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Abstract

Intracranial hemorrhages pose a critical threat to patient health, demanding swift

and accurate diagnosis. Computed Tomography (CT) scans serve as vital tools for

medical professionals to detect and classify hemorrhage subtypes, aiding in timely

treatment decisions. However, manual interpretation of CT images is challenging,

and existing automated methods have their limitations.

This study presents an innovative approach based on the Attention U-Net model

to address the classification of intracranial hemorrhage subtypes. The Attention

U-Net combines the strengths of Convolutional Neural Networks (CNNs) and at-

tention mechanisms to efficiently identify and classify brain hemorrhages. The

model encompasses an encoder-decoder architecture, with attention mechanisms

guiding the decoder to focus on the most pertinent regions of the image.

The methodology involves data preprocessing, augmentation, feature extraction

with attention gates, image segmentation, and ultimately, classification of intracra-

nial hemorrhage subtypes on CT scans. Two datasets were employed, each with

its unique characteristics, posing significant challenges related to class imbalance

and label mutual exclusivity.

Results showcase the model’s effectiveness, with improvements in the average F1-

score and accuracy, outperforming benchmark techniques. The proposed Attention

U-Net model exhibits promise as a valuable tool for medical professionals in the

diagnosis and classification of intracranial hemorrhages, paving the way for en-

hanced patient care and outcomes. Future work may involve further refinement,

real-time application, and integration into healthcare systems to augment medical

decision-making.
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Chapter 1

Introduction

1.1 Hemorrhage Background

A stroke occurs when there is a disruption in the normal blood flow to the brain,

which can be caused by either a burst blood vessel leading to bleeding within the

brain or a blockage that impedes the blood supply to the brain. This disruption

in blood flow prevents the brain’s tissues from receiving the necessary oxygen and

nutrients. The prevailing cause often involves a clot forming within an artery

that provides blood to the brain[1]. Alternatively, it can stem from a hemorrhage,

arising when a ruptured vessel results in the seepage of blood into the brain.

Stroke has the potential to inflict enduring harm, leading to lasting consequences

such as partial paralysis and difficulties in speech, understanding, and memory[1,

2]. A stroke is a serious medical condition that can cause sudden and lasting

brain damage.Stroke symptoms can vary, encompassing signs such as weakness or

paralysis affecting one side of the face or body, a sudden and intense headache,

difficulties in speech or comprehension, and visual impairments. According to data

from the World Health Organization, On a global scale, it is estimated that 25%

of adults aged 25 and above will encounter a stroke during their lifetime. The

current year is projected to witness 12.2 million individuals worldwide facing their

initial stroke, leading to a tragic outcome for 6.5 million of them. Impressively,

the number of individuals who have been impacted by stroke across the globe

1
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surpasses 110 million. According to data from the World Health Organization,

the age-standardized death rate attributed to stroke in Pakistan stands at 108.8

per 100,000 individuals. Stroke holds a significant position among the leading

causes of mortality in Pakistan[2].

There are two main types of stroke are shown in Figure 1.1:

1. Ischemic:In the context of an ischemic stroke, the impediment of blood

flow to the brain, often caused by a clot or other barriers, results in a critical

interruption of oxygen and nutrient supply to brain cells and tissues. This

urgent and time-sensitive situation underscores the importance of prompt

medical intervention to restore blood flow and mitigate the severe conse-

quences associated with ischemic strokes.[1–3].

2. Hemorrhage: Hemorrhagic strokes transpire when a blood vessel in the

brain ruptures, releasing blood into the brain tissue. Consequently, brain

cells and tissues may experience oxygen and nutrient deprivation, resulting

in harm or demise. Moreover, the hemorrhage can induce an increase in

pressure within the brain, exacerbating damage to brain tissue [1–3].

Figure 1.1: Stroke Types
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Hemorrhage is the medical term for bleeding. It can occur inside or outside the

body, and the amount of blood loss can vary from minor to major. Hemorrhage

is divided into two types internal and external hemorrhage. When blood spills

inside the body, internal bleeding happens. Numerous things, including accidents,

surgeries, and illnesses like high blood pressure or blood clotting problems, can

contribute to its occurrence. Internal hemorrhage poses a serious risk of death

since it can cause a quick loss of blood and a drop in blood pressure. When blood

flows outside the body, it causes an external hemorrhage. It frequently results

from wounds including cuts, scratches, and puncture wounds. External bleeding

can be dangerous, but it usually poses no danger to life[3, 4].

Several other types of hemorrhage can be classified based on their location or cause.

These are Brain, Eyes, Nose, Mouth, Lungs, Gastrointestinal tract, Urinary tract,

Gynecologic tract, Anus, and Vascula. Different types of hemorrhage are shown

in Figure 1.2.

Brain hemorrhage refers to internal bleeding within the brain, categorized into

three distinct types: Intracranial hemorrhage, involving bleeding inside the skull;

Cerebral hemorrhage, characterized by bleeding within the brain tissue; and In-

tracerebral hemorrhage, resulting from the rupture of blood vessels within the

brain. Eyes can experience Subconjunctival hemorrhage, characterized by bleed-

ing in the white part of the eye. The nose has an Epistaxis hemorrhage(Nosebleed).

The mouth has three types of hemorrhage. Tooth eruption(Bleeding when a tooth

is lost), Hematemesis(Vomiting blood), and Hemoptysis(Coughing up blood). Bleed-

ing in the lungs is known as Pulmonary hemorrhage. The gastrointestinal tract

has three types of hemorrhage Upper gastrointestinal Hemorrhage (Bleeding in the

upper part of the gastrointestinal tract, such as the stomach or the esophagus),

Lower gastrointestinal hemorrhage( Bleeding in the lower part of the gastroin-

testinal tract, such as the intestines or the rectum), and Occult gastrointestinal

hemorrhage( Bleeding in the gastrointestinal tract that is not visible to the naked

eye). Hematuria hemorrhage is caused by Blood in the urine. Gynecologic tract

has Vaginal hemorrhage( Bleeding from the vagina.), Postpartum hemorrhage(

Bleeding after childbirth), Breakthrough hemorrhage( Bleeding between menstrual



Introduction 4

periods), and Ovarian bleeding( Bleeding from the ovaries). In the anus, hemor-

rhages manifest as Melena, which leads to black, tarry stools due to bleeding in the

upper gastrointestinal tract, and Hematochezia, characterized by bright red blood

in stool resulting from lower gastrointestinal tract bleeding. Vascular hemorrhages

comprise Ruptured aneurysm, where a blood vessel bulge bursts; Aortic transec-

tion, marked by a tear in the aorta, the body’s primary artery; and Iatrogenic

injury, which results from medical treatment[4–6].

Figure 1.2: Hemorrhage Types

1.1.1 Brain Hemorrhage

Internal bleeding of the brain is known as Brain Hemorrhage. Brain hemorrhage,

also known as intracranial hemorrhage (ICH) refers to a condition where a blood

vessel within the brain ruptures, leading to the release of blood into the brain
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tissue. These blood vessels can rupture due to high blood pressure, abnormal de-

velopment, or trauma. When a blood vessel ruptures, blood can leak into the brain

tissue, damaging it. Additionally, the presence of excess blood within the brain

can elevate the pressure inside the skull, known as intracranial pressure,which can

further damage the brain tissue. Intracranial hemorrhage can be a serious medical

issue with potentially life-threatening consequences if not promptly treated. Com-

mon causes of intracranial hemorrhages include hypertension (high blood pres-

sure), stroke, and traumatic brain injury[5, 6].

Hemorrhaging within the brain can occur in two primary locations: either within

the confines of the skull but outside the brain or within the brain tissue itself.

Between the skull and brain tissue, there are three protective membrane layers

known as meninges. These layers comprise the outermost dura mater and the

middle arachnoid, and the innermost pia mater, which rests directly against the

brain. Bleeding can occur anywhere between the three meninges. Based on le-

sion location in the brain, Intracranial hemorrhagic(ICH) is divided into five sub-

types shown in Fig 1.3. Subarachnoid hemorrhage (SAH), subdural hemorrhage

(SDH), and epidural hemorrhage (EDH) all fall under the category of intracranial

hemorrhage. that occur outside the brain but inside the skull. intraventricular

hemorrhage (IVH) and intraparenchymal hemorrhage (IPH), These two types of

intracranial hemorrhage can occur inside the brain tissue itself. Intracranial hem-

orrhagic is significantly more dangerous and challenging to treat, underscoring

the importance of a thorough analysis of hemorrhagic images in medicine.These

distinct types of intracranial hemorrhage present varying challenges in terms of di-

agnosis and treatment. Subarachnoid hemorrhage, occurring in the space between

the brain and the surrounding membranes, often results from ruptured aneurysms

and demands prompt medical attention. Subdural hemorrhage involves bleeding in

the space between the brain and its outer covering, typically due to head trauma.

Epidural hemorrhage, caused by arterial bleeding between the skull and outer-

most brain membrane, is often associated with head injuries.On the other hand,

intraventricular hemorrhage and intraparenchymal hemorrhage, both occurring

within the brain tissue, can be caused by various factors, including hypertension

or vascular abnormalities. These intracranial hemorrhages within the brain pose
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intricate challenges due to their potential impact on vital brain structures and

functions.[5–7].

Figure 1.3: Subtypes of Intracranial Hemorrhage

1.1.1.1 Subarachnoid Hemorrhage

A Subarachnoid Hemorrhage (SAH) is a type of bleeding within the skull but

outside the brain tissue, occurring between the dura mater and the arachnoid

mater—two middle layers. This condition arises when a blood vessel on the

brain’s surface ruptures, often triggered by head trauma. The resulting blood

accumulation around the brain and inside the skull exerts pressure on the brain,

leading to potential damage to brain cells, persistent issues, and challenges in

daily life. A sudden and intense headache is the primary symptom, with some

individuals describing it as the most severe headache they have ever encountered.

Prompt medical attention is crucial for diagnosing and managing SAH to mitigate

its consequences effectively.Recovery from SAH can be complex and may involve

rehabilitation efforts to address cognitive and physical impairments. Long-term

outcomes depend on various factors, including the extent of the hemorrhage, the
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effectiveness of interventions, and individual health conditions. This underscores

the importance of a comprehensive and multidisciplinary approach in managing

patients with SAH to optimize their recovery and long-term well-being.[5–8].

1.1.1.2 Subdural Hemorrhage

Subdural hemorrhage(SDH) transpires as a consequence of blood vessel rupture

between the brain and the dura mater, causing bleeding within the gap between

the brain and the skull. Subdural hemorrhage is a common complication of head

injuries, occurring in up to 25% of cases. The symptoms of subdural hemorrhage

are caused by the increased pressure that the blood clot exerts on the brain. This

pressure makes it difficult for the neurons in the brain to function properly, leading

to a variety of symptoms. This category of hemorrhage can be induced by not

only head trauma but also blood clotting disorders and brain tumors[5–8].

1.1.1.3 Epidural Hemorrhage

Epidural hemorrhage (EDH) is a form of brain bleeding situated between the

skull and the dura mater, which is the outermost layer of the meninges. This

condition is often the result of a head injury that damages an artery. Symptoms

associated with EDH can vary depending on the size and location of the bleed,

but typically encompass a sudden and severe headache, loss of consciousness, and

potential seizures. Some instances may involve a brief period of alertness following

the injury, followed by a rapid deterioration in the patient’s condition. EDH is

considered a medical emergency, necessitating immediate treatment[5–8].

1.1.1.4 Intraparenchymal Hemorrhage

Intraparenchymal hemorrhage (IPH) is a condition that arises when a blood vessel

inside the brain ruptures, resulting in internal bleeding within the brain’s tissue.

This bleeding occurs within the brain’s parenchyma. Various factors can trig-

ger IPH, such as high blood pressure, aneurysms, arteriovenous malformations
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(AVMs), and head injuries. Symptoms of IPH can vary based on the size and

location of the bleed but often encompass a sudden and intense headache, vomit-

ing, seizures, and weakness or paralysis on one side of the body. IPH is deemed a

medical emergency, necessitating immediate treatment[5–8].

1.1.1.5 Intraventricular Hemorrhage

Intraventricular hemorrhage (IVH) is a specific type of brain bleed that occurs

within the ventricles, which are fluid-filled cavities within the brain. Although

IVH is the rarest form of stroke, its potential severity demands attention. This

condition arises from the rupture of a blood vessel within the brain and can be

triggered by several factors. Among the causes, high blood pressure stands as the

most prevalent contributor to IVH. Aneurysms, weakened spots in blood vessels

that can rupture and lead to bleeding, also constitute a significant causative factor.

Similarly, arteriovenous malformations (AVMs), tangled blood vessel clusters that

are prone to rupturing, can induce IVH. Traumatic incidents, such as head injuries,

can trigger brain bleeding, as can cocaine use, which elevates the risk of IVH. Even

traumatic brain injuries can precipitate brain hemorrhaging[5–8].

1.2 Computer-Aided Diagnosis(CAD) System for

Intracranial Hemorrhage Classification

Identifying the type of intracranial hemorrhage is essential for medical profession-

als to provide the best possible care for the patient. The kind of hemorrhage

will determine the course of treatment, including medications, surgery, and re-

habilitation. Each subtype offers distinct insights into the underlying pathology

and potential causative factors, aiding doctors in formulating targeted treatment

strategies. For instance, understanding whether a patient has suffered an intra-

parenchymal hemorrhage, which originates within brain tissue, compared to sub-

arachnoid bleeding caused by ruptured vessels between meningeal layers, informs

differential interventions. This knowledge influences decisions about the necessity
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of surgical procedures, the administration of specific medications, or the monitor-

ing of certain complications[9, 10].

Prompt and precise identification of intracranial hemorrhage via medical imaging

plays a critical role in delivering timely medical interventions. This timely re-

sponse significantly enhances patient outcomes and prognosis[8, 11]. Conventional

approaches for visualizing brain lesions involve the use of computed tomogra-

phy (CT) and magnetic resonance imaging (MRI). In evaluating stroke patients,

the recommended initial approach is a CT scan. This is because CT scans have

demonstrated effectiveness in swiftly assessing whether an individual is undergoing

a stroke. CT scans can identify hemorrhage strokes with more than 92% accuracy.

The automated identification of sub-type of intracranial hemorrhage (ICH) from

CT scan images has become a significant concern within both the Deep learning

and medical domains[11].

Additionally, recognizing the type of intracranial hemorrhage guides doctors in

predicting the patient’s recovery trajectory and potential long-term consequences.

It enables them to provide patients and their families with accurate prognostic

information, thereby fostering informed decision-making. The precision in diag-

nosis also serves as a cornerstone for ongoing research efforts, contributing to the

advancement of medical knowledge, refining diagnostic tools, and enhancing ther-

apeutic approaches in the realm of neurology. CAD systems play a crucial role

in mitigating human errors and delivering swift, precise quantitative, and qualita-

tive evaluations of Intracranial Hemorrhage (ICH) as indicated by references.This

technological progression presents a transformative potential for significantly im-

proving clinical outcomes. Traditional Computer-Aided Diagnosis (CAD) systems

primarily focus on reducing false negatives by identifying unique features crucial

for clinicians in spotting irregularities. The evolution of CAD systems through on-

going research has expanded their functionalities, enabling diverse image analysis

techniques for disease detection, treatment planning, risk prediction, and prognosis

assessment. Radiologists can utilize CAD system interpretations as supplemental

tools to inform their final diagnostic decisions[12].Modern CAD systems, incorpo-

rating machine learning and deep learning methodologies, exhibit the capability
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to rapidly assimilate and predict anomalies within extensive datasets. Numerous

methodologies have been introduced to diagnose brain irregularities in images,

representing diverse modalities. These approaches operate in semi-automated or

fully automated modes, facilitating the detection of singular or multiple brain ab-

normalities. Additionally, they offer both supervised and unsupervised function-

alities, enhancing their versatility and applicability in various clinical scenarios.

This paradigm shift in medical imaging analysis holds great promise for more ac-

curate and efficient diagnosis, contributing to enhanced patient care and treatment

planning.[13–15].

Figure 1.4: Brain Hemorrhage Classification using Computer-Aided Diagnosis
System
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1.3 Methods Used for Intracranial Hemorrhage

Classification.

Computer-aided diagnosis (CAD) is a prevalent tool employed in clinical settings

to facilitate the early identification and diagnosis of irregularities within medical

images. CAD systems play a crucial role in assisting radiologists by enhancing the

precision and uniformity of their evaluations concerning the detection and clas-

sification of intracranial hemorrhages. By furnishing supplementary information,

CAD systems empower clinicians to formulate more precise prognoses and clini-

cal judgments. Furthermore, these systems contribute to the reduction of human

errors and offer expeditious, cost-effective, and comprehensive quantitative and

qualitative appraisals of intracranial hemorrhages, thereby benefiting the overall

diagnostic process[12].

Computer-Aided Diagnosis (CAD) systems specializing in Intracranial Classifica-

tion are sophisticated software applications developed to aid healthcare profes-

sionals in precisely categorizing and detecting abnormalities or conditions within

the cranial region. Tailored for the interpretation of medical images, such as brain

CT scans or MRIs, these systems play a pivotal role in enhancing the diagnos-

tic process. Their overarching objectives include improving diagnostic accuracy

and providing supplementary insights into a spectrum of intracranial conditions,

spanning from hemorrhages and tumors to various neurological disorders. The

integration of CAD systems in the medical field underscores their potential to

contribute significantly to diagnostic efficiency and precision in the realm of in-

tracranial health assessment. The primary goal of CAD systems for Intracranial

Classification is to enhance the diagnostic process, improve accuracy, and provide

additional insights into various intracranial conditions, including hemorrhages,

tumors, or neurological disorders.These CAD systems operate by employing ad-

vanced algorithms and machine learning techniques to analyze complex patterns

and features within medical images. By automating the detection and classifi-

cation processes, they assist healthcare professionals in making more informed

decisions during diagnosis. Additionally, CAD systems contribute to streamlining
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the workflow in medical imaging, allowing for quicker assessments and potentially

reducing the chances of oversight[13, 14].

Intracranial Classification CAD systems are particularly valuable in identifying

subtle or early signs of conditions such as hemorrhages, where prompt and accu-

rate diagnosis is critical. Their ability to handle large datasets and detect nuanced

patterns makes them powerful tools in the evolving landscape of medical imaging

and diagnostics. The integration of such systems showcases the synergy between

technological advancements and healthcare, aiming to enhance patient outcomes

and facilitate more efficient clinical practices[13, 14]. Two primary methods em-

ployed in the classification of intracranial hemorrhage are:

1. Feature Learning-Based Approach:

Feature learning-based techniques are at the core of Computer-Aided Diag-

nosis (CAD) systems for medical image analysis, including the classification

of intracranial hemorrhage (ICH). These techniques are designed to automat-

ically discover relevant patterns and discriminative features within medical

images, allowing for accurate disease detection and classification. A standard

feature learning-based CAD system comprises several key stages, including

preprocessing, feature extraction, dimensionality reduction, and classifica-

tion [16]. Preprocessing plays a pivotal role in enhancing the performance of

Intracranial Hemorrhage detection and Classification. Pre-processing tech-

niques, such as noise reduction and artifact removal, are systematically ap-

plied to CT images to enhance their overall quality and prepare them for

subsequent analysis [17]. The process of identifying intracranial hemorrhages

(ICH) from CT images relies significantly on feature extraction, a crucial

step aimed at revealing intricate patterns inherent in the images. Visual

inspection alone can be challenging for this task, emphasizing the need for

systematic feature extraction methods to ensure accurate and efficient analy-

sis. In this context, dimensionality reduction plays a pivotal role by assisting

in the selection of the most relevant features from the complex dataset. This

strategic reduction in dimensionality not only aids in enhancing computa-

tional efficiency but also contributes to the identification of critical patterns
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and features essential for accurate diagnosis and classification of intracranial

hemorrhages [18], allowing for the characterization of the diverse injuries

associated with ICH sub-classes. These reduced features are then used by

various classifiers to identify the presence and severity of ICH sub-classes.

Subsequent sections provide a detailed breakdown of the stages within CAD

systems. Figure 1.5 is an illustration of a typical feature learning-based

approach[16–18].
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Figure 1.5: Schema of Feature Learning-Based Method for Intracranial Hem-
orrhage (ICH).

2. Deep Learning-Based Approach:

Deep learning has brought about a transformative impact on the realm of

medical image analysis, encompassing tasks like identifying and categorizing

intracranial hemorrhage (ICH). Deep learning methodologies, powered by

artificial neural networks with multiple hidden layers, empower CAD sys-

tems to autonomously glean intricate patterns and features directly from

medical images. This paradigm shift in image analysis not only enhances

the accuracy of detection but also allows for a more comprehensive under-

standing of complex medical conditions, contributing to more effective diag-

nostic processes in the field of healthcare.The utilization of artificial neural
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networks, characterized by multiple hidden layers, enables these systems to

autonomously extract intricate patterns and features directly from medical

images, particularly in tasks involving the identification and categorization

of intracranial hemorrhage (ICH). The automated learning process not only

improves the accuracy of detection but also enhances the overall efficiency

of diagnosis, offering healthcare professionals valuable insights into complex

medical conditions. This transformative impact underscores the potential of

deep learning to revolutionize and elevate the field of medical imaging and

diagnostic practices.

Convolutional Neural Networks (CNNs) have emerged as pivotal tools within

biomedical domains, leveraging their innate capacities for self-organization

and autonomous learning. These networks have proven to be particularly

adept at extracting intricate patterns and features from complex biomedical

data, making them invaluable in tasks such as medical image analysis and

classification. The ability of CNNs to discern hierarchical representations

within data sets contributes to their success in various applications, enhanc-

ing the efficiency and accuracy of tasks related to healthcare, diagnostics,

and biomedical research. As a result, CNNs continue to play a significant

role in advancing the capabilities of computational models in the biomed-

ical field.As illustrated in Figure 1.6. The architecture of a Convolutional

Neural Network (CNN) comprises a sequential arrangement of convolutional

and pooling layers, strategically organized to cater to a diverse range of ap-

plications. This design allows CNNs to effectively capture hierarchical fea-

tures and spatial information from input data, making them well-suited for

tasks such as image recognition, classification, and segmentation. The con-

volutional layers enable the network to detect local patterns, while pooling

layers assist in reducing spatial dimensions, enhancing the network’s ability

to recognize and learn from complex patterns within the data. This inher-

ent structure makes CNNs versatile and powerful for various applications

in the field of deep learning and image processing. [19].The convolutional

layers utilize predetermined-sized convolutional to capture features . Then

consolidated and spatially reduced through a pooling layer, which employs
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methods like max pooling or average pooling [19, 20]. Following this, the ex-

tracted features traverse through fully connected layers, ultimately reaching

the network’s output units[21, 22].

Input Image

Con+Relu

Pooling
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Pooling

SoftMax Regression
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Figure 1.6: A Deep Learning Model Structure for Intracranial Hemorrhage
Classification

1.4 Motivation

In recent years, medical imaging has emerged as a pivotal field for diagnosing

and monitoring various health conditions, providing invaluable insights into inter-

nal structures and anomalies that might otherwise go unnoticed. The concept of

computer-based clinical decision support has been increasingly popular as a re-

search topic to improve the quality of decision-making in the field of medicine and
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healthcare domain. Intracranial hemorrhage, a critical condition characterized by

bleeding within the brain, demands prompt and accurate diagnosis to mitigate

potentially severe consequences. With the advancement of medical imaging tech-

nologies, the promise of automating the detection and classification of intracranial

hemorrhages using deep learning models has grown significantly. Traditional di-

agnosis can vary among doctors and in different situations. Nevertheless, this

approach faces challenges related to low image contrast and the complex appear-

ance of lesions. The need for accurate intracranial hemorrhage (ICH) classification

arises from its critical implications for patient well-being, medical decision-making,

and healthcare efficiency[10, 23]. Central to this pursuit is the RSNA (Radiological

Society of North America) Intracranial Hemorrhage dataset, a notable contribu-

tion in this domain. Curated with meticulous care by domain experts, this dataset

encompasses a diverse array of brain imaging scans, meticulously ennotate to indi-

cate the presence or absence various classes of intracranial haimorrhages. Encom-

passing a wide spectrum of cases and imaging modalities, this dataset provides a

solid groundwork for the development and assessment of classification models[24].

1.5 Problem Statement

The classification of intracranial hemorrhage (ICH) through the analysis of com-

puted tomography (CT) images plays a critical role in accurately diagnosing hem-

orrhagic conditions in emergency departments [23]. The accurate and timely de-

tection of intracranial hemorrhage is critical for patient prognosis and treatment.

Timely intervention can help prevent further bleeding, minimize neurological dam-

age, and improve patient outcomes [9]. Existing auxiliary diagnosis algorithms give

equal weight to each location’s characteristics. The model’s trained features for

classification contain noise or features without any diagnostic value, which sig-

nificantly reduces system performance and reliability. The accuracy of detecting

intracranial hemorrhage hinges significantly on the precision of lesion segmenta-

tion, a task known for its complexity. Leveraging deep learning models holds the

potential to enhance this accuracy by extracting precise features. This, in turn,
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facilitates the automation of the classification process, leading to quicker and more

efficient diagnoses, ultimately benefiting patient care.

1.6 Significant of the Solution

This study proposes a new approach for classifying intracranial hemorrhages using

an attention U-Net model. The goal is to develop a method that is both accurate

and efficient, and that uses all available information in the medical images. The

attention U-Net is a deep learning model that is known for its ability to capture

intricate spatial patterns. It does this by using an attention mechanism, which

allows the model to dynamically focus on different regions of interest within the

image. This ensures that the most important features of the hemorrhage are high-

lighted, which improves the accuracy of classification[25]. The proposed approach

addresses the challenge of accurately detecting intracranial hemorrhages, which

can have a complex and variable appearance. Traditional models often struggle

to account for these variations, leading to inaccurate classifications. However, the

attention U-Net is able to dynamically refine its understanding of the hemorrhage

features, resulting in more robust and precise classifications. This innovative ap-

proach has the potential to advance the field of automated intracranial hemorrhage

diagnosis.Integrating attention mechanisms into the U-Net framework represents

a state-of-the-art technique with the potential to attain elevated classification ac-

curacy. Such advancements have the capacity to enhance patient care and elevate

the standards of medical diagnostic procedures.

1.7 Research Questions

1. How can interpretability deep learning models be improved for Classification

different type of intracranial Hemorrhage?

2. How can the class imbalance issue in intracranial hemorrhage datasets be

effectively addressed to improve the performance of classification models?
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3. Can the Attention U-Net model be used to extract and utilize distinctive

features to enhance its performance in classifying various intracranial hem-

orrhage subtypes?

1.8 Thesis Organization

In this thesis chapters are structured as follows: Chapter 1 introduces the In-

tracranial Hemorrhage and its Sub-classification which consists of subdivisions

like motivation and problem statement of proposed work. Chapter 2 conducts

a comprehensive literature review of segmentation and classification models for

Intracranial Hemorrhage. It delves into the established techniques for image pre-

processing, feature extraction, segmentation, feature selection, and the subsequent

classification. Chapter 3 outlines the methodology employed in this study, focusing

on the utilization of the Attention UNET Model to extract deep features. Chapter

4 presents the results and engages in a thorough discussion of the findings. Lastly,

Chapter 5 encapsulates the conclusions drawn from the study’s outcomes.



Chapter 2

Literature Review

Advances in image processing have led to a growing interest in the detection of in-

tracranial hemorrhages in recent decades. Researchers are using various detection

and classification techniques to identify and classify hemorrhages.

2.1 Survey of Existing Techniques

The fundamental stages involved in the identification and classification of intracra-

nial hemorrhages encompass pre-processing, segmentation, feature extraction, and

classification.

Preprocessing serves as an essential technique to enhance poorly illuminated im-

ages, serving as a preliminary step prior to analysis [26]. Its primary goal is to

refine image data and eliminate noise, thereby improving visualization. Prepro-

cessing encompasses a range of techniques, including edge detection, color trans-

formation, image filtering, contrast enhancement, scaling, brightness correction,

and geometric transformation [27]. To enhance the quality of DICOM Images,

various preprocessing techniques such as windowing, resizing, Normalization and

zero-centering techniques are applied, particularly using Hounsfield Units (HU)

play a vital role in CT scans by quantifying the densities of objects based on the

absorption of X-rays. An object’s density is determined by the amount of X-rays

19
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it absorbs, with HU values typically ranging from -1000 to +1000. Lower HU val-

ues signify higher X-ray absorption and lower density, while higher values indicate

lower absorption and higher density[23, 28].Radiologists frequently modify window

settings when interpreting brain CT scans to emphasize various intensity ranges

for detecting subtle abnormalities. For instance, they commonly employ the brain

window with settings at a window level of 40 and width of 80, as well as the sub-

dural window with a level of 80 and width of 200[26]. These adjustments enhance

the visibility of intracranial hemorrhages, aiding in the detection of thin acute

subdural hematomas that might otherwise go unnoticed. Furthermore, the bone

window, configured with a level of 600 and width of 2800, is essential for identify-

ing lesions in the skull[27]. Resizing is crucial to ensure that images are of uniform

dimensions, making them compatible with the neural network architecture. It

helps streamline the data for processing and ensures that the model can handle

inputs of the same size, which is essential for training and inference[19, 29, 30]. In

the context of existing studies on hematoma region detection, various supervised

classifiers have been widely used. These classifiers include Support Vector Machine

(SVM), Random Forest (RF) featured, Artificial Neural Network (ANN), Prob-

abilistic Neural Network (PNN), Bayesian, Multinomial Logistic Regression, and

Tree Bagger classifiers. Recently, deep Convolutional Neural Networks (CNNs)

have demonstrated remarkable generalization capabilities, owing to their ability

to self-learn and self-organize without explicit programming. In 2018, Grewal et al.

introduced a model named Recurrent Attention DenseNet (RADnet), which incor-

porated a bi-directional long short-term memory (Bi-LSTM) layer with DenseNet

for the diagnosis of hemorrhages. Their model exhibited notable performance,

achieving an accuracy of 81.82%, sensitivity of 88.64%, and precision of 81.25%

in predicting hemorrhages. These results were comparable to the diagnostic ca-

pabilities of radiologists when applied to CT scans. Their study was conducted

using a dataset consisting of 77 brain CT scans, and the Bi-LSTM layer was inte-

grated to capture dependencies across slices within the scans. However, the paper

did not address the classification of intracranial hemorrhage subtypes [29]. In the

same year, Arbabshirani et al. introduced a deep learning-based method for the

detection of intracranial hemorrhage (ICH) in head computed tomography (CT)
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scans. Their approach utilized a convolutional neural network (CNN) trained on

a sizable dataset consisting of both CT scans with and without ICH. The CNN

effectively learned spatial features associated with ICH, enabling it to accurately

identify ICH in previously unseen scans. Their method underwent evaluation us-

ing a dataset comprising 9499 CT scans, resulting in a commendable accuracy

rate of 92.5% for ICH detection. Furthermore, in a clinical context, the approach

demonstrated a remarkable 96% reduction in the time required for ICH diagno-

sis, showcasing its potential for real-world applications [30]. In 2019, Cho et al.

comprised two convolutional neural networks (CNNs) and dual fully convolutional

networks (FCNs). The cascade CNN is dedicated to identifying bleeding, while

the dual FCN is designed to detect and delineate five subtypes of intracranial hem-

orrhage. The model was trained on a substantial dataset of CT images with two

different window settings. Combining these settings resulted in a notable improve-

ment in sensitivity (97.91%) without compromising specificity (98.76%) for binary

classification. Additionally, the segmentation of bleeding lesions demonstrated an

overall precision of 80.1% and recall of 82.15%, marking a 3.44% enhancement

compared to using a single FCN model[31]. In 2019, Ye et al. proposed a novel

3D joint convolutional and recurrent neural network (CNN-RNN) that was used

for detecting intracranial hemorrhage (ICH) and its five subtypes in non-contrast

head CT scans. The research involved 2836 subjects and 76,621 CT slices from

three institutions. CNN-RN framework performed remarkably well, achieving ex-

cellent metrics for binary (bleeding or not) algorithm achieved >0.98 AUC and

multi-class (five subtypes) classifications algorithm achieved >0.8 AUC [32]. In

2019 Bar et al. introduced BloodNet, a deep-learning model designed to enhance

the triaging of Head CT scans, particularly for the timely detection of Intracranial

hemorrhage (ICH) in emergency settings. BloodNet optimizes the segmentation

and classification tasks by incorporating their dependencies, resulting in improved

classification outcomes. The model achieved impressive AUCs of 0.9493 and 0.9566

in different datasets containing over 1400 studies from various hospitals. These re-

sults are on par with previous findings, even with a larger dataset, demonstrating

the potential for faster and more accurate ICH detection using this approach[33].

In 2019, Dawud and colleagues employed deep learning techniques to distinguish
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between brain CT images depicting hemorrhage and those that did not. They

developed and trained three distinct models for this task: a convolutional neural

network (CNN), the renowned AlexNet neural network, and a customized variation

of AlexNet combined with a support vector machine (SVM) classifier. Remark-

ably, the AlexNet-SVM model outperformed the others, achieving an impressive

accuracy of 93%, with a sensitivity of 90% and specificity of 95%. However, it’s

worth noting that this study did not address the classification of specific subtypes

of intracranial hemorrhage[19]. In 2020, He et al. employed deep convolutional

neural networks, specifically SE-ResNeXt50 and EfficientNet-B3, to extract fea-

tures from head CT scans and classify five subtypes of intracranial hemorrhage.

Their dataset was sourced from the Radiological Society of North America via

a Kaggle competition. The findings demonstrate that an ensemble of these net-

works, trained using weighted multi-label logarithmic loss, achieved an exceptional

level of accuracy in intracranial hemorrhage classification, comparable to expert-

level performance[34]. Guo et al. (2020) have presented a deep learning-driven

approach for the concurrent classification and segmentation of intracranial hem-

orrhage (ICH) in brain CT images. The method leverages a fully convolutional

neural network (FCN) that is designed to generate both a segmentation map and

a classification label for each pixel within the CT image. The FCN comprises a se-

quence of convolutional layers responsible for feature extraction from the CT image

and subsequent upsampling layers that restore the image to its original resolution.

The FCN’s output includes a segmentation map, which provides the probability of

each pixel being classified as hemorrhagic or non-hemorrhagic. The classification

label is determined based on the highest probability value within the segmentation

map.The study evaluated the method using a dataset containing 1176 CT images

featuring ICH. The reported results indicated a detection accuracy of 92.9% and

a segmentation Dice score of 0.86, highlighting the model’s effectiveness in both

identifying and delineating intracranial hemorrhages[35]. Hssayeni et al. (2020)

introduced a deep learning-based approach for the identification and delineation of

intracranial hemorrhage (ICH) in computed tomography (CT) images, comprising

two key stages: detection and segmentation. In the detection stage, a convolu-

tional neural network (CNN) is employed to categorize each pixel within the CT
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image as either representing a healthy or hemorrhagic region. In contrast, the

segmentation stage utilizes a U-Net-based CNN to precisely delineate the areas of

hemorrhage in the CT image. The method was rigorously evaluated on a dataset

comprising 82 CT images that had been annotated by two radiologists to identify

ICH. The outcomes demonstrated the effectiveness of the approach, achieving a

detection accuracy of 93.8% and a segmentation Dice score of 0.8. These results

underscore the model’s proficiency in both detecting and precisely segmenting

intracranial hemorrhages[36].

In 2020, Mantas et al. presented a model, based on ResNexT architecture, that

was tested on actual CT scans from patients at N.N. Burdenko Neurosurgery

Center. Impressively, the model achieved a detection accuracy exceeding 0.81 for

all hemorrhage subtypes without requiring any further tuning[37]. In Ko et al.’s

(2020) study, they developed a deep learning model for predicting the presence of

intracranial hemorrhage (ICH) in single-head computed tomography (CT) scans.

The model was trained on a substantial dataset of 4,516,842 head CT scans, which

were processed to create three different images with specific windows: brain win-

dow, bone window, and subdural window. Their model employed a deep convo-

lutional neural network (CNN) based on the Xception architecture, coupled with

a long short-term memory (LSTM) network featuring 64 nodes and 32 timesteps.

Remarkably, the model achieved a remarkable accuracy rate of 93.8% for identi-

fying ICH and 86.2% for classifying the specific type of ICH[38].

In 2021 Raghavendra at el. presents a computer-aided diagnosis model that uses

image processing and probabilistic neural networks with CT images to detect in-

tracerebral hemorrhage. The model achieved an impressive 97.37% accuracy in

distinguishing normal from hemorrhagic cases[28]. Mansour et al.2021) have in-

troduced a deep learning-driven approach for the segmentation of intracranial hem-

orrhage (ICH) in brain CT images. Their method relies on a convolutional neural

network (CNN) constructed upon the Inception architecture. The dataset utilized

for training and evaluation included 3725 head CT images containing instances

of ICH. These images were sourced from two publicly accessible datasets: the

MICCAI ICH Stroke Repository and the INRIA-STROKE dataset. The reported
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results indicated that the method achieved a Dice score of 0.86, which measures

the degree of overlap between the predicted and ground truth segmentation. How-

ever, the paper did not include any classification results for distinguishing between

different types of ICH[39]. In 2021 Watanabe et al. assessed the impact of deep

learning-based computer-assisted detection (CAD) on the performance of physi-

cians with varying levels of expertise in detecting intracranial hemorrhage using

CT scans. A total of 40 head CT datasets were reviewed by 15 physicians, includ-

ing board-certified radiologists, radiology residents, and medical interns, during

two reading sessions with and without CAD. The CAD system, developed using

433 patient CT images, provided probability heat maps for hemorrhage regions.

The results showed that CAD significantly improved overall accuracy, with mean

accuracy rising from 83.7% to 89.7%. Board-certified radiologists benefited the

most from CAD, achieving an accuracy of 97.5 %[40]. In 2021 Zhang et al. pro-

posed a novel approach is presented, involving the synthesis of artificial ICH lesions

on non-lesion CT images. This is achieved through the Artificial Mask Generator

(AMG) for creating masks and the Lesion Synthesis Network (LSN) for convert-

ing them into hemorrhage lesions. These augmented images, containing both real

and synthetic lesions, are used to train an ICH detection model with a Residual

Score. Experimental results show a significant enhancement in ICH detection,

classification, and improved sensitivity for microbleeding, surpassing other syn-

thetic approaches. The proposed method boosts the AUC value from 84% to 91%

for ICH detection and from 89% to 96% for classification, making it a promising

advancement in CAD for ICH diagnosis[41].

In 2022, Kumar et al. introduced an automated and unsupervised approach for

segmenting intracranial hemorrhages in CT images based on entropy. This method

combines several techniques, including fuzzy c-mean (FCM) clustering, automatic

cluster selection, skull removal, thresholding, and edge-based active contour meth-

ods. FCM is initially employed to partition the image into clusters, with one

cluster automatically chosen to focus on the skull and hemorrhage regions. The

experiment was conducted using 35 CT images from different patients. The re-

sults indicate that the proposed method yields highly accurate hemorrhage region
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segmentation when compared to both FCM and manual fuzzy-based active con-

tour methods[42]. In 2022 Anupama et al. present a novel approach, the GC-SDL

model, for diagnosing intracerebral hemorrhage (ICH) using deep learning and

GrabCut-based segmentation. It addresses the challenge of time-consuming man-

ual CT scan segmentation by employing Gabor filtering for noise reduction and

GrabCut-based segmentation for effective identification of diseased areas. The

synergic deep learning (SDL) model is then used for feature extraction, with a

softmax (SM) layer serving as the classifier. Extensive experiments on a bench-

mark ICH dataset reveal the GC-SDL model’s impressive performance, boasting a

sensitivity of 94.01%, specificity of 97.78%, precision of 95.79%, and an overall ac-

curacy of 95.73%[43]. Ganeshkumar et al. (2022) have presented a deep-learning

approach for the identification and segmentation of intracranial hemorrhage (ICH)

in brain CT images. Their method comprises two stages: identification and seg-

mentation. In the identification stage, ResNet, a convolutional neural network

(CNN), is employed to classify each voxel in the CT image into ICH subtypes. For

segmentation, SegAN is utilized to delineate hemorrhagic regions within the CT

image. To tackle class imbalance in the ICH dataset, the authors incorporate the

data augmentation technique CycleGAN. The dataset employed in this study is

publicly accessible on PhysioNet. The method demonstrated a detection accuracy

of 0.85% for ICH and achieved a segmentation Dice score of 0.32. It’s important to

note that this method does not differentiate between different subtypes of intracra-

nial hemorrhage (ICH)[44]. In 2022 Zhang et al. presented a weakly supervised

guided soft Attention network for the classification of intracranial Hemorrhage.

First extract the multi-scale feature of the CT scan using the MSFE module then

the weak knowledge extraction module, used to process data and obtain the weak

knowledge, which is used to guide the attention module. Attention module to

learn features from segmentation annotations then classify the image into six cat-

egories. This network achieved 98.1 % accuracy, 68.4 % TPR rate, and 74.6 % f1

score [9].

In 2023 Nizarudeen et al. produced an innovative approach for the Detection and

Categorization of Acute Intracranial Hemorrhage (ICH) subtypes using a Multi-

Layer DenseNet-ResNet Architecture with an Improved Random Forest Classifier



Literature Review 26

(IRF). The goal is to enhance the accuracy and reduce computational time in

identifying ICH subtypes from brain CT images. The proposed method utilizes

a combination of DenseNet and ResNet architectures for feature extraction, fol-

lowed by classification using the Improved Random Forest (IRF) Classifier. The

results demonstrate significantly higher accuracy compared to existing approaches,

making it a promising technique for more precise and efficient ICH diagnosis[45].

In 2023 Cortes et al. Introduced a novel approach utilizing EfficientDet’s deep-

learning technology to diagnose hemorrhages at the patient level, potentially serv-

ing as a decision support system. The method can classify computed tomography

scan slices to determine the presence or absence of hemorrhage, achieving an im-

pressive 92.7% accuracy and 0.978 ROC AUC for patient-level diagnosis[46].

In 2023 Arman et al. proposed an automated method for diagnosing intracra-

nial hemorrhage from CT scans. The DenseNet architecture was optimized using

Bayesian Optimization (BO) to enhance effectiveness. BO determined the opti-

mal learning rate, optimizer, and number of dense nodes. The optimized DenseNet

model achieved an impressive 98.02% accuracy on the test set. This approach en-

sures precise diagnoses, aiding doctors in making informed decisions and providing

better patient care[47].

Table 2.1: Analysis of Existing Techniques

Reference CT Dataset Method Remarks

[29] 392 Annotated REDNET Only have Binary

Classification

[30] 46583 CNN Model Only have Binary

Classification

[31] 135974 CNN and Dual FCN Only have Binary

Classification

[32] 2836 Annotated Combine CNN,RNN Model Only have Four

type Classification

[33] 175 Annotated BloodNet Sub Classification

Result Not Found.
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[34] RSNA 19

Intracranial

Hemorrhage

SE-Resnet50,

EffientientNet-B3

Sub Classification

Result not Found

[19] Images collected

from the Aminu

Kano Teaching

Hospital, Nige-

ria

CNN, AlexNet-SVM Only have Binary

Classification

[35] 1176 ICHNet Architecture Five type Classi-

fication ,Avg F1

score (0.561)

[36] 82 Annotated UNET Only Segmentation

Performed

[37] RSNA 19

Intracranial

Hemorrhage

ResNet Architecture Achieved accuracy

of 80% on each

Class.

[38] RSNA 19

Intracranial

Hemorrhage

CNN-LSTM Model Only have Binary

Classification

[28] 1603 Non Linear Feature Extrac-

tion,KNN+PNN+SVM

Only have Binary

Classification

[39] 3725 Kapurs Multilevel Thresh-

olding,CNN Base Inception

V4

0.86 Dice Score But

No classification

Result

[40] 40 Annotated UNET Accuracy(97.5) %

but Each Class Ac-

curacy Not Given

[43] 82 Annotated GC-SDL Only Segmentation

but No classifica-

tion Result
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[42] 35 Fuzzy C Mean Cluster, Au-

tomatic Cluster Selection

edge base Method

Only Segmentation

but No classifica-

tion Result

[44] 82 Annotated ResNet,SegAN 0.32 Dice Score

[45] 82 Annotated ResNet-DenseNet-XGBoost

Classifer

Acc (0.92)

[9] RSNA 19

Intracranial

Hemorrhage

MSFE, WGSA JFM Avg F1(0.74)

[45] 82 Annotated ResNet-DenseNet-XGBoost

Classifer

Acc (0.92)

[46] RSNA 19

Intracranial

Hemorrhage

Grad-CAM methodology 92.7% Accuracy

[47] RSNA 19

Intracranial

Hemorrhage

DenseNet architecture opti-

mized using Bayesian Opti-

mization

Avg F1(0.78)

2.2 Research Gap

The classification of intracranial hemorrhage (ICH) using computed tomography

(CT) images are important for the proper diagnosis of hemorrhage in emergency

departments with acceptable accuracy. To address this issue, it is required to

generate a deep learning model that can extract the feature precisely for better

classification of different types of neurological diagnoses. Existing auxiliary diag-

nosis algorithms give equal weight to each location’s characteristics and place no

restrictions on newly learned features. The model’s trained features for classifi-

cation contain noise or features without any diagnostic value, which significantly

reduces system performance and reliability [9]. So, Identifying the features that

are most informative for intracranial hemorrhage classification is essential.
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Methodology

Diagnosing intracranial hemorrhage from CT DICOM images manually is chal-

lenging, and conducting hemorrhage assessments through traditional methods is

costly. Neurologists and physicians emphasize that rapidly determining the sub-

type of hemorrhage can significantly impact their decision-making process when

evaluating emergency patients or identifying crucial outcomes in the final stages

of treatment. Various machine-learning techniques have been employed for the

detection and diagnosis of hemorrhage. These approaches have often relied on

handcrafted features, extracted from relatively small datasets, for localizing and

classifying hemorrhage.

However, the application of such techniques to a broader and more diverse pop-

ulation can introduce significant errors, potentially leading to misdiagnoses and

inadequate management. The current CNN models employed for ICH classifica-

tion come with several shortcomings. They rely on subpar feature extraction tech-

niques, which lead to the selection of inadequate features. Current convolutional

neural network (CNN) models used for intracranial hemorrhage classification face

shortcomings, particularly in their feature extraction techniques. The limitations

in feature extraction can result in the selection of inadequate features, compromis-

ing the model’s ability to accurately localize and classify hemorrhages. This issue

is particularly critical in emergencies where the rapid and precise determination

of intracranial hemorrhage subtypes is essential for effective decision-making in

29
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patient care.[19, 23, 48–50]. Moreover, the process of feature extraction encoun-

ters the curse of dimensionality, resulting in substantial computational overhead

[19, 23, 48–51]. Another limitation lies in the incorporation of poorly balanced

and denormalized data, which hampers the model’s ability to generalize effectively

in multiclass classification scenarios [23, 49].

Additionally, the use of small datasets is a primary factor contributing to model

underfitting in supervised learning.To overcome the challenges associated with

manual diagnosis and traditional methods, there has been a growing emphasis

on leveraging machine-learning techniques for the detection and diagnosis of in-

tracranial hemorrhage. Traditional approaches often relied on handcrafted features

extracted from limited datasets, leading to suboptimal performance when applied

to a broader and more diverse population.

Addressing these concerns, our approach goes beyond conventional CNN models.

By employing advanced architectures such as the Attention U-Net, we enhance fea-

ture extraction, enabling the model to capture intricate patterns and details crucial

for accurate hemorrhage localization and classification. This method aims to im-

prove the overall diagnostic accuracy, especially in emergency scenarios, where

timely and precise diagnosis significantly impacts patient outcomes.

Our approach centers on the utilization of the Attention U-Net model, a deep

learning architecture that combines the strengths of CNNs and attention mecha-

nisms to efficiently detect and classify brain hemorrhages and their subtypes. The

Attention U-Net model we employ comprises two main components: an encoder

and a decoder. The encoder is responsible for extracting pertinent features from

the input image, while the decoder reconstructs the image using these extracted

features. An attention mechanism is integrated to guide the decoder’s focus to-

wards the most relevant regions within the image.In addition to the Attention

U-Net model, our methodology involves various techniques and stages. Further-

more, addressing the challenge of limited data, we implement augmentation tech-

niques to diversify and enrich our dataset, promoting better generalization during

model training. Augmentation involves applying transformations to the existing

images, such as rotations, flips, and scaling, thereby generating variations that
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aid the model in learning robust features. To enhance feature selection and fo-

cus on critical regions, attention gates are incorporated into our Attention U-Net

model. These attention gates dynamically modulate the importance of different

features, allowing the model to selectively emphasize relevant details for accurate

segmentation.

Our comprehensive methodology extends beyond architecture design. Leveraging

the power of the Attention U-Net, we prioritize each step, ensuring the extraction

of meaningful features, effective segmentation, and accurate classification. The

integration of these components, along with meticulous preprocessing and aug-

mentation, collectively fortifies our approach to intracranial hemorrhage detection

and classification in CT scans.

Figure 3.1: Proposed Methodology

In the initial phase of our methodology, we implemented a data augmentation tech-

nique to enrich the dataset’s diversity, employing strategies to balance the dataset
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effectively. Subsequently, we transformed DICOM images into Hounsfield Units

(HU), a crucial step in preparing the data for further analysis. The conversion

to HU enables standardized representation across different scanners and enhances

comparability.Following the HU conversion, we applied windowing techniques to

focus on specific ranges of HU values, optimizing the visualization and analysis of

CT scans. This windowing step improves the clarity of relevant structures, em-

phasizing areas of interest while mitigating noise.Post-windowing, we carried out

normalization on the images, scaling pixel values to a standardized range. Normal-

ization is instrumental in ensuring consistent and comparable pixel intensity levels

across images. After these preprocessing steps, we employed an Attention U-Net

model, integrating attention mechanisms for feature selection and segmentation.In

the final stage of our methodology, we executed the classification of intracranial

hemorrhage subtypes. This comprehensive approach, from data augmentation to

classification, ensures robust preprocessing and feature extraction, contributing to

the model’s efficacy in accurate hemorrhage localization and classification.

Figure 3.2: Flowchart of Proposed Methodology
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3.1 Dateset

The RSNA dataset is the largest publicly available dataset of brain CT images

annotated for hematoma detection and classification. The dataset consists of

874,035 images, which were annotated by expert radiologists for the presence or

absence of five types of hematoma:

1. Intraparenchymal Hemorrhage (IPH)

2. Epidural Hemorrhage (EDH)

3. Subdural Hemorrhage (SDH)

4. Subarachnoid Hemorrhage (SAH)

5. Intraventricular Hemorrhage (IVH)

The training set consists of 752,803 images, and the test set consists of 121,232

images. The dataset has a class imbalance, meaning that some types of hematoma

are more common than others[24].

Figure 3.3: Epidural Hemorrhage(EDH)
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Figure 3.4: Intraparenchymal Hemorrhage (IPH)

Figure 3.5: Subdural Hemorrhage (SDH)
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Figure 3.6: Subarachnoid Hemorrhage (SAH)

Figure 3.7: Intraventricular Hemorrhage (IVH)
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3.1.1 Challenges

Challenges included in this dataset are as follows:

1. The primary challenge lies in training a model with significantly imbalanced

class distributions. Among the five different types of intracranial hemor-

rhages, subdural hemorrhages are abundantly represented with 47,166 DI-

COM images, while epidural hemorrhages are notably underrepresented with

just 3,145 DICOM images in the dataset.

2. The secondary challenge revolves around the existence of mutually exclusive

labels, signifying instances where specific images showcase the simultaneous

presence of multiple types of hemorrhages. This scenario introduces com-

plexity in accurately categorizing and delineating the distinct hemorrhage

subtypes within the dataset. Addressing this challenge necessitates sophis-

ticated strategies to comprehensively capture and classify the diverse com-

binations of hemorrhage types evident in certain images, further enhancing

the robustness of the analysis

To tackle these challenges, we formulated two distinct datasets: Dataset 1 and

Dataset 2.This deliberate design facilitates a nuanced exploration of various sce-

narios, offering valuable insights into the intricate challenges linked to the pres-

ence of mutually exclusive labels within medical image datasets. By structuring

the datasets with careful consideration for these labels, our approach not only

enhances the understanding of such complexities but also sets the stage for more

robust and insightful analyses in the realm of medical image classification.

Dataset 1 was carefully curated to eliminate mutually exclusive labels, ensuring

that each DICOM file exclusively represents a single type of hemorrhage or none

at all. Refer to Table 3.1 for a comprehensive breakdown of the image distribution

across various hemorrhage types in Dataset 1.

In contrast, Dataset 2 was intentionally structured to incorporate mutually exclu-

sive labels, enabling a single DICOM file to encompass multiple hemorrhage types



Methodology 37

or none. The distribution of images for each type in Dataset 2 is outlined in Table

3.2.

Table 3.1: Intracranial Hemorrhage Dataset 1

Type Of Hemorrhage DICOM image Number

Subdural 32200

Subarachnoid 16423

Intraventricular 9878

Intraparenchymal 15664

Epidural 1649

Normal Image 644870

Table 3.2: Intracranial Hemorrhage Dataset 2

Type Of Hemorrhage DICOM image Number

Subdural 47166

Subarachnoid 35675

Intraventricular 26205

Intraparenchymal 36118

Epidural 3145

Normal Image 644870

Notably, Epidural hemorrhages exhibit underrepresentation, with only 3,145 DI-

COM images in the dataset. To address class imbalance concerns, we decided

to exclude Epidural hemorrhages from our analysis. Additionally, we applied the

Augmentation technique to balance the data, with a specific emphasis on augment-

ing the Intraventricular Hemorrhage class. This augmentation process resulted in

the generation of additional images, contributing to a more balanced and repre-

sentative dataset for our subsequent analyses.

In Dataset 1, we meticulously ensured a consistent count of 15,000 DICOM images

for each class, as summarized in Table 3.3. For Dataset 2, our goal was to have

30,000 DICOM images for each type. However, due to random selection during

the augmentation process, some duplicate files emerged. After eliminating these



Methodology 38

duplicates, the revised counts are presented in Table 3.4 for clarity. This thorough

approach to dataset creation and balancing establishes a robust groundwork for

subsequent analyses and model training, effectively addressing challenges such as

class imbalance and the complexities associated with mutually exclusive labels.

Table 3.3: Intracranial Hemorrhage Balance Dataset 1

Type Of Hemorrhage DICOM image Number

Subdural 15000

Subarachnoid 15000

Intraventricular 15000

Intraparenchymal 15000

Normal Image 15000

Total Number of Images 75000

Table 3.4: Intracranial Hemorrhage Balance Dataset 2

Type Of Hemorrhage DICOM image Number

Subdural 35007

Subarachnoid 33220

Intraventricular 30000

Intraparenchymal 33960

Normal Image 30000

Total Number of Images 120858

3.2 Data Pre-Processing

Data preprocessing is a fundamental step in preparing raw data for analysis or

machine learning tasks. It involves a series of operations and transformations to

clean, format, and organize the data so that it becomes suitable for further analy-

sis or model training. Key steps in data preprocessing include cleaning, handling

missing data, encoding categorical variables, scaling numerical features, and split-

ting the data into training and testing sets. These steps collectively contribute to
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ensuring the quality and compatibility of the data for effective analysis and model

performance.

1. Correct DICOM Images:

Correcting DICOM (Digital Imaging and Communications in Medicine) im-

ages is an important step in medical image processing to ensure that the

images are properly formatted and have accurate pixel values. This correc-

tion process is particularly important in cases where DICOM images have

certain issues, such as non-standard pixel values, incorrect scaling, or other

anomalies.The first step is to read the DICOM image file. The DICOM im-

age file is a standard format for storing and transmitting medical images.

It contains a header that stores information about the image, such as the

patient’s name, the date the image was taken, and the type of scanner that

was used. The DICOM image file also contains a pixel array that stores the

values of the pixels in the image.

The next step is to check the BitsStored and PixelRepresentation tags in

the DICOM header. The BitsStored tag specifies the number of bits used to

store each pixel value in the image. The PixelRepresentation tag specifies

whether the pixel values are stored in signed or unsigned format.

If the BitsStored tag is 12 and the PixelRepresentation tag is 0, then the

RescaleIntercept tag is corrected. The RescaleIntercept tag is a value that

is subtracted from each pixel value in the image. It is used to correct for the

offset of the pixel values.

If the RescaleIntercept tag is not correct, then the image will be corrupted or

have incorrect values. In this case, the RescaleIntercept tag can be corrected

by adding 1000 to each pixel value in the image.

2. Windowing:

Windowing is a technique used to improve the contrast of an image by ad-

justing the range of pixel values that are displayed. It is done by multiplying

the pixel values in the image by a slope and adding a bias. The slope and bias

are chosen to highlight the desired features in the image.In medical images,
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each pixel or voxel is assigned an intensity value based on the attenuation

of X-rays (CT scans), signal intensity (MRI), or X-ray absorption (X-rays).

These intensity values represent the density or composition of the tissues

being imaged.

(a) Window Width (WW): This parameter determines the range of in-

tensity values that will be mapped to the full range of colors (usually

grayscale) in the final displayed image. It controls the image’s contrast.

(b) Window Level (WL): Also known as the center, this parameter sets

the midpoint of the intensity range that will be mapped to the middle

shade of gray. It controls the image’s brightness.

By adjusting the WW and WL settings, radiologists and medical profession-

als can focus on specific anatomical structures or pathological conditions. A

narrow WW and WL may be used to visualize fine details in the brain, such

as blood vessels or small lesions. A wide WW and a high WL may be used

to clearly depict bones while suppressing soft tissues. Different WW and

WL settings may be used to distinguish between various abdominal organs

and pathologies.use of three different intensity windows, each defined by its

specific Window Level (L) and Window Width (W): the subdural window (L

= 80 and W = 200) This window setting is likely used to visualize and high-

light structures or pathologies related to subdural regions within the medical

images. The L value of 80 sets the midpoint of the intensity range, while the

W value of 200 determines the range of intensity values for contrast. This

window configuration may be useful for detecting and assessing subdural

hemorrhages, which have different radiodensity characteristics compared to

other tissues., Soft window (L = 50 and W = 350)The soft window config-

uration is likely employed to visualize and emphasize soft tissues within the

medical images. Soft tissues typically have moderate radiodensity, and this

window setting optimizes the contrast to make them more prominent. It can

be valuable for examining organs and structures like muscles and organs in

the abdomen., and brain window (L = 40 and W = 80) The brain window

setting is tailored to enhance the visualization of brain tissue. It provides
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a narrow window width, making it suitable for highlighting fine details in

brain imaging, including detecting abnormalities like lesions or infarctions.

The L value of 40 sets the center of the intensity range.

3. Normalization:

Normalization is a critical preprocessing step in medical image analysis that

aims to standardize the pixel intensity values within an image. It ensures

that the pixel values have a consistent and comparable scale, which is essen-

tial for accurate and effective image analysis, feature extraction, and model

training. Normalization is the process of scaling pixel values to a specific

range, often between 0 and 1. This is typically done to ensure that the pixel

values are in a consistent range, which can be helpful for neural networks

during training. The normalize function is used to normalize the pixel val-

ues after windowing. It uses the minimum and maximum values from the

windowed image to perform the normalization.

4. BSB (Brain, Subdural, Soft Tissues) Windowing:

BSB windowing is a specialized technique employed in medical imaging, par-

ticularly for CT scans, to fine-tune window level and width settings, thereby

enhancing the visualization of distinct tissues and pathologies. This tech-

nique is particularly beneficial for visualizing brain tissue, subdural hematomas,

and soft tissues. The process involves combining windowing and normal-

ization for three specific tissue types:brain, subdural, and soft tissues.This

integration results in a color image where each channel corresponds to one of

these tissues. The strategic adjustment of window level and window width

settings empowers radiologists and medical professionals to optimize the dis-

play, facilitating a clearer visualization of relevant structures or conditions.

This tailored approach aids in the detection of abnormalities and contributes

to a more comprehensive assessment of patient health.

5. Resizing the image:

Deep learning models often demand substantial computational resources.

Larger input images contribute to increased parameters and computational
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load, potentially taxing hardware resources and impeding the efficiency of

both training and inference processes. To mitigate this challenge, resizing

input images to a smaller dimension is employed to reduce computational

complexity. In the context of this study, the original CT images, initially

sized at 512 × 512 × 3, have undergone a resizing transformation, resulting

in dimensions of 224 × 224 × 3. This resizing operation not only facili-

tates more manageable computational requirements but also streamlines the

overall processing efficiency of the deep learning model.

3.3 Proposed Model

In this research study, we have introduced a novel Attention U-Net Model, which

is specifically designed for the task of Multi-Class Image Classification. This in-

novative model builds upon the foundation of the Attention U-Net architecture,

a powerful neural network structure for image segmentation. However, we have

extended its capabilities by incorporating a classification layer, effectively modify-

ing the model’s original behavior and allowing it to excel in the context of image

classification tasks.

The primary motivation for this research is to harness the strengths of the Atten-

tion U-Net architecture, which is renowned for its ability to capture fine-grained

details in images, and adapt it for the challenges posed by multi-class image classi-

fication. By integrating a classification layer, our approach leverages the power of

attention mechanisms while also enabling the model to make explicit class predic-

tions, making it a valuable tool for a wide range of image classification tasks. This

hybrid model represents a significant advancement in the field of computer vision,

offering enhanced performance and accuracy for multi-class image classification

scenarios.

The Attention U-Net is a convolutional neural network (CNN) architecture that

seamlessly integrates the U-Net structure with attention mechanisms. The U-

Net’s distinctive dual-path design encompasses a contracting path and an expan-

sive path. Within the contracting path, encoder layers capture contextual details
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and reduce the spatial dimensions of the input. In contrast, the expansive path

employs decoder layers responsible for decoding the encoded information. These

decoder layers utilize skip connections to incorporate data from the contracting

path, ultimately generating a segmentation map.

Attention, as a technique, enables the model to selectively focus on the most

crucial parts of an image. This capability proves invaluable for various tasks

such as image classification, object detection, and segmentation. By integrating

attention mechanisms into the U-Net architecture, the Attention U-Net model

enhances its capacity to prioritize significant features, contributing to improved

performance in tasks requiring nuanced visual understanding. There are two main

types of attention:

1. Hard Attention: Hard attention is a binary operation, meaning it makes a

strict decision on whether to attend to a particular part of the image or not.

This can be implemented by either cropping the image to exclusively include

the identified crucial parts or by utilizing a mask to explicitly specify which

regions of the image should be attended to. In hard attention, the focus is

distinctly on selective, isolated areas without any gradation.

2. Soft Attention: Soft attention, in contrast, is a continuous operation that

allows for a more nuanced approach to image attention. It enables the model

to assign varying levels of attention to different parts of the image. This

is achieved by assigning weights to different regions of the image, where

higher weights indicate a greater degree of attention. Soft attention allows

for a smoother, gradient-based distribution of attention across the image,

providing flexibility in emphasizing different levels of importance to various

regions.

3.3.1 Model Component

In the U-Net model, a key architectural element involves the utilization of skip con-

nections to convey spatial information from the down-sampling network (encoder)
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to the up-sampling network (decoder). While these connections play a crucial role

in preserving detailed information and context, they can introduce suboptimal

feature representations, particularly when dealing with information from the early

layers of the network. To overcome this challenge, the introduction of attention

gates by [25] marks a significant enhancement to the model.

The integration of attention gates represents a noteworthy advancement in the

U-Net architecture. These attention gates serve a critical purpose by selectively

suppressing activations that are deemed less relevant. This innovative addition

substantially improves feature representation, especially when dealing with infor-

mation from the initial layers. Consequently, attention gates not only address

the challenge of suboptimal feature representations but also significantly enhance

overall segmentation performance.

The integration of attention gates in the U-Net model introduces a sophisticated

mechanism that plays a pivotal role in refining the model’s decision-making pro-

cess. Attention gates operate by selectively emphasizing or de-emphasizing fea-

tures, enabling the U-Net to discern and prioritize relevant information. This

nuanced feature selection enhances the model’s ability to capture critical details,

particularly in the presence of complex and intricate image structures.Moreover,

attention gates contribute to addressing the inherent challenges associated with

information from the early layers of the network. By selectively suppressing less

relevant activations, attention gates mitigate the risk of suboptimal feature rep-

resentations. This selective attention mechanism ensures that the U-Net not only

maintains its prowess in preserving fine-grained details through skip connections

but also elevates its overall segmentation performance.

The impact of attention gates extends beyond the U-Net architecture’s conven-

tional capabilities, offering a versatile solution for improved semantic segmentation

and image analysis. The model’s adaptability to different domains and scenarios

is heightened, making it a valuable tool for applications where discerning and pri-

oritizing features is crucial. This innovative addition propels the U-Net model

into the forefront of advanced image processing, reinforcing its reputation as a

cutting-edge solution for complex segmentation tasks.
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1. Contraction Path:

The contraction path within the architecture of the Attention U-Net model

serves a pivotal role in the feature extraction process from the input image.

It comprises a sequence of convolutional layers, coupled with subsequent max

pooling layers, and its function is integral to the model’s ability to capture

relevant image features effectively.

The convolutional layers situated along the contraction path operate hierar-

chically. They are responsible for the extraction of features from the input

image, and this process unfolds in a multi-scale manner. The lower-level

convolutional layers focus on capturing elementary features such as edges,

corners, and fine-grained textures. These fundamental features provide the

building blocks for more intricate representations. As we ascend through the

network’s architecture, the convolutional layers become increasingly adept

at capturing high-level features, including complex objects, shapes, and se-

mantic information. This hierarchical feature extraction enables the model

to progressively learn and represent both fine-grained and contextually rich

aspects of the input data.Max pooling layers, integrated within the contrac-

tion path, play a crucial role in downsampling the feature maps produced by

the convolutional layers. This downsampling reduces the spatial dimensions

of the feature maps, resulting in a more compact representation. Beyond

the computational efficiency benefits, downsampling can also facilitate the

model in focusing on the most salient information while discarding redun-

dant details. This contributes to the model’s ability to capture and process

features efficiently, making it well-suited for a wide range of computer vision

and image analysis tasks.

In essence, the contraction path of the Attention U-Net model serves as the

bedrock for its feature extraction capabilities. This path, comprising convo-

lutional and max pooling layers, forms a crucial component that empowers

the model to delve into the intricate details of the input image. Through

this process, the model creates hierarchical representations that encapsulate

essential features, setting the stage for subsequent tasks like image segmen-

tation and classification. The combination of convolutional operations and
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max pooling strategically applied in the contraction path allows the At-

tention U-Net to capture and distill key information, fostering a nuanced

understanding of the input data that is pivotal for achieving accurate and

effective results in downstream processes.

2. Attention Gate (AG):

An attention gate (AG) is a neural network that is used to weight the features

extracted by the encoder in the Attention U-Net model. The AG takes as

input the features extracted by the encoder and outputs a gating signal that

is used to weight the features.

The attention gates within the model take input from two sources: one orig-

inates from the immediately preceding lower-level network layer (denoted

as ’g’), and the other originates from skip connections (referred to as ’x’).

The ’x’ input, coming from a layer one level above, has double the height

(H) and width (W) dimensions. To align these dimensions before combining

them, we apply a convolution operation to ’x’ with a stride of 2. Afterward,

we perform element-wise addition, followed by rectified linear unit (ReLU)

activation. Subsequently, we use a convolution operation with a single (1,1)

filter and apply a sigmoid activation function. This step essentially com-

putes the weights of attention. We then up-sample the resulting attention

weights to match the dimensions of ’x’. Finally, we perform element-wise

multiplication between the up-sampled attention weights and ’x’.

3. Expansion Path:

The expansion path in the Attention U-Net model is the part of the model

that reconstructs the image from the features extracted by the encoder. The

expansion path consists of a series of convolutional layers, followed by up-

sampling layers. The convolutional layers in the expansion path reconstruct

the image from the features extracted by the encoder. The features are re-

constructed in a hierarchical manner, with the lower layers reconstructing

low-level features, such as edges and corners, and the higher layers recon-

structing high-level features, such as objects and shapes. The upsampling
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layers in the expansion path upsample the features extracted by the convolu-

tional layers. In the attention features from lower levels are brought up, and

at the same level, feature maps are concatenated using skip connections.

Description of the working of the expansion path in the Attention U-Net

model are as follow.

(a) Attention features, which capture important information from lower

levels of the network, are up-sampled to match the spatial resolution of

the current level.

(b) Simultaneously, feature maps from the same level in the contracting

(down-sampling) path, which contain both detailed spatial information

and higher-level abstractions, are retained.

(c) These two sets of features, the up-sampled attention features and the

feature maps from the current level, are then concatenated.

(d) The concatenation operation combines the valuable spatial details from

the skip connections with the refined features obtained from the atten-

tion mechanism.

(e) The resulting feature maps contain a fusion of contextual information

and fine-grained spatial details, enhancing the network’s ability to gen-

erate accurate segmentations.

This intricate process of attention-guided feature fusion within the Atten-

tion U-Net model is crucial for achieving high-quality image segmentations.

By strategically combining the up-sampled attention features and the pre-

served feature maps from the down-sampling path, the model ensures that

the segmented output encapsulates both the contextual richness derived from

higher-level abstractions and the fine-grained spatial details originating from

the skip connections.

The up-sampling of attention features allows the model to emphasize im-

portant information from the lower layers, capturing intricate details that

might be crucial for accurate segmentation. Simultaneously, the retention of

feature maps from the same level in the down-sampling path ensures that the
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network retains comprehensive spatial information, balancing both detailed

and abstract representations.

The subsequent concatenation operation serves as a fusion point, bringing

together these two sets of features. This fusion not only preserves the spatial

intricacies through skip connections but also incorporates refined attention-

guided information. The resulting feature maps are a harmonious blend

of contextual understanding and spatial precision, providing the Attention

U-Net model with the capability to generate segmentations that accurately

represent the complexities present in the input images.

Algorithm 1: Attention U-NET Algorithm

Input: Input Image I

Output: Segmentation Mask M

function Initialize():

Initialize: Contracting Path Layers (Encoder);

Initialize: Expansive Path Layers (Decoder);

Initialize: Attention Mechanism Layers;

Initialize();

for t = 1 to T do

Encode Image I with Contracting Path Layers;

Apply Attention Mechanism to Encoded Features;

Decode Encoded Features with Expansive Path Layers;

return M ;

3.4 Classification

Within our dataset, the absence of explicit segmentation masks posed a signifi-

cant challenge. To address this, we adopted a novel approach by implementing an

Attention-based U-Net model. This advanced model harnesses the power of atten-

tion gates to discern and capture vital features from the images, all without the

dependency on manual segmentation masks. The outcome of this process results

in the production of segmented images.To further our analysis, we incorporated
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a classification layer into the workflow. This added layer of the model is instru-

mental in categorizing the segmented images into distinct subtypes of intracranial

hemorrhage. By doing so, we are not only able to detect the presence of intracra-

nial hemorrhage but also to differentiate between various subtypes, which can be

crucial for medical diagnosis and treatment decisions.

What makes this approach particularly noteworthy is its ability to perform this

classification task without the need for manual segmentation annotations. This

means that even when explicit segmentation masks are unavailable, we can still

effectively identify and classify intracranial hemorrhage subtypes in medical im-

ages, making the entire process more versatile and accessible for a broader range of

medical imaging datasets and scenarios. Furthermore, the Attention-based U-Net

model introduces a layer of interpretability into the classification process. The

attention gates play a crucial role in highlighting specific regions of interest within

the images, providing insights into the features that contribute most significantly

to the model’s classification decisions. This interpretability aspect is crucial in

medical contexts, where understanding the basis of classification can enhance the

trust and adoption of the model by healthcare professionals.

Moreover, the Attention-based U-Net model exhibits a robust generalization ca-

pability, demonstrating consistent performance across diverse datasets. Its ability

to adapt to different datasets without the need for extensive manual annotation

or segmentation makes it a valuable tool for various medical imaging scenarios.

1. Global Average Pooling 2D:

This layer performs global average pooling on the feature maps from the

previous layers. It helps in reducing the spatial dimensions of the feature

maps to a single value per feature, which is important for classification.

2. Dropout:

Dropout is a regularization technique used to prevent overfitting in neural

networks. It randomly sets a fraction of input units to zero during each

update, which helps reduce the risk of the model relying too heavily on

specific features.
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3. Dense:

The final layer is a fully connected dense layer. It takes the output from the

previous layers and performs the actual classification.The dense layer uses

a softmax activation function, which outputs a probability distribution over

the classes.

Algorithm 2: Image Classification Algorithm

Input: Segmentation Mask M , Number of Classes (num classes)

Output: Subtype label prediction

function Initialize():

Initialize: Number of Classes ← 5;

Initialize();

for t = 1 to T do

Apply GlobalAveragePooling2D Layer (GAP) to Segmentation Mask M ;

Apply Dropout Layer (Dropout) with a dropout rate of 0.8;

Apply Dense Layer (Dense) with num classes units and softmax

activation;

Return the Predicted Class Probability Vector (P);

return P ;

3.5 Benchmark Techniques

3.5.1 Mobile-Net

MobileNet is a convolutional neural network (CNN) architecture developed by

Howard et al. in 2017. It is a type of lightweight CNN that is designed for mobile

devices. MobileNet uses a technique called depthwise separable convolutions to

reduce the number of parameters and computations required.

MobileNet has 28 layers, which are arranged in 13 blocks. Each block consists

of a depthwise separable convolution, followed by a pointwise convolution. The

depthwise separable convolution is a type of convolution that splits the input into
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channels and then performs a convolution on each channel independently. Point-

wise convolution is a type of convolution that combines the output of the depthwise

separable convolution into a single channel. The first layer of MobileNet is a con-

volutional layer with 32 filters and a 3x3 kernel. The output of this layer is then

passed through a max pooling layer with a 2x2 kernel and a stride of 2. The next

12 blocks are arranged in a sequential manner. Each block consists of a depthwise

separable convolution, followed by a pointwise convolution. The depthwise sepa-

rable convolution uses 16, 32, 64, 128, or 256 filters, depending on the block. The

pointwise convolution uses the same number of filters as the depthwise separable

convolution. The last layer of MobileNet is a global average pooling layer, fol-

lowed by a fully connected layer with 1000 outputs. The 1000 outputs correspond

to the 1000 classes in the ImageNet dataset.This model is particularly efficient

in image classification tasks because of its utilization of inverted residual blocks,

which manage to achieve outstanding results while maintaining a more modest

parameter count.

To harness the power of MobileNet for the specific task of classifying intracra-

nial hemorrhage (ICH) subtypes, we employed a transfer learning approach. By

fine-tuning the model on our dataset, we were able to leverage its robust pre-

trained features for our classification task, ultimately benefiting from its capacity

to recognize intricate patterns in medical images.

Figure 3.9: MobileNet Model Diagram
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3.5.2 Dense-Net 121

DenseNet, short for Dense Convolutional Network, is a sophisticated neural net-

work architecture meticulously crafted to enhance the depth of deep learning mod-

els while simplifying the training process. This innovation is achieved through the

integration of shorter connections between layers, creating a unique densely con-

nected structure within the model. Unlike traditional convolutional neural net-

works (CNNs), each layer in DenseNet is directly linked to all subsequent layers,

forming an intricate web of connections.

A notable advantage of DenseNet lies in its ability to significantly reduce the

number of parameters required compared to conventional CNNs. This efficiency

stems from the avoidance of redundant feature mappings across layers, resulting

in a streamlined and resource-efficient architecture. Consequently, DenseNet has

emerged as a highly effective and widely embraced neural network design across

various applications.

Within the DenseNet architecture, the concept of a dense block takes center stage,

comprising layers that are repeated within the block to achieve varying depths.

Each of these layers follows a specific design, incorporating two convolutions. The

first convolution employs a 1x1-sized kernel, serving as a bottleneck layer, followed

by a 3x3 kernel for the core convolution operation. This strategic design enhances

feature extraction and promotes efficient information flow within the network,

contributing to the overall success and popularity of DenseNet in the field of deep

learning.

Moreover, every transition layer within the DenseNet model contains a 1x1 con-

volutional layer and a 2x2 average pooling layer with a stride of 2. This results in

DenseNet-121 having the following layers in its architecture: one 7x7 Convolution

layer, fifty-eight 3x3 Convolution layers, sixty-one 1x1 Convolution layers, four

Average Pooling layers, and one Fully Connected Layer. Altogether, this architec-

ture comprises 120 convolutional layers and 4 average pooling layers, culminating

in a comprehensive network structure.To harness the power of DenseNet for the

specific task of classifying intracranial hemorrhage (ICH) subtypes, we employed a
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transfer learning approach. By fine-tuning the model on our dataset, we were able

to leverage its robust pre-trained features for our classification task, ultimately

benefiting from its capacity to recognize intricate patterns in medical images.

Figure 3.10: DenseNet121 Model Diagram

3.5.3 Dense-Net 169

DenseNet-169 is a variant of the Dense Convolutional Network architecture that

builds upon the principles of DenseNet-121 but incorporates a more extensive set

of layers. In DenseNet models, each dense block consists of multiple connected

layers, where each layer receives inputs from all previous layers within the same

block, creating dense connectivity. DenseNet-169 adheres to this design philoso-

phy, featuring a substantial number of 3x3 convolutional layers within its dense

blocks. These convolutional layers are equipped with bottleneck layers, typically

including 1x1 convolutional layers, to reduce channel dimensions and computa-

tional complexity before forwarding data to subsequent layers. Transition layers

are composed of 1x1 convolutional layers followed by average pooling layers, aim-

ing to downsample the feature maps’ spatial dimensions. DenseNet-169 has 169

layers, which are arranged in 16 dense blocks. Each dense block consists of 16

convolutional layers that are densely connected. The convolutional layers in each

dense block use a 3x3 kernel and a stride of 1. The output of each dense block is
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then concatenated with the output of the previous dense block.The first layer of

DenseNet-169 is a convolutional layer with 64 filters and a 7x7 kernel. The output

of this layer is then passed through a max pooling layer with a 3x3 kernel and a

stride of 2. The next 16 dense blocks are arranged in a sequential manner. Each

dense block consists of 16 convolutional layers that are densely connected. The

convolutional layers in each dense block use a 3x3 kernel and a stride of 1. The

output of each dense block is then concatenated with the output of the previous

dense block. The last layer of DenseNet-169 is a global average pooling layer,

followed by a fully connected layer that gives classification output.We employed a

transfer learning approach. By fine-tuning the model on our dataset, we were able

to leverage its robust pre-trained features for our classification task, ultimately

benefiting from its capacity to recognize intricate patterns in medical images.

Figure 3.11: DenseNet-169 Model Diagram

3.5.4 ResNet 101

ResNet-101 is a convolutional neural network (CNN) architecture developed by

He et al. in 2015. It is a type of deep residual network (ResNet) that uses resid-

ual connections. Residual connections help to address the problem of vanishing

gradients, which can occur in deep neural networks.ResNet-101 has 101 layers,
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which are arranged in 34 residual blocks. Each residual block consists of two

convolutional layers that are connected by a residual connection.

The convolutional layers in each residual block use a 3x3 kernel and a stride of

1. The output of each residual block is then added to the input of the residual

block. The first layer of ResNet-101 is a convolutional layer with 64 filters and a

7x7 kernel. The output of this layer is then passed through a max pooling layer

with a 3x3 kernel and a stride of 2. The next 34 residual blocks are arranged in a

sequential manner. Each residual block consists of two convolutional layers that

are connected by a residual connection. The convolutional layers in each residual

block use a 3x3 kernel and a stride of 1. The output of each residual block is then

added to the input of the residual block. The last layer of ResNet-101 is a global

average pooling layer, followed by a fully connected layer with 1000 outputs. The

1000 outputs correspond to the 1000 classes in the ImageNet dataset.

We employed a transfer learning approach. By fine-tuning the model on our

dataset, we were able to leverage its robust pre-trained features for our classifica-

tion task, ultimately benefiting from its capacity to recognize intricate patterns in

medical images.

Figure 3.12: ResNet-101 Model Diagram
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3.5.5 ResNet 152

ResNet-152, a convolutional neural network (CNN) architecture introduced by He

et al. in 2015, represents a pivotal advancement in deep learning. As a profound

instantiation of a deep residual network (ResNet), it strategically incorporates

residual connections to mitigate the challenge of vanishing gradients often en-

countered in deep neural networks.

Comprising an impressive 152 layers organized into 50 residual blocks, ResNet-

152 employs a unique structure. Each residual block integrates two convolutional

layers seamlessly connected by a residual connection. The convolutional layers

within each block utilize a 3x3 kernel with a stride of 1, enhancing the network’s

capacity for feature extraction. Crucially, the output of each residual block is

additive with the input, facilitating the unhindered flow of information through

the network.

The initial layer of ResNet-152 initiates with a convolutional layer boasting 64

filters and a substantial 7x7 kernel. Following this, the output undergoes further

processing via a max pooling layer with a 3x3 kernel and a stride of 2, optimizing

feature extraction.

The subsequent 50 residual blocks are systematically arranged in sequence, pre-

serving the two-convolutional-layer configuration connected by residual connec-

tions. These convolutional layers, again utilizing a 3x3 kernel and a stride of 1,

continue to enhance the network’s ability for intricate feature discernment. The

additive integration of output and input remains a consistent design principle

across all residual blocks.

The concluding layer of ResNet-152 features a global average pooling layer suc-

ceeded by a fully connected layer with 1000 outputs. These outputs align with

the 1000 classes in the ImageNet dataset, showcasing the network’s proficiency in

image classification. The adoption of a transfer learning approach further lever-

ages the pre-trained capabilities of ResNet-152, highlighting its adaptability and

efficacy across diverse applications. By fine-tuning the model on our dataset, we

were able to leverage its robust pre-trained features for our classification task,
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ultimately benefiting from its capacity to recognize intricate patterns in medical

images.

Figure 3.13: ResNet-152 Model Diagram

3.6 Evaluation

The assessment of various methods for classifying ICH subtypes follows a standard

train-validation-test procedure. The training phase involves training the method

on the designated training dataset, while the validation dataset is utilized to opti-

mize hyperparameters and fine-tune the model. Subsequently, the performance of

each system is rigorously evaluated on the independent test dataset to gauge its

overall effectiveness.

1. Average F-score

The average F-score often denoted as F1-score or simply F-score, is a sta-

tistical measure used to assess the accuracy and precision of a classification

model. It is calculated as the harmonic mean of precision and recall and

provides a balance between these two metrics. It is a valuable metric for

evaluating the overall performance of a classification model, especially in

situations where a single accuracy score may not provide a complete picture
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of its effectiveness. The F1-score serves as a valuable tool in the comprehen-

sive evaluation of classification models, offering insights into their ability to

achieve a harmonious blend of precision and recall. By considering both false

positives and false negatives, the F1-score provides a more nuanced perspec-

tive on the model’s overall performance. This makes it especially relevant in

domains where the consequences of misclassifications are asymmetric, em-

phasizing the importance of a holistic evaluation approach.

In essence, the F1-score proves to be an indispensable metric for practitioners

and researchers alike, contributing to a thorough and balanced assessment

of classification models and their real-world applicability.

Favg =
2

C

C∑
c=1

Recallc · Precisionc

Recallc + Precisionc

(3.1)

where C is the Number of classes and

Recallc =
TPc

TPc + TNc

(3.2)

Precisionc =
TPc

TPc + FPc

(3.3)

2. Average Accuracy:

Average accuracy, in the context of machine learning and classification tasks,

is a metric used to evaluate the overall performance of a model across multi-

ple classes or categories. It is particularly relevant in multi-class classification

scenarios.

The computation of average accuracy involves a two-step process. Firstly,

accuracy is calculated for each specific class or category within the classifi-

cation. This individual class accuracy is determined by the ratio of correctly

predicted instances for that class to the total instances belonging to that

class. Subsequently, the average accuracy is derived by taking the mean

of these individual accuracies, providing a comprehensive assessment of the

model’s performance across all classes.In essence, average accuracy offers a
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consolidated view of how well a model performs in distinguishing between

different classes, making it a valuable metric for evaluating the overall effec-

tiveness of a classification model in multi-class scenarios.

Accuracyavg =
1

C

C∑
c=1

TPc + TNc

TPc + FPc + TNc + FNc

(3.4)

3. True Positive Rate (TPR):

True Positive Rate (TPR), also known as Sensitivity, Recall, or Hit Rate, is

a performance metric used in binary classification and medical diagnostics.

It measures the proportion of actual positive cases that the model correctly

identifies as positive.

TPRavg =
1

C

C∑
c=1

TPc

TPc + FNc

(3.5)

4. True Negative Rate (TNR):

True Negative Rate (TNR), also known as Specificity, is a performance met-

ric used in binary classification and medical diagnostics. It measures the

proportion of actual negative cases that the model correctly identifies as

negative.

TNRavg =
1

C

C∑
c=1

TNc

FPc + TNc

(3.6)



Chapter 4

Implementation and Experiments

of the Proposed Methodology

A detailed explanation of the proposed methodology can be found in Chapter 3.

This chapter is dedicated to discussing the experiments conducted and the results

obtained through the application of the proposed methodology.

4.1 Tools and Technology

1. Kaggle Jupyter Notebook:

Kaggle Jupyter Notebook is a web-based environment that allows you to

write and execute code in Python. It is a popular tool for machine learning

experiments because it is easy to use and it provides a variety of features

that are useful for data science, such as a code editor, a terminal, and a

debugger.

2. Python programming language:

Python stands as a versatile, general-purpose programming language renowned

for its popularity in the field of machine learning. Widely embraced for its

readability and simplicity, Python proves to be an accessible language for

both beginners and experienced developers. One of its key strengths lies

61
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in its extensive library ecosystem, which includes powerful tools and frame-

works essential for machine learning endeavors.

Notably, Python serves as the foundation for prominent machine learning

libraries like TensorFlow and Keras. TensorFlow, a widely-used open-source

framework, is renowned for its flexibility and scalability in building and

training deep learning models. Keras, on the other hand, operates as a high-

level neural networks API, simplifying the process of model construction and

training.

3. TensorFlow and Keras libraries:

TensorFlow and Keras stand out as prominent libraries in the realm of deep

learning. TensorFlow serves as a foundational, low-level library that lays the

groundwork for constructing intricate deep-learning models. Known for its

versatility and robustness, TensorFlow offers a comprehensive set of tools for

implementing various machine learning and deep learning algorithms. On

the other hand, Keras is a high-level library that operates as an abstraction

layer atop TensorFlow, simplifying the process of designing and training deep

learning models.

Keras is particularly valued for its user-friendly interface, making it acces-

sible to individuals with diverse levels of expertise in deep learning. Its

high-level nature allows for a more intuitive and streamlined development

experience, enabling practitioners to focus on model architecture and exper-

imentation without delving into the intricacies of low-level implementation

details.

4. Kaggle GPU:

Kaggle GPU stands as a valuable service offering access to Graphics Pro-

cessing Units (GPUs) tailored for conducting machine learning experiments.

Recognized for their superior speed in comparison to Central Processing

Units (CPUs).

GPUs prove particularly advantageous in accelerating the training of deep

learning models. This service becomes a cornerstone for data scientists and
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researchers seeking efficient and high-performance computing resources to

advance their experiments and analyses within the Kaggle platform.

4.2 Dataset

The RSNA (Radiological Society of North America) dataset stands as a significant

and openly available repository of brain CT images with detailed annotations for

hematoma detection and classification. This expansive dataset encompasses an

impressive 874,035 images, each meticulously reviewed and annotated by expert

radiologists. The annotations specifically focus on identifying the presence or ab-

sence of five distinct types of hematoma. The substantial scale of the dataset, cou-

pled with the expertise reflected in the annotations, positions it as a valuable and

comprehensive resource for the development and evaluation of machine-learning

and deep-learning algorithms and models dedicated to hematoma detection and

classification in the realm of medical imaging applications. The detailed annota-

tions provided by expert radiologists contribute to the dataset’s credibility and

reliability, enabling the creation and refinement of sophisticated algorithms that

can effectively navigate the intricacies of hematoma detection and classification.

The types of intracranial hemorrhage are as follows

1. Intraparenchymal Hemorrhage (IPH)

2. Epidural Hemorrhage (EDH)

3. Subdural Hemorrhage (SDH)

4. Subarachnoid Hemorrhage (SAH)

5. Intraventricular Hemorrhage (IVH)

The training set consists of 752,803 images, and the test set consists of 121,232

images. The dataset has a class imbalance, meaning that some types of hematoma

are more common than others shown in Figure 4.1.The class imbalance in the
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RSNA dataset poses a noteworthy challenge, as certain types of hematoma are

more prevalent than others.

Figure 4.1: Class-wise Distribution

The dataset in question lacks any patient-specific clinical or medical details, ren-

dering it ethically suitable for integration into this study. The absence of confi-

dential or private patient information ensures that the dataset aligns with ethical

guidelines, providing a secure foundation for analysis and research endeavors. The

structure of the training data is organized such that each image ID is linked to

multiple labels, encompassing the five distinct hemorrhage subtypes.

Additionally, there exists an extra label that remains consistently valid whenever

any of the subtype labels are present. Each individual file is specifically anno-

tated to signify the presence or absence of one or more types of hemorrhage, or

alternatively, the complete absence of any hemorrhage indication. It is noteworthy
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that the majority of scans within the dataset exhibit no discernible indications of

hemorrhage.Facilitating the integration of labels with the corresponding images,

a CSV (Comma-Separated Values) file was employed to provide information for

each patient ID. This CSV file is structured to include six lines of information for

every patient ID, contributing to the comprehensive annotation and categorization

of the dataset for research purposes These lines correspond to the different types

of bleeding and employ a Boolean value to signify the presence or absence of a

particular form of hemorrhage within the image Shown In Figure 4.2.

Figure 4.2: of the data frame where hemorrhage in the image

We have created two distinct datasets: Dataset 1 and Dataset 2. In Dataset 1,

there are no mutually exclusive labels, and each DICOM file contains only one
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type of hemorrhage or no hemorrhage at all.

In Dataset 2, we encounter mutually exclusive labels, where a single DICOM file

can contain more than one type of hemorrhage or none at all. Notably, Epidural

hemorrhages are underrepresented, with only 3,145 DICOM images in the dataset.

To address this class imbalance issue, we have chosen to exclude this type from

our analysis and balance the data using the Augmentation technique. To augment

our dataset effectively, we applied the Augmentation technique specifically to the

Intraventricular Hemorrhage class. This process generated additional images.

In Dataset 1, we ensured that each class had a consistent count of 15,000 DICOM

images, Shown in Figure 4.3 In Dataset 2, we aimed for each type to contain

30,000 DICOM images, but due to random selection, some duplicate files were

introduced. After eliminating these duplicates, the revised counts are presented

in Figure 4.4 for clarity.

Figure 4.3: Balance Dataset1
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Figure 4.4: Balance Dataset2

4.3 Implementation of Model

The Attention U-Net model was implemented in TensorFlow and Keras libraries.

The model consists of an encoder and a decoder. The encoder is a series of

convolutional layers that extract features from the input image. The decoder is a

series of convolutional layers that reconstruct the image from the features extracted

by the encoder. The attention mechanism is used in the decoder to focus on the

most important features of the image.

The encoder consists of five convolutional layers with 64, 128, 256, 512 , and 1024

filters, respectively. Each convolutional layer is followed by a ReLU activation

function and a max pooling layer with a 3x3 kernel and a stride of 2. The decoder

consists of five convolutional layers with 1024,512, 256, 128, and 64 filters, respec-

tively. Each convolutional layer is followed by a ReLU activation function and an
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upsampling layer with a 2x2 kernel and a stride of 2. The attention mechanism is

implemented as a convolutional neural network with 64 filters. The convolutional

neural network takes as input the features extracted by the encoder and the fea-

tures extracted by the decoder. The output of the convolutional neural network

is a gating signal that is used to weight the features extracted by the decoder.

Table 4.1: Model Parameter

Parameter Value

Convolution Layer 18

Convolution Layer Filter 16

Convolution Layer Kernel Size 3

Convolution Layer Activation Function Relu

Pooling Layer 5

Pooling Method Max Pooling

Pooling Size 2

Skip Connection 4

Stride 2

Optimizer Adam

Loss Function Binary Cross Entropy

Batch Size 8

Epochs 32

Creating learning curves for both the training and validation sets is a crucial step

in evaluating the performance of the Attention U-Net model. These curves provide

insights into the model’s training progress, revealing how its performance evolves

over successive epochs. Typically, learning curves depict the model’s loss and

accuracy metrics on both the training and validation sets.

The loss curve illustrates the model’s convergence during training. A decreasing

loss indicates that the model is learning and improving its predictions. Meanwhile,

the accuracy curve showcases the model’s classification performance. Higher ac-

curacy values indicate better performance, but it’s essential to monitor both the

training and validation curves to identify potential overfitting or underfitting is-

sues.Examining the learning curves allows practitioners to make informed decisions
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regarding model training, hyperparameter tuning, and potential adjustments to

prevent overfitting or enhance generalization. It provides a visual representation

of the trade-off between model complexity and its ability to generalize to new,

unseen data.
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Figure 4.5: Train and Validation Learning Curves

4.4 Classification

In our dataset, there are no explicit segmentation masks available. Therefore,

we employed an Attention-based U-Net model, which leverages attention gates to

capture essential features without relying on explicit segmentation masks. At the

conclusion of the Attention U-Net model, we obtain segmented images. Subse-

quently, we apply a classification layer to categorize these segmented images into

different subtypes of intracranial hemorrhage. .To assess the performance of our

model, we utilized the average F1-score as a key evaluation metric. On Dataset 1,

our model achieved an impressive average F1-score of 0.79, demonstrating its effec-

tiveness in accurately classifying intracranial hemorrhage subtypes. Furthermore,
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on Dataset 2, our model achieved a commendable average F1-score of 0.73, reaf-

firming its robustness in handling more challenging data scenarios. Additionally,

our model succeeded in enhancing the accuracy of classification for each individual

hemorrhage subtype.

Table 4.2: Class Wise Result of Dataset 1

Type Of Hemorrhage Precision Recall F1 Score

Subdural 0.85 0.59 0.70

Subarachnoid 0.75 0.82 0.78

Intraventricular 0.92 0.88 0.90

Intraparenchymal 0.82 0.77 0.79

Normal Image 0.81 0.73 0.77

Table 4.3: Class Wise Result of Dataset 2

Type Of Hemorrhage Precision Recall F1 Score

Subdural 0.84 0.41 0.55

Subarachnoid 0.93 0.71 0.80

Intraventricular 0.89 0.68 0.73

Intraparenchymal 0.85 0.84 0.84

Normal Image 0.78 0.63 0.70

4.5 Analysis of Result

In our comparative analysis, we considered five widely recognized benchmark mod-

els along with a state-of-the-art model that served as a reference point for our

study. The outcomes, which are highlighted in bold and underlined, underscore

the remarkable performance of our proposed model in contrast to the benchmark

techniques. Specifically, our model achieved an outstanding accuracy of 92% on

Dataset 1 and 87% on Dataset 2, marking the highest levels of accuracy across

all benchmark studies. These results vividly illustrate the superior performance of

our proposed model in intracranial hemorrhage subtype classification. For a visual
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representation of the accuracy comparison between our model and the benchmark

approaches.Moreover, the achieved F1 scores further underscore the efficacy of our

proposed model, reaching an impressive 79% on Dataset 1 and 73%on Dataset 2.

These robust F1 scores signify a balanced performance in terms of precision and

recall, highlighting the model’s capability to effectively classify intracranial hem-

orrhage subtypes across diverse datasets. This achievement solidifies the position

of our proposed model as a top-performing solution in the challenging domain of

medical image classification.

Figure 4.6: dataset 1 F-Score of different Techniques

Figure 4.7: dataset 2 F-Score of different Techniques
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Figure 4.8: dataset 1 Accuracy of different Techniques

Figure 4.9: dataset 2 Accuracy of different Techniques

The Attention U-Net Model stands out prominently when compared to various

benchmark models in the intricate task of classifying intracranial hemorrhages.

In the evaluation using Dataset 1, it not only showcases superior performance

but also achieves an outstanding F1-Score of 0.79. This remarkable F1-Score un-

derscores the model’s exceptional ability to strike a harmonious balance between

precision and recall, a crucial aspect in medical image classification. Furthermore,

the Attention U-Net Model attains the highest accuracy of 92%, indicating a com-

mendable correctness in distinguishing between different subtypes of hemorrhages.
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The robust performance of the model is further evident in its True Positive Rate

(TPR) of 0.76, ensuring accurate identification of positive hemorrhage cases, and

a notably high True Negative Rate (TNR) of 0.96. This high TNR signifies the

model’s proficiency in correctly recognizing cases without hemorrhage. The com-

prehensive comparative analysis unequivocally establishes the Attention U-Net

Model as a standout choice for precise and accurate intracranial hemorrhage clas-

sification. Its superior metrics, encompassing F1-Score, accuracy, TPR, and TNR,

solidify its position as a leading model in the challenging landscape of medical im-

age analysis and classification.Beyond its remarkable metrics, what sets the Atten-

tion U-Net Model apart is its intricate understanding of image features, facilitated

by the incorporation of attention gates. These attention gates endow the model

with the capability to intelligently select and prioritize the most relevant features

within the image data. This strategic feature selection ensures that the model

excels at capturing critical information, avoiding being overwhelmed by irrelevant

data.

A distinguishing feature of the Attention U-Net Model lies in its hierarchical fea-

ture extraction embedded within the U-Net framework, complemented by atten-

tion mechanisms. This combination enables the model to develop a profound

understanding of image intricacies, spanning from low-level features like edges

and corners to high-level features encompassing objects and shapes. This nuanced

comprehension contributes to the model’s ability to identify subtle nuances crucial

for improved classification accuracy.

Moreover, the model seamlessly integrates segmentation and classification tasks

within a unified framework. This cohesiveness results in enhanced feature repre-

sentations, fostering a more holistic understanding of image data. This unique

attribute ensures that the Attention U-Net Model is not only adept at identifying

and prioritizing features for classification but also excels in the intricate task of

segmentation.

In summary, the Attention U-Net Model’s superiority extends beyond numerical

metrics, encompassing its intelligent feature prioritization, nuanced image under-

standing, and seamless fusion of segmentation and classification tasks. These
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qualities collectively position it as a leading choice for medical image analysis,

particularly in the intricate domain of intracranial hemorrhage subtype classifica-

tion.

Table 4.4: Comparison of Attention UNet Model using Datset 1

Model F1 avg ACC avg TPR avg TNR avg

Mobile-Net 0.74 0.90 0.70 0.95

Dense-Net 169 0.76 0.91 0.74 0.95

Dense-Net 121 0.75 0.90 0.72 0.95

ResNet 152 0.76 0.91 0.72 0.96

ResNet 101 0.70 0.89 0.68 0.94

Proposed Solution 0.79 0.92 0.76 0.96

Table 4.5: Comparison of Attention UNet Model using Datset 2

Model F1 avg ACC avg TPR avg TNR avg

Mobile-Net 0.68 0.85 0.58 0.97

Dense-Net 169 0.70 0.87 0.61 0.97

Dense-Net 121 0.71 0.87 0.60 0.96

ResNet 152 0.67 0.85 0.58 0.95

ResNet 101 0.69 0.85 0.59 0.96

Proposed Solution 0.73 0.87 0.64 0.95

4.6 Model Performance Analysis

The proposed model, built on the Attention U-Net architecture, has proven its

superiority with the highest F1 score, recall, and precision values among the eval-

uated models. This outstanding performance is underpinned by several compelling

factors. The Attention U-Net model’s integration of attention gates is a key el-

ement, enabling it to intelligently select and prioritize the most relevant features

in image data, a crucial aspect for successful classification tasks. The attention

gates serve as a mechanism that allows the model to focus on critical information
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while avoiding being overwhelmed by irrelevant data, showcasing its adeptness in

discerning salient aspects of the image.

Furthermore, the model’s hierarchical feature extraction, seamlessly embedded

within the U-Net framework alongside attention mechanisms, empowers it with

a profound understanding of both low-level and high-level features in the image.

This nuanced comprehension extends to subtle details, such as edges and cor-

ners, as well as more complex features like objects and shapes. This capability

significantly contributes to the model’s accuracy in identifying intricate nuances

in the data.A standout attribute of the Attention U-Net model is its seamless

integration of segmentation and classification tasks within a unified framework.

This synergy between tasks results in enhanced feature representations, fostering

a holistic understanding of the image data. The model’s ability to discern and

classify intracranial hemorrhage subtypes is thereby substantially strengthened.

In summary, the exceptional performance of the Attention U-Net model, as evi-

denced by its remarkable F1 scores, recall rates, and precision values, establishes

it as the preeminent choice for image classification, particularly in the challeng-

ing domain of intracranial hemorrhage subtype classification. The model’s diverse

capabilities, ranging from feature prioritization to nuanced image understanding,

solidify its position as a leader in the field of medical image analysis and classifi-

cation.
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Figure 4.10: Dataset 1 Model Performance with different Techniques
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Figure 4.11: Dataset 2 Model Performance with different Techniques

4.7 Comparative Analysis

In the domain of intracranial hemorrhage classification, our approach integrates

the innovative Attention UNet model with several existing methodologies. The

performance evaluation is based on a set of robust metrics including the F1 score,

average accuracy (ACC), true positive rate (TPR), and true negative rate (TNR).

Notably, among the pre-existing models, EfficientNet-b4 and EfficientNet-b5 ex-

hibit commendable F1 scores, achieving 66.75% and 66.9%, respectively. Their

high ACC values suggest solid all-round performance. In contrast, EfficientNet-

b3, while achieving a noteworthy TPR of 57.0%, lags in F1 score.

However, our proposed solution surpasses all existing methods with an impressive

F1 score of 0.79, reflecting superior accuracy in intracranial hemorrhage subtype

classification. This model excels not only in F1 score but also in ACC, TPR,

and TNR, reaching values of 0.92, 0.76, and 0.96, respectively. These results

underscore the substantial enhancement brought by the Attention UNet model-

based approach in intracranial hemorrhage classification, positioning it as a ro-

bust and highly effective solution for this critical medical task.Furthermore, our

model is evaluated against popular deep learning architectures such as Resnet101,
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Resnext101 32x8d, Se Resnext50 32x4d, Densenet121, Densenet161, and various

versions of Efficientnet (b1, b2, b3, b4, b5). While these architectures demonstrate

commendable performances in terms of F1 scores and accuracy, none outperforms

our proposed solution based on the Attention U-Net model.The MSFE+WGSA+JFM

method achieves a competitive F1 avg score of 74.6, indicating its proficiency

in intracranial hemorrhage classification. Nevertheless, our proposed Attention

U-Net model surpasses it with an F1 avg score of 0.79, underscoring its supe-

rior performance. This remarkable outcome highlights the effectiveness of the

attention-based approach in capturing crucial features and elevating classification

accuracy.The superiority of the Attention UNet model can be attributed to sev-

eral factors, including its use of attention gates for feature selection, allowing it to

concentrate on essential information. Additionally, the combination of segmenta-

tion and classification within a single model enhances feature representations and,

consequently, elevates classification accuracy. The hierarchical feature extraction

within the U-Net architecture, complemented by attention mechanisms, fosters a

more nuanced comprehension of image details and their relevance to classifica-

tion. These combined strengths collectively contribute to the model’s exceptional

performance in comparison to other architectures and methods.

Table 4.6: Comparative Analysis with Current Approaches

Model F1 avg ACC avg TPR avg TNR avg

Resnet101 58.6 97.2 50.6 99.30

Resnext101 32x8d 66.2 97.5 59.7 99.25

Se Resnext50 32x4d 58.4 97.2 52.0 99.21

Densenet121 57.1 97.2 49.3 99.23

Densenet161 58.8 97.2 52.0 99.22

Efficientnet-b1 56.1 97.2 47.4 99.43

Efficientnet-b2 57.1 97.2 49.3 99.21

Efficientnet-b3 65.3 97.6 57.0 99.42

Efficientnet-b4 66.75 97.5 61.8 99.11

Efficientnet-b5 66.9 97.5 62.8 99.0

MSFE+WGSA+JFM 74.6 98.1 68.4 99.28

Proposed Solution 79 92 76 96



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In conclusion, our Attention U-Net model for intracranial hemorrhage classifica-

tion has shown remarkable promise in accurately identifying and classifying dif-

ferent subtypes of hemorrhages from CT images. This model leverages the power

of attention mechanisms to focus on critical features in the images, significantly

enhancing its performance.

Our key findings and contributions include achieving an outstanding average F1-

score of 0.79 on Dataset 1 and 0.73 on Dataset 2, along with improved accuracy

for each subtype. In fact, our model outperformed several benchmark techniques,

reaching an impressive accuracy of 92% on Dataset 1 and 87% on Dataset 2,

marking it as the top-performing model in this context. Furthermore, our ap-

proach addresses challenges related to class imbalance, intricate label scenarios,

and the absence of explicit segmentation masks. The incorporation of attention

gates in the U-Net architecture signifies a significant advancement, enabling the

model to make more informed decisions about feature emphasis. This enhance-

ment not only contributes to accurate classification but also opens avenues for

applications demanding high-quality segmentation results.Our meticulous dataset

creation, balancing, and preprocessing strategies lay a robust foundation for model

78
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training and analysis. The thoughtful design of two distinct datasets, each address-

ing specific label scenarios, reflects a nuanced exploration of different scenarios,

providing valuable insights into challenges associated with mutually exclusive la-

bels in medical image datasets.

The versatility of our methodology is exemplified by its ability to perform clas-

sification tasks without the need for manual segmentation annotations, making

it applicable to a broader range of medical imaging datasets and scenarios. The

Attention U-Net model’s ability to seamlessly blend segmentation and classifica-

tion tasks within a unified framework further enhances its suitability for diverse

medical image analysis applications.

As for future work, there are several exciting avenues to explore:

1. Data Augmentation: Further enhancing the dataset with diverse augmenta-

tion techniques can potentially improve the model’s robustness and general-

ization.

2. Ensemble Learning: Investigating the benefits of ensemble learning by com-

bining multiple models or variations of the Attention U-Net can potentially

yield even better results.

3. Explainability: Exploring methods for making the model’s predictions more

interpretable, especially in medical contexts, can help build trust with health-

care professionals.

4. Real-Time Applications: Adapting the model for real-time applications, such

as assisting radiologists in diagnosing intracranial hemorrhages during CT

scans, would be a significant step forward.

5. Integration with Healthcare Systems: Working towards integrating the model

into existing healthcare systems to provide valuable support to medical pro-

fessionals.

In conclusion, our Attention U-Net model has demonstrated its potential in im-

proving intracranial hemorrhage classification, and there are exciting opportunities

for further research and applications in the field of medical image analysis.
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