
Minds and Computers
An Introduction to the Philosophy of Artificial Intelligence

Matt Carter

Minds and Computers
An Introduction to the Philosophy of Artificial Intelligence

M
inds and C

om
puters

A
n Introduction to the P

hilosophy of A
rtificial Intelligence

M
att C

arter
E

dinburgh

Edinburgh University Press
22 George Square, Edinburgh EH8 9LF

www.eup.ed.ac.uk

ISBN 978 0 7486 2099 9

Cover illustration & design: RIVER DESIGN, Edinburgh

barcode

Could a computer have a mind? What kind of machine would this be? Exactly
what do we mean by ‘mind’ anyway?

The notion of the ‘intelligent’ machine, whilst continuing to feature in
numerous entertaining and frightening fictions, has also been the focus of
a serious and dedicated research tradition. Reflecting on these fictions, and
on the research tradition that pursues ‘Artificial Intelligence’, raises a number
of vexing philosophical issues. Minds and Computers introduces readers to
these issues by offering an engaging, coherent and highly approachable
interdisciplinary introduction to the Philosophy of Artificial Intelligence.

Introductory material is presented from each of the disciplines which
constitute Cognitive Science: Philosophy, Neuroscience, Psychology, Computer
Science and Linguistics. Throughout, readers are encouraged to consider the
implications of this disparate and wide-ranging material for the possibility of
developing machines with minds. They can expect to develop a foundation for
philosophically responsible engagement with A.I., a sound understanding
of Philosophy of Mind and of computational theory, and a good feel for
cross-disciplinary analysis.

Features:

• A directed philosophical focus

• A self-contained introduction to Computational Theory

• Clear and accessible explanations of technical
material with abundant exercises

• A glossary of terms.

Matt Carter is a Fellow of the Philosophy Department at Melbourne University.
This is his first book.

Matt Carter

MINDS AND COMPUTERS

for G
who Helped

and

for Sue
without whom . . .

MINDS
AND

COMPUTERS

AN INTRODUCTION TO THE
PHILOSOPHY OF ARTIFICIAL

INTELLIGENCE

Matt Carter

EDINBURGH UNIVERSITY PRESS

© Matt Carter, 2007

Edinburgh University Press Ltd
22 George Square, Edinburgh

Typeset in Times
by Servis Filmsetting Ltd, Manchester, and
printed and bound in Great Britain by Cromwell Press,
Trowbridge, Wilts

A CIP record for this book is available
from the British Library

ISBN 978 0 7486 2098 2 (hardback)
ISBN 978 0 7486 2099 9 (paperback)

The right of Matt Carter
to be identified as author of this work
has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

CONTENTS

Acknowledgements ix

1 Introduction 1

2 Dualism 4
2.1 Substance Dualism 4
2.2 Cartesian Dualism 5
2.3 Positive Arguments for Cartesian Dualism 5

2.3.1 The Argument from Religion 6
2.3.2 The Argument from Introspective Appearance 7
2.3.3 The Argument from Essential Properties 8

2.4 Arguments against Cartesian Dualism 9
2.4.1 The Problem of Other Minds 9
2.4.2 Ockham’s Razor 10
2.4.3 The Problem of Interaction 11

2.5 Other Dualisms 12
2.5.1 Parallelism 12
2.5.2 Occasionalism 13
2.5.3 Epiphenomenalism 13

2.6 Anomalous Monism 14

3 Behaviourism 15
3.1 Early Empirical Psychology 15
3.2 Physiological Psychology 16
3.3 Introspectionist Psychology 17
3.4 Psychological Behaviourism 20
3.5 Philosophical Behaviourism 23
3.6 Objections to Philosophical Behaviourism 24

4 Neuroanatomy 27
4.1 Macro-Neuroanatomy 27
4.2 Micro-Neuroanatomy 32

5 Australian Materialism 35
5.1 The Causal Theory of Mind 36
5.2 The Identity Theory 37
5.3 Arguments against Australian Materialism 38
5.4 What Mary Didn’t Know 42

6 Functionalism 44
6.1 Functional Definition 44
6.2 A Black Box Theory 45
6.3 Qualia Objections 48

7 Formal Systems 52
7.1 Effectivity 53
7.2 States and Rules 57
7.3 Specification 58
7.4 Generation and Derivation 61
7.5 Generation Trees 64
7.6 Formality and Isomorphism 67

8 Computability 70
8.1 Register Machines 70
8.2 Programs 71
8.3 Running a Program 73
8.4 Computation 75
8.5 Computable Functions 76
8.6 Building Programs 79

9 Universal Machines 85
9.1 Church/Turing Thesis 86
9.2 Gödel Coding 88
9.3 A Universal Machine 92

10 Computationalism 94
10.1 What Computationalism Isn’t 95
10.2 Software and Wetware 99
10.3 Variation 101
10.4 Learning 103
10.5 Creativity 106
10.6 Attributing Mentality 108

11 Search 113
11.1 Top Down, Bottom Up 113
11.2 Breadth Versus Depth 115
11.3 Heuristic Search 117

vi

12 Games 122
12.1 A Simple Game 122
12.2 Minimax 125
12.3 Pruning 127
12.4 Humans Versus Computers 128

13 Machine Reasoning 132
13.1 Logic and Deduction 132
13.2 Conditionality and Predication 134
13.3 Kinship 137
13.4 Expert Systems 141

14 Machines and Language 145
14.1 Interpreting Language 145
14.2 Generative Grammar 149
14.3 Phrase Structure Trees 150
14.4 Computing Language 152

15 Human Reasoning 154
15.1 Following Logically 156
15.2 Rational Performance 157
15.3 Mental Models 160
15.4 Explanatory Burden 161

16 Human Language 164
16.1 Obstruent Phonemes 165
16.2 Sonorant Phonemes 167
16.3 Allophones and Phonetic Realisation 170
16.4 First-Language Acquisition 172
16.5 Language and Rules 173

17 Meaning 175
17.1 The Chinese Room 175
17.2 Syntax and Semantics 177

18 Representation 181
18.1 Intentionality 181
18.2 Categories and Content 183
18.3 Symbols and Patterns 184
18.4 Cognitive Architecture 185

19 Artificial Neural Networks 187
19.1 Connectionist Architecture 187
19.2 Simple Artificial Neural Networks 189

 vii

19.3 Synthesising Speech 191
19.4 Learning 196
19.5 Pattern Recognition 198
19.6 Two Paradigms? 199
19.7 It’s Only a Model 200

20 Minds and Computers 202
20.1 Consciousness 202
20.2 Personal Identity 203
20.3 Emotions 205
20.4 Computers with Minds 206

Appendix I: Suggestions for Further Reading 207
Appendix II: Glossary of Terms 211
Index 218

viii

ACKNOWLEDGEMENTS

I’d like to express my gratitude to all who participated, directly and indi-
rectly, in the production of this book.

Thank you to the teaching staff who were based in the Cognitive Science
programme at the University of Queensland in the final years of the
twentieth century, for inspiring in me a commitment to the importance of
cross-disciplinary analysis. My gratitude further extends to all of my teach-
ers – both within and without Philosophy.

Thank you also to the years of undergraduates who have suffered my
instruction. In particular, I am grateful to my ‘Minds and Machines’ class of
2002 for inspiring this textbook in the first instance, and to my classes of
2006 for reading and commenting on material contained herein.

Thank you to the Philosophy Department at Melbourne University,
where I was based while writing this book, and to its superb office staff.

Thank you to all at EUP for publishing this volume and for being such a
pleasure to deal with. Particular thanks to Jackie Jones for her initial enthu-
siasm for the project.

Thank you to all my friends for their support and understanding, partic-
ularly to FB, Wayne and Eloise for tolerating innumerably many dinner-time
drop-ins, and to Lester and Christie for assistance above and beyond the call
of friendship.

Thank you very much to Graham Priest, without whom this book would
not have been written.

Thank you to Mia and Linus for being adorable, and a million thank yous
to Sue, for being wonderful.

ix

C H A P T E R 1

INTRODUCTION

This is a book about minds. It is also about computers. Centrally, we
will be interested in examining the relation between minds and com-
puters.

The idea that we might one day be able to construct some artefact
which has a mind in the same sense that we have minds is not a new
one. It has featured in entertaining and frightening fictions since
Mary Shelley first conceived of Frankenstein’s monster.

In the classic science fiction of the early to mid-twentieth century,
this idea was generally cashed out in terms of ‘mechanical men’ or
robots – from the Czech word robata, which translates roughly as the
feudal term corvée, a term which refers to the unpaid labour provided
to one’s liege lord.

In more modern fiction, the idea of a mechanical mind has given
way to the now commonplace notion of a computational artificial
intelligence. The possibility of actually developing artificial intelli-
gence, however, is not just a question of sufficiently advanced tech-
nology. It is fundamentally a philosophical question.

It is this question that we will be centrally concerned with through-
out this volume. In order that we might be in an informed position to
consider the possibility of artificial intelligence, we will need to
answer a number of related questions.

Firstly, we will be asking just what the human mind is. The twen-
tieth century saw a succession of philosophical theories of mind,
culminating in the currently dominant theory which accom-
modates the possibility of artificial intelligence. Our first goal, which
we will spend Chapters 1 to 10 pursuing, is to clearly articulate this
theory.

Philosophically responsible engagement with this theory requires a
sound understanding of precisely what a computer is. Consequently,
we’re going to spend three chapters developing a rigorous technical
account of computation. Although this material is technical, the

1

introduction is slow and gentle and will be readily accessible to a
reader with no background in mathematics or computer science.

Along the way to our target theory, we’re going to survey the space
of available philosophical theories of mind, weighing the merits and
flaws of each. This will provide a comprehensive introduction to the
philosophy of mind.

We are also going to take a couple of empirical diversions along the
way. We’re going to tell the story of the rise of empirical psychology
and we will spend a chapter developing a rudimentary understanding
of functional neuroanatomy.

Once we are armed with a sound philosophical understanding of
our target theory, the remainder of the book will be given to evaluat-
ing it. We will see that a wide range of material from the empirical dis-
ciplines bears importantly on the tenability of the theory. As such,
this book is overarchingly an exercise in cross-disciplinary analysis.

We’re going to focus on two mental capacities that are distinctively
human – our capacity for reasoning and our facility for language. Our
aim first of all in Chapters 11 to 20 will be to compare what we know
of the human rational and linguistic capacities with methods for
implementing these computationally.

We will see how computers can be programmed for strategic game
play, for reasoning about novel situations based on known inform-
ation and for certain functions implicated in language production and
comprehension. This will expose us to some introductory material in
linguistics and a tiny bit of formal logic, and we will touch on some
material from cognitive psychology.

In the final chapters of the book we will examine some more
advanced philosophical material concerning the notions of meaning
and representation. Lastly, we will introduce artificial neural net-
works and see how they can be employed in the pursuit of artificial
intelligence – again with particular respect to rational and linguistic
functions.

All told, we will be examining material from philosophy, psychol-
ogy, linguistics, neuroscience and computer science – the disciplines
which constitute cognitive science. It is to be expected that most
readers will find some of this material more approachable and some
less so; however, I have aimed for maximal accessibility to the intro-
ductory reader throughout.

Each chapter from Chapter 11 onwards engages with an issue
which by all rights deserves a dedicated volume. As such, the cover-
age is less than comprehensive and I have frequently simplified expla-
nations in the name of accessibility. There are suggestions for further

2

reading at the end of the book for readers who want to further their
understanding of the issues we cover.

Comprehensive coverage of the relevant issues, however, is not our
primary concern here. Our main aim is to develop and evaluate the
philosophical theory of mind which allows for the possibility of arti-
ficial intelligence. By the end of the book, the reader should find
themselves in a sound position from which to make informed deci-
sions concerning the possibility of developing artificial intelligence.
This book should also provide a solid foundation for philosophically
responsible engagement with cognitive science broadly.

We’re now going to begin our tour of the space of available philo-
sophical theories of mind with a theory which most people implicitly,
and pretheoretically, subscribe to: dualism.

 3

C H A P T E R 2

DUALISM

We are going to begin our examination of the available theories of
mind with Cartesian dualism. There are at least two good reasons for
doing so. One is that the presentation of theories of mind in the fol-
lowing chapters will be broadly chronological and – at least as far as
modern philosophy is concerned – to begin with Cartesian dualism is
to begin at the beginning.

Another reason is that, by and large, people’s pretheoretic intui-
tions concerning the mind and the body are dualist in general and
Cartesian dualist in particular. Once you have read this chapter, ask
your friends and family about their intuitions and I strongly suspect
you will find as much.

Unfortunately, although a good starting place, Cartesian dualism
is beset with philosophical difficulties. Let us then begin the task of
making clear precisely what the Cartesian dualist is committed to and
what the problems with the theory are.

2.1 SUBSTANCE DUALISM

Substance dualism is a metaphysical view. It is the view that the uni-
verse consists of two different kinds of stuff – two metaphysically dis-
tinct substances. As such, substance dualism is a commitment to a
particular ontology – an ontology which sees the universe as comprised
of both material and immaterial substances. As well as all the mater-
ial stuff which makes up the physical world, the dualist holds that there
is also non-physical, immaterial stuff to be taken account of.

We need to be careful in drawing the distinction between the mate-
rial and the immaterial. For instance, electromagnetic radiation, while
in a certain sense insubstantial, is still material. It is part of the phys-
ical world – something we would expect physics to give us an account
of. The distinction between material and immaterial is not just a
straightforward distinction between things we can bump into in the

4

dark (chairs and tables) and things we cannot (heat, light and sound).
Rather, it is a distinction between the things which are within the
purview of physics (chairs, tables, heat, light, sound) and the things
which the dualist contends exist beyond the scope of physics.

This is difficult to grasp in the abstract so let’s examine a particular
kind of substance dualism and see why we might be tempted to claim
that there are objects in the universe composed of non-physical,
immaterial stuff.

2.2 CARTESIAN DUALISM

Cartesian dualism is a view about the mind, the body and the relation
between them. It is a particular kind of dualism which takes its name
from its original proponent, René Descartes. It is essentially the view
that while the body is a material object, the mind is not. According to
the Cartesian dualist, the mind is composed entirely of immaterial
stuff. As such, Cartesian dualism is clearly a kind of substance
dualism as the Cartesian dualist is committed to an ontology which
admits of both material and immaterial substances.

What is distinctive about Cartesian dualism among other kinds of
mind–body dualism is that the Cartesian dualist holds that the mind
and the body enter into causal relations with each other: the mind
causes things to happen in the body and the body causes things to
happen in the mind. In other words, the immaterial mind and the
material body interact. Cartesian dualism is also known as interac-
tionist dualism for this reason.

The Cartesian dualist is committed to the following four propos-
itions:

[D1] The body is composed entirely of material substance.
[D2] The mind is composed entirely of immaterial substance.
[D3] The body has a causal effect on the mind.
[D4] The mind has a causal effect on the body.

As we shall shortly see, it is very difficult to maintain all four of these
propositions. But before we start examining objections to Cartesian
dualism, let’s first consider the arguments in its favour.

2.3 POSITIVE ARGUMENTS FOR CARTESIAN
DUALISM

There are a number of reasons why one might endorse Cartesian
dualism. I will consider the three strongest arguments in its favour: the

 5

argument from religion, the argument from introspective appearance
and the argument from essential properties.

2.3.1 THE ARGUMENT FROM RELIGION

This is perhaps the most commonly held argument in favour of
Cartesian dualism.

Many religions – Christianity amongst them – posit an afterlife and
promise a reward in the afterlife for living according to a certain nor-
mative code. Conversely, they threaten punishment in the afterlife for
failing to live according to these dictates. But ask yourself: who is it
that is to be rewarded or punished?

Such religions speak of the eternal, immutable, immaterial soul
which is contended to be, in an important sense, constitutive of the
individual. It is this eternal soul which enjoys the rewards or suffers
the punishments meted out in the afterlife.

In order for the concepts of reward and punishment to be applic-
able – and in order for the relevant beliefs to motivate individuals to
act in the appropriate way – it must be the case that the thing that is
rewarded or punished is the same thing that is responsible for moral
agency.

In other words, the thing which is rewarded or punished simply
must be the same thing that goes about in the world making decisions
and acting in certain ways. The soul simply must be equivalent to the
mind. After all, what sense lies in rewarding or punishing one entity
for the deeds or misdeeds of a distinct entity? And why should I be at
all concerned with acting according to a particular code if it is not, in
a very important sense, me who will enjoy the promised reward or
suffer the threatened punishment?

Cartesian dualists understand ‘mind’ and ‘soul’ to be synonymous
terms. While in life, the mind/soul stands in relation to a particular
body. In the afterlife, the immaterial mind/soul leaves the body to take
up independent existence and to enjoy or suffer the rewards of the
actions it engaged in during its materially embodied life.

So, to the extent to which one is antecedently committed to such
a religious doctrine, one must also be committed to substance
dualism as such doctrines require an immaterial soul. Furthermore,
one must also be committed to Cartesian dualism as it must be the
case that the mind/soul causes, and is thereby responsible for, the
actions of the body.

As far as arguments go, unfortunately, this is not a very good one.
It gives no independent reason whatsoever for endorsing Cartesian
dualism. What it shows is that a commitment to Cartesian dualism is

6

a straightforward corollary of certain religious beliefs. This simply
means that these religious beliefs stand or fall together with Cartesian
dualism. If one doesn’t antecedently have such religious beliefs, the
argument from religion is entirely lacking in persuasive force.

2.3.2 THE ARGUMENT FROM INTROSPECTIVE APPEARANCE

Another argument in favour of dualism proceeds from our privileged
introspective awareness of our own minds.

It is a distinctive feature of our minds that they have a reflective
capacity: we can think about our own thoughts, our own mental
states. Furthermore, we have unique and privileged access to the con-
tents of our own mental states. This access in unique in that I and
I alone am privy to my mental life. It is privileged in that, unlike my
access to everything else in the universe, my access to my own mental
life is direct and not mediated by my senses.

Given this capacity of minds for, and amenability of minds to,
direct introspection, we might be tempted to draw a distinction
between minds and physical objects, as follows.

When I introspect – when I reflect on my mental life and consider
the contents of my mental states – it doesn’t seem to me that events in
my mental life are physical events. My thinking of ice cream seems to
me to be just that – thinking of ice cream. It doesn’t seem at all to be
an electrochemical discharge in my brain. It doesn’t seem at all to be
any kind of physical event. So my thinking of ice cream must be a non-
physical event – mentality must be a non-physical phenomenon, in
which case we are committed to substance dualism at the least.

The argument from introspective appearance, as given in the previ-
ous paragraph, suffers a rather tenuous connection between its
premises – which are concerned with the way things seem to us – and
its conclusion, which maintains that the way things are is in accord
with the way things seem. The obvious reply, then, to the argument
from introspective appearance is to point out that there is no neces-
sary connection between the way things appear to us and the way
things actually are. In fact, we are very often deceived by the way
things seem: a warm breeze doesn’t seem at all like the kinetic energy
of millions of molecules, nor does electricity seem at all like a flow of
electrons.

The way things seem, however, in no way establishes a distinction
between a warm breeze and the kinetic energy of millions of mole-
cules on the one hand, or between electricity and a flow of electrons
on the other. Similarly, the way our minds seem to us cannot be relied
upon to establish the non-physicality of mentality.

 7

The fallibility of appearances certainly does not entail that men-
tality cannot be non-physical. It merely shows that the argument from
introspective appearance fails as an argument in favour of the non-
physicality of mentality as it fails to establish the required necessary
connection between the truth of its premises and the truth of its con-
clusion.

2.3.3 THE ARGUMENT FROM ESSENTIAL PROPERTIES

The argument from introspective appearance appealed to the fact that
minds have certain essential properties which ordinary physical
objects lack, and vice versa. For one thing, minds have this essential
capacity for direct introspection and reflective awareness that ordi-
nary physical objects do not have. But minds and physical objects also
differ in other essential ways.

Ordinary physical objects are essentially publicly accessible
(anyone can observe a chair) whereas minds are not (only I can
directly observe my mind). Ordinary physical objects are also essen-
tially extended in space – they have mass, shape, location and other
spatial properties. Minds, on the other hand, are essentially thinking
things: they don’t, merely by virtue of being minds, have spatial
properties in the way that a chair, merely by virtue of being a chair,
has spatial properties. The only properties minds have merely by
virtue of being minds are those pertaining to capacities to think. It is
not an essential property of minds that they are extended in space in
the way that it is an essential property of ordinary physical objects,
such as chairs, that they be spatially extended.

Given this radical divergence in essential properties between minds
and ordinary physical objects, there must, then, be a distinction in kind
– minds must be a different kind of thing to physical objects. They
must, therefore, be non-physical entities.

While the argument from essential properties we have just rehearsed
seems initially compelling, a little thought serves to dispel its force.
There is much we could say about the metaphysics of essential proper-
ties which the argument trades on. For present purposes, however, it
suffices to recognise that a distinction in kind is not tantamount to a
metaphysically substantive distinction.

In other words, we can adopt the same strategy we employed in
defusing the argument from introspective awareness – we concede the
truth of the premises but point out that this does not establish a nec-
essary connection to the truth of the conclusion. It is a given that
minds are quite unlike anything else we know of in the universe. This
does not, however, entail that minds are made of different stuff to

8

everything else in the universe – i.e. that minds are composed of non-
physical substance.

As before, the failure of the argument from essential properties
does not entail that minds cannot be non-physical – it merely shows
that a radical distinction in properties (essential or otherwise)
between minds and canonical physical objects is not sufficient to
establish that minds are non-physical.

2.4 ARGUMENTS AGAINST CARTESIAN DUALISM

We have now seen three arguments in favour of dualism. The argu-
ment from introspective appearance and the argument from essential
properties both seek to establish a broad mind-body dualism. Coupled
with certain common-sense intuitions concerning the efficacy of the
mind in bringing about changes in the body and vice versa, they
become arguments supporting Cartesian dualism. The argument from
religion seeks to establish Cartesian dualism in particular, as the inter-
action between mind and body is essential for the argument.

We should already be concerned for the theory, given that we have
actively sought the strongest arguments in its favour and have dis-
covered that none of them succeed in establishing their conclusions.
Even more troubling for the Cartesian dualist though are the follow-
ing negative arguments.

2.4.1 THE PROBLEM OF OTHER MINDS

The first objection to Cartesian dualism we will consider identifies a
problematic consequence of the view.

We have become quite adept at investigating the physical universe
and have all manner of methods and equipment at our disposal for
doing so. We are at a loss, however, when it comes to investigating the
non-physical.

If minds are immaterial, then they are clearly not investigable by
known empirical methods. Not only does this put minds beyond the
scope of science, it also means that there is no way to know whether
or not other people have minds. As far as the Cartesian dualist is able
to discern, she may well have the only mind in the universe – all other
human bodies may well just be mindless automata.

This is an epistemological concern – a concern about what we can
know – which comes with a methodological concern for the possibil-
ity of a science of mind. The objection is not insuperable, however.
The Cartesian dualist can help herself to a reply, of sorts, to each of
these concerns.

 9

With respect to scientific methodology, she might point out that it
is not unknown to science to postulate, and investigate, unobservable
entities by examining their observable consequences. So, while she
will have to maintain that minds are simply not amenable to direct
empirical investigation, she can hold out hope that there will be
observable consequences of mentality that can be investigated,
thereby giving science indirect access to minds.

With respect to our everyday knowledge of the minds of others, the
Cartesian dualist can reason by analogy to her own mental life and its
role in mediating experience and behaviour. Presumably – she might
say – you do, in fact, think that other people have minds (it is fairly
difficult to get around in the world without proceeding on that
assumption). Why then do you think this? Presumably because you’ve
observed that the best explanation for the way other people behave
involves attributing mental states to them.

In other words, you know that if you have certain experiences, this
will lead to certain beliefs and desires (mental states) which in certain
situations will lead you to behave in particular ways. You’ve further
observed other people in just such situations acting in just such ways
and consequently assume that they share certain of your beliefs and
desires (like the belief that it is lunchtime and the desire for food) and
recognise that these mental states play an important explanatory role
in understanding their behaviour.

This reply to the problem of other minds appeals to an inference to
best explanation: the best way to explain the way other human bodies
move around in the world is to attribute to them the kind of mental
states I know that I have. It should be apparent, however, that while
this reply suffices to demonstrate the utility in assuming that other
people have minds (the assumption confers useful predictive capac-
ities), it certainly does not establish that they do. The problem of other
minds remains for the dualist.

2.4.2 OCKHAM’S RAZOR

William of Ockham was a medieval philosopher and notable logician
of the early fourteenth century. You may well have heard a common
corruption of Ockham’s razor that is something along the lines of
‘the simplest explanation is often the best’. Properly construed,
Ockham’s razor is intended to serve as a methodological constraint
on theory construction.

The most accurate gloss of Ockham’s razor in the realm of meta-
physics is ‘don’t expand your ontology beyond necessity’. Another
way of putting it is to say that one shouldn’t postulate any more

10

entities than are absolutely necessary to explain the phenomena about
which we are theorising.

This can be deployed as a methodological objection to Cartesian
dualism – the contention being that the dualist does, in fact, expand
her ontology beyond explanatory necessity, that postulating non-
physical entities is not required in order to explain mentality.

This a moderately weak objection so I shall give it short thrift. At
best – if you think that the principle should constrain theory con-
struction – it entails that when presented with two explanatorily ade-
quate theories of mind, one of which postulates non-physical entities
and one of which accounts for mentality in purely physical terms, one
should prefer the latter. This will be something to bear in mind once
we have surveyed the space of available theories of mind.

2.4.3 THE PROBLEM OF INTERACTION

A considerably more potent objection – one which is generally con-
sidered to be the rock on which Cartesian dualism founders – centres
on the problem of interaction.

The physical universe is held to be causally closed, which means
that every physical effect has a physical cause. A physical effect
brought about by a non-physical cause would contravene the first law
of thermodynamics. While science has certainly got it wrong about
many things in the past, our theory of thermodynamics is a found-
ational theory which most of modern science rests on.

The problem here for the Cartesian dualist, if it is not already
apparent, is their contention that the non-physical mind is causally
efficacious in the physical world, that the non-physical mind causes
change in the physical body.

What might the Cartesian dualist say to the problem of interac-
tion? The only possible response seems to be to deny that the physical
universe is, in fact, causally closed. This, however, seems rather
implausible. Were it the case that our physical actions were caused by
non-physical minds, then energy would be added to the physical uni-
verse every time a mental action resulted in a physical action and this
addition of energy would, one might think, be measurable.

There is a theistic response available here, which is to claim that in
every case of scientific observation, an omniscient, omnipotent divin-
ity intervenes and adjusts the observer accordingly, such that we think
that energy is always conserved and that the amount of energy in the
physical universe is constant, but in fact it is constantly increasing.
Taking such a line, however, brings with it a raft of troubling epistem-
ological concerns.

 11

There seems to be no secular way to rescue Cartesian dualism from
this objection. We can, however, advance modified forms of dualism
which retreat from the commitment to interaction.

2.5 OTHER DUALISMS

Recall from section 2.2 the four propositions [D1]–[D4] which charac-
terise Cartesian dualism. One way to recover the core ontological intu-
itions of Cartesian dualism from the damning criticism of the problem
of interaction is to give up the commitment to propositions [D3] and
[D4], leaving us in want of an account of the relation between the
physical body and the non-physical mind. This strategy leads to the
theistic dualist theories known as parallelism and occasionalism.

Another possible strategy is to give up only [D4] and maintain
a commitment to propositions [D1]–[D3]. Again, this requires a
particular account of the relation between mind and body which is
supplied by a theory known as epiphenomenalism. Let’s deal with
these other dualist theories seriatim.

2.5.1 PARALLELISM

Parallelism is a theistic dualist theory. The parallelist maintains the
ontological independence of mind and body but denies that they
interact causally. Once we deny causal interaction between the mate-
rial body and the immaterial mind, we need to explain the apparent
interaction in some other way. The parallelist appeals to an omni-
scient, omnipotent being to account for the connection.

According to the parallelist, when this omniscient, omnipotent
being (henceforth simply ‘God’) created the physical universe of
bodies and the non-physical universe of minds, She set things up in
such a way that although the sequence of events in the physical uni-
verse is entirely causally independent of the sequence of events in the
non-physical universe, the two sequences are in perfect harmony. This
preordained harmony accounts for the correlation between my
mental life and my physical life. Whenever I put my hand on a hot
stove, I have the mental experience of the hurtfulness of pain because
God set things up initially such that it would be so. Whenever I have
the mental experience of desiring to move my arm, the physical event
of my arm rising obtains because God set things up initially such that
it would be so. And so forth.

Although parallelism circumvents the problem of interaction by
denying any causal connection between material bodies and immater-
ial minds, it is still beset with the other objections which plague

12

Cartesian dualism. We are still stuck with the epistemological
difficulty of a lack of access to other minds and we are still in con-
travention of Ockham’s razor. Furthermore, the theory seems no
more nor less plausible than our proposed Cartesian theistic response
to the problem of interaction.

2.5.2 OCCASIONALISM

As with parallelism, occasionalism is a theistic dualist theory which
denies interaction between the material body and the immaterial mind
and appeals to a God to explain the connection between the two.

The only difference, in fact, between parallelism and occasionalism
is that where the former holds that God set up the series of physical
events and the series of non-physical events in preordained harmony,
the occasionalist holds that God steps in where and as required in
order to maintain the harmony of the two series.

According to the occasionalist then, whenever I put my hand on a
hot stove, I have the mental experience of the hurtfulness of pain
because God intervenes to ensure that it will be so. Whenever I have
the mental experience of desiring to move my arm, the physical event
of my arm rising obtains because God intervenes to ensure that it will
be so. And so forth.

The particular doctrinal considerations which motivate the depar-
ture from parallelism are not of import here. For our purposes it
suffices to observe that occasionalism enjoys the same benefits and
suffers the same criticisms as parallelism.

2.5.3 EPIPHENOMENALISM

A notably more convincing dualist view is that of the epiphenom-
enalist. In fact, in contrast to the other dualist views we have covered,
you will find numerous epiphenomenalists working in contemporary
cognitive science.

The epiphenomenalist maintains propositions [D1]–[D3], rejecting
only [D4]. She maintains the ontological distinction between the
mental and the physical and also maintains the causal relation
between the material body and the immaterial mind, but only in one
direction. She asserts that physical states give rise to mental states, but
denies the problematic converse.

The epiphenomenalist does not run afoul of the problem of inter-
action as she does maintain the causal closure of the physical universe.
According to epiphenomenalism, every physical event is wholly and
solely accounted for by antecedent physical events. In other words,
every physical effect has a physical cause. As well as having physical

 13

effects, though, some physical states are held to also give rise to
mental states.

The epiphenomenalist picture, then, is one of a chain of physical
causation containing some physical states which also give rise to
mental states. These mental states are held to be causally inefficacious
– they don’t do anything. Mental states, on this view, are mere epiphe-
nomena of physical states. They are accounted for by physical states but
they themselves cause neither physical states nor further mental states.

It is likely to be less than clear to you why one might want to main-
tain a theory which sees mental states as ontologically distinct from
their associated physical states, yet causally inefficacious in both the
physical and the mental realms. This is likely to become a lot clearer
later in this volume when we discuss the privileged first-person experi-
ence of having or being in a mental state. For now, it is only important
that you understand the mechanics of the theory and the way in
which it differs from the other kinds of ontological dualism we have
examined.

2.6 ANOMALOUS MONISM

A final theory we should at least mention before concluding this
chapter is anomalous monism, otherwise known as double aspect
theory or, simply, property dualism.

Anomalous monism is not, strictly speaking, a dualist theory in the
sense of each of the other theories in this chapter, since the anom-
alous monist is not a substance dualist. The dualism they advance –
such as it is – is a dualism of properties, not substances.

According to the anomalous monist, there is no non-physical sub-
stance. There are however, they contend, irreducibly non-physical
properties of physical substance. In other words, certain physical
states have a double aspect – they have both ordinary physical prop-
erties and certain non-physical properties which are not reducible to
(explicable in terms of) their physical properties.

Understanding in detail the metaphysics of irreducibly non-
physical properties requires a modicum of philosophical sophistica-
tion. The interested reader is encouraged to follow the suggestions
for further reading to direct their research.

Again, it is likely to be less than clear why one might be inclined to
maintain anomalous monism. The same material which will hope-
fully shed some light on the intuitions underlying epiphenomenalism
should also go some way towards making clear the motivations
behind anomalous monism.

14

C H A P T E R 3

BEHAVIOURISM

The next theory of mind we’re going to examine is philosophical
behaviourism. Before we do so, however, it will serve us to take a short
detour into the history of psychology.

One good reason for taking this detour is that the prevailing intel-
lectual climate in which philosophical behaviourism was first formu-
lated was one in which empirical psychology was still finding its feet
as a ‘science of mind’. Psychologists and philosophers were still very
much trying to work out what psychology was in the business of
doing and there was a concerted effort to formulate a robust philo-
sophical theory of mind in which mentality was amenable to empir-
ical investigation. Understanding the contemporaneous presence of
psychology on the intellectual world stage gives us significant insight
into the motivations of philosophical behaviourists.

Another good reason for the detour is that the term ‘behaviourism’
means something rather different in the mouths of psychologists than
it does in the mouths of philosophers. Since there is scope for confu-
sion here, it pays to be rigorous in disambiguating the two senses of
‘behaviourism’.

Psychology is by far the youngest fully-fledged academic discipline,
as it was the most recent of the disciplines to split from philosophy. It
was only in the early twentieth century that psychology broke away
and became an academic speciality in its own right. As such, we
needn’t go far back in history to trace the genesis and nascency of
psychology. The story begins in Germany in the nineteenth century.

3.1 EARLY EMPIRICAL PSYCHOLOGY

The treatment of the history of psychology here will be rather
cursory. For our purposes, it serves to identify a few key figures and
seminal contributions which led to the birth of psychology as a dis-
tinct academic speciality. Roughly and broadly speaking, we can

15

divide the infancy and early childhood of psychology into three
stages, distinguished by the methodologies employed by the disci-
pline’s progenitors.

3.2 PHYSIOLOGICAL PSYCHOLOGY

Although we will reserve the title of ‘founder of psychology’ for
another, Gustav Fechner (1801–87) must be credited with the incep-
tion of the empirical tradition in psychology and the delivery of the
first quantitative psychological law.

Before Fechner, there was a long-standing tradition of empirical
physiology, but mentality had only ever been investigated a priori,
never experimentally. Fechner was trained initially as a physiologist,
before becoming Professor of Physics and, later, Professor of
Philosophy at Leipzig.

Fechner discovered that the way we perceive the intensity of
sensory input is logarithmically proportional to the absolute magni-
tude of the stimulus. For instance, the way we perceive loudness is log-
arithmically proportional to the absolute magnitude of the sound
waves. You may have noticed that the decibel scale which quantifies
the loudness of sound is a logarithmic scale. Fechner’s result has
proven to be a robustly manifest quantitative relationship across the
sensory modalities.

We shouldn’t underestimate the importance of this result in
demonstrating the possibility of, and originating a psychophysical
methodology for, an empirical science of the mind. For the first time
in intellectual history, we see the identification of an observable and
measurable relationship between physical phenomena and mental
phenomena.

The other major figure in the physiological tradition of early psy-
chology is Hermann Helmholtz (1821–94). Like Fechner, Helmholtz
had wide-ranging academic interests. He was initially educated in phi-
losophy and philology at Potsdam and in medicine in Berlin. During
his academic career he held chairs in physiology at Königsberg,
anatomy and physiology at Bonn, physiology at Heidelberg and
physics at Berlin. He also presided over the development of a new
Institute for Physiology at Heidelberg and a new Institute for Physics
at Berlin.

As well as making significant contributions to physiological optics –
including the invention of the ophthalmoscope and the ophthal-
mometer – and delivering important unifying results in theoretical
physics, Helmholtz experimented on nerve conduction. His early

16

experiments aimed to measure the time it took for neural impulses to
travel in animal limbs. He later extended this research to human sub-
jects and, in doing so, introduced a versatile experimental technique
that is still widely employed in psychology today – the measurement of
stimulus–response times.

The groundbreaking work of Fechner and Helmholtz lay the foun-
dation on which others would build an independent science of the
mind. Fechner demonstrated the possibility of employing empirical
methods to investigate mentality and identified psychophysics as a
fruitful domain for further experimentation. Helmholtz was the first
to demonstrate that the measurement of stimulus–response times
could be a fertile methodology for the fledgling psychology.

It is of significant interest that the pioneering work of these early
physiological psychologists was only possible as a result of the broad
academic interests and interdisciplinary training of both researchers.
This is to be taken as a cautionary note to those who would specialise
too narrowly, as well as a clear endorsement of the value of cross-
disciplinary analysis and interdisciplinary cooperation.

3.3 INTROSPECTIONIST PSYCHOLOGY

It is Wilhelm Wundt (1832–1920) who clearly deserves the appellation
‘founder of psychology’. Wundt established the first psychologi-
cal laboratory, inaugurated the first journal of psychology –
Philosophische Studien – in 1881, and founded an Institute for
Experimental Psychology at Leipzig in 1894. He also wrote the first
textbook in psychology and supervised legions of graduate students
from around the world who would become the first generation of psy-
chological practitioners.

Wundt’s programme of psychological structuralism placed central
importance on introspection as a methodological technique. The
aim of the programme was to analyse consciousness in order to iden-
tify its basic elements and the laws which connect them. This was
pursued through the use of carefully designed experiments in which
trained observers introspected their mental states and reported their
observations.

One methodological facet of crucial importance here is the training
of observers. Wundt believed that only properly qualified observers
could introspect with the appropriate care and attentiveness and
report their observations in a pertinent fashion, suitable for analysis.

A further point of interest lies in the rigour with which experiments
were designed and conducted. Wundt and his students and colleagues

 17

were instrumental in developing many of the now standard criteria
for experimentation, such as the publicity of the experimental situ-
ation, the repeatability of results and the ability to hold certain vari-
ables constant while modifying others.

Another important researcher in the introspectionist tradition was
Hermann Ebbinghaus (1850–1909). Ebbinghaus established a rival
journal to Wundt’s – Zeitschrift für Psychologie und Physiologie der
Sinersorgane – in 1890, and established laboratories for psychological
research in Berlin and Breslau. Like Wundt, he also published an
influential textbook on psychology.

Whereas Wundt and his followers thought that the scope of psy-
chology should be properly restricted to what we might call ‘lower-
order’ mental functions, concentrating their empirical programme
solely on the investigation of mental imagery, Ebbinghaus was inter-
ested in formulating experiments with which to study memory.

In order to gain some insight into the mechanisms underpinning
human memory in a fashion isolated from the potentially contami-
nating effects of what was already known, Ebbinghaus devised a very
large number of lists of nonsense syllables – consonant-vowel-
consonant segments which had no meaning in the language. He then
proceeded to memorise these lists and measure, with painstaking pro-
cedures, his ability to recall these syllables.

This research delivered further quantitative psychological princi-
ples, central among them being the exponential decay of memory.
Ebbinghaus discovered that his ability to recall the nonsense lists
would decay very quickly at first, but increasingly more slowly
through time. One consequence of this exponential decay of memory
for students is the crucial importance of early reinforcement.
Ebbinghaus also demonstrated that while the initial memorisation of
the lists was subject to rapid decay, the rate of decay of the ability to
recall the lists slowed in proportion to the number of repetitions.
Again, this finding has obvious implications for study techniques.

Putting these two results together, we see that if one wants to be able
to recall material with a high rate of accuracy, one should revisit the
material very soon after first presentation, then reinforce the material
after increasingly longer intervals. For instance, to recall the material
presented in a lecture, it is advisable to revise the material later that
day, then again a couple of days later, then again a week later, then a
month later, and so on. The most cursory examination of modern
advice on study techniques will yield just such recommendations.

The final figure of note in the introspectionist tradition is Oswald
Külpe (1862–1915). Külpe was a student of Wundt’s at Leipzig and

18

later established a rival school of psychology at Würzburg. There
were two key points of dispute between the Leipzig school and the
Würzburg school. The two schools disagreed on the appropriate
purview of psychology and this disagreement brought with it an asso-
ciated dispute concerning experimental methodology.

Where as Wundt and his students believed that the legitimate scope
of psychology was properly restricted to the investigation of mental
imagery alone, Külpe and his followers thought – as did Ebbinghaus –
that the empirical examination of ‘higher-order’ cognitive functions,
such as reasoning, had an important role to play in psychology. So the
Leipzig school and the Würzburg school were essentially investigat-
ing distinct aspects of mentality.

The other point of contention between the Wundtians and the
Külperians concerned the role of observers in introspectionist experi-
mentation. Wundt, as we emphasised earlier, placed significant
importance in the training of observers, in order that they be qualified
introspectors. Külpe, on the other hand, used exclusively untrained
observers. History has borne Külpe out in this respect: modern-day
psychological experiments typically require that the subject be not
only untrained in psychology, but also ignorant of (and often deceived
about) the aims of the particular experiment in which they participate.

The introspectionist tradition in early psychology was unified by
the belief that introspection – whether it be by trained observers
(Wundt), untrained observers (Külpe) or oneself (Ebbinghaus) – was
the key to investigating mentality. Although self-reporting is still used
to some extent in modern psychology (typically in combination with
various other methodologies), the introspectionist tradition died out
in the early twentieth century. The reasons for this are several.

Firstly, it became increasingly apparent that much of mental life is
simply opaque to introspection. I can’t, for instance, investigate the
mechanisms governing language production and comprehension
purely through introspection.

Secondly, introspection is fairly unreliable, regardless of who is
doing the introspecting. People are notoriously poor at identifying
their own mental states; untrained observers particularly so. Trained
observers, on the other hand, have a tendency to manufacture
observations in accordance with their perceived expectations.
Furthermore, introspection is itself a mental process and therefore
has an effect on the mental processes which are being introspected. If,
for example, you reflect on your anger, you’re likely to become either
resolved and thereby less angry, or increasingly heated and thereby
more angry.

 19

Finally, only the introspecting agent is privy to the direct results of
their introspection. Where introspecting subjects disagree, there is no
way for a third party to adjudicate observational disputes. So while
the experimental situation in which the introspection occurs can
satisfy the requirement for publicity, the introspective process itself
cannot.

3.4 PSYCHOLOGICAL BEHAVIOURISM

Aside from the foundational work of the physiological and introspec-
tionist psychologists, there are two further important historical pre-
conditions which led to the emergence of psychological behaviourism.

One of these historical antecedents was the influential nineteenth-
century doctrine of positivism. Positivism, as championed by
Auguste Comte (1798–1857) and Ernst Mach (1838–1916), was a
reaction to the speculative metaphysics and theological conjecture
which was held to have infected philosophy. Proponents of positivism
held that legitimate intellectual inquiry, or ‘positive science’, should
treat exclusively of the observable. Any doctrine which posited enti-
ties or processes beyond what could be observed was labelled with the
pejorative ‘pseudoscience’.

The other significant influence on psychological behaviourism was
the work of Ivan Pavlov (1849–1936). Pavlov was a Russian physiol-
ogist and the originator of the theory of reflex arcs. Pavlov held that
the connection between environmental stimulus and behavioural
response was to be explained in terms of these reflex arcs. No doubt
you have heard of Pavlov’s dog. Pavlov first showed that the environ-
mental presence of food stimulus would cause a dog’s digestive juices
to flow in its stomach, even if the food never reached the stomach. He
postulated the existence of an innate reflex arc to account for this
connection.

Most famously, however, Pavlov demonstrated that reflex arcs
could be conditioned as well as innate. In the case of Pavlov’s dog, a
bell was sounded whenever food was brought into the presence of the
animal. Eventually, the dog would salivate upon hearing the sound of
the bell alone. This behaviour, according to Pavlov, demonstrated a
conditioned reflex arc.

Given these contemporaneous historical factors – the burgeoning
of psychology, the flourishing of positivism and the development of
Pavlov’s theory of reflex arcs – psychology was ripe for a paradigm
shift. This was brought about by the American psychologist John
Watson (1878–1958).

20

Watson was strongly in the grip of positivism and consequently
rejected the legitimacy of introspection as a psychological tool,
arguing that in order to be a positive science, psychology should
concern itself only with observable behaviour. In doing so, he recon-
ceptualised psychology – which had been seen as the science of
human consciousness – as the science of human behaviour.

Watson was interested in discovering the innate reflex arcs which
governed human behaviour and investigating the circumstances
under which reflex arcs could be conditioned in humans. To this end
he engaged in experiments on babies and young children which would
certainly never be approved by today’s ethics committees.

To demonstrate the presence of innate reflex arcs in young babies,
Watson showed that certain environmental conditions, such as
sudden loud noise or a sudden loss of support (i.e. dropping them),
would evoke fear behaviour in babies. Some might think these results
less than remarkable.

In investigating conditioned reflex arcs, Watson and his colleague
Rosalie Rayner experimented on Albert B., an eleven-month-old
infant. Albert would be presented with a white rat. When he reached
out in curiosity to touch the animal, the experimenters would make a
loud noise by striking a steel bar close to his head, thereby evoking
fear behaviour in Albert. After only seven such presentations of the
rat in conjunction with the loud noise – five of which were a week later
than the first two – it was found that Albert would exhibit fear behav-
iour on presentation of the rat alone. This conditioned response was
subsequently found to be enduring and, further, transferable to
similar stimuli. Albert would exhibit the same fear response on pre-
sentation of a white rabbit and, to a lesser extent, on presentation of
a dog, a fur coat or a Santa Claus mask.

Following Watson, psychological behaviourism became dominant
and held sway in psychology until roughly the late 1960s. During this
period it became customary to carry out experimental work on rats
where possible, beginning a tradition in psychology sometimes
described – endearingly or pejoratively – as occupied with ‘rats and
stats’.

By far the most influential psychological behaviourist after Watson
was another American, Burrhus Frederic (B. F.) Skinner (1904–90).
Skinner was interested in determining the most effective means of
conditioning reflex arcs. He invented a device, now called a ‘Skinner
box’, in which rats could be placed. This box contained a lever which
the rats were able to depress which could be set to deliver a food pellet
when actuated. By varying the conditions under which the actuation

 21

of the lever would yield a food pellet, Skinner was able to modify the
behaviour of the rats accordingly.

Unlike classical Pavlovian conditioning, this behavioural modifi-
cation was contingent not just on the stimulus preceding the behav-
iour (a ringing bell, a rat together with a loud noise) but also on the
environmental stimulus following the behaviour. Skinner called this
operant conditioning, and developed an associated theory of how best
to effect operant conditioning by controlling the positive and negative
reinforcement of certain behaviours.

Skinner argued that such operant conditioning could be widely
employed as a social engineering technique. He suggested that crim-
inal behaviour was better treated with behavioural modification tech-
niques rather than punished through incarceration, and he published
a widely read novel, Walden Two, which outlined his utopian vision
of a planned society governed by operant conditioning. As one might
expect, these ideas were met with a mixture of commendation and
condemnation.

By the end of the 1960s, behaviourism in psychology had waned in
popularity, in favour of the newly emerging cognitive psychology.
There are good reasons for the loss of faith in the behaviourist con-
ception of psychology.

For one thing, it became clear that positivism is, simply put, a false
doctrine. Modern science is frequently in the business of theorising
about unobservable entities. Such treatment of unobservables does
not make theoretical physics, for instance, ‘pseudoscientific’.

More importantly, it became increasingly clear that many essential
aspects of mentality are simply not directly connected to observable
behaviour. The mechanisms which underpin memory, the capacity to
draw inferences and the ability to comprehend language do not seem
to be necessarily correlated with any particular kind of behaviour. As
such, these cognitive functions are not amenable to investigation in
the behaviourist tradition.

While it is the case that each of the three traditions of psychology
we have examined are now consigned to history, it is also the case
that modern psychology preserves certain techniques from each of
them. Where, however, each of these traditions were distinctly
methodologically homogenous, modern psychology is markedly
methodologically heterogeneous. There is still a place in psychology
for psychophysical research, self-reporting is still a widely used tech-
nique and there is still a role for the observation of behaviour. There
is no longer any place though for the methodological monism which
characterised these early periods of psychology.

22

3.5 PHILOSOPHICAL BEHAVIOURISM

Psychological behaviourism, as we have seen, is a methodological
view – a doctrine concerning the way in which one should go about
doing psychology. Philosophical behaviourism, in contrast, is an
analytic view – a substantive theory of what mental states are.
Henceforth, when I make reference simply to ‘behaviourism’, I will be
referring to the philosophical variety.

Philosophical behaviourism was motivated in part by positivism
and the associated desire to produce a theory of mind which afforded
the possibility of empirical psychology. Behaviourism was also a reac-
tion to the serious theoretical difficulties plaguing dualism. Gilbert
Ryle famously accused Cartesian dualists – in The Concept of Mind
(1949) – of postulating a ‘ghost in the machine’. Behaviourists
eschewed the dualist notion that mental state terms denoted events
and processes occurring in some immaterial substance.

According to the behaviourist, the terms in our language which we
take to denote mental states are, in fact, simply convenient locutions
for referring to complex kinds of behaviour. When we say, for
instance, that Jon is in love, what we actually mean is that Jon goes
around with a silly grin on his face, is inclined to organise his time in
such a way as to see more of the object of his affections, has a ten-
dency to write bad poetry, etc. When we say that Tillie has a
toothache, what we actually mean is that Tillie grimaces and moans,
has a tendency to clutch her jaw, is inclined to seek a dentist, etc.
Attributions of mental states are, according to the behaviourist, actu-
ally attributions of kinds of behaviour: the meaning of mental state
terms is properly specified in terms of behaviour.

Let’s quickly make clear here the relation between philosophical
(analytic) behaviourism and psychological (methodological) behav-
iourism. Clearly the former entails the latter. If mental states just are
kinds of behaviour then the investigation of mentality is ipso facto the
investigation of kinds of behaviour. The converse, however, does not
hold. It is not the case that a methodological behaviourist must be an
analytic behaviourist. One might think that psychology should be a
science of human behaviour but still maintain that mental states have
an existence independent of (but investigable through observing)
behaviour.

Philosophical behaviourism, properly construed, is a reductive
semantic thesis, according to which the analysis of mental state terms
involves a reduction to talk of behaviour. It is crucial that this talk of
behaviour is fleshed out in terms of dispositions to behave, not simply

 23

in terms of behaviour itself. After all, Tillie might have a toothache
yet manifest no associated behaviour at all – perhaps she is fearful of
dentistry and seeks to hide her pain lest she be coerced into seeing a
dentist. The behaviourist accommodates this by giving essentially dis-
positional analyses of mental states since dispositions can be inhib-
ited. In the example case, the behaviourist will argue that Tillie’s
toothache just is the disposition to groan and grimace, the inclination
to clutch her jaw, the tendency to seek a dentist, etc.; however, her fear
of dentistry inhibits these dispositions and accounts for her lack of
manifest behaviour.

Behaviourism certainly enjoys some philosophical advantages. It
solves the problem of other minds for a start, since it renounces the
commitment to inaccessible immaterial mental substance. It satisfies
Ockham’s razor in not expanding our ontology beyond explanatory
necessity, since mental states are no longer held to have any indepen-
dent existence. It accommodates the notion that mentality comes by
degrees, since the capacity for more complex behaviour just is the
capacity for more complex mental states. It can account for the
importance of the brain in mental life, given the nervous system is
the physical cause of behaviour (hence of mentality). Finally, it
confers a clear methodology for psychological investigation, in stark
contrast to dualism.

Unfortunately, despite these attractive theoretical advantages,
behaviourism faces a number of insuperable objections.

3.6 OBJECTIONS TO PHILOSOPHICAL
BEHAVIOURISM

We’ll begin with the three objections which merely problematise
behaviourism and move on to the further three objections which are
insurmountable for the behaviourist.

The first thing to note is that dispositional criteria can be satisfied
in the absence of the associated mental state. Consider the case of
actors. An actor playing a character with a toothache is disposed to
moan, grimace, clutch her jaw and so on, yet is clearly not actually
suffering from toothache.

Furthermore, dispositional criteria can fail to be satisfied in the
presence of the associated mental state. Consider the case of stoics. A
stoic person may have a dreadful toothache yet not be disposed to
engage in any associated behaviour. The account of the inhibitability
of dispositions is intended to go some way towards answering this
latter objection; however, even so, the behaviourist has some difficult

24

explaining to do. Consideration of actors and stoics and the corres-
ponding ways in which dispositions and mental states can come apart
problematises an analysis which seeks to identify mental states with
dispositions to behave.

A third, and more troubling, objection to behaviourism focuses on
how, precisely, we are supposed to completely specify the lists of dis-
positions which are identified with particular mental states. In short,
the concern is that there is no way to remove the ‘etc.’ or the ‘and so
on’ from the end of the enumeration of dispositions. Behaviourist
paraphrases of mental state terms seem essentially incompletable,
since there are a very large number of ways in which a mental state
might manifest in behaviour.

Consider, for example, the statement ‘Nicole loves her children’.
What associated dispositions should we load into the paraphrased
analysis? That she is disposed to ensure they’re adequately fed, to
ensure they’re warmly clothed, to embrace them, to tell them that
they’re loved, to educate them, to be concerned for their welfare, to
attend to their upsets, to comfort them when scared, to protect them
from harm, to lie awake at nights thinking of their future, etcetera,
etcetera.

These first three objections are certainly of concern for the behav-
iourist but they might be answerable with some fancy footwork.
These next three objections, however, are sufficient to defeat even the
most nimble-footed behaviourist.

For starters, pain hurts. Being in pain essentially involves a privi-
leged first-person qualitative experience of hurtfulness. It is precisely
this hurtfulness that characterises what it is to be in pain and distin-
guishes real pain behaviour from pretend pain behaviour. There is, in
short, something that it is like to be in pain. So it is with other mental
states. There is something that it feels like to be in love, or to be angry,
or to be excited about an upcoming holiday. Behaviourism completely
fails to capture these essential subjective qualitative aspects of mental
states.

For seconds, dispositional analyses serve poorly as explanations.
When we attribute mental states to others, we typically do so in order
to explain and understand their behaviour. If mental states, however,
are to be analysed in terms of dispositions to behave, these attribu-
tions are circular and uninformative.

If, for instance, I ask a physicist why it is that glass shatters when
struck sharply and the reply is that this is because glass is brittle,
the brittleness of glass is intended as an explanation for this behav-
iour. If I then inquire into the meaning of brittleness and am told that

 25

brittleness is that property that glass has such that it is disposed to
shatter when struck sharply, I have learned nothing. What I was
looking for was some explanation of brittleness in terms of the phys-
ical properties of the substance, not its dispositional properties.

Similarly, suppose I observe Wayne walking into a pizzeria and ask
Eloise what he is doing and the response is that Wayne is hungry.
Wayne’s hunger is intended as an explanation for his behaviour. If I
then inquire into the meaning of hunger and am told that hunger just
is the disposition to (inter alia) engage in food-seeking behaviour,
then I have learned nothing.

The final objection to behaviourism takes the form of an internal
critique: we show that behaviourism fails by its own lights.

Behaviourism is a reductive theory. The whole point of the theory
is to take talk of mental states and replace it, in careful analyses, with
theoretical terms which satisfy positivist criteria of observability and
public verifiability. The aim is to eliminate reference to mental states
entirely by reducing talk of mental states to talk of dispositions to
behave.

Behaviourist paraphrases of mental state terms, however, turn out
to contain ineliminable reference to the mental. To say that Tillie
clutches her jaw is to say more than just that her arm raises in a jaw-
ward direction. To say that she seeks a dentist is to say more than just
that she is impelled dentist-ward. Rather, the attributions of ‘clutch-
ing’ and ‘seeking’ are agentive attributions. To say these things is to
say that Tillie actively, agentively and intentionally clutches, seeks and
so on. This is already a mental attribution.

Human behaviour is always already a mental phenomenon. It is
impossible to enumerate convincing dispositional paraphrases for
mental terms which do not make reference to just such agentive verbs
as ‘clutching’, ‘seeking’, ‘organising’, ‘ensuring’, ‘attending’ and so
on. As such, talk of the mental is ineliminable and the behaviourist
has failed to analyse the ghost out of the machine.

26

C H A P T E R 4

NEUROANATOMY

We’re now going to take a brief diversion from our examination of
philosophical theories of mind and develop a rudimentary under-
standing of functional neuroanatomy.

The introduction to neuroanatomy here is going to be very cursory
indeed. My aims in this chapter are quite modest. In the first instance,
I want to show how parts of the brain are specialised for processing
certain functions. In particular, we will see that our linguistic capacity
is strongly localised and subserved by a rather extraordinary neuro-
biological adaptation.

In the second instance, I want to give a basic understanding of the
operations of neurons. This will serve us well much later in the book
when we examine artificial neural networks. Overall, I want to give a
sense of just what an amazing and startlingly complex object the
human brain is.

We’ll begin by describing macro-neuroanatomy – the parts of the
brain which can be seen with the naked eye – and then move on to
describe some basic micro-neuroanatomy.

4.1 MACRO-NEUROANATOMY

The human central nervous system can be broadly divided into three
areas. The spinal cord, the brain stem and the rest of the brain, includ-
ing the cerebral hemispheres which constitute the cerebrum.

The spinal cord (medulla spinalis) is of least interest to us. It carries
signals between the brain proper and the organs and muscles.
Continuous with the top of the spinal cord is the brain stem which
can also be divided into three parts.

The lower brain stem, or hindbrain, contains the pons, the medulla
oblongata and the cerebellum (not to be confused with the cerebrum).
The medulla is known to be implicated in the regulation of heart func-
tion and respiration. The pons (bridge) mostly relays information

27

between the cerebral hemispheres and the cerebellum, but is also
implicated in regulating vestibular function (balance).

The human cerebellum (little brain) is highly distinctive. It is very
densely packed with neurons – much more so than the rest of the
brain – and quite regular in organisation for a neural structure of its
size. The cerebellum is readily recognisable by the very fine folding of
its surface, which allows for more surface area and gives it a distinc-
tive wrinkly appearance. The human cerebellum is unique among
mammalian brains in its complexity and intricacy of folding.

The cerebellum is connected to most primary sensory processing
areas and most motor neurons and is known to be implicated in the
automatic governing of fine motor control. When, for instance, you
learn to type without thinking about it, or to operate a motor vehicle
without thinking about it, your cerebellum has been programmed for
the execution of a sequence of fine-grained motor responses to
various sensory inputs.

The next part of the brain stem is the midbrain. The midbrain con-
nects the pons to the upper brain stem. It is known to be implicated
in secondary processing involved with vision and audition. It also
contains the substantia nigra which stimulate production of the neu-
rotransmitter dopamine and which play a role in assisting fine motor
control. Parkinson’s disease, whose sufferers experience uncontrol-
lable fine tremors, is a degenerative condition of the substantia nigra.

The final part of the brain stem – the upper brain stem – contains
the thalamus and the hypothalamus, as well as the pineal gland and the
pituitary gland. The thalamus, which is continuous with the midbrain,

28

limbic system

thalamus

temporal lobe

parietal lobe

occipital lobe

pineal gland

midbrain

medulla

cerebellum

frontal lobe

pons

Figure 4.1 Mid-sagittal section.

is often described as a ‘sensory gateway’. It routes sensory informa-
tion (with the exception of olfaction) from the sensory apparatus to
the relevant primary processing area. It contains, among other struc-
tures, the lateral geniculate nucleus which is specialised for receiving
information from the eyes and routing it to the primary visual pro-
cessing cortex, and the medial geniculate nucleus which is specialised
for receiving information from the ears and routing it to the primary
auditory processing cortex.

The pineal gland and the pituitary gland are both endocrine glands –
they are involved in the secretion of neurotransmitters. The pituitary
gland regulates the release of a number of various neurotransmitters,
including human growth hormone and oxytocin. The pineal gland is
mainly involved with the production of melatonin. Interestingly, the
pineal gland was believed by Descartes to be the locus of interaction
with the immaterial soul.

The hypothalamus controls the secretions of most of the endocrine
glands and thereby regulates a wide range of bodily functions, includ-
ing thirst and appetite, temperature, and sexual and circadian cycles.

This exhausts the structures of the brain stem. The rest of the brain
consists of the cerebral hemispheres, the limbic system, the basal
ganglia and the olfactory bulbs.

The olfactory bulbs are responsible for primary olfactory process-
ing. As mentioned earlier olfaction, or smell, is the only sensory

 29

temporal lobe

olfactory bulbs

optic chiasm

medulla

cerebellum

frontal lobe

pons

frontal lobe

temporal lobe

cerebellum

Figure 4.2 Intact brain – base view.

modality which is not routed through the thalamus. Interestingly, it is
also the only sensory modality which is not cross-lateralised in the
hemispheres, which means that – unlike the other senses – inform-
ation from the left nostril goes to the left olfactory bulb and infor-
mation from the right nostril goes to the right olfactory bulb.

The basal ganglia are known to also be implicated in motor pro-
cessing. They are closely linked with the cerebellum and the midbrain.
Sufferers of degenerative conditions associated with the basal
ganglia, such as Huntington’s chorea, experience uncontrollable
bodily movements, typically more pronounced than the tremors
experienced by sufferers of Parkinson’s disease.

The limbic system, sometimes referred to as the limbic lobe, is
nestled around the top of the brain stem. It contains, among other
structures, the hippocampus which is known to be implicated in
memory processing and the amygdala which is known to play a role
with respect to emotion. The limbic system is sometimes described as
being part of the cerebral hemispheres.

The cerebral hemispheres constituting the cerebrum are what most
people imagine when they think of the brain. It is worth mentioning
that all the neural structures of the brain, not just the cerebral hemi-
spheres, are mirrored along a line drawn longitudinally through
the centre of the spinal cord. The cerebral hemispheres are joined
to each other by a thick bundle of neural fibres called the corpus
callosum.

The two cerebral hemispheres are each involved with the process-
ing of one half of the body’s sensory and motor functions and these
functions are, with the exception of olfaction, cross-lateralised in the

30

temporal lobe

parietal lobe

occipital
lobe

cerebellum

frontal lobe

Broca’s
area

pr
im

ar
y

m
ot

or
 c

or
te

x
so

m
at

os
en

so
ry

 s
tri

p

primary auditory

cortex
Wernicke’s

area

Figure 4.3 Intact brain – left view.

hemispheres. So the left hemisphere processes information from the
right-hand sense organs and controls movement on the right-hand
side of the body. Vision is even more peculiarly cross-lateralised. The
right-hand side of each eye’s visual field is processed in the left-
hemisphere and the left-hand side of each eye’s visual field is
processed in the right hemisphere.

Each cerebral hemisphere divides into four lobes: the frontal lobe,
the parietal lobe, the temporal lobe and the occipital lobe. The func-
tions of the cerebrum are not as well understood as the more evolu-
tionarily antecedent areas of the brain we’ve examined so far;
however, there are certain canonical cognitive functions associated
with each lobe and there are important areas of localised functional
specialisation – notably the primary processing areas for each sensory
modality and the two speech areas.

The frontal lobe is implicated in a whole range of ‘higher’ cognitive
functions. This is sometimes loosely glossed as being responsible for
‘planning and prediction’ or ‘executive control’. The frontal lobe con-
tains the primary motor cortex which, as the name suggests, is impli-
cated in the execution of bodily movement. It also contains one of the
speech areas of the brain – Broca’s area.

Broca’s area, named after Paul Broca, is adjacent to the primary
motor cortex. Damage to this part of the brain gives rise to a distinct-
ive kind of aphasia (language deficit) known as Broca’s aphasia.
Broca’s aphasia is characterised by an inability to produce fluent
grammatical utterances, even though the sufferer retains linguistic
comprehension and is aware of their deficit. This can be a particularly
pernicious aphasia as sufferers struggle to make themselves under-
stood but can only produce utterances with few, if any, grammatical
particles and which are punctuated with pauses.

The parietal lobe is thought to play a role in integrating inform-
ation from the sensory modalities. It contains the primary sensory
cortex, otherwise known as the somatosensory strip. The somatosen-
sory strip, like the adjacent motor strip in the frontal lobe, is
topologically organised. This means that certain parts of the sensory
cortex are correlated with certain parts of the body, with larger parts
of the cortex devoted to those parts of the body which are more sen-
sitive (have more nerve endings). So large parts of the somatosensory
strip are devoted to the lips, fingers and genitalia, but comparatively
little is devoted to less sensitive areas.

The temporal lobe is thought to be implicated in certain memory
functions. It contains the primary auditory cortex and, immediately
adjacent, the other speech area of the brain – Wernicke’s area.

 31

Wernicke’s area – named after Karl Wernicke – also gives rise to a dis-
tinctive aphasia when damaged – Wernicke’s aphasia. Wernicke’s
aphasia is characterised by fluent but meaningless speech. Sufferers
typically evidence poor linguistic comprehension and little awareness
of their deficit.

The extraordinary biological adaptation subserving our linguistic
capacity which I mentioned earlier is the arcuate fasciculus. The
arcuate fasciculus is a thick strand of neural fibres which connects
Broca’s area directly to Wernicke’s area. Damage to the arcuate fasci-
culus gives rise to conduction aphasia, one of the distinctive symptoms
of which is difficulty with repeating an utterance back to an inter-
locutor.

Finally, the occipital lobe is mostly involved with the processing of
visual information. It contains the primary visual cortex at the very
rear of the brain, which accounts for why a blow to the back of the
head can cause one to ‘see stars’. Damage to the occipital lobe can
result in blindness, even when the visual sensory apparatus remain
intact and functional.

Although there is considerable localisation of function in the
brain, it does exhibit a certain degree of neural plasticity, particularly
in younger brains. This means that if a certain part of the brain is
damaged, other parts of the brain may be able to take up its function
to some extent. This is generally more so with the functions imple-
mented in the cerebral hemispheres. Damage to the brain stem is
usually irreversible and will typically quickly lead to death since these
areas regulate vital functions.

4.2 MICRO-NEUROANATOMY

The final aim of this chapter is to briefly describe the operations of
neurons. Neurons are individual nerve cells which conduct electrical
impulses and the brain consists of a very large number of them.

There are roughly ten billion neurons in the brain, each of which is
connected, on average, to about ten thousand other neurons. That
makes brains astonishingly complex. Imagine taking a country the
size of India – which has a population of about a billion – and giving
every man, woman and child a thousand pieces of string with instruc-
tions to find a thousand distinct people to hold the other end of each
piece of string. When the whole country is connected up like this, with
every person connected to a thousand other people by pieces of
string, multiply the whole system in complexity by an order of mag-
nitude and that’s how complex your brain is.

32

There are a number of quite distinct types of neurons, but that
needn’t concern us here. We’re going to describe the structural fea-
tures and operations of a paradigm neuron.

Neurons have a cell body or soma which contains the nucleus of the
cell. This is connected via an axon hillock to the axon, which is a pro-
tuberance which can extend as long as roughly a metre. These axons
are coated with a myelin sheath which helps electrical signals flow
more quickly and aids in insulation. At the end of the axon are axon
branches which terminate at axon terminals.

Axons are efferent connections – they carry signals away from the
soma and along the axon towards the axon terminals. Incoming, or
afferent, signals are carried towards the soma along the dendrites of
the neuron. Dendrites are organised in a dendritic tree and there may
be very many of them.

When an axon terminal is in close proximity to a dendrite, a
synapse will form (see Figure 4.5). These synaptic connections conduct
signals from one neuron to another (strictly speaking, a neuron can
form a synaptic connection with pretty much any part of a neigh-
bouring neuron, but we’re aiming to keep things as simple as possi-
ble).

The operations of neurons are electrochemical in nature. An electri-
cal signal flows along an axon to a presynaptic axon terminal where it
is transduced into a chemical signal. This chemical signal is then carried
across the synaptic cleft by neurotransmitters in synaptic vesicles.

Once these synaptic vesicles reach the postsynaptic structure, the
chemical signal encoded by the neurotransmitters is transduced back
to an electrical signal which propagates along the postsynaptic den-
drite and into the body of its neuron.

The cell body of a neuron has a certain electrical resting potential.
As it receives afferent electrical signals along its dendrites, the

 33

soma

dendrites

myelin sheath

synapse

axon

Figure 4.4 Model neuron.

difference in electrical potential between the inside of the cell and the
outside of the cell rises. When this potential difference is high enough,
the soma will discharge an electrical impulse along its axon and return
to its resting potential. This is something of a simplification but it
suffices for our purposes.

If you’re feeling a little overwhelmed with all these technicalities and
all this new terminology, don’t fret. All you really need to take away
from this chapter with respect to the operations of neurons is the fol-
lowing.

There are very many neurons in the brain which are highly inter-
connected. These neurons function by passing electrical signals to
each other. If a neuron receives sufficient incoming signals from other
neurons, it will send out a signal of its own.

Those readers who are intrigued by what they’ve read here and
would like to learn more are advised to follow the suggestions for
further reading.

34

Figure 4.5 Model synapse.

synaptic cleft

pre-synaptic terminal

Axon

post-synaptic structure

synaptic
vesicles

C H A P T E R 5

AUSTRALIAN MATERIALISM

Now that we have at least a rudimentary understanding of just what
an amazing thing the human brain is, it is time to examine a philoso-
phical theory which posits a very strong connection between the
neural and the mental.

Australian materialism – so called as its major proponents were
located in Australian universities – is a theory which goes by many
names. It is variously also known as reductive materialism, identity
theory, type physicalism and central state materialism, for reasons
which will become apparent in due course.

It will serve our purposes here to develop Australian materialism
in conjunction with another theory: the causal theory of mind.

When we ask the question ‘what are mental states?’, there are two
distinct kinds of answer one can provide. One kind of answer involves
giving a conceptual analysis of mental states – an account of what we
mean by ‘mental states’. Another kind of answer involves providing a
substantive identification – indicating which things turn out to be
mental states.

In the case of behaviourism, these two kinds of answer to the ques-
tion of what mental states are were conflated in the one theory. This
is because behaviourists are eliminativists about mental states and,
hence, do not believe there is a substantive identification to be made.
They hold that talk of mental states is, in fact, just talk about dispos-
itions to behave – behaviourism is an ontologically eliminative and
semantically reductive theory of mind.

We’re now going to employ more philosophical sophistication and
carefully tease apart the two ways of answering the question of what
mental states are. Australian materialism will provide us with the sub-
stantive identification – the account of which things turn out to be
mental states. The account of what it is to be a mental state, however,
will be provided by the causal theory of mind.

35

5.1 THE CAUSAL THEORY OF MIND

The canonical exposition of the causal theory is given by David
Armstrong in his 1968 monograph, A Materialist Theory of Mind.
Armstrong, together with J. J. C. Smart and U. T. Place, is one of the
three major figures associated with Australian materialism.

The causal theory, as we have said, aims to give an account of what
it is to be a mental state. This is, if you will, very much like providing
a job description for mental states. A job description does not specify
the race, age or gender of the occupant of the role. It merely tells us
what the relevant duties are – what one has to do in order to fill the
role. So it is with the causal theory – it tells us what something has to
do in order to fill the role of a mental state.

We begin by reflecting on the fact that many terms in our language
are defined by reference to their causal powers. The term ‘poison’ is a
paradigm example. A poison can be a liquid, a solid or a gas. Poisons
can be coloured or colourless; they can be odourless or have a
distinctive odour, and so on. None of these properties are relevant to
whether or not the substance in question is properly called ‘poison’.
What makes a substance a poison is its causal role with respect to
bringing about ill health in humans. To cast this as a definition we can
say the following: a substance is a poison iff it is apt to cause ill health
in humans.

The central tenet of the causal theory is that mental state terms are
just such terms. We define mental state terms, according to the causal
theorist, by reference to their causal role with respect to behaviour.

This allows the causal theorist to provide a schema for defining
particular mental states along the following lines. To be in a particu-
lar mental state is to be in a state which is apt to be caused by certain
stimuli and apt to cause certain behaviour.

Providing a definitional taxonomy of mental states is then simply a
matter of identifying the stimuli which are apt to cause each particular
mental state and the behaviour each is apt to cause. To be in pain, for
instance, is to be in a state which is apt to be caused by, inter alia,
burning my hand and is apt to cause, inter alia, the removal of my hand
from the source of heat and further hand-discriminating behaviour.

The causal theory conserves, from its philosophical predecessor,
the intuition that there is a crucial connection between mentality and
behaviour. It does not, however, make the problematic identification
between mental states and dispositions to behave. To be in a mental
state is not, for the causal theorist, just to be disposed towards certain
behaviour. Rather, to be in a mental state is to be in a state which is

36

apt to stand in certain causal relations mediating stimulus and behav-
iour. The causal theorist is not an eliminativist about mental states.

The obvious next point of inquiry is to determine precisely which
states are apt to have these causal properties. In other words, now that
we have characterised the role of mental states by giving a conceptual
analysis of mental state terms, it is time to locate the occupants of
these roles by making substantive identifications.

The causal theory, as it stands, is ontologically neutral – it does not
commit us to any particular ontology. One could, for instance, be a
causal theorist but still maintain that the things which occupy the
roles of mental states are immaterial. This would, of course, require
an unusual account of causality but we have already seen that this is
a problem for the dualist.

Although the causal theory is, strictly speaking, ontologically
neutral, the talk of causality does pave a fairly obvious path to a
material identification of mental states. This is precisely what is pro-
vided by Australian materialism.

5.2 THE IDENTITY THEORY

Australian materialism rose to prominence in the late 1950s with the
publication of two very influential papers: Place’s Is Consciousness a
Brain Process? (1956) and Smart’s Sensations and Brain Processes
(1959).

Australian materialism makes strict identifications between types
of mental states and types of neural states. In other words, to be in a
certain type of mental state just is to be in a particular type of neural
state.

This is an analysis of mental states that aims to provide an interthe-
oretic reduction. Types of mental states, according to the Australian
materialists, smoothly reduce to types of neural states. They do not
hold to eliminativism with respect to mental states but, rather, seek to
make scientific identifications of the correct referents of our mental
state terms.

So the Australian materialist does not believe, as did the behav-
iourist, that we are simply mistaken in using mental state terms as if
they refer to substantive entities. Where the behaviourist held mental
state terms to be akin to terms like ‘witches’ and ‘phlogiston’ – to be
shown to be mere ‘folk’ terms by the progress of scientific discovery –
the Australian materialist holds that mental state terms are akin to
terms like ‘lightning’, to be identified with physical phenomena in
accordance with our scientific theories.

 37

At this point, the various names by which the theory is known
should make a lot more sense. It is a reductive materialist theory that
makes type–type identifications between mental states and certain
physical states – namely, neural states, or states of the central nervous
system – hence the appellations ‘reductive materialism’, ‘identity
theory’, ‘type physicalism’ and ‘central state materialism’.

One clear advantage of the theory is that it provides a solution to
the problem of other minds. We can tell whether other people actually
have mental states simply by investigating their brains. Having a type
of neural state, on this analysis, just is having a type of mental state,
so other minds are readily identifiable and empirically amenable.

Another clear advantage of the theory is that it confers a scientific
methodology for investigating mentality. If we want to know about
the mind, we should do neuroscience. In particular, we should seek to
determine which types of neural states obtain as which types of
mental states.

As a materialist – or physicalist – theory, Australian materialism also
satisfies Ockham’s razor. The Australian materialist admits only phys-
ical substance into her ontology. At least, qua Australian materialist,
this is the case – she may well have other reasons to expand her ontol-
ogy, but these won’t be reasons which pertain to her theory of mind.

A final selling point lies in the theoretical fit with the causal theory
of mind. To the extent that one holds that the causal theory is a
correct analysis of mental states, one finds an advantage in the provi-
sion, by Australian materialism, of candidates that are apt to have
precisely the causal powers held to be characteristically defining of
mental states.

If we, then, marry the conceptual analysis of the causal theory with
the substantive identification of Australian materialism, we get the
following account of mental states. To be in a type of mental state is
to be in a type of neural state which is apt to be caused by certain
stimuli and apt to cause certain behaviour.

Despite the numerous advantages of Australian materialism, there
are, as always, a number of philosophical objections we can mount
against the theory.

5.3 ARGUMENTS AGAINST AUSTRALIAN
MATERIALISM

Let’s begin with some fairly weak objections to Australian material-
ism. We might argue that we have the capacity to introspect our mental
states and that when we do so, we learn about our mental states. We

38

don’t, however, learn anything about our neurophysiology through
introspection, so mental states can’t be identical to neural states.

There is a clear reply to this objection. It straightforwardly begs the
question against the Australian materialist. ‘Begs the question’ is a
phrase which is more and more commonly used to mean something
along the lines of ‘in light of which the question demands to be
asked’. This is not the technical philosophical use of ‘begs the ques-
tion’. To beg the question is to run afoul of the fallacy of petitio prin-
cipii. One begs the question against one’s interlocutor when one asks
to be granted the very proposition in dispute.

In this case, the proposition in dispute is that mental states are
type-identical to neural states. The objection from introspection only
cuts any philosophical ice on the assumption that mental states are
not identical to neural states. After all, if the Australian materialist is
correct and this type identity holds, we do in fact learn something
about our neural states through introspection, simply by virtue of
learning about our mental states (given these are held to be identical).
The objection from introspection therefore simply begs the question
and is no real objection. It may be surprising to learn that we do actu-
ally introspect our neural states but scientific discovery is frequently
surprising in the light of antecedent folk theories.

There are a number of further objections to Australian material-
ism which also beg the question. Several of these come in the form of
appeals to Leibniz’ Law – the objection from introspection is actually
an instance of just this form.

Leibniz’ Law – otherwise known as the identity of indiscernibles –
posits that if two things have all and only the same properties, then
they are identical. The objection from introspection seeks to deploy
this in arguing that since mental states have a property which neural
states do not, they must be not identical. Similar objections can be
mounted by appealing to various other properties the objector holds
mental states to have and neural states to lack, or vice versa.

For instance, neural states have a specific spatio-temporal location.
It seems odd, however, to suppose that my mental state of thinking
about ice cream is located three inches behind my right eye.

Alternatively, we might play on the semantic properties of mental
states. My mental state of believing that today is Saturday has seman-
tic content – it means something. By virtue of its semantic content it
is apt to be involved in implication relations – for instance, if I believe
today is Saturday then I believe tomorrow is Sunday. Neural states,
however, neither have semantic contents, nor are they apt to be
involved in implication relations.

 39

There are a number of other ways we could problematise the
appeals to Leibniz’ Law here; however, the most decisive reply is to
simply note that, once again, these objections straightforwardly beg
the question against the Australian materialist. If mental states and
neural states are, in fact, type-identical, then mental states do have a
specific spatio-temporal location – surprising as this may be – and
neural states do in fact have semantic contents such that they are apt
to be involved in implication relations, surprising as this may be. To
simply assert that this is not the case is just begging the question.

There is, however, a rather decisive objection to Australian mater-
ialism. This is the objection from multiple realisability.

It turns out not to be terribly difficult to cast serious philosophical
concerns over the claim that types of mental states are identical to
types of neural states. For one thing, there is the question of how, pre-
cisely, we are supposed to construe the concept of ‘type’. If we con-
strue it too narrowly then we are committed to saying that whenever
a group of us all desire ice cream, we are each in exactly the same
neural state. This is clearly implausible and the rubric of ‘type’ is sup-
posed to allow for some variation in neural states in order to accom-
modate this. How much variation is the crucial question. If we
construe the notion of ‘type’ too broadly, then we are at risk of losing
the empirical methodological advantage which the claim of type-
identity confers.

The explanatory burden here on the Australian materialist is to
give some account of what, precisely, must be shared by neural states
in order for them to qualify as being of the same type. Unfortunately
for the Australian materialist, even if this explanatory burden can be
met, there is a further objection to the type-identity claim which is
unanswerable.

Consider the case of someone who suffers neural damage, whether
it be through a stroke or through some trauma such as a motor vehicle
accident. After the damage, the patient typically loses the ability to
have certain mental states. They might, for instance, no longer be able
to recognise their spouse, or they might no longer be able to under-
stand certain words. The fact of crucial importance here is that such
patients very frequently regain many of their lost mental faculties –
they relearn to recognise their spouse or to understand the concepts
they had lost. They recover the capacity to have these mental states
despite the fact that the neural substrate which originally supported
these functions is irrevocably damaged.

Before the damage occurred, being in mental state x meant being
in neural state x. After relearning the lost mental functions, however,

40

being in mental state x means being in a totally distinct neural state y.
This neural plasticity – the ability of parts of the brain to take up
functions that are ordinarily carried out by quite distinct parts of the
brain – is well documented. The demonstrable multiple realisability
of mental states provides a decisive refutation of the type identity
posited by the Australian materialist.

Mental states then are not only multiply realisable across subjects
in such a way that problematises the rubric of ‘type’, they are also
demonstrably multiply realisable in the same subject in such a way that
refutes the claim that types of mental states are identical to types of
neural states.

Furthermore, it is worth briefly noting here that Australian mater-
ialism is prejudiced against the possibility of non-human minds. If
mental states are held to be type identical to states of the human
central nervous system, then it is not possible for dogs and cats, for
instance, to have mental states. I’m quite certain though that our cat
Linus and our dog Mia have mental states. They certainly don’t have
the complexity of mental states or cognitive powers that humans have
– far from it – but it seems implausible in the extreme to argue that
they lack beliefs and desires.

Australian materialism rules, by fiat, against the possibility of
mental states obtaining in non-human biological substrates. Further
– and crucially for our purposes – it rules against the possibility of
artificial intelligence. This is not, in and of itself, much of an objec-
tion but it is certainly what we might consider an untoward – and
unmotivated – consequence of the theory.

In light of the multiple realisability objection, it is clear that one
cannot continue to maintain type–type identity between mental states
and neural states. One possible modification of the theory is to retreat
to a type-token identity. This is simply to argue that whenever one is
in a particular type of mental state, there is an associated token neural
state. In other words, to be in a type of mental state just is to be in
some neural state. Mental states are still taken to be identical to neural
states, but no particular type of neural state is held to be a particular
type of mental state.

While this modification accommodates the multiple realisability of
mental states – both across subjects and within the same subject
across time – it makes for a very weak theory indeed. The theorist who
posits type-token identity is no longer making the kind of identific-
ation that facilitates an intertheoretic reduction. We can no longer
investigate mentality by doing neuroscience since there is no advan-
tage in determining which mental states obtain as which neural states.

 41

If the identity is only a token identity, then this determination will
only hold for the subject under investigation at the time of investig-
ation. The results are not universalisable in the way they were for the
theorist positing type identity.

The token identity theory then – or token physicalism as it is some-
times known – is barely worth entertaining. One of our desiderata
for the philosophical adequacy of a theory of mind is its empirical
adequacy – ideally our theory of mind should direct empirical
investigation.

Fortunately, we now have the makings of such a theory at our dis-
posal and the purpose of the following chapter will be to develop it.
We’re going to do this by preserving the core intuition of the causal
theory of mind in such a way that allows for the motivations which
underpin Australian materialism, but without overcommitting in the
way their substantive type–type identification does.

Before we do so, however, it will serve our purposes to examine a
very well known thought experiment and consider one possible argu-
ment we might draw from it.

5.4 WHAT MARY DIDN’T KNOW

Thought experiment plays an important role in the philosophy of
mind. Since this is the first time we are seeing one in this volume, it is
worth very briefly discussing their role.

Thought experiments aim to prime our intuitions by asking us to
imagine certain logically possible situations. By their very nature, they
typically describe wildly outlandish and implausible situations and
the following thought experiment is no exception. It does no philo-
sophical work, however, to simply object to the physical possibility of
the thought experiment situation obtaining, although this is a
common response when first meeting them. To engage philosoph-
ically with thought experiments is to identify logical consequences of
the situation being described – to argue that such-and-such must be
the case were the situation to obtain.

With that in mind, let’s consider the case of Mary, empirical scien-
tist par excellence. Mary has access to completed physical theories –
not just our current best theories but completed theories. Mary has
been assiduously studying these theories for rather a long time and has
reached the point where she knows all the physical facts. In particular,
Mary knows everything there is to know about colour. She knows all
about wavelengths of light and the reflectance of various surfaces. She
also knows all about human neurophysiology so she knows all about

42

human sensory apparatus and the visual capacity. She knows all the
physical facts there are to know about human colour experience.

Mary, however, has never actually had a colour experience herself.
Up until now, there has been a device implanted in her brain which pre-
vents her from seeing in colour – her entire world to date has been a
world of black and white experiences. As a reward, however, for finally
learning everything there is to know about the physical world, this
device is remotely disabled, allowing Mary the capacity to have colour
experiences. The first thing Mary sees after the device is disabled is a red
rose. Mary has an experience she has never had before – the experience
of seeing the colour red. And she learns something new. She learns
something she didn’t know before, even though she knew all the phys-
ical facts about the world. She learns what it is like to see the colour red.

This thought experiment was originally intended to support an
argument against any theory which seeks to account for mentality in
purely physical terms. The argument runs along the following lines.
Mary knew all the physical facts. Yet Mary learned something new
when she had a colour experience. So there is more to know about
mental life than is provided by all the physical facts. Hence, a purely
physical account of mentality is not a complete account.

What is left out, it is contended, is an account of what it is like to
be in a mental state. These privileged subjective qualitative aspects of
mental states – what it is like to have the experience of being in a par-
ticular state – are termed qualia. We touched on qualia briefly in
Chapter 3 when we discussed the hurtfulness of pain as an objection
to behaviourism. The given argument against physicalism makes the
scope and substance of that objection explicit.

It is undeniable that there is something that it is like to be in any
given state that can only be known by having the first-person experi-
ence of being in the state. What is contentious is precisely what
explanatory burden, if any, is conferred on theorists of mind by qualia.

The thought experiment above was originally described – albeit
in a slightly different form – by the Australian philosopher Frank
Jackson in his 1982 article Epiphenomenal Qualia. The argument
against the explanatory adequacy of purely physical theories of mind
we have presented here – which is also found therein – is known as the
knowledge argument. There is an enormous literature surrounding
this argument which I do not intend to summarise here. Once again,
I refer the interested reader to the suggestions for further reading.

Rest assured, however, that this is certainly not the last we will see
in this volume of the qualia issue. For the moment, though, it is time
to turn our attention to an account of functionalism.

 43

C H A P T E R 6

FUNCTIONALISM

There is very little explanatory work to be done in this chapter and,
consequently, it will be comparatively short. The reasons for this are
twofold.

One reason is that we have done much of the required setting up
for functionalism in developing the causal theory of mind. This was
one of the motivations behind presenting an account of the causal
theory in conjunction with Australian materialism.

The other reason is that functionalism is, strictly speaking, a
theoretical framework which requires fleshing out into a fully-fledged
theory of mind. One of the ways of fleshing out the functionalist
framework gives us the theory which it is the central concern of this
volume to develop and evaluate – computationalism. Before we fully
develop computationalism, however, we are going to suspend our dis-
cussion of philosophical theories of mind and work up a rigorous
technical account of precisely what computation is.

For the moment, we will be satisfied with making the clear the struc-
ture of the theoretical framework which we will later develop more fully.

6.1 FUNCTIONAL DEFINITION

We begin – as we did with the causal theory – by reflecting on the
defining characteristics of certain terms.

Many terms in our language are defined by the characteristic func-
tion of their referents. A paradigm example here is the term ‘carbu-
rettor’. A carburettor is a (now largely obsolete) device in internal
combustion engines whose function is to mix fuel and air in precise
ratios for maximally complete combustion. Carburettors can be made
of metal alloys, or ceramic, or some other material. They can employ
butterfly valves or sliders or other mechanisms to regulate their inputs
and output. They can have one chamber or multiple chambers. They
can be any colour one chooses. None of these characteristics,

44

however, have any bearing on whether or not something is properly
called a ‘carburettor’.

Something is a carburettor iff it serves the function of a carburet-
tor – iff it mediates between fuel and air inputs and a combustion
mixture output. Anything at all which can serve this function counts
as a carburettor.

The functionalist, as you have no doubt guessed by now, holds that
mental state terms are precisely such terms. What makes a state a
mental state is not, according to the functionalist, anything intrinsic
to the state but, rather, its function in mediating relations between
inputs, outputs and other mental states. Mental states are held to be
functional states.

Understanding any particular type of mental state is, on a func-
tionalist analysis, simply a matter of understanding its function. Pain,
for instance, is held to be a functional state which in humans is char-
acteristically caused by bodily trauma and which characteristically
causes distress and reasoning aimed at alleviating the pain, as well as
characteristically causing behaviour which is aimed at seeking relief
from the pain.

In other words, pain is a functional state which mediates relations
between characteristic pain-inducing inputs, pain-alleviating reason-
ing and behaviour. Anything at all which is apt to serve this function
– to mediate relations in such a way – just is a pain state.

No doubt you are thinking this is sounding very much indeed like
the causal theory. If you are, then you are certainly correct – the
causal theory is, in fact, an early form of functionalism.

You may also be thinking that this is rather reminiscent of behav-
iourism. Once again, you would be correct. There is a sense in which
functionalism is the new behaviourism. The functionalist account
preserves the important connection between stimulus, mentality and
behaviour. The crucial distinction, however, is that the functionalist is
not an eliminativist about mental states. In fact, the functionalist
holds that any adequate description of mental states contains an ineli-
minable reference to other mental states.

According to the functionalist, the characteristic function of
mental states is to mediate relations between inputs, outputs and other
mental states.

6.2 A BLACK BOX THEORY

In order that we fully appreciate the structure of the theoretical
framework, it is useful to represent the three levels of description – and

 45

the identities that obtain among them – diagrammatically (see
Figure 6.1).

As we can see, there are both type identifications and token identi-
fications involved in the functionalist framework. A particular state –
I’ve used a neural state for the sake of example – is identified with a
particular mental state. However, unlike Australian materialism, this
is not a type identification. The neural state is token-identified with the
mental state by virtue of being token-identified with a particular func-
tional role which itself is type-identified with the mental state.

In other words, types of mental states just are types of functional
roles. So mental states are type-identical to functional categories. Any
state which is apt to carry out that function just is the mental state but
not by virtue of any intrinsic properties of the state. This is why the
identity is only a token identity. Anything at all could stand in place of
the neural state in Figure 6.1 if it carries out the appropriate function.

Yet another way of saying this is that the neural state, in Figure 6.1,
happens to be identical to the mental state in this instance – it happens
to be the thing which is the mental state – but not by virtue of being
any particular type of neural state. Any type of neural state (in fact
any type of state at all) can happen to be identical to the mental state
if it happens to carry out the requisite function.

Unlike the token physicalism we briefly considered at the end of the
last chapter, functionalism is not methodologically vacuous with

46

Figure 6.1 Type/token identity.

neural state X
token identification

mental state X

functional category

typ
e

ide
nt

ific
at

ion
token identification

respect to empirical investigation. Quite the contrary. By virtue of the
type-identification between mental states and functional categories,
we know precisely how we should investigate mentality empirically.
Psychological inquiry, on the functionalist account, is a matter of
determining and investigating the characteristic functions of parti-
cular types of mental states.

This is one clear advantage of the functionalist framework – it
directs psychological inquiry in just the way we require from an
empirically adequate theory of mind. To better understand mentality
is to develop an account of the mediation by particular types of
mental states of their relations to characteristic inputs, outputs and
other mental states.

A further advantage of functionalism lies in its preservation of the
intuitions which underwrote precursor theories. The behaviourist
intuition that mentality crucially involves relations between stimulus
and behaviour is preserved and the Australian materialist intuition
that mental life is to be accounted for in terms of neural activity is
accommodated.

It is important to appreciate, however, that while one is at liberty
to identify neural states as those things which serve the role of mental
states, one is not committed to doing so simply by virtue of commit-
ting to functionalism.

It is an important feature of functionalism that it is substrate inde-
pendent and, hence, ontologically neutral. Anything at all – including
a state of non-physical substance – can be a mental state on the func-
tionalist account, provided it carries out the requisite function. This
substrate independence is precisely what allows the functionalist to
accommodate the multiple realisability of mental states without
succumbing to methodological vacuousness.

A corollary of this substrate independence is the avoidance of the
species chauvinism inherent in Australian materialism. As far as the
functionalist is concerned it is an open question whether or not
non-human entities – biological or otherwise – have mental states.
Functionalism allows for the possibility of dog minds, cat minds,
Martian minds and – crucially – man-made artefacts with minds.
The functionalist framework allows for the possibility of artificial
intelligence.

As well as enjoying substrate independence, functionalism is also
mechanism independent. It says nothing about the actual mechanism
by which mental states carry out their function in mediating relations
between inputs, outputs and other mental states. For this reason,
functionalism is often called a ‘black box’ theory of mentality.

 47

Mental states, on the functionalist account, are akin to black boxes.
We know neither what they are made of, nor what goes on inside
them. While this confers the theoretical advantages we have
described, there is also a sense in which one is left wanting by the func-
tionalist account of mental states. One wants to know more, in par-
ticular, about the details of the mechanisms which facilitate the
mediation held to be characteristic of mental states. This is why I refer
to functionalism as a theoretical framework. Different ways of speci-
fying the mechanism in question result in various fully-fledged func-
tionalist theories.

A prime candidate for a mechanism which is apt to carry out pre-
cisely such mediation is computation. Fleshing out functionalism with
a computational account of the mediating mechanism will deliver us
the theory we are centrally concerned with – computationalism.

In order that we might do so responsibly and accurately, we are
going to need a rigorous formal account of just what computation is.
This will be the target of the next three chapters.

Before we move on to this formal material, however, let’s briefly
consider a couple of standard philosophical objections to the broad
functionalist framework.

6.3 QUALIA OBJECTIONS

The two objections we will raise here target not any particular kind of
functionalism but, rather, the claim at the heart of the functionalist
framework. These are objections to the contention that there is
nothing more of importance to know about mental states beyond
their function and that carrying out such a function is sufficient for
something being a mental state.

Both objections seek to highlight the importance of qualia in
mental life and aim to establish an explanatory burden on theorists of
mind to account for qualia. Let’s first consider the inverted spectrum
objection.

Whenever I’m in the presence of objects with certain surface
reflectance properties, under certain lighting conditions, I have a per-
ceptual experience such that if someone asks me what colour I per-
ceive the object in question to be, I will respond ‘blue’. The experience
I have when observing the Pacific Ocean in bright sunlight is a para-
digm example of what I refer to by the colour term ‘blue’.

Whenever Sue is in the presence of the same objects under the same
lighting conditions and I ask her what colour she perceives, she also
replies ‘blue’. Whenever I see an object which I perceive to be yellow

48

and say ‘that looks yellow’, Sue is in agreement. So it is with all our
other colour terms. In other words, we concur always and everywhere
on the extension of our colour terms.

The problem is that I don’t have direct access to Sue’s perceptual
experiences, only to her reports of her experiences. Given that we
always and everywhere point to the same things when uttering
colour terms, I presume that when Sue has a perceptual experience
which she reports as ‘blue’ that she thereby has a perceptual experi-
ence just like the one I have when I experience blueness. For all
I know, however, it may well be the case that whenever Sue perceives
what she reports as ‘blue’, she is actually having a perceptual experi-
ence such that if I were to have that experience I would report it as
being ‘yellow’. In fact, for all I know, this may be the case for all our
colour terms – our colour spectra may be completely inverted with
respect to each other.

The argument against the adequacy of a functional account of
mental terms which we draw from this thought experiment runs along
the following lines. My mental state of ‘perceiving blue’ and Sue’s
mental state of ‘perceiving blue’ are functionally equivalent. Our
respective states mediate characteristic blue-type stimulus, blue-
perceiving behaviour and other mental states in just the same way.
According to the functionalist then, our respective states are equiva-
lent and there is nothing to distinguish the two. After all, the only pos-
sible distinction between mental states, on a functionalist account, is
a distinction in function. It seems quite clear, however, that there is
something quite different about our respective states of ‘perceiving
blue’. Sue, by virtue of her inverted colour spectrum, is perceiving
what I would call ‘yellow’.

It is not at all clear what to say about this argument and I certainly
don’t intend to rule on it here. The literature, as I have said, is very
much divided on the importance of qualia.

On the one hand, it seems clear that there is an important distinc-
tion between the two mental states in question which cannot be
accounted for in terms of function alone. What it is like for me to per-
ceive blue is not at all what it is like for Sue to perceive blue. Quite dis-
tinct qualia attach to the two experiences.

On the other hand, it is not obvious just what hangs on this. After
all, if we are always and everywhere in agreement with respect to the
extensions of our colour terms, surely this is all that is important.
Does it really matter that I would call her ‘blue’ experience a ‘yellow’
experience? Especially since this is something that neither of us, nor
anyone else, could ever know?

 49

The second objection against the adequacy of a functional account
of mentality is known as the absent qualia objection, or – more
entertainingly – the zombie objection.

Consider, if you will, a being indistinguishable for all intents and
purposes from you and me. Let’s call this being Imitation Man.
Imitation Man has a regular life, just like you and me. He has likes
and dislikes, goals and ambitions, beliefs and desires – in short he is
just like any other human being. When asked about his experiences,
Imitation Man will give the kind of answers we would expect any
other person to give – he will tell us that his pain hurts, that the experi-
ence of listening to certain music is pleasurable and that chocolate ice
cream tastes marvellous.

Unlike you and me, however, Imitation Man is completely lacking
in qualia. He is what we might call a ‘zombie’. His pain doesn’t
actually feel like anything. There is nothing that it is like for him to
listen to music or to taste ice cream. There is no way for us to ever dis-
cover this though since we do not, of course, have direct access to his
experiences.

This in no way speaks against his functional equivalence with other
human beings. His pain state still plays the functional role that pain
states play in everyone else, as do all his other mental states. They
simply don’t feel like anything.

The argument to be made against functionalism here should be
obvious. Imitation Man’s pain state, for instance, is functionally
equivalent to ours – it mediates relations between stimulus, behaviour
and other mental states in just the way our pain state does. If
Imitation Man’s hand is placed on a stove, he will yell, cry ‘ouch’ (or
some other appropriate expletive), seek to remove his hand from the
source of heat, engage in hand-soothing behaviour, weep and moan,
and so on. Imitation Man’s pain and our pain are, therefore, equiva-
lent simpliciter on the functionalist account . Yet it seems clear that
Imitation Man’s pain is a rather different thing to our pain – his pain
doesn’t hurt.

As with the inverted spectrum objection, it is not at all clear what
one should say to the absent qualia objection. Once again, I shan’t
rule on it here but will simply indicate the two kinds of ways one
might be tempted to respond.

On the one hand, it seems that the example is unfairly prejudiced
against the adequacy of functional explanation. It assumes that carry-
ing out all the various functions characteristic of human mental life is
not ipso facto having qualia. In fact, it is tempting to charge the absent
qualia objector with begging the question against the functionalist.

50

However, there is nothing in the functionalist account so far which
maintains the presence of qualia as a straightforward consequence of
carrying out the various functions characteristic of mentality.

The functionalist only maintains that a functional account of
mental states is an adequate account, so the absent qualia objector
doesn’t quite beg the question. It is difficult to appreciate, however,
how Imitation Man’s pain state could be functionally equivalent to
ours without his pain being hurtful. After all it is the very hurtfulness
of our pain which motivates our pain alleviating behaviour, is it not?
There is still a sense in which the absent qualia objection is somehow
loaded against the functionalist.

On the other hand, the absent qualia objection seems to bring out
precisely the inadequacy of a functional account of mental states. The
functionalist account of mentality fails to capture what seem to be
essential aspects of our mental states – their subjective qualitative
aspects. There just is something that it is like to see blue, or to be in
pain, or to taste chocolate ice cream, and one might think that any
theory which fails to give an account of such qualia is explanatorily
inadequate.

With these difficult philosophical issues to ruminate on, it is time to
turn our attention to a formal account of computation.

 51

C H A P T E R 7

FORMAL SYSTEMS

In the previous chapters, we have considered the question of what
minds might be and sketched out the space of possible responses to
this question. In doing so we have seen a progression of philosoph-
ical theories of mind and considered arguments and objections per-
taining to each.

In the following three chapters, we are going to be working our way
towards a precise formal account of what computers are.

Unlike the question of what minds might be – which is ripe for the-
orisation – there is something that it is to be a computer and specify-
ing that something is a purely descriptive exercise which involves
delving into theoretical computer science and teasing out some
foundational material.

In these chapters, I presuppose no understanding whatsoever of
computer science, mathematics or any formal discipline. If you have
an aversion to symbols then do not fear. The introduction here is
deliberately slow and gentle and there are numerous exercises to aid
understanding.

We will start in this chapter by defining formal systems and playing
with some toy (simple) formal systems to get a basic feel for symbol
manipulation. We are then going to spend the next chapter investi-
gating a particular kind of formal system: a register machine. We will
use the concept of a register machine – and related concepts involved
in its explication (like program) – to give a precise characterisation of
computability.

With this rigorous definition of computability, we can then speak
authoritatively (and correctly) about computing, computers and
computation. We are going to play with some toy register machine
programs to get a feel for the syntactic nature of computation.
We will also have a look at some more difficult and complicated
register machine programs (for those who are amenable to
such things and enjoy a challenge). These more difficult challenge

52

exercises can be skipped without prejudice by those who have no
taste for them.

Finally, we complete our survey of computational theory in
Chapter 9 by seeing how we can use the very clever method of Gödel
coding to define a universal machine – a machine which can compute
any computable function. We shall also discuss just what it is to be com-
putable – what falls within the limits of the computable and what falls
outside.

Armed with a sound knowledge of computational theory, we will
have precise formal definitions and some subtle distinctions at our
disposal. Deploying these, we will be able to correctly and responsi-
bly characterise the theory that is our central concern. That will be
our first aim in Chapter 10.

7.1 EFFECTIVITY

It is highly likely that every reader of this book has at some stage in
their life played a game of at least one of the following: chess,
draughts, backgammon, go, Chinese checkers or – at the very least –
tic-tac-toe (aka noughts and crosses). If you understand how at least
one of these games is played (most of us can grasp tic-tac-toe), then
regardless of how good or bad you are in playing them, you already
understand the principles underlying formal systems. We’ll begin our
examination of formal systems by simply making explicit what you
already grasp implicitly.

Chess exemplifies the important features of formal systems nicely,
so I will make reference to it throughout this chapter. Don’t be con-
cerned if you don’t particularly understand the rules of, or strategy
behind, chess – nothing I will say hinges on such an understanding.

To begin drawing out the features of formal systems, let’s consider
the chess board configurations depicted in Figure 7.1.

It is immediately apparent that the two boards are in different con-
figurations, or states. Furthermore, we can all agree on a description
of how the two depicted states differ: one of the white pieces has
moved two squares towards the black pieces. We can be more precise
than that though. If we label the horizontal from ‘a’ to ‘h’ left to right,
and the vertical from ‘1’ to ‘8’ bottom to top, then we can say:

[1] The piece which was in square f2 in state A is in square f4 in
state B.

We can, if we know about chess, add layers of interpretation to [1]. At
the first level of interpretation we can say that a pawn which was in

 53

square f2 in state A is in square f4 in state B. At the next level of inter-
pretation we can say that the transition from state A to state B repre-
sents a valid move in chess – a move made according to the rules of the
game. We can also say that state A represents the beginning configura-
tion, or initial state, of a chess game. At yet another level of interpre-
tation we might say that the move depicted is an interesting or dull move.

However, none of this interpretation concerns us for the moment.
We just want to concentrate on [1] and use it to bring out some crucial
features of chess, without which the game could not be played – fea-
tures so obvious that you have probably never had cause to reflect on
them.

What interests us about [1] is that given a chessboard in state A and
labelled as we have described, [1] carries all the information required
to recreate state B – even if we know absolutely nothing about chess.
In fact, we do not even need to recognise the states as configurations
of a chess board in order to apply the information in [1] to state A and
generate state B.

Let us recast [1] in terms of a task, or procedure, as:

[2] Take the piece in square f2 and move it to square f4.

Presented with a labelled chess board configured in state A and told
[2], we could easily achieve the task without any understanding of
the task’s significance, without any interpretation of its meaning.
Obviously, we need to interpret the meaning, in natural language, of
the words describing the task, but the task itself can be carried out

54

Figure 7.1 Two states.

purely mechanically, without any appreciation of its significance. We
will call such a task an effective procedure.

The application of [2] to state A to generate state B relies, for its
effectivity, on the fact that states of a chess game are effectively dis-
tinguishable. The concept of effectivity will be doing some work in the
next few chapters, so let’s discuss those obvious features of chess I
mentioned, by virtue of which states of chess are effectively distin-
guishable.

Firstly, there is no ambiguity about where pieces begin or end, nor
about where squares begin or end. Pieces are discretely bounded
spatial objects and squares have clearly delineated borders. Secondly,
there is never any ambiguity about whether or not a piece is ‘in’ a
square. These conditions are necessary in order that there can be
formal rules which govern the legitimate ways in which pieces can
move – a characteristic feature of chess and all such games.

To say that states of chess are effectively distinguishable is to say
that there is an effective procedure which will decide the matter. You
should be getting some sense by now of what an effective procedure
might be – [2] is an example of one. Let’s try to nail down a working
definition. Let us call a procedure effective iff it can be achieved
by merely following a specified set of steps – a list of instructions, a
recipe – without any understanding of the significance or meaning of
the task. This list of instructions we can call an algorithm. Another
way of referring to the effectivity of a procedure is to say that it
is algorithmic – that there is an algorithm for implementing the
procedure.

The term ‘algorithmic’ has common-parlance usage – you may
have heard someone call a task or chore purely algorithmic to
describe that it is simply a matter of going through the motions,
taking the prescribed steps – a mundane task. In other words, an
effective procedure.

It is fairly clear that distinguishing states of chess is algorithmic.
Let’s specify the algorithm:

1. Begin with square a1.
2. Repeat step 3 sixty-four times unless instructed to halt. When

instructed to move on to the next square, move to the adjacent
square on the right-hand side if there is one, otherwise move to the
leftmost square of the row immediately above.

3. If the square in state A is empty then:
– if the corresponding square in state B is empty, move on to the

next square, otherwise halt and utter ‘the two states are different’.

 55

If the square in state A is occupied then:
– if the corresponding square in state B is occupied by a piece of

the same form, move on to the next square, otherwise halt and
utter ‘the two states are different’.

4. Utter ‘the two states are formally equivalent’.

Although specifying this algorithm amounts to a rather tedious
spelling-out of a task which is, for us, both simple and obvious to
execute, it does drive home the point that I need bring no under-
standing to bear in order to achieve the task. I do not need to know
that I am comparing states of chess. I do not need to know what chess
is. I do not need even need to know what a game is. I need only follow
the formally specified instructions.

You might think that this algorithm is not a good representation
of how you conceive of yourself going about the task. When pre-
sented with state A and state B and asked to compare them, it is
immediately obvious to us how they differ (without beginning com-
parison at square a1, moving on to a2, etc.), even though they differ
only in respect of the positioning of one piece. This is partially
because state A is a regular pattern on a sufficiently small scale. If
the pieces were distributed more randomly on the board, no doubt
we would find ourselves more closely following the algorithm above.
If the board were ten times longer along each side – 6,400 squares
in area – and there were ten times as many pieces, our only hope for
a correct comparison of two states would be to follow the above
algorithm.

In any case, the point here is merely that the task can be achieved
by following an algorithm and, hence, is effective.

The final aspect of effectivity we need to appreciate is the finitude
rider on effective procedures. A procedure only counts as effective if
it can be carried out in finite time.

Counting the molecules in this book is an effective procedure. They
are all presently configured in a solid and are pretty much sitting still,
so we could, in principle, set up a very fine three-dimensional grid for
reference and simply enumerate the molecules in each grid cube in
order. It would take a very, very long time, but finite time.

Counting the natural numbers, on the other hand, is not an
effective procedure. Although the process is mechanical – name zero;
name the successor of the last number you named; repeat the previous
step until you can go no further – it cannot be completed in finite time.
Every natural number has a successor – there are infinitely many of
them. So implementing this process is not effective.

56

Now that we have developed a good understanding of effect-
ivity, it is time to put the concept to work in characterising formal
systems.

7.2 STATES AND RULES

Formal systems are composed of two collections: a collection of
states and a collection of rules. The specification of any given
formal system consists in the specifications of its states and of its
rules.

We can define states over any entities we choose, provided distin-
guishing between any two given states is effective.

To give a few examples, we can define states as configurations of a
game board, as configurations of a finite array of switches, as distri-
butions of people in a finite array of theatre seats, or as distributions
of mail in a finite array of pigeon holes.

There must be only finitely many entities to define states over,
otherwise any two states will not be effectively distinguishable. There
can, however, be infinitely many states in the collection – many of the
formal systems we will meet have infinitely many states, defined recur-
sively over only a few entities. We will see how this trick is achieved in
a moment.

All of the above examples of states employ physical objects as
tokens – pieces, switches, people, mail – and states are distinguished
by the discrete arrangements of these tokens. We could, however,
just as easily use symbols on paper as tokens and define states over
strings of these symbols (provided of course that the strings are
effectively distinguishable). All of the formal systems we will be
playing with in our survey of computational theory will be just such
symbol systems.

Once we have defined a collection of states, we need to specify a
collection of rules. Rules operate on states to generate other states.
Rules, like states, are constrained only by considerations of effectivity.
States can be defined over anything you like, provided any given two
are effectively distinguishable. Similarly, rules can be anything you
like provided they meet two constraints.

Firstly, determining whether a given rule applies to a given state
must be effective. Typically not all rules will apply to all states.
Secondly, if a rule applies to a state, it must effectively deliver a finite
set of possible output states.

So rules take states, effectively modify them, and return distinct
states.

 57

Now that we know how to specify a formal system and what the
constraints are on states and rules, let’s exemplify with our first toy
formal system.

7.3 SPECIFICATION

We want to discuss the properties and operations of formal systems,
so let’s define a symbol system to play with. Let’s call it [STR] – it will
be a string system.

States of this system will be finite strings of the symbols ■ and ◊.
To give a few examples: ■■ is a state of [STR], ◊◊■■◊■◊◊■ is a
state of [STR] and ◊ is a state of [STR].

It should be fairly clear that any two states will be effectively dis-
tinguishable. It may not be as clear that while there are only two types
of symbols which we are defining states over, and while there can be
only finitely many tokens of these in any given state, there are infinitely
many states. This may be clearer in a moment when we give a formal
specification of states using recursive definition; however, we first
need to help ourselves to a few more concepts.

Firstly, we need the concept of an initial state. Specifications of
formal systems often include an initial state, or beginning configur-
ation of the system. All board games have an initial state – state A in
Figure 7.1 represents the initial state of chess.

Secondly, there is a special and important state of this system (and
typically of string systems in general) and this is the empty string. The
empty string is precisely that – a string of no symbols at all. We will
write it as ø. It is important to remember that the empty string is a
string, and – by stipulation – is a state of [STR]. The need for the
empty string will become apparent in a moment.

We will also need to employ string variables which we will write as
� or �. String variables stand for strings – any string you like (includ-
ing the empty string). We need to make use of string variables and the
empty string in order to formally specify rules of sufficient generality.
Again, this will become apparent in a moment.

Finally, we need to represent string concatenation. String concate-
nation simply means joining two strings together – i.e. writing them
one after the other. We will write the concatenation of two strings �
and � as �� – i.e. their typographical concatenation. So, if � is
standing for the string ■■◊ and � is standing for the string ◊■ then
�� will be ■■◊◊■ and �� will be ◊■■■◊.

Note that ø�� � �ø� � ��ø � ��. In other words, any string
is identical to its concatenation with the empty string, regardless of

58

where you put it. In simpler terms, tacking on nothing always leaves
you with what you started with.

Before we give the complete formal specification of [STR], let’s first
just give an informal description of how the rules of this system will
work.

[STR] will have only two rules. Rule one will say that we can take
any state which begins with two boxes and ends with a diamond (and
has whatever you like – including nothing – in between) and output a
state which begins with a diamond and is followed by whatever came
between the two boxes and the diamond in the input state (which may
be nothing).

Rule two will say that we can take any state which has a diamond
in it somewhere (and has anything you like – including nothing –
before and after the diamond) and output a state which begins with
two boxes, ends with a diamond, and in between has whatever it was
that came before the diamond in the input state.

Explaining the rules informally like this is rather laborious.
However, the formal specification is quite concise and tidy, as the fol-
lowing demonstrates.

[STR]

[S1] ø is a state
[S2] If � is a state then so is �■ and �◊
[S3] Initial state is: ■■◊◊

[R1] ■■�◊ → ◊�
[R2] �◊� → ■■�◊

Now, let’s carefully interpret this formal specification and make sure
that it captures the system we have informally described.

The first thing to note about the formal specification is that, while
giving an informal description of the system took many wordy para-
graphs, the formal specification is given in five short lines. There is
great economy of expression to be had in formalisations.

It may not be clear, on first examination, that [S1] and [S2] capture
all and only the states of this system – this is an example of recursive
definition. [S1] is the base clause – it simply stipulates that the empty
string counts as a state. All the work is done in [S2] – the recursive
clause – which says that if you take any state and tack on a ■ or a ◊
the result will be a state. A little thought should suffice to show that
any finite string of the symbols ■ and ◊ can be constructed through
repeated applications of [S2], given [S1]. [S3] merely stipulates the
initial state.

 59

The astute reader may wonder whether [S1] and [S2] capture only
the states of the system – the worry being that they do not seem to
explicitly rule out infinitely long strings. We need not be concerned,
however – if you take any string of finite length and add one symbol,
the result will always be a string of finite length.

We have already given informal readings of [R1] and [R2]. Work
back and forth between those two paragraphs and their formal speci-
fication above until you are convinced that [R1] and [R2] do in fact
capture the content of those paragraphs. The left-hand side (LHS) of
the arrow of each rule describes the form of input states and the right-
hand side (RHS) describes the form of output states.

It should be clear now why we want to use string variables. Using
string variables lets us refer to a class of strings which share the same
form (e.g. any string which begins with . . . and ends with . . .). String
variables always refer to the same string in the LHS and the RHS of the
rule – that is precisely the point in using them. Whatever you take � to
be in the input side of a rule must be the same in the output side of that
rule. There are no restrictions on string variables between rules though:
having taken � to be one string in the application of one rule has no
bearing on what � can be in further applications of rules, or even in
further applications of the same rule. If this is not yet clear it should
become so in a moment when we examine the operations of the system.

It may still not be terribly clear why we want to be able to refer to
the empty string, so let’s demonstrate its use.

Rule [R1] will apply to the initial state ■■◊◊. In this case, what is
in between the initial ■■ and the final ◊ is a single ◊, so in applying
the rule we take � to be ◊, in which case the output of [R1] will be ◊◊.

Another way of saying this is that the initial state is of the form
required to apply [R1], namely the form ■■�◊ (where in this case �
� ◊). Hence, if we apply the rule, we get an output state of the form
◊� (where � � ◊), namely ◊◊.

Rule [R1] will also apply to the state ■■◊ as it is of the form
■■�◊ (where � � ø). By similar reasoning [R2] will apply to the
states ◊, ■◊ and ◊■ . This is why we need the empty string.

Exercise 7.1

The paragraph above mentions four applications of rules to
states: [R1] to the state ■■◊ and [R2] to the states ◊, ■◊ and
◊■ .

What will the output of these applications be in each case?
How are the string variables instantiated in each case?

60

Recall that typically, not all rules will apply to all states – determin-
ing whether or not a given rule applies to a given state must be
effective. It should be obvious that neither [R1] nor [R2] will apply to
every state of [STR]. It should be equally obvious that determining
whether either rule applies to a given state is effective.

If you feel you have not quite followed all of the content of this
section, then go back over the material until you are comfortable with
it. We have met many new concepts in the last few pages and have
started using symbolic representations. We will be building on this
understanding in the pages to come so it is important for what follows
that you first master the material to this point.

If you feel comfortable with the material we have covered and had
no difficulty with Exercise 7.1 then it is time for us to go on and use
the operations of [STR] to illustrate further concepts.

7.4 GENERATION AND DERIVATION

The operations of formal systems consist in successive applications of
rules to states. Given an initial state, we can help ourselves to a dis-
tinction between states which will arise during the operations of the
system, and those which, while they meet the criteria for possible
states, never actually arise during the operations of the system.

Consider chess for example. States of the system are configurations
of thirty-two (or fewer) tokens of twelve (or fewer) types – subject to
certain restrictions – in an eight-by-eight array. There will, however,
be a very large number of possible states which never arise during a
game of chess. For instance, the state depicted in Figure 7.2 is impos-
sible to achieve from the initial position given the rules of chess.

We will call a state a generated state if it can be obtained from the
initial state through successive applications of rules. Generated states
then will always be the output of some rule. Consequently, there is a
simple effective procedure for ruling out a state as generated. If a state
is generated, it will fit the output form of at least one rule, hence (by
contraposition) if a given state does not fit the output form of any
rule, it cannot be a generated state.

Unfortunately, determining whether a state is generated is not so
straightforward. Fitting the output form of a rule does not guarantee
that a state is generated – this is merely a necessary condition on gener-
ated states: its failure guarantees that we don’t have a generated state,
but its satisfaction does not guarantee that we do have a generated state.

If this is not obvious, here’s an analogous situation. If I’m in
Melbourne then I’m in Australia. So being in Australia is a necessary

 61

condition for being in Melbourne. Hence, if I am not in Australia, I
am guaranteed not to be in Melbourne. However, being in Australia
does not guarantee that I am in Melbourne – I could be in some place
outside Melbourne but within Australia, e.g. Brisbane.

When we are interested in formal systems, we are interested in
determining whether or not certain states are generated. A generated
state is one which can be derived in the system. To show that we can
derive a state in a system is to give a derivation.

A derivation is a demonstration of the successive applications of
rules to states, beginning with the initial state of the system and
ending with the state we are interested in. Formally, a derivation is a
finite sequence of lines, the first of which is the initial state of the
system, the remainder of which are generated states, each obtained
through the application of some rule to the state on the previous line.

62

Figure 7.2 A non-generated state.

Let’s look at an example: suppose we wanted a derivation of the
state ◊■■ in the system [STR]. Here’s a derivation which does the job:

1. ■■◊◊ initial state
2. ■■■◊◊ [R2] � � ■■◊ � � ø
3. ◊■■◊ [R1] � � ■■◊
4. ■■◊■■■◊ [R2] � � ◊■■� � ø
5. ■■■■◊ [R2] � � ■■ � � ■■◊
6. ◊■■ [R1] � � ■■

The annotations on the right tell us how the state has been obtained –
which rule was used and how the string variables in the rule have been
instantiated. So, for example, state 2 was derived from state 1 (the
initial state) by applying [R2] to it and taking � to be ■■◊ and � to
be ø (empty), resulting in an instantiation of the form ■■�◊ (where
� is ■■◊), namely ■■■■◊◊.

But note that we could have applied [R2] to the initial state in a
different way. We could have taken � to be ■■ and � to be ◊, resulting
in ■■■■◊. This means that [STR] is a non-deterministic formal system.

A system is deterministic if, for any given state, at most one rule
applies to it and in only one way. If more than one rule applies to any
particular state of the system, or if one rule applies to a particular
state of the system in more than one way, then the system is non-
deterministic.

Exercise 7.2

How many different ways can you apply [R2] to the state
■■■■◊◊ and what would the output be in each case? What
about the states ■◊◊■◊◊ and ◊◊◊■■? What is the pattern?

You may have noticed that the result of applying [R2] to the initial
state in the alternative way we discussed (taking � to be ■■ rather
than ■■◊) is identical to state 5 in the derivation. This means that we
can actually get from the initial state to state 5 in the example in only
one step (rather than four).

It will often be the case that there will be more than one way of
deriving a given state. Often, we are interested in finding the simplest
(i.e. shortest) derivation.

Exercise 7.3

Give the shortest derivation in [STR] of the state ◊■■.

 63

You might wonder – given the indeterminacy of [STR] and the plu-
rality of derivations – whether there is, in general, an effective proce-
dure for finding derivations in a formal system. This turns out to be a
very important question for the classical Artificial Intelligence
research tradition and it will be our focus when beginning Chapter 11.

For the moment, a couple of informal heuristics will serve to guide
you through the following exercises. Firstly, work backwards from the
solution. Examine the state you want to derive and determine whether
it could have been the output of any rule. If not, no need to continue;
if so, you will have a guide as to which input(s) could have delivered
that output. Try and get back to the initial state by working back-
wards through rules this way.

Secondly, aim for your goal. If you have a choice of rule applications
to a state which is longer than your goal state and one choice results in
a shorter output, it is likely (but not guaranteed) to be a good way to go.

Exercise 7.4

(a) Augment the system [STR] with the following rule:

[R3] ■�◊ → ■��◊

and give properly annotated derivations for the states:

1. ◊■■ 4. ◊◊◊■
2. ◊ 5. ◊■■◊■■■◊
3. ◊◊■◊ 6. ◊◊◊■◊◊

(b) Can you generate a state without a ◊? Explain your
reasoning.

7.5 GENERATION TREES

The answer to Exercise 7.4(b) brings out an important feature of the
system [STR] – that it has no terminal states.

We will call a state terminal if it is a generated state of the system
to which no rules apply. So, while ■■ is a state of [STR] to which no
rules apply, it is not a terminal state since it is not a generated state.

All generated states of [STR] are ipso facto the output of a rule
and, hence, must contain a ◊. Since [R2] applies to any state which
contains a ◊ in it anywhere, there are no generated states to which no
rules apply. Hence, there are no terminal states of [STR].

Consider the specification below for the formal system [BIN]. Does
this system have any terminal states?

64

[BIN]

[S1] ø is a state
[S2] If � is a state then so is �1, �0 and ��
[S3] initial state is: �

[R1] � � � → � 1 � / � 0 � / � � � �

The single rule of this system has a choice of three possible outputs –
the slash ‘/’ represents ‘or’. Read informally, it says that any � in a
state can be rewritten as a 1, or a 0, or as two �s.

Given the initial state, the rule allows for the derivation of all and
only the finite strings of the symbols 1, 0 and �. In other words, there
are no states of the system which are not generated. But are there any
terminal states?

Consider the three ways in which we can apply the rule to the initial
state. The resultant output states will be 1, 0 and �� respectively. The
first two of these do not contain the symbol �. As the only rule in the
system applies only to states which do contain at least one occurrence
of the symbol �, the states 1 and 0 are terminal states.

In fact, a little reflection serves to show that the terminal states of
[BIN] will be all and only the finite strings of the symbols 1 and/or 0.
In other words, all and only the finite strings of binary (e.g. 1001011)
are terminal states of [BIN]. So any finite string of binary has a
derivation in [BIN].

This is clearer if we draw up a generation tree as shown in Figure 7.3.
Turn the diagram upside down and it becomes a little clearer as to

why these are called tree structures. The state at the top is the root node.

 65

Figure 7.3 Generation tree.

An arrow leading from a node represents a possible application of a rule
to the state at that node – the resultant output state of that rule appli-
cation is at the node the arrow leads to. So the root node has three arrows
leading from it as there are three possible ways to apply the rule to it. We
will call these arrows branches, in keeping with the tree metaphor.

Some of the branches in Figure 7.3 lead to terminal nodes. A node
counts as terminal if there are no arrows leading from it (i.e. if there
is a terminal state at the node). Terminal nodes are the leaves, or tips,
of our tree.

The first iteration of the system is represented by the first level of
the generation tree after the root node. Figure 7.3 gives the complete
generation tree for the first two iterations and a partial tree for the
third iteration.

The first iteration has three nodes, two of which are terminal.
In total, the first iteration contains two �s – the two at the only non-
terminal node. We know that there will be three ways of applying the
rule to each � so there will be six branches leading from the first iter-
ation. In other words, there will be six nodes at the second iteration
(as shown in the example).

Exercise 7.5

(a) The third iteration of the tree in Figure 7.3 is incomplete.
Use the reasoning in the above paragraph to determine
how many nodes there should be at the third iteration.

(b) How many of these nodes will be terminal?
(c) Find a large sheet of paper or a whiteboard and draw up a

complete generation tree for [BIN] down to the fourth
iteration.

Given a generation tree, we can read derivations straight off it by
simply following a branch from the node we are interested in back up
to the root node. For example, here is a derivation of the state ‘11’ in
[BIN] as read off the leftmost branch of the tree in Figure 7.3.

1. � initial state
2. �� � � ø � � ø
3. 1� � � ø � � �
4. 11 � � 1 � � ø

So there is a general procedure for finding derivations in a formal
system: simply complete the entire generation tree for the system, find
the state you require a derivation for and read the derivation off the tree.

66

Unfortunately, as you would have seen if you attempted Exercise
7.5(c), generation trees can get very complicated very quickly. Many
systems, including [BIN], suffer from exponential explosion –
branches proliferate exponentially as we iterate.

What’s worse is that, as you may have realised, some branches
just go on for ever – they go infinite. This means that the procedure
of drawing up the generation tree is not effective for systems
whose trees have infinite branches. We will investigate the rami-
fications of this further when we discuss search procedures in
Chapter 11.

Exercise 7.6

Give derivations in [BIN] for the states:

(a) 1001
(b) 0100101
(c) 000111

7.6 FORMALITY AND ISOMORPHISM

There is one last point to make concerning formal systems before we
move on and do something more interesting with them. It is import-
ant to appreciate that the only important or relevant properties of
formal systems are formal properties – properties of form.

For the purposes of the operations of a formal system, it is
never important how the system is physically realised. Consider chess
again. The pieces could be carved of wood or sculpted in stone, they
could be symbols on paper or on an electronic screen, they could be
coins or some other tokens pressed into impromptu service, they
could even be people on a sufficiently large board.

The only features relevant to the distinguishing of states and the
application of rules are the arrangements of the system in effectively
distinguishable forms.

Another way of saying this is that the operations of a formal
system are entirely independent of the medium (or substrate) in which
they are instantiated.

This should remind you of the substrate independence claimed by
functionalist theories of mind. For a functionalist, the only relevant
things to know about mental states are functions. Similarly, when con-
sidering formal systems, the only relevant things to know about are
forms.

 67

The operations of a formal system are also entirely independent of
any interpretation of the system. While formal systems are, in princi-
ple, interpretable (I can, for instance, interpret a whole range of
instantiated formal systems as games of chess), I do not need to
engage in any interpretive work in order to be able to apply rules to
states – I need merely follow algorithmic procedures.

So, as is probably obvious to you by now, if am investigating some
system [A] which has all and only the same formal properties of some
system [B] then I just am investigating system [B]. If two systems are
formally equivalent then they are instantiations of the same system.
Whether I play chess with pieces, symbols, coins or people, I am
playing chess.

If two systems are formally equivalent – if they have all and only
the same formal properties – then we will say they are isomorphic to
each other, or isomorphisms of the same formal system.

A formal system [A] is isomorphic to a formal system [B] iff we can
derive [B] from [A] through uniform substitution of symbols. For
instance, consider the system specified below:

[S1] Ø is a state
[S2] If X is a state then so is Xa and Xb
[S3] Initial state is: aabb

[R1] aaXb → bX
[R2] XbY → aaXb

where X and Y are string variables

It should be fairly clear that the above example is isomorphic to the
original presentation of [STR]. In fact take any symbol you like and
substitute it uniformly for a, and similarly for b, and the result will be
another isomorphism of [STR]. The term ‘symbol’ can be interpreted
quite broadly here to include physical tokens such as coins or people –
we could, for instance, use ordered queues of men and women to
investigate [STR] (provided we could effectively distinguish them).

The point of interest here is that for any formal system we might
care to investigate, there will be an isomorphic symbol system. This is
good news if we are interested in applying automated methods to the
investigation of formal systems.

Now that we have a sufficient understanding of formal systems, their
features and their operations, it is time to put formal systems to the

68

use for which we have introduced them. In the following chapter, we
will see how we can use a particular kind of formal system to do com-
putation.

Let me say again that before you continue, it is important to have
mastered the material to this point. We will continue building on this
foundation in the next two chapters, so if there is anything of which
you are uncertain, now is the time to revise. If, on the other hand, you
are ready for some more challenging material, read on.

 69

C H A P T E R 8

COMPUTABILITY

The formal systems we have looked at so far have been very rudi-
mentary string systems. Consequently, their useful application is
rather limited. We can, however, employ formal systems to rather
more interesting and useful ends. In particular, we can use formal
systems to do computation. In this chapter, we are going to use a parti-
cular kind of deterministic formal system – a register machine – to rig-
orously define computability.

8.1 REGISTER MACHINES

Register machines are theoretical entities. They can, however, be
physically implemented (as can any formal system). Modern digital
computers as we know them are implementations of a special kind of
register machine, as we will see in the following chapter.

Simple register machines, such as the ones we will examine in this
chapter, can be straightforwardly implemented with piles of stones,
coins or some other physical tokens. If you have a collection of coins
or other tokens handy, it is highly likely to be useful to have them with
you when working through the examples and exercises in this chapter.

The pigeon hole analogy is quite apt when first starting to think
about register machines. Recall from section 7.2 that we can define
states over any collection of entities we choose, provided any two
given states are effectively distinguishable. In particular, we could
define states as distributions of letters in pigeon holes. This is directly
analogous to the way we want to define states of register machines.

States of register machines are contents of a finite sequence of
registers. Registers are to be understood as discrete containers, hence
the pigeon hole analogy. We will refer to these registers as R0, R1,
R2, . . . , etc. There may be an infinite number of registers; however,
we make the simplifying assumption that only a finite number of
them have contents at any given time.

70

The content of a register can be represented as a natural number –
the number of items which it contains. So, if we have a pigeon hole
with three letters, or a discrete pile of three coins, then we can say we
have a register which contains three (items). Precisely what the items
are (letters, coins, assorted objects, etc.) matters not at all. Any enti-
ties which can form effectively distinguishable states can serve as the
symbols manipulated in a formal system.

A sequence of three pigeon holes containing, one, three and two
letters respectively will be isomorphic to a sequence of piles contain-
ing one, three and two coins respectively. Both are isomorphic to a
register machine with the contents, one, three, two, in the first three
registers.

States of register machines, then, can be represented as finite
sequences of natural numbers. The sequence 1, 4, 16, 2, 27 represents
a register machine with 1 in R0, 4 in R1, 16 in R2, 2 in R3 and 27 in
R4. In other words, the numerical sequence represents an ordered
sequence of five piles containing 1, 4, 16, 2 and 27 things respectively.

8.2 PROGRAMS

Register machines are formal systems. We now know what register
machine states are – for all intents and purposes they are simply
finite sequences of natural numbers. We next need to know what the
rules are.

Register machines have only one rule. This rule takes a special form
and is called a program.

A register machine program is a finite number of lines, each of
which have two components: a line number and an instruction. Line
numbers are simply natural numbers, assigned to facilitate reference
to lines of the program. Each line must be assigned a unique line
number. These are conventionally consecutive for readability, but
need not be. Instructions take one of two forms: they are either incre-
ment instructions or decrement instructions.

An increment instruction is something of the form I a b, where the
I stands for ‘increment’ and the a and b are numerical variables – they
stand for natural numbers. A decrement instruction is something of
the form D a b c, where the D stands for ‘decrement’ and, as with
increment instructions, the lower case roman letters are numerical
variables.

Recall that there must be effective procedures for both determining
whether a rule applies to a state of a formal system and for applying
rules to states of formal systems.

 71

The effective procedure for determining whether a register machine
program applies to a given register machine state is as follows:

1. Examine the contents of R0 (this first register is always set aside for
this purpose and is referred to as the program counter or pc).

2. If there is no line of the program which begins with the number in
the pc then the program does not apply to the state.

3. If there is a line of the program which begins with the number in
the pc then the program applies to the state.

The effective procedure for applying a register machine program is as
follows:

1. If the line of the program which begins with the number in the pc
contains an increment instruction (I a b), then increment (add one
to) Ra and put b in the pc.

2. If the line of the program which begins with the number in the pc
contains a decrement instruction (D a b c), then decrement (take one
from) Ra and put b in the pc. If Ra is already empty (contains zero)
then do nothing except put c in the pc.

The instruction forms I a b and D a b c are precisely that: forms.
Register machine instructions are instantiations of these forms.
Instantiated forms assign values to variables – in this case natural
numbers to the numerical variables. So examples of actual lines of a
register machine program look like this:

1 I 1 2
2 D 3 4 3

Line 1 instructs us to increment R1 then put 2 in the pc (R0). Line 2
instructs us to decrement R3 if we can then put 4 in the pc, otherwise
(if R3 is empty) just put 3 in the pc.

So, when looking down the lines of a register machine program, the
numbers in the first column after the instruction letters refer to regis-
ters – they tell us which register to increment or decrement. The
numbers in the next column tell us which number to place in the pc
after successfully executing the instruction. Numbers in the third
column (which only appear in decrement instructions) tell us which
number to place in the pc if we cannot execute the instruction.

Registers can always be incremented as there is no largest natural
number. They cannot, however, always be decremented. The contents
of registers are natural numbers not integers. The natural numbers
include zero and the positive integers. If a register contains 1 it can be

72

decremented once more then we say the register is empty. An empty
register cannot be decremented. One can’t take something away from
a pile of nothing.

We can amalgamate the effective procedures for determining pro-
gram applicability and applying a program into a single algorithm for
running a program, as follows:

1. Look in the pc.
2. If there is no program line beginning with this number then halt.
3. If there is a program line beginning with this number, execute the

instruction on that line.
4. Repeat.

So running a program simply involves repeated applications of first
determining whether the program applies to the current state and
then executing the relevant instruction until the program is no longer
applicable (until there is a state with a number in the pc which has no
corresponding program line).

8.3 RUNNING A PROGRAM

Now that we know what register machine states are and what it is to
run a register machine program, let’s examine the operations of a
simple register machine. Consider the following program:

[ADD]

1 D 2 2 3
2 I 1 1

Let’s exemplify the operations of this simple program and try to
determine what it does. We know by looking at the first column after
the instruction letters that there are only two registers referred to in
this program – R1 and R2. So let’s apply this program to an initial state
which has contents in these two registers, let’s say 3 in R1 and 2 in R2.
Let us also suppose that our initial state contains 1 in R0 (the pc) –
this is conventional as it ensures that the first thing to happen will be
the execution of line 1 of our program.

This initial state is represented on the first line of Figure 8.1. Each
line below the initial state represents the resultant state of one appli-
cation of the program.

When the program [ADD] is run with the initial state described, the
sequence of operations will be as shown in Figure 8.1.

 73

If you have your pile of tokens handy, pull them out now and
arrange three piles to represent the initial state in the example above.
Now, let’s work stepwise through the example. We will simply be
applying the algorithm for running a program which I described at the
end of section 8.2.

The first thing we do is look at the contents of R0 (the pc) in the
initial state. It contains 1 and there is a line of the program which
begins with 1 so we execute the instruction on line 1. Line 1 contains
a decrement instruction – it tells us to decrement R2 (which leaves 1
in R2) then put 2 in the pc. The resultant state of this first application
is represented on the line below the initial state in Figure 8.1. To be
explicit, we now have 2 in the pc, 3 in R1 and 1 in R2.

74

Figure 8.1 Sequence of operations.

We now repeat the process. The pc contains 2 and we have a line 2
so we execute that instruction. The instruction on line 2 is an incre-
ment instruction which tells us to increment R1 (which makes 4 in R1)
then put 1 in the pc. The resultant state is represented on the third line
of Figure 8.1.

The pc now contains 1 so we execute the instruction on line 1
again, decrementing R2 (which leaves 0 in R2) and putting 2 in the pc.
We then execute the instruction on line 2 again (since we now have 2
in the pc), incrementing R1 (which makes 5 in R1) and putting 1 in
the pc.

Now we have 1 in the pc, 5 in R1 and 0 in R2. When we try to execute
the instruction on line 1 again, we see we cannot. R2 is empty so it
cannot be decremented. Instead, we just put 3 in the pc.

When we then come to apply the program again, we see it is no
longer applicable. We have a number in the pc with no corresponding
program line so the program halts. The terminal state we reach is one
in which R1 contains 5 and in which R2 is empty.

Exercise 8.1

(a) Run the program [ADD] a few times using different
initial states. Each initial state should have 1 in the pc but
choose whatever values you like for R1 and R2. Use
pencil and paper if that is all you have but you may find
it helps greatly to use piles of tokens.

(b) The program will always terminate with some value in
R1. Compare this, in each case, to the values which R1
and R2 took in the initial state. Can you ascertain what
the program is doing?

8.4 COMPUTATION

Having completed Exercise 8.1 you would have noticed that the
program [ADD] always terminates with a number in R1 which is the
sum of the numbers which were in R1 and R2 in the initial state. In
other words, the program [ADD] adds the numbers in R1 and R2 and
terminates with their sum in R1.

The program does this by virtue of implementing a very simple
algorithm for addition. If we have two piles of things to add, then,
irrespective of how many are in each pile or which pile is the larger,
we can find their sum by implementing the following effective proced-
ure. First try to take one away from one pile. If you are successful, add

 75

one to the other pile. Repeat until the first pile is empty, at which point
the sum of the two piles will be in the second pile. This is precisely
what the program [ADD] does (where the ‘first pile’ is R2 and the
‘second pile’ is R1).

Given any two numbers x and y, the program [ADD] generates
their sum. Another way of saying this is that the program [ADD]
computes addition.

The previous paragraph marks the first appearance of the concept
which it is the aim of this chapter to explicate, namely computation.
We are on our way to a precise formal account of what it is to
compute. Firstly, however, there are a couple of things we can say
informally about computation.

For any given combination of a register machine program and an
initial state, the sequence of applications of the program is a compu-
tation.

This is what register machines do – they compute. Precisely what it
is they compute we shall come to in a moment.

We might note before we move on that there are some register
machine programs which never terminate. Hence, there are some
computations which never terminate. Consider the one-line register
machine program which reads 1 I 1 1. This program will never termin-
ate; it will simply continue to increment R1 ad infinitum.

Unfortunately, there is no effective procedure for determining
whether or not any given program will halt. This is the halting
problem well known to computer programmers. There are certain pit-
falls to be wary of in programming, particularly when dealing with
nested loops, which will lead to a program never terminating.
Programmers are taught to be attentive to this and there are methods
and conventions for avoiding non-terminal loops. There is, however,
no algorithm with which we can verify that any given program will
terminate. Certainly there are software verification tools which,
among other things, look for repeated patterns as evidence of likely
non-termination. There are, however, ways to go infinite that do not
involve repetition – think of the sequence of natural numbers, or the
digits of �.

8.5 COMPUTABLE FUNCTIONS

We have so far introduced computation informally as the operations
of a register machine program. We have also seen an example of
something which is not computable. There is no effective procedure
(a fortiori no register machine program) which will determine

76

whether a given program will halt. Consequently something which
cannot be computed is the question of whether a given computation
will halt.

Precisely what things then are computable? Answering this
question requires a formal characterisation of the notion of
computability which in turn requires a tiny bit of mathematical
terminology.

We need the formal notion of a function. This is a concept which
everyone will be familiar with from grade school arithmetic.

A function f (x1, x2, . . ., xn) � m is a mathematical
correlation between some fixed number n of inputs and a unique
output m.

Addition is a function. It takes a fixed number of inputs (two) and
there is a unique output for any given input pair. Multiplication, sub-
traction, division, exponentiation and all the other basic arithmetical
operations are also functions.

Some functions may be undefined for certain inputs. These func-
tions are called partial functions, in contradistinction to total func-
tions whose output is defined for all possible inputs (of the
appropriate type).

Addition and multiplication are total functions. Their input types
are real numbers and their output is defined for any possible pair of
real numbers.

Division, on the other hand, is a partial function. It also takes real
numbers as input but its output is not defined for certain input pairs
(division by 0 is undefined).

The number n of inputs which a function takes is known as the
adicity of the function. Addition and multiplication have an adicity
of 2. The squaring function has an adicity of 1.

The noun adicity also has adjectival cognates with appropriate
numeric prefixes. We would say, for instance, that squaring is a
monadic function, and that addition and multiplication are dyadic
functions. Less technically, we can also refer to these as one-place
functions, two-place functions, etc.

We know have all the terminology we require to give a precise
formal definition of what it is to compute, as follows.

If f is a function with adicity n, then program P is said to compute f
if:

when P is run with 1 in the pc, x1, . . . , xn in R1, . . . , Rn and all
other registers empty then:

 77

• If f (x1, . . . , xn) is undefined then the computation never ter-
minates

• If f (x1, . . . , xn) � m then the computation terminates with m
in R1.

This is quite a dense definition so let’s unpack it and consider some
examples.

The first thing to note is that the objects of computation are func-
tions. The definition above stipulates conditions under which we can
say a given register machine program computes a function.

The definition is read as follows. Firstly, there is an initial condition
which states that the program should be run with 1 in the pc, the n
inputs of the function in the first n registers, and all other registers
empty.

So, for example, to determine whether the program [ADD] com-
putes the dyadic addition function f (x1, x2) � x1 � x2 we first satisfy
this initial condition by clearing all the registers and putting 1 in the
pc, x1 in R1 and x2 in R2. We then run the program.

Since addition is a total function, we know that its output will be
defined. That is to say, there will be an m which is the result of com-
puting the function. Hence, for the program [ADD] to be said to
compute the addition function, it must, according to our definition
above, terminate with x1 � x2 in R1.

The program [ADD] does, in fact, always terminate with x1 � x2 in
R1 when the stipulated inistial conditions are met. Consequently, we
can now say (with the authority of the demonstrated satisfaction of
formal conditions) that the program [ADD] computes the dyadic
addition function.

We now have the precise formal account of computation we
wanted to develop. We can use this to define computability as follows.

A function is computable iff there is a register machine program
which computes it.

So, to recap, the operations of register machines are computations.
The objects of computation are functions – register machines
compute functions. To compute a function is to satisfy the formal con-
ditions laid out above. To say that a function is computable is to say
that there is at least one register machine which will compute it.

78

8.6 BUILDING PROGRAMS

In the remainder of this chapter we will be developing methods for
constructing register machine programs to implement algorithms. We
are going to write programs to compute various functions. In each
case, I will set an exercise and then work through a possible solution.
Attempting the exercises before reading the solution will aid signifi-
cantly in consolidating your understanding of this material.

Exercise 8.2

Write a register machine program which copies the contents
of R1 into both R2 and R3, leaving R1 empty. Assume we
begin with R2 and R3 both empty.

All the difficulty in writing register machine programs resides in deter-
mining the algorithm. Once we have determined the stepwise process
which is guaranteed to deliver the result, translating this into register
machine code is quite straightforward. This is why employing phys-
ical tokens is useful – they help us work stepwise through potential
algorithmic procedures.

The algorithm for Exercise 8.2 is as follows. First try to take a stone
away from the first pile. If you are successful, put one stone in the
second pile and one stone in the third pile. When the first pile is empty,
its contents will have been copied into both the second and third piles.

Translating this into register machine code gives us:

1 D 1 2 4
2 I 2 3
3 I 3 1

Exercise 8.3

Write a register machine program which copies the contents
of R1 into R2 but preserves the contents of R1. Assume we
begin with R2 and R3 both empty.

Very often we will want to copy the value of a register into another
register, but without losing the value from the first register. Since the
only way to copy a value is to decrement the register containing it
while incrementing the target register we always lose the contents of
the first register. We can use the same process to put the value back

 79

into the first register again, but then we lose it from the target regis-
ter and find ourselves back where we started.

The way around this dilemma is to use a working register. Very
often, we will need to employ working registers in programs to store
values during the computation.

In this case, what we need to do is copy the contents of R1 into both
R2 and R3, then copy the contents of R3 back into R1. R3 is our
working register – its only function is to keep a copy of the value ini-
tially in R1 so that we can put it back once we have finished copying
it into R2.

We can simply extend our solution to Exercise 8.3 as follows:

1 D 1 2 4
2 I 2 3
3 I 3 1
4 D 3 5 6
5 I 1 4

The solutions to Exercises 8.2 and 8.3 do not, strictly speaking,
compute ‘copying’ functions. Recall from our definition of what it is
to compute a function that computations always terminate with the
result in R1. So the solution to Exercise 8.2 actually computes the
function which maps any input onto the value 0 – f (x) � 0 – and
the solution to Exercise 8.3 computes the function which maps any
input onto itself – f (x) � x.

Our interest, however, is not in the functions which these programs
compute but rather in the methods they employ. The method of
copying without loss is one which will feature frequently in our pro-
grams. The point of the last two exercises has simply been to develop
a useful piece of code which we can employ as a subroutine in further
programs.

We will need to employ the method of copying without loss to solve
the following exercise.

Exercise 8.4

Write a register machine program which computes the
multiplication function: f (x1, x2) � x1 � x2. Assume you
begin with 1 in the pc, x1 in R1 and x2 in R2, but make no
assumptions about the contents of other registers.

As always, the difficulty is in determining the algorithm. Multiplying
two numbers x and y can be understood as accumulating x copies of
y. So the algorithm we want to implement will try to decrement R1

80

and, if successful, will add a copy of R2 to a working register. When
R1 is empty, we want to move the accumulated value in the working
register (x copies of y) into R1 and terminate.

We know we need at least one working register to accumulate the
result in. We are also going to need another working register to effect
copying without loss from R2 into the register accumulating the solu-
tion. That is to say, each time we are successful in decrementing R1,
we want to copy R2 into a solution accumulator (say R3) as well as
into another working register (say R4), then we want to put R4 back
into R2 before attempting to decrement R1 again.

We have been told not to make any assumptions concerning regis-
ters other than R1 and R2 which hold the inputs of the function. This
means that the first thing our program should do is ensure that our
working registers are empty. This is easily done with one program line
per register.

So the algorithm we want to implement will do the following. First,
ensure the working registers (R3 and R4) are empty. Attempt to decre-
ment R1. If unsuccessful, move R3 (the solution accumulator) into R1
and halt. If successful copy R2 into R3 and R4, then move R4 back
into R2 before attempting to decrement R1 again.

Translating this into register machine code gives the following:

1 D 3 1 2
2 D 4 2 3
3 D 1 4 9
4 D 2 5 7
5 I 3 6
6 I 4 4
7 D 4 8 3
8 I 2 7
9 D 3 10 12

10 I 1 9

Exercise 8.5

Write a register machine program which computes the
squaring function:
f (x) � x2. Assume you begin with 1 in the pc and x in R1 but
make no assumptions concerning the contents of other
registers.

Squaring is simply a special case of multiplication – the case where
both multiplicands are identical. So x2 is simply x copies of x.

 81

One way to design a register machine program to compute the
squaring function would be to make minor alterations to the algo-
rithm for multiplication we employed in solving Exercise 8.4, as
follows. As well as clearing R3 and R4, we also clear R2. Then, before
attempting to decrement R1, we copy R1 into R2, using R3 as a
working register to copy without loss. We then follow the algorithm
for multiplying R1 and R2.

There is, however, another algorithm we could implement. Con-
sider the following register machine program:

1 D 2 1 2
2 D 3 2 3
3 D 4 3 4
4 I 2 5
5 D 1 6 13
6 D 2 7 9
7 I 3 8
8 I 4 6
9 I 4 10

10 I 4 11
11 D 4 12 5
12 I 2 11
13 D 3 14 15
14 I 1 13

Exercise 8.6

The register machine program above computes the squaring
function. What algorithm does it implement?

It turns out that to find the nth square number, we can simply accu-
mulate the first n odd numbers. So 12 is 1, 22 � (1 � 3) � 4, 32 � (1 �
3 � 5) � 9, etc. Figure 8.2 sheds some light on why this is the case.
The above register machine program for squaring implements an
algorithm which takes the sum of the series of odd numbers up to the
nth term (where n is the input of the function – the number we begin
with in R1).

Exercise 8.7

Design a register machine program which computes the
function f (x) � 2x2–1 (The solution to this one is up to you.)

82

Before we move on, there are a few points of interest to draw from the
material we have covered so far in this chapter.

We have now looked at register machine programs which can copy
the contents of registers, compute addition and multiplication, and
compute squaring in two different ways. The latter way of computing
the squaring function involved generating, and accumulating, terms
of a series.

All this has been built up from a very sparse set of basic resources –
increment instructions and decrement instructions. We can see how
these could be built up further into rather more complex computa-
tions – programs which implement highly complex algorithms. This
is a notion we will revisit in Chapter 10.

Another point of interest is the demonstration that there can
be more than one way of computing a function. In fact, very
complicated functions are likely to be computable by a large
number of algorithms. This is another notion we will revisit in
Chapter 10.

In the following chapter, we are going to see how to use Gödel
coding to facilitate reference to programs within programs. Using this
method, we will see precisely how much can be achieved using only
increment instructions and decrement instructions.

First, however, here is a final challenge exercise for those whose
interest has been piqued.

Exercise 8.8 (Challenge)

We have seen how to accumulate the terms of a simple series.
Rather than accumulating the terms, we could easily modify
the program so as to return the nth term (where n is the input
of the function), in other words to terminate with the nth
odd number in R1 rather than the sum of the first n odd
numbers.

 83

Figure 8.2 Progression of squares.

The Fibonacci sequence progresses as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Let fib(x) be the function whose output is the xth Fibonacci
number.
Write a register machine program to compute fib(x).

Hint: fib(1) � 0; fib(2) � 1; fib(x � 1) � fib(x�1) � fib(x)

84

C H A P T E R 9

UNIVERSAL MACHINES

This chapter completes our exposition of computational theory. So
far, we have discussed formal systems broadly and we have used a
special kind of formal system – a register machine – to define compu-
tation and computability.

In doing so, we gained some insight into what is computable and
what is not. We saw, for instance, in section 8.4 that there is no
effective procedure for determining whether or not a given program
will halt. Since register machines are bound by constraints of
effectivity, we can say that there is, therefore, no register machine
which can determine, of any given program, whether or not it will
halt. Consequently, since computability is defined in terms of register
machines, we can say that the halting problem is not computable.

We also know from section 8.5 that the objects of computation are
functions and we have a precise formal definition of what it is to
compute a function. So we know that at least some functions are com-
putable and that only functions are computable.

There are still, however, important questions left unanswered. For
one thing, we have no account of the limits of computation. We do
not yet know precisely which functions are computable.

We are also still left wanting of a formal account of effectivity
and algorithmicity. Recall from section 7.2 that we defined effectivity
only informally in terms of algorithmicity. We said that a procedure
is effective, just in case there is an algorithm for carrying it out.
However, the notion of an algorithm was also only fleshed out
informally, in terms of a mechanical procedure or a set of instruc-
tions which can be carried out without any understanding or
interpretation.

The first thing we will do in this chapter is to give a precise answer
to the question of the limits of computation by tying our informal
notion of effectivity to our formal account of computability, thereby
delivering a formal definition of algorithmicity.

85

With this account in hand, we are then going to develop a descrip-
tion of a single machine which can compute any computable func-
tion – a computer.

9.1 CHURCH/TURING THESIS

The halting problem is a particular instance of the Entscheidungs-
problem – or decision problem – which was of interest to mathemat-
icians and logicians well before there was a formal theory of
computation. The decision problem for a particular formal system
refers to the question of whether or not there is an effective procedure
for determining, of any given state of the system, whether or not it is
generated in the system. If there is such a procedure, the system is said
to be decidable.

For the sake of only those readers who may have an understanding
of modern logic, let me say the following. The question of whether or
not a particular logical system is decidable is the question of whether
or not there is a method for showing, for any arbitrary sentence of the
language of the system, whether or not that sentence is provable in the
system. However, the concept of provability reduces to the concept of
generation. If we take the initial state of the system to be its axioms
and the proof theory of the system to be its rules, then decidability
simply amounts to whether or not one can show, of any arbitrary sen-
tence, whether or not it is included in some state derived from the
initial state in accordance with the rules. Those readers who have done
a first course in logic will know that the propositional calculus is
decidable, but the predicate calculus is not.

Do not be concerned if the previous paragraph means little or
nothing to you. It is merely intended as an aside for those with some
exposure to logic.

It was in the course of arguing that a particular logical system is
not decidable (the predicate calculus for those for whom that means
something) in his 1936 paper – On Computable Numbers, with an
Application to the Entscheidungsproblem – that the British math-
ematician Alan Turing formally defined computability and, in doing
so, laid the foundation for what has become computer science.

Turing defined computability in terms of theoretical machines
which are now known as Turing machines. It is far more common in
the computational theory literature to see talk of Turing machines
than it is to see talk of register machines. Turing machine com-
putability and register machine computability are, however, provably
equivalent – they can compute all and only the same functions.

86

Wherever you see talk of Turing machines, or Turing computability,
you can substitute this with register machines and register machine
computability.

I chose to employ register machines for an initial presentation
of computational theory for two reasons. Firstly, simple register
machines are readily amenable to physical implementation with a col-
lection of tokens (coins, buttons, etc.). This can serve as a great aid to
understanding their operations. Secondly, while register machines
and Turing machines are functionally equivalent, the mechanics of
register machine operations are closer to the way computation is actu-
ally implemented in computers as we know them

In his 1936 paper, Turing argued that all and only those procedures
which were algorithmic could be computed by Turing (register)
machines.

In another paper published in 1936, an American mathematician,
Alonzo Church, argued that the informal notion of effective calcula-
bility could be understood (at least for calculations over positive inte-
gers) in terms of the formal notion of a recursive function. In both
cases, Church and Turing aimed to tie a notion which was well under-
stood informally – that of algorithmicity, or effectivity – to a concept
for which there was a precise formal definition.

The Church/Turing thesis, as it is now commonly referred to, can
be expressed quite concisely as: all and only effective procedures are
computable functions.

It is important to appreciate that the use of ‘computable’ in the
Church/Turing thesis refers to a particular formal understanding of
computability, namely register machine computability as we have
defined it. This may not seem terribly important but there is consid-
erable scope for misinterpreting the Church/Turing thesis if one does
not keep this in mind and it is common to see such misunderstanding
in the literature.

It is also worth pointing out that the equivalence between effective
procedures and computable functions is a thesis and not a theorem. In
other words, it is a proposed equivalence but it is not a proven one.
There seems, however, by the very nature of the thesis, to be little
chance of actually proving it, since it equates a formal notion with
an informal one. One direction of the thesis – that all computable
functions are effective procedures – is obvious since we have defined
computability in terms of effective procedures. The other direction –
that only computable functions are effective procedures, or that
all effective procedures are computable functions – is less obvious. It
is the case, though, that since 1936 we have amassed considerable

 87

evidence in favour of the thesis and run across no counter-examples
to it.

So the Church/Turing thesis provides us with answers to both of
the questions we identified at the beginning of this chapter. We now
know precisely which functions are computable – all and only those
which are algorithmic. We also now have a formal characterisation of
effectivity/algorithmicity – precisely that which we gave for com-
putability in section 8.5.

According to the Church/Turing thesis, there is a register machine
program for any given algorithm (since all effective procedures are
register machine computable). Add to this the fact that register
machine programs are deterministic formal systems, and that the
operations of any given deterministic formal system are algorithmic,
and we can see that algorithmic procedures, effective procedures, regis-
ter machine programs, deterministic formal systems and computable
functions are all equivalent ways of speaking – they all specify the
same class of things.

9.2 GÖDEL CODING

We have seen that for any algorithm one can specify, we can design a
register machine program to compute it. The final aim for this chapter
is to specify a single register machine program which can itself
compute any algorithm. In other words, we want to specify a register
machine program which can emulate or instance any other register
machine program.

This means we are going to need some way of making register
machine programs suitable to be the input of another register
machine. Given that the inputs of register machines are natural
numbers, we are going to need some way to code register machine pro-
grams as natural numbers. Furthermore, this coding procedure needs
to be unique and effective. In other words, as well as being algorith-
mic, the coding procedure must be such that any given register
machine program results in a unique code, and vice versa. The
procedure we are going to use is known as Gödel coding.

Kurt Gödel was a brilliant logician and mathematician who deliv-
ered some of the most important results in mathematical logic in the
twentieth century. Gödel’s incompleteness theorems, delivered in a
1931 paper, are arguably the theorems which are the most well known
by those who are not mathematicians or logicians, and simultan-
eously the least understood. There is, in fact, rather a lot of nonsense
written about the Gödel results in philosophy of mind.

88

Unfortunately, a proper understanding of the Gödel incomplete-
ness theorems, such that we might see how they are frequently misin-
terpreted in arguments against computationalism, would require
considerably more mathematical sophistication than one would expect
from the introductory reader to whom this volume is directed. Suffice
it to say, if you run across arguments against computationalism
employing these theorems, they should be taken with a grain of salt.

The method of Gödel coding is one of the very neat tricks Gödel
used to prove the Incompleteness Theorems. It facilitates reference to
elements of a formal system from within that system, which is pre-
cisely what we require. Fortunately for our purposes here, under-
standing the method of Gödel coding requires no more mathematical
sophistication than an understanding of the operations of multipli-
cation and exponentiation, and of the notion of a prime number.

The mathematical operations of squaring and cubing are examples
of exponentiation, which is the more general operation of raising one
number to the power or exponent of another. The expression ab is
evaluated by multiplying a with itself b times – a is the base and b is
the exponent.

A prime number is a number which has no factors other than itself
and 1. An interesting feature of primes – and a crucial one for our
purposes – is that every natural number can be uniquely expressed as
a product of primes. The proof of this is a little complicated so you’ll
have to simply take my word for it here. Furthermore, prime factor-
isation is algorithmic (there are a number of known algorithms).
Again the details are complicated so you’ll just have to take my
word here too.

So for any given natural number, we can effectively and uniquely
determine its prime factors. The method of Gödel coding exploits this
by coding programs as exponents of primes.

Recall that a register machine program is a sequence of instruc-
tions of one of two forms – either the form I a b or the form D a b c.

For increment instructions we need to code three pieces of infor-
mation – that it is an increment instruction and the numbers a and b.
For decrement instructions we need to code four pieces of inform-
ation – that it is a decrement instruction and the numbers a, b and c.

So to code increment instructions, we use three prime numbers. We
begin with 2 which will indicate that the code is of an increment
instruction. We then multiply this by 5 raised to the power of a and 7
raised to the power of b.

To code decrement instructions, we use four prime numbers. We
begin with 3 which will indicate that the code is of a decrement

 89

instruction. We then multiply this by 5 raised to the power of a, 7
raised to the power of b and 11 raised to the power of c.

To express this symbolically:

I a b is coded as 2 . 5a . 7b (where the . represents
multiplication) and

D a b c is coded as 3 . 5a . 7b . 11c

(We will always leave these expressions in exponential form.)
Note that the code of an increment instruction will always be an

even number, the code of a decrement instruction will always be divis-
ible by 3, and any number which is not divisible by 2 or 3 is not the
code of any instruction.

If � stands for some instruction, then we will use #� to refer to the
code of �. So, to give a few examples:

if � � I 2 3 then #� � 2 . 52 . 73

if � � I 7 4 then #� � 2 . 57 . 74

if � � D 3 8 5 then #� � 3 . 53 . 78 . 115

if � � D 2 6 3 then #� � 3 . 52 . 76 . 113

and so on.

Exercise 9.1

Code the instruction bodies of the solutions to the exercises in
chapter eight. (Disregard the line numbers for the moment –
just code the instructions.)

Now that we know how to code instructions, we are going to use
exactly the same procedure to code entire programs.

A program is some number n of lines consisting of a line number
and an instruction. To simplify things, we make the assumption that
lines are numbered in the sequence of natural numbers beginning
from 1. When we decode program codes into their constituent
instruction codes, we simply enumerate them in the same sequence.
This allows us to disregard line numbers in codes.

Given a sequence of n instructions, we can code this by simply mul-
tiplying the first n primes, each of which is raised to the exponent
which is the code of the relevant instruction. So the first prime is
raised to the exponent which is the code of the first instruction, the
second prime is raised to the exponent which is the code of the second
instruction, and so on.

To express this symbolically:

90

given a program 1 �1, 2 �2, 3 �3, . . . , n �n
it can be coded as 2#�1 . 3#�2 . 5#�3 . . . p#�n (where p is the
nth prime).

This might seem rather complicated but some examples will serve to
show that it is actually very straightforward. We always simply leave
the expressions in their exponential form and we assign variables to
stand for instruction codes to make things easier to read, as the exam-
ples below illustrate.

The program:

1 D 3 1 2
2 D 1 3 5
3 D 2 4 5
4 I 3 2

is coded as:

2a . 3b . 5c . 7d

where:

a � 3 . 53 . 71 . 112

b � 3 . 51 . 73 . 115

c � 3 . 52 . 74 . 115

d � 2 . 53 . 72

The program:

1 D 3 1 2
2 D 4 2 3
3 D 1 4 9
4 D 2 5 7
5 I 3 6
6 I 4 4
7 D 4 8 3
8 I 2 7
9 D 3 10 12

10 I 1 9

is coded as:

2a . 3b . 5c . 7d . 11e . 13f 17g . 19h . 23i . 29j

where:

a � 3 . 53 . 71 . 112

b � 3 . 54 . 72 . 113

c � 3 . 51 . 74 . 119

 91

d � 3 . 52 . 75 . 117

e � 2 . 53 . 76

f � 2 . 54 . 74

g � 3 . 54 . 78 . 113

h � 2 . 52 . 77

i � 3 . 53 . 710 . 1112

j � 2 . 51 . 79

Exercise 9.2

The second example above codes the solution to Exercise 8.4.
Code up the solutions to the other exercises in Chapter 8.

Although we are leaving program codes in exponential form, they
resolve to natural numbers. Admittedly their resolutions are very
large natural numbers, but they are natural numbers nonetheless. As
such, we now have a unique and effective procedure for coding any
register machine program of any length as a single natural number
which is uniquely and effectively decodable. This means we now have
a mechanism for referring to programs within programs, since a reg-
ister can hold the code of a program.

Exercise 9.3

Give three examples of numbers which are, for different
reasons, not program codes.

Exercise 9.4 (Challenge)

What is the smallest natural number which is a program code?

9.3 A UNIVERSAL MACHINE

Armed with the method of Gödel coding, we are now ready to
describe the register machine program which can compute any algo-
rithmic function.

Let [UM] be the register machine whose program is described by
the following procedure.

First, decode the contents of R1. If R1 does not contain the code
of a program then halt. If R1 does contain the code of some program
P, then add 1 to all the registers referred to in P, then run P and on
termination copy the contents of R2 to R1.

92

It is clear that this procedure is effective, hence, by the Church/
Turing thesis, there is such a register machine program.

If we were to run [UM] with the input #P, a1, . . . , an in the first n
+ 1 registers, it would deliver the same result as running a machine
with program P and the input a1, . . . , an in the first n registers.

This is why the procedure for [UM] involves adding one to all the
registers in P (if R1 decodes to #P) and why we copy R2 to R1 on ter-
mination of P – because the inputs of P will all be displaced along one
register in [UM].

Consequently [UM] can emulate any register machine program.
We simply put the code of that program in the first register and the n
inputs of the function in the subsequent n registers and run [UM] as
described.

The register machine [UM] is known as a universal machine – it can
compute any register machine computable function. More simply,
[UM] is a computer.

Modern digital computers, as we know them, are instantiated uni-
versal machines. Personal computers, mainframes and even super-
computers are no more powerful than [UM] – there is nothing that
they can compute that [UM] cannot. In fact, [UM] is more powerful
than any physical machine since it is a theoretical idealisation which
is unconstrained by physical manifestation. We will have more to say
about this in the following chapter.

We have now completed our survey of computational theory.
Equipped with our new understanding of what computers are, it is
time to return to philosophical material and discuss the theory of
mind which our central concern is to evaluate – computationalism.

 93

C H A P T E R 1 0

COMPUTATIONALISM

So far, we have considered the question of what minds might be and
in doing so, have examined a number of philosophical theories which
aim to provide an answer to this question. We suspended that discus-
sion after introducing functionalism and turned our efforts to devel-
oping a rigorous account of what computation is. It is now time to
pick up where we left off.

In this chapter, we are going to use the understanding of compu-
tational theory we built up in the previous section to flesh out the
functionalist framework in a particular way.

There are various ways in which one can be a functionalist, depend-
ing on how one analyses the functions of mental states. Our aim is to
give a fair and precise treatment of the theory that these functions are
to be fleshed out in computational terms.

In doing so, the utility of having developed an account of compu-
tational theory will become apparent. In the first instance, we can now
speak of computation without simply engaging in loose talk – we
have a precise formal definition and some subtle distinctions at our
disposal. This allows us to see that certain objections sometimes
raised against computationalism do not actually target the theory –
they target straw men by virtue of an insufficiently sophisticated
understanding of what computers are.

To target a straw man – or to commit a straw man fallacy – is to
characterise an opposing position as being weaker than it actu-
ally is and to then argue against the weaker position. Arguing
against a weaker misconception does no work at all against the
actual opposing position. Hence, if one commits this fallacy, one
is said to build a straw man simply for the purposes of knocking it
down.

We begin with a clear characterisation of computationalism.
Following this, our first priority is to address, and clear up, some
possible misconceptions of the theory. We are then going to discuss

94

precisely what a computationalist is committed to and consider some
immediate implications.

In this chapter, we will also discuss some of the merits of compu-
tationalism and deal with some prima facie objections to the theory.
Evaluating computationalism more fully will be the concern of the
remainder of the book. We are going to see how disparate material
from the cognitive disciplines bears importantly on the tenability of
the theory.

Let us now address the question of precisely what is involved in
claiming that mental states are computational states.

10.1 WHAT COMPUTATIONALISM ISN’T

Computationalism is the view that to have a mind is to instantiate a
particular formal system or collection of systems. In other words,
since mental operations are held to be the operations of formal
systems, mental operations are held to be computations. So to have a
mind, claims the computationalist, just is to be engaged in certain
computational processes.

Computationalism is clearly a species of functionalism. The func-
tionalist holds that states are mental solely by virtue of their charac-
teristic functions in mediating relations between inputs, outputs and
other mental states. Computationalism is simply a way of fleshing out
these mediating relations – the relations in question are held to be
computations.

Computationalism is not the view that the operations of formal
systems per se are mental operations. That is, it is not the view that
instantiating any formal system at all is sufficient for having a mind.
This clearly overcommits the computationalist as it would require
them to attribute mentality to all manner of artefacts – thermostats,
traffic lights, handheld electronic games – in a patently ludicrous
fashion.

So in fairness to the computationalists, let’s be clear that they are
committed only to the view that instantiating a particular formal
system – let’s call it [MIND] – is sufficient for having a mind.

This is rather a strong formulation of computationalism. A compu-
tationalist might hold that there is no single overarching formal system
to be identified but, rather, that mentality is a function of some number
of distinct algorithms. I want to advance a particular understanding of
mentality – which I take to be fairly intuitive – which assumes a single
overarching formal system, so I shall continue to work with this strong
thesis until further notice. Do be aware though that the version of the

 95

theory I am describing is not the only story available to a computa-
tionalist. If, however, a strong version of the theory turns out to be
defensible then, a fortiori, any weaker version is defensible.

The computationalist, then, is not committed to the view that the
operations of your personal computer are mental operations. Nor is
she committed to the view that very powerful computational devices,
such as supercomputers, have minds. She is committed only to
holding that should some substrate run the program [MIND] then
that substrate thereby has a mind.

I have referred to [MIND] in three different ways now – as a formal
system, as an algorithm and as a register machine program. Recall
from Chapter 9 that by the Church/Turing thesis, these three are
equivalent ways of speaking. If [MIND] is an algorithm, it can be
implemented by a register machine program (which just is a deter-
ministic formal system).

Let’s clear up another possible misconception of the theory. The
computationalist claim differs in another important way from the
view that personal computers can or do have minds. Modern digital
computers, as we saw in the last chapter, are instantiated universal
machines. The computationalist is not claiming that to have a mind is
to instantiate a universal machine. She is claiming that to have a mind
is to instantiate a particular register machine – namely [MIND].

We need to be careful on a couple of points here. Firstly, we need
to appreciate that, while digital computers, as we know them, are
instantiated universal machines, they are imperfectly instantiated.
Universal machines are theoretical devices whose resources, while
finite by stipulation, are otherwise unlimited. Instantiated universal
machines are physical devices which are bound by physical con-
straints. So while universal machines can in principle run any program
(a fortiori can run [MIND]), instantiated universal machines are
limited in practice by their physical constraints and, as such, may not
have sufficient computational resources at the hardware level to run
certain programs, such as [MIND].

So there is a sense in which it is not quite correct to say that modern
digital computers are instantiated universal machines, as there may
be programs beyond their computational resources. Digital comput-
ers, as we know them, are approximations to universal machines.
Successive generations of computational hardware provide closer and
closer approximations as they provide greater and greater computa-
tional resources.

Even perfectly instantiating a universal machine in a substrate
would not in itself be sufficient for that substrate to have a mind. The

96

substrate must then run the right program, since having a mind, says
the computationalist, is having the program [MIND] in operation.

We can give a fair measure of practical computational power along
two parameters – storage space and processing speed. A given
program’s requirements can be said to exceed the practical compu-
tational power of a given device if its requirements exceed either the
storage capacity or the speed of computation of the device (or
both).

So while the computationalist is committed to holding that any
universal machine (without constraints) can run [MIND] – and
would thereby have a mind – she is not ipso facto committed to
holding that any existent digital computer could have a mind. A com-
putationalist might hold that the requirements of [MIND] exceed the
practical computational power of (some or all) currently available
(non-biological) computational devices.

Consequently a computationalist need not hold that your personal
computer could have a mind. In all likelihood they will hold that it
could not by virtue of its physical limitations. A computationalist will
hold to the view that the human brain provides the biological com-
putational hardware for implementing [MIND] in humans. Given
what we know of the extraordinary storage capacity and speed of
operation of the human brain, the computationalist is likely to argue
that any non-biological computational device powerful enough to run
[MIND] must have (at least approximately) the storage capacity and
speed of operation of human brains. Digital computers, as powerful
as they are becoming, are still not even close.

There is one final point of possible confusion to clear up before we
move on. Recall from section 7.1 that for a procedure to be effective,
it must, in principle, be able to be carried out, given sufficient time, by
a human using only piles of stones (or paper and pencil) and bring-
ing no understanding to the task. The operations of universal
machines are entirely effective, so one of the things a human mind can
do is approximate a universal machine (albeit with considerable con-
straints) by actively working stepwise through the operations of any
given register machine program. Consequently, one of the things that
a device running [MIND] must be able to do is approximate a uni-
versal machine (in at least the same fairly weak fashion in which
humans can).

This does not, however, mean that approximating a universal
machine is sufficient for having a mind. Quite the opposite. It means
that irrespective of the status of computationalism, having a mind is
sufficient for (very weakly) approximating a universal machine.

 97

Let’s recap the points of possible confusion we have covered so far.
Firstly, a computationalist is not committed to the view that any
computation is a mental operation. They are committed to the view
that particular computations – those which are the operations of
[MIND] – are mental operations.

Secondly, a computationalist is not committed to the view that
instantiating a universal machine is sufficient for having a mind. They
are committed to the view that a perfectly instantiated (unconstrained)
universal machine has the capacity to have a mind. Since one of the
things a mind can do is approximate a universal machine, the compu-
tationalist is also committed to the ability of any computational device
running [MIND] to weakly approximate a universal machine.

Finally, a computationalist is not committed to the view that any
given computational device could instantiate [MIND], as the program
may have requirements which exceed the practical computational
resources of the given device. Consequently, a computationalist can
happily deny that a device such as your personal computer – an
approximation to a universal machine – could ever have a mind. The
computationalist is committed, however, to holding that any physical
device with sufficient practical computational power to run [MIND]
does have the capacity to have a mind. Precisely what computational
resources are required by [MIND] is a matter for empirical discovery.

Now that we have carefully identified several possible misconcep-
tions of computationalism, we can see that certain arguments against
the theory which trade on these misconceptions are unsound.

For instance, the following argument should clearly not be licensed:

P1 Computationalism says that all mental operations are
computations.

P2 My personal computer performs computations.

� Computationalism says that the operations of my personal
computer are mental operations.

P3 But my personal computer clearly does not have a mind.

� Computationalism is false.

The premises P1 – P3 are not in dispute. P2 and P3 are clearly true
and computationalism does make the claim attributed to it in P1.
The argument goes wrong in the transition from P1 and P2 to the
interim conclusion. The inference is not truth-preserving; the interim
conclusion is, in fact, false.

98

We can prove that the inference is not truth-preserving by giving
counter-examples to the form of inference employed, since truth-
preservation is a matter of logical form (more on this in Chapter 15).
The inference is of the logical form: C claims that everything which is
A is B; x is B; therefore C claims x is A. Instantiate A as ‘in Melbourne’
and B as ‘in Australia’ (and anything you like for C and x) and we have
a clear counter-example to the validity of this argument form – a
demonstration that the truth of the premises does not guarantee the
truth of the conclusion.

We can clearly see though how a misinterpretation of P1 could lead
us to infer the interim conclusion, given P2. Computationalism does
claim that all mental operations are computations but the converse,
as we have seen, does not hold. Consequently, the fact that something
performs computations does not guarantee that it performs mental
operations. Were we to mistakenly read P1 as its converse (that only
mental operations are computations – which is to say that all compu-
tations are mental operations), we would be led, erroneously, to
believe that the above argument instances a valid form.

Exercise 10.1

Construct unsound arguments against computationalism
which trade on the other possible misconceptions we have
considered. In each case, explain why the argument is
unsound.

If there is a false premise (attributing a claim to the
computationalist) explain why the premise is false in light of a
correct understanding of computationalism.

If there is an invalid inference in the argument, give a
counter-example to the validity of the logical form employed
and explain how a particular misconception would lead one
to believe that the argument instances a valid form.

10.2 SOFTWARE AND WETWARE

Computationalism is often described as a ‘software’ view of the mind.
The human brain is seen as providing the biological computational
hardware – or wetware – which confers on humans the capacity to
have a mind. Having a mind, on this view, is a matter of having the
right program running in one’s wetware.

This provides us with a solid methodological framework for investi-
gating mentality. What we should be interested in, if computationalism

 99

is correct, is determining the program(s) for various kinds of mental
processes with a view to building up [MIND].

Computationalism has been widely embraced in the cognitive dis-
ciplines and plays a large role in informing research programmes.
Each of the empirical cognitive disciplines approaches the overarch-
ing goal of investigating mentality in distinct fashion, commensurate
with their disciplinary methods and assumptions. In each case, how-
ever, a commitment to computationalism confers a broad methodol-
ogy for pursuing these questions. Researchers who endorse the
computational hypothesis will aim to deliver accounts which are in
principle computationally implementable. That is to say, they will aim
to develop accounts of mental processes as effective procedures. Very
often, this will involve collaboration with computer scientists in devel-
oping computational models of mental phenomena.

This methodology has sparked off the research tradition known as
artificial intelligence. There are weaker and stronger interpretations of
‘artificial intelligence’. The weak artificial intelligence research pro-
gramme simply involves aiming to construct artefacts capable of
instantiating particular functions which are held to be (albeit weakly)
constitutive of intelligence. This is the kind of ‘artificial intelligence’
which is often used to sell white goods.

The strong artificial intelligence research programme is of signifi-
cantly more interest and of central concern in this volume. It commits
to, and pursues, the possibility of developing artefacts which have
minds in the sense that we take ourselves to have minds.

There are certain mental capacities which appear to be unique to
human minds. These include the ability to reason complexly and
abstractly about such things as mathematics, logic and metaphysics,
and the ability to use language. Both the rational capacity and the lin-
guistic capacity implicate a number of what we might call lower-order
cognitive processes, such as the abilities to discriminate, to learn and
to remember. These lower-order processes are achieved to a greater or
lesser extent by other animals. The higher-order cognitive functions
of abstract reasoning, language production and language compre-
hension, however, are uniquely human and, as such, will serve for our
purposes as prime determinants of the kind of intelligence we
attribute to humans.

Consequently, in the following chapters, we are going to concen-
trate on various methods of attempting to develop computational
devices with rational and linguistic capacities.

We will also have much more to say about the conditions under
which we might attribute mentality to an artefact in the final section

100

of this chapter when we discuss the Turing test. Before we get to that,
however, there is more to be said here about computationalism. To
begin with, we can draw out some advantages of computationalism
from our discussion so far.

Firstly, and most obviously, computationalism fleshes out the func-
tionalist framework. Recall from Chapter 6 that we found the
functionalist account somewhat wanting as a ‘black box’ view of
mentality. Computationalism tells us what is going on inside the black
box, namely computation. Consequently, computationalism confers a
clear methodology for investigating mentality – we should be aiming
to provide computational accounts of cognitive capacities.

Secondly, computationalism allows us to specify the relation
between the mind and the brain by employing a useful wetware/soft-
ware distinction. On this view, minds are what brains do. In other
words, brains provide the computational resources to run [MIND].

We might also note at this point, that computationalism retains the
substrate independence which functionalist theories enjoy and, con-
sequently, is compatible with a purely material view of the mind
without falling prey to either the multiple realisability objections
which frustrate Australian materialism or the methodological vacu-
ousness of token physicalism.

Computationalism, then, appears to enjoy the strengths of other
theories of mind without being subject to the worst of their weak-
nesses. There are, however, a number of objections which we might
mount against the view that all mental operations are computations.
In the following sections, I will consider a number of prima facie
objections – the kind typically raised against computationalism on
first presentation. In each case, I will demonstrate how a computa-
tionalist might defend the theory against the objection in question.
We will leave consideration of more sophisticated philosophical argu-
ments against computationalism until Chapters 17 and 18.

10.3 VARIATION

The objection from variation runs as follows. Computationalism says
that humans have minds by virtue of implementing [MIND], but
human minds vary greatly. How can this be, given all minds are held
to be isomorphisms of the same formal system?

It is certainly the case that there is considerable variation among
individual minds. We all have different beliefs, desires, emotional
responses and mental capacities. A computationalist will, of course,
admit this – to deny it would be foolishness. This does not answer the

 101

objection, however. To do so requires further reflection on the notion
of isomorphism.

Formal systems involve variables which are assigned values in any
particular instantiation of the system. For two systems to be isomor-
phic to each other, they must be formally equivalent. This does not
mean, however, that every isomorphism of a formal system must
assign all and only the same values to variables. In fact, this will very
rarely be the case.

When doing Exercise 8.1, you were instantiating various isomor-
phisms of the formal system [ADD] in order to ascertain the function
which the program computes. In each case, you assigned different
values to the initial input variables.

Further, if we take two isomorphisms of [ADD], both of which
were assigned identical initial values, and then compare the contents
of registers at different stages in their operations, we will see different
values being held in each register. The operations of each system,
however, are still formally equivalent – they are still isomorphisms of
[ADD].

Now consider the system [MIND]. This must be an extraordinarily
complex system with very, very many variables. Presumably, every
instantiation of [MIND] is bound to be in a distinct stage of oper-
ation. Presumably also, every instantiation of [MIND] will begin with
(albeit perhaps slightly) distinct assignments of values to variables.

Hence it should come as no surprise that any two given instantia-
tions of [MIND] will vary greatly in terms of the values which are cur-
rently assigned to variables of the system.

It seems, at least prima facie, that beliefs and desires play the same
functional role in all minds. That is not to say that my belief that
(whatever) performs exactly the same functional role in my mental life
as does your belief of the same content in your mental life. Rather, it
is to say that beliefs, qua beliefs, have a functional role in deliberation,
planning, motivation to action and so on.

Because beliefs and desires interact in a highly complex fashion in
these mental functions, we should not expect that my belief that
(whatever) will result in the same action as your belief of the same
content. We should expect, however, that, qua belief, both of our
beliefs function in deliberation, planning, etc.

Now, a computationalist is likely to argue that the content of
beliefs, desires and the like – that which they are about – is to be under-
stood in terms of the assigning of values to variables. In the system
[ADD], the content of R2 (whatever it might be) always functions
in the same way – it is the value which is decremented while we

102

increment R1. Similarly, says the computationalist, the content of a
‘belief-box’ in [MIND] will always function in the same way, even
though its content (what the belief is about) might be markedly
different in different instantiations of the system or at different stages
in the operation of the same system.

Consequently, a computationalist can hold that minds are isomor-
phisms (functional equivalents) of [MIND], yet still happily concede
that all minds will vary, in small measure or large, in terms of the con-
tents of beliefs, desires and the like. They can also readily explain vari-
ation among isomorphisms of [MIND] in terms of the particular
actions which are partially determined by beliefs, desires, etc. with
particular content, as the causal determinants of action will be held
to be complexly interrelated with the values of many variables (the
contents of many beliefs, desires, etc.). We will have a lot more to say
about the idea of mental content in Chapter 18.

This line of argument does not speak directly to the fact that minds
differ also in terms of capacities. For instance, some minds are more
amenable to formal reasoning, some minds are more skilled at
employing language, some minds are skilled in working with engin-
eered artefacts, and some minds are capable of producing extraord-
inary works of art. This leads us to our next objection.

10.4 LEARNING

Minds can learn. Consequently, different minds can do different
things. In other words, some minds can perform functions which
other minds cannot (or can perform certain functions better than
most other minds). How can computationalism account for this?

We have seen how computationalism can account for variation
between minds with respect to their content; however, minds also vary
with respect to capacities. This presents the computationalist with
two further challenges. Firstly, she must give a computational account
of the acquisition of new capacities, i.e. specify algorithms which
govern learning.

Ideally, we would like a specification of the algorithm(s) (or vari-
eties of algorithms) which actually do govern learning in human
minds. However, for the purposes of defending computationalism
against this objection, it suffices to show that learning is in principle
effective, in which case the specification of any correctly functioning
algorithm(s) will suffice.

Secondly, the computationalist needs to explain how there can be
functional equivalence between two systems with different capacities,

 103

i.e. how it is that two isomorphisms of [MIND] can do different
things.

The latter challenge is the more fundamental so I will respond to
this first. Let’s reflect on what it is for two formal systems to be iso-
morphic to each other. In section 7.6 we said that a formal system [A]
is isomorphic to a formal system [B] iff we can derive [B] from [A]
through uniform substitution of symbols. So if, for instance, we take
a chess board in some configuration and replace all the pawns with
identical coins, then the result is another isomorphism of the same
formal system.

Further, if we have two chess boards and we play one for a number
of moves, then we will have two isomorphisms of the same formal
system in different states. A move might then be available on one
board – e.g. castling – which is not available on the other board.

The claim that two formal systems [A] and [B] are isomorphic
amounts to the following: for all states x and rules R, if the applic-
ation of R to ([A] in state x) generates state y, then the application of
R to ([B] in state x) will generate state y.

Understanding that isomorphic formal systems in different states
may yield different outputs given the same sequence of rule applic-
ations allows for a straightforward explanation of variation among
minds with respect to their response to a particular situation. If two
minds have different beliefs, desires, etc. then their [MIND]s are in
different states, hence we should not expect the same rule application
in both [MIND]s would result in the same output.

We have also gone some way towards understanding variation
among minds with respect to capacities – different rules might be
applicable to isomorphisms of [MIND] in different states. There is
more to be said here, however.

Consider the system [UM] from Chapter 9. Recall that [UM] oper-
ates by decoding the value in R1 and running the program that the
value codes (if it codes a program at all). Now let’s consider a similar
register machine – we’ll call it [OS].

[OS] will have a large number of registers set aside in which to store
its own values. It will also have a large number of registers available
in which to do computations on these values. Some of the values
stored by [OS] will be codes of algorithms (programs). These can be
executed, using other values of [OS] as program input, in the space set
aside for computations and their output can then be stored as further
values of [OS].

So, for instance, one of the registers of [OS] might contain #[ADD]
(the code of the program [ADD]). At some point in its operation, the

104

program [OS] might address this register and instantiate [ADD] using
the values of two other registers as input, and store the output in
another register.

Now, let us suppose that the program [OS] governs the operations
of many algorithms (stored as values in its registers), that many of
these may be in operation at any given time, that the output of algo-
rithms can be employed as the input of other algorithms, and that the
output of algorithms can determine which algorithm will be executed
next (and with which values).

The program [OS], while it may sound more complicated than
[UM], is clearly effective. When we speak of many algorithms being
in operation at the same time, what we mean is that many algorithms
are in process; however, only one step of one algorithm will be carried
out at each time step. [OS] is therefore a register machine program like
any other and, hence, is computable by [UM].

The system [MIND] can be understood as a very complex version
of [OS]. It functions by governing the operations of a large number
of algorithms which individually perform mental functions – algo-
rithms which transform sensory data into perceptual representations,
algorithms which govern bodily movements, algorithms which govern
linguistic production and comprehension, algorithms which deter-
mine actions based on beliefs, desires and the like, and so on.

To employ the software analogy, [MIND] is best understood as a
kind of operating system which manages the highly interrelated
operations of a large number of applications and controls the hard-
ware in which it is instantiated.

Some of the algorithms which [MIND] employs serve as learning
algorithms. We will call an algorithm a learning algorithm if, as a result
of employing it, the system is conferred with greater capacities.

There are at least two ways in which a mind can be conferred with
greater capacities – it can gain new information or it can attain, or
improve, skills or abilities. In the former case, the mind is learning that
things are the case. In the latter, the mind is learning how things are
done.

In the system [MIND] learning that things are the case corresponds
with storing new content – i.e. storing new values in registers (where
these values code content). Learning how things are done corresponds
with storing new algorithms or with optimising existing algorithms.

Now, given our understanding of [MIND] as a kind of [OS] which is
in continual iterated operation and which is expandable – i.e. has algo-
rithms which store content and which generate or optimise further
algorithms, both of which confer on the system greater capacities – we

 105

can help ourselves to an explanation available to the computationalist
of variation among [MIND]s with respect to capacities.

Given that, as already established, any two [MIND]s are highly
likely to be in distinct states, and given that, depending on the amount
of time it has been operating for and the nature of the inputs it has
received, a [MIND] will contain more or less stored content and
greater or fewer available stored algorithms (optimised better or
worse), it should come as no surprise that any two [MIND]s will vary
significantly with respect to capacities.

This explanation responds to one of the two challenges presented
to the computationalist by the learning objection – it explains how
two isomorphic formal systems can have different capacities and,
hence, how minds can be held to be isomorphisms of [MIND] despite
immense variation among minds with respect to what they can do.

The challenge remains, however, for the computationalist to specify
algorithms which govern learning. This is a challenge to which we will
return at various points in the following chapters, particularly in
Chapter 13 when we discuss automated reasoning systems, and in
Chapter 19 when we examine learning in artificial neural networks. We
will also be investigating the way in which humans learn languages in
Chapter 16 and considering evidence that this learning is rule governed.

We have now considered two objections one might mount against
computationalism. These were essentially stronger and weaker ver-
sions of the same objection – minds vary. In both cases, we have seen
how a computationalist might reasonably respond. Let’s consider one
further objection against the theory that minds are computational
devices.

10.5 CREATIVITY

Another standard prima facie objection appeals to the human creative
capacity, as follows. The operations of formal systems are entirely
mechanical but minds are creative. Minds create great works of art,
music, architecture and literature, and have an enormous capacity to
innovate. This characteristic creativity of human minds seems to be
compelling evidence against computationalism which seeks to account
for mentality in terms of purely mechanical operations.

It is certainly the case that it seems that nothing could be further
from an algorithmic process than painting an artwork or composing
an orchestral symphony. As we saw in Chapter 2 however, the way
things seem is no reliable indicator of the way things are.

106

The challenge here for the computationalist is to explain how the
mental functions we cite as paradigmatically ‘creative’ can be algo-
rithmically delivered, contra-intuition. For that explanation, we need
an understanding of this notion of creativity.

The opponent of computationalism might endorse a definition of
creativity along the lines of: an activity is creative if its result is the pro-
duction of a work (an artwork, composition, etc.) which could not have
been produced by simply following a rule-governed procedure.

Although this definition is somewhat intuitive – after all we’re all
fairly certain da Vinci wasn’t painting by numbers when he painted
the Mona Lisa – it begs the question rather straightforwardly against
the computationalist. Whether or not creativity can be accounted for
algorithmically is precisely what is at issue.

So what is it about creativity such that our initial intuition is to con-
trast creative behaviour with rule-governed behaviour?

Well, firstly, not everyone is equally creative. People have different
capacities for engaging in creative enterprises. We have already seen,
though, how a computationalist can account for variation with
respect to capacities so this is not sufficient as an objection, but it
points us in the right direction.

It seems that what disposes us initially against the notion of cre-
ative behaviour being rule-governed is an intuition that were it rule-
governed, it would be more readily teachable. It is characteristic of
those we laud as creative masters – artists, artisans, composers, etc. –
that there is something mysterious to others about their talent.
Further, it seems that when it comes to creative endeavour, one either
‘has it’ or not. Certainly one can learn various techniques and
methods for working with materials to generate certain effects;
however, it is not clear how one could learn to ‘be creative’ per se.

This does not, though, speak against the possibility that this kind
of behaviour is indeed underwritten by computational processes.
Certainly the opponent of computationalism may well demand an
account of how such behaviour could be computationally delivered;
however, there are certain responses available.

For instance, the computationalist might tell a story about certain
algorithms requiring certain computational resources for their imple-
mentation, such that variation with respect to the ability to acquire
certain algorithms is to be explained in terms of variation in the sub-
strate (brains) in which [MIND]s are realised.

In any case, the computationalist is well within their rights to
dissent from answering the question – how is creative behaviour com-
putationally delivered? – until this notion of ‘creative behaviour’ is

 107

more rigorously specified. In the absence of an independently plausi-
ble account of creativity which speaks directly against the possibility
of such behaviour being rule-governed, the computationalist is no
worse off in this respect than other theorists.

We have now considered a number of preliminary objections against
computationalism and have seen how, in each case, the objection fails.
We have yet to consider more sophisticated arguments against the
theory. We shall hold off on these until after we have seen some arti-
ficial intelligence applications which will provide context for phil-
osophical objections.

To recapitulate, we have discussed some common misunderstand-
ings of computationalism and some bad arguments against the
theory which trade on these misunderstandings. We have advanced a
particular version of computationalism according to which the mind
is analogous to a computer operating system, governing the oper-
ations of applications and controlling the hardware in which it is
instantiated (the central nervous system). We have also witnessed the
failure of several first-blush objections to computationalism.

The final thing to do in this chapter before we move on to examine
various artificial intelligence applications is to spend some time
reflecting on the conditions under which we are prepared to attribute
mentality.

10.6 ATTRIBUTING MENTALITY

How do we determine whether or not something has a mental life?
When we are not in the grip of philosophical scepticism, most of us
are quite convinced that those around us have mental lives – at the
very least we habitually act as if they do. Given that we have privi-
leged access to only our own mental states, what is it about other
people that leads us to believe that they have minds?

Well, for starters other people are physically very similar to our-
selves and appear to be the same kind of being. As such, we expect
them to share various properties with us, such as being capable
of similar locomotion and interaction with the environment. This
extends to an expectation that other people also experience an
inner mental life. Clearly, however, such physical similarity is not
sufficient for an attribution of mentality such as we experience, as
these conditions might be met by non-human animals and
very young children who, we judge, lack the kind of rich mental life
we enjoy.

108

Nor indeed is such similarity with respect to physical capacities
necessary for attributions of mentality, as we can imagine someone
who clearly has a mind, in the strong sense in which we hold ourselves
to have minds, yet lacks these physical capacities.

So what conditions do other people meet such that we attribute
mentality to them? The key here – unsurprisingly given the professed
focus of the coming chapters – lies in our use of language.

The competent and sophisticated use of language is a hallmark of
the mental. By ‘competent’ and ‘sophisticated’ here I mean that the
speaker is able to comprehend and produce novel utterances, use
various linguistic devices to achieve various effects, and discourse on
various topics involving various degrees of abstraction.

It is by virtue of evidencing this kind of linguistic capacity – which
I might point out implicates a rational capacity – that we are prepared
to attribute mentality to those things which behave in this way. Even
if this capacity is realised in highly non-standard ways we seem to be
prepared to take this as sufficient for an attribution of mentality. No
one is going to deny, for instance, that Stephen Hawking has a mind,
and a sterling one at that.

We need to be careful here – I have made a sufficiency claim but not
a necessity claim. There are certain cases of aphasia (language deficit)
such that sufferers will fail any standard test of linguistic capacity yet
are still quite capable in other respects to the extent that we would cer-
tainly attribute to them a robust mentality. We will revisit this point
when we discuss human language in Chapter 16.

This sufficiency of the linguistic capacity for mentality provides us
with a rough and ready test for the presence of a mind. If the test
subject can satisfy certain conditions we stipulate, which are designed
to probe the subject’s capacity to use language, then we might think
that should be sufficient for assuming, at least as a working hypothe-
sis, that the subject indeed has a mind.

In real life, this assessment is an ongoing enterprise. We tend to
assume by default that others have minds and we revise our estima-
tion of their mental capacities in accordance with their evidenced lin-
guistic capacity. A little reflection on our social interactions serves to
demonstrate this so I shan’t argue any further for it. Certainly it is the
case that it is through language that we are able to investigate the
minds of others (here I intend ‘investigate’ in lay terms). The simplest
way to find out about the beliefs, desires and so forth of others is to
talk to them (although this is of course fallible).

It is precisely this intuition that Alan Turing seized upon in his
seminal article Computing Machinery and Intelligence, wherein

 109

Turing determines to investigate the question of the conditions under
which we would be prepared to attribute mentality to an artefact.

Turing posited a test, which is standardly known as the Turing test,
the successful passing of which he proposed as sufficient for holding
the subject to have a mind.

The Turing test is often glossed in a weaker form than Turing
intended, so let’s employ some care in setting it up. The test is an
extension of an old parlour game known as the imitation game. In the
imitation game, a man and a woman are placed in separate rooms
with an interrogator in a third. The interrogator employs an interme-
diary and, by passing notes (which the intermediary reads out to the
interrogator), interrogates the man and the woman for a specified
length of time. The interrogator is allowed to question the man and
the woman on any topic she sees fit. The point of the game is for the
interrogator to try and determine which room contains the man and
which the woman, and for the man and the woman to attempt to fool
the interrogator.

Turing proposed that an adaptation of this game could serve as a
barometer of mentality for artefacts (computers). In all fairness to
computing devices, we should not expect them to satisfy conditions
of physical similarity, or to be able to perform certain physical tasks
in order to be said to have a mind. After all we have seen that this is
neither necessary nor sufficient. We should expect, however, that if an
artefact can satisfy us of its linguistic competence, then this would be
a very good indication that the artefact has a mind.

The Turing test adapts the imitation game – in ways that are prob-
ably already obvious – to provide a fair means of assessing the linguis-
tic capacity of an artefact. It is conducted as follows. We put a
computer in one room, a human in another, and a human interrogator
in a third. The interrogator is able to communicate with the computer
and with the human via a keyboard and monitor. The interrogator has
an allotted amount of time to question each participant on any topic
she sees fit, during which she attempts to discern which of her inter-
locutors is the human, while both the human and the computer attempt
to convince her that they are the human. If, at the end of the allotted
time, the interrogator is unable to discern the machine from the human,
we should say of the machine that it has a mind.

Exercise 10.2

What are your initial reactions to the Turing test as an
indicator of machine intelligence? What problems do you

110

envisage with using this method for determining the presence
of a mind?

Keep in mind that the claim is not that passing the Turing test is
sufficient for having a mind. The thought is that passing the Turing test
gives us good grounds to suppose that the test subject has a mental life.

As it stands the Turing test remains underspecified. We have not yet
set a length of time for conducting the test and a lot hangs on this. If,
for instance, the test is to be conducted for only five minutes, then we
might rightly have qualms about its reliability as an indicator of men-
tality. If, on the other hand, the interrogator is allowed to spend as
much time as she requires until she feels capable of making an ade-
quate assessment, then it seems we can have a lot more confidence in
that assessment – particularly if, as we should, we take the assessment
to be revisable, contingent on the results of further such tests.

Since 1991, an annual competition for the Loebner Prize (named
after the philanthropist sponsor) has been conducted, in which par-
ticipants submit to a formalised version of the Turing test. The com-
petition is held over one day with a $100,000 prize and a gold medal
on offer for the a machine which is held by the judges to be indistin-
guishable from a human being. As yet no machine has come close to
this. Each year, however, a $2,000 prize and a bronze medal is awarded
to the machine which performs the most impressively of the entrants.

Turing envisaged, in 1950, that by the year 2000 machines would
be able to convincingly pass a Turing test of moderate duration. No
doubt he would be disappointed with the current state of play – the
transcripts of conversations with Loebner Prize entrants show that
some rather unsubtle questioning suffices to distinguish the machine
participants in very short order.

This is not, however, ipso facto an indictment of the Turing test, but
rather of the current state of play in artificial intelligence.

Perhaps a behavioural test of this kind, while a good indicator
under certain strong conditions, simply does not resolve the question
satisfactorily one way or another in problem cases. In such instances
it is not obvious what other methods we might employ to determine
the presence or absence of a mind.

Exercise 10.3

Would a version of the Turing test involving a number of
judges and unrestricted in duration serve as a reliable
indicator of mentality? Can you think of any other conditions

 111

or constraints we might build in to the test to increase its
reliability?

Let’s pause now and think about where we are and where we are
going. So far in this book, we have introduced various philosophical
problems associated with understanding the mind and examined a
number of theories which propose answers to these questions. We
have also introduced some rudimentary neuroanatomy to get a feel
for how brains work, given that there is clearly some important rela-
tion between brains and minds.

Of the philosophical theories of mind we have covered, function-
alism was the least problematic and most satisfactory. However, it left
us wanting to know more about the relevant functions in question. In
order that we might be well prepared to understand a particular way
of answering this, we then rigorously developed a precise account of
computation.

Armed with this understanding, we have now examined a particu-
lar way of fleshing out functionalism which supposes that the func-
tions in question are computations – namely computationalism. We
have also lent some consideration to the question of the appropriate
conditions under which we should attribute mentality. There will be
much more to say about this as we progress.

In the coming chapters we are going to see how a commitment to
computationalism confers a methodology for artificial intelligence
research. We will be concentrating on various computational prob-
lems which must be solved in order to equip a device with the capacity
to reason and use language.

Along the way we will be gathering evidence which bears on the
tenability of computationalism – an issue we will explicitly return to
at the beginning of Chapter 17 when we begin to mount serious chal-
lenges and sophisticated philosophical objections to the theory.

Now it is time to begin telling the story of artificial intelligence –
a story which begins with the concept of search.

112

C H A P T E R 1 1

SEARCH

Given the computationalist hypothesis as we have described it, inves-
tigating mentality involves investigating the operations of the formal
system [MIND] and its constituents.

The classical or symbol systems approach to artificial intelligence
involves trying to determine the algorithms for the cognitive functions
involved in [MIND] and investigating their associated formal sys-
tems.

Many of the problems in the classical artificial intelligence tradition
reduce to determining whether or not a certain state can be generated
in a particular formal system, or to finding a particular generated state
of a system. In other words, many artificial intelligence problems
reduce to the problem of searching for a particular state.

In this chapter, we are going to briefly run through various
methods for searching the generation tree of a formal system. You
may wish to refer to section 7.5 to refresh your understanding of gen-
eration trees and the associated terminology.

11.1 TOP DOWN, BOTTOM UP

One method of determining whether a state of a formal system is gen-
erated, or finding a derivation for a particular state of the system, is
to construct the entire generation tree for the system. If the state we
are interested appears on the tree it is a generated state and we can
read off its derivation(s) by following the branches back up to the root
node.

For instance, suppose we are investigating the system [BIN] from
section 7.5 and we are interested in whether the state 01 is generated.
We can construct a generation tree for [BIN] beginning from the initial
state and working our way down through all the possible ways in which
rules can be applied to each node. Figure 11.1 gives a generation tree
for [BIN] which shows that (and how) the state 01 is generated.

113

A search of this kind is known as a top-down search. Often, however,
it will be more efficient to begin with the state we are trying to derive
and work backwards through the rules to see if we can get back to
the initial state. This kind of search is called a bottom up search.
Figure 11.2 depicts a bottom up search in [BIN] for the state 01.

One advantage of using a top-down search is that it is comprehen-
sive. Every generated state appears on a completed top-down tree.
Bottom-up searches, however, have the advantage of delivering
all and only the possible derivations for the solution state, if there
are any.

A major consideration in determining whether or not a top-down
search or a bottom-up search will be more effective is the associated
branching factor. The branching factor of a tree – the average number
of descendants below each node – determines the complexity of the
tree so ideally we want to minimise it. As Figures 11.1 and 11.2 demon-
strate, the branching factor of a top-down search in a system will often
be distinct from the branching factor of a bottom-up search. In the
case of [BIN], a bottom-up search proves to be more efficient.

Exercise 11.1

What determines whether the branching factor of a bottom-
up tree for a system will be lower or higher than the
branching factor of a top-down tree?

114

Figure 11.1 Top-down search.

11.2 BREADTH VERSUS DEPTH

Having decided between a top-down search and a bottom-up search,
we then have to further decide on a procedure for searching the tree.
Keep in mind that any formal system of sufficient interest for artifi-
cial intelligence researchers to be investigating will be considerably
more complex than the toy examples we are looking at here.
Consequently, choosing an appropriate search procedure can have a
significant impact on the computational resources required to carry
out the search. In fact, as we shall see, it can mean the difference
between a successful search and a search which never halts.

A breadth first search involves exhaustively searching all the nodes
at a given level before descending to the next level. Figure 11.3 shows
the order in which we would search the nodes of a tree if we were con-
ducting a breadth first, left first search.

A clear advantage of breadth first search is that it is exhaustive. If
there are solution states to be found anywhere on the tree, the search
will find them. A downside of breadth first search, however, is that it
can be much more computationally expensive than necessary. This is
particularly the case if the solution state is a long way down one of
the branches.

 115

Figure 11.2 Bottom-up search.

If we expect there to be numerous solution states a long way down
the branches, it is more efficient to conduct a depth first search. A
depth first search involves searching all the way down the length of a
branch until we either find a solution state or hit a terminal state. If
we reach a terminal node, we backtrack only until we can descend an
unsearched branch.

Figure 11.4 shows the order in which we would search the same tree
from Figure 11.3 if we were conducting a depth first, left first search.

While depth first search can be notably more efficient in situations
where there are numerous solution states deep down the branches of

116

Figure 11.3 Breadth first search.

Figure 11.4 Depth first search.

a tree, there is a danger in using it. If any of the branches of the tree
go infinite – as they often will in interesting formal systems – and we
use a depth first search, we run the risk of our search never terminat-
ing. If there are no solution states on a branch which goes infinite, our
depth first search will continue down the branch ad infinitum.

A useful strategy can be to combine depth first and breadth first
search. If we know, for instance, that some branches of the tree we are
interested in will go infinite and we suspect that there will be numer-
ous solution states distributed across nodes a long way down the tree,
we might do a depth first search only to a certain level. If we exhaust
the nodes down to that level without finding a solution state (which is
tantamount to having conducted a breadth first search to that level)
then we continue our depth first search to a deeper level.

11.3 HEURISTIC SEARCH

Breadth first and depth first are both what we call blind searches – they
are conducted without any consideration of the closeness to solution
of the nodes being searched.

Frequently, however, it will be the case that we have some effective
procedure for determining, of a given node, the likelihood of there
being solution states among the descendants of that node. A function
which applies such an algorithm to nodes and assigns a value to them
accordingly is a heuristic function.

Determining good heuristics is very often the most difficult element
involved in solving complex problems in the symbolic artificial intel-
ligence tradition.

Consider, for instance, an exemplar classical artificial intelligence
project: determining an algorithm for playing chess well. One heuris-
tic for playing chess would be to simply construct the generation tree
for chess, then for any given game state – represented by a node of the
tree – assign a value in accordance with the number of descendant
nodes which represent winning states. Playing the game is then just a
matter of always moving to the position whose node has the best
value of those available.

Given a rule establishing an upper limit on the number of allow-
able moves in a game (such as the fifty move rule), we can keep the
tree finite, so this procedure seems feasible until we begin to quantify
the sheer complexity of chess.

The generation tree for chess suffers from drastic combinatorial
explosion. There are four hundred nodes at the second level alone. By
the time we get to the tenth iteration – by which time each player has

 117

made only five moves – there are around nine billion nodes. At the
twentieth iteration there are something in the order of 1030 nodes and
that is a very big number.

Even if we could generate one hundred trillion states per second, it
would still take around ten billion years to produce the generation
tree for only the first ten turns of chess.

Clearly then, the naive heuristic we described is computationally
untenable. Similarly, blind search techniques – while they have
their uses – are often computationally untenable for formal systems
of sufficient complexity to be of interest to artificial intelligence
researchers. Investigating the generation trees of exponentially
complex formal systems is only possible with the aid of clever heuris-
tics which significantly reduce the computational load.

Determining heuristic functions to guide chess play sufficiently
well so as to challenge the best human players turns out to be extra-
ordinarily difficult and computing these functions demands substan-
tial computational resources. We will discuss this further in the
following chapter when we contrast automated methods of game play
with human methods.

Given a heuristic function, we still need to decide how to be guided
by heuristic values in conducting a search. One such heuristic search
procedure is hill climbing.

A hill climbing search involves evaluating, at each node, the heuris-
tic value of its immediate descendant nodes and then moving to the
node with the best heuristic value. If we reach a terminal node without
finding a solution state, we backtrack to the next best possibility.

The letters in Figure 11.5 represent the order in which we would
search the depicted generation tree if our heuristic assigned values to
nodes as shown, where 0 represents a solution state.

Exercise 11.2

If we were to simply apply a breadth first, left first search to
the tree depicted in Figure 11.5 (without applying a heuristic
function), how many nodes would we have to traverse before
reaching the same solution state? What if we used a depth
first, left first search? What if we used depth first, right first?

As Exercise 11.2 demonstrates, this heuristic search is notably more
efficient – in terms of the number of nodes searched – than either of
our blind search procedures. It is also the case, though, that it is more
computationally expensive per node since as well as determining

118

whether each searched node represents a solution state, we are also
applying a heuristic function.

For any generation tree of even moderate complexity though, the
computational cost per node of applying the heuristic function will
be far outweighed by the overall computational savings conferred by
the heuristic guide, since we typically massively decrease the number
of nodes we need to examine.

Unfortunately, however, heuristics are just that – heuristics. They
are not decision procedures. In other words, while heuristic values
provide us with some sort of indication of the closeness to solution
of a given node, the assigned value may not be a good representation
of the actual closeness to solution of the node. Better heuristics
provide more accurate indications, but it is always the case that
heuristic values can lead us astray.

One way in which hill climbing search can lead us astray is if a par-
ticular search path involves initially moving away from a solution state
(according to the criteria measured by our heuristic) but then swings
back and leads to a solution more quickly than other search paths.

To make this clear, consider the following spatial analogy. Suppose I
am in the rainforest at an elevation of roughly 100 metres and I want to
get down to the beach which I know to be roughly to my east. There are
two paths I can see, one of which seems to head north-east and the other
of which leads south-east. I can’t see much of either path through the
trees but what I can see is that the north-east path seems to lead gently

 119

Figure 11.5 Hill climbing search.

downwards, whereas the south-east path involves initially climbing a
small rise. My goal is at sea level and I want to expend as little effort as
possible so I take the north-east path. It turns out, however that the
north-east path is meandering and involves climbing many rises along
the way. The south-east path though, after cresting the initial rise,
descends quickly to the beach, dropping in elevation all the way.

In the scenario described, a hill climbing search causes me to miss
the quickest search path to the solution, as that path appeared initially
disadvantageous. One way to accommodate such situations is to do a
best first search.

A best first search is just like a hill climbing search save that our
choice of nodes to move to is not restricted solely to immediate
descendant nodes. We also keep a record of the heuristic values of all
the nodes we have searched so far and we choose from among the col-
lection of immediate descendent nodes and these other nodes.

This means that if, during a search, we reach a node where all the
immediate descendant nodes are rated by our heuristic as further
from our solution than a node we searched earlier, we can go back up
the tree and search from the better rated node next.

As with hill climbing, best first search involves taking the path of
least resistance. The difference is just that we expand our available
choices from any given node – we no longer require that search paths
always lead down a branch to the next iteration.

Figure 11.6 shows how the same tree from Figure 11.5 would be
searched according to a best first search.

120

Figure 11.6 Best first search.

As we can see, using best first search allows us to discover, in this
case, a shorter derivation for our solution state – we find a solution
node at a prior iteration.

Best first search is clearly the most efficient search procedure we
have examined. It should be clear, however, that it is also the most
computationally expensive per node. Not only do we have to apply a
heuristic function to nodes, but we also need the memory space in
which to record the values of all the nodes we have searched so far.
As the complexity of the tree increases, this computational expense
can become significant. It is still the case, though, that the computa-
tional savings in terms of the number of nodes we need to search far
outweigh the computational cost the heuristic procedure incurs.

There is a lot more for us to say about heuristics, so in the following
chapter we are going to examine how me might employ heuristic
search for a classical artificial intelligence application – playing
games.

 121

C H A P T E R 1 2

GAMES

Now that we have a basic understanding of search procedures and
heuristic functions, it is time to apply this understanding in consider-
ation of automated methods of game play.

This provides us with an entry point to a broader examination of
how we might employ formal systems to enact functions which are
taken to be constitutive of intelligence.

We are also going to compare these formal methods for game play
to our reflective understanding of how humans play such games,
before moving on in the following chapters to a more detailed and
informed such comparison with respect to the cognitive functions
implicated in reasoning and language.

12.1 A SIMPLE GAME

If a game is sufficiently simple, we can very easily automate a proced-
ure for playing it. It is fairly trivial, for instance, to determine an algo-
rithm for playing tic-tac-toe such that following the algorithm will
always result in either a win or a draw.

In such cases, all we need do is construct the generation tree for the
game, then work backwards from the terminal nodes to determine a
strategy.

For instance, suppose we have a game that is played as
follows. First an initial position is chosen. From that position, and
each subsequent position, there are exactly three ways in which a
player might move. Players flip a coin to determine who begins,
then the first player makes a move, the second player makes a
move and the first player makes a final move. After these three
moves, the game ends in a position which is a clear win for one of
the players.

The generation tree for this game is easily constructed. It will have
three iterations and a branching factor of three, so there will be

122

twenty-seven terminal nodes, each of which is discernible as a win for
one player (white) or the other (black).

The generation tree depicted in Figure 12.1 assumes we have
chosen an initial position for the game and assigns to each terminal
node the player for whom it is a winning position. We needn’t know
the particulars of the game or its play – its form is all we’re concerned
with here. I’ve merely stipulated which nodes are wins for which
player for illustrative purposes.

With the information depicted in Figure 12.1, we can work our way
back up the tree and determine who the chosen initial position will be
a win for.

Let’s suppose, for instance, that white wins the toss and is to make
the first move. That means that on the last iteration before the termi-
nal nodes, it is white’s move. A node at that iteration will count as a
win for white – given that it is white’s move – if there is at least one
descendant node which results in a win for white, otherwise it will
count as a win for black.

In other words, if white can move to a winning position and it is
white’s turn, then the position is already a winning position for white.
If, however, the only available moves are to positions which are
winning positions for black, then the position is already a winning
position for black.

Similarly, at the previous iteration it will be black’s turn. A node at
that iteration will count as a win for black if there is at least one
descendant node which counts as a win for black, and will count as a
win for white otherwise.

Figure 12.2 applies this procedure to the tree depicted in Figure
12.1 and demonstrates that if white wins the toss, white has a winning
strategy available. This is not, however, to say that white will win the

 123

Figure 12.1 A simple game.

game – after all, a human player may well make a mistake. It is merely
to say that there is an algorithmic winning strategy available to white.

Exercise 12.1

Assume that black wins the toss and complete the generation
tree depicted in Figure 12.1 according to the procedure we
have described. Is there a winning strategy available to black
from this initial combination if black is to move first?

The solution to Exercise 12.1 demonstrates that for the game
described, and given the initial position which results in the assign-
ment of terminal nodes as depicted in Figure 12.1, the player who wins
the toss has a winning strategy available to them. This may not be the
case for other initial positions of the game but it is a deliberate feature
of the example assignments of winning players to terminal nodes.

Exercise 12.2 (Challenge)

Consider the generation tree for tic-tac-toe. Assume that all
nodes representing winning positions are terminal.

(a) How many nodes are there at the first iteration?
(b) At which iteration are terminal nodes first generated?
(c) How many nodes are there on the tree in total?
(d) How many terminal nodes does the tree contain?
(e) How many of these nodes represent winning states for

either player?

While this procedure of working backwards from terminal nodes is
efficient in delivering winning strategies, its application is limited to

124

Figure 12.2 Winning strategy for white.

only the simplest of games. As we saw in the last chapter, the genera-
tion trees for more interesting and complex games tend to grow
exponentially, rendering a procedure such as this computationally
untenable.

To determine methods of searching for winning strategies in games
such as chess, we will need to employ heuristics.

12.2 MINIMAX

We saw in section 11.3 that we can apply a heuristic function to a node
which evaluates, according to criteria relevant to the system, the
closeness to solution of that node. In the context of a two-player
game, the states which will count as solution states are those repre-
senting wins for (an arbitrary) one of the players. In this case, the fur-
thest a game could be from a solution state would be a state
representing a win for the other player.

Consequently, our heuristic values will represent how a game state
stands with respect to a possible win for either player. For the sake of
example, lets stipulate that lower numbers will represent closeness to
a win for black and higher numbers will represent closeness to a win
for white.

So unlike the example we saw in section 11.3 – in which the root
node was as far from solution as possible – the root node for a two-
player game will take a heuristic value exactly in the middle of the
range (presuming the initial position is not prejudiced towards either
player).

Heuristic functions evaluate nodes based on certain internal fea-
tures of the state represented at the node. So, for example, in chess we
can take account of material advantage, dominance of the centre and
advancement of certain pieces in order to generate a value which rep-
resents the goodness of that state for each player. Even a very good
heuristic function, however, is limited in only considering features
internal to the state.

Contrast this with the procedure we considered in the previous
section. Using information about states generated at further iter-
ations to evaluate prior nodes is a procedure which considers features
external to states.

We can greatly increase the accuracy of a method for determining
strategies in complex games by using a combination of internal and
external features as a guide. In other words, we can combine the use
of a heuristic function with a method for working backwards from
evaluated nodes to determine a value for prior nodes.

 125

We’ve seen that we can’t feasibly construct the entire generation
tree for chess. What we can do, however, is search ahead just a few
moves and apply a heuristic function to the nodes which are at the
search horizon. We can then use a minimax procedure to work back-
wards from the search horizon to determine a value for the node we’re
evaluating.

Given our earlier stipulation that lower heuristic values will repre-
sent closeness to a win for black, black will be a minimiser and white
will be a maximiser. In other words, black will always be seeking to
move to states which have lower heuristic values, and white will seek
to move to states with higher values.

Let’s make a minor modification to the simple game we described
in the previous section, such that the game no longer always results in
a clear win for one player at the end of three turns. Now let’s suppose
that we select an initial position and draw up the generation tree for
only the first three moves, then apply a heuristic function to get the
values depicted at the horizon nodes in Figure 12.3.

Using the heuristic values at the horizon nodes, we can apply a
minimax procedure to determine a value for the selected initial pos-
ition, as follows.

Assume white wins the toss, in which case at the iteration immedi-
ately prior to the search horizon it is white’s turn to move. White is a
maximiser so the value of a node at that iteration will be the maximum
of the values of the immediate descendant nodes.

At the iteration immediately prior to that, it is black’s turn to move.
Black is a minimiser so the value of a node at that iteration will be the
minimum of the values of the immediate descendant nodes.

Using this procedure, we work backwards from the horizon nodes
to determine the value of the root node, as Figure 12.4 depicts.

126

Figure 12.3 Minimax.

Exercise 12.3

Assume that black wins the toss and – using the same values
for horizon nodes depicted in Figure 12.3 – employ a
minimax procedure to determine the value of the initial
position.

12.3 PRUNING

We now have the makings of a procedure for searching for strategies
for playing a game as complex as chess. We search as far ahead as is
computationally tenable, apply a heuristic function to the nodes at the
search horizon, then use a minimax procedure to work back to the
node we are searching from.

This procedure, however, still suffers from combinatorial explo-
sion. Fortunately, there are further ways to maximise the efficiency of
our computational resources by cutting down the amount of search-
ing we have to do, or pruning the search tree.

One such method involves using what we have already discovered
in a search to determine that we can disregard certain branches. The
tree fragment depicted in Figure 12.5 shows a (greatly simplified) situ-
ation in which this is possible.

Given that black is a minimiser, we know that the value of node b
will be 3. We also know that the value of node c will be at most 2.
Consequently, we already know that the value of node a will be 3
(since white is a maximiser) regardless of the value of the node
marked with a question mark.

Certainly this is a trivial pruning in the example case. However, it
should be clear that the principle will extend to significantly more

 127

Figure 12.4 Winning strategy for white.

complex cases and may allow us to disregard large parts of a search
tree, based on what we have antecedently discovered.

Another method for pruning is to find guiding principles which tell
us to simply not bother considering certain moves. It is often the case
with complex games that there will be certain legal moves available
from a given state that no one playing well would actually make, or
that no one would be at all likely to make. If we are informed with
respect to the unlikelihood of these moves obtaining, we can disre-
gard the branches of the search tree descending from those nodes.

A further pruning method involves playing out certain sequences
of moves from memory, without engaging in any search. In fact, this
is precisely how computers typically play chess openings. They have
access to a large database of standard openings and variations and
play the initial moves from a predetermined sequence.

The more we are able to prune the search tree, the more effectively
our computational resources will be deployed. Consequently, in order
to program a machine to play a complex game well, we will need to
employ the best heuristics we can devise, in conjunction with various
methods for simplifying the search task.

12.4 HUMANS VERSUS COMPUTERS

We have now given some consideration to an activity which is gener-
ally taken as constitutive of intelligence – the ability to (at least learn
to) play well a complex game such as chess. We’ve seen – at least in
broad strokes – how to employ symbol systems and search methods
to automate the strategic play of such games.

In the case of chess, this involves a large database of opening
strategies, an optimised heuristic function for evaluating game states,
various principles for disregarding unlikely moves, and the deploy-
ment of significant computational resources to evaluate a very large
number of states per second. As I write this, the machines which are

128

Figure 12.5 Pruning the tree.

used to challenge chess grandmasters are able to evaluate around two
hundred million states per second.

Let’s compare what we’ve learned about automated chess play to
what we intuitively know about human chess play.

For starters, humans – at least those who play very well – also mem-
orise large numbers of opening strategies and variations thereof. For
seconds, humans are also very good at determining which moves are
unlikely to be made by an opponent playing well. Those humans who
are very experienced at chess also have a very good sense of how good
a particular game state is for them.

It seems then that there is a good fit between what we know of
automated chess play and what we can intuit concerning the play of
accomplished humans. There are, however, important distinctions
between the two, the most obvious of these being the sheer quantity
of search and evaluation carried out by chess computers.

It is clear that chess grandmasters do not explicitly apply a heuris-
tic function to some two hundred million states per second in order
to evaluate the goodness of the current game state and determine a
strategy. We need to be very careful here, however, as we might be
tempted to countenance a very poor argument against computation-
alism in light of this.

The very poor argument runs as follows. Computers need to search
two hundred million states per second in order to match the best
human players. These human players, however, clearly do not. So
human players are not enacting formal systems in playing chess.
Therefore computationalism is false, since there is at least one cogni-
tive task whose function cannot be accounted for in terms of the
operations of formal systems.

There are a number of reasons why this argument is bad. The most
telling criticism of it is that there is a distinction between human per-
formance and our best attempts at recreating it.

It may well be the case – and will be if computationalism is true –
that human players do actually employ these methods. It is just that
humans have very good guiding principles that allow them to engage
in significantly less search to determine winning strategies. The fact
that these human players are unable to make explicit the principles
they are guided by does not speak against the possibility that their
cognitive functions are to be accounted for in terms of the opera-
tions of formal systems. After all, much of our mental life is opaque
to introspection. It merely speaks against the best results of our
empirical investigation in seeking to determine the operations of
these systems.

 129

Another criticism of the argument against computationalism is
that it equivocates between the cognitive functions we explicitly and
consciously engage in and cognitive function per se. To say that a
grandmaster does not explicitly consider two hundred million states
per second is not equivalent to saying that their cognitive processes of
evaluation are not implicitly tantamount to consideration of such a
number of states. Relying on a claim of the latter when only the
former is demonstrable is an equivocation which begs the question
against the computationalist.

While we clearly need to be careful about the conclusions we draw
from perceived distinctions between computer chess play and human
chess play, there are yet further differences that are worth mention-
ing.

For one thing, the minimax procedure assumes that one’s opponent
will always make the move which is optimal for them. Very often,
however, it will be the case that a human player will make a sub-optimal
move. It may be the case that they fail to recognise the optimal move,
or it may be the case that they deliberately play a sub-optimal move to
try to force their opponent into following a particularly strategy.

A computer may well, of course, also make a sub-optimal move,
simply through failure to correctly evaluate. Deliberately making a
sub-optimal move to achieve an effect in one’s opponent’s strategy is,
however, another thing entirely.

In order to actively seek to influence the strategy of one’s opponent
by making an unusual move, one requires an understanding of how
one’s opponent thinks about the game. In other words, one requires
some appreciation of how one’s opponent is likely to move given
certain circumstances. The best way to discern this is to play as much
as possible against the opponent in question.

During computer versus human tournament play, it is generally
allowed for the programmers to modify the computer program
between games in order to counter strategies deployed by the human
player. It is important to note that where the computer requires
human intervention to be able to respond to the idiosyncrasies of a
given player’s strategy, rapid responsive adaptiveness to peculiarity
seems to be something that humans naturally excel at. This leads us
to the final point of distinction between human and computer game
play we’ll consider here.

Consider the fact that the principles which guide human evalua-
tion of chess states are sufficiently superior to those employed by a
computer as to require significantly less explicit evaluation of descen-
dant states in order to play comparably well. Consider also the rapid

130

responsiveness to the idiosyncrasies of a given player’s strategy which
is evidenced by human players but not computers.

It appears that there is something subserving both these abilities
which humans are very good at but which hasn’t been mentioned at all
in this discussion of machine game play. Humans excel at extracting
patterns from environmental stimulus and recognising when these
patterns obtain again, even when they only partially obtain, or when
there is some variation in the pattern.

This is an important insight and one which we will return to discuss
at great length in Chapter 19. For the moment, note that this is not
ipso facto an argument against computationalism, but it does place an
explanatory burden on the computationalist – the burden being to
give a computational account of this cognitive capacity.

Now that we have compared, at least in rudimentary fashion, the way
humans play complex games with the way computers can be pro-
grammed to play these games, it is time to turn our attention to the
human rational and linguistic capacities.

 131

C H A P T E R 1 3

MACHINE REASONING

In this chapter we are going to begin to investigate the rational cap-
acity – the ability to reason. A thorough survey of automated rea-
soning methods would require dedicated volumes. We’re going to
concentrate on one kind of automated reasoning project which suits
our purposes well – the design of expert systems.

We’re going to see how we might recreate, with the use of formal
systems, the reasoning processes of a human expert in a particular
domain.

Before we do so, we will first need to make clear some concepts and
terminology involved in the study of logic.

13.1 LOGIC AND DEDUCTION

The first thing to appreciate is that there is a distinction between logic
and logics. Logic is a research tradition whose objects of investigation
are logics. These logics are formal systems and there are very many of
them.

The aim of logics is to formally encode relations of entailment or
logical consequence. In other words, logics are formal systems which
provide methods for determining what follows from what as a matter
of logical form.

Another important point is that, like all formal systems, logics are
concerned only with formal properties. While it is the case that elem-
ents of logics are interpretable as meaning something, issues of
meaning never have any bearing on determinations of logical conse-
quences. In other words, whether or not something follows logically
from some other things is entirely a question of their respective logical
forms. The relevance of this will become apparent in exercises later in
this chapter.

I don’t expect you to yet have an understanding of precisely what
logical form is or how to discern logical forms. I don’t intend this to

132

be a fully fledged introduction to logic so I’ll reserve further discus-
sion concerning this for the next section where we’ll see some simple
examples.

Given that logics are formal systems, you should be wondering
what the states are and what the rules are. For our purposes, states can
be thought of as sets of statements. Rules of logics are such that given
an input state containing some statements of a certain form, we can
derive new statements of a certain form to add to the output state.

This process of applying logical rules to sets of statements to gen-
erate novel statements is the process of deduction.

While we will be concentrating on deduction in this chapter, it is
important to realise that there are other distinct kinds of reasoning.
We’ll revisit this issue at length in Chapter 15 and again in Chapter 19
but for the moment let’s just briefly consider the distinction between
deduction and induction.

Induction is the form of reasoning employed by empirical science.
Inductive proof is rather a different thing from deductive proof. A
deductive proof is a demonstration – of the kind we will see in the fol-
lowing section – that certain statement forms can be derived from
other statement forms according to certain logical rules. A typical
inductive proof, on the other hand, is a display of amassed observa-
tions, made under certain conditions, in support of the claim that
future such conditions will yield the same observations.

It is a feature of deductive proofs that they are unrevisable. There
is nothing that can be added to a deductive proof such that it will, in
light of the addition, fail to yield its original conclusion. Inductive
proof, on the other hand, is essentially revisable. Inductive proofs
only establish their conclusions with a certain degree of probability
and are only ever one countervailing observation away from failing to
deliver their purported conclusions.

Although I’ve only given a rough sketch of inductive reasoning
here, I’ve illustrated the distinction with deductive reasoning for two
reasons: firstly, in order that you appreciate that there are legitimate
and established kinds of reasoning which are distinct from deduction;
secondly, so that you realise that the word ‘proof’ means something
quite different in the mouths of scientists to what it does in the
mouths of logicians or mathematicians. When you hear that scientists
have ‘proven’ something or that ‘studies have shown’ something, it
pays to realise that the very thing proved or shown may be revised and
disproved in light of subsequent investigation.

There is a lot more to be said about scientific reasoning and I cer-
tainly wouldn’t want to be charged with having given only a caricature

 133

of scientific process so, once again I refer you to the suggestions for
further reading.

Before we proceed to examine expert systems, we will need to develop
a little bit of terminology concerning conditionals and predicates.

13.2 CONDITIONALITY AND PREDICATION

Natural language conditionals are statements of the form ‘if . . .
then . . .’. The study of conditionals, and the determination of an
adequate formal account thereof, is of central importance to logic.
Many logics are distinguished solely by virtue of their treatment of
the conditional.

We can represent conditionals by using an arrow. The statement ‘if
today is Monday then tomorrow is Tuesday’ can be represented as
follows:

today is Monday → tomorrow is Tuesday

The left-hand side of a conditional – which represents the bit
between ‘if ’ and ‘then’ – is the antecedent of the conditional. The
right-hand side – the bit which comes after ‘then’ – is the consequent
of the conditional.

If the antecedent of a conditional is satisfied then we can derive the
consequent according to a simple logical principle. So, if it is actually
the case that today is Monday, we can – given the above conditional –
deduce that tomorrow is Tuesday. This logical principle is known as
modus ponens and can be symbolised as follows:

� → �
�

� �

The logical principle of modus ponens – which tells us that given a con-
ditional with a satisfied antecedent we can deduce its consequent – is
the only logical principle we will be appealing to in our examination
of expert systems.

The last thing to do before looking at an example expert system is
to discuss predicates and logical forms.

Consider the following two statements. If something is a dog then
it is a mammal. If something is a mammal then it has a heart. One
way to represent these statements would be as follows:

something is a dog → that thing is a mammal
something is a mammal → that thing has a heart

134

However, we can do better than that. Notice that in each antecedent
and consequent, a property is applied to – or predicated of – a thing.
Note also that in each conditional, it is the same thing referred to in
both the antecedent and the consequent.

If we take ‘dog’ to represent the property of being a dog, ‘mammal’
to represent the property of being a mammal, and ‘heart’ to represent
the property of having a heart, we can recast the above conditionals
to capture the fact they are applying properties to the same thing in
their antecedents and consequents:

dog (x) → mammal (x)
mammal (x) → heart (x)

These conditionals are as close to logical form as we require for the
purposes of this chapter. The symbols ‘dog’, ‘mammal’ and ‘heart’ –
which could, of course, be substituted uniformly for any other symbol
we choose – represent predicates. For our purposes, predicates can be
understood as encoding properties and relations.

The symbol x in the above conditionals is a variable – as you have
no doubt discerned. We will say that the antecedent of one of these
conditionals is satisfied if we have a statement which has the same
logical form.

Statements, for our purposes, apply predicates to names (not vari-
ables). So if, for instance, we know that Mia is a dog, we can represent
this by using the symbol m as a name for Mia, as follows:

dog (m).

We can now use the two conditionals we have symbolically repre-
sented to do some simple deduction. The statement – dog (m) –
is of the same logical form as the antecedent of our first condi-
tional. This means that the antecedent of the conditional is satisfied
so we can deduce the consequent, namely mammal (m). We now
have a statement which satisfies the antecedent of the second con-
ditional, so we can deduce its consequent and derive heart (m).
Given that we know that ‘heart’ represents the property of having
a heart and that m is a name for Mia, we have just deduced that
Mia has a heart.

We can represent this deduction symbolically, as follows:

dog (m)
dog (x) → mammal (x)

� mammal (m)

 135

mammal (x) → heart (x)

� heart (m)

Exercise 13.1

(a) If something is a woman, then that thing is human. If
something is human, then that thing is mortal. Represent
this symbolically.

(b) Sue is a woman. Give a symbolic representation of the
deduction you can make from this, given the conditionals
you represented in (a).

The predicates we have seen so far have been one-place or monadic
predicates. We will also want to use, in our example expert system,
predicates which attribute relations between two names.

Consider the relation expressed in the statement ‘Mia is older than
Linus’. The relation ‘older than’ is asserted to hold between two
things which we can name m and l, allowing the following symbolic
representation:

older_than (m , l)

Note that the order of names in two-place predicates is important.
The following statement is interpreted as saying that Linus is older
than Mia.

older_than (l , m)

We can use the symbolism we have developed so far to encode some-
thing that we know – as a matter of common-sense knowledge –
about the relation ‘older than’, as follows:

older_than (x , y) & older_than (y , z) → older_than (x , z)

The ampersand (&) in the above simply stands, as you might expect,
for ‘and’, the logical operation of conjunction. We say that the condi-
tional represented above has a conjunctive antecedent. The symbols x,
y and z are variables, not names.

The above conditional tells us that if x is older than y and y is older
than z, then x is older than z. This is something that anyone who
understands the meaning of ‘older than’ implicitly understands.
In logical terms, it tells us that the symbol ‘older_than’ represents a
transitive relation.

136

Exercise 13.2

(a) What other relations can you think of which are
transitive?

(b) A symmetrical relation is one such that if x bears the
relation to y then y also bears the relation to x. What
symmetrical relations can you think of?

(c) Use the symbolism we have developed to represent that a
particular relation is symmetrical.

If we know that Mia is older than Linus and we also know that Sue
is older than Mia, then using s as a name for Sue, we can reason as
follows:

older_than (s , m)
older_than (m , l)
older_than (x , y) & older_than (y , z) → older_than (x , z)
__

� older_than (s , l)

The conjunctive antecedent of the conditional is satisfied because
both conjuncts – the statements flanking the ampersand – are satis-
fied, so we have licence to deduce the conclusion by modus ponens,
as before. I’m sure you are quite able to discern what it is we have
proven.

This is all the terminology and symbolism we require to develop an
expert system.

13.3 KINSHIP

If you were able to follow the example deductions in the previous
section, then you already grasp the important aspects of the oper-
ations of expert systems. In fact, the example cases used to introduce
predicate notation were actually themselves miniscule expert systems.

Expert systems are formal systems which aim to encode the infor-
mation that a relevant human expert knows about a particular
domain of knowledge and to reproduce their deductive processes
given this information and some novel input. Our example expert
system is going to encode information concerning kinship relations.

The resident information of an expert system is specified in terms
of a number of conditionals. This resident information serves as the
rules of the expert system.

While we will be appealing to a logical principle – modus ponens –

 137

in applying the rules to make deductions, the rules themselves are not
rules of logic. Rather, the rules of the system are conditionals which
represent the information an expert knows about the relevant domain
of knowledge – in this case kinship. The logical principle will be cap-
tured in the effective procedure for applying the rules.

The resident information of our kinship system is specified as
follows:

grandparent_of (x , y) & male (x) → grandfather (x)
parent (x) & male (x) → father (x)
parent (x) & female (x) → mother (x)
parent_of (x , y) → parent (x)
parent_of (x , y) → child_of (y , x)
parent_of (x , y) & parent_of (y , z) → grandparent_of (x , z)

The states of an expert system are sets of statements. The initial state
of our kinship system will be:

parent_of (j , m)
parent_of (m , h)
male (j)
male (h)
female (m)

The final thing to specify for our kinship system is the effective pro-
cedure for applying rules to states.

1. Starting with the first conditional in the resident information,
check to see if there is a statement in the state which satisfies the
antecedent – i.e. check to see if any of the statements in the state
have the same logical form as the antecedent and differ from it only
in substituting the variable(s) for name(s).

2. If there is a statement which satisfies the antecedent, then add
the consequent to a list of deduced statements (being careful to
substitute the variable(s) in the consequent for the same name(s) as
those in the statement(s) which satisfied the antecedent). Check for
further statements in the state which satisfy the antecedent.

3. Repeat steps 1 and 2 for each conditional in the resident informa-
tion. When this is completed, augment the original state with the
list of deduced statements and output this augmented state. Only
add a statement from the deduced list if it does not already appear
in the state.

4. Begin again with the first conditional and see if the new statements
deduced allow the deduction of further novel statements.

138

5. If a state is such that none of the conditionals in the resident infor-
mation allow the deduction of statements that are not already in
the state, then halt.

Let’s apply this procedure to our initial state and see what we can
derive.

Exercise 13.3

Before reading on, attempt to apply the first three steps of
this procedure to the initial state of our kinship system.

The first conditional in our resident information is:

grandparent_of (x , y) & male (x) → grandfather (x)

We don’t have any statements in our initial state of the form grand-
parent_of (x , y), so we are unable to satisfy the antecedent of this
conditional. We can satisfy one of the conjuncts as we do have state-
ments of the form male (x), but we need to satisfy both conjuncts to
satisfy the conjunctive antecedent.

The next two conditionals in our resident information are:

parent (x) & male (x) → father (x)
parent (x) & female (x) → mother (x)

Once again, we don’t have any statements of the form parent (x), so
we can’t satisfy the antecedents of either of these conditionals.

Do be careful here, for while we do know that parent_of (j , m),
and we know – as a matter of common sense – that if someone is a
parent of someone else they are ipso facto a parent, we can’t just
assume ‘parent (j)’. The symbols ‘parent’ and ‘parent_of’ are just
that – symbols. We have used symbols that are meaningful to us but
as far as the operations of the system are concerned, any relations
between the predicates that symbols represent need to be encoded
explicitly in the rules. This is precisely what the next conditional
does.

The fourth conditional in our resident information is:

parent_of (x , y) → parent (x)

We do have a statement in the initial state which satisfies the
antecedent of this conditional – parent_of (j , m) – so we can add the
consequent (being careful to substitute the correct name for the vari-
able) to our list of deduced statements – namely parent (j).

 139

We also have another statement in the initial state which satisfies
the antecedent of the same conditional – parent_of (m , h) – so we can
also add parent (m) to our list of deduced statements.

The fifth conditional in our resident information is

parent_of (x , y) → child_of (y , x)

We have two statements in the initial state which satisfy the ante-
cedent of this conditional – parent_of (j , m) and parent_of (m, h) –
so we can add child_of (m , j) and child_of (h , m) to our list of
deduced statements.

The final conditional in our resident information is:

parent_of (x , y) & parent_of (y , z) → grandparent_of (x , z)

We need to be careful here – the name which we substitute for y in the
first conjunct of the antecedent must be the same name which we sub-
stitute for y in the second conjunct. As it turns out, we do have state-
ments which satisfy the antecedent of this conditional – parent_of
(j, m) and parent_of (m , h) – which allows us to deduce grandpar-
ent_of (j , h).

We have now considered each of the conditionals in the resident
information and have deduced five new statements:

parent (j)
parent (m)
child_of (m , j)
child_of (h , m)
grandparent_of (j , h)

So we add the list of deduced statements to our initial state (checking
to make sure none of them are redundant) to get the following state:

parent_of (j , m)
parent_of (m , h)
male (j)
male (h)
female (m)
parent (j)
parent (m)
child_of (m , j)
child_of (h , m)
grandparent_of (j , h)

The next thing to do is to check each of the conditionals again in turn
to see if the new statements in our derived state allow us to deduce
any further novel statements.

140

Exercise 13.4

Before reading on, determine what new statements, if any, can
be deduced on the second pass through the conditionals in the
resident information. What about the third pass?

The second pass through the conditionals in the resident information
will allow us to deduce three novel statements:

grandfather (j)
father (j)
mother (m)

A third pass generates only redundant statements – statements which
are already in our generated state – so we halt.

Exercise 13.5 (Challenge)

Augment the initial state of our kinship system with the
statements:

parent_of (m , j)
female (j)
diff (j , h)
diff (m , h)

and add the following conditionals to the resident
information:

parent_of (x , y) & parent_of (x , z) & diff (y , z) → siblings
(y , z)
siblings (x , y) & male (x) → brother (x)
siblings (x , y) & female (x) → sister (x)
siblings (x , y) → siblings (y , x)

Apply the rules to generate all the statements you can. Do
things appear a little strange? Why?

13.4 EXPERT SYSTEMS

The example expert system of the previous section is greatly simpli-
fied but, nonetheless, it is clear that it is able to capture the deductive
process that we engage in when reasoning about kinship relations.

 141

It may seem cumbersome and artificial compared to our thought
processes but this is only because the kind of reasoning we do when
told that someone is a female parent is rapid and automatic. We don’t
need to explicitly apply a rule to determine that the person in ques-
tion is a mother – this is simply something we automatically under-
stand when we understand that they are a female parent. This doesn’t,
however, speak against the claim that this implicit understanding is
governed by just such methods.

In fact, if you are asked to determine what relation to you your
mother’s sister’s daughter’s husband is, you are likely to have to think
more explicitly about the kinship relations involved, following rules
very much like the ones we encoded in the previous section.

Interesting expert systems are, of course, considerably more
complex than our example. Our kinship system has very little resident
information and appeals to only one logical principle – modus ponens.
More complicated expert systems will involve considerably more resi-
dent information and will appeal to numerous logical principles in
applying rules.

Consequently, we will often want to generate a bottom-up search
to determine whether or not a particular statement is included in any
generated state. In such cases we begin with just the statement we are
interested in deriving and work backwards through the rules, consid-
ering not entire states but, rather, just those statements which must be
included in a state in order for us to have derived the statement(s) at
the previous iteration. If a statement at a node is included in the initial
state, then we can strike it off at the next iteration. If we get to a node
where nothing needs to be included in the state to prove the statement
at the previous iteration – i.e. the statement(s) we did need to gener-
ate the state we are interested in have been shown to be included in the
initial state – then the search ends in success.

Figure 13.1 demonstrates a bottom-up search for the state father
(j) in our kinship system. At the first iteration, we work backwards
through the available rules to determine that the only way to generate
father (j) is if we have parent (j) and male (j).

At the second iteration, there are three branches, representing the
three statements which would allow us to generate parent (j). The left-
hand and right-hand branches end in failure since neither parent_of
(j , j) nor parent_of (j , h) are in the initial state and there is no rule
which allows us to generate parent_of statements.

The middle branch continues since we have parent_of (j , m) in the
initial state so we discharge this statement at the next descendant
node, leaving only male (j) to prove. At the next iteration we discharge

142

this last statement as it too is in our initial state, leaving nothing (the
empty set) to prove. So a search path down the middle branch ends in
success and we read the derivation off by following the branch back
up to the root node.

Exercise 13.6

Generate a bottom-up search in our kinship system for the
states:
(a) mother (m);
(b) grandfather (j).

Expert systems can be usefully deployed in weak artificial intelligence
projects. One such well known system is MYCIN which was developed
in the 1970s at Stanford. MYCIN can make probabilistic diagnoses of
pathologies and recommend medication based on the results of blood
tests. Its resident information encodes heuristic procedures followed
by medical doctors in making rough and ready diagnoses in the
absence of developed cultures. Its rule application procedure appeals
to probabilistic reasoning principles so it is able to suggest a number
of possible diagnoses with a certainty factor attached to each.

More interestingly for our purposes, there are some who hold
out hope that expert systems alone can give rise to strong artificial

 143

Figure 13.1 Bottom-up search.

father (j)

parent (j), male (j)

parent_of (j, j), male (j) parent_of (j,m), male (j) parent_of (j,h), male (j)

male (j)

intelligence. The Cyc project, founded by Douglas Lenat and devel-
oped under the auspices of the private research institution Cycorp,
aims at precisely this. The conviction held by Cyc researchers is that
if they can encode – in the resident information of the system – all (or
much of) the information that you and I take to be common know-
ledge, and develop a sufficiently sophisticated inference engine for
making deductions, they will thereby develop a strong artificial intel-
ligence artefact.

Whether or not expert systems methods are sufficient for artificial
intelligence remains an open empirical question. There are reasons,
however, to believe that there may be problems with this approach.
Some of these we will consider in Chapter 15 and some in Chapter 19.
In defence of the Cyc project, however, it appears – from what I can
gather of their operations – that they are responsive to at least some
of these concerns and are augmenting the traditional expert system
model accordingly.

Perhaps the most significant and difficult computational problem
which needs to be solved on the way to true artificial intelligence is the
problem of interpreting and producing natural language. It is to this
issue that we turn our attention in the next chapter.

144

C H A P T E R 1 4

MACHINES AND LANGUAGE

Devising computational procedures for handling natural language is
arguably the most significant problem facing artificial intelligence
researchers. In this chapter we’re going to begin by considering the
various computational problems which need to be solved in order to
facilitate this.

As is the case with machine reasoning, a comprehensive survey of
computational methods for facilitating linguistic interpretation and
production would require dedicated volumes. We’re going to concen-
trate here on just one of these methods, in service of one of the functions
constitutive of linguistic competence – determining grammaticality.

We will lend further consideration to the procedures governing lin-
guistic activity in Chapter 16 and will return to examine comput-
ational methods for implementing further functions subserving the
linguistic facility in Chapter 19.

14.1 INTERPRETING LANGUAGE

Let’s reflect on the various procedures involved in the comprehension
of a spoken utterance.

Spoken language is generally delivered in a continuous phonetic
stream which does not readily reveal its linguistic properties. While it
might seem that individual words are easily discernible from phonetic
properties of an utterance alone, this is generally not the case unless
one is speaking – very – slowly – and – carefully. This is clear if you
look at a visualisation of a waveform of a recorded utterance.
Furthermore, the absolute phonetic properties of an utterance – such
as pitch and volume – will differ significantly from speaker to speaker.
Interpreting a spoken utterance is a non-trivial function – in fact it is
quite a complex procedure.

There are several tasks that mediate the interpretation of audi-
tory input as a sentence of natural language. One of these tasks

145

involves converting the phonetic input to a phonemic representa-
tion.

Phonemes are the atomic meaningful speech sounds of which a
spoken language is constituted. We will learn a lot more about
phonemes in Chapter 16 but for now a rough description will serve.

Phonemes are idealisations to which actual speech sounds –
phones – approximate and which represent distinctive contrasts in a
particular language. The initial sound in the word ‘pat’ and the initial
sound in the word ‘bat’ are two phonemes which differ only in terms
of voicing. The phoneme /p/ is not voiced but /b/ is. This means that
when you produce the phoneme /b/ your vocal chords vibrate but
when you produce /p/ air merely passes noiselessly through. Try
putting your fingers on your voice box as you pronounce ‘pat’ and
‘bat’ and you should be able to tell the difference in voicing. We can
tell from the fact that ‘pat’ and ‘bat’ mean different things that voicing
is a distinctive contrast in English and that /p/ and /b/ are distinct
phonemes.

This is a very rough and ready account of phonemes but for present
purposes we merely need to appreciate that one of the mediating tasks
in interpreting a spoken utterance involves determining, from the
phonetic properties of the utterance, a representation of the distinct-
ively contrasting sound units which are meaningful in the language
uttered.

Another mediating task involves parsing the phonemic representa-
tion into a syntactic structure. In other words, we need to determine
how the string of meaningful speech sounds breaks up into words,
phrases, clauses and sentences. Finally, we need to work out what
these words, phrases and clauses mean.

So in all, there are three distinct levels of representation implicated
in understanding an utterance – phonemic representations, syntactic
representations and semantic representations.

Producing an utterance involves these same three representational
transformations. We intend a particular meaning, determine the syn-
tactic structure which encodes that meaning, convert the syntactic rep-
resentation to a phonemic representation and finally produce phonetic
output for each phoneme. This production of phonetic output is gov-
erned by the phonemic environment in which a phoneme is situated –
a feature of language production we will examine in Chapter 16.

Although the sequential manner in which I’ve enumerated these
transformational stages might lead you to think that each stage of
processing occurs separately and in sequence, there is good evidence
to suppose that all three occur in concert.

146

For instance, it seems that the determination of syntactic structure
is influenced by expectations governed by the semantic representation
we are constructing as we syntactically parse an utterance. To make
this clear, consider the following three sentences.

[1] The horse raced past the barn.
[2] The horse raced past the barn yesterday.
[3] The horse raced past the barn fell.

Sentence [1] fits the prototypical syntactic pattern of an English sen-
tence – it is composed of a noun phrase followed immediately by a
verb phrase which consists of a transitive verb and its complement.
Sentence [2] also fits this pattern – it merely adds an adjunct after the
verb phrase.

Sentence [3], on the other hand, presents initially as unusual and
potentially ungrammatical. We hear a noun phrase ‘the horse’ fol-
lowed immediately by what we take to be the main verb of the sen-
tence – ‘raced’ – and expect the remainder of the sentence (or at least
the clause) to consist of the complement of the verb (past the barn /
in the three o’clock at Flemington) and possibly one or more adjuncts
(rather quickly / last Tuesday).

Consequently, when ‘past the barn’ is followed by the verb ‘fell’ we
are taken aback as we were expecting maybe an adjunct but not
another verb. We had already determined a semantic representation
for the sentence up until that point but the presence of the final verb
shows us that either we were wrong about the meaning (in thinking it
was the meaning of [1]) or that the sentence is ungrammatical.

In other words, the meaning we construct as we interpret the sen-
tence – in combination with what we implicitly know about the syntax
of typical English sentences – conditions our expectations of syntac-
tic structure. We assume the most likely syntactic structure and con-
struct our semantic representation accordingly, which then influences
our expectations of the remaining syntax.

It can, in fact, be quite difficult to get past the seeming ungram-
maticality of [3] until we realise that the sentence doesn’t have the
typical syntactic structure we initially assumed. The verb ‘fell’ is the
main verb of [3] and ‘raced past the barn’ merely indicates which horse
it was that fell – the one which was raced past the barn. Note that we
can substitute ‘painted purple stripes’ for ‘raced past the barn’ to
achieve a similar effect, although the effect will be weaker as we are
less likely to assume the horse to be the painting agent than the racing
agent. If, however, we substitute ‘running quickly’ or ‘belonging to
Anne’ for ‘raced past the barn’, the sentence becomes unambiguous.

 147

Sentences with ambiguous syntax provide us with evidence that the
construction of semantic representations and syntactic representa-
tions occur in concert and affect each other. Homophonic phrases
provide further evidence that parsing phonemic representations into
syntactic elements is influenced by both syntactic and semantic expec-
tations.

Homophones are sequences of phonemes that have more than one
semantic interpretation, such as ‘pair’ and ‘pear’. A special case of
homophony is homonymy. Homonyms are homophones which also
have the same orthographic representation – i.e. they’re written the
same way, such as the verb ‘bank’ and the noun ‘bank’. There are very
many homonyms in English as many words can be interpreted as nouns
or as verbs – e.g. paint, spring, void, power, urge, whisper, sleep, etc.

Homophonic phrases are sequences of phonemes which can be
parsed as more than one distinct syntactic structure. An example
homophonic phrase is the sequence of phonemes which can be inter-
preted as ‘way up high’ or ‘weigh a pie’.

We can interpret a line sung by Judy Garland in The Wizard Of Oz
as either of the following two sentences:

[4] Somewhere, over the rainbow, way up high.
[5] Somewhere, over the rainbow, weigh a pie.

Both of these are perfectly grammatical syntactic constructions – [4]
is a description and [5] is an imperative. Consequently, syntactic con-
siderations alone are not sufficient, in this case, to disambiguate
between the two possible interpretations.

Our semantic interpretation, however, inclines us strongly towards
[4]. The semantic interpretation of ‘Somewhere, over the rainbow’
makes it a much more likely hypothesis that Judy Garland goes on to
further describe this place and ipso facto a much less likely hypothesis
that she is issuing a pie weighing imperative.

In cases such as the following, however, it is not clear if it is syn-
tactic or semantic considerations driving the disambiguation of the
homophonic phrase:

[6] I went the baker’s to weigh a pie
[7] * I went to the baker’s to way up high

Sentence [7] is ungrammatical (as the asterisk indicates) so, in this
instance, syntax alone is sufficient to disambiguate the homophone;
however, it is difficult to separate the syntactic consideration from the
influence of the semantic association. Fortunately, this is not some-
thing we have to rule on here.

148

What I want to concentrate on in the remainder of this chapter is the
fact that we readily and automatically recognise [7] as an ungrammat-
ical sentence. I want to examine how we might employ symbol systems
methods to rule on the grammaticality of strings of written language.

14.2 GENERATIVE GRAMMAR

Noam Chomsky revolutionised the discipline of linguistics in the
1950s by taking a new approach to the study of grammar.

Grammar, before Chomsky, involved little more than taxonomis-
ing parts of speech and enumerating prescriptive principles that stu-
dents of grammar should abide by. For instance, students of the
prescriptive grammarians were told to never split an infinitive.

Chomsky, in contrast, took the grammar of a language to be the
mechanism by which all and only the grammatical strings of the lan-
guage can be generated. Chomsky argued that our internalised know-
ledge of the systematic generative grammar of our language accounts
for the infinite productivity of language.

Language is infinitely productive in that we are able to produce,
and rule on the grammaticality of, an infinite number of sentences,
despite only ever having been exposed to a finite number. As a native
speaker, you can immediately tell that the sentence ‘Michelle’s grand-
mother sells drugs to bikers in Belarus’ is a grammatical sentence of
English, even though it is unlikely that you’ve ever encountered that
particular sentence before.

Formal systems are prime candidates for the mechanisms which
facilitate the productivity of language. We’ve seen how formal
systems can recursively generate an infinite number of states from
finite resources in a rule governed fashion. We’ve also seen how we
can conduct a bottom-up search to determine whether or not a par-
ticular state is generated in a given system. Now we’re going to see
how we might use formal systems to specify the generative grammar
of a language.

The generative grammar for a language is a particular kind of
formal system. It is a symbol system similar to the systems [STR] and
[BIN] from Chapter 7. Some of its symbols – those which will appear
at terminal nodes of its generation tree – can be interpreted as lexical
items (words) of the language. The rest of its symbols can be inter-
preted as grammatical categories, such as ‘sentence’, ‘noun phrase’,
‘adjective’ and so on.

The rules of a generative grammar are rewrite rules, like those of
[STR] and [BIN]. In the system [STR], the rewrite rules were context

 149

dependent – whether or not we could apply a rule to a symbol
depended on surrounding symbols in the state. The system [BIN],
however, had context-free rewrite rules.

A generative grammar has solely context-free rewrite rules which
are such that there is only one symbol on the input side of any rule.
A formal system which meets these criteria is called a phrase structure
grammar.

Given a phrase structure grammar, we can generate all and only the
grammatical strings according to that grammar by constructing phrase
structure trees. A phrase structure tree is just like the generation trees we
have seen so far with one exception. Where in the past nodes have con-
tained states, the nodes of a phrase structure tree each represent only a
single symbol, with its descendant nodes representing the symbol(s)
with which it is rewritten. The grammatical strings given by a grammar
are read off across the terminal nodes of a phrase structure tree.

Let’s construct an example phrase structure grammar to make all
this clearer.

14.3 PHRASE STRUCTURE TREES

We’re going to specify a phrase structure grammar for a fragment of
English. The states of our phrase structure grammar will be finite
strings of those symbols which feature in the rules. The initial state
will be the symbol ‘S’. The rules of the system are as follows.

S → S Con S / NP IVP / NP TVP NP
Con → and / or / but
NP → Det N
Det → the / a
N → Adj N
N → man / woman / kitten / dog
Adj → Adj Adj
Adj → young / happy / cute / silly
IVP → IVP Adv
IVP → runs / eats / plays / smiles
Adv → quickly / nicely / happily
TVP → loves / disgusts / wants
PP → P NP
P → to

We can use this phrase structure grammar to generate grammatical
strings, as represented by the terminal nodes of the phrase structure
trees shown in Figures 14.1, 14.2 and 14.3.

150

 151

Figure 14.1 Phrase structure tree.

Figure 14.2 Phrase structure tree.

14.4 COMPUTING LANGUAGE

Determining the grammaticality of sentences of language according to
a generative grammar is clearly a computational procedure. It should
also be clear that given a phrase structure grammar and an arbitrary
string of its symbols, we can conduct a bottom-up search to determine
whether or not the string is generated by a phrase structure tree.

The example phrase structure grammar we constructed in the pre-
vious section is, of course, greatly simplified and considers only a
small fragment of the lexical items and syntactic structures of
English. Constructing a full generative grammar for a natural lan-
guage involves not just specifying the rules by which phrase structure
trees are constructed, but also specifying the various syntactic trans-
formations on terminal strings of phrase structure trees which
account for the myriad sentences native speakers produce.

This further element of syntactic transformation need not concern
us here. As always, the interested reader can follow the suggestions for
further reading or take an introductory course in generative grammar.
It suffices for our purposes to make the following observations.

It seems that the mechanisms which facilitate grammaticality
judgements in native speakers are computationally implementable.
Given that this is one of the functions implicated in the various

152

Figure 14.3 Phrase structure tree.

representational transformations involved in comprehending an
utterance of natural language, we have made some small progress
towards a computational account of the linguistic facility.

It should be clear to you now, however, just how complicated lin-
guistic behaviour is to account for. Although producing and compre-
hending written and spoken language is so natural to us as to appear
to be the most simple of processes, there are, in fact, a large number
of mediating procedures facilitating linguistic activity.

While we have seen – at least in part – how one of these procedures
might be accounted for in computational terms, there are still numer-
ous mechanisms we are in want of an account for. We will return to
some of these in later chapters. In Chapter 16 we are going to draw
out further evidence that linguistic behaviour is rule governed and,
hence, computationally implementable. In Chapter 19 we are going to
examine how we might model some of the mechanisms implicated in
reading written language.

For the moment, however, let’s finish this chapter with one final
problem. It appears that one of the most difficult elements of lan-
guage comprehension to account for is the determination of seman-
tics – meaning – from syntactic structures. Consider, for instance, the
fact that many English sentences are amphibolous.

Amphiboly is a property of sentences such that they admit of more
than one semantic interpretation as a result of their syntactic struc-
ture. This is distinct from cases of lexical ambiguity where a homonym
introduces the potential for multiple interpretations. Sentence [8]
below is lexically ambiguous, whereas sentence [9] is amphibolous:

[8] The bank provided the pilot with a challenge.
[9] I saw the man on the hill with the telescope.

While sentence [8] can be interpreted three ways, depending on the
semantic interpretation of ‘bank’, sentence [9] admits of multiple
interpretations but this ambiguity is not parasitic on the ambiguity of
any particular word in the sentence. Rather, there are a number of
ways in which we can interpret the syntactic structure of the sentence
and these give rise to distinct meanings.

This problem of the determination of semantics from syntax is one
we will return to at length in Chapter 17.

 153

C H A P T E R 1 5

HUMAN REASONING

In the previous two chapters, we approached the rational and lin-
guistic faculties with a view to analysing their constituent mechan-
isms and accounting for these mechanisms in computational terms.

In this chapter and the next, we are going to examine evidence from
psychology and linguistics that bears on the question of whether
human rationality and linguistic competence are effectively rule gov-
erned and, hence, computationally implementable.

You will be aided in our brief examination of empirical data con-
cerning human rationality in this chapter if you first answer the fol-
lowing reasoning problems:

1. If Mike is married then he is happy. Mike is married. Does it
follow that he is happy?

2. No hippies are financial advisors. No financial advisors are nuclear
protestors. Does it follow that some hippies are nuclear protestors?

3. There are four cards in front of you. Each card has a letter on one
side and a number on the other. The cards are lying with one face
up such that you can see the following on the showing faces:

A K 4 7

You are told that this rule holds of these cards – If there is an A
on one side, there is an even number on the other side. Which of the
four cards must you turn over to determine whether or not this
rule does hold?

4. Adrian has wealthy parents and went to an elite grammar school.
He works as an investment banker, is married to a corporate exec-
utive and drives a Porsche. Which of the following is more likely?

(a) Adrian is concerned about public health and welfare.
(b) Adrian is concerned about public health and welfare but votes

conservative.

154

5. All the people in Queensland wear hats in the sun. No one who
wears a hat in the sun gets facial melanomas. Does it follow that
no one in Queensland gets facial melanomas?

6. A flipped coin has landed on heads nine times in a row. What are
the odds it will land on tails on the next flip?

(a) Even
(b) Better than even
(c) Less than even

7. Jon and Nicole have two children. One of them is a boy. What is
the chance that the other one is a boy?

(a) 50%
(b) 33.33%
(c) 25%

8. All the vegetarians on campus are members of the Organic Food
Cooperative. None of the vegetarians on campus purchase food
known to be treated with pesticides or preservatives. Does it follow
that none of the members of the Organic Food Cooperative pur-
chase food known to be treated with pesticides or preservatives?

9. You draw a card from a standard deck. Which of the following is
more likely?

(a) You draw an ace.
(b) You draw a red ace.

10. You are given eight cards from a standard deck and are told that
only one of the following two statements is true:

[1] There is either an ace or a king in your hand (or both).
[2] There is either an ace or a queen in your hand (or both).

Which of the following is more likely?

(a) There is a king in your hand.
(b) There is an ace in your hand.

11. If you drink coffee at lunchtime then you will be more alert in the
afternoon. Dave is not more alert this afternoon. Does it follow
that Dave didn’t drink coffee at lunchtime?

12. The rule for collecting unemployment benefits states – If you
collect benefits then you must not be employed. Which of the

 155

following four people must you gather further information about
to make sure they are not breaking the rule?

(a) The person you know to be employed.
(b) The person you know to be unemployed.
(c) The person you know to be receiving benefits.
(d) The person you know to be not receiving benefits.

15.1 FOLLOWING LOGICALLY

It is a recognised empirical fact that people generally perform quite
poorly on this set of reasoning problems. The reader of this volume
is clearly more intelligent than average – simply by virtue of having
purchased this book if nothing else – but I would still be surprised if
you made no mistakes on the problem set (unless you’ve previously
been exposed to these problems).

The question of whether a conclusion follows logically from some
premises is spelled out in terms of the validity of the inference. An
inference is valid iff the truth of its premises is sufficient to guarantee
the truth of its conclusion. The validity of a particular inference
depends on the validity of the logical form which it instances.
Technically speaking, it is logical forms of inference which are valid
or not. A logical form is valid iff there is no instance of the form which
has true premises and a false conclusion. In other words, a logical
form is valid if there is no instance of the form which is a counter-
example to its validity.

I still don’t expect you to have a good understanding of the concept
of logical form or what it is precisely to instance a logical form, but it
is not necessary for present purposes that you do. I merely want to
make the point that whether or not a conclusion follows from some
premises – whether or not the inference is valid – is a purely formal
consideration. Determinations of the validity of inferences have
nothing at all to do with the actual content, or meaning, expressed by
the premises and conclusion.

It is demonstrably the case, however, that people generally are guided
by the meaning of premises and conclusions when making untutored
determinations of the validity of inferences. This is precisely why
experimental subjects make predictable errors in the problems above.

The primary aim of this chapter is to examine the kinds of errors
people generally make on such problems and to consider whether the
rational performance of logically untutored subjects on logical prob-
lems poses a challenge to computationalism.

156

15.2 RATIONAL PERFORMANCE

People generally spot the validity of simple inferences, such as in
problem 1. This is just modus ponens so it does follow that Mike is
happy. Problem 11 also instances a very simple inference form –
modus tollens. Given a true conditional with a false consequent, we
can always validly infer the falsity of the antecedent. However, it is
common to see mistakes on this problem.

There are two reasons why this might be the case. One is that modus
tollens involves negation and it seems that reasoning which includes
negation is generally more difficult than reasoning which only
involves affirming. Another reason is that, rather than assuming the
truth of the premises in determining the validity of the inference, rea-
soning subjects are likely to think that there may be some complicat-
ing factor involved in Dave’s afternoon sleepiness – perhaps he had a
late night – and to thereby determine that the conclusion doesn’t
follow. In other words, they’re likely to be guided by the meaning of
the premises and the conclusion rather than their logical form.

This latter consideration doesn’t actually speak against the validity
of the inference though, merely against the truth of one of the
premises. Whether or not the premises are actually true has no bearing
on the validity of the inference – an inference is valid if the truth of
the premises is sufficient to guarantee the truth of the conclusion.
Valid inferences can have false premises and problem 11 is just such a
case – lunchtime coffee consumption is no guarantee, in and of itself,
of afternoon alertness, so the conditional is actually false.

Problem 10 gives further evidence that negation complicates rea-
soning tasks. The most common answer to this problem is (b) but the
answer is, in fact, (a). Given the problem information, it is not pos-
sible for there to be an ace in the hand.

You are told that only one of [1] and [2] is true, which means that
one of the statements is false. If it is [1] that is false then there is
neither an ace nor a king in your hand. If it is [2] that is false then
there is neither an ace nor a queen in your hand. So whichever state-
ment turns out to be true, there is not an ace in your hand.

One way of accounting for the typical mistake is to note that
people generally disregard the negative information and concentrate
on the positive. So rather than thinking about what the falsity of one
of the statements would entail, they concentrate on what the truth of
either statement would entail.

The other part of the explanation for the typical mistake is that
there being an ace in the hand is something which features in both

 157

statements, whereas there being a king in the hand features in only
one. So if we are concentrating on what the truth of one of the state-
ments would entail, we are likely to think that the truth of either
would mean there might be an ace in the hand, whereas only the truth
of one would mean there might be a king in the hand, and to thereby
reason – erroneously – that it is more likely that there is an ace in the
hand.

People also generally perform quite poorly on categorial reasoning
tasks, as problems 2, 5 and 8 demonstrate. Of these, problem 5 is the
simplest and the most likely to be correctly answered. It does follow
from the premises that no one in Queensland gets facial melanomas
but we might be led astray even in this simple case if we have back-
ground knowledge of the incidence of skin cancer in places that are
subjected to harsh sun conditions.

Problem 2 is likely to be answered in the affirmative, but the correct
response is that the conclusion doesn’t follow in this case. The
premises tell us nothing either way about the relation between hippies
and nuclear protestors so, while it doesn’t follow that some of the
former are the latter, neither is it ruled out. Part of the explanation
for the typical error here appeals to difficulty in reasoning about nega-
tive categorial relations, but an important part of the explanation is
that the stereotypical hippy would be a nuclear protestor and this
background information is brought to bear if we consider the
meaning of the premises and the conclusion rather than just their
logical form.

Problem 8 is also likely to be answered in the affirmative although
the correct response is that the conclusion doesn’t follow. The reasons
for this are precisely those which account for the typical error in
problem 5. It has partly to do with the fact that the reasoning involves
negative categorial relations but is largely to do with the fact that the
stereotypical Organic Food Cooperative member would avoid such
foodstuffs.

Reasoning about probability also leads to characteristic errors, as
problems 6 and 7 demonstrate. Those who answer ‘better than even’
to problem 6 fall prey to the gambler’s fallacy. The gambler’s fallacy
is the view that the odds ‘even out’ over any course of trials. This, of
course, is false. The odds of a fair coin landing on heads are always
even, despite the results of any number of preceding trials. Flipping
ten heads in a row is no more nor less likely than flipping any other
combination of heads and tails.

The answer to problem 7 is, somewhat counterintuitively, that there
is a one in three (33.33 per cent) chance that their other child is a boy.

158

Pretty much everyone gets this one wrong. The reason the answer is
not 50 per cent is that we don’t know which of their children is a boy
and this affects the probability space.

There are four ways that Jon and Nicole could have two children.
They could have a girl and then a boy, a girl and then another girl, a
boy and then a girl, or a boy and then another boy. If all we know is
that one of their children is a boy – and we don’t know which one –
then the only situation that is ruled out is the one in which they have
two girls. This leaves three possibilities, one of which is such that their
other child is also a boy, so the probability of this being the case is one
in three.

If we knew that their first child was a boy, or that their second child
was a boy, this information would rule out two of the possibilities,
making the probability of the other child being a boy one in two. As
it is, we only have enough information to rule out one of the four pos-
sibilities.

Problems 4 and 9 are of particular interest as both problems are
structurally identical but untutored solutions to the problems typ-
ically diverge. No one ever answers (b) to problem 9 but people often
answer (b) to problem 4. In both cases, (b) is the incorrect answer
since a conjunction is never more probable than either of its con-
juncts. While people are quick to recognise that drawing an ace is
more probable than drawing a red ace, they are generally led astray by
their background knowledge with respect to the information
described in problem 4.

It seems as if the reasoning process people engage in with respect
to problem 4 involves, once again, appeals to stereotypes. A stereo-
typical investment banker with elite grammar schooling and a
Porsche in the garage is not the kind of person we expect to be con-
cerned about public health and welfare. If, however, they tend to vote
conservative despite these concerns, this makes for a closer – although
still somewhat anomalous – fit to the stereotype. As such, we are
inclined to think that (b) is the more likely case, given what we’re told
about Adrian.

Problems 3 and 12 are also especially interesting as they too are
structurally identical – they have precisely the same logical form – yet
they are typically differently answered. The most common answer to
problem 3 is that we need to turn over the card showing ‘A’ and the
card showing ‘4’. The correct answer, however, is that we need to turn
over the card showing ‘A’ and the card showing ‘7’.

The reason is that in order to determine whether or not a rule
holds, we need to look for disconfirming instances, not confirming

 159

instances. In the absence of counter-examples we can say that the rule
holds – if we find a counter-example we have proof that it does not.

In the problem case, we need not turn over the card showing ‘4’. If
there is an ace on the other side then it merely confirms the rule but if
there is not, it does not provide a counter-example. The rule says only
that if there is an A on one side then there is an even number on the
other side. It doesn’t say what must be the case if there is an even
number on one side.

We do, however, need to turn over the card showing ‘A’ to make sure
that there is an even number on the other side. We also need to turn
over the card showing ‘7’ in order to make sure that there is not an ‘A’
on the other side, as this would be a counter-example to the rule and
would thereby show that it does not hold.

While people almost always get problem 3 wrong, they almost
always get problem 12 right, yet this is precisely the same problem.
The correct answer to problem 12 is that we need to check the person
who is employed – to make sure they are not also collecting benefits –
and the person who is collecting benefits – to make sure they are not
also employed.

We can account for this performative contrast on structurally iden-
tical reasoning tasks by appealing again to the reasoning subject’s
background knowledge with respect to the problem information. Most
of us know precisely what a welfare cheat is and implicitly understand
that it is someone who breaks the rules. Consequently, we know exactly
what to look for in question 12 – possible cases of rule breaking.

Cards with numbers on one side and letters on the other side are,
in contrast, not something that most of us would ever have run across.
As such, there is no relevant background information to tell us that
we should be looking for cases of rule breaking to solve problem 3.

15.3 MENTAL MODELS

It seems we have plenty of evidence that when people reason, they do
not ordinarily explicitly follow formal rules. Rather, they construct
mental models of the problem situation and interrogate these mental
models to determine a solution.

These mental models are sometimes constructed entirely – and
selectively – on the basis of information given in the problem but
often also appeal to relevant background information and compar-
isons to stereotypical or paradigm cases.

In answering problem 2, for instance, the mental model we con-
struct involves a hippy who is not an investment banker and we tend

160

to interpret the question of whether some such hippies are nuclear
protestors as the question of whether it is probable or possible that
the paradigm such hippy would be a nuclear protestor. Consequently
we erroneously answer in the affirmative.

Similarly, in answering question 4, we construct a mental model of
an investment banker with a privileged background and affluent
lifestyle. We then weigh the paradigm such person against the likeli-
hood of their social concern and find that while such social con-
science does not fit with the stereotype, the addition of a conservative
voting preference makes for a somewhat closer fit. Consequently we
erroneously think that the model which also includes a conservative
voting preference is the more likely one.

Although the construction of these mental models can sometimes
lead us astray, they can also sometimes lead us very quickly to the
correct answer, as in problem 12. From an evolutionary perspective,
it is to be expected that humans would develop reasoning procedures
that require as little cognitive resources as necessary and which place
importance on past experience of similar situations. So it is to be
expected that people often disregard certain problem information in
order to simplify wherever possible and that they appeal to seemingly
relevant background information, even though only the formal prop-
erties of the problem are strictly relevant.

If this means that we sometimes perform poorly on fairly artificial
formal tasks, this is a small evolutionary price to pay for quickly and
cheaply (cognitively speaking) getting it right most of the time in real-
world reasoning tasks.

This claim that typical human reasoning involves the construction
and interrogation of mental models is one theory which coheres and
explains typical performance on these reasoning tasks. Although it is
only a theory, it is one which is quite intuitive and which enjoys some
currency, in one form or another and under various names, in cogni-
tive psychology. The progenitors of this kind of theory, as it applies to
these reasoning tasks, were Johnson-Laird, Tversky and Kahneman.

15.4 EXPLANATORY BURDEN

If it were the case that people always reasoned formally, according to
the dictates of some logic, then providing a computational account of
rational mechanisms would be very straightforward, since logics just
are formal systems.

In light of this empirical data concerning typical performance on
reasoning tasks, however, the computationalist is faced with an

 161

explanatory challenge – to account for the construction and interro-
gation of mental models in computational terms.

There is no prima facie reason, however, nor any reason we
can derive from the empirical data, to suppose that these reasoning
mechanisms cannot be accounted for computationally. If we weren’t
being philosophically careful, we might be tempted to license an argu-
ment against computationalism such as the following.

The reasoning processes of untutored subjects demonstrably do
not simply involve explicitly following logical rules

� People typically reason illogically, or irrationally

� These reasoning mechanisms cannot be accounted for in terms
of formal systems

� There is at least one mental process which is not
computationally implementable

__

� Computationalism is false

The above argument begins to go wrong at the very first inference.
There are strong and weak senses of ‘irrational’ that we must be
careful not to equivocate on. We charge someone with being ‘irra-
tional’ in the weak sense if their reasoning is guided by a principle
which is, in fact, false. Someone who falls prey to the gambler’s fallacy
is a paradigm case of someone reasoning irrationally in the weak
sense.

This weak sense of ‘irrational’, however, is not sufficiently strong
to warrant the next inference in the argument against computation-
alism. The sense of ‘irrational’ that is imputed to untutored subjects
such that we would concede the next step in the above argument is a
much stronger sense. We would charge someone with being ‘irra-
tional’ in this stronger sense if their reasoning was not guided by any
principle at all, or if, in the face of an argument such that they endorse
the truth of all the premises and the validity of the reasoning, they
still refuse to accept the conclusion.

It is not the case, however, that the reasoning performance of
typical subjects is such as to warrant the indictment of this strong
sense of ‘irrational’. In all cases, there is good evidence to suppose
that the reasoning processes deployed are, in fact, guided by certain

162

principles – they are just not formal principles which are guaranteed
to be truth preserving.

Furthermore, when the correct methods of reasoning are explained
to subjects who made incorrect determinations on reasoning prob-
lems, they are generally quite quick to spot their mistake and are not
likely to make the same mistake again in future tasks. They might be
initially resistant to accepting the correct conclusion – particularly
with problems 3 and 7 – however, once the reasoning is properly
explained (perhaps with diagrams or by reference to analogous situ-
ations) this resistance is overcome.

Consequently, the empirical data is not sufficient to warrant the
strong claim that human reasoning mechanisms cannot be accounted
for in terms of formal systems – a claim whose truth would demon-
strate the falsity of computationalism.

Certainly human reasoning mechanisms cannot be accounted for
purely in terms of explicitly following formal rules, but this is not ipso
facto proof that the mechanisms involved are not implicitly governed
by computational methods. Analogously, judgements of the gram-
maticality of sentences do not involve explicitly following formal
rules, but this does not show that such judgements are not under-
written by computational processes.

So the challenge posed to computationalism by this empirical data
is not insuperable and is restricted to the explanatory burden of giving
a computational account of the mechanisms involved in typical rea-
soning.

A central mechanism that seems to be implicated in such reason-
ing is the ability to make comparisons to past situations and to para-
digm cases. This involves recognising that the problem situation
involves a known pattern of experience and invoking that known
pattern to determine information relevant to the task.

This pattern matching and reconstruction is a mechanism that we
may be able to account for very well with the systems we will examine
in Chapter 19.

 163

C H A P T E R 1 6

HUMAN LANGUAGE

The human linguistic capacity is really quite amazing. The mechan-
isms which facilitate linguistic production and comprehension are
surprisingly complex given that our capacity for language is so
natural to us as to appear incredibly simple. No doubt you’ve begun
to appreciate just how much cognitive processing is involved in lin-
guistic behaviour after reading Chapter 14.

As difficult and complex as it is to theorise about the linguistic
capacity, a child of six has already fully internalised the syntax,
morphology and phonology of their first language. This has led
linguistic researchers, following Chomsky, to postulate the necessity
of some innate mechanism which aids in the acquisition of our first
language.

There is much to be said about this postulated innate mechanism
and its role in subserving the acquisition of language, but there is very
little in this debate that bears on the tenability of computationalism,
so this is not what I want to focus on in this chapter.

The aim of this chapter is to draw out evidence that much of our
linguistic activity is strictly rule governed – hence computationally
implementable – despite our ignorance of these rules. This will hope-
fully also lend weight to the claim of the previous chapter that even
cognitive mechanisms which do not involve explicitly following rules
can be accounted for computationally.

There is considerable evidence in favour of the view that linguistic
behaviour is entirely rule governed. Much research in linguistics
involves making explicit and codifying these implicit rules.

One area of linguistic study in which the identification of the
implicit rules governing our behaviour is strikingly demonstrable is
the study of phonology.

164

16.1 OBSTRUENT PHONEMES

The study of phonology is the study of the speech sounds and sound
patterns of spoken language. Central to the study of phonology is the
identification and classification of the phonemes of a given language.

We learned a little bit about phonemes in Chapter 14 where we saw
that phonemes are the smallest units of speech that provide distinc-
tive contrast. We’re now going to build on this understanding and tax-
onomise the phonemes of English.

Phonemes divide into open, or sonorant, sounds – which we can
think of as vowels – and restricted, or obstruent, sounds – which we
can think of as consonants.

Obstruent phonemes are described in terms of their place and
manner of articulation, and whether or not they are voiced. The place
of articulation refers to the combination of articulatory apparatus that
is employed in their production. The manner of articulation refers to
the extent to which the sound is restricted by the articulatory apparatus.

The chart in Figure 16.1 taxonomises obstruent phonemes accord-
ing to their voicing and manner of articulation along the vertical axis,
and their place of articulation along the horizontal axis.

Before reading on, consult the pronunciation chart provided in
Figure 16.2 and practise producing each of the phonemes, concen-
trating on the placement of your lips, teeth and tongue and the extent
to which the passage of air is restricted by this placement in produc-
ing each phoneme.

 165

Figure 16.1 Taxonomy of English obstruent phonemes.

Bilabial Labiodental Interdental Alveolar Alveopalatal Velar Glottal

Voiced stops

Voiceless stops

Nasals

Voiced fricatives

Voiceless fricatives

Voiced affricates

Voiceless affricates

Approximants

Stops, or plosives, are phonemes such that their production
involves completely obstructing the passage of air through the artic-
ulatory apparatus. Plosives can be voiced, such as /d/, or voiceless,
such as /t/.

Fricatives are phonemes whose production involves restricting the
passage of air through the articulatory apparatus such that the
passage of air creates a sibilant, hissing sound. Fricatives can also be
voiced, such as /z/ or voiceless, such as /s/.

Nasal sounds are those whose production involves the resonation
of air in the nasal cavity. It is these obstruent sounds whose produc-
tion is inhibited when we have a cold. If you hold your nose while
trying to produce these phonemes, you will find that the sound is flat
and wooden, whereas holding your nose has no effect on the produc-
tion of any other obstruent phonemes. All nasal phonemes are
voiced.

Affricate phonemes are combinations of plosives and fricatives.
The passage of air is initially completely restricted, then partially
restricted. There are only two affricates in English – the voiceless
affricate that is the initial sound in the word ‘chat’ and the voiced
affricate that is the final sound in the word ‘fridge’.

Finally, we have approximants. The classification of these
phonemes is somewhat contentious but the one above serves our pur-
poses. All approximants are voiced. The approximant phonemes are
the closest obstruents to sonorant phonemes.

This exhausts the manner of articulation of obstruent phonemes.

166

Figure 16.2 Pronunciation chart for English obstruent phonemes.

The other axis of classification is the place of articulation, which
describes the primary articulatory apparatus involved in their pro-
duction.

Bilabial phonemes are those which involve the use of both lips in
their production. Labiodental phonemes involve placing the upper
teeth against the bottom lip. Interdental phonemes involve placing
the tongue between the teeth.

The alveolar ridge is the hard raised ridge that is just behind the
upper teeth. Alveolar phonemes are those whose production involves
placing the tongue against or near the alveolar ridge.

Continuing behind the alveolar ridge along the upper jaw is the
hard palate. Alveopalatal phonemes are produced by placing the
tongue behind the alveolar ridge and against, or close to, the hard
palate.

If you run a finger along the roof of your mouth towards the back
of your throat to the point where the hard palate ends, you’ll feel the
squishy soft palate. The soft palate is also known as the velum. Velar
phonemes are those which are produced by placing the tongue near,
or against, the velum.

The glottis is the space between the vocal chords. The glottal frica-
tive /h/ is produced by restricting the passage of air through the
glottis, but without vibrating the vocal cords.

Speakers of some dialects of English – such as the London cockney
dialect – produce a glottal stop rather than the alveolar stop in certain
phonemic contexts (such as in ‘bottle’ or ‘sorted’). This is not a dis-
tinct English phoneme but an allophonic variant of the phoneme /t/.
We will learn more about allophones shortly, but first let’s taxonomise
the sonorant (vowel) phonemes.

16.2 SONORANT PHONEMES

All sonorant phonemes are ipso facto voiced. They also all have the
same manner of articulation – they are open sounds. In other words,
the passage of air through the articulatory apparatus is not impeded
but resonates freely in the oral cavity.

Sonorant phonemes are taxonomised along two axes which
describe the position of the tongue in the mouth during their produc-
tion. One axis corresponds with the height of the tongue and the other
corresponds with the part of the tongue that is raised or lowered.

Unlike the obstruent phonemes which admit of clear discontinu-
ities between phonemes given the distinct articulatory apparatus
involved in their production, the sonorant phonemes are placed on a

 167

continuum, since that the possible positions of the tongue in the
mouth are continuous, not discrete. As such, vowel phonemes fall
within a two-dimensional space of possible vowel sounds.

Consequently, we identify cardinal vowels within this vowel space
as shown in Figure 16.3. The vowel space is continuous from the
highest, most fronted sonorant phoneme, through to the lowest and
least fronted sonorant phoneme.

The cardinal vowels represented in Figure 16.3 are all monoph-
thongs. This means that their production involves a single continuous
tongue position. As well as the monophthong phonemes, however,
there are also diphthong phonemes. Diphthongs are phonemes whose
production begins at one of the cardinal vowel positions but moves,
during the production of the sound, towards the tongue position of
another of the cardinal vowels.

The pronunciation chart provided in Figure 16.4 represents the
vowel sounds in the dialect of Australian English that I speak.
Note, however, that vowel pronunciation will vary between dialects
of English, particularly with respect to the production of diph-
thongs, but also with respect to some monophthongs. Consequently,
some of the triples in Figure 16.4 which all rhyme in my dialect of
English may not rhyme in yours, depending on where you learned to
speak English. Also, speakers of dialects of English other than
Australian – particularly American dialects – are likely to produce
monophthongs in place of some of the diphthongs.

168

Figure 16.3 Vowel space.

 169

Figure 16.4 Pronunciation chart for Australian English vowel phonemes.

16.3 ALLOPHONES AND PHONETIC REALISATION

Phonemes are idealisations. Actual speech sounds – phones – approx-
imate to phonemes and may vary significantly between speakers. As
language users, we are very good at detecting the distinctive contrasts
in speech sounds and assimilating phones to phonemes.

The first point of interest here is that typical monolingual speakers
can only assimilate phones to the phonemes that are in their native
language. This means that they literally can’t hear phonemes that
aren’t in their language as they are not sensitive to phonetic contrasts
that are not distinctive in their native language.

Since natural languages differ in the phonetic contrasts that are
semantically distinctive, this can make learning a second language
particularly difficult if the second language contains phonemes that
are not in the first language. In Vietnamese and Mandarin, for
instance, the tone of a speech sound is distinctive. Tone is not a dis-
tinctive contrast in English, however, so English native speakers
learning these languages have enormous difficulty hearing the dis-
tinction as they automatically assimilate the relevant phones to the
same English phoneme.

This is complicated by the fact that one and the same phoneme may
be realised in distinct (but not semantically distinctive) allophones
depending on the phonemic context of utterance. The phonetic
difference between allophones is very difficult for a native speaker of
the language to hear as the contrast is not distinctive but predictable
from the context of occurrence.

Allophones occur in complementary distribution. This means that
if a phoneme has more than one associated allophone, each allo-
phone will always and only be produced in predictable phonemic con-
texts according to phonetic realisation rules. The phonetic realisation
of allophones in complementary distribution is strictly rule governed.
Some examples will serve to make this strikingly clear.

One phonetic realisation rule in English involves aspirating voice-
less stops when they are word initial. This means that if a word begins
with a voiceless stop, then the stop is produced with a little puff of air
that is not produced in other contexts.

Put the palm of your hand right in front of your mouth and utter
the words ‘top’ and ‘stop’ repeatedly and you should notice the
difference. When you produce the word initial /t/ in ‘top’ you should feel
the extra puff of air on the palm of your hand. When you produce the
/t/ in ‘stop’, however, this puff of air is absent since this allophone of /t/
is not aspirated. Try this out with other pairs of words containing

170

aspirated and unaspirated voiceless stop allophones, such as the /k/ in
‘Cate’ and ‘skate’ or the /p/ in ‘pat’ and ‘apple’.

It is very difficult to actually hear the difference between these
phones, however, precisely because they are allophonic variants –
aspiration is not a distinctive contrast in English.

Another phonetic realisation rule of English is that vowels are
nasalised always and only before nasal obstruents. Hold your nose
while pronouncing ‘cat’ and ‘can’ repeatedly and you should be able
to tell the difference. Again, try this out with other pairs of words con-
taining nasalised and non-nasalised vowels, such as ‘pot’ and ‘pond’
or ‘sit’ and ‘sing’.

Some phonetic realisation rules are restricted to certain dialects,
like that which governs the production of the glottal stop allophone
of /t/ in cockney English. Speakers of cockney English still produce
the standard voiceless alveolar stop allophone of /t/ when it is word
initial or follows a fricative, such as in ‘tell’, ‘start’, ‘faster’ or ‘softer’,
but produce the glottal stop when /t/ occurs in intervocalic contexts
(between vowels) such as in ‘butter’ or ‘letter’, and also when /t/
occurs word finally, such as in ‘short’ or ‘let’.

The interesting point for our purposes is that this strictly rule-
governed activity occurs despite our total ignorance of these phonetic
realisation rules and our complete insensitivity to the phonetic dis-
tinctions between the allophones produced.

In fact, these phonetic realisation rules are so deeply ingrained that
we can’t help but carry them over illicitly when we learn a second lan-
guage. We’re typically unable to notice that we’re actually producing
different sounds in different contexts but it is likely to be apparent to
a native speaker of the language we are learning.

An example of this is that English native speakers learning French
will continue to (incorrectly) aspirate word initial voiceless stops –
such as the /t/ in ‘Tour de France’ – even after this has been pointed
out to them. As speakers of a language where this aspirated phoneme
is in complementary distribution with other allophonic variants, we
are simply unable to detect that we’re doing it. Similarly native speak-
ers of German learning English have a tendency to devoice word final
stops – producing the /g/ in ‘dog’ as /k/ for instance.

So, not only do we tend to try and produce the sounds of our
second language using only the phonemes of our first language, we
also carry over our native phonetic realisation rules into our second
language. These two factors account for the accent that a non-native
speaker will typically never quite be able to get rid of. They may even-
tually – depending on the first and second languages in question – be

 171

able to accurately produce the phoneme set of the second language,
but overriding phonetic realisation rules is very difficult. This is also
the case with dialectical variations of the same language, such as the
many dialects of English.

Fortunately, processing accents is also something we are generally
quite good at. Sometimes it may take some exposure before we are
able to process accents with ease – I found the Glaswegian accent to
be impenetrable at first – but with sufficient exposure, we implicitly
learn to apply a filter to the sounds we are hearing which assimilates
them to the intended phonemes. While we might have to explicitly
focus on this initially, we quickly internalise these transformative
principles.

This indicates that we continue to internalise rule-governed lin-
guistic principles long past the time at which we acquire our native
language, even if we never learn a second language. Whenever we are
first exposed to speakers of dialects of English that are distinct from
our own, or speakers of English as a second language, we very
quickly internalise rules that allow us to process their accent with
ease. Of course, as far as the speaker of another dialect of the same
language is concerned, it is us who has the accent – I’m sure
Glaswegians find my Australian accent as initially impenetrable as I
found theirs.

16.4 FIRST-LANGUAGE ACQUISITION

We can also find plenty of evidence of rule-governed linguistic activ-
ity in the first-language acquisition literature.

When a child reaches twelve months or so of age, they enter the
single word stage of language acquisition. They are able to point at
objects and name them with single word utterances, and they are also
able to indicate some of their desires with single word utterances –
‘ball’, ‘doll’, ‘mummy’.

At this stage it is common to see both semantic overextension and
semantic underextension of newly acquired terms. Overextension, as
the name suggests, is when a term is applied to referents beyond its
proper extension. When, for instance, a child first acquires the word
‘ball’ they may well then apply this term to other round objects, such
as some fruit or the Moon. Similarly, if they have a dog and learn its
name, they may well then apply this term to all dogs.

Semantic underextension, as you have no doubt guessed, is the
opposite phenomenon. Underextension occurs when a child restricts
the application of a newly acquired term to only certain of its proper

172

referents. They might, for instance, only use ‘toy’ for a particular
favourite toy. Underextension tends to be less common than overex-
tension.

In both cases, the child fairly rapidly learns the correct scope of
application of the new term in their lexicon. This is at least prima
facie evidence that the child is internalising the rules that govern the
correct application of the term, based on observable features of its
referents.

Another typical feature of the single word stage is the systematic
phonemic substitution of certain phonemes that the child is unable to
produce. For instance, the alveopalatal voiceless fricative is quite a
difficult phoneme to produce as it requires fairly dextrous tongue
placement so it is not uncommon to hear children systematically
replace it with either the voiceless alveolar fricative or the voiceless
interdental fricative – so ‘ship’ is pronounced ‘sip’ or ‘thip’.

As well as making these phonemic substitutions, the child is also
likely to make systematic phonological simplifications. The initial syl-
lable in ‘sleep’ is also phonetically difficult to produce, so the child is
likely to produce ‘seep’ in its place. More phonologically complex
words are even further simplified – often idiosyncratically. A common
example is ‘sketty’ for ‘spaghetti’.

The particularly interesting point here is not just that children
make these systematic substitutions, but that they are also sensitive to
the fact that they are doing so. They are typically perfectly able to hear
the difference between an adult’s utterances of ‘seep’ and ‘sleep’ and,
depending on their age, may well realise they are being teased if you
reproduce their phonetic output rather than the correct utterance. So
the development of their ability to comprehend phonemes outpaces
the development of their ability to produce them and they compen-
sate for this by making systematic – rule-governed – simplifications
and substitutions.

16.5 LANGUAGE AND RULES

While we’ve mostly concentrated in this chapter on phonological
processes, other areas of linguistics are also rich with examples of
rule-governed behaviour. If you have some exposure to linguistics,
or are planning to take an introductory course, I’d urge you to reflect
on your knowledge – or to approach the subject – with a particular
view to looking not just for evidence of rule-governed behaviour,
but also for processes that might be troublesome to account for
computationally.

 173

In the preceding sections, we concentrated on identifying evidence in
favour of the computational implementability of the linguistic facil-
ity. In the following chapter we are going to return to philosophical
material and problematise a key aspect – arguably the most crucial
aspect – of the production and comprehension of language, namely
the determination of meaning.

174

C H A P T E R 1 7

MEANING

This chapter marks a return to philosophical material after six chap-
ters of technical material.

We’ve seen how computers can be programmed to strategically
play complex games and we compared this to our intuitive under-
standing of how humans play these games. We’ve looked at expert
systems as an example of machine reasoning and we’ve considered
typical human performance on certain reasoning tasks in the context
of determining the scope of the explanatory burden for the compu-
tationalist in accounting for this typical performance.

We’ve also examined how we might employ formal systems and
search procedures to facilitate one of the mechanisms implicated in
the linguistic facility – ruling on the grammaticality of strings. In
addition, We’ve drawn out evidence from linguistics – mostly per-
taining to phonological processes – which supports the notion that
language behaviour is rule governed and, hence, computationally
implementable.

Next we’re going to consider a thought experiment which targets
computationalism and seeks to show that there is a crucial facet of
mental life that the computationalist cannot account for – the fact
that our mental states are meaningful.

17.1 THE CHINESE ROOM

It is a crucial and defining feature of our mental states that they have
semantic content – that they are meaningful states. Any adequate
theory of mind must be able to account for the semantic contents of
mental states.

Computation is an entirely syntactic process. The operations of
formal systems are syntactically specified symbol manipulations.
We’ve seen the explanatory efficacy of formal systems in accounting
for a number of cognitive mechanisms. The crucial question for

175

present purposes is whether or not we can account for semantics in
terms of syntactic operations.

The thought experiment I want to entertain here was originally
described by John Searle and seeks to establish that syntax alone is
not sufficient for semantics.

Imagine that you are asked to spend several hours carrying out a
certain task for experimental purposes. You are introduced to an
enormous room containing thousands of shelves of numbered books.
There is a table in the centre of the room with one of the books upon
it. You flick through the book and see that it contains nothing but
rewrite rules for symbols that you’ve never seen before, with a numer-
ical notation alongside each rewrite rule.

You are told that you will be left alone in the room, at which point
a piece of paper with a string of symbols on it will be passed through
a slot in the door. Your task is to find the rule in the book whose input
side is exactly that string of symbols and to copy out the output string
of symbols onto the other side of the piece of paper and pass it back
through the slot. You are then to find the book on the shelves whose
number corresponds with the numerical notation alongside the rule
you just followed and replace the book on the table with this new book.

You are left alone in the room and things proceed exactly as
described. A piece of paper is passed through the slot in the door, you
trawl through the book on the table to find this string on the input
side of a rule and copy out the output string of the rule, then you
replace the book on the table with the book from the shelves whose
number was given by the notation next to the rule. Another piece of
paper with a new string of symbols is passed through the slot in the
door and you repeat the procedure.

After doing this for several hours, you are told that the strings of
symbols were actually sentences in Chinese script. The books in the
room encode all the possible conversations you might have in Chinese
in several hours. Each book represents a conversation state and pro-
vides reasonable responses for possible inputs.

It turns out that you have been having a conversation with a
Chinese native speaker for several hours and, on the basis of merely
following the rewrite rules encoded in the books, have passed a
Chinese Turing test.

Clearly, however, you do not thereby understand Chinese. For one
thing, the conversational replies you were making to the Chinese
questions did not accord with your beliefs and desires, but with arbit-
rary responses encoded in the books. For instance, one of the ques-
tions might have been ‘do you like strawberry ice cream?’ and your

176

scripted response was ‘yes, it’s delicious’, despite the fact that you
can’t abide strawberry ice cream. Or perhaps one of the questions was
‘are you getting hungry?’ and your scripted response was ‘no, I’m fine
for the moment, thanks’, despite the fact that you were ravenous and
wondering when lunch was.

For another thing, your capacity to converse in Chinese does not
extend beyond the Chinese room. If a Chinese native speaker were to
pass you a written Chinese query once you have left the room, the
strings of symbols would still be meaningless to you. It is only
through recourse to the encoded conversation states in the books of
the Chinese room that you are able to give the appearance of under-
standing and to pass the relevant Turing test.

The situation described in the thought experiment is one in which
the processes of a formal system – the rewriting of symbols accord-
ing to formal rules – suffice to pass a Turing test. The intuition that is
primed by the thought experiment, however, is that even though the
appearance of understanding is evidenced by the system – sufficiently
well to convince a human – there is something crucial lacking in the
operations of the system. They don’t, in and of themselves, mean
anything.

In other words, the syntactic operations of the Chinese room,
although they pass a Turing test, lack semantics.

17.2 SYNTAX AND SEMANTICS

On the strength of the Chinese Room thought experiment, we might
be tempted to mount this argument against computationalism:

P1 Having semantics is a necessary condition for having a mind.
P2 The syntactic operations of formal systems are not sufficient

for having semantics.

� The operations of formal systems are not sufficient for having
a mind.

� Computationalism is false.

Premise 1 is not in dispute – it is clear that mental states have seman-
tic content. Premise 2, however, is certainly arguable.

There are two ways we might interpret the second premise, and,
consequently, the interim conclusion that follows from it. The weaker
interpretation is the claim that is licensed by the thought experiment;

 177

however, a much stronger interpretation is appealed to in deriving the
claimed falsity of computationalism.

The weak interpretation of the second premise is that there is a
formal system such that its operations are not sufficient for having
semantics. The stronger interpretation is that there is no formal
system whose operations are sufficient for having semantics.

The Chinese room thought experiment does not show that there
can be no formal system whose operations are sufficient for generat-
ing semantics. Consequently, the argument above fails to show the
falsity of computationalism. What the thought experiment does
show, however, is something a little stronger than the weak interpret-
ation of the second premise I’ve given above.

The weak interpretation of premise 2 is essentially trivial. It’s a
given that there are plenty of formal systems whose operations don’t
meet conditions for having a mind. What is interesting about the
Chinese room thought experiment, however, is that it shows that
there is a formal system whose operations alone are sufficient for
passing a Turing test, yet, intuitively, the system lacks understanding
entirely.

We might, then, interpret the Chinese room thought experiment as
an indictment on the efficacy of the Turing test. After all, if some-
thing can pass the test despite a complete lack of understanding, it
doesn’t seem the test is at all a reliable indicator of the presence of a
mind. Before we draw this conclusion, however, we should reflect on
the system described in the thought experiment in light of what we
know about formal systems and natural language processing.

The thought experiment describes a system which, while logically
possible, is not physically possible. To implement this system, we
would need to draw up the generation tree for all possible Chinese
conversations that can be had in the course of several hours.

Given that a generation tree for possible conversation states would
be considerably more complex than the generation tree for possible
chess states, it should be clear that constructing a complete genera-
tion tree for even the first twenty possible conversational exchanges is
simply not computationally tenable. It is safe to say that, regardless
of future advances in practical computational power, no computer
will ever be able to pass a Turing test by following the method which
the Chinese room implements.

Ordinarily, arguing against the physical possibility of a thought
experimental situation obtaining does no philosophical work since,
generally, we are using thought experiments to test claims of logical
relations.

178

For instance, physicalism holds that a complete physical description
is sufficient as a complete description of the mind. This sufficiency is a
logical claim. Consequently, while it is physically impossible that there
could be a scientist such as Mary, the thought experiment described in
Chapter 5 still speaks against this sufficiency – to the extent that your
intuitions are primed by the thought experiment – since the situation
described is logically possible.

If the claim concerning the Turing test was similarly a logical claim,
then the Chinese room thought experiment would indeed speak
against it. Recall, however, that the claim is not that passing a Turing
test is sufficient for having a mind, but rather that, were something to
pass a Turing test, we should be prepared to attribute mentality to it.

The Turing test is an empirical test. Consequently, when consider-
ing possible counter-examples to the efficacy of the test as a reliable
indicator of the presence of a mind, we should restrict our consider-
ation to empirically possible systems.

So the Chinese room thought experiment fails to straightforwardly
show the falsity of computationalism and offers no indictment on the
efficacy of the Turing test. It does, however, still show something
rather important.

The thought experiment does, I think, show that no amount of
syntactic operation in isolation from the external world is sufficient
for generating semantics. I could be in the Chinese room performing
this procedure for years – given enough books – and it seems, intui-
tively, that there is no way to begin to understand the meaning of the
symbols I am processing. The reason is that my operations lack an
appropriate connection to the external world.

To understand Chinese just is to understand how elements of the
language – written or spoken – relate to things outside the system of
language. Languages are systems which encode and communicate
meanings. These meanings, however, are not generated by mecha-
nisms and inputs entirely internal to the linguistic facility. Certainly
linguistic mechanisms are implicated in the conferral of meaning to
linguistic entities but necessarily implicated is an appropriate connec-
tion to the external world.

The lesson to draw from the Chinese room thought experiment is
that embodied experience is necessary for the development of
semantics. In order for our mental states to have meaning, we must
have antecedent experience in the world, mediated by our sensory
apparatus. In other words, semantics do not develop in isolation but,
rather, this development is conditional on experience in relation to the
empirical world.

 179

This necessity of embodied experience for the development of
semantics does not, in and of itself, speak against computationalism.
It merely shapes the explanatory burden on the computationalist,
requiring them to provide a computational account of the meaning
conferring mechanisms. This will involve, inter alia, an account of
the computational conversion of sense data to various kinds of
mental representations, which are then involved in further computa-
tional processes – such as the comprehension of natural language
utterances.

There is a distinction to be drawn here between the conditions for
the development of semantic representations and the conditions
under which tokens of these representations are held to be meaning-
ful. In other words, we might concede the necessity of embodied
experience for the development of semantic representations, but then
consider a thought experiment where functional equivalents of the
formal system(s) facilitating language production and comprehen-
sion in a fully developed native speaker are enacted in a way approx-
imating the Chinese room example, hoping to further problematise
the meaningfulness of the operations of such a system.

Recall, however, from Chapter 14 that although there is no reason
to suppose that these linguistic processes are not computational, there
is good evidence to support the claim that concerted appeals to
various kinds of mental representations – including semantic repre-
sentations – are a necessary feature of their operations.

In other words, it is not the case that the processes underwriting lin-
guistic comprehension are isolated, modular processes, with meaning
being assigned as the final stage of processing. Rather, these various
processes occur in concert with appeals to semantic representations
serving to constrain and inform phonological and syntactic processes.
Consequently – although I’ve offered neither proof nor robust argu-
ment here – it seems likely that any empirically possible system
sufficient for passing a Turing test will necessarily already contain
meaningful semantic representations.

There is much more to be said about the conditions under which oper-
ations of a formal system can be held to be intrinsically meaningful
(not just interpretable as meaningful). In the following chapter, I want
to shift the focus of our examination of meaningfulness to explicit
consideration of this notion of mental representation.

180

C H A P T E R 1 8

REPRESENTATION

Our mental states are meaningful by virtue of being about things.
In other words, meaningful mental states are representational states –
they represent or stand for things. In previous chapters I’ve made
reference to mental representations, such as the phonemic, syntactic
and – crucially – semantic representations which facilitate linguistic
production and comprehension. In this chapter, I want to briefly
discuss the structure and nature of mental representation.

Representation is quite a thorny philosophical topic. I don’t intend
this chapter to be a comprehensive introduction to the various debates
concerning mental representation. Rather, I want to use this discus-
sion of the nature of mental representation to introduce a distinction
between two competing paradigms in artificial intelligence research.

The most important distinction, for our purposes, between these
two paradigms – which I will call the symbolic and the connectionist
paradigms – lies in the methods deployed by researchers in trying to
computationally replicate cognitive functions. The symbolic artificial
intelligence researcher will employ symbol systems of the kind we are
now very familiar with, having seen numerous examples in previous
chapters. The connectionist artificial intelligence researcher, on the
other hand, will construct artificial neural networks.

We’re going to examine artificial neural networks – or connection-
ist networks – at length in Chapter 19. In what follows, I want to make
clear that this distinction in artificial intelligence methodology is
partly (although not entirely) informed by beliefs concerning the
nature of mental representation.

18.1 INTENTIONALITY

Intentionality is the technical philosophical term for the representa-
tional nature of mental states. Intentional states are those which are
about something, which represent something.

181

The terms ‘intentionality’ and ‘intentional’ are not to be confused
with the verb ‘intend’ and its cognates. Whether or not a state is inten-
tional, in the technical philosophical sense, has nothing to do with it
being intended by some agent. Rather, a mental state is intentional
just in case it is about something. Intentionality is the property of
mental states such that they are directed towards an object of repre-
sentation (a thing which is represented).

It is mental representations which are the primitive bearers of
intentionality. Our mental states are intentional by virtue of having
mental representations as constituents. So, for instance, my belief that
‘my dog is a fine companion’ involves, inter alia, a token mental rep-
resentation of ‘my dog’. My belief is about my dog by virtue of having
a constituent mental representation which is about my dog. My
mental representation of ‘my dog’ is directed towards (about) its
object of representation – namely, my dog.

This brings us to one of the important features of mental repre-
sentations I want to highlight here. Mental representations are cat-
egorial. My mental representation of ‘dog’ picks out all and only dogs.
In other words, it serves to categorise – in my mental life – those things
which I take to be dogs and distinguish them from those things which
I take not to be dogs. Similarly, my mental representation of ‘brown’
picks out all and only the things I take to be brown and my mental
representation of ‘chair’ picks out all and only the things I take to be
chairs.

The other important feature of mental representations I want to
highlight is that they are compositional. Mental representations
compose into more complex mental representations. Given, for
instance, my possession of mental representations of ‘brown’ and
‘dog’, I need nothing further to compose the more complex mental
representation of ‘brown dog’. This more complex mental represen-
tation picks out all and only the things I take to be brown dogs.

This compositionality of mental representations allows for one part
of an account of how it is that mental representations are conferred
with their intentional content. Complex mental representations
inherit their intentionality from the primitive mental representations
of which they are composed.

The crucial – and most difficult – question to answer, however, is
how it is that primitive mental representations are conferred with their
intentional content. How is it that our atomic mental representations
come to be about their objects of representation? In other words, what
is the nature of the relation between mental representations and the
(categories of) objects they represent?

182

18.2 CATEGORIES AND CONTENT

To give an account of the relation between mental representations
and their intentional objects is to give part of a semantics for mental
representation. There are numerous theories of the semantics of
mental representation but I’m not going to give a balanced exposition
of the available theories here. Instead, I want to give just the barest
sketch of two kinds of theories.

On one hand we have theories according to which mental represen-
tations are essentially discrete. On the other hand we have theories
according to which mental representations are essentially interre-
lated.

Theories of this first kind fit well with the symbolic paradigm in
artificial intelligence research. According to this kind of theory,
mental representations are symbols.

Theories of the second kind fit well with the connectionist para-
digm in artificial intelligence research. According to this kind of
theory, mental representations are distributed patterns.

A commitment to symbolic representation, on the one hand, or
distributed representation on the other, brings with it a raft of corol-
lary commitments. These include commitments concerning the mech-
anisms by which representations are conferred with their intentional
content, the nature and structure of the categories represented and
the ways in which mental representations interact.

Proponents of symbolic representation take representations to be
essentially discrete in a number of ways. The mechanism by which
symbols are conferred with their content is understood as some kind
of direct relation between tokens of the symbol and objects of repre-
sentation. Crucially, this mechanism is such that the content of a
symbol in no way depends on the content of other symbols. Each
symbol is discretely conferred with its intentional content.

Furthermore, symbolic representations are understood to remain
discrete in their interactions with other representations. The compos-
itionality of mental representation is understood to be simple syn-
tactic concatenation. When symbols compose to give more complex
representations, each symbol always brings the same content to the
complex in which it participates. In other words, the content of
symbols is taken to be contextually insensitive.

It is a further feature of symbols that their presence is binary – a
symbol token is either present or not. If a symbol token is present, it
is fully present and if it is absent, it is fully absent. Symbols, if you
will, are either on or off, with no scope for anything in between. This

 183

binary nature of symbolic representation has implications pertaining
to the nature of the categories which they represent.

If mental representations are symbolic then the categories which
they represent must admit of sharp borders and no internal structure.
In other words, if mental representations are symbolic, then the cat-
egories they represent are like boxes – objects are either in the cat-
egory or not and there are no better or worse cases of category
membership.

Proponents of symbolic representation, to recap, take the content
conferring mechanism on representations to be discrete, the cat-
egories they represent to be binary and unstructured, and the com-
position of mental representation to be contextually insensitive
syntactic concatenation.

Advocates of distributed representation, on the other hand, have a
different understanding of each of these elements of the semantics of
mental representation.

18.3 SYMBOLS AND PATTERNS

Theorists who endorse an account of mental representations as dis-
tributed patterns understand representations to be essentially interre-
lated. The semantics of mental representation that such a theorist will
advance are such that the mechanism by which content is conferred
on a representation is essentially mediated by relations to other rep-
resentations.

There are a number of ways to flesh out this mediation but the
mechanics of particular theories need not concern us here. What is
important for our purposes is the commitment to the interrelated
nature of mental representations, in stark opposition to the view held
by proponents of symbolic representation. The way in which a mental
representation is conferred with its intentional content, according to
distributed accounts of representation, is essentially bound up with
the way in which other mental representations are conferred with
their intentional content.

The composition of distributed mental representations is also
taken to be somewhat more complex than syntactic concatenation. It
is crucial that there be an account of the composition of mental rep-
resentation that is sufficient to secure the systematicity of cognition,
since this is generally held to account for the productivity of the lin-
guistic facility.

Those who endorse a view of mental representation as distributed
understand the composition of representations to be the highly

184

complex interaction of patterns of activation in a distributed
network. Precisely what this means will become clearer in the follow-
ing chapter when we discuss artificial neural networks. For present
purposes, it suffices to appreciate that the way distributed representa-
tions compose is contextually modulated. In other words, the content
that a particular representation brings to the complex representation
in which it participates will vary in a way that is dependent on the
other particular representations also participating in the complex.

It is a further feature of distributed representations that they can
be partially tokened. Since token representations are taken to be pat-
terns of activation widely distributed across an interconnected
network of nodes, these patterns can be partially activated. Again,
precisely what this means will become clearer in the following chapter.
The important point here is an appreciation of the implications that
the possibility of partial tokening of mental representations has with
respect to the nature of the categories represented.

If mental representations are distributed patterns which can be
partially tokened, then the categories they represent can admit of
imprecise borders and internal structure. Furthermore, if the content
of representations is contextually modulated, then the extension of
the category will be contextually sensitive.

In other words, if representations are distributed and contextually
modulated, then the categories they represent are such that there can
be borderline cases of membership, the borders can shift contextually
and there can be graded membership admitting of better and worse
cases.

To recap, advocates of distributed representation take the content
conferring mechanism on representations to be essentially mediated
by relations with other representations, the categories they represent
to be contextually sensitive – allowing imprecise and shifting borders
and internal structure – and the composition of mental representa-
tion to be the complex, contextually modulated interaction of pat-
terns of activation in a highly interconnected network.

18.4 COGNITIVE ARCHITECTURE

So far in this chapter I’ve discussed two distinct views of mental rep-
resentation and used this distinction as an entryway into understand-
ing the competing symbolic and connectionist paradigms in artificial
intelligence research.

These differing views concerning mental representation are of
central importance in distinguishing between the two paradigms but

 185

they do not exhaust the differences between them. Connectionists
also differ from their symbolic counterparts with respect to views
concerning cognitive architecture.

The term cognitive architecture refers to the structure and nature of
the information processing systems of a cognitive agent. In other
words, the term refers to the organisational and implementational
features of the computational hardware which facilitates cognition.

The symbolic tradition in artificial intelligence research sees the
cognitive architecture of the human mind as a physical symbol system.
Connectionists, on the other hand, view human cognitive architecture
in terms of connectionist networks which facilitate parallel distributed
processing.

In previous chapters we’ve seen numerous examples of how we might
implement cognitive functions with symbol systems. Connectionist net-
works, as we will see in the following chapter, are particularly well suited
to carrying out functions that are notoriously difficult to implement in
symbol systems architecture.

To the extent that connectionist architecture is readily amenable to
implementing functions which we take to be importantly constitutive
of cognition and which prove problematic to implement with symbol
systems, we have at least one reason for preferring a connectionist
approach over a symbolic approach to artificial intelligence.

The following chapter will be devoted to making clear the concepts
which have so far only been mentioned with little in the way of expla-
nation. After explaining these concepts and exemplifying the oper-
ations of connectionist networks with numerous examples, we will
then return to further discuss the relation between the symbolic and
the connectionist paradigms.

186

C H A P T E R 1 9

ARTIFICIAL NEURAL
NETWORKS

The connectionist paradigm in artificial intelligence research rose to
prominence in the last two decades of the twentieth century. Artificial
neural networks were shown to be quite efficacious in modelling
certain cognitive phenomena that had been problematic to implement
with symbolic computational architecture.

The operations of artificial neural networks are designed to mimic
the neural circuitry of the brain – they are often referred to as imple-
menting ‘brain style’ processing. As such, it may aid your under-
standing of this chapter to first revisit the discussion of the operations
of neurons in Chapter 4.

In this chapter we are going to develop a sound understanding of
the operations of artificial neural networks and their utility in mod-
elling cognitive functions. We’ll begin by describing the basic connec-
tionist architecture and explaining how this differs from symbolic
computational architecture.

19.1 CONNECTIONIST ARCHITECTURE

Classical symbolic computational architecture – which we described
at length in Chapters 7 to 9 and have seen many examples of since –
admits of the following essential features.

Firstly, there is only one processor in the architecture – a central pro-
cessing unit (CPU) which processes program instructions. Secondly,
the CPU carries out these instructions serially – one after the other.
Thirdly, the CPU addresses and operates on localised register contents.

Connectionist architecture, on the other hand, is crucially distinct
with respect to each of these features. Connectionist networks are
composed of a (typically large) number of simple processing units
(nodes) which operate in parallel rather than serially. Content in con-
nectionist networks is not local and addressable, but distributed
across numerous nodes and encoded as a pattern of connections.

187

The basic elements of an artificial neural network are simple pro-
cessing units which are designed to emulate the operations of indi-
vidual neurons. These units are functionally organised in layers –
there will be an input layer of nodes and an output layer of nodes.
There will typically also be a ‘hidden’ layer of nodes – these are
neither input nor output units but serve to mediate between these
layers.

As you have no doubt determined, nodes are connected to each
other. Precisely how they are interconnected defines various architec-
tural variations which needn’t concern us much here. In networks of
interesting complexity, each node will be connected to a large number
of other nodes – just as individual neurons are connected to large
numbers of other neurons. The simplest type of connectionist archi-
tecture (or the most complex depending on how you look at it) is such
that every node is connected to every other node in the network.

Information processing in artificial neural networks is achieved
through the propagation of activation along the connections through
the network. Each node in the network has a level of activation which
is influenced by the activation it receives from other nodes which are
connected to it.

We’re going to make some simplifying assumptions here about
activation. Firstly, we’re going to assume that at each time step, the
activation of a node is entirely determined by the activation it
receives along its incoming (afferent) connections (rather than
consider a more complicated function which also takes into account
the antecedent level of activation of the node from the previous
time step).

Connections between nodes can be either excitatory or inhibitory
and this is represented by assigning a weight – a positive or negative
numerical value – to each connection. Excitatory connections – which
are positively weighted – will excite (increase the level of activation
of) the node they are connected to. Inhibitory connections – which are
negatively weighted – will inhibit (decrease the level of activation of)
the node to which they are connected.

Each node in the network, you will recall, is a simple processing
unit. These nodes implement two functions – an activation function
and a transfer function.

The activation function determines whether or not a node will fire
based on its level of activation at that time step. We’re only going to
consider the simplest of activation functions – a threshold function.
Nodes with a threshold activation function will fire iff their level of
activation at that time step is above some threshold value assigned to

188

the node. If a node fires, it passes activation along each of its outgo-
ing (efferent) connections to other nodes, otherwise no activation
propagates through that node.

The transfer function determines how a node updates its level of
activation based on the activation it receives along its afferent con-
nections. Again, we’re only going to consider the simplest of transfer
functions – a weighted sum function. To determine the level of acti-
vation of a node with a weighted sum transfer function, we simply
take the sum of the values of the afferent connection weights.

19.2 SIMPLE ARTIFICIAL NEURAL NETWORKS

Let’s take a look at some basic examples to exemplify these oper-
ations. To keep things simple, I’m going to use integers for connection
weights and threshold values. Figure 19.1 depicts the simplest artifi-
cial neural network that does something interesting.

This network has two input nodes (A and B) and one output node
(C). We’re interested in whether or not the output node will fire
(although its efferent connection is not afferent to any other node).
The input nodes we can imagine as detectors of some kind. They are
set to fire if some environmental condition is met – perhaps if a light
is on or if a switch is in a particular position.

The two connections in the network are both excitatory and
equally weighted. If A fires it excites C and if B fires it excites C. The

 189

Figure 19.1 Computing AND.

threshold value � of C is such that it will only fire if both A and B fire.
If A alone fires, then the activation value of C will be 3 which is below
the threshold value of 5. Similarly if B alone fires. If, however, they
both fire, then the weighted sum transfer function tells us that the acti-
vation value of C will be the sum of the values of the afferent con-
nection weights, which in this case will be 6. This activation value of
6 is higher than the threshold value of 5 assigned to C, so it will fire
in accordance with its threshold activation function.

This network serves as a logic gate. It computes the binary logical
truth function of conjunction. The output unit fires iff both A and B
fire.

Exercise 19.1

(a) How might we modify the network depicted in Figure
19.1 such that it computes the binary logical function of
disjunction – i.e. so that the output node fires iff either A
or B (or both) fire.

(b) Design a network with two input nodes and one output
node such that the output node will fire if either of the
input nodes fire but not if they both fire.

If you succeeded in completing Exercise 19.1(b) then you have
designed a network which computes the binary logical truth function
of exclusive disjunction. This is not a straightforward exercise since we
need to do two things that are new to us. One is to assign inhibitory
weights; the other is to add a hidden unit to the network between the
input and output units. The solution is depicted in Figure 19.2.

If we disregard node D in Figure 19.2 for a moment, then we have
the solution to Exercise 19.1(a). All we needed to do was lower the
threshold value of C to a value below either of the afferent connec-
tion weights. (Alternatively we could have raised both connection
weights to a value above the threshold.) In order to prevent C from
firing when both A and B fire, however, we need to add node D.

Node D will fire iff both A and B fire and will inhibit the activation
of C to prevent it from firing. If A alone fires, then the activation value
of D will be below the threshold value and it will not fire, but the acti-
vation value of C will be above its threshold and it will fire. Similarly
if B alone fires. If A and B both fire, however, then D will fire, as its
activation will be above its threshold value. The activation value of C
will be the sum of its afferent connection weights (3 � 3 � �5 � 1)

190

which is below its threshold value so, by virtue of being inhibited by
D, it will not fire. To recap, C will fire if either A fires or B fires but not
if they both fire, quod erat demonstrandum.

19.3 SYNTHESISING SPEECH

In this section we’re going to design an artificial neural network to
function as an English speech synthesiser. This is a nice example of
the kind of contextually sensitive processing tasks at which connec-
tionist networks excel.

English orthography is not phonemic – it does not admit of a regular
mapping onto English phonemes. Unlike Japanese, for instance, which
is such that the pronunciation of any given grapheme is contextually
invariant, the pronunciation of a given English grapheme is dependent
on its orthographic context. In other words, English is not ‘pronounced
as it is written’, to speak loosely. Rather, the sound that a given letter
stands for is contextually dependent – one and the same letter can stand
for different sounds and the same sound can be represented by various
letters, depending on the spelling context.

Consequently, designing a speech synthesiser for English involves,
inter alia, implementing the contextually sensitive processing task of
converting orthographic representations to phonemic representa-
tions. We’re going to begin constructing an artificial neural network
for implementing this conversion of orthographic input to phonemic
output.

 191

Figure 19.2 Computing XOR.

If we want our network to be contextually sensitive, we’re obvi-
ously going to need context at the input layer to be sensitive to. We’re
going to achieve this by organising the input layer into five pools of
nodes. Each pool will contain twenty-seven nodes, representing a full
set of letter detectors – one for each letter of the alphabet plus one for
the space (we’re going to ignore punctuation here to keep things
simple).

These input pools are going to be organised such that each pool is
directed on a different letter position of the text string input. At each
time step, one pool will be directed at a target letter position. The
other four pools will be organised such that one pool is directed at
each of the two letter positions on either side of the target position.
This will allow the network to make a contextual determination of
which phoneme a particular letter stands for given the surrounding
orthographic context (the two letters either side of the target letter).

At the first time step, the first letter in the text string is placed in the
target position. At each subsequent time step, the text string is
advanced such that the next letter in the string is in the target position.

The output layer of our speech synthesising network will consist of
an output node for each phoneme, so if we are considering Australian
English there will be forty-four output nodes. To keep things simple
here, we’re going to consider just one phoneme whose pronunciation
is invariant across English dialects: /s/ – the word final sound in ‘kiss’
and ‘this’.

We can help ourselves to as many hidden units as we require in
order to match inputs to outputs correctly. We’re going to set thresh-
old values and connection weights such that our network makes
correct determinations concerning whether or not /s/ should be pro-
nounced for the following test set of words: this, gas, wish, shy, kiss,
passive, asia, asian, asiatic, is, as, ice, justice, service.

The first thing to do is to accommodate the standard case. When
we see the letter ‘s’, it is usually the case that the phoneme /s/ should
be produced. So the first thing we’ll do is to connect the ‘s’ detector
in the input pool for the target letter position directly to the output
unit representing the phoneme /s/ such that if the letter ‘s’ is detected
in the target position, the /s/ unit will fire unless otherwise inhibited
(see Figure 19.3).

Our network will now perform correctly with respect to the first
two words in our test set – ‘this’ and ‘gas’. When the ‘s’ in each word
reaches the target position, the /s/ unit will fire, as it should.

There are, however, numerous words in which the letter ‘s’ does not
represent the phoneme /s/. Our nascent speech synthesising network

192

will currently make incorrect determinations with respect to the
remainder of the words in our test list. Our next task then is to design
hidden units which detect contexts in which the letter ‘s’ appears but
the phoneme /s/ should not be produced and use these hidden units
to inhibit the activation of the output unit accordingly.

We want the contexts represented in the hidden layer to be as
general as possible so as to accommodate the maximum number of
cases. It is almost always the case in English – with the exception of
some proper names and compound words – that when a letter ‘s’ is
followed by a letter ‘h’ it is not pronounced as /s/. The first hidden unit
we will add to the network will detect just such contexts and inhibit
the output unit (see Figure 19.4).

Now, when our network is presented with either of the next two
words in our test set – ‘wish’ or ‘shy’ – the hidden unit we added will
inhibit the /s/ unit such that it will not fire, as required. As should be
clear, the network now considers any orthographic context in which
‘s’ is followed by ‘h’ to be a context in which /s/ is not produced.

Another context which exhibits similar regularity is one in which
‘s’ is followed by another ‘s’, such as our test words ‘kiss’ and ‘passive’.
In such cases the phoneme /s/ is produced, but only once. As it stands,
our network will determine that /s/ should be pronounced twice as
the output unit will fire when each ‘s’ is in the target position.

 193

Figure 19.3 The standard case.

Consequently, we need to add another hidden unit to accommodate
double ‘s’ contexts (see Figure 19.5).

Note that we could have implemented a slightly different solution to
the double ‘s’ problem. It makes no difference which letter ‘s’ we inhibit
the production of the phoneme /s/ for, so long as it is only produced
once. As such, we could just as well have inhibited the firing of the
output node for an ‘s’ with a following ‘s’ rather than a preceding one.

The next three words in our test set – ‘asia’, ‘asian’ and ‘asiatic’ –
can all be accommodated with the addition of a single hidden unit.
No word in English with the letter combination ‘asia’ is such that
the ‘s’ is pronounced as /s/. We can therefore add a hidden node to the
network which detects the context ‘asia’ and inhibits the firing of the
output unit.

Exercise 19.2

Augment the network by adding a hidden unit and setting
weights and thresholds to detect the context ‘asia’ and inhibit
the firing of the output unit.

Accommodating each of the following two words in the test set –
‘is’ and ‘as’ – requires more specificity. While we want our context

194

Figure 19.4 Context sensitivity.

detectors to be as general as possible, these two cases don’t admit of
contextual generalisation. We might be tempted, for instance, to
inhibit the firing of the output unit for any context in which ‘is’ appears
at the end of a word. While this would then also accommodate ‘his’,
the network would subsequently make an incorrect determination
when presented with ‘this’. Similarly with ‘as’, ‘has’ and ‘gas’.

Consequently, we need to add hidden units which detect just the
words ‘is’ and ‘as’. This is where the utility of having a node in each
input pool for detecting a space becomes apparent. Detecting just the
word ‘is’ involves detecting the context ‘_is_’, where ‘_’ represents a
space.

Exercise 19.3

Augment the network by adding hidden units and setting
weights and thresholds to detect the contexts ‘_as_’ and ‘_is_’
and inhibit the firing of the output unit.

As well as there being numerous contexts with the letter ‘s’ such that the
phoneme /s/ should not be produced, there are also numerous ortho-
graphic contexts such that the phoneme /s/ should be produced which
do not contain ‘s’. The last two words in our test set are just such cases.

 195

Figure 19.5 Context sensitivity.

Almost every English word containing the letter combination ‘ice’
is such that the ‘c’ is pronounced as /s/. The simplest way to accom-
modate the remaining words in our test set is to add a hidden node
which detects this context and excites the output unit such that it will
fire, as required.

Exercise 19.4

Augment the network by adding a hidden unit and setting
weights and thresholds to accommodate the context ‘ice’.

Exercise 19.5

Augment the network further so as to also accommodate the
following words: precise, recede, perceive, receive, precipitate,
reception, recipe.

Exercise 19.6 (Challenge)

(a) Try to accommodate as many of the following words as
possible, without causing the network to make incorrect
determinations with respect to any of the words in our
original test set or the extended set of Exercise 19.5: ease,
lease, please, peace, grease, guise, reprise, practise,
practice, his, has, mission, passion.

(b) What is preventing us from accommodating all of these
words? How might we extend our network architecture to
improve this?

19.4 LEARNING

You should now have a sense of precisely how complex a processing
task it is to convert English orthography to phonemics. We’ve con-
sidered only one phoneme and only a tiny fraction of relevant cases
and even this quickly became quite a complex task.

It also turned out that our network architecture was insufficiently
complex to accommodate even a small test set of words. While we
made provisions for some context at the input layer, we didn’t allow
for sufficient context to make accurate determinations with respect to
the full range of possible contexts in English.

Designing a correctly functioning speech synthesising network for
English in its entirety by designing hidden units and setting weights

196

and thresholds by hand would be a highly labour-intensive exercise.
Fortunately, however, artificial neural networks also excel at learning
to match inputs to outputs.

While the network of the previous section is a nice example of the
operations of artificial neural networks, we would not ordinarily con-
struct a network of any interesting complexity in this fashion.
Specifying the function of nodes in the hidden layer the way we’ve
done belies the appellation ‘hidden’. Typically, threshold values and
connection weights for nodes in the hidden layer are determined by
training the network.

There are numerous training methodologies for artificial neural
networks. A common methodology involves employing a backpropa-
gation algorithm to revise connection weights and threshold values
based on a generated error value.

Backpropagation of error is a supervised training methodology,
which means that we have an antecedent determination of how inputs
should be correctly mapped to outputs – e.g. in our speech synthesis-
ing network we want the output unit for a given phoneme to fire
always and only when that phoneme should be produced given the
orthographic input context.

Training an artificial neural network to function as a speech syn-
thesiser using backpropagation of error would involve the following.
We’d begin with the same input pools and output nodes we described
in the previous section (although we’ll want a wider input window –
more input pools – to provide more context). We’d then add a large
number of hidden nodes and connect every input node to every
hidden node and every hidden node to every output node (giving us
a maximally interconnected feedforward architecture).

The goal is to get the network to perform correctly on a training
set of data – such as our test sets of words. We begin by simply assign-
ing small random values to connection weights and thresholds and
testing the resulting performance. Initially, the network will perform
very poorly – failing to correctly match inputs to outputs – as we’d
expect. We then generate an error value which indexes how far the
network has deviated from the correct mapping. This error value is
then propagated back through the network and adjustments are
made to weights and thresholds according to our backpropagation
algorithm.

The technical details needn’t concern us here as the calculus
involved is moderately complex. For our purposes, a conceptual
understanding of the training process suffices. After cycling the
network and backpropagating the error many times, the network will

 197

eventually converge on a state which facilitates a correct mapping
from inputs to outputs on the training set of data.

If our training set of data is sufficiently large and sufficiently rep-
resentative so as to adequately characterise the relevant space of pos-
sible mappings, the network’s correct performance on the training set
should generalise to novel inputs. In the case of our speech synthe-
sising network, we can say that the network has ‘learned’ to produce
correct phonemic transcriptions of orthographic representations.

19.5 PATTERN RECOGNITION

In our described example case of training an artificial neural network
to translate orthography to phonemics, the network learns how to
map orthographic contexts to phonemes by learning to recognise
certain patterns.

During the training process, the network extracts patterns from the
input data and these are encoded as the connection weights and unit
thresholds among numerous nodes. In other words, various patterns
detected in the training data are encoded in the network as distributed
representations.

Although I’ve not demonstrated it here, artificial neural networks
are able to recognise (token the representations for) learned patterns,
even given partial or noisy input. It is this ability to extract and
encode patterns occurring in data sets and then recognise these pat-
terns when they occur in subsequent inputs – even when the input is
less than perfect – that makes artificial neural networks well suited to
modelling a range of cognitive phenomena.

In our example network, these patterns were particular orthographic
contexts; however, they could be any kind of pattern, depending on the
input. Patterns arise in all kinds of environmental stimuli and the
human capacity to be sensitive to the occurrence of particular patterns
is fundamentally implicated in a broad range of cognitive capacities.

Our rational capacity, in particular, is contingent on this ability.
Very often our intuitive reasoning involves analogical comparison to
structurally similar situations in our past experience – this is a type of
pattern matching. Even deliberately following formal methods of rea-
soning, you will recall, required us to be able to discern logical forms
and match these to the antecedent forms of logical rules.

These properties of artificial neural networks – their contextual
sensitivity and amenability to various training methodologies – bode
well for their successful deployment in artificial intelligence projects.
They also enjoy other relevant advantages.

198

Artificial neural networks are readily scalable. Given, for instance,
the speech synthesising network fragment from section 19.3, it is a
simple matter to augment the network to make determinations
concerning the production of other phonemes, or to widen the
input layer to take a broader context into account. This is aided by
the fact that units in the hidden layer can serve several processing
functions – for example, a collection of units that detect a certain
pattern can simultaneously excite some output units while inhibit-
ing others.

Artificial neural networks are also – in principle – amenable to
interconnection. Consider the word ‘read’. Orthographic context
alone is insufficient to determine which vowel phoneme should be
produced when uttering this word. We also need to determine its syn-
tactic context, since this is what tells us which vowel to produce.
Consequently, if we want our speech synthesising network to perform
correctly on this and similar cases, it will need to interoperate with a
network making syntactic classifications.

Similarly, if we want a completed speech synthesising network that
can produce ‘natural’ sounding speech, we need to apply phonetic
realisation rules to the phonemic output. We also, crucially, need to
make various semantic and pragmatic determinations in order to
establish the intonation contours of utterances. These are extraordin-
arily difficult problems which might be solvable by a number of spe-
cialised neural networks interoperating in parallel to subserve
linguistic production.

Finally, artificial neural networks typically exhibit graceful degra-
dation, in much the same way human brains do. Removing a single
element from a register machine – a register or a line of code – is
usually sufficient to break it completely. Artificial neural networks, on
the other hand, are more robust to damage. Removing a small number
of elements may have little or no effect. Detrimental effects, when they
arise as a result of further lesioning, may well be ameliorated by
retraining the lesioned network such that it recovers its functions –
just as stroke patients relearn cognitive functions.

19.6 TWO PARADIGMS?

Although I’ve described the symbolic and connectionist approaches
to artificial intelligence as fundamentally distinct – and, by implica-
tion, incommensurate – paradigms, it may well be the case that these
views concerning information processing merely engage at different
levels of description.

 199

The connectionist paradigm is often referred to as the sub-symbolic
paradigm, implying that it engages at a lower level of description than
symbol systems. Alternatively, it may well be the case that in human
cognition, certain kinds of low-level symbolic processing subserve
higher-level connectionist processing.

It seems, prima facie, that the operations of artificial neural net-
works (at least as we’ve described them here) are entirely effective.
Hence, by the Church-Turing thesis, they are register machine com-
putable. Certainly transfer functions and activation functions are
algorithmic and it seems we can approximate parallel processing with
stepwise serial processing, so perhaps connectionism simply reduces
to symbolic processing.

On the other hand, we have seen how to construct logic gates with
artificial neural networks. Computers as we standardly know them
are essentially constructed from logic gates, so perhaps symbol
systems simply reduce to connectionist processing.

In practice, symbolic models and artificial neural network models
are not at all radically incommensurate, since artificial neural net-
works are simulated on symbol systems architecture. Recent advances
in the nascent and burgeoning field of neural bioengineering, however,
are taking the symbol systems out of the equation. Biological neural
networks, constructed from actual neurons, have been shown to
exhibit many of the features of artificial neural network models –
including the capacity to be trained to implement particular complex
functions, such as proficiently operating a flight simulator.

19.7 IT’S ONLY A MODEL

The introduction to artificial neural networks in this chapter has been
very basic indeed. We’ve considered only the simplest kinds of net-
works and functions in order to avoid unnecessary mathematical
complexity. I’d strongly recommend that the interested reader con-
tinue their investigations with the suggestions for further reading as a
guide. A proper introduction to artificial neural networks requires a
dedicated textbook.

Even in all their sophistication and complexity, artificial neural
network models remain gross simplifications of the biological neural
activity which they seek to model. In particular they fail to take into
account the global and analogue effects of neurotransmitters and
this has profound implications for the possibility of modelling a
number of mental phenomena, including (crucially) attention and the
emotions.

200

As we learn more about the brain, however, we may be able to
develop yet more sophisticated models which implement the neuro-
biological principles we uncover. It will be particularly interesting to
see whether developments in neural bioengineering over the next
decade provide empirical fodder for computational neural modelling.

 201

C H A P T E R 2 0

MINDS AND COMPUTERS

We have now learned a lot about minds, having surveyed the space of
available philosophical theories of mind and considered the advan-
tages and disadvantages of each theory.

We’ve also learned a lot about computers, having developed a rig-
orous technical account of precisely what a computer is and practised
the fundamentals of computer programming.

We’ve seen how we might employ symbol systems to implement a
number of functions implicated in cognition – particularly with
respect to the rational and linguistic capacity.

Along the way we’ve learned some basic functional neuroanatomy,
a little formal logic, a sprinkling of linguistics and, as well as briefly
touching on modern cognitive psychology, we’ve learned about the
early history of empirical psychology.

Finally, we’ve looked at some simple artificial neural networks and
have seen how we might employ such connectionist networks in mod-
elling cognitive phenomena – again, with particular respect to the
rational and linguistic capacity.

All this has been in the service of an interdisciplinary examination
of the tenability of the project of strong artificial intelligence.

In this final chapter, I want to just briefly touch on some of the
philosophically ‘hard’ problems related to artificial intelligence –
namely those associated with consciousness, personal identity and the
emotions.

20.1 CONSCIOUSNESS

Although I’ve helped myself in places to an intuitive distinction
between the mental processes we are consciously aware of and those
which occur below the level of consciousness, I’ve not said much at
all about consciousness per se.

202

It is an ineliminable – but perhaps not irreducible – fact about
human mentality that we have consciousness. The word ‘conscious’,
however, is used in many ways.

Sometimes it is used to refer to our awareness of certain events or
processes that we are conscious of. Sometimes it is used to refer to our
awareness of our self and the distinction between our self and the rest
of the world – our self consciousness. Sometimes it used merely to dis-
tinguish between our waking states and sleeping – or unconscious –
states.

In certain religions, to have consciousness means to be ensouled. In
psychoanalytic theory, the conscious mind is commonly distinguished
from the subconscious mind and these are typically held to be in all
kinds of tensions that only psychoanalysis can resolve.

More philosophically, being conscious involves having the capacity
for subjective experience and for having the associated privileged first-
person qualities of experience – qualia. It is also strongly associated
with the capacity for developing representational states with inten-
tional content.

It is less than clear if there is a single overarching ‘problem of con-
sciousness’ or a number of relevant problems – perhaps ‘easier’ and
‘harder’ problems – although David Chalmers has done much to dis-
ambiguate senses and tease apart the philosophical issues involved.

Consciousness is currently the hot topic in philosophy of mind
with dedicated research centres arising to investigate the phenom-
enon. These research centres are engaged in the kind of interdiscipli-
nary analysis we have conducted in this volume, with a strong focus
on determining precisely what the relevant philosophical questions
are and how one might go about answering them.

Philosophically advanced readers would be well advised to follow
the suggestions for further reading to develop their understanding of
this challenging, engaging and developing area of philosophy.

20.2 PERSONAL IDENTITY

On any given day, I clearly differ in a number of ways from the way I
was the day before since I will have a number of different properties.
I will have a distinct spatiotemporal location, I may have altered or
augmented beliefs, I will have extra memories, small bits of my body –
skin, hair, fingernails and the like – will have been lost and new bits
will have grown, and so on.

However, despite these numerous distinct properties from day to
day and year to year, I am always the same person – I have a unique

 203

personal identity which endures through numerous changes in
my spatiotemporal, psychological and material properties. Although
I am qualitatively distinct from day to day, I am numerically identi-
cal – i.e. one and the same person.

It is not difficult to problematise the notion of enduring personal
identity. Regardless of one’s preferred criteria for the persistence of per-
sonal identity through time, it seems we can come up with problem cases.

It is common to privilege psychological continuity as a criterion
for the persistence of personal identity. Psychological continuity,
however, doesn’t seem to be a necessary condition for the persistence
of personal identity since I can imagine having total amnesia such
that my psychological states are radically discontinuous with past
psychological states. Intuitively though, I would still be the same
person – I would have just lost my memory. There is a response or two
available here but I leave this up to the reader.

Nor does the psychological continuity criterion seem sufficient for
the persistence of personal identity. Suppose I step into a matter tele-
portation device and, through some mishap, I am reassembled twice
at the other end. Both of the beings who step out of the matter trans-
porter are psychologically continuous with me – at least at the instant
they step out – so, if psychological continuity is a sufficient criterion
for the persistence of personal identity, both must be the same person
as me. Again, I leave responses to the reader.

Now suppose that computationalism is true. This means that, in
principle, I could replicate your mind exactly with computational
hardware other than your brain. Suppose I have a computational
device sufficiently powerful to run your [MIND] equally as well as
your brain does. Further suppose that one night while you are sleep-
ing, I use a fancy new scanner and some innovative surgical tech-
niques to scan your [MIND], replicate it in my computational device
and then replace your brain with the new computational device
without your ever being aware.

What do your intuitions tell you in this case? Are you still the same
person? If you think not then modify the example so that on the first
night, I replace just one of your neurons with an artificial neuron. On
the next night, I replace ten. On the next night, I replace a hundred, then
a thousand, then a million, and so on – all without your ever being
aware. Unless you’re prepared to indicate which number of replaced
neurons constitutes a change in your personal identity, it seems you
must be committed to being the same person at the end of this process.

If you think that you are the same person with the alternative com-
putational device replacing your brain, then modify the example so

204

that I merely scan your [MIND] and then place the computational
device implementing it into an android body, leaving you just as you
are. What do your intuitions tell you now? What obligations do we
have, if any, to the android body with your [MIND]?

I have included a couple of articles in the suggestions for further
reading which problematise personal identity while remaining acces-
sible and entertaining to the introductory reader.

20.3 EMOTIONS

It is generally considered that to lack the capacity for emotional states
and responses is to lack one of the requirements for having a mind in
the sense that we have minds. A deficit in emotional behaviour is one
of the characteristic symptoms of certain psychopathologies and,
while we hold such people to have minds, we believe their minds to be
importantly qualitatively distinct from our own.

It is almost always emotional engagement that is used to blur the
line between humans and artificial intelligence in science fiction.
Think of the endings of the movies Bladerunner, Terminator II and I,
Robot as examples. In each case, we are led to being emotionally dis-
posed towards the artificially intelligent protagonist by virtue of
coming to believe that it is capable of having emotions.

Emotion is one of the least well understood aspects of mentality.
We know that certain emotions are correlated with, and can be stimu-
lated by, certain neurotransmitter combinations, but our understand-
ing of these processes is sketchy at best. We also know that damage to
certain localised areas of the brain can result in characteristic emo-
tional deficits.

One of the particularly interesting things we know about emotion
is that emotional engagement is strongly tied to episodic memory. It
is manifestly the case that we are much more likely to remember
events which invoked in us a strong emotional response. Further-
more, we know the limbic system of the brain to be implicated in both
emotion and memory.

It is intuitively clear, particularly on reflection of the science fiction
examples I mentioned, that we are much more likely to believe that an
artificial intelligence with the full range of human emotional
responses qualifies as having a mind in the same sense that we have
minds. However, the problem of the inaccessibility of another mind’s
qualitative aspects of experience arises again here.

If an artificial intelligence displayed the standard range of human
emotional responses but these were just outward displays which

 205

didn’t feel like anything to the artificial intelligence, would we still
attribute to it the robust notion of having a mind? If not, then why do
we attribute having a mind to other people when we all we are able to
discern about their emotional states is their observable behaviour?

As always, it is less than clear what one should say about qualia and
I leave this to the reader to consider.

20.4 COMPUTERS WITH MINDS

Now that we’ve reached the end of the book, it is time to reflect on
what determinations we are able to make concerning the possibility
of artificial intelligence.

We haven’t seen anything here which leads us to believe that strong
artificial intelligence is impossible, although we have seen some entry
points for mounting such arguments. Prima facie, with a concession
to the potential determinations of further philosophical investig-
ation, it seems that it may well be possible to design a computer which
has a mind in the sense that we have minds.

We have, however, seen that our current best computational models
of cognition are still woefully inadequate, but we hold out hope that
advances in neuroscience may provide us with technical understand-
ings of the biological processes subserving cognition which will lead
to richer conceptual understandings and, ultimately, successful
strong artificial intelligence projects.

We have managed to impose some putatively necessary conditions
on the development of artificial intelligence. In Chapter 17, we argued
that embodied experience was a necessary condition for the develop-
ment of semantics which, in turn, are necessary for having a mind.

Consequently, if we want to develop an artificial intelligence
it must, in the first instance, be connected to the external world in
the relevant ways. In other words, it must enjoy sensory apparatus
which mediate the relations between it and the external world.
Furthermore, our embryonic artificial intelligence must then be able
to gather a weight of experience, through which it will be conferred
with mental representations.

Given our current conceptual understanding of the mind and tech-
nical understanding of the computational wetware of the brain which
gives rise to it, by far the simplest way to create something which has
the capacity for embodied experience and which is ceteris paribus
guaranteed to develop a mind in the same sense that we have a mind
is still the old-fashioned biological way – to create and raise a human
being.

206

APPENDIX I: SUGGESTIONS FOR
FURTHER READING

CHAPTER 2

Campbell, K. Body and Mind. London: Macmillan, 1970, ch. 3.
Churchland, P. Matter and Consciousness. Cambridge, MA: MIT

Press, 1988, ch. 2.
Descartes, Meditations on First Philosophy, trans. J. Cottingham.

Cambridge: Cambridge University Press, 1986, pp. 50–6.

CHAPTER 3

Campbell, K. Body and Mind. London: Macmillan, 1970, ch. 4.
Gardner, H. The Mind’s New Science. New York: Basic Books, 1985,

pp. 98–114.
Ryle, G. The Concept of Mind. Harmondsworth: Penguin, 1973,

pp. 13–25.
Schultz, D. A History of Modern Psychology. New York: Academic

Press, 1975, chs 3, 4, 5, 10, 11.

CHAPTER 4

Barr, M. The Human Nervous System: An Anatomic Viewpoint, 3rd
edn. Hagerstown, MD: Harper & Row, 1974.

Diamond, M. C. et al. The Human Brain Coloring Book. New York:
Harper Collins,1985.

Gregory, R. (ed.) The Oxford Companion to the Mind, Oxford: Oxford
University Press, 1987, pp. 511–60.

CHAPTER 5

Armstrong, D. A Materialist Theory of the Mind. London: Routledge
& Kegan Paul, 1968.

207

Jackson, F. ‘Epiphenomenal Qualia’, Philosophical Quarterly, 32
(1982), pp. 127–36.

Nagel, T. ‘What Is It Like to Be a Bat?’, Philosophical Review, 83
(1974), pp. 435–50.

Place, U. T. ‘Is Consciousness a Brain Process?’, British Journal of
Psychology, 47 (1956), pp. 44–50.

Smart, J. J. C. ‘Sensations and Brain Processes’, Philosophical Review,
68 (1959), pp. 141–56.

CHAPTER 6

Block, N. ‘Troubles with Functionalism’, reprinted in Block, N. (ed.)
Readings in Philosophy of Psychology, Vol. 1. Cambridge, MA:
Harvard University Press, 1980.

Guttenplan, (ed.) A Companion to the Philosophy of Mind. Oxford:
Blackwell, 1994, pp. 317–32.

CHAPTERS 7–9

Church, A. ‘An Unsolvable Problem of Elementary Number Theory’,
American Journal of Mathematics, 58 (1936), pp. 345–63.

Hofstadter, D. Gödel, Escher, Bach: An Eternal Golden Braid, 20th
Anniversary edn. London: Penguin, 2000, pp. 33–41.

Jeffrey, R. Formal Logic: Its Scope and Limits, 3rd edn. New York:
McGraw-Hill, 1991, pp. 100–2.

Turing, A. M. ‘On Computable Numbers, with an Application to the
Entscheidungsproblem’, Proc. London Math. Soc., 42 (1937),
pp. 230–65.

CHAPTER 10

Scheutz, M. (ed.) Computationalism: New Directions, Cambridge,
MA: MIT Press, 2002, ch. 1.

Turing, A. M. ‘Computing Machinery and Intelligence’, Mind, 59
(1950), pp. 433–60.

CHAPTERS 11–13

Copeland, J. Artifical Intelligence: A Philosophical Introduction.
Oxford: Blackwell, 1993, ch. 4.

Haugeland, J. Artificial Intelligence: The Very Idea. Cambridge, MA:
MIT Press, 1989, ch. 2.

208

Newell, A. and Simon, H. ‘Computer Science as Empirical Enquiry:
Symbols and Search’, Communications of the ACM, 19 (1976),
pp. 113–26.

Pinker, S. How The Mind Works. London: Allen Lane, 1998, ch. 2.

CHAPTER 14

Chomsky, N. Aspects of the Theory of Syntax. Cambridge, MA: MIT
Press, 1965.

Haegeman, L. Government and Binding Theory. Oxford: Blackwell,
1991.

CHAPTER 15

Cohen, L. J. ‘Can Human Irrationality be Experimentally
Demonstrated?’, Behavioural and Brain Sciences, 4 (1981),
pp. 317–30.

Gardner, H. The Mind’s New Science. New York: Basic Books, 1985,
ch. 13.

Johnson-Laird, P. N. Mental Models: Towards a Cognitive Science of
Language, Inference and Consciousness. Cambridge, MA: Harvard
University Press, 1983.

Kahneman, D., Slovic, P. and Tversky, A. (eds) Judgment under
Uncertainty: Heuristics and Biases. Cambridge: Cambridge
University Press, 1982.

Wason, P. C. ‘Natural and Contrived Experience in a Reasoning
Problem’, Quarterly Journal of Experimental Psychology, 23 (1971),
pp. 63–71.

CHAPTER 16

Crystal, D. The Cambridge Encyclopedia of the English Language.
Cambridge: Cambridge University Press, 1995, ch. 17.

Fromkin, V., Rodman, R. et al. An Introduction to Language, 2nd edn.
Sydney: Holt, Rinehart & Winston, 1990, chs 2, 3.

CHAPTER 17

Searle, J. ‘Minds, Brains and Programs’, Behavioural and Brain
Sciences, 3 (1980), pp. 417–57.

 209

CHAPTER 18

Fodor, J. Concepts: Where Cognitive Science Went Wrong. Oxford:
Clarendon, 1998.

Putnam, H. Reason, Truth and History. Cambridge: Cambridge
University Press, 1981, ch. 1.

Smith, E. and Medin, D. Categories and Concepts. Cambridge, MA:
MIT Press, 1981.

CHAPTER 19

Dennis, S. and McAuley, D. Connectionist Models of Cognition.
Online text, available at the time of writing at: http://lsa.
colorado.edu/~simon/cmc/index.html.

Rumelhart, D. and McClelland, J. et al. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol. 1:
Foundations. Cambridge, MA: MIT Press, 1986, chs 1, 2, 3, 5, 8.

CHAPTER 20

Chalmers, D. The Conscious Mind. New York: Oxford University
Press, 1996.

Dennett, D. Brainstorms: Philosophical Essays on Mind and
Psychology. Cambridge, MA: MIT Press, 1981.

Hofstadter, D. and Dennett, D. (eds) The Mind’s I. New York: Basic
Books, 1981, ch. 26.

210

APPENDIX II: GLOSSARY OF
TERMS

a fortiori even more strongly, by the same reasoning. ‘Brunswick is
in Melbourne, therefore it is in Victoria; a fortiori, it is in Australia.’

activation function one of the two functions implemented by
each processing node of an artificial neural network which deter-
mines, given a level of activation, whether or not the node
should fire.

adicity the number of inputs which a function takes.
afferent incoming (signal conduction).
algorithm another name for an effective procedure – a systematic

method which requires no understanding for its execution and
which can be completed in finite time.

allophone a phonetic variant of a phoneme whose context-
dependent production is determined by phonetic realisation rules.

amphiboly a property of certain syntactic structures such that they
admit of multiple semantic interpretations. ‘I saw the man on the
hill with the telescope.’

anomalous monism the view that certain physical states have irre-
ducibly non physical properties.

antecedent the left-hand side of a conditional.
aphasia a language deficit. Common forms include Broca’s aphasia,

Wernicke’s aphasia and conduction aphasia.
artificial intelligence, strong the contentious view that it is possible

to develop artefacts which have minds in the sense that we have
minds.

artificial intelligence, weak the uncontentious view that it is possible
to create artefacts which are able to implement certain functions
which are held to be (weakly) constitutive of intelligence. Often
used to sell white goods.

artificial neural network a structure of weighted connections
between simple processing units – each of which implements a
transfer function and an activation function – the propagation of

211

activation through which constitutes parallel distributed processing.
Artificial neural networks are modelled on ‘brain style’ information
processing.

behaviourism, philosophical (analytic) a semantically reductive and
ontologically eliminative theory of mind, according to which our
mental state terms don’t actually pick anything out but are simply
useful shorthand locutions for referring to complex sets of dispos-
itions to behave.

behaviourism, psychological a methodological view concerning how
psychological investigation should proceed, according to which
psychology should treat exclusively of observable behaviour.
Influenced by positivism.

causal theory (of mind) the view that mental states are characterised
exclusively in terms of their causal role with respect to mediating
relations between stimulus and behaviour.

ceteris paribus all other things being equal.
Chinese room a thought experiment which seeks to show that no

amount of syntactic manipulation, in isolation from the external
world, is sufficient to generate semantics.

cognitive architecture the structure and nature of the information
processing systems of a cognitive agent – the organisational and
implementation features of the information processing hardware of
a cognitive agent.

computation the sequence of operations of a register machine.
computationalism the philosophical theory of mind according to

which minds are akin to the software being run on the hardware, or
wetware, of the brain – a kind of functionalism which allows for the
possibility of computational artificial intelligence.

computer the physical implementation of – or, more accurately,
approximation to – a universal machine.

conditional a statement of the form ‘If . . . then . . .’.
conjunction a logical operation represented by the natural language

term ‘and’.
consequent the right-hand side of a conditional.
counter-example an interpretation which shows that an inference

form is not valid by showing that it is possible for all the premises
to be true while the conclusion is false.

decidable a property of some formal systems such that there is an
effective procedure for determining, of any given state of the
system, whether or not it is generated.

deduction an inference which appeals to some logical principle, such
as modus ponens.

212

derivation a proof that a particular state of some formal system is
generated which demonstrates the required sequence of applic-
ations of the rules of the system.

deterministic a property of some formal systems such that, at most,
one rule will apply to any given state and in only one way.

diphthong a sonorant phoneme whose production requires move-
ment of the tongue from one cardinal vowel position to another.

distinctive contrast two phones display distinctive contrast – and are
thereby distinct phonemes – iff the substitution of one phone for
another results in a change of meaning.

dualism, Cartesian the philosophical theory of mind – otherwise
known as interactionist dualism, according to which the mind and
body are composed of distinct substances which interact with each
other.

dualism, substance an ontological view according to which the uni-
verse is composed of two distinct substances – physical and non-
physical, or material and immaterial.

effectivity a property of certain procedures – otherwise known
as algorithms – such that they can be carried out systematically,
in finite time, without the need for understanding. Effectivity
constrains the states and rules of formal systems.

efferent outgoing (signal conduction).
epiphenomenalism the philosophical theory of mind according to

which mental states are non-physical but causally inert – mere
epiphenomena of certain physical processes.

expert system a particular kind of formal system used to generate
deductions which recapitulate the reasoning processes of a relevant
expert.

exponentiation the mathematical operation of raising one number
to the power of another, of which squaring and cubing are exam-
ples.

formal system a collection of effectively distinguishable states and a
collection of rules which operate effectively on states to generate
other states. Board games such as chess are paradigm formal
systems.

function a mathematical correlation between some fixed number of
inputs and some unique output.

functionalism the philosophical theory of mind according to which
the defining features of mental states are their functions in mediat-
ing relations between inputs, outputs and other mental states.

generation the process of applying a rule to a state of a formal
system to yield another state.

 213

generation tree a structure showing sequences of applications of
rules to states of a formal system.

generative grammar a formal system for ruling on the grammatical-
ity of strings of a language.

Gödel coding a method involving the exponentiation of prime
numbers which facilitates reference to elements of formal systems
from within the system.

heuristic (function) informally, a method for guiding to a solution.
Formally, heuristic functions assign a value to states of a
formal system representing the closeness of that state to some goal
state.

heuristic search a search method which is informed by a heuristic
function.

homonym a homophone where multiple semantic interpretations
also share an orthographic representation – ‘bank’ and ‘bank’.

homophone a sequence of phonemes which admits of more than
one semantic interpretation – ‘bred’ and ‘bread’.

identity theory (of mind) another name for Australian/reductive/
central state materialism.

iff if and only if.
induction the form of inference characteristic of the empirical sci-

ences, such that the truth of the premises lends support to the con-
clusion but does not guarantee it.

intentionality a technical philosophical term for the property of
mental states such that they represent something or are about some-
thing.

inter alia among other things.
ipso facto by that very fact.
isomorphism an isomorphism from one formal system to another is

a structure-preserving uniform substitution of elements of the
system such that all formal properties are thereby preserved.

knowledge argument an argument, drawn from a thought experi-
ment, which seeks to show that a complete physical explanation of
mentality does not constitute a complete explanation.

Loebner Prize an instituted and annually conducted implement-
ation of the Turing test.

logic the research programme which investigates logics.
logics formal systems which encode consequence relations – what

‘follows from’ what as a matter of logical form.
materialism, reductive/Australian/central state various names for the

philosophical theory of mind according to which types of mental
states are identical to types of neural states.

214

minimax a procedure for determining winning strategies in the
context of a formal system representing a two-player game.

modus ponens the logical principle according to which we can
deduce, from the truth of the antecedent of a conditional, the truth
of its consequent.

modus tollens the logical principle according to which we can deduce,
from the falsity of the consequent of a conditional, the falsity of its
antecedent.

monophthong a sonorant phoneme whose production involves
holding the tongue at one of the cardinal vowel positions.

multiple realisability with respect to mental states, the fact that they
can have more than one physical implementation, either across sub-
jects or within a subject across time.

neural plasticity the property of human brains such that certain parts
of the brain can take up the customary function(s) of damaged parts
of the brain – particularly prevalent in younger brains.

neuron an individual cell of the nervous system.
normative broadly speaking, a principle, or set of principles, which

purports to tell us what we ought to do.
obstruent a phoneme whose production requires that the passage of

air through the articulatory apparatus be partially or completed
obstructed.

occasionalism a kind of mind–body dualism according to which
minds and bodies do not interact, but rather God steps in from time
to time to make things seem as if they do.

Ockham’s razor a methodological constraint on theory construc-
tion which maintains that one shouldn’t postulate any more entities
than are strictly explanatorily necessary.

ontology the core of metaphysics which deals with what, funda-
mentally, there is – the ontology of dualism is one according to
which there are two distinct substances.

operant conditioning the kind of conditioning described by Skinner,
which differs from Pavlovian conditioning in that the stimulus fol-
lowing the behaviour also has a conditioning effect.

parallelism a kind of mind–body dualism according to which minds
and bodies do not interact, but God set things up initially – in pre-
ordained harmony – in such a way that it appears as if they do.

Pavlovian conditioning the process by which some particular stimu-
lus comes to reliably give rise to some particular behaviour.

per se as such.
petitio principii the fallacy of begging the question, wherein one

assumes the concession of the very proposition in question.

 215

phonemes idealised categories – to which phones assimilate – which
represent the stock of atomic meaningful speech sounds in a
language.

phones phonetically realised speech sounds.
phonetic realisation rules the rules according to which allophonic

variants of phonemes are produced in context-dependent comple-
mentary distributions.

phrase structure grammar a deterministic formal system such that
each rule is context free and contains exactly one symbol on the
input side.

phrase structure tree the generation tree of a phrase structure
grammar.

positivism the false doctrine, influential in the late nineteenth and
early twentieth centuries, according to which ‘real’ or ‘positive’
science should treat exclusively of observable entities.

predicate in linguistics, a verb with all its complements. For the pur-
poses of this volume a predicate can be thought of as expressing a
property or relation.

prima facie on the face of it – on first inspection.
prime number a number whose only factors are itself and one.
program the rule which governs the operations of a register machine.
qualia a technical philosophical term for the subjective, qualitative,

privileged, first person aspects of experience.
recursive definition a means of finitely specifying an infinite class,

consisting of a base clause and a recursive clause. The binary
numbers can be defined recursively as follows: one and zero are
both binary numbers (base clause) and adding a one or a zero to
any binary number results in a binary number (recursive clause).

reflex arc a Pavlovian term which is intended to account for the rela-
tion between stimulus and behaviour.

register machine a kind of formal system which can be used to define
computation.

rules one of the two collections which constitute a formal system.
For any given rule and any given state it must be effective whether
or not the rule applies and, if it does, it must effectively deliver a
finite number of output states.

semantics broadly speaking, meaning.
sonorant a phoneme whose production requires that the passage of

air through the articulatory apparatus not be obstructed.
states one of the two collections which constitute a formal system.

States can be defined over any collection of entities, provided there
is an effective procedure for distinguishing between any two states.

216

straw man fallacy mischaracterising an opposing position as being
weaker than it actually is, then arguing against the weaker position.

substrate independence the ability to be realised in any substrate – it
is a property of functionalist theories of mind that mental states are
held to be substrate independent.

symmetrical a property of relations such that for all A and B, if A
stands in the relation to B then B stands in that relation to A. An
example is ‘being a sibling of’.

synapse a connection between neurons.
syntax the rule governed combination of symbols.
terminal state a generated state of some formal system such that no

rules of the system apply to it.
token physicalism the philosophical theory of mind according to

which, whenever a subject is in a mental state, they are in some
neural state but no identification is made between types of mental
and neural states.

transduction the process by which an electrical signal is converted to
a chemical signal and vice versa.

transfer function one of the two functions implemented by each pro-
cessing node of an artificial neural network, which determines what
a node’s level of activation should be given its afferent activation
(and possibly its antecedent level of activation).

transitive a property of relations such that for all A, B and C, if A
stands in the relation to B and B stands in the relation to C, then A
stands in that relation to C. An example is ‘being taller than’.

Turing test a test involving human and computer participants and a
human interrogator, such that if the computer can deceive the
human interrogator into believing it is human, we should be pre-
pared to say of the computer that it has a mind.

universal machine a particular kind of register machine which can,
by virtue of Gödel coding, take any register machine program as
input and operate that register machine.

validity a property of logical forms of inference, such that the truth
of the premises guarantees the truth of the conclusion – valid infer-
ences admit of no counter-examples.

wetware refers to the brain in its capacity as information processing
hardware.

 217

absent qualia see zombies
activation, 188, 190
activation function, 188–9, 200
adicity, 77
algorithms see effective procedures
allophones, 170–1
ambiguity

lexical, 153
syntactic see amphiboly

amphiboly, 153
amygdala, 30
anomalous monism see property

dualism
antecedent (of conditional), 134
arcuate fasciculus, 32
Armstrong, D., 36
artificial intelligence, 100
artificial neural networks, 187–201

training see backpropagation
Australian materialism, 35, 37–42
axon, 33

backpropagation, 197–8
basal ganglia, 30
begging the question, 39, 50–1
behavioural conditioning see

conditioning
behaviourism

analytical see philosophical
methodological see

psychological

philosophical, 23–6, 35, 45
psychological, 20–2

branching factor, 114
Broca, P., 31
Broca’s aphasia, 31
Broca’s area, 31

carburettor, 44–5
Cartesian dualism see dualism
categorial reasoning, 158
causal closure, 11
causal theory (of mind), 35–7, 38,

45
central state materialism see

Australian materialism
cerebellum, 28
Chalmers, D., 203
chess, 53–6, 104, 128–31
Chinese room, 176–9
Chomsky, N., 149, 164
Church, A., 87
Church/Turing thesis, 87–8, 93,

200
cognitive architecture, 185–6; see

also artificial neural networks
compositionality, 182
computability, 77–8, 87–8, 200
computation, 75–8, 95
computationalism, 95–108
computer, 93
Comte, A., 20

218

INDEX

conditionality, 134
conditioning

operant, 21–2
Pavlovian, 20, 2

conduction aphasia, 32
conjunction, 136
conjuncts, 137
connectionism, 185–6; see also

artificial neural networks
consciousness, 202–3
consequent (of conditional), 134
content, 102–3, 175; see also

semantics
context sensitivity, 191–6
corpus callosum, 30
corvée, 1
counterexamples, 156, 160
creativity, 106–8
cross-lateralisation, 30–1
Cyc/Cycorp, 144

decidability, 86
decision problem see decidability
deduction, 133–7
dendrites, 33
derivation, 62–4, 66, 67
Descartes, R., 5, 29
diphthongs see sonorants
dispositions, 23–6
distributed representation see

representation
dopamine, 28
double aspect theory see property

dualism
dualism

Cartesian, 5–12
epiphenomenalism, 13–14
interactionist see Cartesian
occasionalism, 13
parallelism, 12–13
property, 14
substance, 4–5

Ebbinghaus, H., 18, 19
effective procedures, 53–7, 64, 67,

71–3, 76, 86–8, 97, 200
embodiment, 179–80, 206
emotion, 30, 205–6
endocrine glands, 29
entailment see logical consequence
Entscheidungsproblem see decision

problem
epiphenomena, 14
epiphenomenalism see dualism
essential properties, 8–9
exclusive disjunction, 190
expert systems, 137–44
exponentiation, 89

Fechner, G., 16 –17
Fibonacci sequence, 84
formal systems, 57–69, 71–2, 88, 95,

102
frontal lobe, 31
function (mathematical) see

total/partial functions
functionalism, 44–51, 95, 101

gambler’s fallacy, 158
generation, 61–2
generation trees, 64–7
generative grammar

see grammar
ghost in the machine, 23, 26
God, 12–13
Gödel, K., 88
Gödel coding, 88–94
grammar

generative, 149–52
phrase structure, 150

halting problem, 76, 85, 86
Helmholtz, H., 16–17
heuristic function, 117, 125–6,

128

 219

heuristic search
best first, 120–1
hill climbing, 118–20

hippocampus, 30
homonyms, 148
homophones, 148
Huntington’s chorea, 30
hypothalamus, 29

identity see personal identity
identity theory (of mind) see

Australian materialism
imitation game see Turing Test
imitation man see zombies
induction, 133
intentionality, 181–2, 203
interactionist dualism see dualism
introspection, 7, 17–20, 38–9
inverted spectrum, 48–9
irrationality see rationality
isomorphism, 68, 102–3, 104

Jackson, F., 43
Johnson-Laird, P., 161

Kahneman, D., 161
Külpe, O., 18–19

lateral geniculate nucleus, 29
learning algorithms, 105–6
Leibniz’ Law, 39
limbic system, 30
linguistic capacity, 109
Loebner Prize, 111
logic gates, 189–91, 200
logic/logics, 132–3
logical consequence, 132; see also

validity
logical form, 135–6

Mach, E., 20
materialism

Australian see Australian
materialism

central state see Australian
materialism

reductive see Australian
materialism

meaning see semantics
medial geniculate nucleus, 29
melatonin, 29
memory, 18, 30, 203
mental models, 160–1
mental representation see

representation
minimax, 125–6
modus ponens, 134
modus tollens, 157
monophthongs see sonorants
multiple realisability, 40–1, 101
MYCIN, 143
myelin, 33

neural bioengineering, 200–1
neural plasticity, 32, 41
neurons, 32–4
neurotransmitters, 28, 29, 200,

205

obstruents, 165–7; see also
phonemes

occasionalism see dualism
occipital lobe, 32
Ockham’s razor, 10–11, 24, 38
olfactory bulbs, 29–30
ontology, 4
operant conditioning see

conditioning
operating system, 104–5
overextension (semantic), 172
oxytocin, 29

paradigms see stereotypes
parallelism see dualism

220

parietal lobe, 31
Parkinson’s disease, 28, 30
pattern extraction, 131, 163, 198–9
Pavlov, I., 20
Pavlovian conditioning see

conditioning
personal identity, 203–5
petitio principii see begging the

question
phonemes, 146, 165–73
phonetic properties, 145; see also

phonetic realisation rules
phonetic realisation rules, 170–2
phonological simplification, 173
phonology, 164–73
phrase structure grammar see

grammar
phrase structure trees, 150–2; see

also generation trees
pineal gland, 29
pituitary gland, 29
Place, U. T., 36, 37
pons, 27–8
positivism, 20, 22
predicates see predication
predication, 134–7
preordained harmony see

parallelism
primary auditory cortex, 31
primary motor cortex, 31
primary sensory strip, 31
primary visual cortex, 32
prime numbers, 89
productivity (of language), 149
program, 71–5, 79–84, 90–3, 96
proof see deduction, derivation,

induction
property dualism see dualism
pruning, 127–8
psychology

behaviourist, 20–2
history of, 15–22

introspectionist, 17–20
physiological, 16–17

qualia, 42–3, 48–51, 203

rationality, 162–3
Rayner, R., 21
recursive definition, 59
reductive materialism see

Australian materialism
reflex arcs, 20–1
register machines, 70–6, 78–84,

86–7, 88, 89–93, 96
relations

symmetrical, 137
transitive, 136

representation, 180, 181–5
distributed, 184–5
symbolic, 183–4

robots, 1
Ryle, G., 23

satisfaction, 135, 137
search (blind)

bottom up, 114, 142–3
breadth first, 115, 117
depth first, 116–17
heuristic see heuristic search
top down, 113–14

Searle, J., 176
semantics, 146–8, 175–80
Skinner, B. F., 21–2
Smart, J. J. C., 36, 37
soma, 33
somatosensory cortex see primary

sensory strip
sonorants, 167–70; see also

phonemes
soul, 6
species chauvinism, 41, 47
speech synthesis, 191–6, 199
squaring, 81–3; see also

exponentiation

 221

stereotypes, 158, 159; see also
mental models

stimulus-response, 17
straw man, 94
string concatenation, 58–9
string variables, 58
substance dualism see dualism
substantia nigra, 28
substrate independence, 47, 101
symbolic representation see

representation
symmetrical relation see relations
synapse, 33
synaptic cleft, 33
synaptic vesicles, 33
syntax, 147–9, 175–9; see also

grammar

temporal lobe, 31–2
thalamus, 28–9, 30
thermodynamics, 11
token identity theory (of mind) see

token physicalism
token physicalism, 41–2, 46–7, 101
topological organisation, 31
total/partial functions, 77

transduction, 33
transfer function, 188–9, 200
transitive relation see relations
Turing, A., 86, 109–10
Turing machines, 86–7; see also

register machines
Turing Test, 109–11
Tversky, A., 161
type/token identity, 46

underextension (semantic),172–3
universal machines, 92–3, 96–7, 98

validity, 99, 156, 157
vowels, cardinal, 168; see also

sonorants

Watson, J., 20–1
Wernicke, K., 32
Wernicke’s aphasia, 32
Wernicke’s area, 31–2
wetware, 99, 101
Wizard Of Oz, The, 148
Wundt, W., 17–19

zombies, 50–1

222

	Table of Contents
	Acknowledements
	Chapter 1 - Introduction
	Chapter 2 - Dualism
	2.1 Substance Dualism
	2.2 Cartesian Dualism
	2.3 Positive Arguments for Cartesian Dualism
	2.3.1 The Argument from Religion
	2.3.2 The Argument from Introspective Appearance
	2.3.3 The Argument from Essential Properties

	2.4 Arguments Against Cartesian Dualism
	2.4.1 The Problem of Other Minds
	2.4.2 Ockham's Razor
	2.4.3 The Problem of Interaction

	2.5 Other Dualisms
	2.5.1 Parallelism
	2.5.2 Occasionalism
	2.5.3 Epiphenomenalism

	2.6 Anomalous Monism

	Chapter 3 - Behaviourism
	3.1 Early Empirical Psychology
	3.2 Physiological Psychology
	3.3 Introspectionist Psychology
	3.4 Psychological Behaviourism
	3.5 Philosophical Behaviourism
	3.6 Objections on Philosophical Behaviourism

	Chapter 4 - Neuroantomy
	4.1 Macro-Neuroanatomy
	4.2 Micro-Neuroanatomy

	Chapter 5 - Australian Materialism
	5.1 The Causal Theory of Mind
	5.2 The Identity Theory
	5.3 Arguments against Australian Materialism
	5.4 What Mary Didn't Know

	Chapter 6 - Fucntionalism
	6.1 Functional Definition
	6.2 A Black Box Theory
	6.3 Qualia Objections

	Chapter 7 - Formal Systems
	7.1 Effectivity
	7.2 States and Rules
	7.3 Specification
	7.4 Generation and Derivation
	7.5 Generation Trees
	7.6 Formality and Isomorphism

	Chapter 8 - Computability
	8.1 Register Machines
	8.2 Programs
	8.3 Running a Program
	8.4 Computation
	8.5 Computable Functions
	8.6 Building Programs

	Chapter 9 - Universal Machines
	9.1 Church/Turing Thesis
	9.2 Gödel Coding
	9.3 A Universal Machine

	Chapter 10 - Computationalism
	10.1 What Computationalism Isn't
	10.2 Software and Wetware
	10.3 Variation
	10.4 Learning
	10.5 Creativity
	10.6 Attributing Mentality

	Chapter 11 - Search
	11.1 Top Down, Bottom Up
	11.2 Breadth Versus Depth
	11.3 Heuristic Search

	Chapter 12 - Games
	12.1 A Simple Game
	12.2 Minimax
	12.3 Pruning
	12.4 Humans Versus Computers

	Chapter 13 - Machine Reasoning
	13.1 Logic and Deduction
	13.2 Conditionality and Predication
	13.3 Kinship

	Chapter 14 - Machines and Language
	14.1 Interpreting Language
	14.2 Generative Grammar
	14.3 Phrase Structure Trees

	Chapter 15 - Human Reasoning
	15.1 Following Logically
	15.2 Rational Performance
	15.3 Mental Models
	15.4 Explanatory Burden

	Chapter 16 - Human Language
	16.1 obstruent Phonemes
	16.2 Sonorant Phonemes
	16.3 Allophones and Phonetic Realisation
	16.4 First-Language Acquisition
	16.5 Language and Rules

	Chapter 17 - Meaning
	17.1 The Chinese Room
	17.2 Syntax and Semantics

	Chapter 18 - Representation
	18.1 Intentionality
	18.2 Categories and Content
	18.3 Symbols and Patterns
	18.4 Cognitive Architecture

	Chapter 19 - Artificial Neural Networks
	19.1 Connectionist Architecture
	19.2 Simple Artificial neural networks
	19.3 Synthesising Speech
	19.4 Learning
	19.5 Pattern Recognition
	19.6 Two Paradigms?
	19.7 It's Only a Model

	Chapter 20 - Minds and Computers
	20.1 Consciousness
	20.2 Personal Identity
	20.3 Emotions
	20.4 Computers with Minds

	Appendix I: Suggestions for Further Reading
	Appendix II: Glossary of Terms
	Index

