixed
amount

“current_book”
2017/8/27
23:44
page 277
#301

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 277

In the lower right quadrant (IV), the transformation is like the transformation in the up-
per left quadrant (II), with the difference that the unit circle projects itself onto its x values
because the x values are offset by 1

max
(
U(x, IV) + 1,U(y, IV) + 0

)
= U(x, IV) + 1

and the y values are all swapped with their corresponding x values

max
(
U(x, IV) + 0,U(y, IV) + 1

)
= U(x, IV)

since
cos(φ) ≥ sin(φ) + 1

for
1.5π ≤ φ ≤ 2π

resulting in

I+.× max.min U(:, IV) =

IV

x U(x, IV) + 1

y U(x, IV)

The quadrant IV max.+ transformation is depicted as the unit circle being translated and
projected to lie on the line y = x−1

Multiplication Over min.+
Multiplying the unit circle U by I+.× in the min.+ semiring is shown in Figure 12.1(bottom,
left) and performs the following transformation

x y

x 1 0

y 0 1

 min.+ U =

1 ··· n

x min
(
U(x, :) + 1,U(y, :) + 0

)
y min

(
U(x, :) + 0,U(y, :) + 1

)

“current_book”
2017/8/27
23:44
page 278
#302

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

278 Chapter 12 Survey of Common Transformations

In the positive quadrant (I) the transformation replaces the x values with their correspond-
ing y values

min
(
U(x, I) + 1,U(y, I) + 0

)
= U(y, I)

Likewise, the y values are replaced with their corresponding x values

max
(
U(x, I) + 0,U(y, I

)
+ 1) = U(x, I)

resulting in

I+.× max.+ U(:, I) =

I

x U(y, I)

y U(x, I)

The quadrant I min.+ transformation appears as the unit circle unchanged but its points are
reflected about the line y = x

In the upper left quadrant (II), all the x values are projected onto their x values offset
by 1 because

min
(
U(x, II) + 1,U(y, II) + 0

)
= U(x, II) + 1

since
sin(φ) ≥ cos(φ) + 1

for
0.5π ≤ φ ≤ π

Likewise, the y values are substituted with their corresponding x values

min
(
U(x, II) + 0,U(y, II) + 1

)
= U(x, II)

resulting in

I+.× max.+ U(:, II) =

II

x U(x, II) + 1

y U(x, II)

The quadrant II min.+ transformation becomes the unit circle offset and moved to the line
y = x−1

“current_book”
2017/8/27
23:44
page 279
#303

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 279

In the negative quadrant (III), the transformation has an effect similar to the transformation
in the positive quadrant (I) since the transformation swaps the x and y values of the unit
circle because

min
(
U(x, III) + 1,U(y, III) + 0

)
= U(y, III)

and
min

(
U(x, III) + 0,U(y, III) + 1

)
= U(x, III)

resulting in

I+.× max.+ U(:, III) =

III

x U(y, III)

y U(x, III)

The quadrant III min.+ transformation can be visualized in the same manner as the quad-
rant I transformation. The unit circle appears unchanged but with its points being reflected
about the line y = x

In the lower right quadrant (IV), the transformation has a similar impact as the transforma-
tion in the upper left quadrant (II), with the difference that the x values are set to their y
values because

min
(
U(x, IV) + 1,U(y, IV) + 0

)
= U(y, IV)

Likewise, the y values are shifted by 1

min
(
U(x, IV) + 0,U(y, IV) + 1

)
= U(y, IV) + 1

since
cos(φ) ≥ sin(φ) + 1

for
1.5π ≤ φ ≤ 2π

“current_book”
2017/8/27
23:44
page 280
#304

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

280 Chapter 12 Survey of Common Transformations

resulting in

I+.× max.min U(:, IV) =

IV

x U(y, IV)

y U(y, IV) + 1

The quadrant IV min.+ transformation is thus similar to the quadrant II transformation and
can be represented as the unit circle shifted and plotted onto the line given by the equation
y = x + 1

Multiplication Over max.min
Multiplying the unit circle U by I+.× in the max.min semiring is shown in Figure 12.1(mid-
dle, center) and results in the following transformation

x y

x 1 0

y 0 1

 max.min U =

1 ··· n

x max
(
min(U(x, :),1),min(U(y, :),0)

)
y max

(
min(U(x, :),0),min(U(y, :),1)

)
In the positive quadrant (I), the x values are unchanged because

max
(
min(U(x, I),1),min(U(y, I),0)

)
= max

(
U(x, I),0

)
= U(x, I)

Likewise, the y values are also unchanged

max
(
min(U(x, I),0),min(U(y, I),1)

)
= max

(
0,U(y, I)

)
= U(y, I)

resulting in

I+.× max.min U(:, I) =

I

x U(x, I)

y U(y, I)

Thus, in quadrant I, the max.min transformation acts the identity transformation with no
shift in the unit circle points.

“current_book”
2017/8/27
23:44
page 281
#305

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 281

In the upper left quadrant (II), the x values all map onto 0 because

max
(
min(U(x, II),1),min(U(y, II),0)

)
= max

(
U(x, II),0

)
= 0

and the y values are unchanged because

max
(
min(U(x, II),0),min(U(y, II),1)

)
= max

(
0,U(y, II)

)
= U(y, II)

resulting in

I+.× max.min U(:, II) =

II

x 0

y U(y, II)

The quadrant II max.min transformation can be depicted as the unit circle directly pro-
jected onto the line x = 0

In the negative quadrant (III), the behavior is different from that of all the other quadrants.
Both the x and y values are transformed to the same value

max
(
min(U(x, III),1),min(U(y, III),0)

)
= max

(
U(x, III),U(y, III)

)
and

max
(
min(U(x, III),0),min(U(y, III),1)

)
= max

(
U(x, III),U(y, III)

)
resulting in

I+.× max.min U(:, III) =

III

x max
(
U(x, III),U(y, III)

)
y max

(
U(x, III),U(y, III)

)
Thus, the quandrant III max.min transformation directly projects the unit circle onto the
line y = x

“current_book”
2017/8/27
23:44
page 282
#306

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

282 Chapter 12 Survey of Common Transformations

In the lower right quadrant (IV), the transformation appears similar to the quadrant II trans-
formation. The x values remain unchanged because

max
(
min(U(x, IV),1),min(U(y, IV),0)

)
= max

(
U(x, :),U(y, IV)

)
= U(x, IV)

The y values all become 0 because in this quadrant they are all less than 0

max
(
min(U(x, IV),0),min(U(y, IV),1)

)
= max

(
0,U(y, IV)

)
= 0

resulting in

I+.× max.min U(:, IV) =

IV

x U(x, IV)

y 0

The quadrant IV max.min transformation can be viewed as a direct projection of the unit
circle onto the line y = 0

Multiplication Over min.max
Multiplying the unit circle U by I+.× in the min.max semiring is shown in Figure 12.1(bot-
tom, center) and performs the following transformation

x y

x 1 0

y 0 1

 min.max U =

1 ··· n

x min
(
max(U(x, :),1),max(U(y, :),0)

)
y min

(
max(U(x, :),0),max(U(y, :),1)

)
In the positive quadrant (I), the x value is replaced with the corresponding y value because

min
(
max(U(x, I),1),max(U(y, I),0)

)
= min

(
1,U(y, I)

)
= U(y, I)

Likewise, the y value is replaced with the corresponding x value

min
(
max(U(x, I),0),max(U(y, I),1)

)
= min

(
U(x, I),1

)
= U(x, I)

resulting in

I+.× min.max U(:, I) =

I

x U(y, I)

y U(x, I)

“current_book”
2017/8/27
23:44
page 283
#307

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 283

The quadrant I unit circle under the min.max transformation appears the same, but the
points are swapped about the line y = x

In the upper left quadrant (II), the x value is swapped with its y values (as in quadrant
I)

min
(
max(U(x, II),1),max(U(y, II),0)

)
= min

(
1,U(y, II)

)
= U(y, II)

However, all the y values become 0

min
(
max(U(x, II),0),max(U(y, II),1)

)
= min(0,1) = 0

resulting in

I+.× min.max U(:, II) = s

II

x U(y, II)

y 0

The quadrant II min.max transformation shifts and projects the unit circle onto the line
y = 0 as shown by

In the negative quadrant (III), x values are transformed to 0 since

min
(
max(U(x, III),1),max(U(y, III),0)

)
= min(0,1) = 0

Likewise, the y values also become 0

min
(
max(U(x, III),0),max(U(y, III),1)

)
= min(0,1) = 0

resulting in

I+.× min.max U(:, III) =

III

x 0

y 0

“current_book”
2017/8/27
23:44
page 284
#308

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

284 Chapter 12 Survey of Common Transformations

The quadrant III min.max transformation thus has the property of mapping all points to
(0,0), which can be illustrated as

In the lower right quadrant (IV), the behavior is similar to that of quadrant II. All of the x
values become 0 because

min
(
max(U(x, IV),1),max(U(y, IV),0)

)
= min(1,0) = 0

Likewise, all the y values become their x values because

min
(
max(U(x, IV),0),max(U(y, IV),1)

)
= min

(
U(x, IV),1

)
= U(x, IV)

resulting in

I+.× min.max U(:, IV) =

IV

x 0

y U(x, IV)

The min.max transformation in quadrant IV appears as a translated projection of the unit
circle onto the line x = 0

Multiplication Over max.×
Multiplying the unit circle U by I+.× in the max.× semiring is shown in Figure 12.1(middle,
right) and performs the following transformation

x y

x 1 0

y 0 1

 max.× U =

1 ··· n

x max
(
U(x, :)×1,U(y, :)×0

)
y max

(
U(x, :)×0,U(y, :)×1

)

=

1 ··· n

x max
(
U(x, :),0

)
y max

(
0,U(y, :)

)

“current_book”
2017/8/27
23:44
page 285
#309

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 285

The max.× is only a semiring in the positive quadrant. In the other quadrants, max.×
does not satisfy all the conditions required of a semiring. For completeness, the result
of applying max.× across all four quadrants is shown Figure 12.1(middle, right) and is
described as follows.

In the positive quadrant (I), the x values remain the same because

max
(
U(x, I),0

)
= U(x, I)

Likewise, the y values are also unchanged

max
(
0,U(y, I)

)
= U(y, I)

resulting in

I+.× max.× U(:, I) =

I

x U(x, I)

y U(y, I)

The max.× transformation in quadrant I is thus an identity transformation and is simply
drawn as the points on the unit circle staying in place

In the (non-semiring) upper left quadrant (II), all the x values are transformed to 0 be-
cause

max
(
U(x, II),0

)
= 0

In contrast, the y values are all unchanged

max
(
0,U(y, II)

)
= U(y, II)

resulting in

I+.× max.× U(:, II) =

II

x 0

y U(y, II)

The quadrant II max.× transformation can be drawn as a direct projection of the unit circle
onto the line x = 0

“current_book”
2017/8/27
23:44
page 286
#310

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

286 Chapter 12 Survey of Common Transformations

In the (non-semiring) negative quadrant (III), the x values are all set to 0 as a result of

max
(
U(x, III),0

)
= 0

The y values are also set to 0 since

max
(
0,U(y, III)

)
= 0

resulting in

I+.× max.× U(:, III) =

III

x 0

y 0

Thus, the quadrant III max.× is simply shown as a mapping of all points on the unit circle
going to the point (0,0)

The (non-semiring) lower right quadrant (IV) is similar to quadrant II. All the x values
remain unchanged.

max
(
U(x, IV),0

)
= U(x, IV)

In contrast, all the y values are changed to 0 as a result of

max
(
0,U(y, IV)

)
= 0

and thus

I+.× max.× U(:, IV) =

IV

x U(x, IV)

y 0

“current_book”
2017/8/27
23:44
page 287
#311

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.2 Identity 287

The quadrant IV max.× transformation is a projection of the unit circle directly onto the
line y = 0

Multiplication Over min.×
Multiplying the unit circle U by I+.× in the min.× semiring is shown in Figure 12.1(bottom,
right) and performs the following transformation

x y

x 1 0

y 0 1

 min.× U =

1 ··· n

x min
(
U(x, :)×1,U(y, :)×0

)
y min

(
U(x, :)×0,U(y, :)×1

)

=

1 ··· n

x min
(
U(x, :),0

)
y min

(
0,U(y, :)

)
The min.× is only a semiring in the positive quadrant. In the other quadrants, min.× does
not meet every condition required of a semiring. Nevertheless, the application of min.× on
all four quadrants is given in Figure 12.1(bottom, right) and analyzed as follows.

In the positive quadrant (I), the x values all project to 0 because

min
(
U(x, I),0

)
= 0

Similarly, all the y values also transform to 0

min
(
0,U(y, I)

)
= 0

resulting in

I+.× max.× U(:, I) =

I

x 0

y 0

In quadrant I, the min.× transformation takes all points on the unit circle and maps them
directly onto the point (0,0) as shown

“current_book”
2017/8/27
23:44
page 288
#312

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

288 Chapter 12 Survey of Common Transformations

In the (non-semiring) upper left quadrant (II), the x value is unchanged

min
(
U(x, II),0

)
= U(x, II)

However, all the y values are changed to 0

min
(
0,U(y, II)

)
= 0

resulting in

I+.× min.× U(:, II) =

II

x U(x, II)

y 0

The quadrant II min.× transformation appears as the unit circle projected onto the line
given by the equation y = 0

In the (non-semiring) negative quadrant (III), the x values do not change because

min
(
U(x, III),0

)
= U(x, III)

In addition, the y values also remain the same since

min
(
0,U(y, III)

)
= U(y, III)

resulting in

I+.× min.× U(:, III) =

III

x U(x, III)

y U(y, III

Thus, the quadrant III min.× transformation is an identity transformation that leaves the
points on the unit circle in place

“current_book”
2017/8/27
23:44
page 289
#313

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.3 Contraction 289

The (non-semiring) lower right quadrant (IV) is similar to quadrant II. The x values all
compute to 0 because

min
(
U(x, IV),0

)
= 0

On the other hand, the y values remain the same

min
(
0,U(y, IV)

)
= U(y, IV)

resulting in

I+.× min.× U(:, IV) =

IV

x 0

y U(y, IV)

So, the quadrant IV min.× transformation is shown as the unit circle projected onto the line
x = 0

12.3 Contraction

The identity transformation of the unit circle is the simplest to visualize over different
semirings. Perhaps the next simplest transformation is the contraction or expansion of the
unit circle by a constant factor c. Multiplying the identity relation I+.× by a scalar c results
in the diagonal array

cI+.× =

x y

x c 0

y 0 c

“current_book”
2017/8/27
23:44
page 290
#314

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

290 Chapter 12 Survey of Common Transformations

-1 0 1

-0.5

0

0.5

+.×

-1 0 1

-0.5

0

0.5

1

max.+

-1 0 1

-1

-0.5

0

0.5

min.+

-1 0 1

-0.5

0

0.5

max.min

-1 0 1

-0.5

0

0.5

max.×

-1 0 1

-0.5

0

0.5

min.max

-1 0 1

-0.5

0

0.5

min.×

Figure 12.2
Transformation of points on the unit circle (green circle) via array multiplication by a 2× 2 associative array
(blue square), resulting a new set of points (black dots). The titles of each plot list the ⊕ and ⊗ operators used

in the array multiplication. The array values

0.5 0
0 0.5

 correspond to a contraction transformation in the +.×

semiring.

Array multiplication of the above array by the unit circle in the +.× semiring will contract
or expand the unit circle. If c > 1, the unit circle will expand and if 0 < c < 1 the unit circle
will contract.

The specific case of c = 0.5 is shown in Figure 12.2 and corresponds to

x y

x 0.5 0

y 0 0.5

 ⊕.⊗ U =

1 ··· n

x
(
U(x, :)⊗0.5

)
⊕

(
U(y, :)⊗ 0

)
y

(
U(x, :)⊗ 0

)
⊕

(
U(y, :)⊗0.5

)
The overall impact of contraction on the unit circle in the different semirings is to shrink
the unit circle (with the exception of the max.+ semiring). Thus, the concept of contraction
carries some meaning in these different semirings. In the max.+ and min.+ semirings, the
contraction is similar to the identity transformation but is further truncated so that it touches
the corners of the square corresponding to the contraction. In the max.min and min.max
semirings, the contraction transformation pulls in the identity transformation further so
that for much of the unit circle it conforms to the square corresponding to the contraction.

“current_book”
2017/8/27
23:44
page 291
#315

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.3 Contraction 291

Finally, in the max.× and min.× semirings, the identity transformation is further truncated
so that it touches the corners of the square corresponding to the contraction.

From a graph perspective, contraction means that traversing the graph with the above
array will result in a graph with edge values that get smaller with each transformation.
Such a graph traversal is useful in circumstances when it is desired that the edge values
decrease over the course of the traversal. A detailed analysis—similar to that of the pre-
vious section—of contraction on each quadrant for each semiring would reveal the exact
effect of contraction on the unit circle. Qualitatively, the impact of contraction is clarified
by comparing with the corresponding identity transformation for each semiring.

In the standard +.× semiring, the identity and the contraction appear as follows

+.× identity +.× contraction

As expected, the contraction array shrinks the unit circle by exactly half when compared
to the identity transformation. As in the identity transformation, the resulting unit circle
also aligns exactly with the axis of the transformation, as shown by the blue boxes. In this
semiring, the contraction behavior works on all points in the same manner and pulls them
all equally closer to the origin. The graph equivalent of this operation would be to decrease
all edge values by half.

In the max.+ semiring, the identity and the corresponding contraction can be depicted as

max.+ identity max.+ contraction

The max.+ semiring is distinct amongst the other semirings in that much of the unit circle
increases under the contraction transformation. That said, when compared to the identity
transformation, the overall area of the unit circle shrinks. Furthermore, like the identity
transformation, the diagonals align with the corners of the axis of the transformation shown
in the blue boxes. In the max.+ semiring, contraction effectively stretches the unit circle by
expanding the unit circle along one diagonal and compressing the unit circle in the other
direction. From a graph traversal perspective, this transformation would allow some edge
values to grow and some edge values to shrink during the course of the traversal.

“current_book”
2017/8/27
23:44
page 292
#316

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

292 Chapter 12 Survey of Common Transformations

For the min.+ semiring, the identity transformation and the corresponding contraction
are illustrated by

min.+ identity min.+ contraction

Contraction in the min.+ more closely resembles +.× in that nearly all points get closer
to the origin and the overall area of the unit circle shrinks. In addition, the identity and
contraction in min.+ look very similar, with the exception of a small number of points that
are pushed outside of the unit circle. Graph traversal via contraction in the min.+ semiring
has the effect of reducing the values of many edges, preserving the values of many edges,
and selecting a few edge values to be transformed outside the unit circle.

In the previous semirings, the resulting contraction of the unit circle is simply a distor-
tion of the unit circle under the influence of the contraction transformation. The max.min
identity and contraction illustrate a different behavior

max.min identity max.min contraction

The contraction applied in the max.min semiring wraps much of the positive unit circle
around the axis of the contraction (depicted in blue). The remainder of the unit circle be-
haves much the same as the identity transformation. In a graph context, this contraction
allows the resulting edge values to be set by the contraction operation.

Contraction under the min.max semiring is similar to that of the min.max semiring. The
identity and the corresponding contraction differ significantly as seen by

min.max identity min.max contraction

The min.max semiring, like max.min semiring, also wraps much of the unit circle around

“current_book”
2017/8/27
23:44
page 293
#317

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.4 Stretching 293

the axis of the contraction (depicted in blue), but in a somewhat opposite fashion. In a
graph context, this contraction allows the resulting edge values of the negative parts of
the unit circle to be determined by the contraction operation and the positive parts to be
projected onto to the line y = x.

Both the max.× and min.× pair of operations are semirings only in the positive (I) quad-
rant. These two pairs of operations have contraction behavior that is similar to their identity
behavior. In both cases, the unit circle shrinks onto the axis (shown in blue) corresponding
to the contraction as shown as follows

max.× identity max.× contraction

min.× identity min.× contraction

12.4 Stretching

The contraction and expansion transformations of the unit circle can be combined to stretch
the unit circle by contracting one direction while expanding another direction. An example
of stretching whereby the unit circle is expanded by 1.25 in one direction and contracted
by 0.75 in another direction is shown in Figure 12.3 and corresponds to the array transfor-
mation

x y

x 1.25 0.75

y 0.75 1.25

 ⊕.⊗ U =

1 ··· n

x
(
U(x, :)⊗1.25

)
⊕

(
U(y, :)⊗0.75

)
y

(
U(x, :)⊗0.75

)
⊕

(
U(y, :)⊗1.25

)
The concept of stretching has similar behavior in many of these semirings. Stretching the
unit circle with the different semirings makes the unit circle longer and thinner (with the
exception of the min.max semiring). In the max.+ and min.+ semirings, stretching is like
the identity transformation but is more elongated. In the max.min and min.max semirings
stretching pulls in the identity transformation and pinches it off from the unit circle. Lastly,
in the max.× and min.× semirings, the stretching elongates and twists the unit circle.

“current_book”
2017/8/27
23:44
page 294
#318

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

294 Chapter 12 Survey of Common Transformations

-2 0 2

-1

0

1

2
+.×

-1 0 1 2

0

1

2

max.+

-1 0 1 2

0

1

2
min.+

-1 0 1 2

0

1

2
max.min

-1 0 1 2

0

1

2
max.×

-1 0 1 2

0

1

2
min.max

-1 0 1 2

-1

0

1

2
min.×

Figure 12.3
Transformation of points on the unit circle (green circle) via array multiplication by a 2×2 associative array (blue
parallelogram) resulting a new set of points (black dots). The title of each plot lists the ⊕ and ⊗ operators used

in the array multiplication. The array values

1.25 0.75
0.75 1.25

 correspond to a stretching transformation in the +.×

semiring.

From the perspective of a graph operation, stretching implies that traversing the graph
with the above array results in a graph with edge values that are smaller for some edge
values and larger for other edge values. Such a graph traversal is useful in circumstances
when it is desired that some edge values are enhanced and other edge values are sup-
pressed. As in the previous section, the qualitative impact of stretching can be understood
by comparing stretching with the equivalent identity transformation for each semiring.

In the standard +.× semiring, the identity and the stretching transformation look like

+.× identity +.× stretching

“current_book”
2017/8/27
23:44
page 295
#319

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.4 Stretching 295

Stretching elongates the unit circle along the line y = x and compresses the unit circle
along the line y = −x. The stretched unit circle passes through and is tangent to the blue
parallelogram defined by the stretching transformation. Applying the stretching transfor-
mation to a graph causes edge values along the line y = x to be increased and edge values
along y = −x to be decreased.

The max.+ and min.+ semirings exhibit similar stretching behavior when compared to
their corresponding identity transformations

max.+ identity max.+ stretching

min.+ identity min.+ stretching

In both cases, the resulting unit circles are elongated and narrowed in a similar manner
and have symmetry around the anti-diagonal of their tranformations shown by the blue
parallelograms. In graph traversal, both would result in similar (but opposite) enhance-
ments of edge values.

Stretching in the max.min semiring extends the concept of stretching by projecting most
of the unit circle onto the line y = x as compared with the identity transformation

max.min identity max.min stretching

In this instance, the stretching array acts as a filter on graph edge values by projecting
nearly all of them onto the diagonal line, with the exception of a few values that are set by
the coordinates of the stretching parallelogram.

Stretching in the min.max semiring is significantly different from the identity and shrinks
the unit circle onto a narrow elbow of points defined by the axis of the transformation de-
picted by the blue parallelgram

“current_book”
2017/8/27
23:44
page 296
#320

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

296 Chapter 12 Survey of Common Transformations

min.max identity min.max stretching

This kind of stretching transformation replaces a variety of graph edge values with a narrow
range of graph edge values.

Stretching in the max.× and min.× operation pairs are only semirings in the positive
quadrant (I). They are similar to each other but different from their respective identify
transformations. Both project and twist the unit circle and are symmetric with each other
(similar to the max.+ and min.+ semirings)

max.× identity max.× stretching

max.× identity max.× stretching

12.5 Rotation

The above transformations give a hint at how easy it is to create complex transformations
with very simple operations. The rotation transformation takes this complexity to another
level to produce shapes that are typically not found in standard computations. Rotation
of the unit circle by π/4 is one of the simplest transformations in the +.× semiring, but it
exhibits a wide array of behaviors in other semirings. This rotation is shown in Figure 12.4

“current_book”
2017/8/27
23:44
page 297
#321

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.5 Rotation 297

-1 0 1

-0.5

0

0.5

1

+.×

-1 0 1 2

-0.5

0

0.5

1

1.5

max.+

-1 0 1

-0.5

0

0.5

1

min.+

-1 0 1

-0.5

0

0.5

1

max.min

-1 0 1

-0.5

0

0.5

1

max.×

-1 0 1

-0.5

0

0.5

1

min.max

-1 0 1

-0.5

0

0.5

1

min.×

Figure 12.4
Transformation of points on the unit circle (green circle) via array multiplication by a 2×2 associative array (blue
parallelogram), resulting a new set of points (black dots). The title of each plot lists the ⊕ and ⊗ operator used in

the array multiplication. The array values

cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

 corresponds to a rotation transformation in the

+.× semiring.

and corresponds to the array transformation

x y

x cos(π/4) −sin(π/4)

y sin(π/4) cos(π/4)

 ⊕.⊗ U =

1 ··· n

x
(
U(x, :)⊗ cos(π/4)

)
⊕

(
U(y, :)⊗−sin(π/4)

)
y

(
U(x, :)⊗ sin(π/4)

)
⊕

(
U(y, :)⊗ cos(π/4)

)
The concept of rotation has fairly different meaning in many of these semirings. The
max.+, min.+, max.×, and min.× operation pairs all tranform the unit circle into a half
circle with a handle. The max.min semiring projects the unit circle onto a triangle, and the
max.min projects the unit circle onto a line.

The rotation transformation of the unit circle in the max.+ and min.+ semirings produce
similar geometric shapes that are very distinct from their identity transformation

“current_book”
2017/8/27
23:44
page 298
#322

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

298 Chapter 12 Survey of Common Transformations

max.+ identity max.+ rotation

min.+ identity min.+ rotation

The min.+ rotation produces a half circle with handle shape; this is a π/2 rotation of the
min.+ rotation. The main similarity between these rotation transformations and their iden-
tities is that both have a part of the unit circle that connects the diagonal corners of the blue
square.

In the max.min and min.max semirings, the identity and the rotation transformation have
little similarity

max.min identity max.min rotation

min.max identity min.max rotation

The max.min rotation transforms the unit circle into a triangle connecting three points
on the unit circle. The min.max rotation projects the points onto a straight line. One simi-
larity that all the identities and rotations share in the five +.×, max.+, min.+, max.min, and
min.max is that they all connect diagonal points of their respective squares shown in blue.

The max.× and min.× operation pairs can only be semirings in the positive quadrant (I).
They have little similarity to their respective identity transformations in that each projects
the unit circle onto a half circle with handle shape. As with max.+ and min.+, the half
circle with handle shape are π/2 rotations of each other

“current_book”
2017/8/27
23:44
page 299
#323

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.6 Conclusions, Exercises, and References 299

max.× identity max.× rotation

min.× identity min.× rotation

12.6 Conclusions, Exercises, and References

The transformation of the values of an array is a key capability of array multiplication.
Using different combinations of ⊕ and ⊗ operations enables a wide variety of transforma-
tions. The intuition of these transformations can be visualized by looking at various 2×2
arrays and the ways they change the unit circle. Identity, contraction, dilation, stretching,
and rotation are common transformations that can be composed to build more complicated
transformations. Perhaps the most impressive aspect of these diverse transformations is
that they maintain the useful properties of semirings such as associativity, distributivity,
and identities. The differences among semirings such as +.×, max.+, min.+, max.min,
min.max, max.×, and min.× when performing array multiplication motivate the need to
revisit other properties of matrices, such as eigenvalues and eigenvectors, in the context of
these semirings.

Exercises

Exercise 12.1 — Sketch the result of multiplying the Imax.+ identity array given in Sec-
tion 12.2 by the unit circle over the following pairs of operations

(a) +.×

(b) max.+

(c) min.+

(d) max.min

(e) min.max

(f) max.×

“current_book”
2017/8/27
23:44
page 300
#324

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

300 Chapter 12 Survey of Common Transformations

(g) min.×

Exercise 12.2 — Sketch the result of multiplying the Imin.+ identity array given in Sec-
tion 12.2 by the unit circle over the following pairs of operations

(a) +.×

(b) max.+

(c) min.+

(d) max.min

(e) min.max

(f) max.×

(g) min.×

Exercise 12.3 — Sketch the result of multiplying the Imax.min identity array given in Sec-
tion 12.2 by the unit circle over the following pairs of operations

(a) +.×

(b) max.+

(c) min.+

(d) max.min

(e) min.max

(f) max.×

(g) min.×

Exercise 12.4 — Sketch the result of multiplying the Imin.max identity array given in Sec-
tion 12.2 by the unit circle over the following pairs of operations

(a) +.×

(b) max.+

(c) min.+

(d) max.min

(e) min.max

(f) max.×

(g) min.×

Exercise 12.5 — Sketch the result of multiplying the Imax.× identity array given in Sec-
tion 12.2 by the unit circle over the following pairs of operations

“current_book”
2017/8/27
23:44
page 301
#325

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

12.6 Conclusions, Exercises, and References 301

(a) +.×

(b) max.+

(c) min.+

(d) max.min

(e) min.max

(f) max.×

(g) min.×

Exercise 12.6 — Sketch the result of multiplying the Imin.× identity array given in Sec-
tion 12.2 by the unit circle over the following pairs of operations

(a) +.×

(b) max.+

(c) min.+

(d) max.min

(e) min.max

(f) max.×

(g) min.×

References

[1] R. A. Cuninghame-Green, Minimax Algebra, vol. 166. Springer Science & Business Media, 2012.
[2] M. Akian, G. Cohen, S. Gaubert, R. Nikoukhah, and J. P. Quadrat, “Linear systems in (max,+) algebra,” in

Proceedings of the 29th IEEE Conference on Decision and Control, pp. 151–156, IEEE, 1990.
[3] P. Butkovič, “Strong regularity of matrices–a survey of results,” Discrete Applied Mathematics, vol. 48, no. 1,

pp. 45–68, 1994.
[4] K. Cechlárová and J. Plávka, “Linear independence in bottleneck algebras,” Fuzzy Sets and Systems, vol. 77,

no. 3, pp. 337–348, 1996.
[5] S. Gaubert and M. Plus, “Methods and applications of (max,+) linear algebra,” in STACS 97, pp. 261–282,

Springer, 1997.
[6] M. Gondran and M. Minoux, “Dioïds and semirings: Links to fuzzy sets and other applications,” Fuzzy Sets

and Systems, vol. 158, no. 12, pp. 1273–1294, 2007.
[7] W. B. Person and B. Crawford Jr., “A geometric visualization of normal-coordinate transformations. Appli-

cation to the calculation of bond-moment parameters and force constants,” The Journal of Chemical Physics,
vol. 26, no. 5, pp. 1295–1301, 1957.

[8] T. Kanade and J. R. Kender, Mapping Image Properties into Shape Constraints: Skewed Symmetry, Affine-
Transformable Patterns, and the Shape-from-Texture Paradigm. Carnegie-Mellon University, Department of
Computer Science, 1980.

[9] J. F. Blinn, “How to solve a cubic equation, part 1: The shape of the discriminant,” IEEE Computer Graphics
and Applications, vol. 26, no. 3, pp. 84–93, 2006.

[10] “Mathable: Matrices and geometry.” http://www.mathable.io/courseware/matrices-geometry. Accessed:
2017-04-08.

“current_book”
2017/8/27
23:44
page 302
#326

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 303
#327

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13 Maps and Bases

Summary

The diverse data transformations that are possible with associative arrays can be composed
into powerful analytics using the linear properties of associativity, commutativity, and dis-
tributivity inherited from semirings. Proving these linear properties for associative arrays
requires building up the corresponding mathematical objects, beginning with semimodules
and linear maps, from which the foundational concept of a base can be proven. The existence
of bases sets the stage for proving the additional properties of associative array algebra. This
chapter defines the mathematical objects used in the remaining chapters to prove the linear
properties of associative arrays.

13.1 Semimodules

The calculations of the previous chapter show the diversity of transformations that are pos-
sible with simple 2×2 array multiplication using different pairs of operations. Enumerating
all the transformations exhibited by a given associative array is an extensive undertaking.
The matrix multiplication properties of max.min and min.max algebras (sometimes re-
ferred to as fuzzy or bottleneck algebras) have been explored by many researchers. These
explorations include linear independence [1–3], matrix periodicity [4], image sets [5], and
a variety of applications [6–8]. Likewise, the properties of max.+ and min.+ algebras
(sometimes referred to as tropical algebras) have also been explored (see survey in [9]).
Examples of these explorations include systems of linear systems [10], spectral inequali-
ties [11], categorical equivalences [12], and a wide range of applications [13].

The general behavior of associative array multiplication in associative array algebra can
be understood with concepts similar to matrix multiplication in linear algebra. The first
step toward creating this understanding is to extend semirings by building them up into
objects that are similar to matrices and then include operations that are similar to linear
algebra. Throughout this construction process, examples will be given using well-known
sets of values

N the natural numbers {0,1,2, . . .}
Z the integers {. . . , −1,0,1, . . .}
Q the rational numbers {m/n | n , 0,m,n ∈ N}
R the real numbers {x | −∞ < x <∞}

“current_book”
2017/8/27
23:44
page 304
#328

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

304 Chapter 13 Maps and Bases

C the complex numbers {x + y
√
−1 | x,y ∈ R}

The concept of a semiring over a set of values V is extended to a semimodule by adding a
scalar multiplication operation, which naturally leads to semimodules that are m×n arrays
of elements in V that are denoted Vm×n. Associative array multiplication transforms one
semimodule to another semimodule. Such a transformation is a linear mapping between
semimodules. Linear maps over semimodules thus provide the key mathematical founda-
tion for understanding associative array multiplication. The definition of a semimodule
over a semiring is as follows.

Definition 13.1
Semimodule

[14, p. 149] A semimodule M over a semiring V , or a V-semimodule, is a quadru-
ple (M,⊕,⊗,0) where M is a set, ⊕ a binary vector addition operation

⊕ : M×M→ M

the binary scalar multiplication operation ⊗ is

⊗ : V ×M→ M

and 0 is an element of M. For scalar c ∈ V and semimodule set member v ∈ M,
scalar multiplication c⊗ v is typically denoted by cv unless ⊗ must be explicitly
named. To be a V-semimodule then for any scalars

a,b,c ∈ V

and semimodule set members
u,v,w ∈ M

the quadruple must satisfy the following axioms

1. (M,⊕,0) is a commutative monoid
2. 1 is the scalar identity 1v = v
3. Scalar multiplication distributes over monoid addition

c(u⊕v) = (cu)⊕ (cv)

4. Scalar multiplication distributes over semiring addition

(a⊕b)v = (av)⊕ (bv)

5. Scalar multiplication is compatible with semiring multiplication

a(bv) = (a⊗b)v

“current_book”
2017/8/27
23:44
page 305
#329

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.1 Semimodules 305

A semimodule can easily be extended to a module or to the commonly used linear algebra
concept of a vector space. If V is a ring, then call M a module over V or a V-module, and
if V is a field, then call M a vector space over V or a V-vector space.

Example 13.1

A semiring (V,⊕,⊗,0,1) is itself a V-semimodule (M,⊕,⊗,0), where vector addi-
tion is the semiring addition and scalar multiplication is the semiring multiplica-
tion.

Example 13.2

If V is a semiring, then Vn is a semimodule over V where ⊕ is defined by
component-wise addition in V

w = u⊕v where w(k) = v(k)⊕w(k)

scalar multiplication is component-wise multiplication in V

w = cv where w(k) = cv(k)

and the identity is the tuple 0 = (0, . . . ,0).

Example 13.3

If V is a semiring, and K1,K2 are key sets, then the set A =A(K1,K2;V) of all two-
dimensional associative arrays A : K1 ×K2 → V is a semimodule over V . Vector
addition is element-wise addition, and scalar multiplication is array scalar multi-
plication.
More discussion about this structure and further structure on A is explored in Sec-
tion 13.6.

The previous two examples can be generalized considerably: Suppose K is a product
K1 × · · · ×Kd of key sets. Then the set V�K of all functions K → V with finite support,
called the direct sum of K-copies of V , forms a semimodule over V in a similar way to Vn

and A(K1,K2;V).
Recall that v : K→ V has finite support when v(k) , 0 for a finitely number of values of

k ∈ K. With K = K1×· · ·×Kd, these are precisely the d-dimensional associative arrays over
V .

“current_book”
2017/8/27
23:44
page 306
#330

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

306 Chapter 13 Maps and Bases

The definitions of ⊕ and scalar multiplication are exactly as in Example 13.2. In other
words, given u,v,w ∈ V�K , define

w = u⊕v where w(k) = u(k)⊕v(k)

w = cv where w(k) = cv(k)

and the identity is the constant function 0(k) = 0.
This construction works when K is any set, not just one of the form K = K1× · · ·×Kd.
There are examples of semimodules which do not arise as V�K for some set K.

Example 13.4

The same definitions of addition and scalar multiplication used in the construction
of V�K can be extended to the set VK of all functions from K into V , making this
set into a semimodule over V .

Example 13.5

The set Z/nZ = {0, . . . ,n− 1} is a module over Z where vector addition is addition
modulo n, the vector addition identity is 0, and the scalar multiple m⊗ v is defined
to be the unique element of Z/nZ congruent to mv modulo n.

Example 13.6

R is a Q-vector space, with vector addition given by the standard addition on R, the
vector addition identity is 0, and scalar multiplication is the standard multiplication
on R.

Example 13.7

Q is a Z-module, with vector addition given by the standard addition on Q, the
vector identity 0, and scalar multiplication is the standard multiplication on Q.

Example 13.8

A commutative monoid (M,⊕,0) can be regarded as an N-semimodule by taking
vector addition to be the monod operation ⊕, vector addition identity as 0, and
scalar multiplication defined by setting

nv = v⊕ · · ·⊕v︸ ︷︷ ︸
n times

for n a natural number and v ∈ M.

“current_book”
2017/8/27
23:44
page 307
#331

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.2 Linear Maps 307

Example 13.9

Suppose (M,⊕,0) is a commutative group, so that for every v ∈M there is an inverse
−v. Then Example 13.8 shows how to consider it as a N-semimodule. It can be
further considered a Z-module by setting

(−n)v = −(nv)

for n a non-negative integer and v ∈ M.

13.2 Linear Maps

Array multiplication transforms one array to another. In more general terms, the trans-
formation from one semimodule to another is a map. Of particular interest is the concept
of a linear map that distributes over addition and is homogeneous with respect to scalar
multiplication.

Definition 13.2
Linear Map

A linear map between two V-semimodules M and M′ is a map

f : M→ M′

satisfying
f (cu⊕v) = c f (u)⊕ f (v)

or equivalently

f (u⊕v) = f (u)⊕ f (v) and f (cu) = c f (u)

for every scalar c ∈ V and u,v ∈ M.

A bijective linear map is a linear isomorphism, or simply an isomorphism.

Example 13.10

Consider Vn and V1×n; there is a linear isomorphism f : Vn→ V1×n sending v to

[1 ··· n

1 v(1) · · · v(n)
]

and the two V-semimodules are identified with one another.

“current_book”
2017/8/27
23:44
page 308
#332

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

308 Chapter 13 Maps and Bases

Example 13.11

The maps
f , f ′ : VN→ VN

defined by
f (v0,v1, . . .) = (v1,v2, . . .)

and
f ′(v0,v1, . . .) = (0,v0,v1, . . .)

are linear maps.

Matrices are perhaps the most significant linear mapping for understanding array multi-
plication. Given an m×n matrix A with entries in V , such a matrix defines a linear map

f : Vn→ Vm

by sending v ∈ Vn to Av ∈ Vm.
In fact, all linear maps from Vn into Vm are of this form. Let f : Vn → Vm be a linear

map, and denote by ek the m-element vector defined by ek(j) = 1 if k = j and 0 otherwise.
The m×n matrix A can be formed by

A =
[1 2 ··· n

f (e1) f (e2) · · · f (en)
]

Then given any n-element vector

v = (v(1), . . . ,v(n)) ∈ Vn

it must be that the linear map
f (v) = Av

for
v = v(1)e1⊕ · · ·⊕v(n)en

and so by linearity
f (v) = v(1) f (e1)⊕ · · ·⊕v(n) f (en) = Av

More generally, this same idea shows that a linear map from Vn is uniquely determiend
by its values on the vectors ei. This is also true for maps from V�K , where ek(j) = 1 if k = j

“current_book”
2017/8/27
23:44
page 309
#333

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.3 Linear Independence and Bases 309

and 0 otherwise for each k ∈ K. In fact, assigning any values to the vectors ei uniquely
determines a linear map.

Proposition 13.1

Uniqueness and Existence of Extension of Map from Standard Basis

Let K = K1 × · · · ×Kd, V a semiring, and M any V-semimodule. Then given any
function

f : {ek | k ∈ K} → M

there exists a unique linear map

f ′ : V�K → M

such that f ′(ek) = f (ek) for each k ∈ K.

Proof. See Exercise 13.4. �

13.3 Linear Independence and Bases

As seen in Proposition 13.1 linear maps, are particularly nice when dealing with semimod-
ules of the form V�K for some K. So it is worth questioning what the essential properties
of V�K are that make Proposition 13.1 possible, such as when the size of such K is unique.
For example, can V2 and V1 be linearly isomorphic?

Definition 13.3
Linear Independence and Dependence

Let M be a V-semimodule and U a subset of M.
U is linearly independent if for all

v1, . . . ,vn ∈ U and u1, . . . ,un,w1, . . . ,wn ∈ V

then
n⊕

k=1

ukvk =

n⊕
k=1

wkvk

implies uk = wk for each k. If a subset U is not linearly independent, then it is
linearly dependent.

“current_book”
2017/8/27
23:44
page 310
#334

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

310 Chapter 13 Maps and Bases

Definition 13.4
Span

Span(U) is the set of all elements of the form
n⊕

k=1

ukvk

where
v1, . . . ,vn ∈ U and u1, . . . ,un ∈ V

is called the (linear) span of U.

Definition 13.5
Generating Set, Basis

U is a generating set of M if
Span(U) = M

A subset B ⊂ M is a basis if B is linearly independent and a generating set.

Proposition 13.2

Equivalent Definitions of Linear Dependence

Suppose M is a V-semimodule and U ⊂ M. Consider the conditions

(i) U is linearly dependent
(ii) there exist v1, . . . ,vn ∈ U and u1, . . . ,un ∈ V not all zero such that

n⊕
k=1

ukv = 0

(iii) there exists v ∈ U such that

v ∈ Span(U \ {v})

If M is a module then (i) and (ii) are equivalent. If M is a vector space then all of
the above are equivalent.

Proof. See Exercise 13.6. �

Example 13.12

For V�K , the set {ek | k ∈ K} forms a basis.

“current_book”
2017/8/27
23:44
page 311
#335

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.3 Linear Independence and Bases 311

Example 13.13

For Vn×m, the set of the matrices ei, j with `,k-th entry equal to 1 if i = ` and j = k,
and 0 otherwise, forms a basis.

Example 13.14

The set {(1, −1), (0,1)} is a basis for R2.

Example 13.15

Consider Z as a module over itself. Then {2,3} is linearly dependent since 3×2 +

−2×3 = 0.
Note that neither 2 nor 3 can be written as a multiple of the other, so it is not
linearly dependent in the other sense [15], showing that the equivalence of Propo-
sition 13.2(ii) and (iii) need not hold in an arbitrary module.

The above example shows that the definition of linear dependence in a semimodule is
not out of mere convenience, but out of necessity to properly capture the notion. The
equivalence in the case of vector spaces is an important fact used to show that every vector
space has a basis. See [16] for further discussion.

The existence of a basis can be interpreted as the existence of a linear isomorphism with
an V-semimodule of the form V�K .

Proposition 13.3

Existence of Basis Equivalent to Freeness

Suppose M is a V-semimodule, and that M has a basis. Then for some set K, there
exists a linear isomorphism

ϕ : V�K → M

Conversely, if there exists a linear isomorphism

ϕ : V�K → M

then M has a basis.

Proof. See Exercise 13.9. �

“current_book”
2017/8/27
23:44
page 312
#336

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

312 Chapter 13 Maps and Bases

This allows Proposition 13.1 to be extended to semimodules which have bases.

Corollary 13.4

Uniqueness and Existence of Linear Extension of Map of Basis

Suppose M is a semimodule and B is a basis of M. Then any function

f : B→ M′

uniquely determines a linear map

f ′ : M→ M′

Proof. See Exercise 13.10. �

13.4 Existence of Bases

The first question to ask regarding semimodules and bases is whether a basis need exist for
each semimodule. Ultimately, the answer is negative, though in the case of vector spaces
it can be proven that bases do exist.

Proposition 13.5

Vector Spaces Have Bases

Let M be a F-vector space. Then there exists a basis.

Proof. See [17, p. 518] for the details. The proof makes use Zorn’s Lemma, which states

“If (P,≤) is a partially ordered set in which every linearly ordered subset Q ⊂ P has an upper
bound, then there exists a maximal element of P.”

which is equivalent to the Axiom of Choice.
Proposition 13.2 implies that in a vector space, a subset U is linearly independent if there

does not exist v ∈U such that v ∈ Span(U \ {v}). As a result, a basis of a vector space is the
same as a maximal linearly ordered set.

Let P to be the set of linearly independent subsets of M and ≤ to be ⊂. If Q⊂ P is linearly
ordered by ⊂, then

⋃
Q is a linearly independent subset of M, showing that Q has an upper

bound. Thus, Zorn’s Lemma implies that there is a maximal element of P, which will be a
basis of M. �

“current_book”
2017/8/27
23:44
page 313
#337

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.5 Size of Bases 313

After moving beyond the case of vector spaces, however, there are no longer any guar-
antees that a basis exist.

Example 13.16

Q forms a Z-module, but has no basis. To see this, note that given two nonzero
rational numbers r = n

m and s =
p
q , then there exist nonzero integers x,y such that

xr + ys = 0, including x = mp and y = −qn as

mp
n
m

+ −qn
p
q

= np−np = 0

Thus, the only linearly independent sets are those containing only a single element,
and the span of {r} cannot be equal to all Q (for example, it does not contain r/2).

The above example illustrates that the existence of a basis is a nontrivial property. Here,
the primary interest lies in semimodules for which a basis exists.

Definition 13.6
Free Semimodule

A semimodule for which a basis exists is known as a free semimodule.

13.5 Size of Bases

The second question to ask concerns the size of bases, and in particular whether a unique
size exists. With this discussion of size, precision is needed about when set U has greater
size than set V or when set U and set V have the same size.

Definition 13.7
Surjections, Injections, and Bijections

A function
f : U → V

is

• an injection if f (u) = f (u′) implies u = u′,
• a surjection if for every v ∈ V there is u ∈ U such that f (u) = v, and
• a bijection if it both an injection and a surjection, or equivalently f has an

inverse.

“current_book”
2017/8/27
23:44
page 314
#338

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

314 Chapter 13 Maps and Bases

Definition 13.8
Cardinality

Given two sets U,V , U has smaller size or smaller cardinality, written

|U | < |V |

if there does not exist a surjection f : U→ V . If there is a surjection f : U→ V , or
equivalently an injection g : V → U, then this is written

|U | ≥ |V |

If there is a bijection f : U → V , then this is written

|U | = |V |

and U and V are said to have equal size or equal cardinality.

To understand why these definitions are what they are, it is best to examine the definitions
in the context of finite sets: counting the elements of a finite set is ultimately the same thing
as establishing a bijection with a set of the form {1, . . . ,n} for some natural number n.

Thus, the question of whether the bases of a semimodule (given any exist to begin with)
have a unique size is meant to ask if for every two bases, there exists a bijection between
them as sets (so no algebraic structure is being considered here). It ends up that the question
only becomes ambiguous when there are finite bases.

Theorem 13.6

Uniqueness of Size of Infinite Bases

Let M be a free V-semimodule, and let B be an infinite basis of M. Then no set U
that has size smaller than B is a basis of M.

Proof. Because B is a basis, each element of U is a (finite) linear combination of elements
of B. Let B′ be the subset of B that consists of all those elements of B that show up in a
linear combination representation of an element of U.

Now, if U is infinite, then it ends up that B′ has the same size as U so that |U | = |B′|. If
U is finite, B′ may still be larger than U, but still finite, and so still smaller in size than
B. In either case, |B′| < |B|. This condition guarantees that Span(B′) is a proper subset of
Span(B) = M, and in particular it means that B′ cannot generate all of M. Finally, every
finite linear combination of elements in U, by rewriting them as linear combinations of
elements in B′, can be rewritten as a linear combination of elements in B′. Thus, Span(U)⊂
Span(B′), and so Span(U) is unequal to M as well, showing that U cannot be a basis. �

“current_book”
2017/8/27
23:44
page 315
#339

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.5 Size of Bases 315

Corollary 13.7

Bases Are Either All Finite or All Infinite

Let M be a V semimodule. If there is a finite basis of M, then every basis is finite.

Proof. See Exercise 13.12. �

Say that a semimodule M is finitely generated if there exists a finite basis of M. Corol-
lary 13.7 then says that the only remaining ambiguity concerning the size of such finitely
generated free semimodules is whether it is possible that Vn is linearly isomorphic to Vm

when n , m. The following example shows that the ambiguity can exist.

Example 13.17

Let V be any ring, and define V′ to be the set of all V-matrices whose entries are
labeled by N×N (so it is an infinite matrix) and whose columns each contain only
finitely many nonzero entries. For example, one such element is

0 1 2 ··· n−1 ···

0 1 2 3 · · · n · · ·

1 0 2 3 · · · n · · ·

2 0 0 3 · · · n · · ·

3 0 0 0 · · · n · · ·

...
...

...
...

. . .
...

. . .

n 0 0 0 · · · 0 · · ·

...
...

...
...

...
...

...

With this condition on the number of nonzero entries in each column, the product
of such matrices is well-defined, producing a ring. Then there is a left V-module
isomorphism f : V′→ V ′2 given by

f : A 7→ (odd columns of A,even columns of A)

so that the V′-module V′ is isomorphic to the V′-module V′2. V′, as a V′-module,
has a basis given by the identity I, whereas V ′2, as an V ′-module, has a basis given
by

{(I,0), (0, I)}

But then { f (I)} is also a basis for V ′2, and so the size of bases of V ′2 are unequal.

“current_book”
2017/8/27
23:44
page 316
#340

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

316 Chapter 13 Maps and Bases

Commutativity of the multiplication operation is enough to remove this ambiguity. The
key property from which commutativity is used is in the following result.

Lemma 13.8

Square Matrix Left Invertible if and only if Right Invertible

[18] Let A and B be two square n×n matrices defined over a commutative semir-
ing. Then

AB = I if and only if BA = I

With this fact in mind, the traditional proof for proving the result for commutative mod-
ules goes through.

Proposition 13.9

Commutative Semirings Have Unique Size of Bases

[17, p. 416] Let V be a commutative semiring and let M be a V-semimodule. If B
and B′ are two finite bases for M, then they have equal size.

Proof. Let
B = {v1, . . . ,vn} and B′ = {w1, . . . ,wm}

Then for each k ∈ {1, . . . ,m}, there are

A(k,1), . . . ,A(k,n)

such that

wk =

n⊕
j=1

A(k, j)v j

The above sum defines a matrix A, which sends

(v1, . . . ,vn)ᵀ 7→ (w1, . . . ,wm)ᵀ

Likewise, there is the matrix B which sends

(w1, . . . ,wm)ᵀ 7→ (v1, . . . ,vn)ᵀ

and so BA sends (v1, . . . ,vn)ᵀ to itself. Since {v1, . . . ,vn} is a basis and multiplication by I
gives the same action on that basis, by Corollary 13.4 it follows that

BA = In

“current_book”
2017/8/27
23:44
page 317
#341

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.6 Semialgebras and the Algebra of Arrays 317

and likewise
AB = Im

But if A is any invertible matrix over V , then it must be square. Let B be the inverse of A,
and suppose A has size m×n and B has size n×m. Suppose without loss of generality that
m ≥ n. Then if n ,m, add columns of zeroes to A on the right-hand side and rows of zeroes
to B at the bottom, giving new matrices A′ and B′, which are square and also satisfy

A′B′ = Im

By Lemma 13.9, applied over a commutative semiring, it is the case that

A′B′ = Im if and only if B′A′ = Im

But it can be directly checked that the m,m-th entry of B′A′ is 0, giving a contradiction.
As such, n = m. �

When the size of a basis is unique in a finitely generated semimodule, call that size the
rank of the semimodule. In vector spaces, the term dimension is instead used.

13.6 Semialgebras and the Algebra of Arrays

Some semimodules admit a vector multiplication which is compatible with the vector ad-
dition and scalar multiplication operators. The addition of a vector multiplication gives
rise to the notion of a semialgebra.

Definition 13.9
Semialgebra

[14, p. 53] A semialgebra M over a semiring V is a quintuple

(M,⊕,⊗,0,∗)

where
(M,⊕,⊗,0)

is a semimodule over V and
∗ : M×M→ M

is bilinear, so for any v,v′,v′′ ∈ M and u,w ∈ V

(uv⊕wv′)∗v′′ = u(v∗v′′)⊕w(v′ ∗v′′)
v′′ ∗ (uv⊕wv′) = u(v′′ ∗v)⊕w(v′′ ∗v′)

“current_book”
2017/8/27
23:44
page 318
#342

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

318 Chapter 13 Maps and Bases

Definition 13.10

A semialgebra
(M,⊕,⊗,0,∗)

is an associative semialgebra or a commutative semialgebra if ∗ is associative or
commutative, respectively.
If there exists an identity element for ∗ in M, then M is a unital semialgebra. Note
that a unital associative semialgebra is also a semiring in its own right.

Recall that
A = A(K1,K2;V)

is the set of all associative arrays

A : K1×K2→ V

over a fixed semiring V and K1,K2 fixed finite sets. Furthermore, on A element-wise
addition, element-wise multiplication, and scalar multiplication (by elements of V) are
defined. When K1 = K2 = K, array multiplication is also defined on A.

Proposition 13.10

A is a Unital Semialgebra under Element-Wise Multiplication

Suppose V is a semiring and K a set. Then the quintuple(
A(K,K;V),⊕,⊗,0,⊗,1

)
is an associative unital semialgebra where ⊕ is element-wise addition, the first use
of ⊗ is scalar multiplication, 0 is the zero array, the second use of ⊗ is element-wise
multiplication, and 1 is the associative array which is 1 everywhere.

Proposition 13.11

A is a Unital Semialgebra under Array Multiplication

Suppose V is a semiring and K1,K2 sets. Then the quintuple(
A(K1,K2;V),⊕,⊗,0,⊕.⊗, I

)
is an associative unital semialgebra where ⊕ is element-wise addition, ⊗ is scalar
multiplication, 0 is the zero array, ⊕.⊗ is array multiplication, and I is the identity
array.

“current_book”
2017/8/27
23:44
page 319
#343

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.6 Semialgebras and the Algebra of Arrays 319

The proofs of these propositions only involve confirming the semialgebra axioms.

Example 13.18

Consider the case where K = {1, . . . ,n}, V is any commutative semiring, and d = 1.
In this case, a square d-dimensional associative array corresponds to an n-tuple
of elements in V , which are regarded as column vectors. Then the semialgebra
structure defined in Proposition 13.10 A(K,K;V) is an associative semialgebra.
Moreover, an identity

1 = (1, . . . ,1)

exists, and A(K,K;V) is isomorphic to the product semiring

Vn =

n∏
k=1

V

It should be noted that having associative arrays over infinite key sets naturally requires
the relaxation of the finite support condition to allow, for example, identities for element-
wise multiplication and array multiplication. However, the following results can be recov-
ered.

Proposition 13.12

Every Array is Contained in a Finite-Dimensional Sub-Semimodule of A

Let a set of associative arrays be given by

{A1, . . . ,An} ⊂ A

Then there exists a sub-semialgebra M of A containing {A1, . . . ,An} that is the span
of some finite collection of unit arrays

{e(k1,k2) ∈ A | (k1,k2) ∈ I ⊂ K1×K2}

where I is finite. That is, every element of M can be written in the form⊕
(k1,k2)∈I

v(k1,k2)e(k1,k2)

where v(k1,k2) ∈ V for each (k1,k2) ∈ I.

Proof. Consider the finite set

I =

n⋃
k=1

supp(Ak)

“current_book”
2017/8/27
23:44
page 320
#344

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

320 Chapter 13 Maps and Bases

and note that the sub-semimodule

M = Span
{
e(k1,k2) | (k1,k2) ∈ I

}
of A contains each Ak, as

Ak =
⊕

(k1,k2)∈supp(Ak)

Ak(k1,k2)e(k1,k2)

It only remains to see that M is closed under element-wise multiplication. This follows
from the fact that

supp(A⊗B) ⊂ supp(A)∩ supp(B)

Thus, M is a semialgebra. �

Corollary 13.13

Span{e(k1,k2) | (k1,k2) ∈ I} is a Unital Semialgebra When I is Finite

M is, in fact, a unital semialgebra, with multiplicative unit⊕
k∈I

ek

These above theorems and corollaries signify that to understand the properties of the
space of associative arrays spanned by a finite number of associative arrays, it suffices to
use the theory of free semimodules over the underlying semiring. This corresponds to the
theory of vector spaces without the requirement that the values be in a field. In other words,
“vector spaces” where the values do not require additive and multiplicative inverses.

13.7 Conclusions, Exercises, and References

Building up the algebra of associative arrays begins with the construction of an equiva-
lent semimodule construct. Using direct sums of semimodules, it is possible define linear
maps that can be used to build bases. The provable existence of these bases provides the
foundation of the formal algebra of associative arrays from which many additional useful
matrix-like properties can be derived.

Exercises

Exercise 13.1 — How does the set Vn×m of all n×m matrices with entries in the semiring
V arise as an example of V�K? In other words, what should K be?

“current_book”
2017/8/27
23:44
page 321
#345

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

13.7 Conclusions, Exercises, and References 321

Exercise 13.2 — Show that the set VK of all functions K → V is strictly larger than V�K

when K is infinite. What about when K is finite?

Exercise 13.3 — What are the benefits to considering V�K instead of the (possibly larger)
semimodule VK?

Exercise 13.4 — Prove Proposition 13.1.

Exercise 13.5 — Explicity define the unique linear map f ′ :R2×1→R extending f : {e1,e2}→

R in Proposition 13.1 where f is defined by f (e1) = 1 and f (e2) = −2. In other words, give
a matrix which defines this linear map.

Exercise 13.6 — Prove Proposition 13.2.

Exercise 13.7 — Show that if V is a ring and M is a module over V , then U ⊂M is linearly
independent if and only if for every {v1, . . . ,vn} ⊂ U the equality

⊕n
k=1 ukvk = 0 implies

uk = 0 for each k.

Exercise 13.8 — Show that the two vectors

1

1 1

2 −1

,

1

1 2

2 0

 in R2×1 (being considered

as a vector space over R) are linearly independent.

Exercise 13.9 — Prove Proposition 13.3.

Exercise 13.10 — Prove Corollary 13.4.

Exercise 13.11 — Is Z/nZ a free semimodule over Z? What about R as a semimodule
over Q?

Exercise 13.12 — Prove Corollary 13.7.

References

[1] P. Butkovič, K. Cechlárová, and P. Szabó, “Strong linear independence in bottleneck algebra,” Linear Algebra
and its Applications, vol. 94, pp. 133–155, 1987.

[2] J. Plavka, “Linear independences in bottleneck algebra and their coherences with matroids,” Acta Math. Univ.
Comenianae, vol. 64, no. 2, pp. 265–271, 1995.

[3] K. Cechlárová and J. Plávka, “Linear independence in bottleneck algebras,” Fuzzy Sets and Systems, vol. 77,
no. 3, pp. 337–348, 1996.

[4] M. Gavalec, “Computing matrix period in max-min algebra,” Discrete Applied Mathematics, vol. 75, no. 1,
pp. 63–70, 1997.

[5] M. Gavalec and J. Plavka, “Simple image set of linear mappings in a max–min algebra,” Discrete Applied
Mathematics, vol. 155, no. 5, pp. 611–622, 2007.

“current_book”
2017/8/27
23:44
page 322
#346

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

322 Chapter 13 Maps and Bases

[6] R. A. Cuninghame-Green, Minimax Algebra, vol. 166. New York: Springer Science & Business Media,
2012.

[7] J. Gunawardena, “Min-max functions,” Discrete Event Dynamic Systems, vol. 4, no. 4, pp. 377–407, 1994.

[8] R. A. Cuninghame-Green, “Minimax algebra and applications,” Advances in Imaging and Electron Physics,
vol. 90, pp. 1–121, 1994.

[9] S. Gaubert and M. Plus, “Methods and applications of (max,+) linear algebra,” in STACS 97, pp. 261–282,
Springer, 1997.

[10] M. Akian, G. Cohen, S. Gaubert, R. Nikoukhah, and J. P. Quadrat, “Linear systems in (max,+) algebra,” in
Proceedings of the 29th IEEE Conference on Decision and Control, pp. 151–156, IEEE, 1990.

[11] R. Bapat, D. P. Stanford, and P. Van den Driessche, “Pattern properties and spectral inequalities in max
algebra,” SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 3, pp. 964–976, 1995.

[12] A. Di Nola and C. Russo, “Semiring and semimodule issues in mv-algebras,” Communications in Algebra,
vol. 41, no. 3, pp. 1017–1048, 2013.

[13] S. Gaubert, “Performance evaluation of (max,+) automata,” IEEE Transactions on Automatic Control, vol. 40,
no. 12, pp. 2014–2025, 1995.

[14] J. S. Golan, Semirings and their Applications. Dordrecht, Netherlands: Springer Science & Business Media,
2013.

[15] S. Roman, Advanced Linear Algebra, vol. 3. New York: Springer-Verlag, 2005.

[16] Y.-J. Tan, “Bases in semimodules over commutative semirings,” Linear Algebra and Its Applications,
vol. 443, pp. 139–152, 2014.

[17] M. Artin, Algebra. New York: Pearson, 2010.

[18] C. Reutenauer and H. Straubing, “Inversion of matrices over a commutative semiring,” Journal of Algebra,
vol. 88, no. 2, pp. 350–360, 1984.

“current_book”
2017/8/27
23:44
page 323
#347

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14 Linearity of Associative Arrays

Summary

The linear systems problem, which motivates much of elementary matrix mathematics,
presents unique challenges in the setting of general semimodules. Thus, the focus of this
chapter is on families of semimodules that include the semirings of interest described in pre-
vious chapters. Theorems dealing with the existence and uniqueness of solutions to systems
over tropical, max-plus, and boolean algebras are given. Among those results is a structure
theorem for solutions to linear systems over supremum-blank algebras, which are defined
and include max-plus, tropical algebras, and power set algebras.

14.1 The Null Space of Linear Maps

The linear systems properties of max.min and min.max algebras, also referred to as fuzzy
or bottleneck algebras, have been extensively investigated. These investigations have
looked at the solutions of equations [1], solvability conditions [2, 3], uniqueness of so-
lutions (strong regularity) [4–6], uniqueness of solutions in discrete sets (discrete strong
regularity) [7, 8], solution complexity [9], and regularity complexity [10].

While the null space plays a large role in the theory of linear systems over fields, it
can be demonstrated here that, in the context of the semirings of interest, it is decoupled
from the existence, uniqueness, or computability of solutions to linear systems. To begin
the analysis requires placing additional constraints on the set of values. Specifically, it
is convenient to examine sets of values that do not sum to zero which are referred to as
zero-sum-free semirings.

Definition 14.1
Zero-Sum-Free Semiring

[11, p. 1] A semiring over the set V is zero-sum-free if u⊕v = 0 implies u = v = 0.

Example 14.1

Many of the semirings of interest, namely tropical algebras, power set algebras,
and max-plus algebras, are all zero-sum-free.

“current_book”
2017/8/27
23:44
page 324
#348

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

324 Chapter 14 Linearity of Associative Arrays

Example 14.2

The semiring (N,+,×,0,1) is zero-sum-free.

Definition 14.2
Null space

Given a semiring V and a linear map

A : M→ N

between semimodules M,N over V , the null space of A is the set

{v ∈ M | A(v) = 0}

For a zero-sum-free semiring V , the following theorem provides a useful statement about
the null space of any linear operator over V .

Theorem 14.1

Null Space Equivalence for Zero-Sum-Free Commutative Semirings

Let V be a zero-sum-free commutative semiring and let A by an n×m matrix. Then

Av = 0

if and only if
v(i)⊗A(i, j) = 0

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}.

Proof. Recall that by definition

(Av)(i) =

m⊕
j=1

(A(i, j)⊗v(j)) = 0

for each i. Thus, for any k,

(A(k, j)⊗v(k))⊕

 k−1⊕
j=1

(A(i, j)⊗v(j))⊕
m⊕

j=k+1

(A(i, j)⊗v(j))

 = 0.

This implies that
A(k, j)⊗v(k) = 0

by the zero-sum-free assumption on V . �

“current_book”
2017/8/27
23:44
page 325
#349

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.1 The Null Space of Linear Maps 325

Corollary 14.2

Structure of Null Space for Zero-Sum-Free Commutative Semirings

Suppose A is an n×m matrix over a zero-sum-free commutative semiring V . Define
Ik ⊂ V by

I j(A) =

v ∈ V

∣∣∣∣∣∣∣
 m⊕

i=1

A(i, j)

⊗ v = 0

Then the null space of A is

I1(A)× I2(A)× · · ·× Im(A)

Proof.
Av = 0

if and only if
A(i, j)⊗v(j) = 0

for every pair i, j. Because V is zero-sum-free, the above condition is true if and only if

0 =

m⊕
i=1

A(i, j)⊗v(j) =

 m⊕
i=1

A(i, j)

⊗v(j)

This is the same as saying that

v ∈ I1(A)× · · ·× Im(A)

Thus, the null space of A is equal to I1(A)× · · ·× Im(A). �

The latter corollary fully classifies the null space of an arbitrary linear map in the case
where V is zero-sum-free and provides an extra corollary dealing with the case where V
has no zero divisors.

Corollary 14.3

Null Space in Zero-Sum-Free Commutative Semirings with No Zero Divisors

Suppose that V is a zero-sum-free commutative semiring with no zero divisors. Let
A be an n×m matrix. Suppose that A has precisely k ≤ n rows with all 0 entries.
Then

{v ∈ Vm | Av = 0}

is linearly isomorphic to Vk.

“current_book”
2017/8/27
23:44
page 326
#350

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

326 Chapter 14 Linearity of Associative Arrays

The above corollary is a helpful detail about the null space of maps in commutative
semirings where the multiplicative monoid ⊗ has inverses and is in fact a group, such as in
the max-plus algebra. In this case, there cannot exist any zero divisors, so Corollary 14.3
applies.

14.2 Supremum-Blank Algebras

Definition 14.3
Supremum-Blank Algebra

A supremum-blank algebra is a semiring

(V,∨,⊗, −∞,1)

such that

1. V = [−∞,∞] is a complete lattice.
2. u∨ v is the (binary) supremum of the lattice.
3. Suprema-preservation condition: For any v ∈ V and U ⊂ V

v⊗
∨
u∈U

u =
∨
u∈U

(v⊗u)

Note that in a supremum-blank algebra, sums of an arbrary set of elements is possible.
The name supremum-blank was selected because this definition places no limitations on the
multiplication operation of the semirings in question, other than the suprema-preservation
condition, so one can insert an arbitrary multiplication operation in the place of the word
blank, provided it satisfies the suprema-preservation condition and makes (V,∨,⊗, −∞,1)
into a semiring.

Example 14.3

Each of the semirings of interest, including the tropical (max-min) algebra, the
max-plus algebras with R∪ {−∞,∞} as the underlying set, and the power set al-
gebras, are well-known examples supremum-blank algebras; it is verified that the
suprema-preservation condition holds for each of these semirings in the next sub-
section.

An important function in relation to a supremum-blank algebra (V,∨,⊗, −∞,1) is the func-
tion

fv(u) = v⊗u

“current_book”
2017/8/27
23:44
page 327
#351

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.2 Supremum-Blank Algebras 327

defined for each v ∈ V . The suprema-preservation condition implies that each function fv
is monotonic.

Lemma 14.4

Functions which preserve Suprema or Infima are Monotonic

Let V be a complete lattice with a function

f : V → V

which preserves suprema or preserves infima, meaning given a subset U of V which
either has a supremum or an infimum, respectively, then

f

∨
v∈U

v

 =
∨
v∈U

f (v) or f

∧
v∈U

v

 =
∧
v∈U

f (v),

respectively. Then f is monotonic.

Proof. See Exercise 14.4. �

The above lemma is important as it will be indispensable in the coming results. Similarly,
an infimum-blank algebra has the conditions

1. V = [−∞,∞] is a complete lattice.
2. a∧b is the (binary) infimum of the lattice.
3. Infima-Preservation Condition: For any v ∈ V , the function

fv : V → V

defined by u 7→ v⊗u preserves infima, in the sense that

v⊗
∧
u∈U

u =
∧
u∈U

(v⊗u)

for every subset U ⊂ V .

Solving linear systems in such an infimum-blank algebra is reduced to solving them in a
supremum-blank algebra by taking the opposite lattice Vop, where the ordering on Vop is
such that a ≤ b in Vop if and only if a ≥ b in V . Then infima become suprema, and Vop

becomes a supremum-blank algebra. Because (Vop)op = V , solving linear systems in Vop

reduces to solve linear systems in V .
To make use of the order theoretic properties of the supremum-blank algebras, an order-

ing must be put on Vn that both works well the ordering on V and with the suprema and

“current_book”
2017/8/27
23:44
page 328
#352

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

328 Chapter 14 Linearity of Associative Arrays

infima. This order is the product order on Vn where

u =

1

1 u(1)
...

...

n u(n)

 ≤

1

1 v(1)
...

...

n v(n)

 = v if and only if u(i) ≤ v(i) for all i ∈ {1, . . . ,n}

The above equation clearly captures the relationship between the product order and the
order on V . The next proposition illuminates the connection between suprema and infima
in V and in Vn with the product order.

Proposition 14.5

Product Order Inheritance of Order-Theoretic Properties

If V is a (bounded, distributive) lattice, then Vn is a (bounded, distributive) lattice
in the product order. If V is closed under (non-empty) arbitrary suprema or infima,
then Vn is closed under (non-empty) arbitrary suprema or infima, respectively.
Moreover,

∨
v∈U v exists if and only if

∨
v∈U v(i) exists for each i, in which case∨

v∈U
v
 (i) =

∨
v∈U

v(i)

Likewise,
∧

v∈U v exists if and only if
∧

v∈U v(I) exists for each i, in which case∧
v∈U

v
 (i) =

∧
v∈U

v(i)

Proof. See Exercise 14.5. �

Now denote by
X(A,w)

the solution space of Av = w, the set of all solutions v to the equation

Av = w

in other words
X(A,w) = {v ∈ Vm | Av = w}

where A is an n×m matrix and w is an element of Vn. The principal goal of the remainder
of this section will be finding the structure of X(A,w), ultimately showing that it is closed

“current_book”
2017/8/27
23:44
page 329
#353

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.2 Supremum-Blank Algebras 329

under arbitrary non-empty suprema and convex, and hence a union of closed intervals in
Vm with a common terminal point.

Proposition 14.6

Solution Space of Linear System is Closed under Arbitrary Non-Empty Suprema

Suppose V is a supremum-blank algebra, A an n×m matrix, and w an element of
Vn, then

X(A,w) = {v ∈ Vm | Av = w}

is closed under arbitrary non-empty suprema.

Proof. Firstly, X(A,w) is a subset of Vm, so that X(A,w) is partially ordered. Additionally,
because V is a complete lattice, by Proposition 14.5 it follows that Vn is also a complete
lattice, and ∨

v∈X(A,w)

v

is well-defined. It suffices to show that for every non-empty subset U of X(A,w)∨
v∈U

v

is a solution to
Av = w

For each component A ∨
v∈U

v
 (i) =

m∨
j=1

A(i, j)⊗
∨
v∈U

v(j)

Because of the fact that the functions fv are suprema preserving and that suprema commute
with each other A ∨

v∈U
v
 (i) =

m∨
j=1

A(i, j)⊗
∨
v∈U

v(j)

=

m∨
j=1

∨
v∈U

(A(i, j)⊗v)

=

∨
v∈U

 m∨
j=1

(A(i, j)⊗v)

=

∨
v∈U

w = w

�

“current_book”
2017/8/27
23:44
page 330
#354

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

330 Chapter 14 Linearity of Associative Arrays

Since a supremum-blank algebra is a complete lattice satisfying the suprema-preservation
condition, the above proposition clearly holds. The maximum solution to the equation
Av = w is denoted x(A,w); such a maximum exists (if any solution exists) because X(A,w)
is closed under arbitrary non-empty suprema and thus is bounded. There is a second order-
theoretic property of X(A,w) of note.

Proposition 14.7

Solution Space of Linear System is Convex

Suppose v1,v3 are elements of X(A,w), and

v1 < v2 < v3

then v2 is an element of X(A,w).

Proof. The Suprema-Preservation Condition implies that each function fv is monotonic.
Consequently,

A(i, j)⊗v1(j) ≤ A(i, j)⊗v2(j) ≤ A(i, j)⊗v3(j)

for every i, j. Because suprema respect order, it follows that

w(i) =

m∨
j=1

(A(i, j)⊗v1(j)) ≤
m∨

j=1

(A(i, j)⊗v2(j)) ≤
m∨

j=1

(A(i, j)⊗v3(j)) = w(i)

for every i ∈ {1, . . . ,n}, so that
(Av2)(i) = w(i)

for every i ∈ {1, . . . ,n}, and thus
v2 ∈ X(A,w)

�

Theorem 14.8

Structure Theorem for Supremum-Blank Algebras

Let V be a supremum-blank algebra. Then X(A,w) is the union of closed intervals
all having the same terminal point so that there exists a subset U of Vm such that

X(A,w) =
⋃
v∈U

[v,x]

where x = x(A,w).

“current_book”
2017/8/27
23:44
page 331
#355

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.2 Supremum-Blank Algebras 331

Proof. By Proposition 14.7, X(A,w) is convex so if

v ∈ X(A,w)

then the closed interval [v,x] is contained in X(A,w). Hence

X(A,w) =
⋃

v∈X(A,w)

[v,x]

�

The following theorem shows how the structures

X(A(i, :),w(i)) =
⋃
v∈Ui

[v,xi]

of the solution spaces of the systems A(i, :)v = w(i) contribute to the structure

X(A,w) =
⋃
v∈U

[v,x]

of the solution space of the system Av = w.

Lemma 14.9

Switching Order of Union and Intersection

Let
{Ui, j | i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}}

be a collection of sets. Then
n⋂

j=1

m⋃
i=1

Ui, j =
⋃

1≤i1,...,i j...,in≤m

n⋂
j=1

Ui j, j

Proof. See Exercise 14.7. �

Lemma 14.10

Intersection of Intervals is Interval

Let V be any lattice and I, J two intervals in V . Then I∩ J is an interval. Moreover,

[v1,w1]∩ [v2,w2] = [v1∨w1,v2∧w2]

Proof. See Exercise 14.8. �

“current_book”
2017/8/27
23:44
page 332
#356

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

332 Chapter 14 Linearity of Associative Arrays

Theorem 14.11

Intersection of Solution Spaces

Suppose V is a join-blank algebra, A is an m×n matrix V , and w ∈ Vm. Write

X(A(i, :),w(i)) =
⋃
v∈Ui

[v,xi]

for each i. Then

X(A,w) =
⋃

v1∈U1,...,vm∈Um

 m∨
i=1

vi,

m∧
i=1

xi

Proof. See Exercise 14.9. �

Example 14.4

Consider the system

1 2

1 0 0

2 0 1

1

1 v1

2 v2

 =

1

1 0

2 0

over the max-min algebra. This system of equiations leads to the conditions

max(min(v1,0),min(v2,0)) = 0

max(min(v1,0),min(v2,1)) = 0

The solution spaces of these individual equations are(
[−∞,∞]× [0,∞]

)
∪

(
[0,∞]× [−∞,∞]

)(
[0,∞]× [−∞,0]

)
∪

(
[−∞,∞]× [0,0]

)
respectively. The solution space X(A,w) is the intersection of these two individual
solution spaces (

[−∞,∞]× [0,0]
)
∪

(
[0,∞]× [−∞,0]

)
Using the interval notation from the product order on V ×V , the above union can
be written instead as

X(A,w) =

1

1 −∞

2 0

 ,

1

1 ∞

2 0

∪

1

1 0

2 −∞

 ,

1

1 ∞

2 0

“current_book”
2017/8/27
23:44
page 333
#357

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.2 Supremum-Blank Algebras 333

Example 14.5

Consider the same system as in the prior example, but over the max-plus algebra.
This system of equiations leads to the conditions

max(v1 + 0,v2 + 0) = 0

max(v1 + 0,v2 + 1) = 0

The solution spaces of these individual equations are(
[0,0]× [−∞,0]

)
∪

(
[−∞,0]× [0,0]

)
([0,0]× [−∞, −1])∪

(
[−∞,0]× [−1, −1]

)
respectively. The solution space X(A,w) is the intersection of these two individual
solution spaces (

[0,0]× [−∞, −1]
)
∪

(
[−∞,0]× [−1, −1]

)
or

X(A,w) =

1

1 0

2 −∞

 ,

1

1 0

2 −1

The above examples also indicate the slightly stronger result that the union can be made
to be a finite union, at least when dealing with total orders. This isn’t strictly correct,
however, as the below examples show.

Example 14.6

Consider the system

[1

1 ∞
] [1

1 v
]

=
[1

1 ∞
]

over the max-plus algebra, or more simply

∞+ v =∞

The solution space is given by
(−∞,∞]

“current_book”
2017/8/27
23:44
page 334
#358

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

334 Chapter 14 Linearity of Associative Arrays

Example 14.7

Consider the system

1 2

1 ∞ ∞

2 ∞ ∞

1

1 v1

2 v2

 =

1

1 ∞

2 ∞

over the max-plus algebra, or more simply

max(∞+ v1,∞+ v2) =∞

The solution space is given by(
(−∞,∞]× [−∞,∞]

)
∪

(
[−∞,∞]× (−∞,∞]

)
14.3 Max-Blank Structure Theorem

One of the main properties that the max-min and max-plus algebras have that the more
general supremum-blank algebras do not are that the underlying sets are totally ordered.

Definition 14.4
Max-Blank Algebra

A max-blank algebra is a supremum-blank algebra which is totally ordered.

Totally-ordered supremum-blank algebras are so-named because the binary supremum
of a totally ordered set is the maximum operation.

The solution spaces in Example 14.6 and Example 14.7 cannot be written as finite unions
of intervals in the product order. The key hypothesis that allows for the solution space to
be written as a finite union of closed intervals is that the sets

f −1A(i, j)(w(i))

are closed intervals.

Example 14.8

In the max-min algebra

f −1A(i, j)(w(i)) =

{w(i)} if w(i) ≥ A(i, j)

∅ otherwise

“current_book”
2017/8/27
23:44
page 335
#359

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.3 Max-Blank Structure Theorem 335

Example 14.9

In the max-plus algebra f −1A(i, j)(w(i)) is determined by the following table.

w(i)

A(i, j)

−∞ R ∞

−∞ [−∞,∞] ∅ ∅

R {−∞} {w(i)−A(i, j)} {∞}

∞ {−∞} ∅ (−∞,∞]

Theorem 14.12

Structure Theorem for Max-Blank Algebras

Suppose A is an n×m matrix and w is an element of Vn. Further suppose that for
each i, j the set

f −1A(i, j)(w(i)) = {v ∈ V | A(i, j)⊗ v = w(i)}

is a non-empty closed interval whenever it is non-empty.
Let

Ui = { j ∈ {1, . . . ,m} | f −1A(i, j)(w(i)) , ∅}

For j ∈ Ui, write
f −1A(i, j)(w(i)) = [pi

j,q
i
j]

For j < Ui let qi
j be the largest element such that A(i, j)⊗qi

j ≤ w(i). Write

pi, j′ (j) =

pi
j′ if j = j′

−∞ otherwise
and qi(j) = qi

j

Then

X(A,w) =
⋃

j′1∈U1,..., j′n∈Un

 n∨
i=1

pi, j′i
,

n∧
i=1

qi

Proof. The proof will consist of finding the solution space of the equation

max
j∈{1,...,m}

(A(i, j)⊗v(j)) = w(i)

for each i ∈ {1, . . . ,n} and showing that it is the union of closed intervals with a common ter-
minal point. Taking the intersection of these solution spaces is X(A,w). Then Lemma 14.9
and Lemma 14.10 allow for writing the intersection in the desired form.

“current_book”
2017/8/27
23:44
page 336
#360

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

336 Chapter 14 Linearity of Associative Arrays

Let
Ui = { j ∈ {1, . . . ,m} | f −1A(i, j)(w(i)) , ∅}

For j ∈ Ui, write
f −1A(i, j)(w(i)) = [pi

j,q
i
j]

For j <Ui let qi
j be the largest element such that A(i, j)⊗qi

j ≤w(i). Such an element exists
since −∞⊗ v = −∞ for any v ∈ V . Define

pi, j′ (j) =

pi
j′ if j = j′

−∞ otherwise

and
qi(j) = qi

j

Now the solution space to

max
j∈{1,...,m}

(A(i, j)⊗v(j)) = w(i) (14.1)

can be found. A given v satisfies Equation 14.1 if and only if there exists a j′ ∈ {1, . . . ,m}
such that

A(i, j′)⊗v(j′) = w(i)

and for all j ∈ {1, . . . ,m}
A(i, j)⊗v(j) ≤ w(i)

The first condition is equivalent to

v(j′) ∈ [pi
j′ ,q

i
j′]

and the second condition is equivalent to

v(j) ∈ [−∞,qi
j]

because multiplication by a fixed element is a monotonic function. Then the solution space
Equation 14.1 can be written as⋃

j′∈Ui

[pi
j′ ,q

i
j′]×

∏
j∈{1,...,m}, j, j′

[−∞,qi
j]

 =
⋃
j′∈Ui

[pi, j′ ,qi]

“current_book”
2017/8/27
23:44
page 337
#361

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.3 Max-Blank Structure Theorem 337

Then using Lemma 14.9 and Lemma 14.10 gives

X(A,w) =

n⋂
i=1

⋃
j′∈Ui

[pi, j′ ,qi]

=
⋃

j′1∈U1,..., j′n∈Un

n⋂
i=1

[pi, j′i
,qi]

=
⋃

j′1∈U1,..., j′n∈Un

 n∨
i=1

pi, j′1
,

n∧
i=1

qi

which is precisely a finite union of closed intervals with the common terminal point

n∧
i=1

qi = x(A,w)

�

The above proof both verifies the existence of a maximum solution, if any exists at all,
and provides an algorithm by which the solution set may be computed, so long as the sets
f −1r (s) can be computed. It also provides the following corollary that tells precisely when
a solution exists.

Corollary 14.13

Existence of Solution in Max-Blank Algebra

Suppose A is an n×m matrix and w an element of Vm satisfying the conditions of
Theorem 14.12. Then there exists a solution to

Av = w

if and only if

(i) for each i, j there exists q such that

A(i, j)⊗q ≤ w(i) (14.2)

(ii) if qi
j is the largest such q satisfying Equation 14.2, at least one of the inequali-

ties
A(i, j)⊗qi

j ≤ w(i)

for each i ∈ {1, . . . ,n}, and
(iii)

∧n
i=1 qi is a solution to Av = w where qi(j) = qi

j.

“current_book”
2017/8/27
23:44
page 338
#362

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

338 Chapter 14 Linearity of Associative Arrays

14.4 Examples of Supremum-Blank Algebras

In this section the fact that the semirings of interest are supremum-blank algebras is veri-
fied, and hence are amenable to the methods and results of the last section.
R∪ {−∞,+∞} is a complete linearly ordered set with binary supremum given by max.

Thus, to show that the max-plus algebra is a supremum-blank algebra, + must satisfy the
suprema-preservation condition.

Lemma 14.14

+ Satisfies the Suprema-Preservation Condition

Suppose U is a subset of R∪{−∞,∞} and v ∈ R∪{−∞,∞}. Then

v + sup
u∈U

u = sup
u∈U

(v + u) (14.3)

Proof. First note that if v = −∞, then Equation 14.3 holds true since −∞ is an annihilator for
+.

Now suppose v =∞. If U contains an element of R∪{∞} then Equation 14.3 holds true
since ∞ is an annihilator for + on R∪{∞}. Otherwise, U is either empty or only contains
−∞, in which case both sides of Equation 14.3 are equal to −∞.

Thus, assume v ∈ R. If U is unbounded above in R or contains∞, then the set

{u + v | u ∈ U and v ∈ V}

is also unbounded above or contains ∞, so Equation 14.3 becomes v +∞ = ∞, which is
true since v , −∞ by hypothesis.

If U is bounded above in R, let u∗ = supU. Then

v + u ≤ v + u∗

for all u ∈ U, so v + u∗ is an upper bound of {v + u | u ∈ U}.
To see that it is the upper bound, suppose for the sake of a contradiction that there is w

such that
v + u ≤ w < v + u∗

for all u ∈ U. There exists ε > 0 such that

w + ε < v + u∗

Because u∗ is the least upper bound of U, there exists u′ ∈ U such that

u∗− ε < u′ ≤ u∗

“current_book”
2017/8/27
23:44
page 339
#363

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.4 Examples of Supremum-Blank Algebras 339

and hence
v + u∗− ε < v + u′ ≤ v + u∗

But then
w < v + u′

contradicting the hypothesis that w was an upper bound of {v+u | u ∈U}. Thus v+u∗ is the
least upper bound of {v + u | u ∈ U} and Equation 14.3 holds. �

That the max-min algebra and Boolean algebras are supremum-blank algebras follows
from a more general fact concerning when the bounded complete lattice

(V,∨,∧, −∞,∞)

is a supremum-blank algebra, or namely when ∧ satisfies the suprema-preservation condi-
tion

v∧
∨
u∈U

u =
∨
u∈U

(v∧u)

Definition 14.5
Heyting Algebra

[?, p. 5] A Heyting algebra is a quintuple

(V,∨,∧,⇒,0,1)

such that
(V,∨,∧,0,1)

is a bounded distributive lattice and for each u,v in V

w = u⇒ v

is the greatest element satisfying

u∧w ≤ v

Proposition 14.15

Heyting Algebra and the Supremum-Preservation Condition

Suppose V is a bounded complete lattice. Then

v∧
∨
u∈U

u =
∨
u∈U

(v∧u)

for every v ∈ V and U ⊂ V if and only if V is a Heyting algebra.

“current_book”
2017/8/27
23:44
page 340
#364

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

340 Chapter 14 Linearity of Associative Arrays

Proof. First suppose that V is a Heyting algebra. Then there is the following sequence of
equivalences ∨

u∈U

u

∧ v ≤ w if and only if
∨
u∈U

u ≤ v⇒ w

if and only if ∀u ∈ U (u ≤ v⇒ w)

if and only if ∀u ∈ U (u∧ v ≤ w)

if and only if
∨
u∈U

(u∧ v) ≤ w

Now, letting

w =

∨
u∈U

u

∧ v

shows that
v∧

∨
u∈U

u ≥
∨
u∈U

(v∧u)

and letting
w =

∨
u∈U

(u∧ v)

shows that
v∧

∨
u∈U

u ≤
∨
u∈U

(v∧u)

from which the result follows. Now suppose that the suprema-preservation condition holds.
Suppose v,u ∈ V . Let U be the set of all elements w of V such that

v∧w ≤ u

Then define
v⇒ u =

∨
w∈U

w

To see that this fulfills the necessary condition, if

v∧w′ ≤ u

then
w′ ≤

∨
w∈U

w = v⇒ u

and if
w′ ≤ v⇒ u

“current_book”
2017/8/27
23:44
page 341
#365

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.4 Examples of Supremum-Blank Algebras 341

then

v∧w′ ≤ v∧
∨
w∈U

w

=
∨
w∈U

(v∧w)

≤
∨
w∈U

u

= u

�

Corollary 14.16

Heyting Algebra and Supremum-Blank Algebra

A bounded complete distributive lattice

(V,∨,∧, −∞,∞)

is a supremum-blank algebra with multiplication as the binary infimum if and only
if it is a complete Heyting algebra.

In order to apply the above corollary to the max-min algebra, it is first verified that it is a
Heyting algebra.

Proposition 14.17

Max-Min Algebras are Heyting Algebras

A max-min algebra
(V,max,min, −∞,∞)

forms a Heyting algebra when

⇒: V ×V → V

is defined such that

v⇒ u =

u if v > u

∞ otherwise

otherwise.

Proof. See Exercise 14.11. �

“current_book”
2017/8/27
23:44
page 342
#366

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

342 Chapter 14 Linearity of Associative Arrays

Similarly, Boolean algebras, and hence power set algebras, are Heyting algebras and thus
supremum-blank algebras.

Proposition 14.18

Boolean Algebras are Heyting Algebras

A Boolean algebra
(V,∨,∧,¬,0,1)

forms a Heyting algebra when

⇒: V ×V → V

is defined by
v⇒ u = ¬v∨u

for all u,v ∈ V .

Proof. See Exercise 14.12. �

Corollary 14.19

Power Set Algebras are Heyting Algebras

A power set algebra
(P(V),∪,∩,→,∅,V)

forms a Heyting algebra when

⇒: P(V)×P(V)→P(V)

is defined by
U ⇒ U′ = Uc∪U′

for
U,U′ ∈ P(V)

Proof. See Exercise 14.13. �

14.5 Explicit Computations of x(A,w) for Supremum-Blank Algebras

The solution set x(A,w) to the linear system

Av = w

“current_book”
2017/8/27
23:44
page 343
#367

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.5 Explicit Computations of x(A,w) for Supremum-Blank Algebras 343

can be explicitly computed in certain cases for supremum-blank algebras. For Heyting
algebras, including Boolean algebras, power set algebras, and max-min algebras, these
solutions can be largely subsumed in the following theorem.

Theorem 14.20

Maximum Solution of Linear System in Heyting Algebras

[12, p. 845] Let
(V,∨,∧,⇒,0,1)

be a Heyting algebra, and let A be an n×m matrix over V and w ∈ Vn. If X(A,w)
is non-empty, then the maximum element

x = x(A,w)

of X(A,w) is defined by

x(j) =

n∧
i=1

(
A(i, j)⇒ w(i)

)

Corollary 14.21

Maximum Solution of Linear System in Tropical Max-Min Algebras

Let
(V,max,min, −∞,∞)

be a max-min algebra, A an n×m matrix over V , and w an element of Vn. If
X(A,w) is non-empty, then the maximum element

x = x(A,w)

of X(A,w) is defined by
x(j) = min

1≤i≤n
qi, j

where

qi, j =

∞ if A(i, j) ≤ w(i)

w(i) if A(i, j) > w(i)

Proof. The proof follows immediately from the above corollary since max-min algebras
are Heyting algebras, but it can also be verified that this is the solution using combining
Theorem 14.12 and Example 14.8. �

“current_book”
2017/8/27
23:44
page 344
#368

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

344 Chapter 14 Linearity of Associative Arrays

Example 14.10

Consider the following subset of tracks in the 'Track' column of the array in Figure
4.1

{Kill The Light, Christina, Junk, Sugar, G#, Japanese Eyes, Cut it Out}

This set can be made into a semiring by ordering the set as above from left to
right (so 'Cut it Out' is the greatest element) and by equpping it with the tropical
max-min algebra. Then consider the system

1 2

1 G# Kill The Light

2 Sugar Sugar

 v =

1

1 Christina

2 Junk

and apply Corollary 14.21 to show that if a solution exists, then the maximum
solution to the system is given by

x(A,w) =

1

1 min(Christina,Junk)

2 min(Cut it Out,Junk)

 =

1

1 Christina

2 Junk

This can be explicity checked to be an actual solution, so it is the maximum such
solution.

Corollary 14.22

Maximum Solution of Linear System in Power Set Algebra

Let
(P(V),∨,∧,∅,V)

be a power set algebra, A an n×m matrix over V , and w an element of

P(V)n

If X(A,w) is non-empty, then the maximum element

x = x(A,w)

of X(A,w) is defined by

x(j) =

n⋂
i=1

(
A(i, j)c∪w(i)

)

“current_book”
2017/8/27
23:44
page 345
#369

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.5 Explicit Computations of x(A,w) for Supremum-Blank Algebras 345

The following result deals with the remaining semiring of interest, the max-plus algebra.

Proposition 14.23

Maximum Solution of Linear System in Max-Plus Algebra

Suppose
(R∪{−∞,∞},max,+, −∞,0)

is the max-plus algebra , A is an n×m matrix, and w an element of (R∪{−∞,∞})n.
Then

x = x(A,w)

defined by
x(j) = min

1≤i≤n

(
w(i)−A(i, j)

)
is the maximum solution of the linear system Av = w (if any solutions exist) when
writing

−∞− v = −∞ for v ∈ (−∞,∞]

−∞−−∞ =∞

∞− v =∞ for v ∈ [−∞,∞]

Proof. By Example 14.9, the maximum element qi
j of f −1A(i, j)(w(i)) is given by

w(i)

A(i, j)

−∞ R ∞

−∞ ∞ none none

R −∞ w(i)−A(i, j) ∞

∞ −∞ ∅ ∞

where Corollary 14.13 implies that this covers all of the cases when a solution exists. By
defining

−∞− v = −∞ for v ∈ (−∞,∞]

−∞−−∞ =∞

∞− v =∞ for v ∈ [−∞,∞]

qi
j can be written as

qi
j = w(i)−A(i, j)

“current_book”
2017/8/27
23:44
page 346
#370

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

346 Chapter 14 Linearity of Associative Arrays

Then Theorem 14.12 implies that

x(j) = min
1≤i≤n

(
w(i)−A(i, j)

)
gives the maximum solution.

(Note that the case where A(i, j) = w(i) = ∞ occurs is not strictly covered by Theo-
rem 14.12, but its proof does extend to showing that

∧
qi is the maximum solution, if any

exists.) �

Example 14.11

The system

1 2

1 0 0

2 0 1

1

1 x

2 y

 =

1

1 0

2 0

solved in Example 14.5 was given by

X(A,w) =

1

1 0

2 −∞

 ,

1

1 0

2 −1

has a maximum solution (0, −1). This can be verified with Proposition 14.23 which
states that x = x(A,w) has components given by

x(j) = min
1≤i≤n

(
w(i)−A(i, j)

)
so that computing each of the quantities w(i)−A(i, j) results in the the quantities

w(1)−A(1,1) = 0

w(1)−A(1,2) = 0

w(2)−A(2,1) = 0

w(2)−A(2,2) = −1

Thus

x =

1

1 0

2 −1

“current_book”
2017/8/27
23:44
page 347
#371

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.5 Explicit Computations of x(A,w) for Supremum-Blank Algebras 347

For power set algebras, uniqueness of solutions can also be determined by applying the
following proposition.

Proposition 14.24

Uniqueness of Solution to Linear System in Power Set Algebras

Let A be an n×m matrix over some power set algebra P(V) and

w ∈ P(V)n

For each
u ∈ x(A,w)(i) ⊂ V

define vi,u to have components

vi,u(j) =

x(A,w)(j) \ {u} if i = j

x(A,w)(j) otherwise

In short, vi,u is the matrix which differs from x(A,w) by removing u from the i-th
entry. Then X(A,w) has more than one element if and only if vi,u is a solution for
some i ∈ {1, . . . ,m} and

u ∈ x(A,w)(i)

Proof. If vi,u is a solution for some i ∈ {1, . . . ,m} and

u ∈ x(A,w)(i)

then
Av = b

has more than one solution since by construction

vi,u , x(A,w)

for every i ∈ {1, . . . ,m} and
u ∈ x(A,w)(i)

Conversely, if there exists a solution

v , x(A,w)

to the system, then
v < x(A,w)

“current_book”
2017/8/27
23:44
page 348
#372

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

348 Chapter 14 Linearity of Associative Arrays

Thus v(k) is a proper subset of x(A,w)(k) for some k. If an element

u ∈ x(A,w)(k) \v(k)

is picked, then
v < vk,u < x(A,w)

Proposition 14.7 it follows that vk,u is a solution. �

For any finite set V , it is easy to compute the (finite) set of vectors {vi,u}. Thus, Proposi-
tion 14.24 immediately yields a means of checking uniqueness of a solution.

14.6 Conclusions, Exercises, and References

The null space is the starting point of many results in standard matrix mathematics, but for
semirings alternative approaches are needed. The concept of a supremum-blank algebra
provides an alternative foundation for associative array algebra. The conditions for solu-
tions to equations in supremum-blank algebras can then be described so as to cover a large
number of the semirings of interest for associative arrays. These solutions lay the founda-
tion for the discussion of eigenvalues and eigenvectors that are invaluable to the analysis
of real data.

Exercises

Exercise 14.1 — Find the null space for the the linear map f : P({0,1})2×1→P({0,1})2×1

defined by

f

1

1 a

2 b

 =

1 2

1 {1} {0}

2 {0} {1}

1

1 a

2 b

Exercise 14.2 — Suppose M and N are semimodules over the semiring V , and that f :
M→ N is a linear map. Show that the null space of f is a subspace of M and the image of
f is a subspace of N.

Exercise 14.3 — In the case where V is a ring, which allows subtraction, and M and N are
modules over V , it makes sense to quotient M by the null space of a linear map f : M→ N
by first defining an equivalence relation ∼ on M such that v ∼w if and only if v−w is in the
null space of f . Then the set of equivalence classes of M, denoted M/∼, forms a module
over V , and f is constant on each equivalence class so that if v ∼ w, then f (v) = f (w)), so
f induces a linear map f ′ : M/∼→ N. Show that this is an isomorphism of M/∼ onto its
image.

“current_book”
2017/8/27
23:44
page 349
#373

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

14.6 Conclusions, Exercises, and References 349

Is there a way to extend this idea to the case where V is only a semiring?

Exercise 14.4 — Prove Lemma 14.4.

Exercise 14.5 — Prove Proposition 14.5.

Exercise 14.6 — Find X(A,w) for

A =

1 2

1 {0} {1}

2 {1} {0}

 and w =

1

1 ∅

2 {0,1}

over the semiring P({0,1}) and write it in the form given in Theorem 14.8.

Exercise 14.7 — Prove Lemma 14.9.

Exercise 14.8 — Prove Lemma 14.10.

Exercise 14.9 — Prove Theorem 14.11.

Exercise 14.10 — Use Theorem 14.12 to find X(A,w) for

A =

1 2

1 4 −∞

2 −1 0

 and w =

1

1 0

2 1

over the (complete) max-plus algebra.

Exercise 14.11 — Prove Proposition 14.17.

Exercise 14.12 — Prove Proposition 14.18.

Exercise 14.13 — Prove Proposition 14.19.

Exercise 14.14 — Use Corollary 14.22 and Proposition 14.24 to determine if the system
Av = w where

A =

1 2

1 {0,1} {1}

2 {0,1} ∅

 and w =

1

1 {1}

2 ∅

has a unique solution in the power set algebra P({0,1}).

References

[1] E. Sanchez, Solutions in Composite Fuzzy Relation Equations: Application to Medical Diagnosis in Brouw-
erian Logic. Faculté de Médecine de Marseille, 1977.

“current_book”
2017/8/27
23:44
page 350
#374

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

350 Chapter 14 Linearity of Associative Arrays

[2] P. Butkovič, “Necessary solvability conditions of systems of linear extremal equations,” Discrete Applied
Mathematics, vol. 10, no. 1, pp. 19–26, 1985.

[3] K. Cechlárová, “Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy
algebra,” Fuzzy Sets and Systems, vol. 75, no. 2, pp. 165–177, 1995.

[4] P. Butkovič and F. Hevery, “A condition for the strong regularity of matrices in the minimax algebra,” Discrete
Applied Mathematics, vol. 11, no. 3, pp. 209–222, 1985.

[5] P. Butkovič, “Strong regularity of matrices–a survey of results,” Discrete Applied Mathematics, vol. 48, no. 1,
pp. 45–68, 1994.

[6] M. Gavalec and J. Plávka, “Strong regularity of matrices in general max–min algebra,” Linear Algebra and
Its Applications, vol. 371, pp. 241–254, 2003.

[7] K. Cechlárová, “Strong regularity of matrices in a discrete bottleneck algebra,” Linear Algebra and Its Ap-
plications, vol. 128, pp. 35–50, 1990.

[8] K. Cechlárová and K. Kolesár, “Strong regularity of matrices in a discrete bounded bottleneck algebra,”
Linear Algebra and Its Applications, vol. 256, pp. 141–152, 1997.

[9] M. Gavalec, “Solvability and unique solvability of max–min fuzzy equations,” Fuzzy Sets and Systems,
vol. 124, no. 3, pp. 385–393, 2001.

[10] M. Gavalec, “The general trapezoidal algorithm for strongly regular max–min matrices,” Linear Algebra and
Its Applications, vol. 369, pp. 319–338, 2003.

[11] J. S. Golan, Semirings and Their Applications. Dordrecht, Netherlands: Springer Science & Business Media,
2013.

[12] I. Perfilieva, “Fixed points and solvability of systems of fuzzy relation equations,” in Theoretical Advances
and Applications of Fuzzy Logic and Soft Computing, pp. 841–849, Berlin-Heidelberg: Springer-Verlag,
2007.

“current_book”
2017/8/27
23:44
page 351
#375

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15 Eigenvalues and Eigenvectors

Summary

This chapter describes the eigenvalue problem and explores its properties from the perspec-
tive of associative arrays. Eigenvalues and eigenvectors are among the most impactful results
from matrix mathematics. Extending eigenvalues and eigenvectors to associative arrays al-
lows these results to be applied to the broader range of data representable by associative
arrays. The process for applying these results begins with defining quasi-inverses over join-
blank algebras and leads to eigen-semimodules. From this perspective, it is possible to make
some remarks on another important result from matrix mathematics: the singular value de-
composition.

15.1 Introduction

Eigenvectors are a useful tool for capturing the structure of an array and the transformations
it can perform. The PageRank algorithm’s computation of the first eigenvector of the
adjacency matrix of a graph is one example (see Section 7.10). Likewise the implications of
array multiplication can also be understood in terms of array eigenvectors (see Figure 2.7).
Understanding the meaning of eigenvectors in the context of diverse semirings requires
revisiting the basic definitions that describe linear transformations.

Explorations of the the eigenvalue problem over max.min, min.max, and min.+ algebras
have been conducted by a number of researchers [1–3]. Like the linear systems problem,
the eigenvalue problem is seen as particularly important to matrix theory. This section will
primarily be a survey eigenvalues and eigenvectors in the context of tropical and power set
algebras.

Definition 15.1
Eigenvalues and Eigenvectors

Let A be an array. A vector v is a eigenvector if v , 0 and there exists a λ ∈ V such
that

Av = λv

The scalar λ is called the eigenvalue associated with the eigenvector v.

“current_book”
2017/8/27
23:44
page 352
#376

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

352 Chapter 15 Eigenvalues and Eigenvectors

Geometrically, multiplication by A scales and rotates a column vector v. If v is an eigen-
vector of A, then it is only scaled and the scale factor is the eigenvalue associated with
v.

Eigenvalues and eigenvectors over semirings provide more general information about a
matrix when compared to fields such as R and C. This fact will become apparent with the
presentation of the relevant theorems of eigenanalysis.

Example 15.1

Suppose A is given by an array with entries in the field R

A =

1 2

1 1 0

2 0 −1

Then by direct computation, it can be checked that

v =

1

1 1

2 0

 and v =

1

1 0

2 1

are eigenvectors with respective associated eigenvalues

λ = 1 and λ = −1

Example 15.2

Suppose A is given by an array with entries in the power set algebra P({0,1})

A =

1 2

1 {0} ∅

2 {0,1} {0}

Then by direct computation, it can be checked that

v =

1

1 {0}

2 {0,1}

is an eigenvector with two eigenvalues

λ = {0} and λ = {0,1}

“current_book”
2017/8/27
23:44
page 353
#377

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.2 Quasi-Inverses 353

15.2 Quasi-Inverses

The eigenproblem for the semirings of interest, all of which have their addition operation
being binary supremum with respect to a partial order and whose multiplication operations
are compatible with those orderings, is subsumed into an approach from [4], which uses
objects called quasi-inverses. Suppose that

(V,⊕,⊗,0,1)

is a semiring in which
⊕ ≡ sup

is the (binary) supremum for a complete partial order ≤, which encompasses the semirings
of interest, except for the incomplete max-plus algebra.

Now suppose that A is an n× n matrix with entries in V . Recall that the collection of
n×n matrices over V is ordered by the product order where

A ≤ B if and only if A(i, j) ≤ B(i, j)

for every i, j. In particular, the collection of n×n matrices over V is a complete lattice, so
collections of matrices can be added.

Definition 15.2
Quasi-Inverse

[4, p. 121] Suppose A is an n×n array. Define

A(k) = I⊕A⊕A2⊕ · · ·⊕Ak =

k⊕
i=0

Ai

and then define the quasi-inverse of A, denoted A∗, by

A∗ =

∞∨
k=1

A(k)

Ensuring that the definition of a quasi-inverse is well-defined and exists for every ma-
trix is the main motivating factor behind requiring that all semirings have addition as the
supremum for a complete partial order. However, in Section 15.5 the incomplete max-plus
algebra R∪{−∞} is considered, where the existence of the quasi-inverse is not automatic.

One property of the quasi-inverse is that

A∗ = In⊕AA∗

“current_book”
2017/8/27
23:44
page 354
#378

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

354 Chapter 15 Eigenvalues and Eigenvectors

Closely related to the quasi-inverse A∗ of A is the array

A+ = A ⊕.⊗ A∗ = A⊕A2⊕ · · ·

Given A+, the quasi-inverse A∗ is determined by

A∗ = I⊕A+

Example 15.3

Consider

A =

1 2

1 {1} ∅

2 {0} {0,1}

over the power set algebra P({0,1}). Then

A2 = A

so using idempotence

A∗ = I2⊕A⊕A⊕ · · · = I2⊕A =

1 2

1 {0,1} {1}

2 {1} {0,1}

Example 15.4

Consider

B =

1 2

1 {0} {1}

2 {1} {0}

over the power set algebra P({0,1}). Then

B2 = I2

so by using idempotence

B∗ = I2⊕B⊕ I2⊕B⊕ · · · = I2⊕B =

1 2

1 {0,1} {1}

2 {1} {0,1}

“current_book”
2017/8/27
23:44
page 355
#379

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.2 Quasi-Inverses 355

Example 15.5

C =

1 2

1 1 0

2 1 1

over the (complete) max-plus algebra has quasi-inverse

C∗ =

1 2

1 0 −∞

2 −∞ 0

⊕

1 2

1 1 0

2 1 1

⊕

1 2

1 2 1

2 2 2

⊕ · · ·⊕

1 2

1 n n−1

2 n n

⊕ · · ·

=

1 2

1 ∞ ∞

2 ∞ ∞

Example 15.6

D =

1 2

1 −1 0

2 0 −1

over the (complete) max-plus algebra has quasi-inverse

D∗ =

1 2

1 0 −∞

2 −∞ 0

⊕

1 2

1 −1 0

2 0 −1

⊕

1 2

1 0 −1

2 −1 0

⊕

1 2

1 −1 0

2 0 −1

⊕ · · ·

=

1 2

1 0 −∞

2 −∞ 0

⊕

1 2

1 −1 0

2 0 −1

⊕

1 2

1 0 −1

2 −1 0

=

1 2

1 0 0

2 0 0

The quasi-inverse of an array A is closely related to its graph. Recall that the graph of A

is the weighted directed graph
GA = (V,E,W)

“current_book”
2017/8/27
23:44
page 356
#380

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

356 Chapter 15 Eigenvalues and Eigenvectors

where V = {1, . . . ,n} and

E = {(i, j) ∈ {1, . . . ,n}2 | A(i, j) , 0}

and where
W(i, j) = A(i, j)

for each (i, j) ∈ E. Also recall that a walk of length k−1 was a k-tuple (v1, . . . ,vk) such that

(v j,v j+1) ∈ E

for each j. A cycle is a walk (v1, . . . ,vk) in which v1 = vk.
Let G = (V,E) be any directed graph, and let v,w ∈ V and k any non-negative integer.

Then let
Pk

v,w

be the set of all walks in G starting at v and ending at w of length k. Likewise, let

P(k)
v,w

be the set of all walks in G starting at v and ending at w of length at most k. Finally, let

Pv,w

be the set of all walks in G starting at v and ending at w of length at least 1.
The weight function w can be extended to apply to any walk, and in fact any k-tuple

(v1, . . . ,vk).

Definition 15.3
Weight of a Walk

Suppose that G = (V,E,w) is a weighted directed graph and c = (v1, . . . ,vk) is a walk
in G. Then the weight of c is defined by

W(c) = W(v1, . . . ,vk)

=

k−1⊗
j=1

W(v j,v j+1)

= W(v1,v2)⊗ · · ·⊗W(vk−1,vk)

Note the above formula agrees with the original w for walks consisting of a single
edge. Finally, given any k-tuple (v1, . . . ,vk) (which may or may not correspond to
an actual walk), define its weight to be W(v1, . . . ,vk) as above if (v1, . . . ,vk) is a
walk, and 0 otherwise.

“current_book”
2017/8/27
23:44
page 357
#381

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.2 Quasi-Inverses 357

When G is the graph of an array A, the weight of a walk (v1, . . . ,vk) can be rewritten as

W(v1, . . . ,vk) = A(v1,v2)⊗ · · ·⊗A(vk−1,vk)

Example 15.7

Consider

A =

1 2 3

1 0 1 0

2 −∞ 0 ∞

3 0 −1 2

over the max-plus algebra.
Then GA = (V,E,W) where V = {1,2,3}, E consists of every pair (i, j) except (2,1),
and W is the restriction of A to E.

1

2

3

0

1

0

∞ −1

2

0

−1

0

An example walk in GA is (1,2,2,3,2). The weight of this walk is given by

A(1,2)⊗A(2,2)⊗A(2,3)⊗A(3,2) = 1 + 0 +∞+ −1 =∞

Another example walk in GA is (1,1,3,2,2), which has weight

A(1,1)⊗A(1,3)⊗A(3,2)⊗A(2,2) = 0 + 0 + −1 + 0 = −1

The concept of the weight of a walk gives an equivalent definition of the quasi-inverse
of an array A. Starting with A(k), regard A as the adjacency array for a weighted directed
graph. By induction on k, the (i, j)-th entry of Ak gives the sum of weights of all walks
from i to j of length exactly k. Since

A(k) = I⊕A⊕A2⊕ · · ·Ak

“current_book”
2017/8/27
23:44
page 358
#382

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

358 Chapter 15 Eigenvalues and Eigenvectors

it follows that the (i, j)-th entry of A(k) gives the sum of weights of all walks from i to j of
length at most k. The (i, j)-th entry of A∗ is the sum of weights of all walks from i to j.

Proposition 15.1

Graph-Theoretic Definitions of Ak, A(k), A∗

[4, p. 122] If A is an array and GA is its associated weighted directed graph. Then

(i) Ak(i, j) is the sum of the weights of all walks from i to j of length exactly k,

Ak(i, j) =
⊕
c∈Pk

i, j

W(c) =
⊕

(v0,...,vk)∈Pk
i, j

k−1⊗
`=0

A(v`,v`+1)

(ii) A(k)(i, j) is the sum of the weights of all walks from i to j of length at most k,

A(k)(i, j) =
⊕
c∈P(k)

i, j

W(c) =
⊕

(v0,...,vkc)∈P(k)
i, j

kc−1⊗
`=0

A(v`,v`+1)

(iii) A∗(i, j) is the sum of the weights of all walks from i to j.

A∗(i, j) =
⊕
c∈Pi, j

W(c) =
⊕

(v0,...,vk)∈Pi, j

k−1⊗
`=0

A(v`,v`+1)

Proof. I(i, j) gives the sum of the weights of all walks from i to j of length 0. Now suppose

Ak(i, j) =
⊕
c∈Pk

i, j

W(c)

Then

Ak+1(i, j) =

n⊕
`=1

Ak(i, `)⊗A(`, j) =

n⊕
`=1

⊕
c∈Pk

i,`

W(c)⊗W(`, j) =
⊕

c∈Pk+1
i, j

W(c)

so by induction
Ak(i, j) =

⊕
c∈Pk

i, j

W(c)

for all k.
The graph theoretic interpretations for A(k)(i, j) and A∗(i, j) then follow from the defini-

tions
A(k) = A0⊕A⊕A2⊕ · · ·

“current_book”
2017/8/27
23:44
page 359
#383

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.3 Existence of Eigenvalues for Idempotent Multiplication 359

and

A∗ =

∞∨
k=0

A(k) = A0⊕A⊕A2⊕ · · ·

�

15.3 Existence of Eigenvalues for Idempotent Multiplication

Now that the necessary machinery has been built up, the topic of the existence of eigenvec-
tors/values can be approached. Let A(:, i) denote the i-th column vector of A. The following
theorem gives the major relationship between eigenvectors/values and quasi-inverses.

Theorem 15.2

Equivalent Condition to be Eigenvector when ⊕ = sup

[4, p. 210] Let A be an array with entries in the semiring V with ⊕ = sup. Then
the following are equivalent:

(i) For some i and some λ

λ
⊕
c∈Pi,i

W(c)⊕λ = λ
⊕
c∈Pi,i

W(c)

(ii) For some i and some λ, the column vectors λA+(:, i) and λA∗(:, i) are eigenvec-
tors with eigenvalue 1.

Proof. Suppose (i) holds for some i and λ. Then

λA∗(:, i) = λI(:, i)⊕λA+(:, i)

= λA+(:, i)

where the first equality follows from the definition of A+ and A∗, and the second equality
follows because for the j-th entry for j , i of the column this is immediate, and for the i-th
entry of the column this is exactly the statement (i). Finally, this means

A
(
λA+(:, i)

)
= λA∗(:, i)
= λA+(:, i)

Conversely, suppose (ii) holds for some λ and some i. In other words

A
(
λA∗(:, i)

)
= λA∗(:, i)

then
λA+(:, i) = λA∗(:, i)

“current_book”
2017/8/27
23:44
page 360
#384

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

360 Chapter 15 Eigenvalues and Eigenvectors

so that
λ
(
I(:, i)⊕A+(:, i)

)
= λA+(:, i)

Examining this equality at the i-th entry of these column vectors gives the statement of
(i). �

The above theorem is effective at establishing the existence of eigenvectors with any
given λ as an eigenvalue in the case where ⊗ is idempotent.

Lemma 15.3

Conversion of Eigenvectors to Other Eigenvalues with Idempotent ⊗

[4, p. 209] Suppose ⊗ is idempotent. Then if v is an eigenvector of A with
eigenvalue 1, then λv is an eigenvector of A with eigenvalue λ.

Proof. See Exercise 15.5. �

This above result is in contrast to the case of eigenvalues when V is a field, as in that case
there are only a finite number of eigenvalues. In the case of idempotent operations being
an eigenvalue is straightforward.

Corollary 15.4

Eigenvectors and Quasi-Inverse for Idempotent ⊕ and ⊗

[4, p. 212] Suppose ⊕ and ⊗ are idempotent. Let A be an array and i arbitrary.
Let

µ = A+(i, i) =
⊕
c∈Pi,i

W(c)

Then for any λ and i the vector
λµA∗(:, i)

is an eigenvector of A with eigenvalue λ.

Proof. See Exercise 15.6. �

15.4 Strong Dependence and Characteristic Bipolynomial

Using the determinant is a common approach for finding eigenvalues and their eigenvectors
in the case of a square array A with entries in a ring or even field, like R or C. Or, more

“current_book”
2017/8/27
23:44
page 361
#385

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.4 Strong Dependence and Characteristic Bipolynomial 361

precisely, the eigenvalues can be computed from the determinant of

det(A−λI) = 0

in order to solve for λ. This equation gives a polynomial in λ whose solutions are the
eigenvalues of A. Then, given an eigenvalue λ, the system of equations

(A−λI)v = 0

is solved to find the associated eigenvectors. In a semiring, this method cannot be used
because A−λI does not necessarily make sense. However, another array can take the place
of A−λI to achieve similar results.

Given the n×n array A, define the 2n×2n block array by

Ã(λ) =

A λI

I I

Recall that a set of A vectors in a semimodule M are said to be (linearly) dependent if there
exists a finite subset

A′ = {v1, . . . ,vn}

of A and nonzero scalars
α1, . . . ,αn,β1, . . . ,βm

such that n⊕
i=1

αivi =

n⊕
i=1

βivi

but αi , βi for some i. A closely related notion is given in the following definition.

Definition 15.4
Strong Dependence

[4, p. 177] A set A of vectors in a semimodule M is strongly dependent, or depen-
dent as in [4], if there exist disjoint finite subsets

A′ = {v1, . . . ,vn} and A′′ = {w1, . . . ,wm}

of A and nonzero scalars
α1, . . . ,αn,β1, . . . ,βm

such that
n⊕

i=1

αivi =

m⊕
j=1

β jw j

“current_book”
2017/8/27
23:44
page 362
#386

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

362 Chapter 15 Eigenvalues and Eigenvectors

Theorem 15.5

Eigenvalues and Strong Dependence

[4, p. 231] Let A be an array. Then λ is an eigenvalue of A if and only if the
columns of Ã(λ) are strongly dependent.

Proof. First suppose that λ is an eigenvalue and v an associated eigenvector. Let

J1 = {1, . . . ,n}

and
J2 = {n + 1, . . . ,2n}

and let
µ j = v(j)

for j ∈ J1 and
µ j = v(j−n)

for j ∈ J2. Then because
Av = λv

it follows that ⊕
j∈J1

µ j⊗ Ã(λ)(:, j) =
⊕
j∈J2

µ j⊗ Ã(λ)(:, j)

or, in other words, that the columns of Ã(λ) are strongly dependent. Conversely, suppose
that the columns of Ã(λ) are strongly dependent so that there are disjoint subsets J1, J2 of
{1, . . . ,n} and (nonzero) scalars µ j for

j ∈ J1∪ J2

such that ⊕
j∈J1

µ j⊗ Ã(λ)(:, j) =
⊕
j∈J2

µ j⊗ Ã(λ)(:, j)

Extend the definition of µ j to all j ∈ {1, . . . ,n} by defining µ j = 0 for

j < J1∪ J2

By using the above (strong) dependence and looking at the bottom n entries of the j-th and
(j + n)-th columns, if both j, j + n are in Ji for some fixed i, then

µ j⊕µ j+n = 0

Since ⊕ is the (binary) supremum for a partial ordering ≤ with 0 the minimum element, it
follows that µ j = µ j+n. Thus, if j ∈ J1 or J2, then j + n is in the remaining set of indices.

“current_book”
2017/8/27
23:44
page 363
#387

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.4 Strong Dependence and Characteristic Bipolynomial 363

Moreover, the same (strong) dependence shows that µ j = µ j+n. Then define v by setting

v(j) = µ j

for j ∈ J1 and
v(j) = 0

for j ∈ {1, . . . ,n} \ J1. The above (strong) dependence then shows that v is an eigenvector
with eigenvalue λ. �

When the semiring is also ring, then

det
(
Ã(λ)

)
= det(A−λI)

motivating
det

(
Ã(λ)

)
to take the role of

det(A−λI)

to define the characteristic polynomial. But since the determinant makes explicit use of
negatives, “positive” determinants

det+(A)

and “negative” determinants
det−(A)

are introduced so that
det+(A)−det−(A) = det(A)

when in a ring.
To motivate the definition of the bideterminant, recall the following formula for the de-

terminant when in a ring

det(A) =
∑

σ a permutation of {1, . . . ,n}

sgn(σ)
n∏

i=1

A(i,σ(i))

Recall that a permutation of {1, . . . ,n} is a bijection

σ : {1, . . . ,n} → {1, . . . ,n}

A permutation σ gives rise to an n×n array Pσ whose (i, j)-th entry is 1 if σ(i) = j and 0
otherwise. A permutation σ is said to be even if

det(Pσ) = 1

and odd if
det(Pσ) = −1

“current_book”
2017/8/27
23:44
page 364
#388

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

364 Chapter 15 Eigenvalues and Eigenvectors

It can be shown that these are the only cases. The map sgn sends a permutation σ to
det(Pσ), and sgn(σ) is called the sign of σ. Denote by Per(n) the set of all permutations of
{1, . . . ,n}, Per+(n) the set of all even permutations, and Per−(n) the set of all odd permuta-
tions.

Example 15.8
Permutations of {1,2,3,4}

In this example illustrates the even and odd permutations of {1,2,3,4}. The permu-
tation

σ : {1,2,3,4} → {1,2,3,4}

which fixes 1 and sends 2 to 3, 3 to 4, and 4 to 2, is written as

(1)(2 3 4)

In other words, a permutation is written as a product of cycles

(i σ(i) σ(σ(i)) · · ·)

by continuing to apply σ to the previous element of the cycle until i is reached
again. The identity map is typically written as 1, and cycles like (1) are dropped,
so the cycle decomposition of σ above is

(2 3 4)

Then Per+(4) is given by

1, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4),

(1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

Per−(4) consists of the remaining permutations

(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2),

(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)

The above notation gives a suggestive form for det(A) when in a ring

det(A) =
∑

σ∈Per+(n)

n∏
i=1

A
(
i,σ(i)

)
−

∑
σ∈Per−(n)

n∏
i=1

A
(
i,σ(i)

)

“current_book”
2017/8/27
23:44
page 365
#389

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.4 Strong Dependence and Characteristic Bipolynomial 365

and leads to the following definition.

Definition 15.5
Bideterminant

[4, p. 59] Given an n×n array A, the bideterminant is the pair (det+(A),det−(A))
where

det+(A) =
⊕

σ∈Per+(n)

n⊗
i=1

A
(
i,σ(i)

)
and det−(A) =

⊕
σ∈Per−(n)

n⊗
i=1

A
(
i,σ(i)

)
called the positive determinant and negative determinant, respectively.

Definition 15.6
Characteristic Bipolynomial

[4, p. 233] If A is an array, then the characteristic bipolynomial is the pair(
P+(λ),P−(λ)

)
=

(
det+

(
Ã(λ)

)
,det−

(
Ã(λ)

))
Example 15.9

Consider the following array over the max-plus algebra

A =

1 2

1 1 2

2 0 −1

then Ã(λ) is given by

1 2 3 4

1 1 2 λ −∞

2 0 −1 −∞ λ

3 0 −∞ 0 −∞

4 −∞ 0 −∞ 0

Computing the positive and negative determinants of Ã(λ) gives

det+
(
Ã(λ)

)
= max(0,2λ)

det−
(
Ã(λ)

)
= max(λ+ 1,2)

“current_book”
2017/8/27
23:44
page 366
#390

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

366 Chapter 15 Eigenvalues and Eigenvectors

When ⊕ is not just a binary supremum but also maximum so that the ordering is total,
and (V,⊗,1) is a group, then the eigenvalues λ for an array A are exactly the solutions to

P+(λ) = P−(λ)

The crux of the above equation is the relationship between the bideterminant of an array
and the strong dependence of its columns in semirings of the above form.

Theorem 15.6

Bideterminant and Strong Dependence

[4, p. 191,194] Suppose
(V,⊕,⊗,0,1)

is such that ⊕ is the (binary) max function for a total order ≤ on V and

(V \ {0},⊗,1)

is a commutative group. If A is an array with entries in V \ {0}, then

det+(A) = det−(A)

if and only if the columns of A are strongly dependent.

Corollary 15.7

Characteristic Bipolynomial for ⊕ = max and Commutative Group ⊗

[4, p. 233] Suppose
(V,⊕,⊗,0,1)

is such that ⊕ is the (binary) max function for a total order ≤ on V and

(V \ {0},⊗,1)

is a commutative group. If A is an array with entries in V , then λ is an eigenvalue
for A if and only if λ satisfies

P+(λ) = P−(λ)

where (P+(λ),P−(λ)) is the characteristic bipolynomial of A.

Proof. From Theorem 15.6 it follows that

P+(λ) = det+
(
Ã(λ)

)
= det−

(
Ã(λ)

)
= P−(λ)

“current_book”
2017/8/27
23:44
page 367
#391

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.5 Eigenanalysis for Irreducible Matrices for Invertible Multiplication 367

if and only if the columns of Ã(λ) are strongly dependent. By Theorem 15.5, the latter
occurs if and only if λ is an eigenvalue of A. �

Since the max-plus algebra is exactly one of these kinds of semirings, the result follows
for it.

Example 15.10

Using the array

A =

1 2

1 1 2

2 0 −1

from Example 15.9, the characteristic bipolynomial was found to be(

max(0,2λ),max(λ+ 1,2)
)

For
max(0,2λ) = max(λ+ 1,2)

to hold, either
0 = λ+ 1

for λ ≤ 0, or
2λ = λ+ 1

for 1 ≤ λ, or
2λ = 2

for 0 ≤ λ ≤ 1. These equations result in λ = −1, λ = 1, or λ = 1/2, so these three
values are the eigenvalues of A by Corollary 15.7.

15.5 Eigenanalysis for Irreducible Matrices for Invertible Multiplication

While the results of Section 15.3 showed when ⊗ is idempotent, every element of the
underlying semiring is an eigenvalue. This is in stark contrast with Example 15.10, in
which A has only three eigenvalues. Moreover, while Theorem 15.6 gives a condition for
λ to be an eigenvalue, it does not prove that an eigenvalue always exists. By restricting to
a smaller class of matrices, the guaranteed existence of a unique eigenvalue can be shown.
The algebraic property of the max-plus algebra that distinguishes itself from the other

“current_book”
2017/8/27
23:44
page 368
#392

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

368 Chapter 15 Eigenvalues and Eigenvectors

semirings of interest is that the multiplication is not binary infimum. Also, by removing
+∞, the multiplicative operation + on R is invertible.

Definition 15.7
Incomplete Max-Plus and Min-Plus Algebras

(R∪{−∞},max,+, −∞,0) is the incomplete max-plus algebra.
(R∪{∞},min,+,∞,0) is the incomplete min-plus algebra.
(R≥0,max,×,0,1) is the incomplete max-times algebra.
(R>0∪{∞},min,×,∞,1) is the incomplete min-times algebra.

Definition 15.8
Irreducible Matrix

A square array A with entries in the semiring (V,⊕,⊗,0,1) is reducible if there
exists a permutation matrix P such that

PAPᵀ =

B 0
C D

with B and D square and 0 the zero array of appropriate dimensions. In other
words, A is reducible if it is similar to a block lower-triangular array. If A is not
reducible, it is irreducible.

There is also a graph-theoretic equivalent to the above definition of irreducible.

Definition 15.9
Strongly Connected Graph

Suppose G is a directed graph. G is said to be strongly connected if given any two
vertices v,w, there exists a directed walk from v to w, in other words a walk

c = (v0, . . . ,vn)

such that v0 = v, w = vn, and for each i, (vi,vi+1) is a (directed) edge in G. The
strong components of a directed graph G are the maximal strongly connected full
subgraphs of G. The sets of vertices of the strong components partition the set of
vertices of G.

“current_book”
2017/8/27
23:44
page 369
#393

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.5 Eigenanalysis for Irreducible Matrices for Invertible Multiplication 369

Lemma 15.8

Irreducibility and Strong-Connectedness Equivalence

If A is a square array and G the directed graph with A its adjacency array, then the
following are equivalent

(i) A is irreducible.
(ii) G is strongly connected.

Proof. Without loss of generality, it can be assumed that the nonzero entries of A are 1, as
this neither affects whether A is reducible or not, nor whether G is strongly connected or
not. The effect of P on the directed graph G is to simply permute the vertices of G, with

PAPᵀ

the new adjacency array. Let PG be this new directed graph. PG is strongly connected if
and only if G is. The main observation to make is thatB 0

C D

E 0
F G

 =

 EB 0
CE + DF DG

As such, it follows that if A is of the formB 0

C D

then Ak is of the same form for every k. Recall that the (i, j)-th entry of Ak is the sum of the
weights of the (directed) walks from i to j. From the assumption that the nonzero entries
of A are 1, the weight of any directed walk is 1, so the sum of the weights of the directed
walks is

1⊕ · · ·⊕1

where 1 occurs the same number of times as there are directed walks from i to j. With the
assumption that ⊕ is the join for some partial order ≤, this sum is 0 only when the sum is
empty. Thus, Ak(i, j) = 0 if and only if there is no path of length k from i to j.

Therefore, if A is reducible, then
PAPᵀ

is block lower-triangular and so PG is not strongly connected and so G is not strongly
connected. Since if i, j are chosen such that the (i, j)-th entry is in the 0 block, then there
can be no directed walk from i to j. Conversely, suppose G is not strongly connected, so
that there is i, j such that there is no directed walk from i to j. Let

E1, . . . ,Em

“current_book”
2017/8/27
23:44
page 370
#394

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

370 Chapter 15 Eigenvalues and Eigenvectors

be the strong components of G. Writing the elements of each

Ei ⊂ {1, . . . ,n}

in order from least to greatest defines a permutation σ of {1, . . . ,n} such that if i < j and
p ∈ Ei,q ∈ E j, then σ(p) < σ(q). The permutation σ defines a permutation array P. Then
PAPᵀ is of the form B 0

C D

where B is the subarray of A with entries drawn from E1 ×E1 and D is the subarray of A
with entries drawn from

(E2∪ · · ·∪En)× (E2∪ · · ·∪En)

Thus, A is reducible. �

Example 15.11

Consider the array

A =

1 2 3

1 0 3 −1

2 1 0 1

3 0 −1 0

This has weighted directed graph

1

2

3

0

3
1

0

1 −1

0

0
−1

which is strongly connected, so A is irreducible by Lemma 15.8.

From this point onwards it is assumed that the semiring (V,⊕,⊗,0,1) under consideration
satisfies

“current_book”
2017/8/27
23:44
page 371
#395

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.5 Eigenanalysis for Irreducible Matrices for Invertible Multiplication 371

(i) ⊕ is the (binary) max for a total order ≤,
(ii) (V \ {0},⊗,1) is a group, and

(iii) for every positive integer n and v ∈ V , there exists a unique u such that un = v, denoted
by u = v1/n.

Example 15.12

The incomplete max-plus algebra, incomplete min-plus algebra, incomplete max-
times algebra, and incomplete min-times algebra all satisfy the above properties.

Definition 15.10
Spectral Radius

Suppose (V,⊕,⊗,0,1) satisfies the specified properties above. The spectral radius
of

A ∈ Mn(V)

is defined as

ρ(A) =

n⊕
k=1

 n⊕
i=1

Ak(i, i)

1/k

.

Note that a1/k is an element for which

(a1/k)k =

k⊗
i=1

a1/k = a

The spectral radius can be cast in graph-theoretic terms.

Lemma 15.9

Graph-Theoretic Formula for Spectral Radius

[4, p. 227] Suppose (V,⊕,⊗,0,1) satisfies the specified properties above. Then

ρ(A) =
⊕
c∈Γ

W(c)1/|c|

where ρ(A) is the spectral radius of A, Γ is the set of all closed paths or walks
(v0, . . . ,vn) where all vertices are distinct except for the first and last, and |c| is the
length of walk c.

“current_book”
2017/8/27
23:44
page 372
#396

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

372 Chapter 15 Eigenvalues and Eigenvectors

Theorem 15.10

Spectral Radius of Irreducible Matrix is Unique Eigenvalue

[4, p. 229] Suppose (V,⊕,⊗,0,1) satisfies the specified properties above. If A is an
irreducible array with spectral radius ρ(A), then ρ(A) is the unique eigenvalue of
A.

Example 15.13

Working in the incomplete max-plus algebra, the spectral radius ρ(A) is the maxi-
mum of W(c)/|c| for c, a closed path in G. W(c)/|c| is called the average weight of
the closed path c.
Consider the array

A =

1 2 3

1 0 3 −1

2 1 0 1

3 0 −1 0

whose graph is given in Example 15.11 and which has closed paths

(1,1), (2,2), (3,3),

(1,2,1), (1,3,1), (2,1,2), (2,3,2), (3,1,3), (3,2,3),

(1,2,3,1), (1,3,2,1)

(up to a cyclic shift of vertices, which does not change the weight).
Taking the maximum of W(c)/|c| gives the spectral radius ρ(A) as

2 =
4
2

=
3 + 1 + 0

2

from the path (1,2,3,1), and hence the unique eigenvalue for A is

ρ(A) = 2

Indeed, some eigenvectors associated with the unique eigenvalue 2 are

1

1 0

2 −1

3 −2

,

1

1 1

2 0

3 −1

“current_book”
2017/8/27
23:44
page 373
#397

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.6 Eigen-Semimodules 373

15.6 Eigen-Semimodules

Given an array A with entries in the semiring V and an eigenvalue λ of A, the space of
all eigenvectors associated with λ has additional structure on it, motivating the following
definition.

Definition 15.11
Eigen-semimodule

Given A an n×n array over V and λ an eigenvalue,V(λ) is the sub-semimodule of
Vn consisting of all eigenvectors of A with corresponding eigenvalue λ.
The sub-semimodulesV(λ) are called eigen-semimodules of A.

As before, ⊕ continues to be the binary supremum for a partial order ≤ on V .
It is also assumed, as in the case of supremum-blank algebras, that infinite distributivity

of ⊗ over ⊕ holds. This is to ensure that array multiplication with the quasi-inverse works
well.

Lemma 15.11

Eigenvector is Eigenvector of Quasi-Inverse

[4, p. 212] Suppose A has eigenvalue 1. Then

v ∈ V(1)

implies
v = A∗v

Proof. See Exercise 15.9. �

Corollary 15.12

Quasi-Inverse andV(1)

Suppose A has eigenvalue 1. Then

V(1) ⊂ span
{
A∗(:, i) | 1 ≤ i ≤ n

}
Proof. See Exercise 15.10. �

The above corollary puts an ‘upper bound’ onV(1).

“current_book”
2017/8/27
23:44
page 374
#398

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

374 Chapter 15 Eigenvalues and Eigenvectors

Likewise, a ‘lower bound’ can be put onV(1) when ⊗ is idempotent, such as in the case
of power set algebras, by making use of Corollary 15.4.

Lemma 15.13

Quasi-Inverse andV(1) for Idempotent ⊗

Suppose ⊗ is idempotent and A has eigenvalue 1. If

µi = A∗(i, i)

then
span

{
µiA∗(:, i) | 1 ≤ i ≤ n

}
⊂V(1)

For the case where ⊕ is not just binary supremum, but binary maximum, so ≤ is total, as
in the max-plus and max-min tropical algebras, the specific form ofV(1) can be given:

Theorem 15.14

Quasi-Inverse and Structure ofV(1) when ⊕ = max

[4, p. 213] Suppose ⊕ is max and A has eigenvalue 1. Then there exists a subset
{i1, . . . , iK} of {1, . . . ,n} and scalars µk such that

V(1) = span
{
µkA∗(:, ik) | 1 ≤ k ≤ K

}
When 1 is the greatest element of V under ≤, which is the case for the max-min trop-

ical algebra, Theorem 15.14 can be strengthened to remove the necessity of the subset
{i1, . . . , iK} to simply be {1, . . . ,n} and to give concrete values to the scalars µi:

Corollary 15.15

Quasi-Inverse and Structure ofV(1) when ⊕ = max, ⊗ Idempotent, 1 = sup(V)

[4, p. 215] Suppose ⊕ is max, ⊗ is idempotent, 1 is the maximum of V under ≤,
and A has eigenvalue 1. Then

V(1) = span
{
µiA∗(:, i) | 1 ≤ i ≤ n

}
where µi = A+(i, i).

“current_book”
2017/8/27
23:44
page 375
#399

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.6 Eigen-Semimodules 375

Example 15.14

Consider the array

A =

1 2 3

1 0 3 −1

2 ∞ 1 2

3 −∞ 1 1

with entries in the max-min algebra. Then A∗ and A+ are given by

A∗ =

1 2 3

1 ∞ 3 2

2 ∞ ∞ 2

3 1 1 ∞

 and A+ = AA∗ =

1 2 3

1 3 3 2

2 ∞ 3 2

3 1 1 1

Then by Corollary 15.15, it follows thatV(1) is spanned by the vectors

1

1 3

2 3

3 1

,

1

1 2

2 2

3 1

So far only the case of V(1) has been dealt with. When ⊗ is idempotent and 1 is the
greatest element, as in power set algebras or the max-min tropical algebra, the results of
Lemma 15.11 continue to hold:

Lemma 15.16

Eigenvector is Eigenvector of Quasi-Inverse when 1 = sup(V)

[4, p. 218] Suppose A has eigenvalue λ and 1 is the greatest element. Then

v ∈ V(λ)

implies
v = A∗v

and hence

span
{
λµiA∗(:, i) | 1 ≤ i ≤ n

}
⊂V(λ) ⊂ span

{
A∗(:, i) | 1 ≤ i ≤ n

}
Proof. See Exercise 15.11. �

“current_book”
2017/8/27
23:44
page 376
#400

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

376 Chapter 15 Eigenvalues and Eigenvectors

Likewise, Theorem 15.14 can be extended when ⊕ is assumed to be max.

Corollary 15.17

Quasi-Inverse and Structure ofV(λ) when ⊕ = max, ⊗ Idempotent, 1 = sup(V)

[4, p. 219] Suppose ⊕ is max, ⊗ is idempotent, 1 is the greatest element, and A has
eigenvalue λ. Then there exists a subset {i1, . . . , iK} of {1, . . . ,n} such that

V(λ) = span
{
λµkA∗(:, ik) | 1 ≤ k ≤ K

}
where

µk = A+(ik, ik)

To end the section, the case where ⊗ is invertible on V \ {0} and A is irreducible is dis-
cussed.

Lemma 15.18

Existence of (λ−1A)∗ for Irreducible A, Idempotent ⊕, and ⊗ is a Group

[4, p. 222] Suppose
(V \ {0},⊗,1)

is a group, ⊕ is idempotent, and A an irreducible array with eigenvalue λ. Then
(λ−1A)∗ exists.

The reason for stating this lemma is that the motivating example of the incomplete max-
plus algebra is, as the name suggests, incomplete, and so the existence of (λ−1A)∗ cannot
be guaranteed by a completeness argument.

Theorem 15.19

Eigensemimodules of Irreducible Matrix when ⊕ = max and ⊗ is a Group

[4, p. 225] Suppose ⊕ is max, (V \ {0},⊗,1) is a group, and A is irreducible. Let

Ã = λ−1A

where λ is the unique eigenvalue of A. Then there are j1, . . . , jp such that

V(λ) = span
{
Ã∗(:, j1), . . . , Ã∗(:, jp)

}

“current_book”
2017/8/27
23:44
page 377
#401

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.6 Eigen-Semimodules 377

The above theorem means that once Ã∗ has been calculated, it just remains to check
which of its columns are eigenvectors of A to get a generating set forV(λ).

Example 15.15

Recall Example 15.13 where

A =

1 2 3

1 0 3 −1

2 1 0 1

3 0 −1 0

was shown to have the unique eigenvalue 2. A is an irreducible array, as its associ-
ated graph G

1

2

3

0

3
1

0

1 −1

0

1
−1

is strongly connected. Thus, Theorem 15.19 applies and

(λ−1A)∗ = (−2 + A)∗

is

(λ−1A)∗ =

1 2 3

1 0 1 0

2 −1 0 −1

3 −2 −1 0

Thus, from Theorem 15.19, it follows that V(2) is the span of the column vectors
of (λ−1A)∗, which are actually eigenvectors. Hence

V(2) = span

1

1 0

2 −1

3 −2

 ,

1

1 1

2 0

3 −1

as claimed in Example 15.13.

“current_book”
2017/8/27
23:44
page 378
#402

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

378 Chapter 15 Eigenvalues and Eigenvectors

15.7 Singular Value Decomposition

A common factorization in traditional linear algebra is that of the singular value decompo-
sition (SVD).

Definition 15.12
Singular Value Decomposition

Let A be a complex valued m×n array. Then the singular value decomposition, or
SVD, is a factorization of the form

UΣV†

where U and V are unitary matrices such that

U−1 = U† and V−1 = V†

and Σ is diagonal whose entries are non-negative.

To prove its existence, and get some motivation for why the problem depends heavily on
the algebraic properties of C, some notation and additional terminology are needed.

Definition 15.13
Conjugate Transpose

The conjugate transpose of a complex n×n array A, written A†, is defined by

(A†)(i, j) = A(j, i)

The array A is said to be Hermitian if

A = A†

and is unitary if
A† = A−1

A set S of vectors is orthonormal if
n∑

i=1

u(i)v(i) = 0

for all distinct u,v ∈ S and
|v| = 1

for all v ∈ S .

“current_book”
2017/8/27
23:44
page 379
#403

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.7 Singular Value Decomposition 379

One of the main ways to find a SVD of A is by finding eigenvectors and eigenvalues, not
of A but of AA† and A†A. The main result that makes this possible is the spectral theorem.

Theorem 15.20

Spectral Theorem

[5, p. 330] Suppose A is a Hermitian complex array. Then there exists a unitary
array U such that

U†AU

is diagonal. Equivalently, there exists an orthonormal eigenbasis for A.

The proof of Theorem 15.20 makes necessary use of the algebraic properties of C, par-
ticularly the fact that it is an algebraically closed field and that there is a notion of positivity
which allows things like an inner product to make sense.

Proposition 15.21

Existence of Singular Value Decomposition

[5, p. 368] Suppose A is a complex m×n matrix. Then there exist a unitary m×m
matrix U, a diagonal m×n array Σ, and a unitary n×n array V such that

A = UΣV†

Proof. A†A is positive semi-definite, as

v†A†Av = ‖Av‖ ≥ 0

Thus, its eigenvalues are non-negative real numbers. Let σ1, . . . ,σr be the square roots of
positive eigenvalues and take σi = 0 for i > r. Since A†A is Hermitian so that it is equal
to its conjugate transpose, it follows from Theorem 15.20 that there exists an orthonormal
eigenbasis of Cn, say v1, . . . ,vn. It can be assumed that the eigenvalues associated with
v1, . . . ,vn are σ2

1, . . . ,σ
2
n by permuting as necessary. r is the rank of A†A, and it can be

shown that this is also the rank of A. To see this, it suffices to show that their null spaces
agree by the rank-nullity theorem. If x is in the null space of A, then

A†Ax = A†0 = 0

and if x is in the null space of A†A, then

x†A†Ax = 0 = ‖Ax‖

“current_book”
2017/8/27
23:44
page 380
#404

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

380 Chapter 15 Eigenvalues and Eigenvectors

so Ax = 0. By definition
A†Avi = σ2

i vi

for each i, so by multiplying A on both sides it follows that

AA†(Avi) = σ2
i (Avi)

Let
ui = σ−1i Avi

and note that for 1 ≤ i ≤ r the vector ui is nonzero, as otherwise

σivi = 0

contradicts the fact that both σi and vi are both nonzero. Thus, ui is an eigenvector of AA†

with eigenvalue σ2
i . The set of vectors u1, . . . ,ur is orthonormal, as

u†i u j = σ−1i σ
−1
j v†i A†Av j = σ jσ

−1
i v†i v j

which is 1 if i = j and 0 otherwise, since the set of vectors v1, . . . ,vn are orthonormal. Since
the set u1, . . . ,ur is orthonormal, it can be extended to an orthonormal eigenbasis u1, . . . ,um

of AA†. The above shows that the nonzero eigenvalues of A†A are eigenvalues of AA†,
and the same argument shows the converse. Hence, the remaining vectors ur+1, . . . ,um are
associated with the eigenvalue 0. Now define U and V to be the block matrices

U =
[
u1 · · · um

]
V =

[
v1 · · · vn

]
Because their columns form orthonormal bases, they are unitary matrices. Define Σ to be
the m× n array whose first r diagonal entries are σ1, . . . ,σr and the remaining entries 0.
Finally, it is shown that

A = UΣV†

or equivalently that
AV = UΣ

By the linear independence of the columns of V and the fact that

Avi , 0

for i ≤ r, it follows that
Avi = 0

for i > r. Thus, the last n− r columns of AV are 0. Likewise, the last n− r columns of UΣ
are 0 since the same holds true for Σ. This means that it suffices to check that

Avi = σiui

“current_book”
2017/8/27
23:44
page 381
#405

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.7 Singular Value Decomposition 381

for i ≤ r, or that
ui = σ−1i Avi

But this is exactly the definition of ui for i ≤ r, completing the proof. �

A certain converse can be given to the construction of the SVD given in the proof of
Proposition 15.21, by showing that the squares of the diagonal entries of Σ are eigenvalues
for AA† and A†A, that the columns of U are eigenvectors for AA†, and that the columns
of V are eigenvectors for A†A. For this reason, the existence of the SVD is closely related
to the existence of eigenvalues and eigenvectors.

The SVD of an array is theoretically very nice, as the first r columns of U give a basis
for the column space of A (equivalently, the row space of A†), the last m− r columns of U
give a basis for the null space of A, the first r columns of U give a basis for the row space
of A (equivalently, the column space of A), and the last n− r columns of U give a basis for
the null space of A†.

The proof of Proposition 15.21 makes extensive use of the algebraic properties of C, and
suggests the following reasons for why a generalization of the SVD to semirings would be
difficult

(i) It is unclear what the appropriate generalization of the conjugate transpose should be,
and with it the notions of an inner product and of Hermitian and unitary matrices.

(ii) Even if an inner product (or some generalization thereof) is created, division is not
generally possible and it is difficult to normalize a vector normalized by its magnitude.

(iii) In general, the eigenvalues and eigenvectors for A†A need not exist.
(iv) Even if eigenvalues and eigenvectors for A†A do exist, there seems no reason to suggest

that they appear in the right numbers. There may not be enough to form the columns of
an appropriately sized array and if they can be chosen to form the columns of a unitary
array.

(v) Even if the eigenvalues and eigenvectors for A†A exist in such a way that they can be
chosen to form the columns of a unitary array, these eigenvalues need not have square
roots, and so while U and V might exist, Σ might not.

Research on possible generalizations to the semirings of interest is ongoing, with the
focus on the case of the max-plus algebra, as in [6]. In this paper, the existence of an SVD
is given for an extension of the incomplete max-plus algebra which seeks to address the
issue of a lack of additive inverses. To gain motivation for this extension, consider

N = {0,1,2, . . .}

A standard approach to constructing Z from N is to define the set of equivalence classes of
N×N under the equivalence relation

(n,m) ∼ (p,q) if and only n + q = p + m

“current_book”
2017/8/27
23:44
page 382
#406

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

382 Chapter 15 Eigenvalues and Eigenvectors

The intuition is that a pair (n,m) in N×N represents the difference n−m, and the equiva-
lence relation identifies equal differences, and indeed

n−m = p−q if and only n + q = p + m

This intuition also suggests what the definitions of addition and multiplication should be
between (n,m) and (p,q). Writing (n,m) as n−m and (p,q) as p−q, then

(n−m) + (p−q) = (n + p)− (m + q)

so addition is defined by
(n,m) + (p,q) = (n + p,m + q)

Likewise
(n−m)(p−q) = (np + mq)− (mp + nq)

so multiplication is defined by

(n,m) (p,q) = (np + mq,mp + nq)

The equivalence relation ∼ is compatible with the operations addition and multiplication
of pairs, which is to say that if

(n,m) ∼ (n′,m′)

and
(p,q) ∼ (p′,q′)

then
(n,m) + (p,q) ∼ (n′,m′) + (p′,q′)

and
(n,m) (p,q) ∼ (n′,m′) (p′,q′)

The above relation allows addition and multiplication to be defined between equivalence
classes, giving the addition and multiplication operations on Z. By showing that a semiring
(N) and can be turned into a ring (Z), this motivates a similar approach for the incomplete
max-plus algebra by considering

(R∪{−∞})2

and the relation

(t,u)∇ (v,w) if and only max(v,u) = max(t,w)

“current_book”
2017/8/27
23:44
page 383
#407

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.7 Singular Value Decomposition 383

However, the relation ∇ is not an equivalence relation. While it is reflexive and symmetric,
it fails to be transitive, as the following example indicates.

Example 15.16

[6, p. 424]
(3,3)∇ (1,3) and (3,3)∇ (1,3)

since
max(3,3) = 3 = max(3,0) and max(3,3) = 3 = max(3,1)

However
(3,0) ∇| (1,3)

since
max(3,3) = 3 , 1 = max(0,1)

Definition 15.14
Symmetrized Max-Plus Algebra

De Shutter and De Moor correct this relation by defining a new relation B by

(t,u) B (v,w) if and only if

(t,u)∇ (v,w) if t , u and v , w

(t,u) = (v,w) otherwise

B is called the balancing relation. This relation is an equivalence relation. The
equivalence relations of B are called max-plus-positive for

[(w, −∞)] = {(w,v) | v < w}

and max-plus-negative for

[(−∞,w)] = {(v,w) | v < w}

and balanced for
[(w,w)] = {(w,w)}

for any
w ∈ R∪{−∞}

S is the collection of all equivalence classes, S+ is the collection of all max-plus-
positive equivalence classes, S− is the collection of all max-plus-negative equiva-
lence classes, and S• is the collection of all balanced equivalence classes. Finally

S∨ = S+∪S−

“current_book”
2017/8/27
23:44
page 384
#408

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

384 Chapter 15 Eigenvalues and Eigenvectors

The algebraic operations on S are defined analogously to how the algebraic operations
were defined on Z.

Definition 15.15
Operations and Relations on Symmetrized Max-Plus Algebra

For pairs
(x,y), (z,w) ∈ (R∪{−∞})2

define
max

(
(t,u), (v,w)

)
=

(
max(t,v),max(u,w)

)
and

(t,u) + (v,w) = (max(t + v,u + w),max(t + w,u + v))

B is compatible with both of these operations, and so they can be defined between
equivalence classes. This definition gives rise to the semiring

(S,max,+, [(−∞, −∞)], [(0,0)])

called the symmetrized max-plus algebra. Several other operations may be defined,
like

	(v,w) = (w,v)

which is the analogue of negation,

(v,w)• = max
(
(v,w),	(v,w)

)
=

(
max(v,w),max(v,w)

)
called the balancing operation, and

|(v,w)| = max(v,w)

which is the analogue of a norm, and B is compatible with them as well. Finally, B

is compatible with ∇, in the sense that if

(t,u) B (t′,u′)

and
(v,w) B (v′,w′)

then
(t,u)∇ (v,w)

implies
(t′,u′)∇ (v′,w′)

The relation ∇ is finer than B, so even though two equivalence classes might be
∇-related, they need not be equal or B-related.

“current_book”
2017/8/27
23:44
page 385
#409

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.8 Conclusions, Exercises, and References 385

With this notation in mind, the main result concerning the SVD can be given.

Theorem 15.22

Singular Value Decomposition in S∨

[6, p. 436] Let A be an m× n array with entries in S and let r = min(n,m). Then
there exists a diagonal m×n array Σ with entries in R∪{−∞}, an m×m array U with
entries in S∨, and an n×n array V with entries in S∨ such that

A∇UΣVᵀ

where
UᵀU∇ Im

and
VᵀV∇ In

Here, many of the issues described above with capturing the SVD are bypassed by con-
sidering the SVD up to ∇ rather than requiring a strict equality.

There are also connections between singular values in the max-plus algebra and expo-
nential functions [6, 7].

15.8 Conclusions, Exercises, and References

The eigenvalue problem has been extensively studied from the perspective of max.min
and min.max algebras. Extending eigenvalues and eigenvectors to the broader class of
associative arrays begins with defining quasi-inverses, which provides the necessary foun-
dation for defining existence in the context of idempotent multiplication. The characteristic
bipolynomial can be used to redefine the eigenvalue problem in terms that well-defined for
semirings. Additional structures can also be defined for eigen-semimodules.

Exercises

Exercise 15.1 — Find eigenvalues and eigenvectors of

A =

1 2

1 3 −1

2 2 0

by direct computation in both the max-plus and tropical max-min algebras.

“current_book”
2017/8/27
23:44
page 386
#410

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

386 Chapter 15 Eigenvalues and Eigenvectors

Exercise 15.2 — Assume (V,⊕,⊗,0,1) is a join-blank algebra in which 1 is the largest
element.
A quasi-inverse of a is the minimal solution a∗ to

a∗⊗a⊕1 = a⊗a∗⊕1 = a∗.

Show that the quasi-inverse is given by a∗ = 1⊕a⊕a2⊕· · · =
∨

k≥0 a(k), where a(k) = 1⊕a⊕
· · ·⊕ak.

Exercise 15.3 — Do quasi-inverses exist in general? How necessary were the order-theoretic
completeness properties of the semirings of interest?

Exercise 15.4 — Calculate the quasi-inverse of

A =

1 2

1 −4 0

2 0 −3

(in the max-plus algebra).

Exercise 15.5 — Prove Lemma 15.3.

Exercise 15.6 — Prove Corollary 15.4.

Exercise 15.7 — Calculate the characteristic bipolynomial of

A =

1 2

1 3 −1

2 2 0

by direct computation in the incomplete max-plus algebra and use it to find the eigenvalues
of A.

Exercise 15.8 — Show that the array

A =

1 2

1 −3 1

2 1 −2

over the incomplete max-plus algebra is irreducible and calculate its spectral radius. Con-
firm that it is an eigenvalue for A.

Exercise 15.9 — Prove Lemma 15.11.

Exercise 15.10 — Prove Lemma 15.12.

“current_book”
2017/8/27
23:44
page 387
#411

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

15.8 Conclusions, Exercises, and References 387

Exercise 15.11 — Prove Lemma 15.16.

Exercise 15.12 — By calculating Ã∗ (see Exercise 15.4) and using Exercise 15.8, find
V (λ) (as a span of eigenvectors) of the incomplete max-plus algebraic array

A =

1 2

1 −3 1

2 1 −2

where λ is the unique eigenvalue for A.

References

[1] E. Sanchez, “Resolution of eigen fuzzy sets equations,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 69–74, 1978.

[2] K. Cechlárová, “Eigenvectors in bottleneck algebra,” Linear Algebra and Its Applications, vol. 175, pp. 63–73,
1992.

[3] J. Plavka and P. Szabó, “On the λ-robustness of matrices over fuzzy algebra,” Discrete Applied Mathematics,
vol. 159, no. 5, pp. 381–388, 2011.

[4] M. Gondran and M. Minoux, Graphs, Dioids and Semirings: New Models and Algorithms, vol. 41. Springer
Science & Business Media, 2008.

[5] G. Strang, Linear Algebra and Its Applications, vol. 4. Wellesley, Massachusetts: Wellesley-Cambridge Press,
2006.

[6] B. De Schutter and B. De Moor, “The QR decomposition and the singular value decomposition in the sym-
metrized max-plus algebra revisited,” SIAM Review, vol. 44, no. 3, pp. 417–454, 2002.

[7] J. Hook, “Max-plus singular values,” Linear Algebra and Its Applications, vol. 486, pp. 419–442, 2015.

“current_book”
2017/8/27
23:44
page 388
#412

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 389
#413

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16 Higher Dimensions

Summary

Most of the previously described concepts for associative arrays are not dependent upon as-
sociative arrays being two-dimensional, but this is naturally where the intuition for associa-
tive array definitions resides because matrices are two-dimensional. d-dimensional associa-
tive arrays are a straightforward extension of their two-dimensional counterparts, and their
ability to represent diverse data extends fully to higher dimensions. This chapter provides
the necessary formal mathematics for extending associative arrays into arbitrary dimensions.

16.1 d-Dimensional Associative Arrays

The extension of matrix concepts to higher dimensional data has a long history [1–3].
These higher dimension matrices, referred to as tensors, are useful for a wide variety of
applications, including psychology [4], chemistry [5], signal processing [6], data analysis
[7, 8], and data compression [9]. A key challenge of tensors is the question of how to define
tensor multiplication ⊕.⊗. To the extent that associative arrays rely on matrix intuition, the
challenge of extending array multiplication to higher dimensions is the same challenge
presented by tensor multiplication and is left to that domain [10]. Fortunately, for many of
the properties of associative arrays that broaden matrices, the extension of the definition of
associative arrays to arbitrary dimensions greater than two is straightforward.

Definition 16.1
d-Dimensional Associative Array

A d-dimensional associative array is a map from a strict totally ordered set of keys
to a value set with a semiring structure. Formally, an associative array is a map

A : K1× · · ·×Kd → V

that has a finite number of nonzero elements, or equivalently has finite support, and
where V is the semiring

(V,⊕,⊗,0,1)

“current_book”
2017/8/27
23:44
page 390
#414

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

390 Chapter 16 Higher Dimensions

Additionally
A(K1, . . . ,Kd;V)

is used to denote the set of d-dimensional associative arrays with domain

K1× · · ·×Kd

and codomain the commutative semiring

(V,⊕,⊗,0,1)

Unless otherwise mentioned, in this chapter A will refer to the general case

A(K1, . . . ,Kd;V)

Elements of
K1× · · ·×Kd

are called key tuples and elements of V called values. One of the main differences between
the d-dimensional and two-dimensional cases are that array multiplication is not longer
defined, which is only defined in the one and two-dimensional cases. However, element-
wise addition, element-wise (Hadamard) multiplication, and scalar multiplication continue
to be defined and have the same nice properties present in the one and two-dimensional
cases. The only main construction that remains is zero padding, which follows the same
procedure as in the two-dimensional case. Given

A : K1× · · ·×Kd → V

and
K1× · · ·×Kd ⊂ K′1× · · ·×K′d

the unique zero padding of A to the new key tuples

K′1× · · ·×K′d

is denoted
A′ = padK′1×···×K′d

A

Similarly, in the d-dimensional case, the same procedure can be used to make an array A
“square”.

A d-dimensional associative array

A : K1× · · ·×Kd → V

is square if K j = Ki for every i, j, in which case

K1× · · ·×Kd = Kd

“current_book”
2017/8/27
23:44
page 391
#415

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.1 d-Dimensional Associative Arrays 391

where K is the common value of the sets K j.

Example 16.1

Given any d-dimensional associative array

A : K1× · · ·×Kd

a new d-dimensional associative array

sqA : (K1∪ · · ·∪Kd)d → V

can be defined where sqA is defined by

sqA(k) =

A(k) k ∈ K1× · · ·×Kd,

0 otherwise.

Then with K = K1∪ · · ·∪Kd, it follows that

sqA = padK,...,KA

Many of the properties defined for two-dimensional arrays and matrices continue to be
defined here with straightforward extension to the d-dimensional case:

dim — dimension of a d-dimensional array A : K1× · · ·×Kd → V is

dim(A) =
(
|K1|, . . . , |Kd |

)
total — number of values

total(A) = |K1| · · · |Kd |

support — tuples of keys corresponding to nonzero values

support(A) = {(k1, . . . ,kd) ∈ K1× . . .×Kd : A(k1, . . . ,kd) , 0}

nnz — number of nonzero values

nnz(A) = |support(A)|

density — fraction of values that are nonzero

density(A) =
nnz(A)
total(A)

sparsity — fraction of values that are zero

sparsity(A) = 1−density(A)

“current_book”
2017/8/27
23:44
page 392
#416

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

392 Chapter 16 Higher Dimensions

size — number of non-empty slices in the i-th dimension

size(A, i) = |πi(support(A))|

size(A) = (size(A,1), . . . ,size(A,d))

total — number of values in the non-empty slices

total(A) = size(A,1) · · ·size(A,d)

density — fraction of values in non-empty slices that are nonzero

density(A) =
nnz(A)
total(A)

sparsity — fraction of values in non-empty slices that are zero

sparsity(A) = 1−density(A)

Example 16.2

The zero array 0 ∈ A has
size(0) = (0, . . . ,0)

Example 16.3

The unit arrays ek ∈ A have

size(ek) = (1, . . . ,1)

16.2 Key Ordering and Two-Dimensional Projections

Many definitions of structures of an array can be reduced to the two-dimensional case.

Definition 16.2
Two-Dimensional Projections

Given an associative array A ∈ A, define a family

Ap,q : Kp×Kq→ V

of two-dimensional projections of A for 1 ≤ p < q ≤ d by

Ap,q(i1, i2) =

1 if there is k ∈ K1 × · · ·×Kd such that A(k) , 0
and k(p) = i1 and k(q) = i2

0 otherwise

“current_book”
2017/8/27
23:44
page 393
#417

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.2 Key Ordering and Two-Dimensional Projections 393

The associative arrays Ap,q can be thought of as “projections” of A onto each of the two
dimensions p and q, but only recording if there was a nonzero entry in those dimensions
so that

A
(
K1× · · ·×Kp−1×{i1}×Kp+1× · · ·×Kq−1×{i2}×Kq+1× · · ·×Kd

)
, {0}

or that the above set contains a nonzero value. Then define the graph of an array

A : Kd → V

for d > 1 by the family of graphs of the two-dimensional projections Ap,q.

Example 16.4

Let A : {1, . . . ,3}3→ N be defined by each of the slices

A(:, :,1) =

1 2 3

1 1 2

2 7

3 3

 A(:, :,2) =

1 2 3

1 8 9

2

3 4

A(:, :,3) =

1 2 3

1 1

2 4

3 1 1 1

.
Then the two-dimensional projection A1,2 : {1, . . . ,3}2→ N is given by

A1,2 =

1 2 3

1 1 1 1

2 1

3 1 1 1

.

Example 16.5

The two-dimensional projection of a two-dimensional array

A : K1×K2→ V

is not A but is the result of replacing every nonzero entry of A with 1.

“current_book”
2017/8/27
23:44
page 394
#418

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

394 Chapter 16 Higher Dimensions

Example 16.6

The two-dimensional projections of the zero array 0 ∈ A are the zero arrays

0 : Kp×Kq→ V

Example 16.7

The two-dimensional projections of the unit array

e(k1,...,kd) :∈ A

are the unit arrays
e(kp,kq) : Kp×Kq→ V

An associative array A ∈ A is diagonal if

A(k) , 0 if and only if k = (k, . . . ,k)

where
k ∈ K1∩ · · ·∩Kd

Likewise, A is partially diagonal if

A(k) , 0 implies K = (k, . . . ,k)

for some
k ∈ K1∩ · · ·∩Kd

(Partial) diagonality can be connected rather simply to the (partial) diagonality of the two-
dimensional projections of A.

Proposition 16.1

Diagonality and Two-Dimensional Projections

A ∈A is (partially) diagonal if and only if each of the two-dimensional projections

Ap,q : Kp×Kq→ V

is (partially) diagonal.

Proof. Suppose that A ∈ A is (partially) diagonal, so that

A(k) , 0 implies k = (k, . . . ,k)

“current_book”
2017/8/27
23:44
page 395
#419

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.2 Key Ordering and Two-Dimensional Projections 395

Ap,q satisfies
Ap,q(i1, i2) , 0

if and only if there exists k such that

A(k) , 0

and
k(p) = i1 and k(q) = i2

But
A(k) , 0 implies k = (k, . . . ,k)

so
i1 = i2 = k

Moreover,
k ∈ Kp∩Kq

since
K1∩ · · ·∩Kd ⊂ Kp∩Kq

and thus Ap,q is diagonal.
Conversely, suppose that each of the two-dimensional projections

Ap,q : Kp×Kq→ V

is diagonal. Suppose, furthermore, for the sake of a contradiction that there is k such that

A(k) , 0

but
k , (k, . . . ,k)

for any k. Thus, there exists p and q in {1, . . . ,d} with p < q such that

k(p) , k(q)

Then
Ap,q(k(p),k(q)) , 0

but
k(p) , k(q)

contradicting the assumption that each of the two-dimensional projections is diagonal. �

“current_book”
2017/8/27
23:44
page 396
#420

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

396 Chapter 16 Higher Dimensions

Weak diagonality also has a simple generalization as well: an associative array A ∈ A is
weakly diagonal if, given any element k of Ki for 1 ≤ i ≤ d, the size of

support(A)∩ (K1× · · ·×Ki−1×{k}×Ki+1× · · ·×Kd)

is at most 1.

Proposition 16.2

Weak Diagonality and Two-Dimensional Projections

A ∈ A is weakly diagonal if and only if each of the two-dimensional projections

Ap,q : Kp×Kq→ V

is weakly diagonal.

Proof. Suppose that A is weakly diagonal, so that each set

support(A)∩ (K1× · · ·×Ki−1×{k}×Ki+1× · · ·×Kd)

has size at most 1 for k ∈ Ki and i ∈ {1, . . . ,d}. If a two-dimensional projection

Ap,q : Kp×Kq→ V

is not weakly diagonal, then there either exists kp in Kp such that

support(Ap,q)∩
(
{kp}×Kq

)
has size at least 2. Let

ap,bp ∈ Kp and aq,bq ∈ Kq

be such that
Ap,q(ap,aq) , 0 and Ap,q(bp,bq) , 0

where either ap = bp or aq = bq (but not both). By definition

Ap,q(ap,aq) , 0

if and only if there is
a ∈ K1× · · ·×Kd

such that A(a) , 0 and a(p) = ap and a(q) = aq. Similarly, there is

b ∈ K1× · · ·×Kd

such that A(b) , 0 and b(p) = bp and b(q) = bq. If a jn = b jn , then

support(A)∩
(
K1× · · ·×K jn−1×{a jn }×K jn+1× · · ·×Kd

)

“current_book”
2017/8/27
23:44
page 397
#421

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.2 Key Ordering and Two-Dimensional Projections 397

has cardinality at least 2, contradicting the fact that A was weakly diagonal. Thus, each
of the two-dimensional projections is weakly diagonal. Now suppose that each of the two-
dimensional projections is weakly diagonal. Further suppose that there exists i and k ∈ Ki

such that
support(A)∩ (K1× · · ·×Ki−1×{k}×Ki+1× · · ·×Kd)

has cardinality at least 2, so that A is not weakly diagonal. Let k and k′ be distinct elements
of this set, and let i′ be an element of {1, . . . ,d} such that

k(i′) , k′(i′)

which must exist because κ and κ′ are distinct. Note that i′ , i because it is necessarily the
case that

k(i) = k′(i) = k

If i < i′, then let p = i and q = i′. Otherwise, let p = i′ and q = i. Then the two-dimensional
projection Ap,q maps either (k(i′),k) and (k′(i′),k) (if i′ < i) or (k,k(i′)) and (k,k′(i′)) to
1, showing that Ap,q is not weakly diagonal. Thus, it must be the case that A is weakly
diagonal. �

The issue of the key sets being unordered continues in higher dimensions, thus motivat-
ing the generalization of an ordered associative array.

Definition 16.3
Ordered Associative Array

An ordered associative array is defined as an associative array A ∈ A where each
K j is equipped with a fixed total order ≤ j and each K j is finite.

Using the analogy with (weak) diagonality, say that an ordered associative array A ∈ A
is (partially) upper triangular if each two-dimensional projection is upper triangular. An
analogous definition exists for (partial) lower triangularity. These notions can be extended
to ordered associative arrays.

Suppose
K1, . . . ,Kd

are finite totally ordered key sets with orderings

<1, . . . ,<d

and
A : K1× · · ·×Kd → V

“current_book”
2017/8/27
23:44
page 398
#422

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

398 Chapter 16 Higher Dimensions

is an associative array. K j is order-isomorphic to {1, . . . ,m j} for some m j, and let

B : {1, . . . ,m1}× · · · × {1, . . . ,md} → V

be the associative array obtained by identifying

{1, . . . ,m1}× · · · × {1, . . . ,md}

with
K1× · · ·×Kd

B is the matrix associated with A (with respect to <1, . . . ,<d).

Definition 16.4
Ordered Diagonality, Triangularity

Suppose A : K1 × · · · ×Kd → V is an array with K1, . . . ,Kd finite and strict totally
ordered by <1, . . . ,<d, respectively. Let B be the matrix associated with A with
respect to <1, . . . ,<d.

• ordered (partially) diagonal if B is (partially) diagonal or equivalently that ev-
ery two-dimensional projection of B is (partially) diagonal and

• ordered (partially) upper/lower triangular if B is (partially) upper/lower trian-
gular or equivalently that every two-dimensional projection of B is (partially)
upper/lower triangular.

Without ordering the key sets, the best that can be done is weak triangularity. Likewise
with upper and lower triangularity, the associative array

A : K1× · · ·×Kd → V

is weakly upper triangular or weakly lower triangular if each of the two-dimensional pro-
jections

Ai, j : Ki×K j→ V

are weakly upper triangular or weakly lower triangular, respectively.

16.3 Algebraic Properties

Every permutation of two elements is either the identity permutation or the transposition
of the two elements. This fact motivates the following generalization of symmetry of an
associative array. An associative array

A : Kd → V

“current_book”
2017/8/27
23:44
page 399
#423

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.3 Algebraic Properties 399

is symmetric if for every
k ∈ Kd

and any permutation σ of {1, . . . ,d}, the permuted element

k′ =
(
k(σ(1)), . . . ,k(σ(d))

)
satisfies

A(k) = A(k′)

Regardless of the dimension of the associative array, the notions of skew-symmetry and
being Hermitian depend upon algebraic properties of V that are not included in the proper-
ties of being a semiring. When V is a ring an array

A : Kd → V

is said to be skew-symmetric if for every

k ∈ Kd

and any permutation σ of {1, . . . ,d}, the permuted element

k′ =
(
k(σ(1)), . . . ,k(σ(d))

)
satisfies

A(k) = sgn(σ)A(k′)

where sgn(σ) is the additive inverse −1 of the multiplicative identity 1 of V when σ is an
odd permutation, and the multiplicative identity 1 of V when σ is an even permutation.

Similarly, when V is a sub-semiring of C closed under complex conjugation, say that the
associative array

A : Kd → V

is Hermitian if for every
k ∈ Kd

and any permutation σ of {1, . . . ,d}, the permuted element

k′ =
(
k(σ(1)), . . . ,k(σ(d))

)
satisfies

A(k) = A(k′)

when σ is an even permutation and

A(k) = A(k′)

“current_book”
2017/8/27
23:44
page 400
#424

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

400 Chapter 16 Higher Dimensions

when σ is an odd permutation, where z = x−y
√

i is the complex conjugate of the complex
number z = x + y

√
i.

16.4 Subarray Properties

Finally, the notion of subarrays can also be extended to arbitrary dimensions greater than
one.

Definition 16.5
Subarray

Given an associative array

A : K1× · · ·×Kd → V

the associative array
B : K′1× · · ·×K′d → V

is said to be a subarray of A if

K′1× · · ·×K′d ⊂ K1× · · ·×Kd

and B agrees with A on
K′1× · · ·×K′d

As in the two-dimensional case, in considering block associative arrays the partitions of
K1, . . . ,Kd are most meaningful when the partitions are into closed intervals with respect
to strict total orders <1, . . . ,<d on K1, . . . ,Kd. Write

Ki =
[
ki

1,k
i
2
]
∪ · · ·∪

[
ki

2pi−1,k
i
2pi

]
where

Ki
1 ≤i ki

2 ≤i · · · ≤i k2pi−1 ≤i k2pi

then the partitions
Ki =

{[
ki

1,k
i
2
]
, . . . ,

[
ki

2pi−1,k
i
2pi

]}
can be ordered by [

ki
1,k

i
2
]
≤i · · · ≤i

[
ki

2pi−1,k
i
2pi

]
for each 1 ≤ i ≤ d.

Then the definition of a d-dimensional block associative array follows analogously to the
two-dimensional case.

“current_book”
2017/8/27
23:44
page 401
#425

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.4 Subarray Properties 401

Definition 16.6
Block Associative Array and Associated Block Structure Map

Suppose K1, . . . ,Kd are finite totally ordered sets. A (d-dimensional) block asso-
ciative array

A : K1× · · ·×Kd → V

coupled with a tuple of partitions K1, . . . ,Kd of K1, . . . ,Kd into closed intervals.
The associated block structure map is the associative array

A′ :K1× · · ·×Kd → A

defined by

A′([k1,k′1], . . . , [kd,k′d]) = padK1×···×Kd
A|[k1,k′1]×···×[kd ,k′d]

Because
A(K1, . . . ,Kd;V)

forms a semiring itself under element-wise (Hadamard) multiplication, the associated block
structure map

A′ :K1× · · ·×Kd → A

is also a well-defined associative array.
With this extra block structure in mind it is possible to define additional partition con-

cepts.

Definition 16.7
Block Diagonal, Triangular

A block associative array
A : K1× · · ·×Kd → V

with the partitions
(K1, . . . ,Kd)

is

• block (partially) diagonal if the associated block structure map A′ :K1 × · · · ×

Kd → A is (partially) diagonal and
• block (partially) upper/lower triangular if the associatived block structure map

A′ :K1× · · ·×Kd → A is (partially) upper/lower triangular.

“current_book”
2017/8/27
23:44
page 402
#426

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

402 Chapter 16 Higher Dimensions

A further generalization can be made in which the elements of the partition need not be
closed intervals, giving a well-defined associated block structure map in nearly the same
way as above. However, it is not clear if there is a natural and general way to order these
more general partitions.

16.5 Conclusions, Exercises, and References

Extending the concepts of matrix mathematics to tensors is a well-studied endeavor, and
the challenges of defining tensor multiplication are similar for associative arrays. The
diverse data representation concepts that give associative arrays their true power naturally
extend to higher dimensions with little change.

Exercises

Exercise 16.1 — Why is the rank of a d-dimensional matrix no longer defined?

Exercise 16.2 — Why is only the existence of a nonzero term recorded in the two-dimensional
projection of a d-dimensional associative array? Why not add up or multiply out those
nonzero terms?

Exercise 16.3 — Find the two-dimensional projections of the three-dimensional array A :
{1,2,3}3→ R∪{±∞} with the following slices:

A(:, :,1) =

1 2 3

1 −∞ 1 0

2 ∞ −∞ −1

3 1 0 3

 A(:, :,2) =

1 2 3

1 −∞ 0 ∞

2 −∞ 0 0

3 1 1 0

A(:, :,3) =

1 2 3

1 −∞ −∞ −∞

2 1 3 −2

3 −1 ∞ 1

.
where R∪{−∞,∞} is the max-plus algebra.
What about with the max-min tropical algebra? Explain the relationship between the two-
dimensional projections in each of the two cases.

Exercise 16.4 — Write down an explicit example of a weakly diagonal three-dimensional
array that is not diagonal.

“current_book”
2017/8/27
23:44
page 403
#427

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

16.5 Conclusions, Exercises, and References 403

Exercise 16.5 — Describe the associated block structure map for the associative array A
defined in Exercise 16.3 with the partitions

K1 = {1,2,3} = {1}∪ {2,3}

K2 = {1,2,3} = {1,2}∪ {3}

K3 = {1,2,3} = {1,2}∪ {3}

References

[1] F. L. Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or tensor,” Studies in Applied
Mathematics, vol. 7, no. 1-4, pp. 39–79, 1928.

[2] R. B. Cattell, “The three basic factor-analytic research designs–their interrelations and derivatives,” Psycho-
logical Bulletin, vol. 49, no. 5, p. 499, 1952.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM review, vol. 51, no. 3, pp. 455–
500, 2009.

[4] R. A. Harshman, “Foundations of the parafac procedure: Models and conditions for an "explanatory" multi-
modal factor analysis,” UCLA Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[5] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the Chemical Sciences. Chichester,
U.K.: John Wiley & Sons, 2005.

[6] D. Muti and S. Bourennane, “Multidimensional filtering based on a tensor approach,” Signal Processing,
vol. 85, no. 12, pp. 2338–2353, 2005.

[7] T. G. Kolda, “Orthogonal tensor decompositions,” SIAM Journal on Matrix Analysis and Applications,
vol. 23, no. 1, pp. 243–255, 2001.

[8] P. M. Kroonenberg, Applied Multiway Data Analysis, vol. 702. Hoboken, N.J.: John Wiley & Sons, 2008.

[9] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression for large-scale scientific data,” in
International Parallel and Distributed Processing Symposium, pp. 912–922, IEEE, 2016.

[10] B. W. Bader and T. G. Kolda, “Algorithm 862: Matlab tensor classes for fast algorithm prototyping,” ACM
Transactions on Mathematical Software, vol. 32, no. 4, pp. 635–653, 2006.

“current_book”
2017/8/27
23:44
page 404
#428

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 405
#429

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Appendix: Notation

Matlab Operators

+ — addition of real numbers

.∗ — multiplication of real numbers

max — the maximum of two real numbers

min — the minimum of two real numbers

union — the union of two sets

intersect — the intersection of two sets

| — logical OR

& — logical AND

.′ — matrix transpose

Associative Arrays and Matrices

A,B,C, . . . — associative arrays, including matrices and column vectors

u,v,w, . . . — arbitrary elements of a semimodules, or more particularly col-
umn vectors in Vn

a,b,c,u,v,w, . . . — arbitrary elements of the underlying semiring V

A,A1, . . . — D4M arrays

Ki — an arbitrary key set

I, J,K — arbitrary index sets

i, j,k — arbitrary indices in I, J,K, respectively

Vn×m — the set of all n×m matrices over the semiring V

f (a, :), f (:,b) — given the function f : A× B→ C, the functions f (a, :) : B→ C
and f (:,b) : A→ C are defined by f (a, :)(b) = f (a,b) and f (:
,b)(a) = f (a,b), respectively. Similar notation is extended to
higher dimensions

A(K1, . . . ,Kd;V) — the set of associative arrays A :
∏d

j=1 K j→ V

A — the set of subarrays of an associative array A
K — the set of ‘rectangular’ subsets

∏d
j=1 K′j ⊂

∏d
j=1 K j

“current_book”
2017/8/27
23:44
page 406
#430

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

406 Appendix: Notation

0 — the zero matrix: 0(i, j) = 0 for all i, j

I, In — the n×n identity matrix: In(i, j) =

1 if i = j

0 otherwise

ei — the column vector which is zero everywhere except the i-th en-
try, where it is 1

ei, j — the matrix which is zero everywhere except the i, j-th entry,
where it is 1

1 — the matrix of all ones: 1(i, j) = 1 for all i, j

−∞ — a formal minimum of a linearly ordered set

∞ — a formal maximum of a linearly ordered set

Aᵀ — the transpose of the matrix A, defined by Aᵀ(i, j) = A(j, i)

Graphs and Associative Arrays

G — an arbitrary (directed, weighted) graph

u,v,w, . . . — arbitrary vertices in a graph

Kout,Kin — in a graph G, the set Kout of vertices which have outgoing edges
and the set Kin of vertices which have incoming edges

c — an arbitrary walk in a graph

Pk
v,w — the set of all walks in a graph G starting at v and ending at w of

length exactly k

P(k)
v,w — the set of all walks in a graph G starting at v and eding at w of

length at most k

w(c) — the weight w(v1,v2)⊗· · ·⊗w(vk−1,vk) of the walk c = (v1, . . . ,vk)
in a weighted (directed) graph

GA — the graph of the array A
Eout — an arbitrary out-vertex incidence array Eout : E×Kout→ V with

Eout(e,kout) , 0 if and only if edge e is directed outward from
vertex kout

Ein — an arbitrary in-vertex incidence array Ein : E×Kin → V with
Ein(e,kin) , 0 if and only if edge e is directed into vertex kin

Ḡ — the reverse of a graph G with arrows turned around

Commonly used Operator Symbols

⊕ — the addition operation in a general semiring or array addition

“current_book”
2017/8/27
23:44
page 407
#431

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

407

⊕d
i=1 ai — the sum a1⊕a2⊕ · · ·⊕ad⊕
i∈I Mi — the direct sum {(vi)i∈I ∈

∏
i∈I Mi |

vi for all but finitely-many i ∈ I} of an indexed family of
semimodules

⊗ — the multiplication operation in a general semiring or array
Hadamard product

⊕.⊗ — array product

∧ — the meet operation in a meet-semilattice or lattice; the greatest
lower bound∧

s∈S s — the greatest lower bound of the set S

∨ — the join operation in a join-semilattice or lattice; the least upper
bound∨

s∈S s — the least upper bound of the set S

max A — the maximum element of the finite set A

min A — the minimum element of the finite set B

+ — the addition operation in a field or ring∑n
i=1 ai — the sum a1 + a2 + · · ·+ an

× — either the Cartesian product or the multiplication operation in a
field or ring

z — the complex conjugate of z = x + yi given by z = x− yi

Commonly used Symbols for Sets

V — an arbitrary semiring, unless otherwise stated

R — an arbitrary ring, unless otherwise stated

M,N — arbitrary semimodules or semialgebras, unless otherwise stated

B — an arbitrary basis of a semimodule

F — an arbitrary field, unless otherwise stated

Fp — the field with underlying set {0, . . . , p− 1} equipped with addi-
tion modulo p and multiplication modulo p, where p is a prime
number

C — the complex field

R — the real field

Q — the rational field

Z — the ring of integers

“current_book”
2017/8/27
23:44
page 408
#432

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

408 Appendix: Notation

N — the semiring of natural numbers

Set-Theoretic Notation

{1, . . . ,n} — the set of all natural numbers m such that 1 ≤ m ≤ n

{x ∈ X | ϕ(x)} — the set of elements of X satisfying the logical formula ϕ(x)

U,V,W, . . . — arbitrary sets

U ∩V — the intersection of the sets U and V; the set of elements in both
U and V⋂d

i=1 Ui — the intersection U1∩U2∩ · · ·∩Ud.

A∪B — the union of the sets A and B; the set of elements in either A, B,
or both⋃d

i=1 Ai — the union A1∪A2∪ · · ·∪Ad

A \B — the set difference of A and B; the set of elements in A that are
not elements of B

∅ — the unique set containing no elements

P(A) — the power set of A, or the set of all subsets of A

A×B — the Cartesian Product of A and B or the set of ordered pairs (a,b)
where a ∈ A and b ∈ B∏d

j=1 A j — the Cartesian Product A1×A2×· · ·×Ad

Ad — the Cartesian product
∏d

j=1 A

πi :
∏d

j=1 Ai — projection onto the i-th coordinate; πi(a1, . . . ,ad) = ai

|A| — the size of, or number of elements in, A

f : A→ B — a function with domain A and codomain B

f (a) — the image of a ∈ A under the function f : A→ B

g(a,b) — the image of (a,b) ∈ A×B under the function g : A×B→C

f [A′] — the image of A′ ⊂ A under the function f : A → B or the set
{ f (a) ∈ B | a ∈ A′}

f −1[B′] — the pre-image of B′ ⊂ B under the function f : A→ B or the set
{a ∈ A | f (a) ∈ B′}

dom f — the domain A of the function f : A→ B

More Array and Matrix-Related Notation

padK′1×K′2
(A) — the zero padding of A : K1×K2 → V to the new key tuples

K′1×K′2 ⊃ K1×K2

“current_book”
2017/8/27
23:44
page 409
#433

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

409

dim(A) — the dimensions m×n = (m,n) = (|K1|, |K2|) of an associative array
A : K1×K2→ V

total(A) — the number of entries mn = |K1||K2| of an associative array A :
K1×K2→ V

support(A) — the set of tuples of indices or keys corresponding to nonzero
values {(k1,k2) ∈ K1×K2 | A(k1,k2) , 0}

nnz(A) — the number of nonzero values |support(A)|

density(A) — the fraction of values that are nonzero nnz(A)/total(A)

sparsity(A) — the fraction of values that are zero 1−density(A)

size(A, i) — the number of nonzero slices in the i-th dimension
|πi(support(A))|

size(A) — the tuple of sizes of A in each dimension m × n = (m,n) =

(size(A,1),size(A,2))

total(A) — the number of values in the non-empty slices mn =

size(A,1)size(A,2)

density(A) — fraction of values in non-empty slices that are nonzero
nnz(A)/total(A)

sparsity(A) — fraction of values in non-empty slices that are zero 1 −
density(A)

image(A) — set of vectors Av for all v
rank(A) — minimum number of linearly independent vectors needed to cre-

ate image(A)

ker(A) — the set of vectors v for which Av = 0
X(A,w) — the set of solutions v to the linear system Av = w
x(A,b) — the maximum solution to the linear system Av = b
span(A) — the set of all linear combinations

⊕
a∈B⊂A caa where B is finite,

ca ∈ V , and B is a subset of a semimodule over V

rowA(n) — the number of rows of A which have strictly more than n
nonzero entries

colA(n) — the number of columns of A which have strictly more than n
nonzero entries

Eigenvalues and Eigenvectors

λ — an arbitrary eigenvalue

A∗ — the quasi-inverse of the matrix A

“current_book”
2017/8/27
23:44
page 410
#434

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

410 Appendix: Notation

A+ — A⊗A∗

[A]i — the i-th column A(:, i) of the array A
Per+(n) — the set of even permutations of {1, . . . ,n}

Per−(n) — the set of odd permutations of {1, . . . ,n}

det+(A) — the positive determinant
⊕

σ∈Per+(n)

⊗n
i=1 A(i,σ(i))

det−(A) — the negative determinant
⊕

σ∈Per−(n)

⊗n
i=1 A(i,σ(i))

trace(A) — the sum of the diagonal entries of A
ρ(A) — the spectral radius

⊕n
i=1 trace(Ak)1/k

V (λ) — the eigen-semimodule of A corresponding to the eigenvalue λ

SVD and Symmetrized-Max-Plus Algebra

A† — the conjugate transpose of the complex matrix A: A†(i, j) =

A(j, i)
∇ — the binary relation on (R∪ {−∞})2 defined by “(x,y) ∇ (w,z) if

max(w,y) = max(x,z)

B — the balancing relation on (R∪ {−∞})2 defined by (x,y) B (w,z) if(x,y)∇ (w,z) if x , y and w , z

(x,y) = (w,z) otherwise

()• — the balancing operation on (R ∪ {−∞})2 defined by (x,y)• =

(max(x,y),max(x,y))

	 — the operation on (R∪{−∞})2 defined by 	(x,y) = (y, x)

| | — the operation on (R∪{−∞})2 defined by |(x,y)| = max(x,y)

S — the set of equivalence classes of (R∪ {−∞})2 under the equiva-
lence relation B

S⊕ — the subset of S of max-plus-positive equivalence classes or
equivalence classes of the form (w, −∞) = {(w, x) | x < w}

S	 — the subset of S of max-plus-negative equivalence classes or
equivalence classes of the form (−∞,w) = {(x,w) | x < x}

S• — the subset of S of balanced equivalence classes or equivalence
classes of the form (w,w) = {(w,w)}

S∨ — the subset of S defined by S⊕∪S	

“current_book”
2017/8/27
23:44
page 411
#435

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

411

Higher-Dimensional Array Notation

padK′1×K′2
(A) — the zero padding of A : K1×K2→ V to the new key tuples

K′1×K′2 ⊃ K1×K2

dim(A) — the dimensions (|K1|, . . . , |Kd |) of an associative array A :
K1×· · ·×Kd → V

total(A) — the number of entries |K1| · · · |Kd | of an associative array
A : K1×· · ·×Kd → V

support(A) — the set of tuples of indices or keys corresponding to
nonzero values {(k1, . . . ,kd) ∈ K1×· · ·×Kd |A(k1, . . . ,kd) ,
0}

nnz(A) — the number of nonzero values |support(A)|

density(A) — the fraction of values that are nonzero nnz(A)/total(A)

sparsity(A) — the fraction of values that are zero 1−density(A)

size(A, i) — the number of nonzero slices in the i-th dimension
|πi(support(A))|

size(A) — the tuple of sizes of A in each dimension
(size(A,1), . . . ,size(A,d))

total(A) — the number of values in the non-empty slices
size(A,1) · · ·size(A,d)

density(A) — fraction of values in non-empty slices that are nonzero
nnz(A)/total(A)

sparsity(A) — fraction of values in non-empty slices that are zero 1−
density(A)

“current_book”
2017/8/27
23:44
page 412
#436

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

“current_book”
2017/8/27
23:44
page 413
#437

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Index

abstract data, 82
addition

arithmetic, 87
adjacency array, 118, 233

definition, 234
minimal, 71
standard, 235

adjacency construction, 29
adjacency matrix, 233
algebraic relations, 254
annihilator element, 157
antisymmetry, 175
array

addition, 10
adjacency, 28
edge, 77
vertex, 77
ancient, 3
associative, 7
associativity property, 11
commutativity property, 11
diagonal, 134
distributive property, 14
incidence, 28, 75, 77
multiplication, 10, 15, 63
operations, 61
special, 12

array multiplication, 221
assign, 60
associative array, 38

associativity, 149
commutativity, 149
d-dimensional, 389
definition, 194
distributivity, 150
element-wise addition, 149
element-wise multiplication, 149
linear system, 149
mapping, 148
multiplication, 149

scalar multiplication, 148
associative arrays

semiring, 116
associativity, 170

balancing relation, 383
basis, 310

vector space, 312
BFS, 98
bideterminant, 365, 366
bidiagonal, 233
big data, xiii
binary operation, 169
bioinformatics, 44
bipartite, 63
bits, 81
block array, 264
block associative array, 401
block diagonal, 233
block structure map, 401
Boolean algebra, 162, 185, 342
Boolean logic, 81
bounded distributive lattice, 163
bounded lattice, 163, 184
bounded partial order, 183
bounded totally ordered, 186
Bourbaki, 155
breadth first search, 105
breadth-first search, 98

characteristic bipolynomial, 365
closure, 227
column key, 8, 59
commutative group, 157, 171
commutative monoid, 159, 170, 306
commutative ring, 159, 172
commutative semiring, 172
complete lattice, 163, 186, 326
complex conjugate, 400
conjugate transpose, 378

“current_book”
2017/8/27
23:44
page 414
#438

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

414 Index

contraction, 289
convergent, 233
convex, 330
correlation, 44
cycle, 356

D4M, 7, 38
schema, 41

D4M schema, 120
data

cleaning, 116
representation, 116

data driven, 3
data preparation, 44
database

array store, 25
key-value, 24
NewSQL, 25
NoSQL, 24
relational, 23
SQL, 23

database table, 118, 120
deep neural network, 138

equation, 139
linear, 140
non-linearity, 140
ReLU, 139
semiring, 140

dense, 58
density, 200, 203, 215, 218, 223, 391

non-empty, 200, 204
depicting mathematics, 153
determinant, 27
diagonal, 233, 254, 394

block, 401
ordered, 398
partially, 394
weakly, 396

diagonalizable, 233
digital signal processing, 44
dimension, 200, 202, 214, 217, 221, 391

non-empty, 200
dimensional analysis, 47
directed graph, 237
distributive lattice, 184
distributivity, 171

DNN, 138

edge centrality, 129
eigen-semimodule, 373
eigenvalue, 351
eigenvector, 16, 27, 351

centrality, 129
geometry, 130
largest, 132
principal, 129
unit circle, 132

element-wise addition, 213
element-wise multiplication, 217
exchange, 234
extract, 60

facet search, 39
field, 159, 172
finite field, 88
finitely-generated, 315
floor plan, 152
free semimodule, 311, 313

Galois field, 94
generating set, 310
GF(2), 94
Google PageRank, 136
Graph

Bridges of Konigsberg, 69
graph, 6, 27, 63, 355

algorithms, 116
applications, 82
associativity, 89
bipartite, 83
commutativity, 89
construction, 28, 96, 118, 241
directed, 83, 119
distributivity, 90
edge degree, 129
edges, 97
eigenvector, 129
generation, 103
hyper, 75, 84, 119
intesection, 103
linear systems, 120
matrix, 38, 83

“current_book”
2017/8/27
23:44
page 415
#439

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Index 415

multi, 75, 84, 119
multi-partite, 84
operations, 96
path, 105
processor, 139
scaling, 82
search, 122
semiring, 105, 107
traversal, 120, 125
undirected, 71, 83, 122
unweighted, 71
vertex degree, 126
weighted, 75, 83, 119
weights, 86

graph edges, 97, 99
GraphBLAS, 83
group, 157, 171
group operation, 366

Hasse diagram, 176
Hessenberg, 234
Heyting algebra, 164, 339, 343
higher dimensions, 194

idempotence, 182
idempotent, 359
identity, 234
identity element, 156, 171
identity transformation, 272
image, 201, 205, 208, 216, 433
incidence array, 119, 233, 240

definition, 235
graph search, 122, 126

incidence matrix, 233
infimum, 177, 179
infimum semilattice, 181
infimum-blank algebra, 327
information theory, 82
insert, 60
Internet serach, 136
inverse element, 157
irreducible matrix, 368

Jacobi, 234

key order, 256

key value, 118
key-value store, 42
Kronecker product, 103

lattice, 161, 181, 182
length, 356
Linda, 30
line graph, 255
linear algebra, 157
linear extension, 309, 312
linear isomorphism, 307
linear map, 307
linear systems, 88, 89, 125
linearly dependent, 309
linearly independent, 309

machine learning
algorithms, 115
decision, 138
history, 115
inference, 139
performance, 138
pipeline, 116
tasks, 115
training, 139

magma, 155
map reduce, 29
masked data, 50
mathematical objects, 153
mathematical process, 151
mathematically rigorous, 4
matrices, 308
matrix, 6, 25, 158, 308

adjacency, 83, 84
associativity, 89, 126
commutativity, 89
complex, 86
construction, 96
diagonal, 134
distributivity, 89
element-wise addition, 103, 147
element-wise multiplication, 103, 148
graph, 38, 81
integer, 86
mapping, 147
multiplication, 98, 99, 148

“current_book”
2017/8/27
23:44
page 416
#440

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

416 Index

natural numbers, 86
operations, 96
real, 86
scalar multiplication, 147
sparse, 90
transpose, 98, 126
values, 86

matrix construction, 99
max-blank algebra, 333
max-max algebra, 95
max-min, 88, 280
max-min algebra, 93, 189
max-plus, 88, 275
max-plus algebra, 92, 187, 323, 338

incomplete, 368
max-times, 284
maximum, 177
memory complexity, 194
metadata, 57

enrichment, 57
historic, 57
music, 57

micro-blog, 41
min-max, 282
min-max algebra, 93, 189
min-min algebra, 95
min-plus, 277
min-plus algebra, 93
min-times, 287
minimum, 177
module, 159, 305
monoid, 156, 170
monotonic, 327
multiplication

arithmetic, 87

neuron, 138
nnz, 391
nonzero, 200, 203, 215, 218, 223
nonzero element, 193
null, 198
null space, 324

order diagonal, 257
order relations, 254
order triangular, 258

orderable, 8, 59
ordered set, 175
ordered sets, 160

PageRank, 37, 136
parallel performance, 49
partial order, 179
partially ordered set, 161, 175
Perl, 38
permutation, 234, 255, 363

even, 364
odd, 364
sign, 364

pipeline, 38
poset, 161
power set, 94
power set algebra, 189, 323, 342
power-law distribution, 46
product order, 328

quasi-inverse, 353, 360

random walk, 136
rank, 201, 206, 208, 216, 219, 225, 317
RDF, 30
reducible matrix, 368
reflexitivity, 175
representation, 70
reverse edges, 98
ring, 159, 172
rotation, 296
row key, 8, 59

sampling, 46
scalar, 87

associativity, 88
commutativity, 88
distributivity, 88

scalar multiplication, 150, 304
scientific method, xiii
select, 60
self-loop, 254
semialgebra, 158, 317
semigroup, 155
semimodule, 158, 304
semiring, 92, 116, 155, 157, 172

“current_book”
2017/8/27
23:44
page 417
#441

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Index 417

Galois plus, 94
max min, 93
max plus, 92
min max, 93
min plus, 93
real numbers, 92
zero-sum-free, 155

semirings, 88, 105
set

Cantor, 154
elements, 154
operations, 154
Russell’s paradox, 154

set axioms, 169
sets, 150, 169
sets of bits, 3
shift, 234
signal processing, 82
signature, 234
singular value decomposition, 133, 378
size, 200, 204, 207, 215, 218, 223, 391
skew, 261
skew-symmetric, 399
software

class diagram, 152
classes, 151
objects, 151

solution space, 328
span, 310
sparse, 63
sparsity, 6, 200, 203, 215, 218, 223, 391
special array, 233, 253
special graph, 253
special matrix, 233
spectral radius, 371
Spectral Theorem, 379
spreadsheet, 5, 20
square, 73
standard basis, 309, 310
stretching, 293
strict partially ordered set, 161
strict totally ordered set, 161
strong dependence, 361, 366
structure, 193
sub-graph

modifying, 102
sub-graphs, 101

subarray, 400
subobject relations, 254
support, 200, 203, 207, 214, 217, 222, 391
suprema-preservation condition, 326
supremum, 177, 179
supremum semilattice, 181
supremum-blank algebra, 326
supremum-preservation condition, 338
supremum-semilattice, 329
SVD, 133
swap vertices, 98
symmetric, 73, 399
symmetry, 261

total, 200, 202, 214, 217, 222, 391
non-empty, 204, 215, 219
non-emtpty, 200

total order, 197
totally ordered set, 176
trace, 371
transitivity, 161, 175
transpose, 73, 98, 236
triangular, 234

block, 401
ordered, 398
partially, 398
upper, 398
weak, 398

tropical algebra, 323, 339, 343
two-dimensional projection, 392

UML, 152
undirected graph, 235
uniqueness, 16
unit array, 392
unit circle, 271

transformation, 131
universal markup language, 152

value set, 175
vector, 87, 158
vector space, 159, 305

basis, 312
dimension, 317

vertex centrality, 126
visualization, 70

“current_book”
2017/8/27
23:44
page 418
#442

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

418 Index

walk, 356
weakly triangular, 259
weight of walk, 356
weighted graph, 238

Zermelo-Fraenkel-Choice, 169
zero, 198
zero array, 392
zero matrix, 234
zero padding, 197, 390
zero-sum-free, 198, 246, 323
ZFC, 169

“current_book”
2017/8/27
23:44
page 419
#443

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

Answers to Selected Exercises

Answer (Exercise 1.1)

(a) m = 4 and n = 4.

(b) mn = 16.

(c) There are zero empty cells.

(d) There are 16 filled cells.

Answer (Exercise 1.2)

(a) There are 20 vertices.

(b) The orange line passes through six vertices {V02, V06, V09, V11, V16, V20}.

(c) The three triangles are {V02, V11, V13}, {V02, V10, V11}, and {V05, V06, V16}.

Answer (Exercise 1.3)

(a) Because there are an equal number of rows and columns.

(b) Because the array is symmetric around the diagonal.

(c) Row/column V02 has a sum of 16.

Answer (Exercise 1.4)

(a) m = 3 and n = 3.

(b) There are 3 genre vertices and 3 artist vertices.

(c) mn = 9.

(d) There are 5 empty cells.

(e) There are 4 filled cells.

(f) There are 4 edges in the graph.

“current_book”
2017/8/27
23:44
page 420
#444

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

420 Answers to Selected Exercises

Answer (Exercise 1.5)

(a) Associativity among A, B, and C is illustrated by the expression

(A⊕B)⊕C = A⊕ (B⊕C)

or
(A⊗B)⊗C = A⊗ (B⊗C)

(b) Commutativity among A, B, and C is illustrated by the expression

A⊕B = B⊕A

or
A⊗B = B⊗A

(c) Distributivity among A, B, and C is illustrated by the expression

A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)

Answer (Exercise 2.1)

(a) upper left: m = 4 and n = 4, upper middle: m = 3 and n = 2, right: m = 12 and n = 1,
and lower middle: m = 6 and n = 3.

(b) upper left: mn = 16, upper middle: mn = 6, right: mn = 12, and lower middle: mn = 18.

(c) There are no empty cells.

(d) upper left: integers, upper middle: words, right: dollars, and lower middle: integers.

Answer (Exercise 2.2)

(a) Name(NameID = 2) = Bob.

(b) Job(JobID = 1) = scientist.

Answer (Exercise 2.3)

(a) m = 6 and n = 3 + 6 = 9.

(b) mn = 54.

(c) 6 + 21 = 27 empty entries.

(d) 12 + 15 = 27 non-empty entries.

“current_book”
2017/8/27
23:44
page 421
#445

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

421

Answer (Exercise 2.4)

(a) m = 11 and n = 11.

(b) m = 6 and n = 3.

(c) Non-empty row keys are {0,2,4,6,8,10} and the non-empty column keys are {0,5,10}.

(d) mn = (11)(11) = 121.

(e) mn = (6)(3) = 18.

(f) There are 121−18 = 103 empty entries.

(g) There are 18 non-empty entries.

(h) (10,10,18) has the largest value in the array?

Answer (Exercise 2.5)

(a) The longest side of the red rectangle aligns with the longest diagonal of the blue paral-
lelogram, and the shortest side of the red rectangle aligns with the shortest diagonal of
the blue parallelogram.

(b) The sides of the black square align with the sides of the red rectangle.

(c) The longest side of the red rectangle aligns with the semi-major axis of the green dashed
ellipse, and the shortest side of the red rectangle aligns with the semi-minor axis of the
green dashed ellipse.

(d) Two of the sides of the blue parallelogram are tangent to the the green dashed ellipse.

Answer (Exercise 2.6)

(a) 2 edges go into the vertex Alice and 2 edges leave the vertex Alice.

(b) 1 edge goes into the vertex Bob and 2 edges leave the vertex Bob.

(c) 3 edges go into the vertex Carl and 1 edge leaves the vertex Carl.

Answer (Exercise 4.1)

(a) A: m = 25 and n = 10, A1: m = 3 and n = 2, and A1: m = 3 and n = 3.

(b) A: mn = 250, A1: mn = 6, and A2: mn = 9.

(c) A has 2 empty entries, A1 has 0 empty entries, and A2 has 0 empty entries.

(d) A has 250− 2 = 248 non-empty entries, A1 has 6 non-empty entries, and A2 has 9
non-empty entries.

“current_book”
2017/8/27
23:44
page 422
#446

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

422 Answers to Selected Exercises

(e) A('063012ktnA2 ', 'Track ') = 'Sugar ', A1(1,1) = 'Kitten ', and A2(3,3) = 'Pop '.

Answer (Exercise 4.2)

(a) top: m = 4 and n = 4, middle: m = 4 and n = 4, and bottom: m = 2 and n = 2.

(b) top: mn = 16, middle: mn = 16, and bottom: mn = 4.

(c) top has 3 empty entries, middle has 5 empty entries, and bottom has 0 empty entries.

(d) top has 13 non-empty entries, middle has 11 non-empty entries, and bottom has 0 non-
empty entries.

Answer (Exercise 4.3)

(a) E: m = 22 and n = 90, E1: m = 22 and n = 3, and E1: m = 22 and n = 5.

(b) E: mn = 1980, E1: mn = 66, and E2: mn = 110.

(c) E has 1605 empty entries, E1 has 38 empty entries, and E2 has 63 empty entries.

(d) E has 375 non-empty entries, E1 has 28 non-empty entries, and E2 has 47 non-empty
entries.

(e) Pop is the most common genre and Chad Anderson and Chloe Chaidez are the most
common writers.

Answer (Exercise 4.4)

(a) The graph has 11 edges.

(b) There are 18 possible edges between the 3 genres and 6 writers.

(c) There are 7 possible edges that are not in the graph.

Answer (Exercise 5.1)

(a) The graph is an unweighted, undirected graph because the edges have no values and no
direction. It is not a hyper-graph because there are no edges connecting more than two
vertices. It is not a multi-graph because there is no more than one edge between the
vertices.

(b) The graph has 8 vertices and 6 edges.

(c) There are (8−1)8/2 = 28 possible edges between the 8 vertices.

(d) There are 28−11 = 17 possible edges that are not in the graph.

“current_book”
2017/8/27
23:44
page 423
#447

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

423

Answer (Exercise 5.2)

(a) A: m = 5 and n = 5, AT: m = 5 and n = 5, and A⊕AT: m = 8 and n = 8.

(b) A: mn = 25, AT: mn = 25, and A⊕AT: mn = 64.

(c) A has 25− 6 = 19 empty entries, AT has 25− 6 = 19 empty entries, and A⊕AT has
64−12 = 52 empty entries.

(d) A has 6 non-empty entries, AT has 6 non-empty entries, and A⊕AT has 12 non-empty
entries. A⊕AT has double the non-empty entries of A.

Answer (Exercise 5.3)

(a) A: m = 13 and n = 15, AT: m = 15 and n = 13, and A⊕AT: m = 20 and n = 20.

(b) A: mn = 195, AT: mn = 195, and A⊕AT: mn = 400.

(c) A has 195−23 = 172 empty entries, AT has 195−23 = 172 empty entries, and A⊕AT

has 400−46 = 354 empty entries.

(d) A has 23 non-empty entries, AT has 23 non-empty entries, and A⊕AT has 46 non-
empty entries. A⊕AT has double the non-empty entries of A.

Answer (Exercise 5.4)

(a) This 3×3 block represents the three vertices {V01,V02,V03} that share the six hyper-
edges {B1,S1,G1,O1,O2,P1}.

(b) This 5×5 block represents the five vertices {V04,V05,V06,V07,V08} that share the six
hyper-edges {B2,S2,G2,O3,O4,P2}.

(c) This 3×3 block represents the three vertices {V15,V16,V17} that share the one hyper-
edge P6.

Answer (Exercise 5.5)
O5 is the hyper-edge containing the six vertices {V09,V11,V02,V16,V06,V20} that are
part of all the other edges in the picture. Thus, because O5 shares edges with every other
edge, it has a dense row and column in the array.

Answer (Exercise 6.1)

(a) The graph is an unweighted, directed graph. Is not a hyper-graph. It is not a multi-
graph.

“current_book”
2017/8/27
23:44
page 424
#448

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

424 Answers to Selected Exercises

(b) The graph is unweighted because there are no values on the edges. The graph is a
directed graph because the edges have direction given by arrows. The graph is not a
hyper-graph because there are no edges connecting more than two vertices. The graph
is not a multi-graph because there is no more than one edge in the same direction
between any two vertices.

(c) The adjacency matrix is an unweighted graph because there are no values on the entries.
The adjacency matrix is directed because it is not symmetric about the diagonal. The
adjacency matrix is not a hyper-graph because an adjacency matrix cannot distinguish
an edge with more than two vertices. The adjacency matrix is not a multi-graph be-
cause there are no values on the entries that could be used as a count of multiple edges
between the same vertices.

Answer (Exercise 6.2)

(a) The graph is an unweighted, directed hyper-multi-graph.

(b) The graph is unweighted because there are no values on the edges. The graph is a
directed graph because the edges have direction given by arrows. The graph is a hyper-
graph because there are edges connecting more than two vertices. The graph is a multi-
graph because there is more than one edge in the same direction between any two
vertices.

(c) The incidence matrix is an unweighted graph because there are no values on the entries.
The incidence matrices are directed because not every edge has its reverse edge also
represented in incidence matrices. The incidence matrix is a hyper-graph because there
are rows with more than two nonzero values. The incidence matrices are a multi-graph
because there are edges that are repeated.

Answer (Exercise 6.3)
In all cases, addition of 0 with a nonzero value produces a nonzero value. Likewise, addi-
tion of a 0 value with another 0 value results in another 0 value.

Answer (Exercise 6.4)
In all cases, multiplication of 0 with a nonzero value produces a 0 value. Likewise, multi-
plication of a 0 value with another 0 value results in another 0 value. Only multiplication
of a nonzero value with a nonzero value produces a nonzero value.

Answer (Exercise 7.2)
Formally, an associative array A is a map from sets of keys K1×K2 to a value set V with a

“current_book”
2017/8/27
23:44
page 425
#449

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

425

semiring structure
A : K1×K2→ V,

where (V,⊕,⊗,0,1) is a semiring with addition operator⊕, multiplication operator⊗, additive-
identity/multiplicative-annihilator 0, and multiplicative-identity 1.

Answer (Exercise 7.3)
Adjacency arrays can be used to describe weighted-directed graphs. Incidence arrays can
be used to describe weighted-directed-multi-hyper graphs.

Answer (Exercise 7.4)

AV or ATV or VTA or AVT or VAT or VA

Answer (Exercise 7.5)
The result of VA is the transpose of AV.

Answer (Exercise 8.1)

Kitchen
sink
run water

Room
door
open

Bedroom
bed
make bed

Bathroom
toilet
flush

Answer (Exercise 8.2)
For a standard set V with distinct element v ∈ V , there are a number of standard operations

• U = V means that U and V have the same elements

• U ⊂ V denotes that U is a subset of V

• U ∩V denotes the intersection of sets U and V

• U ∪V denotes the union of sets U and V

• U \V denotes the difference of sets U and V

• U ×V denotes the cartesian product of sets U and V

“current_book”
2017/8/27
23:44
page 426
#450

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

426 Answers to Selected Exercises

• P(V) is the power set of V

• |V | is the cardinality of V

Answer (Exercise 8.3)

(a) A monoid adds the property of the identity 1⊗ v = v to a semigroup.

(b) A commutative monoid adds the property of commutativity u⊗ v = v⊗u to a monoid.

(c) A group adds the property of the inverse v−1⊗ v = 1 to a monoid.

(d) A commutative group adds the property of commutativity u⊗ v = v⊗u to a group.

Answer (Exercise 8.4)

(a) Ring inherits from commutative group and semiring.

(b) Commutative ring inherits from ring.

(c) Field inherits from commutative group and commutative ring.

(d) Module inherits from commutative group, ring, and semimodule.

(e) Vector space inherits from module and field.

Answer (Exercise 8.5)

(a) A partially ordered set adds the property of u ≤ v or v ≤ u for some u and v in the set.

(b) A totally ordered set adds the property of u ≤ v or v ≤ u for all u and v in the set.

(c) A strict partially ordered set adds the property of u < v or v < u for some u and v in the
partially ordered set.

(d) A strict totally ordered set adds the property of u < v, u > v, or u = v for all u and v in
the set.

Answer (Exercise 8.7)

(a)

AA =

v10 v12

v04 1

v08 1

“current_book”
2017/8/27
23:44
page 427
#451

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

427

(b)

(AA)T =

v04 v08

v10 1

v12 1

Answer (Exercise 9.1)

(a)

α⊗A =

a b c

1 21 6 3

2 0 9 9

(b)

A⊕B =

a b c

1 11 4 6

2 1 3 4

(c)

A⊗B =

a b c

1 28 4 5

2 0 0 3

(d)

A ⊕.⊗ C =

1 2 3 4

1 21 17 11 7

2 0 6 6 12

Answer (Exercise 9.2)

(a)

α⊗A =

a b c

1 3 2 1

2 −∞ 3 3

“current_book”
2017/8/27
23:44
page 428
#452

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

428 Answers to Selected Exercises

(b)

A⊕B =

a b c

1 7 2 5

2 1 3 3

(c)

A⊗B =

a b c

1 4 2 1

2 −∞ −∞ 1

(d)

A ⊕.⊗ C =

1 2 3 4

1 3 2 2 2

2 −∞ 1 2 3

Answer (Exercise 9.3)

(a)

α⊗A =

a b c

1 7 3 3

2 ∞ 3 3

(b)

A⊕B =

a b c

1 4 2 1

2 1 3 1

(c)

A⊗B =

a b c

1 7 2 5

2 ∞ ∞ 3

(d)

A ⊕.⊗ C =

1 2 3 4

1 7 1 2 1

2 ∞ 3 3 3

“current_book”
2017/8/27
23:44
page 429
#453

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

429

Answer (Exercise 9.4)

(a)

α⊗A =

a b c

1 10 5 4

2 −∞ 6 6

(b)

A⊕B =

a b c

1 7 2 5

2 1 3 3

(c)

A⊗B =

a b c

1 11 4 6

2 −∞ −∞ 4

(d)

A ⊕.⊗ C =

1 2 3 4

1 10 9 8 5

2 −∞ 4 5 6

Answer (Exercise 9.5)

(a)

α⊗A =

1 2

a ∅ {0}

b ∅ ∅

(b)

A⊕B =

1 2

a {0,1} {0,2}

b {1} {0}

(c)

A⊗B =

1 2

a ∅ ∅

a ∅ ∅

“current_book”
2017/8/27
23:44
page 430
#454

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

430 Answers to Selected Exercises

(d)

A ⊕.⊗ C =

a

a {0}

a ∅

Answer (Exercise 9.7)(Proof of Lemma 9.1.)
By definition

w∧u ≤ w

and
w∧u ≤ u ≤ v

so that
w∧u ≤ w∧ v

Likewise, by definition
w ≤ w∨ v

and
u ≤ v ≤ w∨ v

so that
w∨u ≤ w∨ v

Answer (Exercise 10.10)(Proof of Theorem 10.2.)
Suppose that some coordinate pair (k1,k2) is not in the support of A or B. Then

A(k1,k2) = B(k1,k2) = 0

so
(A⊕B)(k1,k2) = A(k1,k2) + B(k1,k2) = 0 + 0 = 0

and so
(k1,k2) < support(A⊕B)

Thus, any point not in the support of A or B cannot be in the support of A⊕B, and so

support(A⊕B) ⊂ support(A)∪ support(B)

If V is zero-sum-free, then

(A⊕B)(k1,k2) = A(k1,k2) + B(k1,k2) = 0

“current_book”
2017/8/27
23:44
page 431
#455

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

431

if and only if
A(k1,k2) = 0 = B(k1,k2)

so
(k1,k2) ∈ support(A⊕B)

implies
(k1,k2) ∈ support(A)∪ support(B)

Answer (Exercise 10.11)(Proof of Theorem 10.3.)
Firstly, for any sets U and V , if

U ⊂ V

then
|U | ≤ |V |

Additionally, for any sets U and V ,

|U ∪V | = |U |+ |V | − |U ∩V | ≤ |U |+ |V |

So by Theorem 10.2

nnz(A⊕B) = |support(A⊕B)|

≤ |support(A)∪ support(B)|

≤ |support(A)|+ |support(B)|

= nnz(A) + nnz(B)

and so
nnz(A⊕B) ≤ nnz(A) + nnz(B)

On the other hand, nnz(A⊕B) can be bounded from below because every nonzero element
of A or B contributes a nonzero element of A⊕B if the zero-sum-free criterion is used.
Thought of another way,

nnz(A⊕B) = |support(A⊕B)|

= |support(A)∪ support(B)|

≥max
(
|support(A)|, |support(B)|

)
= max

(
nnz(A),nnz(B)

)

Answer (Exercise 10.12)(Proof of Theorem 10.4.)

“current_book”
2017/8/27
23:44
page 432
#456

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

432 Answers to Selected Exercises

Suppose row k1 of A and B are empty (all zeros)

A(k1, :) = 0

B(k1, :) = 0

so that row k1 does not add to either size(A) or size(B). Then sum of these rows must also
be zero

A(k1, :)⊕B(k1, :) = 0

Thus, the addition of two empty rows cannot add to

size
(
A(k1, :)⊕B(k1, :)

)
The same argument can also be applied to the columns, showing that

size(A⊕B) ≤ size(A) + size(B)

Additionally, given that the i-th row of either A or B is nonzero, by zero-sum-freeness the
i-th row of A⊕B is also nonzero. The same is true of the columns. Thus, the number of
nonzero rows (respectively, columns) in A⊕B is at least the number of rows (respectively,
columns) of either A or B, so

size(A⊕B) ≥max
(
size(A),size(B)

)

Answer (Exercise 10.13)(Proof of Theorem 10.5.)
Suppose

w ∈ image(C)

so that there is v with
Cv = w

But then
w = (A⊕B)v = Av⊕Bv

and
Av ∈ image(A)

and
Bv ∈ image(B)

The above reasoning shows that

w ∈ image(A)⊕ image(B)

“current_book”
2017/8/27
23:44
page 433
#457

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

433

and hence that
image(C) ⊂ image(A)⊕ image(B)

Answer (Exercise 10.14)(Proof of Theorem 10.6.)

image(A⊕B) ⊂ image(A)⊕ image(B)

By the above condition, it is only required to show that the dimension of the sum of two
sets is less than or equal to the sum of the dimensions. If there is a generating set for
image(A) and a generating set for image(B), then these two sets together will generate

image(A)⊕ image(B)

and hence
image(A⊕B)

So writing this in terms of ranks gives

rank(A⊕B) ≤ rank(A) + rank(B)

Answer (Exercise 10.15)(Proof of Theorem 10.7.)
Suppose that some coordinate pair (k1,k2) is not in the support of A. Then A(k1,k2) = 0, so

(A⊗B)(k1,k2) = A(k1,k2)⊗B(k1,k2) = 0⊗B(k1,k2) = 0

Thus (k1,k2) is not in the support of A⊗B. Similarly, if (k1,k2) is not in the support of B.
Then B(k1,k2) = 0, so

(A⊗B)(k1,k2) = A(k1,k2)⊗B(k1,k2) = A(k1,k2)⊗0 = 0

The above argument means that if (k1,k2) is not in the support of A or is not in the support
of B, then it is not in the support of A⊗B. So if (k1,k2) is in the support of A⊗B, it must
be in the support of A and in the support of B. Hence

support(A⊗B) ⊂ support(A)∩ support(B)

Now, suppose
(k1,k2) ∈ support(A)∩ support(B)

The above equation implies that A(k1,k2) , 0 and B(k1,k2) , 0 as well. If the entry space
of A and B has no zero divisors, then for all elements of the entry space, if a and b are

“current_book”
2017/8/27
23:44
page 434
#458

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

434 Answers to Selected Exercises

nonzero, ab is as well. Since it is known that for this (k1,k2)

(A⊗B)(k1,k2) = A(k1,k2)B(k1,k2)

is the product of two nonzero elements of the entry space, if the entry space has no zero
divisors, then

(A⊗B)(k1,k2) , 0

Thus in this case, if
(k1,k2) ∈ support(A)∩ support(B)

then
(k1,k2) ∈ support(A⊗B)

and hence
support(A)∩ support(B) ⊂ support(A⊗B)

Combining the above equation with

support(A⊗B) ⊂ support(A)∩ support(B)

gives
support(A⊗B) = support(A)∩ support(B)

Answer (Exercise 10.16)(Proof of Theorem 10.8.)
Firstly, for any sets U and V , if

U ⊂ V

then
|U | ≤ |V |

Secondly, it is the case that
U ∩V ⊂ U

and
U ∩V ⊂ V

so
|U ∩V | ≤ |U |

and
|U ∩V | ≤ |V |

so
|U ∩V | ≤min(|U |, |V |)

“current_book”
2017/8/27
23:44
page 435
#459

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

435

So by Theorem 10.7

nnz(A⊗B) = |support(A⊗B)|

≤ |support(A)∩ support(B)|

≤min
(
|support(A)|, |support(B)|

)
= min(nnz(A),nnz(B))

Answer (Exercise 10.17)(Proof of Theorem 10.9.)
Suppose that row key k1 defines a row A(k1, :) that is not counted in size(A), and that
B(k1, :) is not counted in size(B). If the k1 row of either A and B is zero, then the k1 row
of A⊗B is the element-wise multiplication of these and is also zero. This means that zero
rows of A or B turn into zero rows of A⊗B, so the set of nonzero rows of A⊗B is a subset
of both the set of nonzero rows of A and the set of nonzero rows of B. The same argument
can also be made for the columns, so

size(A⊗B) ≤min
(
size(A),size(B)

)
as desired.

Answer (Exercise 10.18)(Proof of Theorem 10.11.)
For

C = AB

it is known that
C(k1,k2) = A(k1, :)B(:,k2)

so if
A(k1, :) = 0

then
C(k1,k2) = 0

for all k2 and so
C(k1, :) = 0

and if
B(:,k2) = 0

then
C(k1,k2) = 0

“current_book”
2017/8/27
23:44
page 436
#460

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

436 Answers to Selected Exercises

for all k2 and so
C(:,k2) = 0

The above observations mean that any zero row of A is also a zero row of C, and any zero
column of B is also a zero column of C. Hence, any nonzero row of AB must be a nonzero
row of A, and any nonzero column must be a nonzero column of B. Thus

size(AB,1) ≤ size(A,1)

and
size(AB,2) ≤ size(B,2)

as desired.

Answer (Exercise 11.1)
A is symmetric because it is the adjacency array of an undirected graph.

Answer (Exercise 11.2)
The adjacency array from Example 3 is a subarray of the adjacency array from Example 4;
the former is also diagonal, while the latter is not.

Answer (Exercise 11.3)

(a) Zero-sum-free is required to prevent an edge weight being summed with its additive
inverse resulting in an elimination of the edge.

(b) No zero divisors is required be to prevent a zero divisor edge weight from being multi-
plied by another edge weight that results in an elimination of the edge.

(c) 0 annihilator is required so that no edges are created in the adjacency array where none
exist in the incidence array.

Answer (Exercise 11.4)(Proof of Corollary 11.5.)
Let Ḡ denote the reverse of G, and let Ēout and Ēin be out-vertex and in-vertex incidence
arrays for Ḡ, respectively. Recall that Ḡ is defined to have the same edge and vertex sets
as G but changes the directions of the edges; in other words, if an edge k leaves a vertex a
in G, then it enters a in Ḡ and vice versa. As such

Eout(k,a) , 0 if and only if Ēin(k,a) , 0

and likewise
Ein(k,a) , 0 if and only if Ēout(k,a) , 0

“current_book”
2017/8/27
23:44
page 437
#461

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

437

As such, choosing Eout = Ēin and Ein = Ēout gives valid in-vertex and out-vertex incidence
matrices for Ḡ, respectively. Then by Theorem 11.1 it can be shown that

ĒT
outĒin = ET

inEout

Answer (Exercise 11.5)

(a) m = 21, n = 3, nnz = 28

(b) m = 22, n = 5, nnz = 47

(c) m = 3, n = 5, nnz = 11

(d) size of E1 +.× E from Figure 11.2 is equal to the number of columns in E1 by the
number of columns in E2 from Figure 11.1.

Answer (Exercise 11.6)
With the indicated operations, the blank spaces in the arrays of Figure 11.2 are the additive
identities (equivalently, multiplicative annihilators) with respect to those operations.

(a) 0

(b) −∞

(c) ∞

(d) −∞

(e) ∞

(f) 0

(g) 0

Answer (Exercise 11.10)(Proof of Lemma 11.7.)
The order-isomorphism f is defined recursively. Let

K = {k1, . . . ,kn}

and let
f (1) = min{k1, . . . ,kn}

Then, given f (1), . . . , f (i) have been defined for i < n, define

f (i + 1) = min
(
K \ { f (1), . . . , f (i)}

)
Note that because < is a strict total order on K, it follows that

f (i + 1) < { f (1), . . . , f (i)}

“current_book”
2017/8/27
23:44
page 438
#462

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

438 Answers to Selected Exercises

since the minimum of any subset of K must lie in that subset. This condition implies that
f is a bijection, so it only remains to show that f is monotonic. By induction, if

k ∈ K \ { f (1), . . . , f (i)}

then
f (1), . . . , f (i) < k

For the base case, f (1) is defined to be the smallest element of K, so f (1) < k for any
k , f (1). If the statement is true for i and

k ∈ K \ { f (1), . . . , f (i), f (i + 1)}

then in particular
k ∈ K \ { f (1), . . . , f (i)}

so
f (1), . . . , f (i) < k

Since f (i + 1) is defined to be the smallest element of

K \ { f (1), . . . , f (i)}

then f (i + 1) < k and
f (1), . . . , f (i), f (i + 1) < k

Thus, if
1 ≤ i < j ≤ n

then
f (j) < { f (1), . . . , f (i)}

so
f (1), . . . , f (i) < f (j)

In particular, f (i) < f (j), so f is monotonic.

Answer (Exercise 11.11)(Proof of Lemma 11.8.)
Taking the transpose interchanges the roles of rows and columns.

“current_book”
2017/8/27
23:44
page 439
#463

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

439

Answer (Exercise 12.1)
Sketch of unit transformation with notional infinite values

- 0

-

0

+.

-1 0 1

-0.5

0

0.5

max.+

- 0

-

0
min.+

-1 0 1

-0.5

0

0.5

max.min

0

0

max.

-1 0 1

-1

-0.5

0

0.5

min.max

- 0

-

0

min.

“current_book”
2017/8/27
23:44
page 440
#464

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

440 Answers to Selected Exercises

Answer (Exercise 12.2)
Sketch of unit transformation with notional infinite values

- 0

-

0

+.

0

0

max.+

-1 0 1

-0.5

0

0.5

min.+

-1 0 1

-0.5

0

0.5

1
max.min

0

0

max.

-1 0 1

-0.5

0

0.5

min.max

- 0

-

0

min.

“current_book”
2017/8/27
23:44
page 441
#465

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

441

Answer (Exercise 12.3)
Sketch of unit transformation with notional infinite values

- 0

-

0

+.

0

0

max.+

- 0

-

0
min.+

-1 0 1

-0.5

0

0.5

max.min

0

0

max.

-1 0 1

-1

0

1
min.max

- 0

-

0

min.

“current_book”
2017/8/27
23:44
page 442
#466

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

442 Answers to Selected Exercises

Answer (Exercise 12.4)
Sketch of unit transformation with notional infinite values

- 0

-

0

+.

0

0

max.+

- 0

-

0
min.+

-1 0 1

-1

0

1
max.min

0

0

max.

-1 0 1

-0.5

0

0.5

min.max

- 0

-

0

min.

“current_book”
2017/8/27
23:44
page 443
#467

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

443

Answer (Exercise 12.5)
Sketch of unit transformation with notional infinite values

-1 0 1

-0.5

0

0.5

+.

-1 0 1 2

-0.5

0

0.5

1

1.5

max.+

-1 0 1

-1

0

1
min.+

-1 0 1

-0.5

0

0.5

max.min

-1 0 1

-0.5

0

0.5

max.

-1 0 1

-0.5

0

0.5

1
min.max

-1 0 1

-0.5

0

0.5

min.

“current_book”
2017/8/27
23:44
page 444
#468

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

444 Answers to Selected Exercises

Answer (Exercise 12.6)
Sketch of unit transformation with notional infinite values

- 0

-

0

+.

0

0

max.+

-1 0 1 2

-0.5

0

0.5

1

1.5

min.+

-1 0 1

-0.5

0

0.5

1
max.min

0

0

max.

-1 0 1

-0.5

0

0.5

1
min.max

- 0

-

0

min.

Answer (Exercise 13.1)
An n×m matrix with entries in V is the same thing as a function {1, . . . ,n}×{1, . . . ,m} → V ,
so take K = {1, . . . ,n} × {1, . . . ,m}. Note that since K is finite, there is no issue related to
having finite support. Thus, Vn×m = V�{1,...,n}×{1,...,m}.

Answer (Exercise 13.2)
If K is infinite, then the tuple (1)k∈K does not have finite support, and so is not in V�K .
When K is finite, however, every tuple automatically has finite support so VK = V�K in
that case.

Answer (Exercise 13.3)
Requiring elements to have finite support means that the set {ek | k ∈ K} actually forms a
basis, meaning that V�K gives a natural semimodule over V with dimension |K|.
Additionally, having finite support means that when K = K1×· · ·×Kd for key sets K1, . . . ,Kd,
the elements of V�K actually are d-dimensional associative arrays, which are objects of in-
terest.

“current_book”
2017/8/27
23:44
page 445
#469

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

445

Answer (Exercise 13.4)(Proof of Proposition 13.1.)
For uniqueness, given linear functions

f ′, f ′′ : V�K → M

that satisfy
f ′(ek) = f ′′(ek) = f (ek)

For v ∈ V�K , there are k1,k2, . . . ,kn ∈ K such that

v = v(k1)ek1 ⊕ · · ·⊕v(kn)ekn

Then the linearity of f ′ and f ′′ implies

f ′(v) = f ′(v(k1)ek1 ⊕ · · ·⊕v(kn)ekn)

= v(k1) f ′(ek1)⊕ · · ·⊕v(kn) f ′(ekn)

= v(k1) f (ek1)⊕ · · ·⊕v(kn) f (ekn)

= v(k1) f ′′(ek1)⊕ · · ·⊕v(kn) f ′′(ekn)

= f ′′(v(k1)ek1 ⊕ · · ·⊕v(kn)ek1)

= f ′′(v)

The appropriate definition of f ′ to prove existence is motivated by the uniqueness proof
above. Take v as above and then define

f ′(v) = v(k1) f (ek1)⊕ · · ·⊕v(kn) f (ekn)

This gives a well-defined function f ′ : V�K → M by the fact that if

v(k1)ek1 ⊕ · · ·⊕v(kn)ekn = w(j1)e j1 ⊕ · · ·⊕w(jm)e jm

where each v(ki) and w(j`) are nonzero, then n = m, {k1, . . . ,kn} = { j1, . . . , jm}, and if ki = j`,
then v(ki) = w(j`). Thus, applying f ′ on both sides gives the same element in M.
Now it just remains to show that f ′ is linear. Suppose u ∈ V and v,v′ ∈ V�K . Then there
are k1, . . . ,kn and j1, . . . , jm such that

v = v(k1)ek1 ⊕ · · ·⊕v(kn)ekn

and
v′ = v′(j1)e j1 ⊕ · · ·⊕v′(jm)e jm

“current_book”
2017/8/27
23:44
page 446
#470

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

446 Answers to Selected Exercises

Then by definition of f ′, it follows that

f ′(uv⊕v′) = f ′
(
u(v(k1)ek1 ⊕ · · ·⊕v(kn)ekn)⊕ (v′(j1)e j1 ⊕ · · ·⊕v′(jm)e jm)

)
= f ′

(
uv(k1)ek1 ⊕ · · ·⊕uv(kn)ekn ⊕v′(j1)e j1 ⊕ · · ·⊕v′(jm)e jm

)
= uv(k1) f (ek1)⊕ · · ·⊕uv(kn) f (ekn)⊕v′(j1) f (e j1)⊕ · · ·⊕v′(jm) f (e jm)

= u f ′(v)⊕ f ′(v′)

Answer (Exercise 13.5)

A general element of R2×1 is of the form ae1 + be2 =

1

1 a

2 b

, and the function f ′ is

defined by
f ′(ae1 + be2) = a f (e1) + b f (e2) = a−2b

Thus, the matrix representing this linear map is given by

[1 2

1 1 −2
]

1

1 a

2 b

 = a−2b

Answer (Exercise 13.6) (Proof of Proposition 13.2.)
First suppose that M is a module.

(i) implies (ii) —If U is linearly dependent, then there are v1, . . . ,vn ∈U and u1, . . . ,un,w1, . . . ,wn ∈

V such that
n⊕

k=1

ukvk =

n⊕
k=1

wkvk

and there is k such that uk , wk. Thus
n⊕

k=1

(uk −wk)vk = 0

and at least one of the scalar coefficients uk −wk is nonzero by hypothesis.

(ii) implies (i) —Suppose there are v1, . . . ,vn ∈ U and u1, . . . ,un ∈ V not all zero such that
n⊕

k=1

ukvk = 0

“current_book”
2017/8/27
23:44
page 447
#471

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

447

Then letting w1 = · · · = wn = 0 shows that
n⊕

k=1

ukvk =

n⊕
k=1

wkvk

where uk , wk for some k.

Now further suppose M is a vector space.

(ii) implies (iii) —Suppose there are v1, . . . ,vn and u1, . . . ,un ∈ V not all zero such that
n⊕

k=1

ukvk = 0

Suppose without loss of generality that u1 , 0. Then

v1 =

n⊕
k=2

(−u−1
1 uk)vk

shows that
v ∈ Span(U \ {v})

(iii) implies (ii) —If there is v ∈ U such that

v ∈ Span(U \ {v})

then there are v1, . . . ,vn ∈ U \ {v} and u1, . . . ,un ∈ V such that

v =

n⊕
k=1

ukvk

Writing −1 = u0 and v = v0 it follows that

−v +

n⊕
k=1

ukvk =

n⊕
k=0

ukvk = 0

Answer (Exercise 13.7)
First suppose U is linearly independent and {v1, . . . ,vn} ⊂ U are such that

⊕n
k=1 ukvk = 0

for some uk. Writing 0 as
⊕n

k=1 0vk means
n⊕

k=1

ukvk =

n⊕
k=1

0vk

so linear independence implies uk = 0 for each k.

“current_book”
2017/8/27
23:44
page 448
#472

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

448 Answers to Selected Exercises

Conversely, suppose U satisfies the given statement and {v1, . . . ,vn} ⊂U and u1, . . . ,un,w1, . . . ,wn ∈

V are given such that
n⊕

k=1

ukvk =

n⊕
k=1

wkvk

Since V is a ring, it makes sense to add (−wk)vk on both sides of the above equation for
each k, giving

n⊕
k=1

(uk −wk)vk = 0

But by hypothesis, this implies uk −wk = 0 for each k, or uk = wk.

Answer (Exercise 13.8)
Suppose

a×

1

1 1

2 −1

+ b×

1

1 2

2 0

 =

1

1 0

2 0

The left-hand side is equal to

1

1 a + 2b

2 −a

, so being equal to

1

1 0

2 0

 immediatley gives

−a = 0 and a + 2b = 0. Thus, a = 0 and 2b = 0, so b = 0 too. By Exercise 13.7, it can be
shown that the two vectors are linearly independent.

Answer (Exercise 13.9)(Proof of Proposition 13.3.)
Let B be a basis for M. Then consider the V-semimodule V�B. There is a map f sending
ev to v, and so by Proposition 13.1 it follows that there is a linear map

f ′ : V�B→ M

It only remains to show that f ′ is a bijection. By definition of f , if

u = u1v1⊕ · · ·⊕unvn

is in M, then
f ′(u1ev1 ⊕ · · ·⊕unevn) = u

This shows that f ′ is surjective. To show that it is injective, suppose that f ′(u) = f ′(w),
where

u = u1ev1 ⊕ · · ·⊕ inevn

“current_book”
2017/8/27
23:44
page 449
#473

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

449

and
w = w1ev′1

⊕ · · ·⊕wmev′m

for
v1, . . . ,vn,v′1, . . . ,v

′
m ∈ B

Then
u1v1⊕ · · ·⊕unvn = f ′(u) = f ′(w) = w1v′1⊕ · · ·⊕wmv′m

which implies that n = m and

{v1, . . . ,vn} = {v′1, . . . ,v
′
m}

and if vi = v′j, then ui = w j. In other words, u = w.
Conversely, suppose that there is a linear isomorphism

f ′ : V�K → M

Consider the image B of the set {ek | k ∈ K}. Denote the image of ek under f ′ by vk. Then
Span(B) = M as the image of f ′ is equal to M by the hypothesis that f ′ is an isomorphism,
and so for each w there is

u = u1ek1 ⊕ · · ·⊕unekn

such that
w = f ′(u) = u1vk1 ⊕ · · ·⊕unvkn

B is linearly independent, as given

u1vk1 ⊕ · · ·⊕unvkn = w1vk1 ⊕ · · ·⊕wnvkn .

Then by applying f ′−1:

u1ek1 ⊕ · · ·⊕unekn = w1ek1 ⊕ · · ·⊕wnekn

and so by the linear independence of {ek | k ∈ K}, it follows that uk = wk for each 1 ≤ k ≤ n.
Thus, B is a basis.

Answer (Exercise 13.10)(Proof of Corollary 13.4.)
Combine Proposition 13.3 and Proposition 13.1.

Answer (Exercise 13.11)
For Z/nZ, the answer is no because Z is infinite, and hence every Z�K is also infinite (or
trivial), whereas Z/nZ is neither infinite or trivial, except when n = 1.
Proposition 13.5 says that every vector space has a basis. Thus, R is a free semimodule
over Q.

“current_book”
2017/8/27
23:44
page 450
#474

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

450 Answers to Selected Exercises

Answer (Exercise 13.12)(Proof of Corollary 13.7.)
Suppose that there is a finite basis of M, and suppose for the sake of a contradiction that
there is an infinite basis of M. But by Theorem 13.6, because the size of the finite basis is
less than that of the infinite basis, it cannot be that the finite basis is actually a basis at all,
contradicting the assumption that there is a finite basis.

Answer (Exercise 14.1)
The resulting system of equations is(

a∩{1}
)
∪

(
b∩{0}

)
= ∅(

a∩{0}
)
∪

(
b∩{1}

)
= ∅

and so a∩{1} = b∩{0} = ∅ = a∩{0} = b∩{1}, so a = b = ∅.

Answer (Exercise 14.2)
Suppose v,w are in the null space of f and u ∈ V . Then f (uv⊕w) = u f (v)⊕ f (w) = u0⊕0 =

0. Thus, the null space is a subspace of M.
If x,y are in the image of f and u ∈ V , then there are v,w ∈ M such that x = f (v) and
y = f (w). Thus, ux⊕y = u f (v)⊕ f (w) = f (uv⊕w), so ux⊕y is in the image of f .

Answer (Exercise 14.3)
Begin by noting that f is injective if and only if it has trivial null space: f (v) = f (w) if and
only if f (v−w) = 0. Thus, if the null space is trivial, then v = w, and if v ,w, then the null
space is nontrivial.
Denote by [v] the equivalence class containing v.
The map f ′ is linear, and if f ′([v]) = f ′([w]), then by definition f (v) = f (w) and thus v∼w.
But this shows that [v] = [w], so f is injective. Thus, it is an isomorphism onto its image.

Answer (Exercise 14.4)(Proof of Lemma 14.4.)
Let U = {u,v}. Then the condition of preserving suprema gives

f (u∨ v) = f (u)∨ f (v)

Since u ≤ v if and only if u∨ v = v, it follows that if u ≤ v, then

f (v) = f (u∨ v) = f (u)∨ f (v)

“current_book”
2017/8/27
23:44
page 451
#475

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

451

so that f (u) ≤ f (v). An analogous proof follows for the preservation of infima by consid-
ering again U = {u,v} so that

f (u∧ v) = f (u)∧ f (v)

since u ≤ v if and only if u∧ v = u, it follows that if u ≤ v, then

f (u) = f (u∧ v) = f (u)∧ f (v)

so that f (u) ≤ f (v).

Answer (Exercise 14.5)(Proof of Proposition 14.5.)
First it is shown that the product order on Vn is a partial order.

Reflexive — For each i, v(i) ≤ v(i), so v ≤ v.

Antisymmetric — Suppose v ≤ w and w ≤ v. Then v(i) ≤ w(i) and w(i) ≤ v(i) for each i, so
v(i) = w(i). Hence, v = w.

Transitive — Suppose u ≤ v and v ≤ w. Then u(i) ≤ v(i) and v(i) ≤ w(i) for each i, so
u(i) ≤ w(i) for each i. Hence, u ≤ w.

Suppose
∨

v∈U v(i) exists for each i for some subset U ⊂ Vn. u(i)≤
∨

v∈U v(i) for any u ∈U,
so

1

1
∨

v∈U v(1)
...

...

n
∨

v∈U v(n)

is an upper bound of U. Now assume that

v ≤ w

for all v ∈ U. By definition, v(i) ≤ w(i) for each i, so
∨

v∈U v(i) ≤ w(i) for each i. Hence

1

1
∨

v∈U v(1)
...

...

n
∨

v∈U v(n)

 ≤ w

“current_book”
2017/8/27
23:44
page 452
#476

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

452 Answers to Selected Exercises

This shows

1

1
∨

v∈U v(1)
...

...

n
∨

v∈U v(n)

 =
∨
v∈U

v

is the least upper bound of U.
Likewise, if

∧
v∈U v(i) exists for each i, then

1

1
∧

v∈U v(1)
...

...

n
∧

v∈U v(n)

 =
∧
v∈U

v

It follows that if V is a lattice, then so is Vn. If V is bounded, meaning that
∨
∅ ∈ V and∨

V ∈V exist, then
∨
∅ ∈Vn and

∨
Vn ∈Vn exist, so Vn is also bounded. If V is distributive,

then since suprema and infima in Vn are calculated entry-wise, it follows that suprema and
infima in Vn distribute over one-another.
Finally, U ⊂ Vn is non-empty if and only if πi[U] is non-empty for each i, where πi is
projection onto the i-th coordinate. Hence, if V is closed under suprema of non-empty sets,
then so is Vn.

Answer (Exercise 14.6)
The resulting system of equations is(

{0}∩a
)
∪

(
{1}∩b

)
= ∅(

{1}∩a
)
∪

(
{0}∩b

)
= {0,1}

The first equation implies that 0 < a and 1 < b, while the second equation shows that 1 ∈ a
and 0 ∈ b. This shows that it has solution a = {1},b = {0}, and this is the unique solution.
Thus,

X(A,w) =

1

1 {1}

2 {0}

 ,

1

1 {1}

2 {0}

Answer (Exercise 14.7)(Proof of Lemma 14.9.)

“current_book”
2017/8/27
23:44
page 453
#477

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

453

Let

U =

n⋂
j=1

m⋃
i=1

Ui, j

and

U′ =
⋃

1≤i1,...,i j...,in≤m

n⋂
j=1

Ui j, j

U = U′ is shown by proving that U ⊂ U′ and U ⊃ U′. First, it is shown that U ⊂ U′.
Suppose that u ∈ U, so that by definition u lies in all of the unions

m⋃
i=1

Ui, j

so for every j ∈ {1, . . . ,n} there exist I j ∈ {1, . . . ,n} such that u ∈ UI j, j. Thus

u ∈
n⋂

j=1

UI j, j

so that u ∈U′. Now, it is shown that U ⊃ V . Suppose that u ∈U′, so that by definition there
exists a tuple I1, . . . , In such that

n⋂
j=1

UI j, j

contains u. In particular, u is in every one of the unions
m⋃

i=1

Ui, j

for j ∈ {1, . . . ,n} and thus u ∈ U.

Answer (Exercise 14.8)(Proof of Lemma 14.10.)
Suppose u ∈ [v1,w1]∩ [v2,w2], so that v1 ≤ u ≤ w1 and v2 ≤ u ≤ w2. Then v1 ∨ v2 ≤ u ≤
w1∧w2. Thus,

[v1,w1]∩ [v2,w2] ⊂ [v1∨ v2,w1∧w2]

Conversely, suppose v1 ∨ v2 ≤ u ≤ w1 ∧w2. Then v1,v2 ≤ v1 ∨ v2 ≤ u ≤ w1 ∧w2 ≤ w1,w2

implies u ∈ [v1,w1]∩ [v2,w2]. Thus,

[v1,w1]∩ [v2,w2] ⊃ [v1∨ v2,w1∧w2]

Answer (Exercise 14.9)(Proof of Theorem 14.11.)

“current_book”
2017/8/27
23:44
page 454
#478

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

454 Answers to Selected Exercises

v satisfies Av = w if and only if A(i, :)v = w for each i. Hence, by 14.9 and 14.10

X(A,w) =

m⋂
i=1

X(A(i, :),w(i))

=

m⋂
i=1

⋃
v∈Ui

[v,xi]

=
⋃

v1∈U1,...,vn∈Un

m⋂
i=1

[vi,xi]

=
⋃

v1∈U1,...,vn∈Un

 m∨
i=1

vi,

m∧
i=1

xi

Answer (Exercise 14.10) Recall that [pi
j,q

i
j] = f −1A(i, j)(w(i)). Then

[p1
1,q

1
1] = f −1A(1,1)(0) = f −14 (0) = [−4, −4]

[p1
2,q

1
2] = f −1−∞(0) = ∅

[p2
1,q

2
1] = f −1−1 (1) = [−2, −2]

[p2
2,q

2
2] = f −10 (1) = [1,1]

(the second equation shows that p1
2 = −∞ and q1

2 =∞). Thus, the relevant vectors are

q1 =

1

1 −4

2 ∞

 q2 =

1

1 −2

2 1

p1,1 =

1

1 −4

2 −∞

 p1,2 =

1

1 −∞

2 −∞

p2,1 =

1

1 −2

2 −∞

 p2,2 =

1

1 −∞

2 0

“current_book”
2017/8/27
23:44
page 455
#479

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

455

Therefore

X(A,w) =
[
p1,1∨p2,1,q1∧q2

]
∪

[
p1,1∨p2,2,q1∧q2

]

=

1

1 −2

2 −∞

 ,

1

1 −4

2 1

 ∪

1

1 −4

2 1

 ,

1

1 −4

2 1

Answer (Exercise 14.11)(Proof of Proposition 14.17.)
Suppose v ≤ u. Then because V is totally-ordered, ∧ is minimum, and it follows that the
greatest element w such that

v∧w ≤ u

is∞ because
v∧∞ = v ≤ u

and∞ is the greatest element. On the other hand, if v > u, then u is the greatest element w
such that

v∧w ≤ u

as in fact
v∧w = v∧u = u

so that by monotonicity if
v∧w ≤ u

then
w ≤ u

Answer (Exercise 14.12)(Proof of Proposition 14.18.)
To show that the above definition makes V into a Heyting algebra, it is first checked that

w = ¬v∨u

satisfies
v∧w ≤ u

and then that it is the greatest element w satisfying v∧w ≤ u. For the first,

v∧ (¬v∨u) = (v∧¬v)∨ (v∧u) = 0∨ (v∧u) = v∧u ≤ u.

“current_book”
2017/8/27
23:44
page 456
#480

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

456 Answers to Selected Exercises

For the second, suppose w is such that v∧w≤ u. Then there are the following equivalences:

v∧w ≤ u if and only if ¬v∨ (v∧w) ≤ ¬v∨u

if and only if (¬v∨ v)∧ (¬v∧w) ≤ ¬v∨u

if and only if w ≤ ¬v∧w ≤ ¬v∨u

Thus
v⇒ u = ¬v∨u

satisfies the required conditions to make V into a Heyting algebra.

Answer (Exercise 14.13)(Proof of Proposition 14.19.)
The supremum in the Power Set Algebra is ∪, and negation is the complement in V . Thus

¬U ∨U′

becomes
Uc∪U′

Then the result follows from Proposition 14.18.

Answer (Exercise 14.14) By Corollary 14.22, it follows that if such a maximum solution
exists then it is given by

x(A,w) =

1

1
(
{0,1}c∪{1}

)
∩

(
{0}c∪∅

)
2

(
{1}c∪{1}

)
∩

(
∅c∪∅

) =

1

1 {1}∩ {1}

2 {0,1}∩ {0,1}

 =

1

1 {1}

2 {0,1}

It can be checked explicity that this is actually a solution, so at least one solution exists.

“current_book”
2017/8/27
23:44
page 457
#481

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

457

The matrices vi,u as defined in Proposition 14.24 are given by

v1,1 =

1

1 ∅

2 {0,1}

v2,0 =

1

1 {1}

2 {0}

v2,1 =

1

1 {1}

2 {1}

All three of these are actually solutions, so x(A,w) is not a unique solution in this case.

Answer (Exercise 15.1)
In the max-plus algebra, the system of equations becomes

max(3 + x,y−1) = λ+ x

max(2 + x,y) = λ+ y

Then there are several cases

2 + x ≥ y — Note that 3+ x ≥ y−1 as well. The equations are then 3+ x = λ+ x and 2+ x =

λ+ y. The first equation gives either λ = 3 or x = ±∞.

In the former case, 2 + x = 3 + y, so x = y + 1, giving eigenvectors

1

1 y + 1

2 y

 with λ = 3

(note that this does satisfy the condition 2 + x ≥ y.)

In the latter case, since 2 + x = λ+ y, λ+ y = ±∞, with the sign the same as that of x.
Thus, either λ = ±∞ or y = ±∞, giving eigenvectors

1

1 ±∞

2 ±∞

 with λ arbitrary and
[1

1 ±∞ y
]

with λ = ±∞

2 + x < y,3 + x ≥ y−1 — Note that 2 + x < y ≤ 4 + x as well. The equations are then 3 +

x = λ+ x and y = λ+ y. Then either λ = 3 or x = ±∞. However, neither case can

“current_book”
2017/8/27
23:44
page 458
#482

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

458 Answers to Selected Exercises

occur with the assumption that 2 + x < y ≤ 4 + x: If the former, then y = ±∞ (to satisfy
y = 3 + y); to satisfy 2 + x < y, it must be that y =∞, but then y ≤ 4 + x implies x =∞,
contradicting 2 + x < y. The latter case cannot occur, as 2 + x < y requires that x = −∞,
while then 3 + x = −∞ ≥ y−1 implies y = −∞, contradicting 2 + x < y. Thus, there is no
eigenvector/eigenvalue pair satisfying this condition.

2 + x < y,3 + x < y−1 — Note that 3+ x< y−1, or 4+ x< y, as well. The equations are then
y = λ+ y and y− 1 = λ+ x. To satisfy y = λ+ y, either λ = 0 or y = ±∞. In the former
case, y = x + 1, but this contradicts the assumption that 4 + x < y. In the latter case,
λ+ x = ±∞, so either λ = ±∞ or x = ±∞. It cannot be that x = ±∞ since then 4 + x < y
does not hold, so λ = ±∞. Likewise, if y = −∞ then 4 + x < y cannot be satisfied, so
y = λ =∞ and x <∞, giving the eigenvector/eigenvalue pair

1

1 x

2 ∞

 with λ =∞ and where x <∞

In the max-min algebra, the system of equations becomes

max(min(3, x),min(−1,y)) = min(λ, x)

max(min(2, x),min(y,0)) = min(λ,y)

As before, there are several cases, though many more than the max-plus case:

2 ≥ x, −1 ≥ y, y ≤ x — The equations are then x = min(λ, x) = min(λ,y). Then λ ≥ x and
x = y. This gives the eigenvector/eigenvalue pair

1

1 x

2 x

 with λ ≥ x and where x ≤ 2

2 ≥ x, −1 ≥ y,y > x — The equations are then y = min(λ, x) = min(λ,y). Then λ ≥ y and
x = y, giving a contradiction.

2 < x ≤ 3, −1 < y ≤ 0 — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) =

max(2,y) = 2. Then λ ≥ x and y = 2. But this contradicts the fact that −1 < y ≤ 0.

3 < x,0 < y — The equations are then 3 = min(λ, x) and 2 = min(λ,y). That 3 < x implies
λ = 3 and so y = 2. This gives the eigenvector/eigenvalue pair

1

1 x

2 2

 with λ = 3 and where x > 3

“current_book”
2017/8/27
23:44
page 459
#483

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

459

x ≤ 2, −1 < y ≤ 0,y ≤ x — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) =

max(x,y) = x. Thus, λ ≥ x. This gives the eigenvector/eigenvalue pair

1

1 x

2 y

 with λ ≥ x and where x ≤ 2, −1 < y ≤ 0,y ≤ x

−1 ≤ x ≤ 2, −1 < y ≤ 0, x < y — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) =

max(x,y) = y. Then λ ≥ y. This gives the eigenvector/eigenvalue pair

1

1 x

2 y

 with λ ≥ y and where −1 ≤ x ≤ 2, −1 < y ≤ 0, x < y

x < −1, −1 < y ≤ 0, x < y — The equations are then min(λ, x) = max(x, −1) = −1 and min(λ,y) =

max(x,y) = y. Then λ ≥ y and x = −1, a contradiction.

3 < x, −1 < y ≤ 0 — The equations are then min(λ, x) = max(3, −1) = 3 and min(λ,y) = max(2,y) =

2. Then λ = 3, so min(λ,y) = 2 implies y = 2, contradicting −1 < y ≤ 0.

3 < x, −1 ≥ y — The equations are then min(λ, x) = max(3,y) = 3 and min(λ,y) = max(2,y) =

2. Thus, λ = 3 and y = 2, giving a contradiction.

x ≤ 2,0 < y,y ≤ x — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) = max(x,0) =

x. Thus, λ ≥ x and x = y. This gives the eigenvector/eigenvalue pair

1

1 x

2 x

 with λ ≥ x and where 0 < x ≤ 2

0 ≤ x ≤ 2,0 < y, x < y — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) =

max(x,0) = x. Thus, λ = x. This gives the eigenvector/eigenvalue pair

1

1 x

2 y

 with λ = x and where 0 ≤ x ≤ 2,0 < y, x < y

−1 ≤ x < 0,0 < y — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) = max(x,0) =

0. Thus, λ = 0. This gives the eigenvector/eigenvalue pair

1

1 x

2 y

 with λ = 0 and where −1 ≤ x < 0,0 < y

“current_book”
2017/8/27
23:44
page 460
#484

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

460 Answers to Selected Exercises

x < −1,0 < y — The equations are then min(λ, x) = max(x, −1) = −1 and min(λ,y) = max(x,0) =

0. But then λ = 0 = −1, giving a contradiction.

2 < x ≤ 3,0 < y,y ≤ x — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) =

max(2,0) = 2. Then λ ≥ x and y = 2. This gives the eigenvector/eigenvalue pair

1

1 x

2 2

 with λ ≥ x and where 2 < x ≤ 3

2 < x ≤ 3,0 < y, x < y — The equations are then min(λ, x) = max(x, −1) = x and min(λ,y) =

max(2,0) = 2. Then λ = 2. This gives the eigenvector/eigenvalue pair

1

1 x

2 y

 with λ = 2 and where 2 < x ≤ 3,0 < y, x < y

2 < x ≤ 3,y ≤ −1 — The equations are then min(λ, x) = max(x,y) = x and min(λ,y) = max(2,y) =

2. But then λ ≥ x > 2 so y = 2, contradicting the fact that y ≤ −1.

Answer (Exercise 15.2)
It is immediate that the proposed definition of a∗ is a solution to the given equations. Given
another solution x, then x = x⊗a⊕1, so x⊗a = x⊗a2⊕a and thus x = x⊗a⊕1 = x⊗a2⊕a(1).
Continuing in this way, x = x⊗ak+1 ⊕a(k). This shows that x ≥ a(k) for every k, so x ≥ a∗.
This shows that a∗ is the minimal such solution.

Answer (Exercise 15.3)
In Example 15.5, an array in the incomplete max-plus algebra is given, namely

C =

1 2

1 1 0

2 1 1

Its quasi-inverse is calculated to be

C∗ =

1 2

1 ∞ ∞

2 ∞ ∞

which is not in the incomplete max-plus algebra. This example exhibits that the existence
of a quasi-inverse can fail if those order-theoretic completeness properties are not assumed.

“current_book”
2017/8/27
23:44
page 461
#485

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

461

However, the same example shows that the array

D =

1 2

1 −1 0

2 0 −1

does have a quasi-inverse in the incomplete max-plus algebra given by

D∗ =

1 2

1 0 0

2 0 0

Thus, the order-theoretic completeness properties are not necessary, but are sufficient, for
the existence of a quasi-inverse.

Answer (Exercise 15.4)
The first few powers are given by

A2 =

1 2

1 0 −3

2 −3 0

A3 =

1 2

1 −3 0

2 0 −3

A4 =

1 2

1 0 −3

2 −3 0

Thus, idempotence implies that

A∗ =

1 2

1 0 −∞

2 −∞ 0

⊕

1 2

1 −4 0

2 0 −3

⊕

1 2

1 0 −3

2 −3 0

⊕

1 2

1 −3 0

2 0 −3

=

1 2

1 0 0

2 0 0

“current_book”
2017/8/27
23:44
page 462
#486

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

462 Answers to Selected Exercises

Answer (Exercise 15.5)(Proof of Lemma 15.3.)
Because λ2 = λ by idempotence, it follows that

A(λv) = λ(Av) = λv = λ2v = λ(λv)

Answer (Exercise 15.6)(Proof of Corollary 15.4.)
Because

µ
⊕
c∈Pi,i

W(c)⊕µ = µ2⊕µ = µ

condition (i) of Theorem 15.2 holds and so

µA∗(:, i)

is an eigenvector of A with eigenvalue 1. Then by Lemma 15.3 it follows that

λµA∗(:, i)

is an eigenvector of A with eigenvalue λ.

Answer (Exercise 15.7)

Ã(λ) =

1 2 3 4

1 3 −1 λ −∞

2 2 0 −∞ λ

3 0 −∞ 0 −∞

4 −∞ 0 −∞ 0

Then calculating det+(Ã) (going through every permutation and moving to the next one as
soon as you encounter a −∞) and det−(Ã) gives

det+(Ã) = max(3,2λ) det−(Ã) = max(1,λ+ 3)

Thus, the characteristic bipolynomial is given by

(P+(λ),P−(λ)) = (max(3,2λ),max(1,λ+ 3))

Eigenvalues are then solutions to max(3,2λ) = max(1,λ+ 3). First suppose −2 ≤ λ < 3/2,
so that this equation becomes 3 = λ+ 3, so λ = 0. Next suppose λ < −2, so this equation
becomes 3 = 1, which is not true. Finally, suppose λ ≥ 3/2, so that the equation becomes
2λ = λ+ 3, or λ = 3. This shows that λ = 0,3 are the eigenvalues of A (in the incomplete
max-plus algebra).

“current_book”
2017/8/27
23:44
page 463
#487

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

463

Answer (Exercise 15.8)
A is irreducible since its entries are all nonzero with respect to the incomplete max-plus
algebra, meaning unequal to −∞, and so no permutation on the rows or columns will create
one.
The associated weighted directed graph is given by

1 2−3 −2
1

1

The closed walks are (1,1), (2,2), (1,2,1), (2,1,2) with weights −3,2, −2, respectively, and
average weights −3,1, −2. Thus, the spectral radius ρ(A) = 1. Thus, the unique eigenvalue

for A is 1. An example eigenvector associated with this eigenvalue is

1

1 x

2 x

 for any x.

Answer (Exercise 15.9)(Proof of Lemma 15.11.)
Because v is an eigenvector of A with eigenvalue 1, it follows that

Akv = v

for every k ≥ 0. Thus, by infinite distributivity of ⊗ over ⊕ this gives

A∗v = v

Answer (Exercise 15.10)(Proof of Lemma 15.12.)
By Lemma 15.11 it follows that

v ∈ V(1)

satisfies
A∗v = v

As such

v =

n⊕
i=1

v(i)A∗(:, i)

meaning that v is a linear combination of the columns of A∗.

Answer (Exercise 15.11)(Proof of Lemma 15.16.)

“current_book”
2017/8/27
23:44
page 464
#488

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

464 Answers to Selected Exercises

Because v is an eigenvector of A with eigenvalue λ, it follows that

Akv = λkv

for every k ≥ 0. Thus, by infinite distributivity of ⊗ over ⊕ this gives

A∗v = v
∞⊕

k=0

λk

Since 1 is the greatest element of V and ⊕ is binary supremum, it follows that
∞⊕

k=0

λk = 1⊕
∞⊕

k=1

λk = 1

so
A∗v = v

Then the proof that

span{λµiA∗(:, i) | 1 ≤ i ≤ n} ⊂ V(λ) ⊂ span{A∗(:, i) | 1 ≤ i ≤ n}

follows exactly as in Corollary 15.12 and by Corollary 15.4.

Answer (Exercise 15.12)

Let Ã = −1 + A =

1 2

1 −4 0

2 0 −3

. Its quasi-inverse was found in Exercise 15.4 as

Ã∗ =

1 2

1 0 0

2 0 0

Its columns are both (since they are equal) eigenvectors associated with the eigenvalue 1,
and these span V (1).

Answer (Exercise 16.1)
In the two-dimensional case, matrices could be considered as linear maps, though this
doesn’t work for d > 2 since array multiplication isn’t even defined.

Answer (Exercise 16.2) For determining structure like (weak) diagonality or (weak) up-
per/lower triangularity, the specific values that the array takes don’t matter, so there’s no
particular reason to record anything more from this perspective.

“current_book”
2017/8/27
23:44
page 465
#489

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

465

Adding or multiplying these terms could potentially lead to them becoming zero, and since
the presence of those terms at least needs to be recorded, these operations do not necessarily
give a useful construction, at least in terms of structure.

Answer (Exercise 16.3)
In the first case, where R∪{−∞,∞} has the max-plus algebra, the two-dimensional projec-
tions are given by

A1,2 =

1 2 3

1 −∞ 0 0

2 0 0 0

3 0 0 0

 A2,3 =

1 2 3

1 0 0 0

2 0 0 0

3 −∞ 0 0

A1,3 =

1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

In the second case, whereR∪{−∞,∞} has the max-min tropical algebra, the two-dimensional
projections are the same as in the max-plus case, but with the 0’s replaced with ∞’s. This
is because the additive identity is the same in each case, −∞, so the only thing that changes
is what is written for the multiplicative identity.

Answer (Exercise 16.5)
The key sets become

K1 =
{
{1}, {2,3}

}
K2 =

{
{1,2}, {3}

}
K3 =

{
{1,2}, {3}

}
Then the associated block structure map is given by

A′ :K1×K2×K3→ A

“current_book”
2017/8/27
23:44
page 466
#490

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 27, 2017 11:44pm

466 Answers to Selected Exercises

with slices

A′(:, :, {1,2}) =

{1} {2,3}

{1,2} pad{1,2,3}3A|{1}×{1,2}×{1,2} pad{1,2,3}3A|{2,3}×{1,2}×{1,2}
{3} pad{1,2,3}3A|{1}×{3}×{1,2} pad{1,2,3}3A|{2,3}×{3}×{1,2}

A′(:, :, {3}) =

{1} {2,3}

{1,2} pad{1,2,3}3A|{1}×{1,2}×{3} pad{1,2,3}3A|{2,3}×{1,2}×{3}
{3} pad{1,2,3}3 A|{1}×{3}×{3} pad{1,2,3}3A|{2,3}×{3}×{3}

where

(
A|{1}×{1,2}×{1,2}

)
(:, :,1) =

[1 2

1 −∞ 1
]

and
(
A|{1}×{1,2}×{1,2}

)
(:, :,2) =

[1 2

1 −∞ 0
]

(
A|{2,3}×{1,2}×{1,2}

)
(:, :,1) =

1 2

2 ∞ −∞

3 1 0

 and
(
A|{2,3}×{1,2}×{1,2}

)
(:, :,2) =

1 2

2 −∞ 0

3 1 1

(
A|{1}×{3}×{1,2}

)
(:, :,1) =

[3

1 0
]

and
(
A|{1}×{3}×{1,2}

)
(:, :,2) =

[3

1 ∞
]

(
A|{2,3}×{3}×{1,2}

)
(:, :,1) =

3

2 −1

3 3

 and
(
A|{2,3}×{3}×{1,2}

)
(:, :,2) =

3

2 0

3 0

(
A|{1}×{1,2}×{3}

)
(:, :,3) =

[1 2

1 −∞ −∞
]

(
A|{2,3}×{1,2}×{3}

)
(:, :,3) =

1 2

2 1 3

3 −1 ∞

(
A|{1}×{3}×{3}

)
(:, :,3) =

[3

1 −∞
]

(
A|{2,3}×{3}×{3}

)
(:, :,3) =

3

2 −2

3 1

	Preface
	About the Authors
	About the Cover
	Acknowledgments
	Applications and Practice
	Introduction and Overview
	Mathematics of Data
	Data in the World
	Mathematical Foundations
	Making Data Rigorous
	Conclusions, Exercises, and References

	Perspectives on Data
	Interrelations
	Spreadsheets
	Databases
	Matrices
	Graphs
	Map Reduce
	Other Perspectives
	Conclusions, Exercises, and References

	Dynamic Distributed Dimensional Data Model
	Background
	Design
	Matrix Mathematics
	Common SQL, NoSQL, NewSQL Interface
	Key-Value Store Database Schema
	Data-Independent Analytics
	Parallel Performance
	Computing on Masked Data
	Conclusions, Exercises, and References

	Associative Arrays and Musical Metadata
	Data and Metadata
	Dense Data
	Dense Operations
	Sparse Data
	Sparse Operations
	Conclusions, Exercises, and References

	Associative Arrays and Abstract Art
	Visual Abstraction
	Minimal Adjacency Array
	Symmetric Adjacency Array
	Weighted Adjacency Array
	Incidence Array
	Conclusions, Exercises, and References

	Manipulating Graphs with Matrices
	Introduction
	Matrix Indices and Values
	Composable Graph Operations and Linear Systems
	Matrix Graph Operations Overview
	Graph Algorithms and Diverse Semirings
	Conclusions, Exercises, and References

	Graph Analysis and Machine Learning Systems
	Introduction
	Data Representation
	Graph Construction
	Adjacency Array Graph Traversal
	Incidence Array Graph Traversal
	Vertex Degree Centrality
	Edge Degree Centrality
	Eigenvector Centrality
	Singular Value Decomposition
	PageRank
	Deep Neural Networks
	Conclusions, Exercises, and References

	Mathematical Foundations
	Visualizing the Algebra of Associative Arrays
	Associative Array Analogs of Matrix Operations
	Abstract Algebra for Computer Scientists and Engineers
	Depicting Mathematics
	Associative Array Class Diagrams
	Set
	Semiring
	Linear Algebra
	Ordered Sets
	Boolean Algebra
	Associative Array Algebra
	Conclusions, Exercises, and References

	Defining the Algebra of Associative Arrays
	Operations on Sets
	Ordered Sets
	Supremum and Infimum
	Lattice
	The Semirings of Interest
	Conclusions, Exercises, and References

	Structural Properties of Associative Arrays
	Estimating Structure
	Associative Array Formal Definition
	Padding Associative Arrays with Zeros
	Zero, Null, Zero-Sum-Free
	Properties of Matrices and Associative Arrays
	Properties of Zero Padding
	Support and Size
	Image and Rank
	Example: Music
	Example: Art
	Properties of Element-Wise Addition
	Properties of Element-Wise Multiplication
	Array Multiplication
	Closure of Operations between Arrays
	Conclusions, Exercises, and References

	Graph Construction and Graphical Patterns
	Introduction
	Adjacency and Incidence Array Definitions
	Adjacency Array Construction
	Graph Construction with Different Semirings
	Special Arrays and Graphs
	Key Ordering
	Algebraic Properties
	Subobject Properties
	Conclusions, Exercises, and References

	Linear Systems
	Survey of Common Transformations
	Array Transformations
	Identity
	Contraction
	Stretching
	Rotation
	Conclusions, Exercises, and References

	Maps and Bases
	Semimodules
	Linear Maps
	Linear Independence and Bases
	Existence of Bases
	Size of Bases
	Semialgebras and the Algebra of Arrays
	Conclusions, Exercises, and References

	Linearity of Associative Arrays
	The Null Space of Linear Maps
	Supremum-Blank Algebras
	Max-Blank Structure Theorem
	Examples of Supremum-Blank Algebras
	Explicit Computations of x(A,w) for Supremum-Blank Algebras
	Conclusions, Exercises, and References

	Eigenvalues and Eigenvectors
	Introduction
	Quasi-Inverses
	Existence of Eigenvalues for Idempotent Multiplication
	Strong Dependence and Characteristic Bipolynomial
	Eigenanalysis for Irreducible Matrices for Invertible Multiplication
	Eigen-Semimodules
	Singular Value Decomposition
	Conclusions, Exercises, and References

	Higher Dimensions
	d-Dimensional Associative Arrays
	Key Ordering and Two-Dimensional Projections
	Algebraic Properties
	Subarray Properties
	Conclusions, Exercises, and References

	Appendix: Notation
	Index
	Answers to Selected Exercises

