

Release Team[oR] 2001
[x] java

 - 2 -

Mitchell Waite Signature Series: Object-Oriented Design
in Java
by Stephen Gilbert and Bill McCarty ISBN: 1571691340

Sams © 1998, 731 pages

Mastery of object-oriented design would be closer only by
moving in with the two superb authors.

Table of Contents
Back Cover

Synopsis by Rebecca Rohan

Object-Oriented Design in Java is a characteristically beautiful volume from
the Mitchell Waite Signature Series. Using helpful analogies, professional and
appealing drawings, and excellent, accessible writing, the book teaches broad
design concepts and techniques that can be applied in any software milieu,
while focusing on a practical Java example. The majority of the book is given
to designing new creations, but chapters 4 and 11 are, respectively, devoted
to avoiding bad classes and making use of proven designs. The pattern of
information, summary, and questions throughout Object-Oriented Design in
Java make it an excellent self-study book for beginning through advanced
programmers.

Table of Contents

 Object-Oriented Design in Java™ - 4
 Introduction - 7
 Chapter 1 - What Is Design and Why Is it Needed? - 10
 Chapter 2 - Object-Oriented Software Development - 29
 Chapter 3 - Teach Yourself Java in 21 Minutes - 57
 Chapter 4 - Encapsulation: Classes and Methods - 98
 Chapter 5 - Designing Classes and Objects - 144
 Chapter 6 - Round-Trip Design: A Case Study - 166
 Chapter 7 - Object Relationships: Implementing Associations - 194
 Chapter 8 - Object Relationships: Compositions and Collections - 221
 Chapter 9 - Implementing Class Relationships: Inheritance and Interfaces - 246
 Chapter 10 - Designing with Inheritance and Interfaces: A Case Study - 281
 Chapter 11 - Patterns: Proven Designs - 315
 Chapter 12 - Designing Concurrent Objects - 352
 Chapter 13 - Designing Remote Objects - 392
 Chapter 14 - Designing Persistent Objects: Database Design and

Implementation - 417
 Chapter 15 - User Interface Design and Implementation - 440
 Chapter 16 - Designing with Components - 476

 - 3 -

 Chapter 17 - Designing with Class Libraries - 508
 Chapter 18 - Architectures: Design-in-the-Huge - 544
 Appendix A - Glossary - 567
 Appendix B - Bibliography - 584
 Appendix C - Product Reference - 587
 Appendix D - Quiz Answers - 588

Back Cover
Object-Oriented Design in Java is an important addition to the Mitchell Waite
Signature Series. This unique book focuses on an area that gets little or no
coverage in conventional programming language texts: how to design
programs. To take full advantage of Java, or of any of today's object-oriented
languages, programmers must learn fundamental design principles as well as
the syntax of code. This tutorial teaches program design in a format even
beginning programmers can understand.

You'll learn to use a design notation system that makes it easier to represent
the design features of a program. Unlike conventional texts in software
design, this book starts with concrete solutions and uses examples to
demonstrate theory and abstract principles. This approach is aimed at hands-
on programmers who learn best by working through problems in step-by-step
fashion.

Object-Oriented Design in Java, like the other titles in the Mitchell Waite
Signature Series, is a highly developed, carefully crafted book that delivers
clear, thorough coverage. Written by expert authors, these books are
subjected to ardent development, exhaustive review, and meticulous
production. They are designed to satisfy, without compromise, the time-
honored, award winning standards for high-quality publications established by
The Waite Group and its founder, Mitchell Waite.

• Understand the life cycle of object-oriented software
• Discover how to implement class relationships
• Find out how to design a class using Java code
• Utilize the rules to designing with inheritance and interfaces
• Explore the class libraries and their design techniques
• Learn design techniques with components like Java Beans
• Prepare to design your own remote objects
• Cover object-oriented design in Java from the ground up

About the Authors

Bill McCarty teaches management information systems and computer science
at Azusa Pacific University. He holds a B.S. in computer science and a Ph.D.
in the management of information systems from The Claremont Graduate
School. He learned to write computer programs using the IBM 1130 while still
a high school student back in the days of the IBM model 026 keypunch.

Stephen Gilbert teaches computer science at Orange Coast College in Costa
Mesa, CA. Steve saw his first computer play tic-tac-toe in the summer of 1960
and wanted one of his own ever since. When he purchased his first machine,
a VIC-20 (which he subsequently trained to play an unbeatable game), his life
took a sudden turn after years spent as a carpenter, chicken picker, and offset
press operator. Since then, he has been a programmer and systems designer
for DRI Management Systems of Newport Beach, as well as for other clients
in California, Oregon, and Washington. Steve holds a B.S. degree in business

 - 4 -

computer methods and a M.S. degree in applied computer science and
technology from Azusa Pacific University.

Object-Oriented Design in Java™

 Stephen Gilbert and Bill McCarty

 Signature Series

Developed by Mitchell Waite and Robert Lafore

Waite Group Press
A Division of Macmillan Computer Publishing
Corte Madera, CA

 PUBLISHER: Mitchell Waite

 ASSOCIATE PUBLISHER: Charles Drucker

 EXECUTIVE EDITOR: Susan Walton

 ACQUISITIONS EDITOR: Susan Walton

 PROJECT DEVELOPMENT EDITOR: Laura Brown

 CONTENT EDITOR: Scott Rhoades

 TECHNICAL EDITOR: Keith Ermel

 PROJECT EDITOR: Maureen A. McDaniel

 COPY EDITORS: Susan Shaw Dunn, Kate Givens, Tonya R. Simpson, Kate Talbot,

Dana Rhodes Lesh

 MANAGING EDITOR: Jodi Jensen

 INDEXER: Erika Millen

 INDEXING MANAGER: Johnna L. VanHoose

 EDITORIAL ASSISTANT: Carmela Carvajal

 SOFTWARE SPECIALIST Dan Scherf

 PRODUCTION MANAGER: Cecile Kaufman

 PRODUCTION TEAM SUPERVISOR: Brad Chinn

 - 5 -

 COVER DESIGNER: Sandra Schroeder

 INTERIOR DESIGNER: Diana Jean Parks

 PRODUCTION: Marcia Deboy, Michael Dietsch, Jennifer Earhart, Cynthia Fields,

Maureen West

 © 1998 by The Waite Group, Inc.®

 Published by Waite Group Press ™

 200 Tamal Plaza, Corte Madera, CA 94925

 Waite Group Press™ is a division of Macmillan Computer Publishing.

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, desktop
publishing, recording, or otherwise, without permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

All terms mentioned in this book that are known to be registered trademarks, trademarks,
or service marks are listed below. In addition, terms suspected of being trademarks,
registered trademarks, or service marks have been appropriately capitalized. Waite
Group Press cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any registered trademark, trademark,
or service mark. Sun’s Java Workshop and JDK is copyrighted [1997] by Sun
Microsystems, Inc. Sun, Sun Microsystems, the Sun logo, Java, Java Workshop, JDK,
the Java logo, and Duke are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. All Microsoft products mentioned are
trademarks or registered trademarks of Microsoft Corporation.

 The Waite Group is a registered trademark of The Waite Group, Inc.

 Waite Group Press and The Waite Group logo are trademarks of The Waite Group, Inc.

 Printed in the United States of America

 98 99 10 9 8 7 6 5 4 3 2

 Library of Congress Cataloging-in-Publication Data: 97-46425

 International Standard Book Number: 1-57169-134-0

 About the Authors

Bill McCarty teaches Management Information Systems and Computer Science at Azusa
Pacific University. He holds a B.S. in Computer Science, and a Ph.D. in the Management
of Information Systems from The Claremont Graduate School. He learned to write
computer programs using the IBM 1130 while still a high school student back in the days
of the IBM model 026 keypunch. Although on cold days he misses the warmth provided
by the 026’s vacuum tubes, he finds Southern California winters, for the most part,
bearable. He passes them by reading and by writing software in the cheery solitude of his
condo, which he shares with his wife, two children, three cats, and an unknown number
of software bugs.

 - 6 -

Stephen Gilbert teaches computer science at Orange Coast College in Costa Mesa,
California. Steve saw his first computer play tic-tac-toe in the summer of 1960 and
wanted one of his own ever since. When he purchased his first machine, a Vic-20 (which
he subsequently trained to play an unbeatable game), his life took a sudden turn after
years spent as a carpenter, chicken picker, and offset press operator. Since then, he has
been a programmer and systems designer for DRI Management Systems of Newport
Beach, as well as for other clients in California, Oregon, and Washington. Steve holds a
B.S. degree in Business Computer Methods from California State University at Long
Beach, and an M.S. degree in Applied Computer Science and Technology from Azusa
Pacific University. Having long ago given up his ambition of becoming a professional
surfer, he can still be found sitting on the Newport Beach pier with his wife Kathleen, or
his children, Judah and Hosanna, whenever the surf’s up.

 Steve and Bill are the co-authors of Mitchell Waite Signature Series: Object-Oriented

Programming in Java.

Acknowledgments

Stephen Gilbert: This has been a year of change. In the midst of starting a new job and
preparing an entirely new set of courses, I received an email from Bill McCarty,
suggesting that we work together on a book about object-oriented design, using Java.
Bill, as is his usual habit, was abuzz with a half-dozen wild and crazy ideas, and his
enthusiasm was infectious. Nevertheless, it was with no little trepidation that I
approached my wife, expecting to hear the words that would come most naturally to my
tongue, were our situations reversed: “Not again!!!?” (or words to that effect). Instead of
discouraging me, however, my wife Kathleen and my children, Hosanna and Judah,
picked up the slack and gave me the time I needed to finish the project. My gratitude to
them knows no bounds.

Finally, in a year of change, I’d be remiss if I failed to acknowledge the one constant in
my life—the care and guidance of my Lord, Jesus Christ. In the words of the old hymn, “I
don’t know who holds tomorrow, but I know who holds my hand.”

Bill McCarty: Jennifer, my wife, and Patrick and Sara, my children, who patiently
answered the phone or made lunch while Dad wrote “another book,” deserve most of the
credit for this work. After all, they did most of the real work. As they’ve finally figured out,
I’d much rather write than answer the phone or make lunch.

The remainder of the real work was done by my co-author, Stephen Gilbert, who
regularly turned my terse and stultifying prose into something delightful. Thanks, Steve,
let’s do it again some time!

I also thank the “author and finisher of [my] faith” (Heb. 12:2, KJV), of whom it is written,
“Not by works of righteousness which we have done, but according to His mercy He
saved us, by the washing of regeneration and the renewing of the Holy Ghost” (Titus 3:5,
KJV).

Stephen Gilbert and Bill McCarty: We want to thank the wonderful folks at the Waite
Group, whose expertise is matched only by their kindness. Mitch, Charlie, Robert, Susan,
Laura, Andrea, Dan, and “honorary Waite Groupers” Scott and Keith: you guys are the
greatest! Thanks so much for all your help and encouragement, without which this book
would be a mere dream.

We also want to thank the many professors who reviewed chapter manuscripts, patiently
bearing with our inchoate expressions and all-too-frequent errors, and graciously offering
numerous improvements. Prof. Leon Tabak of Cornell College was a particularly abundant
source of suggestions that substantially improved the quality of the book. Errors,
omissions, bad style, and corny humor should not be laid at their doorstep, but at ours.

 - 7 -

 Introduction

 What Is This Book About, and How Is It Different?

Why does the world need another book on design? More to the point, why should you
read this book on object-oriented design in Java? A trip to amazon.com, the Internet
bookstore where you can find almost any book ever written, reveals over 200 titles that
contain the word design or designing applied to computers or programming. If you
decided to read one of these books each week, it would take you more than four years to
finish the current crop. Even narrowing the field to books whose titles contain the words
design and object-oriented, still yields a hefty 75 possibilities. Contemplating that task,
you may find yourself agreeing with King Solomon, who wrote several thousand years
ago: “Of making many books there is no end; and in much study there is a weariness of
the flesh.”

Why are there so many books on software design? A cynic would suggest that books on
design flourish for the same reason that books on dieting fill the bookstores: because
their readers have a boundless hope that this regimen will work! While there might be
some justification for this viewpoint—you don’t have to travel far to find a program that is
hard to use or that breaks down regularly—a more fundamental reason is that different
software developers mean different things by the word design.

You’ve probably heard the ancient Indian legend (or read John Godfrey Saxe’s version)
of the six blind men examining an elephant. Each of them feels only a portion of the
elephant—the side, a tusk, the trunk, or a leg—and each concludes that the elephant is
like a wall, a spear, a snake, or a tree.

Books on software design exhibit similar tendencies. Authors coming from a software-
engineering background see design in terms of specifications and blueprints; those from
the information systems world think of an activity of the software development life cycle,
along with their favorite diagrams; the data base analysts think of normalization and entity-
relationships; those immersed in computer-human interaction naturally see design as the
specification of dialogs between people and machines; those responsible for interface
design view design from a perspective that emphasizes visual integrity and communication.
Like the blind men in the story, each of these constituencies has its own view on design,
and each view is correct and valuable. But none of them is the whole story.

Our Viewpoint

In writing Object-Oriented Design in Java, we have tried to keep in mind two objectives.
Our first objective was to avoid too narrow and specific a focus. We believe that design is
important in every aspect of software development, and that every developer should have
a toolkit of different design techniques and methods to call on. While your “real job” may
require an in-depth knowledge of database design, GUI craftsmanship, or object and
class design, such specialized knowledge is no substitute for a broad understanding of
the design issues and techniques that are used throughout the software development
process. You will find this book especially valuable if you are

•

A student who has learned to program in Java, and you now find yourself asking “How
does this all fit together?” Learning a programming language is a little like learning the
syntax and semantics of English: you may have learned how to write and speak
grammatically, but such knowledge doesn’t prepare you to write a poem or a detective
novel or a business letter. It is a necessary condition, but it is not sufficient. Object-
Oriented Design in Java will help you to put the pieces of fundamental programming
knowledge together, helping you to build software products that perform their intended
function efficiently and effectively, and are a pleasure to use.

 • A small software developer who, literally, “has to do it all.” The introduction of Java and

the use of the Internet for software distribution and marketing have revived the

 - 8 -

fortunes of the independent developer, who only a few years ago was considered an
endangered species. Object-Oriented Design in Java will help you make sure that
you’ve “touched all the bases” in developing your product.

•

A technical manager or developer involved in corporate software develop-ment or
Information Technology. Object-Oriented Design in Java will not only teach you the
basics of each design perspective, but will also let you see where each of the parts of
design “fit together.” Thus, even if you are already an expert in interface design, you
can use this text to learn about database design. And, should the occasion arise, the
“To Learn More” sections at the end of each chapter will give you a set of references
that you can use for further, in-depth study.

Because software design draws from such a wide range of related disciplines, it’s
impossible for a single book to cover every aspect of design comprehensively. Yet, we
believe it’s useful and important for designers to know something about each of the
disciplines that bears on the practice of design. Of course, not everyone will agree with
our choice of that “something.” A reader with a strong background in, say, software
engineering might bemoan our failure to cover one or more topics the reader thinks
important. Like the blind man who believes an elephant is like a tree, such a reader might
wish this book had a bigger trunk or more branches. But, just as an elephant is not a tree,
design is not software engineering. Neither is it information systems, database analysis
and design, computer-human interaction, nor interface design.

In designing the book, we worked hard to include all the fundamentals, the things a
practicing designer needs to know and is called on to apply on a daily basis. Because in
each chapter we wanted to write more than we could, each chapter includes a section titled
“To Learn More,” which lists books and articles that can help you further explore topics of
personal interest and relevance. We expect you’ll find Object-Oriented Design in Java a
useful book for both study and reference.

Our Method

Besides adopting a “breadth-first” viewpoint, our objective was to adopt a specific method
of presentation. Object-Oriented Design in Java is a book that was written to teach a wide
variety of object-oriented design techniques to Java programmers. Design books with an
Information-Systems or Software-Engineering bent usually begin by teaching analysis,
followed by design and implementation. This book is different because the basic
elements of object-oriented design are presented beginning with the implementation, and
the design notations and methods are then built upon this concrete example.

Albert Schweitzer (the philosopher, physician, musician, clergyman, missionary, and
writer on theology who won the 1952 Nobel Peace Prize) once remarked that there
are three ways to learn—by example, by example, and by example. We find it easier to
learn by going from the concrete to the abstract than from the abstract to the concrete,
and we think you will too. For example, in Chapter 4, following a brief problem statement,
we show you how to model a solution using the Java language. This chapter provides
specific instruction on writing classes and presents several rules of thumb (heuristics) you
can use to build more reliable and reusable classes. This chapter, which uses an
informal, intuitive approach to class and object design, is followed (rather than preceded)
by a chapter on systematic analysis (use case and CRC cards) and class/object
notations. Following what we call the “round-trip” methodology, the next chapter then
introduces you to a case study that is worked out “from scratch.”

 This same pattern is followed through the rest of the book:

 • Present a concept by creating an implementation example.

 • Discuss and present informal design measures and heuristics.

 • Show how to represent that implementation using a design notation (we use the

 - 9 -

Unified Modeling Language, which we believe is already assuming the status of a de
facto standard for object modeling) or by following a software process.

 • Come full circle, answering the question: “What do you do with a blank sheet of paper?”

Our Method

Besides adopting a “breadth-first” viewpoint, our objective was to adopt a specific method
of presentation. Object-Oriented Design in Java is a book that was written to teach a wide
variety of object-oriented design techniques to Java programmers. Design books with an
Information-Systems or Software-Engineering bent usually begin by teaching analysis,
followed by design and implementation. This book is different because the basic
elements of object-oriented design are presented beginning with the implementation, and
the design notations and methods are then built upon this concrete example.

Albert Schweitzer (the philosopher, physician, musician, clergyman, missionary, and
writer on theology who won the 1952 Nobel Peace Prize) once remarked that there
are three ways to learn—by example, by example, and by example. We find it easier to
learn by going from the concrete to the abstract than from the abstract to the concrete,
and we think you will too. For example, in Chapter 4, following a brief problem statement,
we show you how to model a solution using the Java language. This chapter provides
specific instruction on writing classes and presents several rules of thumb (heuristics) you
can use to build more reliable and reusable classes. This chapter, which uses an
informal, intuitive approach to class and object design, is followed (rather than preceded)
by a chapter on systematic analysis (use case and CRC cards) and class/object
notations. Following what we call the “round-trip” methodology, the next chapter then
introduces you to a case study that is worked out “from scratch.”

 This same pattern is followed through the rest of the book:

 • Present a concept by creating an implementation example.

 • Discuss and present informal design measures and heuristics.

•

Show how to represent that implementation using a design notation (we use the
Unified Modeling Language, which we believe is already assuming the status of a de
facto standard for object modeling) or by following a software process.

 • Come full circle, answering the question: “What do you do with a blank sheet of paper?”

 What You Need: System and Software Requirements

Because Java runs on many platforms, you can use this book as a guide to developing
Java programs for almost any operating system or computer. Java does require a fast
processor, ample memory, and 256-color (or better) video support. Check the
configuration requirements of the Java development tool you plan to use against the
capabilities of your system.

The sample programs were developed and tested using the Java Developer’s Kit, version
1.1.5, under Microsoft Windows 95 and Windows NT 4.0. Applets were tested using
Microsoft Internet Explorer, version 4.0, and Netscape Navigator 4.04, with the Netscape-
provided patch supporting Java 1.1.

The CD-ROM

The companion CD-ROM includes all the listings in the book and a few that couldn’t be
included in the book, due to size. The CD-ROM also includes the Java Developer’s Kit
(JDK) 1.1.5 for Microsoft Windows 95 and Microsoft Windows NT 4.0, and several useful

 - 10 -

design tools and utilities.

 To install the JDK or other software on the CD-ROM, simply follow the instructions on the

CD-ROM. Be sure to check the read-me file for special instructions.

Chapter 1: What Is Design and Why Is it
Needed?

 Overview

 “Reality: what a concept!” - Robin Williams

It’s later than normal, almost an hour later. On Fridays you always try to leave by 3:30 so
you’ll have time to stop for takeout and still get home by 5:30. Now, as you approach the
door of the small shop where you’ve picked up your dinner a hundred times before, your
steps slow. Unconsciously you tell yourself, “This time it will be different.” The front door
is closed, but the smells from inside seem—if it were possible—to come right through the
glass. You grab the big, brass, door handle, look straight at the large prominent sign that
says PUSH, and give the handle a pull—exactly like you have done every other time in
the years you’ve been coming here. “D’oh!” you exclaim, sounding very much like Homer
Simpson, but already thinking about what you’ll order.

Have you ever had an experience like this? Why is it that you, an intelligent, educated
person can’t read a large, prominently displayed sign, and follow a one-word instruction?
Why does everyone pull instead of push when presented with a door like the one shown
in Figure 1.1?

 Figure 1.1 What does this door say to you?

The answer is really very simple: because the door handle itself is a sign, a sign that says
more fundamentally and forcefully than the written sign above it, “PULL!!!” The problem is
not with your ability to read, but with the “designers” of the building who combined an
inward-opening front door with a door-pull instead of a push-plate. Someone made a
fundamental design error, and all the user-friendly instructions in the world won’t fix it.

What is design? What are the design fields, and how are building design (architecture),
graphic design, industrial design, and software design similar? As you ask these
questions, you’ll discover many different viewpoints: those who see design as science,
those who claim design for engineering, those who feel design is an art, and those who
insist that design is (or should be) a profession like law or medicine. This chapter

 - 11 -

explores those ideas as well as the common concepts of modeling, abstraction, and
structuring, and how all of these ideas relate to developing software; after all, what you
really want to do is to turn out a great program, right?

 In this chapter, you will learn

 • How to distinguish between different design philosophies and viewpoints.

 • Why design is needed.

 • How to describe the basic goals of design: “firmness, commodity, and delight.”

 • How to recognize the basic problems of design: essential and accidental complexity.

 • How the fundamental tools of design—models, abstraction, and decomposition—can

be used to attack the basic problems of design.

 • How software abstraction mechanisms can be used to simplify the building of

software, enabling you to build better programs.

 • How software design methodologies help the software designer approach different

parts of the design problem.

 • How object-oriented design and structured design are related, and the basic terms

common to each.

What Is Design?

 “One of the main reasons most computer software is so abysmal is that it’s not designed

at all, but merely engineered.”

You might be surprised to find out that these are not the words of some disgruntled
Luddite or some ivory-tower academician. The speaker was Mitch Kapor, the designer of
one of the most popular software packages of all time (Lotus 1-2-3) and also the author
of “A Software Design Manifesto.” Originally given as the keynote address at Esther
Dyson’s PC forum in 1990, Kapor’s manifesto has been widely reprinted in the ensuing
years. In it, he argues for the creation of a new type of software professional: the
software designer, who fulfills the role that an architect does in building construction,
making sure that a building meets the needs of its inhabitants.

Most everyone would agree with Kapor, (although, after your latest software crash, you
might think that software is neither designed nor engineered). How to actually design
good software is the real question.

The ancient Roman architect Vitruvius considered a similar question: what makes a good
building? In his treatise De Architectura Libri Dece (Ten Books on Architecture), written in
29 B.C., he proposed three principles that many think provide a good starting point for
evaluating software designs. A well-designed building, said Vitruvius, should have the
qualities of commodity, firmness, and delight. Notice, as shown in Figure 1.2, that a
product that balances commodity, firmness, and delight does not necessarily possess an
equal amount of each. Most people think a good cup of coffee should contain more
coffee than cream or sugar.

 - 12 -

 Figure 1.2 A good design balances the qualities of commodity, delight, and

firmness

When you buy a software package, you want it to do exactly what the box says it will do.
This is the characteristic of commodity—the program is effective in the sense of being
well fit for its purpose. You also want the program to be well built: you want it be as fast
and small as possible, and to continue working in a wide range of situations. This is the
characteristic of firmness. Finally, you want your software to be attractive and pleasant to
use. In a sense, you “live inside” your software, and it’s important that the interface be
both functional and aesthetic. This is the quality of delight.

Each of these qualities is important. Good-looking software that doesn’t run well or is
hard to use is no better than software that is fast and efficient (that is, software that uses
as few resources as possible) but doesn’t do what you want or does it in an ugly or
unappealing way. Software designers, like all of us, tend to see the design process
through their own particular lenses and to concentrate on one specific aspect or method
of designing programs. Some see software development as a scientific endeavor. Others
see it as an engineering exercise. Still others think of designing computer programs as
artistic expression, like painting or music (see Figure 1.3).

 Figure 1.3 The designer: scientist, engineer, or artist?

 - 13 -

 "Software designers tend to see the design process through their own particular
lenses. ”

 DESIGN AS SCIENCE

How do you become a lawyer or doctor? You go to law school or medical school. But,
what do you study if you want to design computer software? If you’re just embarking on
your academic career and you ask this question, almost certainly you’ll be encouraged to
major in Computer Science. Are software designers scientists, and, if so, what does such
a science entail?

You might have heard the old joke, “You can tell if something’s a science—it doesn’t
have the word science in its name.” And there’s some truth to this observation. All of us
agree that physics and astronomy and chemistry—the so-called hard sciences—are
really sciences. But how about political science or military science or social science? How
are the so-called “soft” sciences different from physics and geology?

Nobel prize winner Herbert Simon, one of the founders of the Computer Science
department at MIT, attempted to answer this question in his 1969 book, The Sciences of
the Artificial. According to Simon, there really are two sorts of sciences:

•

The natural sciences—physics, chemistry, biology, and geology—which are concerned
with the discovery of the natural world—finding out “how” things work, and building
workable theories of explanation.

•

The artificial sciences—political science, the social sciences, engineering, and
computer science—which study things that have been built by humans, rather than
naturally existing phenomena. Unlike the natural sciences, the artificial sciences are
concerned with how things should work, not merely how things do work. An engineer
wants to find the best way to build a bridge and a doctor wants to find the most
effective method of treatment. All of these are issues of design.

Science, then, is about the study and discovery of general principles (theories), and the
artificial sciences apply those theories to man-made artifacts, including the design of
software. Software design, from the scientific point of view, includes

 • Theories that deal with structure and representation.

 • Rigorous and formal techniques for evaluating properties of designs.

 • Formal methods for choosing the optimal (or at least a satisfactory) design from a set

of possible designs.

Reading this, you may be thinking, “what does that have to do with writing a word
processor or spreadsheet?” Think back to the goals of design—to create artifacts that
exhibit firmness, commodity, and delight. The role of the computer scientist is to provide
an objective, rigorous, theoretical foundation for constructing software that exhibits
firmness.

 DESIGN AS ENGINEERING

 “The scientist builds in order to study; the engineer studies in order to build.”

These are the words of the universally acknowledged father of software engineering,
Fred Brooks, who was also the founder of the Computer Science Department at the
University of North Carolina at Chapel Hill. His book, The Mythical Man Month (recently

 - 14 -

re-released in a 20th anniversary edition), was written after the completion of one of the
largest software development projects ever attempted: the design and construction of the
operating system for the IBM System/360. For those designing or managing the
construction of a software product, it remains a unique and indispensable information
resource, as the 250,000 purchasers of the first edition will attest.

For Brooks, the difference between the engineer and the scientist is not so much what
they do, but the purpose behind their work. Software engineers design software in much
the same way that mechanical engineers design bridges, industrial engineers design
cars, and construction engineers design houses and auditoriums. What does the
software engineer design? Tools: tools for writing, tools for computing, tools for
communicating. The software engineer succeeds only to the extent that he builds a
useful tool. To quote Brooks, “That swordsmith is successful whose clients die of old
age.”

“This is more like it,” you might be thinking. “I understand that engineering is about
building things, and it seems obvious that the software that I use could benefit from some
engineering techniques.” You’re right. Like the computer scientist, those who see
software design as engineering are concerned with the quality of “firmness.” Building on
the foundation of computer science—the fundamental data structures and algorithms
discovered and constructed there—the software engineer builds “things that work.”

Many of the techniques discussed in this book, such as the various diagramming
techniques and the rules of thumb about class design, have their origin in the software
engineering community. Software engineering is essential for well-designed software,
but, as Kapor pointed out, it is not enough.

 DESIGN AS ART

Figure 1.4 asks whether software development is an art. If so, are software developers
artists? How far can the notion of “art” be stretched? “Look,” said the hopeful student to
his long-suffering advisor, “everyone who watches Michael Jordan play says he’s a real
artist. So why can’t I get art units for playing basketball?” The reason, of course, is similar
to the reason that computer science students don’t receive foreign language credit for
learning C, Pascal, or Java: because the word “language” means something different in
each context. The same can be said for the word “art.” In one sense, a good basketball
player is an artist, but in another, very real sense, basketball players are not artists at all.

 Figure 1.4 Is software development an art?

 What, exactly, do we mean when we talk about design as art? The fine arts—painting,

drawing, sculpture—exist to provide an aesthetic experience. Though it’s conceivable

 - 15 -

that you could write a program whose primary purpose was aesthetic, in the ordinary
course of things you’ll probably never do that. But, if we consider the applied arts—the
construction of artifacts that are both useful and aesthetic—then software design certainly
is one of the arts, in much the same way that graphic design or industrial design is.

The purpose of graphic design is to create documents such as books and magazines in
which the aesthetic structure, the use of type and color and layout, serves the message
that the piece conveys in a way that the reader can readily appreciate. In industrial
design, the designer tries to create appliances or automobiles that are both attractive and
functional. Of course, balancing functionality and aesthetics is not always easy. Think of
the tail-fins on the 1958 Cadillac! Though at the time many people thought them
attractive, most people today see the non-functional tail-fins as a case of wretched
excess (see Figure 1.5).

 Figure 1.5 Design requires balancing functionality and aesthetics

“Well, I don’t know,” you might be saying to yourself. “I’m not really artistic, and it seems
like all this stuff is just a little superfluous.” You have a point. Adding an “artistic” gloss to
an aging and infirm superstructure is seldom successful—just as gold plating does
nothing to improve the beauty of the lily. You might even find yourself writing software
that has no visible interface—embedded or systems software, for example. In such
cases, arguing for “good-looking” programs is a misplaced concern.

Most of you, though, will write software for other people to use, and when you do, you
take on the role of the artist-designer, striving to inspire delight, as well as commodity and
firmness. This is a difficult role. Software (at least good software) doesn’t just lie there
and look pretty. Instead, it involves its user in an interactive experience. Not only do you
want your program to look cool, you want it to act cool as well.

The demands of your role resemble those under which a playwright works. You must
strive to get all the actors to line up and say their lines in a way that leaves the audience
begging for more. However, your job is tougher still. The piece you’ve been
commissioned to write is a more like a “murder-mystery dinner” where the actors and the
audience intermingle. Your job is made doubly difficult because you have to anticipate
the unscripted actions of your diners, and provide contingent lines for your players to use
when things go off on a tangent.

If all this seems a little vague and abstract to you, you’ll be happy to know that designing
software that is attractive and a pleasure to use does not require an “artistic
temperament,” or the talent of pop artist David Hockney or playwright Neil Simon.
Chapter 15, “User Interface Design and Implementation,” will lead you through the
processes, tools, and techniques that will make your software more than just another
pretty face.

 - 16 -

 DESIGN AS ARCHITECTURE

If “firmness” is the special purview of the engineer-designer, then “delight” has a similar
place in the world of the artist-designer. Yet, concentrating on firmness and delight is not
enough; the designer must also be concerned with commodity, balancing form and
function. In this regard, many software designers see a close parallel between their role
and that of the architect. This analogy was the central theme of Mitch Kapor’s “A
Software Design Manifesto,” and the similarities between software design and
architecture have greatly influenced the “patterns” movement, which you’ll read about in
Chapter 11, “Patterns: Proven Designs.”

Like the artist, the architect wants to build structures that are visually pleasing; visual
design is central to every architect’s training. But, like the engineer, the architect wants to
build structures that stand the test of time. The science of materials and construction
techniques is an important part of an architect’s training. In the end, the architect designs
neither for beauty nor for durability, but for the client. The architect’s goal is to build a
structure that meets the client’s needs.

The Process of Design

“So,” you say, “you’ve talked about science and engineering and art and architecture.
Let’s not beat around the bush! Just what is design? How do you go about it?” Those are
two very good questions, and they deserve a direct, if not exhaustive, answer:

 • Design is preliminary; it’s done before construction. Designing and building a house

are two different activities.

•

Design uses models. One dictionary definition of design is “to plan by making
preliminary sketches or outlines.” A design may use several different models, but the
models are all distinct from the creation.

•

Design has a goal: to create artifacts for human use. The designer acts as an agent for
the client, and needs to ask “does it work?” not only in the mechanical sense of
running without error, but “does it work?” in the larger sense of meeting the needs of
the client.

 “In the end, the architect designs neither for beauty nor for durability, but for the

client.”

•

Design is a process, yet the same process may not be applicable to every artifact. A
process appropriate for designing a computer game might place a high emphasis on
spontaneity and creative intuition, while a process used to develop a heart monitor or a
missile-defense system might, appropriately, be much more formal and rigorous.

 WHY DESIGN IS NEEDED

If you are a student who has written a few programs, or if you write software for your own
use, you might be asking, “Why bother? Why not just start coding?” Or, in the immortal
words of the Bard, “Just do it!” (Well, maybe Shakespeare didn’t write exactly that.)
Though some software projects may not need a long or formal design process, nobody
with substantial experience sits down at the keyboard and just bangs away with no
thought or reason. And, though an informal design process might be appropriate for most
of the work you do, learning about more formal processes can help you to consider
aspects of software design you have previously ignored.

 - 17 -

Design is the planning process you go through before you build something. But again,
why bother to plan at all? The major reason is that it’s cheaper to change your mind while
you’re planning something than after it’s half built. This is true for buildings, of course;
erasing a line on a blueprint is much less expensive than ripping out a wall. For software,
the same thing is true. A change that may cost $100 to make while you are designing
your program can cost $1,000 to make after parts of the program are already built, simply
because so many other parts have to be adjusted. And, if you find you have to make the
change after the program is finished and in operation, the same change can cost $10,000
or more. “Look before you leap,” is more than just a hoary old cliché.

More broadly, design involves an attitude that seeks to identify alternatives and
intelligently choose an appropriate course of action. Good design involves analysis,
reflection, and the development of insight. The way in which design is done has changed
over time, as such insights have accumulated.

In the 16th century, if you wanted to build a house, you wouldn’t work from a set of
blueprints created by an architect and given to a contractor. Instead, you would hire a
master-builder who would build your house based on his own experience and the
experience of the master-builder who had trained him. Today, the development of a
common language—the blueprint—and a common process (supported by such things as
the Uniform Building Code and the licensing of building contractors) enables you to build
a house by any number of firms, with little variation in the output of the finished product.
This “separation of concerns” is one of the factors that leads to a more efficient process
(see Figure 1.6).

 Figure 1.6 Client, architect, and builder: The architect constructs a logical model

from the client’s conceptual model and communicates that model to the builder

Today, if you decide to build a house, your architect acts as your agent, making sure that
the house meets your needs. To do this, the architect uses many different types of
models—not only blueprints, but sketches, mock-ups, and even style books of common
house types and floor plans, as you can see in Figure 1.6. Normally, as a client you
review the sketches and mock-ups, whereas the building contractor relies on the
blueprints. These models help the parties communicate and record the respective
decisions they make. Your builder does not decide, halfway through construction, to add
a stairway to the west wing—at least not without consulting the architect. This whole
system works because of the availability of different models—at several levels of detail
and abstraction—and a common agreement among all the parties about how those
models correspond to reality.

 THE PROBLEMS OF DESIGN: WHY IS SOFTWARE HARD?

If design—the use of planning and models—has been so successful in architecture and
engineering, why can’t we just apply to software the same principles used to make
buildings, bridges, and cars? Is designing a piece of software the same as designing a
bridge—or a computer? There is a lot of evidence to suggest it is not; that software
design is fundamentally more difficult than engineering skyscrapers. Professor Brooks, in
his famous article, “No Silver Bullet,” tells us why.

 - 18 -

Perhaps you’ve had a dream like this. You are sitting at the dinner table talking to your
family, or perhaps you are taking a walk with your sweetheart. You turn to look into each
other’s eyes, and, as you watch, your loved ones turn into something different—
something horrible. You wake in a sweat, with your heart pounding. This primordial fear—
the familiar changing into the unknowable and fearful—is at the heart of the medieval
legend of the werewolf. In the modern retelling of the legend, the only hope for
deliverance is the “magical” effect of a silver bullet. And, if you’ve ever worked on a piece
of software that seems to have grown ravenous and rapacious, the metaphor seems
especially apt.

 Why is designing software more difficult than designing a bridge? Because software has

four essential qualities that resist easy solutions:

 • Software is complex.

 • Software is unprincipled.

 • Software changes.

 • Software is invisible.

Software is complex because it contains so many “moving parts.” A modern jet fighter
plane may contain a few thousand moving parts. A software system of even moderate
size may contain tens of thousands of lines of code, each of which must correctly “mesh”
with the rest of the system. Every additional line of code, every new condition or event,
leads to the possibility of new conditions, previously unconsidered, or overlooked.

Software is “unprincipled” because there are no known fundamental and unifying laws
that can cause software programs to “make sense.” Software programs are written not to
conform to a regular universe, but to the arbitrary, capricious, and illogical mind of man.

Software changes because it is so malleable. Although the London Bridge was moved to
Lake Havasu, Arizona, that was an event both expensive and uncommon in bridge-
building lore. (Plus, the bridge remained essentially unchanged.) By contrast, software is
moved, twisted, and distorted with such regularity, and with such little foresight, that it’s a
wonder that any of it works at all.

Finally, software is invisible. Any design problem involves two translation steps. The first
step is the translation of a mental or conceptual model to an abstract model. Suppose
you decide to splurge on a new, custom designed hot-rod. Your conceptual model is the
picture in your mind. The designer’s first task is to translate your mental model into a
specification. This specification may include textual parts—the type of engine, and the
brand of tires—but most of the specification will be visual: sketches, scale models, and
photographs of similar cars. When designing software, this translation is much more
difficult, as Figure 1.7 shows. Prototypes and interface builders have done much to make
the “external face” of a program visible, and software engineering diagramming
techniques are of considerable value; but, in the final analysis, the “mapping” between an
abstract model and a finished software product is much more tenuous than that for
buildings, cars, or dresses.

 - 19 -

 Figure 1.7 User, software designer, and programmer: a lack of visibility

The Designer’s Toolbox

Software, then, because of its very nature, is hard to design. But hard is not impossible,
and, while the problems presented by complexity, change, and invisibility don’t have
magical solutions, they do have solutions.

 “Software is complex because it contains so many ‘moving parts.’ ”

 MODELING AND MODELS

You’ve seen the word model bandied about, but what, exactly, is a model? A model is a
representation of something else: something real or imaginary. A model can be textual,
mathematical, graphical, or can use some other form of symbolic representation (see
Figure 1.8). The supply-demand curve in economics is a model of a social interaction.
J.R.R. Tolkien’s The Lord of the Rings is a literary model of an imaginary world. A map is
a model of our physical world.

 - 20 -

 Figure 1.8 What is a model?

How is a model different from what it represents? A model is an abstraction. The globe
on your desk is not the real earth; your Thomas’ Guide is not really your town; Tolkien’s
novel is not Middle Earth; supply and demand is not the buying and selling of hot dogs
and off-road vehicles. Instead, abstraction lets us model the thing we’re studying by
ignoring the irrelevant elements and concentrating on the essential.

 ABSTRACTION, COMPLEXITY, HIERARCHY, AND

DECOMPOSITION

“Why on earth,” you say, “would I want to ignore details? What do I gain from that?” A
good way to illustrate the importance of ignoring details is to compare a street map with a
photograph of the same area taken by a LandSat satellite (see Figure 1.9).

 - 21 -

 Figure 1.9 Which is clearer, a street map or a satellite map?

Taken from space by high-resolution cameras, the satellite photo will let you count the
blades of grass on your lawn. Yet, with all this incredible detail, it’s almost entirely
useless for finding your way across town. It doesn’t have too little detail for this purpose;
it has too much.

As you’ve already seen, one of the essential elements that makes software hard is its
complexity. Human limitations—our memories and our senses of perception—prevent us
from comprehending and dealing with very complex situations without the help of a
simplifying model. For instance, social systems simplify our relationships with each other
by proscribing behavior (through laws) and describing roles (through government).

You can use such models both to understand the world, and as a tool to create artifacts.
Faced with the multitude of different animals in the world, you group similar animals
together into classes based on their similarities to each other. You can arrange those
classes into a “pyramid” (or hierarchy) based on the similarities of each class to other
classes (see Figure 1.10). When you encounter a creature that is 1/4 inch high and has
six legs, you put it in the insect category. Creating such categories gives you a mental
tool you can use to deal with individual animals. Can you imagine what your life would be
like if you didn’t do this? If you were bitten by a snake, you’d have no reason to avoid
others.

 - 22 -

 Figure 1.10 Abstraction and hierarchies in the animal world

A special form of classification, decomposition, is useful as a tool for creating solutions,
not merely for understanding. Decomposition is not merely recognizing similar “things,”
but recognizing that most big things can be broken into simpler things, and those simpler
things into still simpler things. Trees have branches, leaves (or needles), roots, bark, and
trunk, and the countless types of trees have innumerable variations. But, when you
decompose a tree you find it is composed of simpler structures known as cells, and that
the cells themselves are composed of simpler pieces yet—molecules and atoms. Most
human artifacts exhibit similar structure, and such structure can usually be described in
the form of a hierarchy or decomposition.

 “Abstraction lets us ignore the irrelevant elements and concentrate on the essential.

”

Design Solutions in the Software World

Architects have been designing buildings for thousands of years, and thinking about
design nearly as long. Vitruvius wrote his books laying down the principles of firmness,
commodity, and delight over two thousand years ago. In comparison, the computer was
invented yesterday, and we may someday regard today’s latest software creation the
same way we regard Stonehenge in comparison to the Acropolis. Perhaps the golden
age of software development is just ahead.

 - 23 -

 SOFTWARE ABSTRACTION MECHANISMS

Short though the history of software design has been, the ideas of abstraction,
decomposition, and hierarchy have played an important part. Originally, computers were
somewhat simple, and programmers could keep all the relevant details straight in their
minds. As programs got larger and (subsequently) more complex, these principles were
used to create various software abstraction mechanisms that were brought to bear in an
attempt to master complexity.

The first programmers worked almost directly with the “naked” machine. A very thin
abstraction, numbering memory locations to give some order to their seemingly unlimited
(perhaps 12K) reserve of memory, was the only concession. Unfortunately, even 12K of
memory, which seems laughably small today, is too much complexity for our brains to
handle. Named variables (the ability to refer to GROSS_PAY instead of location AF3CH)
enabled programmers to handle more complex problems by hiding an unnecessary
detail—the actual physical location where GROSS_PAY was stored (see Figure 1.11).

 Figure 1.11 Machine language versus assembly language

Just as the ability to name variables enabled programmers to hold bigger “chunks” of a
program in their minds at a time, the ability to name sections of code (called named
subroutines) enabled them to think of their programs in still larger pieces. These two
advances, both of which involved ignoring irrelevant details, increased the productivity of
programmers more than ten-fold. So, what do you suppose they did? That’s right, they
wrote programs that were ten times larger, and then some. And, just as you might expect,
the additional complexity rendered those programs unmaintainable and unreliable.

 - 24 -

 THE SOFTWARE CRISIS AND STRUCTURED PROGRAMMING

In the late 1960s, the Department of Defense (DOD) was one of the largest purchasers of
custom-made software. No doubt you’ve heard the stories of the $900 ash-trays. But
even for folks accustomed to those sorts of apparent extravagances, the problems with
software had gotten out of hand. In a pair of conferences sponsored by the North Atlantic
Treaty Organization (NATO), two memorable terms were added to the software
development lexicon: software engineering and the software crisis.

The term software crisis was coined to describe the fact that software was consistently
late, over budget, and buggy. “Why can’t we get software on time, at the price agreed
upon, and why doesn’t it work as specified?” NATO asked. The prescription of the
experts at the conference was to endorse an engineering model. Once software was
engineered—like bridges or weapons systems—bugs, cost overruns, and late delivery
would be a thing of the past. With 25 years hindsight, it’s easy to see that things weren’t
so simple; nevertheless, the techniques promoted and developed as a result of the
proclamation of the software crisis, did, in fact raise the level of abstraction, increase the
robustness (firmness) of the software that was written, and open the way for much larger
programs to be written. Of course, this started the same cycle of improvement followed
by rising expectations all over again.

 SPECIFIC DESIGN TECHNIQUES

Structured programming, one set of techniques popularized as a means of combating
the software crisis, was designed to make software more readable and maintainable.
Because, as the DOD researchers discovered, over 75% of the cost of a software system
occurs during maintenance, it made sense to concentrate efforts on techniques to reduce
that effort.

The first of these techniques was to simplify the “flow of control” inside programs. Flow of
control is simply the sequence in which program statements are executed. In early
computer programs, all or most program execution was controlled by the unconditional
branch—the infamous goto. Although, at the machine level, gotos were still required, by
using the goto to build more abstract control structures—the loop and the selection
statement—and then programming entirely in terms of those higher-level constructs,
programmers were able to eliminate a whole class of common errors and thus, increased
their ability to write and understand more complex programs.

If hiding the “actual” flow of control inside the computer was a success, the technique of
hiding or limiting the access to data was an even greater success. Researchers discovered
that many common software errors of the time were caused by two subroutines
inadvertently modifying a piece of data that both used. The invention of local variables—
and David Parnas’ ideas on data hiding, modularization, and abstract data types—were
responsible for the next advance in the creation of “firm” software. Each of these was an
attempt to hide more of the details of the problem and only show the relevant information.

 Software Design Methodologies

In applying the abstraction mechanisms that were developed during the “years of crisis”
to help in mastering software complexity, programmers began to follow, and encourage
others to follow, software development methodologies. A methodology is simply a
prescribed way of using abstraction mechanisms.

 Methodologies consist of three things:

 • A process—the step-by-step activities and related deliverables that are used to model

and construct software.

 - 25 -

 • A notation—a representation, often graphical, of the subsystems that make up a
system and the way they interact.

 • A set of heuristics—rules of thumb or figures of merit that give the designer guidance

about how the artifact being built should work.

 STRUCTURED DESIGN AND OBJECT-ORIENTED DESIGN

Software design methodologies were developed to exploit the abstraction mechanisms
that were introduced with better programming techniques. Developed in the 1970s,
structured design takes the best practices of structured programming and adds a
graphical notation and a development process.

The primary abstraction mechanism in procedural languages is the subroutine,
sometimes called a function, which operates on a piece of data. The primary design
decision in a procedural program is apportioning the work of the program among
specialized subroutines. Because of this, the shape or morphology of a system
developed using structured design almost always takes the form of a tree, with
centralized control invested in the top or main module (see Figure 1.12).

 Figure 1.12 A structure chart

Object-oriented design (OOD), in a similar manner, arose from the ideas introduced in
object-oriented programming with SmallTalk and Simula. In an OOD system, the primary
abstraction mechanism is the class, which you’ll meet in greater depth in the next
chapter, and will be using throughout the book. A class is a combination of both data and
the legal operations that can be performed on that data. The data in an OOD system,
rather than being passed between operations (subprograms), is hidden and protected
from access by other parts of the program, by means of a principle called encapsulation.
This is simply a refinement of the ideas of data hiding that began with local variables and
abstract data types.

The flow of control in an object-oriented program is also different from that within a
structured program. Instead of superior and subordinate subroutines, the action in the
program occurs as objects (instances of a class) interact with each other by sending
messages (see Figure 1.13).

 - 26 -

 Figure 1.13 Object interactions

One way to think about the difference between structured designs and OO designs is to
think about the difference between a centralized (planned) economy and a free-market
economy. In a planned economy, decisions about who should produce what, and about
what will be sold in the marketplace, are made at the top. In a free-market economy, the
economy runs itself by the interaction of millions of autonomous, independent decisions.
You could say that the major difference between structured and OO systems is the degree
to which intelligence (and thus flow-of-control) is vertical or horizontal.

Summary

Design is the process of creating artifacts for human use. While you can look at design
from a scientific, an engineering, or an artistic point of view, the successful designer
needs to draw from each of these traditions to produce artifacts that exhibit firmness,
commodity, and delight. As a software designer, you want your creations to work
correctly and efficiently (firmness), to meet the actual needs of your users (commodity),
and to do so with style and aesthetic pleasure (delight).

Design has several characteristics. First, design is preliminary—you design before you
construct. Second, design involves constructing abstract models that will help in
construction. Third, design has a goal: to create artifacts that meet the needs of their
users. Finally, design is a process, with different degrees of formality, each appropriate to
the product.

Design is needed for two reasons. First, changes done during the planning stage are less
expensive than changes initiated during or after construction. Second, by consciously
separating the concerns of the client from the concerns of the builder, you can build
software that is both more efficient and more effective.

Although no one would build a house without a set of plans, introducing design into the
software process has not yet been as successful. Why is software so hard to design?
Because software is very complex, because software is very easy to change (though not
easy to change correctly), and because software is essentially invisible. The
correspondence between an architect’s sketch—or even a blueprint—and the finished
building is a visual one, which makes it easier for the architect to communicate with
clients.

Despite the difficulties present in designing software, the would-be designer is not left
without tools. Abstraction is the mental tool that lets you ignore irrelevant details, and
concentrate on the important parts of the problem. In software development, the two most
important abstraction mechanisms are decomposition and classification. As a designer,
you can use these techniques to construct models that enable you to graphically or
textually represent a particular abstraction so you can communicate with others about

 - 27 -

your design.

Software development methodologies are collections of such models (represented using
established notations), along with a prescribed process for applying them. The structured
design methodologies were based on breaking a problem down into “units of work” called
procedures. The object-oriented design methods break a problem down into semi-
autonomous agents, which cooperate to make the artifact work. In this sense, object-
oriented design is much more like industrial design or electrical engineering, where
elemental components are arranged in sub-assemblies, which are then combined to
make the whole.

 “In an OOD system, the primary abstraction mechanism is the class. ”

 Questions

 1. A designer approaching a software product from the engineering perspective would

most likely be concerned with the quality of ______________.

 2. When you ignore irrelevant or extraneous details, you are using the process of

_________________.

 3. A map, a novel, and a blueprint are all examples of a _____________ of something

real or imaginary.

 4. An effective way to understand a complex process is to break it into smaller pieces,

using the process called __________________.

 5. A software designer who was primarily concerned with creating attractive buttons and

screen layouts would be focusing on the design quality of _______________.

 6. Software is hard to construct because it is

 a. Expensive, complex, and buggy.

 b. Complex, easily changed, and invisible.

 c. Hard to change, hard to fix, and hard to understand.

 d. Invisible, prone to errors, obscure.

 7. A software development methodology uses a ___________ to represent a set of

models, and prescribes a ______________ for using those models.

 8. A designer acts as an agent for the client, designing artifacts that meet the client’s

needs. Her designs will exhibit the quality of _______________ if she is successful.

 9. The abstraction process of ____________________ allows us to tell the difference

between a garden hose and a rattlesnake.

 10. A primary reason for designing a program before writing it is because it is

____________________ to make a change to a design than to a shipping program.

 Exercises

 - 28 -

1.

Design a process for baking a cake, building a dog house, driving a car, or producing
a newsletter, by breaking down the individual steps necessary to accomplish the task.
You may create any number of subtasks.

2.

Design a plan for accomplishing the task you designed in Exercise 1, assuming that
you will use a team of three or four people. Assign each person a particular
responsibility, list the resources each person will need, and make sure you account
for the necessary communication between team members.

 3. Change the design in Exercise 2, so that your hypothetical team members can work

simultaneously. Does this make your design simpler or more complex?

 4. Change the design in Exercise 2 so that you don’t have to know what resources each

person needs. Does this make the task simpler or more complex?

5.

Suppose you were asked by the Federal Aviation Administration to design a software
system to control the nation’s air traffic. Which of the design characteristics—
firmness, commodity, delight—would be most important, and why?

 6. For each of the design qualities, discuss what kind of software products are most

affected by that quality and what kind are least affected by it.

7.

Spend 10 minutes making a list of all of the audio CDs you can think of. Now use the
abstraction mechanism of classification to put each CD in a category. Do some CDs fit
in more than one category? Are some categories subcategories of others? Could you
combine some categories into larger categories?

To Learn More

The classic book treating design as a scientific subject was written by the cofounder of
the Computer Science program at MIT, Herbert Simon. The Sciences of the Artificial is a
set of essays that make thought-provoking, if difficult, reading. Would-be designers
should give Chapter 5, “The Science of Design,” and Chapter 7, “The Architecture of
Complexity,” a special look.

Looking at software design from the engineering and management perspective is
Frederick Brooks Jr.’s The Mythical Man Month. The best known and most widely read
book on software development, MMM was recently re-released in a 20th anniversary
edition. If you think that a 20-year-old book on software design and development couldn’t
have anything to say to you, pick up a copy and you’ll find yourself very pleasantly
surprised. This is one book everyone in software design should own.

When Terry Winograd, Stanford University Professor of Computer Science, set out to
hold a conference on software design, the unexpected result was the many different
perspectives of those represented. Another unexpected result was the publication of
Bringing Design to Software, which gives each of those different hearings a platform. This
book, which leads off with Mitch Kapor’s “A Software Design Manifesto,” provides the
broadest view on software design as a user-centered activity. Each essay is interesting in
its own right, and is supplemented by case studies of actual software products and the
design issues that they illustrate.

Finally, a book that attempts to reconcile the engineering and user-centered design camps
in software development is Nathaniel Borenstein’s Programming As If People Mattered:
Friendly Programs, Software Engineering, and Other Noble Delusions. Written as a series
of anecdotes, this book will be especially helpful to the programmer or software engineer
who wants to learn about adding “commodity” to her programs. If you still can’t decide
whether computer science is really a science, you’ll want to read Chapter 20, “The Ivory
Tower.”

 - 29 -

Chapter 2: Object-Oriented Software
Development

 Overview

Have you ever wondered why some organizations refer to the group responsible for
computers and information systems as “data processing”? Structured programming and
structured design (which grew out of structured programming) understand the mission of
software as that of processing data. Structured programming and structured design are
focused on the changes programs make in transforming input data to output data, seeing
computer programs as action-oriented. The early name of the computer programming
profession—data processing—reflects this procedural perspective.

Object-oriented programming and design emphasize the view that software systems
model the real world. Objects within an object-oriented system may still transform input
data to output data, but this is not the only possible way to organize an object-oriented
program.

From an object-oriented perspective, the group responsible for computers and
information systems might aptly be named the Business Object Portfolio (BOP) group.
Their function, as you’ll see, is to assemble and maintain a portfolio of objects that model
their organization’s processes.

If your age is over twenty and you’re therefore less than enthusiastic about the prospect
of being called a BOPper, never fear. You can choose to work in the health care industry,
in which case you may come to be known HOPper (for “Health care Object Portfolio”) or
MOPper (for “Medical Object Portfolio”). That’s decidedly better than working in law
enforcement, where you might come to be known as a COPper (for “Crime Object
Portfolio”), or working in agriculture, where you might come to be known as a CROPper
(for “Crop Rotation Object Portfolio”).

 In this chapter you will learn:

 • How structured design exploits the organization inherent in routine business

procedures.

 • How the principles of structured design tend to break down when systems become

large and complex.

 • How the object-oriented paradigm differs from the structured paradigm.

 • How the concepts of class and object and the principles of encapsulation, inheritance,

and polymorphism define the object-oriented paradigm.

 • How various processes are used to design and develop software and how each has

strengths and weaknesses.

 “Structured programming and structured design understand the mission of software

as that of processing data.”

 “Object-oriented programming and design emphasize the view that software systems

model the real world.”

 - 30 -

Procedural Programs

Computer programs, whether designed based on structured design or object-oriented
design, usually model some process that exists in the real world. A payroll program, for
example, models the manual process that a real business goes through when it pays its
employees. In a small business, the process might work something like this:

 1. Get the list of employees from the file over by the coffee machine.

 2. Get the federal and state withholding schedules out of the bottom right drawer of the

desk.

 3. Get the general ledger from the supervisor’s office.

 4. For each employee on the list, do the following:

 A. Get the amount of pay from the employee record.

 B. Calculate the amount of taxes due, based on the withholding schedules.

 C. Calculate the net pay by subtracting the deductions and withholding from the gross

pay.

 D. Prepare the check.

 E. Record the check in the general ledger.

 5. Take the stack of checks to the boss to be signed.

 6. Mail the checks at the post office.

 7. Return the general ledger, withholding schedules, and list of employees to their

regular places.

Most of these operations could be performed by a computer, though the computer
wouldn’t do them exactly the same way the payroll clerk would. When written as part of a
computer program, the steps necessary to carry out a task are called a process. Each
step within a process is known as a procedure. When a procedure is long or complex, it
may consist of several steps, called subprocedures or simply procedures.

Procedures are the blocks used to build structured programs. A typical payroll program,
for example, would contain procedures to open and read the files, perform the payroll
calculations, and print the checks. By using direct deposit, the program might even “sign”
and “mail” the checks. Figure 2.1 shows how such a program might be structured.

 Figure 2.1 A procedural payroll program

 Figure 2.1 represents a computerized payroll process. Each of the boxes in Figure 2.1

 - 31 -

represents a procedure that carries out a series of steps. Each procedure receives input
data, processes the data, and transmits the results of its processing, either to a
subsequent procedure or to a human. Data is fed to the procedures in much the same
way that raw materials are fed to an assembly line—except the procedures produce
information rather than cars or toasters.

A useful property of structured programs is that the “shape” of the solution (that is, the
program) closely models the shape of the problem. Each of the procedures of the
structured program in Figure 2.1 relates to one or more of the steps in the process for
manually preparing payroll checks. Structured programs are designed by means of
procedural decomposition. Using procedural decomposition, a designer studies the
problem and attempts to break it apart by identifying a series of actions that solve it.
When a designer is asked to automate an existing business process, the design process
is often simple because procedural decomposition is easy to perform. The designer
merely uses the steps of the manual process to identify the actions that the program must
perform. Because these steps have successfully kept the business from devolving into
chaos, using them as the basis for a computer program may be less risky that trying an
entirely new series of steps.

Think again, though, about what would happen to the manual payroll process in your
imaginary business if it grew to 20,000 employees instead of 20. The employee file could
no longer be kept in the filing cabinet over by the coffee machine. Fred, the part-time
bookkeeper, could no longer finish his work each Tuesday afternoon. And, most
importantly, the boss, who previously signed every check and would likely notice if Ms.
Smallie’s check had $1,000 written on it, instead of $100, could no longer sign each
check personally—there simply wouldn’t be enough remaining time to properly watch
over the business.

When businesses grow, they change their structure to handle the added complexity
caused by their growth. Finance departments, vice-presidents, controllers, and auditors
are added because the simple structure that worked fine for a 20-person company is no
longer adequate.

Computer programs can suffer from a similar malady. The procedural paradigm
(paradigm is just a fancy word for pattern) works fine for automating routine office
processes, like preparing payroll checks. But it fails to offer sufficient structure when
applied to many other kinds of problems, such as simulations and interactive
environments. If you’ve been around a while, you might remember when the main job of
computer programmers and designers was writing programs that solved “assembly-line”
problems like payroll, batch accounting, and monthly invoicing. Things are different today.
Instead of being assigned to write a data-processing program to tally the month-end
statements, a bank programmer is more likely to be responsible for writing code to control
the ATM or the bank’s new World Wide Web site. A programmer for a stock broker might
design automatic trading programs instead of a simple client billing application.

Such interactive or “reactive” programs are much more complex than traditional data-
processing applications, because the flow of control is no longer linear. Data doesn’t
come in at the start of the program, flow through a number of predefined procedures, and
exit at the end, relaxed and refreshed. In a reactive program, the procedure DoThingC()
might be called first, second, last, or not at all—unlike the procedural program where
DoThingC() always follows DoThingA() and DoThingB().

Look back at Figure 2.1. What does it look like? A pyramid, right? The pyramid structure
occurs because of the hierarchical nature of control in the program.
ReadEmployeeRecord() relies on the fact that ProcessPayroll() has already
performed the OpenEmployeeFile() process. The data and the environment required
by ReadEmployeeRecord() are available only because the OpenEmployeeFile()
procedure has been called first. If you attempt to write an interactive program that uses
procedures as its basic building block, however, the program structure no longer
resembles a neat pyramid. Instead, it begins to look like a dense web of interconnections.

 - 32 -

If you remember your first programming class, this might set off a light bulb. Before the
advent of structured programming, back in the days of “iron men,” when “big-iron” was
not merely metaphorical, computer programs were largely monolithic—they had no
procedures at all. Thus, when a programmer needed to execute a piece of code in
another part of the program, an unconditional branch was used; such branches were
called gotos. As programs got larger, the typical path of program execution began to
resemble a large web. Such code became known as spaghetti code, code that was
difficult or impossible to understand and thus difficult or impossible to maintain, fix, or
change.

The underlying problem was that programs were organized as a collection of source
statements. Too many “blocks” (that is, source statements) were required to build large
programs. To solve this problem, structured programming introduced the procedure as a
second, larger organizing unit, as shown in Figure 2.2. Source statements were used to
build procedures, but procedures (not source statements) were used to build programs.
Thus, the number of blocks required to build a program decreased, reducing the
complexity of the program.

 Figure 2.2 Procedures as an organizing unit

 Object-Oriented Programs

Object-oriented programming attacks the complexity of today’s programs in a similar
fashion. By grouping procedures into still larger organizing units called objects, programs
require fewer blocks and are, therefore, simpler.

OOP: Is Nothing New?

Studying object-oriented programming, it’s hard not to notice the fact that different
folks have very different views when it comes to OOP. Reading various OOP books
and papers, it almost seems that people are talking about entirely different things.
When you finally cut through all the rhetoric, though, there are two points of view:
the revolutionary and the evolutionary. The advocate of the revolutionary view
loudly proclaims that OOP is so different from traditional programming that you
have to learn programming over again from scratch. The evolutionists, in contrast,
say that OOP is really just new packaging of old concepts. Perhaps there’s some
truth, as well as some error, in each of these views.

 - 33 -

The evolutionists are correct when they assert that it is possible to write clear, well-
commented, understandable code in a procedural language, and that it is possible
to write incomprehensible, unmaintainable code in an object-oriented language.
The evolutionist generally fails to recognize, however, that an OOP program is
organized in a fundamentally different manner than a procedural program.

The revolutionist is right in pointing out that the OOP design process uses different
tools and different types of abstraction, and that no amount of functional
decomposition will ever yield an object-oriented program. The revolutionist
overestimates, perhaps, the value of such an object-oriented design when weighed
against factors of clarity and understandability. A well-designed and implemented
procedural program is definitely to be preferred over a poorly conceived and written
OOP program. OOP and object-oriented languages provide tools to express ideas
clearly, but are not instant, automatic panaceas.

 Five fundamental concepts govern object-oriented programs:

 • Objects

 • Classes

 • Encapsulation

 • Inheritance

 • Polymorphism

 “An object-oriented program is a collection of objects that are organized for, and

cooperate toward, the accomplishment of some goal."

 What Are Objects?

Just as procedures are used to build structured programs, objects are used to build
object-oriented programs. An object-oriented program is a collection of objects that are
organized for, and cooperate toward, the accomplishment of some goal. Every object:

 • Contains data. The data stores information that describes the state of the object.

 • Has a set of defined behaviors. These behaviors are the things that the object

“knows” how to do and are triggered by sending the object a message.

 • Has an individual identity. This makes it possible to distinguish one object from

another, just as it’s possible to distinguish one program variable from another.

Like the records or structures used in procedural programs, objects contain data. In this
sense, an object looks very much like one of the employee records that would be used in
the payroll program you saw in the last section. An object’s data is used to represent the
object’s state. For example, data within an employee object might indicate whether an
employee is full-time or part-time, hourly or salaried.

Unlike the employee record within a procedural program, however, an employee object
can also contain operations. These operations may be used to read or change the
object’s data. In this sense, an object acts like a small “mini-program” that carries its own

 - 34 -

data around on its back, as shown in Figure 2.3.

 Figure 2.3 Objects have data, operations, and identity

If you want to do something to an object, or want to know something about it, you “ask it”
to perform one of its operations. In object-oriented parlance, you send it a message. In
response, it performs some behavior. The second characteristic of an object, then, is that
it has some built-in behavior: An employee object may know how to tell you its salary, or
how to print itself out to a mailing-address label.

The third characteristic of an object is that every object has a unique identity. This doesn’t
mean that every object necessarily has an ID number, or a “primary key” like you find in
relational databases. Objects are very much like program variables in a procedural
language. The integer variables i and j may have exactly the same value—say 3—and
yet they are distinct variables, stored at different locations within the computer’s memory.
Changing the value of i to 4, for example, does not change the value of j. Similarly, two
employee objects that represent the identical twins who work in shipping, Fred and Ned,
may have similar data contents, yet still be distinct objects.

OOP Terminology

Much, but not all, of the terminology used in object-oriented programming is the same
from programming language to programming language. However, knowing about the
differences in terminology might help you avoid some confusion when you find yourself
“talking objects” to a Smalltalk or Object Pascal or C++ programmer. In Java, the
operations of an object or class are called methods, just as in Smalltalk. C++
programmers call methods member functions. While Smalltalk programmers always
speak of sending a message, C++ programmers tend to refer to calling a member
function. Java programmers tend to split the difference, and speak either of sending a
message to an object, or calling an object’s method, depending on whether it is the
sender or the recipient of the message that is the focus of discussion.

An Object Example

When a book on object-oriented programming attempts to introduce you to objects, it
usually begins by discussing objects in the “real world”—things like animals, or plants, or
vehicles. It does this for a very good reason. One of the advantages of object-oriented
programming is that program objects have a much closer correspondence to objects in
the real world than do the proce dures of structured programs, which have operations but
lack data. Still, unless you’re writing an application for a zoo or a botanist’s convention,

 - 35 -

you may have a hard time trying to apply what you learn from your textbook—how to
model a marmoset—to the actual programs you find yourself writing.

In an effort to avoid that difficulty, let’s start out by looking at some of the objects you’ll
really use in your Java programs. Figure 2.4 shows the LabelsGalore applet, which
features an ensemble of talented objects.

 Figure 2.4 Running the LabelsGalore applet

If you want to run the applet for yourself, the HTML file you’ll need is shown in Listing 2.1.
The applet features some animation that isn’t obvious in Figure 2.4, so by all means run
the applet if you can.

 Listing 2.1 LabelsGalore.html

 <HTML>
 <HEAD>
 <TITLE> The LabelsGalore Applet </TITLE>
 </HEAD>
 <BODY>
 <H1> The LabelsGalore </H1>
 <HR>
 <H2> A family of Label objects </H2>

 <APPLET CODE=LabelsGalore HEIGHT=300 WIDTH=500>
 </APPLET>
 </BODY>
 </HTML>

The Java source code for the applet is shown in Listing 2.2. Chapter 3, “Teach Yourself
Java in 21 Minutes,” introduces you to the Java language, but, even if you can’t yet
understand much of what you read, see if you can pick out the objects. If you can’t spot
them, don’t despair. The next section will walk you through the highlights of the code.

 Listing 2.2 LabelsGalore.java

 // LabelsGalore.java
 // Creating and sending messages to Label objects

 - 36 -

 import java.awt.*;
 import java.applet.*;
 import java.util.Random;

 public class LabelsGalore extends Applet
 implements Runnable
 {
 Label gigantica = new Label(“I’m Really Big”);
 Label miniscula = new Label(“I’m Really Small”);
 Label nervosica = new Label(“I Can’t Sit Still At All”);

 Thread runner;
 int vx = 1, vy = 1;

 public void init()

 {
 gigantica.setFont(new Font(“Serif”, Font.BOLD, 72));
 miniscula.setFont(new Font(“SanSerif”, Font.ITALIC, 8));
 nervosica.setFont(new Font(“Monospaced”, Font.PLAIN, 28));
 add(gigantica);
 add(miniscula);
 add(nervosica);
 }

 public void run()
 {
 Random randomizer = new Random();
 int dx, dy;

 while (true)
 {
 dx = (int) (randomizer.nextFloat() * 50);
 dy = (int) (randomizer.nextFloat() * 50);

 Point location = nervosica.getLocation();

 if (location.x < -100) vx = 1;
 if (location.x > 300) vx = -1;
 if (location.y < 100) vy = 1;
 if (location.y > 300) vy = -1;
 dx = location.x + (dx * vx);
 dy = location.y + (dy * vy);

 nervosica.setLocation(dx, dy);

 try { runner.sleep(500); }
 catch (InterruptedException e) { }
 }
 }

 public void start()

 - 37 -

 {
 if (runner == null)
 {
 runner = new Thread(this);
 runner.start();
 }
 }

 public void stop()
 {
 if (runner != null)
 {
 runner.stop();
 runner = null;
 }
 }
 }

 Objects, State, and Identity

 The LabelsGalore applet creates and uses eight objects. Working together, these objects

comprise the program:

 • The three Label objects, gigantica, miniscula, and nervosica. These names

represent the identity of each of the three objects.

 • Each Label object also uses a Font object to change the way that it displays

characters.

•

A Random object named randomizer. Random objects act as “factories” for
producing pseudo-random numbers. The object randomizer is used to generate the
pixel coordinates sent to the Label nervosica.

•

A Thread object named runner. Java is a multithreaded language (able to execute
different methods simultaneously). The Thread object is responsible for executing the
code that keeps nervosica moving around the screen.

 • A Point object named location, which is used to hold nervosica’s current

location.

Actually, there is one other object involved in this program, which you may not have
noticed. The program itself becomes an Applet object when your browser loads the
Web page it resides on. You’ll learn more about this in the next chapter.

Rather than trying to dissect each of these objects, let’s just take a closer look at the
three Label objects, gigantica, miniscula, and nervosica—named, of course,
after the legendary ancient circus performers. As you’ve learned, every object has three
characteristics—identity, state, and behavior. You’ve already seen that the name of each
Label represents its identity. What could a Label store as its state? Because the
purpose of a Label is to display textual information on the screen, what type of data does
a Label object need to perform this task? You can likely identify these three:

 • The text that Label displays.

 • The position where the text is displayed on the screen.

 - 38 -

 • The font or typeface used to display the text.

Label objects, as implemented in Java’s AWT, actually have a few more attributes such
as alignment, but these three are the essential ones. When each Label object is created
in LabelsGalore.java, the text that each Label displays is provided as an argument,
and each Label stores this bit of data away “inside” itself:

 Label gigantica = new Label(“I’m Really Big”);
 Label miniscula = new Label(“I’m Really Small”);
 Label nervosica = new Label(“I Can’t Sit Still At All”);

Again, it’s not important that you understand the specific Java syntax that is used to create
these Labels—help with that is coming soon enough. It is important that you understand
that each of these Labels—gigantica, miniscula, and nervosica—has some data
that it is individually responsible for managing.

 What Do Labels Do?

One mark of an enjoyable movie is that you’re not really aware, when you’re watching it,
that it’s a movie at all. A poor film announces its presence, but a good one allows you to
suspend your disbelief and savor the experience. Working with objects and thinking in an
object-oriented manner benefit from a similar attitude. A well-designed program object
lets you forget that it’s a program object, directing your attention instead to the real-world
object it represents.

This is particularly helpful in considering the third characteristic of objects, behavior.
Those programmers who have spent many years working with a procedural language
sometimes experience a sticking point here. All this talk of sending messages and
objects that “know” how to do something, or “behave” in a certain way, strikes them as
unnecessarily anthropomorphic. If you find yourself in this situation—struggling to
understand how an object “really” works—please just step back and consider Arthur C.
Clarke’s famous maxim:

 “A well-designed program object lets you forget that it’s a program object, directing

your attention instead to the real-world object it represents. ”

 “A well-designed object, like a well-cast magi-cal spell, works even if you don’t fully

understand why. ”

 “Any sufficiently advanced technology is indistinguishable from magic.” A well-designed

object, like a well-cast magical spell, works even if you don’t fully understand why.

A Label is a fairly simple object, as objects go, and can’t do all that much. What kind of
things can you tell a Label to do? Another way of asking the same thing is, “What
messages does a Label object respond to?” Most objects, and Labels are no
exception, respond to messages that

•

Allow you to change their internal state. One attribute of a Label is the Font it uses to
display its data. By sending the setFont() message to a Label, you can have it
display itself using a different Font than the one it originally assumes:

 - 39 -

 gigantica.setFont(new Font(“Serif”, Font.BOLD, 72));
 miniscula.setFont(new Font(“SanSerif”, Font.ITALIC, 8));
 nervosica.setFont(new Font(“Monospaced”, Font.PLAIN, 28));

•

Ask the object to tell you something about itself. If you ask it, a Label object will tell
you its coordinates on the screen. You can do this by sending it the getLocation()
message, just as in the LabelsGalore applet:

 Point location = nervosica.getLocation();

 • Ask the object to do something. The Label object nervosica will move itself to a

new position on the screen when you send it the setLocation() message, like this:

 nervosica.setLocation(dx, dy);

 What Are Classes?

If Java programs are built from collections of objects, then what are classes? Are they
collections of “student” objects? No, classes are the blueprints that are used to create
objects. You will never actually write the code for an object: what you write is the pattern
that is used to make objects. The distinction between classes and objects is sometimes
subtle, but it is basic to a good understanding of object-oriented design.

One helpful way to think about the relationship between classes and objects is to think
about the similar relationship between types and variables in a procedural programming
language. When you talk about the type of a variable—integer, floating-point, or string—
you are using shorthand to describe the range of data that the variable can store, as well
as the operations that can be performed on that variable. For instance, integer variables
cannot hold fractional numbers. Similarly, you can multiply integers and floating-point
numbers, but you can do spell-checking only on strings.

 “You will never actually write the code for an object: what you write is the pattern

that is used to make objects. ”

 “A class defines the attributes and behaviors that each object created from the

class will possess.”

Notice that variables hold values; types do not. A type is merely an abstraction. To
actually hold an integer value, you have to create an integer variable. A variable is an
integer if it follows the “blueprint” for creating integers, specified as the integer type.
Rules within the integer type determine what data integers store, and how integers act.
Individual integers, i, j, and k, are called instances of the integer type.

Objects and classes have a similar relationship. A class defines the attributes and
behaviors that each object created from the class will possess. The class is the blueprint
that is used to create objects. In writing Java programs, you use classes created by
others, and you define new classes that are used to create new sorts of objects of your
own device. Creating new classes involves a two-part process:

 • Define the attributes that objects created from your class will use to store their state.

 - 40 -

•

Define the messages you want your objects to understand and the steps involved in
responding to these messages. For each message, create a procedure, called a
method, that implements these steps.

Chapter 3, “Teach Yourself Java in 21 Minutes,” guides you through the syntax necessary
to define classes in Java, while Chapter 5, “Designing Classes and Objects,” shows you
how to design classes that are both robust and maintainable.

What Is Encapsulation?

Unlike objects and classes, encapsulation is not a Java language element. Instead,
encapsulation is a technique you’ll use to create well-designed classes. Just as writing a
successful action novel involves application of techniques intended to create a
suspenseful mood, writing well-designed object-oriented classes demands that you apply
the technique of encapsulation.

“Fine,” you say. “I’d be happy to pay attention to encapsulation, if only I knew what it is. It
sounds like something astronauts have to go through. Just what is it?” No sooner asked
than answered: Encapsulation is the process of packaging your program, dividing each of
its classes into two distinct parts: the interface and the implementation.

“Wait a second,” you respond. “You’ve already said that classes have two parts:
attributes and methods. Are the interface and implementation two new parts, or are these
just new terms for attributes and methods?” Neither one.

Your objects are made of attributes and methods. Some of these attributes and methods
are publicly available, visible from outside the object: These are the interface. Other
attributes and methods are reserved for the private use of the object itself: These are the
implementation. Separating the interface from the implementation is the most
fundamental design decision you make when you design an object-oriented program.

 “Writing well-designed object-oriented classes demands that you apply the

technique of encapsulation.”

To see the value of dividing interface from implementation, look at an example you’re
already familiar with: the automobile. The interface of an automobile is relatively simple
and uniform: the steering wheel, the gas pedal, and the brake. You only have to learn to
drive once. You don’t have to take new lessons whenever the fall line of cars appears. In
contrast, the internal workings of the car—the ignition, number of cylinders, fuel-injection,
and so on—can change dramatically from year to year. If you had to directly interact with
the ignition system for each different type of automobile, you’d find yourself having great
difficulty even getting your new car started. As it stands, even if you’re flying to a faraway
place, you can make a car reservation without fear that you’ll be unable to drive the car
you’re assigned.

A well-designed class has these same characteristics. The interface completely
describes how the users (sometimes called clients) of your class interact with it. In almost
every case this means that the attributes of your class will be hidden, and that users will
use the class’s methods to modify its data.

You can see this at work in the Label objects you met in the LabelsGalore applet.
When you send the Label nervosica the getLocation() message, it gives you back
the Label’s location as a Point object. But, that’s not necessarily the way that Labels
store this piece of information. If the Label class exposed this attribute and users

 - 41 -

interacted with it directly, a change to the class might cause programs that use Labels to
quit working. For example, changing the data type of the location coordinates from integer
to float-point might cause client programs that expect integer coordinates to choke.
Separating the actual data storage (implementation) from the method used to obtain the
information (interface) means that you can change the insides of a class without affecting
those who use the class. You’ll see how this can be done in Chapter 4, “Encapsulation:
Classes and Methods.”

What Is Inheritance?

The second design decision made while designing a class is the structure of its
inheritance hierarchy. Encapsulation is necessary for creating robust classes that can be
easily changed. Inheritance is concerned with “families” of classes and their relationships.

If you were to take a look at the source code for the Label class provided with the Java
Development Kit, you might be surprised to find that the Label class does not define a
method called setLocation(). “How can that be?” you ask. “I just saw you send the
setLocation() message to the Label nervosica. Where’s the corresponding
setLocation() method?” The answer to your question is simple. A Label knows how
to respond to the setLocation() message because every Label receives a
setLocation() method through inheritance.

 “The true value of inheritance is as a powerful organizing abstraction. ”

Figure 2.5 shows the inheritance hierarchy for part of the Java Abstract Windowing
Toolkit. Notice that the Label class appears below the Component class. All the classes
appearing below Component—Button, TextField, and Panel, in addition to Label—
are subclasses of the Component class. The Component class, which is called a
superclass, defines the attributes and behaviors that are common to all its subclasses. A
subclass, like Label, needs to define only those ways in which it is a specialization of its
superclass. It automatically inherits all the attributes and methods of its superclass.

 Figure 2.5 A portion of the Java Abstract Windowing Toolkit hierarchy

There are two chief advantages in defining such inheritance relationships between
classes. The first is purely Pragmatic: if you write a setLocation() method within the
Component class, you don’t have to include a setLocation() method in any of the
classes descended from Component. Each subclass of Component inherits the
setLocation() method included in the superclass. Thus, when writing a sub class that
describes a new kind of Component, you have all sorts of functionality already built in.

 - 42 -

This is the advantage most commonly cited for using inheritance. However, it is not the
whole story. When procedures were first used in programming languages, they were
promoted primarily as a way of reducing redundant code. Their greatest strength,
however, proved to be their facility as a tool to organize and conquer complexity in the
computer. The true value of inheritance is as a powerful organizing abstraction. Whereas
using procedures allows you to divide complex problems into simpler parts, using
inheritance allows you to see commonalties and to factor them out, placing them in a
more general superclass.

Structured programming was based on abstraction by decomposition. Object-oriented
programming includes decomposition as an abstraction mechanism, but supplements it
with inheritance, which is based on abstraction by classification. The power of
hierarchical classification can be seen in Figure 2.6, which depicts its use in the natural
sciences. There it has been a powerful tool for organizing information about the millions
of types of animal and plant life on our planet.

 Figure 2.6 Abstraction by hierarchical classification

 What Is Polymorphism?

The final, fundamental principle used in object-oriented programming is polymorphism.
From the Greek word meaning “many shapes,” polymorphism works together with
encapsulation and inheritance to simplify the flow of control in an object-oriented
program.

 “Polymorphism works together with encapsu-lation and inheritance to simplify the

flow of control in an object-oriented program. ”

Flow of control, knowing what happens next, is the Achilles heel of computer programs: It
is the chief cause of complexity, because, without tracing through an unlimited number of
pathways, you cannot examine all the possible states of your objects. Thus you can’t
exhaustively test your programs. Early attempts at structured programming were
attempts to simplify program flow of control: Unconditional branches gave way to the
canonical constructs of sequence, selection, and iteration. In a similar way, the use of
polymorphism simplifies the sending of messages to objects that are related to one
another through inheritance.

When a message is sent to an object, that object must have a method defined to respond
to that message. When classes are connected in an inheritance hierarchy, all the
subclasses of a parent class automatically inherit their parent’s interface. Anything that a
superclass object can do, a subclass object can also do. For example, if class A is a
subclass of class B, then an A object can do anything a B object can do. In this practical

 - 43 -

sense, an A object is a B object. Because of this, the inheritance relationship is
sometimes called an ISA relationship.

Although a subclass object responds to the same messages that a superclass object
does, the message need not trigger the same behavior. It simply needs to be understood.
Each subclass can rely on the superclass to define the appropriate response or define a
new, specialized response. Therefore, each of the subclasses is able to respond
differently—polymorphically or according to its nature, so to speak—to the same
message. This is what is meant by “many shapes.”

A simple example should make this clear. Suppose you are writing a Java program that is
going to mimic the well-known desktop metaphor. You want your users to be able to drop
a wide variety of things on the desktop, which they can then move or manipulate in a
standard way. For instance, you’d like to be able to double-click the mouse on an item to
activate it. Of course, different items should respond differently when activated. When
you double-click on the little notebook icon, you want a notepad program to launch, and
when you double-click on the modem icon, you want to connect to the Internet.

Without polymorphism, you would have to send a distinct message to each type of icon.
You’d have to send a “launch” message to the notebook icon and a “connect” message to
the modem icon. Polymorphism allows you to send the same “double-click” message to
either type of icon. The icon knows whether it’s a notebook icon or a modem icon, and
responds appropriately.

To use polymorphism in this example, you might first create a class, DesktopObject,
having a method doubleClick(). You could then extend the DesktopObject class
by defining two subclasses, NotepadObject and ModemObject. Next, you could define
a customized doubleClick() method in the NotepadObject, causing it to open a
notepad. Finally, you could define another customized doubleClick() method in the
ModemObject, causing it to make a phone call. This way, an object of either type would
act properly when it received a doubleClick() message.

The beauty of polymorphism is that your program can now work with NotepadObjects
and ModemObjects as though they were the more generic DesktopObjects. You
don’t need to be at all concerned about whether a given DesktopObject is a
NotepadObject or a ModemObject. Any DesktopObject knows how to respond to a
doubleClick() message. Moreover, each will respond in its own appropriate way, as
shown in Figure 2.7.

 Figure 2.7 Polymorphism simplifies programs

Software Development

 Now that you’ve learned something about the structure of modern software systems, it’s

appropriate to learn more about how such systems are built. Most modern software

 - 44 -

systems are too large to be built by an individual in a timely manner. As Figure 2.8
shows, a well-organized team will consistently outrace an individual. In principle, a large
system could be built by a solo programmer, but while a system is being built, the world
does not stand still. If a system requires a long time to build, the users’ needs will likely
change. When the solo programmer finally presents the users with the finished system, it
may not meet their changed needs. Worse still, it may be less expensive to start over
than to struggle to modify the outdated system to meet the users’ current needs.

 Figure 2.8 Large systems take a single programmer too long to build

To avoid this problem, software development is usually a team activity. By developing
software as a team, programmers hope to deliver the system more rapidly. Of course,
performing an activity as a team does not guarantee that the activity will be completed
more rapidly.

For teamwork to succeed, it must be possible to separate the activity into discrete units.
This is not always possible; some activities are nonseparable. Fred Brooks cites child
bearing as an example of a nonseparable task. The nine-month schedule cannot be
accelerated to a single month by assembling a team of nine women, each of whom
performs 1/9 the total work in a single month.

Another example is the ubiquitous high school algebra problem that goes something like
this: “If Fred can mow the lawn in 1/2 hour and Bob can mow the lawn in 1/3 hour, how
long will it take the two of them to mow the lawn together?”

Your high school algebra teacher insisted that the answer was something less than 1/3
hour, but if you know much about teamwork, you know that your teacher’s answer is
wrong. First of all, it’s not possible to beat Bob’s time unless the boys have two lawn
mowers. Most families have only a single lawn mower, so this would be a doubtful
assumption. Of course, if Bob and Fred live near one another, Bob can bring his lawn
mower to Fred’s house. But, some time will be required to transport the lawn mower.
Unless the houses are quite nearby, this may offset the advantage of having two mowers.

And, there are further problems. If Fred mows the front lawn while Bob mows the back
lawn, all may go well. But if both try to mow the front lawn at the same time, there may be
an accident. Or, they may spend time dodging one another and the debris ejected by the
mowers, reducing their mutual efficiency. As Figure 2.9 shows, there’s an even greater
risk that they may stop to play one-on-one until it’s too dark to mow either lawn.

 - 45 -

 Figure 2.9 A team may take longer to complete an activity

Most likely, as the parent of any teenager will attest, it will take Fred and Bob longer to
mow the lawn together than it would take Fred alone. The boys will spend most of the
afternoon listening to music, snacking, or watching MTV. Only as darkness approaches,
and only after repeated, stern admonishments by a determined parent, will the lawn be
mowed at all. As it turns out, the basic principles of lawn mowing don’t seem as
mathematical as your algebra teacher insisted.

 What Is the SDLC?

Software design, as you’ve seen, has as much to do with the human process of software
development as it does with technical issues such as performance or aesthetic issues
such as elegance. Conway’s law, a well-known maxim of software development, states
that the structure of a software system resembles the structure of the team that built it.
For example, if a team of five programmers builds a system, there’s a good chance that
the system will consist of five modules.

 “Conway’s law states that the structure of a software system resembles the

structure of the team that built it.”

After several decades of collective software development experience, the software
development community has learned a bit about how to “mow” software, taking account
of factors like Conway’s law. One important product of community insight is the structured
development life cycle or SDLC.

As shown in Figure 2.10, the SDLC breaks the process of developing software into
several activities. These activities are performed more or less sequentially, one following
another. You’ll learn about the activities of the SDLC in detail in a moment. But, the big
picture of the SDLC is simply this: Some software development tasks must be completed
before others can be started. Just as it’s wise to clear the kids’ toys off the lawn before
beginning to mow, it’s wise to understand the users’ needs before beginning to program.

 - 46 -

 Figure 2.10 The structured development life cycle (SDLC)

The SDLC is based on the manufacturing product development cycle, shown in Figure
2.11. The manufacturing product development cycle helps focus attention on the
importance of assessing the existence of a market before committing funds to product
design, the importance of product design to manufacturing efficiency, and so on.

 Figure 2.11 The manufacturing product development cycle

A helpful way of better understanding the SDLC is by means of an analogy. Building a
software system is much like building a house. Great care must be taken in laying the
foundation of a house, because the entire structure rests on the foundation. A weak or
malformed foundation is no basis for a high-quality home.

After the foundation has been poured, the frame is erected on it. The frame, in turn, is
important because it must support the walls, which are only as sturdy and durable as the
frame and the foundation. The entire house is built, layer by layer, each new component
depending on the integrity of the previous components.

The software community came to realize that the same is true of a software system.
Software development activities are not completed in isolation. Each part of the process
is used as the basis for performing subsequent parts. And, each is only as strong as the
parts that support it. The parts of a software system, of course, are not as tangible as
those of a house. Nevertheless, they are real.

Look back to Figure 2.10, which shows the SDLC, and identify the components of the
SDLC: Requirements Analysis, Design, Programming, Testing, and Operation. The
following subsections describe each of these components in detail.

 Requirements Analysis

The Requirements Analysis activity forms the foundation of the SDLC. Requirements
Analysis identifies the goals that the system must achieve. Sometimes a system is
intended to solve a problem; other times a system is intended to capitalize on an
opportunity. Either way, the Requirements Analysis activity spells out the problem or
opportunity. It then identifies the set of discrete requirements that a system must satisfy
in order to achieve its goal.

 “The Requirements Analysis activity aims at building a bridge between two groups.

 - 47 -

”

The Requirements Analysis activity aims at building a bridge between two groups. The
managers and users who want the system form one group. The programmers who will
build the system form the other. In most organizations, these groups are very different.
The managers and users talk about costs, customers, and sports, while the programmers
talk about CPUs, co-routines, and caches. The managers and users are concerned about
what the system will do; the programmers are concerned about how the software will be
structured, what new technologies can be used, and what they will learn while writ ing it.
Often, you can recognize members of each group by their distinctive dress. Managers
and users wear business attire; programmers wear whatever was on top of the clothing
pile.

It is crucial that the two groups transcend their cultural differences and arrive at a
common understanding of what the proposed system will do. Otherwise, enormous sums
of money may be expended in building the “wrong” system. Software development
history is replete with such examples. In one of the most notable examples, a major U.S.
bank spent over $100 million in building a system that it was never able to use.

Often, communication among the managers, users, and programmers is imperfect. As
shown in Figure 2.12, small misunderstandings about what the system should do are
often amplified during system development, to the point that the users sometimes cannot
see the similarity between what they wanted and what the programmers delivered.

 Figure 2.12 Small misunderstandings are often amplified

Software developers have learned that producing a document that summarizes the
findings of the Requirements Analysis activity helps avoid misunderstanding. A well-
written document provides objectivity often lacking in the collective memories of the
Requirements Analysis team, which tend to be incomplete and are sometimes
inaccurate. Such a document is referred to as a Requirements Specification, because it
specifies and describes the requirements that the system must satisfy.

Of course, if a system is simple and its requirements are few, it may not be necessary to
produce a Requirements Specification. However, even when it’s not strictly necessary, a
Requirements Specification can be a useful document. When system development is
done by outside consultants, the Requirements Specification is usually considered part of
the contract between the consultants and their client. If a dispute arises, a court of law
will likely focus on the Requirements Specification in determining whether the consul
tants did, or did not, fulfill their obligations. Even when system development is done
internally, the Requirements Specification can help system developers avoid being
unfairly blamed when users are unhappy with a delivered system. Whether the
Requirements Specification takes the form of a multivolume catalog of requirements or a
simple one-page memorandum, it’s an important tool for the software developer.

 - 48 -

Because it focuses on understanding the users’ wants and needs, the Requirements
Analysis activity involves a great deal of interaction between the users and the
programmers. Usually the Requirements Analysis team includes both users and
programmers. Often, managers are included as well. Requirements Analysis teams go
about their work in a variety of ways. Almost always, however, the team will meet and
discuss the problem, interview workers who understand the problem, and collect
important documents related to the current system. When they have reached an
agreement on what the system must do, the team will draft a Requirements Specification
that records their findings.

 In drafting the Software Requirements Specification, the team will try to produce a

document that has these qualities:

 • Correctness. The specification should correctly identify and describe each of the

requirements the system must satisfy. The specification should be without error.

 • Completeness. The specification should include every relevant requirement.

•

Consistency. The specification should not contain conflicting requirements. For
example, it should not state in one section that the system must run on an IBM-
compatible PC and state in another section that the system must run on a Macintosh.

 • Clarity. The specification should be written in language understandable by both users

and programmers.

Often, the Requirements Specification will include a numbered list of requirements.
Numbering the requirements makes it easy to refer to a particular requirement, which is
very helpful later in the software development process when it’s necessary to show which
parts of the system implement each requirement.

 Table 2.1 summarizes the Requirements Analysis activity of the SDLC.

 Table 2.1 Summary Of The Requirements Analysis Activity Of The Sdlc

 Goal

Determine and document the requirements that the system must
satisfy.

 Participants

Team consisting of users, managers, and programmers.

 Means

Meet and discuss the problem or opportunity the system addresses,
interview knowledgeable workers, collect relevant documents.

 Product

Software Requirements Specification that documents findings of the
team.

 DESIGN

The Design activity of the SDLC builds on the work of the Requirements Analysis activity.
Like the other parts of the SDLC, it’s better termed an activity than a phase, because
design may begin a bit before the Requirement Analysis activity is finished. During the
Design activity, a team consisting mainly of programmers decides how the software
system should satisfy the requirements identified during Requirements Analysis.

 - 49 -

Because design is the subject of this book, you might correctly guess that it’s a big
subject—too big to be adequately explained in the next several paragraphs. As a starting
point for understanding design within the context of the Design activity of the SDLC, think
of design as involving decisions about the structure of the software system. During the
Design activity, system developers decide what the major parts of the software system
should be, which requirements each will implement, and how the parts of the software
system should work together.

 The remainder of this book will teach you a variety of ways to approach these tasks.

You’ll learn about the following:

 • Design processes, which describe steps you should follow in designing software.

 • Design notations, which describe models or pictures you can use to document and

communicate your designs.

 • Design heuristics, which help you decide among design alternatives.

Design heuristics are particularly important. There’s usually no one “right” way to
structure the system—each alternative has its own strengths and weaknesses. Finding a
structure that has many of the most important strengths and few of the most serious
weaknesses is what design is about. Heuristics help you in this search.

 Table 2.2 summarizes the Design activity of the SDLC.

 Table 2.2 Summary Of The Design Activity Of The Sdlc

 Goal

Determine the structure of the software system.

 Participants

Mainly system developers, with some user assistance.

 Means

Study of the Requirements Specification and analysis of alternative
designs that might satisfy the requirements.

 Product

System design.

 Programming

After the system has been designed, it can be programmed. Little must be said about
programming, because you are presumed to know something about programming
already. A few words about programming in relation to design are in order, however.

Ideally, individual programmers or teams of programmers can work separately on the
various parts of the system identified in the design. This is how good design accelerates
software development. From this perspective, design seems more important managerially
than technically.

As you know from experience, however, good designs make the work of the programmer
much easier, and bad designs make it much more difficult. Design has both managerial
and technical dimensions.

 Table 2.3 summarizes the Programming activity of the SDLC.

 - 50 -

 Table 2.3 Summary Of The Programming Activity Of The Sdlc

 Goal

Implement the software units specified by the design.

 Participants

Programmers or teams of programmers.

 Means

Programming languages and tools.

 Product

Source code.

 Testing

After the software units specified by the design have been implemented, they can be
combined and tested. Most organizations encourage, or even require, programmers to
test their work as part of the programming activity. This practice is called unit testing,
because it is the individual programmer’s unit of work that is the subject of the testing.

Novice programmers are sometimes surprised to learn that testing cannot end with unit
testing. If all the units have passed their tests, they reason, then the entire system must
be OK.

This thinking is based on a simple but prevalent mathematical fallacy. Your high school
algebra teacher taught you that a + b = (a + b). However, in the world of software, a + b <
(a + b). In fact, structured design gurus Stevens and Constantine refer to this inequality
as perhaps the most fundamental principle of software engineering. A more familiar way
of expressing this idea is the saying, “The whole is greater than the sum of the parts.”

Some years ago, scientists studying the chemistry of the human body determined that
humans are composed mainly of water, along with some carbon, and a few handfuls of
other assorted substances. They calculated that the value of these components was only
a few dollars. None of us, however, would likely sell our body for such a small sum. The
value of a whole, live human is far more than the value of the chemicals that constitute
the human body.

Applied to software testing, this lesson means that we must test not only the individual
software units, but the system as a whole. Just because units A and B seem to work
individually does not mean that they will work together as intended—they may well prove
to be “incompatible.”

Although the focus of this book is on design, a few further words about testing are in
order, owing to widespread misunderstanding of the aims and limits of testing. As
computer scientist Edsger Dijkstra put it, “Testing can show only the presence of bugs,
never their absence.” It is not possible to prove that a system is free of errors by testing it,
because the number of possible system inputs is almost always practically infinite.
Though every test case may work perfectly, there always remain some inputs that have
not been tested. Any one or more of these could expose a serious software bug.

How Many Test Cases Does It Take?

How many test cases would it take to completely test a program whose only input is
a single 10-character field? Because each character can assume any one of 256
possible values, there are 256possible test cases. If your computer could run ten

 - 51 -

million test cases per second, it would require 3.8 billion years to run all the test
cases—roughly the age of planet Earth.

As if that weren’t enough, consider how long it would take you to go through the
results, determining whether each of the program’s answers was right or wrong.
Then, consider also that most real computer programs have much more than a
mere 10 characters of input.

 Conclusion: It’s a practical impossibility to completely test most computer programs.

Moreover, the sad experience of software developers is that our ability to improve the
quality of bug-ridden software is more limited than we realize. A significant number of
attempts to repair known bugs fail. Worse, these attempts themselves regularly introduce
new bugs.

The best approach would seem to be to avoid software bugs in the first place. Certainly
there are promising techniques for reducing the number of bugs introduced during
software development; however, no one has been bold enough to suggest that any
technique can entirely eliminate bugs. “Just do it right the first time” seems a laudable but
unattainable goal for software developers.

 “ 'Just do it right the first time’ seems a laudable but unattainable goal for software

developers.”

Why then do we test software? One reason is that we do find and fix more bugs than we
introduce. On the balance, software quality improves because of testing. Another, more
subtle reason is that software testing allows us to assess the quality of software. When
software is found to have low quality, we may not know exactly what to do about it. But,
knowing before we deliver the software that we have a quality problem seems better than
learning of the problem after we’ve delivered the software. Timely information gives us a
greater range of options.

 Table 2.4 summarizes the Testing activity of the SDLC.

 Table 2.4 Summary Of The Testing Activity Of The Sdlc

 Goal

Assess and improve the quality of the software.

 Participants

Programmers and testers. Limited user participation.

 Means

Execution of test cases.

 Product

Logs of tests performed and report summarizing conclusions about
software quality.

 Operation

 - 52 -

The ultimate goal of Requirements Analysis, Design, Programming, and Testing is to
deliver a system that is satisfactory for operation. Hopefully, the system will remain in
operation for an extended period, during which it may be adapted to meet new
requirements or run on new platforms, or fixed when troublesome bugs are discovered.

Though software is intangible, it suffers from the phenomenon of aging no less than do
mechanical systems. As the world changes, users’ needs and expectations change. As a
software system is repeatedly modified, its original clarity and elegance progressively
diminish. Over time, it becomes both less useful and more difficult to change. At some
point, the high costs of operating the system will compel its abandonment or
replacement.

 Table 2.5 summarizes the Operation activity of the SDLC.

 Table 2.5 Summary Of The Operation Activity Of The Sdlc

 Goal

Solve a problem or realize an opportunity, using a software system.

 Participants

Users and managers. Limited participation of programmers who
maintain and adapt software.

 Means

Execution of delivered software system.

 Product

Improved organizational efficiency and effectiveness.

Alternative Models: Variations on the Theme

The SDLC is not the only way to develop software. Most organizations, however, do use
something more or less like the SDLC. Given the popularity of the SDLC, why would an
organization choose some other way of developing software?

 “When software development activities can be constrained to downstream

movement, the software development process can be controlled.”

A popular variation on the SDLC is the waterfall model, which emphasizes several
features implicit in the SDLC. First, as shown in Figure 2.13, the waterfall model is a one-
way model. Water flows downward, from an upstream phase to a downstream phase; but
it does not flow in reverse, from a downstream phase to an upstream phase.
Organizations that use the waterfall model strive to cause their software development
activities to move like water, only downstream. After Requirements Analysis has been
completed, requirements issues are not revisited. Instead, development activity focuses
on Design, then on Programming, and then on Testing. The activities of the SDLC
become the time-sequenced phases of the waterfall model.

 - 53 -

 Figure 2.13 The waterfall model of software development

When software development activities can be constrained to downstream movement, the
software development process can be controlled. If analysis is estimated to require 10%
of total software development resources, after analysis is complete the project can be
said to be 10% complete. No such statement can be made if, for example, it is possible to
move from Design back to Requirements Analysis.

An organization using the waterfall model marks the progress of its software development
process by the products or documents produced by each phase. These documents are
usually carefully prepared and formally reviewed in the hope that the risk of needing to
return to a previous phase can be eliminated. This approach is often referred to as
document-driven software development.

If software development were a sport, all would be well. A football game never moves
from the second quarter back to the first quarter and a baseball game never moves from
the fourth inning back to the second inning. Things are not so simple, however, in the
world of software.

What if, for example, a design flaw is discovered during programming? Should the flaw
be ignored in the interest of following the waterfall model? No. Even the developers of the
waterfall model recognized the need for limited backtracking to handle exceptions. Their
hope was that it would seldom be necessary to move back beyond the previous phase,
and that the amount of backtracking would be small in relation to total project effort. It
seems that a software waterfall must occasionally flow upstream after all.

Still, the waterfall model tends to inhibit the amount of backtracking that actually occurs.
Software developers are sometimes understandably reluctant to undergo the scrutiny that
attends an admission that a mistake has been made and that a previous phase must be
revisited. Often a conspiracy of silence results, in which software developers know that a
previous phase should be revisited but refuse to acknowledge this openly. In the best of
circumstances, they somehow manage to deliver a working system. In the worst of
circumstances, they eventually deliver a system that is fatally flawed.

 TOP-DOWN AND BOTTOM-UP

The SDLC and waterfall models are within a class of models called top-down models.
Software development under a top-down model moves from the general and abstract to
the specific and concrete. For example, requirements that specify what must be done, but
not how it must be done, lead eventually to source code that solves a particular problem.

 Top-down models are characterized by plans and other documents that are used to

 - 54 -

represent the system before it’s complete. These plans and documents are used in much
the same way that the equations of aeronautical engineering are used to test an aircraft
design. The equations cannot tell a design team everything about aircraft performance.
Eventually, a test pilot must take a prototype out for a spin. However, it’s a foolhardy test
pilot who would step into a prototype that has not had its equations checked and cross-
checked.

Just as it takes time and money to test an aircraft design using aeronautical theory, it
takes time and money to build the Requirements Specification and other documents of
the SDLC and waterfall models. In some cases, more time and money may be expended
to develop the documents than is expended to develop the source code. Because the
goal of a software development project is source code, not documents, it’s reasonable to
ask, “How much documentation is enough?” Recall that the conviction of those using the
SDLC or waterfall models is that planning and documentation done early will help avoid
misdirected efforts later in the project. The right amount of planning and documentation
depends on the nature of the project, among other factors. But, clearly, more is not
inevitably better. As soon as reasonable, we need to complete the analysis of the
documents that represent the software system and get on with the business of building
the real system.

This realization has led some to adopt a bottom-up approach to software development.
Bottom-up development resembles the wind tunnel testing of an experimental aircraft,
which uses a physical model of the aircraft rather than a system of equations. More can
be learned about the performance of the aircraft from wind tunnel testing than from
analysis of design equations, but building the model for the wind tunnel is more
expensive and time consuming than analyzing the design equations.

 Two main forms of bottom-up software development are popular: the prototyping model

and the incremental development model.

 THE PROTOTYPING MODEL

Software developers using the prototyping model do not prepare an elaborate
Requirements Specification, because they have learned that users often don’t read, or
don’t understand, the Requirements Specification. They know that many users relate
better to a concrete, tangible representation of the system than to words, so they provide
users with a prototype. The prototype itself may take any of a number of forms, from
drawings of input and request screens to a runnable, but stripped down, version of the
system.

The most common approach to prototyping provides the user with a runnable mockup of
the system that lets the user see how the system will be used. The mockup resembles a
Hollywood residential street, where you can see the front of every building, but if you step
up and open the door, you see grass and trees where you expected to find the living
room.

In the prototype, all the various buttons and text fields can be seen on the screen. The
user can click the buttons and type text into the text fields. But, when a user clicks OK,
little or nothing happens. The system includes only a user interface—the processing logic
and database logic are omitted. This works because, to the users, the user interface is
the system. The processing logic and database logic are invisible to users, who see only
the user interface.

Given the prototype, the users can experiment with the user interface and confirm, or
deny, that the developer has understood the users’ needs. The developer can modify the
prototype to conform to the users’ clarified needs, or the developer can throw the
prototype away and start fresh. Eventually, the developer adds the processing logic and
database logic and delivers a working system.

 The prototyping model works best on small- or medium-sized systems. Some developers,

however, use a variation of the prototyping model when building large systems. They use

 - 55 -

prototypes to help them understand the users’ needs. Once they believe they thoroughly
understand what’s required, they draft a traditional Requirements Specification. This way
all the requirements are explicit, rather than merely implicit within the final prototype. This
facilitates checking of the results of all the downstream phases.

 Why doesn’t every developer choose to prototype? The prototyping model has its

weaknesses, just like every other approach:

•

Inadequate system design—The prototype is often modified many times before the
users pronounce it satisfactory. By the time it’s run the gauntlet, it may be held
together by little more than “chewing gum and baling wire.” This may lead to
performance or maintenance problems during operation. A possible countermeasure is
to throw away the prototype, rather than using it as the basis of the delivered system.
This interesting approach combines the bottom-up prototyping process with a
traditional top-down development process, potentially securing the advantages of
each.

•

Runaway user expectations—Often users see the prototype as so much like the
system they want that they can’t understand why the fully capable system is anything
other than right around the corner. They may pressure developers to deliver the final
system so rapidly that inadequate attention is paid to quality, resulting in performance
or maintenance problems during operation. A possible countermeasure is user
education that helps users understand early in the project how the prototype differs
from a real system.

 INCREMENTAL DEVELOPMENT

The incremental model stands midway between prototyping and top-down development.
A significant problem with top-down development is that nothing is complete until
everything is complete. The user does not see any part of the system for weeks, months,
or sometimes years, after the Requirements Specification is done. A significant problem
with prototyping is the absence of an overall plan. The developers don’t really know what
the user wants until they submit a satisfactory prototype.

 “A significant problem with prototyping is the absence of an overall plan.”

To avoid these problems, developers using the incremental model strive to break the
system up into small pieces and deliver the first of these as quickly as possible. This way,
the developers receive important feedback on whether they’ve correctly understood the
users’ needs and the users get a working part of the system very quickly. Subsequent
pieces of the system can incorporate lessons learned in delivering early pieces.

Of course, it’s not always easy to divide a system into a series of useful chunks.
Moreover, some effort goes into delivering and installing each system chunk. In total, this
effort is usually more than would be required if the system were delivered as a unit.

 A CONTINUUM OF DEVELOPMENT MODELS

Rather than thinking of the waterfall model, prototyping, and incremental development as
fixed opposites, it seems more useful to think of them as points within a continuum. By
thinking of the various models as lying on a continuum, you’re encouraged to ask
questions about your projects rather than reflexively choosing a familiar development
model that may not be well suited to the project. Figure 2.14 shows the continuum of
development models.

 - 56 -

 Figure 2.14 The continuum of development models

Granularity refers to the relative size of each delivery made during the project. Prototyping
is based on small granularity, whereas the waterfall model, with its single delivery, is based
on high granularity. Formality refers to the amount of documentation generated during
system development. As Figure 2.14 shows, prototyping tends to have low formality,
whereas the waterfall model has high formality.

 Summary

Structured design leads to procedural programs that transform input data to output data.
This paradigm tends to break down when systems become large and complex. Object-
oriented design can address a wider range of problems, and larger and more complex
systems, than structured design.

 Objects have three basic properties: identity, state, and behavior. Classes are used as

patterns that describe the possible states and behavior of objects.

Encapsulation divides an object into an externally visible portion called an interface, and
a private portion called an implementation. Inheritance allows similar objects to share
common properties. Polymorphism allows objects to respond to identical messages in
individual ways.

The SDLC is a popular process for developing software that identifies five main activities:
Requirements Analysis, Design, Programming, Testing, and Operation. Top-down
processes, like the SDLC, stress planning and control; bottom-up processes stress
experimentation and adaptation. Prototyping, a bottom-up process, lets the user see a
model of the system early in the development process. Incremental development, which
has elements of both top-down and bottom-up processes, delivers a system in a series of
versions, each providing new or enhanced capability.

 Questions

 1. The principle of combining, in an object, the data that describes its state and the

operations that can be performed on the data is called __________.

 2. The data and operations of an object that are visible externally comprise its

__________.

 3. The data and operations of an object that are not visible externally comprise its

__________.

 - 57 -

 4. The principle of __________ allows object-oriented designers to classify objects

based on similarity of properties.

 5. The principle of __________ allows objects that belong to different classes to

respond distinctively to identical messages.

 6. The __________ activity of the SDLC involves understanding and documenting user

requirement.

 7. The __________ activity of the SDLC involves choosing a system structure capable

of satisfying the Requirements Specification.

 8. During the __________ activity of the SDLC, the software is actually written.

 9. The __________ activity of the SDLC aims at ensuring the software is of suitable

quality.

 10. A _________ is a pattern, or blueprint, used to construct actual __________.

 11. A development process that uses experimental software to better understand user

requirements is __________.

Exercises

 1. How is a customer service system designed using structured design likely to differ

from one designed using object-oriented design?

2.

If you and a team of five programmers were responsible for developing an order-entry
system to be delivered in four months, what sort of development process would you
use? Discuss the alternatives and defend your choice.

3.

Show how the SDLC, prototyping, and incremental development can be used together
to develop different parts of a system or during different phases of system
development.

To Learn More

 The following books will help you learn more about structured design:

 • Yourdon, E. and Constantine, L. Structured Design, 2nd. ed. Englewood Cliffs, New

Jersey: Prentice-Hall, 1979.

 • Page-Jones, M. The Practical Guide to Structured Systems Design, 2nd ed.

Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

 The following books will help you learn more about software processes:

•

Degrace, P. and Stahl, L. Wicked Problems, Righteous Solutions: A Catalog of
Modern Software Engineering Paradigms. Englewood Cliffs, New Jersey: Yourdon
Press, 1990.

 • Pressman, R. Software Engineering: A Practitioner’s Approach. New York: McGraw Hill,

1996.

 Chapter 3: Teach Yourself Java in 21 Minutes

 - 58 -

 Overview

Have you ever read a magazine article about some inventor who got rich by inventing
something simple—say the cardboard box—and said to yourself, “I could do that?” Or,
perhaps you’ve seen the latest musical group on MTV, or read a new detective novel,
and thought the same thing. What do all these accomplishments have in common? They
all seem to have a low barrier to entry. Most of us can afford a word processor, an
electric guitar, or a legal pad and a number two pencil on which to sketch our latest
brilliant invention. But, once you break down and buy that new Stratocaster or Gibson,
things start to look a little different; you actually have to learn how to play! And, if you
persist, your dreams of MTV fame will only be realized once you master the
fundamentals.

Writing software is a little like that. Everyone, novice and expert alike, has access to the
same tools. To become an expert, however, you have to master the fundamentals. Just
as a novelist spends time learning syntax, sentence structure, and paragraph
development before embarking on her magnum opus, you need to learn about the
software mechanics that can form the building-blocks for your next killer app. This
chapter provides a quick and condensed overview of Java. If you are new to
programming, you’ll want to pick up an introductory text on the subject. (Of course, we
recommend Object-Oriented Programming in Java by Gilbert and McCarty, available
from the Waite Group Press.) If you already know how to program in a high-level lan
guage such as Pascal, C, C++, or a modern dialect of BASIC, you’ll find this chapter
adequate, if not exhaustive, as an introduction to Java.

In Chapter 2, “Object-Oriented Software Development,” you were introduced to the
fundamental concepts of object-oriented programming: objects, classes, encapsulation,
inheritance, and polymorphism. In addition, you learned a little about different strategies
or development models that software writers use to move their creations from a spark of
intuition to a shrink-wrapped package you can purchase at your local SoftwareWorld.
While most of the rest of this book is devoted to exploring those strategies, tactics,
processes and methodologies, this chapter is a little different. In this chapter you will
learn:

 • How to create and run Java applications and applets

 • The syntax (or language rules) for creating new classes

 • How to define object attributes using both primitive types and object types

 • How to specify the behavior of your classes by writing methods

 • How to use sequence, selection, and iteration to control the way your methods work

 • How to respond to events from the user or the system

 • How to use the Abstract Window Toolkit (AWT) to build graphical user interface (GUI)

style applications

 The Mechanics of Writing Java Programs

One of the coolest features of Java is its cross-platform binary portability. This means
that the very same program you run on your Macintosh or your Sun SPARC machine will
also run under Windows or OS/2. Not only will the same program run unchanged on all
these machines, but you can also develop your programs on whichever type of machine
you prefer. How do you do that, and what resources do you need?

 - 59 -

 “One of the coolest features of Java is its cross-platform binary portability.”

To write, test, and run Java programs, you will need three pieces of software.
Fortunately, each of these items is both widely available and (generally) free: an ideal
combination! You will need the following:

•

A text editor—You will use a text editor to write your actual Java programs. A text
editor is like a word processor, except that the files it creates do not contain any
formatting codes. If you are using Windows 95 or NT, you can use the Notepad
program or MS-DOS Edit. In the Macintosh world, you will want to use a program like
SimpleText. For all you UNIX aficionados, vi or emacs will be your tool of choice. You
can, if you like, use a word-processing program like Microsoft Word, Lotus WordPro,
or WordPerfect, but you will have to remember to save your files without any extra
formatting—as plain text or ASCII.

•

Development tools—These are the programs you will use to turn your Java programs
into executable code, and to test and debug your applets and applications. Usually
these tools will be packaged as either a kit of individual tools, or as an application
program that combines the various tools into one integrated program (called an IDE,
short for “integrated development environment”). The Java Development Kit (JDK)
from JavaSoft is included on the CD-ROM that comes with this book, or you can
download the latest version from http://www.javasoft.com. The JDK contains
separate versions of the development kit for Windows 95/NT, Sun Solaris, and
Macintosh. Microsoft has created its own software development kit that you can use if
you are developing your programs on Windows 95/NT. Called the Java Software
Development Kit (SDK), it features very fast compilation and can be downloaded free
of charge from http://www.microsoft.com.

There is also a wide variety of commercial software packages you can purchase for
developing Java programs. Some of the better known products are Microsoft’s Visual
J++, Symantec’s Visual Café for Java, Metrowerk’s Code Warrior (for the Macintosh
and Windows), and Sun’s Java Workshop. Each of these IDEs has some features not
available in the JDK, such as a visual source code debugger or visual layout of
graphical interfaces. Any program you can write with an IDE, though, you can also
write with one of the free software development kits.

•

A Java-enabled web browser—You will use this to run and test your applets in their
native environment. Netscape’s Navigator and Microsoft’s Internet Explorer have
captured most of the market, but there are other browsers you might want to try, such
as Sun’s HotJava, which is written entirely in Java itself. Strictly speaking, a Web
browser is not absolutely necessary for you to develop Java programs, because the
JDK includes appletviewer, a program for viewing applets; neither is an Internet
connection mandatory. A text editor and the JDK are the bare minimum you need to
get started, but a Web browser and an Internet account will make your work a lot more
fun!

 Edit, Compile, Debug, Run

After you have set up your programming environment and installed the JDK, SDK, or the
IDE you will be using, you’re ready to start writing Java programs. Before you get started
though, you’ll find it handy to get a bird’s-eye view of the process you will go through in
developing your applications.

The first step in creating a Java application or applet is to use your editor to create a text
file. Java programs use two types of files, one called source code and the other called
object code or machine code. The first type of file contains the Java language programs

 - 60 -

you write with your text editor. The filenames must end with the file extension .java. (A
file extension is added as a suffix to the end of a filename, separated from the rest of the
file by a period or dot). Every source code file contains the definition for a single class
that is publicly visible, and, unlike many programming languages you might be familiar
with, the name of the file and the name of the class must be identical. Each source file
may also contain other “helper” classes, but each file can contain only one public class,
which is visible to the rest of your program.

Once you have finished writing your source code, the second step is to translate your
source code into the object code instructions that can be read by the Java runtime
environment (called the Java Virtual Machine or VM). In Java, this object code is called
byte code. The process of translating your source code into machine code is called
compiling, and is the job of a tool called a compiler. In the JDK, the compiler is a program
called javac, which is shorthand for java compiler. If you have used your text editor to
create a class definition for a class called Robotz, (saved in a text file named
Robotz.java), you can compile your source code by typing

 javac Robotz.java

and the javac compiler will turn your source code definition into object code, storing it in a
file named Robotz.class. Be sure to use uppercase and lowercase letters exactly as
shown in the line above. Even if you’re using a Windows 95 or Windows NT command
window, neither of which is case sensitive, the Java compiler and other programs are
case sensitive. They will not properly process your command if you use the wrong case.

Remember

Use your text editor to create Java source code files that have the
extension .java. Use your compiler to translate your source code file into
machine code. The compiler will give your machine code file a .class
extension, as you can see in Figure 3.1.

 Figure 3.1 Editing and compiling a Java program

The third step in developing a Java program is called debugging. Debugging is a
euphemism for finding and fixing the mistakes that you made when writing your program.
There are three basic types of mistakes: syntax errors, semantic errors, and runtime
errors.

Syntax errors simply mean that you have broken the grammatical rules of the Java
language. You may have misspelled a word, or punctuated a line of code incorrectly.
When you have a syntax error in your program, the Java compiler refuses to create the
machine code from your source code, and prints out a message telling you what the
compiler thinks the problem is. When you get such an error you must examine it carefully,
correct the offending code using your text editor, and then try recompiling your

 - 61 -

application. You continue this cycle until the compiler stops giving you error messages.

Semantic errors are more difficult to detect than syntax errors, which the Java compiler
flags for you. A semantic error is an error in the meaning of a computer statement: if you
subtracted the sales tax in your program when you should have added it, for example,
you’ve created a semantic error. The usual way to find semantic errors is by testing your
program with predefined inputs and outputs. This is, as you might expect, an extremely
arduous process, but it can mean the difference between a successful product and a real
disaster.

A runtime error is an error that occurs because of some unexpected environmental
condition. Trying to open a file that doesn’t exist or to read from a closed socket are
examples of runtime errors. Runtime errors have some characteristics of both syntax
errors and semantic errors. Like a syntax error, Java tells you when one occurs. With
syntax errors, the Java compiler announces your mistake; with runtime errors, the Java
VM does the honors. Like semantic errors, however, runtime errors are discovered when
you run your program, not when you compile it. Because a program may run correctly
one time (when the server was working correctly for example) and create a runtime error
the next, runtime errors are fixed not by correcting the source code, but by writing code to
deal with the exceptional environmental conditions that cause them. Such conditions are
called exceptions, and the code you write is called an exception handler.

After your program is completed and (reasonably) bug free, it’s time for you to deploy
your application. Java provides two different ways to deliver and run your programs: as
an application or as an applet.

 Applications, Applets, and Browsers

A Java application is, in many ways, similar to many of the programs you currently run on
your computer. Once you have successfully written and compiled your Java application,
you deliver the resulting .class files to your users on a disk or over the Internet using
ftp. The user then installs and executes the program on his own computer…more or less.
The machine code stored in a .class file is not really machine code for your Macintosh
or Pentium; instead it is machine code for the Java VM. To execute a Java application,
you thus have to “start” the VM before you can load the Java application. In Windows
95/NT and UNIX, this is done from a command window by using the program named java
and passing the name of the compiled application as an argument. Figure 3.2 illustrates
how this works. To run the Robotz.class you compiled in the previous section, you
would type

 Figure 3.2 Running a Java application using the java interpreter

 - 62 -

 java Robotz

Notice that you don’t add the extension .class when running a Java application. If you
forget and tack it on, the java program lets you know that it can’t find
Robotz.class.class. This behavior is a little inconsistent with that of the compiler.
Simply remember that you do include the .java extension when you compile your
application’s source file(s), and that you do not include the .class extension when you
run the application. Again, be careful to use uppercase and lowercase letters in all the
right places. Your operating system may not be case sensitive, but the java program is.

The second way you can deliver a Java program to your users is to embed the program
in an HTML Web page. A program embedded in a Web page is called an applet, and will
be automatically downloaded and executed whenever someone uses a Web browser to
access that Web page. Applets still require a Java Virtual Machine to execute, but the VM
is invisibly loaded (and provided) by your Web browser.

Adding an applet to a Web page is done the same way as adding any other element to a
Web page: through the use of an HTML tag. The tag to add an applet is called, not
surprisingly, <APPLET>. When you add an <APPLET> tag to a Web page, you have to
provide three additional pieces of information:

 • The name of the object code file. Use the CODE= attribute to specify this.

 • The width of the applet in pixels. Use the WIDTH= attribute to specify this.

 • The height of the applet in pixels. Use the HEIGHT= attribute to specify this.

 If the Robotz.java program were written as an applet, you could display it in a Web page

by adding the following lines to the body of your .HTML file:

 <APPLET CODE=Robotz.class HEIGHT=300 WIDTH=500>
 </APPLET>

In the CODE= attribute, the .class extension is optional. As when you’re using javac and
java, the case of the class name is significant. This means CODE=Robotz is fine, but
CODE=ROBOTZ or CODE=Robotz.CLASS is not. Figure 3.3 shows how applets are
loaded into your computer over the Web.

 Figure 3.3 Running a Java applet in your Web browser

 - 63 -

If you’ve worked on the Internet for any length of time, you’re probably aware of some of
the dangers that lurk there. One of those dangers is the possibility of getting a computer
virus from running a program downloaded over the Net. Because Java applets are
downloaded automatically when a viewer accesses the Web page in which the applet is
embedded, there could be risk of inadvertently downloading a hostile applet, a program
that could format your hard disk, steal private information, or worse. To forestall this
possibility, the designers of Java imposed several security restrictions on Java applets.
Java applets cannot read or write files on your local file system, cannot run any programs
on your local machine, and cannot connect you to a machine other than the one the applet
originates from. If your Java program needs to do any of these things, you will have to
deliver it as an application rather than an applet.

Your First Java Program

“Context is everything,” a wise man once said, and the quickest way to see how the Java
development process works in context is to put your own hands on the keyboard and try
it yourself. Listing 3.1 contains the source code for the Robotz Java applet that
simulates a group of timid robots, deathly afraid of being poked by a mouse pointer.
Although the listing may initially seem rather long and forbidding, you’ll find it a good
learning tool as you study the basics of the Java language. After you have the applet
running, you’ll take it apart, line by line, until you’ve seen what makes the robots tick. To
start:

 1. Use your text editor to create the program Robotz.java, copying Listing 3.1.

 2. Create the Java machine code by compiling your source code using the Java

compiler, javac:

 javac Robotz.java

If you have typed everything accurately, javac will silently create the file
Robotz.class. If not, it will tell you what you did wrong. Correct your error and
recompile. (Of course, if typing is not really your cup of tea, you can just copy the
source code from the CD-ROM included in this book, but that’s not really as much
fun!)

3.

Use your text editor to create an .HTML file to hold your applet, by copying Listing
3.2, TimidRobotz.html. Notice that, unlike the name of the Java file, the name of
the .HTML file is not significant—that is, it does not have to be named the same as
the applet it contains.

4.

Finally, you can run your applet in either of two ways: through your Web browser or
by using the appletviewer utility provided with the JDK. After your Web browser is
running, you can run your applet by opening the .HTML file using your browser’s local
file opening capabilities. To run your applet under appletviewer, simply type

 appletviewer TimidRobotz.html

from the console window. Notice that when the application is run from appletviewer
rather than the browser, none of the additional HTML tags is displayed. Nevertheless,
when developing applets, you’ll often find using appletviewer a simpler and better
alternative than firing up your Web browser.

After you have the Robotz applet up and running, move your mouse pointer around the
screen and try to catch one of the little guys. As you can see from Figure 3.4, catching
one is not the easiest of tasks. When you’re finished, come on back here to dissect the
Robotz.java program and see how it works.

 - 64 -

 Figure 3.4 Running the Robotz applet

 Listing 3.1 Robotz.java

 // Robotz.java
 // A first java program

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

 public class Robotz extends Applet
 {
 public void init()
 {
 add(new Robot(Color.blue));
 add(new Robot(Color.red));
 add(new Robot(Color.green));
 }
 }

 class Robot extends Canvas
 implements MouseMotionListener
 {
 private Color myColor;
 private Point myLocation;

 public Robot(Color theColor)
 {
 myColor = theColor;
 setSize(50, 50);
 setBackground(theColor);
 addMouseMotionListener(this);
 }

 public void mouseMoved(MouseEvent evt)
 {
 myLocation = getLocation();
 int dx = evt.getX(), dy = evt.getY();
 if (dx > 25)

 - 65 -

 dx = dx - 50;
 if (dy > 25)
 dy = dy - 50;

 setLocation(myLocation.x + dx,
 myLocation.y + dy);
 }
 public void mouseDragged(MouseEvent evt)
 {
 myLocation = getLocation();
 setLocation(myLocation.x + (evt.getX() - 25),
 myLocation.y + (evt.getY() - 25));
 }

 public void paint(Graphics g)
 {
 g.drawLine(10, 40, 40, 40);
 g.drawRect(15, 5, 5, 15);
 g.drawRect(30, 5, 5, 15);
 }
 }

 Listing 3.2 TimidRobotz.html

 <HTML>
 <TITLE> TimidRobotz.html: The Robotz applet in action </TITLE>
 <BODY>
 <H1> Everyone’s a Little Shy </H1>
 <HR>
 This is the Robotz applet.

 Move your mouse over the Robot
 objects and they’ll run away.

 (Hint: Trying to catch them is a real drag!!!)
 <HR>
 <APPLET CODE=Robotz.class HEIGHT=200 WIDTH = 300 >
 </APPLET>
 </BODY>
 </HTML>

 Creating a New Class

When you first look at Robotz.java, it may seem intimidating and complex. One of the
tools that you can use to conquer that complexity is structure. Once you step back and
look at the “big picture,” the important points stand out and the details recede into the
background. Robotz.java, like all Java programs, is organized as a set of class
definitions. Take a brief scan through the code; how many class definitions can you find?

 “One of the tools that you can use to conquer complexity is structure.”

 - 66 -

If you answered two, you’re correct. Robotz.java contains the definition for the
Robotz class that uses three objects of the Robot class. The definition of the Robot
class is also contained inside the Robotz.java source file, as you can see in Figure
3.5. The definition of a class consists of two parts: the class header (think of it as a brief
title), followed by the class body. The body of the class is where the attributes (called
fields in Java) and operations or behavior (called methods in Java) are defined. The class
definitions for the Robotz class and the Robot class are structured like this:

 Figure 3.5 A Java source code file can contain many class definitions, each

consisting of attribute and method definitions

 public class Robotz extends Applet
 {
 // Attribute and method definitions go here
 }

 class Robot extends Canvas
 implements MouseMotionListener
 {
 // Attribute and method definitions go here
 }

The body of a class definition is enclosed in curly braces ({}), which, in Java as in C and
C++, roughly mean “begin a section” and “end a section.” (The technical term for such a
section is a “block.”) The line of code before the class body is the class header. Let’s start
by deciphering that first, and then you’ll be better prepared to continue dissecting one of
these virtual creatures.

 Keywords and Identifiers

 The header for the Robotz class consists of five words:

 public class Robotz extends Applet

Some of these words are part of the Java language, and some of them are names that
you can change. The words that are part of the Java language are called keywords.
Keywords cannot be changed, and when you use them you must spell them correctly,
including the case. If you’ve come from another programming language, such as BASIC,

 - 67 -

FORTRAN, or Pascal, where case is not significant, remembering that public and
Public are not the same thing can be difficult. The keywords in this header are public,
class, and extends. What do these mean?

Remember that a class definition acts like a blueprint or pattern that can be used to
create objects. The first two of these keywords, public class, instruct Java to create a
definition for a class that is publicly available, one that can be used by any other class.
Each Java source code file can have only one public class definition. As you noticed,
Robotz.java contains two class definitions, but the definition for the Robot class does
not start with the keyword public.

The second type of word that can appear in a Java program is called an identifier. An
identifier is simply a name that you supply for the objects, classes, attributes, and
methods that you create. While the spelling and usage of Java keywords is fixed and
proscribed by the Java language, identifiers are at the mercy of your imagination, subject
to a few simple rules:

 • Identifiers must start with an alphabetic character, the special underline symbol (_), or

the dollar sign ($).

 • In addition to these characters, identifiers can contain the digits 0 through 9.

•

Upper- and lowercase are significant in identifiers. Thus, you can have two different
classes, one named Cat, and the other named cat (although this is seldom a good
idea!).

The identifiers in the Robotz class header include the word Robotz, which you defined
when writing the class, and the word Applet, which another programmer defined and
which you’ll meet when you look at the extends keyword shortly.

 Extending and Importing

As you saw, the word Robotz is an identifier that you created. You could have, just as
easily, named the class GangOfThree (remembering to rename the file that contains it
to GangOfThree.java, of course), or anything else you liked. But what about the other
name you looked at, the word Applet? That is not a name that you, the programmer,
chose. You have to use that word, and it must be spelled exactly as you see (including
capitalization). However, unlike the word extends (which precedes it), Applet is not a
keyword. Applet is the name of a class that is supplied with the Java Development Kit
(JDK). Java comes with a wide variety of pre-built classes, but such classes are not a
part of the Java language itself.

The keyword extends, written right in front of the word Applet, is how you tell the Java
compiler that this new class, Robotz, is based on (or is a kind of) the class Applet. If
you recall the last chapter and think that this sounds a lot like inheritance, you’re right on
target. The keyword extends is used in Java to specify the superclass (or parent class)
when you are writing a new class. If you leave out the extends clause of a class
definition, Java assumes you want to extend the most basic Java class, Object.

Java is a relatively sparse and simple language. When the designers of Java wanted to
add a new feature, they didn’t usually add it to the language, but instead, they created
libraries of classes (called packages) that you can include inside your program. Thus, if
you have no need for any of the features of the Applet class, your program does not
have to carry them around, as it would if Applet were part of the Java language.

To use one of these packages of classes, you have to let your program know that you
intend to use it by employing the import statement. You use the import statement to tell
Java the full name of the package that contains the class you want to use. In the Robotz

 - 68 -

applet, we are using (or importing) classes from three different packages: the
java.applet package, the java.awt package, and the java.awt.event package.
We let the compiler know we are going to do this by adding these three lines at the top of
our program:

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

The asterisk (*) after the name of the java.applet package tells the compiler to make
all the classes in the package available to your program. Because the program only uses
the Applet class from that package, you could have just as easily have written:

 import java.applet.Applet;

In fact, because you are only using one class from the package, and that class is only
referenced one time, you could just as easily use the fully qualified class name when
declaring the Robotz class, like this:

 public class Robotz extends java.applet.Applet
 {
 // Attribute and method definitions go here
 }

and not include the import statement at all. Adding the import statements to your
program does not actually add the classes to your code, however, so most programmers
find it easiest to use imports liberally. (If you are coming from a C or C++ background,
you might be tempted to think of import as the equivalent of the #include pre-
processor directive found in those languages. This can be a little misleading, because the
import statement does not cause a header file to be processed, as #include does.
Neither does it cause code to be inserted into your program; it merely qualifies the names
of classes referenced by your program.)

 “The attributes of a class (called fields in Java) determine what kind of values (or

state) each object that is created from the class will contain.”

 The Class Body

The body of your class definition is where you define the attributes and methods of your
class. The attributes of the class (called fields in Java) determine what kind of values (or
state) each object that is created from the class will contain. The methods of the class
determine what messages the object responds to, as well as define the specific behavior
that is performed when each message is received.

 “The methods of a class determine what messages the object responds to, as well

as define the specific behavior that is performed when each message is received.”

 Braces, Whitespace, and Convention

 - 69 -

In Java, braces ({}) are used as begin and end markers sometimes called delimiters.
Every class starts with an opening brace ({) (after the header declaration) and ends with
a closing brace (}). Braces are also used to delimit the bodies of methods, blocks of code
that are used in loops and selection statements, and in initializer expressions for arrays.

Java programs give you almost unlimited freedom in the way you arrange the elements
on the page. Unlike COBOL or FORTRAN, Java is a free-form language. This simply
means that where you put spaces and line breaks is (usually) a matter of taste. However,
spacing, indentation, and layout are very important in making your code readable and
understandable to other programmers—even though the Java compiler couldn’t care
less. Program layout helps you, and others who read your code, to make sense out of
complex class definitions by providing structure—just like sentences, paragraphs, and
chapters provide structure for a text book or novel.

How can you lay out your code so it’s easily understood and read? The easiest way is to
use a set of common programming conventions. A convention is just the common way a
community has decided to do something. Such conventions can be formalized (as in a
programming style guide for a particular company), or they can be informal agreements
that are simply widely accepted. In the Java community, there are three widely accepted
programming conventions that will make your programs easier to read and understand:

 • Put each statement on a single line.

 • Indent lines of code inside control flow statements.

 • Use standard naming and capitalization conventions for the identifiers you create. The

most basic of these are:

 Mixed case, capitalized names for classes and packages. Individual words in a name

are also capitalized like this: MyFirstClass, AnotherClassExample.

Mixed case names are also used for regular fields and methods, but the name does
not start with a capital letter. Some examples: customerName, totalSales,
calculatePayroll().

 Constant identifiers commonly use all uppercase identifiers, with the individual words

separated by underscores like: A_CONSTANT_FIELD.

Finally, some Java programmers like to make the difference between local variables
and fields explicit by using all lowercase letters for local variables, splitting the
individual words with an underscore like this: some_local_variable. One limitation
of this convention is that you cannot tell by looking whether a variable is a field or a
local variable, unless the identifier has multiple words.

 State and Behavior

 You’ve already seen that every class definition you write has two parts:

 • The definitions of the attributes that are particular to your class. You will define these

using declaration statements, as you’ll see in the next section.

•

The definitions of the methods that provide the behavior for your class and its objects.
Each of these definitions looks a little like a class definition; it is composed of a header
section, and a body section. However, the body of a method contains very different
stuff than the body of a class, because the method body contains the actual
instructions that implement the method’s behavior.

 - 70 -

 Defining Attributes

The attributes of a class store the state of an object (or class). A class can have many
attributes, or it may have none (as the Robotz class illustrates). To define an attribute
you use a definition statement that follows this pattern:

 [MODIFIERS] TYPE attributeName [= <initial value>
];

 How can you interpret this pattern? The two sections enclosed in brackets ([]) are

optional—you don’t have to include them, but you may. The required sections include:

 • The type of the attribute, which determines what kind and range of values it can hold.

•

The name you want the attribute to have. You have to follow the naming rules for Java
identifiers; in addition, you’ll want to follow the common naming conventions given
previously.

 • The semicolon that ends the definition statement (all statements in Java end with a

semicolon).

 Look at these examples from the Robot class (the second class defined in
Robotz.java):

 private Color myColor;
 private Point myLocation;

The Robot class has two fields that each Robot object uses to store its color and its
location on the screen. The name of the attribute that stores the color is myColor,
whereas the attribute that stores the location is named myLocation.

The type of the field myColor is Color, a class defined in the java.awt package. The
type of the field myLocation is Point, which is also defined inside java.awt. (AWT
stands for Abstract Window Toolkit. These are the classes that give you the ability to
create graphical user interface (GUI) programs in Java).

Both myColor and myLocation also use the optional modifier private. When a field
within a class is declared private, only the methods in that class have access to it. As
you’ll discover in Chapter 4, “Encapsulation: Classes and Methods,” this type of “data
hiding” is one of the fundamental principles for building robust and maintainable classes.

 “There are two basic kinds of attributes: those that are specific to each object that is

created from the class, and those that are shared among all class objects.”

Neither myLocation nor myColor uses an optional initializer section that specifies an
initial value. Of course, every attribute should always have a value. In the case of the
Robot class, the field myColor is initialized when each Robot object is created, and
myLocation is updated automatically whenever the mouse is moved or dragged over a
Robot object. If you wanted to provide an initial value for these two attributes (although it
doesn’t make much sense in this context), you could do it like this:

 private Color myColor = Color.red;
 private Point myLocation = new Point(50, 50);

 - 71 -

There are two basic kinds of attributes: those that are specific to each object that is
created from the class, and those that are shared among all class objects. Object-specific
attributes—like myLocation and myColor—are called fields or instance variables, while
those that are class-wide are called class variables. If you had some information that you
wanted all Robots to share—say the current Robot population for example—you could
create a class variable by prefixing the field definition with the keyword static. Here is
how you could add such a field to the Robot class:

 static private int robotPopulation = 0;

To use this field whenever you create a new Robot, you would add one to the
robotPopulation field, and then all of the Robots currently in existence would be
able to access it. Note, though, that this example makes robotPopulation a private
field; the Robots all know how many of them there are, but none of the other classes or
objects in your programs can get that information. Figure 3.6 shows all the pieces you’ll
need to define class and object attributes.

 Figure 3.6 Specifying class and object attributes

The discussion about attributes has been, so far, a little cavalier. Attributes have
appeared rather magically when you needed them. What exactly is an attribute? An
attribute is simply a place or storage location where you are going to store a specific kind
of information. Java has very specific kinds of information or data that it can handle, and
the Java language requires that you specify exactly what kind of information will be
stored in a field when you name it. Because of this, Java is said to be a strongly typed
language. The advantage of strong typing is that it helps you find certain errors in your
program while you are writing it, instead of after it has been released.

 “The advantage of strong typing is that it helps you find certain errors in your

program while you are writing it, instead of after it has been released.”

There are two general kinds of data objects that Java can use for attributes: primitive
types and objects. Normally, your programs will be designed around collections of
objects, but, as you implement your designs, you will frequently be called upon to use
primitive types for a variety of purposes.

 Primitive Types

 Recall from Chapter 2 that objects contain both state and behavior. Unlike objects,

primitive types are data objects that:

 • Consist of a single value.

 - 72 -

 • Are manipulated by using operators, rather than by sending messages.

 • Cannot be extended by creating new types or operations.

•

Store values, whereas object types store references. This is a fundamental difference
and the source of much confusion for programmers coming from different language
backgrounds.

Why Primitives?

If Java provides object types that, in some sense, mirror the capabilities of the
primitive types, then what is the purpose of providing primitive types at all? Some
object-oriented languages have no primitive types; in these pure OO languages, the
only entities are objects. Other “hybrid” languages like Java and C++ have retained
the primitive data types from earlier, structured languages, for purposes of compati-
bility or efficiency. As a new language, Java was not burdened with backwards
compatibility (like C++ was), but the designers of Java were concerned with
efficiency. Primitive types require less storage and less processing power than
object types.

Primitives are closely related to objects, because primitives can be used to store
the values of simple object attributes. A thermometer object, for example, might
store the current temperature as a primitive value. The purpose of primitives is not
to supplant objects, but to make objects more efficient.

The primitive types supplied with Java fall into four different families: the integers, the
floating-points, the characters, and the booleans. Each of these primitive types also has a
doppelganger or proxy that lives in the object world and provides the services of that
realm to its less advanced brethren.

 The Integer Family

The integer family is used to represent signed whole (counting) numbers. This family has
four different members, byte, short, int, and long. Each of these uses a different
amount of storage in memory, and thus each can represent a successively larger range
of values.

 3.1 shows the range of values that each integer type can represent.

 Table 3.1 The integer data types

 Type

Storage Required

Smallest Value

Largest Value

 byte

1 byte

–128

127

 short

2 bytes

–32,768

32,767

 int

4 bytes

–2,147,483,648

2,147,483,647

 - 73 -

 long 8 bytes –9,223,372,036
854,775,808

9,223,372,036,
854,775,807

 To create an integer field in your class definition, you follow the pattern presented earlier.

Listing 3.3 shows a class with four field definitions, each of which is given an initial value.

 Listing 3.3 IntegerStore.java

 public class IntegerStore
 {
 private byte aBigByte = 127;
 private short aBigShort = 32767;
 private int aBigInt = 214783647;
 private long aBigLong = 9223372036854775807L;

 // Methods to manipulate or use these fields would go here
 }

Just as you saw in the Robot class, each field begins with the private declaration,
followed by the type of the field and an initializing expression. Here, integer literals are
used to specify a starting value (in this case, the largest value that can be stored in each
type) that will be used when any IntegerStore objects are created.

Integer literals are written as numerals, with no decimal points or commas. If you attempt
to store a literal value in a field that is too small to hold that value—trying to put 128 into
a byte field for example—the compiler will give you an error message and refuse to
compile your code. If you look closely at the last line in IntegerStore, you’ll note an L
appended to the literal value assigned to aBigLong. Internally, all integer literals are
stored as ints by default. The L at the end of aBigLong simply tells the compiler to store
this literal value as a long instead of an int. If you fail to do this, the Java compiler will,
again, issue an error message and your program will remain uncompiled.

Because each integer type occupies a finite amount of memory, what happens when you
add one to an integer that is already full? If you’ve ever seen the odometer on an
automobile roll over, you might have some idea, but you would not be entirely correct.
Because integers in Java are processed as two’s-complement signed numbers, when
you add one to a field holding the largest value for that integer type, rather than rolling
over to zero like that old Ford you owned in college, it instead rolls over to the smallest
negative number that the integer type can represent. Though Java will warn you if you
attempt to store a value that is too large when you are creating an integer field, it will not
tell you when your integer accidentally “overflows.”

 The Floating-Point Family

In Java, the floating-point family consists of two members: the float and the double.
Floating-point values, unlike integer values, can have a fractional part. Just as longs use
more memory than ints, and thus can represent a wider range of values, so doubles
use twice the storage as floats and can also represent a larger range of values.
However, because floating-point numbers represent approximate values (unlike integers),
the extra storage used to store a double also means that doubles can represent those
values to a greater precision than can floats. Table 3.2 shows the storage and
precision requirements for the floating-point family.

 Table 3.2 floats and doubles

 - 74 -

 Type

Size

Approx.
Precision

Approx. Min
Value

Approx. Max
Value(Decimal
digits)

 float

4 bytes

7 digits

±1.40E–45

±3.40E+38

 double

8 bytes

15 digits

±4.94E–324

±1.79E+308

Floating-point fields are created in your class definition using almost the same pattern
you followed for the integers. Similar to the previous example, Listing 3.4 shows a class
with four field definitions, each of which is given an initial value.

 Listing 3.4 FloatingStore.java

 // Defining each of the floating point types

 public class FloatingStore
 {
 private float aSmallFloat = .0032128F;
 private float aLargeFloat = 2.345E7F;
 private double aBigDouble = 9223372036854775808.0;
 private double aTinyDouble = 0.214783647e-89;

 // Methods to manipulate these fields would go here
 }

Each of these four fields is initialized by using the assignment operator (=) to store a
floating-point literal in the field. As you can see, there is a wider variety of ways to write
floating-point literals than you saw with integer literals. In the simplest form, a floating-
point literal is written as a decimal number. If the literal is to be stored into a float field,
you must append the suffix ‘F’ or ‘f’ to the value. Literal floating point values written
without the suffix are created as doubles and Java will refuse to store a double value
inside a float—even if the current value of the double would fit.

In addition to using decimal notation to specify floating-point literals, you can also use
scientific or exponential notation. These are both methods of writing very large numbers
more easily, especially given Java’s refusal to accept commas in numeric literals. If you
wanted to write the number six billion, two-hundred and thirty-three million, five-hundred
and twenty-two thousand, one hundred and ninety-three dollars and fifty-two cents, you
could do it in any of these three ways:

 6233522193.52 // Decimal notation
 6.23352219352E9 // Scientific notation
 0.623352219352E10 // Exponential notation

The advantage of scientific and exponential notation is, of course, that you are less likely
to be off by a billion or so dollars than when you have to count decimal places with your
fingers! When using this method of writing literals, the actual number is written with the
first non-zero digit to the left (scientific) or right (exponential) of the decimal point. The
number is followed by ‘E’ or ‘e’ and then the number of places that you want to move the

 - 75 -

decimal point when the number is “decoded.” If the exponent is a negative number (as in
aTinyDouble above), the decimal point is shifted to the left, filling with zeros. Otherwise,
the decimal point is shifted to the right.

 The Characters

The first computers were seen as large calculators: number-crunchers extraordinaire!
Little could their designers have realized that by the end of the decade the most common
use of computers would be to manipulate text, not numbers. Because of the importance
of text, Java has a primitive type devoted entirely to characters: the char type.

In Java a char is a 16-bit unsigned integer value that stands for a Unicode character.
Unicode is an international encoding standard that enables Java programs to represent
most of the characters used in most of the world’s alphabets. Earlier programming
languages used the ASCII encoding standard and thus could only represent the 128
characters common in English and a few other Western European languages.

 Like the floating-point family of primitives, there are several ways you can specify a char

literal:

•

The easiest way is to type the literal character using your keyboard. Put the value
inside single quotes. This works fine if the character you want to use is represented on
your keyboard. To define a field that initially stores the value A, you would write:

 private char theCharacterA = ‘A’;

 • You can also simply use the integral Unicode encoding value in your initialization (not

using any quotes) like this:

 private char theCharacterA = 65;

•

Alternatively, you can use an escape sequence to specify a particular character.
Escape sequences consist of two parts: the escape character and the escape value. In
Java, as in the C language, the escape character is the backslash character (\). When
Java encounters the escape character in a character declaration, it treats the next
value as a special character and applies a set of translation rules. Table 3.3 lists the
common escape codes and the Unicode characters that they stand for. Unicode
escape sequences can be used anywhere you use characters in Java; not only as
literal values for char fields, but in Strings as well.

 Table 3.3 Escape sequences for char literals

 Sequence

Meaning

 \b

Backspace (\u0008)

 \t

Tab (\u0009)

 \n

Newline (\u000A)

 \f

Form feed (\u000C)

 \r

Return (\u000D)

 - 76 -

 \”

Double quote (\u0022)

 \’

Single quote (\u0027)

 \\

Backslash (\u005C)

 \ddd

Any character, specified by octal digits ddd

 The Booleans

The last, and simplest, of the primitive data types is the booleans. A boolean can hold
only one of two possible values: true or false. In your classes, you’ll use boolean
fields wherever such a binary state is appropriate: a switch that can be on or off, or a
widget that is either finished or not.

Although boolean fields are useful for modeling such binary information in your classes,
the most common use of boolean values is in making decisions for loops and
selections. Such boolean values are normally the results of expressions rather than
being stored in fields and variables.

 Object, String, and Array Types

Although primitive types are common in procedural programs, you will find object types
much more common in Java programs. The two attributes in the Robot class, myColor
and myLocation, are both object types. How are object types different from primitive
types? There are two primary differences:

 • Objects consist of both attributes and methods, whereas primitives consist of exactly

one single value and are manipulated by means of operators.

•

Object types are stored (and manipulated) as references instead of as values. We say
that objects have reference semantics whereas primitives have value semantics.
Object variables do not store their actual attribute values. Instead, Java controls the
storage of the actual values and gives you, the programmer, a reference or handle that
allows you to use those values. The major consequence of this is that two different
object variables may, in fact, refer to the same object.

 “Object types are stored (and manipulated) as references instead of as values.”

Java has two other data types that are similar to object types: the String and the array.
Most of us are familiar with Strings, which are lines of text composed of characters. In
Java, Strings act a little differently than strings in C or Pascal or BASIC, each of which
treats strings in its own idiosyncratic way. The major difference between Java Strings
and strings in these other languages is that Java Strings are immutable: once you
create a String, you can’t change it. However, because Strings are reference types
(like objects), you can easily cause a String variable to refer to another String. This
all sounds more confusing than it is, so perhaps an example will set things straight:

 String firstName = “Barney”;

 - 77 -

 String lastName = “Google”;

 lastName = firstName; // both variables refer to the
 same string

 firstName = “Carney”; // both variables again have
 distinct values

This example creates two String variables, firstName and lastName, each of which
is initialized to refer to an actual value: the String literals Barney and Google
respectively. Notice that String literals are surrounded by double quotes (“), unlike
characters, which use the single quote character (‘).

In the third line, the assignment of firstName to lastName has the effect of causing
both String variables to refer to exactly the same String literal: the word Barney. If Strings
were allowed to change, any changes made to lastName would also change
firstName, because both String variables refer to the same actual String. Finally, in
the last line, firstName is again changed to refer to a new String literal, the word
Carney.

If you’re a C programmer, you may be wondering what happened to the string literal
Google when firstName was assigned to lastName. Java’s automatic garbage
collection makes sure that objects without references are reclaimed by the system.

 Memory Management and new

When you created the String variable lastName you gave it a value by assigning a
String literal, just as you did for the primitive types like ints and floats. Other object
types, however, lack literals. To assign a value to an object variable, you’ll normally go
through two steps: first, tell Java to create a new object, and then use assignment to
store the reference to the new object in your field.

To create a new object, Java uses the operator called new. The new operator is used in
conjunction with a special factory method that is defined (implicitly or explicitly) in every
class. This special factory method is responsible for taking the class definition (recall that
a class definition is a blueprint for creating an object), creating a new object, and
returning a reference to that new object to the caller.

This special factory method (called a constructor) is always named exactly the same as
the name of the type of object you are trying to create. If you are trying to create a
ToyFrog object, name the constructor method ToyFrog(); when you are trying to
create a ToyRobot object, name the constructor (surprise!) ToyRobot(). If you were
creating a Playroom class that required one of each, your class definition might look like
Listing 3.5.

 Listing 3.5 Playroom.java

 // Defining some object variables

 public class PlayRoom
 {
 private ToyFrog myFrog = new ToyFrog();
 private ToyRobot myRobot = new ToyRobot();

 // Methods to manipulate these fields would go here
 }

 // Definitions for the Robot and Frog classes could

 - 78 -

 // appear here or in another file accessible to the
 // PlayRoom class
 class ToyFrog
 {
 }
 class ToyRobot
 {
 }

Sometimes, constructors require additional information in order to construct a suitable
object for you. A class can actually have several constructors, each using a different set
of information to construct customized objects upon demand. Moreover, the new
operator, and the related object constructors, can be used anywhere you need to create
an object, not just when assigning values to class fields.

Now that you’ve looked at the way attributes are defined in Java, it’s time to turn your
attention to the second task you’ll face when writing classes: defining methods. And, what
better introduction than to look at a method that uses both the new operator and the
Robot class constructor to create the three Robots that appear in the Robotz applet?

 public void init()
 {
 add(new Robot(Color.blue));
 add(new Robot(Color.red));
 add(new Robot(Color.green));
 }

 Defining Methods

A method definition describes the steps that your class will perform to accomplish a
particular operation. If you’ll take a look at the init() method that ended the previous
section, you’ll see the two parts of a method definition: the header and the body. The
body of a method definition, like the body of a class, is enclosed within curly braces ({}).
Each method definition, however, is placed inside the body of its class definition.

 “A method definition describes the steps that your class will perform to accomplish

a particular operation.”

 The header for a method body consists of five parts, which you can see in Figure 3.7:

 - 79 -

 Figure 3.7 Specifying class and object attributes

•

An access specifier that defines who is able to use this method—If the access
specifier is public (as in this example), anyone can call this method; if the method is
declared private, only methods in the same class are permitted to use this method;
if the protected specifier is used, methods in this class and methods in any
subclasses may also use this method; finally, if no specifier is present (called
package access), methods in any classes in this particular package or directory may
access this method.

•

The type of value that will be returned when the method is invoked or called—
Methods that only perform an action and don’t return any information should use the
special type void. Methods may return a single primitive type, an object (possibly a
String), or an array. When you invoke a method, you may choose to use the
returned value, but you don’t have to. (However, if a method returns a value, and is
well designed, there is seldom a reason to ignore the return value).

•

The name of the method—This name must follow the rules for creating Java
identifiers, should observe the common Java naming conventions, and should give the
caller some idea of what the method is going to do. By looking at the name of the
init() method, you probably have some idea of what it is going to do; if the method
were named xyz(), you would have no such confidence.

•

A pair of parentheses that are used to hold the information that is passed to the
method—Even if a method requires no additional information, you must include the
parentheses.

•

An optional list of parameters, which provides information that customizes the
behavior of the method—For example, a method that computes a square root would
require its user to provide a number to use for the calculation; a method that connects
to a URL might need the user to pass a String representing the URL. To specify a
parameter, you write the type of the parameter and then provide a name that can be
used inside the method to refer to the parameter. A method can have more than one
parameter; simply separate each parameter definition with a comma.

 The Method Body: Statements, Expressions, and Operations

The bodies of a class’s methods are where the real work of an object-oriented program
takes place. The body of a method consists of statements. You might think of statements
as the sentences of the Java language. Each statement, ended by a semicolon, usually
performs a single operation or calculation. You will use several kinds of statements to
write your Java methods.

 - 80 -

 Declaration Statements

Declaration statements enable you to create local variables using either primitives or
objects. You’ve already seen one type of declaration statement when you saw how to
create an object’s attributes. Creating local variables is very similar. Look at line three of
the method named mouseMoved() in the Robot class:

 int dx = evt.getX(), dy = evt.getY();

This method declares and initializes two int variables named dx and dy. Local variables,
unlike fields, serve as temporary storage locations for values needed by a method for a
calculation. Here the values dx and dy represent the amount each Robot object will
have to move when it receives the mouseMoved() message.

The major difference between defining fields and defining local variables is that you
cannot use any of the optional access specifiers or storage modifiers (like static) on
local variables. When you create a field, you have the option of keeping that field
private (recommended), or of sharing it with some larger community. Local variables,
by contrast, can only be seen inside the methods where they are created. In Java you
can create a variable anywhere inside the method, but it is only usable after it has been
created.

Besides this restricted visibility, local variables also have an abbreviated lifetime
compared to fields. A field exists as long as the object that contains it exists. A local
variable exists only as long as the method that created it is executing. If a method is
invoked several times, a new local variable is created each time; thus the value of a local
variable is not retained between method calls.

Finally, local variables must be initialized before they are used; they do not receive a
default value like fields do. If you attempt to use a local variable without initializing it, the
Java compiler will not compile your program. In this example, dx and dy are initialized by
sending a message to a MouseEvent object called evt that has been passed as a
parameter to the mouseMoved() method.

 Method Calls

The second major type of statement that you can use inside your methods is one that
invokes another method. Indeed, looking at Robotz.java you can see that most of the
statements are of this variety. Object-oriented programs are composed of cooperating
objects, so one of your chief ways of getting things done will be to ask other objects to
give you a hand.

 The general form of making a method call is:

 Receiver.Message([argument [, argument ...]]);

The receiver is the object you want to send the message to. (An alternative way to think
of this is that the receiver is the object you want to perform the work.) The message is the
name of the method you want performed. If a method requires you to pass some
information, put the necessary information in the parentheses after the method name.
Again, an example from Robotz.java should prove helpful. The body of the paint()
method, which each Robot object uses to draw its face, looks like this:

 public void paint(Graphics g)
 {
 g.drawLine(10, 40, 40, 40);
 g.drawRect(15, 5, 5, 15);

 - 81 -

 g.drawRect(30, 5, 5, 15);
 }

Notice that the paint() method takes a single argument, a Graphics object, which has
been named g here. You don’t have to know what a Graphics object is to see that it
responds to both the drawLine() and drawRect() messages. In each of the three
method invocations that make up the body of paint(), the Graphics object g is the
receiver of the message. The message is either drawLine or drawRect, and each time
the method is called a different set of arguments is passed, resulting in a line drawn for
the mouth and a set of rectangles drawn for each eye. Notice how the same method call
(drawRect()) can be customized to draw either a right or left eye, by simply varying
the value of the arguments that are passed to the method.

If you look closely at Robotz.java, however, you’ll find a number of method calls that
don’t seem to have any receiver. For example, the body of the init() method in the
Robotz class looks like this:

 public void init()
 {
 add(new Robot(Color.blue));
 add(new Robot(Color.red));
 add(new Robot(Color.green));
 }

The init() method makes three calls to the add() method, each time passing a
different Robot object. Who is the receiver of the add message? It might not be
immediately obvious, but when you call a method, that method can exist in two different
places: in the current class you’re working on, or in another class. When you call a
method that exists in another class, you need to have an object to send that method to.
However, when you call a method that exists in the class you are currently working on,
you don’t need another object; when you leave out the receiver in a method call you are,
in effect, saying “send this message to me!” This is such a common situation that “me”
has even been given a name: in Java, the current object is specified by use of the
keyword this. If you like, you can explicitly use this whenever you make a method call
where the current object is the receiver:

 this.add(new Robot(Color.red));

 Expression Statements

The third major type of statement that you can use inside the body of your methods is the
expression statement. An expression statement is, formally, “a combination of operands
and operators, that, when evaluated, produces a value.” In real life, that simply means
you can write statements that perform some calculation. Here is an example of an
expression statement from the mouseMoved() method in the Robot class:

 dx = dx - 50;

The operands in this expression statement are the local variable dx and the constant
integer 50. The operators used are the subtraction operator (–) and the assignment
operator (=). Expressions and expression statements are not exactly the same thing. An
expression statement is a full expression that ends with a semicolon; it may include any
number of intermediate, or sub-expressions.

This example includes two sub-expressions. The first, dx – 50, uses the operands (just
another word for a data value) dx and 50 to produce another value, the result of the
expression. The second expression is the assignment expression, dx = <result-

 - 82 -

from-the-first-expression>. If you come from a Pascal or BASIC background,
you might object at this point and say, “No, dx – 50 is an expression, but the rest is
simply an assignment statement, saving the value of that expression.” In Java however,
as in C and C++, the assignment operator produces a value, just like any other operator,
and it can be used inside expressions. If you have two integer variables, dx and dy, and
you want to set them both equal to 0, the following expression statement will do so:

 dx = dy = 0;

This statement first evaluates the expression, dy = 0. Part of the process of evaluating
the expression is performing the operation of assignment. Once this operation is
completed, the value of the expression is calculated. With the assignment operator, the
value of the assignment expression is the value of the variable after assignment. It is this
temporary value (the result of the expression) that is assigned to dx.

Java has a very rich set of operators that can be used to create expressions. Table 3.4
lists the operators that you can use. Expressions using the operators at the top of the list
will be performed before operators at the bottom of the list. This sort of hierarchy is
termed operator precedence. If you look at the list, you’ll see that multiplication is higher
on the list than addition, so when Java evaluates the expression

 a = 3 + 5 * 0;

 Table 3.4 Java’s operators and precedence (abridged)

 Operator

Type

Meaning

 ++, --

Numeric

Pre/post increment, decrement

 +, -

Numeric

Unary plus and unary minus

 !

Boolean

Logical negation

 *, /, %

Numeric

Multiply, divide, modulus

 +, -

Numeric

Add, subtract

 +

String

Concatenate

 <, <=, >, >=

Numeric

Inequality

 ==, !=

Primitive

Equality, not equal

 ==, !=

Object

Identity, not identical

 &&

Boolean

Logical AND

 ||

Boolean

Logical OR

 ?:

Boolean, any

Conditional operator

 - 83 -

 = Variable, any Assignment

 it produces the value 3 (adding 3 to 5 * 0), rather than the value 0 (first adding 3 and 5 to

produce 8, and then multiplying by 0).

When operators are at the same level of precedence, a second rule kicks in, called the
rule of associativity. This one is simple to remember; for every operator except
assignment, simply evaluate the expressions left to right. Thus the expression

 a = 3 * 3 / 7;

 yields the value 1 (dividing the integer 9 by the integer 7, with the remainder discarded),

rather than the value 0 (multiplying 3 times the result of dividing 3 by 7).

 “Flow-of-control statements give your programs the ability to make decisions, and to

keep working on a problem until it’s done.”

Before you leave expression statements, there is one last thing you should think about:
what kind of things can be used as operands? So far, the examples you’ve seen have all
used variables and literals. In addition to these, you can also use method calls, provided
a method returns a value of the correct type. Take a brief look at the method,
mouseDragged(), from the Robot class:

 public void mouseDragged(MouseEvent evt)
 {
 myLocation = getLocation();
 setLocation(myLocation.x + (evt.getX() - 25),
 myLocation.y + (evt.getY() - 25));
 }

The statement myLocation = getLocation() is an expression statement that uses a
method call to provide a value for the assignment. The second line is a method call
statement that uses two expressions to calculate the arguments passed to the method.
Notice how an expression can include a variable (myLocation.x), an integer literal (25),
and a method call (evt.getX()).

 Flow of Control

The fourth and last kind of statement that can appear in a method body is called a flow-
of-control statement. These give your programs the ability to make decisions and to keep
working on a problem until it’s done.

Creating variables, assigning values, and performing calculations are all important parts
of any computer program, but restricting your software to these features would mean that
every program would do exactly the same thing exactly the same way every time it was
run. To provide any sort of “intelligence,” computer programs need two additional
abilities.

Most computer programs have to operate on different types of data. A payroll program
cannot just make simple calculations—multiplying your salary by 20% to determine the
amount of taxes to withhold, for example. The actual situation is much more complex.

 - 84 -

The program has to take into account, as a minimum, the amount of your salary
(withholding rates are progressive) and the number of deductions you’ll claim. To perform
this type of operation, the computer needs a selection or branching capability; it needs to
be able to execute a particular series of statements based on a condition.

In addition, programs need to be somewhat general, handling entire categories of
problems rather than specific problems. The author of the payroll program could, in fact,
write a separate program for every employee in the company; when a new employee was
hired, a new program could be written. A better solution however, is the ability to perform
repetitive processing, applying the single payroll program to each employee, until all the
employees have been processed. This capability is called iteration or looping.

Finally, for modern programs, this model is not entirely sufficient. Much of today’s
software does not simply process some finite stream of inputs (employee payroll records)
and produce some predetermined output (weekly paychecks). Instead, today’s systems
have become highly interactive. The popularity of systems like the Macintosh and
Microsoft Windows has led to the need to work with reactive systems—programs whose
flow-of-control is not neatly linear, but instead is described as a set of stimulus-response
behaviors. Such systems are called event-driven programs.

 Java provides methods for working with each of these control structures and program

architectures.

 Selection: Making Choices

Java has two basic language facilities for making choices: the if-else construct and
the switch. The if statement makes its decision by evaluating a boolean value or
condition, whereas the switch statement branches based on an integer-valued
expression.

 The if-else Statements

 The general form of the if-else statement in Java looks like this:

 if (boolean expression)
 statement;
 else
 statement;

An if statement consists of two parts: a test condition and a results section (see Figure
3.8). When the compiler executes the if statement it first evaluates the boolean
condition inside the parentheses. If the result is true, the statement on the line below the
if will be executed; if the condition is false, the statement on the line below the else is
executed.

 - 85 -

 Figure 3.8 The parts of an if-else selection statement

You don’t need to include the else portion; it’s optional. The parentheses surrounding
the boolean condition are part of the syntax and are required. Although you can use a
boolean variable for this test condition, you will normally use one of the relational
operators (>, <, >=, <=, ==) to form a boolean expression. These boolean expressions
can be combined with the logical operators AND (&&), OR (||), and NOT (!), to form
complex expressions.

In the mouseMoved() method in the Robot class, the if statement is used to restrict the
values of dx and dy to values between 25 and -25, causing the Robot to move to the left
when the mouse is moved over its right half, and move to the right when the robot is
moved over its left half:

 if (dx > 25)
 dx = dx - 50;
 if (dy > 25)
 dy = dy - 50;

 If you want to execute more than one statement in a branch, you have to enclose the

statements in braces; then Java will treat them as a single statement, like this:

 if (dx > 25)
 {
 dx = dx - 50;
// other statements
 }

 If you forget the braces, Java executes the lines after the first statement unconditionally,

despite your attractive indentation.

 The switch Statement

The second form of selection statement in Java is the switch statement, which allows
you to decide between multiple branches based on a numeric calculation. This is similar
to the case statement found in other programming languages (with a few unexpected
behaviors). If you’re wondering why the designers of Java used the word switch instead
of the more common case, remember that Java is syntactically descended from the C
and C++ languages, developed at AT&T’s Bell Laboratories where thinking in terms of
telephone switches is the most natural thing in the world. Figure 3.9 shows the parts of

 - 86 -

the switch statement.

 Figure 3.9 The parts of a switch selection statement

 The general form of the switch statement looks like this:

 switch (integer expression)
 {
 case 1:
 // Statement
 break;
 case 2:
 // Statement
 break;
 default:
 // Statement
 break;
 }

When Java encounters a switch statement, it first evaluates the integer expression in
the parentheses after the keyword switch. It then scans each of the case sections
looking for a match. Each of the case expressions must evaluate to an integer constant
(not variable) value. If such a match is found, an unconditional jump is executed to that
location, where the rest of the code inside the braces of the switch body is executed. If
no such match is found, a jump is made to the (optional) default case if one is
provided.

Normally, a break statement is used as the last statement inside each of the case
conditions, but this is not required by the syntax of the switch statement. As a result, it
is very easy to forget to include a break, and have the code in the remaining cases
execute. This is the most common error made in writing the switch statement.

 Iteration: Looping

Like selection, iteration is one of the fundamental control structures upon which all
modern software is built. Java, like the C/C++ programming lan guages, has three
different iteration or looping structures: while, an entry-condition loop; do-while, an
exit-condition loop; and for, an all-purpose loop especially well suited for building
counted loops.

 - 87 -

All loops consist of two major parts: the loop condition, which determines how long the
loop will continue to execute, and the loop body, which contains the statements that are
executed repetitively while the loop executes. In operation, the loop condition is tested
and if it is found true, all of the statements inside the loop body are executed, after
which the loop condition is tested again. If the loop condition is placed before the body of
the loop, it is possible (if the condition is false) for the statements inside the body to
never be executed. This is an entry-condition loop.

By contrast, the loop condition can be placed after the body of the loop. The do-while
loop works this way. It always executes the statements inside its body at least once,
because the loop condition is not tested until after the do-while executes the statements
within its loop body. One final consideration deserves comment: In every loop it is
imperative that the loop body include statements that move the loop closer to completion.
An endless or dead loop is one of the most common programming errors.

 The while Loop

 The simplest loop in Java is the while loop, which you can see in Figure 3.10. This loop

has the basic form:

 while (boolean condition)
 Statement;

 Figure 3.10 The parts of a while loop

Like the if statement, the boolean condition in a while loop must be enclosed in
parentheses. The loop body is assumed to be one statement long. If you want to execute
multiple statements in your loop body (as you almost always will), you can include braces
around the loop body. Finally, you’ll need to “set things up” so you know what’s going to
happen when the loop starts. A more typical while loop that includes multiple
statements and initialization has this basic form:

 // Initialize loop condition
 while (boolean condition)
 {
 // Statements
 // Update loop condition
 }

 - 88 -

 A short example with a code fragment that executes 10 times should prove the value of
this “template”:

 int loopCounter = 0; // Set up the loop variable
 while (loopCounter < 10) // Test the loop condition
 {
 // Statements
 loopCounter++; // Update the loop expression
 }

If you forget to set up the loop variable, you can’t be sure that the loop won’t execute
more or fewer times than you want. If you forget to update the loop expression at the
bottom, the loop will execute forever. If you leave off the braces in this example, the
statements in the first line of code after the test condition will execute, again, forever.

 The for Loop

Because this is such a common pattern—initialize, test, update—Java gives you a loop
that puts all of these features in one place for easy access. The for loop is probably the
most used loop in Java. You can see the for loop illustrated in Figure 3.11. The basic
form of the for loop is:

 for (initializer test condition; update expression)
 // Statement

 Figure 3.11 The parts of a do-while loop

Instead of just putting a single boolean condition inside the parentheses, like the while
loop does, the for loop puts three expressions, separated by semi colons. The first
expression, usually called the initializer, is where you set up the loop, giving values to any
variables that are tested. The initializer expression in a for loop is only executed once,
and it is always executed, regardless of whether the test condition is true or false.

The test condition is a boolean expression that works just like the test condition in a
while loop. The expression is evaluated and, if found true, the statements in the body
of the loop are executed sequentially. But, there is an important difference between the
while loop and the for loop. When a while loop has finished executing its loop body, it
evaluates its test condition. However, before a for loop evaluates its test condition, it
first evaluates its update expression.

 - 89 -

Like the while loop, you’ll almost always want to enclose the body of the for loop in
braces to avoid unexpected and unpleasant results. Like the more generalized form of
the while loop, the normal for loop can be based on a pattern like this:

 for (int loopCounter = 0; loopCounter < 10; i++)
 {
 // Statements
 }

 The local variable loopCounter is local to the statements inside the body of the for

loop, unlike its use in the while loop example.

 The do-while Loop

Java has one last form of loop, used less frequently than the other two, called the do-
while loop. The do-while loop is an exit-condition loop, so it will always execute its
statements at least once. The basic form of the do-while loop looks like this:

 do
 // Statement
 while (boolean condition);

Note that, unlike the while loop, the do-while loop has a semicolon after the boolean
condition. (Putting a semicolon after the condition in a while loop is almost always an
error.) Like the other loops, you use braces to have your loop perform multiple
statements. The generalized form of the loop you saw previously would look like this
rewritten as a do-while loop:

 int loopCounter = 0;
 do
 {
 // Statements
 loopCounter++;
 while (loopCounter < 10);

 You can see the do-while loop illustrated in Figure 3.12.

 Figure 3.12 The parts of a do-while loop

 - 90 -

 Events: Stimulus and Response

Sequence, selection, and iteration are the basic building blocks of structured
programming. However, if you take a look at Robotz.java, you’ll immediately notice
that there are no loops. Does this mean that the Robotz applet simply executes all of the
statements in the code and then stops? No, not at all. Robotz is an example of a
reactive or event-driven system.

Most computer systems involve some sort of interaction with the user of the program. In
bygone years, if you wanted to write an interactive program, you were responsible for
reading the keyboard and the mouse yourself. Normally the code that did this would be
placed in a large, endless loop that continuously monitored or polled those devices. The
problem with this scheme is that each program took exclusive control of the mouse and
keyboard so that other programs couldn’t use them.

When computers first started to use hard disks, a similar problem arose. If my program
took control of the hardware and wrote data to track 50, sector 27, how was your program
supposed to know that, and avoid overwriting my files? In response to this, software
developers invented disk operating systems that allow us all to work with a virtual file
system, rather than working with the actual disk-drive and controller hardware.

 “In an event-driven system, the mouse, keyboard, and display all belong to the

operating system, rather than to your program.”

Event-driven, graphical operating systems like the Macintosh OS and Windows 95/NT
perform a similar function for the mouse and keyboard that earlier systems did for the file
system. In an event-driven system, the mouse, keyboard, and display all belong to the
operating system, rather than to your program. If the user moves the mouse over one of
the windows you’ve created, or if the user clicks a button on your form, or types a character
into a text field, the operating system sends your program a message telling you that such
an event has occurred.

Input, Output, and the AWT

Java programs should run, unchanged, on the Mac and on your Windows 95/NT
machine, yet each of those operating systems has a different event notification system,
incompatible with the others. This created a little bit of a problem. The solution the
designers of Java arrived at was to create their own event handling system that sits on
top of the native system provided by your operating system. This Java event system is
part of the Abstract Window Toolkit or AWT.

The AWT actually has two different schemes for handling events: the current version (the
1.1 event model), and an earlier version (the 1.0 event model). As explained in the
introduction, this book uses the 1.1 event model. Responding to events in your programs
is a three-step process:

1.

First, you have to notify the AWT that you are willing to handle certain types of
events. If you don’t tell Java that you’re able to receive messages for a particular type
of event, it won’t send them to you. To tell the AWT that your class is able to listen for
an event, you add a line that says your class implements one of the AWT “listener”
interfaces. The class Robotz doesn’t listen for any events; thus, Java doesn’t send
any to it. The class Robot, however, wants to know whenever the mouse is moved or
dragged over one of its objects, and so it advertises its ability to handle those
messages, by having the line

 - 91 -

 implements MouseMotionListener

 in its header. This is your class’s declaration of eligibility.

You’ll learn more about the implements keyword, and the corresponding interface
keyword, in Chapter 9, “Implementing Class Relationships: Inheritance and
Interfaces,” and Chapter 10, “Designing with Inheritance and Interfaces: A Case
Study.”

2.

Now that you’ve asserted your ability to handle events, the next step is to register a
listener. Essentially, you have to tell the AWT where to send the event messages.
The line

 addMouseMotionListener(this);

is the last line of the constructor method Robot(). The Robot() method will be
called whenever anyone (in this example the Robotz class) creates a Robot object.
The effect of this line is to make sure that every Robot object receives the messages
in the MouseMotionListener interface whenever the mouse moves over the
surface of that Robot.

3.

The final step in handling events is to write methods to handle the messages that will
be sent to you. Every set of events you “subscribe” to requires you to write a different
set of methods. Because you subscribed to the MouseMotionListener interface,
Java sends you two messages: mouseMoved when the mouse moves across the
surface of your Robot, and mouseDragged, when the mouse is moved and the
dragging button is depressed. If you only want to do something when one of these
events occurs, you still have to write the method for the event you’re not interested in,
but you can leave the method body empty.

 Applets and Applet Methods

By this time, you should have a pretty good feel for how the Robotz applet works. You
saw that the Robotz class has a single method, init(), that creates three Robot
objects using the new operator and calling the add() method to place them on its
surface. At that point, the work of the Robotz applet is done; the rest of the work will be
done by the Robots themselves.

You’ve seen how the Robot class calls a constructor whenever a Robot object is
created. The constructor is responsible for initializing each of the attributes of a Robot
object as it is created. This constructor is also responsible for registering each Robot so
that it receives event messages from the operating system. Finally you saw how the
Robot class writes the mouseMoved() and mouseDragged() methods to respond to
those event messages.

You might still be wondering about two things, however. Who called the init() method
and who called the paint() method? Are these part of the event system? Well, yes and
no.

The init() method is invoked by either your Web browser or the appletviewer application
whenever either loads a program that is derived from the Applet class. This is only one of
several messages that can be sent to your applet by your Web browser. You can write
methods to respond to each of these messages (called the applet life-cycle methods). The
paint() method, by contrast, is called by the operating system whenever the surface of
your applet needs to be redrawn. Remember that in an event-driven operating system, the
display is the property of the operating system (OS). The OS doesn’t know what you want
the faces of your Robots to look like, but it tells you when it thinks that they need to be
repainted. You can see how this works by starting the Robotz applet and then dragging

 - 92 -

another window so that your applet is partially obscured. When you remove the window,
Java calls the paint() method in your applet to touch up the marred visages.

 That Thing Called main() Is Just a Bit Arcane

Unlike applets, which have a family of life-cycle methods, Java applications have only
one special method: main(). C and C++ programmers recognize main(), because C and
C++ programs have a special function by that name. But, just what does the main()
method do? If you pose this question to 10 C or C++ programmers, you’re likely to get
ten answers that, if not identical, will recognizably mean the same thing. “The main()
method,” they’ll say, “is where every C program starts executing.” In C and C++, each
program can have only a single main() function, and programmers are no more
confused about the meaning of main() than they are about the meaning of life in
general; perhaps even less so. All that changes in Java.

In Java, asking “what does main() mean” can lead your brain into an existential paradox
that has a myriad of equally correct, or equally incorrect, answers. Is main() the entry
point to your application, as it is in C++? Well…, yes, no, sometimes, and perhaps; all
these are valid answers. This confusion arises because there is no division between Java
programs and Java objects like there is in languages like C++ or Object Pascal. In Java

 • Each class in a program can have its own main() method.

 • The user may decide to start the program using the main() method of any class in

the application.

 To understand what’s going on, let’s take a look at an example.

 A main() Example

Suppose you have two versatile and talented classes, the Dancers and the Singers.
Because you realize that a Java program is, at its heart, a collection of cooperating
agents, you give each class a main() method, which enables it to cooperate with the
other class for the purpose of putting on a performance. The Dancer class might look
like this:

 // A class that dances around

 public class Dancer
 {
 public void dance(String step)
 {
 /* Do dancing stuff here */
 System.out.println(“Do a little “+ step +”
 right here”);

 }

 public static void main(String[] args)
 {
 Dancer fred = new Dancer();
 Dancer ginger = new Dancer();
 Singer frank = new Singer();
 fred.dance(“waltz”);
 ginger.dance(“fandango”);
 fred.dance(“macarena”);

 - 93 -

 frank.sing(“Rainy-day Women”);
 ginger.dance(“tango”);
 }
 }

Like the Dancer class, the Singer class has also been designed to be cooperative. Its
main() method creates the Dancer fred, and puts him to work, along with a few
Singers as well. The Singer class looks like this:

 // A musical class

 public class Singer
 {
 public void sing(String tune)
 {
 /* do singing stuff */
 System.out.println(“Croon the tune, “ + tune +”, right
here.”);

 }

 public static void main(String[] args)
 {
 Singer frank = new Singer();
 Singer sammy = new Singer();
 Singer tony = new Singer();
 Dancer dean = new Dancer();

 frank.sing(“Born on the Bayou”);
 sammy.sing(“The Gates of Eden”);
 frank.sing(“All Along the Watchtower”);
 tony.sing(“Maggie’s Farm”);
 dean.dance(“twist”);
 frank.sing(“My Way”);
 }
 }

You can run this program by using the Java interpreter (java), which starts executing the
main() method in the class you specify at runtime. If you invoke the main() method in
the Singer class, you’ll see a performance that looks like this:

 C:> java Singer
 Croon the tune, Born on the Bayou, right here.
 Croon the tune, The Gates of Eden, right here.
 Croon the tune, All Along the Watchtower, right here.
 Croon the tune, Maggie’s Farm, right here.
 Do a little twist right here
 Croon the tune, My Way, right here.

 On the other hand, if you put the Dancer class in charge, the performance that ensues

goes like this:

 C:> java Dancer
 Do a little waltz right here
 Do a little fandango right here

 - 94 -

 Do a little macarena right here
 Croon the tune, Rainy-day Women, right here.
 Do a little tango right here

 When you try and analyze what is going on here, it’s important to keep a few facts at the

forefront of your mind:

 • Unlike C programs, Java programs can have several main() methods.

•

Even if your class has a main() method, it will never be executed unless that class is
invoked by the Java interpreter. It is easy to confuse the class constructor, which is
called every time an object is created, and the main() method, which is only called
when the class is used to “start-up” a Java program.

•

Like C programs, only one main() method will act as the “entry point” or starting
position each time your program runs. Unlike C programs, however, the main()
method that performs this service is determined at runtime, not when you compile your
program.

 Guidelines for Using main()

By now, you may be more confused than when you started. So, what does main()
mean, and how should you use the main() method in your programs? Here are two
guidelines for using main() that will help clear the confusion, and keep your Java
classes from becoming hopelessly intertwined:

1.

Make a clear distinction between application classes and the working classes in your
design. An application class is designed to act as an entry-point and overall manager
for your application. Because the Java language does not enforce this distinction, you
will have to do so by convention. One such useful convention is to add an “App” suffix
to all such classes like this: EmailApp, WriterApp.

2.

For every other class, resist the urge to use the main() method as a “test bed” to
exercise each of the methods and features of the class. Instead, you should forego
writing main() at all. Although using each class’s main() method as a place for test-
code has some appeal, in the final analysis, the drawbacks outweigh the advantages.
Test code placed in a main()method is compiled into byte-codes and is delivered
along with your finished application, making it larger and subsequently more sluggish.
Furthermore, if you put a test-bed main() method in every class, you cannot prevent
users from running your test code, without actually commenting out the main method
when testing is complete. (Commenting out refers to the practice of placing comment
markers around some part of your program that you wish to remain in the source code,
but you don’t want to appear in the byte code.) You should write a test-bed program for
every class you develop, but keeping the test code outside of your working classes is
probably a better strategy.

 Summary

This chapter has introduced you to the mechanics of writing Java programs and the
basics of the Java language. To write and test Java programs, you use a text editor to
write source code files, the javac compiler to turn those source files into executable code,
and a Web browser, the java interpreter, or the appletviewer application to run your
finished programs.

Java source code files are composed of class definitions. Every source file must contain
exactly one publicly accessible class, but it can contain other, non-public classes. The
source file must be named exactly the same as the public class it contains, except that
the file has a .java extension. A class definition has two parts, a header, which acts a

 - 95 -

little like a title, and a body, which contains the definitions of the classes attributes and
methods.

When you define attributes, you can use both primitive types—integers, floating-point
numbers, characters, and logical values—and object types. Attributes that hold primitive
types can each hold a single value and are manipulated by operators inside the methods
of your class; attributes are built from object types and hold references to objects, rather
than the objects themselves. When defining attributes, you have several choices to
make. The most important of these is whether the attributes should be visible outside the
class or whether their visibility should be restricted to the classes methods by using the
access specifier private. To support encapsulation, you will usually make all of your
attributes private. In addition, you can choose to provide separate copies of each
attribute for each object, or you can create attributes that are shared among all instances
of a class by using the keyword static.

In addition to defining attributes, you also define the methods for your class. Unlike
attributes, the methods of a class are usually public. Like class definitions, a method
definition has two parts: a header and a body. The header of a method declares the type
of value that method produces (if any) as well as the kind of arguments the method
requires to perform its work. The body of a method consists of the steps necessary to
carry out the operations the method performs.

 The body of a method is composed of statements, which fall into four general categories:

 • Declaration statements enable you to create local variables, used to hold temporary

values.

 • Method call statements enable you to ask other objects to perform an operation; these

are perhaps the most common statements in an object-oriented program.

 • Expression statements enable you to assign a value to a variable or perform some

other calculation.

 • Flow of control statements enable you to make your methods act “intelligently” by

giving them the ability to make decisions or repetitively perform some operation.

Many of the methods you will write will be written in response to events from the
operating system or from your Web browser. The init() message is sent to an applet
when it first loads, the mouseMoved() and mouseDragged() messages are sent to
those objects that register to listen for them, and the paint() message is sent by the
operating system to all objects that need to redraw themselves.

Java applications begin by executing the main() method of the class specified as the
argument of the java command. Any Java class can include a main() method, but it’s
good to distinguish application classes from working classes and provide a main()
method only for application classes.

 Questions

1.

The ___________ code for a Java program is created by using a text editor, and the
___________ code is created by compiling the source code with the Java compiler,
____________.

2.

A Java program that runs in the context of a web browser is called an
______________, whereas a program that runs by using the java interpreter is called
an _______________.

 3. Java source code files are composed of ________________ definitions.

 - 96 -

 a. byte code

 b. class

 c. data

 d. method

 4. Every Java source file can contain only one __________ class, but may include other

helper classes, provided they are not created with ________________ access.

 5. The public class JaguarButton must be contained in the file named

_______________________.

 6. In a class definition, the ______________ describe the attributes of the object,

whereas the ________________ define its behavior.

7.

Methods and fields can have access specifiers that determine their visibility. If you
want to create a field that is only accessible by the methods of the same class, you
would use the access specifier _____________________.

 a. package

 b. private

 c. protected

 d. public

8.

True or false. Every object created from a class will contain individual fields for every
defined attribute except those declared final, which will be shared among all members
of the class.

9.

Two differences between primitive types and objects are: An object can store
___________________, whereas a primitive stores a ___________________.
Objects are manipulated by using _________________, whereas primitives use
____________ for the same purpose.

 10. True or false. To support the principle of encapsulation, you will usually make the fields

in your class public, while making your methods private.

 Exercises

1.

Type in and compile IntegerStore.java. When it compiles without errors, make the
following changes, recompiling after each change, and record the error messages
that appear. What rules can you discover? (Remember to restore the changes after
each test.)

 • Initialize the field aBigByte with 128.

 • Remove the L from the field aBigLong.

 • Add an L to the end of the value stored in aBigShort.

 2. Type in and compile FloatingStore.java. When it compiles without errors, make

 - 97 -

the following changes, recompiling after each change. Record the error messages
that appear. What rules can you discover? (Remember to restore the changes after
each test.)

 • Remove the F from the end of aSmallFloat.

 • Change the type of aTinyDouble to int.

 • Create a new int variable called aTinyInt. Initialize it by storing the value 1.0.

Then try 1.0E1. Can you store any numbers with a decimal point into aTinyInt?

 • Store the value 1.75F in the field aBigDouble. Does that work? If so, why?

3.

Compile and run the PlayRoom.java program using the javac compiler and the java
interpreter. What error message do you get? Now add the following method inside the
body of the PlayRoom class. Compile and run the program, recording your results.
How many objects can you find in this method?

 public static void main(String[] args)
 {
 PlayRoom myApp = new PlayRoom();

 System.out.println(myApp.myFrog);
 System.out.println(myApp.myRobot);
 }

4.

Still using PlayRoom.java, create a constructor for both the ToyFrog and
ToyRobot classes. Add a line of text inside each constructor that uses
System.out.println() to print a message to the console announcing that the
specific constructor has been called. (The line System.out.println(“Hi
Mom”); prints the String “Hi Mom” to the console.)

5.

Modify Robotz.java to add two more Robots to the applet. Use your web browser
to look up the color constants in the Color class (which is in the java.awt package)
in the documentation that came with the JDK, and give your two new Robots some
different colors.

6.

Modify the logic in either the mouseMoved() method or the mouseDragged() method
of the Robot class to change the behavior of the Robots. Compile and test your
changes in appletviewer.

 To Learn More

There is no lack of books for those who want to learn Java. Wading through them all is a
little more difficult. As a general introduction, Laura Lemay’s Teach Yourself Java in 21
Days is probably the most popular. The Waite Group’s Java 1.1 Interactive Course, also
by Laura Lemay, features an effective interactive format that includes questions and
exercises. For those who want to learn programming and Java at the same time, bear
with us one more time as we recommend Gilbert and McCarty’s Object-Oriented
Programming in Java by the Waite Group Press. Experienced programmers may prefer
The Java Programming Language, by Ken Arnold and James Gosling—the creator of
Java. Intermediate programmers should look at Cornell and Horstman’s Core Java.

The Web has a wide variety of resources for learning Java. At the official JavaSoft site,
you can download the Java Developer’s Kit and review online documentation and API
specifications. There’s even an online tutorial. The URL is http://www.javasoft.com.

 - 98 -

Seeing is sometimes believing. Sometimes it’s learning too. If you’re one of those who find
it easier to learn through hearing and seeing something explained and illustrated, rather
than through reading and doing, you might appreciate some of the new multimedia
applications that help you learn Java. The Waite Group Press has published Talk Java To
Me, while MindQ Publishing has a series of interactive CD-ROMs that cover all aspects of
Java software development. See them on the Web at http://www.waite.mcp.com and
http://www.mindq.com, respectively.

Chapter 4: Encapsulation: Classes and
Methods

 Overview

“This is not a pipe.” Painstakingly, word-by-word, you thumb through your worn English–
French dictionary. You pause for a second and think. “I must be missing something,” you
say to yourself and start again from the beginning. “Ceci n’est pas une pipe.” The
translation comes out the same the second time around: “This is not a pipe.” “But,” you
protest as you stand staring at Rene Magritte’s famous 1926 painting, “it is a pipe. A big
brown pipe. Why does it have ‘This is not a pipe’ written across the bottom?” Frustrated,
you pick up your backpack and head for the exit, muttering to yourself, “Artists!”

Of course, Magritte was right. The painting hanging there on the museum wall is not a
pipe. It is a painting of a pipe—a model, if you will. Even the word—pipe—is, itself, a
model of the real thing. In this chapter, you will meet two software models that represent
a real piece of software: the summary paragraph and the class definition (implemented
as Java source code). In this chapter, you will step into the role of designer, working for a
client who wants a filing program or a notepad program. You will be responsible for
translating the client’s ideas into a logical model that can be understood by the computer
(as you can see in Figure 4.1).

 Figure 4.1 The software designer translates the client’s ideas into a model the

computer can understand

“Wait just a minute,” you say. “I understand that a summary paragraph is a model, but
Java source code is what we’re trying to build. Source code is not a model, it’s the
artifact!”“Wait just a minute,” you say. “I understand that a summary paragraph is a
model, but Java source code is what we’re trying to build. Source code is not a model, it’s
the artifact!”

Well, just reflect on that for a minute. Is the Java source code really the artifact you’re
trying to create? If you gave the finished source code to your users, would they be
satisfied? Could your accountant keep the source code for your spreadsheet program in
his desk and pull it out to perform a calculation? No. Source code is a model; a very
concrete and specific kind of model: one that can be understood by people (you hope)
and, with the help of a translator, understood by the computer. As a software designer,

 - 99 -

it’s easy to think of your source code as your goal when you write programs. Perhaps,
following Magritte, you’d do better to add this line to the top of every file:

 “This is not a program.”

Much of the complexity surrounding software design exists because software requires a
two-step translation: First you must translate the user’s concept into a logical solution,
and then you must translate the logical solution into a physical design. Chapter 5,
“Designing Classes and Objects,” focuses on logical modeling—how you can be sure
your design captures the client’s concept. This chapter concentrates on techniques for
designing simple, reliable, physical (implementation) models: the creation of a model that
is understood and correct in both the human and the machine sphere. You will learn:

 • More about how to differentiate between interface and implementation

 • How to use a summary paragraph to discover the environment your objects will live in,

the client objects that will use them, and the functionality they must implement

 • How to use the Java documentation tool, javadoc, to provide essential documentation

for your users

 • How to recognize common object-design pitfalls: the Data Warehouse Trap, the

Spectral Object Trap, and the Multiple-Personality Trap

 • How to evaluate strategies for handling errors and exceptions

 Designing a Robot

 Suppose you were given the job of designing a household robot. How would you go

about it? Where would you start?

Some would begin by describing what the robot looked like. You might draw a sketch or
describe its appearance in words or by example, comparing it to R2D2, C3PO, or
Pathfinder’s Sojourner Truth. Others might describe the construction of the robot. “I’d use
an array of off-the-shelf microprocessors for the central controller, and a set of gallium-
arsenide biochemical batteries mounted over traction-driven treads,” you might say.

One way of describing any kind of object is in terms of its appearance and the physical
(or logical) components that make it up. But another, equally valid, way to describe (or
design) an object is to state what it does. As Figure 4.2 illustrates, this is often the client’s
main concern.

 Figure 4.2 From the client’s point of view, what an object does is often more

important than its composition

 - 100 -

 WHAT IT IS OR WHAT IT DOES?

Take a few minutes and think about the functionality you’d want in a household robot.
What kinds of things should it do? Suppose you had to write the software that would
control such a robot in Java. If you took a piece of paper and wrote a list of methods, you
might come up with something like this:

 • start()

 • stop() (This is the method you always want to implement first!)

 • faster(), slower()

 • forward(), backward()

 • left(), right()

 • extendArm(), contractArm()

 • openHand(), closeHand()

With a little thought you’d probably be able to come up with an even larger set of
methods that a general-purpose household robot should be able to perform. Using just
this set of methods, however, you could create a remote control that wouldn’t look much
different than a video-game controller, and that wouldn’t be much bigger than the remote
control for your TV. You could use a joystick for the left-right/forward-backward
movement as well as for the speed settings. A single button could handle the on/off
functions. A second joystick control could manipulate the robot’s arm.

The question is, how would you know if you have the right set of methods? Is this minimal
set adequate, or do you need more methods or perhaps different methods? How can you
tell if your robot does the right things?

 TRYING IT OUT

Imagine that you went ahead and built your robot, using this specification. Six months
later, your robot has been successfully tested and manufactured. Heedless to the
possible consequences, you head on down to Sears to purchase one for your spouse’s
birthday. (It might be wise to have a backup gift, just in case!) Proudly you unpack the
pieces in the living room. After a quick trip down to the nearby 7-Eleven convenience
store for a set of batteries to power the remote control, you hand it over.

Truthfully, you’ve done an amazing job. The remote control is so well designed that even
a novice can drive the robot around the house. The robot’s arm is a pleasure to use. It
can pick up an egg without breaking it, turn a faucet, or pound a nail, all with equal skill.
Perhaps a little giddy, you suggest a practical demonstration of your robot’s usefulness:
vacuuming the living room.

Retrieving the remote, you navigate your creation over to the broom closet, which it easily
opens. Out comes your ever-faithful Hoover, which “Robo” deftly plugs into the power
outlet. You use the robot’s arm to start up the vacuum, and use the joystick to start it
running around the room. Bzzzzzzzzzzzzzt. It makes a pass along the far wall of the
living room. You have a little difficulty turning it around, but figure you’ll get the hang of it
soon. Anyway, Aunt Matilda was never your favorite aunt, and she’ll probably never
notice that the lamp she gave you for Christmas is missing. Bzzzzzzzzzzzzzt. You make
another pass. You’re relieved to find that turning around is much easier the second time.
Fifteen minutes later, you’ve vacuumed the entire room and the Hoover is again safely
stowed in the closet.

 - 101 -

 THE FIRST RULE OF DESIGN

How many times will you (or your significant other) use your robot to vacuum the living
room? The answer is almost certain: exactly one. Why is that? What was wrong with your
design? Why didn’t your robot turn out to be more useful? The problem is that you’ve
failed to differentiate between the interface and implementation:

 • The interface of a well-designed object (whether that object is a robot or a software

object) describes the services that the client wants accomplished.

•

The implementation of an object is the manner in which it performs its job. The user of
a household robot doesn’t want to move it forward or backward or make it go fast or
slow. All those methods are implementation details; they are the things that the robot
has to be able to do to carry out its work. The robot’s owner doesn’t care about them,
and would rather not have to know about them.

 “Encapsulation hides the nonessential.”

Encapsulation hides the nonessential, as you can see in Figure 4.3. Rather than
forward() and backward() methods, a truly useful robot would have methods with
names like vacuumHouse(), doLaundry(), cookDinner(). A really useful robot
would let you tell it what you wanted done and then have only a single method, run()!

 Figure 4.3 Encapsulation hides nonessential details behind an interface that

reflects the user’s view

Abstraction and Encapsulation: The First Iteration

You aren’t going to be building any robots in this chapter, but the process you’ll use in
designing objects and classes is similar to what you did with your robot. Where do you
start when designing your objects and classes? Do you start from a high-level view and
work down, or start at the bottom and work up? Do you think about the data first and then
think about the methods, or vice-versa?

The purpose of a well-designed class is to model an abstraction from the client’s point of
view. This means you should always start by designing a minimal public interface,
because the public interface is the only thing that the client will see. Just as an architect

 - 102 -

tries to put herself in the place of her clients—“Would I want to use this kitchen? How
would I feel with the bedroom so close to the living-room?”—the good class designer
begins by thinking about a class from the point of view of the client.

There are some complicating subtleties here. For example, consider the case of an
architect designing an apartment building for a client. The client will probably not actually
live in one of the apartments. But, the client will pay the architect’s fee and thus has the
right to decide how big the closets should be and how much water the hot water tank will
hold. Of course, an apartment resident might have very different ideas about closet size
and hot water capacity.

In the software world, you would refer to the apartment resident as the user. Users
actually run the software you design and implement. Clients, on the other hand, pay the
bills and make the decisions. Sometimes the client and the user are the same person, but
more often they are not.

When the client and user are separate individuals, your task as a designer is made more
complex. It’s your job to please the client, who pays your fee and therefore gets to make
the decisions. But, it’s also your job to help the client understand the user’s perspective.
A successful system must meet the needs of both the client and the user. The architect
who accedes without comment to the client’s hasty decision to limit each apartment to 3
gallons of hot water per day will not ultimately have a happy client, however much lower
the utility bills may be.

 WHO, WHERE, AND WHAT

Separating the public interface from the details of the private implementation is the first,
and most basic, task in designing classes and objects. Designing such a public interface
involves identifying:

•

The client objects (who): What objects are going to use the services of your class?
The human users of your system will be represented within it by objects, called client
objects or actors, which send messages to your objects and receive information in
return.

•

The environment (where): What is the environment in which your design will be
implemented? The environment includes things like the computer hardware and
software that will run your program, and the software tools available to help you build
it. The environment imposes limits on how your interface is actually designed. An ideal
interface for a robot may be doWhatImThinking(), but limitations in the real world
do not currently render that feasible.

•

The required functionality (what): What should the object do? This functionality is
described from the user’s point of view. Many—sometimes most—of the methods you
define will be necessary, yet will not appear in the public interface.

 WRITING IT DOWN

When you design the public interface of your class, you are involved in a process of
abstraction—trying to find the essential elements that your users need. You really don’t
need a computer for this. You can start with a pencil and a blank piece of paper. (Of
course, if you want to use your computer, there’s nothing wrong with that; you just won’t
start by writing code.) You’re ready to start finding out “who,” “where,” and “what,” as
Figure 4.4 illustrates.

 - 103 -

 Figure 4.4 Designing a new class begins by asking who will use your objects,

under what circumstances, and what your objects will be required to do

If you were designing a Clock object, for instance, you’d ask, “Who will want to use my
Clock, where will they use it, and what will those users want it to do?” Unless you’re
building an application for a clock-repair shop, you’ll find only two essential services:
getTime() and setTime().

As you write down your ideas, you’ll undoubtedly come up with a good many things that
you just know your object must do—your robot, for example, had to move forward and
backward. Don’t throw those ideas away; keep a separate sheet of paper for those kind
of details, because you’ll need them later. You might also come up with physical (data)
details. File them away also. For now, try and put yourself in the place of the user, and
blithely ignore any details that are not essential.

 Remember Abstraction is concentration on the essential. A well-designed class begins

with a public interface that operates at the user’s level of abstraction.

 Of course that’s easy to say when talking about robots and clocks. But, just how does that

work when applied to a real Java program? Let’s take a look.

Client Objects, Environment, and Functionality

Every class design starts with a set of requirements. In fact, for the majority of programs
that are written, discovering the right requirements is often more difficult than writing the
code, and is more error-prone. You’ll return to this subject in the next few chapters when
you learn about the very powerful CRC technique. Right now, though, you’ll start with just
a summary paragraph describing the class you’ll build in the rest of the chapter.

 “[F]or the majority of programs that are written, discovering the right requirements is

often more difficult than writing the code, and is more error-prone.”

Most non-trivial design projects require you to consider the relationships and interactions
between different classes. Description and explanation of such relationships take up a
large portion of this book. Finding a project where the class design problem can stand
alone is difficult. Fortunately, there is one convenient area where you can design
meaningful standalone classes: by designing a component for Java’s Abstract Windowing

 - 104 -

Toolkit (AWT).

With JDK 1.1, Java has added the ability to create lightweight components; that is, GUI
components that are not derived from the AWT’s Canvas or Panel classes, and that do
not require the cooperation of native peer components. These lightweight components
can thus be written in pure Java, which allows you to easily add new components beyond
the basic ones already contained in the AWT. One easy-to-design, yet really cool,
component is a progress bar like the one that appears in Microsoft Word when reading a
file, or in Netscape Navigator when performing a long download. The Java 1.1 AWT does
not include such a component, so this is your opportunity to build something really useful.

 EXAMINING THE SPECIFICATION

As a specification, this description of a progress bar leaves a little to be desired. A good
first step in class design is to describe, in a single paragraph, exactly what the class you
are building should do. A summary paragraph for the ProgressBar class could look
something like this:

 “A summary paragraph describes the problem and requirements in an informal

way.”

A progress bar is a rectangular area of the screen that looks like a small window.
It’s used when a long operation is taking place, to graphically display how much of
the operation has been completed, usually by using means of a filled region
consisting of two different colors.

A summary paragraph describes the problem and requirements in an informal way. Even
a somewhat vague and imprecise document such as this can be used as a starting point.
From this description (and maybe a sketch like that shown in Figure 4.5), can you identify
the users, environment, and functionality required for your new ProgressBar
component?

 Figure 4.5 The pieces of a ProgressBar

The environmental limitations are probably the easiest to discern. The specification says
that the ProgressBar class should be a lightweight component—that is, a component
derived directly from the AWT’s Component class or Container class. Thus, with these
environmental restrictions, you’ll be able to use your objects in an applet or in a GUI-
based application, but they won’t work in a text-mode application.

 FINDING THE CLIENT OBJECTS

 - 105 -

 Discovering the client objects (the objects that will send messages to, and receive
information from, the progress bar) in the summary paragraph is a little more difficult.

The first client object will be any object that needs to keep the user informed about the
processing of a lengthy operation. The second client object is the container that holds
your component, which will tell it to repaint itself or ask it for information, such as its
preferred or minimum size, when it comes time to lay it out. This second client object is
the AWT framework itself.

 Remember Client objects include anyone or anything that sends messages to your

object.

For both of these client objects, your task will be to create an interface that conforms to
their needs. The major difference between these two client objects is that the AWT client
object’s requirements are already precisely specified, whereas the user-level interface
will be designed by you.

 PUBLIC OPERATIONS

Now that you’ve identified the environment and clients for your class, all that’s left is to
determine what public operations are required. In other words, what public methods will
your client objects need to call? What do the client objects who use your ProgressBar
class want your objects to do?

To answer this question, you start by asking another question, “What do I need to do to
use a progress bar?” And, you answer that question by putting yourself in your client
objects’ shoes and asking “How would I use a progress bar?” Think about the different
situations when you might need one. Here’s one to consider.

Suppose you were writing a file transfer application in Java. How would you use a
ProgressBar object? What kind of messages would you have to send to get it to work
right? To put the question another way, “What should a ProgressBar object do?”

First, notice that a progress bar shows the relative amount of a task that is completed; the
size of a progress bar doesn’t tell you anything about the size of the task to be
completed. You can use the same size ProgressBar object, regardless of the size of
the file you are transferring. When the bar is half filled, it just means that the transfer is
half done; it doesn’t mean that any particular number of bytes has been transferred.

To work like this, every ProgressBar object has to store the total amount of work to be
done—the extent of the job, so to speak. The first essential requirement of the public
interface, then, is the ability to construct a ProgressBar object by providing it with the
size of the job to be completed. A client object should be able to construct a
ProgressBar to process 1000 bytes like this:

 ProgressBar pBar = new ProgressBar(1000);

Besides constructing a progress bar, the objects that use the ProgressBar class will
need to keep the object informed about the progress of the task. In this sense, it is the
responsibility of the client object to tell the ProgressBar object to update itself. It can do
this by telling the object how much of the job is completed. Think of this as the current
value of the job. To tell the ProgressBar object, theBar, that the transfer is half done,
you should be able to write:

 theBar.setValue(500);

 In actual practice, you’d normally use a ProgressBar object in a loop, something like

this:

 - 106 -

 // Set up file transfer, open socket, etc.
 // Find out total size of transfer and store in variable nSize
 ProgressBar theBar = new ProgressBar(nSize);
 // Add theBar to a container where it can be displayed
 int bytesRead = 0;
 while (bytesRead < nSize)
 {
 // Read some bytes, store number read in nRead
 bytesRead += nRead;
 theBar.setValue(bytesRead);
 }

Remember

The best way to discover the necessary public operations of a class is to
put yourself in your client objects’ shoes. Think about how your objects are
used before considering how they will be built.

 THE AWT CLIENT OBJECT

The constructor and setValue() method may meet the minimal needs of objects that
use your class, but remember that the ProgressBar class actually has two client
objects. The second client object—the container that holds your component—has a
clearly defined set of methods that must be serviced. These methods are imposed by the
environment (that is, the AWT framework). They include getPreferredSize(),
getMinimumSize(), and paint(), which work together to allow your component to
size and display itself correctly. To work within their environment, these methods must be
public; nevertheless, they are not part of the public interface in the same sense that the
other methods are. They are necessary for your progress bar to carry out its work, but
like forward and backward movement of the household robot, they are only
implementation details from the logical point of view.

 At this point, your design (which is illustrated in Figure 4.6) consists of

 Figure 4.6 The environment, client objects, and services required for the

ProgressBar class

 • An environment: A lightweight component working in the context of the AWT.

 • Two client objects: The objects that use your progress bar and the framework those

 - 107 -

objects are placed in.

 • Four requirements or behaviors that will comprise the minimal public interface:

 The ability to construct a ProgressBar by providing it with the total amount of work to

be done.

 The ability to update a ProgressBar you’ve constructed by telling it how much work

has currently been accomplished.

 The ability to display your ProgressBar by overriding the AWT’s paint() method.

 The ability to size your object in response to getMinimumSize() and

getPreferredSize() messages.

 Implementing the Interface

You’re just about ready to lay down your pencil and create the first implementation of
your design. In the next few sections, you’ll write all of the methods necessary for a
robust and full-featured progress bar. For right now, you’re only interested in seeing if you
have correctly defined a minimal public inter face. Then you’ll cycle back and iteratively
refine your design until you’re satisfied.

To create your implementation, you’ll use three common techniques. The first technique
is to use a template that acts as a checklist to make sure you don’t forget anything. The
second technique is to implement a main() method that really acts more like a test()
method; you’ll use the main() method to exercise each method in your class. The third
technique is to use the console window to view debugging output during development, by
writing stubs—methods that simply announce themselves when called.

 USING A TEMPLATE

 “A summary paragraph describes the problem and requirements in an informal

way.”

No matter how photographic your memory, using it to remember trivial details is a waste
of brain power. A programming template is simply a “skeleton” program that you use to
create a new class. You stick inside the template all the little niggly details that you
otherwise seem always to get wrong, so you don’t have to remember them.

But, handy as that is, that’s not the most important advantage of using a template. Using
a template allows you to arrange your programs in a consistent way that facilitates good
design and helps you to avoid making silly mistakes. Listing 4.1, ClassTemplate.txt,
is an example of such a template that you can use in your programs. Notice that it is
divided into four major sections:

 • Constructors: These are where you’ll put the operations that construct your objects.

•

Public Interface: This is the section where you’ll put all the methods that are called
from outside your program. If you have multiple client objects (as the ProgressBar
class does), you’ll want to duplicate the Public Interface section for each client object.
This section is, itself, subdivided into four different sections: constants, mutators,
accessors, and the common object interface. You’ll learn more about each of these

 - 108 -

later in this chapter.

•

Class and Object Attributes: This is the section in your program where the data is
stored. The users of your class will not directly interact with this section, and so it is
placed after the public sections that they will normally deal with.

•

Testing Methods: For all classes except an application class, the main() method is
used as a test-bed to try out the various methods and to compare them against the
design requirements.

You may want to have a whole directory of such templates, one for each of the common
programming situations you encounter—applet with threads, applet without threads,
applet with image, application with a closeable frame, and so on.

Remember

A good implementation begins with a template. A template remembers
necessary but logically non-essential details so you can concentrate on the
essential. A template helps you to logically organize your class so the
important parts stand out.

 Listing 4.1 ClassTemplate.txt

 // OOD in Java
 // Class design template file
 //

 package <package name> ;
 import <packages> ;

 public class <ClassName> extends <Superclass>
 implements <Interface>,
 <Interface>
 {
 // ===
 // CONSTRUCTORS
 // ===

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Class Constants---------------- */

 /* --Mutators----------------------- */

 /* --Accessors---------------------- */

 /* --Common Interface--------------- */

 // Want String conversion for output?
 // public String toString();

 // Logical equality necessary?
 // public boolean equals(Object obj);

 // Need to copy objects?

 - 109 -

 // protected Object clone()
 // throws CloneNotSupportedException;

 // Need to release resources at cleanup?
 // protected void finalize()
 // throws Throwable;

 // ===
 // PRIVATE METHODS
 // ===

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===

 // ===
 // TEST METHODS
 // ===
 // For individual classes use main() as test
 // public static void main(String[] args);

 }

 USING A STUB

To test out your design, you’ll use a tried-and-true old programmer’s trick, called a stub.
When you write a stub, all you do is create an empty method. You must declare the
correct number of arguments and give each method the correct name. In addition, if a
method returns a value—an int, say—you have to make sure that your stub method
returns a value of the correct type.

The body of a stub method, however, contains only two things. First, it contains a line that
“announces” that the method has been entered, along with the values of the arguments
passed in. In Java this is done by using System.out.println() to print out the name
of the method along with the arguments. A related trick is to define a private method
called dbg() and use it, rather than using System.out.println(). If you use
System.out.println(), when it comes time to deploy your code, you’ll have to
systematically comment out each of these output statements. If you use a dbg()
method, you only have to comment out the single line that its body contains.

 Remember Write stubs before you write method bodies. Stubs allow you to test your

interface.

The second thing that a stub method may contain is an outline of the steps necessary to
perform that particular operation. There are two big advantages to doing this. The first
one is that it helps you make sure you know how to write the code; if you can’t write out
the steps in simple English, it’s not going to get any easier when you have to write them
in Java. The second advantage is that the comments in the code will help you understand
the program after it’s been written. This will make it easier to repair or modify the
program.

You’ve undoubtedly been lectured about commenting your code since your very first
programming class, and perhaps you’ve found it a burden. Commenting before you write
code—instead of trying to remember what you did last week—creates better comments
and helps you create better designs. Here, for instance, is the paint() method from
ProgressBar.java, written as a stub with comments:

 - 110 -

 public void paint(Graphics g)
 {
 dbg(“paint(“ + g +”)”);

 // 1. Calculate border and “inside” rectangles
 // 2. Calculate size of the “fill” area
 // 3. Paint entire background with background color
 // 4. Draw appropriate border
 // 5. Draw filled area
 }

 Remember Write it in English before you write it in Java. If you can’t explain in English

what your objects should do, you aren’t ready to begin writing code.

 JAVA MECHANICS

To begin implementing your design, first create an empty directory and copy
ClassTemplate.txt into it. ClassTemplate.txt to ProgressBar.java (if you’re
using Windows 95, you can ignore its warning about changing the file’s extension name).
If you’ve had some Java programming experience, you might like to strike out on your
own. Otherwise, you can look at Listing 4.2. You should:

 1. Change the comment at the top of the file to reflect the name of the file. Remove the

line containing the keyword package, and import the java.awt.* package.

2.

Name the class ProgressBar and extend the Component class. This will be a
lightweight component. You can remove both of the implements clauses from the
template.

3.

Add a constructor to the Constructors section, one that accepts a single argument
representing the size of the job to be done. You don’t have to worry about storing the
value just yet—that will come soon enough. Just have the constructor announce itself
by using a stub as previously described. (If constructors don’t make a lot of sense to
you right now, you’ll find them discussed under the heading “Constructing Objects,”
later in the chapter.)

4.

Create a method called setValue() that takes a single parameter value
representing the amount of the job that has been completed. As with the constructor,
don’t worry about storing the data. Simply have the method announce itself, using a
stub as you did with the constructor.

5.

Write stubs for each of the three AWT public methods, paint(),
getMinimumSize(), and getPreferredSize(). You can look up the
documentation by using the help facility provided by your development environment,
or simply look at Listing 4.2 to find the signatures for each method. You’ll actually
have to return a value for each of the sizing methods, but for right now, that value just
acts like a placeholder.

6.

Write a public static void main(String [] args) method that first creates
a Frame object and then creates three ProgressBar objects, adding each one to
the Frame. Finally, send the setValue() message to each of the ProgressBar
objects.

 Compile and run your application, using the javac compiler and the java interpreter,

like this:

 - 111 -

 javac ProgressBar.java
 java ProgressBar

When you run your application, you should see each stub being called in the console
window, as shown in Figure 4.7. Your ProgressBar objects don’t show up on the
Frame window you created, of course, because you haven’t written any code in the
paint() method. You may notice that the Labels that display the value of each
ProgressBar object aren’t very helpful. Don’t be concerned; things will get better. For
right now, congratulations: you’ve designed your first class! (To close the Frame, select
the console window and press [Ctrl]-[C]. The Frame cannot be closed by using the
mouse, unless you program it to implement the WindowListener interface, which really
isn’t necessary for a test method.)

 Figure 4.7 Running Version 1 of the ProgressBar component

 Listing 4.2 ProgressBar.java (Initial Version)

 // ProgressBar.java
 // A class for OOD in Java, Chapter 4

 //
 import java.awt.*;

 public class ProgressBar extends Component
 {
 // ===
 // CONSTRUCTORS
 // ===
 public ProgressBar(int extent)
 {
 dbg(“ProgressBar(“ + extent + “)”);
 }

 // ===
 // PUBLIC INTERFACE: User Client
 // ===

 /* --Mutators----------------------- */
 //
 public void setValue(int value)
 {
 dbg(“setValue(“ + value +”)”);
 }

 // ==

 - 112 -

 // PUBLIC INTERFACE: AWT Client
 // ==
 public void paint(Graphics g)
 {
 dbg(“paint(“ + g +”)”);

 // 1. Calculate border and “inside” rectangles
 // 2. Calculate size of the “fill” area
 // 3. Paint entire background with background color
 // 4. Draw appropriate border
 // 5. Draw filled area
 }

 public Dimension getPreferredSize()
 {
 dbg(“getPreferredSize() called”);
 return getMinimumSize();
 }

 public Dimension getMinimumSize()
 {
 dbg(“getMinimumSize() called”);
 return new Dimension(100, 20);
 }

 // ===
 // TESTING METHODS
 // ===
 public static void main(String[] args)
 {
 Frame f = new Frame();
 f.setLayout(new FlowLayout());

 ProgressBar pb1 = new ProgressBar(1000);
 pb1.setValue(50);
 f.add(pb1);
 f.add(new Label(“pb1 = “ + pb1));

 ProgressBar pb2 = new ProgressBar(2000);
 pb2.setSize(200, 20);
 pb2.setValue(500);
 f.add(pb2);
 f.add(new Label(“pb2 = “ + pb2));

 ProgressBar pb3 = new ProgressBar(700);
 pb3.setValue(650);
 f.add(pb3);
 f.add(new Label(“pb3 = “ + pb3));

 f.setBackground(Color.lightGray);
 f.setSize(400, 500);
 f.setVisible(true);

 - 113 -

 }

 private static void dbg(String msg)
 {
 System.out.println(msg);
 }
 }

As a finished component, of course, your ProgressBar still leaves a little to be desired.
Surely your boss is not going to be real happy with a progress bar that just prints a few
messages out to the console. Nevertheless, you can be fairly certain that this minimal
design does, in fact, work. If you’re anxious to begin writing code in earnest—making the
ProgressBar paint on the screen, for instance—try to hang on a little longer. After
you’ve refined the design specification just a bit, you’ll be ready to take on the rest of the
class.

 ROUND TRIP: REFINING THE INTERFACE

Designing a class is really an iterative process: you design a little, code a little, test a
little, and then go back and design a little more. One very useful technique—once you
have the minimal interface written—is to pretend that you are one of your object’s client
objects. How do you do that? Simple: begin writing programs that use your object, and
see if it really does everything you want. The Zenos applet, shown here in Listing 4.3
(Zenos.java) and Listing 4.4 (ZenoApplet.html), uses the progress bar you’ve
designed.

 “Designing a class is really an iterative process: you design a little, code a little, test

a little, and then go back and design a little more.”

 Listing 4.3 Zenos.java

 // Zenos.java
 // An applet to test the ProgressBar class
 //
 // SDG - 7/21/97

 import java.awt.*;
 import java.applet.*;
 import java.awt.event.*;

 public class Zenos extends Applet

 implements Runnable,

 ActionListener
 {
 // ===
 // APPLET METHODS
 // ===
 /* --Initialization----------------- */

 - 114 -

 public void init()
 {
 theBar.setForeground(Color.red);
 theBar.setSize(250, 20);
 add(theBar);
 add(startButton);
 add(stopButton);
 add(resetButton);
 add(valLabel);

 stopButton.setEnabled(false);
 startButton.addActionListener(this);
 stopButton.addActionListener(this);
 resetButton.addActionListener(this);
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 int amtRemains = TOTAL_SIZE - curValue;

 while (true)
 {
 curValue += (int) ((double) amtRemains / 2.0);
 amtRemains = TOTAL_SIZE - curValue;

 theBar.setValue(curValue);
 double pValue = theBar.getPercent() * 100.0;
 double decimals = pValue - (int) pValue;
 decimals *= 1.0E38;
 String out = ““ + ((int) pValue) + “.” + ((long) decimals);
 valLabel.setText(““ + out + “ %”);
 System.out.println(out);
 repaint();

 if (theBar.isFull())
 {
 theThread.stop();
 theThread = null;
 return;
 }

 try { Thread.sleep(1000); }
 catch (InterruptedException e) { }
 }
 }

 // ===
 // IMPLEMENT ACTIONLISTENER
 // ===

 - 115 -

 public void actionPerformed(ActionEvent ae)
 {
 if (ae.getSource() == startButton)
 {
 if (theBar.isFull())
 return;

 if (theThread == null)
 {
 startButton.setEnabled(false);
 stopButton.setEnabled(true);

 theThread = new Thread(this);
 theThread.start();
 }
 }
 else // both stop and reset
 {
 if (theThread != null)
 {
 theThread.stop();
 theThread = null;
 startButton.setEnabled(true);
 stopButton.setEnabled(false);
 }
 if (ae.getSource() == resetButton)
 {
 curValue = 0;
 theBar.setValue(0);
 }
 }
 }

 // ===
 // CLASS ATTRIBUTES
 // ===
 private Button startButton = new Button(“Start”);
 private Button stopButton = new Button(“Stop”);
 private Button resetButton = new Button(“Reset”);
 private Label instruction = new Label(“Press Start”);
 private Label valLabel = new Label(“0 % “);
 private int curValue = 0;

 static final int TOTAL_SIZE = 1000;

 private ProgressBar theBar = new ProgressBar(TOTAL_SIZE);

 private Thread theThread = null;

 }

 Listing 4.4 ZenoApplet.html

 - 116 -

 <HTML>
 <HEAD>
 <TITLE>Solving Zeno’s Paradox</TITLE>
 </HEAD>
 <BODY>
 <H1>Another look at Zeno’s Paradox</H1>
 <HR>
 <APPLET CODE=Zenos HEIGHT=50 WIDTH=500> </APPLET>
 <HR>
 <H2>Zeno of Elea (495 - 435 B.C.)</H2>
 How long does it take an arrow to go from one
 point to another. Zeno, the ancient Greek philosopher,
 argued, “forever!” Since before an arrow can travel
 half-way to it’s target, it must travel a quarter of
 the distance, and before that, 1/8th. Since you can
 continue this on into infinity, Zeno argued that motion
 was impossible.

 This applet examines a similar problem. It creates a
 ProgressBar object, 1000 units long. It then fills
 1/2 the distance. On each succeeding pass, it
 fills 1/2 the remaining distance. How long will it
 take to fill the whole ProgressBar?

 </BODY>
 </HTML>

The Zenos applet contains three Buttons (startButton, stopButton, and
resetButton), a ProgressBar object (theBar), and a Label (valLabel).
Zenos.java implements the Runnable interface, which means it includes a method
called run() that is activated by starting and stopping a Thread object. The applet also
implements the ActionListener interface, which it uses to respond to presses of any
of the three Buttons. The applet works like this:

1.

The init() method, which is called when the applet is loaded by appletviewer or
your Web browser, begins by setting the foreground color of the ProgressBar
(theBar) to red, and setting its size to 250 pixels wide and 20 pixels high. The
ProgressBar, the Buttons, and the Label are then added to the surface of the
applet. Finally, the stopButton is disabled (because the program is not yet
running), and the applet registers to receive actionPerformed() messages from
each of the three Buttons (by sending the addActionListener() message to
each in turn).

2.

When any Button is pressed, the actionPerformed() method is invoked, and the
getSource() method of the ActionEvent class is used to tell which Button sent
the message. If the startButton was pressed, the applet’s Thread is started up
(indirectly calling the run() method), the stopButton is enabled, and the
startButton is disabled. If the stopButton is pressed, the Thread object is
stopped (thereby terminating the run() method), and the startButton is re-
enabled. Finally, if the resetButton is pressed, it stops the Thread from running,
and, in addition, resets the values of the ProgressBar back to start.

3.

The run() method of the applet—called whenever the Thread object,
theThread, is started—performs the work of updating the ProgressBar. Using the
field variables curValue and TOTALSIZE, it continually calculates one-half of the

 - 117 -

unfinished portion of the ProgressBar, and then updates theBar. You’ve already
seen the setValue() method, from your previous design, but the run() method uses
a few others that may be useful. The isFull() method tells you when the value of
the ProgressBar equals its extent. The getPercent() method asks the
ProgressBar object how much of its work is done.

 “Paradoxically, the real advantage of writing code that uses your class is that it gets

you out of the “implementation” mind-set.”

Paradoxically, the real advantage of writing code that uses your class is that it gets you
out of the “implementation” mind-set. Because your client objects represent your
program’s human user, thinking in terms of the client objects puts you in the user’s
shoes. You’re led to consider afresh the user’s needs.

You have to think of this as a fact-finding exercise, however. The danger is that you’ll fall
victim to “featuritis.” If you find yourself adding lots of methods because you, or your
human clients and users, think they would be neat or handy, you should stop and think
twice. Your design goal for the public interface is that it should be minimal and complete.

 Remember To paraphrase Einstein, “Make your interface as simple as possible, but no

simpler.”

 DESIGNING THE IMPLEMENTATION

 Obviously, one of the problems with this technique is that you can’t run your applet until

you actually implement the code for your ProgressBar. But that’s just a detail!

By using your initial template as a checklist, you can go through each of its sections, asking
yourself, “What will this section contribute to a complete and minimal interface?” Before you
know it, you’ll have your ProgressBar up and running. Let’s take a look at the two major
design tasks you have to consider: implementing state and implementing methods.

 Implementing State

 The attributes of your objects store its state, or characteristics. You define those

attributes when you write your class. You can define three types of attributes:

 • Object attributes or fields, which will store the individual state for every object.

 • Class attributes, which store a single value or object that is shared among all objects

of a class.

 • Class constants, which store a single attribute or value that is shared among all the

objects of a class and that are usable by objects outside of the class as well.

 “If there is one thing you can take away from this book that will improve your

designs, it is this: all data should be private.”

 THE PRIME DIRECTIVE: HIDE YOUR DATA

 - 118 -

There are several things you should consider when designing the fields that will hold the
data for your class, but one rule stands out above all the others: all object and class
attributes should be declared as private, without exception. This rule should be
embossed on your mind (and perhaps hung on your wall, as Figure 4.8 illustrates) the
same way that an earlier generation learned that gotos were synonymous with evil
incarnate. If there is one thing you can take away from this book that will improve your
designs, it is this: all data should be private.

 Figure 4.8 The Prime Directive of encapsulation—make the details private.

There is one major advantage in making the data in your program private: it
“uncouples” your interface from your implementation. Suppose you’ve written a program
that has a public data field called, for the sake of originality, x. Now, suppose that you
have thousands of lines of code that refer directly to this variable x, reading and setting
its value. Now suppose, for whatever reason, you’re required to make a change to the
variable; you have to change its name or its data type or even what it represents—
perhaps you were storing Cartesian coordinates and now you have to use polar
coordinates. Every line of code that previously used x directly is now going to have to be
located and changed. If, on the other hand, the representation of x was hidden and the
value was changed or read only through a method, only that method has to change.

Remember

All state variables, without exception, should be declared as private fields.
The choice is really yours: hide your data and make one change when the
time comes, or use public data and spend the rest of your life doing
mindless maintenance on your own programs.

“OK,” you say, “if all of the data in my programs is private, then how am I supposed to
use it? I suppose that, rather than just making a single public field named x, you now
want me to make the field private, and write getX() and setX() methods. That’s a
whole lot more work, and my program will run slower as a result. I just don’t think it’s
worth it!”

You’re partially right. You should make the field x private. (You should also use a more
descriptive name than x, but that’s another topic!) But you don’t necessarily—and you
shouldn’t generally—write getX() and setX() methods. This is a common tendency
that programmers coming from a procedural background fall into. Why do you want to
getX() and setX()? What do you want with the information? Why isn’t the object doing
that work for you? When designing classes, there are three different design errors you
can fall into:

•

The Data Warehouse Trap—An object is not a repository for data that the rest of your
program will use. Your objects should contain both data and the methods that work on
that data. If you find yourself with classes that have lots of data elements and almost
every element has a get() or set() method, you may be falling into this trap.

 - 119 -

Objects should do something, not just sit there!

•

The Spectral Object Trap—An object is not just a collection of methods that you pass
data to. If a class has no data elements, and if most of the methods in the class are
static methods, then what you have is a procedural module. A module is not an
object. If you find a class like that, ask yourself, “Why is the data I’m working on stored
in a different place than the operations that work on the data?” Remember, an object
contains both data and the operations that are performed on the data. Objects with no
data are ghosts (specters)!

•

The Multiple Personality Trap—An object should model one abstraction. It should be
one kind of thing. Structured designers called this principle cohesion. Every class
should be highly cohesive, meaning that every data element and every method should
contribute to that one abstraction. Usually, a multiple personality error is obvious from
the name of the class: the SpreadSheetAndWordProcessor class is an example.
Even if you have an integrated class such as this, both the SpreadSheet class and
the WordProcessor class should be separate classes in your design. Even if the
name doesn’t tip you off, looking at the data fields may. If you have separate fields for
SpreadSheet documents and WordProcessor documents, and one group of
methods works with one document and another group works with the other, then your
object has a multiple-personality disorder. Fortunately the remedy—splitting the class
in two—is less expensive (and perhaps more effective) than therapy.

 Let’s take a look at your class, ProgressBar.java, and see what kinds of attributes

you’ll need.

 OBJECT AND CLASS ATTRIBUTES

If you look back at your initial design, you can probably easily identify two of the attributes
you’ll need: extent and value. The extent field stores the amount of work that each
ProgressBar object will do: 1,000 bytes of data to be transferred, or 32 characters to
be input. Your ProgressBar objects will initialize the extent and value fields when
each object is constructed (see the constructor section later in this chapter) and will
update the value field as often as the client sees fit, through the setValue() method,
also discussed later in this chapter.

Can you think of any other data fields you’ll need? Well, how about data that represents
the physical appearance of the ProgressBar when it’s displayed? You’ll need to store
the height of the bar, its width, its color, and where it’s located on the screen. Each of
those things is important and each ProgressBar object has to store that information,
but you don’t need to define new data fields to hold them because each ProgressBar
object already has such fields!

As you might recall, the ProgressBar class extends the Component class, so
ProgressBars already contain all of the fields that define their “Componentness.” Now,
it’s true that you don’t know the names or storage details of those fields. You don’t know
if the background color is stored as a Color object or as part of an array, or in some
entirely different way. You do know—from reading the JDK documentation for the
Component class—that you can change the background color simply by sending a
Component the setBackground() message. Users of your ProgressBar objects can
send them any of the messages that they can send to Components, and you don’t have
to write any code to support those messages.

Are there any special facilities you’d like your ProgressBar to have, facilities that don’t
come free as a consequence of also being a Component object? One thing that might
come in handy is the ability to put a border around your ProgressBar. Sometimes, a
programmer might have already set up his display, and want only the “interior” part of the
bar to be painted. Other times, a simple plain line around the bar might be more
appropriate. You might think that most folks, though, will want to use the cool, sunken 3D

 - 120 -

look you’ve come up with. When it comes time to render the actual ProgressBar, you’ll
have to know which style the programmer prefers. That requires you to store that value in
a field called borderStyle.

All three fields (object attributes) you want to use can be stored as integers and they
should all use private access. Go ahead and modify the “Class and Object Attributes”
section of ProgressBar.java, adding the following lines:

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private int extent;
 private int value;
 private int borderStyle;

 “People are much better with association than just remembering that 2 stands for

Sunken-Border.”

 CONSTANT ATTRIBUTES

Because you’ve decided to offer three different border styles with your ProgressBar,
how do you expect programmers to tell which one they want? Your first inclination might
be to add setSunkenBorder(), setPlainBorder(), or setNoBorder() methods,
but that means programmers must first construct a ProgressBar and then set the
border style. You’d like to avoid that if possible by having your programmers sup-ply a
border style when they create their ProgressBar objects. Thus, you’ll want to pass the
border style as an argument to the constructor.

That doesn’t quite answer the first question though; how should programmers tell you
which style they want? One solution is to have them use a String representing the
name, like SunkenBorder, PlainBorder, or NoBorder. This is a common way to tell
a BorderLayout which quadrant to place your component in. A second method is to
simply assign numbers to each style; thus, no border would be 0, a plain border would be
1, a sunken border would be 2, and so on.

The problem with this scheme is that it relies on our weakest facility as humans—that of
recall. People are much better with association than just remembering that 2 stands for
SunkenBorder. To make the most of this fact, Java allows you to associate constants
with specific identifiers. You do this by declaring a field, just as you did for the object
attributes, and then prefixing the field type with the keywords static final. By
convention, constant identifiers appear in all capital letters, with underscores used to
separate words, like this: CONSTANT_IDENTIFIER.

All the constant numbers you use in your code should be static final constants. A
good rule of thumb is to question any numbers that appear in source code other than 0,
1, or -1. However, there are two types of constants. The first type of constant can be a
value that is used only in an internal calculation. These constants should be declared as
private static final and should be placed just ahead of the object attributes.

The other sort of constant you’ll use is an identifier that you want programmers who use
your class to use instead of remembering numbers like 0, 1, and 2. These constants
should be declared as public static final, and should be placed as the first entry
in the “Public Interface” section of your class where they can be easily seen. For the

 - 121 -

ProgressBar class, you’ll want three identifiers—NONE, PLAIN, and SUNKEN. Program-
mers will refer to ProgressBar.NONE, but inside your class, you can just use NONE.
Drawing a border requires that the actual bars be drawn in different sizes (the borders
each take up some room), so you can use the size difference between the inner and
outer rectangles as the constant values. (Be warned, though, that if you decide to add
more border styles that also consume eight pixels, you won’t be able to differentiate
between them.) To add these three identifiers, put the following lines in the section
marked Constants:

 /* --Constants---------------------- */
 public static final int NONE = 0;
 public static final int PLAIN = 4;
 public static final int SUNKEN = 8;

Remember

Use static final constants instead of literals. As a human, your weakest
facility is recall and your strongest is recognition. Named constants play to
your strengths.

 Writing Methods

Writing code that is bug-free, efficient, and elegant is a skill that comes only with much
practice. But, even if you have that skill, designing a set of methods for a class is a little
different. You are no longer writing methods in isolation; you now have to ask yourself,
“What methods do I write, and how do those methods work together?”

In deciding which methods go into an interface, you have two sorts of yardsticks against
which to measure your efforts. The first yardstick is the general, Object-oriented design
goals that an interface should achieve. The second yardstick is a checklist to make sure
you’ve considered all the types of methods your class should have.

 “Writing code that is bug-free, efficient, and elegant is a skill that comes only with

much practice.”

 In evaluating the public interface of your class, ask yourself the following questions:

•

Does the interface represent, or model, a single abstraction? You’ve already seen
cohesion discussed in the context of multiple-personality classes. Cohesion is also
important when evaluating methods. You may be tempted to put a static
MessageBox() method in your GeneralLedger class, just for convenience sake.
Resist the temptation. If you give in, it is only a matter of time before you find the
GeneralLedger class used in all sorts of situations that have nothing to do with
accounting, simply to use the MessageBox() method. Classes are not collections of
autonomous methods. Make sure each method contributes to the intended behavior of
your object.

•

Does each method represent, or model, a single operation? That is, are the methods
themselves internally cohesive? If you are building a Report class for an accounting
module, don’t use a method like doMonthEnd(), which, in turn, creates a financial
statement, a trial balance, and a payroll report. If you do, you can be certain that next
month the doMonthEnd() method will have to be modified when your boss decides
she doesn’t need the trial balance. Instead, the code that creates each of these reports
should be contained in its own method.

 • Does the class do everything it needs to do, and no more? If programs that use your

 - 122 -

objects rely primarily on get() and set() methods, this may be a sign that your
interface is not complete, that client objects are having to process your object’s data.
On the other hand, if there are methods that are not used, don’t clutter up your
interface with them. While it’s nice if a class solves a very general problem, excessive
generality creates very congested, and thus hard-to-use, interfaces. If programmers
can’t find operations provided by your class, they won’t use them.

•

Is your interface easy to use? Your interface should be designed around the problem
your class solves, not the details of your implementation. Methods that require long
argument lists or complex calculations clamor for simplification. A method in an
accounting package that requires its input as a hexadecimal number would be one
example, but a programmer’s productivity class that requires addresses in decimal
might be another. The important thing to remember is that ease of use must be
evaluated from the user’s perspective.

•

Use a checklist of common operations that all classes should understand. Use your
checklist to make sure that you have considered how objects are constructed, copied
(or assigned), and destroyed. Make sure you’ve dealt with the difference between
identity and equality if ordering or sorting of objects is important. Finally, when you
design your class, consider including methods to test, debug, and print the state of
your objects; don’t leave these methods for later.

Remember

Evaluate your methods by asking whether each method contributes to a
single abstraction, whether each method is internally cohesive, and whether
each method is necessary, useful, and easy to use.

 “If programmers can’t find operations provided by your class, they won’t use them.”

Documenting Methods

Writing the documentation for your users is a thankless task that less responsible
programmers strive to avoid. Java, however, comes with a tool, called javadoc,
that creates HTML documentation for your classes, making the job less of a chore.
You’re probably already familiar with the style of documentation produced by
javadoc, because it was used to produce the online documentation that comes
with the JDK. The real significance of javadoc for the designer, however, is its
advantage as an abstraction tool. By running javadoc on your classes as you
develop them, you can strip away all but the essentials, and see the underlying
structure of your class.

Using javadoc is a two-step process. The first step is to use a special comment
symbol to mark the beginning of each method and class. A javadoc comment
begins with the symbol /** and ends, like a regular multiline comment, with */.
Then, in between these two symbols, you put the lines of text that you want to
appear in your documentation. In addition, there are several special tags that can
be used inside a javadoc comment, tags that have meaning to the javadoc
compiler. Some of these tags can be used only in front of a method, and some of
them are valid only when used in front of a class. As you continue to examine the
methods in ProgressBar.java, you’ll notice javadoc comments before each
one. Here, for example, is the javadoc comment that precedes the class
declaration:

 /**

 - 123 -

 * ProgressBar - a class for OOD in Java, Chapter 4.

 *
 * A lightweight component based on the Component
 * class. A lightweight component doesn’t use a window
 * handle, has no peers, and can contain transparent
 * areas.

 *
 * The progress bar is a component that can be used to
 * keep your user informed about the progress of some
 * lengthy operation. Ideal candidates are file transfers,
 * printing operations, loading resources, and so on.

 *
 * To use a progress bar you have to first know the size
 * of the job that will be processed. This can be the number
 * of bytes in a file, and so on. As each portion of the

 job is
 * processed, you notify the progress bar with the new
 * value, which then updates the display.

 *
 * @version Version 1.0 - the finished first-cut

 * @author Stephen Gilbert, Bill McCarty

 *

 */

Because the output produced by javadoc is HTML text, you can insert HTML tags
as you see fit (although you should avoid including structural tags like <H1>, and so
on). After you have created a source file using javadoc comments, the next step is
to use the file to create the actual documentation. To create the documentation file
ProgressBar.html from the source code file Progress.java you use the
following command:

 javadoc -notree -noindex ProgressBar.java

This produces documentation that you can view in your Web browser, as shown in
Figure 4.9. If you provide a package name instead of the name of a single class,
javadoc produces documentation for the entire package. The documentation
normally includes an extensive index and inheritance tree file; these were excluded
from this example. The generated HTML uses several graphical images that are
stored in an images directory underneath the directory where the documentation
resides. By copying an images directory from the Java JDK documentation, your
own documentation can have the same cool buttons and titles as the standard JDK
documentation.

 - 124 -

 Figure 4.9 Progressbar.java documentation produced by javadoc

 CONSTRUCTING OBJECTS

Object constructors (sometimes called constructor methods) have only a single purpose
in life: to correctly initialize each and every data field when a new object is created.
Constructors, however, don’t operate in a vacuum; you can’t simply write a constructor
and think that’s all there is to object initialization. You have to be aware of how your
constructors interact with superclass constructors and with Java’s built-in object-
initialization facilities.

When Java creates an object, it first creates the “superclass part” of the object, as Figure
4.10 illustrates. It does this by calling your class’s superclass constructor as the first
statement in every constructor. In the case of the ProgressBar class, that means the
constructor for the Component class is called first, because ProgressBar is a subclass
of the Component class. (Of course, the Component constructor first calls the
constructor of its superclass, and so on, until the constructor for the Object—or root—
class is reached.)

 Figure 4.10 Object construction

Because a superclass may have several (overloaded) constructors, you are given the
opportunity to specify which superclass constructor you wish to call by invoking the
super() method. If you don’t add a super() method as the first statement of your
constructor, Java implicitly calls your superclass’s no-argument—or default—constructor.
When the superclass constructor returns (whether invoked explicitly or implicitly), each
attribute of your object is then initialized in order, using any initialization values or
expressions that were provided when the fields were defined. After that, the rest of the
constructor executes.

 The Working Constructor

 - 125 -

How do you design a constructor? The first question you should ask is “What does it take
to make a valid object?” A valid object is one that has every field initialized and all of the
class invariants satisfied. A class invariant is simply a logical condition that applies to the
data or state of your object. A Fraction class, for instance, that contains the fields
numerator and denominator represented by integers should make sure that the
denominator field is never zero. This is a class invariant.

 “You should always construct your objects in a valid state.”

You should always construct your objects in a valid state. Avoid writing constructors that
first create invalid objects, and then require another method call (create() or open(),
for instance) before the objects can be used.

However, this can be more difficult than you might imagine. It’s sometimes hard to think
of meaningful values for all data fields. If you create a MyDate class, for instance, what
should you use for the default value? January 1, 1980, or what? In such cases, you may
want to prohibit default construction by not providing a default constructor. If you don’t
provide any constructor at all, Java will “write” one for you, but once you provide a
constructor, Java no longer provides the invisible default constructor.

If the values passed to a constructor don’t permit the construction of a valid object, the
constructor should throw an exception rather than construct an invalid object. That way,
the method that invoked the new operator can catch the exception and deal appropriately
with the problem.

 Remember Design your constructors so that all fields are initialized and all class

invariants satisfied. Construct only legitimate objects.

What does the working constructor for your ProgressBar class have to do? Well, first, it
doesn’t make much sense to write a no-argument (default) constructor, simply because
the client must know how “big” the job is before creating a ProgressBar. If the client
doesn’t know how big the job is, then there’s no way a ProgressBar object can be
expected to take any intelligent action. So, to construct a ProgressBar object, your
users must provide a value for the extent. In addition, since you added (or are going to
add!) the ability to use different borders, the user will have to supply that information as
well. With these requirements, the working constructor for the ProgressBar class
should look something like this:

 // ===
 // CONSTRUCTORS
 // ===
 /**
 * Working constructor
 * @param extent the “size” of the job to be processed
 * @param borderStyle NONE, PLAIN, or SUNKEN
 */
 public ProgressBar(int extent, int borderStyle)
 {
 dbg(“ProgressBar(“ + extent +”, “ + borderStyle +”)”);
 if (extent < 0)
 {
 dbg(“ ERROR: ProgressBar.extent cannot be negative”);
 extent = 0;

 - 126 -

 }
 this.extent = extent;
 this.borderStyle = borderStyle;
 this.value = 0;
 }

Place this code in the Constructors section of your program. Notice the @param
javadoc tag in the javadoc comment preceding the method body. When processed,
this produces the documentation that you see in Figure 4.11.

 Figure 4.11 The ProgressBar constructor in javadoc

The actual body of the constructor uses the dbg() stub method to print to the console
the parameter values received, and then initializes the extent and borderStyle fields.
When the constructor arguments and the field names are the same, you can refer to the
field values as this.extent, and so on. This is a common Java idiom much used in
constructors; in other programming languages it is often considered bad form to name a
parameter the same as a data field. Note that the extent argument used to construct
the ProgressBar object is assumed to be greater than 0 and is set to 0 if it is not. See
the sidebar, “Exceptions, Assertions, and Defense” to take a look at this issue.

Exceptions, Assertions, and Defense

 The most problematic part of designing software is dealing with possible errors. As

a designer, you have to consider two things:

 • What can go wrong?

 • What should I do about it?

Think about the ProgressBar class for a moment. What can go wrong when your
client tries to create a ProgressBar object? The system could run out of
resources; the programmer could specify a border style that doesn’t exist (by using
a literal integer instead of the constants you provided); or the programmer could
supply a negative extent. Think for an instant about the last case. Your
ProgressBar class assumes the invariant condition (extent >= 0). To
preserve this condition in your constructor, you have four choices (a fifth choice,
returning an error code, is available to regular methods, but not to constructors).
You may:

 • Simply ignore the problem. This is the most popular strategy (based on the

amount of code that uses it). You just assume that everyone who uses your class

 - 127 -

will never make a mistake, and that, if they do, they deserve whatever happens. A
more charitable explanation for the widespread use of this technique is the
mistaken belief that the cost of checking and handling possible errors is greater
than the cost incurred should the error occur. This may be true for one-time,
throw-away routines, but it’s seldom true for production code. And, unfortunately,
that one-time, throw-away routine has a tendency to stick around for longer than
you expect. Even for one-time code you have to consider possible error
conditions, so it’s not much more work to think about how to handle them while
you’re at it.

 • Test the value and stop the program. This is a favorite technique of former C

programmers who write an assert() method like the following:

 public void assert(boolean theCondition, String theMessage)
 {
 if (! theCondition)
 {
 System.out.println(theMessage);
 System.exit(0);
 }
 }

Assert() methods (and classes) can vary in their complexity and sophistication.
By redefining the assert() method to have a null body or test a class constant,
the result of failing an assertion can be switched on for testing and switched off for
production code. The important thing to understand about assertions, however, is
that the class that uses the assert() method is deciding what to do about errors.
This responsibility is usually better left to its client objects.

•

Fix the mistake. This third way to handle errors is usually called “defensive”
programming. In defensive programming, you assume that errors may occur, and
therefore check for them. You also assume that the users will want to continue the
program—exactly the opposite assumption the assert() method makes. To
allow this to occur, you set invalid values to a known state. The problem with
defensive programming is that it fails to alert the caller when something goes
amiss. If you do use defensive techniques—as the constructor for the
ProgressBar class does for the extent argument—be sure you also notify the
programmer if possible.

•

Throw an exception. In Java, this is the preferred way to deal with errors of this
sort. When your class throws an exception, you allow the user of your class to
decide what to do about the error that occurred. However, mimicking the behavior
of a program that uses defensive techniques is not always possible when using
exceptions. In most designs, exceptions can take the place of assertions, but they
cannot easily replace defensive programming.

A good rule of thumb for deciding between these options is the rule of “least
astonishment.” You want to follow the strategy that is least surprising to your users.
For some errors, this will be assertions or exceptions; for others it will be defensive
programming. In ProgressBar.java, a defensive strategy was chosen because it
seems most in keeping with how the rest of the AWT acts—it seemed the least
surprising option.

 Remember Consider the possibility of failure and handle failure in the least astonishing

way.

 Overloaded Constructors

 - 128 -

Only after you’ve decided on what your constructor should do, should you consider
whether you need more than one constructor. You should generally write the working
constructor—that is, the constructor that requires you to specify all the user-selectable
inputs—as the first constructor.

There are two reasons for this. First, writing the working constructor requires you to
decide what data items users can initialize and what data items your class is responsible
for. Second, you’ll want to write the working constructor first because all the other
constructors can be (and should be) written in terms of the working constructor.

Because the end result of every constructor should be a valid object, overloaded
constructors simply provide multiple views on the “one true way” to construct your object.
If you write completely separate constructors, you run the risk that, due to a programming
error, an object constructed via constructor A will exhibit subtly different behavior from
one constructed by constructor B. That’s a situation you should avoid.

What kind of overloaded constructors make sense for the ProgressBar class? You
may, for instance, decide that most users of your ProgressBar class will want to use
the SUNKEN style borders, and would prefer that they not have to supply that information
when they do. Because Java does not have default arguments (though C++ does), you
can accomplish your goal by using an overloaded constructor.

You can have as many constructors as you want, but each must have a unique
combination of argument count, order, and type. This unique combination, along with the
name of the class, forms the argument’s signature. Thus, if you implement a constructor
that takes only a single integer argument—unlike the working constructor above, which
takes two—Java looks at the signature and sees a different method. This second
constructor is called an overloaded constructor.

When it comes time for you to actually implement this second constructor, you should not
attempt to duplicate all the code you wrote for the first constructor (as was previously
mentioned). Really, what you’d like is to simply call the first constructor, but just pass
SUNKEN as the second argument. Constructors, however, are not methods. You cannot
call them directly, except as an argument to the new operator. Instead, Java gives you
the ability to call another constructor (only from within a constructor) by using the this()
method. The arguments you pass to this() are evaluated to determine which
constructor to invoke. To provide such a capability to ProgressBar.java, add the following
code just under the constructor you previously wrote:

 /**
 * Constructs a ProgressBar using default size
 * @param extent the “size” of the job to be processed
 */
 public ProgressBar(int extent)
 {
 this(extent, SUNKEN);
 }

Remember

Define overloaded constructors in terms of a working constructor. If you find
yourself duplicating construction code in multiple constructors, you’ve
created a potential point of failure.

 MODIFYING STATE (MUTATORS)

In third-generation programming languages like Pascal, a distinction is generally made
between subprograms that return information (functions) and subprograms that perform
an action (procedures). As in C and C++, all the methods in Java are written using a

 - 129 -

functional format, as if they returned a value. Those methods that only perform an action
are marked by the keyword void, which appears in the method header in the place
where the type of the return value is normally specified.

In object-oriented designs, rather than categorizing methods as procedures or functions,
a much more useful dichotomy is to divide them into those methods whose operations
change the state of the object and those methods which only provide information.
Methods that change the fields of an object are called mutator methods and are usually
placed right after the “Constants” subheading in the “Public Interface” section of your
program. Most of the interesting behavior of an object causes it to change state, so
mutators are placed where they can easily be found.

 “Most of the interesting behavior of an object causes it to change state, so mutators

are placed where they can easily be found.”

As with constructors, you must be certain that mutator methods preserve the invariants of
your class. To return to the Fraction class, every method that changes the field
denominator—and that would include many, if not most, of the methods you’d want in a
Fraction class—should check before returning to make sure the invariant condition still
holds, and act accordingly. In addition to the options you had when writing constructors,
mutator methods can also return a value that can, in some instances, be used as an error
code.

For the ProgressBar class, you’ve already identified the main mutator method,
setValue(). At first glance, setValue() seems straightforward; all it has to do is to
update the value field in the ProgressBar object. One danger, however, of mutator
methods is that they can quickly degenerate into an end-run around encapsulation. The
user of the ProgressBar class shouldn’t (and probably doesn’t) care that the
ProgressBar class has a field called value, because that’s an implementation detail.
Looking from the client’s point of view, you just want to tell the ProgressBar object that
you have some more work done, and therefore it should update itself. Methods should tell
an object to perform some meaningful behavior, not act as a way to read and write
private data.

Remember

Mutator methods should perform a meaningful operation and should leave
your object in a valid state. Don’t use mutators to break encapsulation by
exposing a private field.

 Given those constraints, your setValue() method should cause your object to:

1.

Update its internal state to reflect the fact that you’ve accomplished another chunk of
work. Client objects shouldn’t care how this is accomplished or how the results of the
work are stored.

2.

Reflect the fact that more of the job has been accomplished. Because the
ProgressBar object talks to the outside world through its display, this can be
accomplished by calling the repaint() method, asking the AWT to schedule a
paint().

3.

Ensure that the internal state of the ProgressBar object remains consistent—that
none of the invariant conditions have been abrogated. From a logical point of view, it
doesn’t make any sense for the amount-of-work-completed variable (value) to be
larger than the total-size-of-the-job variable (extent). You’ll have to check and act
on that condition.

 - 130 -

 The following code addresses each of these requirements, and can be added to your
program under the Mutators subheading, in the Public Interface section:

 /* --Mutators----------------------- */
 /**
 * Tells the ProgressBar “how much” is done

 * Causes the bar to repaint itself

 *

 * Invariant: value <= extent
 *
 * @param value the new value that is “done”
 *
 */
 public void setValue(int value)
 {
 dbg(“setValue(“ + value +”)”);
 if (value > extent)
 this.value = extent;
 else
 this.value = value;
 repaint();
 }

 PROVIDING INFORMATION (ACCESSORS)

The second major type of service that a class offers its client objects is access to
information. Unlike mutator methods, accessor methods should not put your object into
an invalid state; therefore, there is no need to consider class invariants or error-handling
strategies. Carefully note, however, the difference between should not and cannot. The
C++ programming language allows you to declare a method as const; when you do so,
the compiler warns you if statements in that method change the object’s state (although
the mechanism is by no means foolproof). Java has no such facility, and so it’s up to you
to be doubly vigilant in making sure that accessor methods don’t change the state of their
objects.

 “In Java, an object variable does not contain an object value; it merely refers to an

object value.”

Unfortunately, in Java it is surprisingly easy for this to occur. In Java, an object variable
does not contain an object value; it merely refers to an object value. Because of this,
when your accessor method returns a reference to an object, the caller may be able to
modify your object. Most likely that’s not what you want. Just to make the point perfectly
clear, consider the code in Listing 4.5, GoodKid.java.

 Listing 4.5 GoodKid.java

 // GoodKid.Java
 //
 // Every GoodKid is constructed so that it stays at
 // a certain position. This position is relative to
 // the static final field HOME. The GoodKid class

 - 131 -

 // has NO mutators or accessors, so only their
 // creators know where they are.
 //
 import java.awt.*;

 public class GoodKid extends Component
 {
 public static final Point HOME = new Point(100, 100);
 public static final Point SIZE = new Point(25, 25);

 private Point myLocation;

 public GoodKid(int hPos, int vPos)
 {
 setSize(SIZE.x, SIZE.y);
 myLocation = new Point(hPos, vPos);
 }

 public void paint(Graphics g)
 {
 setLocation(HOME.x + myLocation.x,
 HOME.y + myLocation.y);
 g.fillOval(0, 0, SIZE.x - 1, SIZE.y - 1);
 }
 }

The GoodKid class looks like the epitome of well-behaved encapsulation. The field
myLocation is private, and is set only in the constructor. In the paint() method,
each GoodKid object is returned to its proper place, just in case anything was moved. If
there was ever a class that a programmer should have confidence in, GoodKid seems to
be the one.

The PiedPiper class, which you can see in Listing 4.6, Listing 4.7, and Figure 4.12,
shows that things are not as simple as they seem. Even though the PiedPiperr has no
access to the private data encapsulated inside each GoodKid object, it does have
access to the public static field HOME. By using the setLocation() mutator on
GoodKid.HOME, the Piper is able to lead the children astray.

 Figure 4.12 Running the PiedPiper applet.

 - 132 -

 Listing 4.6 PiedPiper.java
 // PiedPiper.java
 //
 // Makes the GoodKids follow the mouse
 // By REDEFINING the static final “constant” GoodKid.HOME
 //
 import java.awt.*;

 import java.applet.*;
 import java.awt.event.*;

 public class PiedPiper extends Applet
 implements MouseMotionListener
 {
 public void init()
 {
 setLayout(null);
 add(new GoodKid(-20, -20));
 add(new GoodKid(-20, 20));
 add(new GoodKid(20, -20));
 add(new GoodKid(20, 20));

 addMouseMotionListener(this);
 }

 public void mouseDragged(MouseEvent evt) {}
 public void mouseMoved(MouseEvent evt)
 {
 Point bad = GoodKid.HOME;
 bad.setLocation(evt.getX(), evt.getY());
 repaint();
 }
 }

 Listing 4.7 PiedPiper.html

 <HTML>
 <HEAD>
 <TITLE>Using the GoodKid Class</TITLE>
 </HEAD>
 <BODY>
 <H1>The Pied Piper of Hamelin</H1>
 <HR>
 In medieval legend, the town of Hamelin was plagued with rats.
 (Today, of course, we call them mice.)

 To rid the town, the merchants and elders of Hamelin
 hired a piper, who lead the rats away with his music.

 When not rewarded, the piper returned and lead the town’s
 children away likewise. <P>
 The cyberian descendents of the elders of Hamelin, never
 let this lesson stray far from their minds. They always
 make their data private or static final. But is it enough?

 - 133 -

 <HR>
 <APPLET CODE=PiedPiper WIDTH=500 HEIGHT=200>
 </APPLET>
 </BODY>
 </HTML>

The HOME field is specified as final, therefore its value cannot be changed. However,
HOME does not contain a Point, it merely refers to a Point. As long as HOME always
refers to the same Point, its value has not changed.

Unfortunately, this doesn’t rule out the possibility that some of the attributes of the Point
might be changed. The PiedPiper exploits this loophole, changing the X and Y values
associated with the Point. The value of HOME does not change, it always refers to the
same Point. But, the Point unexpectedly comes to have a new location.

 You might feel that you could avoid this problem by making HOME a private field and

using an accessor to return its value. However, if this is done naively, like this:

 private static final Point HOME = new Point(100, 100);
 public static Point getHOME() { return HOME; }

the problem is not alleviated at all. The PiedPiper can change the field just as easily as
before. To avoid this potential time-bomb, you must make sure that accessor methods
return only values, never references.

How, you wonder, do you do that when objects are always represented by references?
Do you use only primitive types (which are returned by value) as data members? No,
that’s not the answer. Instead, when working with object types and accessors, make sure
that all accesses receive a copy of the object or, better yet, don’t return access to
individual fields at all. If the outside world just has to know the location of HOME, you can
safely publish it like this:

 private static final Point HOME = getHOME();
 public static Point getHOME(return new Point(100, 100));

Now, inside the class you can refer to the static field HOME (which should be more
efficient than constructing a new Point object each time). Outsiders, however, will only
get a copy of HOME, and they won’t be able to lead the GoodKids off the screen.

Remember

In a well-designed class, objects provide services for clients; they don’t just
store data to be used elsewhere in the program. If you find yourself with
many getThisField() accessor methods, you may have fallen into the
Data Warehouse Trap. Data and the operations on that data belong
together.

Although your original design contained no accessor methods, writing
ZenoApplet.java revealed the need for two pieces of information. First, it would be
nice if client objects could tell when their ProgressBar objects were full. You can write a
method isFull() to give you this information. All that isFull() has to do is return
true if extent is equal to value, and false otherwise. You might also want to know
how much of the job is done. The getPercent() method can give you this information
by dividing the value field by the extent field, returning the result as a double. Note
that in neither case is the client object given access to the private fields (although,
because the fields in ProgressBar.java are primitives, you would not have to worry
about the same anomalies that PiedPiper exhibited). Instead, both isFull() and
getPercent() provide the client object with information without revealing their inner
structure. Add the following section to ProgressBar.java, just underneath the

 - 134 -

Mutators subheading, in the Public Interface section.:

 /* --Accessors---------------------- */
 /**
 * Returns percent of job done as a double
 *
 */
 public double getPercent()
 {
 return (double) value / extent;
 }

 /**
 * Returns true if extent and value are same
 *
 */
 public boolean isFull()
 {
 dbg(“isFull = “ + (extent == value));
 return (extent == value);
 }

 THE COMMON-OBJECT INTERFACE

When designing a class, most of your focus will, rightly, be on accessors and mutators.
To make your objects fit for public habitation, however, you should also implement a
minimal interface that all objects understand. In Java, this is the interface described by
the root class, Object.

 “Because every object in Java is an Object, your objects should know how to do

the things that Objects do!”

Because every object in Java is an Object, your objects should know how to do the
things that Objects do! You should ask yourself whether objects of your new class
need:

 • To perform String conversion for output. If so, you’ll want to override the

toString() method.

•

To compare themselves to other objects. If you have to sequentially order or otherwise
distinguish one object of your class from another, you should override the equals()
method. Make sure you understand the difference between identity (two object
variables that refer to the same object in memory) and equality (two objects that have
the same logical contents). The == operator compares identity in Java, and is seldom
useful when used on objects. The equals() method compares logical equivalence,
and you must override it in your class if this concept is important.

•

To copy themselves. If you need to make copies of objects you should consider writing
a method that does so. If your class has fields that are themselves objects, you will
need to override the clone() method to provide a deep copy instead of simply a
replication of references. Chapter 17, “Designing With Class Libraries,” will show you

 - 135 -

how to do this.

•

To clean up or release resources. If so, you may need to override the finalize()
method, which is called before an object is garbage collected. In reality, however,
you’ll seldom need to do this if you explicitly release the resources you acquire once
you’re done with them.

For the ProgressBar class, you won’t need to write most of these methods. You won’t,
generally, want to copy, compare, or clean up ProgressBar objects. However, the
ability to inspect a ProgressBar object by simply printing it out to the console does
have some value, so you’ll probably want to override the toString() method. When
writing the toString() method, you can format the output in any way that makes sense
to you.

If you recall that ProgressBar extends Component, you may realize that the
toString() method for ProgressBar would be considerably easier to write if it could
invoke the toString() method of Component. The descriptive information supplied by
Component.toString() could then be supplemented with the distinctive information
specific to a ProgressBar. The good news is that this is easy to accomplish: sending
toString() to a special receiver called super will forward the toString() message
up the inheritance hierarchy to Component. Add the following lines to
ProgressBar.java, just below the Accessor subheading, still in the Public Interface
section:

 /* --Common Interface--------------- */

 /**
 * Returns extent, value, and borderStyle
 *
 */
 public String toString()
 {
 String retStr = super.toString();
 retStr += “[value=“ + value;
 retStr += “, extent=“ + extent;
 retStr += “, borderStyle=“ + borderStyle + “]”;
 dbg(“toString() = “ + retStr);

 return retStr;
 }

 SERVICING THE AWT

When you first started the design for your ProgressBar, you identified two different
client objects. One, of course, was created by the programmer who wanted to use your
ProgressBar; the other client object was Java’s Abstract Window Toolkit, which
provides you with the framework to actually display your ProgressBar objects. The
AWT’s Component superclass provides several methods that you can override, methods
which are called by the AWT as necessary.

Listing 4.8 shows the Public Interface section, which is dedicated to the AWT client
object. Whereas you could have interspersed these methods with the other public
methods, organizing the interface by client object allows you to concentrate on one
problem at a time. This section includes the following methods:

 • getMinimumSize(), which tells the AWT’s layout manager not to resize a

 - 136 -

ProgressBar object to less than 20 pixels high and 100 pixels wide.

•

getPreferredSize(), which tells the layout manager to use the actual size if one
has been explicitly set (using the setSize() method that ProgressBar inherits from
Component), or to use the value returned from getMinimumSize() otherwise.

•

paint(), the most important of these methods, which gives the AWT precise, step-
by-step instructions for rendering your ProgressBar. Unless you override the
paint() method, nothing will be displayed and your ProgressBar class ends up
being, well, a little pointless!

Both getMinimumSize() and getPreferredSize() are relatively self-explanatory,
but the paint() method deserves a few words of explanation. To paint() a
ProgressBar object, you want to complete the five steps you had earlier added to the
first draft of ProgressBar.java:

1.

Allow enough space to draw your border. Because each possible border means that
the interior bar will have to be a different height and width, the first order of business
is to calculate and create this inner rectangle.

 2. Transform the logical size of the ProgressBar, stored in the field extent, to the

actual physical rectangle available for drawing the bar.

3.

Fill the interior of the bar with the background color, because lightweight components
do not automatically do this. (That’s how they provide the useful ability to have
transparent backgrounds.)

 4. Draw the appropriate border.

 5. Draw the interior bar itself.

 The actual code for each of these operations is an implementation detail, and is thus

contained in methods located in the next section.

 Listing 4.8 The AWT Public Interface section for ProgressBar.java

 // ==
 // PUBLIC INTERFACE: AWT Client
 // ==
 /**
 * Called by AWT when component must repaint itself
 *
 */
 public void paint(Graphics g)
 {
 dbg(“paint(“ + g +”)”);

 // 1. Calculate border and “inside” rectangles

 Rectangle rect = getBounds();
 rect.x = rect.y = 0;

 Rectangle inside = new Rectangle(rect);
 inside.grow(-(borderStyle/2), -(borderStyle/2));

 - 137 -

 // 2. Calculate size of the “fill” area

 float pixPerUnit = (((float) inside.width) / extent);
 inside.width = (int) (pixPerUnit * value);

 // 3. Paint entire background with background color

 g.setColor(getBackground());
 g.fillRect(rect.x, rect.y, rect.width, rect.height);

 // 4. Draw appropriate border

 if (borderStyle == SUNKEN) drawSunkenBorder(g, rect
);

 else if (borderStyle == PLAIN) drawPlainBorder(g, rect
);

 // 5. Draw filled area

 drawInterior(g, inside);

 }

 /**
 * Tells the AWT the preferred size of a ProgressBar
 *
 */
 public Dimension getPreferredSize()
 {
 dbg(“getPreferredSize() called”);
 Rectangle r = getBounds();
 if (r.width == 0 || r.height == 0)
 return getMinimumSize();
 else
 return new Dimension(r.width, r.height);
 }

 /**
 * Tells the AWT how “small” the bar is willing to go
 *
 */
 public Dimension getMinimumSize()
 {
 dbg(“getMinimumSize() called”);
 return new Dimension(100, 20);
 }

 THE PRIVATE AND PROTECTED SECTION

 There are still two steps necessary before you can loose your ProgressBar class on

the waiting world. You have to actually draw the bar on the screen, and you must test it.

 The Private and Protected section of the classes you design should contain

 - 138 -

implementation details that the rest of the class—and certainly other classes—should not
rely on. Just as you put the constructors and public methods first when implementing
the other sections, here you should put the protected methods—those that can be
overridden in a subclass, before the private methods.

ProgressBar.java has one protected method, drawInterior(), which you can see
in Listing 4.9. This method simply fills the interior rectangle calculated earlier with the
value contained in the component’s foreground color. The reason the method is
protected, rather than private, is to allow you to create derived classes that display
the bar in a different manner—like Microsoft-style progress bars, for instance—or to use
a different color.

 Listing 4.9 The protected and private methods of ProgressBar.java

 // ===
 // PROTECTED AND PRIVATE METHODS
 // ===
 /**
 * Draws the actual “bar” itself. Override to draw differently
 * @param g Graphics context object
 * @param inside Rectangle for drawing inside
 *
 */
 protected void drawInterior(Graphics g, Rectangle inside)
 {
 g.setColor(getForeground());
 g.fillRect(inside.x, inside.y, inside.width, inside.height
);

 }

 /**
 * Draws a single line border in foreground color
 * @param g Graphics context object
 * @param rect Rectangle representing size of ProgressBar
 *
 */
 private void drawPlainBorder(Graphics g, Rectangle rect)
 {
 g.setColor(getForeground());
 g.drawRect(rect.x, rect.y, rect.width-1, rect.height-1);
 }

 /**
 * Draws a 3D “sunken” border 2 pixels deep
 * @param g Graphics context object
 * @param rect Rectangle representing size of ProgressBar
 *
 */
 private void drawSunkenBorder(Graphics g, Rectangle rect)
 {
 g.setColor(getBackground().darker().darker());
 g.drawLine(0, 0, rect.width-1, 0);
 g.drawLine(0, 1, rect.width-2, 1);
 g.drawLine(0, 0, 0, rect.height-1);

 - 139 -

 g.drawLine(1, 0, 1, rect.height-2);

 g.setColor(getBackground().brighter().brighter());
 g.drawLine(0, rect.height-1, rect.width, rect.height-1);
 g.drawLine(1, rect.height-2, rect.width, rect.height-2);
 g.drawLine(rect.width-1, 1, rect.width-1, rect.height-1);
 g.drawLine(rect.width-2, 2, rect.width-2, rect.height-2);
 }

The other two methods, drawPlainBorder() and drawSunkenBorder(), are
private methods that were moved out of the paint() method simply to unclutter the
code and make it easier to understand. You may feel that drawSunkenBorder() is
such a handy routine that it should be made public so you can use it anywhere you
need to draw a sunken style border. As soon as you use it that way, however, you will
find yourself creating invisible ProgressBar objects, simply to be able to use the
drawSunkenBorder()method.

Remember

Classes are not function libraries. If you find yourself creating unneeded
objects just to use their methods, you’ve fallen into the “spectral object trap”
and you need to make those methods private.

Testing Your Work

After you’ve added these methods to ProgressBar.java, you’re ready to test it out.
Modify your main() method so it looks like the one shown in Listing 4.10. This uses
some of the new accessors and the ProgressBar’s new toString() method to print
out a little more information than before. Now compile the program like you did before,
using

 javac ProgressBar.java

 and run the resulting .class file by typing the following:

 java ProgressBar

You should see a Frame window that now contains three ProgressBar objects, like that
shown in Figure 4.13, along with some information about each object. If you have some
difficulty getting the program to compile, you can copy a completed version from the CD-
ROM.

 Figure 4.13 Running ProgressBar.java

 Listing 4.10 The main() method of ProgressBar.java

 - 140 -

 // ===
 // TESTING METHODS
 // ===
 /**
 * Tests the class by creating three ProgressBar objects
 * The PBApplet programs tests the actual operation
 *
 */
 public static void main(String[] args)
 {
 Frame f = new Frame();
 f.setLayout(new FlowLayout());
 ProgressBar pb1 = new ProgressBar(1000, ProgressBar.NONE);
 f.add(pb1);
 pb1.setValue(50);
 f.add(new Label(“ % = “ + (int)(pb1.getPercent() * 100)));
 f.add(new Label(“pb1 = “ + pb1));

 ProgressBar pb2 = new ProgressBar(1000, ProgressBar.SUNKEN
);

 pb2.setSize(200, 20);
 pb2.setBackground(Color.lightGray);
 pb2.setForeground(Color.blue);
 f.add(pb2);
 pb2.setValue(500);
 f.add(new Label(“ % = “ + (int)(pb2.getPercent() * 100)));
 f.add(new Label(“pb2 = “ + pb2));

 ProgressBar pb3 = new ProgressBar(1000, ProgressBar.PLAIN);
 f.add(pb3);
 pb3.setValue(999);
 f.add(new Label(“ % = “ + (int)(pb3.getPercent() * 100)));
 f.add(new Label(“pb3 = “ + pb3));

 f.setBackground(Color.lightGray);
 f.setSize(300, 300);
 f.setVisible(true);
 }

 // ---
 // dbg() method
 // Used to print a debug string to the console
 // ---
 /**
 * Prints a debug string to the console
 *
 */
 private static void dbg(String msg)
 {
 System.out.println(msg);
 }

 After you’ve got the test method running, use appletviewer or a Web browser that

 - 141 -

supports JDK 1.1 and try out ZenoApplet.html (which you can see in Figure 4.14) to
see if the philosopher Zeno was right when he proposed that motion was intrinsically
impossible!

 Figure 4.14 Running the Zeno applet

 Summary

Design is the process of turning your client’s ideas into something useful. The first step in
designing a software program is translating your client’s conceptual model (what’s
wanted) into a logical—and then a physical—model, which can finally be translated into
executable form and run on a computer. In this chapter, you learned how to translate a
client’s description (in the form of a summary paragraph) into a source code model that
can be compiled by the Java compiler.

A well-designed class is divided into a public section, called the interface, and a private
section, called the implementation. Applying the principles of abstraction and
encapsulation involves first deciding which parts of your class are essential for its use
(abstraction), and then wrapping everything else up in an opaque package where the
details are hidden from view (encapsulation). When deciding on which parts of your class
should be public, put yourself in your client objects’ position; the public interface of your
class should be as small and easy to use as possible, yet complete enough to perform its
intended purpose.

The data in your program should be private, and the data and methods should work
together to present client objects with a single abstraction. Classes that contain multiple
abstractions should be broken into cohesive classes. You should not create classes that
contain only methods, because a class is not a subroutine library. Neither should you
create classes that contain mostly data (with methods to get and set that data),
because an object is not a data warehouse. Your methods should all use the attributes of
your class. Also, each attribute should be used by some method, and not simply stored
for processing by some imaginary external routine.

The methods in your class should be internally cohesive; each method should do only
one thing. You should use a template to structure your class, and a checklist to make
sure you have considered all the necessary details in your design. You should make sure
that your constructors initialize each field in your class and that they create all objects in a
valid state. Make sure you know what the invariant conditions are for your class, and be
certain your constructors maintain those conditions. Write your working constructor first,
and then write overloaded constructors in terms of the working constructor.

Check mutator methods to see that each maintains the invariants of your class. When
errors occur, consider different error-handling strategies and adopt the strategy that does
the least harm and that provokes the least surprise. When you use accessor methods, be
careful not to return a reference to private data. If you have accessor methods that should
return a private data field that refers to an object, you should return a copy of the field or
create an immutable interface.

 - 142 -

Questions

 1. For any kind of object, one way of looking at it is to describe its _____________,

whereas an equally valid way is to describe its ____________________.

 2. The _____________________ of a well-designed object describes the services that

the client of the object wants performed.

 3. The ______________________ of an object is the manner or techniques it uses to

carry out its functions.

4.

When designing classes, abstraction is the process of discovering the
_______________ behavior of an object. These behaviors are used to construct the
object’s ______________________.

 5. The purpose of a well-designed class is to model an _______________________

from the user’s point of view.

 6. The first step in designing a class begins by identifying the class’s

_______________, ______________, and _________________________.

 7. A ______________________ describes the client’s conceptual model in an informal

way.

 8. Your object’s client is anyone or anything that sends your object

____________________.

9.

Three common techniques that will help you implement your designs are to begin
with a _______________, write a __________________ method that exercises your
class, and use _____________ methods to refine your interface before looking at the
details.

10.

Your class will define three types of attributes: ___________________________,
which store the state of each individual object; _______________ attributes, which
share state among all members of the class; and ____________________ class
attributes, which store unchanging state.

 11. The “Prime Directive” for object attributes is that all state variables should be declared

_________________.

 12. An object contains both ____________ and _______________ that operate on that

data. Objects with no _______________ are ghosts!

 13. The principle of __________________ says that every class should model a single

abstraction.

 14. Using static final constants allows you to use your facility for ___________________,

rather than rely on _________________.

 15. When constructing an object, Java gives you the opportunity to decide which

superclass constructor should by called first, by using the _____________ method.

 16. To write all of your constructors in terms of the working constructor, you can use the

special ______________ method.

 17. The most important consideration when writing constructors is to make sure that all

fields are __________________ and that all _________________ are satisfied.

 - 143 -

18.

When dealing with errors that occur in your methods, you have the options of doing
nothing, stopping the program after testing (by writing an _______________ method),
fixing the mistake (which is called _______________ programming), or
_______________________, which is the preferred way of dealing with errors in
Java.

 19. Methods that change the state of an object (called _________________) must be

very careful to preserve the invariants of the class.

 20. Methods that return information to the client without changing the state of the object are

called ______________________.

 Exercises

 1. On a sheet of paper, list the method names that would represent the public interface

for a car, a refrigerator, a pencil, a trumpet, and a calculator.

2.

Why do you think that the interface for an airliner (represented by its cockpit control
panel) is more complex than that of your automobile? Is it simply that an airliner is a
more complex machine? What would be some of the ramifications of simplifying the
interface? What does your answer tell you about the limitations of abstraction?

3.

Using the public interface you developed for the car in Exercise 1, list the private
operations and attributes for your automobile. Take your list, and write a class
definition for an automobile. Write stubs for each of the public methods. Write a main
method that tests each of the methods in your class.

4.

If you’re part of a class or study group, divide your classmates into equal groups A
and B. Divide each group into teams of two or three. Have each team in group A write
a summary paragraph that describes a software component (taking 15 or 20
minutes). Shuffle the examples and have each team in group B take one component.
While Group B creates a Java class definition, Group A should write a Java program
that uses the software component they described. Group B should write the public
interface and a list of data members—you don’t have to list private methods. This
should take about one-half hour. At the end of that time, have both groups get
together and compare their work.

5.

If you are in a class or study group, choose a large software product like Microsoft
Word or Netscape Navigator and list the classes that you think would be necessary to
build that application. Take two of the classes that most of you agreed upon, and
describe their public interfaces.

 To Learn More

Specific advice for designing good classes and objects in Java is still rare; however, there
are several books that focus on general object-oriented principles, or that are geared
toward another language yet contain useful advice.

Steve McConnell’s Code Complete falls into neither of these categories, yet is immensely
useful for practical, real-world knowledge that will stand you in good stead in any
language.

Scott Meyers’ Effective C++ and Alan Holub’s Enough Rope to Shoot Yourself in the Foot
are both geared toward C and C++ programmers. The specific C++ implementation
issues that comprise the majority of both these books will not necessarily be helpful, but
the sections on class and object design both provide useful information for the Java
programmer.

 Arthur J. Riel’s Object-Oriented Design Heuristics addresses general rules for partitioning

 - 144 -

methods and data between classes and is clear and easy to read.

Some of the most interesting advice is found on the Web, and some of the most helpful
(especially if you come from a C++ background) is the “Java Cookbook,” a guide to porting C++
programs to Java written by Dr. Mark Davis at Taligent. Despite the title, even non C++
programmers will find something they can use. The address is
http://www.taligent.com/Technology/WhitePapers/PortingPaper/index.html.

Also helpful are the numerous Java coding standards. Although they frequently deal with
purely implementation details, they also have some good advice for doing detailed,
physical design. Two of the best are Doug Lea’s “Draft Java Coding Standard,” and Scott
Ambler’s “Java Coding Standards.” You can find these at
http://g.oswego.edu/dl/html/javaCodingStd.html and
http://www.AmbySoft.com/javaCodingStandards.pdf.

Chapter 5: Designing Classes and Objects

 Overview

“So,” Jason began, leaning forward in his chair with what he hoped was a disarming
smile. “You’ve certainly been busy. Why don’t you tell me what you’ve done.” Because
Jason was one of the company’s most skilled programmers, he’d been assigned by the
boss, Mr. Markey, to mentor Barney, a new intern on loan from marketing.

Across the conference room table, Barney sat up straight in his chair and rested his
elbows on the table, returning Jason’s smile. With no hint of self-consciousness, and with
an admirable enthusiasm, he started right in.

“Busy? I’ll say!” Barney exclaimed, pointing to the foot-high pile of listing paper sitting
between them. “I was up half the night working on this job. Mr. Markey told me it was
really important to make sure that everyone in the company got entered into the new
scheduling system, so Sam and I were here until 11:30 writing the new classes. There
are almost 1,200 of them.”

“Mr. Markey had you write 1,200 classes to be added to the new system?” Jason was
careful to keep his tone neutral, and to keep an encouraging smile on his face, but he
couldn’t quite keep the shock out of his voice. “Can I take a look?” he asked, reaching for
the sheet on the top of the pile. The listings were neatly printed in very small type,
sideways and two to a page. Jason silently calculated the lines of code as he started to
read:

 public class AndersonJane
 {
 private String lastName = “Anderson”;
 private String firstName = “Jane”;
 private int ID_No = 107325;
 . . .
 public AndersonJane(String name)
 {
 . . .

Keeping the smile on his face, he reached for a handful of sheets this time. He quickly
flipped through them. Every class followed the same pattern: each was named after a
different employee, had the fields initialized to proper values, and had a different
constructor name. Jason struggled lamely to find something encouraging to say. “Very
nice formatting. Alphabetizing the names was a nice touch as well,” was the best he
could come up with. Barney’s grin let him know he had succeeded. Now for the hard part.

 - 145 -

“Tell me,” Jason asked, in what he hoped was a non-threatening manner, “where’s the
code that adds all the employees to the scheduling system?” Jason was surprised to find
that Barney brightened even further.

“Oh,” he began, “that’s why I’m here. Mr. Markey told me that you’re the Java expert. He
said that once I got finished, I should bring the code down here, and we could hook it up
together.”

Just because someone can define the word class and write a Java class header and
class body, they’re not automatically able to recognize what should, and should not, be
represented as a class. In the previous chapters, you’ve learned the fundamentals of
object-oriented programming. Many software developers stop learning at that point.
Rather than pressing on to study design, they approach every programming problem
afresh, as though each new program had no relationship to programs previously written.
Rather than working out a suitable design in advance, they solve each design problem as
it comes up.

Their approach is somewhat similar to that of chimpanzee art: give a chimp a brush, a
canvas, and some oil paints, stand back, and watch the fun. The chimp may have a fine
understanding of how to apply the paint to the brush and the brush to the canvas, but the
chimp does not give great significance to concepts like shape, texture, and color. Though
some people may like the resulting “art,” it falls short of the work of a talented human
artist who understands the elements of artistic design.

 Similarly, the results of programming without design are often less than satisfactory. If the

resulting program works at all, it’s likely to be difficult to understand and maintain.

This effect is magnified when programmers work as a team. Without an agreed design,
members of the team discover design issues one by one, as they program. Often, they
resolve these issues in ways that are inconsistent with the assumptions and decisions of
other team members. When it comes time to bolt together the software components built
by team members, the team often discovers that the parts don’t fit. Design is essential to
effective teamwork.

Building on the knowledge of object-oriented programming you gained in previous
chapters, this chapter begins your study of object-oriented design. In this chapter you will
learn:

 • How to analyze a problem and write a summary paragraph

 • How to identify the classes and objects of your system

 • How to identify the attributes and methods of the classes of your system

 • How to sketch a user interface for your system

 • How to draw object interaction diagrams that show how messages are passed from

object to object within your system

 • Some handy rules of thumb for designing classes and objects

The Renter Applet

Figure 5.1 shows the Renter applet, which models the interaction between a renter and a
lender. The model is not perfect. For example, the renter can return items that haven’t
even been rented. But, by omitting some of the finer points of renting, the program is
made simpler. And, a simple program better serves the immediate purpose of illustrating

 - 146 -

important design principles. Later, you’ll have an opportunity to extend the program so
that it more realistically models the real world.

 Figure 5.1 The Renter applet

The user interface of the Renter applet includes two buttons: Rent and Return. By
clicking the Rent button, the user (who plays the role of the renter) can rent a software
bug. Notice that the program doesn’t give the user a selection of bugs from which to
choose—all bugs are considered to be the same. The number of remaining bugs that the
lender has on hand is displayed in a text box. Below that text box is another text box,
which is used to display messages from the lender.

When the renter rents a bug, the number of remaining bugs is decremented and a
message from the lender is displayed. If the renter attempts to rent a bug when none
remain, the lender responds with an error message, which is displayed in the Message
text box.

The renter can return a bug simply by clicking the Return button. The applet updates the
number of remaining bugs and displays a message from the lender. As mentioned, the
renter can return a bug even before one has been rented. This simplification doesn’t
bother the cheerful but unsophisticated lender, who appreciates the increase in the
inventory of bugs, even if it’s a phantom increase.

 The HTML file used to execute the applet is shown in Listing 5.1.

 Listing 5.1 Renter.html
 <HTML>
 <HEAD>
 <TITLE>The Software Renter: Custom Bugs in All Sizes </TITLE>
 </HEAD>
 <BODY>
 <H1>Welcome to the <I>Bug Boutique</I>

 We Have Custom Software Bugs in All Your Favorite Styles and
Sizes

 </H1>
 <H4>By renting software bugs, you avoid the potentially large
 expense of owning your own permanent bugs. Whenever you write
 software, just pop into one of our stores near you. Choose the
 bug you need, use it, and return it. It’s that easy. Our prices
 are always the lowest. Your users are sure to notice an immediate
 improvement in software reliability. If not, we’ll cheerfully
 refund your rental fee, less a $5 restocking charge.

 - 147 -

 <HR>
 To rent a bug, just press Rent.
 To return a bug, just press Return.
 <HR></H4>
 <APPLET CODE=Renter WIDTH=500 HEIGHT=150>
 </APPLET>
 </BODY>
 </HTML>

 THE Renter CLASS

The Renter applet consists of two classes, Renter and Lender. The source file for the
Renter class is shown as Listing 5.2. See what you can learn by dissecting the Renter
class: take a look at the class and identify its methods and attributes. Then, determine
which are part of the interface of the class, and which are part of the implementation.

 Listing 5.2 Renter.java
 // Renter.java

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

 public class Renter
 extends Applet
 implements ActionListener

 {
 // ===
 // APPLET METHODS
 // ===
 /* —Initialization————————- */
 public void init()
 {
 setLayout(new GridLayout(3, 1));
 Panel north = new Panel();
 north.setLayout(new FlowLayout());
 north.add(theRentButton);
 north.add(theReturnButton);
 add(north);

 Panel center = new Panel();
 center.setLayout(new FlowLayout());
 center.add(new Label(“Qty On Hand: “));
 center.add(theQtyOnHand);
 add(center);

 Panel south = new Panel();
 south.setLayout(new FlowLayout());
 south.add(new Label(“Message: “));
 south.add(theMessage);
 add(south);

 - 148 -

 theRentButton.addActionListener(this);
 theReturnButton.addActionListener(this);

 displayQtyOnHand();
 }

 // ===
 // IMPLEMENT ACTIONLISTENER
 // ===
 public void actionPerformed(ActionEvent ae)
 {
 System.out.println(“Event: “ + ae);
 Object source = ae.getSource();

 if (source == theRentButton)
 theLender.rentItem(this);
 else if (source == theReturnButton)
 theLender.returnItem(this);
 displayQtyOnHand();
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* —Mutators———————————- */
 public void tellResult(String msg)
 {
 theMessage.setText(msg);
 }

 // ===
 // PRIVATE METHODS
 // ===
 private void displayQtyOnHand()
 {
 int onhand = theLender.getQtyOnHand();
 theQtyOnHand.setText(““ + onhand);
 }

 // ===
 // CLASS ATTRIBUTES
 // ===
 private final static int INITIAL_QTY = 5;
 private Lender theLender = new Lender(INITIAL_QTY);

 private Button theRentButton = new Button(“Rent”);
 private Button theReturnButton = new Button(“Return”);
 private TextField theQtyOnHand = new TextField(10);
 private TextField theMessage = new TextField(64);
 }

 - 149 -

Your findings should be similar to those in Table 5.1, which shows the methods and
attributes of the Renter class. Remember that methods are shown with parentheses
following the name of the method. Remember also that public methods and attributes
are part of the interface of a class, but private methods and attributes are part of the
implementation of a class.

 Table 5.1 Methods And Attributes Of The Renter Class

 Method/Attribute

Type

 init()

Interface

 actionPerformed()

Interface

 tellResult()

Interface

 displayQtyOnHand()

Implementation

 INITIAL_QTY

Implementation

 theLender

Implementation

 theRentButton

Implementation

 theReturnButton

Implementation

 theQtyOnHand

Implementation

 theMessage

Implementation

When studying a class, you may find that constructing a table like Table 5.1 helps you to
understand the class. Notice that most of the methods and attributes of the Renter class
are part of its implementation, not its interface. The interface, which is the part of the
class that is visible to other classes, is smaller and simpler than the implementation. This
is typical of classes generally, and is one mark of a good design.

Remember

A good design hides much of the complexity of a class in the
implementation of the class. Ideally, the interface of a class should be small
and simple.

 THE Lender CLASS

Listing 5.3 shows the source file for the Lender class. Take a look at it, identify the
methods and attributes, and allocate them to the class interface or implementation, just
as you did for the Renter class.

 Listing 5.3 Lender.java
 // Lender.java

 - 150 -

 public class Lender
 {
 // ===
 // CONSTRUCTORS
 // ===

 public Lender(int qty)
 {
 theQtyOnHand = qty;
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* —Mutators———————————- */
 public boolean rentItem(Renter renter)
 {
 if (theQtyOnHand > 0)
 {
 theQtyOnHand -= 1;
 renter.tellResult(“Thanks for your business — “ +
 “come back soon.”);
 return true;
 }
 renter.tellResult(“Oops — we’re all out of bugs just now.”+
 “ Can I interest you in a worm or a virus?”);
 return false;
 }

 public void returnItem(Renter renter)
 {
 theQtyOnHand += 1;
 renter.tellResult(“Thanks for returning the bug promptly.”);
 }

 /* —Accessors——————————— */
 public int getQtyOnHand()
 {
 return theQtyOnHand;
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private int theQtyOnHand;

 }

 “ The interface…is smaller and simpler than the implementation. This is typical of classes

generally, and is one mark of a good design. ”

 - 151 -

Table 5.2 shows what you should have found. Notice that the table identifies the
constructor, Lender(), as a method. This is not strictly correct, but it’s more
convenient than treating constructors separately."

 Table 5.2 Methods And Attributes Of The Lender Class

 Method/Attribute

Type

 Lender()

Interface

 rentItem()

Interface

 returnItem()

Interface

 getQtyOnHand()

Interface

 theQtyOnHand

Implementation

As you can see, the interface of the Lender class is larger than the implementation. Is
this a symptom of poor design? Though such is often the case, it is not the case here.
The Lender class is so simple that there just isn’t much implementation needed.

Remember

A class with more interface than implementation is not always a badly
designed class. Often, a very simple class will have more interface than
implementation.

 A Design Process

Now that you’ve studied the structure of the Renter class and the Lender class, you
may be wondering how that structure came about: What process did the designer follow?
Recall from Chapter 2, “Object-Oriented Software Development,” that design is an activity
within a larger process, the software development process. As you learned, there are
many possible ways of performing the software development process. Consequently, you
should not be surprised to learn that there are many possible ways to perform the design
activity.

This chapter introduces you to one approach that can be effectively applied to a variety of
problems. The references at the end of the chapter will help you discover other ways of
performing the design activity that may be more suitable for problems of the sort you
regularly deal with.

 The design process consists of these four steps:

 1. Determine the requirements.

 2. Identify the classes and objects.

 - 152 -

 “Because a design can always be improved, design is a process without a ‘stopping

rule.”

 3. Describe the object collaborations and the classes.

 4. Sketch the user interface.

Figure 5.2 illustrates this design process. Although the figure does not indicate it (for the
sake of simplicity), the design process is exploratory and iterative. Each step may take
the designer forward to the following step or back to a preceding step. If it seems to the
designer as though a tentative design is going nowhere, the designer may abandon it and
restart the entire process.

 Figure 5.2 The object-oriented design process

Because a design can always be improved, design is a process without a “stopping rule.”
The decision to cease looking for a better design has less to do with the design itself than
with circumstances such as the time remaining on the schedule or the amount of energy
the designer has left.

The same is true of the individual steps of the design process. The decision to move from
one step to the other is made rather subjectively. The good news is that this poses no
serious risk, because it’s always possible to revisit the decision.

Determining the Requirements

The first step of object-oriented design is to determine the general requirements the
program must satisfy. Of course, you’re unlikely to completely and accurately specify the
requirements right away. As you proceed, you’ll undoubtedly uncover new requirements
and you’ll better understand previously identified requirements. But, one must start
somewhere. Remember that design is iterative. The trick is to get something down on
paper and then study it and improve it. Don’t try to perfectly form the idea in your head
before writing it down. The simple act of writing will often help you form your ideas.

A good way to begin to determine the program requirements is to write a summary
paragraph. The summary paragraph should view the system from a functional
perspective, focusing on the inputs and outputs of the system and on its external

 - 153 -

behavior. In effect, it should describe the interface of the program rather than the
implementation of the program. Often, the paragraph is called a problem summary
paragraph. You may wonder why it’s not called a solution summary paragraph. The
answer is simple. Because the paragraph doesn’t spell out a specific solution, but merely
identifies elements that must characterize any acceptable solution, it is more focused on
the problem than on the solution.

Don’t read ahead. Instead, stop now and write a summary paragraph that describes the
function of the Renter applet as you understand it. When you’re finished, compare your
results with what follows.

Problem Summary Paragraph For The Renter Applet

The Renter applet tracks the inventory (that is, a count) of bugs. Initially, there are
five bugs available. The user can rent a bug, which decreases the remaining
inventory. The user can return a bug, which increases the inventory. Whenever a
bug is rented or returned, the applet displays a message confirming the action. If
the user tries to rent a bug when none are available (that is, when the inventory is
zero), the applet displays an error message.

 Did you identify all the actions that the applet must perform? If not, study the sample

paragraph until you are convinced that it specifies no unnecessary action.

Did you identify additional actions, actions that do not appear in the summary paragraph?
Remember that the summary paragraph given above describes the applet as written.
Perhaps, for example, you believe that allowing the user to return a bug that was never
actually rented is an oversimplification. If so, it was appropriate for you to include actions
that prevent this from happening. Check any actions you added and convince yourself that
they’re really necessary, or cross them out of your summary paragraph.

 Identifying Classes and Objects

 The next step in the object-oriented design process is to identify the classes and objects

that will comprise the program. Your summary paragraph will help you do this.

An effective way to identify classes and objects is by preparing what are known as CRC
cards. The name CRC card stands for class-responsibility-collaboration card. To create
CRC cards, find some 3∞5 index cards. If you don’t have any 3∞5 index cards, you can
use a larger size or even 8-1/2∞11 paper. The handy thing about 3∞5 cards is their small
size, which prevents you from putting too much detail on a single card, and their weight,
which keeps them in place. Sheets of paper tend to be randomly redistributed every time
a high-volume air conditioning system kicks in, which can get annoying.

Each CRC card describes a single class in terms of the data attributes, responsibilities,
and collaborations of the class. The responsibilities of a class are simply the messages it
responds to (that is, the public methods it contains). The collaborations (or, collaborators,
if you prefer) of a class are simply other classes that interact with the class by sending it
messages or receiving messages from it.

More precisely, it is the objects of a class—not the class itself—that send or receive
messages. However, it’s convenient to speak in terms of messages sent by or received
by a class, because any object of the class can send or receive such messages. Though
this practice can sometimes be confusing, particularly for beginners, it is common; you
should strive to grow accustomed to it, without forgetting that the usage is not really quite
right.

 - 154 -

 “The name CRC card stands for class-responsibility-collaboration card. ”

 PREPARING CRC CARDS FROM A COMPLETED DESIGN

To learn how to prepare CRC cards, you’ll first study CRC cards that describe the Renter
and Lender classes presented earlier. By comparing the CRC cards with an actual
design, you’ll better understand the relationship between the CRC cards and the design.
In the next subsection, you’ll learn how to prepare CRC cards from a problem summary
paragraph.

Figure 5.3 shows a CRC card prepared for the Renter class. Notice how the front of the
card identifies the class by name. Responsibilities are listed in the left-hand column, and
corresponding collaborations are listed in the right-hand column. The back of the card
gives a short description of the class and lists the attributes of the class. This is a subset
of the information presented earlier in Table 5.1. Look back to that table and try to
determine whether you can identify the information that appears there, but does not
appear on the CRC card.

 Figure 5.3 A CRC card for the Renter class

You should have found that Table 5.1 includes implementation information that is not
included in the CRC card for the Renter class. In other words, the CRC card represents
the Renter class at a higher level of abstraction. Moreover, the attributes and
responsibilities listed on the CRC card are listed using very general names rather than
the names used in the Java program. Remember that CRC cards are prepared very early
in the system design activity, long before code is actually written. It would be premature
to attempt to identify fields and methods with Java-style names at the time CRC cards
are written.

Another significant difference between Table 5.1 and the CRC card is that the CRC card
lists two responsibilities, “rent item” and “return item,” that do not appear in Table 5.1.
Certainly, these are operations that a Renter object must be able to perform. Why, then,
don’t they appear in Table 5.1? The operations are embedded within the
actionPerformed() method of the Renter class. Because Table 5.1 lists the methods
of the Renter class, it does not include these operations implemented within the
actionPerformed method. They’re logically present within the actionPerformed()
method, but they do not have distinct identities as the methods within the Renter class
do.

It would certainly be possible to rewrite the Renter class to include two new methods,
rentItem() and returnItem(). This would make it easier to spot the operations
performed by Renter objects. But, it would also make the class somewhat longer.

 - 155 -

Design involves a myriad of such decisions, wherein each alternative gains you
something, but only at a price. Knowing which to choose is no simple matter. That’s why
good designs are usually the result of an iterative process. You make a decision that you
later see was more costly than you’d originally thought. A conscientious designer will go
back and try the other alternative. A lazy designer continues on course, sailing as blithely
as the Titanic through a forest of icebergs. Because you’re planning on being a
conscientious designer, let’s rewrite Renter.java to make the hidden operations more
explicit. Listing 5.4 shows the relevant fragment of code.

 Listing 5.4 The revised Renter class (partial listing)

 // ===
 // IMPLEMENT ACTIONLISTENER
 // ===
 public void actionPerformed(ActionEvent ae)
 {
 System.out.println(“Event: “ + ae);
 Object source = ae.getSource();

 if (source == theRentButton)
 rentItem();
 else if (source == theReturnButton)
 returnItem();
 }

 public void rentItem()
 {
 theLender.rentItem(this);
 displayQtyOnHand();
 }

 public void returnItem()
 {
 theLender.returnItem(this);
 displayQtyOnHand();
 }

This change has the added virtue of separating the operations performed by the class
from the user interface (that is, the actionPerformed() method). This will make it
easier to change the user interface, should that become necessary, because the
rentItem() and returnItem() methods can be conveniently invoked by the revised
user interface code.

 Remember Separating operations from the user interface that invokes them often yields

a more maintainable program.

Okay, now it’s your turn. Grab a 3X5 card and write a CRC card for the Lender class.
Refer to Table 5.2 or Listing 5.3 for help. When you’re done, compare your results with
the CRC card shown in Figure 5.4.

 - 156 -

 Figure 5.4 A CRC card for the Lender class

How did you do? Did you find all the relevant attributes, responsibilities, and
collaborations? If not, consider why the missing items are needed by the class. Did you
find any additional attributes, responsibilities, or collaborations? If so, ask yourself
whether they must be included in the class, or whether they merely represent one way of
implementing an important interface.

 PREPARING CRC CARDS FROM A PROBLEM SUMMARY

STATEMENT

In the real world, CRC cards are prepared from a problem summary statement rather
than from a completed design. The good news is that preparing them from a problem
summary statement is only a little more difficult than preparing them from a completed
design. Remember that as long as you keep iterating, design mistakes don’t count.
Thomas Edison, the famous inventor, offered the following maxim, which is a good
design motto: “I failed my way to success.”

 “Remember that as long as you keep iterating, design mistakes don’t count.”

Remember

Every design alternative examined and rejected leaves you with fewer
alternatives to choose from. As long as you’ve picked a design problem that
has a solution, every failure brings you one step closer to success. Of
course, analyzing your failures and learning from them, rather than trying
random alternatives, makes the process more efficient.

Chapter 6, “Round-Trip Design: A Case Study,” presents a case study that will lead you
through the entire design process, including the preparation of CRC cards, using an
example problem. For now, here are some suggested ways of finding classes,
responsibilities, and collaborations lurking in your problem statement:

•

Classes—Read through the problem summary statement and identify nouns and noun
phrases, placing them on a list. When the list is complete, review it for possible
classes, which may be (for example) physical objects, concepts, categories of objects,
or attributes of other objects.

•

Responsibilities—Responsibilities relate to actions. A good starting place for finding
responsibilities is in the verbs of the problem summary statement. List the verbs,
decide which of them represent responsibilities that must be discharged by some
class, and allocate each such responsibility to a class.

 • Collaborations—After you’ve identified the classes and their responsibilities, finding

the collaborations is easy. Simply scan the list of responsibilities of each class and

 - 157 -

identify any other classes it needs in order to fulfill its responsibilities. List these as its
collaborations.

 Finding the Classes

Look back to the problem summary statement and identify the noun and verb phrases it
contains. Do this now, before reading further, so you can compare your results with those
in Table 5.3.

 Table 5.3 Nouns And Verbs Of The Problem Summary Statement

 Nouns

Verbs

 Renter applet

track inventory

 bugs

rent bug

 inventory

decrease inventory

 user

return bug

 message

increase inventory
display message

Does your list resemble the one in Table 5.3? If you’re missing one or more items, add
them to your list. If you have extra items, stay tuned: you may have correctly identified
some important items that are implicit in the problem summary statement.

Notice that the list of nouns and verbs is only vaguely similar to the CRC cards shown
earlier. Remember that the list is a starting point. Moving from the list to the actual CRC
cards is not automatic, and not always easy. Again, that’s why design is iterative—don’t
be concerned.

Consider the list of nouns, which is intended to help you identify classes. The list has five
nouns, but only two classes are described by CRC cards. How did this come about? The
Renter class, you may recall, is an applet that represents the user (that is, the renter).
The Renter class accounts for two of the four candidate classes appearing in the noun
list: Renter applet and user.

What about the Lender class? Where did it come from? Often it’s necessary that the
design include classes that are merely implicit in the problem summary statement. The
Lender class is such a class. Although it does not appear explicitly in the problem
summary statement, you know that if there is a renter, there must be a lender.

What if you failed to make this important deduction? A subsequent step of the design
process would help you realize your omission. At that point you’d create a CRC card for
the class.

What about other classes implicit in the problem summary statement? For example,
Thomas Aquinas concluded that there must be a “first cause” standing behind every
action—does Aquinas’s first cause need to be included on a CRC card? No, it doesn’t.

 - 158 -

You want your design to be as sleek and elegant as possible. Cluttering it with classes
whose responsibilities you only dimly realize runs counter to this goal.

Remember that the problem statement is intended to establish a fence around the
system. The fence is not a perfect one, so you shouldn’t worry too much when you
discover a necessary class not mentioned in the problem statement or find that a class
mentioned in the problem statement is not really necessary. However, when you find one
of these imperfections, take that as a clue to revisit the problem statement, revising it
when appropriate. Don’t mindlessly add classes not found in the problem summary
statement or mindlessly refuse to remove classes that do appear in the problem
summary statement, if you find they contribute little to the design.

What about the remaining nouns, bugs and inventory? These really point to a single
thing, an inventory of bugs. Why doesn’t this class appear as a CRC card? Recall that in
the Lender class the inventory was represented as an int, a primitive type.
Conceptually, the inventory does represent an object. If you created a CRC card for the
inventory, you did a good thing. But, later in the design you’ll see that the demands the
problem summary statement places on the inventory are quite simple. So simple, in fact,
that the inventory can be represented using a Java primitive type, rather than an object.

Of course, you could insist on having it your way and represent the inventory as a third
class. This, too, would be okay. In fact, you might find it easier to extend the capabilities
of the program if the inventory were represented as an object rather than a primitive.
Design decisions, like this one, often have no obvious right and wrong answers. A lot
depends on what happens tomorrow (like a request to extend the inventory-related
information tracked by the program), which is often anybody’s guess. Certainly, when you
can anticipate the future, you should attempt to accommodate it in your design. It’s just
that you won’t often be wise and fortunate enough to be able to do this. If your forecasts
are highly accurate, you can earn a great deal more money on Wall Street or in Las
Vegas than by working as a software designer.

The final noun, message, is likewise not found on the CRC cards. It’s implicit, however, in
the responsibility of the Renter, which must be able to display a message sent by the
Lender. Recall that the Renter provides the user interface, so the Lender cannot
display the message. There’s even an associated object in the source code—the
TextField named theMessage. Why then is there no CRC card for the noun
message? Well, it would not be wrong to have included one. But, the message doesn’t
seem to be a very important part of the program. The fact that it can be implemented
using a standard component is a hint that this is the case. If you chose to include it, give
yourself a pat on the back for having been very thorough and don’t be further concerned.

 “Design decisions…often have no obvious right and wrong answers. A lot depends

on what happens tomorrow…”

 Discovering Responsibilities

The relationship between the verbs and the responsibilities is a little simpler, at least in
this case. You won’t always be so blessed. The track inventory verb is really a general
term that refers to decrease inventory and increase inventory. These two actions are
closely related to the operations of renting an item and returning an item, respectively. By
combining the related responsibilities inherent in these five verbs, you’re left with just two:
renting an item and returning an item. Both the Renter and the Lender share these
responsibilities, because each must act in concert to discharge them. Therefore, each
CRC card includes both responsibilities.

 This leaves you the display message verb to consider. This is a responsibility of the

 - 159 -

Renter class, and is shown on its CRC card.

If you review the CRC cards, you’ll notice that the Lender class includes a responsibility
that did not arise from the list of verbs. However, a careful reading of the problem
summary statement shows that it includes the phrase when the inventory is zero. Yes,
the verb phrase is zero was missed when the list was made. Usually some important verb
phrases are missed. You’ll discover these in a subsequent design step, at which point
you can add the related responsibility to the appropriate CRC card.

Here, the verb phrase is zero implies that there is some way of determining the current
inventory level. Thus, the Lender is responsible for reporting the current inventory
quantity, as shown on the CRC card for the Lender class.

 Describing the Object Collaborations and the Classes

After you’ve prepared the CRC cards, it’s time to focus on the collaborations. By
examining the collaborations, you may identify an important class you missed when
preparing the CRC cards. You simply add a CRC card for any such class. You may also
discover that a class for which you prepared a CRC card is not as important as it initially
seemed. For any such class, you allocate its responsibilities and attributes to other
classes and discard its CRC card. Finally, to document the collaborations you discover,
you prepare a series of collaboration diagrams. This section shows you how.

 “Just as CRC cards helped you discover classes, use-case scenarios help you

discover and describe collaborations.”

 PREPARING COLLABORATION DIAGRAMS

Just as CRC cards helped you discover classes, use-case scenarios help you discover
and describe collaborations. A use-case is simply a transaction or a sequence of related
operations that the system performs in response to a user request or event. In the Renter
applet, two transactions are obvious: the user can rent a bug or the user can return a
bug.

To apply the use-case scenario technique, you spread your CRC cards across a flat
surface and walk through each use-case (transaction). During the walk-through, you try
to identify the objects involved in the use-case and the messages they exchange. It’s
helpful to move the CRC cards around, grouping them so that classes that often
collaborate are located near one another. If you have a magnetic white board, you can
fasten the CRC cards to it and draw lines between the classes, showing the messages
involved in a use-case.

To document the use-cases, you should prepare a series of collaboration diagrams.
Several styles of collaboration diagrams are commonly used. Figure 5.5 shows a
collaboration diagram for the use-case of renting a bug.

 - 160 -

 Figure 5.5 A collaboration diagram for the Rent use-case

The diagram shows two objects, one Renter object and one Lender object, that
exchange two messages. The first message, rentItem(), is sent by the Renter object
to the Lender object. The second message, tellResult(), is a response sent by the
Lender to the Renter. Notice that each message is numbered so that its sequence of
execution is explicit.

In the diagram, the two objects are named using their class names. More generally,
objects are named using the form objectName : className. This technique can
handle the possibility that multiple objects of a single class interact in a use-case. Where
specific object names are not needed, as in Figure 5.5, the form : className is used.
Including the colon makes it clear that a class name, not an object name, is meant.

Now, it’s your turn once again. Before reading on, draw your own collaboration diagram
for the Return use-case. You can look back at the CRC cards and the problem summary
statement for help. When you’re done, compare your results with Figure 5.6.

 Figure 5.6 A collaboration diagram for the Return use-case

 Hopefully, your diagram closely resembles that shown in Figure 5.6. If not, study the

 - 161 -

differences between your diagram and Figure 5.6, and look back at Figure 5.5 to
determine where you went wrong.

The goal of walking through the use-cases is not simply to produce the collaboration
diagrams. Helpful though the diagrams are, they’re not the most important part of this
step of the design process. Often, as you walk through a transaction, you’ll discover the
need for additional attributes, the need to collaborate with additional classes beyond
those identified on the CRC cards, or even the need to define additional classes.
Whenever you find such a discrepancy, you should iterate: Go back and correct the CRC
cards, re-check your bearings, and resume forward movement.

How do you prepare use-case diagrams without being able to cheat by looking at source
code or lists of methods? The techniques taught in Chapter 7 will provide considerable
help. It turns out that there are several common ways in which objects interact. By
knowing these ways, you can quickly focus your attention on the most salient
possibilities. Constructing an interaction diagram is then pretty much a piece of cake.

For now, strive to use the principle of decomposition to simplify the problem. Begin a
fresh collaboration diagram for each use-case by drawing rectangles for each
collaborating object, as shown on the CRC cards. Then, break the action involved in the
use-case into a series of steps, identifying a message that triggers each step. Simply
label the collaboration diagram with these messages and you’re done.

 Don’t fret too much about getting things right the first time. Remember that, because

design is iterative, you’ll get (at least) a second chance.

 PREPARING CLASS DIAGRAMS

Though CRC cards are helpful during design, they’re not very convenient for later
reference. After you’ve completed the collaboration diagrams, you transfer information
from each CRC card onto a class diagram. Figure 5.7 shows a class diagram of the
Renter class. As you can see, like the CRC cards, a class diagram describes the
attributes and methods of a class.

 Figure 5.7 A class diagram of the Renter class

Class diagrams, however, can include information beyond that recorded on a CRC card.
For attributes, the class diagram may show the data type and initial value. For methods,
the class diagram may show the arguments, their data types, and the return data type.
Figure 5.8 shows an example of a more detailed class diagram.

 - 162 -

 Figure 5.8 A more detailed class diagram of the Renter class

 The syntax used to describe attributes in the detailed class diagram is

 attribute : type = initialValue

where attribute is the name of the attribute, type is its data type, and initialValue is its
initial value. Either the type and its associated colon (:) or the initial value and its
associated equal sign (=) may be omitted. The syntax used to describe methods is

 returnType method (argumentList)

where method is the name of the method, argumentList is an optional list of
arguments, and returnType is the data type returned by the method. Entries within the
argument list are separated by commas, each entry taking the same form as that given
previously to describe attributes. The return data type and its associated colon can be
omitted.

You can use the detailed form of the class diagram to document the implementation, as
well as the interface, of a class. This is done by prefixing the keyword public or
private, as appropriate, to the line describing each attribute or method. This is not
shown in the figure, but you’ll use this technique in later chapters.

How do you decide between the style of class diagram shown in Figure 5.7 and that
shown in Figure 5.8? Simple. Your class diagram should include all the information you
know. If you’ve decided what data type or initial value an attribute should have, then you
should note it on the class diagram. Don’t compel yourself to include information of which
you’re not yet certain. Before implementation begins, you must decide all the data types
and so forth. But, many trips through the design activity may occur before you arrive at
that point.

Now it’s your turn. Before reading on, review the CRC card for the Lender class and
draw a class diagram for the class. If you want, you can look back to the source code for
the class and draw a detailed class diagram. When you’re done, compare your results
with the diagram shown as Figure 5.9.

Now it’s your turn. Before reading on, review the CRC card for the Lender class and
draw a class diagram for the class. If you want, you can look back to the source code for
the class and draw a detailed class diagram. When you’re done, compare your results
with the diagram shown as Figure 5.9.

 - 163 -

 Figure 5.9 A detailed class diagram of the Lender class

 The figure shows a detailed class diagram. If you drew a conceptual diagram rather than a

detailed diagram, your version will lack some of the features shown.

 Sketching the User Interface

The final step in designing an object-oriented program is designing its user interface.
Chapter 15 addresses user interface design in detail. For now, a few words of
explanation and advice will suffice.

The user interface is important to the user, because it’s the part of the system that’s
visible. It’s important to show the user, as soon and as accurately as possible, what the
user interface will look like.

 Remember To a system user, the user interface is the system.

You can sketch a user interface using pencil and paper, or you can use a drawing
program. But, the best way to sketch a user interface is using your Java interactive
development environment (IDE). Many IDEs provide facilities that help you lay out a user
interface, letting you (for example) place buttons and text boxes on the screen and
arrange them appropriately.

If your IDE provides such a facility, then by all means use it. Lay out a sample user
interface and print it, if your IDE provides a way to do so. Otherwise, capture the screen
and use a paint program or word processor to print the user interface.

Better still, if time is available, create a prototype of the user interface. A prototype is
simply a working model of your finished program. Give a copy of the prototype to the user
so the user can try it out. Often, you’ll receive valuable feedback. Translation: often the
user will tell you in clear terms that you’ve completely misunderstood what’s required. As
uncomfortable as this may be, it’s better to learn this now than after you’ve spent weeks
or months implementing an unsatisfactory system.

 Remember [T]he best way to sketch a user interface is using your Java interactive

development environment (IDE).

 Rules of Thumb for Designing Classes and Objects

 Here are some useful rules of thumb for designing classes and objects. Not all of them

will apply in every case and there’s at least one case where any given one will lead you

 - 164 -

astray. But, every one of them is useful often enough to be worth knowing and
considering as you design:

•

Minimize collaborations between classes. It’s stressful meeting the expectations of
one’s many fans: a class that collaborates too widely is likely to die of an early heart
attack. Consider splitting such a case into two or more classes or reallocating its
responsibilities among several other classes. Otherwise, changes to the highly
collaborative class will compel changes to its collaborating classes. Each such change
will spread across your system like a tidal wave across a flat beach.

•

Beware the hermit. In a simple design like that of the Renter applet, it’s common to
have “hermit” classes that are used to instantiate only a single object or messages that
handle only a count of one. This is a possible sign of trouble, however, in real-world
systems, which generally handle greater volumes of information and therefore need
more sociable objects. Often, for example, users who today want to be able to rent a
single item in a transaction turn out tomorrow to want to be able to rent multiple items:
be prepared.

•

Allocate responsibility equitably. You can eliminate classes that don’t collaborate at
all, but you should also question classes that have limited collaboration. Perhaps
another class has too much responsibility, some of which should be transferred to its
thinner partners.

•

Prune unproductive responsibilities. You can eliminate any responsibilities that are
not called on by any collaborators. They contribute nothing and are, therefore, not
deserving of the effort involved in implementing them.

 Summary

 The steps of the object-oriented design process presented in this chapter are

 1. Determine the requirements.

 2. Identify the classes and objects.

 3. Describe the object collaborations and the classes.

 4. Sketch the user interface.

To determine the requirements, it’s helpful to write a problem summary paragraph.
Focusing on the nouns and verbs of the problem summary paragraph will help you to
identify the classes, responsibilities, and collaborations the program must provide. These
are recorded using CRC cards, which also list the data attributes of each class. Object
collaborations are studied by walking through the use-cases for the system and preparing
collaboration diagrams that describe the use-cases. Data is transferred from CRC cards
to class diagrams, which are more convenient to reference during subsequent software
development activities.

The final step of object-oriented design is designing the user interface. The user interface
is important because it is visible to the user. Prototyping is a useful tool for modeling the
user interface.

 The object-oriented design process is iterative. Steps are performed multiple times and

earlier steps are revisited as necessary in order to satisfactorily resolve design issues.

Questions

 1. Analysis of a system begins by writing a __________ paragraph.

 - 165 -

 a. Problem summary

 b. Solution summary

 c. Transaction summary

 d. Use-case

 2. CRC cards are used to identify _________, responsibilities, and __________.

 3. When an object sends a message to another object, the two objects are said to

__________.

 a. collaborate

 b. communicate

 c. server

 d. transact

 4. An object that receives a message has the ___________ for handling it.

 5. A collaboration diagram depicts the sequence in which objects exchange messages

in a single __________ scenario.

 6. A class diagram specifies the _________ and __________ of a class.

 7. To a system user, the user interface is the __________.

 8. The design process is __________, meaning that the process and its steps may be

performed multiple times.

 a. inaccurate

 b. iterative

 c. open

 d. tentative

 9. A good tool for helping the user visualize the user interface is __________.

 10. A detailed class diagram may show the implementation of a class as well as the

interface of the class (true/false).

 Exercises

1.

Write a problem summary statement that describes a system that could be used by a
library to administer its circulation system. The system should include provisions for
fines due for late return and for handling lost items.

 2. Write a problem summary statement that describes a system that could be used by a

 - 166 -

bank to control its ATM machines. The system should allow customers to make both
deposits and withdrawals.

3.

Write a problem summary statement that describes a customer support system that
could operate on the Web. The system should allow customers to post questions and
requests, and to view questions and answers posted by others. The system should
track open questions so that customer support representatives can address the
oldest pending questions before moving on to newer ones.

 4. For any of your problem summary statements prepared for exercises 1–3, prepare a

set of CRC cards that further describes the system.

 5. For any of your problem summary statements prepared for exercises 1–3, prepare

collaboration diagrams that further describe the system.

 6. For any of your problem summary statements prepared for exercises 1–3 , prepare

class diagrams that further describe the system.

 7. For any of your problem summary statements prepared for exercises 1–3 , prepare a

user interface sketch that further describes the system.

 8. For any of your problem summary statements prepared for exercises 1–3 , prepare a

Java user interface prototype that further describes the system.

 To Learn More

 The following books will help you learn more about designing objects and classes.

 The first book of a series that will present Unified Modeling Language (UML), an

important de facto standardization of notations for modeling object-oriented software, is:

 • Fowler, Martin, with Kendall Scott. UML Distilled: Applying the Standard Object

Modeling Language. Reading, Massachusetts: Addison-Wesley, 1997.

 These books present the approach to object-oriented analysis and design developed by

Grady Booch:

 • White, Iseult. Using the Booch Method: A Rational Approach. Redwood City,

California: Benjamin/Cummings, 1994.

 Useful books describing other approaches to object-oriented design include the

following:

 • Wilkinson, Nancy. Using CRC Cards: An Informal Approach to Object-Oriented

Development. New York: SIGS, 1995.

 The following book is focused on C++. Nevertheless, many of its clearly stated principles

apply equally well to the design and implementation of Java programs:

 • Horstmann, Cay. Mastering Object-Oriented Design in C++. New York: John Wiley &

Sons, 1995.

Chapter 6: Round-Trip Design: A Case Study

 Overview

 In the previous chapters, you learned techniques for implementing and designing robust

 - 167 -

classes and objects. But as you saw in Chapter 2, object-oriented design involves more
than technology and notation; it also involves a process and the people who implement
that process. In this chapter, you’ll follow the design of a larger program, from the
problem summary statement through the sketch of the user interface. Subsequent
chapters will expand on what you’ve learned, looking closely at specific techniques and
issues.

The centerpiece case study of this chapter completes the round-trip journey you began in
Chapter 4, “Encapsulation: Classes and Methods.” There, you first learned how to take a
concept and create a working model by using the Java programming language. Then, in
Chapter 5, “Designing Classes and Objects,” you took some code and used it as a point
of reference for learning how to prepare various object-oriented design artifacts: a
problem summary statement, CRC cards, class diagrams, collaboration diagrams, and a
user-interface sketch.

Normally, however, you won’t write the software first and then prepare the design; usually
things work the other way around. This chapter simulates a real-world situation much
more faithfully. You won’t begin with code. Instead, you will begin with a mere idea inside
a user’s head. From this idea—given sweat, tenacity, and the principles of object-oriented
design—a program eventually emerges. You won’t study the program itself in this
chapter, although you’ll take the design far enough that only your Java programming
skills will stand between you and a working program. Later chapters will present
principles of database design and network design necessary to scale up the program into
an industrial-strength application, ready for full-scale deployment and use.

 “From a mere idea—given sweat, tenacity, and the principles of object-oriented

design—a program eventually emerges.”

This chapter introduces no new design techniques or notations, but does show how
design is actually done—including the good, the bad, and the ugly. You’ll view the
members of a design team through the eyes of one Jason D’Naught, lead designer and
doughnut aficionado. Pay careful attention to Jason’s observations; he is an experienced
(but not infallible) designer, who usually knows how things should be done. He doesn’t
always succeed in moving events down an ideal path, however. Jason’s observations will
help you distinguish what happens from what should happen.

 In this chapter you will learn:

 • How to apply object-oriented techniques to a medium-sized program

 • How the object-oriented design process can be performed by a team

 • How the object-oriented design process involves iteration—moving between different

activities, which might themselves involve cycles of repetition

 • How doughnuts and related foodstuffs act to facilitate the design process

 Day 1: The System Concept

“I’ve sure enjoyed these last few weeks,” you think to yourself, as you prepare for the
morning’s meeting. “It’s been great being able to catch up on the backlog of technical
journals and being able to attend that conference on using genetic algorithms to test
object-oriented software.”

 - 168 -

“Still,” you reflect, returning to the reality of the moment, “it’ll be good to be back in the
design saddle again. And this new system that Dawn mentioned sounds like a real time-
saver for everyone. That expense report accounting system I did last year just about
ruined my reputation; I guess not everyone is a fan of efficiency.”

Glancing at your watch, which blinks 9:27 a.m., you start to head out for the meeting
when you realize that you don’t recall where it’s being held. “Hey, this new scheduling
system would be real handy right now,” you think to yourself as you dig through the stack
of memos piled on the corner of your desk.

“Aha, there it is. Archaeological order is once again shown to be the most efficient
ordering! Let’s see, conference room #2 at 9:30 a.m. Hmm, conference room #2—oh
yeah, that’s the one over in building #4.” At a brisk trot you begin the 10-minute walk,
knowing it’s unlikely that you’ll be the last to arrive, despite your late start.

 AT THE MEETING

Arriving at conference room #2 you see that, just as you’d hoped, several others haven’t
yet arrived. You greet those present in abbreviated fashion, having spotted an open box
of doughnuts at the opposite end of the long conference table. “First things first,” you
murmur under your breath, making a beeline for the refreshments.

Long accustomed to the beauty of the New England autumn, you scarcely notice the
landscape framed by the long window of the conference room. Swooping toward the box,
you hope that there’s a chocolate eclair waiting there for you, but your hopes are dashed.
Settling for a chocolate doughnut with chocolate sprinkles, you turn your attention to the
steam rising from a coffee urn atop the credenza that runs along the far wall. Selecting a
generous mug, you pour yourself an equally generous portion of the hot coffee. Inhaling
the aroma before you taste, you note a disagreeable hint of hazelnut. Your taste confirms
the accusation. “Trick coffee,” you think. “Still, better than no coffee at all.”

Snagging a second consolation doughnut on the way, you navigate around the cape
formed by the end of the table and return to your seat. Soon, you perceive the combined
effect of the coffee’s caffeine and the doughnut’s sugar as it kicks in. “Ahh,” you sigh,
entering that strange combination of hyperalertness and relaxation produced by your
morning feast.

 THE TEAM ARRIVES

Just then, two more participants arrive and Dawn Davis urges everyone to take their
seats. Aware that the meeting will soon begin, you focus your temporarily enhanced
mental powers on the task of reviewing what you know about the other members of the
project team:

•

Dawn Davis, manager of Human Resources. Dawn is the originator of the system
concept you’re here to discuss and is also responsible for convening the current
meeting. After reviewing her proposal for a meeting scheduling system, the
Information Systems Steering Committee gave her the responsibility for directing the
system implementation project. On other projects, that role has often fallen to you.
However, you don’t relish the social and political tasks that the role requires, and so
you’re grateful they’ll be on someone else’s plate this time around.

•

Fred Farnsworth. Fred is a new guy in your department. As your boss, the director of
Information Systems, explained it to you, Fred is here to “learn the ropes” from you, so
that subsequently he can take responsibility for designing and programming systems.
Observing that Fred is a decade or more years your senior, you wonder how it is that
he finds himself in such a junior role at this point in his career.

 • Barney Rupert. The new intern, lately departed from the Marketing department, now

seems more or less on permanent assignment to the Information Systems area. He is

 - 169 -

in his late 20s—bright, ever enthusiastic, and talkative. Apparently, he’s here to
represent the interests and concerns of office staff who’ll use the proposed system.

•

Barbara Baskin. Barbara (“call me Barb”) represents the Engineering department.
You and Barb have worked together on earlier projects. You know her to be sober-
minded and direct, qualities you value and admire in a project team member. You
know you won’t get any fluff or waffle from Barb, that she’ll get right down to business,
tell you what she knows and what she wants, and then stand back and let you work.
As you see it, her presence is a favorable sign.

Your thoughts are interrupted by Dawn’s take-charge voice, as she calls the meeting to
order and distributes the meeting agenda. After making the preliminary introductions,
Dawn explains that several others will soon be added to the project team, and that this
initial project team meeting will wrap up before lunch. Subsequent meetings, she tells the
team, will be held daily at the same time and place, until the system is ready to hand over
to the programmers.

 INTRODUCING THE PLAN

“I’m going to start by giving you an overview of the proposed system,” begins Dawn,
simultaneously switching on the overhead projector at the end of the conference table
and passing out a thick packet to each team member. Dimming the lights, Dawn begins
to recite the proposal she recently presented to the Information Systems Steering
Committee, and your interest flags a little.

“All these proposals look the same,” you observe to yourself, “Costs, benefits,
justification, risks—when does it end?” Always one to prefer actually developing a system
to arguing about whether a system should—or should not—be developed, you’re relieved
when the talk turns to specifics.

“The program we’re going to build,” Dawn continues, “is a scheduling system that will
allow our workers to quickly and easily schedule meetings with other individuals and
groups. It will be deployed over our organizational intranet and, if some security issues
can be worked out, will be available on the Internet as well. Then you’ll be able to
schedule meetings or check and update your schedule from anywhere in the world. Even
in its first incarnation, we expect that the program can do a lot to make it easier for our
workers to communicate.

“Since this is a general-purpose program,” Dawn went on, “we first considered buying a
package, instead of building it. Many on the IS Steering Committee still favor such an
approach. The majority agree, however, that building our own system will allow us to
better integrate the scheduling system with our other information systems. And by
designing this system to be implemented as a Java applet, we hope to easily deploy it
throughout the company. Anyone with a Web browser and a password can access the
system—there will be no additional software to install. In the future, perhaps all of our
software will be built like this. Of course, that depends on how well things go with this
project.”

“Boy, nothing like starting with a bit of pressure,” you think, as the room lights are
returned to their pre-presentation intensity. To your surprise, Dawn announces a 10-
minute break. “Wow,” you note, after examining your watch, “it’s 10:30 already.”

As the others leave the room to check for phone messages or email, you casually wander
over to the doughnut box, where you discover a single remaining donut, one decorated
with rainbow sprinkles. Feeling you’ve earned it by your patient attention during Dawn’s
presentation, you snag it and commence munching, savoring contentedly the gooey,
sweet icing you know to be high in saturated fats.

 - 170 -

 “You know your job will be made easier if suggestions flow freely.”

 JASON HAS A PROBLEM

Promptly at 10:40, as several of the others are just entering the room to resume their
places around the table, Dawn reconvenes the meeting. “Jason,” you hear her say, as
mention of your name snaps your mind from doughnut-land back to the here and now,
“will facilitate the second half of today’s session, during which we’ll jointly develop a
problem summary statement.”

Instantly forcing down the last bite of doughnut and biting back the urge to protest, you
rise to your feet and to the occasion. Grabbing a bright blue dry erase marker left
randomly on the table by participants of a previous meeting, you stride toward the
whiteboard, greeting the project team as you go, in your best take-charge voice, “Okay,
folks, let’s get started.

“This morning we’re going to try and nail down exactly what features and functions our
new meeting scheduling system should have. It’s important that we have as much input
as possible, and I want all of you to feel free to offer any suggestions at all. There’s no
such thing as a stupid suggestion,” you continue in your most reassuring tone, “so please
just jump right in. What do you think that the scheduling system should do in order to
achieve these benefits Dawn has identified?”

 “It should let us describe our own daily schedules and let us schedule meetings with

others, based on mutual availability,” suggests Barb.

“Great,” you offer as encouragement to Barb and the others. You know your job will be
made easier if suggestions flow freely. Using the blue marker, you write the functions
identified by Barb as separate, numbered items:

 1. Let workers describe their schedules.

 2. Let workers schedule meetings with others, based on mutual availability.

 “What else?” you ask.

“Well, wouldn’t it be great if the system kept track of everybody’s birthday?” suggests
Barney. “Then, we could use it to plan parties. We’d never miss anybody’s birthday
again. And holidays. The system should keep track of holidays. Then, if a group of us
want to go skiing or something, we could put that into the system and everybody would
know all the details and more people would be able to come with us. This’ll be sooo cool.”

Knowing from experience that too much critical analysis can stifle creative problem
solving, you add Barney’s suggestions to the list, even though you’re convinced they’re
irrelevant or worse:

 3. Keep track of workers’ birthdays.

 4. Keep track of holidays.

 5. Help plan holiday outings.

Dawn, you notice, is holding back, allowing you to take control of the meeting. As a
system development veteran, you surmise that she’s confident the group will converge on
a proper problem summary statement without much direct input from her. Preferring to
reserve her leadership prerogatives for the inevitable squabbles yet to come, she’s

 - 171 -

apparently holding her fire.

 “Too much critical analysis can stifle creative problem solving.”

Your technical cohort, Fred, pipes up with a suggestion. “We really need to make sure
that everyone has the latest TCP/IP drivers,” he states with great conviction, “and we
should consider adding LZH compression to the message store; otherwise, it’ll be too
slow over dial-up.” You know that this is neither the time nor place for considering such
technical details, but you also want to keep ideas flowing. Mechanically, you add Fred’s
misplaced concerns to the growing list:

 6. Use the latest TCP/IP drivers.

 7. Use LZH compression techniques.

“What else?” you ask. When, after some seconds, no additional ideas have surfaced, you
suggest that the group review and discuss the functions identified so far. This, you
explain, may lead the group to discover additional functions or help them understand why
one or more of the functions already on the list should be removed.

Barney asks warily, “What’s a TCP/IP driver anyway?” In response, Fred begins a
technical lecture on the relative merits of different TCP/IP stacks, protocols, and
implementations. You note that his grasp of the technical principles is impressive, but that
his lack of audience awareness is even more impressive. Barney obviously has no idea
what Fred means.

Breaking in on Fred, you muster your most authoritative tones, “Really, these are
implementation issues that are better addressed later by the programmers than now by
us. Fred, you’ve got some great ideas here. Why don’t you draft a short memo that will
help the programmers better understand the issues involved in choosing a TCP/IP stack?
We can leave that decision to them and move on.” As you pronounce a judgment of
doom on Fred’s contribution, you simultaneously line through items 6 and 7 on the
whiteboard, in an attempt to demonstrate finally your control of the situation. Looking at
Fred, you notice he doesn’t seem all that unhappy. Apparently, your suggestion that he
help educate the programmers sufficiently softened the blow of rejecting his
contributions.

“What about the remaining functions?” you ask. A lively discussion ensues, at the end of
which you’re instructed to line out items 3 and 5. According to the consensus view, the
system should keep track of holidays, but not birthdays or worker outings. Barney seems
disappointed, but the disappointment is only sufficient to reduce his enthusiasm to about
125 percent that of the typical person. He’s still as enthusiastic and talkative as ever, you
note.

Discovering that it’s almost time for lunch, Dawn brings the meeting to a close, directing
you to draft a problem summary statement for review at tomorrow’s meeting. As you and
the others file out of the conference room, you’re pleased to have made it through the
session in one piece. Although you weren’t initially happy to discover so late your role in
the meeting, you now realize that you’ve been spared the several hours of preparation
you’d have spent if Dawn had notified you earlier to be prepared to lead the session.
“Looking at it that way, it almost sounds good,” you conclude.

 AFTER THE MEETING: THE PROBLEM SUMMARY

STATEMENT

 - 172 -

 Back at your office after lunch, you begin drafting the problem summary statement.
You’ve hardly begun when Dawn drops by. “So, how’d you think it went?” she asks.

“I’d say things are off to a good start,” you offer, deciding not to raise the issue of being
put on the spot. Anxious, however, to avoid a repeat, you ask, “What’s on tap for
tomorrow?”

 “I thought we’d do that thing with the index cards,” she responds, obviously referring to

CRC cards. “Can you handle the session?” she asks.

 “No problem,” you reply casually, thinking yourself lucky to have advance notice.

 “Great! I’ll see you there,” you hear, as Dawn vanishes down the hallway before you can

ask any questions.

 Settling down to work on the problem summary statement again, you come up with the

following:

 Meeting Scheduling System: Problem Summary Statement

The meeting scheduling system lets workers specify their schedules and lets them
organize meetings with others, based on mutual availability. The system also tracks
company holidays, preventing workers from attempting to schedule a meeting when no
one is likely to be available.

Thinking how awkward it can be to have a computer prevent you from doing something
you want to do, you revise the statement slightly, changing the part about preventing to
informing. Then, thinking about work schedules, you realize that many people have the
same, or nearly the same, work schedule from week to week. It would be helpful if the
system allowed users to enter a standard schedule. Then they could make adjustments
for just those days that fail to fit the standard schedule. This would simplify considerably
the task of entering the schedule. You decide to add this function to the problem
summary statement. If the others object, you can simply remove it.

Noticing that it’s time to pick up the kids for soccer, you quickly key the changes and click
the Print button. Checking the output for accuracy, you place it on top of your desk,
where it will be easy to find tomorrow morning. Having done your duty for the day, you
race to the parking lot and head off to chauffeur the kids.

 LESSONS LEARNED: DAY 1

The first step in any software-development process is assembling a team and defining
your product. A joint session spent drafting a problem statement is a good way to develop
both. At this stage, you can’t have too much input. As a facilitator, you can use the simple
brainstorming technique Jason employed—listing features on a whiteboard—to get the
other team members involved and to get them to feel that they have a part in the project.

As a leader, it’s important that you don’t dictate the system features but allow them to
emerge from the process. On the other hand, you need to keep the discussion on track.
Jason illustrated skill in both areas by accepting Barney’s birthday suggestions without
comment, allowing the group consensus to eliminate them, and by deflecting Fred’s
attempts to introduce technical details into the discussion.

 “When drafting a problem statement, you can never have too much input.”

Day 2: Preparing CRC Cards

 - 173 -

The next morning you arrive as usual around 9 a.m. You’re relieved to discover that
you’ve received no hot emails overnight. All you need to do is make copies of the
problem summary statement and get over to conference room #2 by 9:30. Knowing that
the office copier is probably still stiff from a night of rest, you print several additional
copies of the problem summary statement with your office printer. As you dash out the
door, you remember that today you’ll be doing CRC cards. You grab a pack of 3x5 index
cards out of your top-right desk drawer and get on your way again.

 “As a leader, it’s important that you don’t dictate the system features but allow them

to emerge from the process.”

Arriving a few minutes early, you find that Barney is the only team member already on
station. He greets you and immediately begins to share his disappointment over
yesterday’s outcome, attempting to cajole you into breaking ranks with the team
consensus. “If only the new scheduling system could track birthdays, I just know
everyone would love it.” Fortunately, Dawn arrives before you can respond, and you’re
spared the need to reply, as Dawn and Barney take up another subject of conversation.
Grabbing a doughnut and some coffee, you count your blessings.

Soon the others arrive and Dawn calls the meeting to order. “You made copies of the
problem summary statement for everyone, didn’t you, Jason? Why don’t you hand them
out and we’ll take a look?” she asks, more by way of command than question. You move
around the room, passing out your revised problem summary statement, which looks like
this:

 Meeting Scheduling System: Problem Summary Statement

The meeting scheduling system lets workers specify their schedules and lets them
organize meetings with others, based on mutual availability. The system also tracks
company holidays, informing workers who attempt to schedule a meeting when no one
is likely to be available.

The system allows a user to enter a standard work schedule. The schedule for a given
week is based on this standard schedule, but the user can modify it as needed to
handle schedule differences that arise from week to week.

You point out the function you added and explain how it will make it easier for workers to
enter their schedule in the system. There’s some discussion, a good part of which is off-
track. But when you call for the question, even if some fail to understand your change, all
agree to it—at least no disagreement is voiced. You’re relieved you don’t have to explain
the change a second time.

 “ When it comes to project teams, small really is beautiful."

Dawn then remembers to explain that no final decision has yet been made on additional
members of the project team. For the time being, the present group will be the entire
team. Although some team members seem concerned that this means fewer shoulders to
carry the load, you’re privately relieved. You know that things will proceed much more
quickly with a smaller group. And you’re confident that this group has all the knowledge of
the organization required to make good decisions relating to this project. “When it comes

 - 174 -

to project teams, small really is beautiful,” you remind yourself. “It’s sort of like what
Einstein said about models. You could say that a team should ‘be as small as possible,
but no smaller.’”

 CRAZY RANDOM CHOICES?

Preliminary business out of the way, Dawn motions for you to come back to the head of
the table. “Jason is going to lead the rest of our meeting this morning,” she says, heading
for her seat at the back of the room. “I understand we’re going to create CRC cards
today.”

To your surprise, Barb, never known for her spontaneous humor, speaks up. “What’s the
CRC stand for Jason? Crazy random choices?” Still looking at Dawn, you notice she’s
suppressing a grin. The rest of the team is smiling.

“Don’t you watch E.R.?” chimes in Barney. “It’s how they resuscitate people when their
heart stops.” The team is quietly chuckling now, as Dawn speaks up. “That’s CPR,
Barney, not CRC. Why don’t you give us a little introduction to CRC cards, Jason?”

 Barney, with his irrepressible enthusiasm, seems none the worse for the correction, and

you’re thankful for the opportunity to get things back on track.

“Yesterday,” you start in, “we talked about what we wanted the new scheduling system to
do—its functionality. But software is made up of pieces or parts. In the programming
language we use, Java, those parts are called classes. Now I know that many of you
have no programming background,” you hastily interject, noticing that Barney’s smile is
fading a bit. “We aren’t here to ask you to learn about programming. Instead, we’re going
to define the classes inside our system from the inside out, by defining what each part is
supposed to do.”

“We’re going to start by looking at a single function that you might want the new system
to accomplish—schedule a meeting, for instance—and then we’ll look at the steps and
the parts necessary to accomplish that. We call each of these functions a ‘use case,’ and
we call the steps that each part (class) needs to accomplish the ‘class responsibilities.’
That’s where the CR in CRC comes from—it stands for Class Responsibility. The final C
stands for Collaboration. As we look at the system, we’ll all discover that some classes
will have to work together—that is, collaborate—with other classes.”

By now, you have the entire team’s attention, although you notice that Barney still looks a
little dubious. Putting on your most confident and reassuring smile, you look right at him
and say, “Ready? Let’s get started. Take the problem statement in front of you and
underline the nouns and verbs.”

Moving to the front of the room, you divide the whiteboard into two halves, using a
vertical line. On the left section of the board, you write the heading Noun Phrases. On the
right, you add Verb Phrases. To get things moving, you go around the room, asking each
member to read one noun phrase and one verb phrase from the problem summary
statement in front of them. As each phrase is called out, you record it on the board. When
you’re done, the board looks like this:

 Noun Phrases

Verb Phrases

 Worker

Specify schedule

 Schedule

Organize meeting

 Meeting

Enter standard schedule

 - 175 -

 Holiday

Enter schedule modifications

 Standard schedule

 Schedule modification

“Not bad!” you say, hoping to keep things going. “We’ve already defined our set of
tentative classes.” By using the index cards, you create CRC cards for each of the
following:

 • Worker

 • Schedule

 • Standard schedule

 • Meeting

 • Holiday

You get no further than this when Dawn announces a break. As everyone scurries off,
you stay behind and ponder the evolving design, fortified with a fresh mug of joe and an
opulent eclair inexplicably overlooked by the others. By the time the rest of the team
returns, after you lick the last smudge of custard off your thumb and refill your mug, you
are ready to pick up right where you left off, almost as though there’d been no hiatus.

 REFINING THE CLASSES

“Generally,” you explain, “some of the tentative classes aren’t classes at all, but merely
attributes of classes. Does anyone see any examples of this in our list of tentative
classes?”

“Well,” Barb removes her pen from her mouth, but not quite before she begins to speak,
“I see Schedule and Standard Schedule as attributes of Worker, and I’d prefer that
we renamed the Worker class to Participant to emphasize the Worker’s role that’s
relevant here.”

Hearing no objection, you set aside the cards for Schedule and Standard Schedule.
You cross out Worker and replace it with Participant on the CRC card that will represent
the Participant class. Finally, you add the attributes Schedule and Standard
Schedule to the back of the card.

 “Okay, now let’s add a brief description to the back of each CRC card,” you direct the

group. Within a short period, the group has settled on the following descriptions:

 • Participant—A worker who is scheduled to attend a meeting

 • Meeting—A group of workers who come together at a set time and place and work

together for a set interval

 • Holiday—An interval during which, by company policy, no one is available for

meetings

 - 176 -

“Just a second,” interrupts Dawn, “I think we need another class. Every meeting occurs
someplace—an office or a conference room, for example. Currently, we keep a schedule
for the conference rooms, to avoid workers scheduling simultaneous meetings. I think the
system should handle that function.”

 Everyone readily agrees, so you create a CRC card for the new class, describing it as

 Location—A place where a meeting is to be held.

 “I have some other classes, too,” offers Fred. “We need a class to represent the user

interface and another to represent the database back end.”

“You’re right, Fred,” you begin, hoping not to step too heavily on Fred’s technical toes,
“these objects will have to be persistent and so we’ll need a database of some sort. And
the interface to that database should be represented as a class. But I’d like to put that
issue off for a bit. I do agree with your suggestion to add a class that stands in for the
user. Let’s call it User.”

The others pay little heed to your discussion with Fred, seeing it as shop talk of little
relevance to them. You know that making this call yourself was a little beyond your role
as facilitator. But much time could have been wasted on issues not yet ripe for decision.
You create the CRC card for the User class, describing it as follows:

 User: the worker interacting with the system.

 ENUMERABLE ATTRIBUTES

Now, starting with the Participant class, you take the classes one by one, inviting
team members to identify the data attributes of each class. You encourage the team to
call out attributes without arguing about whether a given attribute is needed. As you
explain, “There’ll be plenty of time for discussion in a moment. The goal now is to come
up with as complete a list as possible within a short time.”

 When a minute or so has passed without anyone proposing a new attribute, you find the

team has arrived at the following list of candidate attributes for Participant:

 • Name

 • Employee number

 • Office location

 • Telephone number

 • Email address

 • Birth date

 • Schedule

You now ask the team to consider which, if any, of the attributes aren’t really needed.
Fred, having had obvious difficulty suppressing his urge to speak, suggests deletion of
the Birth date attribute. The others, except Barney, quickly agree and Barney himself
finally accedes, chagrined that he has again failed to establish a mandate for birthday
tracking.

 - 177 -

Barb initiates a discussion of the need to include office location. Some argue that workers
with offices in building #3 may need extra time to travel to a meeting location in some
other building, so it’s important to know who these workers are. Others point out that the
worker should be responsible for arriving on time. In the end, all agree to delete the
attribute.

Dawn asks whether the system needs to include the worker’s name, because the
employee number can be used to access that information in the human resources
database. Knowing the poor reputation for reliability of the human resources system, you
suggest that it would be best not to integrate the two systems. Dawn agrees and the
others follow her lead.

 You continue in similar fashion until each candidate class has been discussed. As lunch

draws near, the back sides of the CRC cards identify the following attributes:

 Class

Attributes

 Participant

Employee number
Name
Telephone number
Email address
Schedule

 Meeting

Meeting name
Schedule
Location
Participants

 User

Employee number

 Location

Room number
Capacity
Schedule

 Holiday

Holiday name
Schedule

You realize that you haven’t had time to discuss responsibilities, let alone collaborations
between classes, but today they’re serving meatloaf (your favorite) in the company
cafeteria. Because you’re eager to beat the lunch-time rush, you don’t want to hold the
meeting over. When Dawn asks whether you’re done for the day, you answer in the
affirmative, figuring you can work out some of the remaining details on your own. Racing
past the others, you head for the cafeteria, hoping to get a place near the head of the
line.

 THE WRAP UP: DAY 2

After a hearty lunch including two portions of meatloaf and a piece of chocolate cream pie
(washed down with some Jolt cola), you head back to your office to finish up today’s work
and prepare for tomorrow morning’s meeting. The main tasks remaining from today’s
session are identifying the responsibilities and the collaborations. To prepare for
tomorrow’s session, you decide to identify several use-case scenarios the group can walk
through.

Before you know it, it’s nearly quitting time, and you decide to wing it during tomorrow’s
meeting rather than stay overtime to complete your preparation. You shut down the
computer and head for the door. Just before you’re out of earshot, you hear your phone
ringing. Worried that something serious has gone wrong with the shipping system that
just went live, you reverse course to answer the call. You’re relieved to find that it’s your
wife, calling to ask you to pick up some canned green beans on the way home. “No

 - 178 -

problem,” you promise.

 “They’ll go great with dinner—your favorite,” she offers, proud of her solicitude.

“Meatloaf.”

 “Some days,” you reflect happily during the drive home, “you just can’t get enough of a

good thing.”

 LESSONS LEARNED: DAY 2

An object-oriented design is composed of cooperating objects. One useful technique for
deciding which objects belong in your system is the CRC or Class-Responsibility-
Collaboration card technique. Requiring no sophisticated software, the CRC card
technique is ideally suited for group design activities.

 “When working with CRC cards, don’t be too quick to eliminate classes and

attributes, because removing them later is simple.”

Begin your CRC session by working with the problem statement that outlines the functions
your software system is supposed to perform. Then, have the session participants
underline the noun phrases in the problem statement. For each noun phrase, prepare a
CRC card. These cards represent potential classes. The list of potential classes is then
either expanded or contracted through group discussion. After a set of classes is agreed
on, use the back of each card to record the attributes of each class. Don’t be too quick to
eliminate classes and attributes, because removing them later is simple; after all, they’re
not cast in code yet. Nevertheless, you want to avoid adding classes that are tied to the
implementation or technical issues.

 Day 3: Called on Account of Dawn

When you arrive the next morning at conference room #2, you’re surprised to find that
neither doughnuts nor coffee await you. Puzzled, you check your watch. “It’s 9:25—not
that early,” you mumble. As you start to take a seat near the place usually occupied by
the donuts, John, Dawn’s secretary, strolls in. “Hi, Jason,” he greets you cheerfully,
“Dawn can’t make it today, so she asked me to come by and tell you. I tried to reach you
by phone, but I guess you’d already left for the meeting. Anyhow, she’ll be available
tomorrow, so you can all meet here at the usual time.”

“Thanks,” you murmur, now twice disappointed. Heading back to your office, you stop
long enough at the office vending machines to purchase their insipid coffee and a three-
day-old Danish.

Knowing that you should take advantage of the delay to better prepare for tomorrow’s
meeting, you instead spend the remainder of the day surfing the Web and catching up on
technical journals. “Boy, wouldn’t it be great to have a 100Mbps data link at home,” you
sigh as the graphics on a Web page load apparently instantaneously.

 LESSONS LEARNED: DAY 3

In the immortal words of Forrest Gump, “You never know what you’re gonna get.” When
running a software project, it’s easy to make plans and schedules without taking
unanticipated events into account. A wise project leader allows enough slack to make up
for a day spent surfing the Web.

 - 179 -

Day 4: Drawing Collaboration Diagrams

Mindful of your mistake in arriving early the previous day, you precisely time the
departure from your office so that today you’ll arrive right on time, which you do. The
others are already assembled. They greet you and point you to the coffee and
doughnuts. You’re pleased to discover that it’s real coffee this morning—French extra
roast—rather than that Hazelnut Delight or whatever it is they’ve been serving.

 Equipped with a chocolate eclair and a capacious mug of hot coffee, you take your seat

just as Dawn calls the meeting to order. She turns the meeting over to you.

“What we’d like to do today,” you begin, while distributing the CRC cards around the
table, “is work on responsibilities and collaborations. To do that, we’re going to do a little
play acting. Each of you take a single card, which represents one of the classes we
already defined. If you think you don’t know anything about how that class should work,
feel free to exchange it with someone else.”

Barney is happy to receive the card for the Holiday class, but Fred exchanges his
Meeting card for Dawn’s User card, feeling he knows more about user interfaces than
meetings. Beyond the one exchange, no one has any questions or objections. “Probably
because they don’t yet understand what collaborations are about,” you muse to yourself.
To the group you offer, “Okay, let’s move on to collaboration diagrams. I think what we’ve
been doing will make more sense to you once we begin work on them.”

 “A wise project leader allows enough slack to make up for a day spent surfing the

Web.”

 EXPLORING USE CASES

“When we first wrote up the system definition, you described what you thought the
system should do. Now, I’d like you to expand on that idea. We want to divide the system
functions into specific operations and then elaborate on each of them. We don’t care
about the internal operation of the system just now. What we’re interested in is how a
user would make use of the system. We call these situations use cases, or scenarios.
You might like to think of them as little dramas.

“Let me give you an example,” you continue. “One function you’ve defined for the system
is to schedule a meeting between participants. So, let’s start by exploring that scenario.
What happens when…,” you ask, reaching for a name out of the air, “Tarzan uses the
system to schedule a meeting with Cheetah, both of whom have wide-open schedules?”
Barb seems somewhat annoyed by your choice of scenario but says nothing.

 “Well,” says Fred, “I hold the User card, so I’m the one who gets the ball rolling.”

 “Great,” you respond, “hold up that card so the others can see it. Now what is it, exactly,

that you do?”

“Hmm, let’s see. I’m Tarzan and I tell the system that I want a meeting with Cheetah. But
I’m not sure who gets that message. I guess I could send a message to Barb, since she
holds the Participant card. Cheetah would be a Participant, I assume.”

 “Barb, how would you handle that request?” you ask.

 “I’m not sure,” says Barb. “I’d have to check my schedule and see when I’m free. But how

 - 180 -

would I know when Tarzan is available?”

“I can help you there,” responds Fred. “I really need to be talking to two Participant
objects, one representing Tarzan and one representing Cheetah. I’ll ask each to tell me
their schedule and then I’ll see where they match up.”

“Wait a minute, wait a minute!” Barney interjects, waiving his hand in the air for attention.
“I thought you were Tarzan, and I thought Tarzan was the user. How can Tarzan be both
the user and a participant? I’m confused.”

 “Good, that’s a very good point, Barney,” you applaud verbally, glad that he’s getting

involved and wondering how Fred will handle the question.

“Yes, I see the problem,” Fred responds. “I was really speaking inaccurately when I said
that I was Tarzan. Really, anybody who’s authorized could set up a meeting. Perhaps
Tarzan’s secretary. The user doesn’t need to be any particular person.”

“Good point,” you reply. “Does that make sense to you Barney?” Barney replies in the
affirmative, and you turn your attention back to Fred. “Now you’ve determined when the
meeting can take place. What happens next?”

“Well, I need to actually book the meeting,” answers Fred. “Oops—I can’t do that unless a
room is free at selected time. I need to ask Barb—she’s got the Location class, right—if
there’s a room free. If there is, then I need to book the room and block out the time on the
meeting participants’ schedules.”

“Great, now we’re really getting somewhere,” you observe. “Let’s see if I can sketch this
scenario as a collaboration diagram. Using the whiteboard, you make a sketch similar to
Figure 6.1.

 Figure 6.1 The Tarzan-meets-Cheetah use case

 ASSIGNING RESPONSIBILITIES

“Now, we need to transfer the responsibilities we’ve just identified to the CRC cards,”
you say. “Each of you that’s holding a card from this scenario, put each of your class’s
responsibilities in the left column and the related collaborator opposite it, in the right
column. Everybody done? Okay, Barb, let’s see what you’ve got.”

 Barb shows you the CRC card for Participant, which looks like Figure 6.2.

 - 181 -

 Figure 6.2 The CRC card for the Participant class

 “And what about Location?” you ask. Barb’s second card looks like Figure 6.3.

 Figure 6.3 The CRC card for the Location class

 “Fred, what have you got for User?” you query. Fred shows you and the others his card,

which looks like Figure 6.4.

 Figure 6.4 The CRC card for the User class

 “Good. You show a responsibility called setMeeting(), which requires collaboration

from Participant and Location.”

 “Thanks,” says Fred, “but why doesn’t Barb show these collaborations on her
Participant and Location cards?”

“Remember,” you explain, “that a collaboration is when a class needs help from another
class to perform its responsibility. The class is the client in a client/server relationship with
its collaborator. Barb was correct in not showing the collaborations, since she’s seeing
the message from the server side.”

 ALTERNATIVE SCENARIOS

 - 182 -

“That was super,” you announce, changing the subject. “Let’s try another. What if
Batman, Robin, and Catwoman want to get together, but Catwoman’s completely
booked?” Again, you employ fictional details intended to elicit creative behavior.

 “In that case,” answers Dawn, “we’d have three participants rather than two. And no

meeting would get booked. It wouldn’t require any new responsibilities or anything.”

 “Okay, then, we don’t need to walk through that one,” you concede. “What happens when

Santa attempts to book a meeting with Mrs. Claus on December 25?”

 “Oh, I don’t allow that,” insists Barney, who holds the Holiday card.

 “But how do you get the opportunity to prevent it?” asks Dawn. “The Holiday class

doesn’t appear on the collaboration diagram.”

 “Then we need to fix it,” demands Barney.

“Right you are,” you respond cheerfully. You’re pleased that the team has gotten into the
process and is contributing freely. Adding a few lines to the collaboration drawing, you
come up with something like Figure 6.5.

 Figure 6.5 The Santa-meets-Mrs. Claus use case

 “Okay, Barney, do you know how to add the responsibility to your card?” you ask.

 “I think so. Is this right?” he asks, showing you his card for Holiday (see Figure 6.6).

 Figure 6.6 The CRC card for the Holiday class

 - 183 -

 Happy that he’s got it right (because you secretly dreaded the thought of again
dampening his enthusiasm), you almost shout, “Yes! That’s great—you’ve got it!

 “Can anyone think of any scenarios dealing with setting a meeting that might need

additional responsibilities?” you ask. “If so, we need to study them.”

Barb offers a possibility, and then rejects it herself: “Well, you might have a situation
where there’s no available room large enough to handle the meeting, but that’s just a
truncation of the first scenario we looked at. Nothing new as far as I can tell.”

 Because the others have no further ideas, you decide to move on. “What happens when

a user wants to cancel a meeting—say, Tarzan’s meeting with Cheetah?” you ask.

“Well, I’m the user interface, so I’m the first to know about it,” says Fred. “I suppose I
simply inform Cheetah and cancel the reservation of the Location. Let me see if I can
draw it.”

 You stand aside to make room. After a few moments, he steps away from the board and

you see something along the lines of Figure 6.7.

 Figure 6.7 Tarzan cancels his meeting with Cheetah

 FINDING WHO’S WHO

 “Wait a minute,” enjoins Barb. “How do you know who the participants in the meeting

are? Who is it that you send the cancelMeeting() message to?”

 “Hmm, you’ve got a point,” agrees Fred. “Still, if I know the time and location of the

meeting, I could ask Participant to tell me who’s booked for it.”

 “I could help out here,” Dawn speaks up. “I have the Meeting class, which could hold a

list of meeting participants. Then you wouldn’t have to ask Participant at all.”

A general discussion ensues, without a clear consensus. Hanging back initially, you now
step in. “Often we run into a situation such as this,” you explain, “where neither of two
choices is clearly the best. What’s usually best is simply to pick one or the other. Later, if
it becomes clear that we’ve made the wrong choice, we can change our minds. That’s the
beauty of working with CRC cards and diagrams, rather than program source code.”

 “But which way should we do it?” asks Barney.

 “I like to keep things as simple as possible,” you explain. “I recommend we handle it

 - 184 -

Fred’s way. Unless the Meeting class offers us some important benefit we can’t see
right now, Fred’s way is better. Besides, the Meeting class has no responsibilities so far.
Unless we uncover some as we go along, we may not need the Meeting class at all.
Eliminating a class could make the design simpler and reduce the time it takes to
implement the system,” you point out, hoping to appeal to the team’s desire to get the
system up as soon as possible.

“So, what does the cancellation scenario look like? It seems we need to add a
responsibility to Participant in order to make everything work right.” Adjusting the
diagram, you end up with a drawing like Figure 6.8.

 Figure 6.8 Revised drawing: Tarzan cancels his meeting with Cheetah

 “And what about the CRC card for Participant? Barb, did you catch the change it

needs?”

 “You bet,” answers Barb, who shows the team her revised CRC card, which now includes

the getMeetingParticipants() responsibility.

 Figure 6.9 Revised CRC card for the Participant class

 SCHEDULE MATTERS

 Pleased by their accurate work, you move on. “Let’s look now at the way a user

establishes his or her schedule within the system. Fred, how do you deal with that?”

Fred thinks aloud, “Well, there are two aspects to this. One involves initially establishing a
schedule. The other involves tweaking the schedule as, from time to time, you find out
you’re going to be away from the office or whatever.”

 “Sounds good. Let’s start with the first case because that seems simpler,” you suggest.

“What happens when I want to enter my schedule for next week?”

 - 185 -

 Fred pipes up, “Well, as usual, I get things started. I guess my move is to talk to your
Participant object and tell it to extend its schedule.”

 “Like this?” you ask, quickly sketching on the whiteboard a collaboration diagram similar

to Figure 6.10.

 Figure 6.10 Jason enters his schedule for next week

 “That looks good to me,” responds Barb. “I just need to add the addFreeTime() method

to the Participant class. I don’t need a collaborator, so it’s straightforward to do.”

 “Okay, what about blocking out time that won’t be available?” you ask.

“That’s equally easy,” says Barb. “I simply need another responsibility, call it
subtractFreeTime(), that blocks out the specified time block. Here, I’ll show you the
card.” Her card looks like Figure 6.11.

 Figure 6.11 Revised CRC card for the Participant class

 “Are you tracking this, Fred?” asks Barb.

 “No problem,” answers Fred. “Here’s what I’ve got so far.” His card resembles Figure

6.12.

 - 186 -

 Figure 6.12 Revised CRC card for the User class

 “Looks good to me,” observes Barb. You and the others express agreement.

Fred raises a new issue. “One thing I’ve been missing,” he says, “is how the schedules
are stored. I mean, the Participant class and the Location class each have a
schedule attribute. Shouldn’t it be an object of some sort?”

“Good idea,” you agree. “Let’s create a CRC card for a Schedule class. How about we
represent the time-related part of the schedule as a set of ordered pairs: a begin time and
an end time. Each member of the set can also specify a location or a code that means
‘free’ to handle the meeting-related part.” You quickly prepare a CRC card like the one in
Figure 6.13.

 Figure 6.13 CRC card for the Schedule class

An inexplicable gnawing sensation in your stomach prompts you to glance at your watch.
You’re amazed to see that the team has worked almost completely through the lunch
hour. Apparently everyone has been too engrossed in the task to notice. “Can anyone
think of any other scenarios we need to consider?” you ask, but no one responds.

 After an interval, Dawn revisits an earlier question. “What about my Meeting class? Is it

not needed after all?”

“It appears not,” you answer, hedging your bet. “But someone may come up with
something new. Why don’t you hang on to the card until tomorrow? Otherwise, it appears
we’re done for the day.”

You notice looks of surprise as the team members discover how time has flown by. “See
you all tomorrow, same time, same place,” chimes Dawn, as the team members scatter
to grab a quick bite before attending to afternoon duties.

 THE WRAP UP: DAY 4

 Hoping to get a leg up on tomorrow’s meeting, you spend some time preparing class

diagrams from the CRC cards. The process is mostly mechanical, so you don’t really

 - 187 -

need user input to do it. The risk is that someone has come up with an additional
scenario that will require modification of the identified classes. Although that would cost
you some work, you’d be pleased to learn about the need for change now, rather than
after the programs are written. Looking at it that way, you don’t feel you’re risking much in
venturing ahead.

Rather than create detailed class diagrams, you decide to prepare conceptual class
diagrams that everyone on the team can review. Then, you and Fred can add the more
technical details that the others won’t care about anyway. Soon, your completed suite of
diagrams numbers five, and you decide to call it a day.

 LESSONS LEARNED: DAY 4

Before you can determine the responsibilities of a class, you need to know what users
expect the system to do. The easiest way to do that is by working through use-case
scenarios. A scenario is developed by asking, “What happens when the user does this?”
Remember, you’re not interested in determining what actually happens at the technical
level—that is, which records are deleted or which database tables affected. Instead,
you’re interested in describing system interactions from the user’s point of view: “If I
withdraw money from my bank account, the ATM machine gives me some money and a
receipt, and my bank balance is reduced.”

 “When developing use-case scenarios, you’re interested in describing system

interactions from the user’s point of view.”

Unlike other group activities, working through scenarios requires participants to take on the
roles of the classes they represent. When the participants get past their initial reluctance
and can “suspend their disbelief,” it can be quite an effective technique. Dangers, however,
lie in straying into technical details or failing to separate the conceptual responsibilities of
each class from the implementation details that may arise later. If you find the conversation
shifting to primary keys or other computer lingo, you need to move away from the “real”
world and back into the world where objects and classes are really alive.

 Day 5: The End in Sight

Next morning, you’re a little late to arrive, due to a freight train that blocked a street
during the morning rush. The others are all seated, reviewing yesterday’s work as you
enter. Apologizing to all, you take your seat so quickly that you forget to grab a doughnut.
Fortunately, the coffee is within grabbing distance, so you pour yourself a cup.

Dawn, knowing little about class diagrams, has obviously been stalling and is eager to
turn the meeting over to you. “Jason,” she directs, “why don’t you get us started doing the
class diagrams?”

 “Okay,” you respond, “but first let me ask if anyone has thought of any additional

scenarios we need to consider. What about it, folks?”

Receiving a unanimous “no,” you proceed with your agenda. Passing around copies of
the class diagrams you prepared yesterday afternoon, you start off with a general
description of what each diagram is intended to show.

 REVIEWING CLASS DIAGRAMS

 “Yesterday, we all designed a set of CRC cards. These were for our benefit as we

worked through the design. When we turn our work over to the programmers, however,

 - 188 -

they’ll work from something called class diagrams. Let’s take a look at the diagram for the
User class, which you’ll find on top of your handouts.” Your diagram resembles Figure
6.14.

 Figure 6.14 Class diagram of the User class

“Notice how closely this follows the CRC card you developed yesterday,” you start in. By
using the overhead projector and your new laser pointer, you highlight the overhead
projected at the front of the room. “At the top is the name that was on the CRC card,” you
continue. “This is the class diagram for the user class. The remainder of the card is
divided into attributes and methods. The only attribute of the employee class is the
Employee Number. The methods should also look familiar. They are just the
responsibilities you defined yesterday.

 “Let’s take a look at another class. Here’s the participant class, which is obviously the

most complex,” you say as you switch to the transparency shown in Figure 6.15.

 Figure 6.15 Class diagram of the Participant class

The room is silent for a second as all the members study the diagrams on the table in
front of them, looking up at the overhead as if they were different. Tentatively, Barney
raises his hand. Hopefully, you ask, “Go ahead, Barney.”

 “I’ve got a couple questions,” starts Barney slowly, picking up speed as he continues. “I

 - 189 -

notice that we’ve included the Employee Name with the Participant class because,
if I remember right, we didn’t want to integrate this system with the HR system at this
time. Why do we only include the Employee Number with the User class, then?”

Before you can answer, Barney continues. “My second question is why the
Participant class has Schedule as one of its attributes. I thought that Schedule
was a separate class.”

Surprised at the astuteness of Barney’s questions, you take a moment to compose just
the right answer. “Very good questions,” you begin. “First, it’s not only the Participant
class that has a Schedule as an attribute. Other classes do as well. For instance, here’s
the Location class. Notice that one of its attributes is a Schedule.” You point to a
diagram resembling Figure 6.16.

 Figure 6.16 Class diagram of the Location class

“Remember the third C in CRC cards?” you go on. “It stands for Collaboration. Every time
one class collaborates with another class, it requires an instance of that class (called an
object) to perform the required services. Thus, for every collaboration, you’re likely to find
that the collaborating class is listed as an attribute. Notice here, the Holiday class uses
the Schedule class as well,” you say as you point to a diagram resembling Figure 6.17.

 Figure 6.17 Class diagram of the Holiday class

 - 190 -

“I understood about the collaborations,” interjected Barney. “For some reason, however, I
sort of thought that attributes were, like, parts of other objects. I guess I thought that the
collaborations would be shown in some other way.” When Barney falls silent for a
moment, you use the respite to put the final class diagram, the Location class, on the
overhead (see Figure 6.18).

 Figure 6.18 Class diagram of the Schedule class

Barney isn’t quite finished, however. “What about the Employee Name and Employee
Number thing?” You think for a second, trying to determine how much information you
need to impart, and opt for the most straightforward explanation.

“Even though we won’t be hooking up to the HR system at this time, we still don’t want to
store more information than we must. By defining the Employee Name attribute only in
the Participant class, we make it available to every other class in the system, yet
store it only once. That way, when we finally do hook up with the HR system, we’ll only
have one extra copy of the Employee Name instead of the two we’d have if we stored it
in both Participant and User.”

You’re pleased to see that Barney not only accepts your reasoning but also seems to be
shaking his head in agreement. Briefly you ask for more questions and are pleased to
find that there are none.

“Well, then, it looks as though this will be a short meeting,” you promise. “Here’s what
remains. Fred and I will work this morning and this afternoon to refine the class diagrams
to include additional technical information. We’ll then cobble together a user-interface
prototype that we’ll demonstrate tomorrow morning. Given your acceptance of the
prototype, we’ll turn this project over to the programmers, stand back, and await
Christmas morning.”

 INTERFACE AND PROTOTYPE

Dawn thanks everyone for coming, nods appreciatively in your direction, and joins the
others as they return to their offices. Fred stays behind to work with you on the detailed
class diagrams and the prototype.

Deciding to pre-empt what you believe is a likely question from Fred, you explain, “This
design is going to need some tweaking here and there because these objects have to
have persistence. It won’t work for all the data to be lost every time someone cuts power
to the server. We’ll have to design an interface to a relational database. But that can wait.
For now, let’s focus on specifying the details of the interfaces and getting a user-interface
prototype up and running.

 - 191 -

“Okay by me,” Fred declines to argue. “Let’s get to it.” An hour or so of work is sufficient
to produce detailed class diagrams that include data types for attributes, method
parameters, and method return values.

You then leave Fred the task of quickly hacking the prototype. You know that, by using a
visually oriented Java IDE, this task can be done in an hour or so. You return to your
respective offices, you to check your email and Fred to write code.

Later that afternoon you check with Fred to find out how he’s progressing. The user
interface he’s built looks simple enough to use and seems to support the necessary
functions (see Figure 6.19).

 Figure 6.19 The ScheduleMatic user interface

 You’re pleased and you tell him so. “Thanks,” he mumbles, unsure how to respond.

 LESSONS LEARNED: DAY 5

Hide the details! Some things work well in a group setting, and others just don’t. Many a
project manager has attempted to make drawing class diagrams a loose group project
and has become bogged down in a quagmire of endless discussions on arrowheads,
lines, and figures. You can avoid this pitfall by assigning responsibility for this task to a
single person or, if the project is larger and can be divided into modules, a subgroup. If
you’re a technically inclined person, you might be surprised to find out that not every one
of your colleagues finds creating detailed diagrams to be an exciting or rewarding
experience!

 “Hide the details! Many a project manager…has become bogged down in a

quagmire of endless discussions on arrowheads, lines, and figures.”

Although creating class diagrams should be a solo activity, reviewing them should not.
You may feel that you’ve carefully captured the essence of your CRC card sessions, but
when the CRC cards are put away and the class diagrams are put up on the wall, you
might be surprised to find that you’ve completely misunderstood what was required. The
extra effort necessary to educate your team to understand the meaning of your finished
diagrams will be well worth the effort.

 Finally, when creating a set of class diagrams, make sure you create them at a conceptual

 - 192 -

level that’s appropriate for the group you’re presenting them to. Diagrams meant for the
implementers should include more detailed information than those meant for designing and
approving the product’s functionality.

 Day 6: Demonstrating the Prototype

The next day, the team assembles in Fred’s office, to be nearer the computer. Fred
demonstrates the prototype, and team members spend some time trying it out. You and
Fred are equally pleased to see how much everyone likes the system.

You promise to turn the design over to programming that very afternoon and to keep the
team members posted on the progress of implementation. To celebrate completion of the
design, Dawn treats the team to lunch at a local restaurant, one you’ve never visited.
Already unsure what she may have in mind, your fears are confirmed when you see the
large and gaudy sign that adorns the face of the building, Lo Fat’s Faux Food Buffet, and
the smaller sign proclaiming the day’s special dish, Sweet and Sour Tofu Bits. “I wonder if
they have tofu meatloaf,” you’re startled to find yourself asking no one in particular—but
happily, no one has heard you.

Summary

Designing software combines technical issues and a process for harnessing the expertise
of different people in support of a common goal. Most of this book is about the technical
issues surrounding software development; this chapter is a peek into the process
involved. The process discussed in this chapter isn’t meant to be definitive but includes
steps and techniques that will usually be found in any process you adopt.

The software development process begins by assembling a team and defining your
product. A joint session spent developing a problem statement is a good way to develop
both. The facilitator can use a simple brainstorming technique—listing features on a
whiteboard—to get the other team members involved. The facilitator must not dictate the
system features but allow them to emerge from the process while keeping the discussion
on track. It’s important to achieve consensus at this stage.

After deciding what your product will do, the next step is to “discover the objects” in your
system. One useful technique for doing this is the CRC, or Class-Responsibility-
Collaboration, card technique. Using CRC cards requires no sophisticated software and
is well suited for group-design activities. CRC sessions begin by having participants
underline the noun phrases in the problem statement. A CRC card is prepared for each
noun phrase, representing a potential class. Through group discussion, the set of classes
is either expanded or contracted. When a set of classes is agreed on, the back of each
card is used to record the attributes of each class.

The third step in the software design process is to assign responsibilities to each of your
classes by “play acting” with the proposed system. These play-acting scripts are called
use-case scenarios. A scenario is developed by asking, “What happens when the user
does this?” You’re not interested in determining what actually happens at the technical
level; instead, you’re interested in describing system interactions from the user’s point of
view.

Technical details, such as class diagrams, are difficult to do in a group setting, so preparing
them should be delegated to skilled individuals. The resulting product, however, should be
reviewed by the entire team. Finally, when running a software project, make allowances for
the unexpected by allowing slack time.

Questions

 1. The first step in the software development process is to prepare a

 - 193 -

 a. Summary paragraph

 b. List of features

 c. Plate of doughnuts

 d. All of the above

 2. The summary paragraph concisely lists

 a. The hardware that the system will run on

 b. The programming language to be used in implementation

 c. What the software should do, from the user’s perspective

 d. Which database manager should be used for storing the data

 3. Working together in a group is most effective for

 a. Ironing out technical details that might arise as the design is finalized

 b. Finalizing the inheritance hierarchy to be used in your design

 c. Defining requirements and brainstorming general classes and their responsibilities

 d. Nothing. Everything that can be done in a group can be done better by individuals.

 4. The CRC card technique uses index cards, each of which represents

 a. Crazy Random Choices

 b. Class Responsibility Collaborations

 c. Civilian Regular Communications

 d. Class Requirements and Connections

 5. When using CRC cards as an analysis technique, you

 a. Underline nouns in the problem statement, trying to discover candidate lasses

 b. Start with the responsibilities and wait until later to work out who does what

 c. Discover the attributes necessary and later group them into classes.

 d. Create a module structure chart, starting with the main method

 6. Class diagrams prepared for team approval should generally

 a. Be conceptual rather than technically complete

 - 194 -

 b. Be omitted, because team members don’t want to be bothered with details

 c. Make no use of inheritance because that just confuses people

 d. Use colorful icons and many lines so that team members can remain interested

 7. Role playing, play acting, use cases, and scenarios are all useful techniques for

discovering

 a. Class attributes

 b. Candidate classes

 c. Class responsibilities

 d. Future box-office stars

 8. Because things can go wrong, a wise manager will always

 a. Prepare for every contingency

 b. Hire extra people to make up for those who don’t perform adequately

 c. Lock the office doors before the employees can get out

 d. Build “slack time” into the schedule to provide a buffer against unforeseen

circumstances

 To Learn More

Most of the time, the success of your process project will depend less on what you’re
building than on who’s on your team. Even if you’re not a manager, you’ll benefit from the
insights in these books that focus on the “human side” of software development:

 • Constantine, Larry L. Constantine on Peopleware. New Jersey: Hall Computer Books,

1995.

 • DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams. New

York: Dorset House Publishing Co., 1987.

•

DeMarco, Tom and Timothy Lister. Software State-of-the-Art: Selected Papers. New
York: Dorset House Publishing Co., 1990. In this resource, DeMarco and Lister
collected a group of papers dedicated to current practice in software development.
One particular article makes purchasing this hefty volume worthwhile and may change
your mind—David Parnas’s article, “A Rational Design Process: How and Why to Fake
It,” which was originally published in the IEEE Transactions on Software Engineering,
Vol. SE-12, No. 2.

•

McConnell, Steve. Rapid Development: Taming Wild Software Schedules. Redmond,
Washington: Microsoft Press, 1996. This volume by McConnell, who penned one of the
definitive collections of software construction lore, is devoted not only to peopleware but
also to managing the software development process in general.

Chapter 7: Object Relationships: Implementing
Associations

 - 195 -

Frantically you punch at the unfamiliar buttons on the radio of the shiny new rental car,
wishing you’d had the sense to adjust it before you pulled onto the freeway. The static
only gets louder and more irritating as you try each obscurely labeled knob and slider in
turn. Finally, just before you pull over and get out your emergency tool kit, you find the
tuning button—inexplicably marked with a plus sign—and are rewarded by the refreshing
sound of human speech.

 “…and then, like, he said, I’m just not ready for that kind of commitment, you know? What

is it with men, Jerry? Like last week…”

 You jab the tuning button.

 “…at 5, Arnoldo’s got the scoop. Don’t miss Alien Invaders, and the Women Who Lo…”

 Jab.

 “…violence erupted for the second time today in the capital city of…”

 “…the President said he was willing to compromise if only…”

 “…secret to raising happy children is setting…”

 Jab. Jab. Jab.

 “…and Mama’s in the Statehouse, and Daddy’s in the pen.”

 Jab.

 Finally! Music. Sitting back in your seat, you let the vibration of the steel guitar wash over

you, at peace with the world.

Relationships. We spend much of our lives coping with the problems they involve. Every
relationship involves responsibility: because you’re a parent, you must do this-and-that,
and because you’re a citizen you must do thus-and-so. Pile on enough relationships and
life gets overwhelming. Unfortunately, you can’t escape relationships by immigrating to
the world of objects. Although objects participate in different kinds of relationships than
you do and have different sorts of responsibilities, relationships play a central role in
software design. Describing, defining, and working on the relationships between classes
and objects is one of the chief occupations of the object-oriented designer.

The next four chapters concentrate on teaching your objects and classes to form healthy
relationships. In this chapter and the next, you’ll study association relationships—
relationships between objects in which the objects exchange messages. In later chapters,
you’ll study inheritance relationships—relationships between classes in which objects of
one class inherit data and behavior from another class. In this chapter you will learn:

 • How to differentiate between association, composition, and simple association

relationships

 • How to implement associations by using referential attributes and temporary objects

 • How to evaluate association relationships based on the criterion of coupling

 • How to choose between different strategies for implementing a uses relationship

 - 196 -

 • How to implement cardinality constraints on an association

 The Basics of Relationships

In real life, relationships are an important building block used to organize society. When
you were born, you formed a parent-child relationship with your parents. As you grew up,
you formed relationships with different people, groups, and things. You might have joined
the scouts, owned a car, gotten married, or eaten a chili dog. Each of these relationships
implies certain rights and responsibilities between yourself and the other partners in the
relationship.

If you own your car, for example, you have the right to drive it and sell it; this is inherent
in the owns-a relationship. If you try to perform the sell() operation on an automobile
with which you don’t have an owns-a relationship, you’re likely to form a new relationship
with the rest of society—the inmate relationship.

When designing object-oriented software, discovering the classes and objects you’ll need
is a first step, closely tied up with the task of discovering the responsibilities that each
object assumes. Until now, however, one messy little detail has been swept under the
rug: how are classes and objects related to each other?

Think about the ProgressBar class presented in Chapter 4. ProgressBar is a simple,
standalone class. But, in fact, ProgressBar couldn’t do its work—or even exist—without
the cooperation and collaboration of several other classes and objects. You couldn’t
create a ProgressBar unless the Component class already existed. You couldn’t
paint() without the collaboration of a Graphics object. A ProgressBar would have
no place to live without the cooperation of a friendly Container object. While it’s
important that all your objects be well behaved, it’s equally important that they participate
in stable relationships. As in real life, failure to do so can lead to disaster.

 “Java communities—like human communities—must be organized.”

“No man is an island,” wrote 16th-Century poet John Donne. Today he might well have
added, “No object is an island either.” Java programs are communities of objects that
collaborate to accomplish a goal. For that collaboration to be effective, Java
communities—like human communities—must be organized. Like human communities as
well, not just any organization will do; the form must follow the function. The chain-of-
command organization that works so well in the military isn’t going to be as successful
when you want to take your date to dinner and a movie; you’re liable to end up eating
alone.

One way to decide whether a particular organizational strategy is likely to be successful
is to rely on simple rules, usually formed from past experience. Such rules are called
heuristics.

 RELATIONSHIP HEURISTICS

 “Don’t put all your eggs in one basket.”

This well-known cliché is an example of a relationship heuristic or rule of thumb. If all
your eggs are in one basket and something happens to the basket, you’ve lost all your
eggs. If you’ve put a portion of your eggs in several different baskets, a disaster befalling
one basket won’t have as great an impact on your ability to serve your customers a
tasty omelet.

 - 197 -

Such heuristics are not always reliable, but they work often enough to prove their worth.
You could, for example, scatter your eggs so widely you forget where you put them. In
that case, you would have been better off if you had left them in one basket. Fortunately,
such results are rare.

 When you design objects and classes, you rely on a similar set of rules, each designed to

reduce the risk of some “bad thing” happening to your program. For instance:

 • Make all your data private to reduce the effects of changing your implementation.

 • Create a simple public interface that hides the internal working of your class.

 • Create highly cohesive classes. Each class should model a single abstraction.

 These, and a host of other similar rules, help you design classes and objects that are

robust, easy to use, and resistant to the unintended side effects of inevitable change.

 Are there also rules for designing the relationships between objects? Yes. In fact, there

are really two kinds of rules:

 • Rules that help you decide which kind of relationship will be most effective

 • Rules that help you implement a particular relationship most effectively

First things first, however. Before you can decide which relationship to use and how best
to implement it, you need to know what’s available. To resurrect another hoary cliché, “To
the man with only a hammer, everything is a nail.” The first step toward expanding your
relationship repertoire is to differentiate between object relationships and class
relationships.

 OBJECT AND CLASS REVIEW

The differences between objects and classes can sometimes be confusing. Frequently,
the terms are used interchangeably, but, in fact, they are quite different things.
Remember from Chapter 2 that objects are instances of a particular class. An object is
not a class. A class acts like a blueprint that defines the attributes and behavior of each
object. You can—usually—create numerous objects from a single class.

 “The Constitution is not the government; it merely provides the blueprint for

implementing an actual government.”

If you have difficulty keeping these two concepts straight, just think of the difference
between writing a program and running a program. When you write a Java program, you
define a set of classes by specifying attributes and methods. This is the static structure of
your program. But when you run your application or applet, that static structure comes
alive and your class definitions are used to create objects. It is the objects in your
program that interact and send messages to each other and store different values.

This relationship is much like the one between the U.S. Constitution and the government.
The Constitution describes the different branches of the government as well as the
relationships between them. But the Constitution is not the government; it merely
provides the blueprint for implementing an actual government. When you want to write a
letter complaining about how things are going, you don’t send it to the Constitution—you

 - 198 -

send it to your member of Congress. In a sense, your individual member of Congress is
an object made possible by the Constitution class.

Remember

An object is not a class: it’s a member, or instance, of a class. A class acts
like a blueprint that defines the attributes and methods common to its
(potentially many) instances.

 INTRODUCING OBJECT AND CLASS RELATIONSHIPS

When you use Java, you write class definitions. When you run your program, it becomes
a community of interacting objects. Just as objects and classes are different, a Java
program really has two basic types of relationships: class relationships and object
relationships.

As a simple analogy, you might think of class relationships as similar to genetic
relationships in the real world. No matter how you get along with your parents, children,
or aunts and uncles, your actual relationship to such “blood relatives” is fixed and
unchanging. Barring time travel (as in Back to the Future), your parents will always be
your parents.

As with genetic relationships, class relationships always involve inheritance. This fixed or
mandatory relationship is sometimes called the is-a relationship. You can say that the
Button class is-a Component because it is derived from the Component class. Each
individual Button object always has this fixed relationship to the Component class. It
has no “choice” in the matter. Class relationships are the subject of Chapter 9,
“Implementing Class Relationships: Inheritance and Interfaces,” and Chapter 10,
“Designing with Inheritance and Interfaces: A Case Study.”

Object relationships—called associations—are the relationships objects use to work
together. If you think about the people you interact with outside your family, you’ll see that
you also have a wide variety of relationships. You purchase food from a grocery store, you
may attend class at a local college, you might belong to a professional organization like the
Association for Computing Machinery (ACM). All these relationships are different from the
fixed relationships you have with your parents and children. These are all forms of
association.

Kinds of Associations

Object relationships or associations are more flexible than class relationships and come
in a wider variety. Because object relationships don’t involve inheritance, you might say
that object relationships are made, not born. Objects can work together in three different
ways:

 • An object can use another object to do some work. This is called an association,

acquaintance, or uses relationship.

•

A complex object may be composed of several simpler parts. This is called a
composition relationship, although sometimes it’s also called aggregation or
containment relationship. Composition will be covered in Chapter 8, “Object
Relationships: Compositions and Collections.”

 • When two objects depend on each other but don’t directly interact, a simple or weak

association is formed.

In reality, there aren’t just three forms of association. These somewhat simplistic
categories make it easier for you to analyze the collaborations between objects, but don’t
be surprised if you have difficulty “fitting” a particular collaboration into one of these
pigeonholes. As with all simplifications, the truth is frequently more complex.

 - 199 -

The underlying principle behind these categories is found in the idea of coupling, which
measures the mutual dependence of two objects on each other. If each of two objects
participating in a relationship cannot exist without the other, the objects are very highly
coupled. If each object can exist independently but cannot perform some operation
without the other, the objects are less highly coupled. If the relationship between two
objects is “purely formal”—that is, the objects don’t interact or share data at all—the
coupling between them is nonexistent. Figure 7.1 shows this entire range of coupling and
places the weak association, association, and composition relationships on that
continuum.

 Figure 7.1 Coupling between objects.

 “In general, you want to create classes that are as loosely coupled as possible

while still being able to efficiently carry out their responsibilities.”

In general, you want to create classes that are as loosely coupled as possible while still
being able to efficiently carry out their responsibilities. This goal is laudable; however,
most of the time the nature of the problem itself will dictate the type of association you
must use.

 Before you look at each of these forms of association, let’s first examine a preliminary

concept that affects all three forms: cardinality.

How Many? A Cardinal Question

Suppose that you were given the task of teaching an alien species how to shop for, say,
a new computer. What would you do? (Of course, if you have children, you’ve already
found yourself in a similar position.) You’d certainly teach the aliens to ask about
features: Does it have enough memory? Is it fast enough? How about disk storage?
You’d also teach them to compare prices and features between competing brands: the
Andromeda V may be state-of-the-art, but the HedKrache 7—which has 90 percent of the
Andromeda’s capabilities—is only half the price. Finally, you’d teach them to read
consumer reviews and tap into the Internet to learn about reliability.

When you buy a new computer or car, or when you decide on a career or a school or a
mate, it’s important to ask questions, but they have to be the right questions! When you
design associations between objects, regardless of the type of association, you should
ask yourself these questions:

 • How many objects will participate in the association?

 - 200 -

 • Is the association mandatory or optional?

Let’s take a look at an example. Rather than work with aliens or robots, you’ll look at a
Java application you might expect to find in a typical business: a SalesInvoice object.
This same example will be continued and further elaborated in the next chapter.

Figure 7.2 shows an invoice of the kind you might find in almost any organization. Get
yourself a pencil and paper and take a minute to write down a list of collaborating objects
you find explicit or implicit there. When you’re finished, compare your list to Table 7.1,
remembering that discovering objects is not an exact science. Your list may include more
objects or fewer. The important thing is that you consider all the requirements. You might
find that simply circling the relevant parts on the invoice, as Figure 7.3 illustrates, is a
helpful exercise.

 Figure 7.2 A sales invoice

 Table 7.1 Collaborating Objects In The Salesinvoice Object

 Object

Description

 Customer

Purchased the product

 Recipient

Ship the product here

 SalesPerson

Who took the order

 LineItems

The things purchased

 - 201 -

 Figure 7.3 Circling the collaborating objects

 ANALYZING THE SALES INVOICE

The Customer is the person you send the bill to. You might ship your product to the
same person. A Customer object should have name and address information, so your
invoice gets sent to the right address. You’ll also want some credit-worthiness information
and maybe some links to the Customer’s buying history.

The Recipient is the person you send your product to. Because the Recipient isn’t
necessarily paying the bill, you don’t need the same kind of credit information you would
for a Customer. If your business is the sort where the Customers and the Recipients
are normally different—a florist, for instance—you may want to maintain the distinction
between a Customer and a Recipient. In many retail or mail-order (Web-order?)
applications, however, the Customer and Recipient are almost always the same. In
this kind of situation, it makes sense to use a single class for both Customer and
Recipient. That’s what we’ll do here.

 The SalesPerson is the person who took the order. You need to know who that is

because you need to pay sales commissions based on the number of units they sold.

Finally, the LineItem objects store the actual items sold, with the quantities of each
item. The LineItem class is perhaps the most important part of the application—the key
abstraction, if you will. If you get the LineItem class wrong, you’re liable to lose track of
how much you sold and how much each item cost.

But truthfully, each object in your SalesInvoice is equally important; you want to make
sure that you sell to credit-worthy customers, ship your products to the right address,
charge the correct amount, ship the correct number, and pay your sales force what
they’ve earned. Your SalesInvoice program really is a community of objects, and it’s
important that you get them working together as a team. First, you need to set some
ground rules to specifically define the cardinality constraints your objects will observe.

 WHAT IS CARDINALITY?

 “Cardinality refers to the number of objects that participate in an association and

whether their participation is optional or mandatory.”

 - 202 -

Cardinality refers to the number of objects that participate in an association and whether
their participation is optional or mandatory. Look at the five objects you’ve defined: the
Customer, the Recipient, the SalesPerson, the LineItem, and the SalesInvoice
object itself, and ask yourself the following questions:

 • Which objects collaborate with which other objects? You may want to draw some

simple collaboration diagrams like those shown in Chapters 5 and 6.

 • How many objects participate in each collaboration?

 • Is the collaboration mandatory or optional?

 Take a second and write out your list. When you’re finished, come back to the discussion

below and see how you did.

 ANALYZING SalesInvoice COLLABORATIONS

Every SalesInvoice object collaborates with only one Customer object. You may wish
you could bill the same invoice to more than one Customer, but that would be illegal as
well as unethical. Also, every SalesInvoice object must have a Customer—you can’t
send out a bill without one. Thus, from the SalesInvoice point of view, the cardinality of
the association is 1, and it is a mandatory association.

Every relationship has two sides, however, and from the Customer’s point of view,
things look a little different. First, a Customer may have ordered products from you on
many different occasions—in fact, you desperately hope that is the case. You may also
have Customesrs who haven’t ordered anything from you—perhaps they just moved
into town and opened an account, or maybe you purchased a large mailing list of
potential Customers. From the Customer’s point of view, then, the cardinality of the
association is 0..n (meaning a single Customer can be associated with zero or more
invoices). Because the lower bound is 0, the association is optional. Figure 7.4 shows the
SalesInvoice-Customer association.

 Figure 7.4 The SalesInvoice-Customer association

What about the Recipient? As with the Customer, you can ship the product to only
one address, so it would seem as though the cardinality of the Recipient association
should be the same as that of the Customer. But is that true? For most businesses, as
previously mentioned, products are shipped to the Customers who purchase them.
Thus, it is not necessary for every SalesInvoice object to have a Recipient. If there
is no Recipient, the product is simply shipped to the Customer. Thus, the cardinality
of the SalesInvoice-Recipient association is 0..1, and it is optional.

From the Recipient’s side of the fence, the relationship looks superficially like the
Customer-SalesInvoice association, but here, too, a closer look reveals a difference.
Although you may have Customers who have never ordered a product (for the reasons

 - 203 -

mentioned previously), you’ll never have Recipients who haven’t received a product;
they become Recipients because some Customer decides to ship them something!
Thus, a Recipient must be the target of at least one SalesInvoice, but may actually
be associated with many. The cardinality of the Recipient-SalesInvoice association
is thus 1..n, and it is mandatory. Figure 7.5 shows the SalesInvoice-Recipient
association.

 Figure 7.5 The SalesInvoice-Recipient association

The cardinality of the SalesInvoice-SalesPerson association is identical to that of
the SalesInvoice-Customer association. Every SalesInvoice must be written by
only one SalesPerson, and the relationship is mandatory. Just as you can have
Customers who have not yet ordered a product, however, you can also have
SalesPersons who have not yet written a SalesInvoice; perhaps they are new hires
or just not very good at their job. Because you pay them only on commission, you’re not
really concerned. From the SalesPerson’s perspective, the cardinality is 0..n, and it is
optional. Figure 7.6 illustrates the SalesInvoice-SalesPerson association.

 Figure 7.6 The SalesInvoice-SalesPerson association

The last association to define is that of the SalesInvoice and the LineItems
appearing on the invoice. Each LineItem object encapsulates information about the
quantity of products, which products, and the price. The LineItem objects also offer
input and output services to the SalesInvoice. Because you’re only interested in the
cardinality of the association at this point, you can put off thinking about the type of
collaboration until later. Looking at Figure 7.3, you can see that every SalesInvoice
has 5 LineItem objects. Or does it? Really, what you mean is that every invoice can
have at most five LineItem objects. If you assume you’ll never create a SalesInvoice
for 0 items (why keep that around?), you can see that the cardinality of the
SalesInvoice-LineItem association is 1..5, and that it is a mandatory association.

 “Every relationship needs some rules, even if they’re informal and unspoken.”

 By this point, you’re becoming an old hand at this, and you realize that you also have to

look at the association from the side of the LineItem. Can you have a LineItem object

 - 204 -

that isn’t associated with a SalesInvoice? No. Can a LineItem be associated with
more than one SalesInvoice? Again, no. You cannot bill two different Customers for
the same item. Because every LineItem must appear on exactly one SalesInvoice,
the cardinality of this association is 1, and it is a mandatory association. Figure 7.7 shows
the SalesInvoice-LineItem association.

 Figure 7.7 The SalesInvoice-LineItem association

 SUMMARY OF SalesInvoice CARDINALITY

Every relationship needs some rules, even if they’re informal and unspoken. The first rule
in an association relationship is the membership criteria—who gets to join? The
cardinality constraints lay out the answers to this fundamental question. Table 7.2
reiterates the objects you’ve investigated so far, and the cardinality of their associations.

 Table 7.2 The Cardinality Of The Salesinvoice Associations

 Association

Cardinality

Optional/Mandatory

 SalesInvoice-Customer

1

Mandatory

 Customer-SalesInvoice

0..n

Optional

 SalesInvoice-Recipient

0..1

Optional

 Recipient-SalesInvoice

1..n

Mandatory

 SalesInvoice-SalesPerson

1

Mandatory

 SalesPerson-SalesInvoice

0..n

Optional

 SalesInvoice-LineItem

1..5

Mandatory

 LineItem-SalesInvoice

1

Mandatory

 ASSOCIATIONS AND MESSAGES

To implement an association, you not only have to know about the cardinality of the
association, you also have to know how messages will be passed. Will SalesInvoice
objects send messages to LineItems? How about LineItems sending messages to

 - 205 -

SalesInvoice objects? To find out this type of information, you’ll have to do some
additional design work, classifying each relationship by using the categories given
previously:

 • Uses relationship, in which objects communicate via messages

 • Composition relationship, in which an object is composed of other objects

 • Simple association, in which objects depend on one another but do not directly interact

 By using the SalesInvoice class, let’s start by looking at the most common type of

association between objects—the uses relationship.

 “Whenever one object sends a message to another object, a uses relationship is

established...”

 Objects That Use Objects

Whenever one object sends a message to another object, a uses relationship is
established between the object that sends the message and the object that receives it. In
real life you use a similar terminology. When you call PizzaLand for a double pepperoni,
you establish a uses relationship. You probably use a certain grocer or dry cleaner; you
may use your local library. All of these are instances of uses relationships from the real
world.

One defining characteristic of the uses relationship is that it doesn’t require the same
level of commitment as other relationships. If you decide you’d rather have Szechwan
take-out next time you’re hungry, you have no binding ties to PizzaLand. Similarly, with
objects, the uses relationship generally implies a lower level of coupling between objects
than inheritance or containment relationships do.

Uses relationships among objects all boil down to message passing. Does an object send
messages to or receive messages from another object? If so, a uses relationship exists
between those two objects. What uses relationships can you find in the SalesInvoice
class? To answer that question, you’ll have to revisit the collaborations between the
objects you’ve identified. A simple collaboration diagram, like that shown in Figure 7.8,
can help you as you work.

 Figure 7.8 Initial SalesInvoice collaborations

 - 206 -

 SalesInvoices AND Customers: WHO USES WHOM?

The first class you identified was the Customer class. Does a SalesInvoice object
send messages to a Customer object (or to the Customer class)? Yes, certainly. A
SalesInvoice object will have to ask its Customer object for the Customer’s credit
balance, and will have to ask the Customer object where to send the bill. The
SalesInvoice object thus sends several messages to the Customer object. You can
say that a SalesInvoice uses a Customer object.

Let’s turn that around. Does a Customer object send messages to the SalesInvoice
object? No, it really doesn’t need to. A Customer object can exist and has meaning
independently from a SalesInvoice object. A Customer object really doesn’t even
know that it’s associated with a SalesInvoice object. It might just as easily be part of a
MailingList collection or simply stand on its own. The designer Grady Booch calls
objects like Customer server objects, because they provide services to the association
but don’t send messages. (Of course, Customer objects aren’t pure server objects,
because they do send messages to, and use, other objects. In the Java world, it’s rare to
find a class that uses no other objects and sends no messages.)

This means that the SalesInvoice-Customer association is a single-direction,
mandatory association that implements a uses relationship. It’s a uses relationship
because the SalesInvoice sends messages to the Customer object. It’s single
direction because the messages flow in only one direction. It’s mandatory because every
SalesInvoice must have a Customer.

Remember

If an object sends messages to another object, even if that object doesn’t
send messages back, a uses relationship exists between the objects. The
uses relationship will normally be the dominant relationship in object-
oriented programs.

 IMPLEMENTATION: WHERE DOES THE CUSTOMER COME

FROM?

If you sit back and think for a second, you’ll realize that the first task you face in
implementing a uses relationship between your SalesInvoice object and a Customer
object is answering the question, “Where do you get a Customer?” After thinking about it
for a few minutes, you might come up with a solution. Rather than fix on the first solution
that comes along, though, you should realize that your SalesInvoice object can get
hold of a Customer in several different ways, and each method has its own advantages
and disadvantages. In fact, Arthur Riel, in his book Object-Oriented Design Heuristics,
describes six different techniques for implementing a uses relationship. Let’s analyze
some of the different possibilities.

 Customers as Arguments

Because the SalesInvoice association is a mandatory association (that is, you can’t
have a SalesInvoice without a Customer), and because as a conscientious designer
you always try to make sure your constructors create only valid objects, your first attempt
might look something like Listing 7.1.

 Listing 7.1. A First Attempt at Implementing the SalesInvoice-Customer

Association

 public class SalesInvoice
 {
 // --Constructors---
 public SalesInvoice(Customer soldTo)

 - 207 -

 {
 this.soldTo = soldTo;
 // Other initializations
 }
 // Details omitted
 // --Class and Object Attributes------------------------
 private Customer soldTo;
 }

The SalesInvoice class shown in Listing 7.1 has a constructor that takes a Customer
object as an argument. The Customer object passed to the constructor is stored in the
referential attribute soldTo. A referential attribute is an object field that refers to another
object, even though that object isn’t logically contained in the class that holds the field.

Although this solution solves both the mandatory and validity constraints, it lacks a little
something in practicality. Users of the class have to get hold of a fully constructed
Customer before they can start. Moving the analogy back to the paper forms you started
with, it would be like a salesperson filling out a credit application before starting to fill in
the SalesOrder.

 Creating Your Own Customers

For some business transactions (buying a house or car, for instance), it might be entirely
appropriate to fill out a credit application before the sale. For others, it’s overkill. Listing
7.2 shows a second possible solution.

 Listing 7.2. A Second Attempt at Implementing the SalesInvoice-Customer

Association

 public class SalesInvoice
 {
 // --Constructors---
 public SalesInvoice(...)
 {
 this.soldTo = new Customer();
 // Other initializations
 }
 // Details omitted
 // --Class and Object Attributes------------------------
 private Customer soldTo;
 }

This version of the SalesInvoice class constructs its own Customer object, rather
than require the user of the class to supply a fully constructed one. Like your first attempt,
this Customer object is likewise stored in the referential attribute, soldTo. This solution
may seem attractive if you’re in a business where you never get any repeat Customers
but, if that is the case, why hold on to the Customer abstraction at all? You’d be better
off simply selling everything to “Cash Customer.” The advantage of having Customer
objects is that they can exist on their own.

 Third-Party Customers

 A third solution, shown in Listing 7.3, satisfies the need for Customers that can exist

independently.

 - 208 -

 Listing 7.3. A Third Attempt at Implementing the SalesInvoice-Customer
Association

 public class SalesInvoice
 {
 // --Constructors---
 public SalesInvoice(int custNo, ...)
 {
 this.soldTo = CustomerDB.getCustomer(custNo);
 // Other initializations
 }
 // Details omitted
 // --Class and Object Attributes------------------------
 private Customer soldTo;
 }

Listing 7.3 assumes that a repository of Customers (here contained in the CustomerDB
class) keeps track of all Customer objects. In Listing 7.3, that’s done through a simple,
static, non-persistent array. In a real application, the static method
CustomerDB.getCustomer() would look up a Customer in your database and return a
copy of the Customer for you to use.

This has the advantage of working very much like the problem you’re modeling. Have you
ever bought anything at a store where you had an account—perhaps a video store? What
happens when you go to the checkout counter? The first thing the clerk will do is ask you
for your “customer number.” The sales clerk then sends the information you supply to
an “oracle” somewhere who knows all about your purchasing habits and buying history. If
you haven’t returned that rented copy of My Dinner with Andre, the oracle will know.

Furthermore, this solution has the advantage of “spinning-off” parts of the Customer
abstraction that are necessary for the Customer class to work, but aren’t purely part of
the Customer abstraction itself. In most applications, you will divide your implementation
into different layers. One of the most common methods of layering your class is to split off
the user-interface code and the data-storage code into separate, tightly coupled classes
that work together. Figure 7.9 shows such a partitioning scheme used for the Customer
class.

 Figure 7.9 Partitioning the Customer class

 Combining Constructors and Mutators

 - 209 -

Unfortunately, this solution suffers from the same failing as your very first; it requires you
to supply a valid customer number (instead of a valid Customer object) to fill out a
SalesInvoice. You’re back to filling out a credit application before you can sell a CD to
a new Customer.

The solution to this dilemma is the same solution used at your local video store. If you
want to purchase a video, all you need is cash. If you want to rent a video, however, the
store needs to get more information from you. You can make your SalesInvoice class act
like this by giving it two constructors: use the no-argument constructor when you want to
create a new SalesInvoice object. It gets its Customer object by calling
CustomerDB.getCustomer(), which returns the generic “Cash Customer.” Inside your
SalesInvoice class you can use another method—attached to a “Change Customer”
Button, for instance—to allow the SalesInvoice object to change the Customer object
that it’s associated with. Listing 7.4 shows the constructors for a SalesInvoice class
that implements this design. (You can find the entire class on the CD-ROM.)

 Listing 7.4. Implementing the SalesInvoice-Customer Association with Two

Constructors

 public class SalesInvoice
 {
 // ===
 // CONSTRUCTORS
 // ===
 public SalesInvoice(Customer soldTo,
 Customer shipTo,
 SalesPerson soldBy,
 LineItems items)
 {
 this.soldTo = soldTo;
 this.shipTo = shipTo;
 this.soldBy = soldBy;
 this.items = items;
 }

 public SalesInvoice()
 {
 this(Customer.getCustomer(0),
 null,
 new SalesPerson(),
 null
);
 this.items = new LineItems(5, this);
 }
 // Details omitted
 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private Customer soldTo;
 private Customer shipTo;
 private SalesPerson soldBy;
 private LineItems items;
 }

 - 210 -

Other Ways to Use an Object

Each method you’ve looked at so far relies on the SalesInvoice class to store a
referential attribute, soldTo, in its private interface. Can you create a uses
relationship without storing such attributes? Yes, and in many cases you should. Let’s
look at the two most popular methods you can use.

 PASSING AN ARGUMENT

If you find yourself driving through a strange town and you stop at a convenience store
for a cup of coffee, you don’t want the clerk to ask you to fill out a credit application. As
far as you’re concerned, you don’t want that kind of relationship.

 “Sometimes, an object may similarly have a very short and transitory relationship

with another object.”

Sometimes, an object may similarly have a very short and transitory relationship with
another object. You may need to use an object only during the exe cution of a single
method. In that case, you might choose to have the method take as an argument an
instance of the object it uses, much like the paint(Graphics g) method does with its
Graphics object. This is appropriate when:

 • The object you’re going to use will be used only in a single method, and the state of

that object doesn’t need to be (or positively shouldn’t be) retained between calls.

•

The object you have to use carries with it some immediate state information that must
be renewed each time the method is called. For instance, a paint() method should
get a new copy of its Graphics context on each call, because the state of the
Graphics context may change.

•

The object you’re using is easily constructed outside your class environment. If,
however, it’s easier for you (in the using class) to construct the object you want to use
from scratch (because of some special knowledge), use the next technique (creating
objects on-the-fly).

•

If an identical object is constructed over and over, or if it’s very time-consuming to
construct an object and you need to use it more than once, you should use a
referential attribute to hold a reference to the object you’ll use, rather than pass it as
an argument or create it on-the-fly.

 CREATING OBJECTS ON-THE-FLY

A second way to get an object that will be used in only a single method is to create it
inside the method itself. If you need to modify the Graphics context of an applet inside a
method, you would use some code like this:

 public void doSomeGraphicsThing()
 {
 Graphics g = getGraphics();
 g.setFont(...);
 g.dispose();
 }

 - 211 -

This has several advantages over passing a Graphics object to
doSomeGraphicsThing(). First, it makes calling the method easier. Rather than have
to create an object first and then pass it to your object to use, another class can simply
call doSomeGraphicsThing() like this:

 SomeObject obj = new SomeObject();
 obj.doSomeGraphicsThing();

 rather than have to do this:

 SomeObject obj = new SomeObject();
 Graphics g = obj.getGraphics();
 obj.doSomeGraphicsThing(g);

Second, the code where the Graphics object is created inside the method is inherently
more maintainable. If, for instance, you change how a Graphics object is obtained—
perhaps you need to switch from getGraphics() to getExtendedGraphics()—
you’ll need to change the method name only once if you’ve created it inside the method
where it’s used. Otherwise, you’ll find yourself hunting through reams of source code,
looking for getGraphics() method invocations.

Creating an object inside a method is called for when the using object has special
knowledge that is required to create the object that it will use. For a very simple example,
consider a class—here named Used—that has some private text that it wishes to
display, as shown in Listing 7.5. Obviously, the TestMethods class has to do less work
to use methodOne(), where the Label is created as a local variable, than it does to use
methodTwo(), where the text for the Label is passed in as an argument. In fact, if the
Used class didn’t provide the accessor method, getPrivateText(), the
TestMethods class could not even use methodTwo() at all.

 Listing 7.5. Passing an Object Versus Creating It On-the-Fly

 // TestMethods.java
 import java.awt.*;
 import java.applet.*;

 public class TestMethods extends Applet
 {
 public void init()
 {
 Used usedObject = new Used();
 add(usedObject.methodOne());
 add(usedObject.methodTwo(
 usedObject.getPrivateText()));
 }
 }

 class Used
 {
 public Label methodOne()
 {
 return new Label(privateText);
 }

 - 212 -

 public Label methodTwo(String text)
 {
 return new Label(text);
 }

 public String getPrivateText()
 {
 return privateText;
 }

 private String privateText = “This is some private text”;
 }

Rules for Using Objects

In Java, you can implement the uses relationship in several different ways: by use of a
referential attribute, by way of a supplied argument to a method, or by creating an
instance inside a method. Each technique has advantages and drawbacks.

 You should use a referential attribute when

 • The object needs to be directed from several different methods, or the object stores

persistent state information between method calls.

 • The object you are going to use is used repeatedly.

 • The object you are going to use is very expensive or time consuming to construct, and

you will use the object more than once.

 You should pass the object you’ll use as an argument when

 • The object you want to use will be used only in a single method.

 • It’s easier to construct the object you want to use outside your class. This is the case

when the object you’re going to use brings in some information supplied by the caller.

 You should construct the object you want to use on-the-fly—that is, inside the method

where it’s used—when

 • The object will be used in only that method.

 • The invoking object has information needed to construct the object that will be used,

information that would be more difficult or impossible for an outside caller to supply.

 Optional Associations: SalesInvoice and Recipient

If you look back at Table 7.1, notice that the major difference between the
SalesInvoice-Customer association and the SalesInvoice-Recipient
association is that the SalesInvoice-Recipient association is optional rather than
mandatory. You could, if you wanted, make this relationship mandatory, but making it
optional allows you to look at how you can implement such optional associations in Java.

An optional Recipient association means that the shipTo field contained in the
SalesInvoice class can refer to either a valid Customer object (because in this
example you have made the decision to represent Customers and Recipients by

 - 213 -

using a single class) or a null value. What does this mean for the way you implement
your class? First, it means that the constructors for the SalesInvoice class don’t need
to pass in a valid value for shipTo. If you look at the constructors shown in Listing 7.4,
you’ll see that shipTo is passed the null value. Second, it means that any code that
could possibly manipulate the shipTo value must first check to see whether it’s null.
This is the major difficulty you’ll encounter when you want to implement optional
relationships: they make the code more complex.

 “This is the major difficulty you’ll encounter when you want to implement optional

relationships: they make the code more complex.”

One problem you’ll encounter, for example, is simply the need to display the information
about the soldTo and shipTo objects in your SalesInvoice. If the shipTo field is
null, you’ll have to use the information from the soldTo field. That leads you to write
code like this:

 Button soldToBtn = new Button(“ Sold To “);
 Button shipToBtn = new Button(“ Ship To “);
 TextField soldIDTxt = new TextField(soldTo.getID(), 5);
 TextField shipIDTxt = new TextField(5);
 if (shipTo == null)
 {
 shipIDTxt.setText(“” + soldTo.getID());
 }
 else
 {
 shipIDTxt.setText(“” + shipTo.getID());
 }

Notice how much more work the initialization of the TextField shipIDTxt requires
than its compatriot soldIDTxt. Anywhere you have an optional association such as this,
you’ll find similar code designed to handle both the case where the association exists and
the case where the association is null.

By now, you’re probably thinking that, if possible, you should make all associations
mandatory. Although it’s true that mandatory associations result in simpler code, if the
problem you are trying to solve demands an optional association, it’s usually not a good
idea to create a “fake” association just for simplicity’s sake. For example, adding phantom
dependents—where the Employee-Dependent relationship is optional—may create
more problems than it solves.

In the SalesInvoice case, however, there is a simpler solution. You decided to make the
Recipient association optional because your company didn’t want to store separate files
for people who purchased items and the people they were shipped to. The simpler solution
is to initialize the shipTo field to the same Customer object as the soldTo field when
creating a new object. This is perhaps a clearer understanding of the actual problem, in
any case. It’s not that the SalesInvoice-Recipient relationship is really optional;
instead, you can say that both the Customer (soldTo) and the Recipient (shipTo)
may refer to the same object.

 Examining the Customer Associations

 - 214 -

As you saw in Figure 7.9, the Customer class has been divided into three pieces—
Customer, CustomerDB, and CustomerUI—each with its own responsibilities and
methods. Although the code for these three classes is too large to be reprinted in its
entirety here, looking at the associations between these parts can help you understand
different methods of association and the tradeoffs required.

 Customer AND CustomerDB

The simplest of the three classes is the CustomerDB class—simplest mainly because it’s
just a proxy for an actual database class that would be used in a production application.
Actually storing and retrieving the data from a real database would be somewhat more
involved than shown here. Instead, however, the CustomerDB class contains a simple
static array, with a reference to each and every Customer in existence.

Let’s look first at the interactions between the SalesInvoice class and the
CustomerDB class. The Customer class sends a single message to the CustomerDB
class. Every time a new Customer object is constructed, the last line in the Customer
constructor (shown as Listing 7.6) makes a call to the static method
CustomerDB.addToDatabase(), passing the newly constructed Customer as the
argument. The method then proceeds to save the Customer in the database.

 Listing 7.6. The Constructor of the Customer Class

 public class Customer
 {
 protected Customer(String lastName, String firstName,
 String address1, String address2,
 String city, String state, String zip,
 double creditLimit, double creditBalance
)
 {
 this.lastName = lastName;
 this.firstName = firstName;
 this.address1 = address1;
 this.address2 = address2;
 this.city = city;
 this.state = state;
 this.zip = zip;
 this.creditLimit = creditLimit;
 this.creditBalance = creditBalance;

 this.custNo = CustomerDB.addToDatabase(this);
 }
 // Details omitted
 }

The CustomerDB class, shown in Listing 7.7, likewise sends messages to Customer
objects. The CustomerDB class not only keeps track of all Customers created, but also
keeps a List of their names in the field named uiList. This List is retrieved by the
CustomerUI class when it needs to display a “picklist” for selecting customers. By
making the uiList static, the List needs to be created only one time, and changes to it
are immediately available to all clients of CustomerDB.

 Listing 7.7. CustomerDB.java

 - 215 -

 // CustomerDB.java
 // Simple version
 //
 import java.awt.*;

 public class CustomerDB
 {
 // --Add a Customer to the “database”-------------------
 public static int addToDatabase(Customer newCustomer)
 {
 int custNo = lastCustomer++;

 custList[custNo] = newCustomer;
 uiList.add(custList[custNo].getFullName());
 return custNo;
 }

 public static List pickList() { return uiList; }

 public static Customer getCustomer(int custNo)
 {
 // This application simplisticly looks up the
 // index value in the custList array
 if (custNo >= lastCustomer)
 custNo = 0;
 return custList[custNo];
 }

 // ===
 // STATIC FIELDS (In lieu of persistence)
 // ===
 private static final int MAX = 100;
 private static Customer[] custList = new Customer[MAX];
 private static int lastCustomer = 0;
 private static List uiList = new List();

 // Make sure the Customer List always contains the
 // “default” customer, “Cash”
 static
 {
 new Customer(“Customer”, “Cash”, “”, “”, “”, “WA”, “”,
 0.0, 0.0);
 }
 }

Because Customer objects and the CustomerDB class send messages to each other,
the relationship is a bidirectional association. If you think about it for a moment, you’ll
realize that a bidirectional association has intrinsically tighter coupling than a one-way
association like the SalesInvoice-Customer association. That’s because a one-way
association allows one of the partners—Customer in this case—to exist independently.
In a bidirectional association, neither class can exist without the other.

 Because of this tighter coupling, any time you need a Customer object, you must bring

 - 216 -

along the CustomerDB class as well. For this reason, you should avoid bidirectional
associations except for classes that can be treated as a unit. Figure 7.10 shows the
associations between the Customer and CustomerDB class.

 Figure 7.10 The Customer-CustomerDB association

 “A bidirectional association has intrinsically tighter coupling than a one-way

association like the SalesInvoice-Customer association.”

 CustomerUI ASSOCIATIONS

The CustomerUI class provides the “visible” input and output facilities for the Customer
class. As usual, the user interface accounts for a very large percentage of the total lines
of code devoted to the Customer abstraction. The CustomerUI class provides these
services:

•

The ability to add a Customer to the database interactively using a form. This is done
through the addNewCustomer() method, which is triggered by an ActionListener
object attached to the newCustomerBtn Button.

•

The ability to select a customer from the CustomerDB database by choosing the name
from a picklist. This functionality is embodied inside an ActionListener object attached
to a Button named, appropriately, pickCustomerBtn.

•

A user interface object—created by constructing an instance of CustomerUI—which
can be added to an application or applet to provide access to the other services. A
CustomerUI object contains a reference to a Customer object. This object is
originally attached when the CustomerUI object is created, but may be set or
retrieved by using the accessors getCustomer() and setCustomer(). Also, each
CustomerUI object contains two Buttons, triggering (respectively) the
addNewCustomer and the pickCustomer actions, and a special type of Panel
used to display a formatted representation of the Customer referenced.

 If this seems a little too complex, stepping through a simple scenario should make the

relationship clear. The steps needed to use a CustomerUI object are as follows:

1.

Create an instance of the CustomerUI object. To construct a CustomerUI object,
you must pass in a Customer. If you want to use something other than the default
Button text, Pick Customer and New Customer, you should pass in your preferred
descriptions as well. The SalesInvoice class creates two CustomerUI objects in
the attribute section—one attached to the soldTo field and the other attached to the
shipTo field:

 // --UI Fields---

 - 217 -

 private CustomerUI soldToUI = new CustomerUI(SoldTo, “ Sold To
“);

 private CustomerUI shipToUI = new CustomerUI(ShipTo, “ Ship To
“);

2.

Add the CustomerUI object to your interface, just like you would any other Panel.
The SalesInvoice class does this in its buildUI() method, using the following
lines:

 // 2. Add the soldTo and shipTo UI elements
 Panel top = new Panel();
 top.setLayout(new GridLayout(1, 2));
 f.add(top, “North”);
 top.add(soldToUI);
 top.add(shipToUI);

3.

After the CustomerUI objects are added to your application or applet, they will
manage and display the Customer information for you. To retrieve the Customer
reference contained in the CustomerUI object, you can use its getCustomer()
method. You don’t have to do anything at all to activate the pickCustomer() or
addNewCustomer() behavior.

Figure 7.11 shows you how the SalesInvoice user interface looks after adding the
CustomerUI objects. Notice that the default, Cash Customer, is selected for both the
SoldTo and ShipTo fields. You don’t have to do anything to display the Customer
information.

 Figure 7.11 Adding a CustomerUI object to a SalesInvoice form

 Figure 7.12 shows what happens when you select the Add New Button by using the
shipToUI CustomerUI object.

 - 218 -

 Figure 7.12 Adding a new Customer by using a CustomerUI object

You may fill in the form and then use either the Save or Cancel Buttons. If you choose
Cancel, the SalesInvoice remains the same. If you choose Add, the CustomerUI
object constructs a new Customer (which it adds to the database), and then assigns it to
its own internal Customer reference. Notice that the CustomerUI object doesn’t update
the soldTo or shipTo fields inside the SalesInvoice object. The CustomerUI object
does not “know” it’s inside a SalesInvoice object. By not tying the CustomerUI class to
the SalesInvoice class, you’re free to drop a CustomerUI object into a
MailingList form and have it work without change.

Most of the time, rather than add new Customers, the CustomerUI object will help you
select existing Customers. It does this through its pickCustomer() method, which
queries the List object maintained by the CustomerDB class to find the names of all
the existing Customer objects. Figure 7.13 shows how this looks.

 Figure 7.13 Selecting an existing Customer by using a CustomerUI object

 Figure 7.14 shows each CustomerUI association.

 Figure 7.14 The CustomerUI associations

 Weak Associations: SalesInvoice and SalesPerson

Most of the “work” done inside the SalesInvoice class is done by the LineItem
objects that hold information about the number of items you’ve sold, how much each item
costs, and, subsequently, how much money you’ve made. The relationship between
these LineItems and the SalesInvoice class is a much closer relationship than
you’ve seen so far: the relationship of containment. In the first half of the next chapter,
you’ll take a look at that relationship.

 - 219 -

This chapter still has one loose end to tie up, however. What do you make of the
relationship between SalesPerson and SalesInvoice? If you’ll look back, you’ll see
that no messages seem to be flowing between the SalesPerson and the
SalesInvoice object. Can you then just eliminate the SalesPerson attribute from the
SalesInvoice class altogether? No, not really. At the end of each month or week, you’ll
have to add up all the SalesInvoices and pay each SalesPerson the appropriate
commission. Should you then attempt to send some messages between the
SalesPerson and SalesInvoice object, so you don’t end up with a “Data Warehouse”
class? Again, the answer has to be negative. It makes no sense to initiate meaningless
messages just to satisfy some rule of thumb.

In fact, the relationship between SalesInvoice and SalesPerson is not uncommon—
it’s known as a weak association. A weak association exists whenever you have an
association where no messages are exchanged, but the association is necessary to the
success of the overall abstraction you’re trying to model.

The real danger you face when confronted with a potential weak association is
determining whether it’s really necessary for the abstraction you are working with.
Clearly, SalesPerson is necessary for an invoicing application if you hope to continue
selling products past the first payday. On the other hand, InvoiceSupplier probably
won’t be a necessary field. When you run out of invoices, simply check your Rolodex for
the name of the person from whom you bought them.

 “A weak association exists whenever you have an association where no messages are

exchanged, but the association is necessary to the success of the overall abstraction...”

Summary

Describing and defining the relationships between objects and classes is one of the
biggest jobs you’ll undertake as an object-oriented designer. By breaking up the types of
relationships into different categories, and then applying experience-based rules of thumb
(heuristics), you can save yourself from creating dysfunctional object communities.

The first relationship distinction is between inheritance-based relationships—that is,
relationships between classes, and object-based relationships or associations. An
inheritance-based relationship is a mandatory relationship, much like your relationship
with your parents. Every subclass object must contain all the fields and methods of its
superclass, although it may modify them. By contrast, object relationships are more
flexible.

The cardinality of a relationship is the lower bound and the upper bound on the number of
objects that participate in it. The lower bound may be zero or one, and the upper bound
may be one or many, represented by n.

There are three basic types of object relationships. When one class sends messages to
an instance of another class, that’s called an association or a uses relationship. This is
the most common type of relationship in an object-oriented program. When an object
logically contains another object, that’s called a composition or aggregation relationship;
composition is the subject of Chapter 8. Finally, when an object has an association with
an object of another class, yet they don’t exchange messages, it is called a weak or
simple association.

There are several different ways to implement a uses relationship. The most common
method is to include an object attribute that’s used to refer to the other object. The object
may be obtained as an argument to a method, from a global “supplier” class, or may be
constructed inside the method on-the-fly. Each method has different advantages and
disadvantages.

 - 220 -

Questions

 1. Experience-based rules that help you decide which relationships to implement and

the best way to implement them are called _______________________.

2.

A relationship where no messages are passed between two objects, yet the
relationship cannot be eliminated, is called a __________ or __________
association.

 3. A __________ relationship exists between two objects when one object sends

messages to another object.

 4. The relationship between a car and its engine is what kind of association?

 a. Weak association

 b. Uses relationship

 c. Inheritance

 d. Composition relationship

 5. In the following code fragment, what is the relationship between the BigApp object

and the CustomDialog object?

 public class BigApp extends Applet
 {
 public void getInput()
 {
 CustomDialog d = new CustomDialog();
 d.show();
 d.dispose();
 }
 }

 a. Weak association

 b. Uses relationship

 c. Inheritance

 d. Composition relationship

 6. True or false. You should always implement a uses relationship by means of a

referential attribute.

 7. True or false. Using a referential attribute means that the class holding the attribute

has a containing or composition relationship with the attribute.

 8. True or false. Weak associations can always be eliminated.

 9. Complete the following code segment, showing two ways you could supply a

Graphics object for the paintMe() method to complete its work:

 public class PaintThis extends Applet

 - 221 -

 {
 public void init()
 {

 }
 public void paintMe()
 {
 g.setBackground(Color.red);
 repaint();
 }
 }

 10. The term used to describe the mutual dependence of two objects on each other is

__________. All things being equal, __________ is better than __________.

 Exercises

1.

Print out the source listing for CustomerUI.java. This chapter has described the
associations between CustomerUI and the other classes in the SalesInvoice
application. What other object relationships exist inside the CustomerUI class?
(Hint: CustomerUI uses several of the AWT classes to do things it’s too busy to do.)

 2. Take the case study from Chapter 6 and update the collaboration diagrams to add

cardinality information.

3.

Design Challenge: While the Customer abstraction was broken up into the
CustomerUI, CustomerDB, and Customer classes, the SalesInvoice class was
not similarly divided. Design the classes necessary to divide SalesInvoice into
SalesInvoiceUI, SalesInvoiceDB, and SalesInvoice.

 4. Coding Challenge I: Look up the documentation for the java.util.Vector class

and modify the CustomerDB class to use a Vector rather than an array.

 5. Coding Challenge II: Implement the SalesPerson class. You can use the

Customer abstraction as a model.

6.

Create a set of class diagrams and interaction diagrams that show how you would
design a simple piggy-bank system. Feel free to invent classes, like “Coin Sensor,” that
you might not feel comfortable building in real life.

 To Learn More

Associations are one of the fundamental parts of object-oriented design. Unfortunately,
each author and each methodology has a different take on what an association is and
how to define and refine it. Furthermore, each different methodology uses a slightly
different meaning when they talk about associations. To get a different take on each
issue, you can read the following publications:

 • Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd ed.

Redwood City, California: Benjamin/Cummings, 1994.

 • Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs,

New Jersey: Prentice Hall, 1991.

Chapter 8: Object Relationships: Compositions

 - 222 -

and Collections

 Overview

 “Beep,” pause, “beep,” pause, “beep.”

Your head snaps up from the manual you were browsing while waiting for your computer
to boot. There on-screen, instead of the colorful logo you expected and a triumphant “Ta-
da!” sits a solitary line of silent gray text on a plain black background:

 02-Keyboard Failure

What do you do? If your VCR, microwave oven, or popcorn popper stopped working,
you’d probably immediately pull out the yellow pages and begin searching for an
appliance repair shop. It’s unlikely, however, that the dire-sounding message appearing
on your monitor will trigger the same sort of behavior. Instead, you’ll first follow the
keyboard cord to the back of the computer, make sure that it’s plugged in, and then
restart your computer. If the same thing happens again, you’ll unplug the keyboard, trot
on down to your local Computer Warehouse store and pick up a new keyboard—maybe
one of those nice new ergonomic models! Only then, if that fails, will you think about
looking for a repair shop.

Why do you react differently to your computer failing than you would to your VCR
breaking down? Is it because you’re some sort of computer guru? Not really. Even very
ordinary, everyday computer users think nothing of replacing a keyboard or monitor.
Many who would never dream of unscrewing the top on their VCR routinely open up their
computer case and install a new sound board or hard drive. Modern PC systems are
different from VCRs; PC systems are modular, rather than integrated like the VCR. Your
PC is composed of self-contained parts that interact by using well-defined interfaces;
these parts are easily tested and replaced without affecting the rest of your system.

 “Like hardware, software too can be composed of parts that are tightly ‘wired’

together, or it can be built in layers…”

Like hardware, software too can be composed of parts that are tightly “wired” together
(like your VCR), or it can be built in layers (subsystems), with each subsystem acting
independently from the others, and with more complex systems made from differing
arrangements of less complex and more fundamental parts.

 This chapter will teach you how to combine objects to build more complex, composite

objects, while hiding unnecessary complexity from the user. You will learn:

 • How hierarchy and decomposition can aid you in creating and understanding complex

systems

 • How to implement composite objects by combining simpler objects

 • How to simplify the use of complex objects by providing a simpler interface that

delegates its responsibilities to its subsystems

 • How Java’s inner classes allow you to simplify the communication between composite

objects and their parts

 - 223 -

 • How to use the Unified Modeling Language (UML) notation to represent composite
objects and their dynamic interactions

 • How to use arrays in Java to create multivalued objects and implement 1..n

associations

 Associates and Aggregates

In Chapter 7, “Object Relationships: Implementing Associations,” you looked at two of the
three different types of association relationships: weak associations, where related
objects don’t send messages to each other, and uses relationships, where objects do
send messages to each other. Although it’s possible to create object-oriented programs
by using only these relationships, you’ll quickly find yourself overwhelmed by complexity
if you do so. The third type of association, composition, provides a way to bring structure
to your programs that the other mechanisms don’t provide.

 COMPOSITION: THE PART-OF RELATIONSHIP

Sometimes, the best way to describe the relationship between two objects is to say that
one object contains another object. It seems intuitive and natural to say that a car
contains an engine, a university contains colleges, or a house contains a kitchen.
Whenever a particular object is composed of other objects, and those objects are
included as object fields, the new object is known as a compound, aggregate, or
composite object. (Although some designers make a distinction between the words
aggregation and composition—defining composition as a strong form of aggregation—in
this chapter we’ll use the two words interchangeably.)

 “Composition provides a way to bring structure to your programs that other

mechanisms don’t provide.”

Figure 8.1 shows the relationship between a car and its parts using the Unified Modeling
Language (UML) notation. You can read more about UML later in this chapter, but for
now, you can see that a car consists of four wheels, an engine, a body, from two to four
seats, and a “user interface.” The interface itself includes a steering wheel, a gas pedal,
and a brake.

 Figure 8.1 A car is composed of parts

 - 224 -

Several other terms are commonly used to label this relationship. You might hear it
referred to as a hasA relationship because, in ordinary English, you can say a car hasA
engine, and a house hasA kitchen. It is also called the whole-part or part-of relationship.
No matter what it’s called, though, the idea remains the same: individual objects can be
combined to create a more complex and useful object. And just as a uses association
implies greater coupling between its members than a weak association, so too the part-of
relationship implies greater mutual dependence than the simple uses association.

 Using composition is one of the key techniques you can use in your battle against

complexity. Let’s see how.

 COMPOSITION AND COMPLEXITY

“[A]fter all, complicated tasks usually do inherently require complex algorithms, and this
implies a myriad of details. And the details are the jungle in which the devil hides. The
only salvation lies in structure.”

 “No matter what it’s called, the idea remains the same: individual objects can be

combined to create a more complex and useful object.”

As this quote from Niklaus Wirth, the creator of Pascal, reminds us, building software is
hard, even when using object-oriented techniques, because things are always
threatening to get out of hand. Your clients might want to add a new feature, or you may
find yourself having to accommodate new hardware or a new operating system.
Unfortunately, if you’re not careful, adding support for that new piece of hardware or
adding that new feature can introduce instabilities and problems that can bring your
whole system falling down, like the proverbial house of cards. In an instant, it seems,
your working program can become too complex to understand or fix.

The bane of software construction is complexity. Even when you start with a simple, well
understood problem, before you know it, you can end up with a contraption that would do
Rube Goldberg (the cartoonist famous for his drawings of excessively complicated, zany
machines) proud. Does it have to be like this? Maybe not.

 “Complexity and order: look around and you’ll see these two opposing forces on

every hand…”

Complexity and order: look around and you’ll see these two opposing forces on every
hand, not just in software development. Think of the wide varieties of plant and animal life
in the world, and then realize that everything you see is composed of the same
fundamental building blocks: atoms, molecules, and elements. How can such simple
pieces produce such extensive diversity, without disintegrating into a chaotic mess? The
answer lies in structure, a very specific kind of structure.

In an article titled “The Architecture of Complexity,” first published in 1962, Nobel Prize
winner Herbert Simon outlined some basic organizational principles that govern stable
complex systems. When you write programs, instead of simply connecting objects
together in random ways, you can use these principles to create systems that continue to
work when your environment changes. Because Java programs are designed to work
unchanged on a variety of platforms, the ability to remain stable in the face of change is

 - 225 -

especially important.

 What are the principles that Dr. Simon discovered? Briefly, they include these four

observations:

•

Stable complex systems usually take the form of a hierarchy, where each system is
built of simpler subsystems, and each subsystem is built from simpler subsystems still.
You may already be familiar with this principle because it forms the basis for functional
decomposition, the method behind procedural software development. In object-
oriented design, you apply the same principle to composition—building complex
objects from simpler pieces.

•

Stable complex systems are nearly decomposable. That means you can identify the
parts that make up the system and can tell the difference between interactions
between the parts and interactions inside the parts. Stable systems have fewer links
between their parts than they do inside the parts. Thus, a modular stereo system, with
simple links between the speakers, turntable, and amplifier, is inherently more stable
than an integrated system, which isn’t easily decomposable.

•

Stable complex systems are almost always composed of only a few different kinds of
subsystems, arranged in different combinations. Those subsystems, in turn, are
generally composed of only a few different kinds of parts.

•

Stable complex systems that work have almost always evolved from simple systems
that worked. Rather than build a new system from scratch—reinventing the wheel—the
new system builds on the proven designs that went before it.

 “Stable complex systems that work have almost always evolved from simple

systems that worked.”

Composition—building relatively independent subsystems using simple parts—is the
technique you’ll most often use to apply Dr. Simon’s insights to your own software
designs. Although these observations don’t provide a cookbook for constructing your
Java programs, they do give you a yardstick for measuring the quality of your designs.
Let’s look at the details you’ll need to master to implement composite relationships in
Java.

 COMPOSITION RELATIONSHIPS IN JAVA

As a Java programmer, you’re already familiar with the composition relationship in
practice because it’s used extensively to create user interface code with Java’s Abstract
Window Toolkit (AWT). By adding Buttons, TextFields, and LayoutManagers to a
Panel object, you easily create new compound objects, which you then add to the
surface of your applications or applets. With composition, however, rather than simply
add the components to a Panel, you create a new class with your Buttons and
TextFields as fields or parts inside your new object.

If you’ve been paying close attention, you may wonder at this point what’s the difference
between this new part-of relationship and a simple uses relationship. After all, as you saw
in Chapter 7, the main way in which both weak associations and uses relationships are
implemented is by embedding a reference to the associate as a field inside the class
definition. Does this mean that those relationships are also composition relationships?
Not at all.

 The distinction between the three forms of association is a semantic distinction, not an

 - 226 -

implementation distinction. In Java, it’s likely that all three forms—weak association, uses
relationship, and part-of relationship—will be represented in exactly the same way when
the code is written. That’s one reason it’s so hard for CASE (Computer-Aided Software
Engineering) tool vendors to create a program that draws object-model diagrams from
source code. Because the implementation of each relationship is likely to be identical,
there’s no way for the program to tell which kind of relationship is intended.

 How, then, does the meaning of a composition relationship differ from that of an

association relationship? Let’s take a look.

 COMPOSITION VERSUS ASSOCIATION

Despite what the heading of this section might seem to imply, composition relationships
are also a form of association. Specifically, composition is a strong form of the uses
relationship. For composition to exist, either the parts or the whole must send messages
to each other. If an object contains other objects and doesn’t send messages to those
objects, such a relationship is a weak association, not a containment relationship. Thus,
it’s something of a misnomer to speak of composition as entirely distinct from association.

 “It’s something of a misnomer to speak of composition as entirely distinct from

association.”

Unlike a regular uses relationship, however, a composition relationship implies that one
class (the whole) is made up of other objects (the parts). Composition is thus a whole-
part relationship, where:

 • One object is physically built from other objects—for example, a custom user-interface

component built from more basic components.

 • An object represents a logical whole, composed of smaller parts. A company may be

composed of finance, production, and marketing departments, for instance.

•

Each part belongs to only a single whole. This is a useful test you can use to
differentiate between composition and uses relationships. For instance, in the
SalesInvoice application, a single Customer may have placed several orders, and
thus be referenced on several SalesInvoices. Therefore, the SalesInvoice
doesn’t contain a Customer object.

•

Each part lives and dies with the whole. In the SalesInvoice application, you
certainly wouldn’t want your Customers disappearing every time you deleted a
SalesInvoice object. Therefore, this relationship is a uses relationship, not a
composition relationship. You would, however, want the LineItems to disappear with
the rest of the SalesInvoice when you deleted it. This second relationship is a
composition relationship.

As you can see, a meaningful distinction really exists between the composition
relationship and the uses relationship. And, as you’ll see later, the composition
relationship provides several advantages over a simple uses relationships, chief among
them the ability to hide unnecessary details from the users of your objects.

 CREATING A COMPOSITE OBJECT: THE LABELED TextField

 Let’s begin looking at composition by building a simple class that solves a recurring

problem. You’re already familiar with this problem if you’ve spent any time creating

 - 227 -

applications with Java’s AWT—the problem of adding a Label to a TextField.

For many business applications, an input form is the heart of the program. Users first
enter some information into fields on the form, the data is validated, and finally it’s sent
off to the rest of the application for processing. To make sure that the user knows what to
enter, you usually attach a Label to each field. If you’re a developer making the
transition to Java from some other development environment, you’ll quickly discover that
although Java has TextFields you can use for input and Label objects you can use to
display text, it doesn’t have a built-in class that combines both. If you try sending the
setText() message to a TextField object, you’ll quickly find that your command
doesn’t label the TextField, but instead fills it with text. And, look as you may, you’ll
find no setLabel() method to help. Fortunately, by using composition, it’s easy to build
an aggregate object that meets your needs.

 “Composition provides several advantages over a simple uses relationship, chief

among them the ability to hide unnecessary details from the users of your objects.”

 Listing 8.1, LTextField.java (the L stands for Labeled), shows the implementation of

a very simple class that allows you to label a TextField object.

 Listing 8.1 LTextField.java

 // A Labeled TextField class
 import java.awt.*;

 public class LTextField extends Panel
 {
 // --Constructors------------------------------------
 public LTextField(String name, int size, int lWidth)
 {
 theLabel = new FixedWidthLabel(name, Label.RIGHT, lWidth);
 theText = new TextField(size);
 add(theLabel);
 add(theText);
 }

 // --Accessors---------------------------------------
 public String getText() { return theText.getText(); }

 // --Mutators---
 public void setLabel(String newLabel)
 {
 theLabel.setText(newLabel);
 }

 // --Object Attributes-------------------------------
 private FixedWidthLabel theLabel;
 private TextField theText;

 // --Private inner class-----------------------------

 - 228 -

 private class FixedWidthLabel extends Label
 {
 public FixedWidthLabel(String s, int align, int columns)
 {
 super(s, align);
 this.columns = columns;
 }

 public Dimension getPreferredSize()
 {
 Dimension d = super.getPreferredSize();
 FontMetrics fm = getFontMetrics(getFont());
 int pixPerCol = fm.charWidth(‘o’);
 return new Dimension(pixPerCol * columns, d.height);
 }
 private int columns;
 }
 }

The LTextField class, which extends the Panel class, contains as private fields two
other objects: a TextField object named theText, and a FixedWidthLabel object
named theLabel. Every time you create an LTextField object, it will consist of these
two parts: its TextField and its FixedWidthLabel. The definition for the
FixedWidthLabel class is implemented as a private, named, inner class inside the
body of the LTextField class itself. (See the following sidebar for more information on
this Java 1.1 feature.) The FixedWidthLabel class is the key to neatly lining up your
input areas and their associated text. A regular AWT Label is dynamically sized
according to the text it contains. The FixedWidthLabel class, by contrast, accepts an
additional argument in its constructor, just as the TextField class does. Regardless of
the size of the text it contains, the FixedWidthLabel uses the integer value you specify
to set its width.

Composite Classes with Inner Classes

Inner classes, new to Java 1.1, are an ideal way to implement a whole-part
relationship in cases where the parts are unique to the subsystem you’re building.
This occurs most often when you’re writing classes to handle various user-interface
generated events. To create an inner class, you simply define the body of one class
inside the body of another class like this:

 public class LTextField extends Panel
 {
 private class FixedWidthLabel extends Label
 {
 // attributes and methods from the FixedWidthLabel class
 }
 }

The enclosing class (LTextField) can then create as many copies of the inner
class (FixedWidthLabel) as it needs. Because FixedWidthLabel was
declared as a private class, only the LTextField class can use it.

 As shown, the FixedWidthLabel class really derives no advantage from being an

 - 229 -

inner class except that its name is hidden inside the LTextField class. If the
name FixedWidthLabel could possibly clash with another class of the same
name used in the same system, this would be helpful. By making
FixedWidthLabel an inner class, you can avoid “polluting” the global
namespace, much the same way that local variables restrict their scope to the
method they’re declared in.

A more interesting use of inner classes, however, is to increase the coupling
between a contained part and the object that contains it. One characteristic of
stable complex systems is that the parts inside the subsystem are more tightly
coupled to each other than the different subsystems are to each other. Thus, you
want to increase intrasystem (internal) coupling and decrease inter-system
(external) coupling.

Inner classes support this by allowing the inner class access to the data
environment of the object that contains it. Thus, inside the FixedWidthLabel
class you could use the fields theLabel and theText, which are declared inside
LTextField, but LTextField wouldn’t have access to the column field declared
inside the FixedWidthLabel class. (Currently, certain environments—notably,
Microsoft’s version of Java—don’t allow you to access the private fields of an
enclosing class from an inner class. If you want to make sure that your code will
interoperate in these conditions, you’ll want to specify protected access for those
fields that must be visible in the inner class.)

 In the LTextField class, notice that the FixedWidthLabel object, theLabel, is

initialized inside the LTextField constructor just like any other field:

 theLabel = new FixedWidthLabel(name, Label.RIGHT, lWidth);

 The new inner class syntax also allows you to create new classes by supplying a

class definition as part of the constructor call:

 MouseAdapter ma = new MouseAdaptor() { ... class methods go

here };

 You can even create anonymous inner classes by passing a class constructor to

any method that expects to receive a particular object:

 myButton.addActionListener(new ActionListener()

 {
 public void actionPerformed(ActionEvent ae)
 {
 // Code for anonymous ActionListener object here
 }
 });

Anonymous inner classes might be better called “objects of an anonymous inner
class.” The preceding code creates an inner class that extends ActionListener
but overrides ActionListener.actionPerformed(). It goes on to actually
instantiate an object, which is used as the parameter to the addActionListener
method. The anonymous inner class feature is used mostly for creating event
handlers, which tend to be highly specific for each individual class.

 “One characteristic of stable complex systems is that the parts inside the

subsystem are more tightly coupled to each other than the different subsystems are

 - 230 -

to each other.”

The most important characteristic of the LTextField class is that its parts—the
FixedWidthLabel and TextField—are encapsulated as part of its state. Users of the
LTextField class have no more access to these internal parts of the LTextField than
the average driver has to the fuel-injection system inside an automobile. Instead, users
are presented with a simplified interface consisting of the following:

•

A single constructor that requires a String for the field description, the number of
columns to use for the TextField, and the number of columns to use for the
FixedWidthLabel. Users who don’t need descriptive text in front of their fields can
pass in the empty String (““), along with the appropriate number of columns for
the TextField and the label.

 • An accessor method, getText(), that asks its TextField part for the text it

contains, and then passes it back to the caller.

 • A mutator method, setLabel(), that allows you to change the descriptive text

associated with an input field.

Composite objects serve a purpose very similar to functional decomposition in procedural
programs. By hiding non-essential details inside a class, and then replacing those details
with a simpler interface, composition allows you to concentrate on the task at hand
without getting bogged down in minutia, much the way procedures allowed an earlier
generation to see their programs at a higher level of abstraction. As an example of this
effect, look at the LTextFieldUser applet in Listing 8.2, which creates a simple name
and address form, very similar to the one you created for the Customer class.

 “By hiding non-essential details, composition allows you to concentrate on the task

at hand without getting bogged down in minutia…”

 Listing 8.2 LTextFieldUser.java

 // Using the Labeled TextField class
 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;

 public class LTextFieldUser extends Applet
 {
 public void init()
 {
 setLayout(new FlowLayout(FlowLayout.LEFT));
 add(new LTextField(“Name : “, 40, 15));
 add(new LTextField(“Address : “, 40, 15));
 add(new LTextField(“City, State, Zip : “, 15, 15));
 add(new LTextField(““, 2, 0));
 add(new LTextField(““, 10, 0));
 }
 }

 - 231 -

As you can see, creating an LTextField object is as easy as creating a regular
TextField, and certainly simpler than creating both a TextField and Label together
and then trying to line them up. By specifying the same number of columns for the Name,
Address, and City-State-Zip labels (using the last argument to the LTextField()
constructor), you ensure that all the TextFields will nicely line up when placed on your
applet. Use the sample HTML file in Listing 8.3, LTextFieldUser, and see for yourself.

 Listing 8.3 LTextFieldUser.html

 <HTML>
 <HEAD>
 <TITLE>Using the LTextField Class</TITLE>
 </HEAD>
 <BODY>
 <H1>Name and Address</H1>
 <HR>
 <APPLET CODE=LTextFieldUser HEIGHT=300 WIDTH=400>
 </APPLET>
 </BODY>
 </HTML>

 As you can see from Figure 8.2, each field is lined up neatly, all with a minimum of work.

 Figure 8.2 Running the LTextFieldUser applet in a Web browser

 “Iteration—trying out a design, noting its deficiencies, and then building a better model—

is an essential component of object-oriented modeling.”

Rules of Thumb for Composition

Iteration—trying out a design, noting its deficiencies, and then building a better model—is
an essential component of object-oriented modeling. However, unless you have some
way of telling whether you’re actually making progress, you may end up like Sisyphus,
who was eternally condemned to push a rock to the top of a tall mountain, only to have it
roll down in the night. You need some way of telling whether you’re making net progress,
and some idea of which direction to go.

To build robust composite objects, you first have to decide which parts go with what
whole. This is the main problem in composition: deciding what to put together and what to
separate. The following rules won’t give you hard-and-fast, step-by-step instructions for
doing that, but they will help you tell whether you’re going in the right direction.

 - 232 -

 LOCALIZE MESSAGE TRAFFIC

The first place to start looking for composite objects is to find out what objects already
“hang out” together. Like teenage best friends, objects with high-frequency
communication between them generally belong in the same subsystem. Objects with less
communication belong in separate subsystems or modules. Of course, if the individual
subsystems you develop have no communication between them—if they’re perfectly
decomposable instead of nearly so—you wouldn’t have a system, but merely a collection
of autonomous agents. The closer you can get to a collection of independent modules
working in concert, the more stable and maintainable your system will be.

Begin looking for communication links by identifying the frequency of message traffic
between your objects. If you’ve already identified the associations in your system with the
related messages, you’ve already done this. After you identify parts with a high frequency
of interaction between them, you have candidates for a composite class.

Arthur Riel, in his book Object-Oriented Design Heuristics, proposes a pair of similar
rules that use frequency of communication as a design rule. He suggests that if a class
contains objects of another class, the container should be sending messages to the
contained objects. Furthermore, most of the methods defined in the class should be using
most of the data members most of the time. These rules will help you determine which
objects should be eliminated as candidates for composite classes.

 AVOID MIXING DOMAINS

A second criterion for grouping objects together revolves around functionality or domains.
A king’s domain is the land where he rules. In software development, a subsystem’s
domain is the area of functionality for which the subsystem is responsible. Think of an
automobile assembly line, for instance. The machine that welds the bumpers is
specialized for that job, and it also doesn’t try to adjust the brakes or install the engine;
those jobs are outside its domain. Processes, like the assembly line, that can be broken
into individual domains are said to be layered.

Layering—breaking apart an application based on common functionality—is a time-tested
method of grouping similar code together. In telecommunications, the Open Systems
Interconnection (OSI) model is a good example of this. It specifies seven different
domains or layers, starting with the physical (electrical) specification and moving all the
way up to user-interface specifications. Each layer provides a general service for
networking applications. This clear distinction between each domain makes it possible to
write applications that work together, because each layer or part refrains from interfering
with another.

One natural form of layering, which you should definitely consider whenever you build
software, is to separate the user-interface, data storage, and business logic portions of
your programs into different layers. Most computer applications require you to process
some information, store the information, and present the information to users. By keeping
the data-storage logic out of your user-interface classes, you make it much less likely that
changes to your input screens will affect the integrity of your data, or that switching
database vendors will require you to rewrite your user interface.

For systems of any size, you’ll also want to consider partitioning the business-logic
portion of your program along functional lines. For instance, although you might find it
tempting to build a unified, do-it-all program that neatly integrates order entry, shipping,
inventory, and billing, you’ll be better served by breaking each of these functional parts
into its own subsystem, and then defining a set of clearly defined interfaces to facilitate
communication between them.

 “When combining classes into subsystems, you should look for areas that can be

 - 233 -

logically partitioned.”

The separation of domains is closely related to the principle of cohesion. In procedural
programming, the principle of cohesion states that a function should do only one thing. In
OOD, a corresponding rule says that a class should model only a single abstraction.
When combining classes into subsystems, you should look for areas that can be logically
partitioned. By clearly separating the domains of inventory control and invoicing, for
example, and by providing a formal interface between them, you avoid the problems that
occur when a bug in the invoicing system brings down your inventory program as well.

 ISOLATE THE CHANGEABLE

A third criterion for composition is to group objects by their stability, their tendency to
change. If you can, identify those portions of your system likely to change, and put those
parts together. Then, combine the relatively unchangeable parts into separate
subsystems. That way, when the inevitable change comes, rather than make changes
scattered throughout 10 subsystems, you can concentrate on only one or two.

A pleasant side effect of grouping changeable parts is that developers spend more time
with the most changeable code and thus get to know it better. When changes are
scattered throughout the system, much of the cost of change is associated with the
overhead required to simply understand the surrounding code.

 CREATE SIMPLE INTERFACES

Whereas composite objects should have high-frequency internal communication (that is,
most of the methods should use most of the objects most of the time), communication
between the “outside” world and the object should have lower frequency. This
corresponds to the procedural idea of loose coupling between functions. One way to
facilitate this is to create simple interfaces.

To see how this works, look back at the LTextField class presented in the first half of
this chapter. If you were to “decompose” the LTextField class, you could get (roughly)
the same effect by creating a Label, setting its size based on your desired width,
resizing the component, and then creating a TextField and manipulating it. For
instance, to replace the two lines that create the LTextField object labeled “Name” in
the LTextFieldUser applet in Listing 8.2, you’d have to do this:

 Label nameLabel = new Label(“Name : “, Label.RIGHT);
 add(nameLabel);
 Dimension d = nameLabel.getPreferredSize();
 FontMetrics fm = nameLabel.getFontMetrics(nameLabel.getFont());
 int pixPerCol = fm.charWidth(‘o’);
 nameLabel.setSize(15 * pixPerCol, d.height);
 TextField nameTextField = new TextField(40);
 add(nameTextField);

By using LTextField objects, all this communication is hidden inside the class. Users
of LTextField objects use only the constructor and the methods that allow them to
change the Label text or retrieve the information from the TextField. Figure 8.3
illustrates how composition, with a simple interface, separates high-frequency
communication from low-frequency, inter-object communication.

 - 234 -

 Figure 8.3 Composition isolates high-frequency communication behind a

simpler interface

One consequence of using composition in this way is that users of LTextField objects
can’t do all the things that they might do with the component parts. You may instinctively
recoil at these restrictions and set about making sure that LTextFields have at least as
rich an interface as the TextField and Label objects. You should, however, resist this
impulse. The strength of composition lies in its capability to bring structure to complexity.
Just as the simpler interface of the steering wheel, gas pedal, and brake harnesses the
complexity of the automobile, so too you should use composition to build ease-of-use into
your objects. For those times when all the gears and levers need to be visible, such as
the cockpit of a jetliner, inheritance rather than composition is the better choice.

 GENERALIZE WHEN POSSIBLE, SPECIALIZE WHEN

NECESSARY

Another problem you’ll encounter when creating composite objects is deciding how
general or specific each part should be. By making very specific parts—parts specialized
to do only a single task—you reduce the effort that a user needs to expend in using your
part. On the other hand, if you create only specialized parts, you’ll soon be drowning in
classes.

For instance, rather than create the LTextField class, you could have created
specialized classes for storing names, addresses, cities, and zip codes. As you can
imagine, if you carry this to the extreme, you could have a separate class for every input
field object in your system!

A better solution is to specialize only when necessary. A ZipCode field may have
specialized requirements that can’t be met by the regular LTextField class; for
example, it may check the code against a list of valid postal codes or provide handy
formatting services. It’s unlikely that the name, address, and city fields would require
identical treatment, however. You might, therefore, decide to create a specialized
ZipCode field for the zip code, and leave the others as LTextFields. Another
alternative is to create a general solution by adding input validation to the LTextField
class itself. Of course, that may lead to feature creep and defeat the whole advantage of
having a minimal interface in the first place. That’s a decision you’ll have to make on a
case-by-case basis.

As mentioned earlier in the chapter, stable complex systems tend to be composed of a
few simple parts, arranged in different ways. If you want your system to be maximally
stable, create generalized parts whenever you can.

 - 235 -

 PREFER A TREE TO A FOREST

The last and most common design decision you’ll have to make when creating composite
objects is sometimes called the forest and the trees problem. Simply stated, should your
composite objects be shallow or deep?

In a shallow containment hierarchy (forest), most composite objects have many fields,
and the fields are composed of relatively basic types. (These basic types aren’t
necessarily the Java’s primitive types, but could be AWT components, strings, or other
“built-in” objects.) As the previous section mentioned, building a system in this way—from
only a few parts—tends to promote stability.

In a deep containment hierarchy (tree), your system is composed of more vertical layers.
This is similar to what we observe in biological systems. Your body, for instance, has a
circulatory and a digestive system. Rather than be a “shallow” system, the circulatory
system is, itself, broken down into subsystems: the blood, the vascular system, the heart,
and the lungs. Each of these systems can be further broken down. This is a “deep”
hierarchy.

The main argument in favor of deep hierarchies is that, as humans, our short-term
memory can handle only a limited amount of information. (This number is generally
agreed to be between three and eight discrete pieces of information.) To handle greater
amounts of information, we combine related pieces together into chunks. When you
create a deep hierarchy, you limit the amount of information you need to absorb at any
one level, effectively increasing your processing capability.

On the other hand, as you’ll see when you study inheritance in Chapters 9 and 10, deep
hierarchies have their own problems, because understanding the hierarchy itself may
require you to search the contained classes to learn important information about how
they work. Because the interface of a class limits what you can actually do with the class,
this is less often a problem with containment than it is with inheritance.

Given these tradeoffs, deep hierarchies generally have an advantage over wide, shallow
hierarchies. When writing procedural programs, you might create a series of functions that
help clarify a higher-level piece of code. Deep hierarchies bring the same abstraction
benefit to composite objects.

 Object Notation Revisited

As you saw in Chapter 5, “Designing Classes and Objects,” object-oriented design
methodologies grew out of the adoption of object-oriented programming languages in the
1980s and 1990s, much like structured design techniques grew out of the use of
structured programming languages in the 1960s and 1970s. And, as was true with the
earlier structured methodologies, several different processes, graphical notations, and
heuristics were adopted and promoted by several different groups.

In late 1994, three of the most successful object-oriented methodologists—Grady Booch,
Jim Rumbaugh, and Ivar Jacobson—decided to join forces and create a standard set of
graphical notations for object-oriented design. The result was the Unified Modeling
Language (UML), which is currently going through a standardization process with the
Object Management Group. Although not all of the major methodologists have jumped on
board, UML seems poised to become a commonly understood notation for describing
object-oriented systems.

Although this book isn’t a handbook on UML—we recommend Martin Fowler’s excellent
UML Distilled as an accessible introduction to the notation—knowing how to read the
major UML diagrams will certainly help you communicate with other object-oriented
designers, because it provides a common language.

 CLASS DIAGRAMS: DESCRIBING RELATIONSHIPS

 - 236 -

UML uses the class diagram to describe both object (association) relationships and class
(inheritance) relationships. Class diagrams can be drawn to represent several different
viewpoints—from the very high-level conceptual diagrams on down to implementation
diagrams. Normally, any system will have several different diagram levels, but there’s no
formal method for “leveling” the individual drawings. Indeed, only by looking at an
individual diagram can you infer which level is being represented.

The main difference between levels is in the amount of detail presented. A class may be
represented on a diagram simply by enclosing its name inside a rectangle. You might use
this type of diagram to show connections between classes. Figure 8.4 shows a simple
representation of the LineItem class (used in the SalesInvoice application), along
with a more detailed representation. A class may be represented by listing important
attributes and methods. Generally, only those methods and attributes important to the
diagram are shown. It’s important to realize that the class may actually be much more
complex than shown. The more detailed representation of the LineItem class displays
the public methods (getTotal()), the messages that the class sends
(updateTotals()), and some private fields that may help you understand the
LineItem abstraction. Still, almost all the implementation detail is ignored.

 Figure 8.4 UML class diagrams

 ASSOCIATIONS

Associations are represented in UML by simply connecting two classes with a straight
line. As you can see in Figure 8.5, the LineItem class is associated (in some way) with
a class called LineItems. Such simple association notation may be fine on a very high-
level, conceptual diagram, but it certainly fails to convey the full meaning of the
relationship between the two classes.

 Figure 8.5 Simple association in UML

 - 237 -

As you’ll recall from Chapter 7, capturing the semantic relationships in an association
requires that you identify the cardinality of the association—that is, how many members
participate in the association. UML also allows you to limit the traversal of an association
by adding a navigability arrow to the link connecting the classes. Figure 8.6 shows
several possible variations of the LineItem-LineItems relationship.

 Figure 8.6 Cardinality and UML associations

First, this figure shows a 1..5 relationship, where one LineItems object is associated
with between one and five LineItems objects. Because the lower bounds is 1, the
relationship is mandatory. Because there are no navigation arrows, you can assume the
relationship is bi-directional. Next, the figure shows how you would represent the
relationship if you decided that every LineItems object should associate with exactly
five LineItem objects, even if all of them were not used. Finally, the figure shows how
the relationship would be represented if you wanted to allow an unlimited number of
LineItem objects per LineItems object.

 COMPOSITION AND UML

UML provides three different ways of representing composition. In Jim Rumbaugh’s
Object Modeling Technique (OMT), a distinction was made between simple aggregation
and composition. Some other methodologists have ignored Rumbaugh’s distinction and
others have defined it differently. To accommodate as many methodologies as
reasonable, UML has notations to support both aggregation and composition. You must
be careful when communicating with other designers to make you understand what they
mean if they show this distinction in their UML diagrams. Both notations connect the
whole class with a small diamond symbol, as you can see in Figure 8.7. To specify the
stronger form of composition, the diamond is filled in. Many diagramming tools, even
when they support UML, don’t make this distinction and simply use the hollow diamond.
Another UML way of depicting composition is by enclosing the symbol for one class
within that for the other. Figure 8.7 shows the relationship between the LineItem class
and the TextField class used to create the LineItem user interface.

 - 238 -

 Figure 8.7 The LineItem-TextField association

The LineItem class contains attributes that represent the quantity, description, and
price of an ordered item. But LineItem is also a composite object that contains its own
user interface in the form of a set of TextFields. Figure 8.7 says that every LineItem
contains five TextField objects as part of its state.

 THE SalesInvoice CLASS DIAGRAMS

The addition of composition notation allows you to create a set of SalesInvoice
diagrams that are semantically richer than the simple associations you used in Chapter 7.
Figure 8.8 shows an annotated class diagram for the SalesInvoice application. Note
that both the LineItem-TextField and LineItems-LineItem relationships are
specified in terms of composition. This means that every LineItem object can appear
only inside a single LineItems object, and that when the LineItems object is
destroyed, its individual LineItem objects are destroyed as well.

 Figure 8.8 The SalesInvoice class diagram

 Looking at the LineItem Class

Let’s look at another application of composition by returning to the SalesInvoice
application from Chapter 7. Although you wouldn’t have noticed unless you looked at the
code on the CD-ROM, the LineItems class is actually composed of several LineItem

 - 239 -

(notice the singular) objects. The LineItem objects are contained inside the
LineItems object and aren’t visible outside the LineItems class. Your
SalesInvoice object sends messages to its single LineItems object, and that
LineItems object then sends messages to each of its individual LineItem objects.
Thus, the LineItems-LineItem association is a uses relationship, similar to that
between SalesInvoice and Customer (because messages are being passed), but
really, it’s much more than that. LineItem objects are actually part of the LineItems
object; thus, they have a whole-part or composition relationship.

 “In Java, you create multivalued relationships by using collections.”

 LineItems: IMPLEMENTING COLLECTIONS AND
MULTIVALUED RELATIONSHIPS

Like the LineItem class, the LineItems class includes a number of parts. If you look
at the class diagram for the LineItem-TextField relationship, you’ll see that the
cardinality is 1..5. Likewise, you see a 1..5 relationship with LineItems- LineItem
association. But even though the diagrams for these relationships look identical, in
practice these two relationships are very different.

Unlike the LineItem class, where you want different behavior for the uQty field and the
uDesc field, in LineItems you want all the parts to act the same, because they really
are multiple instances of the same type. Such repeating relationships are called
multivalued. In Java, you create multivalued relationships by using collections.
Collections resemble composite objects. The major difference is that there is no whole-
part relationship like there is for a composite object. For instance, a car is composed of
its engine, body, and wheels; together they cooperate to give a car its “car-ness.” By
contrast, a used car lot is a collection of cars. The operation of the lot would not be very
much different if it were selling pumpkins instead of cars. In the case of the car, the
various elements are of different types. In the case of the used car lot, which models a
collection, the elements are all of the same type—each is a car.

The most basic type of collection in Java is the array. Listing 8.4 shows the
implementation of the LineItems class, using an array. After you’ve had a chance to look
through the listing, let’s look at how you use arrays in Java.

 Listing 8.4 LineItems.java

 // LineItems.java
 //
 // The LineItems class is a collection of LineItem objects
 //
 import java.awt.*;

 public class LineItems
 {
 // ===
 // CONSTRUCTORS
 // ===
 public LineItems(int size, SalesInvoice owner)
 {
 items = new LineItem[size];

 - 240 -

 nItems = size;
 for (int i = 0; i < size; i++)
 {
 items[i] = new LineItem(this);
 }
 this.owner = owner;
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Mutators----------------------- */
 public void updateTotals()
 {
 owner.updateTotals();
 }

 /* --Accessors---------------------- */
 public double getTotal()
 {
 double total = 0.0;
 for (int i = 0; i < nItems; i++)
 {
 total += items[i].getTotal();
 }
 return total;
 }

 // ===
 // INPUT AND OUTPUT
 // ===
 public void buildUI(Container c)
 {
 // 1. Create a panel to hold all of the LineItems
 Panel p1 = new Panel();
 p1.setLayout(new GridLayout(0, 1, 2, 2));

 // 2. Create a panel to hold the column headers
 Panel p2 = new Panel();
 p2.setLayout(new GridLayout(1, 6));

 p2.add(new Label(“Qty.”, Label.CENTER));
 p2.add(new Label(“ID.” , Label.CENTER));
 p2.add(new Label(“Description”, Label.RIGHT));
 p2.add(new Label(““, Label.LEFT)); // Filler
 p2.add(new Label(“Price”, Label.CENTER));
 p2.add(new Label(“Amount”, Label.CENTER));
 p1.add(p2);

 // 3. Add each of the LineItem objects
 for (int i = 0; i < items.length; i++)

 - 241 -

 {
 Panel p = new Panel();
 p.setLayout(new FlowLayout());
 items[i].buildUI(p);
 p1.add(p);
 }

 // Add the whole panel to the component
 c.add(p1);
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private LineItem[] items;
 private int nItems;
 private SalesInvoice owner;
 }

 UNDERSTANDING THE LineItems CLASS

The LineItems class is perhaps simpler than any of the other classes in the
SalesInvoice application. It contains only three fields: an array of LineItem objects,
called items; an int containing the number of LineItem objects that the LineItems
object holds; and a referential attribute to the SalesInvoice object that contains the
LineItems object.

The behavior of the LineItems object is likewise simple. In a way, it acts as a go-
between or mediator between the SalesInvoice object and the LineItem objects that
do the actual work. And, in a way, that’s a very apt analogy because most collection
relationships involve general management to some degree. The only things that a
LineItems object does are to:

 • Construct the array of LineItem objects in its constructor.

 • Notify its SalesInvoice owner whenever one of its LineItem objects changes its

value, so the SalesInvoice object can update its totals and subtotals.

•

Provide an accessor method, getTotal(), that allows an interested party to find out
the total dollar amount sold on this LineItems object. The getTotal() method
works by simply asking each embedded LineItem object for its own total and then
simply returning the sum to the caller.

 USING ARRAYS IN JAVA

In Java, as in most other high-level computer languages, arrays are an ordered collection
of data elements, where each element is a reference to an individual object. To create an
array, you have to specify the element type that you want to store in the array, and then
follow the type with a pair of empty brackets([]):

 Button aButton; // aButton refers to a single Button
object

 Button [] buttonArray; // buttonArray refers to an array of
Buttons

 - 242 -

 In this example, both aButton and buttonArray are references that hold the special value
null. You use the new operator to give each a value:

 aButton = new Button(“A Button”);
 buttonArray = new Button[100];

Now, rather than refer to the null value, aButton refers to the Button object whose
caption is “A Button,” and buttonArray refers to an array of 100 Button references.
The size of the array, 100, is fixed when you allocate the array by using the new operator.
Note also that brackets ([]) are used when allocating an array, unlike the parentheses
used when constructing the single Button.

To use the individual objects in an array, simply use the array name—here, it is
buttonArray—and an integer subscript (or index) value, enclosed in brackets. To
change the text on aButton and the third Button in buttonArray, you would write

 aButton.setLabel(“A Single Button”);
 buttonArray[2].setLabel(“The Third Button”);

Notice that the third Button in the array is addressed by using the subscript value 2. The
valid subscript values for buttonArray start at 0 (which is the first element in the array)
and go to 99. For any array of size n, the last element is at position n-1. If you come from
another language where array elements are numbered from 1, you may find this
numbering scheme—the same as that used in C—annoying. One consolation is that
unlike C arrays, Java array references are automatically checked before the referenced
element is accessed; attempting to read or write elem[100] in an array that has only 100
elements will cause an exception to be thrown.

If you attempted to type in and run the line of code where buttonArray[2] is given a
caption, you might be surprised to find that it doesn’t yet work. Even though
buttonArray now refers to an array of Button references, each individual Button
reference still contains the null value, the default initial value for fields that reference
objects. To actually use buttonArray, you have to attach Button objects to each
reference you want to use. This is both good news and bad news. The good news is that
large arrays with many unused elements don’t take up as much storage as if arrays were
automatically initialized. The bad news is that you have to remember to initialize the
individual elements of an array before you use them. To initialize only the third element of
buttonArray, you’d write

 buttonArray[2] = new Button(““);

Now you can send the setLabel() method to buttonArray[2], and it works
correctly. If you wanted to use all the elements of buttonArray, you could initialize
them in a loop:

 for (int i = 0; i < buttonArray.length; i++)
 {
 buttonArray[i] = new Button(“I’m Button # “ + i);
 }

You should notice several things about this code. First, the index variable i is declared
inside the initializer expression of the for loop. When you do this, the scope of i is limited
to the body of the loop. Second, rather than the test expression i < 100,
buttonArray’s public attribute, length, is used. Whenever you want to process all
the elements in an array, use the array’s built-in length field rather than hard-code the
size of the array. (Strings have a similar facility, but they provide a length() method
rather than a public field.) Finally, notice that the index variable i is combined with the

 - 243 -

text “I’m Button # ” by using the String concatenation operator (+). When used
with numeric types, the addition operator (+) adds the numbers together, but when the
expression on the left of the operator is a String, the number or object on the right is
converted to a String and pasted onto the end of the String on the left.

In addition to objects, arrays can also be used to store primitive types. An array of
primitive types stores values rather than references, just as ordinary primitive variables
do. Thus, when initializing an array of primitives, you don’t have to use the new operator
to initialize each array element, although you do have to use the new operator to create
the array itself.

 Remember To declare an array, you must specify the type of object you want to store,

followed by brackets ([]) and the name of the array:

 Label [] labelArray;
 int [] intArray;

 Remember To initialize an array, use the new operator with the type of the object to

store, followed by the number of elements enclosed in brackets:

 labelArray = new Label[100];
 intArray = new int[100];

 Remember Before using any of the array elements, you must initialize them:

 labelArray[2] = new Label(“Label # 2”);
 intArray[2] = 100;

 Summary

Objects can be related to each other in three ways. Objects may be formally related yet
not interact: this is a weak association. Objects may send messages to each other; this is
a uses relationship. Objects may contain other objects; this is known, variously, as a
containment, aggregation, composition, or whole-part relationship. Unlike the other two
forms of association, composition brings with it an ability to impose a simplifying structure
on an object-oriented design.

A primary goal of object-oriented design is to build stable systems—systems that
continue to function when the environment changes. Research into stable complex
systems suggests that most such systems share four common characteristics. First, they
are arranged in the form of a containment hierarchy, where more complex subsystems
are built from simpler parts. Second, the system as a whole is nearly decomposable,
meaning that you can identify the subsystems and the interactions among those
subsystems. In a stable system, the frequency of interaction within each subsystem is
greater than the frequency of communication between subsystems. Third, almost all
stable complex systems are composed of relatively few parts, arranged in different ways.
Finally, complex stable systems that work have almost always developed from simpler
systems that work.

Composition relationships are used whenever one object is built from other objects, or
when one object represents a logical whole composed of smaller parts. Unlike other
forms of association, each part in a composition relationship belongs to only a single
whole, and it lives and dies with the whole. When a composite object is created, its parts
are likewise created. When a composite object is destroyed, its parts are destroyed.

You can use several rules of thumb for designing composite relationships. First, you
should look for high-frequency communications between objects, and put those objects in
a common subsystem. Second, you should look for common functionality, partitioning

 - 244 -

your system into separate domains. Third, you should try to isolate those areas that can
change from those that won’t, easing the long-term maintenance of your system. Fourth,
you should take advantage of encapsulation to hide the complexity of your composite
classes behind simpler interfaces. Fifth, you should try to strike a balance between
composite classes that are too general and thus susceptible to “featuritis,” and those that
are too specific, thus leading to an exponential growth in the number of classes in your
system. Finally, you should try to hide as much detail as possible, preferring deep
hierarchies rather than shallow.

The Unified Modeling Language is an attempt to bring together several disparate
notations used by different object-oriented methodologies. It provides several ways to
create diagrams that communicate a wealth of semantic information. Depending on the
level of your diagram, though, not all information will be included.

You can use Java’s inner classes to encapsulate the definition of a class inside another
class. This hides the embedded class name inside the enclosing class. When creating
composite relationships, the inner class is given access to the data environment of the
enclosing class, thus increasing the coupling between the enclosed class and its container.
To model multivalued associations, Java has several facilities, the most basic of which is
the array.

Questions

 1. A composite or aggregate object is one in which other objects are

_________________ as the composite object’s fields.

 2. The advantages of composition include which of the following?

 a. Complexity is hidden behind a simpler interface.

 b. A composite object has lower coupling with its parts than if the relationship was a

uses relationship.

 c. Composition provides a method to structure an object-oriented program.

 d. Composite objects are generally easier to use than trying to use all the parts that

make them up.

 3. True or false. When creating composite objects, you’ll usually increase the coupling

between the parts contained in the composite object and the containing object.

 4. What are two main differences between a composition relationship and a uses

relationship?

 5. True or false. Every composition relationship is also a uses relationship.

 6. The main disadvantage of creating very general composite classes is that

 a. The parts are all private.

 b. The interface may become crowded with features, making the class harder to use

and understand.

 c. If too many details are hidden, the class may not do what you want.

 d. Composition increases the coupling between the program and its objects.

 - 245 -

 7. Discuss the pros and cons of dividing your classes up into discrete layers.

 8. True or false. You should usually prefer deeper containment hierarchies rather than

shallower ones.

 9. Multivalued relationships can be best implemented in Java by using the

 a. Inner class syntax

 b. Either arrays or Vectors

 c. An anonymous inner class

 d. Individual user interface fields

10.

Discuss the pros and cons of making the LineItems-SalesInvoice relationship a
composition rather than a uses relationship. Is there ever any reason you’d want
LineItem objects to stick around, even if the SalesInvoice was gone?

 Exercises

1.

Print out the listing of the LineItem (note singular) class from the CD-ROM. Draw a
set of UML diagrams that depict the association and composition relationships you
find there. Draw a set of UML diagrams that present an alternative design that
separates the user-interface domain from the business logic domain. Can you
implement your design?

2.

Coding Challenge I: The LineItems class currently uses an array to represent the
collect of LineItems it stores. Can you change the program to use Java’s Vector
class instead? If possible, allow an unlimited number of LineItems for each
SalesInvoice. You might want to look into the new Java 1.1 ScrollPane class
when you implement your interface.

3.

Coding Challenge II: Modify the LineItem class so that it uses a “deeper”
hierarchy. Create an InvoiceHeader class and an InvoiceUI class that
encapsulates the details of sizing the column headers and the columns themselves.

4.

Design Challenge I: Create a set of high-level (conceptual) diagrams for an
automated library system. Identify all the classes and the association relationships
between them, but don’t be overly concerned with the individual attributes or methods
of the classes.

5.

Design Challenge II: Create a set of high-level (conceptual) diagrams for a “space-
war” type video game. What classes can you come up with? Concentrate specifically
on how composite or compound objects can make your design easier to understand.

 To Learn More

Herbert Simon’s pioneering article on the nature of complexity has been reprinted as
Chapter 7 in his book The Sciences of the Artificial, published by MIT Press. Since his
1962 article, complex systems have become a “hot” topic, even serving as the backdrop
for Michael Crichton’s dinosaur novels, Jurassic Park and The Lost World. For an
accessible and fascinating introduction to complex systems, you’ll want to read M.
Michael Waldrop’s book, Complexity: The Emerging Science at the Edge of Order and
Chaos (Touchstone Books). You may never look at software the same again.

 For a concise introduction to the Unified Modeling Language, one that we suspect will still

 - 246 -

be valuable when the market is flooded with books on the subject, you should get Martin
Fowler and Kendall Scott’s, UML Distilled: Applying the Standard Modeling Language
(Addison-Wesley). Some of the examples even use Java!

Finally, Mark Priestley’s Practical Object-Oriented Design from McGraw-Hill offers a wealth
of advice (especially on modeling associations) that can help you separate the essential
from the peripheral when you start object-oriented modeling in earnest. Although the book
uses C++ rather than Java and is based (loosely) on Jim Rumbaugh’s Object Modeling
Technique, the practical focus of the book extends its usefulness far beyond its immediate
context.

Chapter 9: Implementing Class Relationships:
Inheritance and Interfaces

 Overview

“In the Olympic Games, Greeks ran races, hurled the biscuits, and threw the java,”
according to the students of Richard Lederer, an English teacher and the author of a
best-selling compilation of similar misunderstandings called Anguished English.

Whether we can attribute the development of java-hurling to the ancient Greeks is
questionable, but many of us, like Mr. Lederer’s students, have shared the experience of
using the right word in the wrong way. This is especially true when learning a
programming language. As a beginner, you may have spent weeks or months learning
the correct Java syntax, relying on the javac compiler to tell you the error of your ways,
only to discover that a syntactically correct program doesn’t always do what you meant it
to do. The real difficulty lies in writing programs that “say what you mean.”

In no place is that difficulty more apparent than when first dealing with inheritance,
interfaces, and abstract classes. Java provides all these mechanisms for expressing
relationships between classes. But how do you know which one to use, and where to use
it? At first glance, each of them seems to do, roughly, the same thing. When writing a
new class, you can derive it from an existing class, thus using inheritance, or you can use
composition, as you saw in Chapter 8, “Object Relationships: Compositions and
Collections.” In both cases, you are basing your design on an existing class. Which of
these is better? Should you make an abstract class, or use abstract methods? Or maybe
you should forget inheritance, and implement an interface instead. Are there any rules
that will help you to decide what to do?

Yes, there are. Each reuse mechanism provided by Java—inheritance, abstract classes,
and interfaces—carries with it a specific meaning and is intended to model a particular
class relationship. For instance, when you use inheritance to create a new class, you are
saying that the new class is a “kind of” an existing class. If you disregard this meaning,
using inheritance to create a new class simply because you want to reuse some of the
functionality in an existing class, you may create a syntactically correct program, but the
program won’t “say what you mean.” To select the correct method for the job at hand,
you must first understand what that mechanism means, and then understand how to
apply it to your situation.

 In this chapter, you will study different ways you can implement relationships between

classes. You will learn:

 • About the three different types of inheritance relationships between classes: simple

extension, specification, and polymorphic inheritance

 • How to create new classes by using Java’s inheritance mechanism, for purposes of

generalization and specialization

 - 247 -

 • How to use Java interfaces to create new classes for purposes of specification

 • How to use abstract classes and methods to create hierarchies that combine default

behavior as well as mandatory specification

 • When to use each different inheritance mechanism, as well as the drawbacks and

pitfalls of using an inappropriate mechanism

 From Encapsulation to Inheritance

 “Classification is one of the primary mechanisms that we use to understand the

natural world around us.”

Classification is one of the primary mechanisms that we use to understand the natural
world around us. Starting as infants we begin to recognize the difference between
categories like food, toys, pets, and people. As we mature, we learn to divide these
general categories or classes into subcategories like siblings and parents, vegetables
and dessert. When faced with a new object, we try to understand it by fitting it into the
categories with which we’re acquainted: Does it taste good? Perhaps it’s dessert. Is it soft
and fuzzy? Maybe it’s a pet. Otherwise, it’s most certainly a toy of some sort!

Encapsulation—the specification of attributes and behavior as a single entity—allows us
to build on this understanding of the natural world as we cre ate software. By creating
classes and objects that model categories in the “real world,” we have confidence that
our software solutions closely track the problems we are trying to solve. Rather than think
in terms of computer files and variables, our programs can be expressed in terms of
Customers, Invoices, and Products.

Inheritance adds to encapsulation the ability to express relationships between classes.
Think back to the categories “desserts” and “vegetables.” Cherry pie and broccoli are
both, at least arguably, edible items; for humans, they belong to the food class. Yet most
of us recognize that, in addition to belonging to the food class, cherry pie is a kind of
dessert, whereas broccoli is a kind of vegetable. If you ponder this for a second, you’ll
realize that you can draw three conclusions:

•

Although both cherry pie and broccoli are kinds of food, the food class itself consists
of, thankfully, more than just these two items. Cherry pie and broccoli are just two
small subsets of all possible food types. Thus, the relationship between the food class
and the cherry pie class is one of superset (food) and subset (cherry pie). In object-
oriented terminology, we call this the superclass-subclass relationship.

•

Superclasses and subclasses can be arranged in a hierarchy, with one superclass
divided into numerous subclasses, and each subclass divided into more specialized
kinds of subclasses. That’s what we find with the food class. It can be divided into
desserts, vegetables, soups, salads, and entrees. Each category can be further
divided into more specialized kinds of food.

•

A classification hierarchy represents an organization based on generalization and
specialization. The superclasses in such a hierarchy are very general, and their
attributes few; the only thing that a class must do to qualify as food, for instance, is to
provide nutrients. As you move down the hierarchy, the subclasses become more
specialized, and their attributes and behavior become more specific. Thus, although
broccoli qualifies as food (it is, after all, digestible), it lacks the necessary qualifications
to make it into the dessert class.

 - 248 -

 THE VALUE OF INHERITANCE: REUSE AND ORGANIZATION

In object-oriented programming, inheritance gives you a way of taking existing classes
and using them to make new and different classes. Rather than build a BeveledPanel
class from scratch, for instance, you can use the Panel class you already have and just
write code for the aspects that are different. Your new BeveledPanel class will silently
and invisibly inherit all the fields and methods from its superclass, Panel; you don’t have
to do any extra work at all.

In addition to giving you the ability to reuse the classes you’ve already written, inheritance
gives you a basis for organizing your classes into class hierarchies, much like procedures
gave C and Pascal programmers a tool for creating code libraries.

 THREE KINDS OF INHERITANCE RELATIONSHIPS

Inheritance means that you can take an existing class and create a more specialized
subclass based on the existing class. When you do this, the new class is a kind of the
existing class, as you can see in Figure 9.1. Here, the CoffeeMachine class is-a-kind-of
VendingMachine. Informally, this is often called the isA relationship, because every
subclass isA subset of the superclass.

 Figure 9.1 Inheritance and specialization

 When you begin to actually design inheritance hierarchies, however, you’ll quickly

discover that there’s not just one, but three forms of this isA relationship:

 “Inheritance gives you a way of taking existing classes and using them to make new

and different classes.”

•

An extension relationship. A subclass may extend an existing class, so that all the
data members and all the methods of the superclass are left intact, and only new
methods or fields are added. This extension or strict-subtype relationship involves the
inheritance of the interface (or public methods) of the superclass, as well as its
implementation.

 • A specification relationship. In contrast to the extension relationship, a superclass

may specify a set of responsibilities that a subclass must fulfill, but not provide any

 - 249 -

actual implementation. In this case, the only thing inherited is the interface from the
superclass.

•

A combination of extension and specification. The final form of inheritance, and by
far the most common, combines the first two. In this form, the subclass inherits the
interface of the superclass, as it does in specification, but it also inherits a default
implementation of, at least, some of its methods. The subclass may override an
inherited method to provide specialized behavior, or it may be required to provide an
implementation for a particular method, which could not be provided in the superclass.
We’ll call this form polymorphic inheritance, because its principal value lies in its ability
to provide specialized behavior in response to the same messages.

 DISCOVERING INHERITANCE RELATIONSHIPS

After you decide on the classes and objects in your system, and after you decide which
objects cooperate together to form association relationships, you are ready to begin
looking at the class relationships in your system. As with most design activities, you can
go about this task in several ways.

 “Your inheritance hierarchy will evolve from iterative rounds of top-down

specialization and bottom-up generalization.”

You may discover that many objects in your system share data or behavior, leading you
to start at the bottom of your system and work up. Or you may start with your more
general classes and find that you need more specialized instances in certain cases,
finding yourself working from the more abstract to the more concrete. In most systems,
however, you’ll need to do both: Your inheritance hierarchy will evolve from iterative
rounds of top-down specialization and bottom-up generalization.

 Specialization

Specialization is what we normally mean when we say that one class is-a-kind-of another
class. In specialization, every class can inherit both data and methods from its parent—its
superclass. As you saw in Figure 9.1, the CoffeeMachine class is a specialized form of
the more general VendingMachine class. Notice, however, that the data fields and
methods specified in the VendingMachine class aren’t redefined inside the
CoffeeMachine class. Nevertheless, those fields and methods exist as inherited (albeit
implicit) members of the new class. Figure 9.2 shows how the CoffeeMachine class
really contains both a totalReceipts field—defined only in the VendingMachine
class—as well as a collectMoney() and makeChange() method.

 - 250 -

 Figure 9.2 Inheritance of data and methods

 “Having one class as a subtype of another means that you can use the new, more

specialized type anywhere an object of the original type would appear.”

 Substitutability and Subtyping

When you decide that one class is a specialization of another, you need to see whether
it’s a subtype. Having one class as a subtype of another means that you can use the
new, more specialized type anywhere an object of the original type would appear.

This test—called the Liskov Substitution Principle, after Barbara Liskov who originally
proposed it—is especially important when you’re designing class hierarchies. Nothing in
the Java language prohibits you from creating a subclass that redefines every method
defined in its superclass. Thus, theoretically, you could have a class with two methods—
add() and subtract()—defined like this:

 public class SuperClass
 {
 public int add(int a, int b) { return a + b; }
 public int subtract(int a, int b) { return a - b; }
 }

 You would then be free to create a subclass and override those methods like this:

 public class SubClass extends SuperClass
 {
 public int add(int a, int b) { return a - b; }
 public int subtract(int a, int b) { return a + b; }
 }

Even though the Java language doesn’t prohibit this, it’s a violation of the meaning of
inheritance and specialization. If every SubClass object is, indeed, a SuperClass
object, the SubClass must uphold the implied contract that the SuperClass creates.
That contract means that every instance of SuperClass and all its subclasses will add

 - 251 -

when told to add(), and not do something else.

In strict subtyping, you have the additional requirement that not only does every subclass
have to carry out the meaning of the interface defined in the superclass, but it must also
rely on the methods already defined in the superclass to do so. The new class isn’t free
to redefine superclass methods at all; it can only add to them. Later in the chapter, you’ll
see how this works.

 Generalization

Sometimes when working on an inheritance hierarchy, you’ll notice that several classes
have data and methods in common. If you’ve worked in a procedural language, you might
see this as an opportunity to create a new function, or perhaps even a module. However,
in the object-oriented world, this is a clue to look for generalization.

Generalization is not a different kind of inheritance—it is just the “flip-side” of
specialization. When looking at the superclass in a such a relationship, you can call it a
generalization. When looking from the other direction, it’s a specialization. The only
difference is in the way the relationship is originally discovered. If you were writing a Java
application for a catering company, you might find yourself creating classes for
CoffeeMachines, SodaMachines, and CandyMachines. Later in your design, you
might notice that those classes had some common factors, and you could use those
factors to create a new, generalized superclass that encapsulated the shared information,
as you can see in Figure 9.3.

 Figure 9.3 Inheritance and generalization

 Specification

Specialization and generalization allow you to design classes that share both an interface
and an implementation. Sometimes, however, that doesn’t really provide all the
expressive power you need to really “say what you mean.” Sometimes, you know exactly
what a subclass should do, but you simply have no idea how it should do it. In this case,
you want to specify what the subclass should do, and then let the compiler make sure
that each subclass complies.

 “Sometimes, you know exactly what a subclass should do, but you simply have no

idea how it should do it. ”

 - 252 -

 If you were writing a BoardGame class, for instance, you might have some code that

looks something like this:

 public class BoardGame
 {
 // Fields and other methods
 public play()
 {
 while (! finished())
 {
 currentPlayer.move();
 currentPlayer = nextPlayer();
 }
 }
 }

You could then use this class to create classes like ChessGame, Checkers,
Parcheesi, and so on. All your subclasses would inherit the code for play() from
BoardGame. The currentPlayer object used by play() would be an object derived
from a subclass of the GamePiece class, such as a ChessPiece or Checker.

At this point, however, things start to break down. You know that every GamePiece
object must be able to move(). You simply have no idea how it should go about doing it!
Obviously, a Checker has very different moves than a Bishop, and a Bishop has
different move than a Knight or a Rook. The declaration of the move() method in the
GamePiece class is thus a stipulation that all subclasses inherit the move()
specification, but no associated implementation.

 Specialization and Specification

When you have a class that needs to specify some behavior that a subclass must
perform, and yet has some behavior of its own to pass on to its subclasses, you find
yourself needing a combination of specialization and specification. In Java, this is
accomplished by making the superclass method abstract, as you can see in Figure 9.4.

 Figure 9.4 Inheritance and abstract methods

 When you “mark” a method as abstract (by adding the abstract keyword before the

 - 253 -

declaration and replacing the method body with a semicolon), you create a requirement
that all subclasses must fulfill. In Figure 9.4, the VendingMachine class creates a
requirement that any subclass must supply a dispenseItem() method.

Because the actual mechanisms for dispensing candy vary considerably from those
required for brewing java, the VendingMachine class is obviously in no position to
provide any sort of implementation at all. On the other hand, by writing code that uses
references to VendingMachine objects, programmers can simplify their code
considerably; they’re freed from the necessity of treating CoffeeMachines differently
than CandyMachines. When a programmer tells a VendingMachine object to
dispenseItem(), the actual object—a CandyMachine or CoffeeMachine—“knows”
how to take the appropriate actions.

 Pure Specification

After taking care of specialization, generalization, and specification, you may find
remaining places where you want to factor out common behavior. The problem is that the
objects sharing that common behavior are otherwise unrelated. When this happens, Java
has a facility for writing pure specifications: the Java interface.

 The interface mechanism differs from the forms of inheritance we have discussed so far

in three important ways:

•

When a class implements an interface, it doesn’t receive any method implementations
or nonfinal fields from the interface. Interfaces can be used to define inherited
constants, but they can’t be used to define nonconstant data. Any fields defined within
an interface are implicitly final.

•

Unlike inheritance, a class may implement several interfaces. This facility can be
used to simulate multiple inheritance, where a subclass inherits behavior from each of
several superclasses. This is the only way to model this kind of relationship in Java,
which supports only single inheritance (every class other than Object has exactly one
direct ancestor).

•

Classes that implement the same interface don’t need to be substitutable in the Liskov
sense, except with respect to the interface they implement. Thus, if a class implements
the Runnable interface, it isA Runnable object, and it can be used anywhere a
Runnable object is expected. Runnable objects don’t have to be otherwise related,
however. Because they implement Runnable, they must have a start() method
and a run() method; otherwise their class wouldn’t have compiled. There’s no
guarantee they’ll have any other methods or fields in common.

 Inheritance of Implementation: Contraction

You should be aware of one last form of inheritance, although you should avoid using it in
your designs. For an exaggerated example, suppose you have a class that models a
virtual automobile called, perhaps, Cadillac. This class has an exceptionally fine stereo
system, which required a lot of effort to implement and of which you’re especially proud.
Now you discover that you need to create a BoomBox class, for sale over the Web.
Because you’ve already gone to all the work of creating the Cadillac class, why not
just create a new subclass, and then eliminate all the methods that have nothing to do
with playing CDs, transforming the car into a mere sound system?

 “Contraction is an especially easy trap to fall into when you begin maintain-ing an

existing system.”

 - 254 -

This practice, called contraction, is an especially easy trap to fall into when you begin
maintaining an existing system. Because the class hierarchy is already in place, you may
feel a lot of pressure not to “tear things up.” So, in an effort to reuse the code you’ve
already written, you replace drive(), accelerate(), and all the other methods from
the Cadillac class with empty braces. In traditional computer-science terms, you
replace them with a NOP (No OPeration). You should avoid doing this in your designs for
two reasons:

•

Because you’re violating the substitutability rule, you will undoubtedly break some
code that relied on all Cadillac objects carrying out a certain set of operations.
Because, according to your new hierarchy, a BoomBox isA Cadillac, you are
obligated by the Cadillac “contract” to perform those operations.

•

It’s more work than doing the right thing! If you really want to use a Cadillac object
as a super sound system, simply use composition: Add a Cadillac object as one of
the fields in your BoomBox class. Now you not only have avoided the semantic pitfalls
of saying one thing and doing another, you’ve also saved yourself the work of
overriding all those useless methods.

You might find yourself tempted to use contraction in one last place—when you have
misidentified an isA relationship and don’t want to go back to square one. Scott Meyers,
in his excellent book Effective C++, calls this the

 All Birds Can Fly
 Penquins are Birds
 Penguins can fl—- Uhhoh!

 problem. Meyers offers no quick fix however. In Java, as in C++, the only solution is to go

back to the drawing board and revise the class relationships.

 JAVA’S INHERITANCE MECHANISMS

Learning which of these three relationships—extension, specification, or polymorphic
inheritance—is the best one to use in a particular situation is a skill that takes years of
practice and is, still, more an art than a science. Along with learning to distinguish
between specification and extension relationships, you’ll also have to learn how to
implement those relationships in Java; fortunately, the latter is considerably easier than
the former. Java has several different mechanisms that can be used, alone and in
combination, to model each of the three forms of the isA relationship. Matching up these
inheritance relationships with Java’s inheritance mechanisms is, thankfully, fairly
straightforward. Nevertheless, the similarities between each mechanism can lead to
easily avoided design mistakes.

To make sure that you understand the correct application of each of Java’s inheritance
mechanisms, we’ll give you at the end of this chapter a simple checklist that you can
follow to help you decide which mechanism is most appropriate. And as we go through
the code examples, we’ll point out which mechanism was chosen for each example, and
why. But for right now, let’s take a quick look at each basic form of the isA relationship,
and how you can use Java’s language features to implement it.

 Simple Extension

To implement a simple extension relationship in Java, you use the extends keyword to
create your new subclass. Also, all the methods in the superclass should be marked
final. You’ll use an extension relationship when you want to allow extension to your
existing class but don’t want the base class implementation changed in any way.

 - 255 -

 “Simple extension is the inheritance of a mandatory interface as well as a

mandatory implementation.”

A simple extension relationship is an assertion that, although more functionality can be
added to an existing class, the implementation that exists must remain invariant. Simple
extension is the inheritance of a mandatory interface as well as a mandatory
implementation.

 Specification

To implement a specification relationship between classes, you use the interface/
implements mechanism. When a class declares that it implements a particular
interface, it’s promising to implement all the methods contained in the interface. The
interface itself provides no implementation but provides method signatures that the
subclass must implement. If a subclass fails to implement a required method, the
compiler will catch the omission.

 Polymorphic Inheritance

Polymorphic inheritance is implemented by using the extends keyword, as with
extension. You can also use the final and abstract keywords, along with extends,
to explicitly define which parts of the extended class may be further modified, which parts
must be modified, and which parts cannot be modified. In polymorphic inheritance

•

Some methods may be invariant, as with simple extension. These methods should be
marked final. The subclass inherits both a mandatory interface and a mandatory
implementation.

•

Some methods may be overridden, allowing subclass objects to behave in a
specialized manner. Because subclasses may redefine these methods, these methods
should not be marked as final. Of course, a subclass doesn’t have to override a
method defined in its superclass—most of the time it won’t, but will, instead, use the
method that it has inherited. Nonfinal methods in a superclass mean that a subclass
inherits a mandatory interface and an optional implementation.

•

Some methods may be specified in the superclass yet have no default implementation
defined there. To do this, you include the abstract keyword as the first word of the
method declaration (in the superclass), and then end the declaration with a semicolon
rather than a method body. When a subclass is created, the subclass must implement
the method. For these methods, the subclass inherits only a mandatory interface; no
default implementation is provided.

 Implementing Inheritance: Extending the Panel Class

Java’s Abstract Window Toolkit makes extensive use of inheritance in its design. More
than that, the AWT gives you an excellent place to start using inheritance in your own
designs. Extending the built-in user-interface components makes it easy for you to see
the effects of inheritance. Let’s try this out by developing a 3D-style Panel, using the
AWT’s built-in Panel class.

 - 256 -

 “Extending the built-in user-interface components makes it easy for you to see the
effects of inheritance.”

The first step in designing any object is deciding what you’d like it to do. Start with the
simplest and most fundamental requirements first, and then you can refine your design
as you iterate through succeeding generations. The requirements for a BevelPanel are
fairly simple:

 • It should do everything that a regular Panel should do, and you should be able to use

it any place you would normally use a regular Panel.

•

The BevelPanel varies from the built-in Panel because it adds a 3D-Border around
its perimeter, which allows it to appear to stand out or sink into the surface on which
it’s placed.

 • The same class should be used to create both sunken and raised BevelPanels.

 CHOOSING AN IMPLEMENTATION MECHANISM

Should you use inheritance to implement the BevelPanel class, and, if so, what form is
appropriate? To answer this question, you first look at your requirements, and then ask
the following questions:

1.

Is the new class a subtype of an existing class? Can you use the new class anywhere
you would have used the previous one, without making any changes? If so—if the new
class is substitutable for the existing class—you should use inheritance. The
BevelPanel class meets this test, because it should be capable of being used in
place of a Panel.

2.

Do you want your new class to inherit behavior, or only an interface, from the existing
class? Because BevelPanel will get most of its behavior from its superclass, Panel,
inheritance (that is, extension) is called for, rather than the interface mechanism.

3.

Will the existing behavior be modified, or are you just adding new behavior?
Answering this question is a little more difficult. It helps to know that most of the time, a
subclass will make some change to the behavior of its superclass. Even if you don’t
plan on making such a modification at first, you may choose to make one in the future.
Thus, in almost all cases that call for inheritance, you’ll want to use polymorphic
inheritance rather than simple extension. Because the built-in Panel class already has
a display method (paint()), your BevelPanel class can override this method to
implement its new behavior.

 WRITING THE BevelPanel CLASS

Now that you know what you want your BevelPanel class to do (requirements) and
have decided on an implementation strategy based on those requirements, it’s time to
implement the design in Java. Take a moment to read through the source code for
BevelPanel.java in Listing 9.1, and then we’ll take a little closer look.

 Listing 9.1 BevelPanel.java

 // A BeveledPanel
 import java.awt.*;

 public class BevelPanel extends Panel

 - 257 -

 {
 private boolean raised = true;
 private int thick = 2;

 public BevelPanel(boolean raised)
 {
 this.raised = raised;
 setBackground(SystemColor.control);
 setForeground(SystemColor.controlText);
 }

 public BevelPanel()
 {
 this(true);
 }

 public void paint(Graphics g)
 {
 super.paint(g);

 int w = getSize().width - 1;
 int h = getSize().height - 1;

 if (raised) g.setColor(SystemColor.controlLtHighlight);
 else g.setColor(SystemColor.controlDkShadow);

 for(int i = 0; i < thick; i++)
 {
 g.drawLine(i, i, w-i, i);
 g.drawLine(i, i, i, h-i);
 }

 if (!raised) g.setColor(SystemColor.controlLtHighlight);
 else g.setColor(SystemColor.controlDkShadow);

 for(int i = 0; i < thick; i++)
 {
 g.drawLine(w-i, i, w-i, h-i);
 g.drawLine(i, h-i, w-i, h-i);
 }
 }
 }

 Understanding the BevelPanel Class

The BevelPanel class begins by importing the java.awt package. Why? Well, if you
go through the source code, you’ll notice that BevelPanel uses several Graphics
methods to draw its 3D bevel effect, and so you might (correctly) conclude that the
java.awt package is required. But that’s not the only reason. Even if you were to
remove all the code, except for the following class declaration

 public class BevelPanel extends Panel { }

 - 258 -

you would still need to import the java.awt package, because that’s where the
superclass you are extending (Panel) is defined. As a general rule, then, when you
extend a class, you need to begin by importing the package that includes the superclass
you’re using.

The BevelPanel class has two private fields: the boolean field called raised, which
will be used to decide whether to draw a sunken or raised border, and the int field named
thick, which is used to decide how wide the surrounding border should be.

 Inheritance and Constructors

The class has two constructors: a default constructor that takes no arguments and a
working constructor that allows you to specify whether the BevelPanel object you are
creating should be raised or sunken. If you create a BevelPanel by using the default
constructor, it simply calls the working constructor—using the this() method and
passing true—thus creating a raised panel as the default.

The working constructor simply sets the value of the field named raised and then sets the
background and foreground colors of the BevelPanel object. The Java 1.1
SystemColor class is used to determine the colors so that your new panel will blend in
with the colors used by your specific platform, whether you use Windows, UNIX, or a
Mac. By using SystemColor.control and SystemColor.controlText, the default
colors for your BevelPanel will be the same as the native controls on your system. The
system colors, SystemColor.controlLtHighlight and
SystemColor.controlDkShadow, are also used when it comes time to draw the 3D
bevel effect.

Even though you only see two constructors in BevelPanel.java, it’s important that you
realize that an invisible constructor lurks on the premises—the constructor for the Panel
class. Whenever you use inheritance, the constructor for your new subclass calls the
constructor for its superclass before it begins executing its own statements.

 “Whenever you use inheritance, the constructor for your new subclass calls the

constructor for its superclass before it begins executing its own statements.”

“Wait,” you say. “I don’t see any call to any constructor, other than the call to this().
Where is the call to the Panel constructor? Or are my eyes deceiving me?” Rest easy,
your eyes haven’t gone out. The call to the superclass constructor is done automatically
as the first line of your subclass constructor. Of course, if you like, you may explicitly
choose to call a specific superclass constructor. To do this, you must do the following:

 • Call the constructor by using the super() method, passing the arguments necessary

to select the constructor you want to use.

 • Call the super() method only as the first line of your subclass constructor. It won’t

work anywhere else.

If, for instance, you wanted to have BeveledPanel objects default to using a FlowLayout
layout manager, rather than the Panel’s default BorderLayout, you could add the
following line to the beginning of your BevelPanel constructor:

 super(new FlowLayout());

 Inheritance and Overridden Methods

 - 259 -

The last method in BevelPanel is paint(), which overrides the paint() method in
the Panel class. Overriding means that when the paint() method is invoked on a
BevelPanel object, your new method is called instead of the original paint() method
contained in the Panel class. For this to work correctly, you have to pay special attention
to two issues:

•

To override an inherited method, you must declare your method in exactly the same
manner as the superclass method. That means you must be especially careful to
declare exactly the same number and type of arguments, as well as the same return
type. If you use different arguments, you are overloading (extending the class by
adding a new method) instead of overriding the existing method. If you were to write
your new method in BevelPanel as

 public void paint(Graphics g, int raised){ . . . }

the javac compiler wouldn’t give you an error, but you also wouldn’t see any difference
between the built-in Panel and a BevelPanel. When the AWT invoked paint() on
your BevelPanel objects, the original inherited method would be used instead of
your new method.

•

You also must be aware of whether you want your new, overridden method to entirely
replace the inherited method, or simply augment it. If you want to replace the behavior
of your superclass wholesale, you don’t have to do anything special. More often,
however, because a subclass is really a special kind of its superclass, the superclass
behavior needs only to be extended rather than replaced. You can use the super
object (not to be confused with the super() method, which can be used only in a
constructor) to invoke a superclass method in such cases. For most AWT components
that you extend, for instance, you’ll want to invoke the method

 super.paint(g);

as the first line of any paint() method you override. This makes sure that any
important processing done in the superclass gets accomplished. If you neglected to
include the keyword super, the paint() method would call itself recursively, over
and over. The keyword super causes Java to invoke the paint() method of the
superclass, even though there’s an overriding definition of paint() within the
subclass.

The paint() method in the BevelPanel class first calls its superclass, Panel, and
then uses the inherited method getSize() to compute the height and width it should
use for drawing its bevel. Note that getSize() doesn’t appear in the source code for
BevelPanel. You can use it because it was inherited from one of BevelPanel’s
ancestor classes. You don’t need to qualify the method call by specifying the superclass
where the method was actually defined, because Java will search BevelPanel’s
ancestors until the definition of the method is found. Because BevelPanel doesn’t
override the getSize() method, you don’t need to include the super keyword when
calling getSize().

 “To override an inherited method, you must declare your method in exactly the

same manner as the superclass method.”

 The bevel is drawn by setting the appropriate colors, based on whether the object should

be raised or sunken, and then drawing the top and left bevel by using the Graphics

 - 260 -

method drawLine() in a loop. Then, after switching the colors, the same process is
repeated for the bottom and right last margins.

 Testing the BevelPanel Class

The BPApplet program, shown in Listing 9.2, uses several features of the BevelPanel
class. Notice that you can substitute a BevelPanel for a Panel, but not vice versa.
Thus, each of the following lines would work identically:

 Panel p = new BevelPanel(false);
 BevelPanel p2 = new BevelPanel(true);

 These work because a BevelPanel object is also a Panel object. The opposite isn’t

true, however. Thus, the following code would be illegal:

 BevelPanel p3 = new Panel();

In this case, p3 refers to a BevelPanel object, but it’s given a value that’s only a Panel.
Remember, every BevelPanel is a Panel, but not every Panel is necessarily a
BevelPanel.

 Listing 9.2 BPApplet.java

 // Test the BevelPanel class
 import java.awt.*;
 import java.applet.*;

 public class BPApplet extends Applet
 {
 public void init()
 {
 setLayout(new BorderLayout());
 Panel p = new BevelPanel(); // A BevelPanel isA Panel
 p.add(new Label(“A Raised BevelPanel”));
 add(p, “South”);

 p = new BevelPanel(false);
 p.setLayout(new FlowLayout(FlowLayout.RIGHT));
 p.add(new Label(“A Sunken BevelPanel”));
 add(p, “North”);

 p = new Panel();
 p.setBackground(SystemColor.control);
 p.setLayout(new GridLayout(3, 3, 4, 4));
 for(int i = 0; i < 3 * 3; i++)
 p.add(new BevelPanel(((i * i) % 2) == 0));
 add(p, “Center”);
 }
 }

 You can use Listing 9.3, BPApplet.html, to display this applet in either the applet

viewer or your Web browser. Figure 9.5 shows BPApplet running inside a Web browser.

 - 261 -

 Figure 9.5 Testing the BevelPanel class

 Listing 9.3 BPApplet.html

 <HTML>
 <HEAD>
 <TITLE>Testing the BevelPanel class</TITL>
 </HEAD>
 <BODY>
 <H1>The BevelPanel class</H1>
 <HR>
 <APPLET CODE=BPApplet WIDTH=600 HEIGHT=350>
 </APPLET>
 </BODY>
 </HTML>

Writing and Using Interfaces

Extension, or inheritance, means that a subclass is a kind of its superclass—that the
subclass is a more specialized form of its more general superclass. By contrast, the
interface mechanism is used to model a relationship between classes that share a
specific set of behaviors (an interface) but don’t need to be otherwise related. Because of
this, implementing an interface is sometimes called inheritance of specification.

Working with interfaces involves two separate tasks: writing the interface and
implementing it. When you write an interface, you design a specification—a set of
mandatory methods that every class using the interface must implement. When you
implement an interface (a much more common occurrence), you write methods for every
method that it declares. Let’s look at an example.

 “Implementing an interface is sometimes called inheritance of specification.”

 IMPLEMENTING AN INTERFACE: CloseableFrame

Java’s AWT Frame class is roughly analogous to the window class used in most GUI
frameworks. When you want to build a GUI application (as opposed to an applet that
relies on your Web browser to provide its window), you’ll need to use a Frame to “host”

 - 262 -

your application. A Frame has a title bar with controls for minimizing, maximizing, and
closing the window, and an area for putting controls or displaying information. It also can
generally be resized and moved. It does, however, have a few little peculiarities:

 • When created, a Frame is zero pixels high and zero pixels wide. No matter how small

your application is, this will likely prove too small to hold it.

 • Frames are invisible when created.

•

A Frame uses the BorderLayout as its default layout manager, rather than the
FlowLayout used by an applet. Although there’s nothing wrong with this, it does
make going back and forth between writing applets and applications difficult. It would
certainly be nicer if both classes used the same default! After all, you can always
specify a different layout manager if you prefer. Having different defaults, however, is
just one more piece of arcane and unnecessary piece of information for you to
remember.

•

Surprisingly, Frames don’t respond well to being closed—actually, they don’t respond
at all. Even though the title bar of a Frame will usually contain a close box of some
sort (an X under Windows 95), programmers new to the Frame class are
understandably frustrated when they discover that the control just doesn’t work. To
“hook it up,” you have to tell your class to “listen” for the window to close and then take
the appropriate action when that event occurs. You do this by implementing the
WindowListener interface.

 Listing 9.4, CloseableFrame.java, is a subclass of Frame. CloseableFrame objects

act just like regular Frame objects, with three differences:

 • Unlike a built-in Frame, a CloseableFrame has a default size set in its constructor to

400x300 pixels.

•

To make moving between applications and applets a bit simpler, the
CloseableFrame class installs a FlowLayout object as the default layout manager.
Although this won’t solve all your layout difficulties, it will reduce the number of times
you have to ask yourself, “Which version of add() should I use here?”

•

The CloseableFrame class implements the WindowListener interface, allowing
you to close down your CloseableFrame-hosted application without resorting to
heroic measures. (Actually, the measures necessary for closing a nonclosing Frame-
based application aren’t all that heroic. You can generally shut down the application by
switching to the console window where you launched the application and pressing
[Ctrl]+[C].)

 Listing 9.4 CloseableFrame.java

 // A CloseableFrame
 import java.awt.*;
 import java.awt.event.*;

 public class CloseableFrame extends Frame
 implements WindowListener
 {
 public CloseableFrame()
 {
 this(“CloseableFrame”);
 }

 - 263 -

 public CloseableFrame(String title)
 {
 super(title);
 setLayout(new FlowLayout());
 addWindowListener(this);
 setSize(400, 300);
 }

 public void windowOpened(WindowEvent we) { }
 public void windowClosed(WindowEvent we) { }
 public void windowIconified(WindowEvent we) { }
 public void windowDeiconified(WindowEvent we) { }
 public void windowActivated(WindowEvent we) { }
 public void windowDeactivated(WindowEvent we) { }
 public void windowClosing(WindowEvent we)
 {
 quitApplication();
 }

 protected void quitApplication()
 {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 }

 IMPLEMENTING WindowListener

The WindowListener interface consists of seven methods: windowOpened(),
windowClosed(), windowIconified(), windowDeiconified(),
windowActivated(), windowDeactivated(), and windowClosing(). To become
a WindowListener, a class must do three things:

•

It must add the phrase implements WindowListener to the class declaration. This
is similar to the way you use the extends keyword to specify a superclass. With
inheritance, however, you may extend only one class; your subclass can have only
one immediate superclass. However, a class may implement any number of
interfaces. Interfaces also can be combined with regular inheritance. Thus, the
CloseableFrame class, which uses both, is both a Frame and a WindowListener.

•

You must write implementations for each method declared in the interface. This is
different than inheritance. With inheritance, you may implement a new method defined
in your superclass, but if you don’t, you can use the superclass implementation. With
an interface, you must write each method because the interface provides no default
behavior. If you want to take action only on some particular method, you still have to
include empty methods that satisfy the interface requirements. Notice that this isn’t the
same thing as contraction: The empty methods don’t override behavior defined in the
interface because interfaces never implement actual behavior. In the
CloseableFrame class, only the windowClosing() method takes any meaningful
action. All the others are simply empty stubs.

•

The preceding two operations are all you’ll normally need to implement an interface.
To get your CloseableFrame to actually work, however, you have to take one more
step. To receive WindowEvents from the Java runtime environment, your

 - 264 -

CloseableFrame must “subscribe” to them. You do this by first making sure your
CloseableFrame class imports java.awt.event.*. After that, you get things
started by adding the following line to the CloseableFrame constructor:

 addWindowListener(this);

 The addWindowListener() method is defined by the Window class, an ancestor of

Frame, the parent class of CloseableFrame.

Now you can use the CloseableFrame class as the base class for the applications you
write, just as you use the Applet class as the foundation for your applets. Use Listing 9.5,
CFApplication.java, as a simple model for building GUI applications in Java. The
CFApplication class extends CloseableFrame, meaning that you don’t have to
implement the WindowListener interface in CFApplication— CloseableFrame
has done it for you. Furthermore, if you decide you want to change some of the behavior
in one of the other WindowListener methods, you can now just override that method
directly without re-implementing the interface.

 Listing 9.5 CFApplication.java

 // CFApplication.java
 // Extending the CloseableFrame class
 import java.awt.*;

 public class CFApplication extends CloseableFrame
 {
 public CFApplication(String title)
 {
 super(title);
 }

 public static void main(String[] args)
 {
 Frame cf = new CFApplication(“Extending CloseableFrame”);
 cf.show();
 }
 }

 You can see CFApplication at work in Figure 9.6.

 Figure 9.6 CFApplication: a simple GUI framework

 - 265 -

ImageButtons: An Extended Inheritance Example

Now that you’ve seen an example of both inheritance and interfaces at work, let’s apply
what you’ve learned to a more extensive example, building an ImageButton class that
can be used to create toolbars, those palettes of little iconic Buttons used in modern
graphical interfaces to avoid “menu-pulldown cramp.”

Java’s AWT has classes for both Buttons and Images. So which should you use? Do
you think an ImageButton is a Button that contains an Image, or a Clickable
Image? Or, perhaps, something else entirely? There’s no hard-and-fast rule for making
these decisions, but you should start by asking yourself, “Is an ImageButton a special
kind of Button?” If your answer is yes, you should probably use inheritance and extend
the Button class. If you do this, remember the following:

 • Everything a Button does, an ImageButton should do as well. After all, your design

asserts that an ImageButton isA Button.

•

Anywhere you have a reference to a Button object, you should be able to refer to an
ImageButton. The ImageButton should be perfectly substitutable for the built-in
AWT Button, and clients—that is, programs that use the Button objects—should be
unaware that any substitution has been made.

•

The ImageButton may extend the data or behavior of the Button class, but it
shouldn’t attempt to “remove” methods from the Button class by overriding them with
empty methods. If you do this, you’re saying that the ImageButton is not really a
Button after all, but just has some behavior that you find attractive.

You might, after looking at the problem, decide that ImageButtons aren’t really
Buttons, but are instead special kinds of Clickable Image objects. If you feel that
this is a more correct statement of your design, you’ll want to create a Clickable
interface and have your new ImageButton class implement that interface. You might
then choose to use the Canvas or Panel class as the superclass on which to base your
design. Remember, when you implement an interface, you are saying that

 • Your class can perform a certain action or behavior, and it may share this capability

with other classes, but it’s not necessarily related to those other classes.

 • There’s no default behavior (implementation) or data that your new class should (or

can) inherit. Only the specification—the public description of its behavior—is inherited.

For our ImageButton class, we’d like to create Buttons that act and look like regular
Buttons, with the exception that they also contain an Image. That makes inheritance
the logical choice. However, when you substitute your ImageButton for one of the built-
in Buttons, you certainly want the Image to appear. That means you’ll have to override
the default implementation that displays the built-in Button’s appearance. As you recall,
when you want to use inheritance but have subclass objects exhibit specialized behavior,
polymorphic inheritance is the design choice you should make. If, instead, you chose
simple extension, you wouldn’t be able to override the paint() method to display the
Image, making your exercise a little pointless.

 ImageButton1: A FIRST-DRAFT DESIGN

Let’s start by looking at a “first-draft” design that gets the ImageButton class “off the
ground,” so to speak. After you look at whether the whole idea makes sense at all, we’ll
come back, round-trip, and see whether there’s any way the whole thing can be
improved. After all, you may find that the AWT’s built-in Button class won’t allow you to

 - 266 -

do what you want, in which case you’ll have to go back to square one.

 To create a Button that displays Images, you’ll have to do only three things:

 1. Load the Image and store a reference to it as a private data member inside the

ImageButton class.

2.

Display the Image in the correct location whenever the Button needs to be
repainted. Rather than redraw the entire Button (although you can do that as well, if
you want), you can let the Button superclass take care of drawing the actual
Button shape, and then just add code to render the image on top of it.

3.

Resize the ImageButton based on the size of the Image. Because a Button, by default, is
sized according to the text it contains, you’ll have to override this behavior to make sure that
the ImageButtons you create have room to hold their Images on their surface.

 Let’s look at how each of these items can be implemented. Listing 9.6 shows the code for
ImageButton1.java, which follows this design.

 Listing 9.6 ImageButton1.java

 // A Button class with images
 // Version 1
 import java.awt.*;

 public class ImageButton1 extends Button
 {
 // Constructors
 public ImageButton1(String imageName)
 {
 super();
 theImage = tk.getImage(imageName);
 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(theImage, 0);
 try { tracker.waitForID(0); }
 catch (Exception e) { ; }

 imgWidth = theImage.getWidth(this);
 imgHeight = theImage.getHeight(this);
 width = imgWidth + 6;
 height = imgHeight + 6;
 System.out.println(“w, h =“+width +”, “+height);
 }

 public Dimension getPreferredSize()
 {
 return new Dimension(width, height);
 }

 public void paint(Graphics g)
 {
 super.paint(g);
 g.drawImage(theImage, 3, 3, getSize().width-6,
 getSize().height-6, this);

 - 267 -

 }

 public void update(Graphics g) { paint(g); }

 // ImageButton1 object and class data
 private Image theImage;
 private int height, width, imgHeight, imgWidth;
 private static Toolkit tk = Toolkit.getDefaultToolkit();
 }

 ImageButton1: Loading the Images

The ImageButton1 class uses three different objects to help it load the Image it uses.
The first object is a reference to the Image itself. This is stored as a private field called
theImage.

The second object used is an instance of a Toolkit object. Because each platform that
Java operates on has different requirements for loading Images, the Toolkit class
provides a factory for supplying the necessary Toolkit object, which knows how to load
Images on that platform. The Toolkit object used by ImageButton1 is named tk, and
it’s also stored as a private field, which is initialized by calling the static method
Toolkit.getDefaultToolkit(). Because every ImageButton object can share the
same Toolkit object, the tk field itself is also made static.

 “The Toolkit class provides a factory for supplying the necessary Toolkit object,

which knows how to load Images. ”

The third object enlisted to help ImageButton load its Image is a MediaTracker
object, which is created in the ImageButton constructor as a local object named
tracker. The MediaTracker object is used to monitor the state of the Image as it’s
loaded. A Java program that uses Images doesn’t typically store those Images as part of
the compiled byte code that makes up the finished application. Instead, Image files are
stored as plain graphics files (Java “understands” both the CompuServe GIF format and
the ubiquitous JPEG format by default), which may be located locally (on the application
user’s hard disk) or remotely (somewhere on the Internet).

Because of this, the designers of Java decided to load Images asynchronously. Thus,
when you tell your Toolkit object to getImage(“Somefile.gif”), it creates a Thread
object to carry out your wish and allows your program to continue. What that means for
you, however, is that you won’t know when the Image has actually arrived, unless you
make a special effort to find out. That’s what the MediaTracker object does—it allows
you to make sure that your Image object is completely loaded before your program
continues.

The ImageButton constructor takes care of loading the Image that you specify by
passing the name of a file to use. After first calling super() to make sure that the
superclass Button constructor is called, it goes on to do the following:

 1. Ask the Toolkit object (tk) to fetch the Image from the file that you specified in

imageName:

 theImage = tk.getImage(imageName);

 - 268 -

2.

Create a MediaTracker object named tracker and add the Image you just fetched to
tracker’s monitor list. It then just sits back and waits for tracker to report that
theImage has arrived:

 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(theImage, 0);
 try { tracker.waitForID(0); }
 catch (Exception e) { ; }

 ImageButton1: Sizing the Button

After the Image is loaded, the constructor’s task is almost done. The only thing that
remains is to set the height and width fields that will be used when your new
ImageButton is asked how big to make itself.

The constructor should initialize the height and width fields to the height and width of
theImage, plus a little extra for the border. To do this, it must wait for tracker to inform
it that theImage has arrived, after which it can ask for theImage’s size by sending it the
getWidth() and getHeight() messages. As an exercise, try commenting out the
MediaTracker code you added previously and see what prints on the console. (The
System.out.println() code in the constructor is debugging code for use during
development, allowing you to double-check that height and width have reasonable
values before proceeding.) As you can see, if you want to get a sensible size back from
getWidth() or getHeight(), you must wait for the Image to actually arrive. The
value 6 added to both the height and width is used when you paint your Image, to
provide a border for the superclass Button to show through:

 imgWidth = theImage.getWidth(this);
 imgHeight = theImage.getHeight(this);
 width = imgWidth + 6;
 height = imgHeight + 6;
 System.out.println(“w, h =“+width +”, “+height);

To actually cause your ImageButton to use the values you’ve set in height and
width, you have to override the method that the AWT uses to decide how big to make
any Component—the getPreferredSize() method. This method returns a
Dimension object, representing the width and height that the object wants to be when
laid out. To override getPreferredSize(), just create a new Dimension object,
using the height and width fields that you set in the constructor, and return it from the
method. Your method should look like this:

 public Dimension getPreferredSize()
 {
 return new Dimension(width, height);
 }

You should be aware of one small detail when overriding getPreferredSize(). You
may want to override getMinimumSize() as well, to increase your chance of getting
good-looking Buttons in various situations when space is “tight.” To make the minimum
size the same as the preferred size, just have getMinimumSize() return
getPreferredSize().

 ImageButton1: Rendering the Image

 - 269 -

 When your Image is loaded and your size is all set, it’s time to draw your Image. To do
that, you have to override two methods: paint() and update().

In the paint() method, you first call super.paint(), passing the Graphics object
you’ve received. This makes sure that the superclass Button has a chance to draw its
borders. Then leave a small border around the image by drawing its upper-left corner at
the point (3,3) and sizing it to allow the same 3-pixel border on all sides. This calculation
ensures that your Image appears in the center of the Button, even if the layout
manager swells your Button up like a balloon.

Finally, you’ll want to override the update(Graphics) method to simply call paint().
If you fail to override update(), the paint() method may inexplicably erase the work
that the super.paint() method has already done. This doesn’t happen all the time, but
simply overriding update() makes sure that it doesn’t happen at all.

 Your paint() and update() methods should look like this:

 public void paint(Graphics g)
 {
 super.paint(g);
 g.drawImage(theImage, 3, 3, getSize().width-6,
 getSize().height-6, this);
 }

 public void update(Graphics g) { paint(g); }

 Trying Out ImageButton1: The IB1 Application

Let’s write a couple of applications that show how easy it is to use your new
ImageButton class in place of the built-in Button class. The programs IB1.java
(shown in Listing 9.7) and IB2.java (included on the CD-ROM but not listed here)
show you how to use your ImageButtons.

 Listing 9.7 IB1.java

 // ImageButton1 Test
 import java.awt.*;
 import java.awt.event.*;

 public class IB1 extends CloseableFrame
 implements ActionListener
 {
 Button b1, b2, b3;

 public IB1()
 {
 super(“Testing the ImageButton1 class”);
 b1 = new ImageButton1(“chili.gif”);
 b2 = new ImageButton1(“skisor.gif”);
 b3 = new ImageButton1(“virtual.gif”);

 b1.addActionListener(this);
 b2.addActionListener(this);
 b3.addActionListener(this);

 - 270 -

 add(b1);
 add(b2);
 add(b3);

 }

 public void actionPerformed(ActionEvent ae)
 {
 if (ae.getSource() == b2) quitApplication();
 System.out.println(“Button: “ + (Button)ae.getSource());
 }

 public static void main(String[] args)
 {
 IB1 theApp = new IB1();
 theApp.show();
 }
 }

IB1.java is a test program that simply creates three ImageButton objects, adds
ActionListeners to each, and then adds them to the surface of the application, which
itself extends CloseableFrame. Notice the following:

•

The fields b1, b2, and b3 are all declared to be Button objects, yet you can make
them refer to ImageButton objects. Because an ImageButton is a Button, it can be
used any place a Button can be used.

•

You didn’t have to do any work to implement the addActionListener() method—it
was inherited from the Button superclass. Nor did you do anything special to make
your application accept your ImageButton when you tried to add it to its Frame.
Again, because you derived your subclass from Button, the Frame object treats it
just as though it were a Button, which, of course, it is!

 You can see IB1.java at work in Figure 9.7. Each ImageButton is attractively sized and

inherits from its superclass the ability to respond to ActionEvents.

 Figure 9.7 The IB1 application: testing the ImageButton1 class

 - 271 -

As mentioned, most layout managers resize your components based on the space
available. To see how the ImageButton1 class holds up under that treatment, look at
IB2.java in Figure 9.8. Because the code for IB2.java is almost identical to that of
IB1.java—except for the addition of a BorderLayout() layout manager—it’s not
included here. You can find it in the CD-ROM’s Listings directory for this chapter if you
like.

 Figure 9.8 The IB2 application: ImageButton1 objects, and BorderLayout

ImageButton2: Adding Abstract Classes

Although there’s nothing wrong with ImageButton1 as it stands, it does have one
limitation: You can create ImageButtons only in Java applications, not in applets. If you
take IB1.java and turn it into an applet, post it on a Web site, and try to access it via
your Web browser, you’ll quickly discover that your browser reports a security violation.
That’s because Java applets can load images and sounds only from the same host that
launched the applet. After all, you don’t want applets you access on the Web to go
rummaging around on your hard disk, do you?

 “Java applets can load images and sounds only from the same host that launched

the applet.”

That’s not to say that applets can’t load Images or use the ImageButton class,
however; they simply have to go about it differently than applications. Actually, it’s
somewhat easier to load Images from an applet than from an application. The Applet
class has a handy getImage() method built in, so you don’t even need to create a
Toolkit object. The Applet version of getImage() takes two arguments: a URL where
the image can be found and a String with the name of the file. The applet method
getDocumentBase() will helpfully return the URL of the directory containing the applet.
If you put the GIF files for the ImageButton in the same directory, you can use
getDocumentBase() to create the necessary URL. So, to revise ImageButton1 for
use in an applet, all you have to do is get rid of the Toolkit object, add
getDocumentBase() to each getImage() call, and you’re all set. Or are you?

What happens now when you want to use your ImageButtons inside an application?
Oops! Whereas the applet version doesn’t need a Toolkit object, the application
requires one; it can’t load an image without it. But—and here’s the rub—the applet

 - 272 -

version can’t use the Toolkit. It seems that you can have an applet ImageButton or
an application ImageButton, but not a single class that works in either type of program.
Is there any good solution? Yes.

 INTRODUCING THE ImageSource CLASS

If you think about the problem you’re trying to solve, you realize that the ImageButton
class itself would work fine in either an application or an applet, if only you could get the
Image loaded. In other words, you don’t need two versions of the ImageButton class,
you need two different classes for loading Images: one to load Images in applications
and one to load Images in applets. But if you write two classes to load Images, your
ImageButton class will have to decide to use one of them, and you’ll find yourself right
back where you started: You’ll have an AppletImageButton class and an
ApplicationImageButton class. That’s not really what you want.

The problem is that neither class really seems to have anything in common. But if you
step back and think about the problem for a second, you’ll realize that they really do.
Each has to load an Image. Of course, each will go about it in a different way, but the
requirement is the same. It sounds like a job for an abstract class. Listing 9.8 shows
such a class, ImageSource.

 Listing 9.8 ImageSource.java

 import java.awt.*;
 import java.applet.*;

 public abstract class ImageSource
 {
 public abstract Image getImage(String s);
 }

ImageSource is an abstract class. By defining the abstract method getImage(),
ImageSource specifies the behavior that the ImageButton class needs an
ImageSource to perform. Because the ImageSource class doesn’t provide any
functionality, you could just as easily have used an interface here.

 EXTENDING ImageSource

By itself, of course, the ImageSource class is useless. Like all abstract classes, you
can’t even create an ImageSource object; you must create subclasses that actually
carry out the work that an ImageSource object will be expected to do. It’s important to
note, however, that ImageButton objects won’t know that there are different
ImageSource subclasses for applets and applications. As far as ImageButton objects
are concerned, all ImageSource objects are created equal.

Listing 9.9 shows the code for ApplicationImageSource.java, which extends the
ImageSource class and fulfills the ImageSource contract for applications. Note that it
contains a static Toolkit object and uses that Toolkit object to fetch Images by
using Toolkit.getImage(String).

 Listing 9.9 ApplicationImageSource.java

 // The ImageSource for applications
 import java.awt.*;

 - 273 -

 public class ApplicationImageSource extends ImageSource
 {
 private static Toolkit tk = Toolkit.getDefaultToolkit();

 public Image getImage(String s)
 {
 return tk.getImage(s);
 }
 }

Listing 9.10 shows the similar code for AppletImageSource.java, which performs the
same function when an ImageButton is created inside an applet. Because an
AppletImageSource relies on the applet that contains it for its getImage()method,
you have to pass in an Applet object when creating a new AppletImageSource
object. Normally you’ll do this in your applet by passing this. This extra code makes the
AppletImageSource class slightly more complex than ApplicationImageSource.

 Listing 9.10 AppletImageSource.java

 // An ImageSource for Applets
 import java.awt.*;
 import java.applet.*;

 public class AppletImageSource extends ImageSource
 {
 private static Applet owner = null;

 public AppletImageSource(Applet owner)
 {
 this.owner = owner;
 }

 public Image getImage(String s)
 {
 return owner.getImage(owner.getDocumentBase(), s);
 }
 }

 MORE ABSTRACTION: ImageButtonFactory

Now that you have AppletImageSource and ApplicationImageSource, you can
simply retrieve an Image and pass it on to your ImageButton class where it can be
displayed. But if you remember, that was one of the charms of the ImageButton class
to begin with. You didn’t have to be concerned with loading the Image. You simply
passed in a String naming the Image you wanted to use, and the ImageButton class
took care of retrieving it. Now, by requiring you to create an ImageSource object and
use that object to retrieve Images, it seems that you’ve taken several steps backward.

How about this, then? You have to create an ImageSource object, no matter what you
do. That’s really not any more difficult that what you did before. Why don’t you hand your
ImageSource object to your ImageButton class, and then the ImageButton can be
responsible for loading its own Images, just like before.

 The only complication is deciding how you should pass the ImageSource. The

 - 274 -

straightforward way is to pass an ImageSource along with the String selecting the
Image file every time you create an ImageButton. The disadvantage of this method is
that it clutters up your code, making it more complex. What you’d really like is to make
the ImageSource a static field inside the ImageButton class, so you have to pass it
only once. You can do this by creating a special “factory” class, a form of the Factory
design pattern, which you’ll study more fully in Chapter 11, “Patterns: Proven Designs.”

Listing 9.11 shows the revised class that puts these ideas into effect. In every class
where you want to use ImageButtons, you create a single, static instance of the
ImageButtonFactory class, passing it either an AppletImageSource object or an
ApplicationImageSource object. The ImageButtonFactory will then produce
ImageButton objects for you whenever you invoke its getImage(String) method.

 Listing 9.11 ImageButtonFactory.java

 // A class for making ImageButtons
 import java.awt.*;

 public class ImageButtonFactory
 {
 protected class ImageButton extends Button
 {
 protected ImageButton(String imageFile)
 {
 super();
 theImage = theSource.getImage(imageFile);
 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(theImage, 0);
 try { tracker.waitForID(0); }
 catch (Exception e) { ; }

 imgWidth = theImage.getWidth(this);
 imgHeight = theImage.getHeight(this);
 width = imgWidth + 6;
 height = imgHeight + 6;
 }

 public Dimension getPreferredSize()
 {
 return new Dimension(width, height);
 }

 public void paint(Graphics g)
 {
 super.paint(g);
 g.drawImage(theImage, 3, 3, getSize().width-6,
 getSize().height-6, this);
 }

 public void update(Graphics g) { paint(g); }

 // ImageButton object and class data
 private Image theImage;
 private int height, width, imgHeight, imgWidth;

 - 275 -

 }

 public ImageButton getButton(String s)
 {
 return new ImageButton(s);
 }

 public ImageButtonFactory(ImageSource src)
 {
 theSource = src;
 }

 protected static ImageSource theSource = null;
 }

 “[A] protected interface creates a contract with class extender, just like [a] public

interface creates a contract with class users.”

Notice that inside ImageButtonFactory, the ImageButton class itself is defined as a
protected inner class. By making the ImageButton class protected, you prohibit the
general public from creating ImageButton objects without going through the Factory,
but you allow those who want to extend the ImageButton class to do so. This protected
interface creates a contract with class extenders, just like the public interface creates a
contract with class users, as Figure 9.9 illustrates.

 Figure 9.9 Three contracts of a class

 USING THE ImageButtonFactory

 To use the new ImageButtonFactory, you only need to follow these three steps:

 1. Create an ImageSource object in your program. You need create only one.

 2. Create an ImageButtonFactory object, passing the ImageSource to its

 - 276 -

constructor. You also need only one of these.

3.

Call the ImageButtonFactory.getButton() method to construct your
ImageButton objects. Remember, because every ImageButton isA Button, you
don’t need to store the ImageButton you get back in an ImageButton reference—
a regular Button will do just as well.

 Listing 9.12, TestIBF.java, shows a program that can be run as either an application or an

applet.

 Listing 9.12 TestIBF.java

 // Test ImageButtonFactory
 import java.awt.*;
 import java.applet.*;

 public class TestIBF extends Applet
 {
 private ImageButtonFactory bf = null;
 private Container mainWin = null;

 public void init()
 {
 if (mainWin == null)
 mainWin = this;
 if (bf == null)
 bf = new ImageButtonFactory(new AppletImageSource(this));
 mainWin.setLayout(new BorderLayout());
 Panel p = new BevelPanel(true);
 p.setLayout(new FlowLayout(FlowLayout.RIGHT));

 p.add(bf.getButton(“btar_lft.gif”));
 p.add(bf.getButton(“btar_up.gif”));
 p.add(bf.getButton(“btar_dn.gif”));
 p.add(bf.getButton(“btar_rgt.gif”));
 mainWin.add(p, “North”);

 mainWin.add(bf.getButton(“cupj.gif”), “Center”);
 }

 public static void main(String[] args)
 {
 TestIBF app = new TestIBF();
 CloseableFrame f = new CloseableFrame(“Application Buttons”);
 f.setLayout(new FlowLayout());
 app.bf = new ImageButtonFactory(new
ApplicationImageSource());

 app.mainWin = f;
 app.init();
 f.setVisible(true);
 }
 }

 If you run this program as an application, using the java interpreter, the main() method

 - 277 -

creates a new CloseableFrame and an ApplicationImageSource, which it uses to
construct an ImageButtonFactory before calling init(). In the init() method
(which is the first thing called if the program is run as an applet), an
AppletImageSource is constructed if the class ImageSource object is null. In either
case, the various Buttons are loaded and displayed in the window. Use Listing 9.13,
TestIBF.html, to view the applet in your Web browser.

 Listing 9.13 TestIBF.html

 <HTML>
 <HEAD>
 <TITLE>Testing ImageButtonFactory</TITLE>
 </HEAD>
 <BODY>
 <H1>The ImageButtonFactory Class</H1>
 <HR>
 <APPLET CODE=TestIBF HEIGHT=300 WIDTH=500>
 </APPLET>
 </BODY>
 </HTML>

Figure 9.10 shows TestIBF.java running in both a Web browser and as an application.
By using abstract classes, you were able to write an ImageButton class that worked,
unchanged, in both.

 Figure 9.10 Running TestIBF.java as an application and as an applet

An Inheritance Checklist

How do you decide which inheritance mechanism to use where? When should you use
extension, polymorphism, or interfaces? What about abstract classes, abstract methods,
final methods, final classes, and overridden methods? Use this handy checklist to make
sure what you wrote says what you mean.

 USE final CLASSES WHEN…

•

Your class should not be extended. You can preclude extension by marking the entire
class as final. If you don’t make your class final, you’re saying that it may be
extended.

 - 278 -

 USE final METHODS WHEN…

•

You want to model a strict subtype relationship between two classes. When you mark
a method as final (thus preventing subclasses from implementing different
behavior), you’re saying that the method represents an invariant implementation for all
subclasses of this class. If you fail to mark a method as final, you’re saying that the
behavior isn’t invariant.

•

A method performs an operation in some way that must not change when new classes
are created. If so, make sure that you mark that method as final. All methods not
marked final (except private methods, of course) are fair game for re-
implementation.

 USE abstract METHODS WHEN…

 • All subclass objects must perform an operation, but the superclass can’t provide a

default implementation.

•

You intend to write code in terms of superclass objects but, in fact, will use only
subclass objects. A board game may be written in terms of BoardPiece objects,
instructing them to move(), even though a BoardPiece has no default method for
implementing that behavior.

 • You want to force a subclass to implement a certain behavior, such as initialization.

 USE OVERRIDDEN METHODS WHEN…

 • A superclass can define some reasonable default action for a method.

 • More than one subclass can make use of the default behavior. If only one subclass

uses the default behavior, it’s not really a superclass method and should be abstract.

•

Subclass objects will perform the same operation in different ways, yet make use of
some common behavior to carry out that operation. If more than one subclass can use
the default operation unchanged, use an overridden method. If all subclasses need to
add to or extend the method, place the common code in a protected helper method in
the superclass, and make the overridden method an abstract method. If you don’t do
this, authors of subclasses are likely to forget that they must override the method. By
making the overridden method abstract, the compiler will bring it to mind.

 USE PURELY abstract CLASSES WHEN…

 • You can define a common data member in the superclass, even though you can

define no methods.

 • You’re designing a hierarchy that’s expected to model closely related classes.

 USE interfaces WHEN…

 • You’re designing a set of classes that share a common behavior yet aren’t otherwise

related.

 • There’s no common implementation you want to inherit, but you want to impose a

mandatory interface on all subclasses.

 • You need to combine several behaviors, simulating multiple inheritance.

 - 279 -

Summary

Encapsulation allows you to organize your software by combining data and the methods
that process that data into classes that contain similar characteristics. Inheritance gives
you the mechanism to further organize your classes into hierarchies of related classes.
The fundamental class relationship is the superclass-subclass relationship. Given a very
general class—like food, for instance—you can subdivide that class into more specialized
kinds of classes. These specialized classes form a subset of the more general class and
thus are called subclasses.

Inheritance means that the subclass is-a-kind-of the superclass (commonly shortened to
say that a subclass isA superclass). We can identify three distinct kinds of isA
relationships. A class may extend another class, adding either data or methods, but
making no changes to the behavior of the existing class. Such an extension relationship
ensures that the new subclass is entirely substitutable for an object of the original class.

In some situations, however, you may be able to create a superclass that captures a
general abstraction—such as a Shape—but doesn’t have enough information to create
actual objects. You may specify that all Shape objects know how to draw() themselves,
but you can’t provide a default method for them to do so. In this specification relationship,
subclasses of Shape (Circle, Rectangle, and so forth) inherit their interface from
Shape but not their implementation.

In the third kind of class relationship, polymorphic inheritance, a class inherits some
combination of methods. Some will have no implementation; the class inherits only an
interface. Some can have a default implementation; the class may override those but
doesn’t have to. Some can be marked as mandatory methods; the subclass must use the
implementation provided by the superclass.

Java provides several different language and syntax mechanisms for expressing these
three kinds of class relationships. To create a simple extension (or strict subtype)
relationship, you make all the methods in the original class into final methods. To create
a pure specification relationship between two classes, you can use either the
interface/implements mechanism or a pure abstract class. If the relationship
between two classes is one of polymorphic inheritance, you use extension and then
distinguish between the methods that must not change (which are marked final), the
methods that may change, and the methods for which no implementation is provided.
These last are created as abstract methods.

 Questions

1.

True or false. If you’ve written a class containing methods that must not be extended,
you can use the final keyword to make the method unchangeable while leaving the
rest of the class extensible.

2.

When writing a BoardGame class, you have extended the GamePiece class that
requires you to write a move() method. In the superclass, GamePiece, the move()
method must be a _______________ method.

 a. final

 b. private

 c. abstract

 d. derived

 e. interface

 - 280 -

3.

In Java, you can create two classes that share a similar behavior, even if they aren’t
otherwise related, by having them both _______________ the same
___________________.

 4. In Java, if you have two classes that are both specialized versions of a more general

class, you can have both classes ____________ the same _________________.

5.

True or false. One good use for inheritance is to remove extraneous operations from
a superclass by simply overriding the inherited method by using a set of empty
braces.

6.

In a correctly written program, any method that uses an object of the superclass
Animal should be able to replace that object with an object of Animal’s subclass,
Rhinoceros. This is called the _____________________ principle.

7.

True or false. If Student is a subclass of Person and every Student has a non-
inherited method called study(), you should be able to send a study() message
to a Person object as well.

8.

If you want to create a new class that uses an existing class as a superclass and
want to override only one of several methods declared in the superclass, which
inheritance mechanism would be most appropriate?

 a. Simple extension

 b. Polymorphic inheritance

 c. Implementing an interface

 d. A final class

 e. Polysyllabic implementation

9.

When creating a new subclass from an existing class, you can use the
______________ access modifier to allow subclasses access to your data, but
prohibit modification by objects of your class.

10.

True or false. When overriding a method in a superclass to provide specialized
behavior, you are free to add new arguments to the method to help you implement
that behavior.

 Exercises

1.

Modify the BevelPanel class by adding a constructor that allows you to change the
thickness of the border, and another that allows you to specify which layout manager
should be used.

2.

Modify the CloseableFrame class by implementing code for each
WindowListener event. Start by using System.out.println() to display a
message to the console whenever the event occurs. Do some events never occur?
Why do you think that happens? What could you do about it? Implement a
HideableFrame class that doesn’t quit the application when the window closes, and
then create an application based on CloseableFrame that creates and hides some
HideableFrame objects.

 3. Modify the ImageButton class to allow a caption as well as an Image. To do this,

 - 281 -

you’ll have to change the constructors that the ImageButton uses so that you can
add text to the Button. When you override the getPreferredSize() method in
your ImageButton, you can call super.getPreferredSize() to find out how big
the Button “wants” to be, and then add the necessary space for your Image before
returning. When you paint() the Image, you’ll have to adjust the location so that it
doesn’t overwrite the text drawn by Button. Add some static final constants that
allow a user to specify whether the Image should be drawn above, below, to the left,
or to the right of the caption.

4.

Combine the ImageButtonFactory and BevelPanel classes to create a ToolBar
class. A ToolBar should hold multiple ImageButtons. (Hint: Use an array.) Discuss
the advantages and disadvantages of constructing the ImageButtons and passing
them to the ToolBar versus just passing in the names of the graphic files you want to
use. Can you think of a good way to hook up an ActionListener to your ToolBar
objects? How should your ToolBar report which Button was pressed?

To Learn More

 Several books have been written that contain useful advice on modeling the inheritance

relationship. Few of them are specific to Java. Two of the most valuable are as follows:

•

Addison-Wesley’s Effective C++ by Scott Meyers, now in it’s second printing, offers 50
ways to improve your C++ programs. Although most of the book is understandably
specific to C++, the chapter on “Inheritance and Object-Oriented Design” should be
required reading for any object-oriented developer. Although the way that you
implement inheritance of interface and implementation is different in Java than in C++,
the necessity of distinguishing between them is still very important. Meyers will get you
thinking in that direction.

•

The father of Java, James Gosling (along with Ken Arnold), in The Java Programming
Language from Addison-Wesley, has a chapter called “Extending Classes.” Although
most of the book focuses, naturally, on the syntax of Java, this chapter offers abundant
advice on how and when you should extend your classes, as well as a section on
designing a class to be extended.

Chapter 10: Designing with Inheritance and
Interfaces: A Case Study

 Overview

Once upon a time, there was a king who wisely left his affairs in the hands of a capable
advisor, who served him well for many years. Eventually, however, the aged advisor
passed on, forcing the king to seek a replacement. The king advertised throughout his
kingdom and soon scores of wise men and women were arriving daily at the palace gate,
certain they would become the king’s new advisor.

Mindful of the good advice he had received from his former advisor, the king was
concerned to discover which of the many would-be advisors was the most capable. At the
king’s order, a series of contests was held, and two candidates were selected to compete
for the office. One was a computer programmer and the other was a fishmonger. As the
final test, the king showed the two candidates a bright metal cube with a glass door, a
dial, and a set of on/off buttons. “What do you think this is?” asked the king.

 The fishmonger answered first: “It’s a microwave oven, your Grace. It makes breakfast.”

 “Well, then,” asked the king, “how do you use it?”

 - 282 -

“Simple,” replied the fishmonger. “You put your smoked salmon on a bagel, put them
both in the oven, close the door, turn the dial a bit to the right, and press the on button.
When the machine stops whirring, you open the door and eat your breakfast. Here, I’ll
show you.”

 A few seconds later, the king and the two candidates were enjoying a deliciously warm

breakfast.

“Very impressive,” observed the king. Turning to the computer programmer, he
challenged him to top the fishmonger’s performance: “And what do you think this gadget
is?” he asked.

“Your majesty,” began the computer programmer, “the fishmonger’s answer is right, as
far as it goes. But it does not go nearly far enough. Microwave ovens don’t merely warm
lox and bagels, they warm waffles, pizza, even buffalo wings. This unit is actually a food
preparation system and, though it meets your subjects’ present requirements, I’m
concerned that the changing environment will soon compel them to seek a more
complete solution to their needs.”

 “But this breakfast the fishmonger took from the machine is marvelous,” protested the

king. “How could any of my subjects wish for more?”

“Majesty,” began the computer programmer, “recall how the fishmonger was required to
open the bag of bagels, place the bagel on the dish, and then place the salmon atop the
bagel. When I become your advisor and your subjects view the works I’ll commission in
your behalf, they will spend vastly more of their time contemplating your greatness and
will have less time for meals. Consequently, the unit must do more than simply warm the
food. Your subjects will need a system that can cook sausage, fry bacon, cook their eggs
the way they like them, and make waffles and pancakes as well.”

 “I begin to see your point,” the king mused, intrigued by the prospect of becoming even

more admired by his subjects. “Please continue.”

“Well,” said the programmer, “first we must create an abstract class of breakfast foods. It
need implement only the most essential nutrients; the remainder can be supplied by the
concrete classes derived from it. Then, we must apply generalization/specialization to
identify a series of subclasses that encompasses a broad range of breakfast foods:
meats, dairy products, and grains. We must then recursively apply this technique to
specialize the meats into pork and poultry, and do the same for the dairy products and
grains. Dairy products can be divided into food and beverages. The foods include butter
and cream cheese; the beverages include milk and buttermilk. Cream has both food and
beverage properties, so foods and beverages should be defined as interfaces, rather
than regular classes.

“Now,” continued the programmer, “using the object-oriented principle of polymorphism,
each breakfast item should implement a cook() method, so that each can prepare itself
to order based on receipt of a single parameterized message. We must also consider the
cardinality of relationships between the various classes. For example, some of your
subjects prefer two pancakes in their pancake sandwich, whereas others prefer three.
We must be careful to make allowance for both possibilities.

“Of course, in order to be able to deploy the system across the kingdom’s intranet, it must
be implemented in Java. And, we’ll need an Andromeda V Web Server to host the pages
and applets. This, of course, assumes your subjects are using the NicNac II browser;
otherwise, we’ll have to deploy the system as a suite of applications, using push
technology of some sort, possibly CostALot. And, we’ll have to upgrade all the client
PCs…”

The king wisely had the computer programmer beheaded and made the fishmonger his
new advisor. They all, except of course the computer programmer, lived happily ever
after.

 - 283 -

Object-oriented technology is not child’s play. It’s altogether too easy to get caught up in
the details, missing the forest for the trees. This chapter is intended to help you avoid the
fate of the erstwhile advisor, or whatever equivalent fate is permissible under the laws of
your state of residence and the human relations policies of your employer.

“Because [class diagrams are] less detailed and complex than actual code, you can
use them to quickly communicate important aspects of a design to other designers,
to programmers, and even to users.”

Chapter 9, “Implementing Class Relationships: Inheritance and Interfaces,” explained the
principles of inheritance, abstract classes, and interfaces. This chapter demonstrates how
inheritance can improve your software designs. First, you’ll learn how to draw class
diagrams that depict inheritance relationships. The class diagram is your primary tool for
coping with design complexity, because it helps you use the principle of abstraction to
present only relevant aspects of your design. After learning more about class diagrams,
you’ll embark on an extended case study that will help you see how inheritance fits into the
software design process.

Class Diagrams

As you’ve learned, class diagrams are an important design tool. Because they’re less
detailed and complex than actual code, you can use them to quickly communicate
important aspects of a design to other designers, to programmers, and even to users.
Moreover, class diagrams can help you think through a design before actually coding it,
improving the chances that your program design will be sound.

Although the class diagrams you’ve used up to this point have not included inheritance
relationships, it’s simple to add this information. Figure 10.1 shows a class diagram that
includes inheritance relationships. The class MyApplet and the class Applet are
related, as indicated by the solid line joining them. The triangle at the end of the line near
the Applet class indicates that the relationship is an inheritance relationship, and that
the class MyApplet extends the class Applet. (If it seems to you that the triangles are
pointing the “wrong” way, you’re not alone—many others have voiced the same
complaint. Remember though, a notation is a method for communicating with others, and
that requires using an accepted notation.)

 Figure 10.1 Class diagram featuring inheritance relationships

 - 284 -

The Runnable “class” is actually an interface. (Recall from Chapter 9 that an interface
represents specification; it defines methods but provides no implementation.) To indicate
this, the class name is italicized in the diagram. Finally, the interface Runnable and the
class MyApplet are related, as indicated by the line joining them. The line is dotted to
indicate that it represents an implements relationship rather than an extends
relationship. The triangle near the Runnable interface indicates that the MyApplet class
implements the Runnable interface.

Abstract classes can be shown in class diagrams in the same way that interfaces are
shown, by italicizing the class name. Because an abstract class can provide both default
method implementations (called concrete methods) and methods that are only specified
(abstract methods), you’ll need to differentiate between them on your diagrams. The
names of concrete methods can appear in non-italicized type and names of abstract
methods can appear in italicized type. In the figure, the name of the run() method is
italicized, indicating that MyApplet will not inherit an implementation of the run()
method from the Runnable interface.

A more detailed class diagram featuring inheritance is shown in Figure 10.2. This
diagram shows a base class, Employee, and two derived classes,
SalariedEmployee and HourlyEmployee. An additional class, Department, is
related to both SalariedEmployee and HourlyEmployee.

 Figure 10.2 Detailed class diagram

The relationship between HourlyEmployee and Department is one in which the
HourlyEmployee plays the role of “Worker.” The cardinality notations show that each
Department may have an indefinite (*) number of Workers, and that each Worker is
associated with only a single (1) department.

The relationship between SalariedEmployee and Department is more complex. In
fact, there are two distinct relationships between these two classes. In one relationship,
the SalariedEmployee plays the role of “Worker.” This relationship is much like that
between HourlyEmployee and Department. However, each Department must have
at least one (1..*) SalariedEmployee, even though it need not have any (*)
HourlyEmployees.

In the second relationship between SalariedEmployee and Department, the
SalariedEmployee plays the role of “Manager.” A given SalariedEmployee may or
may not (0..1) participate in this relationship, because not every SalariedEmployee is

 - 285 -

the manager of a Department. However, each Department must have exactly one (1)
SalariedEmployee designated as its manager.

Also notice the navigability arrowheads, which show that it’s possible to navigate from a
Department to the Department’s manager, but not the reverse. This means a
Department object knows who its Manager is, but a Manager object doesn’t know
which Department it manages. (After all, designers strive to design object-oriented
systems that model the real world.) The remaining relationships with Department are
both bi-directional. Notice that no navigability arrowheads are included on the lines
denoting the inheritance relationships.

When you draw a class diagram, remember that it’s counterproductive to include all
information. So that the diagram can be quickly and easily understood, you should include
only the relevant information. Navigability, cardinality, and role notations sometimes make
a class diagram clearer and easier to understand. Don’t, however, needlessly clutter a
diagram with these notations. Unless they make an important point, omit them.

Case Study

Now that you know how to read class diagrams that illustrate inheritance, you’re ready to
see for yourself how inheritance can lead to better software designs. As an example of
design using inheritance, let’s design and implement a simple arcade-style game. Rather
than design and implement the entire game in a single step, we’ll take an iterative
approach similar to that typical of object-oriented software development. This way, you’ll
be able to see for yourself why some design alternatives are better than others.

“When you draw a class diagram, remember that it’s counter-productive to include
all information. So that the diagram can be quickly and easily understood, you
should include only the relevant information.”

The Bumpers game simulates amusement park bumper cars, which zoom around a
rectangular play field. When one bumper car strikes another, it disables it. In a real bumper
car ride, the disabled car can soon run again. However, to make a game of this, the
program will permanently disable a car that is struck. The goal of the game will be to drive
your car into the other cars, disabling all of them before they disable you.

First Contact: The Bumpers01 Applet

To create a bumper car game, you immediately come face-to-face with two fundamental
problems: how do you animate the cars, and how do you handle the ricochet when a
bumper car strikes an edge? To get started attacking those problems, let’s create a
simple applet, named Bumpers01, that displays a group of bumper cars and moves them
around randomly. Figure 10.3 shows the applet at play, er, work!

 - 286 -

 Figure 10.3 Running the Bumpers01applet

 LISTING THE REQUIREMENTS

Because the applet must have a single playing field and several bumper cars, let’s create
two classes. One class, the applet itself, represents the playing field. A bumper car game
with only a single bumper car isn’t much fun, so you’ll use the other class, representing a
bumper car, to create multiple objects. Figure 10.4 shows a class diagram of the
Bumpers01 applet. As you can see, the Bumpers01 class extends the Applet class and
implements the Runnable interface. Each Bumpers01 object is associated with an
indefinite number of FastCar objects.

 Figure 10.4 Class diagram of the Bumpers01applet

Each FastCar object has an image, which is painted on the applet surface to represent
it. Each FastCar also has a size, a position, and a velocity, given by the remaining
fields. FastCars know how to return their size or position, update their position, and
paint themselves.

 IMPLEMENTING THE PLAYING FIELD

To see how the program is implemented, let’s start by looking at the fields used in the
Bumpers01 applet, which you can see in Listing 10.1. In order to produce smooth
animation, the applet has to update its screen every 33 milliseconds; this value is stored
in the SLEEP_TIME field. The number of bumper cars is specified by the CARS field,

 - 287 -

which is set to 6. The actual cars themselves are stored in the array of FastCar objects
named theCar.

 “In order to produce smooth animation, the applet has to update its screen every 33

milliseconds…”

 Listing 10.1 Fields of the Bumpers01 Applet

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.net.URL;

 public class Bumpers01 extends Applet implements Runnable
 {
 public static final int SLEEP_TIME = 33;
 public static final int CARS = 6;

 Graphics theGraphics;
 Dimension theSize;
 Image theImage;
 Thread theThread;
 boolean isRunning;
 FastCar[] theCar;

 Image theFastImage;
 AudioClip theMusic;

 // Methods shown below
 }

 STARTING TO PLAY

After you have the fields for your applet laid out, you’ll need some way of getting things
started. In an applet, the ideal place to do that is in the start() and stop() methods,
which are called when the browser enters and leaves (respectively) the page containing
the applet. Listing 10.2 shows the start() and stop() methods of the Bumpers01
applet.

The start() method first acquires the image used to represent a bumper car and an
audio clip used as background music. It then creates the specified number of bumper
cars, placing a reference to each in the array theCar. Finally, it starts a new thread used
to animate the bumper cars.

The stop() method sets a flag that terminates execution of the animation thread
whenever the user leaves the page with the bumper car applet. As a good citizen, it also
stops the background music.

 Listing 10.2 The start() and stop() Methods of Bumpers01

 - 288 -

 public void start()
 {
 try
 {
 theFastImage = getAppletContext().getImage(
 new URL(getDocumentBase(), “FastCar.GIF”));

 theMusic = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Music.au”));
 theMusic.loop();
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 setBackground(Color.lightGray);

 theCar = new FastCar[CARS];
 for (int i = 0; i < CARS; i++)
 {
 theCar[i] = new FastCar(theFastImage, 500, 300);
 }

 theThread = new Thread(this);
 isRunning = true;
 theThread.start();
 }

 public void stop()
 {
 theMusic.stop();
 isRunning = false;
 }

 RUNNING SMOOTHLY

 Now that the cars are loaded and the music is playing, it’s time to start the cars running

around the screen. What better place to do that than in the run() method?

The Bumpers01 run() method, shown in Listing 10.3, executes in its own thread. Its
while loop terminates when the stop() method sets the field isRunning to false. After
the while loop is done, the method is exited and the thread is destroyed. This technique is
preferred to using the Thread.stop() method, which may leave data in an inconsistent
state.

The body of the while loop simply asks each car in the array to update itself, using the
Thread.sleep() method to delay each iteration of the loop. As long as the loop is
executed at least 20 or so times per second, the animation appears smooth. Animating
the bumper cars requires two operations: updating the position of each car and repainting
the screen. The cars themselves are each responsible for moving themselves and
rendering themselves on the display.

 Listing 10.3 The run() Method of Bumpers01

 - 289 -

 public void run()
 {
 while (isRunning)
 {
 try
 {
 Thread.sleep(SLEEP_TIME);
 }
 catch (InterruptedException e) { ; }
 Dimension d = getSize();
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].update(d.width, d.height);
 }
 repaint();
 }
 }

 DISPLAYING THE PLAYING FIELD

The last line in the run() method simply sends a repaint() message to the applet
itself. When the applet gets the message, it performs a paint() operation by first calling
the applet’s update() method, and then invoking its paint() method. Listing 10.4
shows the update() and paint() methods of the Bumpers01 applet.

To reduce flicker, the applet uses a technique known as double buffering. Instead of
drawing directly to a Graphics object associated with the screen, the applet draws to an
identically sized Graphics object associated with an Image resident in memory. When
it’s done drawing, the applet draws the Image to the screen in a single operation. In order
to make sure the Image resident in memory is the same size as the applet, the
update() method compares their sizes and creates a new Image object and a new
Graphics object if necessary.

When it comes to actually drawing the playing field, the task performed by the paint()
method, only two steps are required. First, the method erases the screen by repainting it
in the background color. Then, it requests each bumper car to paint itself.

 Listing 10.4 The update() and paint() Methods of Bumpers01

 public final synchronized void update(Graphics g)
 {
 if (theSize == null
 || theSize.width != getSize().width
 || theSize.height != getSize().height)
 {
 theSize = getSize();
 theImage = createImage(theSize.width, theSize.height);
 theGraphics = theImage.getGraphics();
 }
 paint(theGraphics);
 g.drawImage(theImage, 0, 0, null);
 }

 public void paint(Graphics g)

 - 290 -

 {
 g.setColor(getBackground());
 g.fillRect(0, 0, getSize().width, getSize().height);
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].paint(g);
 }
 }
 }

 LOOKING AT FastCar

Now that you’ve seen how the Bumpers01 applet works, it’s time to turn your attention to
the other class: FastCar. Listing 10.5 shows the fields and constructor of the FastCar
class.

When a FastCar is created, (in the constructor FastCar()), its image is saved; then
it’s given a random position (theX and theY) and velocity (theDX and theDY). To
generate the random values, the method uses Math.random(), which returns a
double value greater than or equal to 0.0 and less than 1.0.

 Listing 10.5 Fields and Constructor of the FastCar Class

 class FastCar
 {
 Image theImage;
 int theWidth = 50;
 int theHeight = 25;
 int theX;
 int theY;
 float theDX;
 float theDY;

 private static final float MAX_V = 20;

 public FastCar(Image img, int max_x, int max_y)
 {
 theImage = img;
 theX = (int) (Math.random() * max_x);
 theY = (int) (Math.random() * max_y);
 theDX = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 theDY = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 }

 // Methods shown below
 }

Listing 10.6 shows the methods of the FastCar class. The accessor methods
getSize() and getPosition() simply return the size and position, respectively, of a
FastCar. The update() method updates the position of a FastCar, based on its
velocity. If the new position places the FastCar outside the playing field, the position
and velocity of the FastCar are adjusted to produce a ricochet effect. The paint()
method simply draws the image that represents the FastCar, at the appropriate position
within the applet surface.

 - 291 -

 Listing 10.6 Methods of the FastCar Class

 public final synchronized Dimension getSize()
 { return new Dimension(theWidth, theHeight); }

 public final synchronized Point getPosition()
 { return new Point(theX, theY); }

 public synchronized void update(int max_x, int max_y)
 {
 theX += theDX;
 theY += theDY;
 if (theX < 0)
 {
 theX = 0;
 theDX = Math.abs(theDX);
 }
 if (theX + theWidth > max_x)
 {
 theX = max_x - theWidth;
 theDX = -1.0F * Math.abs(theDX);
 }
 if (theY < 0)
 {
 theY = 0;
 theDY = Math.abs(theDY);
 }
 if (theY + theHeight > max_y)
 {
 theY = max_y - theHeight;
 theDY = -1.0F * Math.abs(theDY);
 }
 }

 public void paint(Graphics g)
 {
 g.drawImage(theImage, theX, theY, theWidth, theHeight, null);
 }
 }

 TAKING YOUR FastCar FOR A RIDE

The HTML file used to run Bumpers01 is shown in Listing 10.7. Before moving on, take a
break by watching the Bumpers01 applet run. But, be sure to stop before highway
hypnosis sets in.

 Listing 10.7 The HTML File for the Bumpers01 Applet

 <HTML>
 <HEAD>
 <TITLE>Bumpers</TITLE>
 </HEAD>

 - 292 -

 <BODY>
 <H1>Bumpers</H1>

 <APPLET CODE=Bumpers01 WIDTH=500 HEIGHT=500>
 </APPLET>
 </BODY>
 </HTML>

Bumpers02: Adding Collisions

Watching all the cars go careening off the edge of your screen is fun, but, it’s time to add
even more action. As the next iteration toward implementing the complete game, let’s
deal with collisions between the bumper cars. The question you face is “Who should
handle collisions?”

 “Because the game will eventually include multiple types of bumper cars…, it’s best

to handle collisions within the applet.”

The work of checking for collisions could be handled either by the applet or by the
bumper car class. This is your first major design alternative. Before reading on, spend a
few minutes thinking about how you would decide the issue.

Because the game will eventually include multiple types of bumper cars (one type driven
by the player and at least one other type driven by the computer), it’s best to handle
collisions within the applet. Why? The appropriate response to a collision may depend on
the types of bumper cars involved. Making every type of bumper car aware of every other
type would strongly couple (tie) the various types together. For example, if you created a
new type of bumper car, you’d have to modify every existing type to deal with the new
type.

Your program is more maintainable if the applet handles collisions. That way, each type
of bumper car is coupled to the applet, but not to the other types of bumper cars. Adding
a new type of bumper car may necessitate changes to the applet, but not to the existing
bumper car types.

 THE BUMPERS02 CLASS DIAGRAMS

Figure 10.5 shows the class diagram for the Bumpers02 applet. You’ll notice that there
are new methods in both the Bumpers02 class as well as in the FastCar class. The
Bumpers02 class now has the ability to check for collisions with the new
checkCollisions() method. The new FastCar class gains the ability to set its state
to reflect its drivability with the setCrunched() and isCrunched() methods.

 - 293 -

 Figure 10.5 Class diagram of the Bumpers02 applet

The setCrunched() method is a mutator method—a method that changes the state of
an object. The setCrunched() method is used to set the value of the field
isCrunched to true. The isCrunched() method is an accessor method that returns
the value of the isCrunched field.

 IMPLEMENTING THE BUMPERS02 DESIGN

Listing 10.8 shows the revised applet, named Bumpers02. Because you’ve added the
ability to detect collisions, you’ll need some way to communicate to the users that a
collision has occurred. To this end, a field named theBang has been added to hold a
new audio clip that is played when a collision occurs.

 To facilitate the new collision features, the following changes have been made:

 • The start() method has several new statements that acquire the audio clip.

 • The run() method now invokes a new utility method, checkCollisions(), which

detects and handles collisions.

 Listing 10.8 The Bumpers02 Class (Partial)

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.net.URL;

 public class Bumpers02 extends Applet implements Runnable
 {
 public static final int SLEEP_TIME = 33;
 public static final int CARS = 6;

 Graphics theGraphics;
 Dimension theSize;
 Image theImage;
 Thread theThread;

 - 294 -

 boolean isRunning;
 FastCar [] theCar;

 Image theFastImage;
 AudioClip theMusic;
 AudioClip theBang;

 public void start()
 {
 try
 {
 theFastImage = getAppletContext().getImage(
 new URL(getDocumentBase(), “FastCar.GIF”));

 theMusic = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Music.au”));
 theMusic.loop();

 theBang = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Bang.au”));
 theBang.play();
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 setBackground(Color.lightGray);

 theCar = new FastCar[CARS];
 for (int i = 0; i < CARS; i++)
 {
 theCar[i] = new FastCar(theFastImage, 500, 300);
 }

 theThread = new Thread(this);
 isRunning = true;
 theThread.start();
 }

 public void run()
 {
 while (isRunning)
 {
 try
 {
 Thread.sleep(SLEEP_TIME);
 }
 catch (InterruptedException e) { ; }
 Dimension d = getSize();
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].update(d.width, d.height);

 - 295 -

 checkCollisions();
 }

 repaint();
 }
 }

 // Remaining methods shown separately
 }

 CHECKING FOR COLLISIONS

 Let’s take a look at the details necessary to actually check whether two cars have

collided. Listing 10.9 shows the checkCollisions() method.

This method uses a nested pair of loops to check each bumper car for a possible collision
with every other bumper car. To improve play, a bumper car that collides with a disabled
car is not disabled. The loops check for this possibility and execute a continue when
appropriate.

 Listing 10.9 The checkCollisions() Method of the Bumpers02 Class

 protected void checkCollisions()
 {
 for (int i = 0; i < CARS - 1; i++)
 {
 if (theCar[i].isCrunched()) continue;

 Point p1 = theCar[i].getPosition();
 Dimension d1 = theCar[i].getSize();
 Rectangle r1 = new Rectangle(p1, d1);
 r1.translate(p1.x / 8, p1.y / 8);
 r1.grow(-1 * d1.width / 4, -1 * d1.height / 4);

 for (int j = i + 1; j < CARS; j++)
 {
 if (theCar[j].isCrunched()) continue;
 Point p2 = theCar[j].getPosition();
 Dimension d2 = theCar[j].getSize();
 Rectangle r2 = new Rectangle(p2, d2);
 r2.translate(p2.x / 8, p2.y / 8);
 r2.grow(-1 * d2.width / 4, -1 * d2.height / 4);

 if (r1.intersects(r2))
 {
 theBang.play();
 if (p1.y < p2.y)
 theCar[j].setCrunched();
 else
 theCar[i].setCrunched();
 }
 }
 }

 - 296 -

 }

To create realistic collisions, there are several details that you must consider. Every
bumper car has a bounding rectangle that represents the smallest rectangle that can
completely enclose a FastCar image. You can obtain this bounding rectangle by calling
the getSize() method. After you have the rectangles for two cars, you can see if they
have collided by using the Rectangle class intersect() method. The only difficulty
with this method is that the car images are irregular and don’t actually fill up their
bounding rectangle. To compensate for this, and to add a realistic feel to the collision, the
bounding rectangle is downsized to 3/4 of its actual size, and centered by offsetting it by
1/8 its size, relative to the position returned by getPosition().

 “Every bumper car has a bounding rectangle that represents the smallest rectangle

that can completely enclose a FastCar image.”

The checkCollision() code is just about complete. Only one issue remains to be
settled: when two cars collide, who’s the winner? In the real world, that’s settled by the
principles of mass and acceleration; in the bumper car world you’ll make an executive
decision. When a collision is detected, the bumper car higher on the screen (the one with
the lower y coordinate) is deemed the winner. It usually requires some experience in the
game for a player to discover this policy; figuring out how the game works is part of the
fun of playing it. The losing car gets disabled by means of its setCrunched() method.

The stop(), update(), and paint() methods of the Bumpers02 class are identical to
those in the Bumpers01 class. Therefore, they are not shown here; they are included in
the source files contained on the CD-ROM.

 THE NEW FastCar CLASS

Listing 10.10 shows the revised FastCar class, which now knows how to respond to an
accident—truly a useful quality. Where would we all be if our cars went through a collision
unscathed? The new field, isCrunched, and its accessor and mutator methods,
setCrunched() and isCrunched(), have been added. The update() method now
simply returns if the bumper car has been disabled, because a disabled car can no longer
move.

 Listing 10.10 The FastCar Class

 class FastCar
 {
 Image theImage;
 int theWidth = 50;
 int theHeight = 25;
 int theX;
 int theY;
 float theDX;
 float theDY;
 boolean isCrunched = false;

 private static final float MAX_V = 20;

 public FastCar(Image img, int max_x, int max_y)

 - 297 -

 {
 theImage = img;
 theX = (int) (Math.random() * max_x);
 theY = (int) (Math.random() * max_y);
 theDX = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 theDY = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 }

 public final void setCrunched()
 {
 isCrunched = true;
 }

 public final boolean isCrunched()
 {
 return isCrunched;
 }

 public synchronized void update(int max_x, int max_y)
 {
 if (isCrunched) return;

 theX += theDX;
 theY += theDY;
 if (theX < 0)
 {
 theX = 0;
 theDX = Math.abs(theDX);
 }
 if (theX + theWidth > max_x)
 {
 theX = max_x - theWidth;
 theDX = -1.0F * Math.abs(theDX);
 }
 if (theY < 0)
 {
 theY = 0;
 theDY = Math.abs(theDY);
 }
 if (theY + theHeight > max_y)
 {
 theY = max_y - theHeight;
 theDY = -1.0F * Math.abs(theDY);
 }
 }

 // Methods identical to those in Bumpers01 omitted
 }

The getSize(), getPosition(), and paint() methods of the FastCar class are
identical to those in the version of the FastCar class included within the Bumpers01
class. Therefore, they are not shown here; they are included in the source files contained
on the CD-ROM.

 - 298 -

User-Driven Cars: The Next Iteration

Now that your cars can move around the screen and collide with each other, let’s add
some real excitement. Let’s face it, the attraction of bumper cars is bumping into other
cars, not avoiding them. Obviously, the next step is to let the player steer one of the cars
around, instead of simply watching.

Let’s add a new class that represents a user-driven car to the Bumpers applet. The user-
driven car has its own image, distinct from that of the other bumper cars. When the user
clicks the mouse button, the user-driven car moves toward the location of the click. By
clicking judiciously, the user can steer the car into, or away from, other cars. Figure 10.6
shows the new Bumpers03 applet.

 Figure 10.6 Running the Bumpers03 applet

 THE BUMPERS03 CLASS DIAGRAM

Figure 10.7 shows the class diagram for the Bumpers03 class. The revised program
features a new class, DrivenCar, representing the user-driven car. Notice that
DrivenCar has much in common with FastCar. In the next version of the applet,
Bumpers04, we’ll re-factor the design using inheritance, deriving DrivenCar and
FastCar from a common superclass. However, at this point in the design process it’s not
certain which fields and methods should be inherited from a superclass and which should
be implemented separately.

 Figure 10.7 Class diagram of the Bumpers03 applet

 - 299 -

 “In principle, design proceeds top-down, from goals to means. Often, however, the

need to figure out how to do something compels departure from the ideal.”

Rather than attempt to resolve the issue now, let’s figure out how to make the user-driven
car work. In principle, design proceeds top-down, from goals to means. Often, however,
the need to figure out how to do something compels departure from the ideal. Here, it’s
important to see how to make the DrivenCar respond to mouse events before returning
to more general design issues.

As the class diagram shows, the DrivenCar uses a MouseHandler, which is derived
from MouseAdapter. Notice that the line joining MouseHandler and DrivenCar
includes an arrowhead that points from MouseHandler to DrivenCar. This indicates
that MouseHandler is invoking methods of DrivenCar, whereas DrivenCar is not
invoking methods of MouseHandler. When you look at the implementing code, you’ll
see why this is.

 STARTING AND RUNNING BUMPERS03

 The Bumpers03 class requires a few changes. First, there are two new fields that are

necessary to support the new DrivenCar class. These fields are defined as follows:

 DrivenCar theDrivenCar;
 Image theDrivenImage;

Also, the start(), run(), checkCollisions(), and paint() methods are slightly
different than those in the Bumpers02 class. Listing 10.11 shows the revised start()
method, which now fetches an image used to represent the user-driven car. The method
also instantiates a DrivenCar object and a MouseHandler object. The MouseHandler
is added as a listener of mouse messages.

 Listing 10.11 The start() Method of the Bumpers03 Class

 public void start()
 {
 try
 {
 theFastImage = getAppletContext().getImage(
 new URL(getDocumentBase(), “FastCar.GIF”));

 theDrivenImage = getAppletContext().getImage(
 new URL(getDocumentBase(), “DrivenCar.GIF”));

 theMusic = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Music.au”));
 theMusic.loop();

 theBang = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Bang.au”));
 theBang.play();
 }

 - 300 -

 catch (Exception e)
 {
 System.out.println(e);
 }
 setBackground(Color.lightGray);

 theDrivenCar = new DrivenCar(theDrivenImage);
 addMouseListener(new MouseHandler(theDrivenCar));

 theCar = new FastCar[CARS];
 for (int i = 0; i < CARS; i++)
 {
 theCar[i] = new FastCar(theFastImage, 500, 300);
 }

 theThread = new Thread(this);
 isRunning = true;
 theThread.start();
 }

 RUNNING THE BUMPERS03 APPLET

The Bumpers03 run() method, shown in Listing 10.12, now instructs the DrivenCar
object to update its position. It also checks whether the DrivenCar has been disabled; if
so, it terminates, ending the animation.

 Listing 10.12 The run() Method of the Bumpers03 Class

 public void run()
 {
 while (isRunning)
 {
 try
 {
 Thread.sleep(SLEEP_TIME);
 }
 catch (InterruptedException e) { ; }
 Dimension d = getSize();
 theDrivenCar.update(d.width, d.height);
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].update(d.width, d.height);
 checkCollisions();
 }
 if (theDrivenCar.isCrunched()) stop();
 repaint();
 }
 }

 CHECKING FOR COLLISIONS

 As shown in Listing 10.13, the checkCollisions() method is now simpler and faster

than before. It no longer needs to look for collisions between FastCars; instead, it looks

 - 301 -

only for collisions between the DrivenCar and a FastCar.

 Listing 10.13 The checkCollisions() Method of the Bumpers03 Class

 protected void checkCollisions()
 {
 Point p1 = theDrivenCar.getPosition();
 Dimension d1 = theDrivenCar.getSize();
 Rectangle r1 = new Rectangle(p1, d1);
 r1.translate(p1.x / 8, p1.y / 8);
 r1.grow(-1 * d1.width / 4, -1 * d1.height / 4);

 for (int i = 0; i < CARS - 1; i++)
 {
 if (theCar[i].isCrunched()) continue;

 Point p2 = theCar[i].getPosition();
 Dimension d2 = theCar[i].getSize();
 Rectangle r2 = new Rectangle(p2, d2);
 r2.translate(p2.x / 8, p2.y / 8);
 r2.grow(-1 * d2.width / 4, -1 * d2.height / 4);

 if (r1.intersects(r2))
 {
 theBang.play();
 if (p1.y < p2.y)
 theCar[i].setCrunched();
 else
 theDrivenCar.setCrunched();
 }
 }
 }

 PAINTING THE APPLET

 The paint() method, shown in Listing 10.14, now instructs the DrivenCar object to

paint itself. Otherwise, it is unchanged.

 Listing 10.14 The paint() Method of the Bumpers03 Class

 public void paint(Graphics g)
 {
 g.setColor(getBackground());
 g.fillRect(0, 0, getSize().width, getSize().height);
 theDrivenCar.paint(g);
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].paint(g);
 }
 }

 The stop() and update() methods of the Bumpers03 class are identical to those of

the Bumpers02 class. Therefore, they are not shown here; they are included in the

 - 302 -

source files contained on the CD-ROM. Similarly, the FastCar class is unchanged.

 INTRODUCING THE DrivenCar CLASS

The DrivenCar class, a new class, is shown in Listing 10.15. It is very similar to the
FastCar class. One difference is that DrivenCar objects are initialized with a fixed
position (theX=5, theY=5) rather than a random position. They also start motionless
(theDX=0.0F, theDY=0.0F) rather than with a random velocity.

 Listing 10.15 The DrivenCar Class

 class DrivenCar
 {
 Image theImage;
 int theWidth = 50;
 int theHeight = 25;
 int theX = 5;
 int theY = 5;
 float theDX = 0.0F;
 float theDY = 0.0F;
 boolean isCrunched = false;

 private static final float V = 5.0F;

 public DrivenCar(Image img)
 {
 theImage = img;
 }

 public final synchronized Dimension getSize()
 { return new Dimension(theWidth, theHeight); }

 public final synchronized Point getPosition()
 { return new Point(theX, theY); }

 public final void setCrunched()
 {
 isCrunched = true;
 }

 public final boolean isCrunched()
 {
 return isCrunched;
 }

 public synchronized void update(int max_x, int max_y)
 {
 if (isCrunched) return;

 theX += theDX;
 theY += theDY;
 if (theX < 0)
 {

 - 303 -

 theX = 0;
 theDX = Math.abs(theDX);
 }
 if (theX + theWidth > max_x)
 {
 theX = max_x - theWidth;
 theDX = -1.0F * Math.abs(theDX);
 }
 if (theY < 0)
 {
 theY = 0;
 theDY = Math.abs(theDY);
 }
 if (theY + theHeight > max_y)
 {
 theY = max_y - theHeight;
 theDY = -1.0F * Math.abs(theDY);
 }
 }

 public void paint(Graphics g)
 {
 g.drawImage(theImage, theX, theY, theWidth, theHeight, null);
 }

 public synchronized void mouseClicked(int x, int y)
 {
 int a = x - theX;
 int b = y - theY;
 double theta = Math.atan2(a, b);
 theDX = V * (float) Math.sin(theta);
 theDY = V * (float) Math.cos(theta);
 }
 }

 EXAMINING DrivenCar

When a DrivenCar receives a mouseClicked message, it begins moving with a fixed
velocity toward the location at which the click occurred. The velocity is slow enough that
successfully piloting the car is a significant challenge. Because the car doesn’t respond
immediately to your clicks, you might find the effect similar to that encountered when
driving a motor boat for the first time. Like the novice motor-sailor, you’ll have to be
careful to avoid over-steering.

Listing 10.16 shows the MouseHandler class, which was established by the
Bumpers03.start() method as a listener of mouse messages. The constructor saves
its parameter, a reference to the DrivenCar, and uses it to forward a mouseClicked()
message to the DrivenCar whenever the mouse button is clicked.

 Listing 10.16 The MouseHandler Class

 class MouseHandler extends MouseAdapter
 {

 - 304 -

 DrivenCar theDrivenCar;

 public MouseHandler(DrivenCar dc)
 {
 theDrivenCar = dc;
 }

 public void mousePressed(MouseEvent e)
 {

 theDrivenCar.mouseClicked(e.getX(), e.getY());
 }
 }

 Generalization: Putting Inheritance to Work

Now, as promised, it’s time to re-factor the program to gain the benefits of inheritance.
The DrivenCar class and the FastCar class share many common fields and methods.
Now that it’s clear exactly what these must do, it’s a simple matter to change the design
structure. As you’ll see, the result is a smaller, clearer, more maintainable program.

Figure 10.8 shows the revised class diagram. A new class, Car, has been added;
DrivenCar and FastCar are now derived from it. FastCar doesn’t override any
methods inherited from Car. DrivenCar overrides paint() to implement a new policy:
when the DrivenCar is disabled, it disappears from the screen. DrivenCar also
supplies a new method, mouseClicked(), used to handle mouse events forwarded by
the MouseHandler.

 - 305 -

 Figure 10.8 Class diagram of the Bumpers04 applet

Notice that Car is an abstract class, indicated by the italic font in which its name appears
and the dotted lines joining it to DrivenCar and FastCar. Car could have been
implemented as a concrete class. But, there is never a need to instantiate a Car; only
DrivenCars and FastCars are instantiated. Making Car an abstract class eliminates
the possibility of mistakenly instantiating a Car, which would turn out to be a useless act.

 “Making Car an abstract class eliminates the possibility of mistakenly instantiating a

Car, which would turn out to be a useless act.”

Car could have been made an interface rather than an abstract class. But, by
implementing it as an abstract class, it’s possible to provide concrete implementations of
its methods, including getSize(), getPosition, and so on. Recall that an interface
cannot provide implementations for its methods; making Car an abstract class is clearly
the better choice.

 THE BUMPERS04 IMPLEMENTATION

 Listing 10.17 shows the implementation of the Bumpers04 class. It is little changed from

previous versions, except that now the DrivenCar and the FastCars can all inhabit the

 - 306 -

same array, an array of type Car named theCar; deriving both classes from the same
superclass, Car, allows you to simplify your design. Rather than having separate arrays,
you need only one. A reference to the DrivenCar is stored in element 0 of the array,
and references to the FastCars are stored in the remaining elements.

 Listing 10.17 The Bumpers04 Class

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.net.URL;

 public class Bumpers04 extends Applet implements Runnable
 {
 public static final int SLEEP_TIME = 33;
 public static final int CARS = 6;

 Graphics theGraphics;
 Dimension theSize;
 Image theImage;
 Thread theThread;
 boolean isRunning;
 Car [] theCar;

 Image theFastImage;
 Image theDrivenImage;
 AudioClip theMusic;
 AudioClip theBang;

 public void start()
 {
 try
 {
 theFastImage = getAppletContext().getImage(
 new URL(getDocumentBase(), “FastCar.GIF”));

 theDrivenImage = getAppletContext().getImage(
 new URL(getDocumentBase(), “DrivenCar.GIF”));

 theMusic = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Music.au”));
 theMusic.loop();

 theBang = getAppletContext().getAudioClip(
 new URL(getDocumentBase(), “Bang.au”));
 theBang.play();
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 setBackground(Color.lightGray);

 - 307 -

 theCar = new Car[CARS];

 DrivenCar dc = new DrivenCar(theDrivenImage);
 addMouseListener(new MouseHandler(dc));
 theCar[0] = dc;

 for (int i = 1; i < CARS; i++)
 {
 theCar[i] = new FastCar(theFastImage, 500, 300);
 }

 theThread = new Thread(this);
 isRunning = true;
 theThread.start();
 }

 public void stop()
 {
 theMusic.stop();
 isRunning = false;
 }

 public void run()
 {
 while (isRunning)
 {
 try
 {
 Thread.sleep(SLEEP_TIME);
 }
 catch (InterruptedException e) { ; }
 Dimension d = getSize();
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].update(d.width, d.height);
 checkCollisions();
 }
 if (theCar[0].isCrunched()) stop();
 repaint();
 }
 }

 protected void checkCollisions()
 {
 Point p1 = theCar[0].getPosition();
 Dimension d1 = theCar[0].getSize();
 Rectangle r1 = new Rectangle(p1, d1);
 r1.translate(p1.x / 8, p1.y / 8);
 r1.grow(-1 * d1.width / 4, -1 * d1.height / 4);

 for (int i = 1; i < CARS; i++)
 {

 - 308 -

 if (theCar[i].isCrunched()) continue;

 Point p2 = theCar[i].getPosition();
 Dimension d2 = theCar[i].getSize();
 Rectangle r2 = new Rectangle(p2, d2);
 r2.translate(p2.x / 8, p2.y / 8);
 r2.grow(-1 * d2.width / 4, -1 * d2.height / 4);

 if (r1.intersects(r2))
 {
 theBang.play();
 if (p1.y < p2.y)
 theCar[i].setCrunched();
 else
 theCar[0].setCrunched();
 }
 }
 }

 public final synchronized void update(Graphics g)
 {
 if (theSize == null
 || theSize.width != getSize().width
 || theSize.height != getSize().height)
 {
 theSize = getSize();
 theImage = createImage(theSize.width, theSize.height);
 theGraphics = theImage.getGraphics();
 }
 paint(theGraphics);
 g.drawImage(theImage, 0, 0, null);
 }

 public void paint(Graphics g)
 {
 g.setColor(getBackground());
 g.fillRect(0, 0, getSize().width, getSize().height);
 for (int i = 0; i < CARS; i++)
 {
 theCar[i].paint(g);
 }
 }
 }

 CARS: IMPLEMENTING AN INHERITANCE HIERARCHY

Listing 10.18 shows the Car class, which closely resembles the FastCar class of
Bumpers03. The Car class provides a default implementation of every method required
by a FastCar. However, it has no constructor. The getSize() and getPosition()
accessor methods are declared to be final. It’s unlikely that a child class would need to
override either method, and they execute somewhat faster because they’re final.
Testing whether the latter is true for your compiler, by the way, is a simple yet interesting
experiment you should try.

 - 309 -

 Listing 10.18 The Car Class

 abstract class Car
 {
 Image theImage;
 int theWidth = 50;
 int theHeight = 25;
 int theX = 5;
 int theY = 5;
 float theDX = 0.0F;
 float theDY = 0.0F;
 boolean isCrunched = false;

 public final synchronized Dimension getSize()
 { return new Dimension(theWidth, theHeight); }

 public final synchronized Point getPosition()
 { return new Point(theX, theY); }

 public synchronized void update(int max_x, int max_y)
 {
 if (isCrunched) return;

 theX += theDX;
 theY += theDY;
 if (theX < 0)
 {
 theX = 0;
 theDX = Math.abs(theDX);
 }
 if (theX + theWidth > max_x)
 {
 theX = max_x - theWidth;
 theDX = -1.0F * Math.abs(theDX);
 }
 if (theY < 0)
 {
 theY = 0;
 theDY = Math.abs(theDY);
 }
 if (theY + theHeight > max_y)
 {
 theY = max_y - theHeight;
 theDY = -1.0F * Math.abs(theDY);
 }
 }

 public final void setCrunched()
 {
 isCrunched = true;
 }

 - 310 -

 public final boolean isCrunched()
 {
 return isCrunched;
 }

 public void paint(Graphics g)
 {
 g.drawImage(theImage, theX, theY, theWidth, theHeight, null);
 }
 }

 FastCar AND DrivenCar: IMPLEMENTING SUBCLASSES

Listing 10.19 shows the revised FastCar class. Note how simple it is in comparison to
the previous version, consisting only of a constructor, which provides a reference to the
image used to represent the FastCar and the boundaries of the playing field. The latter
are used merely to establish a suitable initial random position for the FastCar.

 Listing 10.19 The FastCar Class

 class FastCar extends Car
 {
 private static final float MAX_V = 20;

 public FastCar(Image img, int max_x, int max_y)
 {
 theImage = img;
 theX = (int) (Math.random() * max_x);
 theY = (int) (Math.random() * max_y);
 theDX = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 theDY = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 }
 }

Listing 10.20 shows the DrivenCar class, which is also much simpler than before. It
includes a constructor, which initializes the DrivenCar motionless at a fixed position. It
also includes an overriding implementation of the paint() method. This causes the
DrivenCar to disappear when it is disabled, signaling the end of the game. Finally, the
class includes a mouseClicked() method used to handle messages received from the
MouseHandler, just as in previous versions.

 Listing 10.20 The DrivenCar Class

 class DrivenCar extends Car
 {
 private static final float V = 5.0F;

 public DrivenCar(Image img)
 {
 theImage = img;
 theX = 5;
 theY = 5;

 - 311 -

 theDX = 0.0F;
 theDY = 0.0F;
 }

 public synchronized void mouseClicked(int x, int y)
 {
 int a = x - theX;
 int b = y - theY;
 double theta = Math.atan2(a, b);
 theDX = V * (float) Math.sin(theta);
 theDY = V * (float) Math.cos(theta);
 }

 public void paint(Graphics g)
 {
 if (!isCrunched()) super.paint(g);
 }
 }

 The MouseHandler class is identical to that included in Bumpers03. It is not shown here,

but is included on the CD-ROM.

Specialization: Adding a New Car Type

As a further demonstration of the power of inheritance, let’s add a new car type, a
SlowCar, to the game. Having some slower cars will encourage the novice, who might
be unable to score a victory against the more formidable FastCars. So it’s not too easy
to pick them off, the SlowCars will move somewhat erratically. As you’ll see, the abstract
class Car makes it virtually child’s play to add the new car type. Figure 10.9 shows the
new applet, named Bumpers05.

 Figure 10.9 Running the Bumpers05 applet

Figure 10.10 shows the class diagram of the new applet, which includes the new
SlowCar class. The SlowCar class overrides the update() method of Car to provide
new movement policies. Otherwise, the class diagram is unchanged.

 - 312 -

 Figure 10.10 Class diagram of the Bumpers05 applet

 Apart from increasing the number of cars created, the only change made relative to
Bumpers04 is the loop used to create the bumper cars. It now reads:

 for (int i = 1; i < CARS; i++)
 {
 switch (i % 2)
 {
 case 0:
 theCar[i] = new SlowCar(theSlowImage, 500, 300);
 break;
 default:
 theCar[i] = new FastCar(theFastImage, 500, 300);
 }
 }

 Half the created Cars are SlowCars and half are FastCars. The FastCar,
DrivenCar, and MouseHandler classes are, of course, entirely unchanged.

Listing 10.21 shows the new SlowCar class. The maximum velocity (MAX_V) of a
SlowCar is set to 2; the corresponding value of a FastCar is 6, so SlowCars are
indeed slow.

 Listing 10.21 The SlowCar Class

 class SlowCar extends Car
 {
 private static final float MAX_V = 2;
 private static final float JUMP = 4.0F;

 public SlowCar(Image img, int max_x, int max_y)
 {
 theImage = img;
 theX = (int) (Math.random() * max_x);
 theY = (int) (Math.random() * max_y);
 theDX = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 theDY = MAX_V - 2.0F * (float) Math.random() * MAX_V;

 - 313 -

 }

 public synchronized void update(int max_x, int max_y)
 {
 if (Math.random() < 0.05F)
 {
 theDX = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 theDY = MAX_V - 2.0F * (float) Math.random() * MAX_V;
 }
 super.update(max_x, max_y);
 }
 }

The update() method generates and tests a random number. About 95 percent of the
time, the body of the if is skipped. But, the remaining 5 percent of the time (about 5 times
in 3 seconds) the velocity of the SlowCar is randomly perturbed, making it a little harder to
catch.

Summary

Class diagrams can depict inheritance relationships. Inheritance of implementation is
indicated by a solid line, terminated by a triangle attached to the base class. Inheritance
of specification is indicated by a dashed line.

 An abstract class or interface is shown using an italicized name. An abstract method is

shown using an italicized name.

Class diagrams help reduce complexity by abstracting away unimportant details. A class
diagram should include only those details and notations important to communicating a
good understanding of the design.

Seldom does a first try at design produce a satisfactory result. Instead, the process of
object-oriented design is iterative. It’s common to re-factor a design, changing its structure.
A particularly common sort of re-factoring involves identification of a base class that can
provide common fields and methods to a family of child classes.

Questions

 For multiple-choice items, indicate all correct responses.

 1. To depict an inheritance relationship in a class diagram, you use a line terminated by

 a. an arrowhead

 b. a diamond

 c. a solid dot

 d. a triangle

 2. To depict an abstract class or interface in a class diagram, you _________ the name

of the “class.”

 3. In a class diagram, a line indicating an implements relationship is

 - 314 -

 a. colored

 b. curved

 c. dotted

 d. solid

 4. In a class diagram, a line indicating an inheritance relationship is never decorated

with a navigability arrowhead (true/false).

 5. The symbol that identifies a line as indicating an inheritance relationship is placed

neared the

 a. abstract class

 b. interface

 c. subclass

 d. superclass

 6. When depicting an abstract class on a class diagram, italicized method names

indicate methods that

 a. are abstract

 b. are concrete

 c. are inherited from a base class

 d. return no value

 7. Restructuring a set of classes so that common elements can reside in a base class is

called __________.

 Exercises

 1. Extend the Bumpers applet by adding an additional type of car, one that regularly

disappears and then reappears at a random location.

 2. Extend the Bumpers applet by adding an additional type of car, one that emits a sound

when it’s involved in a collision.

To Learn More

 The following books will help you learn more about using inheritance to design classes.

 The first book of a series that will present Unified Modeling Language (UML), an

important de facto standardization of notations for modeling object-oriented software, is:

 • Fowler, Martin, with Kendall Scott. UML Distilled: Applying the Standard Object

Modeling Language. Reading, Massachusetts: Addison-Wesley, 1997.

 These books present the approach to object-oriented analysis and design developed by

 - 315 -

Grady Booch:

 • Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd ed.

Redwood City, California: Benjamin/Cummings, 1994.

 • White, Iseult. Using the Booch Method: A Rational Approach. Redwood City, California:

Benjamin/Cummings, 1994.

Chapter 11: Patterns: Proven Designs

 Overview

How do you learn to program? Well, how did you learn to ride a bicycle or a surfboard, or
drive a car? If you’re like most people, you learned by imitation. “Here, do it like this,”
your father, or your best friend, or your teacher would say, before giving you a
demonstration. Watching carefully, and with a little practice, you learned to distill the
essential parts from their example: step on the brake to stop, press the gas pedal to go,
turn the steering wheel to change directions. These “essential parts” form a pattern for
driving.

In the late 1970s, the architect Christopher Alexander wrote a series of influential books
describing the recurring themes found in buildings and towns throughout the ages. In A
Pattern Language and A Timeless Way of Building, Alexander argued that it was possible
to objectively determine which of these themes produced habitable dwellings and which
produced ugly, unlivable monstrosities. He called these recurring themes patterns.
Whereas Vitruvius proposed goals of firmness, commodity, and delight, Alexander
measured architectural success by the livability of the structures he studied, what he
called “the quality without a name.” The architectural patterns he describes are an
attempt to provide concrete guidance for producing such structures.

More recently, a number of software visionaries applied a similar perspective to their
study of object-oriented software systems. They found that object-oriented software
developers often found themselves up against similar problems, and often found similar
solutions to them. These visionaries realized that, by publishing descriptions of these
patterns, they could provide an important service to the software community. Thus,
object-oriented design patterns, as they’re called, were born.

Design patterns are useful in design the same way that data structures are useful in
programming. Each helps you avoid “re-inventing the wheel.” Design patterns describe a
design in terms of the participating objects and classes, the roles they take on, and the
problem the design solves.

 In this chapter you will learn:

 • What design patterns are

 • How to read class diagrams depicting design patterns

 • Where design patterns have been used in the Java Application Programming

Interfaces (APIs)

 • How a design pattern can be implemented in Java

 • How several popular and useful design patterns work

 What Are Patterns?

 - 316 -

What is the difference between a Chess grandmaster and the rest of us? In the early
1960s, researchers looking into this question started with the hypothesis that the
grandmaster had a form of “photographic” memory, because the grandmaster could
easily reconstruct a complex chessboard after looking at it for only a few seconds. The
famous experiments by Adriaan de Groot, however, showed that this just wasn’t so.
When the pieces on the chessboard were arranged at random, the grandmasters had no
greater recall than the rest of us. The facility that first seemed to be super-human recall
turned out to be something else entirely: the grandmasters had recognized patterns.

Learning about design patterns is an important part of object-oriented design. A design
pattern is simply a problem-solution pair that occurs repeatedly. Gamma, Helm, Johnson,
and Vlissides, in their acclaimed book Design Patterns, identify four essential elements of
a design pattern:

•

The design pattern name identifies the pattern. These names are not mere jargon.
Naming things helps us to think about them more effectively. By learning the names of
several of the most common patterns, you extend your ability to think about designs at
a new, higher level of abstraction. Instead of seeing a maze of unrelated details, you
can look at a design and see Factories, Decorators, and Singletons. And, having
access to a common, higher-level, vocabulary facilitates communicating with others
about your designs.

•

The problem describes the situations to which the design pattern applies. It helps you
know when the design pattern might be useful, just like word problems, however
painful, show you how calculus might actually be used.

•

The solution describes the elements (classes and objects), and the relationships
between the elements (composition, inheritance, and instantiation), that solve the
problem. The solution is described in general terms, rather than highly specific terms,
because each real-world problem is a little different from others. Solutions typically
must be tweaked here and there before they can be successfully applied to a given
problem.

•

The consequences help you understand the ramifications of applying the solution. As
usual in design, your choice of a solution involves tradeoffs. The consequences help
you to decide which alternative, among the range of available alternatives, best fits
your needs.

 “A design pattern is simply a problem-solution pair that occurs repeatedly. ”

 An EXAMPLE PATTERN

 Table 11.1 shows an example pattern, one that is used throughout Java’s API.

 Table 11.1 The Decorator Pattern

 Pattern name

Decorator, wrapper, or filter

 Problem

How can the capabilities of an object be extended at runtime?

 Solution

Create an object that contains (that is, decorates or wraps
around) the existing object. The containing object can forward

 - 317 -

messages to the original object, preserving the original object’s
capabilities. It can also respond to messages not implemented
by the original object, extending the original object’s
capabilities.

 Consequences

Extending an object’s capabilities at runtime is more flexible
than extending the object’s class, which must be done at
compile time.

The decorator pattern lets you add capability dynamically in
small increments.

Systems that support the decorator pattern can be highly
flexible.

Notice that the pattern has several names. This, unfortunately, is common. It’s useful,
therefore, to become familiar with each of the names given so that you can communicate
with others who know the pattern by one name, but not by the others. For the sake of
consistency, we’ll refer to each pattern by the name preferred by the authors of Design
Patterns. This is admittedly awkward in cases where a particular Java class implements a
given pattern, because Java programmers are apt not to know the pattern name, even if
they’re familiar with the Java class. We’ll alert you of such instances, but we’ll try to be
consistent in using the Design Patterns name, because it has status as a de facto
standard.

 Figure 11.1 shows how the java.io package uses the Decorator pattern to allow

customization of the capabilities of input streams.

 Figure 11.1 The java.io package and the decorator pattern

 To implement this design pattern in Java, you’d write something like this:

 DataInputStream in
 = new DataInputStream(new BufferedInputStream(
 new FileInputStream(“data.txt”)));

A FileInputStream object implements the read() method and several other
methods, but neither performs buffering nor implements the mark() or readLine()
methods. By wrapping the FileInputStream object inside a BufferedInputStream,

 - 318 -

its performance is improved by the addition of buffering. It also becomes capable of
responding to the mark() message and several others (see the API documentation of
the BufferedInputStream class for details).

In the example, this operation is repeated, wrapping the BufferedInputStream inside
a DataInputStream, further increasing its capabilities. The original
FileInputStream object is now capable of responding to readLine() and other
messages not handled by either a FileInputStream or BufferedInputStream.

These operations are possible because the designers of the java.io package provided
constructors that allow a BufferedInputStream to be instantiated from a
FileInputStream, and a DataInputStream to be instantiated from a
BufferedInputStream. They did this by using another design pattern, one so simple
and common that it’s nameless. Many classes of java.io have constructors that accept
any subclass of the abstract class InputStream as a parameter. This allows you to wrap
descendants of InputStream inside one another in a variety of ways. If you’ve done
much work with Java files, you’re experienced in doing this, even if you were unaware of
the full implications.

Other Essential Patterns

If you’re a programmer, most likely there are one or two books that you always keep
within easy reach. If you can’t remember the exact details of the Boyer-Moore string
matching algorithm, for example, you reach for your copy of Sedgewick or Knuth. One of
the goals of the “patterns movement” is to provide a catalogue of common, higher-level,
problem-solution pairs that can be used as a reference just like a standard book of
algorithms is now.

“One of the goals of the ‘patterns movement’ is to provide a catalogue of common,
higher-level, problem-solution pairs that can be used as a reference just like a
standard book of algorithms is now. ”

Advocates of design patterns have identified dozens of other patterns besides Decorator.
Because it’s not possible to present all of them here, the next several subsections
examine four of the most common and useful patterns in detail:

 • Factory Method

 • Singleton

 • Iterator, also known as Enumeration

 • Command

After that, you’ll get a quick fly-by showing you some patterns that are embedded in
Java’s APIs. These aren’t presented in detail, because the Java API documents tell you
all you need to know.

 THE FACTORY METHOD DESIGN PATTERN

Suppose you want to build a class that has responsibility for making meals. Thinking
about the problem, you realize that an important subtask is making the entree. For
breakfast, your class might make scrambled eggs and ham, for lunch it might make a

 - 319 -

grilled cheese sandwich, and for dinner it might make pot roast. Putting the logic for all
three meals in a single class might create some confusion: grilled chicken sounds okay,
but a scrambled cheese sandwich sounds positively frightening. So, on second thought, it
seems better to have a separate class for each meal.

A good approach would be to create a base class called Entree and subclass it to
create a BreakfastEntree class, a LunchEntree class, and a DinnerEntree class.
The base class can have a createEntree method that each subclass can override to
make the appropriate type of entree.

But now, your meal-making class has become complicated. If it’s preparing lunch, it
needs to prepare a lunch entree, a lunch beverage, a lunch dessert, and so on. But, if it’s
preparing dinner, it needs to prepare a dinner appetizer, a dinner salad, a dinner
beverage, and so on. Again, rather than tangling the logic for the three kinds of meals
together, you’d prefer to keep it separate and simple. But, you’d still like to have that
single class that can do breakfast, lunch, or dinner. How?

This is the problem the Factory Method design pattern addresses. Figure 11.2 shows the
Factory Method design pattern as it’s implemented by the FactoryTest class, which
you’ll meet shortly.

 Figure 11.2 The Factory Method pattern

 NOTATION REFRESHER

Before you go on, take a second to recall the notations used in class diagrams like Figure
11.2. The rectangles, you remember, represent classes and objects. This diagram
doesn’t distinguish classes from objects (although class diagrams can make that
distinction); instead, it represents an object by a rectangle labeled with the name of the
class it belongs to. Abstract classes are those with bold, italic names. Concrete classes
and objects have names in regular type. The methods of a class may be shown above a
horizontal line through the middle of the class; fields may be shown below the line.

The vertical line decorated with a triangle means that the lower class extends the upper
class. If you find this confusing, just remember that the triangle points toward the super or
parent class. The horizontal dashed line shown in the diagram indicates that one class
instantiates (or makes an object from) another (the one at which the arrow points).

Reading Figure 11.2 tells you that the abstract class Factory is extended by the
concrete class LunchFactory. (Breakfast and dinner work the same. For the sake of
simplicity, they’re not shown.) The LunchFactory class instantiates a LunchEntree
object. The LunchFactory class is a concrete subclass of the abstract class Factory.

 - 320 -

The beauty of the Factory Method design pattern is that once you’ve instantiated the
proper kind of Factory for the meal at hand, your program can deal with any kind of
meal the same way. Each new meal subclasses Factory, so each has a
createEntree() method (for example) that returns an Entree object, which could be a
BreakfastEntree, a LunchEntree, or a DinnerEntree. Each type of Entree
knows how to respond appropriately to every message an Entree is responsible for, so
a client program doesn’t have to remember that it should scramble the eggs but not the
cheese sandwich.

 Testing the Factory Method

To see how the design pattern can be implemented in Java, take a look at Listing 11.1,
which shows the FactoryTest applet. FactoryTest has a single Factory object that
can refer to either a LunchFactory or a DinnerFactory by clicking the Change Shift
button.

After the proper subtype of Factory has been created, nothing in FactoryTest treats
lunch differently than dinner. All the complications of each type of meal are handled in the
meal’s respective class. The applet would be considerably more complicated if it had to
include selection logic to keep the different types of meals straight. Using the Factory
Method makes it easy to add a MidnightSnack, too: all that’s needed is an instantiation
of the new subtype of Factory.

 Listing 11.1 The FactoryTest Class

 // FactoryTest.java
 //
 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;

 public class FactoryTest extends Applet
 {
 public void init()
 {
 setLayout(new BorderLayout());

 Panel topPanel = new Panel();
 Button nextShift = new Button(“Next Shift”);
 Button serveMeal = new Button(“Get Your Meal”);
 topPanel.add(shift);
 topPanel.add(nextShift);
 topPanel.add(serveMeal);
 add(topPanel, “North”);

 center.setBackground(Color.cyan);
 center.setLayout(new FlowLayout());
 add(center, “Center”);

 nextShift.addActionListener(shiftChanger);
 serveMeal.addActionListener(mealServer);
 }

 protected Panel center = new Panel();
 protected Factory fred = new LunchFactory();

 - 321 -

 protected Label shift = new Label(“11:00 am - Lunch Time!!!”);
 protected boolean isLunch = true;

 private ActionListener shiftChanger = new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 if (isLunch)
 {
 shift.setText(“4:15 pm - Dinner Time!!!”);
 fred = new DinnerFactory();
 isLunch = false;
 }
 else
 {
 shift.setText(“11:00 am - Lunch Time!!!”);
 fred = new LunchFactory();
 isLunch = true;
 }
 }
 };

 private ActionListener mealServer = new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 Entree theEntree = fred.createEntree();
 center.add(theEntree);
 center.invalidate();
 center.validate();
 }
 };
 }

 The FactoryTest applet has six fields:

 • The Panel, center, is a handy place to set your meals after they are served. The

embedded ActionListener object, mealServer, will take care of that chore.

•

The Factory object, fred (think of him as the experienced cook who keeps Eddie’s
Diner running behind the scenes), is initially set up to refer to a LunchFactory
object.

 • The Label, shift, and the boolean field, isLunch, are used to let you know what

shift is at work at Eddie’s All Automatic Food Factory.

•

The ActionListener object, shiftChanger, is constructed inline as a named
inner class. ActionListener objects, recall, handle ActionEvents. The
shiftChanger object will be “hooked-up” to the Change Shift button when you
initialize your applet. By using an inner class to construct shiftChanger, its
actionPerformed() method is able to check the isLunch field inside
FactoryTest and construct a new DinnerFactory or LunchFactory, whichever
is appropriate.

 - 322 -

•

The last field, also an ActionListener called mealServer, is where all of the real
work of the applet is done, yet its actionPerformed() method is the simplest of all.
It simply asks the Factory object, fred, to give it an Entree. It then adds the
Entree to the surface of the center Panel using add(), and issues an
invalidate()-validate() sequence asking center to lay out the new
components.

Besides the two actionPerformed() methods contained in the embedded
ActionListener objects, shiftChanger and mealServer, the FactoryTest
applet has only a single method, init(). The init() method is very straightforward. It
simply creates two buttons, adds them to the applet, and then hooks them up to
shiftChanger and mealServer, who actually get things rolling when the buttons are
pressed.

 Looking Inside the Factories

 Because the real magic of the Factory design pattern is done inside the Factory class

and its subclasses, you’ll want to take a look at them. They’re shown in Listing 11.2.

 Listing 11.2 The Factory Class and Its Subclasses

 abstract class Factory
 {
 public abstract Entree createEntree();
 }

 class LunchFactory extends Factory
 {
 public Entree createEntree() { return new LunchEntree(); }
 }

 class DinnerFactory extends Factory
 {
 public Entree createEntree() { return new DinnerEntree(); }
 }

Factory is defined as an abstract class. Its subclasses must, at a minimum, implement
the createEntree() method. Of course, this fails to account for the full range of
responsibilities of a meal factory: what about dessert, for example? Any additional
methods, createDessert() among them, could be added to Factory. Factory has
been kept as simple as possible here, so the main idea of the Factory Method design
pattern stands out.

Each of Factory’s subclasses, LunchFactory and DinnerFactory, implements the
required method, createEntree(), established by Factory. The Java compiler
enforces this rule. If a subclass such as LunchFactory failed to implement even one
required method, it would then itself be an abstract class rather than a concrete class. If
you tried to create an object from the class, Java would issue an error, because abstract
classes cannot be instantiated.

 Preparing the Entree

The work of preparing the entree is performed by the Entree abstract class and the
classes that extend it, shown in Listing 11.3. Because the Entree class extends the
Button class (so you’ll have something to see on the screen when dinner is served), it
cannot be implemented as an interface instead of as an abstract class. The only

 - 323 -

important difference between an abstract class and an interface is that an abstract class
can provide implementations for some of its methods; an interface cannot. Because
Factory does not provide any default behavior, it could have been implemented as
either an abstract class or an interface. The Entree class, through its superclass
Button, does have a considerable amount of default behavior. It usually makes sense to
use an abstract class when there is default behavior that can be implemented in the
parent class, and use an interface otherwise. But, if you prefer otherwise, you can have it
your own way.

 “It usually makes sense to use an abstract class when there is default behavior that

can be implemented in the parent class, and use an interface otherwise. ”

 Listing 11.3 The Entree Abstract Class and Its Concrete Classes

 abstract class Entree extends Button
 {
 public Entree(String s) { super(s); }
 }

 class DinnerEntree extends Entree
 {
 public DinnerEntree()
 {
 super(“Pot Roast”);
 setFont(new Font(“Helvetica”, Font.BOLD, 24));
 }
 }

 class LunchEntree extends Entree
 {
 public LunchEntree()
 {
 super(“Cheese Sandwich”);
 setFont(new Font(“TimesRoman”, Font.ITALIC, 14));
 }
 }

 You can use Listing 11.4, FactoryTest.html, to try out the FactoryTest applet for

yourself.

 Listing 11.4 FactoryTest.html

 <HTML>
 <HEAD>
 <TITLE>Eddie’s Food Factory</TITLE>
 </HEAD>
 <BODY>
 <H1>Welcome to Eddie’s</H1>
 <HR>
 At Eddie’s Food Factory (tm), everything is automatic.

 - 324 -

 When you change the shift, your applet delivers the appropriate
meal.

 The thing is, the applet doesn’t know what the appropriate meal
is!

 It just asks fred the Factory object for the correct Entree and
lets

 fred take care of the rest.
 </HR>
 <APPLET CODE=FactoryTest HEIGHT=400 WIDTH=600>
 </APPLET>
 </BODY>
 </HTML>

Figure 11.3 shows the FactoryTest applet at work. Notice that when you change shifts,
the meal server button delivers the appropriate entree to you, even though it has no
knowledge of either the time of day, or the type of meal it’s serving of up.

 Figure 11.3 Running the FactoryTest applet

 USING THE FACTORY METHOD PATTERN

When it’s time to build your next Java application, most likely you won’t be building an
automated diner serving cheese sandwiches and pot roast. Nevertheless, you’ll probably
find the Factory Method a useful design pattern in the real, industrial strength software
you do build. Consider a few examples:

•

Suppose you want to be able to handle multiple “look and feel” styles of user interface.
You want to write an application that uses buttons, but you want the buttons to appear
as Mac buttons on a Macintosh, and Windows buttons on a Windows machine.
Hmmmm. Sounds a lot like Java doesn’t it? Well, it is Java. It’s also an application of
the Factory design pattern. If you build your applications to get buttons from a
ButtonFactory, you can then change the type of buttons used in your application
simply by changing a single ButtonFactory object.

•

How would you write an application that handles different types of documents?
Suppose you were to write a Java word processor that can read files produced by
Microsoft Word, WordPerfect, and Lotus WordPro. One way to proceed is to litter your
code with switch statements, handling each document according to its own
peculiarities. The smart way, however, is to create a single abstract Document class,
with subclasses for each of the particular file types. Then, by getting all of your
documents from a DocumentFactory, your main code doesn’t have to know about
the differences between documents at all.

 • Consider the lowly desktop interface. Your new all-Java replacement for the Windows

Explorer or the Mac Finder will succeed only if you solve one fundamental design

 - 325 -

problem: how to make your desktop extensible. You may have supplied it with a
wealth of handy objects—phone dialers and notepads and nifty, time-wasting games.
But what about the objects you haven’t thought of? How about the accessories that
haven’t been invented yet? The Factory Method design pattern was born to handle this
problem. By creating a new subclass for each new accessory as it’s created, your
main desktop doesn’t even have to know that it’s not working with the same familiar
objects it’s always dealt with.

Figure 11.4 shows the general form of the Factory Method pattern. In it, the participating
classes are given general names, rather than specific names like LunchFactory. See if
you can match the class names in Figure 11.4 to the class names in Figure 11.2. The
figures are laid out the same to make this easier for you.

 Figure 11.4 The Factory Method pattern (general form)

An important extension of the Factory Method design pattern is the Abstract Factory
design pattern. In Factory Method, there is only one Product class. In Abstract Factory,
there is an entire set of Products. In Abstract Factory, sending the proper message to the
ConcreteCreator causes it to create not one object, but an entire set of objects. If the
FactoryTest applet had fully solved the problem—creating not merely an entree, but a
beverage, a dessert, and so on—it would have been an instance of Abstract Factory
rather than Factory Method.

Factory Method is used by the java.util package as well as the java.awt package.
In java.util, for example, the Vector.elements() method returns an Enumeration
object, as do Hashtable.elements() and Dictionary.elements(). Enumeration
is actually an interface, not a class. So the true nature and complexity of the returned
object is hidden from the client for whom it was created.

 Table 11.2 summarizes the key features of the Factory Method design pattern.

 Table 11.2 The Factory Method Pattern

 Pattern name

Factory Method, Virtual Constructor.

 Problem

Given an object containing a method that returns a new instance of
some class, how can subclasses of the object return new instances
of some other type?

 Solution

Allow subclasses to override the method; each returning a different
type of object, all of which implement a common interface.

 - 326 -

 Consequences

The Factory Method allows its client objects to work only with the
Product interface, keeping most of the complexity in the
ConcreteProduct classes.

 THE SINGLETON DESIGN PATTERN

A second common design pattern is Singleton. Singleton is useful when you want to
constrain a class to having a single, unique instance. There’s a straightforward way to
enforce this uniqueness using static members. For example, the following code will do
the job:

 public class OneInstance
 {
 public static OneInstance getInstance() { return theInstance;
}

 protected OneInstance() { ; }
 private static final theInstance = new OneInstance();
 }

Notice that the constructor is protected, preventing clients from directly instantiating
OneInstance objects. Instead, they must use the class method getInstance(),
which returns a reference to the unique instance created when the class is loaded by the
static final field, theInstance.

The rub, however, is that you can’t easily subclass OneInstance. Each subclass would
have to re-implement the behavior that constrains the class to a single instance. The
Singleton design pattern solves this problem. To see how, take a look at Figure 11.5,
which shows the Singleton pattern as it will be used in the example program,
SingletonTest, and in its general form.

 Figure 11.5 The Singleton pattern

From the figure, you can see that Singleton implements a getSingleton() method,
which a client can use to get a reference to the singleton instance. It also implements
several methods (getCounter(), stepCounter(), and toString()) that get or
change the state of the singleton, which consists of a static reference to the unique
instance (theSingleton) and an int that serves as a counter (theCounter). The child

 - 327 -

classes, SingletonChild1 and SingletonChild2, override the toString()
method of their parent.

 To see how Singleton is implemented, see Listing 11.5.

 Listing 11.5 The Singleton Class

 public class Singleton
 {
 public static Singleton getSingleton(int type)
 {
 if (theSingleton == null)
 {
 if (type == 1) theSingleton = new SingletonChild1();
 else if (type == 2) theSingleton = new
SingletonChild2();

 }
 return theSingleton;
 }

 public int getCounter()
 {
 return theSingleton.theCounter;
 }

 public void stepCounter()
 {
 theSingleton.theCounter++;
 }

 public String toString()
 {
 return “theCounter=“ + getCounter();
 }

 protected Singleton()
 {
 System.out.println(“Constructor executed ...\n”);
 }

 private static Singleton theSingleton = null;
 private int theCounter = 0;
 }

Notice that, as in the OneInstance class, the Singleton’s constructor is protected.
Unlike OneInstance, however, Singleton declares the field holding the unique
reference (theSingleton) as static, rather than static final.

The reason is found within the getSingleton() method. When a client invokes
getSingleton(), the client sends along an int parameter specifying whether a
SingletonChild1 or a SingletonChild2 instance of Singleton is desired. The
getSingleton() method checks whether a unique instance has been established by
storing its reference in the field theSingleton. If not, it creates a child class object of
the requested type, stores its reference in theSingleton, and returns the reference to

 - 328 -

the client.

Subsequent calls to getSingleton() will return this same reference. If a client
erroneously (or maliciously) provides a parameter value unlike the one used to initialize
the Singleton, no problem results. The parameter is only tested when initializing the
Singleton.

Listing 11.6 shows the child classes of Singleton. Each simply overrides the
toString() method of the parent. The revised method returns a result that discloses
the type of the child.

 Listing 11.6 Child Classes of the Singleton Class

 class SingletonChild1 extends Singleton
 {
 public String toString()
 {
 return “Child1: “ + super.toString();
 }
 }

 class SingletonChild2 extends Singleton
 {
 public String toString()
 {
 return “Child2: “ + super.toString();
 }
 }

Listing 11.7 shows the SingletonTest class, which functions as a client that
demonstrates the operation of the Singleton class. Notice that the client cannot
instantiate a Singleton instance using the new operator. The constructor is hidden (that
is, protected), so Java flags any attempt to use it as an error. Instead, the client must
use the getSingleton() method.

The method returns a reference, which the client uses to print and update the state of the
object. Next, a second variable, s2, is declared and initialized using getSingleton().
By printing the value of the Singleton’s counter, the client demonstrates that the
instance is unique, as desired. Both references refer to the same object. Check the
output in Figure 11.6 to see for yourself.

 - 329 -

 Figure 11.6 Output of the SingletonTest application

 Listing 11.7 The SingletonTest Class

 public class SingletonTest
 {
 public static void main(String [] args)
 {
 //Singleton s1 = new Singleton(); <-- error: no matching
 //constructor

 Singleton s1 = Singleton.getSingleton(1);
 System.out.println(s1);
 s1.stepCounter();
 System.out.println(s1);
 System.out.println();

 Singleton s2 = Singleton.getSingleton(2);
 System.out.println(s2);
 System.out.println();

 try
 {
 System.out.println(“\nPress RETURN/ENTER to
 continue ...”);

 System.in.read();
 }
 catch (Exception e) { ; }
 }
 }

Java’s java.awt package creates its unique Toolkit object using the Singleton
package. You can view the JDK source code to see this. Look under the directory in
which you installed the JDK for the file src/java/awt/Toolkit.java.

Ed Shea shared an important observation with visitors to the Portland Pattern Repository
(http://c2.com/ppr/). In Java, when the only remaining reference to a singleton is
the one in the singleton class itself, the Java garbage collector may collect the instance
and unload the class. The solution is to register singleton instances in a system-wide
table, thus protecting them from garbage collection. If you use a Hashtable for this
purpose, you can assign each singleton a name and then conveniently access your
singletons by name, using the get() method.

 Table 11.3 summarizes the Singleton design pattern. The class diagram for the Singleton

design pattern appears in Figure 11.5.

 Table 11.3 The Singleton Pattern

 Pattern name

Singleton

 Problem

How can you ensure that a class has only one instance and
yet not have to make the class final?

 - 330 -

 Solution Forbid access to the constructor and implement an accessor
that returns a reference to the unique instance.

 Consequences

Control over access to the unique instance.

Solution generalizes well to n instances.

 THE ITERATOR DESIGN PATTERN

As a Java programmer, you’ll frequently deal with collections of objects rather than
individual objects. Collections allow you to perform the same operations on several
elements, without repeating the same code over and over again. In Chapters 7 and 8,
when you built the SalesInvoice application, you were able to use a collection of
LineItem objects to store the quantities and descriptions of each item which you’d sold.
Without a collection, you would have to duplicate your code for each line item, or, at the
very best, make method calls for each line item like this:

 double total = 0.0;
 total = total + item1.getTotal() + item2.getTotal() +
 item3.getTotal();

 “[W]hen the only remaining reference to a singleton is the one in the singleton class

itself, the Java garbage collector may collect the instance and unload the class. ”

 By using an array to hold a collection of items, however, you could write this instead:

 double total = 0.0;
 for (int i = 0; i < nItems; i++)
 {
 total += items[i].getTotal();
 }

 While the first method might seem simpler for three items, you can easily imagine how

unmanageable it would become at 50 or 100 items.

Rather than dealing with each item individually, a collection lets you simply loop over
each of its items, performing the same processing for every element. In such a case,
using an array is a vast improvement—it’s just not as flexible as it could be. If you decide
at a later date that another method of storage would be more appropriate—a Vector or
a Hashtable, for instance—you’ll have to go back and write code to correctly visit each
element in its new data structure. Using the Iterator design pattern allows you to avoid
this effort, and to build flexibility into your collections from the very start.

 The Enumeration Interface

The Iterator design pattern (which is known to Java programmers by the alternative
names Enumerator or Enumeration) is a very important pattern used, as mentioned
earlier, in the java.util package. There, the elements() method of the collection
classes Vector, Hashtable, and Dictionary return an Enumeration object that lets
a client move serially through the elements of a collection. Such an operation is called a

 - 331 -

traversal and the client is said to traverse the collection. You can think of such traversal
as being equivalent to looping through the elements of an array, without being bound to
the array structure. Several other classes provide the same, or a similar, method.

Enumeration is an interface. To implement the interface you have to write two methods:
nextElement() and hasMoreElements(). The former returns the next element
during traversal of the collection; the latter returns a boolean value that tells you
whether untraversed elements remain to be visited.

By using an interface rather than a superclass, each collection class is able to organize
its elements differently. When you write programs that use the Enumeration interface,
you really don’t want to depend on the way that a collection implements the
hasMoreElements() and nextElement() methods. By avoiding this, your programs
won’t be affected by changes to the implementation of the collection. You may even be
able to substitute a better collection class when one becomes available, changing only
the statement that creates the collection.

By interposing the Enumeration interface between your classes and the collection
classes that hold your objects, you are able to use the services of the collection without
knowledge of its implementation. This is precisely the kind of thing the interface feature of
the Java language was designed to support.

 An Iterator Example

Let’s take a look at an example that uses the Iterator design pattern. Suppose you were
writing a Java word processor. One of the design decisions you’d have to make would be
how to store the actual text that your application processes: an array, a linked list, or just
one giant String. No matter how you store a document, however, your program still
must deal with the individual pieces that are the stock-in-trade of a word processor:
characters, words, sentences, and paragraphs. By separating these objects from the data
structures used to store them, you are free to try out different storage mechanisms
without changing the central logic of your word processor. The Iterator design pattern
gives you that separation.

 Figure 11.7 The Iterator pattern

Figure 11.7 shows the Iterator pattern used in the IteratorTest example program.
IteratorTest shows you how to write your own iterators to traverse collection classes
you, or others, have written. To use an array of ints, you first create the array and then
loop through it using an index, as you saw above. By using Iterators, you can step
through the logical pieces of your collections, such as the words and sentences, as easily
as an array allows you to step through a collection of ints. To do this, IteratorTest
uses the Paragraph class, which implements the Enumeration interface. Using
Paragraph along with the Iterator class SentenceIterator enables you to walk
through your Paragraph sentence by sentence, instead of stepping through it character
by character.

 - 332 -

 Before looking at the SentenceIterator class itself, take a look at Listing 11.8, which

shows the client class (the class that uses the SentenceIterator), IteratorTest.

 Listing 11.8 The IteratorTest Class

 // Test the SentenceIterator class

 import java.awt.*;
 import java.util.*;
 import java.awt.event.*;

 public class IteratorTest extends Frame
 implements ActionListener
 {
 Button iterate = new Button(“Find Sentences”);
 TextArea input = new TextArea(15, 30);
 TextArea output = new TextArea(15, 30);
 Label report = new Label(““, Label.CENTER);

 public IteratorTest()
 {
 super(“Iterator Test”);

 setLayout(new BorderLayout());
 setBackground(Color.lightGray);

 Panel p = new Panel();
 p.add(iterate);
 add(p, “North”);
 add(report, “South”);

 p = new Panel();
 p.setLayout(new GridLayout(1, 2, 5, 5));
 p.add(input);
 p.add(output);
 add(p, “Center”);

 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent we)
 {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });

 iterate.addActionListener(this);
 pack();
 show();
 }

 - 333 -

 public void actionPerformed(ActionEvent ae)
 {
 Paragraph p = new Paragraph(input.getText());
 Enumeration e = p.getSentences();

 output.setText(““);
 int nSentences = 0;
 while (e.hasMoreElements())
 {
 Sentence s = (Sentence) e.nextElement();
 nSentences++;
 output.append(“\n>“ + nSentences + “: “ + s);
 }
 report.setText(“Sentences read =“ + nSentences);

 // Demonstrate Enumeration exception
 try
 {
 p = new Paragraph(“One. Two. Three.”);
 e = p.getSentences();
 while (true)
 {
 Sentence s = (Sentence) e.nextElement();
 System.out.println(s);
 }
 }
 catch (NoSuchElementException nsee)
 {
 System.out.println(“Error: “ + nsee);
 }
 }

 public static void main(String [] args)
 {
 new IteratorTest();
 }
 }

 Inside the IterateTest Client

IterateTest is an application with two TextAreas— input and output—a Button
named iterate, and a Label named report. In its constructor, IterateTest()
creates a user interface by placing the two TextAreas side-by-side in the center of the
application, adding the Button on the top, and the Label on the bottom. To run the
application, type some sentences into the input TextArea on the left, and click the
iterate Button. The actionPerformed() method will count the number of
sentences in the input TextArea and move them to the output TextArea.

IteratorTest creates a Paragraph by using a constructor that takes a String as its
parameter. It then obtains an Enumeration object (that is, an iterator) by calling
Paragraph.getSentences():

 - 334 -

 Paragraph p = new Paragraph(input.getText());
 Enumeration e = p.getSentences();

The Enumeration.hasMoreElements() and Enumeration.nextElement()
methods are then used in a while loop to perform a traversal of the Paragraph, adding
each element (sentence) to the output TextArea as it is traversed:

 int nSentences = 0;
 while (e.hasMoreElements())
 {
 Sentence s = (Sentence) e.nextElement();
 nSentences++;
 output.append(“\n>“ + nSentences + “: “ + s);
 }

The nextElement() method returns an Object, as required by the Enumeration
interface. The IteratorTest application simply casts the Object to a Sentence
and implicitly invokes the Sentence’s toString() method by using String
concatenation to paste together the number of the Sentence before passing it on to
output. Finally, the number of Sentences actually read is reported on using the Label
named report:

 report.setText(“Sentences read =“ + nSentences);

An important property of Java’s Enumeration class is that it throws a
NoSuchElementException if a client object tries to traverse a collection that has no
remaining elements. The next several statements of IteratorTest demonstrate this by
intentionally over-traversing a Paragraph. Figure 11.8 shows the output of the
IteratorTest application.

 Figure 11.8 Output of the IteratorTest application

“An important property of Java’s Enumeration class is that it throws a
NoSuchElement-Exception if a client object tries to traverse a collection that
has no remaining elements. ”

 - 335 -

 Looking at Paragraphs and Sentences

Listing 11.9 shows the collection class, Paragraph, used by IteratorTest. The class
constructor simply stores the String passed to it. The lone method, getSentences(),
instantiates a SentenceIterator and returns it to the client object.

 Listing 11.9 The Paragraph Class

 class Paragraph
 {
 public Enumeration getSentences()
 {
 return new SentenceIterator(theText);
 }

 public Paragraph(String text)
 {
 theText = text;
 }

 private String theText;
 }

Recall from IteratorTest that the Object returned by the Enumeration provided by
Paragraph.getSentences() is a Sentence. The Sentence class, shown in Listing
11.10, encapsulates a String of text, providing a toString() method that returns the
String. Nothing fancy here.

 Listing 11.10 The Sentence Class

 class Sentence
 {
 public String toString()
 {
 return theText;
 }

 public Sentence(String text)
 {
 theText = text;
 }

 private String theText;
 }

 The Iterator Workhorse: SentenceIterator

The real work is done by the SentenceIterator class, shown in Listing 11.11. As
required, the class implements the Enumeration interface, providing concrete
implementations for the methods hasMoreElements() and nextElement().

 Listing 11.11 The SentenceIterator Class

 - 336 -

 class SentenceIterator implements Enumeration
 {
 // ---
 // hasMoreElements() returns true if:
 // a. There are any more sentences past the cursor
 // b. This means the last sentence (if not ended
 // by a period and a space) will not count.
 // ---
 public boolean hasMoreElements()
 {
 return (nextSentencePos > 0);
 }

 public Object nextElement() throws NoSuchElementException
 {
 // 1. Check that there are elements left
 if (! hasMoreElements()) throw new NoSuchElementException();

 // 2. Extract the substring representing this Sentence
 nextSentencePos++; // Include the period
 String next = theText.substring(theCursor, nextSentencePos);

 // 3. Set theCursor to point at next character
 theCursor = nextSentencePos;

 // 4. Set the nextSentencePos to point to the next period
 nextSentencePos = findEnd();

 // 5. Strip whitespace from front of String, next
 int i=0;
 char ch;
 while ((ch = next.charAt(i)) == ‘ ‘ || ch == ‘\n’ || ch ==
‘\t’)

 i++;

 // 6. Return the Sentence
 return new Sentence(next.substring(i));
 }

 private int findEnd()
 {
 int posNL, posSP;

 posSP = theText.indexOf(“. “, theCursor);
 posNL = theText.indexOf(“.\n”, theCursor);
 if (posNL > 0 && posSP > 0)
 return (posNL > posSP ? posSP : posNL);
 if (posNL > 0) return posNL;
 if (posSP > 0) return posSP;
 return -1;
 }

 - 337 -

 public SentenceIterator(String text)
 {
 theText = text;
 theCursor = 0;
 nextSentencePos = findEnd();
 }

 private String theText;
 private int theCursor;
 private int nextSentencePos;
 }

 To support its responsibilities, the class defines three fields:

 • A String, theText holds a reference to the text being traversed.

 • An int, theCursor holds a moving index into the text. This holds the position where

the current Sentence starts. Such an index is called a cursor.

 • An int, nextSentencePos holds the position of the end of the current Sentence.

The constructor for the SentenceIterator class accepts a reference to the text it is to
step through and stores that reference in the field theText. It then initializes the cursor
with the index of the first character of the text (which is at position 0), and finally, calls the
private method, findEnd(), to locate the end of the first sentence. It stores this
information in the field, nextSentencePos.

The SentenceIterator class assumes that a sentence starts with a non-blank
character and is ended by either a period and a newline (“.\n”) or a period and a space (“.
“). This allows you to embed dollar amounts or make other uses of the period, but is still a
rather naive definition of a sentence. It doesn’t consider sentences that end in question
marks or exclamation points. A little more sophisticated logic can overcome this flaw, but
at the cost of obscuring the point of the example. To find the end of the current sentence,
the findEnd() method follows these steps:

1.

It uses the String class’ built-in method indexOf() to find the location of both
period-newline and period-space character pairs (because a paragraph could contain
some sentences that end with one and some that end with the other).

 2. If both pairs are found, the one that is nearer the beginning of the String must end

the current sentence, and so it is returned.

 3. If only one type of ending is found, it is returned by checking the value of each

instance against zero.

 4. If none of these cases is found, then findEnd() returns –1 to signal that the current

sentence doesn’t end.

A complication that can arise in implementing any Iterator class is the possibility that the
collection may be changed during a traversal. Imagine, if you will, an Iterator that skips
through the records of a database. After it has iterated through half the records, someone
could add a record to the first half of the list (the part already iterated). Thus the element
would not be counted in the traversal. A user could also move an element from the first
half to the second half. Thus Ms. Bauer, who just got married and chose to take her
husband’s name of Zemekis, would get counted twice if the database was updated during
the traversal.

 - 338 -

While this example may seem contrived, such possibilities are very real in a multi-
threaded programming environment like Java. However, because the
SentenceIterator class deals with Java Strings, and because Strings are
immutable, this cannot happen here.

 SentenceIterator’s hasMoreElements() method simply checks whether the
nextSentencePos field is greater than zero. It returns true if so and false if not.

The nextElement() method implements the traversal. It first checks whether there are
any elements left to return. It does this by calling its own hasMoreElements() method.
If there are no more elements (that is, if nextSentencePos is < 0) then
nextElement() throws a NoSuchElementException, which causes the method to
be exited. Otherwise, it uses the String substring() method to extract the String
between theCursor and nextSentencePos. Both fields are then updated in
anticipation of the next call to nextElement(). Finally, any white space characters
(spaces, tabs, or newlines) are removed from the current String before the method
ends, returning a new Sentence that contains the characters it collected.

 Iterator: The General Form

 Figure 11.9 shows the general form of the Iterator design pattern.

 Figure 11.9 The Iterator pattern (general form)

If you compare the structure of IteratorText with Figure 11.9 you’ll note that IteratorText
simplifies one aspect of the Iterator pattern. It works directly with the concrete collection
class (called a ConcreteAggregate in the figure, following the terminology of the Design
Patterns book) rather than with the abstract collection class. This is a common
simplification of the design pattern. The advantage of following the general design pattern
more literally is that client objects that use your iterators won’t even be aware of the true
type of the collection. This allows you to change the type of the collection without revising
the client object. Often, this presents little practical advantage and so the simplification
adopted by IteratorText is widespread.

 Table 11.4 summarizes the characteristics of the Iterator design pattern.

 Table 11.4 The Iterator Pattern

 Pattern name

Cursor, Enumerator

 Problem

How can the elements of a collection be accessed sequentially
without exposing its implementation?

 - 339 -

 Solution

Provide a go-between object that’s aware of the implementation
of the collection, but that can be used by client objects without
exposing the implementation.

 Consequences

Support for variation in traversal, eliminate need for traversal
interface in the collection (making it simpler), allow multiple
pending traversals.

 THE COMMAND DESIGN PATTERN

The Command design pattern, the last one you’ll study in detail in this chapter, lets you
create command objects. A command object represents a message and its receiver. By
creating a command object you give the users of your class the ability to send messages
to receivers any time they want, simply by notifying the command object.

Because objects already have the ability to respond to messages, you might be
wondering just what you can do with a command object that you can’t easily do with a
regular object. Because a command object encapsulates both the message and receiver
into one object, it lends itself to many practical applications. For example, you can build
queues that hold messages waiting to be processed, handling them in a prioritized order.
You can create a log of all the messages sent by (or sent to) a particular object or class
of objects. You can create a facility that lets the user undo operations by keeping track of
the messages sent to an object and restoring it to some previous state.

The most common use of the Command design pattern, however, is somewhat less
flashy. Because a command object encapsulates both a message and its receiver, and
because these relationships are established at runtime, the Command pattern enables
you to decouple objects that generate messages from the messages they generate and
the objects that receive the messages. Let’s consider a specific case.

 A Design Problem

Toolbars, those small buttons that appear at the top of most modern GUI applications,
are one of the great advances in user-interface design since mice and windows took over
the desktop. Early GUIs limited themselves to menu commands that frequently required
several steps to accomplish even a simple task. With the advent of the toolbar, common,
repetitive actions were put within easy reach. As noted interface designer Alan Cooper
points out, menus may make it easy to learn a program, but toolbars make a program
easy to continue using.

Both toolbars and menus share a common design problem however: how should you
hook up the user-interface object—the toolbar button or the menu selection—with the
code that actually carries out the action? One common solution is to direct all menu
selections and button clicks to a common handler routine that finds out which button or
menu item triggered the event, and then acts accordingly. This sort of code was common
in early Microsoft Windows programs, and was even given a name—“the switch
statement from hell”—so dubbed because of its tendency to grow to dozens of pages.

“Because a command object encapsulates both a message and its receiver, and
because these relationships are established at runtime, the Command pattern
enables you to decouple objects that generate messages from the messages they
generate and the objects that receive the messages. ”

 - 340 -

The object-oriented reaction to this sort of code was to apply the principle of
encapsulation to the problem, and put the code that responds to the button press inside a
new subclass of the Button class itself. But, there are two problems with this
inheritance-based solution. First, because each interface element becomes a subclass,
there is a proliferation of classes. Second, this solution tightly ties each interface element
to a particular action. Even worse, if several elements are needed to generate the same
action, you have several subclasses with essentially the same code.

The Command design pattern addresses the shortcomings of both of these solutions. By
encapsulating a message and its receiver in an object, client objects can connect objects
to receivers without being aware of the nature of the message or of the receiver. That
way, the client object is less likely to require change when a message needs to be
handled differently or a different type of message needs to be added.

 Scratcher: A Command Pattern Example

Let’s take a look at how you can implement the Command design pattern in Java. If
you’ve ever eaten at a fast-food restaurant or purchased groceries from a supermarket,
you’re probably familiar with scratchers. A scratcher is a small card on which is printed a
number of figures or numbers. These figures are covered with a soft, silvery metallic film
that can be scratched off using a coin, revealing the figure underneath—hence the name
scratcher. In some variations of the game you are only allowed to scratch off 3 of 5
positions, for instance. If you match three figures, you may win a hamburger or a soda.

 The Scratcher applet, which you can see running in Figure 11.10, works in a similar

manner.

 Figure 11.10 The Scratcher applet

The applet presents the user with a screen containing six “silvered” squares. Because
using a coin to scratch the silver coating wouldn’t do your monitor any good, a separate
button is provided for each square. Click a button, and either a red triangle, a green oval,
or a blue number (between 1 and 52) will be revealed. A reset button spanning the
bottom of the applet enables you to start over. As written, the applet does no scoring.
Rather than being a deficiency, this is actually a feature. You can play “match four of six,”
make the triangles act as wild cards, or otherwise amuse yourself for hours. Before you
set off to do that, however, you’ll want to spend a little time getting acquainted with
Scratcher.java and the way it implements the Command design pattern.

 The Command Pattern Architecture

The Command design pattern works by apportioning the responsibilities for issuing,
routing, and responding to commands among different classes. In Scratcher.java,
these responsibilities fall on the shoulders of the following classes:

 • The abstract Command class (and its concrete subclasses, TriangleCommand,

CircleCommand, and NumberCommand) carry out the actual work of drawing

 - 341 -

triangles, circles, and numbers on a Component object. This object—the receiver of
the action—can be dynamically determined at runtime.

•

The CmdButton class, which holds a reference to a Command object, and which,
when clicked, delegates the performance of its command to its Command object. The
CmdButton class doesn’t really know (nor can it know) what the Command object is
going to do; it just tells the Command object, “Perform your action!”

•

The client class, Scratcher, which creates the actual scratcher panels (simple
Canvas objects), and then connects the CmdButton objects to the Command objects
and associates each Command object with a scratcher panel.

•

A factory class, CommandFactory, which provides Command objects by using a
random number generator. Although using the Factory design pattern is not really part
of the Command pattern, using the factory class shows that the client class—which
implements the user interface—is completely uncoupled from the actual Commands
that are executed. Likewise, the CmdButton objects are uncoupled from the
Commands that they execute.

 Figure 11.11 shows a graphical representation of each of the major elements in the

Scratcher applet.

 Figure 11.11 The Command design pattern used in the Scratcher applet

 The Scratcher Class

After you understand the architecture of the Command design pattern, you’re ready to
start looking at the actual code that implements it. Let’s start by looking at the client class,
Scratcher.java, in Listing 11.12.

 Listing 11.12 The Scratcher Class

 // Scratcher.java
 // Uses the Command design pattern
 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;
 import java.util.*;

 public class Scratcher extends Applet
 implements ActionListener
 {
 public void init()
 {
 // 1. Set the color and layout manager

 - 342 -

 setBackground(Color.white);
 setLayout(new BorderLayout());

 // 2. Add the CmdButtons to the top
 Panel p = new Panel();
 p.setLayout(new GridLayout(1, 6, 5, 5));
 for (int i = 0; i < 6; i++)
 {
 buttons[i] = new CmdButton(“Scratch “+(i+1));
 p.add(buttons[i]);
 }
 add(p, “North”);

 // 3. Add the “Reset” button to the south
 add(reset, “South”);
 reset.addActionListener(this);

 // 4. Add the “scratcher” Canvases to the center
 p = new Panel();
 p.setLayout(new GridLayout(1, 6, 5, 5));
 for (int i = 0; i < 6; i++)
 {
 scratchers[i] = new Canvas();
 p.add(scratchers[i]);
 }
 add(p, “Center”);
 }

 // ---
 // The reset button
 // For each command object
 // Asks the CommandFactory for a Command object
 // Sets its receiver to the current scratcher
 // Assigns the Command to a CmdButton
 // Each scratcher is then “blanked out”
 //
 public void actionPerformed(ActionEvent ae)
 {
 for (int i = 0; i < 6; i++)
 {
 Command cmd = CommandFactory.getCommand();
 cmd.setReceiver(scratchers[i]);
 buttons[i].setCommand(cmd);

 Dimension d = scratchers[i].getSize();
 Graphics g = scratchers[i].getGraphics();
 g.setColor(Color.lightGray);
 g.fillRect(5, 5, d.width-10, d.height-10);
 g.dispose();
 }
 }

 - 343 -

 // --Class and object fields-----------------------
 Command[] commands = new Command[6];
 Canvas[] scratchers = new Canvas[6];
 CmdButton[] buttons = new CmdButton[6];

 Button reset = new Button(“Reset”);
 }

 The Scratcher class contains four fields:

 • An array of six Command objects named commands

 • An array of six Canvas objects named scratchers

 • An array of six CmdButton objects named buttons

 • A single regular Button, named reset

 To put these four fields to work, the applet also has two methods, init() and
actionPerformed(). The init() method builds the user interface by:

 1. Setting the background color to white and installing a BorderLayout object as the

layout manager.

2.

Adding each of the CmdButtons in the buttons array to a Panel object that acts as
a toolbar at the top of the applet. This requires the use of a loop to create each of the
CmdButton objects and add them to the Panel. After the Panel is completed, it is
added to the top of the applet.

3.

Adding the reset Button to the bottom of the applet. The applet signs up to listen
for ActionEvents generated by reset Button by passing this to the Button’s
addActionListener() method.

4.

Adding each of the Canvas objects in the scratchers array to the center of the
applet. Like the CmdButtons, this requires a loop to create and add each Canvas
object to an intermediate panel, which is then added to the center of the applet.

The second method in the Scratcher applet is the actionPerformed() method,
which is triggered when the reset Button is pressed. The actionPerformed()
method loops through each of the three arrays (buttons, scratchers, commands) and
carries out these actions on each element:

 1. It gets a Command object from the CommandFactory class. The Scratcher applet

doesn’t know what kind of Command it will get.

 2. The Command object is then told to associate itself with one of the Canvas objects,

using its setReceiver() method.

 3. A CmdButton is then associated with the Command object by using the

CmdButton.setCommand() method.

 4. Finally, each of the scratcher Canvases is repainted to give each Canvas that

silver, covered over, look.

 - 344 -

 “The Command design pattern is often used in user interfaces to decouple the

interface from the actions it controls. ”

The important thing to notice about this applet is that it has no idea what the Command
objects are going to do, or even what kind of Command objects it receives. Note also that
the CmdButton objects, which trigger the Commands, also have no idea of what kind of
actions they’ll start rolling. Finally, notice that the Command object is associated with the
scratcher Canvases at runtime. The Command object itself isn’t aware that the
Scratcher applet with its Canvas objects even exist. It just gets a receiver and paints
on it.

 The Command Class

The Command design pattern is often used in user interfaces to decouple the interface
from the actions it controls. For example, you could associate each item of a menu with a
specific Command object representing the proper message and receiver. When the user
selects a menu item, the user interface code would simply invoke the execute()
method of the Command object associated with the menu item. Like magic, the proper
action would occur. Changing the nature of the action would not normally require any
change to the user interface.

 Listing 11.13 shows the abstract Command, and the three concrete classes used in
Scratcher.java.

 Listing 11.13 The Command, TriangleCommand, CircleCommand, and

NumberCommand Classes

 // ===
 // Command and Concrete Commands
 // ===
 abstract class Command
 {
 abstract public void execute();

 public void setReceiver(Component c)
 {
 receiver = c;
 }
 Component receiver;
 }

 // ---
 // Draws a Red Triangle on the receiver
 // ---
 class TriangleCommand extends Command
 {
 public void execute()
 {
 Graphics g = receiver.getGraphics();
 Dimension d = receiver.getSize();

 g.setColor(Color.white);

 - 345 -

 g.fillRect(5, 5, d.width-10, d.height-10);

 g.setColor(Color.red);
 int[] xPoints = {10, d.width/2, d.width-10};
 int[] yPoints = {d.height-10, 10, d.height-10};
 g.fillPolygon(xPoints, yPoints, 3);
 g.dispose();
 }
 }
 // ---
 // Draws a Green Circle on the receiver
 // ---
 class CircleCommand extends Command
 {
 public void execute()
 {
 Graphics g = receiver.getGraphics();
 Dimension d = receiver.getSize();

 g.setColor(Color.white);
 g.fillRect(5, 5, d.width-10, d.height-10);

 g.setColor(Color.green);
 g.fillOval(10, 10, d.width-20, d.height-20);
 g.dispose();
 }
 }
 // ---
 // Draws a blue number on the receiver
 // ---
 class NumberCommand extends Command
 {
 public NumberCommand(int value)
 {
 super();
 this.value = value;
 }

 public void execute()
 {
 Graphics g = receiver.getGraphics();
 Dimension d = receiver.getSize();

 g.setColor(Color.white);
 g.fillRect(5, 5, d.width-10, d.height-10);

 g.setColor(Color.blue);
 g.setFont(new Font(“Helvetica”, Font.BOLD, 72));
 g.drawString(““+value, d.width / 10, (int)(d.height * .85));
 g.dispose();
 }
 private int value;

 - 346 -

 }

The abstract class Command has a single field, receiver, which is used to store a
reference to the Component that acts as the receiver of the actions performed by
Command’s concrete subclasses. The non-abstract method, setReceiver(), can be
used with any Command object to associate it with any Component. Although all of the
concrete Command classes developed here paint on the surface of the receiver
Component, you are not limited to such actions.

The real magic of the Command pattern occurs, however, because of the final method in
the Command class: the abstract method execute(). Because this is an abstract
method, all of Command’s subclasses must implement it. Each of the three concrete
classes illustrated above implement execute() in much the same way. First, the
concrete Command object obtains a Graphics object from it’s receiver field by calling the
getGraphics() method. Then the color or the font used by the Graphics context is
manipulated. Finally, either a geometric figure or some numeric value is painted on the
surface of the receiver, depending on the actual Command object that is instantiated.

 The CmdButton Class

Because the client objects of Command deal not with concrete objects like
CircleCommand, but with references to the abstract Command class, they only have to
send the execute() method to any Command object to have it perform its magic. That is
exactly what the CmdButton class, shown in Listing 11.14, does.

 Listing 11.14 The CmdButton Class

 // ===
 // CmdButton: Listens to itself and calls execute()
 // ===
 class CmdButton extends Button
 {
 public CmdButton(String s)
 {
 super(s);
 addActionListener(al);
 }

 public void setCommand(Command c)
 {
 cmd = c;
 }

 protected Command cmd;

 ActionListener al = new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 System.out.println(“CmdButton called:” +this);
 if (cmd != null) { cmd.execute(); }
 }
 };
 }

 - 347 -

The CmdButton class is derived from Button. It contains a field, cmd, which is a
Command object. Every CmdButton object can be dynamically set to perform an entirely
different set of actions by simply using its setCommand() method to wire it up to another
Command.

In addition to the field cmd, all CmdButtons have an ActionListener field, al, which is
defined using a named inner class. Although you can attach ActionListeners to
CmdButtons the same way you would with regular Buttons, this really isn’t necessary
because they are hooked up to their internal ActionListener object when they are
created. CmdButtons thus “listen to themselves;” they are entirely self-contained. When
a CmdButton object is pressed, its internal actionPerformed() method sends an
execute() message to its contained Command object. When using CmdButtons, you
don’t have to worry about adding ActionListeners or writing actionPerformed()
methods. Just drop one in your applet, use setCommand() to associate it with a
Command object, and it will work.

 The CommandFactory Class

The final class in Scratcher.java is the CommandFactory class, shown in Listing
11.15. As previously mentioned, the CommandFactory is not an integral part of the
Command design pattern, but is included here to show how completely the Command
pattern allows you to separate the generator, performer, and receiver of an action from
each other.

 Listing 11.15 The CommandFactory Class

 // ==
 // CommandFactory: Produces Random Command objects
 // ==
 class CommandFactory
 {
 static Random randomizer = new Random();
 static public Command getCommand()
 {
 int index = Math.abs(randomizer.nextInt() % 52);
 switch (index)
 {
 case 7:
 case 11: return new CircleCommand();
 case 1:
 case 9:
 case 18:
 case 36: return new TriangleCommand();
 default: return new NumberCommand(index);
 }
 }
 }

 Command Pattern: The General Form

 Figure 11.12 shows the general form of the Command design pattern, and Table 11.5

summarizes it, using the terms from the Design Patterns book.

 - 348 -

 Figure 11.12 The Command pattern (general form)

A variation of the Command design pattern is used by the AWT’s event system.
ActionEvents, for example, are generated by user-interface components, queued up,
and dispatched to receivers. In the AWT, receiver information is not encapsulated within
the message object because the message receiver is not unique. Many objects can
register to receive ActionEvents from a single component. Therefore, references to
registered objects are stored in a separate data structure. However, the spirit of the
Command design pattern is evident.

 Table 11.5 The Command Pattern

 Pattern name

Action, Transaction

 Problem

How can a message be encapsulated as an object that can
be stored or passed as an argument, allowing queues,
message logging, undoable operations, and so on?

 Solution

Create a set of objects, representing the range of possible
actions, that implement a common interface. Store the
target (that is, the receiver of the message) as a field of the
concrete implementation.

 Consequences

Decouples the identity of an operation from details of its
performance.

Commands are first-class objects (that is, objects that can
be passed as parameters, manipulated, and so on).

Commands can be inserted into a collection class to form
macros.

It’s easy to add new commands.

 OTHER DESIGN PATTERNS IN THE JAVA APIs

Several other design patterns are found in the Java APIs. Because you can look them up
in the API documentation, they’re not described in detail here. You would probably find it
instructive to learn more about how they work and then draw class diagrams describing
these additional design patterns.

 The AWT organizes windows by using Containers (Applets, Frames, and Panels

 - 349 -

among them) to hold Components. The handy part is that every Container is also a
Component. This means that a Container can hold other Containers, which in turn
hold other Containers or Components. This design pattern is called Composite.

Another AWT design pattern is Strategy, which generalizes Command. Rather than
encapsulating a single message, Strategy encapsulates a whole family of algorithms. The
AWT LayoutManagers use the Strategy design pattern to give Containers the ability
to regulate their layout. Just as Command lets a message vary without affecting
Command’s, Strategy lets a set of algorithms vary without affecting its client
Containers.

A design pattern called Adapter plays an important role in AWT event handling. Each
type of AWT event, such as the MouseMotion event, is associated with an interface that
identifies the messages sent to event listeners. For the MouseMotion event, these
include mouseClicked(), mouseEntered(), mouseExited(), mousePressed(),
and mouseReleased(). If a class wishes to subscribe to MouseMotion events, it must
implement methods to handle each of these messages. An adapter class eases this
burden by providing a default implementation, that does nothing, for each message. By
subclassing the proper adapter and overriding only the method(s) of interest, a listener
can be spared the effort of implementing each of the five MouseMotion messages.

 “A design pattern called Adapter plays an important role in AWT event handling. ”

You’ll meet one more design pattern, Observer, in Chapter 12, “Designing Concurrent
Objects.” The Observer design patterns solves the common problem of keeping a set of
client objects aware of the current status of a server object.

 Summary

Design patterns are proven solutions to problems that come up again and again in the
design of object-oriented software. By familiarizing yourself with a range of design
patterns, you can learn a great deal about designing object-oriented software.

The design patterns described in this chapter are Decorator, Factory Method, Singleton,
Iterator, and Command. Several other patterns were mentioned. Many design patterns
appear within the Java APIs, though the related classes are often called by names different
than those most commonly used by people who study design patterns.

Questions

 For multiple-choice items, indicate all correct responses.

 1. A design pattern may be described by giving its

 a. Name

 b. Problem

 c. Solution

 d. Consequences

 - 350 -

 2. Another name for the Decorator design pattern is __________.

 3. The Decorator design pattern appears frequently in what Java package?

 a. java.awt

 b. java.io

 c. java.lang

 d. java.util

 4. The Factory Method design pattern is useful when a client must create objects having

different __________.

 5. The __________ design pattern limits the number of instances a class can create.

 6. The Iterator design pattern is known to Java programmers as __________, because

of the corresponding interface of the java.util package.

 7. Iterators are useful when dealing with __________ classes.

 a. Dynamic

 b. Collection

 c. Singleton

 d. Small

 8. The two methods required by the Enumeration interface are

 a. firstElement()

 b. hasMoreElements()

 c. nextElement()

 d. traverse()

 9. The Command design pattern __________ a message and its receiver in an object.

 10. A(n) __________ class makes it easier to create a class that receives events

representing AWT actions.

 a. Adapter

 b. Converter

 c. Mediator

 c. Transformer

 - 351 -

Exercises

1.

Write a class that uses a Hashtable to encapsulate references to singletons, so that
they won’t be garbage collected. Your class should include methods that let the client
register a singleton using a String as a key and later fetch the singleton by
presenting the same key.

2.

Write a graphical application that includes menu bars and that uses the Command
design pattern to decouple the user interface from the related actions. Your menu bar
can include any menu items you choose, but it should include at least three items.

3.

Modify the Scratcher applet to add scoring and the ability to collect secure
micropayments from the Net. Set it up on your Web page and forward a portion of
your earnings to the authors. As with all such enterprises, if you lose money, you’re
on your own.

4.

Create an Enumeration object that iterates over the words of a text file. Do not use
StreamTokenizer or StringTokenizer in your object. You may, however,
consult the Java API documentation related to them.

5.

Study the Java API documentation for the LayoutManager interface and the classes
that implement it. Draw a class diagram that shows their interaction with Containers.
When you’re done, try to identify the pattern by picking out the parts of the diagram that
might be reusable in some other context.

 To Learn More

 The following books will help you learn more about design patterns:

 • Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Reading, Massachusetts: Addison-Wesley, 1995.

This is the book that has most widely disseminated the idea of design patterns—the
seminal catalog by Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
This is one of the first, and one of the best, books on design patterns. The examples
are mostly in C++, but should be easily translated by an average Java programmer.

 • Pree, Wolfgang. Design Patterns for Object-Oriented Software Development. New

York, New York: ACM Press Books, 1995.

This is a book that attempts to provide an overview of different approaches to design
patterns within the object-oriented software development community. Pree argues for
even higher-level abstractions, which he calls meta-patterns, and he presents seven of
them. This book is denser and requires much more study than Gamma’s book.

 • Gabriel, Richard P. Patterns of Software: Tales from the Software Community. New

York, New York: Oxford University Press, 1996.

If you are interested in the philosophy behind design patterns, or if you just want to read
a really interesting book by a really great writer, this book is highly recommended. Not
technical in the same way that the previously mentioned books are, Gabriel’s book is a
combination of memoir, opinion, and insightful essay.

 - 352 -

Chapter 12: Designing Concurrent Objects

 Overview

Did you ever have a boss who seemed more concerned about your use of time than his
or her own? You know, the kind of boss who checks your time sheet 50 times before
signing it, the kind who wonders why you made so little progress on the Alpha project last
week—the week you worked 25 hours of overtime helping rescue the Zed project. “So,
what’s the problem?” such a boss asks, “Can’t you do two things at once?”

Well, of course, you can’t. But, by working rapidly and switching regularly from one task
to another, you can create the illusion of simultaneously working on multiple tasks. This
illusion comes unraveled, however, when you have so much to do that there simply aren’t
enough hours in a 24-hour day.

Modern computers are similar. Most of them can create the illusion of working on multiple
tasks at the same time, even though they’re not really capable of that feat. A few so-
called multiprocessor systems actually do have multiple CPUs and therefore can make
the illusion come true. But, so far, multiprocessor systems account for only a small
minority of computers in use.

Still, whether it’s illusion or reality, the ability to seem to do multiple things at once is
useful. You want your computer to be able to display an animated GIF file and play a
sound clip while you download your e-mail, don’t you? Only, don’t be like your boss and
complain that the computer is too slow merely because it takes a little longer to download
your e-mail with all the razzle-dazzle multimedia going on. Or, if the delay annoys you,
upgrade your system.

 In this chapter you will learn:

 • How the Java API supports programming with threads

 • How threads can help you write better programs

 • How to draw interaction diagrams that show how threads interact

 • How to design programs to avoid special problems that can affect threaded programs

 • How to use the Observable class and the Observer interface to coordinate actions

between, or among, objects

 • How to generalize the Observable/Observer pattern to include concurrency

Introduction to Concurrency

Java and its Application Programming Interfaces (APIs) provide high-quality support for
concurrent programs, programs that work simultaneously on multiple tasks, or that
appear to do so. Many object-oriented languages, including C++, lack built-in support for
concurrent programming. This is unfortunate because concurrent programming helps you
model the real world more accurately. After all, real objects don’t always take turns
interacting with one another; they act asynchronously. Walk onto a kindergarten
playground and you’ll see simultaneous, asynchronous action all around you. But don’t
think such action is limited to active, young children; this same sort of action is
characteristic of a business office or a stock exchange.

 Why would anyone design an object-oriented language without facilities for writing

concurrent programs? There are many possible reasons, some of them technical. But,

 - 353 -

recall that one way we deal with complexity is by simplification. The synchronous
perspective—in which activity is controlled and directed—is simpler than the
asynchronous perspective—in which all the participants act independently. That’s why we
have air traffic control systems and symphony orchestra leaders. Putting someone in
charge makes it easier for everyone’s efforts to fit together.

But, just as there is jazz music, there are patterns of collaboration that do not depend
upon the efforts of an “orchestra leader.” This is not to say that such processes are
chaotic, though to the ears of some they might be. Instead, leadership in such processes
is dynamic, rather than static. First the guitarist picks up the theme, and the other players
hang back. Soon the guitarist tires, and the drummer picks up the theme, and so on.
Rather than following a rigid orchestral score, the musicians yield to, and express, their
moods as they play.

If you prepared an object model of a musical group, would you limit the model to
representing only orchestral patterns of music, or would you want the model to be
capable of representing the more general case? Java lets you have it either way.

 Reasons for Using Threads

Java supports concurrent programs in two ways. First, you can write separate programs
and run them simultaneously as separate processes. Under Microsoft Windows, for
example, you can open two command windows and use the Java interpreter to run a
different Java program in each. The two programs can even communicate with one
another by using files, pipes, or other means. This kind of concurrent programming is
provided by almost every programming language.

A second way that Java supports concurrent programs is through the facilities of the
java.lang.Thread class, which allows the programmer to create and control threads.
You can think of a thread as a program counter that, like a finger on a program listing,
points to the next instruction to be executed within some method of some object. A thread
is a flow of control within a program.

 “You can think of a thread as a program counter that, like a finger on a program

listing, points to the next instruction to be executed.”

Processes, too, have program counters. What then, you ask, is the difference between a
process and a thread? Whereas two processes each have distinct address spaces and
resources, two threads can share them. Say you have a Java object and two distinct
threads are executing statements within its methods. Each thread has access to the
fields of the object and can get their values, set their values, or send them messages (the
latter only if they’re objects, of course). Local variables are not shared; each thread gets
its own copy of the local variables of any method it executes.

Because threads share fields, threads can easily exchange information. They often need
no external means of communication such as a file or pipe. Threads can be
asynchronous, but still be conveniently “in touch.” So, when necessary, they can
synchronize with one another. The drummer object won’t keep banging out the tempo
when the other musician objects long ago called it a day. Figure 12.1 illustrates the
distinction between processes and threads.

 - 354 -

 Figure 12.1 Processes and threads distinguished

As mentioned, threads are handy when you’re writing a program that needs to do, or
seem to do, several things at once. Here are some more specific reasons for using
threads:

•

Improved response to events: By assigning a thread to each event source or task,
and prioritizing the threads, you might be able to make your programs more
responsive because low-priority tasks will yield to high-priority tasks.

•

Control of thread execution: Java’s APIs give you considerable control over thread
execution. You can change the execution priority of a thread, suspend it, resume it,
stop it, and so on.

•

Parallel computing: If you’re among the lucky few who use multiprocessor
computers, you can use Java’s threads to keep all your CPUs busy, thereby earning a
greater return on your hardware investment.

•

Inherent concurrency in Java itself: Many of Java’s objects, particularly the Abstract
Window Toolkit (AWT) objects, use threads. Even if you’re not interested in writing
threaded programs, most Java programs you write will probably be threaded.

 Issues In Using Threads

The old saying that “you can’t get something for nothing” seems true more often than not.
Certainly, it’s true of using threads in your Java programs. Threaded programs let you
write programs containing bugs of several sorts that you’ll never see in a non-threaded
program. If logic errors and off-by-one-errors were the ubiquitous programming errors of
the 20th century, thread-related errors might well turn out to be the programming errors of
the 21st century. (Let’s hope that we soon succeed in significantly reducing the number
of 20th-century bugs in our programs, lest we find ourselves with all disadvantages of
both sorts of bugs.)

 Among the issues raised by writing threaded programs are the following:

•

Safety: Just like cars careening down the turnpike, threads can “collide” and attempt
to simultaneously access or modify a field. Without due attention to program design,
one or the other thread can get (or often worse, set) an invalid value.

•

Liveness: Ever have the experience of waiting for a friend to call you, only to find out
later that your friend was waiting for you to call? This can happen to threads as well.
Again, careful design can reduce the likelihood that this will occur.

 - 355 -

 “Threaded programs let you write programs containing bugs of several sorts that

you’ll never see in a non-threaded program.”

•

Nondeterminism: When you run a nonthreaded program over and over, things
happen in exactly the same order each time. Not so for a threaded program. Java
makes no guarantees concerning the order of execution of unsynchronized threads.
(You’ll read more about synchronization later in this chapter.) If your program’s results
depend on the order in which its threads execute, the results can be different each
time you run the program. This can greatly complicate troubleshooting.

•

Performance: You might have decided to write your program as a threaded program
because you hoped to maximize performance. Using threads, however, does not
automatically improve performance. As the saying goes, “your mileage may vary.” The
performance of a threaded program might be poorer than that of a nonthreaded
program, due to the overhead involved in creating threads, switching context between
threads, synchronizing threads, and so on.

 Java’s Support for Threads

This chapter focuses on design issues related to threads. A familiarity with the Java API
facilities that support threads is helpful for understanding these issues; unfortunately, it is
not possible to present such an introduction in this chapter without compromising the
attention paid to design issues. Here are the parts of the Java API that concern the
designer and programmer of threaded programs:

 • The java.lang.Thread class

 • The java.lang.Runnable interface

 • The Java language keywords synchronized and volatile

 • The wait(), notify(), and notifyAll() methods of the java.lang.Object

class

To learn more about these facilities, you can consult the online documentation that
accompanies the JDK. Alternatively, you might take a look at Chapter 16 of our book
Object-Oriented Programming in Java (The Waite Group Press, 1997), which provides
such an introduction, or at The Java Language Specification by James Gosling, Bill Joy,
and Guy Steele (Addison-Wesley, 1996), which covers Java’s thread facilities
comprehensively.

 The CipherServer Sample Program

The CipherServer program shows how a Java program can use threads to improve
response time. CipherServer is a simple network-based server that echoes text sent to
it over a TCP/IP socket connection. Of course, with an application named
CipherServer you’d expect some sort of cryptographic translation of the message sent
to the server. As written however, CipherServer uses the simplest code of all, plain
text. Obviously, that’s not very secure. However, the program is easily modified to
accommodate more sophisticated cipher algorithms. For greater security, you might want
to shift any lowercase letters in the message text to uppercase, and vice versa. Or, you
can substitute that character 1 for the letter a, the character 2 for the letter b, and so on.
The security of your cipher is limited only by your imagination.

 - 356 -

 The CipherServer Class

The CipherServer class is shown in Listing 12.1. Its main() method, which is a
static method, creates a CipherServer instance and sends it the start()
message. One of Java’s little peculiarities is that invoking the start() message on an
object that extends the Thread class (or that implements the Runnable interface)
causes execution of the run() method of the object as a new thread. The similarly
named Applet.start() method, by the way, has nothing to do with
Thread.start(). They simply share the same name.

When a CipherServer instance starts up, it opens a ServerSocket (designated by a
port number) on which it will listen for requests from clients. Sending an accept()
message to the ServerSocket initiates listening. The thread blocks (that is, it suspends
execution) until the ServerSocket’s accept() method returns, indicating that a
client request has been received. When the method returns, it provides a Socket object,
which the server and client use to hold a private conversation. That way, their
conversation won’t get in the way of other clients who want to make requests of the
server.

Setting aside a socket for the client/server conversation profits nothing, however, unless
the server is threaded. Until another accept() message is sent to the ServerSocket,
further client requests will not be handled. CipherServer, therefore, immediately uses
the Socket to create a Connection object, which runs as a thread that handles further
business between the client and server. It then loops and sends the accept() method,
rapidly preparing itself to handle another client request.

 Listing 12.1 The CipherServer Class

 // CipherServer.java

 import java.net.*;
 import java.io.*;

 public class CipherServer
 {
 // ===
 // MAIN METHOD
 // ===
 public static void main(String args[])
 {
 new CipherServer().run();
 }

 // ===
 // CONSTRUCTORS
 // ===
 public CipherServer()
 {
 try
 {
 theServerSocket = new ServerSocket(thePort);
 }
 catch (IOException io)
 {
 System.err.println(“Socket error: terminating”);

 - 357 -

 System.exit(1);
 }
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 try
 {
 System.out.println(“CipherServer is open for business.”);

 while (true)
 {
 Socket theSocket = theServerSocket.accept();
 System.out.println(“A client has requested service.”);
 Connection connection = new Connection(theSocket);
 }
 }
 catch (IOException io)
 {
 System.err.println(“Socket error: terminating”);
 System.exit(1);
 }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private final static int thePort = 1234;
 private ServerSocket theServerSocket;
 }

 The Connection Class

Listing 12.2 shows the Connection class, which responds to requests sent by a client
that has established a connection with the server. Its first task is to create a
BufferedReader and a PrintWriter that are used, respectively, to read data from
the client and write data to the client, via the socket passed by the CipherServer object
to the Connection constructor. These statements are executed in the same thread that
sends the accept() message.

 Listing 12.2 The Connection Class

 class Connection extends Thread
 {
 // ===
 // CONSTRUCTORS
 // ===
 public Connection(Socket socket)
 {
 try

 - 358 -

 {
 theSocket = socket;

 in = new BufferedReader(
 new InputStreamReader(
 theSocket.getInputStream()));

 out = new PrintWriter(
 new OutputStreamWriter(
 theSocket.getOutputStream()), true);
 start();
 }
 catch (IOException io)
 {
 System.err.println(“Socket error: terminating”);
 System.exit(1);
 }
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 int port = 0;
 try
 {
 port = theSocket.getPort();

 System.out.println(“Client assigned to port “+port+”.”);
 out.println(“Server ready.”);

 while (true)
 {
 String line = in.readLine();
 if (line == null)
 break;

 System.out.println(“port “+ port +” sent “+ line +”.”);
 out.println(“You sent “ + line + “.”);
 }

 in.close();
 out.close();
 theSocket.close();
 }
 catch (IOException io)
 {
 System.err.println(“Client on port “ + port +
 “ has disconnected.”);
 }
 }

 - 359 -

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private Socket theSocket;
 private BufferedReader in;
 private PrintWriter out;

 }

The run() method of the Connection class includes the statements executed as part
of the special thread allocated to a Connection instance. Apart from some statements
that report progress (to aid in troubleshooting network connection problems), the main
work of the run() method is done in an endless while loop. This loop simply reads
lines of data (terminated by a platform-dependent end-of-line sequence) from the client
and writes them back. It is here that you should insert some additional code that
increases the limited protection afforded by this dumbest-of-all ciphers.

 “The significant thing about CipherServer, apart from its incredibly poor

encryption, is its use of a distinct thread for each client connection.”

The loop continues until the readLine() method returns null, indicating that the client
has closed the connection or has otherwise been disconnected. When this occurs, the
Reader and Writer are closed, along with the Socket, and the thread terminates.

The significant thing about CipherServer, apart from its incredibly poor encryption, is
its use of a distinct thread for each client connection. This enables CipherServer to
quickly re-issue the important accept() message that readies it to handle the next client
requesting a connection.

 The CipherClient Class

To see how things look from the client’s side of the conversation, take a look at Listing
12.3, which shows the CipherClient class. Whereas CipherServer is written as an
application, because it has little need for a graphical user interface, CipherClient is
written as an applet. Much of the code included in CipherClient is devoted to handling
user input, which is passed to CipherServer, and output returned by CipherServer,
which is displayed to the user.

 Listing 12.3 The CipherClient Class

 // CipherClient.java

 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;
 import java.net.*;
 import java.io.*;

 public class CipherClient extends Applet
 {

 - 360 -

 // ===
 // APPLET METHODS
 // ===

 /* --Initialization----------------- */
 public void init()
 {
 try
 {
 setLayout(new BorderLayout());

 add(theField, “North”);
 add(theArea, “Center”);
 theArea.setEditable(false);
 setVisible(true);

 theSource = new StreamSource(theField);
 theSink = new StreamSink(theArea);

 String host = getCodeBase().getHost();
 theSocket = new Socket(host, thePort);

 theReader = new BufferedReader(
 new InputStreamReader(
 theSocket.getInputStream ()));
 theWriter = new PrintWriter(
 new OutputStreamWriter(
 theSocket.getOutputStream()), true);

 theInputCoupler = new StreamCoupler(
 new BufferedReader(theSource),
 theWriter);
 theOutputCoupler = new StreamCoupler(theReader,
 new PrintWriter(theSink));

 theInputCoupler. start();
 theOutputCoupler.start();
 }
 catch (IOException io) { ; }
 }

 /* --Starting and Stopping---------- */
 public void stop()
 {
 try
 {
 theSource.close();
 theSink.close();
 theReader.close();
 theWriter.close();
 theSocket.close();
 }

 - 361 -

 catch (IOException io) { ; }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===

 private TextField theField = new TextField();
 private TextArea theArea = new TextArea();

 private StreamSource theSource = null;
 private StreamSink theSink = null;

 private int thePort = 1234;
 private Socket theSocket = null;
 private BufferedReader theReader = null;
 private PrintWriter theWriter = null;

 private StreamCoupler theInputCoupler = null;
 private StreamCoupler theOutputCoupler = null;
 }

Some special classes are used to facilitate the input and output. A StreamSource
object presents information typed by the user into a TextField as a Reader. This
Reader is used by CipherClient as its input source. A StreamSink object presents
information written to its Writer as lines of text within a TextArea. This Writer is
used by CipherClient as its output sink (that is, CipherClient writes to the
Writer). Two StreamCouplers are used, one to couple the output typed by the user
and fed through the StreamSource to the server (via the Socket), and another to
couple the input received from the server to the StreamSink, so it can be viewed by the
user. Figure 12.2 shows how this arrangement works.

 Figure 12.2 Data flow in the CipherClient applet

 The StreamSource and StreamSink Classes

Listing 12.4 shows the StreamSource class, which presents data keyed by the user into
a TextField as a Reader. The class uses a Pipe as a buffer to store data entered via
the TextField but not yet requested from the Reader. The functions provided by the
StreamSource class are general and are therefore potentially reusable; hence they
were encapsulated within a separate class, rather than included with CipherClient.

 Listing 12.4 The StreamSource Class

 - 362 -

 // StreamSource.java

 import java.io.*;
 import java.awt.*;
 import java.awt.event.*;

 public class StreamSource extends Reader
 implements ActionListener
 {
 // ===
 // CONSTRUCTORS
 // ===
 public StreamSource(TextField textfield) throws IOException
 {
 theTextField = textfield;
 theInputPipe.connect(theOutputPipe);
 theTextField.addActionListener(this);
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Mutators----------------------- */
 public synchronized int read(char[] buffer,
 int offset,
 int len) throws IOException
 {
 int avail = theInputPipe.available();
 if (avail == 0)
 return 0;
 if (avail > len)
 avail = len;

 for (int i = 0; i < avail; i++)
 {
 char c = (char) theInputPipe.read();
 buffer[offset] = c;
 //System.out.println(“Read “ + c + “ from pipe”);
 offset++;
 }
 return avail;
 }

 public synchronized void close() throws IOException
 {
 theTextField.removeActionListener(this);
 theTextField.setEnabled(false);

 theInputPipe. close();
 theOutputPipe.close();

 - 363 -

 }

 // ===
 // IMPLEMENTS ACTIONLISTENER
 // ===
 public void actionPerformed(ActionEvent event)
 {
 try
 {
 String line = theTextField.getText();
 theTextField.setText(“”);

 int len = line.length();
 byte [] bytes = line.getBytes();

 theOutputPipe.write(bytes, 0, len);
 theOutputPipe.write(‘\n’);
 //System.out.println(“Wrote data to pipe”);
 }
 catch (IOException io) { ; }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private TextField theTextField;
 private PipedInputStream theInputPipe =
 new PipedInputStream();
 private PipedOutputStream theOutputPipe =
 new PipedOutputStream();
 }

Listing 12.5 shows StreamSink, which is functionally the mirror image of the
StreamSource class. StreamSink, however, is much simpler because output can be
written immediately when provided—there is no need to buffer it as input from
StreamSource’s TextField had to be.

 Listing 12.5 The StreamSink Class

 import java.io.*;
 import java.awt.*;
 import java.awt.event.*;

 public class StreamSink extends Writer
 {
 // ===
 // CONSTRUCTORS
 // ===
 public StreamSink(TextArea textarea)
 {
 theTextArea = textarea;
 }

 - 364 -

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Mutators----------------------- */
 public synchronized void write(char[] chars,
 int offset,
 int len) throws IOException
 {
 theTextArea.append(new String(chars, offset, len));
 }

 public synchronized void flush() throws IOException
 {
 // null
 }

 public synchronized void close() throws IOException
 {
 theTextArea.setEnabled(false);
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private TextArea theTextArea;

 }

 The StreamCoupler Class

Listing 12.6 shows the StreamCoupler class, which is also a potentially reusable class.
A StreamCoupler object runs as a thread, continually trying to read its input. When
input arrives, it is immediately written to the StreamCoupler’s output, and the process
repeats.

 Listing 12.6 The StreamCoupler Class

 // StreamCoupler.java

 import java.io.*;

 public class StreamCoupler extends Thread
 {
 // ===
 // CONSTRUCTORS
 // ===
 public StreamCoupler(BufferedReader in, PrintWriter out)
 {
 theInput = in;
 theOutput = out;
 }

 - 365 -

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 try
 {
 while (true)
 {
 String line = theInput.readLine();
 if (line == null)
 break;
 //System.out.println(“Coupler read “ + line);

 theOutput.println(line);
 }
 System.out.println(“Coupler found EOF”);
 theInput .close();
 theOutput.close();
 }
 catch (IOException io) { System.out.println(io); }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private BufferedReader theInput;
 private PrintWriter theOutput;
 }

One aspect of StreamCoupler’s design handicaps its reuse within new programs. As
you see, the input-output statements within its run() method can throw IOExceptions.
Ideally these would be passed on to the client, who could handle them in a way
appropriate to the problem domain. This would be done by eliminating the try-catch
block and revising the method header to read:

 public void run() throws IOException

This however, cannot be done, because the Thread.run() method in
StreamCoupler’s superclass does not throw IOExceptions. Consequently,
StreamCoupler.run() is not allowed to throw them and must handle them itself,
rather than deferring to its client. In the case of the CipherClient program, error
handling is not important. So, the run() method simply returns, terminating the thread
when an error occurs. Chapter 17, “Designing with Class Libraries,” revisits error
handling within reusable classes in a more general context.

 Listing 12.7 shows the HTML file used to execute the CipherClient applet.

 Listing 12.7 Cipher.html

 <HTML>

 <HEAD>
 <TITLE>Cipher.html</TITLE>

 - 366 -

 </HEAD>

 <BODY>

 <APPLET CODE=CipherClient HEIGHT=100 WIDTH=200>
 </APPLET>

 <APPLET CODE=CipherClient HEIGHT=100 WIDTH=200>
 </APPLET>

 </BODY>
 </HTML>

 Figure 12.3 shows the execution of the CipherServer application.

 Figure 12.3 Starting the CipherServer application

Figure 12.4 shows the execution of the CipherClient applet. When running the program,
CipherServer should be started before CipherClient. To stop CipherServer, just
press Ctrl+C in the window used to run it.

 Figure 12.4 Running the CipherClient applet

Notations for Concurrent Objects

Diagrams are one of the most helpful tools during design. Just as your designs model the
real world, diagrams model your design. By representing a design in simpler,
diagrammatic form, applying the principle of abstraction, you’re able to focus on relevant
issues and, at least for the moment, ignore the rest. Moreover, it’s easier, faster, and
cheaper to change a diagram than to change a completed software program. Or, at least,
it should be.

 “Just as your designs model the real world, diagrams model your design.”

Some designers seem to believe that “if a little is good, a lot is better.” Creating too many
diagrams and spending too much time making them too “pretty” can undercut your whole
purpose in using them: to quickly, efficiently, and adequately design a system. One
problem that afflicts many of the computer-aided design tools available is that they don’t

 - 367 -

make the job easier; they simply make the output look better.

The Advantage of Simplicity

If you’re working with an automated design tool and find yourself spending hour
after hour tweaking diagram after diagram, try working with pencil and paper or,
better yet, with a large whiteboard. You might find—surprise—that it takes less time
to do the job manually. If your boss insists that you use the tool, you can enter the
diagrams once your sketches have reached the point that you don’t expect any
remaining changes to be a burden. Meanwhile, survey the Web for alternative tools
that you might find easier to use. Also, check out the programs on the CD-ROM
included with this book.

 “One problem that afflicts many of the computer-aided design tools available is that

they don’t make the job easier; they simply make the output look better.”

An important diagram for designs involving threads is the interaction diagram. Figure 12.5
shows an interaction diagram, drawn in a style resembling that recommended by Grady
Booch in his book, Object-Oriented Analysis and Design with Applications, 2nd Ed.
(Benjamin/Cummings, 1994).

 Figure 12.5 Booch-style interaction diagram

The diagram depicts the interactions among the objects of the Cipher program. Each
object is drawn at the head of a column. The CipherServer object, drawn at the upper
left of the page, initiates the interactions by sending a ServerSocket() constructor
message to the ServerSocket class. When the constructor completes its work, the
CipherServer then sends an accept() message to the newborn ServerSocket.
Again, the CipherSever blocks, pending completion of the message handling. This, as
described earlier, occurs when a client requests service. In response, the
CipherServer sends a Connection() constructor message to the Connection
class.

 The Connection object sends constructor messages to the BufferedReader and
PrintWriter classes. It’s important to notice that all this is done in the same thread

 - 368 -

(that is, the same flow of control) that originally sent the accept() message to the
ServerSocket.

Things change at this point, however. The Connection next sends a start() message
to itself. This causes the statements of Connection.run() to commence execution in
a new thread, even as the original thread returns control to the ServerSocket object,
which issues a new accept(). The remaining part of the diagram presents no special
problems of interpretation.

Another form of the Booch-style interaction diagram, shown in Figure 12.6, widens each
vertical line during intervals in which the corresponding object is active. This can make
the distinction between nonthreaded and threaded execution easier to discern: In
nonthreaded execution no two objects will have wide (active) lines at the same time (that
is, at the same vertical distance from the top of the diagram). Threaded programs, in
contrast, can have two or more objects that are simultaneously active. The lines of their
bars will all be wide at the same time.

 Figure 12.6 Alternative style interaction diagram

Races Violate Safety

As previously mentioned, using threads creates whole new categories of bugs that can
infest your program. Programs that run concurrently can experience so-called race
conditions that corrupt the fields of methods or cause accessor methods to return corrupt
results. A class that can experience a race condition is sometimes called unsafe. You
might have heard of device drivers or software programs that are not thread-safe. Sadly,
some JDBC drivers written for use by Java programmers are not thread-safe. The
potential result is a program that reports incorrect data or, worse still, one that writes
incorrect data to the database.

 “A class that can experience a race condition is sometimes called unsafe.”

To see how this can happen, take a look at Listing 12.8, which shows the HensTeeth
class. HensTeeth is an applet that creates a ShapeShifter object and then continually
and asynchronously probes the new object, querying its species and number of teeth.

 Listing 12.8 The HensTeeth Class

 - 369 -

 // HensTeeth.java

 import java.applet.*;
 import java.awt.*;

 public class HensTeeth extends Applet implements Runnable
 {
 // ===
 // APPLET METHODS
 // ===
 /* --Initialization----------------- */
 public void init()
 {
 setLayout(new BorderLayout());
 add(theArea, “Center”);
 theArea.setEditable(false);
 }

 /* --Starting and Stopping---------- */
 public void start()
 {
 new Thread(this).start();
 }

 public void stop()
 {
 System.out.println(“Done ...”);
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 theShifter.start();
 System.out.println(“Searching ...”);
 while (true)
 {
 if (theShifter.getSpecies() == theShifter.HEN
 && theShifter.getNumberOfTeeth() > 0)
 {
 System.out.println(“Hens really DO have teeth!”);
 theArea.append(“Hens really DO have teeth!\n”);
 }
 }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private ShapeShifter theShifter = new ShapeShifter();

 - 370 -

 private TextArea theArea = new TextArea(10, 32);
 }

Listing 12.9 shows the ShaperShifter class, which uses a thread to shift its species
continually from horse to hen, and back again. As the ShapeShifter changes species,
it also changes its number of teeth accordingly. Horses, on average, have about 38 teeth,
but hens have no teeth at all.

 Listing 12.9 The ShapeShifter Class

 class ShapeShifter extends Thread
 {
 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Accessors---------------------- */
 public int getSpecies()
 {
 return theSpecies;
 }

 public int getNumberOfTeeth()
 {
 return theNumberOfTeeth;
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 while (true)
 {
 switch (theSpecies)
 {
 case HORSE:
 theSpecies = HEN;
 theNumberOfTeeth = HEN_TEETH;
 break;

 case HEN:
 theSpecies = HORSE;
 theNumberOfTeeth = HORSE_TEETH;
 break;
 }
 }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private int theSpecies = HORSE;

 - 371 -

 private int theNumberOfTeeth = HORSE_TEETH;

 private static final int HORSE_TEETH = 38;
 private static final int HEN_TEETH = 0;
 private static final int DELAY = 100;

 public static final int HORSE = 1;
 public static final int HEN = 2;
 }

You might expect the loop in HensTeeth to iterate forever, which it will do unless it
discovers a toothed hen. Use the HTML file shown in Listing 12.10 and run the applet, or
look ahead to Figure 12.7 to see what actually happens.

 Figure 12.7 Running the HensTeeth applet

 Listing 12.10 HensTeeth.html

 <HTML>

 <HEAD>
 <TITLE>HensTeeth.html</TITLE>
 </HEAD>

 <BODY>
 <H1>Do Hens Have Teeth? </H1>
 <APPLET CODE=HensTeeth HEIGHT=100 WIDTH=300>
 </APPLET>

 </BODY>
 </HTML>

Surprised? It appears that hens really do have teeth. How does this occur? The problem
is that the ShapeShifter changes its state non-atomically—that is, in two distinct
operations: first the species and then the number of teeth. It’s possible, therefore, for the
HensTeeth applet to access ShapeShifter’s state information just after the species
has been changed, but before the corresponding change is made to the number of teeth.
The result: hen’s teeth.

Now, your computer might not duplicate the results shown above. Variations in the speed
at which instructions are executed and in the way the operating system schedules thread
execution can affect the result. But, you do want your program to run on anyone’s
computer, not just your own, don’t you? The window during which the data is inconsistent
is a tiny one: Two adjacent statements change the state. If your computer seems to run
the program fine, just put a call to Thread.sleep() between each pair of statements
that updates the state, like this:

 - 372 -

 case HORSE:
 theSpecies = HEN;
 Thread.sleep(1000);
 theNumberOfTeeth = HEN_TEETH;
 break;

 case HEN:
 theSpecies = HORSE;
 Thread.sleep(1000);
 theNumberOfTeeth = HORSE_TEETH;
 break;

 You’ll soon be seeing hen’s teeth.

Strategies for Avoiding Race Conditions

 Hopefully, you’re convinced that avoiding race conditions is a worthwhile pursuit. If so,

this section will provide some help toward that end.

The race condition in ShapeShifter occurs because of a non-atomic update. Most
Java operations are atomic—they cannot be interrupted in midstream. You don’t have to
worry that someone will read the high-order byte of an int while your program is setting
the low-order byte. But, notice the very important word most. A major exception is any
operation on a long or a double; operations on these types are not guaranteed to be
atomic and can result in hen’s teeth. The more common way that race conditions arise,
however, is through multistatement updates, like those of ShapeShifter. Whenever a
partially complete multistatement update leaves an object (or class) in a state that does
not satisfy the class invariants, the potential for a race condition exists.

How can you design and write programs that cannot be victimized by race conditions?
Well, an equally fair question is, “How do you design and write programs that are free of
logic errors?” Or, more generally, “How do you avoid mistakes?”

 “Just as there is no patented formula for avoiding mistakes, there is no guaranteed

way to avoid race conditions.”

 Just as there is no patented formula for avoiding mistakes, there is no guaranteed way to

avoid race conditions. However, there are some useful strategies:

•

Avoid change: Some methods don’t really need to change an object’s state at all.
Every place you avoid changing state is one fewer potential source of race conditions.
Where you can, use local copies of values to avoid changing the fields of an object or
class.

•

Dynamically ensure exclusive access: You can’t write every method in a way that
avoids changing fields. Sometimes, methods must update the state of the containing
object. There, you can use the synchronized keyword to prevent multiple threads
from accessing a method, or critical section of a method, simultaneously. The next
section shows you how to use synchronized methods and synchronized
statements. The downside of using synchronized is that, by using it, you trade one
problem (safety, due to race conditions) for another (deadlocks and other problems,
due to liveness failures). You’ll learn about deadlocks in a subsequent section.

 - 373 -

•

Structurally ensure exclusive access: An extreme measure that can sometimes be
useful is to tag every method of a class with the keyword synchronized. Then, as
long as the class contains no fields that can be directly accessed without using
accessor or mutator methods, race conditions are ruled out. Unfortunately, other
things being equal, the more methods and statements that are synchronized, the
greater is the chance of a deadlock.

 “Unfortunately, other things being equal, the more methods that are synchronized,

the greater is the chance of a deadlock.”

Synchronized Methods and Statements

Java’s synchronized keyword can be used in either of two ways: to synchronize a
statement or to synchronize an entire method. The simpler alternative is to synchronize
an entire method. To synchronize a method, you simply add the keyword
synchronized as part of the method header, just before the return data type, like this:

 public synchronized void theMethod()
 {
 // statements of method
 }

A synchronized method can be executed by only a single thread at a time. If a thread is
executing the method, any other thread needing to execute the method will simply wait its
turn.

How does this work? Each Java object has an invisible one-bit field known as its
“monitor.” The monitor controls access to the object: It is set whenever a synchronized
method is executing. Once it is set, other synchronized methods of the object must wait
until the bit has been reset before they can execute. The monitor is said to be
“unavailable” (set) or “available” (reset). When the monitor is unavailable a thread must
wait before executing a synchronized method. When the monitor becomes available, the
thread can proceed. But first, it sets the monitor to unavailable so that other threads
attempting to access the method will be blocked. When the thread has finished executing
the method, it resets the monitor to available.

 Several methods for working with an object’s monitor are provided by the Object class.

These are summarized in Table 12.1.

 Table 12.1 Key Thread-Related Methods Of The Object Class

 Method Header

Function

 void notify()

Wakes up a single thread waiting on the Object’s monitor

 void notifyAll()

Wakes up all threads waiting on the Object’s monitor

 void wait(long
mills)

Waits to be notified of a change in the Object’s status, for
not longer than the specified number of milliseconds

 void wait()

Waits indefinitely to be notified of a change in the Object’s
status

 - 374 -

Synchronizing a statement is a more sophisticated way of controlling concurrency than
synchronizing a method and provides finer control. To synchronize a single statement,
you prefix the statement with the synchronized keyword and an expression that refers to
an object (or array because a Java array is represented as an object):

 synchronized (object-expression) statement

The statement will be executed only if the monitor of the object identified by object-
expression is available. The statement can, and usually does, take the form of a
compound statement enclosed within curly braces. The code contained in the statement
is called critical code because it is protected against simultaneous execution by multiple
threads. Here’s an example:

 synchronized (theObject)
 {
 // do something here
 theObject.notifyAll();
 }

Why does the example include a call to notifyAll()? A thread that finds itself unable to
proceed can invoke the wait() method, which puts it to sleep until some other thread
calls notify() or notifyAll() on the synchronized object. The notify() method
wakes the first thread that called wait() on the synchronized object. The notifyAll()
method wakes every thread that has called wait() on the object; access to the CPU goes
to the highest priority thread among them. By calling notifyAll(), the example code
makes sure that, if there are waiting threads, they are notified that they should wake up
and re-attempt to access the synchronized object. Of course, only one of them will
succeed, because the synchronized keyword guarantees that threads will execute the
statement one at a time.

Deadlocks and Other Liveness Problems

As you’ve learned, race conditions are easily prevented through liberal use of the
synchronized keyword. Your program, however, might then exhibit either of the
following symptoms:

 • Starvation: One or more threads might not get their “fair share” of access to the CPU.

Consequently, the tasks assigned to them might not get accomplished.

•

Deadlock: Two or more threads might be mutually waiting on one another, none of
them able to proceed. Such a condition can continue indefinitely, seen as a “hung”
program or system.

How do you avoid such liveness problems? Well, one answer is to remove all the
synchronized keywords from your program. Of course, that’s not the answer you want
to hear, because that throws you right back into the arms of safety problems. Moreover,
in a few odd cases, removing the synchronized keyword might actually create a
liveness problem. You might run into this if you boldly hack the source code for an AWT
class supplied by Sun and include the result in your program (not normally a
recommended practice, of course).

The better answer is that you must selectively remove (or sometimes, insert)
synchronized keywords from your methods. How can you know when it is safe to do
so? Here are some guidelines.

 - 375 -

 For accessor methods, you can safely remove the synchronized keyword if

 • The value returned by the accessor method never transiently takes on an invalid value

during execution of any mutator methods.

•

The value is atomically assignable (that is, assignable in a single operation). Note that
this precludes removing synchronized from accessor methods that return a long or
double.

 For mutator methods, you can safely remove the synchronized keyword if

 • All the conditions given above for accessor methods hold for the mutator method.

 • Values of any variable assigned by the mutator are valid at all times for all possible

execution sequences of accessor and mutator methods.

 • The method requires no special synchronized actions in response to special states of

variables it accesses (for example, semaphore variables).

 Note that, generally, it is not possible to remove the synchronized keyword from a

mutator method because its variables are rarely valid at all times.

How, then, can you have your cake and eat it too? How can you synchronize methods
and at the same time minimize the possibility of liveness failures? The answer is the
guarded method.

 “A guarded method is one that tests a condition when the method is initially

entered.”

A guarded method is one that tests a condition when the method is initially entered. If the
condition is true, the method proceeds. However, if the condition is false, the guarded
method waits for the condition to become true before it proceeds. By careful choice of the
condition tested, you can avoid a safety failure yet minimize the likelihood of a liveness
failure.

 How do you code a guarded method? One time-honored technique, certainly honored for

no other reason, is the so-called busy wait. Here’s an example:

 void busyWait()
 {
 while(! condition)
 Thread.currentThread().yield();
 // remaining statements of method
 }

As long as the condition remains false, the remaining statements of the method will not
be executed. Thus, it’s possible, by means of a wisely chosen condition, to avoid safety
problems. But the busy wait has serious drawbacks. Chief among these is the fact that
the loop can consume unbounded (as in enormous) amounts of CPU time. Moreover,
deadlocks can result if, for example, a low-priority thread has responsibility for changing
the condition to true. The yield() will not yield control to a lower-priority process and so
the condition might never change.

 - 376 -

 A better approach is the so-called guarded wait:

 protected synchronized void guard ()

 {
 while (! condition)
 {
 try
 {
 wait();
 }
 catch (InterruptedException ex) { ; }
 }
 }

 public synchronized void guardedMethod()
 {
 guard();
 // state-changing actions
 }

 // Note: call notifyAll() after any state change that
 // might allow a waiting method to run.

Here, a guard() method is defined so that several guarded methods can invoke its
services, avoiding needless duplication of code. The guardedMethod() uses guard()
to check whether it can proceed. If the condition tested by the guard is true, execution
can proceed. Otherwise, the guard() method executes a wait(), which suspends and
queues the thread. Inside any method that changes state in a way that might allow a
queued thread to proceed, you should call notifyAll() after the completion of the
change of state. This wakes all the queued threads, which again check their conditions,
one at a time (remember that the guard() method is synchronized). If the condition
has become true for a given thread, it will be allowed to proceed.

How is this different from the busy wait? The suspended threads consume no CPU time
except when they are periodically awakened to check a potentially significant change of
state. Moreover, unlike the busy wait, this technique will yield control even to low-priority
threads.

The guarded method technique is not the only option for achieving synchronization
without risking liveness. Another simple technique is to ensure that resources are
acquired, using synchronization, in a standard order. Perhaps surprisingly, it can be
demonstrated that this is a sufficient condition for avoiding deadlocks. It is also most
inconvenient, however, and not always possible to apply.

Other possible options include timeouts, which attempt to detect, and recover from,
possible deadlock situations by monitoring thread activity; and balks, which simply report
an error if an expected condition is not met.

Chapter 12 - Designing Concurrent Objects
Mitchell Waite Signature Series: Object-Oriented Design in Java

 - 377 -

 Stephen Gilbert and Bill McCarty

 Copyright © 1998 The Waite Group, Inc.

 Design Patterns for Concurrency

A popular means of synchronizing the activities of asynchronous objects is Java’s
Observable class and Observer interface, which are used as a team. Smalltalkers
(that is, Smalltalk programmers) know this design pattern as Model-View-Controller
(MVC).

The MVC pattern features an object known as the Observable (or subject) whose state
changes regularly. Client objects, known as Observers, can register with the
Observable to receive a message every time the state of the Observable changes. In
Java, this message is the update() message, and client objects must implement the
Observer interface in order to advertise their ability to handle the update() message,
which is the lone method defined by that interface.

 The MVC Applet

 Listing 12.11 shows the MVC applet, which demonstrates the use of the Observable-
Observer design pattern.

 “A popular means of synchronizing the activities of asynchronous objects is Java’s

Observable class and Observer interface, which are used as a team.”

 Listing 12.11 The MVC Class

 // MVC.java

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

 public class MVC extends Applet
 {
 // ===
 // APPLET METHODS
 // ===

 /* --Initialization----------------- */
 public void init()
 {
 setLayout(new GridLayout(2, 1));

 - 378 -

 theBarChart = new BarChart(theTrack);
 thePieChart = new PieChart(theTrack);

 Panel south = new Panel();
 south.setLayout(new GridLayout(1, 2));
 south.add(theBarChart);
 south.add(thePieChart);

 add(theTrack);
 add(south);
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private Trackball theTrack = new Trackball();
 private Applet theBarChart;
 private Applet thePieChart;
 }

Figure 12.8 shows the execution of the applet, which displays a simulated trackball in the
upper half of its window. By dragging the trackball using the mouse, you change its state,
given by its x-y position relative to the window boundaries, expressed as a percentage
ranging from 0 to 100. The current relative x-position is displayed by a bar chart at the
lower left of the window, and the current relative y-position is displayed by a pie chart at
the lower right of the window.

 Figure 12.8 Running the MVC applet

The BarChart class, shown in Listing 12.12, and the PieChart class, shown in Listing
12.13, are similar, differing only in their paint() methods. The BarChart, as you might
expect, paints a filled rectangle and the PieChart paints a filled arc.

 Listing 12.12 The BarChart Class

 // BarChart.java

 import java.applet.*;
 import java.awt.*;
 import java.util.*;

 public class BarChart extends Applet
 implements Observer

 - 379 -

 {
 // ===
 // CONSTRUCTORS
 // ===
 public BarChart(Subject subject)
 {
 subject.addObserver(this);
 }

 // ===
 // APPLET METHODS
 // ===

 /* --Painting----------------------- */
 public void paint(Graphics g)
 {
 super.paint(g);

 g.setColor(Color.black);
 g.drawString(“Relative X position:”, 0, 10);
 g.setColor(Color.red);
 g.fillRect(0, 15, theSize, 10);
 }

 // ===
 // IMPLEMENT OBSERVER
 // ===
 public void update(Observable subject, Object arg)
 {
 Point p = (Point) arg;
 theSize = p.x;
 repaint();
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===

 private int theSize = 10;

 }

 Listing 12.13 The PieChart Class

 // PieChart.java

 import java.applet.*;
 import java.awt.*;
 import java.util.*;

 public class PieChart extends Applet
 implements Observer

 - 380 -

 {
 // ===
 // CONSTRUCTORS
 // ===
 public PieChart(Subject subject)
 {
 subject.addObserver(this);
 }

 // ===
 // APPLET METHODS
 // ===

 /* --Painting----------------------- */
 public void paint(Graphics g)
 {
 g.setColor(Color.black);
 g.drawString(“Relative Y position:”, 0, 10);
 g.setColor(Color.blue);
 g.fillArc(0, 15, 50, 50, 0, 360*theSize/100);
 }

 // ===
 // IMPLEMENT OBSERVER
 // ===
 public void update(Observable subject, Object arg)
 {
 Point p = (Point) arg;
 theSize = p.y;
 repaint();
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private int theSize = 10;

 }

Each uses a constructor parameter, which specifies a Subject, to register itself as an
Observer. And, each receives update() messages whenever the state of the
Subject changes.

 The Subject interface is shown in Listing 12.14. The promise made by a Subject is

simply that it can handle the addObserver() method.

 Listing 12.14 The Subject Interface

 import java.util.Observer;

 public interface Subject
 {
 public void addObserver(Observer o);

 - 381 -

 }

Another small unit of code, the OwnedSubject class, is shown in Listing 12.15. An
OwnedSubject combines the properties of an Observable, the class it extends, and a
Subject, the interface it implements. You’ll see the need for the Subject and
OwnedSubject in a moment.

 Listing 12.15 The OwnedSubject Class

 // OwnedSubject.java

 import java.util.Observable;

 public class OwnedSubject extends Observable
 implements Subject
 {

 // ===
 // IMPLEMENTS SUBJECT
 // ===
 public void setChanged()
 {
 super.setChanged();
 }
 }

The Trackball class, shown in Listing 12.16, implements a trackball object that informs
clients of its relative x-y position within its bounds. The Trackball class extends the
Canvas class, inheriting a wealth of state and behavior as a consequence. Of course,
the Trackball also needs the state and behavior of an Observable. Because Java
does not allow multiple inheritance, the Trackball creates a captive Observable
object, which will do its bidding, and then implements the Subject interface, which
advertises its willingness to handle addObserver() messages from clients. The Subject
interface could also include other Observable methods, such as deleteObserver().
These were not needed in this program, however, and it was deemed simpler to ignore
them.

 Listing 12.16 The TrackBall Class

 // Trackball.java

 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;

 public class Trackball extends Canvas
 implements Subject,
 MouseListener,
 MouseMotionListener
 {
 // ===
 // CONSTRUCTORS
 // ===
 public Trackball()

 - 382 -

 {
 setBackground(Color.lightGray);
 addMouseMotionListener(this);
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Accessors---------------------- */
 public Point getState()
 {
 int width = getSize().width;
 int height = getSize().height;

 int relx = (int) (100.0 * (double) theX /
 ((double) width - DIAMETER) + 0.5);

 int rely = (int) (100.0 * (double) theY /
 ((double) height - DIAMETER) + 0.5);

 return new Point(relx, rely);
 }

 /* --Common Interface--------------- */
 public void paint(Graphics g)
 {
 g.setColor(Color.black);
 g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);
 g.drawRect(1, 1, getSize().width - 3, getSize().height - 3);
 g.drawRect(2, 2, getSize().width - 5, getSize().height - 5);
 g.setColor(Color.darkGray);
 g.fillOval(theX, theY, DIAMETER, DIAMETER);
 }

 // ===
 // IMPLEMENTS SUBJECT
 // ===
 public void addObserver(Observer o)
 {
 theSubject.addObserver(o);
 }

 // ===
 // IMPLEMENTS MOUSEMOTIONLISTENER
 // ===
 public void mouseDragged (MouseEvent event)
 {
 int x = theX + DIAMETER/2;
 int y = theY + DIAMETER/2;

 int px = event.getX();

 - 383 -

 int py = event.getY();
 int d = (int) Math.sqrt((x - px)*(x - px) +
 (y - py)*(y - py));

 if (isDragging || d < DIAMETER/2)
 {
 isDragging = true;

 theX = px - DIAMETER/2;
 theY = py - DIAMETER/2;

 int width = getSize().width;
 int height = getSize().height;

 if (theX < 0) theX = 0;
 if (theY < 0) theY = 0;
 if (theX > width - DIAMETER)
 theX = width - DIAMETER;
 if (theY > height - DIAMETER)
 theY = height - DIAMETER;

 theSubject.setChanged();
 theSubject.notifyObservers(getState());

 repaint();
 }
 }

 public void mouseMoved (MouseEvent event) { ; }

 // ===
 // IMPLEMENTS MOUSELISTENER
 // ===
 public void mouseReleased(MouseEvent event)
 {
 isDragging = false;
 }

 public void mouseClicked (MouseEvent event) { ; }
 public void mouseEntered (MouseEvent event) { ; }
 public void mouseExited (MouseEvent event) { ; }
 public void mousePressed (MouseEvent event) { ; }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private OwnedSubject theSubject = new OwnedSubject();
 private static final int DIAMETER = 20;
 private int theX = DIAMETER;
 private int theY = DIAMETER;
 private boolean isDragging = false;

 - 384 -

 }

The Trackball also implements the MouseListener and MouseMotionListener
interfaces, advertising its ability to handle messages that inform it of the current state and
position of the mouse. It uses these to discern when the mouse is “dragging” the circle
painted by the Trackball, which is not an object at all and, therefore, cannot actually be
dragged. This feat is accomplished by checking whether the mouse is positioned over the
circle while the left button is down, indicating that a drag is in progress. Even on fast
computers, the mouse tends to get ahead of the circle, so once a drag has begun, the
Trackball continues processing the drag until the mouse button is released, regardless
of the mouse position.

During a drag, the Trackball reports its position to all registered Observers by calling
setChanged(), followed by notifyObservers(). Each registered Observer then
receives an update() message. Although the JDK documentation provides scant
information on the setChanged() method, study of the source code for the
Observable class shows you that the update() messages are only sent if
setChanged() is called. In the same manner, you can also learn an important fact
about the way notification is accomplished: It is synchronous notification, performed by a
single thread, that sends messages one-by-one to each registered Observer. The next
example program shows how to overcome that limitation, providing potentially greater
throughput and availability.

Listing 12.17 shows the HTML file used to execute the MVC applet. If you haven’t run the
applet, do so now. You’ll probably find that it’s fun to use. Don’t get so caught up,
however, that you neglect to finish the chapter.

 Listing 12.17 MVC.html

 <HTML>

 <HEAD>
 <TITLE>MVC.html</TITLE>
 </HEAD>

 <BODY>
 <H1>Observable/Observer Pattern </H1>
 <APPLET CODE=MVC HEIGHT=300 WIDTH=300>
 </APPLET>

 </BODY>
 </HTML>

 The ConcurrentMonitor Application

As you just learned, the standard Java Observer-Observable pattern synchronously
notifies client Observers of changes to the subject Observable. In this section, you’ll
learn how to create a threaded version of this pattern.

Listing 12.18 shows the ConcurrentSubject class, which performs the functions of
a multithreaded Observable. Rather than using a private Observable object, it
registers Observers (more accurately,ConcurrentObservers) using a Vector.
Returning a non-atomic long value as its state, it defines a getState() accessor
method and a setState() mutator method. The setState() method accomplished
the asynchronous notification by using a helper class named Notifier.

 - 385 -

 Listing 12.18 The ConcurrentSubject Class

 // ConcurrentSubject.java

 import java.util.Vector;
 import java.util.Enumeration;

 public class ConcurrentSubject
 {
 // ===
 // CONSTRUCTORS
 // ===
 public ConcurrentSubject(long state)
 {
 theState = state;
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Mutators----------------------- */
 public synchronized void addObserver(ConcurrentObserver o)
 {
 theObservers.addElement(o);
 }

 public synchronized void deleteObserver(ConcurrentObserver o)
 {
 theObservers.removeElement(o);
 }

 public synchronized void setState(long state)
 {
 theState = state;

 Enumeration e = theObservers.elements();
 while (e.hasMoreElements())
 {
 ConcurrentObserver o =
 (ConcurrentObserver) (e.nextElement());

 new Thread(new Notifier(this, o)).start();
 }
 }

 /* --Accessors---------------------- */
 public synchronized long getState()
 {
 return theState;
 }

 - 386 -

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 protected long theState;
 protected Vector theObservers = new Vector();

 }

The Notifier class, shown in Listing 12.19, does the work of notifying registered clients
of a change in the subject’s state. Implementing the Runnable interface, each
Notifier runs as a separate thread, quickly putting all client objects on notice of any
change, even if some require some time to handle the change. These might otherwise
“starve” other client objects, delaying their notification. The technique shown in
Notifier works best on operating systems that perform so-called round robin
scheduling, time slicing the execution of threads within each priority level so that every
thread gets a share of available CPU time. Microsoft Windows 95 and Windows NT are
among those that do so.

 Listing 12.19 The Notifier Class

 class Notifier implements Runnable
 {

 // ===
 // CONSTRUCTORS
 // ===
 Notifier(ConcurrentSubject s, ConcurrentObserver o)
 {
 theSubject = s;
 theObserver = o;
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 theObserver.update(theSubject);
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private ConcurrentSubject theSubject;
 private ConcurrentObserver theObserver;
 }

Listing 12.20 shows the ConcurrentObserver class, which registers to receive
updates and reports them as they are received. A real-world application would likely
perform more extensive processing in response to update() messages.

 Listing 12.20 The ConcurrentObserver Class

 // ConcurrentObserver.java

 - 387 -

 public class ConcurrentObserver
 {
 // ===
 // CONSTRUCTORS
 // ===
 public ConcurrentObserver(ConcurrentSubject s)
 {
 theID = theNextID;
 theNextID++;

 theSubject = s;
 theState = s.getState();
 s.addObserver(this);
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Mutators----------------------- */
 public synchronized void update(ConcurrentSubject s)
 {
 if (s != theSubject)
 throw new Error(
 “Concurrent Observer supports only a single subject”);

 long last_state = theState;
 theState = theSubject.getState();

 if (theState != last_state)
 showState();
 }

 /* --Accessors---------------------- */
 public void showState()
 {
 System.out.println(“Observer “ + theID +
 “ reports “ + theState);
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 protected static int theNextID = 1;
 protected int theID;
 protected long theState;
 protected ConcurrentSubject theSubject;

 }

 The ConcurrentMonitor class, shown in Listing 12.21, is simply a test bench that you

 - 388 -

can use to execute the classes that make up the concurrent Observable-Observer
pattern. It creates instances of the relevant objects and then enters a timed loop that
regularly changes the state of the ConcurrentSubject object.

 Listing 12.21 The ConcurrentMonitor Class

 // ConcurrentMonitor.java

 public class ConcurrentMonitor extends Thread
 {

 // ===
 // MAIN METHOD
 // ===
 public static void main(String args[])
 {
 new ConcurrentMonitor().start();
 }

 // ===
 // CONSTRUCTORS
 // ===
 public ConcurrentMonitor()
 {
 theSubject = new ConcurrentSubject(0);
 theObservers = new ConcurrentObserver [OBSERVER_COUNT];

 for (int i = 0; i < OBSERVER_COUNT; i++)
 {
 theObservers[i] = new ConcurrentObserver(theSubject);
 }
 }

 // ===
 // IMPLEMENT RUNNABLE
 // ===
 public void run()
 {
 System.out.println(“Running ...”);

 while (true)
 {
 System.out.println(“State=” + theSubject.getState());
 theSubject.setState(theSubject.getState() + 1);
 try
 {
 Thread.sleep(DELAY);
 }
 catch (InterruptedException e) { ; }
 }
 }

 // ===

 - 389 -

 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private static final int OBSERVER_COUNT = 2;
 private static final int DELAY = 1000;
 private ConcurrentSubject theSubject;
 private ConcurrentObserver [] theObservers;
 }

Figure 12.9 shows the execution of the ConcurrentMonitor class. Figure 12.10 shows
an interaction diagram for the concurrent Observable-Observer pattern. Notice how
the asynchronous start()/run() permits the update() and getState() methods
to execute in separate threads.

 Figure 12.9 Running the Concurrent-Monitor application

 Figure 12.10 Interaction diagram for the concurrent Observer-Observable

pattern

 “Java’s facilities for creating and controlling threads allow your programs to include

concurrent objects that execute, or appear to execute, simultaneously.”

 Summary

 - 390 -

Java’s facilities for creating and controlling threads allow your programs to include
concurrent objects that execute, or appear to execute, simultaneously. Threads can help
programs perform better, making them more responsive to events.

However, threaded programs are subject to several kinds of bugs that do not affect
nonthreaded programs. Race conditions, owing to lack of proper synchronization, can
corrupt the states of objects and classes. Liveness failures, owing to improper
synchronization, can result in sluggish performance or hung programs or systems.

Guarded methods using Java’s synchronized and wait keywords can help the
programmer achieve synchronization at a reasonable price. The concurrent version of the
Observable-Observer design pattern can also assist in coordinating the actions of
concurrent objects.

Questions

 For multiple-choice items, indicate all correct responses.

 1. True or False. All object-oriented languages, including Java, provide support for

concurrent programming.

 2. Some reasons for using threads in your program include which of the following:

 a. Improved response to events.

 b. Race conditions.

 c. Support for parallel computing on multiprocessor systems.

 d. LaGrange multiplication.

 3. One potential drawback of using threads is the possibility of program deadlock due to

failure to satisfy __________ conditions.

 4. A thread is initiated by using the __________ method, which causes the __________

method of the thread to execute.

 5. Ways of creating threads in Java include which of the following:

 a. Extending the Thread class.

 b. Implementing the Runnable interface.

 c. Using direct access to native threads.

 d. Passing an object reference to the Object.createThread() method.

 6. The run() method of a thread can/cannot throw an IOException.

 7. The Booch-style interaction diagram shows objects and classes along the

__________ edge of the diagram.

 8. Non-atomic updates may jeopardize the ability of a program to satisfy __________

conditions:

 - 391 -

 a. invariant

 b. busy wait

 c. observable

 d. safety

 9. The two Java data types for which atomic updates are not guaranteed are

__________ and __________.

 10. The guarded wait typically consumes more/fewer CPU cycles than the busy wait.

Exercises

1.

Using the Observable-Observer pattern, design a software distribution system.
Clients wishing to execute a program can use the system to determine if an updated
version of the program is available, and download it. The server should be capable of
handling up to 10 simultaneous clients.

2.

Study Java’s APIs for threads and prepare a set of tables, one for each class or
interface, that describe the constructors, constants, and public methods of the class
or interface. Also prepare a set of example code sections that demonstrate the use of
the Java language keywords related to threads.

3.

Design a scheduling system that provides round robin scheduling of threaded objects
for use on systems that do not provide such scheduling in their implementation of
Java. Round robin scheduling prevents a thread from running indefinitely if other
threads of the same priority are ready to run. It is implemented, in its most basic form,
using a time slice, which specifies the maximum length of time a process can use the
CPU when other equal-priority processes are ready to run.

4.

Choose a program that includes a graphical user interface that allows the user to
execute any of a number of functions. Design a new version of the program that allows
several such functions to execute simultaneously. Pay careful attention to the possibility
of conflict, which might compel you to forbid certain functions from executing
concurrently. But, strive to provide as much concurrency as possible. Also show how
adding concurrency will change the user interface.

Exercises

1.

Using the Observable-Observer pattern, design a software distribution system.
Clients wishing to execute a program can use the system to determine if an updated
version of the program is available, and download it. The server should be capable of
handling up to 10 simultaneous clients.

2.

Study Java’s APIs for threads and prepare a set of tables, one for each class or
interface, that describe the constructors, constants, and public methods of the class
or interface. Also prepare a set of example code sections that demonstrate the use of
the Java language keywords related to threads.

3.

Design a scheduling system that provides round robin scheduling of threaded objects
for use on systems that do not provide such scheduling in their implementation of
Java. Round robin scheduling prevents a thread from running indefinitely if other
threads of the same priority are ready to run. It is implemented, in its most basic form,
using a time slice, which specifies the maximum length of time a process can use the
CPU when other equal-priority processes are ready to run.

 - 392 -

4.

Choose a program that includes a graphical user interface that allows the user to
execute any of a number of functions. Design a new version of the program that allows
several such functions to execute simultaneously. Pay careful attention to the possibility
of conflict, which might compel you to forbid certain functions from executing
concurrently. But, strive to provide as much concurrency as possible. Also show how
adding concurrency will change the user interface.

 Chapter 13: Designing Remote Objects

 Overview

From the time of Marco Polo in the middle ages, and even before, trade between
communities has been one of the driving forces in civilization. As a result of trade, you
can go to your local grocery store and purchase Spanish olives, Hawaiian pineapples,
Swiss cheese, and Italian salami. As Adam Smith pointed out in The Wealth of Nations,
trade allows people to concentrate on their “core competencies” and ultimately leaves
everyone better off.

 “Object-oriented programs are communities of objects and, like human

communities, they benefit from specialization and ‘trade.’”

Object-oriented programs are communities of objects and, like human communities, they
benefit from specialization and “trade.” If you’ve done graphics programming involving
fractals or ray tracing, or written programs involving complex calculation, you’ve probably
wished you could “hand off” some of the work to an object running on a Cray
supercomputer, rather than sitting around waiting for your 166 megahertz Pentium to
finish. What if, instead of just the processing power of the machine setting on your
desktop, you could harness the power of any machine on the network? Imagine the
possibilities. This is the promise of using remote objects.

In Chapter 12, “Designing Concurrent Objects,” you saw how objects on separate
computers could communicate with one another via sockets. With sockets, the client
process running on your machine sends a stream of bytes to a server machine running
somewhere on the network, telling the server what operation you want it to perform. The
server handles your request and returns a response by sending you back another stream
of bytes.

You may have wished that things were simpler, that you could send messages to objects
living on remote servers in the same way you send messages to local objects: by simply
invoking a method. The problem is that, to invoke a message, you must have a reference
to an object. How can you get a reference to an object running inside the Java Virtual
Machine of a computer tens, or even tens of thousands, of miles away? This task is the
job of Java’s Remote Method Invocation (RMI) facility, which solves this problem along
with several important related problems.

RMI, however, is not the only way, and possibly not the best way, to access remote
objects. This chapter focuses on RMI because RMI is included in the Java Developer’s
Kit. You can download RMI and experiment with it without tapping your bank account. To
give you some information about alternatives to RMI, this chapter also includes a tour
that will acquaint you with the most prominent options. When you’re done, you’ll
understand the basics of accessing remote objects and be prepared to shell out some of
your earnings to explore some of the more commodious, but more expensive,
alternatives.

 In this chapter you will learn:

 - 393 -

 • What remote objects are, and how they work.

 • What advantages and disadvantages are posed by various ways of accessing remote

objects.

 • How to implement remote objects using RMI.

 “When computers cooperate, the whole can be greater than the sum of the parts. ”

 Remote Objects

Not so long ago, high-speed computer networks were among the exotica of computing,
the property only of the prosperous few organizations that could afford the enormous
costs of telecommunications equipment and line charges necessary to link remote sites.
Today, all that has changed; even consumer operating systems like Windows 95 include
support for local area networking, and many individuals use Ethernet networks to link
computers in their homes.

Once your computer is joined to a network, the notion that your Java objects should talk
only to one another, and never to Java objects on other computers, might strike you as
idiosyncratic as wooden false teeth. “The network is the computer,” a famous marketing
slogan of Sun Microsystems, Inc., makes its point well. When computers cooperate, the
whole can be greater than the sum of the parts.

 REMOTE PROCEDURE CALLS

How can you convince your computers to cooperate with each other? One approach is to
use a technology called Remote Procedure Call (RPC). RPC allows a program running
on one computer to call a procedure that executes on another computer. If this sounds to
you like a non-object-oriented approach, you’re right. RPC inhabits the world of
structured programs, where encapsulation of related data and behavior is unknown. But,
if you know a little about how RPC works, you’ll quickly grasp how today’s more
sophisticated object-oriented facilities work.

 Figure 13.1 shows two processes communicating via RPC.

 Figure 13.1 Two processes communicating via RPC

 In RPC, a network connection to a remote computer is first made by using sockets, the

standard way of communicating over a TCP/IP network. After a socket connection is

 - 394 -

made with the server computer, you can invoke a function on the remote machine, much
like you would if you were starting a program using a telnet connection. Calling a
function, though, is a little different than just running a program. When you call a function,
you usually need to pass arguments to the function and generally want to get some
results back. RPC establishes a standard method for sending your arguments via a
socket to the function residing on the server, and for sending the return value via a socket
back to your machine. This process is termed parameter marshaling, and is performed
automatically by RPC.

 “Using RPC is much more convenient than using sockets alone.”

Using RPC is much more convenient than using sockets alone. When writing a pure
socket-based client or server, you must marshal the parameters yourself. If, like the
CipherServer example program in Chapter 12, you have only one or two kinds of
messages, this may not be too tedious. But, coding the logic to handle dozens of
messages is not only boring, but error-prone. Using RPC to make remote procedure calls
allows you to work at a higher level of abstraction than the byte stream used for pure
socket programming, so it’s less complex.

Whereas RPC solves the problem of calling procedures located on different machines, it
doesn’t allow you to call object or class methods, which is what you need to get your
objects communicating. But, assuming you had a mechanism like RPC that would
marshal the parameters of a method call to a remote server object, what else would you
need before your client could access the remote object? You’d need a reference to the
object on the remote server, of course. But, this presents an interesting chicken-and-egg
problem.

In general, when a client needs a service, it asks a server. When your Web browser
wants a Web page, it sends out an HTTP request to a Web server. In a like manner,
you’d expect that the way to get a reference to an object on a remote server is to simply
ask a server for it. But, there are two problems with this. First, what server should you
ask? Second, how should you make your request? Figure 13.2 shows how the first part
of this problem is solved.

 Figure 13.2 Finding a remote object’s server

When working with remote objects, the computer that houses the object you want to use
runs a special registry service. This registry service is a program that listens for client
requests on a designated port, in much the same way that a Web server listens for HTTP
requests or a mail server listens for SMTP requests. And, just as with the Web server and
mail server, all you need to know to access the registry is the name of the host machine.

 - 395 -

Your program then combines the remote host name and the port to form the socket
address of the registry service to which you simply open a connection. Once the
connection is open, your program asks the remote registry to give you a reference to the
remote object you want to use, and the registry complies. Problem solved.

 “ORBs make remote clients and servers much easier to program, because they do

most of the hard work for you.”

 OBJECT REQUEST BROKERS

Sometimes, even if you know how something works, it’s easier to hand off the work to an
expert. Many people sell their homes themselves, but most use the services of a real
estate broker. Likewise, when it comes to love and marriage, you might prefer the do-it-
yourself method, but that doesn’t stop your friends from fixing you up on Saturday night.

Fixing up your objects to connect with a suitable mate on a remote machine can similarly
be done behind the scenes by special software running on the client and the server.
Software of this sort is called an object request broker (ORB). ORBs make remote clients
and servers much easier to program, because they do most of the hard work for you.

 Figure 13.3 shows how a typical ORB works. The ORB includes parts running on both

the client and the server.

 Figure 13.3 How an Object Request Broker (ORB) works

 “The beauty of using an ORB, however, is that you can use it even if you don’t

understand exactly how it works!”

On the client side (your local machine), the ORB creates an object known as a server
stub. Your program treats this stub, which runs in the same Java Virtual Machine (JVM)
as your program, as a “stand-in” for the object that lives on the remote server. When you
send a message to this stand-in object, the stub gathers up all the parameters and
marshals them over the network, where it hands them over to a server skeleton.

 - 396 -

The server skeleton is an object running on the remote server that acts as a stand-in for
your local object. The skeleton unmarshals the parameters that you’ve sent and then
invokes the requested method. As soon as the method finishes running on the remote
machine, the skeleton takes the results provided by the method, marshals them, and
transmits them back to the server stub running on your machine. The stub then
unmarshals the parameters and hands them over to your client object, completing the
method call.

If this seems unnecessarily complex, you might want to look at Figure 13.4, which shows
an object interaction diagram that summarizes the process. The beauty of using an ORB,
however, is that you can use it even if you don’t understand exactly how it works!

 Figure 13.4 Object interaction within an ORB

The special stub and skeleton objects used by an ORB are known generically as proxies,
because each “stands in” for the client or server during a remote method invocation.
Their purpose is to present a simpler interface to the client and server. The client, for
example, communicates with the stub, using it as a stand-in for the server. Because the
stub runs in the same JVM as the client, the client sees the server (through the stub
proxy) as if it were a local object running on the same JVM. The complexities of remote
object invocation are, therefore, hidden from the client. The skeleton provides the
corresponding service to the server, which sees the client as if it were a local object.

At the most basic level, the functions provided by an ORB include establishing an object
registry and providing transparent local/remote access to objects. A typical ORB, however,
may provide services beyond these. For example, several ORBs provide built-in support for
security and transactions.

Remote Computing Alternatives

RPC and ORBs are generic solutions to the problems of accessing remote objects. By
now you’re probably ready for more specific details. In Java, if your application needs to
access remote objects, there’s no shortage of ways this can be done. This section
examines five remote computing alternatives for Java software:

 • Sockets

 • Common Gateway Interface (CGI)

 • Common Object Request Broker Architecture (CORBA)

 - 397 -

 • Remote Method Invocation (RMI)

 • Distributed Component Object Model (DCOM)

 “While flexible, using sockets to communicate between client and server can be

cumbersome because of all the details you have to handle yourself.”

 SOCKETS

You met sockets in Chapter 12, “Designing Concurrent Objects,” where they were used
to build a simple client-server application. While flexible, using sockets to communicate
between client and server can be cumbersome because of all the details you have to
handle yourself. To create a simple client-side connection using sockets, you must do the
following:

 • Locate the remote server and open a socket connection to it.

 • Marshal the parameters to be transmitted, including a value that identifies the service

you’re requesting.

 • Transmit the parameters.

 • Listen for, and receive, the response from the server.

 • Decode the response from the server, unmarshaling its components if necessary.

The most complex part of all this is sending and receiving parameters. If the parameters
you’re sending to the server, and the value it returns, are primitive (that is, non-object)
values, the process is fairly straightforward. If, however, you want to send an object as a
parameter, or receive one as a return value, things get more exciting. To send objects via
a socket connection, you must first extract each of the object’s attributes, then marshal
and transmit them. Of course, if any attribute of your object is itself an object, you must
apply this technique recursively—only primitive values can be sent across the socket
stream.

Implementing the server-side of this connection is no easier than implementing a client.
The server object must unmarshal any parameters it receives, decode the value telling it
what service to perform, and so on.

All of this marshaling and unmarshaling might lead you to wish that Java included an
RPC facility, which would at least help you pack and unpack your arguments. Rather than
just RPC, however, Java provides the Remote Method Invocation (RMI) facility, which
goes RPC one better. You’ll learn more about RMI in a subsequent section. But for right
now you might wonder why you might choose to use sockets to communicate with
remote objects when RMI is available? Here are two possible reasons:

•

To communicate with non-Java objects and programs: Not all software on
networks is written in Java—at least, not yet. Until it is, from time to time you’ll need to
interface a Java program with a non-Java program. Sockets are a good way to do this,
because data transmitted over a socket is reduced to its lowest common denominator:
a stream of bytes. A program written in almost any language, running on almost any
platform, can deal with a stream of bytes.

 • To communicate as efficiently as possible: The convenience of RPC, RMI, and

 - 398 -

other facilities extracts a price in the form of processing overhead. A well-designed
socket interface between programs can outperform one based on such higher-level
facilities. If your server must handle large volumes of requests, this may be important
to you.

As usual, deciding whether to use sockets, RMI, CORBA, or some other facility involves
a design tradeoff. A program written using sockets is larger and more complex than one
written using RMI, yet may perform better. This choice is analogous to the choice of
programming languages: a program written in assembly language can, in principle,
outperform one written in C or Java. But an assembly program is much harder to write, is
likely to contain more errors, and is more difficult to maintain than a program written in a
high-level language.

 “As usual, deciding whether to use sockets, RMI, CORBA, or some other facility

involves a design tradeoff.”

 COMMON GATEWAY INTERFACE (CGI)

A second, very popular way of communicating over a computer network (possibly the
most popular way), is via the Common Gateway Interface, or CGI. CGI is a way to
program your Web server so that it can offer more than the static form of HTML
documents. When a client requests a CGI page, the server runs a program (identified by
a special form of URL) that builds an HTML page on the fly. The server then transmits
this dynamically constructed page back to the client. The CGI program that builds the
page can perform a simple computation, access a database, access another host, or do
almost anything necessary to acquire the data it includes in the requested page. Figure
13.5 illustrates the operation of CGI.

 Figure 13.5 The operation of the Common Gateway Interface (CGI)

The handy thing about CGI is that it’s supported by every Web browser and essentially
every Web server. Even a Java applet or application can easily access a CGI page by
using:

 new java.net.URL(theURL).getConnection().getContent()

 where theURL specifies the URL of the CGI page.

 - 399 -

 “The handy thing about CGI is that it’s supported by every Web browser and

essentially every Web server.”

 Limitations of CGI

 Despite its ease of use and popularity, however, CGI has some serious drawbacks:

•

CGI is slow. Tests reported by Orfali and Harkey, leading authorities on client-server
computing, show that CGI is about 200 times slower than IIOP, a popular inter-object
protocol.

•

CGI can compromise server security. CGI is a jerrybuilt extension to Web servers.
Many sites have been compromised by hackers who have exploited weaknesses
arising from the inadequate integration between a Web server and the CGI programs it
spawns.

•

CGI cannot store state information. Hypertext transfer protocol (HTTP), the protocol
used by Web servers, is a stateless protocol. This means that Web browsers (and
other HTTP clients) are connected to Web servers only for the duration of a single
request. A browser cannot ask the server to remember who it is, or anything about its
previous requests. The client must store this information and re-transmit it with any
request that needs it.

 The Servlet Alternative

The limitations of the CGI architecture led Sun to introduce its own alternative based on
Java, the JavaServer architecture. JavaServer introduces the servlet, which is a Java
program that in many ways resembles an applet, but that runs on the server rather than
on the client. Clients can request that servlets be started and can obtain results produced
by servlets. Like client-side applets, servlets run under control of a security manager that
monitors their activities, preventing them from performing actions that might threaten
system security. Moreover, servlets, though they are written in Java (an interpreted
language), run more efficiently than CGI scripts.

Because servlets are written in Java, they can invoke any of Java’s APIs or facilities.
Thus, for example, a servlet could use RMI to communicate with a second remote server,
or with the originally requesting client. This chameleon characteristic makes it difficult to
anticipate the typical ways in which servlets may someday come to be used, if they gain
a permanent foothold in the computing marketplace.

When might you choose to use CGI as a means of communicating with a remote server?
If performance is not a major concern and you’re concerned with providing access to a
wide variety of clients (for example, the public), then CGI has important strengths. If, on
the other hand, you are creating applications that will be confined to your own
organization, some other approach will probably serve you better. Servlets are an
interesting alternative because they provide the same strength as CGI (compatibility with
virtually every browser) with fewer drawbacks.

 COMMON OBJECT REQUEST BROKER ARCHITECTURE

(CORBA)

The third remote computing alternative available to you is the Common Object Request
Broker Architecture, or CORBA. Despite its name, CORBA is not an ORB. CORBA is a
document, a standard developed, and agreed to, by the over 700 members of the Object
Management Group (OMG). The standard was developed to make sure that ORBs
created by one vendor would work (interoperate) with ORBs created by another. After all,

 - 400 -

what’s the point in having distributed objects if all the machines have to be running the
same ORB? It would be like having the World Wide Web divided up into fiefdoms where
those running Microsoft’s browsers could only contact sites that use Microsoft’s servers,
and Netscape’s browsers were limited to accessing only Netscape-controlled sites. The
beauty of HTTP and the Web is that it makes no difference which browser or server you
are using; they can all interoperate by following the standards. What HTTP does for the
World Wide Web, CORBA attempts to do for distributed objects.

 “What HTTP does for the World Wide Web, CORBA attempts to do for distributed

objects.”

 The CORBA standard has three main elements:

 • The Internet Inter-ORB Protocol

 • The Interface Definition Language

 • System services and facilities

The Internet Inter-ORB Protocol (IIOP) enables your objects to interact across a network,
using an ORB. IIOP forms an object bus that can link your objects and ORBs into
systems, much the same way that the hardware bus in your personal computer links the
RAM memory, the CPU, and the expansion cards. IIOP is analogous to HTTP.

The Interface Definition Language (IDL) allows you to describe the interface of an object,
regardless of its implementation language. By using IDL to describe the interface of an
object and then plugging that object into the object bus with IIOP, you can make your
object’s methods available to any other object on the bus. You can also use IDL to
encapsulate (or wrap) a non-object–oriented legacy system, so that its data and behavior
can be made available via the object bus. Even database stored procedures can be
described using IDL.

The CORBA system services and common facilities provide general-purpose functionality
to objects traveling on CORBA’s IIOP bus. One example is the interface repository,
implemented as a distributed database, that contains IDL descriptions of all the objects
on the bus. Using the repository, your objects can discover and use servers without being
aware of the servers’ locations at runtime. CORBA provides many other services and
facilities, including a security service that supports authentication and access control lists.

 CORBA and Java

While the OMG has yet to issue official Java bindings for CORBA (that is, specifications
that allow Java systems to access, and be accessed by, other CORBA software), several
vendors have already brought to market products that allow Java programs to access
CORBA ORBs. Appendix C includes information about some of the offerings that were
available at the time of writing.

 Evaluating CORBA

 Why would you choose to use CORBA over some other method of communicating with

remote objects? CORBA has a number of advantages:

 • It’s much easier to use than sockets.

 - 401 -

 • It enables access to software, including so-called legacy systems, running on a variety
of platforms.

 • It is an open standard, supported by many vendors and many products.

 • It scales well, enabling the construction of large systems.

 “RMI helps with the two hardest problems in implementing remote objects: getting

references to remote objects and passing messages to and from them.”

Well, if CORBA’s so great, why would you choose to use some other method, instead of
CORBA? The most likely reason would be cost. Sockets, RMI, and DCOM are free, but
acquiring an ORB will cost you a bit. The cost is not high, however, relative to the labor
costs of software construction. Whereas the cost of an ORB might tip the balance against
CORBA for your own experimentation, it is less likely to be a factor in deciding whether to
use CORBA to implement a “real” information system.

 REMOTE METHOD INVOCATION (RMI)

Your fourth choice for creating remote-object systems is the Remote Method Invocation
(RMI) facility that is built into the 1.1 version of JDK. You might think of RMI as a poor
man’s CORBA. It helps with the two hardest problems in implementing remote objects:
getting references to remote objects and passing messages to and from them. Despite its
attractiveness, however, RMI lacks support for many of the useful services provided by
CORBA, including CORBA’s interface repository and security facilities. With RMI, you’ll
either have to do without these, or write them yourself, which might turn out to be more
than you bargained for.

Another thing you should consider when evaluating RMI is its status as a proprietary Sun
technology, rather than an open standard. Furthermore, RMI is a Java-only technology,
and won’t give you any help with non-Java programs. So, RMI’s base of support and
scope of application are both significantly narrower than CORBA’s. These factors are
significant disadvantages.

If that’s the down side, then what’s the up side? Why might you choose to use RMI? Well,
for one thing, because RMI is part of the JDK, it’s free! That’s the main reason the
upcoming example in this chapter uses RMI. You can run it yourself without first
purchasing an ORB.

 “RMI makes it easy to download Java classes and stubs so that object behaviors,

not just object data, can be sent over the network. ”

In addition to an unbeatable price, however, RMI does provide one important capability
you won’t get with CORBA: RMI makes it easy to download Java classes and stubs so
that object behaviors, not just object data, can be sent over the network. Because it’s a
multi-platform standard, CORBA doesn’t address software portability of the sort Java
delivers. After all, why bother transmitting C++ object code over the network when the
receiving host may well have a different hardware architecture and, therefore, not be able
to execute the code anyway?

 - 402 -

Of course, a CORBA program could use IIOP to transfer Java bytecodes from one host
to another. So, it’s not that CORBA can’t handle software portability; it’s merely that it
doesn’t directly support it. But the same thing, of course, could be said of CORBA
services and facilities not supported by RMI. It’s not, for example, that RMI can’t handle
security; it’s merely that it doesn’t directly support it.

 DISTRIBUTED COMPONENT OBJECT MODEL (DCOM)

A final alternative approach to remote computing is Microsoft’s Distributed Component
Object Model (DCOM). You may have heard of ActiveX components even if you’ve not
heard of DCOM; an ActiveX component is simply another word for a DCOM object.

What are the advantages and disadvantages of using DCOM technology? Like RMI,
DCOM is a closed standard. Unlike RMI, however, DCOM is only supported on Microsoft
Windows systems. DCOM also has its share of warts. For one thing it is hard to
configure. Orfali and Harkey describe DCOM as “the configuration from hell.”

As another example, DCOM does not support garbage collection. It is the responsibility of
a client to notify a server when an object is no longer needed. This arrangement may be
satisfactory within the context of a single computer, but it is entirely unsatisfactory within
the context of remote objects, where network connections come and go. A disconnected
client can saddle a server with a redundant object, one that will not disappear until the
server is restarted, continuing to hold resources (such as memory) in the meantime. An
overabundance of such objects would seriously compromise server performance.

Are there any situations where DCOM might be the distributed architecture of choice?
Yes. If you’re only interested in using Microsoft Windows-based clients and servers and
you want the tightest possible integration between your applications and the Windows
application programming interface (API), then DCOM may be exactly your ticket.
However, for those who embrace the Java vision of open and portable computing, DCOM
is simply not an option.

 WEIGHING YOUR REMOTE COMPUTING ALTERNATIVES

Table 13.1 summarizes the key advantages and disadvantages of each of the alternative
approaches to implementing remote objects. As you can see, the clear winner, except for
a handful of specialized cases, is CORBA.

 Table 13.1 SUMMARY OF REMOTE COMPUTING ALTERNATIVES

 Technology

Cost

Ease of use

Scope of
services

Scope of application

 Sockets

Low

Low

Low

High

 CGI

Low

Low

Low

High

 CORBA

High

High

High

High

 RMI

Low

High

Low

Low

 DCOM

Low

Low

Low

Low

 - 403 -

In the table, “scope of services” refers to the range and power of facilities and services
provided by the technology; “scope of application” refers to the range of platforms,
products, and vendors embracing the technology.

 A Hands-On Look at RMI

If you’re a Java programmer and have read this far, you’re doubtless in the thralls of code
withdrawal. Good news, relief is on its way. In this section, you’ll get an up-close look at a
remote server and a remote client, each implemented using RMI. As explained, RMI was
chosen as the technology because you can run the example yourself, using packages
included in the standard JDK.

 “Design starts by looking at a problem from the client’s point of view.”

The example program consists of a client applet that presents a list of names. To use the
applet, first select one or more of the names from the list; then click the Set Meeting
button. When you call for a meeting, the applet will use RMI to transmit the names of the
participants you’ve chosen to the server program (which must be running concurrently). A
method in the server object schedules the meeting, determines an appropriate time and
place, and then sends the information back to your applet, which displays your new
appointment on the screen.

 It sounds simple, doesn’t it? Let’s take a look and see how you’d implement this using

RMI. Then we’ll come back and see how you’d do the same thing using CORBA.

 IMPLEMENTING THE SERVER

As you learned in Chapter 4, “Encapsulation: Classes and Methods,” design starts by
looking at a problem from the client’s point of view. Even though you’re going to be
writing a server, you want to start by defining how that server will appear to the client
objects that use it. If you look at Listing 13.1, you’ll see the VenueInterface, which is
an interface that defines the server’s attributes and methods as seen and used by the
client object.

VenueInterface is a very simple interface; it contains only a single method named
setMeeting(), which returns a Venue object describing a meeting. From the point of
view of those who use the server, that is all it does. The client software calls
setMeeting() and the server takes care of the rest.

There are several implementation details you should pay attention to. The first is that the
setMeeting() method can possibly throw a RemoteException. Almost all methods
that can be invoked on a remote machine can throw this exception. You can also see that
the VenueInterface extends Remote, which is a class defined in the java.rmi
package. Thus, you have to make sure you import java.rmi.*. This too is characteristic
of all remote objects.

 Listing 13.1 The VenueInterface Interface

 // VenueInterface.java

 import java.rmi.*;

 - 404 -

 public interface VenueInterface extends Remote
 {
 public Venue setMeeting(String [] names)
 throws RemoteException;
 }

The next listing you’ll want to look at is the definition for the Venue class, shown in Listing
13.2. When your client program calls VenueInterface.setMeeting(), it gets back a
Venue object. The Venue object contains all the information necessary to carry out a
meeting: who, where, and when.

 Listing 13.2 The Venue Class

 // Venue.java

 import java.io.Serializable;

 public class Venue implements Serializable
 {
 // ===
 // CONSTRUCTORS
 // ===
 public Venue(String [] names, // Who?
 String place, // Where?
 String time // When?
)
 {
 theParticipants = names;
 thePlace = place;
 theTime = time;
 }

 // ===
 // PUBLIC INTERFACE
 // ===

 /* --Common Interface--------------- */

 public String toString()
 {
 // 1. Build a String with all participants except the last
 String result = ““;
 for (int i = 0; i < theParticipants.length - 1; i++)
 {
 if (i > 0)
 result += “, “;
 result += theParticipants[i];
 }

 // 2. Add the last participant
 if (theParticipants.length > 1)
 result += “ and “;

 - 405 -

 result += theParticipants[theParticipants.length - 1];

 // 3. Add the place and time, and return the result
 result += “ will meet in “ + thePlace + “ at “ + theTime;
 return result;
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 String [] theParticipants;
 String thePlace;
 String theTime;

 }

Before you turn your attention to the details of the implementation of Venue, notice the
class header, which specifies that Venue implements the Serializable interface
(accessed by importing java.io.serializable). This is the “magic” that allows
Venue objects to be reduced to a stream of bytes and transmitted over the network.
Better yet, the Serializable interface does not require you to implement any methods;
all the necessary behavior is included within the Object class.

The Venue class includes a single constructor that requires you to pass the participants
(as a String array), and the place and time of the meeting as individual String
arguments. These values are stored by the constructor in the corresponding fields of the
object. The only method in the Venue class is the toString() method, which formats
the attributes of the object into a String suitable for printed or displayed output.

The last task left for you to accomplish is to define the VenueServer class, which you
can see in Listing 13.3. When you create an instance of VenueServer, you’ll have a
running remote-object server. Following the listing there is a discussion of the
implementation, which you’ll want to browse, because VenueServer introduces several
classes and facilities you have yet to meet.

 Listing 13.3 The VenueServer Class

 // VenueServer.java

 import java.rmi.*;
 import java.rmi.server.*;

 public class VenueServer extends UnicastRemoteObject
 implements VenueInterface
 {
 // ===
 // CONSTRUCTORS
 // ===
 public VenueServer() throws RemoteException
 {
 ; // Dummy constructor defined so that
 // the throws clause can be specified
 }

 - 406 -

 // ===
 // PUBLIC INTERFACE
 // ===
 public Venue setMeeting(String [] names)
 throws RemoteException
 {
 String [] places =
 new String [] {“London”, “Paris”, “Rome”};

 int placeno = (int) (places.length * Math.random());

 int hour = (int) (24 * Math.random() + 1.0);
 int min = (int) (60 * Math.random() + 1.0);

 String zero = ““;
 if (min < 10)
 zero = “0”;

 String ampm = “a.m.”;
 if (hour > 12)
 {
 ampm = “p.m.”;
 hour = hour - 12;
 }

 String time = ““ + hour + “:” + zero + min + “ “ + ampm;

 return new Venue(names, places[placeno], ““ + time);
 }

 // ===
 // MAIN METHOD (CONSOLE APP)
 // ===
 public static void main(String [] args)
 throws RemoteException
 {
 System.setSecurityManager(new RMISecurityManager());

 try
 {
 VenueServer vs = new VenueServer();
 Naming.rebind(“oodexample”, vs);
 System.out.println(
 “Server is ready (press Ctrl-C to end).”);
 }
 catch (Exception e)
 {
 System.err.println(e);
 }
 }
 }

 - 407 -

 There are three implementation details to consider before you delve into VenueServer’s

code.

•

First, notice that the VenueServer class implements the VenuInterface that you
previously wrote. This means, of course, that it must implement the setMeeting()
method.

•

Next, notice that VenueServer extends the class UnicastRemoteObject. Unless
you’ve done previous work with RMI, you won’t have used this class as a superclass
before. This class provides important behavior necessary for remote objects.

•

Finally, notice that the lone constructor for the class is a no-argument constructor that,
oddly, contains no executable statements. You must explicitly define an empty
constructor like this in order that the throws RemoteException clause may be
included. As mentioned, every method (or constructor) of a remote object must be
specified as a potential source of RemoteExceptions, which are thrown in response
to a network problem.

With that out of the way, you can turn your attention to the implementation of the
VenueServer class. The VenueServer class has two methods. The main() method
starts up the server and gets things rolling. Your clients call the setMeeting() method
remotely. Let’s look a little deeper into both these methods.

 To start up the server, the main() method performs four tasks:

1.

First, the main() method calls the System.setSecurityManager() method to
ensure that a security manager object is in place. The security manager ensures that
downloaded stubs keep their proper place, lest some hacker substitute a stub with a
Trojan horse version intended to penetrate the security of your application or system.

 2. Once the security manager is in place, the main() method then creates an instance

of a VenueServer object.

3.

The static rebind() method of the java.rmi.Naming class is used to enter a
reference to the new server into the registry of its host computer. This enables clients
to get a reference to the server object so that they can send it messages. Notice that
for purposes of the RMI registry, the name of the object is “oodexample,” not
VenueServer. This demonstrates that the name in the registry does not have to be
the same as the name of the Java class.

4.

Finally, the main() method prints a message to the console window, letting the
console operator know that the server is up and running. If you run this application as
a local process, you’ll see this message in the MS-DOS window you use to start the
server.

 Note also that the last three tasks are carried out in a try-catch block, which simply

prints to the console window any unusual conditions that cause your server to fail.

The setMeeting() method is required by the VenueInterface interface, and is
invoked remotely by your client program. For demonstration purposes, this
implementation of setMeeting() simply returns a randomly chosen time and place for
the requested meeting. A more realistic implementation of the method would involve
accessing a database of some sort, containing the schedules of potential meeting
participants. This could be done using the JDBC facility described in Chapter 14,
“Designing Persistent Objects: Database Design and Implementation.”

 LOOKING AT THE CLIENT

 - 408 -

Listing 13.4 shows the client program that works with the VenueServer application: the
VenueClient class. As you can see, VenueClient looks pretty much like an ordinary
applet. The only early cue that something is different is the presence of the two import
statements for RMI packages.

 Listing 13.4 The VenueClient Class

 // VenueClient.java

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.rmi.*;
 import java.rmi.server.*;

 public class VenueClient extends Applet
 implements ActionListener
 {
 // ===
 // APPLET METHODS
 // ===
 /* --Initialization----------------- */
 public void init()
 {
 theList.add(“Agnes”);
 theList.add(“Bob”);
 theList.add(“Cindy”);
 theList.add(“David”);
 theList.add(“Eleanor”);
 theText.setEditable(false);
 setLayout(new BorderLayout());

 Panel north = new Panel();
 north.setLayout(new GridLayout(2, 1));
 north.add(new Label(“Choose Participants:”));
 north.add(theList);

 Panel center = new Panel();
 center.setLayout(new BorderLayout());
 center.add(new Label(“Results:”), “North”);
 center.add(theText, “Center”);

 add(north, “North”);
 add(center, “Center”);
 add(theButton, “South”);
 theButton.addActionListener(this);
 }

 // ===
 // IMPLEMENT ACTIONLISTENER
 // ===

 - 409 -

 public void actionPerformed(ActionEvent event)
 {
 String [] names = theList.getSelectedItems();
 if (names.length == 0)
 return;

 try
 {
 // 1. Assign the registered name to a String
 String url = “rmi://localhost/oodexample”;

 // 2. Look up the name in the registry
 VenueInterface vi = (VenueInterface) Naming.lookup(url);

 // 3. Use the remote object to get the Venue
 Venue v = vi.setMeeting(names);

 // 4. Use Venue.toString to print it out
 theText.append(v.toString() + “\n”);
 }
 catch (Exception e)
 {
 theText.setText(e.toString());
 e.printStackTrace();
 }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private Button theButton = new Button(“Set meeting”);
 private List theList = new List(3, true);
 private TextArea theText = new TextArea(5, 16);
 }

The VenueClient class contains only two methods, init() and
actionPerformed(). The init() method—as usual for applets—builds the user
interface. It contains nothing unusual. The actionPerformed() method is where all
the action is; it is invoked when you click the Set Meeting button. This causes the applet
to send a request to the server.

 To execute the remote method invocation, you use your VenueClient object to carry

out these four steps:

1.

First you obtain a reference to a VenueInterface object living out on the server.
You obtain this reference by creating a String that forms a URL that includes the
host name of the server and the name (“oodexample”) under which the server object
registered itself. Notice that the protocol used in forming the URL String is
rmi://.

2.

This registered name is passed to the static method Naming.lookup(), which
returns a remote object. To use this remote object, you first need to cast it to a
VenueInterface (not a VenueServer).

 - 410 -

 3. Once you have your VenueInterface object, you use it to call the remote
setMeeting() method, just as if the object were a local object.

 4. Finally, you can use the result returned by your remote method invocation like any

result. Here, it is displayed in the applet’s TextArea named theText.

The one final piece you’ll need to get this all running is an HTML file to allow you to
access the applet through appletviewer. (As of this writing, some of the popular browser
programs don’t yet support RMI, so don’t point your browser toward this file. You’ll learn
how to run the applet in just a bit.) Listing 13.5 shows the HTML file used to execute the
client.

 “Getting an RMI application running is a little more complicated than the steps you

normally go through to run a Java applet or application.”

 Listing 13.5 The VenueClient.html File

 <HTML>
 <HEAD>
 <TITLE>VenueClient.html </TITLE>
 </HEAD>

 <BODY>
 <APPLET Code=VenueClient Width=500 Height=300>
 </APPLET>

 </BODY>
 </HTML>

 STARTING AND RUNNING THE EXAMPLE

If you’ve made it this far, stick around a little longer to find out how to actually run this
application. It is a little more complicated than the steps you normally go through to run a
Java applet or application. Listing 13.6 shows the DOS commands required to start the
server. To run this program, you must have

 TCP/IP support installed. You can run the client and server on the same computer, or run

them on separate computers joined by a TCP/IP network.

 Listing 13.6 Running the Server

 C:\> start /min rmiregistry

 C:\> javac VenueInterface.java
 C:\> javac VenueServer.java

 C:\> rmic VenueServer

 C:\> start /min java VenueServer

 If you don’t have a permanent connection to a TCP/IP network, you can install the

 - 411 -

Windows 95 Dial-Up Networking facility, or Windows NT Remote Access Service (RAS).
See your Windows help files for information on installing and configuring these services.

The first step in starting your server is to get the RMI registry program (rmiregistry)
going. The registry will run asynchronously in its own minimized window. Next, you need
to compile both the interface and server source files. Then you run the rmic utility. This
generates the special stub and skeleton files required to make RMI work. To do this,
rmic uses the VenueServer.class file, so make sure you compile
VenueServer.java first. (Don’t include the .class extension when you run rmic).
Finally, you can start the server program itself, which runs asynchronously in its own
window, after announcing its presence.

To run the client half of this example, you’ll have to jump through a similar set of hoops.
Listing 13.7 shows the steps necessary to run the client applet. You must first compile the
source code for both VenueInterface and VenueClient. Of course, if you’re running
the client and server on the same machine, you may have already compiled
VenueInterface; it won’t hurt to compile it a second time. Likewise, the client needs
access to the stub (but not the skeleton) file generated by rmic. It’s safe to run rmic a
second time, so running client and server on the same machine presents no special
problem. Finally, run appletviewer and take the client applet out for a spin.

 Listing 13.7 Running the Client

 javac VenueInterface.java
 javac VenueClient.java

 rmic VenueServer

 appletviewer VenueClient

Figure 13.6 shows how the VenueClient looks when it runs. Notice that the applet has
a preference for meetings in three tourist-friendly European capitals. Substitute names of
your co-workers for those hard-coded in the client and see if you can convince your boss
to give your new conference scheduling system a try—especially if you’ve never been to
Rome.

 Figure 13.6 The VenueClient applet

Moving to Corba

 Even if you don’t have the money to purchase a CORBA compliant ORB, it’s interesting

to see what changes you’d need to make to port your program from RMI to CORBA. The

 - 412 -

code required to implement the example program as a typical CORBA program is not that
different from the RMI version. The example is based on Visigenic’s Visibroker for Java,
but other CORBA ORBs work pretty much the same. Start by looking at the
VenueInterface definition, which you can see in Listing 13.8.

 Listing 13.8 The VenueInterface Interface: CORBA Version

 public interface VenueInterface extends CORBA.Object
 {
 public Venue setMeeting(String [] names)
 throwsCORBA.SystemException;

 }

Notice that all you have to change is the name of the interface extended by
VenueInterface, and the name of the exception thrown by the setMeeting()
method.

 THE CORBA SERVER

 The server class, too, needs little change. The CORBA version is shown in Listing 13.9.

 Listing 13.9 The VenueServer Class: CORBA Version

 // VenueServer.java (CORBA edition)

 public class VenueServer extends _sk_VenueInterface
 implements VenueInterface
 {
 // ===
 // CONSTRUCTORS
 // ===
 public VenueServer(String name)
 {
 super(name); // Give the server a name
 }

 // ===
 // PUBLIC INTERFACE
 // ===
 public Venue setMeeting(String [] names)
 throws CORBA.SystemException
 {
 // Code unchanges
 }

 // ===
 // MAIN METHOD (CONSOLE APP)
 // ===
 public static void main(String [] args)
 {
 System.setSecurityManager(new RMISecurityManager());

 try
 {

 - 413 -

 CORBA.ORB orb = CORBA.ORB.init(); // initialize the ORB
 CORBA.BOA orb = orb.BOA_init(); // initialize basic
object

 // adapter
 VenueServer vs = new VenueServer(“oodexample”);

 boa.obj_is_ready(vs); // export the server to
the
 ORB

 boa.impl_is_ready(); // begin servicing
requests

 System.out.println(“Server is ready (press Ctrl-C to
end).”);

 }
 catch (Exception e)
 {
 System.err.println(e);
 }
 }
 }

The first thing you’ll notice is that the class has been changed to extend
sk_VenueInterface, which is a skeleton class generated by the Visibroker
idl2java utility. Also note that the constructor no longer throws an exception, but it has
been changed to include a single argument, a String identifying the server.

The initialization of the ORB, performed by the main() method, requires several
changes to move from RMI to CORBA. The revised method creates an ORB object and a
BOA (Basic Object Adapter) object. The latter is an adapter object that provides behaviors
needed by CORBA server objects. It is sent a reference to the server object and then
signaled to begin servicing clients’ requests.

 A CORBA CLIENT

The client applet, shown in Listing 13.10, is even simpler to change than the server. The
only change required is to the statements that invoke the setMeeting() method on the
server, which are located in the actionPerformed() method. First, an ORB is created
and initialized. Then, a method from the client-side stub, bind(), is used to obtain a
reference to the server. After that, everything proceeds as before.

 Listing 13.10 The VenueClient Class: CORBA Version

 public class VenueClient extends Applet
 implements ActionListener
 {
 // ===
 // APPLET METHODS
 // ===
 /* --Initialization----------------- */
 public void init()
 {
 // Code unchanged
 }

 // ===
 // IMPLEMENT ACTIONLISTENER
 // ===

 - 414 -

 public void actionPerformed(ActionEvent event)
 {
 String [] names = theList.getSelectedItems();
 if (names.length == 0)
 return;

 try
 {
 CORBA.ORB orb = CORBA.ORB.init(); // initialize the ORB
 VenueInterface vi = VenueInterface_var.bind(“oodexample”);
 Venue v = vi.setMeeting(names);
 theText.append(v.toString() + “\n”);
 }
 catch (Exception e)
 {
 theText.setText(e.toString());
 e.printStackTrace();
 }
 }

 // ===
 // CLASS AND OBJECT ATTRIBUTES
 // ===
 private Button theButton = new Button(“Set meeting”);
 private List theList = new List(3, true);
 private TextArea theText = new TextArea(5, 16);
 }

 Notations for Remote Objects

Two sorts of diagrams are particularly useful in designing systems that include remote
objects. The first is the object interaction diagram described in Chapter 12, “Designing
Concurrent Objects.” Refer to Figure 13.4 to see how object interaction diagrams can be
used to describe how stubs and skeletons interact with clients and servers to perform
remote method invocations.

You may also find informal diagrams of the sort used in Figures 13.1, 13.2, 13.3, and
13.5 useful when you need to describe systems that include remote objects. These
diagrams let your readers focus on the broad pattern of interaction among objects. Then,
you can use object interaction diagrams where necessary to communicate the details of
specific interactions.

 “Informal diagrams let your readers focus on the broad pattern of interaction among

objects.”

Design Tips for Remote Objects

The best single piece of advice for working with remote objects is to work at the highest
level of abstraction you possibly can. Unless cost or performance considerations dictate
some other choice, you should design systems around CORBA rather than one of the
alternative architectures.

 - 415 -

 “The best single piece of advice for working with remote objects is to work at the

highest level Of Abstraction You Possibly Can. ”

Design based around CORBA ORBs will be particularly attractive once versions of
browsers that include built-in ORBs become available. If you implement your remote
clients as applets, you’ll find it easy to keep up-to-date versions available to your users,
who will receive fresh copies every time they access the Web pages that host your
applets. Larger programs can be implemented as applications, but you’ll then have to
provide some suitable mechanism for updating the .class files when they become
outdated.

CORBA is particularly useful for encapsulating data and behavior contained in legacy
systems. By using CORBA IDL to create object-oriented wrappers, you can make the
functionality of these older systems available in a more modern, user-friendly package.
By moving as much functionality as possible to CORBA, you relieve yourself of the
responsibility of developing and maintaining programs that provide that functionality. You
also free yourself from dependence on a single vendor, because the CORBA market
includes a wide range of products from established vendors and small startup
companies.

Summary

Remote objects are objects that exist in separate Java Virtual Machines on separate
computers. Passing data from a client to a remote server poses several problems,
including obtaining a reference to the remote object, marshaling method parameters over
the network to the server, and marshaling a return value back to the client.

CORBA provides useful mechanisms and services for implementing remote objects.
CORBA is an open standard, for which there are multiple products that run on a variety of
computing platforms. CORBA ORBs are simpler to use than sockets and perform better
than CGI.

Other technologies for implementing remote objects include sockets, CGI, RMI, and
DCOM. The leading alternative to CORBA is DCOM, a Microsoft standard that runs only on
Windows platforms.

Questions

 For multiple-choice items, indicate all correct responses.

 1. True or false. Remote Procedure Call (RPC) allows object-oriented programs to

exchange messages.

 2. The restructuring of parameters for transmission over a byte stream is called

__________.

 3. Two significant problems of remote computing are:

 a. Obtaining references to remote objects

 b. The high cost of multiprocessor systems

 c. Getting parameters to, and returning values from, remote objects

 - 416 -

 d. Choosing a reliable object request broker

4.

The part of an object request broker that runs on the client system is known as a
(skeleton/stub) and the part that runs on the server system is known as the
(skeleton/stub).

 5. Options for implementing remote objects include:

 a. Sockets

 b. CGI

 c. RMI

 d. CORBA

 6. The chief advantage of implementing a system using ________ is high performance.

 7. Which of the following are not open technologies:

 a. CGI

 b. RMI

 c. CORBA

 d. DCOM

 8. The principle advantage of RMI is that it’s __________.

 9. The technology offering the greatest range of facilities and services for remote

computing is __________.

 10. The program run to establish an object registry for RMI servers is:

 a. rmidirectory

 b. rmiregister

 c. rmiregistry

 d. rmisearch

 Exercises

 1. Using RMI, write a remote server that echoes text, like the CipherServer example

of the previous chapter. Write an applet client that tests the server.

2.

Using RMI, write a remote server and an applet client that allow users to send text to
one another (“chat”) via the applets. The applet’s user interface should include a
TextField for input and a TextArea for output.

 3. Using RMI, write a remote server that functions as a simple Web proxy server for client

applets. An applet can send a String that specifies a URL to the server, which uses

 - 417 -

the URLConnection class to fetch the document. It then transmits it back to the client
applet, which displays it in the browser window using showDocument(). By operating
on special ports, such an arrangement can be used to allow selective access across an
Internet firewall.

 To Learn More

 There are several books that will help you learn more about designing remote objects.

 The following book includes a comprehensive analysis of alternative technologies for

remote computing. It also includes thorough coverage of CORBA as it relates to Java:

 • Orfali, Robert, and Dan Harkey. Client/Server Programming with Java and CORBA.

New York: John Wiley & Sons, 1997.

 The following books deal with CORBA generally:

•

Otte, Randy, Paul Patrick, and Mark Roy. Understanding CORBA: The Common
Object Request Broker Architecture. Upper Saddle River, New Jersey: Prentice Hall,
1996.

 • Siegel, Jon. CORBA: Fundamentals and Programming. New York: John Wiley & Sons,

1996.

Chapter 14: Designing Persistent Objects:
Database Design and Implementation

 Overview

Persistence is a virtue—not only for people, but also for objects. What, you ask, is a
persistent object? A persistent object retains its attributes even after the program running
it terminates. In fact, most business programs would be useless without persistent
objects. Suppose that you’ve automated your entire catalog business by using the latest,
state-of-the-art Java applets and applications with, unfortunately, one little omission:
you’ve made no provision for persistence.

On a stifling hot July day, the businesses in your town are all running their air
conditioning at maximum, hoping to keep their workers and customers comfortable.
Meanwhile, somewhere in the south central U.S., a power plant fails. Of course, all the
other plants connected to the power grid immediately step up output to offset the drop in
power production, but some of them also fail under the increased strain. The remaining
plants find it harder to keep up with the demand for power, and shutdowns spread across
the country like a tsunami.

 “For business programs, persistence is not only useful, it’s essential. ”

When the rolling wave hits the plant that supplies power to your business district, its
generators shut down, attempting to protect themselves from overexertion. Your lights
flicker and, for a few tens of milliseconds, all computing ceases. Fortunately, the outage
is brief. Power is restored in less than a minute, and your computers are again happily
humming and clicking in under five minutes.

 - 418 -

But while all your computers are back at work, all the objects in all your programs have
lost the state they had before the power failure—all of them, that is, that still exist. Most
have simply disappeared, as there are now no references to them. How, you wonder, are
you to match up Ms. Mertz’s order with the 1,100 shipments being processed? Was it
chocolates she ordered, or bath soap? And what about Mr. Munster, Ms. Stevens, and
the other 1,100 customers with pending orders?

 For business programs, persistence is not only useful, it’s essential.

 In this chapter you will learn:

 • How to design relational databases that can be used to give your objects persistence.

 • How to use entity/relationship (E/R) modeling to assist you in database design.

 • How to design normalized databases that help avoid inconsistent and corrupted data.

 “Both tables and classes represent patterns for storing information about a single kind of

entity.”

 Types of Persistence

Persistence can be achieved in many different ways. For most of the history of
computing, persistence has been achieved through the use of files stored on magnetic
tape or, more recently, on magnetic disk drives. Today, however, the most common way
to make your objects persistent is to use a relational database, which arranges and
manages the storage of your data.

Using a relational database isn’t the only way to achieve object persistence. There are
also object-oriented databases, although these aren’t yet as widely used as relational
databases. Chapter 16, “Designing with Components,” presents another way of achieving
persistence—one that uses the Serializable interface provided by the Java
Application Programming Interface (API).

Relational Database Concepts and Terms

 A relational database stores data in tables, like those depicted in Figure 14.1.

 Figure 14.1 A relational database

 Tables are much like spreadsheets, consisting of rows and columns. Each table of a

 - 419 -

database stores information about a single type of entity. For example, the Book table
stores information about books, and the Author table stores information about authors.

Each row of a database table stores information about a single instance of the related
entity. For example, the first row of the Book table stores information about book #2453,
titled Java is Easy.

Each column of a database table stores information about a particular attribute of the
related entity. For example, the second column of the Book table stores book titles.
Within a given row of the Book table, the value in the second column (the Title column)
gives the book’s title.

 Table 14.1 Analogies Between Database Terms And Object-Oriented Terms

 Database Term

Object-Oriented Term

 Catalog

Package

 Table

Class

 Row (or record)

Object

 Column (or attribute)

Field (or attribute)

If a database is especially large, its tables may be grouped into units called catalogs, much
the same way that Java classes can be grouped into packages. In fact, as shown in Table
14.1, there’s considerable similarity between terms used to describe databases and terms
used to describe object-oriented programs. Don’t try to press these analogies too far—a
table and a class aren’t the same thing. The most obvious difference between them is that
a table doesn’t encapsulate behavior along with its data, whereas a class or object does.
But tables and classes do represent patterns for storing information about a single kind of
entity.

Creating and Manipulating Databases and Tables

To create a Java program, you need a text editor and compiler (or an IDE that combines
their functions). Similarly, to create or manipulate a database, you need some tools. Even
if you’re just designing a database, you’ll find it helpful to have these tools because you
then can try out your design.

 THE DATABASE SERVER

First, you need the database engine (also known as a database server). A modern
database engine understands some dialect of Structured Query Language (SQL). When
your program sends SQL commands describing a set of table rows to the database
engine, the engine returns the actual rows.

 Most database engines include utilities that let you create databases and tables. You can

also create tables by using SQL. Some popular database engines are

 • Borland Interbase

 - 420 -

 • IBM DB2

 • Informix Universal Server, Online Workgroup Server, and others

 • Microsoft Access and SQL Server

 • Oracle Server 7

 • Sybase SQL Anywhere and SQL Server

 DATABASE DRIVERS

To access your database with a Java program, you’ll also need a driver class. You can
use the JDBC-ODBC bridge included in the Java Developer’s Kit (JDK), but the bridge
offers limited functionality. (JDBC stands for Java

Database Connectivity and is part of the JDK. ODBC stands for Open Database
Connectivity and is a standard developed by Microsoft for accessing a wide variety of
different database servers.)

For serious database development, you’ll probably want to investigate the various
commercial database drivers available. You may also want to investigate middleware
servers, which can provide access to multiple database engines by using a single driver
class. Information on drivers and middleware servers is available on Sun’s Java Web site
at http://java.sun.com/products/jdbc/index.html. You can also read more
about how database servers and drivers work together in Chapter 18, “Architectures:
Design-In-the-Huge.”

 “The user was interested in what the system would do, not how the system would

do it.”

 THE JDBC API

When your database engine and driver are in place, you use the classes and interfaces of
the java.sql package that comprise the so-called JDBC facility to send commands to the
engine and obtain the results it sends back. The details of writing Java programs that use
JDBC and SQL are beyond the scope of this chapter.

Database Design

Traditional software development included the activities of systems analysis and system
design. Systems analysis focused on the system from the user’s perspective, whereas
system design focused on the system from the technical perspective. A logical/physical
boundary separated the two activities. The user was interested in what the system would
do, not how the system would do it. The former is a logical, conceptual viewpoint,
whereas the latter is a physical, concrete viewpoint.

 “Object-oriented technology broke down the barrier between systems analysis and

system design by making it possible to build software objects that had counterparts

 - 421 -

in the real world of the user.”

Object-oriented technology broke down the barrier—or at least much of the barrier—
between systems analysis and system design by making it possible to build working
software structures (classes and objects) that had counterparts in the real world of the
user. The logical and physical viewpoints were brought into close correspondence.

Relational database design is more like traditional software development than object-
oriented software development in that it consists of two discrete activities: logical
database design and physical database design. The logical database design activity
focuses on the user’s data needs. The physical database design activity focuses on
choosing a concrete database structure that supports the logical design and balances
additional criteria such as performance and reliability.

 The relational database design process includes these steps:

 1. Perform logical database design.

 2. Perform physical database design.

 3. Assign data types to columns.

 4. Prototype the database.

Logical database design is usually performed by using a technique known as
entity/relationship (E/R) modeling. The model database that results is then structurally
transformed during physical design, using a technique known as database normalization,
to minimize the likelihood of database anomalies. (A database anomaly is a situation where
data is lost or inaccurately stored.) Finally, a data type is chosen for each column of the
database, which is then prototyped and revised as needed.

Design Quality

You might wonder why you should bother with database design—what’s the purpose? By
going through the process of database design, you’ll improve your programs in three
specific ways. When you design a database, using the process of database design, you’ll
create a database structure that

 • Controls data redundancy

 • Ensures data integrity

 • Accommodates ad hoc queries

 “One chief potential benefit of a database is that it helps you control the amount of

redundant data.”

An important potential benefit of a database is that it helps you control the amount of
redundant data. Think, for example, of the files of a typical organization and ask yourself,
“In how many places would the name of a worker be stored?” You’ll probably think of
such places as the payroll file, the benefits file, and the telephone directory. But there are

 - 422 -

other, less obvious, places as well. What about parking spaces, lockers, the office door,
the e-mail directory, and so on?

 “Database normalization is the key to controlling data redundancy within a

database.”

Now consider what’s necessary when Fred Gonner marries Ima Gladde and she elects to
change her name to Mrs. Gonner. All those places that used to say “Ima Gladde” must be
changed to say “Ima Gonner.” Even in an efficiently run organization, it may require
several months to hunt down and destroy every reference to Ima Gladde.

The problem is that Ima’s name is stored redundantly—that is, in many places.
Redundant data in computer files wastes storage space and requires excess processing
time to revise. Potentially worse, errors can result when the “correction police” haven’t yet
caught up with all the redundant instances.

As you’ll see, database normalization is the key to controlling data redundancy within a
database. Normalizing a database is also one important step toward ensuring database
integrity. Organizations often spend large sums creating and maintaining databases. To
protect this investment, it’s important for the database design to address data integrity.

An ad hoc database query is an unplanned request for information. An e-mail directory
system may regularly provide the e-mail address of a worker to someone who knows the
worker’s name. But can the supporting database also provide a worker’s name, given the
worker’s e-mail address? It’s simply not possible at design time to anticipate every
possible question that will ever be asked. Nevertheless, it’s important to provide the
flexibility to handle unanticipated queries. The main step you can take to facilitate
handling of ad hoc queries is database normalization.

If you’re beginning to think that database normalization is the answer to the world’s
problems, you’re catching on. Database normalization won’t cure the hiccups, but it’s an
excellent prescription for improving database performance and reliability.

Are there any drawbacks to using a database for object persistence? Not really. You may
have heard that early relational databases were known for poor performance. Although
there are recent cases of failure in the application of relational database technology to
very-large-scale databases, modern relational databases are much improved over their
ancestors. Moreover, it’s not at all clear that the recent failures you may have read about
are the result of failed technology.

 “Database normalization won’t cure the hiccups, but it’s an excellent prescription for

improving database performance and reliability. ”

In cooking, it’s axiomatic that the ingredients count. But you’ll never hear an accomplished
chef avoiding the blame for a mediocre ceviche by blaming the ingredients. The wise chef
doesn’t prepare ceviche except on days when ingredients of the proper quality are
available. Similarly, a failure in application of relational technology must be laid, in at least
some degree, at the feet of the analysts and designers, and not solely blamed on
“inadequate technology.”

Entity/Relationship (E/R) Modeling

 - 423 -

The first step in database design is creating a logical database model, using a technique
called entity/relationship (E/R) modeling. Before learning how to perform E/R modeling,
though, you’ll learn how to read an E/R diagram. Figure 14.2 shows an E/R diagram for
the same database that was shown in Figure 14.1. Review the database in Figure 14.1
before moving on to study Figure 14.2.

 Figure 14.2 An entity/relationship diagram

The E/R diagram consists of rectangles and lines. Each rectangle contains a name, and
each line is labeled with a phrase. Each end of a line is labeled with the digit 1 or the
letter N. You’ll learn about the labels in a bit; for now, focus on the rectangles and the
lines.

The rectangles correspond to the database tables shown in Figure 14.1: Author, Book,
Customer, and Series. That’s easy. But what do the lines correspond to? They tell you
which tables are related, much like the lines connecting two associations in the class
diagrams you studied in Chapters 7 and 8. Notice the two types of lines: the line between
Book and Customer (the sold to line) is dotted, whereas all the other lines are solid.

 ENTITIES AND RELATIONSHIPS

In an E/R diagram, the rectangles are referred to as entities, and the lines are referred to
as relationships. That’s, of course, how the E/R diagram got its name: it depicts entities
and the relationships that join them together. But what exactly is the essential difference
between an entity and a relationship?

 “An entity represents a thing or a concept. In contrast, a relationship represents an

association between entities.”

 An entity represents a thing or a concept. An entity is usually

 • A person—A bank teller or the President of the U.S.

 • A place—Conference room 3 or Liberty Hall

 - 424 -

 • A real-world object—A deposit slip or the U.S. Constitution

 • An event—Making a deposit or the signing of the Declaration of Independence

 • A concept—An account or troop strength

In contrast, a relationship represents an association between entities. Sometimes the
relationship represents an event that links the entities; other times it’s merely a logical
affinity between them:

 • A logical affinity—Being present in Liberty Hall (relationship between a person and a

place)

 • A logical affinity—Being a descendent of George Washington (a relationship

between two people)

 • An event: Making a deposit or the signing of the Declaration of Independence

 Notice that an event may be either an entity or a relationship. This ambiguity will be

resolved shortly.

 OPTIONAL RELATIONSHIPS AND CARDINALITY

Recall that the lines in the E/R diagram show which entities are related to each other.
You can see that Author is related to Book, Book is related to Series, and Book is related
to Customer. Remember also that the line connecting Book with Customer is dotted but
the others are solid. This is because it represents an optional relationship, whereas the
other lines represent required relationships. Every book has an author and every book is
part of some series. Not every book has a customer, however—the book may be so new
that it hasn’t yet arrived at the warehouse and therefore can’t have been sold.

The phrase that labels each line identifies the relationship that the line represents. The
line from Author to Book is labeled wrote because the line tells which Author wrote which
book. Or, if you prefer, it tells which book was written by which author. If you’re partial to
the latter, you might prefer the label written by, which is perfectly okay. Some designers
actually label every line twice. Such a designer might have labeled the line from Author to
Book as wrote/written by. This isn’t a major point, so draw your E/R diagrams to suit
yourself—as long as your boss doesn’t object.

 The 1’s and N’s haven’t slipped through the cracks—you’ll come to them shortly. Hold

your curiosity concerning them for just another moment.

 DATABASE RELATIONSHIPS AND RELATIONSHIP TABLES

You’ve seen how relationships are represented in the E/R diagram as lines. But how are
relationships actually represented in a database? Let’s look at an example by using the
database in Figure 14.1.

One important relationship in the publishing industry is that between a book and its
series. Can you use Figure 14.1 to determine what series includes the book Java is
Easy? It’s easy: Java is Easy is the book described by the first row of the Book table. You
can see that it’s part of series #9716. After moving to the Series table, you can see that
series #9716 is titled Java Programming.

Thus, you can use the series number you derived from the Book table, #9716, as a kind
of key to unlock the Series table and extract the information you want. Such keys are
the—well…—key to implementing database relationships.

 - 425 -

Okay, here’s a harder one. Can you use Figure 14.1 to determine who wrote the book
Java is Easy? No, you can’t; the information isn’t present in the database. How might you
add this information? Figure 14.3 shows you.

 Figure 14.3 The revised database

Two new tables have appeared: Authorship and Sales. The former tells which author
wrote what book, the latter tells which customer has ordered what book. See if you can
use Figure 14.3 to learn who wrote Java is Easy. The book has two authors: Ackerman
and Muny. Now, see if you can learn what book was ordered by Sam Smith. You should
find that he ordered SmallTalk Rules on July 2.

 How would an E/R diagram based on the revised database look? Figure 14.4 shows you.

 Figure 14.4 The revised entity/relationship diagram

Notice that the Authorship and Sales tables appear as diamonds in the E/R diagram. As
you know, these tables represent relationships. For example, the Authorship table
describes a relationship between a Book and its Author. The diamond reminds you of
this. It tells you that you can read the lines that pass into the diamond as though they
passed through it, joining a pair of rectangles.

Note that the relationship between a Book and its Series isn’t represented by a diamond.
A mere line joins the rectangle for Book with that of Series. Why? Recall that the Book-
Series relationship was explicit in the database of Figure 14.1, which you could use to
find which books were part of which series.

 - 426 -

Diamonds represent relationships that require a database table of their own, like
Authorship and Sales. You might say that such relationships are so powerful they’re
transformed into entities, becoming shapes rather than mere lines.

It really shouldn’t surprise you that a relational database represents entities and
relationship as tables, although they are different things. After all, everything in a
relational database is represented as a table or as part of a table. There simply aren’t any
other options.

 “Such relationships are so powerful they’re transformed into entities, becoming

shapes rather than mere lines.”

 CARDINALITY

It’s finally time to learn about the notations 1 and N on the lines of the E/R diagram.
These represent the cardinality of each relationship, which refers to the relative number
of participants from each entity that’s part of the relationship. Cardinality, then, is merely
a sesquepedalian way of saying number. If you look at any line that joins two entities,
you’ll encounter a number at each end of the line:

•

The number 1 and the letter N (in either order). This is called a 1:N relationship. (If
you like to be contrary, you might call it an N:1 relationship.) An example is the
relationship shown in Figure 14.2 between the Book entity and the Series entity. In this
1:N relationship, each book belongs to exactly one series, although a series can
include an arbitrary number (N) of books.

•

The letters N and N. This is called an N:N relationship. Figure 14.2 showed two such
relationships: that between Author and Book, and that between Book and Customer.
Taking the former as an example, a book might have multiple (N) authors, and a given
author might have written multiple (N) books. Note that these are the very relationships
that became diamonds in Figure 14.4. During database design, every N:N relationship
is converted to a pair of 1:N relationships. No N:N relationships are permitted to
appear in a finished design.

•

The numbers 1 and 1. This is called a 1:1 relationship. You actually don’t find any of
these in Figure 14.2 or Figure 14.4. Most 1:1 relationships are eliminated during
database design. Occasionally, some are allowed to remain, as you’ll see shortly.

You may have wondered why E/R diagrams don’t show the columns of the database
tables. Some experts recommend that you include the columns, drawing them as ovals,
connected by lines with the entity that contains them. If your database design is even
moderately complex, however, the E/R diagram is likely to become so cluttered that it’s
unreadable. If you’re concerned about keeping track of table columns, list them
elsewhere, not on the E/R diagram.

 Remember Restated, the principle of abstraction says, “Less is more.” Abstraction is the

designer’s friend, helping the designer combat complexity.

Preparing E/R Diagrams

Now that you can read E/R diagrams like an expert, you’re ready to learn how to prepare
them. Your first step in database design is to assemble a team. Database design isn’t a
job for a lone ranger; you’ll need the assistance of a team that includes several members
who know the problem domain well.

 - 427 -

 “A conference room is a better workplace for your team than an office, because it

reduces the likelihood that you’ll be interrupted.”

A conference room is a better workplace for your team than an office, because it reduces
the likelihood that you’ll be interrupted. A conference room may offer a whiteboard or flip
charts, either of which is helpful. You might also find an overhead projector with a stack
of blank transparency sheets and a handful of colored markers helpful, as well as a large
blank wall and a package of sticky notes. While you’re at it, coffee would be nice too;
doughnuts would be even better. (By the way, Uncle Sam may pick up part of your donut
bills for such meetings—consult your tax advisor. Use your savings to buy additional
copies of this book for your friends and family.)

Recall that, as always, design is an iterative process. Although it’s described here in
linear fashion, that’s because it’s easier to explain it and understand it in linear fashion.
But design isn’t linear—at least, good design usually isn’t. (The occasional burst of
genius might allow you to create a great design in a single sitting, but it’s rare.)

 STEP 1: IDENTIFY THE COLUMNS

Although the database columns (attributes) don’t appear in the E/R diagram, they’re an
important part of your database design. They’re also a good starting place because
they’re concrete and familiar to the users who participate on your design team. Spend
time brainstorming the question, “What attributes or characteristics do we need to keep
track of?” List the candidates on the whiteboard so that every team member can see
them. Use only half of the whiteboard, reserving the remainder for step 2.

 “Although database columns don’t appear in the E/R diagram, they’re an important

part of your database design.”

It’s also possible to start by identifying entities (tables) rather than columns. But this often
leads to quick decisions by the team, at a time when further exploration and discussion is
generally warranted. If you’re pressed for time, you may find it helpful to begin by
identifying entities; otherwise, you’re better advised to focus on columns first.

Once the team seems to have identified all the candidate columns, and before moving on
to identifying the entities and relationships, you should clean up your list of candidate
columns. It’s likely that several of the candidate columns are synonyms: different names
for the same thing. Identify any synonyms and eliminate the unnecessary entries.

If your organization uses a standard way of naming column attributes, you should revise
your list of candidate columns, giving each entry a name that conforms to your
organization’s standard. Such standards usually govern use of uppercase and lowercase
letters and special characters within names. In an organization that writes Java
programs, the standards will probably look a great deal like the informal conventions
used by Java programmers. Standards often allow the same name, or nearly the same
name, to be used by users, designers, and programmers.

Discussion may disclose that some of the candidates aren’t attributes or characteristics at
all. Some of them may actually be candidate entities and should be moved to a list,
perhaps at the other end of the whiteboard, in preparation for the next design step.

 - 428 -

Others are simply irrelevant and can be discarded.

 STEP 2: IDENTIFY THE ENTITIES

Now that you’ve identified the columns, it’s time to identify the entities. Begin by grouping
the columns under implied subjects. For example, Name, Phone number, and E-mail may
point to an entity named Worker. Give each candidate entity an appropriate name, and
write the candidate entities and their columns on the remaining half of the whiteboard,
reserved during step 1.

You might experience some difficulties with similar entities. For example, should the
entities Worker and Manager be combined into a single Employee entity, or should they
remain separate? Ideally, you would show Worker and Manager as subtypes of
Employee, but the relational database model isn’t object-oriented and doesn’t allow you
to construct inheritance relationships. Make your best guess at this point, but don’t
hesitate to reconsider your decision as the need arises. If you do decide to combine the
entities, you may need to add a column to contain a type code that will enable you to
distinguish them. For example, you might add an EmployeeType column that takes the
value ‘M’ for a Manager and ‘W’ for a Worker.

 “Each table of a relational database should include a column, or combination of

columns, that can be used to uniquely identify every row of the table.”

 When all the entities have been transferred, you can erase the half of the board used in

step 1. Then begin an E/R diagram by drawing a rectangle for each entity.

 STEP 3: IDENTIFY DATABASE PRIMARY KEYS

Each table of a relational database should include a column, or combination of columns,
that can be used to uniquely identify every row of the table. This column, or combination
of columns, is called the primary key of the table.

 In assigning a primary key, you have three options:

 • Use an existing column as the primary key.

 • Use a combination of existing columns as the primary key, called a composite primary

key.

 • Construct an artificial key.

 “Failure to recognize that supposedly unique keys are sometimes not unique is a

common error.”

 Primary Keys for Entity Tables

 Most of the time, your best option is to construct an artificial key. To understand why,

consider first the possibility of using an existing column as the primary key.

 - 429 -

Suppose that you’re designing a payroll system and trying to decide what primary key to
use to identify rows in the Employees table. Your first thought may be to use Social
Security Number, which is listed as a column in the Employees Table. This may work just
fine until you find that your system has to support a subsidiary based in Toronto, where
the employees don’t have Social Security Numbers. Or, however unlikely, you may find
employees that have the same Social Security Number. (This, of course, is the result of
an error somewhere—perhaps at the Social Security Administration.) Do you tell the
employees that they can’t get paid until the Social Security Administration corrects the
error? This probably isn’t a reasonable choice.

Failure to recognize that supposedly unique keys are sometimes not unique is a common
error. Several states have experienced problems with their motor vehicle records
because designers made this faulty assumption.

Similar problems attend the use of a combination of fields as a primary key. What
appears to be unique might not actually, and always, be unique. By using an artificial key,
one that your organization constructs, you can avoid this problem. Your payroll
department can assign each new employee a number, which you can use as the primary
key of the Employees table. If two employees are somehow erroneously assigned the
same number, folks in the payroll department can fix the problem themselves. (Of course,
your payroll department may not be a lot more responsive than the Social Security
Administration.)

 Primary Keys for Relationship Tables

An exception to this advice applies when the table in question represents a relationship.
In this case, it’s usual to form the primary key of the table from the combination of
columns that are primary keys of the related tables. For example, the Authorship table in
Figure 14.4 might take as its primary key the combination of AuthorID, which is the
primary key of the Author table, and ISBN, which is the primary key of the Book table.

The same technique won’t work, however, for the Sales table. You might try defining its
primary key as the combination of ISBN and CustomerID. To see what’s wrong with this,
consider what would happen when a customer orders a book and likes it so much she
decides to order another copy for a friend. There are two sales, but each would have the
same value of the primary key.

 “The primary key must never include an optional column.”

How do you fix this? One approach would be to add a third column to the key,
DateShipped. This, too, presents problems, because it’s possible for a customer to order
multiple copies that end up being shipped the same day. A better solution is to construct
an artificial key, call it SalesID, and assign it a value by sequentially numbering each
sale.

Why wasn’t this necessary for the Author-Book relationship? Although a customer can
place any number of orders for the same book, an author is listed only once on the cover
of a book. For a given book and author, there will be only a single row within the
Authorship table; but for a given book and customer, there may be any number of rows
within the Sales table.

Remember

When assigning primary keys, an artificial key is usually best. A possible
exception is when the table defines a single-instance relationship between
two tables.

 - 430 -

 Primary Keys and Optional Columns

When choosing a primary key, make sure that you don’t include any optional columns as
part of the primary key. Most databases allow you to add rows to a table, even if you
don’t know the values of all the columns. The database will use a placeholder value,
called null, as the value of any omitted fields. As a database designer, you can decide
which columns should enjoy this courtesy and which must always be supplied before a
table row is added. The primary key, however, must never include an optional column.

 Once you’ve decided on the primary key for a table, make a note of it, either with the list

of columns or on the E/R diagram itself. It doesn’t matter which; just be consistent.

 STEP 4: IDENTIFY AND MANAGE THE RELATIONSHIPS

 Now that you have the entities, attributes, and primary keys defined, you’re ready to

identify the relationships between the entities in your database. Here is how you do that.

Start by considering, one at a time, each pair of entities. If the pair is related, join them
with a line and label the line with a phrase describing the relationship. Then label the line
with the cardinality of the relationship: 1:1; 1:N, or N:N. Your line should be solid for a
required relationship and dotted or dashed for an optional relationship. Look back to
Figure 14.2 to see how this is done.

Occasionally, you may find an entity that’s related to itself in some way. For example,
parts in a Parts table may be related because they’re components in the same assembly.
These are called self relationships. Scan your entities to identify any self relationships
and include these on your E/R diagram by drawing a loop that begins, and ends, with the
same entity. Figure 14.5 shows how this is done.

 Figure 14.5 A self relationship

 Evaluating and Transforming Relationships

Some types of relationships are forbidden to appear in a finished database design. Each
of these that appears in your database design must be converted to another type. Other
types need no special treatment. Here’s what should be down for each type of
relationship:

•

1:N relationships. These should be the mainstay of your database design and need
no special treatment. Sometimes such relationships are termed master-detail
relationships, because each entry in the master table (the 1 side of the relationship)

 - 431 -

may be related to a set of entries in the detail table (the N side of the relationship).

•

1:1 relationships. Often, a 1:1 relationship points to a database design problem. The
question you should ask is, “Should these entities be combined into a single entity?” If
so, combine them. If not, accept the 1:1 relationship.

•

N:N relationships. All N:N relationships must be removed from your database design.
You accomplish this by replacing each N:N relationship with a pair of 1:N relationships.
You may need to add a new entity, represented as a diamond on the E/R diagram, to
perform this conversion. Make sure that any entities you add are included in the list of
entities.

 “A foreign key is simply a table column that takes as its value the primary key of

another table.”

 Identifying Foreign Keys

The final task in managing the relationships is identifying any foreign keys within your
database tables. What, you ask, is a foreign key? Well, foreign keys have nothing to do
with making sure that your application works throughout the countries of the Pacific Rim.
A foreign key is simply a table column that takes as its value the primary key of another
table.

 “Don’t settle for satisfactory when excellent may require only a little more diligence.”

A foreign key is used to establish a relationship between database tables. For example,
consider the Book-Series relationship shown in Figure 14.4. Each row of the Book table
includes a column that contains the SeriesID of the book. SeriesID is the primary key of
the Series table and is a foreign key of the Book table. It’s said to point to the Series
table, linking a book with the series that includes it.

Although a table must have only one primary key, it may have one, none, or many foreign
keys. For example, the Authorship table in Figure 14.4 might take as its primary key the
combination of AuthorID and ISBN. In this case, its foreign keys would be AuthorID,
pointing to the Author table, and ISBN, pointing to the Book table.

Even if you create an artificial key as the primary key of the Authorship table, AuthorID
and BookID will still be foreign keys within it. Any column that points into another table
must be identified as a foreign key.

In the same place you identified the primary keys, note the names of any foreign keys
included in each table. Make sure that it’s clear whether a given column is a primary key
or foreign key. A good way to do this is to put the letters PK next to the primary key and
the letters FK next to any foreign keys.

 STEP 5: REITERATE

Hopefully, you’ve felt free to iterate within and among the four steps presented so far. If
not, this step is included as a reminder that you can, and should, do so. Go back, check
your work, rethink your earlier decisions in the light of additional knowledge, and change

 - 432 -

what needs changing. Don’t settle for satisfactory when excellent may require only a little
more diligence.

Understanding Database Anomalies

Thus far, the database design process has led you through creation of an E/R diagram, a
list of columns for each table, and a list of primary keys and foreign keys for each table.
The next database design step is normalization. Before you learn how to normalize a
database design, it’s good to understand why database designs need to be normalized.

 One primary reason to normalize your database is to eliminate the possibility of the

following kinds of database corruption:

 • The insert anomaly

 • The update anomaly

 • The delete anomaly

 So that you can see how these occur, Figure 14.6 shows an example of an unnormalized

database. As you’ll soon see, unnormalized translates to bad.

 Figure 14.6 An unnormalized database

The database in Figure 14.6 is intended to store information on book sales. Notice that
no single column of the table can uniquely identify each row of the table. Assume,
therefore, that the combination of all four fields will be used as the primary key.

What happens, then, when you attempt to add a new store to the table—say, store #1205
in Cincinnati? Everything’s fine as long as that store has already placed an order. If not,
what value should you use for the BookID? Because BookID is part of the primary key,
which can’t include any optional columns, you must supply a value for BookID. Because
you don’t have one, you can’t add the row to the table. This is called the insert anomaly.

 “It’s easy to update the normalized database without tripping over any anomalies.”

 - 433 -

You’ll run into the second type of anomaly, the delete anomaly, when you discover that
the shipment sent to store #1202 was really meant for store #1203. If you delete the
erroneous shipment (recorded in the third row of the table), you’ll also delete your only
record showing that store #1202 is located in Los Angeles.

The final type of anomaly, the update anomaly, occurs when you find out that store
#1203 has moved from Chicago to Denver. You’re forced to look through the entire
database and change every record that pertains to store #1203 to reflect the move. The
example database has only several such records. But consider that in the general case,
hundreds, thousands, or even millions of records could need to be changed.

The problem, in each case, is that the table has too many columns. Several tables should
have been used to store this information, not just one. Figure 14.7 shows how the single
table should be divided into several.

 “Normalizing a database involves checking its tables to see whether each conforms

to three simple rules.”

 Figure 14.7 The same database, normalized

It’s easy to update the normalized database without tripping over any anomalies. You can
add a store without mangling the orders or delete an order without losing track of a store.
You can even change the location of a store by updating a single table row.

 Normalization

Now that you see the benefits of normalization, you’re probably eager to learn how to
normalize a database. Good news: normalization is straightforward and easy.
Normalizing a database involves checking its tables to see whether each conforms to
three simple rules. If it does, you’re done. If it doesn’t, you must restructure the database
so that each table conforms to the rules.

The key to database normalization is understanding the term normal form. Each rule
mentioned in the preceding paragraph calls for tables in your database to conform to a
particular form. If all your tables conform to rule 1, your database is said to be in first
normal form (1NF). Likewise, if all your tables conform to rule 2, your database is in
second normal form (2NF). As you might expect, a database is in third normal form (3NF)
when all its tables conform to rule 3.

The normal forms are arranged in a hierarchy. You can’t reach second normal form
without going through first normal form, and you can’t reach third normal form without
satisfying the rules for first normal form and second normal form. As Figure 14.8 shows,

 - 434 -

the rules for third normal form guarantee that you’ve satisfied the lesser requirements of
the other forms.

 Figure 14.8 A database in third normal form is also in first and second normal

form

Some database experts have defined additional normal forms beyond third normal form.
In practice, most real databases that satisfy the rules for third normal form also satisfy the
rules for these higher levels of normalization. Consequently, only the first three normal
forms are presented in this section.

 FIRST NORMAL FORM: ONLY ATOMIC VALUES

Because a database that’s in third normal form is also in first and second normal form,
you might not want to bother learning about first and second normal form. Why not simply
go straight to third normal form and be done with it? As is usual in design, doing
everything at once isn’t the most efficient or effective way of getting to your goal.

A database table in first normal formal form is one in which each column is atomic—that
is, there are no repeating groups or arrays of columns. Surprisingly, this is one of the
most common mistakes that beginning database designers make.

 No Repeating Groups

Let’s see how you might end up with repeating groups in your database. Suppose that
you decide that the publishing database of Figure 14.3 could be improved. Why not make
things easier by restructuring the Authorship table so that all the authors of a book could
be listed in a single table row, allowing room for up to three authors? The identifiers for
the authors of the book Java is Easy, author #101 and author #110, would be stored in a
single row like this:

 BookID Author #1 Author #2 Author #3
 2453 101 110 null

Now whenever you look up a book ID, you no longer have to go looking through different
records to find the coauthors. All the data is right at your fingertips. What could be better?
Well, stop and think for a second. What will you do when a book has more than three
authors? Will the fourth and subsequent authors simply be ignored?

The identifiers for the authors really belong in a separate table, just as Figure 14.3
shows. That way, the database is in first normal form and there is no arbitrary upper limit
on the number of authors a book may have.

 Remember A table in first normal form must have no repeating groups. If you discover

an attribute that looks like an array, you probably have a repeating group.

 - 435 -

 No Compound Values

Strictly speaking, a table in first normal form must also satisfy a second condition: It must
contain no columns that have compound values. A compound value exists whenever a
single column contains several distinct pieces of information. For example, the
AuthorName column of the Author table contains each author’s first name and last name.
The AuthorName column has a compound value and, thus, the Author table isn’t in first
normal form.

This can be easily fixed by using separate columns, called AuthorFirstName and
AuthorLastName, to hold the information. This has the benefit of making it simpler to
write a form letter to each author. A program can now easily access the AuthorFirstName
and write “Dear Sam,” for example. Otherwise, the program would need to search the
AuthorName value for the comma that separates the first name from the last name.

Often, minor violations of this part of the first rule are overlooked. A business might
assign identifying codes to products or locations in a structured way so that each part of
the code has some meaning. As long as the code is never disassembled, with one part
stored in one table and another part stored in another table, this infraction may not
provoke a serious penalty. But it’s best to avoid such problems at the outset.

 Remember When a value has multiple parts, define each as a distinct column. Don’t

violate the rule for first normal form by compounding the parts.

 SECOND NORMAL FORM: ALL COLUMNS MUST DEPEND

ON THE ENTIRE PRIMARY KEY

The rule for second normal form is easy to apply because it typically affects only a
minority of database tables—only those with a composite primary key. Other tables are
automatically in second normal form.

Recall that a composite primary key is one made up of a combination of database
columns. It’s not the same as the compound column forbidden by first normal form, which
is a single column that contains multiple parts.

The rule for second normal form is that every non-key column within the table must
depend on the primary key. Assume that you have a composite primary key consisting of
two columns: City and State. Note that these are two separate columns, not a single
compound column.

Assume that the data in the table gives the city and state tax rate. The city tax rate
correctly depends on the city and the state. The state tax rate, however, depends only on
the state. The table isn’t in second normal form.

When you discover a table that’s not in second normal form, the remedy is simple. Move
any columns that don’t depend on the entire primary key to a table that has as its primary
key just the part of the key the column depends on. You may have to create a new table
to accomplish this. In the example, you’d create a new table having State as its primary
key, and move the state tax rate to it.

 THIRD NORMAL FORM: ALL COLUMNS MUST DEPEND

ONLY ON THE PRIMARY KEY

The third normal form extends the principle of second normal form to all tables, not
merely those that have composite primary keys. A table is in third normal form if it has no
non-key columns that depend on anything other than the primary key of the table. In this
context, the word depend refers to values that determine other values.

 - 436 -

For example, suppose you decide to add the series title as a new column of the Book
table, shown in the database of Figure 14.3. The Book table would now include series ID
and series title. Series title depends on series ID in the sense that, if you know one, you
know the other. Series title, then, depends on a column other than the primary key—the
table isn’t in third normal form.

The close relationship between second and third normal form should help you anticipate
the way a violation of third normal form is repaired. Just as before, you move the
offending item to a more appropriate table. In our example, you’d move the series title
back to the Series table, where it was initially—and quite correctly—stored.

 NORMAL FORMS SUMMARIZED

William Kent, a prominent database expert, wrote that the whole of database
normalization comes to this: every non-key column must provide a fact about the primary
key, the whole primary key, and nothing but the primary key. This wise, bird’s-eye view of
normalization can help keep you from getting so caught up in the mechanics of the rules
of normalization that you lose sight of your goal. Remember that the rules don’t give you
a way to prove that your database is in third normal form; they only point out ways in
which your database may fall short.

 “Remember that the rules don’t give you a way to prove that your database is in

third normal form; they only point out ways in which your database may fall short.”

Insight and understanding are necessary to proper database normalization. Although some
tools claim that they can normalize your data, be careful in using them. The computer
doesn’t understand your data as well as you should. If you don’t understand it as well as
you should, the remedy isn’t a more sophisticated software tool—it’s spending the time
necessary to adequately understand the problem domain. Getting the continual help of
those who understand the problem domain isn’t merely helpful, it’s essential.

Choosing Data Types

Now that your database is normalized, it’s time to turn your attention away from entities
and relationships and back to individual columns. You face two decisions for each
column:

 • Should the column be required or optional?

 • What should the data type for the column be?

 If the column is part of the primary key of its table, it must be required. Otherwise, you

have a choice.

How do you decide whether a non-primary-key column should be required or optional?
Start by looking at the availability of the column data and the need for the column data. If
the column data may not be available when a new row is added to your table, you have
to ask whether the information is immediately needed. If the data isn’t immediately
needed, you probably should consider the column an optional column. Otherwise, you
have a case for making the column a required column. You should clearly designate any
required columns on your list of tables and columns. You may want to use the letters NN
(not null) to designate required columns.

 - 437 -

Various databases support a variety of different data types. Furthermore, because
databases are designed to work with many different programming languages, your
database may support a different set of data types than your programming language
does. Most databases, however, support each of the following in some form:

 • Character (that is, text) data

 • Whole (that is, integer) numbers

 • Decimal (that is, floating point) numbers

 • Dates and times

 • Binary data

 You should choose one of these data types for each column and note it on your list, next

to the name of the column. In most cases, the choice will be a clear one.

One area where you might have difficulty is deciding between using a whole number data
type and a decimal number data type. Ordinarily, we distinguish between the two types
by saying that whole numbers don’t have fractions, although decimal numbers do. But
when it comes to computer languages and database programs, things get a little more
complex.

Some computer languages—for example, COBOL—have a fixed-point decimal data type
specifically designed for working with dollars and cents. Others, C and Java among them,
use floating-point decimal numbers instead. If your database has a currency type—that
is, a fixed-point decimal data type intended for working with money—and your
programming language doesn’t, the DBMS driver software will have to translate between
the two types, sometimes resulting in loss of precision.

One solution to this translation problem is to manipulate currency amounts as whole
numbers (that is, as cents rather than dollars and cents) when programming in a
language that doesn’t support fixed-point decimal arithmetic.

Although prices expressed in fractional dollars typically have two decimal places,
multiplying such a price by 100 converts it to a whole number, which can then be stored
in a whole number column or a decimal number column.

Generally, the most salient difference between whole numbers and floating-point
numbers is that arithmetic performed with whole numbers is exact, whereas arithmetic
performed with floating-point decimal numbers is approximate. When you’re content with
an approximate answer, the floating-point decimal number is the correct choice. When
your answer must be exact, the whole number is the correct choice.

Occasionally, you may need to work with very large numbers or very small numbers. In
such a case, approximate computation may be the only choice because the range of whole
numbers is typically smaller than the range of decimal numbers.

Prototyping the Database Design

The final step in designing a database is to prototype it and evaluate the prototype’s
performance. To do this, you’ll need the tools and utilities that work with your database.
You may also need the assistance of your organization’s database administrator. In any
case, don’t neglect this opportunity to iterate a little closer to the ideal.

Your main concern in database prototyping will be the performance of the database. Can
it complete any time-critical operations within the allowable time limits? If not, you may
need to alter the structure of the database. This is largely a trial-and-error process, one

 - 438 -

that requires deep knowledge of the internals of your database engine to be applied
effectively. Typically, your experimentation will revolve around indexing choices: what
tables will be indexed in what ways? Many database systems use indexes to speed
performance, but unnecessary indexes can bring insert, update, and delete performance
to a standstill. Consult available documentation on your database for clues on how to
proceed. Good luck!

 Summary

Relational databases store data in tables. Information in a given table pertains to a single
entity type and is stored in rows and columns. Each row identifies and describes an
instance of the entity; each column gives the value of an attribute of the entity.

Database design includes logical database design, physical database design, selecting
data types for columns, and prototyping. Logical database design is performed by using
entity/relationship (E/R) diagrams, which illustrate entities and the relationships between
them.

The cardinality of a relationship, which refers to the number of instances of each
participating entity involved in a single instance of the relationship, can be 1:1, 1:N, or
N:N. Any N:N relationships are removed from the database design and replaced with a
pair of 1:N relationships.

Database anomalies can arise as a result of a non-normalized database design.
Normalization is the process of applying three rules to all the tables in your database.
The first rule says that there can be no columns with repeating values or no compound
keys. Such a database is in first normal form. Second normal form requires that all
columns rely on every part of a composite key. All columns in a table in third normal form
rely only on data in the primary key. Database normalization says, in essence, that every
non-key column of a table must give a fact about the key, the whole key, and nothing but
the key.

After the database design is normalized, a data type is chosen for each column of each
table of the database. The database can then be prototyped and studied to assess its
performance.

Questions

 For multiple-choice items, indicate all correct responses.

 1. A database table stores information about a single __________.

 a. row

 b. type

 c. object

 d. entity

 2. A database table _________ contains values for a single attribute of an entity.

 3. Match each item in the left column with an analogous item in the right column.

 a. Package 1. Table

 b. Class 2. Row

 - 439 -

 c.

 Object 3. Catalog

 d.

 Field 4. Column

 4. On an E/R diagram, the rectangles represent __________.

 5. On an E/R diagram, the lines represent __________.

 6. The _________ of a relationship refers to the number of instances of the related

entities that participate in an instance of the relationship.

 7. Any __________ relationships in the E/R diagram must be replaced by a pair of 1:N

relationships.

 8. A __________ database is less likely to be subject to a database anomaly.

 a. relational

 b. object-oriented

 c. normalized

 d. congruent

 9. If a database table is in third normal form, every non-key column of the table depends

on no other column except that/those of the __________.

 10. Database __________ helps determine whether database performance will be

acceptable.

 Exercises

 1. Draw an E/R diagram that represents the data needed by the meeting scheduling

system of Chapter 6.

2.

Draw an E/R diagram for a database, intended to support an employee information
system, that includes the following entities: employee, department, skill, and job
class. The system should track each employee’s work assignment, which may
include multiple departments. The system should also track the identity of the
manager of each department.

3.

Draw an E/R diagram that describes the database a public library might need to track
items borrowed by patrons. The system should allow library workers to search a
catalog of items by item ID, title, author, and subject. The library loans 7-day books,
21-day books, video tapes, and cassette tapes. Borrowers with an overdue item or an
unpaid fine may not borrow additional items.

4.

Extend the meeting scheduling system of Chapter 6 to allow scheduling of meeting by
department, skill, or rank. For example, rather than require John Coder, a programmer,
to attend the meeting, the user can ask that some programmer, chosen by the system
on the basis of availability, be scheduled to attend the meeting. Draw an E/R diagram
that represents the revised system.

 - 440 -

To Learn More

 The following books will help you learn more about designing databases:

 • Hernandez, Michael J. Database Design for Mere Mortals: A Hands-On Guide to

Relational Database Design. Reading, Massachusetts: Addison-Wesley, 1997.

 This is a good source for additional practical advice on database design.

 • Date, C.J. An Introduction to Database Systems, 6th. ed. Reading, Massachusetts:

Addison-Wesley, 1995.

 This standard textbook on database theory is written by one of the architects of the

relational database revolution.

 • Bruce, Thomas A. Designing Quality Databases with IDEF1X Information Methods.

New York: Dorset House, 1992.

 This book presents the widely used IDEF1X standard for data modeling.

Chapter 15: User Interface Design and
Implementation

 Overview

Slowly and warily, the three men move among the tombstones, which await the outcome
of the desert showdown with indifference. Instinctively forming an irregular circle, the men
dance—not with one another, but with fear itself. Each knows that the briefest misstep
will be fatal. Unholstered and ready for action, their pistols seek the moment of
advantage. The rays of the high-noon sun reflect off the gun barrels, blinding first one
man and then another. The men squint, struggling to keep the others in view.

Sergio Leone’s 1966 Italian-Spanish film, The Good, the Bad, and the Ugly, and its three
central characters, are a metaphor for many of the user interfaces common in today’s
software. The man with no name (played by Clint Eastwood), although the hero of the
film, still falls short of our moral expectations. He is good enough to comfort a dying
soldier with a last cigarette, but bad enough to kill in order to satisfy his greed. Like much
of today’s software, he both delights and disappoints us. By contrast, the villain (played
by Lee Van Cleef) does not disappoint us. He is all bad, mercilessly killing anyone who
stands between him and the lost gold. Many user interfaces are similarly “merciless,”
making a user’s job harder rather than easier. Finally, the character played by Eli Wallach
is neither good enough to be a hero nor bad enough to be a villain: He is simply ugly.
Computer users see more than their share of ugly user interfaces, software that not only
lacks commodity, but which also lacks even a redeeming modicum of beauty.

Today, software programs are more than just a tool that you occasionally pick up and
then discard when you are finished with that odd job. Instead, for many of us, computers
have become the environment in which we work and interact with others. You might
spend hours each day “living inside” your spreadsheet, word processor, or your Web
browser. And, although you might be able to tolerate an ugly or unusable program when
you must face it only once in a blue moon, you probably feel a lot differently about
software you use every day.

Chapter 1, “What Is Design and Why Is It Needed?,” cited the wisdom of the architect
Vitruvius, whose words challenge us to design for commodity, firmness, and delight.
Although commodity—being a benefit to the user—and firmness—operating in an
efficient manner in a range of circumstances—are both important qualities, Vitruvius

 - 441 -

recognized that this was not enough. A program should also be pleasant to use; it should
delight the user.

What is required to create a delightful user interface? What, exactly, does delight mean in
this context? Creating a user interface that is a pleasure to use requires you to consider
three different areas:

•

Visual design: The purpose of a user interface is to convey information. The first
section of this chapter teaches you some enduring principles that will help you to
recognize and build designs that look attractive and which communicate effectively.

•

Usability: Your interface not only displays information, it also interacts with the user.
The techniques you’ll learn in the second section of this chapter will help you build
user interfaces that not only look attractive, but are simple and convenient to use as
well.

•

Style: Besides the general principles of visual design and usability, you’ll also have to
deal with the details of user interface design. The last section of this chapter presents
specific rules of thumb that you can use as a checklist when designing your Java
applications.

 In this chapter, you will learn:

 • How to recognize and apply the principles of clarity, coherence, symmetry, and

elegance to evaluate the software interfaces you build.

 • How to use the grid system to build interfaces that look good, even if you lack “artistic

talent.”

 • How to build Java custom layout managers, which help you to implement the grid

system.

 • How to design software that works to advance the user’s goals, and to avoid getting

mired in solutions that focus on technology or the user’s tasks.

 • How to get the most out of the AWT by using specific rules of thumb for colors, layout,

fonts, windows, components, messages, and help.

Visual Design: Conveying Information

What is the purpose of your user interface? In a word, communication. The notion of
communication stands at the very heart of visual interface design. If you create a well-
designed visual interface, your users will quickly and easily understand what you are
trying to convey. A poorly designed visual interface will leave them confused and
frustrated.

 "What is the purpose of your user interface? In a word, communication."

In addition to being easily understood, you also want to make sure that your interface
conveys your intentions accurately. The interface that succeeds is one that removes
ambiguity and occasions for misunderstanding. A good visual design can ensure that the
message your users receive is the one you intended.

 How do you go about designing interfaces that are visually effective? A search of your

 - 442 -

computer book store will turn up several books on designing graphical user interfaces,
but only a few that concentrate on the specific principles of visual design for interfaces.
The best of these is Kevin Mullet and Darrell Sano’s volume from SunSoft press,
Designing Visual Interfaces.

According to Mullet and Sano, four characteristics are shared by every well-designed
visual interface: clarity, coherence, symmetry, and elegance. By examining these
concepts, training yourself to look for and recognize them, and by learning how to apply
them to your own designs, you’ll be well on your way to making your interface “say what
you mean.”

 CLARITY

As an interface designer one of the hardest things to do is to make your software clear.
After all, you have an advantage that your user doesn’t: You can see inside your
program; you know what routine is executed when the button on the bottom of that dialog
box is pressed. Your user, on the other hand, can see only what you choose to put on the
surface; your user sees only your interface. Clarity is the extent to which you succeed in
conveying your intentions to your user—the extent to which you let your user know what
will happen when that button is pressed.

How do you accomplish that? What can you do to bring clarity to your software? To
paraphrase Edward Tufte, one of the most important writers on the subject of visual
communication, clarity is achieved when differences make a difference.

When designing your user interface, a whole palette of raw materials is at your disposal.
You have fonts, buttons, color, and layout. Each of your visual interface components can
differ in shape, size, color, texture, position, or orientation. If you create a dialog box
using four different fonts, each in a different size, your users are going to wonder about
the significance of the different sizes and fonts. “Is the big type more important?” they’ll
wonder. “Why is this word in red?”

When such differences are accidental, the visual interface is confusing and difficult for the
user to interpret. When such differences are used to highlight important information or to
otherwise direct the attention of the user, clarity is enhanced. A warning dialog box that
uses a large stop-sign icon is conveying important information, and conveying it clearly.
Using different icons simply as a decorative touch conveys no information at all.

 The Squint Test

One way to pre-test your visual interface for clarity is to apply the “squint test.” Simply
close one eye completely and almost close the other, squinting at your visual interface.
Squinting enables you to quickly see which elements stand out in your design. Take
careful note of the things that you can easily see; those are the things that will be
apparent to your busy users. Are they the elements you want to stress? Are they the
most important parts of your interface? As you practice the technique, you’ll discover that
certain kinds of contrasts are evident when squinting. These are the contrasts most
evident to your users.

For example, consider the layout of the OK and Cancel buttons on the left side of Figure
15.1. When scanning the layout, your users will quickly notice the contrasting sizes of the
buttons and will wonder what the contrast signifies. Unfortunately, the contrast is
accidental, signifying nothing. Such a meaningless contrast makes the visual interface
more difficult for the user to interpret. Now consider the two buttons shown on the right
side of Figure 15.1. There, both buttons have the same size and shape, and so your
user’s attention is drawn to the significant difference: one says Cancel and one says OK.
Eliminating the unnecessary contrast in sizes helps make your interface clearer.

 - 443 -

 Figure 15.1 Contrasting component sizes

 Accidental Differences in Java

Because you’re using Java’s AWT components in your visual design, you face several
challenges as you try to eliminate accidental differences in your layouts. The first difficulty
arises from Java’s cross-platform nature.

When you create a user interface in Java, the actual interface the user sees will depend
on the computer system on which your program runs. Java’s AWT uses the native
platform on each system to construct a different “look and feel.” This means a Mac user
gets an interface that looks like a Mac interface and a Windows user gets a Windows-
flavored interface. Unfortunately, this makes it difficult for you as a designer to eliminate
accidental differences that might arise as your application is run in different
environments.

Another, related difficulty is the way in which AWT components tend to size themselves
according to the size of their associated text. This is particularly true when they are
placed within a container controlled by a FlowLayout layout manager. Buttons, for
example, size themselves according to the size of the Button label. Principles of good
visual interface design call for the elimination of such meaningless contrasts.

Designers coming from a platform-specific visual development environment, such as
Visual Basic or Delphi, usually begin their search for a solution by attempting to express
their designs in terms of absolute positioning. You can accomplish this in Java simply by
using a null layout manager like this:

 Panel p = new Panel();
 p.setLayout(null);

 After you’ve done this, you can size and position every component as you want.

However, despite the apparent attractiveness of this solution you should avoid it because
it creates more problems than it solves. (Even in platform-specific user interface design,
absolute pixel positioning causes problems. This is why Microsoft uses dialog-units rather
than pixels in its user-interface library.)

How do you solve this problem, then? The answer is easy: Learn to use the various
layout managers provided by the AWT. For example, if you create your Buttons using
this code, you’ll end up with Buttons that are arbitrarily sized:

 Panel p = new Panel();
 p.setLayout(new FlowLayout());
 p.add(new Button(“OK”));
 p.add(new Button(“Cancel”));

Instead, by learning to use the GridLayout layout manager, as shown in the following
code, you can eliminate the accidental complexity and guide your users to concentrate on
what your Buttons say, not on how they look:

 Panel p = new Panel();
 p.setLayout(new GridLayout(1, 2, 15, 15));

 - 444 -

 p.add(new Button(“OK”));
 p.add(new Button(“Cancel”));

 "If the key to clarity is making different things different, then the key to coherence is

making similar things similar."

 COHERENCE

If the key to clarity is making different things different, then the key to coherence is
making similar things similar. In a newspaper or magazine, headlines, subheads,
illustrations, and articles are all combined together for a particular purpose. Likewise, the
elements of a visual interface must be combined into a coherent whole. Just as the
headlines and subheads in a newspaper article help the reader understand its subject,
the organization and structure of your visual interface should help your users understand
how its parts relate to the whole.

To accomplish this, you should group the related elements of your visual interface
together so that your users can readily see that they are related. In a similar manner, you
should establish a hierarchy of importance between the groups and elements so that your
user’s attention is quickly directed to the most important parts of your display.

You can use two techniques to group related elements together. The first, and most
important, is to put related items close to each other and generously use whitespace to
separate them from unrelated elements. You can emphasize this grouping by aligning
related components along the horizontal or vertical axis. The second grouping technique,
which is not as effective as spatial grouping, is to use grouping elements such as borders
and boxes. These are especially useful when you’re grouping relatively small, similar
components such as radio buttons or check boxes.

You can test the effectiveness of your layout by using the same squint test described
earlier in this chapter. Your alignment and use of whitespace will be readily perceived by
your users, even though they’re likely to be busy concentrating on their jobs and not on
your layout. Just as variations in alignment will attract the attention of your users, who will
wonder what they signify, so too, lack of differentiation will make it difficult for your users
to appreciate the significance of a control. Interspersing a button that formats the user’s
hard disk with buttons that pick up and send email would be a poor design decision.
Before you automatically respond that this is a ridiculous example, ask yourself how
many times you’ve accidentally closed a window you meant to minimize or maximize,
simply because all three controls look almost alike and sit right next to each other under
Windows 95.

 Mullet and Sano, mentioned earlier in this chapter, suggest these guidelines for aligning

your visual interface components:

1.

First, identify the major groups of components in the layout. Unless you know which
parts go together and which parts are separate, you won’t be able to communicate
that information to your users. Then, look for ways to move elements that belong to
the same group into alignment with each other, making the groups even more
evident.

2.

Look for components that nearly align with one another. Eliminate such accidental
contrasts by moving or resizing the related components so that they’re in alignment (if
they’re related to each other) or clearly differentiated.

 3. Look for “maverick” components and align them with something else on the display.

 - 445 -

4.

If a component is not related to anything else, then relate it to the layout as a whole
by positioning it to correspond to a regular division of space. For example, center the
component, or put it in one of the corners rather than place it randomly.

 Because spatial grouping is the primary means you’ll use to create coherence, your use

of whitespace is very important. You should observe two important points:

•

Generously use whitespace to separate independent elements. Whitespace is not
wasted space; it helps the user understand which elements belong together and which
elements are distinct. It has the added advantage of allowing the eye to rest.

•

Whitespace also works to emphasize important elements. When an element is
surrounded by whitespace, your user’s attention will naturally be drawn to that
element.

 SYMMETRY

In addition to being concerned about the size, position, and alignment of your elements,
you’ll also have to think about the sizes and positions of groups of elements: the overall
look of your design. Variations in group size and position can send signals to your users;
signals that either help or confound their attempts to understand your visual interface. By
placing groups in regularly occurring patterns, you’ll make your interface more
understandable and, in general, more aesthetically pleasing.

If you feel that such considerations are a little too pretentious for such a utilitarian artifact
as a software program, remember that the effectiveness of your program can depend on
how your users feel about using it. A technically correct program that is visually
discordant will not be as successful as one whose design is attractive and pleasing. Even
if you are not artistically gifted, you can make your programs more visually pleasing
simply by employing a regular layout.

 Again, Mullet and Sano suggest some techniques that will help you regularize your visual

interface, including these:

•

Use regular geometric forms, simplified contours, and muted colors. Even at
Christmas time, a program that uses a bright red background and green text is not
going to be appreciated.

•

Make similar elements identical in size, shape, color, texture, line weight, orientation,
alignment, and spacing. Your goal is to develop a consistent, regular style, just as a
magazine uses the same basic layout in different combinations throughout each issue.
Buttons used by your application, for example, should be the same size and position
from screen to screen. They should not be at the top one time and in the lower right
the next.

•

Limit variation in typography to a few sizes of only one or two type families. (A type
family, or typeface, is a group of related fonts. In Java, for example, SanSerif is one
type family that comes in several different styles—bold, italic, and so on—and sizes.)

 • Do not regularize the critical elements of the design. By making them larger, for

example, they attract your user’s attention.

 The Grid Method: Layout Made Easy

Unless you’ve worked on a newspaper or magazine, you might be unfamiliar with the
idea of a layout grid. During production, layout artists traditionally arrange the finished
type and illustrations for their publications on a specially ruled sheet of layout board. This
is a sheet of heavy cardboard, broken into regular divisions and lined with non-
reproducing ink. Of course, today, such layout boards are virtual, having been replaced

 - 446 -

by programs like Adobe’s PageMaker and QuarkXpress. Nevertheless, even in these
programs, the layout grid and its rulings remain. You can see this in Figure 15.2, which
shows Adobe’s newsletter script, which creates a three-column layout grid that can be
used to build several different page layouts.

 Figure 15.2 A page layout grid in Adobe PageMaker

If you’ve worked with a visual development environment like Visual Basic or a drawing
program like Visio, you’re already familiar with the idea of a grid, which helps you to
visually align components. The layout grid, however, is a little different than the grid used
in those tools. For one thing, a layout grid is not just a series of evenly spaced lines like
graph paper; instead, it provides guidance for the consistent placement of elements
throughout the publication.

A layout grid typically includes ruling lines for margins (so each page has identical
whitespace around it) and columns, along with their corresponding gutters (whitespace
between columns). The layout grid is used to enforce a consistent look across the entire
publication, yet not every page necessarily has the same number of columns. Instead,
the layout grid is developed using a base layout that includes a regular spacing of three,
five, or seven columns. Then, every actual element is laid out by using some combination
of these column measurements. An individual element is free to span several columns,
but “splitting” a column is forbidden. This promotes symmetry and yet allows variety.

 Layout Grids in Java

Of course, Java doesn’t have a LayoutGrid object, but it has something almost as
good: layout managers. You can use layout managers to enforce consistency and
produce a pleasingly regular design, in much the same way that print publications have
for years.

Figure 15.3 shows a canonical (that is, standardized or regular) grid that provides one-,
two-, three-, four-, and six-column layouts. Notice that, within a row of the grid, each
column has the same size. Notice also how the two- and three-column grids are regularly
subdivided to produce each of the other grids, apart from the one-column grid.

 - 447 -

 Figure 15.3 A canonical grid

 "Using a grid is one of the quickest ways to make your user interfaces look better,

all with very little effort."

Using a grid is one of the quickest ways to make your user interfaces look better, all with
very little effort. To use a grid, start by placing your components so that they precisely
line up with the grid. Usually, you base your grid patterns on either the two-column grid or
the three-column grid, along with subdivisions of the main grid. In addition to the grid
columns, a left column (which is not counted as one of the grid elements) is usually
designated to hold labels. Figure 15.4 shows an example of a visual interface designed
using a two-column grid.

 Figure 15.4 A visual interface based on the two-column grid

If you’re convinced that using a grid to lay out your designs is a wise decision, you’re
probably wondering which layout manager you should use to implement it. Unfortunately,
in Java, achieving such a regular layout by using the layout managers included with the
AWT is not simple. You can use the GridLayout layout manager to divide a panel into
rows, but getting the columns to line up properly is difficult. If the left column contains
labels for each row, getting the labels to line up with the rows might be difficult. The more
sophisticated GridbagLayout layout manager solves these problems but introduces
another. Its rows and columns line up fine, but there’s no simple way to obtain columns of
equal width. The solution? A custom layout manager: the RowLayout class.

 Using the RowLayout Layout Manager

 Before looking at the layout manager itself, here’s an example showing how it can be

 - 448 -

used. The TestRowLayout applet, shown in Listing 15.1, creates a layout that includes
five rows and five columns. The RowLayout layout manager assumes that the left column
will be used for labels, so this is actually an instance of a four-column grid. Each of the
five rows contains from two to five buttons of various sizes.

 Listing 15.1 The TestRowLayout Applet

 import java.applet.*;
 import java.awt.*;

 public class TestRowLayout extends Applet
 {
 public int [][] pattern =
 {
 { 5, 1, 1, 1, 1, 1 },
 { 5, 1, 1, 1, 2, 0 },
 { 5, 1, 2, 0, 1, 1 },
 { 5, 1, 2, 0, 2, 0 },
 { 5, 1, 4, 0, 0, 0 }
 };
 public void init()
 {
 setLayout(new RowLayout());
 int buttons = 0;
 int rows = pattern.length;
 for (int i = 0; i < rows; i ++)
 {
 int cols = pattern[i][0];
 for (int j = 0; j < pattern[i].length - 1; j++)
 {
 int width = pattern[i][j+1];
 if (width == 0) continue;
 add(new Button(“” + ++buttons),
 new RowLayoutConstraint(i, j, width,
 RowLayoutConstraint.FILL_BOTH));
 }
 }
 }
 }

You can see what this applet looks like in Figure 15.5. Notice that the left column,
assumed by the layout manager to contain labels, is right justified. This means that the
labels appearing in that column will be aligned to the right so they are close to the
components that each label describes. The left column is sized to fit its contents; the
other columns evenly divide the remaining width of the layout.

 Figure 15.5 Output of the TestRowLayout applet

 - 449 -

 Examining TestRowLayout

 At the of the TestRowLayout applet, you’ll find an array named pattern defined like this:

 public int [][] pattern =
 {
 { 5, 1, 1, 1, 1, 1 },
 { 5, 1, 1, 1, 2, 0 },
 { 5, 1, 2, 0, 1, 1 },
 { 5, 1, 2, 0, 2, 0 },
 { 5, 1, 4, 0, 0, 0 }
 };

This array is used to specify how the components are treated by the layout manager. The
array contains one row for each row of the display. Within each row, the first element
specifies the number of columns in the row. Notice that this is fixed as five. The
remaining elements specify the relative width of each of the components, and their sum
must add up to five. Because the total width was specified as five, one or more elements
can have their width set to zero.

 The RowLayoutConstraint Class

The RowLayout layout manager is used much the same way that GridbagLayout is used.
Like GridbagLayout, RowLayout is unable to accomplish its work alone; instead, it relies
on a helper class to control the placement of individual components. Whenever you add a
component to a container controlled by RowLayout, you also must specify a constraint
object. This constraint specifies the following:

 • Row: The vertical position of the component, relative to zero.

 • Column: The horizontal position of the component, relative to zero.

 • Width: The width (horizontal size) of the component.

 • Fill: Specifies whether the component should expand to fill its grid position.

You can read the class definition for the RowLayoutConstraint class in Listing 15.2.
The class simply encapsulates the constraint data, providing some static final fields
used to specify fill, a constructor, and a toString() method.

 Listing 15.2 The RowLayoutConstraint Class

 public class RowLayoutConstraint
 {
 public static final int FILL_NONE = 0;
 public static final int FILL_HORIZONTAL = 1;
 public static final int FILL_VERTICAL = 2;
 public static final int FILL_BOTH = 3;
 public int theRow = 0;
 public int theColumn = 0;
 public int theWidth = 1;
 public int theFill = FILL_NONE;

 - 450 -

 public RowLayoutConstraint(int row, int column, int width,
 int fill)

 {
 theRow = row;
 theColumn = column;
 theWidth = width;
 theFill = fill;
 }
 public String toString()
 {
 String [] fill = { “none”, “horizontal”, “vertical”, “both”
};

 String s = “RowLayoutConstraint[“;
 s += “row=” + theRow;
 s += “,column=” + theColumn;
 s += “,width=” + theWidth;
 s += “,fill=” + fill[theFill];
 return s + “]”;
 }
 }

 "A layout manager uses the Strategy design pattern, encapsulating an algorithm or

method for convenient reuse."

 The RowLayout Class: Fields and Constructors

Although it relies on the help of the constraint class, the layout manager itself does the
real work. As mentioned in Chapter 11, “Patterns: Proven Designs,” a layout manager
uses the Strategy design pattern, encapsulating an algorithm or method for convenient
reuse.

To see how the RowLayout class actually lays out your components, begin by looking at
the class fields and constructors, which you can see in Listing 15.3. When you construct
a RowLayout object, you can specify the horizontal and vertical gaps (in pixels) that
you’d like to separate layout elements, as well as the size of the horizontal and vertical
margins (gutter) separating the layout from its container. These values are stored in fields
for later use.

In addition to the fields used to store the margins and gutters, two Hashtable objects
are used to look up the constraint associated with each component. A default constructor
is also provided. The class implements the LayoutManager2 interface (defined in the
AWT, for the implementation of custom layout managers), which requires implementation
of a variety of methods, shown later.

 Listing 15.3 Fields and Constructors of the RowLayout Class

 import java.awt.*;
 import java.util.*;
 public class RowLayout implements LayoutManager2
 {
 int theHGap;
 int theVGap;

 - 451 -

 int theHGutter;
 int theVGutter;
 Hashtable theComponents = new Hashtable();
 Hashtable theByAddress = new Hashtable();
 public RowLayout()
 {
 this(5, 5, 5, 5);
 }
 public RowLayout(int hgap, int vgap, int hgutter, int vgutter)
 {
 theHGap = hgap;
 theVGap = vgap;
 theHGutter = hgutter;
 theVGutter = vgutter;
 }

 Adding and Removing Components

To implement the LayoutManager2 interface, you must write methods that allow a
container to associate your layout manager with the components it contains. Listing 15.4
shows these methods, addLayoutComponent() and removeLayoutComponent().

The addLayoutComponent() method is called by a container whenever a component
is added to the container. The component and its associated constraint object are added
to two Hashtable objects, one keyed by the component reference and the other keyed
by the row and column position of the component. The Hashtable objects make it easy
to retrieve this information when the container is being laid out.

The second version of the addLayoutComponent() method, which takes a String as
parameter, is implemented to satisfy the requirements of the LayoutManager2
interface, but its implementation is null, as is that of the removeLayoutComponent()
method.

 Listing 15.4 The addLayoutComponent() and removeLayoutComponent() Methods

 // Adds the specified component to the layout, using the
specified

 // constraint object.
 // Parameters:
 // comp - the component to be added
 // constraints - where/how the component is added to the layout.
 public void addLayoutComponent(Component comp, Object
constraints)

 {
 theComponents.put(comp, constraints);
 RowLayoutConstraint rc = (RowLayoutConstraint) constraints;
 String address = “” + rc.theRow + “,” + rc.theColumn;
 theByAddress.put(address, comp);
 }
 public void addLayoutComponent(String name, Component comp)
 {
 // null implementation
 }
 public void removeLayoutComponent(Component comp)
 {

 - 452 -

 // null implementation
 }

 Arranging the Components

Now that you’ve constructed your layout manager and added the components, it’s time to
see how the RowLayout class actually accomplishes its work. When a container wants
its layout manager to arrange the components it contains, it sends it a
layoutContainer() message. You can see how the RowLayout class responds by
looking through the layoutContainer() method, shown in Listing 15.5. Immediately
following the listing, you can find an analysis of the layout manager’s strategy.

 Listing 15.5 The layoutContainer() Method

 public void layoutContainer(Container parent)
 {
 // Step 1: Determine the size of the container and
 // number of components it holds, as well as
 // the size of its parent
 int components = theComponents.size();
 Dimension psize = parent.getSize();
 Insets pinsets = parent.getInsets();
 // Step 2: Determine the number of rows and columns
 // of the layout by checking the row and column
 // number of each component.
 int cols = 0;
 int rows = 0;
 RowLayoutConstraint rc;
 Enumeration constraints = theComponents.elements();
 while (constraints.hasMoreElements())
 {
 rc = (RowLayoutConstraint) constraints.nextElement();
 if (rc.theColumn > cols) cols = rc.theColumn;
 if (rc.theRow > rows) rows = rc.theRow;
 }
 cols++;
 rows++;
 // Step 3: Determine the width of column 1 (which will
 // be used to hold the labels) and the minimum
 // row height
 int vgap = (rows - 1) * theVGap;
 int width = psize.width - 3 * theHGutter;
 int height = psize.height - 2 * theVGutter;
 height -= height % rows;
 int c1width = 0;
 int rheight[] = new int[rows];
 for (int i = 0; i < rows; i++)
 rheight[i] = 0;
 Enumeration comps = theComponents.keys();
 Component c;
 while (comps.hasMoreElements())
 {
 c = (Component) comps.nextElement();

 - 453 -

 int cheight = c.getPreferredSize().height;
 int cwidth = c.getPreferredSize().width;
 rc = (RowLayoutConstraint) theComponents.get(c);
 if (cheight > rheight[rc.theRow])
 rheight[rc.theRow] = cheight;
 if (rc.theColumn == 0 && cwidth > c1width)
 c1width = cwidth;
 }
 // Step 4: Determine the width of the remaining columns
 int c2width = width - c1width;
 int cwidth = c2width - (theHGap * (cols - 1));
 cwidth = cwidth / (cols - 1);
 // Step 5: Place each component at the proper position
 // within the container and set its size according
 // to the value of the fill parameter specified.
 int x, y;
 int dx, dy;
 y = theVGutter;
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < cols; j++)
 {
 String address = “” + i + “,” + j;
 c = (Component) theByAddress.get(address);
 if (c == null)
 continue;
 rc = (RowLayoutConstraint) theComponents.get(c);
 Dimension csize;
 if (j == 0)
 {
 csize = c.getMinimumSize();
 x = c1width - csize.width;
 dx = csize.width;
 dy = csize.height;
 }
 else
 {
 x = theHGutter + (c1width - cwidth) + j *
 (cwidth + theHGap);
 dx = cwidth * rc.theWidth;
 if (rc.theWidth > 1)
 dx += (rc.theWidth - 1) * theHGap;
 csize = c.getPreferredSize();
 dy = rheight[i];
 switch(rc.theFill)
 {
 case RowLayoutConstraint.FILL_NONE:
 dx = csize.width;
 dy = csize.height;
 break;
 case RowLayoutConstraint.FILL_HORIZONTAL:
 dy = csize.height;

 - 454 -

 break;
 case RowLayoutConstraint.FILL_VERTICAL:
 dx = csize.width;
 break;
 case RowLayoutConstraint.FILL_BOTH:
 break;
 }
 }
 c.setBounds(x, y, dx, dy);
 }
 y += rheight[i] + theVGap;
 }
 }

 Although this method is certainly large, and might seem complex, in reality it consists of

five simple steps:

 1. Determine the size of the container and the number of components it holds.

 2. Determine the number of rows and columns of the layout by checking the row and

column number of each component.

 3. Determine the width of column 1 (the first column, which holds the labels) and the

minimum height of each row.

 4. Determine the width of columns 2–n.

 5. Place each component at the proper position within the container and set its size

according to the value of the fill parameter specified.

 Additional Methods

 In addition to the methods you’ve already seen, the RowLayout class contains several

other methods that are required by the LayoutManager2 interface:

•

Methods used to calculate the size of the layout. Because the RowLayout class
adapts the layout to the current size of the container, whatever it might be, these
methods simply return the size of the parent container.

 public Dimension preferredLayoutSize(Container target)
 {
 return target.getSize();
 }
 public Dimension minimumLayoutSize(Container target)
 {
 return target.getSize();
 }
 public Dimension maximumLayoutSize(Container target)
 {
 return target.getSize();
 }

•

Methods that determine how components should be aligned. These methods have no
real effect; as far as the container knows, there is no surrounding whitespace within
which the layout should be aligned.

 - 455 -

 public float getLayoutAlignmentX(Container target)
 { return 0.0F; }

 public float getLayoutAlignmentY(Container target)
 { return 0.0F;}

•

The invalidateLayout() method, which is unused by the RowLayout class
because RowLayout does not cache any layout information. If a layout manager
saves results of the layoutContainer() method as part of its state, this method
can be used to reset the state.

 public void invalidateLayout(Container target)
 {
 // null implementation
 }

 Putting RowLayout to Work

There’s no question that implementing a custom layout manager requires a considerable
amount of code. Nevertheless, when it comes to your user interface, you’ll find the effort
worthwhile. Figure 15.6 shows how you can use the RowLayout class to implement a
contact manager application, based on a three-column layout.

 Figure 15.6 A three-column layout

 "Notice how the use of a regular grid provides a pleasing symmetry to the layout.

Nothing looks out of place or haphazard."

You can find the source code for the ThreeColumn applet on the CD-ROM. Note how the
labels in the left column neatly line up with the row that each label describes. Also, notice
how individual elements can consist of either a single column—the phone and fax
numbers for example, as well as the Home, Office, and Other buttons—or can span two
or more columns as the Name and City fields do.

Finally, notice how the use of a regular grid provides a pleasing symmetry to the layout.
Nothing looks out of place or haphazard. Of course, you can use the RowLayout class for
four- and five-column layouts with equally satisfactory results. Figure 15.7 shows the
FourColumn applet, whose source code you can also find on the CD-ROM.

 - 456 -

 Figure 15.7 A four-column layout

When looking at the illustrations, you might be wondering why the command buttons
along the bottom are not aligned with the other elements on the screen. This is an
application of the principle of clarity: make different things different. Because the
command buttons are not part of the dialog box itself, they shouldn’t be treated as part of
the regular layout group. Of course, between themselves, their relationship should,
indeed, be regularized.

 ELEGANCE

What comes to mind when you hear the word elegance? Refinement? Gracefulness?
Good taste? Perhaps even luxury and wealth? Certainly those are all elements
encompassed by the popular notion of elegance. However, when it comes to visual
design, elegance has less to do with richness and elaboration than it does with the
following qualities:

 • Novelty

 • Simplicity

 • Economy

 • Effectiveness

As a programmer, you’re probably already familiar with this use of the word elegance.
Perhaps, after struggling with a particularly complicated section of code, a co-worker has
shown you a straightforward way to accomplish the same thing in half the code. Or
maybe, on your commute home at the end of a long and tiring day, you’ve found yourself
turning your class hierarchy on its head, eliminating half your methods, and seeing things
in an entirely different light. Although quantifying the quality of elegance can be difficult,
like art, you’ll know it when you see it.

 What Makes an Elegant Design?

One thing that characterizes an elegant design is its novelty, a novelty that results from
looking at a problem in a new light or through a different lens. Of course, it’s important to
remember that just because most elegant designs are novel, it doesn’t follow that novel
designs are necessarily elegant; simple difference, like random genetic mutation, is
seldom beneficial. Instead, a truly elegant design causes you to ask, “Why didn’t I think of
that? It’s so obvious!” Simple novelty provokes the opposite question: “Why would
anyone do that?”

 An elegant design is simple, not in the sense of being plain or ordinary, but in the sense

 - 457 -

that it contains no unnecessary ornamentation or embellishment.

After the end of the first world war in Germany, a group of designers under the leadership
of architect Walter Gropius formed a design institute called the Bauhaus, which was
dedicated to the principles of simplicity, economy, and effectiveness. Their world-
renowned chairs, for example, combined a novel simplicity with an unerring grace.

The Bauhaus ideas about design were widely accepted, influencing designers in fields as
diverse as architecture, industrial design, furniture making, typography, and the graphic
arts. The most famous aphorism to come out of the movement was “form follows
function.” That simply means that the form of an object should be dictated by its purpose.
The Bauhaus designers refused to separate the utility or effectiveness of an object from
its aesthetic component. Thus, a “beautiful” chair that you couldn’t comfortably sit in was
seen as a design flaw. True beauty flows from artifacts that fulfill their intended purpose.

 Creating Elegant Designs

Being able to recognize an elegant design certainly is a good thing, but being able to
create an elegant design is even better. How do you go about it? The key is to master
subtraction.

A sculptor was once asked how he created such realistic figures from lifeless blocks of
marble. “It is very, very simple,” he replied. “If I am going to sculpt a horse, I simply
remove everything that is not a horse!” Like the sculptor, to create an elegant user
interface, you must be willing to remove the parts that don’t belong. When looking at your
visual design, you must be willing to look at every element and ask the following:

•

Does it contribute to the purpose of my design? Do I really need those borders around
each element? Do I have components that duplicate the work of other components?
Do I have gratuitous information displayed? Does everything work together?

•

After you’ve made sure that everything works together, you must put your visual
design on a diet. Look at each element and ask yourself, “What happens if I remove
this? Does the design still work?” If the answer is yes, remove the item. You must edit
your visual designs in much the same way a newspaper copy editor reduces the
overactive prose of her reporters.

•

Finally, you must ask yourself if the elements you are using are the best ones for the job.
Don’t be afraid to try a different method. Ask yourself if a choice control would be more
appropriate than a slew of radio buttons, or if a dozen text fields could be replaced by a
single text area. Adopt “form follows function” as your personal design motto, and you’ll
be well on your way to creating more elegant designs.

Usability Principles

Choosing an appropriate visual design for a user interface is only half of your job. A good
user interface must not only look good, it must work well: in addition to having a pleasing
form, it should actually function.

As a user-interface designer you’ll find yourself wearing two hats as you switch between
designing the look of your application and its feel. When designing the visual elements,
you’re concerned with clarity, coherence, and elegance. In the words of Vitruvius, you
focus on the quality of delight. When it comes to designing the usability of your interface,
however, you must switch gears and concentrate on the quality of commodity: making
sure your interface works well in its intended role. In a way, your job is very much like the
producer of a play: you not only must have a nice-looking set, but you must get the actors
to say all their lines at the right time. To be successful, you require both.

 How do you go about designing a user interface that works? In considering usability, user

interface designers tend to focus on one of three aspects of their job:

 - 458 -

 • The user interface technology

 • The user’s task

 • The user’s goals

 "A good user interface design focuses on providing useful capabilities to the user,

not merely extending access to every capability of the underlying system."

 Of these three alternatives, only one is appropriate. Can you guess which? The next

three sections examine each of the alternatives in turn.

 FOCUS ON TECHNOLOGY

There’s no doubt about it—technology is neat. Many an interface designer has become
enamored of the latest user-interface gadgets: exploding windows, 3D widgets, sounds,
animations, designer fades, and color effects. All too often, however, a designer who
focuses on technology fails to produce a design that meets the user’s actual needs. Often
such a design incorporates the latest gadgets, but equally often the user interface is
cumbersome to use. Lacking both commodity and firmness, such a user interface is the
archetypal bad user interface. Unless the designer understands the user’s needs and
takes full account of them in making each design decision, the design is at risk.

Remember the word interface in the phrase user interface. A user interface is not merely
the point of contact between a user and a system. Like the interface of a Java object, the
user interface of a system defines the user’s view of the system. As one human-computer
interaction researcher put it, “To the user, the user interface is the system.”

A good user interface design focuses on providing useful capabilities to the user, not
merely extending access to every capability of the underlying system. Do you remember
the hypothetical household robot from Chapter 4, “Encapsulation: Classes and
Methods”? The robot’s initial design—a design rooted in technology—included user
interface functions such as the following:

 • Start

 • Stop

 • Move forward

 • Move backward

 • Turn left

 • Turn right

The problem with this interface is that, for a household robot, it ignores the needs of the
users. With an interface like this, you might find vacuuming your home using an ordinary
vacuum easier than putting this “labor-saving” device to work at the task. At least, by
sidelining the device, you wouldn’t have to worry about accidentally demolishing your
costly big-screen TV.

 - 459 -

 The ideal design, employing the principle of abstraction, would include only functions that
correspond to the tasks the user is trying to accomplish:

 • Vacuum the house.

 • Do the laundry.

 • Cook dinner.

Now, when you tell your robot to vacuum the house, it begins its job without further
instruction, vacuuming around obstacles without your advice or assistance. You’re free to
enjoy your big-screen TV while your robot—let’s call it the Model 110HR—does its work.
If you get a phone call or friends drop by, you can switch the unit off. No more user
interface functions are needed.

Of course, the first version of the vacuum is easier to implement. You might find the
second version not simply harder, but impossibly hard. However, you’ll never know until
you try. This is one reason why design tends to be iterative. Striving for excellence can
occasionally lead you to attempt things that turn out to be impossible. If you fail to accept
this challenge, you’ll retrace your steps less often, but you’ll also turn out mediocre
designs.

 FOCUS ON THE USER’S TASK

If focusing on the technology is wrong, focusing on the user’s task might seem to be a
step in the right direction. To see why this is not adequate, consider again the Model
110HR household robot. Focusing on the task might lead you to define the following user
interface functions in place of a single “Vacuum the house” instruction:

 • Vacuum on.

 • Vacuum off.

 • Vacuum an open area.

 • Vacuum around a rectangular object.

 • Vacuum around a circular object.

 • Vacuum under the couch.

Certainly, this approach is better than focusing on the underlying technology. At least you
can catch a few irregular moments of TV while your 110HR finishes a task. However, just
as you’re about to find out “who dunnit” on your favorite drama, your robot is likely to
need further instructions. Again, you want a user interface that provides a higher level of
abstraction.

Focusing on the user’s task often leads to ineffective use of technology. Too many
computer systems work exactly the way some ancient labor-intensive process worked,
except that the work is now done by a computer rather than by an army of clerks.
Although the computer might be faster and more accurate than its human predecessors,
different ways of structuring the work can make even better use of its potential.

 "Good design focuses neither on technology nor task, but on the user’s goals. Its

mission is to make the user more effective."

 - 460 -

 FOCUS ON THE USER’S GOALS

Good design focuses neither on technology nor task, but on the user’s goals. Its mission
is to make the user more effective. How do you go about creating such a design? There
is only one way: You must talk to your users to see how they actually use your software.

Applying this principle is often difficult for designers and other technical workers. For
them, technology takes center stage. To combat this tendency, it’s important to talk with
prospective system users. Better still, if possible, ask permission to quietly and
unobtrusively observe them at work. As Yogi Berra quipped, “You can see a lot just by
observing.”

What you find might surprise you. You’ll probably discover system features that provoke
user frustration. You might find users employing awkward procedures (called
workarounds) because your system doesn’t do what they need done. You might find
system features that virtually ensure that mistakes are made. Take careful note of these
and vow never again to impose similar burdens on users of systems that you design.

 GUIDELINES FOR DESIGNING USABLE INTERFACES

When you adopt the proper perspective for user interface design—maximizing the
effectiveness of system users—your design decisions are likely to be good ones. But,
you might find that working through every design decision from first principles is time
consuming. Fortunately, some shortcuts can help you make design decisions more
quickly.

 Put the User in Control

 An important characteristic of a good user interface is that it puts the user in control. The

user should be able to decide what is done and when it is done.

Some designers understand user interfaces as though they are a dialog between the
user and the computer. Certainly, information flows between the user and the computer,
so this model is at least partly valid. However, the designer who employs this model risks
falling victim to the master-genie syndrome. To see the master-genie syndrome in action,
consider the following user-interface dialog:

 • Master: I’d like a chocolate ice cream cone.

 • Genie: I take it that you’re hungry, master?

 • Master: Yes, I’m hungry. I’d like a chocolate ice cream cone.

 • Genie: Would you like to see a menu?

 • Master: No, I just want a chocolate ice cream cone.

 • Genie: I’m sorry, master, but you must order from the menu. Would you like to see the

menu?

 • Master: Oh, all right. Let me see the menu.

 • Genie: Well, master, do you see anything you like?

 - 461 -

 • Master: Yes, I want a chocolate ice cream cone.

 • Genie: Ice cream. An excellent choice, master. And what sort of ice cream would you

like? May I show you the menu?

 • Master: Like I said, I want chocolate ice cream. In a cone.

 • Genie: I’m sorry, master, but you must order from the menu. May I show you the

menu?

 • Master: No. I give up. I’ll make it myself.

A user interface like this is termed modal. It defines a number of modes that limit the
user’s options. Such a user interface is cumbersome to use because, even if you know
exactly what you want, you’re forced to navigate a tortuous, multi-step dialog. You can
avoid the master-genie syndrome by streamlining your user-interface dialogs, or, if
possible, eliminating dialogs all together.

 Be Predictable

Imagine a Web-based form several pages long. You work your way through the form,
filling in text boxes and checking options, taking several minutes to arrive at the bottom of
the form. There you find two buttons, one marked Press Me and See What Happens and
the other marked No, Press Me Instead. What do you do? If you press the wrong button,
you might have to re-enter all the data. How do you decide which button to press?

Many real user interfaces are not far removed from this hypothetical example. They lack
predictability. A good user interface helps the user understand the consequences of
pushing a button or manipulating a control. The user is not really in control unless the
user knows what’s going to happen. Strive to make your user interfaces predictable.

 Give Feedback

Not knowing what will happen is scary, but not knowing what has happened is even
scarier. A good user interface provides users with feedback telling them what has
happened. If an operation is time consuming, it tells them what is going on and helps
them estimate how much longer it will take. Remember to give your users feedback for
every operation.

 Forgive Errors

Unless your users are superhuman, they will make errors from time to time. A good user
interface anticipates this possibility and provides an “undo” or other mechanism that
helps the user cope with the consequences of a bad choice. Be sure your user interfaces
require no more than human competency for correct operation.

 Allow Customization

Not all users are the same. A user interface designed for beginners can provide special
helps and prompts that lead the beginner through complex operations. An advanced user
who doesn’t need the helps and prompts might find this same interface too cumbersome
for effective use.

A good user interface accommodates users of all levels, providing the beginning user
with special helps and prompts but providing the advanced user with shortcuts that permit
efficient operation. A good design will allow the advanced user to disable the menus and
wizards that the novice user finds so helpful. You should strive to design systems that let
users choose an interaction model that suits their particular needs.

 - 462 -

In addition to allowing customization of the user interaction model, a good design will let
your users adapt your software to their preferred working environments. You might have
a 20-inch monitor and prefer using a small typeface. Your users, with less lofty
equipment, might prefer larger type. For example, you should use the Java
SystemColor class rather than hard-coding the colors your program uses. That way,
those who prefer a muted gray to the nice teal that you selected can “have it their way.” If
you use function keys in your application, you can let your users select which key gets
assigned to which function.

 For every feature, ask yourself, “Will my users want to change this?,” and, if the answer is

“Yes,” enable them to customize that feature.

 Anticipate Portability

Particularly when designing systems to be implemented in Java, you should anticipate that
the system will be used on multiple platforms. Java’s controls adopt the look and feel of
each platform. A text field has one look on Microsoft Windows 95 and another on X
Window Motif. Become familiar with the idiosyncrasies of each platform so you can
anticipate how the system will behave on each.

Style Guidelines: User Interface Elements

General principles of the type given in the last section are helpful, but the new designer
often seeks more specific advice as well. This section aims to meet that need by
surveying Java’s graphical user interface elements and offering concise suggestions for
their use. The material is grouped into five subsections:

 • Basic elements, which looks at colors and fonts

 • Windows, which looks at dialog boxes and menus

 • Components, which looks at Java’s principal user-interface components

 • Messages, which gives suggestions for presenting various types of messages

 • Special operations, which looks at cut and paste, drag and drop, and online help

 "Color attracts the user’s attention and should be used sparingly so that the user is

not overwhelmed by competing centers of attention."

 BASIC ELEMENTS: COLOR AND FONTS

Color attracts the user’s attention and should be used sparingly so that the user is not
overwhelmed by competing centers of attention. Use color to direct the user’s attention to
important parts of the user interface.

 Using Color

 There are a few guidelines to remember when using color:

 • Use only a few colors (not more than four) per screen.

 - 463 -

•

Remember that some users might have monochrome monitors or suffer from red-
green color blindness: do not rely exclusively on color to distinguish the meaning of
user interface elements. Make sure that elements that are really different are
distinguished by grouping, size, or position, as well.

•

Java 1.1 provides the class java.awt.SystemColor, which lets you determine the
color of GUI objects on a system. Because most systems enable the user to customize
the color of GUI objects, using this class in your programs will enable users to
customize the color of your programs’ text and components. This helps make your
program more adaptable to hardware limitations and personal preferences.

 Using Fonts

Using different fonts in your applets and applications can help make your programs more
attractive and can also increase the clarity of your interface. Overuse and misuse of
fonts, however, is also one of the quickest ways to make your interface totally illegible.

Although the terms font and typeface are sometimes used interchangeably, they do not
mean exactly the same thing. In traditional graphic design, a typeface is a particular
“family” of related fonts. For example, Times Roman is a typeface, and it includes bold
and italic variations. To further confuse matters, a font is, technically, a given typeface in
a particular variation and size. Thus, when you create a Font object in your Java
program, you specify not only the typeface, but its style and size as well.

Java adds one additional wrinkle to this subject, because of the way in which it specifies
typefaces. Because Java programs are designed to run on different platforms where a
given typeface might not be installed, Java created several “generic” typefaces, which are
really type categories rather than specific typefaces. When you use these type categories
(SansSerif, Serif, and Monospaced) the Java runtime will substitute the closest actual
typeface available on your user’s machine.

 Here are some specific guidelines to make your use of type more effective:

•

Sans serif fonts, such as the Java font SansSerif, are more readable on video
monitors than serif fonts, which have horizontal strokes at the base of most letters.
These horizontal strokes are not clearly rendered at the typical 72 dpi resolution of
computer monitors, resulting in text that is hard to read.

 • Limit the number of font families appearing on a screen. Try to use only a single font

family, if possible.

•

Use fonts consistently in all screens of a single program. If you use SansSerif on one
screen and Serif on another, your users will notice, if only subconsciously, and wonder
what the difference signifies.

•

Use a bold font rather than color to emphasize text. You can use several font sizes on
a screen, but do not use font size for emphasis. It seldom has sufficient impact for this
purpose.

•

Avoid using ALL CAPITALIZED MESSAGES. It makes your text hard to read, and it
looks like you’re SHOUTING. Instead, as with color, use a bold font to emphasize your
messages.

•

Avoid using italic type in small sizes, and your users will bless you. Italics can be
effective on screen only in large sizes. As with the Serif type family, the screen
resolution of even the best monitor is just too coarse to make italic text readable.

 The Fonts applet shown in Figure 15.8 illustrates the legibility of different typefaces and

styles. You can find the source code on the CD-ROM.

 - 464 -

 Figure 15.8 Guildelines for using type—the Fonts applet

 WINDOWS

To the user interface designer, windows and dialog boxes act as natural containers for
related information. For a small program—one with only a single window—your main task
will be to arrange the layout in a pleasing and efficient manner. But, for real-world
applications, those involving multiple screens and dialog boxes, you’ll also need to
coordinate the appearance and responsibilities of each of your windows. Here are some
guidelines that can help you.

 Using Windows

 • Try to design screens so that horizontal scrolling is not necessary. Use a larger

window or separate the information and place it in multiple windows.

•

Use layout managers that realign components appropriately when the window is
resized. Resist the temptation to use a null layout manager with absolute positioning.
When you give in, your code no longer is portable.

 Using Dialog Boxes

•

Never use a modal dialog box, which prevents the user from accessing the application
until the dialog box is closed, if you can reasonably avoid it. Modal dialog boxes are
best for small tasks; they can lead to the master-genie syndrome if used
inappropriately.

•

Use the FileDialog class to create dialog boxes that open or save files.
FileDialogs enable your users to interact with the file system on their computer in
the manner with which they are accustomed and free you from the dangers of writing
platform-specific code that relies on the characteristics of a particular file system.

 Using Menus

 • Carefully choose the labels of menu items so that users can predict what will happen

when an item is selected.

•

Position menu items consistently throughout the screens of a program. Put the most
frequently selected items near the top of a menu and use separator bars to group
related items. Of course, you can’t always accurately predict which items will be used
most frequently; instead, you must make some reasonable assumptions or, better yet,
take some time to observe your users. If you’ve done a good job of talking to your
users, you should have a good idea of which operations are done frequently and which

 - 465 -

are accessed only occasionally.

 • Define keyboard shortcuts that facilitate access to frequently used menu items.

"Components are the basic building blocks of the modern user interface. Just as a
builder works with lumber, bricks, and mortar, the user interface designer bolts
together buttons, labels, lists, and check boxes."

 COMPONENTS

Components are the basic building blocks of the modern user interface. Just as a builder
works with lumber, bricks, and mortar, the user interface designer bolts together buttons,
labels, lists, and check boxes. Like the builder, you also face two critical questions: What
component should you use, and where should you use it? Most of the decisions you’ll
make when using components involve selecting the correct component for the job and
then using that component correctly. The following are some guidelines to help you.

 Using Button Controls

 • Use buttons sparingly, and only for frequent or critical functions. Moving other

functions to a menu will free screen space for better uses.

 • Choose button labels so that the user clearly understands what each button does.

•

Group related buttons and set them off from other components. They should be placed
consistently in all the screens of a single program. This is especially true for command
buttons. These are the normal buttons that are used to accept or reject the changes in
a dialog box. Make sure you choose a location for these buttons and stick to it.

 Using Check Box and Radio Button Controls

Using a check box when you should use a radio button, or vice versa, can make your
interface counter-intuitive and difficult to use. Make sure you understand the semantic
differences between each type of control:

•

Use check boxes when the user can choose one or more options. Figure 15.9, the
Pizza applet (available on the CD-ROM), shows an appropriate use of check boxes for
choosing toppings on a pizza, because you might want both pepperoni and pineapple.

 Figure 15.9 Effective use of check boxes and radio buttons

 - 466 -

•

Use radio buttons when the user must choose only one option from a list of options. In
the Pizza applet, radio buttons are used for the Sizes Available group of choices,
because a single pizza cannot be both small and large. In Java, you create radio
buttons by associating check boxes with a CheckboxGroup object, like this:

 CheckboxGroup sizeGroup = new CheckboxGroup();

 add(new Checkbox(“Small”, false, sizeGroup));

 add(new Checkbox(“Medium”, false, sizeGroup));

 add(new Checkbox(“Large”, false, sizeGroup));

 add(new Checkbox(“Family”, true, sizeGroup));

 • Check boxes and radio buttons should be grouped and labeled so that their function is

clearly understandable.

•

Check boxes or radio buttons within a group should be ordered. Order them by
frequency of use or logical order if possible; use alphabetical order if you can find no
better alternative.

 Using List and Choice Controls

A list box or choice box (also known as a drop-down list box) should be used in place of a
large group of radio buttons. Either is also useful when the list of items changes during
program execution. Changing the labels of a check box or radio button might compel
changing the layout of the screen to accommodate a longer label; this is less often a
problem with a list box or choice. Here are some guidelines for using these components:

 "A list box or choice box (also known as a drop-down list box) should be used in

place of large group of radio buttons."

•

If your users must select one item from a group, you really have three options: the
radio button, the list box, and the choice. If the number of options from which to select
is more than 10, you should almost always use either a choice or a list box instead of
radio buttons, simply to reduce the amount of screen clutter. Figure 15.10, the States
applet, shows how much more effective a list box or a choice can be.

 - 467 -

 Figure 15.10 The States applet: radio buttons, list boxes, and choice controls

•

The choice box, which until selected shows only the currently chosen item, takes up
less room on the screen. However, because it must be selected before being used, it
costs the user an extra step. It should be used when most users will select the first
item in the list.

 • You should clearly label each list box or choice box, which should display no more

than five to ten items.

 • If a list box or choice box includes more than 30 items, you should provide some type

of filter option that enables the user to view its contents one group at a time.

•

List boxes can be configured to allow multiple selections, allowing a list box to replace
a large group of check boxes. However, novice users often do not know how to
operate a multiple-selection list box, so you should include brief instructions on the
screen.

•

It’s frequently helpful to use a pair of list boxes, one containing items eligible to be
chosen and one containing items that have been chosen. This makes it easier for the
user to quickly see exactly what items have been chosen.

 Using Scrollbars and Labels

 • Scrollbars are useful for increasing and decreasing continuous values, such as color

values. They are most useful when the number of data values is large.

•

When you use a scrollbar, you should associate it with a text field that displays the
exact current value and allows direct entry so that a user who knows the exact value
needed can input it rather than use the scrollbar.

 • Labels should be used to display data that cannot be changed. Text fields and text

areas should be used to display data that can be changed.

 • If data is temporarily not to be changed, you can set the Editable property of the

component to false.

 • Group related text fields and label them to their left, placing a colon after the label. The

colon should be aligned right, so the colons for all of the labels line up.

 MESSAGES

Messages provide feedback to the user. In the user’s mind, messages are the voice of
the computer; to the extent that your program has a personality, it will be displayed
through your messages. There are three types of messages:

•

Feedback messages: Feedback messages are used to tell users about a result or
provide feedback when a lengthy (more than five-second) operation is in progress.
Feedback messages should tell the user what has been done and whether the
operation was successful. If the operation is still in progress, the message should help
the user estimate how much longer it will take. The Message1 applet, shown in Figure
15.11, illustrates several of these principles. Using the ProgressBar class from
Chapter 4, it keeps the user informed about the status of a lengthy download over the
Web. The user is told which file is being transferred, where the file is going, and how
much of the transfer has been completed. In addition, Cancel and Pause buttons put
the user in control of the process.

 - 468 -

 Figure 15.11 Feedback messages keep the user informed

•

Warning messages: Warning messages are used to request confirmation of a
potentially irreversible operation. Successful warning messages are both unambiguous
and enable the user to do something meaningful. Figure 15.12, the Message2 applet,
in keeping with the theme of the chapter, shows some good, bad, and ugly warning
messages. Warning messages should always enable the user to take meaningful
action; requiring the user to click OK when destroying data is not meaningful action.
Warning messages should be unambiguous. Should the user click OK or Cancel to
stop the funds transfer in Figure 15.12? Warning messages should be clear. You
might know what PIC line 4 is, but will your users? The best warning messages clearly
explain the actions the user can take and the consequences of those actions.

 Figure 15.12 Warning messages should be clear and enable the user to take

meaningful action

•

Error messages: Error messages are used when a user or system error has
occurred. When the message results from a user error, it should remind the user what
the user did, tell the user why it was not correct, and help the user decide how to
correct the error. Avoid “blaming” the user for the problem. The users of your program
don’t like being told they made a mistake any more than you do. Your error messages
should concentrate on how to perform an action correctly; instead of saying User
Error: Invalid Filename, you could say, There was a problem saving
file. Filenames cannot contain spaces or any of the following
characters.

 SPECIAL OPERATIONS

 Special operations include cut and paste, drag and drop, and online help. Most users of

graphical user interfaces are accustomed to using standard cut-and-paste operations, so

 - 469 -

it is important to provide these in your Java programs. Although this was originally difficult
to do in Java, JDK 1.1 has added support for clipboard operations.

Listing 15.6 shows the Cutter applet, which demonstrates how to perform cut and paste
operations in Java. The applet uses the getSystemClipboard() method, which is a
privileged operation. The applet must run in appletviewer or a browser configured to
permit access to the system clipboard. Recall that applications are not subject to such
restrictions; implementing clipboard access in an application presents no special
problems.

 Listing 15.6 The Cutter Applet (partial listing)

 // Access to the system clipboard is a privileged
 // operation. This applet must run in appletviewer
 // or in a browser configured to allow local applets
 // unrestricted access.
 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.datatransfer.*;
 public class Cutter extends Applet
 implements ActionListener, ClipboardOwner
 {
 TextArea theText = new TextArea();
 public void init()
 {
 setLayout(new BorderLayout());
 Panel p = new Panel();
 add(theText, “Center”);
 add(p, “South”);
 p.setLayout(new GridLayout(1, 0, 15, 15));
 Button b;
 p.add(b = new Button(“Copy”));
 b.addActionListener(this);
 p.add(b = new Button(“Cut”));
 b.addActionListener(this);
 p.add(b = new Button(“Paste”));
 b.addActionListener(this);
 p.add(b = new Button(“Clear”));
 b.addActionListener(this);
 }
 public void lostOwnership(Clipboard c,
 Transferable t)
 {
 ; // null implementation
 }
 public void actionPerformed(ActionEvent event)
 {
 String cmd = event.getActionCommand();
 if (cmd.equals(“Copy”)) copy();
 else if (cmd.equals(“Cut”)) cut();
 else if (cmd.equals(“Paste”)) paste();
 else if (cmd.equals(“Clear”)) clear();
 }

 - 470 -

If you’re content to access a private clipboard that can be used only by your Java
application, you can use the Clipboard() constructor to create your own clipboard.
The important thing about getSystemClipboard() is that it permits applications to
exchange data with other, non-Java programs.

The Cutter applet creates a user interface that includes two text areas and a series of
buttons for copying and cutting selected data from one clipboard and pasting it into the
other. Listing 15.7 shows the copy() method from the Cutter applet. Copying text is a
straightforward operation:

1.

Use the getSelectionStart() and getSelectionEnd() methods to find out
which text has been marked by the user. If no text has been marked, then the
copy() method simply beeps.

 2. Retrieve the text from the TextArea control, theText, using the getText()

method.

3.

Make a copy of the selected text by using the StringSelection() constructor.
Remember, in Java, Strings are immutable. If you want to send text to the
clipboard, you must make a copy.

4.

You retrieve the system clipboard by using the Toolkit object, and the text is
transferred to the clipboard using the setContent() method. This erases any
previous contents that the clipboard might have held.

 Listing 15.7 The copy() Method of the Cutter Applet

 void copy()
 {
 int start = theText.getSelectionStart();
 int end = theText.getSelectionEnd();
 String text = theText.getText();
 if (start != end)
 {
 StringSelection ss =
 new StringSelection(
 text.substring(start, end));
 getToolkit().getSystemClipboard().
 setContents(ss, this);
 }
 else
 {
 getToolkit().beep();
 }
 }

The cut() method, shown in Listing 15.8, is similar to the copy() method, except that
the selected text is removed from the TextArea control, theText. To remove the text, a
new String is created by concatenating the substring starting at the beginning of the
text up to the beginning of the selection, with a second substring, which starts where the
selection area ends. Note how the method checks for a selection that starts at position 0.
After the new String is constructed, it is placed back into theText using the
setText()method.

 Listing 15.8 The cut() Method of the Cutter Applet

 - 471 -

 void cut()
 {
 int start = theText.getSelectionStart();
 int end = theText.getSelectionEnd();
 String text = theText.getText();
 if (start != end)
 {
 StringSelection ss =
 new StringSelection(
 text.substring(start, end));
 getToolkit().getSystemClipboard().
 setContents(ss, this);
 String x = “”;
 if (start >= 0)
 x += text.substring(0, start);
 x += text.substring(end);
 theText.setText(x);
 }
 else
 {
 getToolkit().beep();
 }
 }

The paste() and clear() methods are shown in Listing 15.9. The clear() method is
simplicity itself, because you don’t need to transfer the data to the clipboard, nor do you
need to worry about a particular selection. It simply sets the text in the TextArea to the
empty String, “”.

 The code for pasting is a little more complex, but not overly so. To paste what is in the

clipboard you must do the following:

 1. Create a Clipboard object and initialize it by retrieving the system clipboard via the

Toolkit, as you did for copy() and paste().

2.

Create a Transferable object by using the clipboard’s getContents() method.
Because the clipboard might contain information that is not text, the Transferable
class is used to represent any kind of object that can be stored there.

3.

Turn the Transferable object you retrieved in step 2 into a String. This is done
by using the Transferable method, getTransferData(), passing it
DataFlavor.stringFlavor and casting the returned object to a String. All this
is put inside a try-catch block to handle any problems that might arise.

4.

After you’ve converted the data on the clipboard into a String, pasting it into your
document is fairly straightforward. You first determine whether a selection area exists
because, if so, you want to replace the selection area with the new text. You’ll also
need to retrieve the caret position (the caret is another name for the text cursor that
shows you where your typing will take place). When you know where the data should
go (and what, if any, data should be deleted), you only must create a new String,
using concatenation, just as you did for the cut()method.

 Listing 15.9 The paste() and clear() Methods of the Cutter Applet

 - 472 -

 void paste()
 {
 Clipboard clip = getToolkit().
 getSystemClipboard();
 Transferable t = clip.getContents(this);
 try
 {
 String s = (String) t.getTransferData(
 DataFlavor.stringFlavor);
 int start = theText.getSelectionStart();
 int end = theText.getSelectionEnd();
 int cur = theText.getCaretPosition();
 String text = theText.getText();
 int len = text.length();
 if (start == end)
 {
 start = cur;
 end = cur;
 }
 String x = “”;
 if (start >= 0)
 x += text.substring(0, start);
 x += s;
 if (end <= len)
 x += text.substring(end);
 theText.setText(x);
 }
 catch (Exception e)
 {
 getToolkit().beep();
 }
 }
 void clear()
 {
 theText.setText(“”);
 }
 }

 Figure 15.13 shows how the applet looks in operation.

 Figure 15.13 The output of the Cutter applet

 Java 1.1 does not support drag-and-drop operations, but these are expected to be a part

of Java 1.2. Drag-and-drop operations are very convenient for users; you should consider

 - 473 -

incorporating them into your applications as soon as Java supports this important
capability.

Java likewise provides no direct support for online help, an important user aid. You can
work around this deficiency in either of two ways. First, you might consider building help
files as HTML documents that can be accessed using a standard Web browser. If your
program is implemented as an applet, you can use the
AppletContext.showDocument() method to access the HTML pages. If your
program is implemented as an application, you can use Runtime.exec() to launch a
browser that can display your help files.

Alternatively, you can seek out a commercial Java package, such as Sun’s JavaHelp, that
provides access to online help. Several such packages exist at the time of writing. Of
course, you can always write your own online help package, but a full-functioned help
system is a significant piece of software. You can save yourself significant time and trouble
by buying a solution off the shelf.

Summary

Designing a good user interface requires attention to the visual design of the interface
and to its usability. A high-quality visual interface is characterized by clarity, coherence,
symmetry, and elegance.

Clarity is the extent to which the designer’s intentions are understood by the user. Clarity
is achieved by making sure different things look different. Coherence is the extent to
which the interface seems to be a complete whole. Coherence helps the user pick out
related elements of the user interface, and is achieved by making sure that things that
are the same appear the same. Symmetry, achieved by using a grid to align components,
improves the aesthetic appeal of a visual interface. A custom layout manager is a helpful
means of improving the symmetry of screens built using Java’s Abstract Window Toolkit.
Elegance is achieved when a visual interface solves its problem in a simple and novel,
but highly effective manner.

Designing a usable interface involves focusing on the user’s goals rather than the user’s
task or the available technologies. A highly usable interface uses the design principle of
abstraction to present the user with an appropriate range of functions, instead of merely
exposing the capabilities of the system. In addition, a highly usable interface puts the user
in control, acts in a predictable manner, provides feedback, forgives errors, allows
customization, and anticipates portable use.

 Questions

 For multiple-choice items, indicate all correct responses.

 1. A well-designed visual interface is characterized by __________.

 a. Clarity

 b. Coherence

 c. Elegance

 d. Productivity

 e. Symmetry

 2. Clarity is achieved when differences make a __________.

 - 474 -

 a. Advantage

 b. Difference

 c. Contrast

 d. Grid

 3. The __________ test is a good way to assess the clarity of a visual interface.

 4. True or false. You should generously use whitespace to separate independent

elements.

 5. True or false. The layout managers of Java’s Abstract Window Toolkit are well-suited

to building screens based on a canonical grid.

 6. When designing for usability, the designer should focus first on __________.

 a. Elegance

 b. The available technologies

 c. The user’s goals

 d. The user’s task

 7. True or false. An important characteristic of a usable interface is that it tells the user

what to do.

 8. True or false. A highly usable interface uses as many colors as possible.

 9. To emphasize text, you should __________.

 a. Use a bold font

 b. Use a sans serif font

 c. Use colored text

 d. Use large letters

 10. Java __________ might have difficulty accessing the system clipboard.

 a. Applets

 b. Applications

 c. Programs

 d. Systems

Exercises

 - 475 -

 1. Choose a familiar application program and study its user interface. List no fewer than

10 ways in which it could be improved.

 2. Design a user interface that could be used to control a VCR. Include capability to

record programs based on the channel and time.

3.

Using a text area, a menu, and the code from the Cutter applet, write a program that
can edit text files. Pay special attention to the design of the menus, striving to make
them as usable as possible.

 4. Design a user interface that could be used to edit, compile, and execute Java applets

and applications.

5.

Using the results of exercise 3 and exercise 4, write a program that you can use to edit,
compile, and execute Java applets and applications. Your program should invoke
javac to compile programs and javac or appletviewer, as appropriate, to run
them.

To Learn More

 The following books will help you learn more about designing user interfaces:

 • Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces. Englewood Cliffs, New

Jersey: SunSoft Press, 1995.

Few books deal thoroughly with the principles of graphic design relevant to the design
of visual interfaces. Fortunately, Mullet and Sano have written an excellent introduction
to the subject.

 • Cooper, Alan. About Face: The Essentials of User Interface Design. Foster City,

California: Programmers Press, 1995.

 This title is a good source for additional information on user interface design.

 • Norman, Donald. The Design of Everyday Things. New York: Doubleday, 1990.

 Although it does not deal primarily with user interface design, this a delightful book that

contains much of interest and relevance to the designer of user interfaces.

 • Borenstein, Nathaniel. Programming as if People Mattered. Princeton, New Jersey:

Princeton University Press, 1991.

 • Rubinstein, Richard, and Harry Hersh. The Human Factor: Designing Computer

Systems for People. Bedford, Massachusetts: Digital Press, 1984.

 The previous two books deal well with the topic of design for usability.

 • Manasi, Mark. Secrets of Effective GUI Design. Alameda, California: Sybex, 1994.

 This is a simple and clear book that includes many useful hints for user interface

design.

 • Microsoft Press. The Windows Interface Guidelines for Software Design. Redmond,

Washington: 1995.

 This is an important book that gives specific guidelines for user interface design for

 - 476 -

Microsoft Windows 95.

 Chapter 16: Designing with Components

 Overview

It’s 11:15 p.m., and you’ve just arrived home. For the umpteenth time, you say to
yourself, “I’m really getting much too old for this.” Pulling a soda out of the refrigerator,
you pop the top, settle back in your recliner, and press the button on your remote control,
hoping to catch the highlights of the game on the late news. Instead, you’re greeted with
a pop, a hiss, and a thin column of smoke rising from the back of your ten-year-old TV
set. “Just great,” you say to yourself. “As if I didn’t have enough to do. Now I have to build
a new TV!”

As the old question goes, “What’s wrong with this picture?” Today, unless you’re a
hobbyist, it’s unlikely that you’ll build your own television set from individual electronic
components. Furthermore, it’s also unlikely that you’ll hire a skilled TV craftsman to build
your television for you. Instead, you’ll head on down to Sears or K-Mart, pick out the nice
27-inch special that’s on sale, bring it home, plug it in, and expect it to work.

Two things make it possible for you to do this. First, you have standard electrical outlets
throughout your house that can power different kinds of appliances. Provided you have
the right kind of plug, it doesn’t matter whether you plug in your juicer, your popcorn
machine, or your TV; they all work. Second, this standard way of plugging in items has
facilitated a market in prebuilt appliances. Both these circumstances are necessary:
Without an electrical standard, most folks won’t buy a television; without appliances you
can use, why bother getting electricity?

In the past five years, the market for software components—prebuilt pieces of software
functionality—has mushroomed, creating a fledgling market in prepackaged software
parts that can be bolted together to create applications. These parts have enabled a new
generation of programmers to write sophisticated applications that previously would have
been beyond their capability. Now, version 1.1 of the Java Developer’s Kit adds support
for writing software components in Java. Of course, because this is Java, a catchy name
is inevitable. Rather than write boring old Java components, you’ll have the pleasure of
working with Java beans!

Beans are objects that are intended to be written once but used many times. As you’ll
see, a bean can have special capabilities that set it apart from ordinary objects. In
comparison to a bean, a regular object resembles a clumsy job interviewee who is unable
to respond when asked the inevitable “Tell me about yourself.” Beans know how to speak
up. They have elaborate networks of social connections and know how to fit in well.

Many believe that Java’s future depends on the development of a substantial market for
prewritten beans. It’s important, therefore, to know how beans work and how to use them.
This chapter teaches you that and also about how to write simple beans.

 In this chapter you will learn:

 • What components are and why they’re important

 • What Java beans are

 • How beans are used

 • What main facilities and features beans offer

 • How to integrate beans within your program

 - 477 -

 Introduction to Components

In 1798…Eli Whitney introduced an innovation [the interchangeable part] that
revolutionized manufacturing forever. Today a similar innovation is under way that
promises to do much the same thing for software.

 —Dr. Brad Cox, Object-Oriented Programming

From the time in the early 1980s that Dr. Cox wrote this, the shining promise of object-
oriented technology has been to bring to software developers the same tool that has
eased the work of generations of mechanical and electrical engineers: the component.
Modern electrical engineers, for example, do not design systems using transistors,
resistors, capacitors, and inductors. Instead, they use integrated circuits (IC)—
standardized off-the-shelf parts that encapsulate the majority of functions needed in a
typical design. Rather than build their own integrated circuits, they just order them out of
a catalogue or pick them up at ICs-R-Us.

If you open up your computer and take a look at the system motherboard, you’ll see a
few resistors or capacitors here and there, but most of the work is done by ICs, which
contain the equivalent of hundreds of thousands of transistors and other parts. Because
all this complexity is encapsulated into standardized parts, the computer designer’s job is
much easier. Because the power, speed, and capabilities of these ICs double roughly
every year and a half, the computer on your desk that cost a week’s salary has greater
processing power than the multimillion dollar corporate mainframes of a decade ago. You
might have heard the comparison, “If automobiles had advanced at the same rate as
computers, today you could buy a Rolls-Royce for a dollar, and it would get a million
miles to the gallon.” (You might have also heard the rejoinder: “And once a year your car
would blow up, killing all aboard.”)

Until the introduction of object-oriented technology, software developers had nothing
similar to ICs to help them work at a higher level of abstraction. Like the computer
hardware engineers in the 1940s and early 1950s, software developers have continued
building programs piece by piece, one at a time. If personal computers were still built
using this part-by-part approach, we’d all have 50-foot-long motherboards running at 0.5
MHz and failing every four hours of operation—if we could even afford a computer at all.

 “Unfortunately, object-oriented technology, which was supposed to bring software

construction into the industrial era, has failed to live up to its promise.”

 Components and Standards

Unfortunately, object-oriented technology, which was supposed to bring software
construction into the industrial era, has failed to live up to its promise. Why? Although
there are several factors contributing to this failure, the one critical factor is the absence
of a widely agreed-upon standard governing the interaction of objects. Perhaps you
remember the VHS/Betamax controversy of the 1970s? These two competing standards
for home video cassette recorders (VCRs) delayed the wide acceptance of home video
tape. If you bought a Betamax machine, you couldn’t exchange tapes or rent movies in
the VHS format, and vice versa. Until the VHS standard won out, the home video market
didn’t really take off.

A similar situation exists in the market for plug-in software components. It’s not that such
standards do not exist. There are several such standards, all actively trying to gain the
upper hand in the marketplace. For you, the software developer, that spells trouble. Like
the unfortunate Betamax owner, if you have the wrong player, you may not be able to find

 - 478 -

the component you want to use.

While object-oriented programming was promising components, an unexpected event
made component-built software a reality, at least on a limited scale. The introduction of
Visual Basic for Windows, which used special precompiled dynamic link libraries called
VBX controls, introduced a whole new generation to programming. Rather than construct
applications line by line, Visual Basic programmers were able to regularly build entire
applications from a handful of VBX controls, using some code to define a user interface
and using a little more code to glue everything together. The ease with which this could
be done made application programming accessible to a much wider and larger audience,
and this larger audience, in turn, created a thriving market in custom Visual Basic
controls.

The success of Visual Basic controls opened the eyes of many software developers to
the possibilities of component-based software construction. Notwithstanding their
success in the market, however, VBX controls proved short-lived. Because VBX controls
were closely tied to the 16-bit Windows 3.1 architecture, VBX controls were not really an
enterprisewide solution. With the advent of 32-bit Windows, Microsoft introduced a new
architecture based on its Object Linking and Embedding (OLE) technology. These
components were called OCX controls, though lately Microsoft has changed the
nomenclature, referring to the Component Object Model (COM), instead of OLE, and
rechristening OCX controls as ActiveX.

Although Visual Basic controls in all their incarnations have been the dominant example
of component-based software, other models do exist. Borland’s Delphi product has its
own component standard, called the Visual Component Library or VCL, which has
created a market for those controls. Thus far, other component models, such as
OpenDoc and LiveConnect, have failed to achieve the market status of Microsoft’s
OLE/COM/ActiveX. However, the arrival of Java beans may herald a sea change
because beans work not only on Windows machines but also on any machine that can
run Java.

 Types of Components

At a consumer electronics store like Circuit City, you can purchase household
components that range from stereos to computers to waffle makers to washing machines.
What type of software component will you be able to purchase after component-based
development becomes more widespread? If you plan to produce components, where are
the opportunities? Where is the component market headed?

There are two types of components you can expect to find. The first consists of small and
general components that can find their way into a variety of applications. You could call
these fine-grained or general-purpose components. The second sort consists of larger,
more specific components that have narrower application. Call these large-grained or
domain-specific components.

For instance, a fine-grained component that displays itself on the screen and enables the
user to pick out a time interval, say, for booking appointments, could be used in
applications ranging from dental office scheduling to shop floor workflow planning. On the
other hand, a large-grained component that values a commodities option using the Black-
Scholes model would obviously contain more functionality and have a more limited
application. Such a component could be widely used in building financial systems but
would not find much use outside that domain.

 Component Environments and Characteristics

Components are not, by themselves, very useful. If you remove your TV from the power
grid and disconnect the antenna, it serves, at best, as a rather large end table. Likewise,
for a component to be useful, it must live inside an application or framework that provides
an environment for it to perform in.

 - 479 -

 “Components are not, by themselves, very useful. ”

Component environments come in two varieties. When you build an application using an
environment that supports component-based development, each component has a
design-time persona. In this design environment, most components present themselves
visually as a widget or gadget on a toolbar or palette. To use a component, you click it or
drag it onto a form (typically an application window) where you can visually manipulate it
and arrange for it to send messages or respond to events. Currently, Visual Basic is the
most popular host application, but component-based design environments also exist for
Microsoft Office and Netscape Navigator and include such popular products as Sybase’s
PowerBuilder and Borland’s Delphi and C++Builder.

Although most components present themselves visibly in their design environment, when
the application is finally deployed, things are different. During runtime, a great many
components make up the user interface. Buttons, labels, text input areas, scrollbars—all
these are visible. Other components, however, such as the hypothetical model that
values a stock option, live behind the scenes. The important thing to realize is that the
runtime environment and the design-time environment of a component may be different.

Not every piece of software is suitable for use as a component. To be useful, a component
must be self-contained. If it depends too much on the existence of a particular environment
or set of conditions, there won’t be much opportunity to reuse it. In addition, a useful
component must also have a well-defined interface so that it’s convenient to use.

Meet the Beans

The Java bean component model isn’t that different from alternative models, except that
it is based on Java. Of course, that’s a big except because Java has many unique
capabilities, chief among them being the portability of Java programs. The notion of
components that not only can be reused but also can be reused on a variety of host
platforms is extremely attractive. This gives Java beans a wider runtime environment to
perform in.

Sun’s vision for Java beans transcends even this expansive horizon. Rather than just
make it possible for beans to run on any platform with a Java Virtual Machine, Sun has
made it possible (by means of a special software bridge) for beans to function within an
ActiveX environment. You have the best of both worlds! Put yourself in the place of a
developer hoping to bring to market a component that, say, facilitates access to an
object-oriented database. Would you prefer to write an ActiveX component that runs only
under Windows or write a bean that can run not only on Windows but also on any Java-
capable platform? Sun and many market analysts see the latter as the more reasonable,
and hence more likely, choice. If Sun is right, beans will soon become a key technology,
one that every software developer needs to understand.

 The Beans Development Environment

Sun’s official definition of a Java bean is a “reusable software component that can be
manipulated visually in a builder tool.” If you’re familiar with a rapid application
development (RAD) tool such as Borland’s Delphi or JBuilder, Microsoft’s Visual Basic, or
Symantec’s Visual Caf . . . for Java, you understand what’s meant by visual manipulation.

RAD tools let you program by dragging components (that is, controls) from a palette onto
a workspace that depicts the user interface of your application. You can move the
components around the workspace and can resize them. By using the mouse or a

 - 480 -

function key, you can also call up a properties sheet for any control on the workspace.
The properties sheet lets you view and set component properties. The particular
properties vary from component to component but typically include things such as the
foreground color, background color, font, and so on. Sophisticated components, such as
a text box tied to a database column, may enable you to specify the name of the
database being accessed and a query string used to select the relevant table and row.
Figure 16.1 shows the property sheet associated with a button component in Borland’s
JBuilder environment.

 Figure 16.1 Components in a RAD tool

Some Java beans are simple GUI elements such as buttons and sliders. Other Java
beans are sophisticated visual software components such as database viewers, or data
feeds. Some Java beans have no GUI appearance of their own but can still be employed
visually using an application builder. The beans API is intended to support the
construction of large beans and nonvisual beans but is geared primarily to support the
more common small- and medium-sized visual components.

Because Sun’s definition anticipates that most beans will be manipulated visually, much
of the beans application programming interface (API) is designed to support such
manipulation. Taking a more detailed perspective, here are some characteristics (most
are provided by the beans API) common to beans:

 • Support for properties, which can be accessed and set during programming, perhaps

using a properties sheet, and at runtime, using method calls

 • Support for events, which enable the bean to interface with other beans and objects in

a manner similar to that of Abstract Window Toolkit (AWT) objects

•

Support for introspection, an API that enables a RAD tool to look inside a bean and
discover what properties should be displayed on its properties sheet, as well as other
useful information

 • Support for serialization, an API that enables the state of a bean to be saved by writing

it to a data stream, such as a disk file

 • Support for customization, so a RAD tool can enable the programmer to customize the

appearance and behavior of a bean

 “Applets are easy to spot because every applet extends the class Applet.

 - 481 -

Recognizing a bean isn’t as easy.”

 Recognizing a Bean

Applets are easy to spot because every applet extends the class Applet. Recognizing a
bean isn’t as easy. The difficulty in pinning down exactly what is, or is not, a bean arises
because beans are not required to extend any particular class, nor do they consistently
implement any particular interface. Beans intended to be added to AWT Containers
must, of course, extend java.awt.Component, but not every bean has a visual runtime
representation.

Your super-duper option-pricing bean, for example, would probably depend on some
other object, possibly another bean, to establish its runtime visual representation. That
way, you could select any of a variety of representations.

It’s worth mentioning that not all objects should be implemented as beans. Unless your
component is to be manipulated visually or customized in some way, there’s little point in
wiring the component as a bean. Beans are intended to present a friendly interface to
useful functionality, which can be implemented within the bean or elsewhere.

A case in point is the Java Database Connectivity (JDBC) API, which Sun implemented
as a class library rather than as a bean. Sun explains this choice by pointing out that the
JDBC classes and objects are intended for programmatic, not visual, manipulation. Of
course, you can write a bean that packages state and functionality of the JDBC API and
presents it to the user for visual manipulation. In fact, that’s exactly what tools like
Symantec’s Visual Caf . . . for Java (Database Development Edition) and Borland’s
JBuilder do: They include database components that you can visually manipulate, using a
property sheet. Figure 16.2 illustrates this multilayered approach to component design.

 Figure 16.2 A multilayered approach to component design

 How Beans Are Used

In the days before components, it was easy to tell the programmers from the civilians (so
to speak). Programmers were people who designed and built software, but they
frequently weren’t the people who used that software. Traditionally, there has been a
divide between the technical staff on one hand—concerned with bytes and cycles and
throughput and protocols—and the user community on the other hand—wanting
applications that help get their jobs done faster and easier.

Today, thanks to components, programming is no longer restricted to an elite technical
priesthood. It’s not unusual to find that business applications are being built by domain-
experts—programmers whose expertise is not technical computer know-how but skill in
accounting, stock options, finance, or real estate. Components are what make this

 - 482 -

possible.

 Three kinds of programmers use Java beans, each calling on different bean features:

 • Tool builders, who write the RAD tools that programmers use to construct applications

 • Bean builders, who write beans that can be loaded into a RAD tool and included by

programmers in applications they write

 • Bean users, programmers who write applications that include beans

 Let’s take a look at each group and see how the Java beans API makes its job easier.

 Tool Builders

Imagine that you have just bought a new high-tech desk, all black and chrome and glass.
How would you feel if the first time you set your trusty stapler on the corner, it jumped off
onto the floor? When you call technical support (this is, after all, a really high-tech desk),
they tell you, “I’m sorry, your stapler isn’t compatible with that desk. You’ll have to buy the
AZ2000 model stapler.” Then, after you’ve bought the AZ2000, which does indeed stay
put, you find out that your desk won’t let you add the new video-conference phone
system your company has just purchased. “We’ll be releasing a desk that can hold a
video-conference phone in the first quarter of next year,” they say when you call. “As a
loyal customer, you’ll qualify for special upgrade pricing.”

 This is a ridiculous scenario, right? No matter how high-tech the desk, you expect to be

able to pile anything you please on top and have it stay put.

Tool builders face a similar challenge. They want to build tools that are easy for
programmers to use and that have a lot of features, but they also want their tools to
readily accept beans created by third-party developers, because beans help make an
application programmer more productive.

The task faced by the tool builder is to build in extensibility. Given the class file for a
bean—a bean written by someone other than the tool builder—the tool builder wants to
be able to figure out what it should look like on the RAD tool’s palette and user-interface
worksheet, what properties should be included in its property sheet, what kinds of values
these properties can take, and so on. After the user has tweaked the bean’s properties,
the tool builder wants to be able to save the values of the properties so that the
application generated by the tool can load and initialize the bean according to the
application programmer’s choices.

 Therefore, the bean API features that are of greatest interest to the tool builder are the

following:

 • Introspection—The ability to find the properties, methods, and events when given a

class file

 • Customization—The ability to construct custom design-time interface mechanisms for

a wide variety of beans

 • Serialization—The ability to store the persistent state of the beans the user has

designed

Tool builders are also concerned with bean properties and events because the code
generated by their RAD tools must be able to access and set bean properties and
properly wire together beans and other objects by using events.

 - 483 -

 Tool builders require, and receive, a lot of support from the bean API, and much of the
bean API is of interest only to tool builders.

 Bean Builders

It’s unlikely that you will soon build your own RAD tool, so many of the API facilities that
help tool builders will be of only minimal interest to you. On the other hand, the features
that help bean builders (as opposed to tool builders) also have broad application in the
realm of everyday applications. Bean builders are those who design and implement
beans, making them available (sometimes for free, sometimes at a price) to application
programmers who incorporate beans in their applications. Bean builders don’t need to
know as much about the bean API as do tool builders. They do, however, need to know
how to structure their code to facilitate the job of the tool builder, who wants to build tools
that efficiently discover how to use an unfamiliar bean.

In addition to the code for the component itself, bean builders sometimes implement
special methods that help tool builders set complex bean properties. For example, a bean
builder might provide a graphical color picker to spare bean users the need to type colors
into a property sheet as RGB values. The bean builder must know how to tell a tool about
the color picker so that the tool can permit this special visual manipulation.

In general, however, the bean builder is mainly concerned with the operation of the bean
inside an application program. So, the focus of the bean builder is on the properties and
events of the bean. However, the bean builder must also know something about
introspection and customization so that the tool builder’s requirements can be met.

 Bean Users

 Bean users are by far the largest of the three groups. Bean users want to build

applications, and if beans make that easier or faster, they want lots of beans.

Bean users have the lightest burden of the three groups, in terms of familiarity with the
beans API. Bean users need to understand bean properties and events. More
importantly, though, they need to understand each specific bean: the meaning of each of
its properties, what events it fires and when, and for which events (if any) it should listen.
Bean users are not normally much concerned with introspection, customization, or
serialization; these matters are handled by tool builders and bean builders acting on
behalf of bean users. Bean users focus on the runtime operation of a bean and can take
a bean’s design-time operation for granted.

In this chapter, you’ll learn enough to write some simple beans, but there isn’t sufficient
space to tell you all there is to know. Instead, this chapter focuses on the needs of bean
users. If your main interest is in designing components, rather than using them, you
should consult the references given at the end of this chapter.

 Inter-Bean Cooperation Through Publish/Subscribe

As you’ve learned, a successful reusable component must be self-contained. If a
component requires too specific an environment, it will have limited potential for reuse.
Imagine a stereo system, like that in Figure 16.3, in which the CD player, the tuner, the
amplifier, and the speakers are all contained in a single box. What happens when the
tuner fails? You must throw away the entire stereo because the working components
cannot be reused.

 - 484 -

 Figure 16.3 A tightly coupled stereo system

Figure 16.4, by contrast, shows a modular stereo system. Here, the components connect
via plugs and jacks rather than directly. If a component fails, perhaps the tuner, the other
components can be reused. You just plug in a new tuner to replace the old one.

 Figure 16.4 A modular stereo system

Similarly, software components can be either tightly coupled or loosely coupled with other
components. If any of your components directly call the methods of another component,
those components are tightly coupled; all the components must be present in order for
any one of them to be used. This inhibits reuse.

“Wait,” you say. “I thought that the way objects communicated was by sending messages
to each other. Are beans different from regular objects?” Well, yes and no. Beans are just
regular objects, but, because of their need for independence, a modular approach to
inter-object communication is better that the direct approach.

Rather than have your bean directly call the methods of another object, you should
arrange to have it fire events instead. Then, those objects that are interested in your bean
can subscribe to receive events sent by your component. Your component maintains a
list of its subscribers. When it wants to contact them, it publishes an event by sending it
to each subscriber in turn.

Figure 16.5 shows how this publish/subscribe design pattern works. In the figure,
Component A is the publisher and Components B and C are subscribers.
Publish/subscribe is just another name for the observer/observable pattern, which you
met in Chapter 12, “Designing Concurrent Objects.” It deserves a special name because
of the extra support the beans API lends it, as you’ll see in the next section.

 - 485 -

 Figure 16.5 The publish/subscribe design pattern

Bean Properties, Methods, and Events

Now that you have a basic grounding in components, you’re ready to learn more about
beans and how to use them. The interface exposed by a bean includes the methods it
makes available to other objects and the events it fires. A bean’s methods usually include
accessor and mutator methods for bean properties, as well as methods that perform
processing at higher levels of abstraction.

 “The interface exposed by a bean includes the methods it makes available to other

objects and the events it fires.”

A RAD tool may handle a bean’s properties, methods, and events for you. In such a
case, you may not normally need to be aware of them. However, RAD tools are not
infallible. Many a programmer could have been spared a long evening of debugging by
knowing more about the faulty code the RAD tool generated.

 Properties and Methods

 What are properties? Bean properties are similar to ordinary object attributes, with a few

subtle differences:

•

Bean properties are available and visible to component users at design time. Regular
object attributes (fields) are not. When used inside a RAD tool, a bean with a title
property would normally display the title inside a property sheet (a visual dialog
box) and give the user the opportunity to interactively modify its value.

•

Bean properties store object state, much like object attributes do, yet the underlying
storage implementation remains hidden from the user. This means that there need not
be a one-to-one correspondence between bean properties and the object attributes
used to store the state of the property. You may have a weight property, for instance,
without having a corresponding attribute called weight. At design time, the weight
property would show up in the builder tool and enable you to modify it there, but
underneath the hood, the actual weight state (unfortunate pun intended) could be
stored as a combination of fields named density and area.

 - 486 -

•

Bean properties can cause appropriate events to fire when the component user
changes a property value. Setting the background color attribute for a regular object
will not cause the object to reflect the change; it is up to the user to repaint the
component. By contrast, methods that handle bean properties can be written to repaint
the bean whenever the property value is changed.

Although this list gives you a good idea of the difference between a property and an
attribute, it doesn’t answer the question “How do you define a bean property?” Unlike
what you might expect, there is no new property keyword to learn. Instead, you define a
property by adding public methods to your class that use a special set of naming
conventions. Sun calls these naming conventions design patterns, but they are quite
different from the design patterns you were introduced to in Chapter 12.

RAD tools look for methods using these special naming conventions when they make
bean properties available for editing at design time. The good news is that these same
naming conventions make it easy for you to use beans, even if you’re not using a RAD
tool. The conventions identify four types of properties and specify the name and form of
accessor and mutator methods for each type of property.

 Simple and Boolean Properties

The first type of property is called a simple property. A simple property consists of a
single value, which can have a primitive type or an object type. If your bean has a simple
property called weight, you would write the accessor and mutator methods for the
weight property like this:

 public PropertyType getWeight(); // simple accessor
 public void setWeight(PropertyType value); // simple mutator

PropertyType stands for the data type of the simple property. Of course, the parameter
doesn’t need to be named value; you can name the parameter as you choose. You
must, however, use the method names getWeight and setWeight, if the name of the
property is weight. That is how the bean API identifies weight as a property. As
mentioned before, the weight property doesn’t have to correspond to an actual field
called weight. Whereas to the user of your bean, these seem to be simple accessor and
mutator methods, the actual storage type or method of retrieval is never revealed to the
user.

As you’ll see shortly, the Java API was extended to include a mechanism that lets you
programmatically analyze a .class file to determine what public methods it supports. By
naming accessor and mutator methods according to the recommended convention, you
make it possible for a tool builder to write code that finds bean properties. If you are a
bean user, this same pattern helps you determine what the properties of a bean are and
how to get and set them.

The second type of property is called a Boolean property because it is always either
true or false. To create accessor and mutator methods for a Boolean property named
home, you’d write

 public boolean isHome(); // Boolean accessor
 public void setHome(boolean m); // Boolean mutator

 Again, the name of the parameter (here, m) could be any name you choose, but the

methods must be named isHome() and setHome().

 Indexed and Customized Properties

 The third of the four property types the conventions identify is the indexed property. An

 - 487 -

indexed property represents a one-dimensional array of property values, though the
values need not be stored in an array. They might, for example, be stored in a Vector or a
List. The important thing is that each property value is associated with a numerical
index that ranges from 0 to one less than the number of property values. To define an
indexed property named passenger, you’d write

 public PropertyType getPassenger (int
index);

 // indexed
// accessor

 public void setPassenger (PropertyType
values[]); // array

// accessor

 public void setPassenger(int index,
PropertyType value); // indexed

// mutator
 public PropertyType[] getPassenger (); // array mutator

 As before, PropertyType denotes the property type, and the parameter names

(index, value, and values) are not fixed; they can be anything you like.

For indexed properties, you may define four methods instead of the usual two. One pair
deals with individual property values, and each member of the pair requires a parameter
specifying an index. The other pair gets, or sets, the entire array of property values.

The final type of property is the customized property. This includes any type of property
that doesn’t belong in the other three categories. The beans API provides a sophisticated
mechanism for describing customized properties. The bean must implement the
BeanInfo interface, which identifies a series of methods that interrogate the bean and
return information about its properties, methods, and events. A complete discussion of
the BeanInfo interface is beyond the scope of this chapter because the interface is of
interest primarily to bean builders and tool builders. You can consult the JDK
documentation or the books listed at the end of this chapter for further information on
BeanInfo.

 IntTextField: A Simple Bean

Let’s take a look at a simple class that implements a few properties. Listing 16.1,
IntField.java, extends the TextField class by restricting its input to integers. By
intercepting keystrokes as they are typed, using an inner-class derived from
KeyAdapter, and by implementing the TextListener interface, IntField objects
spare the programmer the trouble of manually extracting integer values and checking for
errors from TextFields designed for numeric input. Throughout the rest of this chapter,
you’ll examine this simple class as it’s promoted to a full-featured Java bean.

 Listing 16.1 Intfield.java

 // IntTextField.java
 //
 import java.awt.*;
 import java.awt.event.*;
 import java.text.*;

 public class IntTextField extends TextField
 implements TextListener
 {
 // Default constructor: required for Beans
 public IntTextField()
 {
 this(0, DEF_WIDTH);

 - 488 -

 }

 // Working constructor: pass both a value and a width
 public IntTextField(int val, int width)
 {
 super(width);
 setText(“” + val);
 value = val;
 lastText = getText();

 addKeyListener(intValidator);
 addTextListener(this);
 }

 // Implements the TextListener interface ----------
 public void textValueChanged(TextEvent te)
 {
 int oldValue = value;

 if (getText().equals(“”))
 {
 setText(“0”);
 selectAll();
 }
 try
 {
 setValue(Integer.parseInt(getText()));
 lastText = getText();
 }
 catch (NumberFormatException e)
 {
 setValue(oldValue);
 }
 }

 // Bean Properties---------------------------------
 public int getValue() { return value; }
 public void setValue(int val)
 {
 String newText = “”+val;
 value = val;

 if (! newText.equals(getText()))
 {
 int pos = getCaretPosition();
 setText(newText);
 setCaretPosition(pos-1);
 }
 }

 // Object fields ----------------------------------

 - 489 -

 public static final int DEF_WIDTH = 12;
 private int value;
 private String lastText = “”;

 // Intercepts keystrokes, filtering invalid characters
 private KeyAdapter intValidator = new KeyAdapter()
 {
 public void keyPressed(KeyEvent ke)
 {
 char keyChar = ke.getKeyChar();

 if ((keyChar >= ‘0’ && keyChar <= ‘9’) ||
 keyChar == ke.VK_BACK_SPACE ||
 keyChar == ke.VK_TAB ||
 keyChar == ke.VK_DELETE ||
 ke.isActionKey()
)
 ; // All is OK, let it be
 else
 ke.consume();
 }
 };
 }

The IntTextField class has one simple property, called value. It is both a readable
property, accessed through the getValue() method, and a writable property, accessed
through the setValue() method. The getValue() method returns the contents of the
private field named value. The setValue() mutator, however, updates the text
contained in the component. Recall that the use of these special names is what enables
a Java RAD tool to discover and provide visual editing capabilities for your Java bean.

In addition to the get and set methods that define the IntTextField’s lone property,
the class also has two constructors. The default, or no-arg, constructor, initializes each
IntTextField object to hold the value 0 and uses the default width, specified by the
static final constant, DEF_WIDTH. Every Java bean must have a public no-arg
constructor. The working constructor, which the no-arg constructor calls, accepts
arguments for both value and width. The working constructor first sets the value field,
and the TextField display itself, to the current value specified in the argument list. It
then adds both a KeyListener and a TextListener to handle the keystroke events.

The KeyListener duties are assumed by a private data field called theValidator,
which subclasses KeyAdapter. This class is implemented as a named inner class. The
validator object examines each keystroke that goes by, passing only the digit characters
(‘0’ to ‘9’), the Backspace, Tab, and Delete keys to the TextField. The cursor arrow
keys are activated by including the isActionKey() method along with the other
allowable key events. All other keystrokes are eaten by calling KeyEvent.consume().

The actual text contained in the component doesn’t change until theValidator has finished
its work. Each keystroke is either passed on to the native peer object or is consumed.
Thus, the textValueChanged() method is implemented to convert the text value
stored in the component into an int, by using the Integer.parseInt() method. This
method also handles the case when a KeyEvent deletes the last character in the
TextField. In that case, the value field is reset to 0, and the input area is selected.
Finally, the textValueChanged() method must deal with the case of an integer that is
too large, which it does by means of a try-catch block. If the input area is too large to
be stored, the component reverts to its previous value.

 - 490 -

Listings 16.2, IntTextFieldTest.java, and 16.3, IntTextFieldTest.html,
create a simple applet that lets you try out and compare both an IntTextField and a
regular TextField component.

 Listing 16.2 IntTextFieldTest.java

 // IntTextFieldTest.java

 import java.awt.*;
 import java.applet.*;

 public class IntTextFieldTest extends Applet
 {
 public void init()
 {
 add(new Label(“Regular text field:”));
 add(new TextField(10));
 add(new Label(“The IntTextField:”));
 add(new IntTextField(100, 10));
 }
 }

 Listing 16.3 IntTextFieldTest.html

 <HTML>
 <HEAD>
 <TITLE>Testing the IntTextField class</TITLE>
 </HEAD>
 <BODY>
 <H1>The IntTextField class</H1>
 <HR>

 The IntTextField class prevents a user from
 putting invalid characters into a field meant
 to be used for numeric input.

 The digits 0 to 9 are accepted, as well as the
 backspace, delete, and tab characters.

 If backspace or delete is used to erase the entire
 field, the value is set to zero, and the
 entire field is selected.

 The applet below displays a regular text field and
 an IntTextField

 <HR>
 <APPLET CODE=IntTextFieldTest HEIGHT=150 WIDTH=100>
 </APPLET>
 </BODY>
 </HTML>

 - 491 -

 Figure 16.6 shows the applet at work in a browser.

 Figure 16.6 Testing the IntTextField class.

 But Is It a Bean?

You might have a hard time believing it, but the IntTextField class really is a bean
that can be manipulated in a RAD tool. Because such tools are not yet widespread,
however, Sun has created a mini-testing environment called the BeanBox. The BeanBox
is not a full-fledged RAD tool for building Java bean–enabled applications, any more than
the appletviewer is a tool for deploying applets. Like appletviewer, however, the BeanBox
is an invaluable tool for getting quick feedback on your efforts.

“The BeanBox is not a full-fledged RAD tool for building Java bean–enabled
applications…. Like appletviewer, however, the BeanBox is an invaluable tool for
getting quick feedback on your efforts.”

The BeanBox is part of Sun’s Bean Developer Kit (BDK), which, like the JDK, is freely
available from the JavaSoft Web site. Downloading and installing the BDK is
straightforward and easily accomplished by following the instructions on the Web page.
After you’ve completed the installation, there are a few short steps you need to follow to
try out your new bean.

A bean that you want to run in the BeanBox first needs to be packaged as a Java archive
file, or jar. (You’ll read more about these later in the chapter.) To create a jar file for
IntTextField.java and use the resulting bean in the BeanBox, follow these steps:

 1. Create a new directory and copy the file IntTextField.java into the directory.

2.

Compile IntTextField.java, using the javac compiler. You will find two new
classes afterward. One of these is the inner class defined inside the IntTextField
class.

 3. Create the jar file by typing

 jar cfM itf.jar *.class

 The c means to create a new archive, the f means to use the filename specified

[itf.jar], and the M means to skip creating a manifest file, an advanced option

 - 492 -

some bean builders may use. Later in the chapter you can learn about the rest of the
jar utility’s options.)

 4. Copy the resulting file (itf.jar) to the jars subdirectory where you installed the

BDK.

5.

Go to the BeanBox subdirectory and type run. You’ll see your new bean in the list of
installed beans on the ToolBox window. Click on IntTextField, and when the
cursor changes to a crosshair, click inside the BeanBox frame itself. Voila`, you’re
visually manipulating a bean!

Figure 16.7 shows the BeanBox with two IntTextField beans hooked up to Sun’s
Juggler bean. Note the property sheet for the bottom IntTextField bean on the right
of the screen. Even though you didn’t specify properties for such things as the font used
for the display and the number of columns, those properties are also exposed in the tool
because of the common naming convention. If you change the value property in the
property sheet at the right, the two new properties you created will be activated.

 Figure 16.7 Working with IntTextFields in the BeanBox

 For more information on using the BeanBox to hook up and test components, browse the
BeanBox.html file in the doc subdirectory of your BDK installation.

 Events

Apart from knowing the properties and methods of a bean, a skilled bean user needs to
know about the events the bean publishes. The whole point of bean events is to let
subscribed objects know whenever a bean property changes. Of course, your objects
could regularly poll the bean, using accessor methods to determine its current state, but
that is a waste of valuable processor cycles. It’s much more efficient for your objects to
go about their business, waiting for the bean to notify them when something of possible
interest occurs.

The bean API includes a pair of mechanisms for implementing the publish/subscribe
pattern used to connect beans and objects. The first mechanism establishes what’s
called a bound property, a property that automatically notifies its subscribers whenever its
value changes. The second mechanism establishes what’s called a constrained property,
one that must get approval from its subscribers before changing its value. When a
subscriber is notified of a pending change to a constrained property, the subscriber can
disallow the change by notifying the constrained property. This is called a veto.

 For a property to be a constrained property, it must also be a bound property. There is no

 - 493 -

way to constrain a property that doesn’t notify its subscribers. Remember, too, that only
properties can be bound and constrained, and only beans have properties. Ordinary
classes cannot use these mechanisms to communicate with each other. Figure 16.8
illustrates the publication of changes to bound and constrained properties. Notice that
Java doesn’t guarantee a subscriber will be notified when a change event occurs if a
particular subscriber vetoes a change. The constrained property in Figure 16.8 has
already notified Subscriber A that a change has occurred, but because of Subscriber B’s
veto, Subscriber C is never informed.

 Figure 16.8 The publication of bound and constrained properties

Notice that, in the event that a change to a constrained property is vetoed, some
subscribers may have already been notified of the pending change. Some subscribers
may want to be notified only if a change actually occurs. To provide for this, a bean can
implement both bound and constrained notification for a single property. That way,
subscribers are notified of the pending change by the constrained property change event.
If no subscriber vetoes the change, the bean can then publish a bound property change
event. Subscribers may request notification of bound property change events,
constrained property change events, or both.

 A Bound and Constrained Bean

Although the IntTextField class is useful just as it is, it could be even more useful if
its Value property were bound and constrained. Do you recall the SalesInvoice
example of Chapter 7 and 8? One goal of that application was to have a set of
LineItem objects that behaved independently. The difficulty, however, lay in having the
SalesInvoice object recalculate the total amount of merchandise sold whenever one
LineItem amount changed. The solution used in Chapter 8—implementing a two-way
association between the LineItem object and the SalesInvoice object—was less
than ideal because it introduced unnecessary coupling between the classes. Because
every LineItem object had to have a communication link back to its SalesInvoice
container, you were effectively prohibited from dropping LineItem objects into any other
class, no matter how useful they might be.

Implementing bound and constrained properties breaks the undesirable coupling used in
the SalesInvoice application. Unlike that application, an object that implements a
bound field doesn’t have to be aware of who is subscribing to its events. If LineItems
could have fired events, the SalesInvoice object could have subscribed to them
without any cooperation or awareness on the part of the LineItems themselves. Even if
you don’t intend to develop your own beans, these techniques belong in your design
arsenal.

Listing 16.4 shows the BCIntTextField class, which is derived from IntTextField
and implements Value as a bound and constrained property. As you’ll see, this enables
your applications to subscribe to any changes made to a BCIntTextField object and
even to veto those changes.

 Listing 16.4 BCIntTextField.java

 - 494 -

 // BCIntTextField.java
 //
 // This is a Bound and Constrained version of
 // the IntTextField class
 import java.awt.event.*;
 import java.beans.*;

 public class BCIntTextField extends IntTextField
 {
 // --Override setValue() to fire events-------------------
 public void setValue(int val)
 {
 Integer oldVal = new Integer(getValue());
 Integer newVal = new Integer(val);

 try
 {
 vcSupport.fireVetoableChange(“Value”, oldVal, newVal);
 super.setValue(newVal.intValue());
 pcSupport.firePropertyChange(“Value”, oldVal, newVal);
 }
 catch (PropertyVetoException pve)
 {
 super.setValue(oldVal.intValue());
 }
 }

 // --
 // Add and remove PropertyChangeListeners
 // --
 public void
 addPropertyChangeListener(PropertyChangeListener pcl)
 {
 pcSupport.addPropertyChangeListener(pcl);
 }

 public void
 removePropertyChangeListener(PropertyChangeListener pcl)
 {
 pcSupport.removePropertyChangeListener(pcl);
 }

 // --
 // Add and remove VetoableChangeListeners
 // --
 public void
 addVetoableChangeListener(VetoableChangeListener vcl)
 {
 vcSupport.addVetoableChangeListener(vcl);
 }
 public void

 - 495 -

 removeVetoableChangeListener(VetoableChangeListener vcl)
 {
 vcSupport.removeVetoableChangeListener(vcl);
 }

 // --
 // ChangeSupport fields
 // --
 private PropertyChangeSupport pcSupport =
 new PropertyChangeSupport(this);

 private VetoableChangeSupport vcSupport =
 new VetoableChangeSupport(this);
 }

 Dissecting the BCIntTextField

Although at first glance adding bound and constrained properties seems to add
considerable complexity, you’ll find, in fact, that most of the code is boilerplate code that
appears in every class that implements bound and constrained behavior. Let’s take a
quick look at the pieces:

 1. The first step in implementing support for bound and constrained properties is to

import the classes from the java.beans package.

2.

Next, you add a PropertyChangeSupport object and a
VetoableChangeSupport object as fields within your class. These are both
classes that handle much of the detail work required to notify property subscribers of
changes and to notify property publishers when one subscriber has vetoed a change.
Of course, if you are only going to make your property a constrained property, you
don’t need to add the VetoableChangeSupport object. When you construct these
fields, pass this as the argument to the constructors like so:

 private PropertyChangeSupport pcSupport =
 new PropertyChangeSupport(this);
 private VetoableChangeSupport vcSupport =
 new VetoableChangeSupport(this);

3.

The PropertyChangeSupport and VetoableChangeSupport fields provide
support for adding and removing subscribers from your bean. All you have to do is
implement a pair of methods for each support class. For the
PropertyChangeSupport object, you’ll add an
addPropertyChangeListener() method and a
removePropertyChangeListener() method. For the
VetoableChangeSupport object, you’ll write addVetoableChangeListener()
and removeVetoableChangeListener() methods. Each of these methods takes
a PropertyChangeListener (or VetoableChangeListener) object and passes
it on to the embedded PropertyChangeSupport (or VetoableChangeSupport)
object. Remember, this is boilerplate code. It will be the same in every bean you
write.

4.

The final step in implementing bound and constrained properties is to actually fire the
events themselves. You do this by writing (or in this case, overriding) the mutator
method for your property. For the BCIntTextField class, you’ll override the
setValue() method. The new setValue() method is conceptually simple.
Whenever you change the property, you send the firePropertyChange()

 - 496 -

message to the embedded PropertyChangeSupport object. Along with the
message, you send three pieces of information:

 • The name of the property, passed as a String.

 • The old value of the property before it was changed.

•

The new value of the property. By sending both old and new values, you allow
subscribers to decide whether they want to take an action when both the old and
new values are identical.

“Firing VetoableChange events… needs to take into consideration the fact that
the change may be vetoed by a subscriber, in which case your bean must be
prepared to revert to its previous value.”

Firing VetoableChange events is similar in concept but needs to take into consideration
the fact that the change may be vetoed by a subscriber, in which case your bean must be
prepared to revert to its previous value. You send the fireVetoableChange message
to the VetoableChangeSupport object that you created earlier. The object that wants
to veto a change throws a PropertyVetoException. Your bean must be prepared to
catch that exception when it notifies subscribers of a change to a constrained property. In
BCIntTextField the code looks like this:

 try
 {
 vcSupport.fireVetoableChange(“Value”, oldVal, newVal);
 super.setValue(newVal.intValue());
 pcSupport.firePropertyChange(“Value”, oldVal, newVal);
 }
 catch (PropertyVetoException pve)
 {
 super.setValue(oldVal.intValue());
 }

First, the VetoableChangeSupport object vcSupport is asked to send out a
VetoableChange event to all subscribers. This message is placed inside a try-catch
block. If a subscriber actually vetoes the change, the subscriber throws a
PropertyVetoException, and the catch block sets the Value property back as it
was. If the change isn’t vetoed, the Value property is set to its new value, and all the
bound property subscribers are notified via the firePropertyChange() method.

Two details deserve further explanation. First, the notification methods used to fire events
work only with objects, not with primitive types. Thus, to get BCIntTextField to fire
when its Value property changed, the int, Value, had to be wrapped in an Integer
object. Second, notice that the BCIntTextField class changes its property before it
fires the PropertyChange event. For the BCIntTextField, this is helpful, but for
other classes, it might make more sense to fire the PropertyChange event first; it all
depends on whether you want your bean to broadcast the message “I’ve changed!” or
whether you want it to say, “I’m about to change.”

 Using BCIntTextFields

 - 497 -

To actually work with an object that implements bound and constrained properties, you
must implement the appropriate interface and include the corresponding method. To
receive PropertyChange events, your class must implement the
PropertyChangeListener interface that entails writing a PropertyChange()
method. Likewise, to receive VetoableChange events, you must implement the
VetoableChangeListener interface and include the VetoableChange method.

Listing 16.5 shows the BCIntTextFieldTest applet, which uses several
BCIntTextField objects. This applet uses its BCIntTextField objects to keep a
running total and to keep inattentive employees from offering discounts greater than 10%.

 Listing 16.5 BCIntTextFieldTest.java

 // BCIntTextFieldTest.java
 //
 // Test the PropertyChange and VetoableChange support
 // in the BCIntTextField class

 import java.awt.*;
 import java.applet.*;
 import java.text.*;
 import java.awt.event.*;
 import java.beans.*;

 public class BCIntTextFieldTest extends Applet
 implements PropertyChangeListener,
 VetoableChangeListener
 {
 // --Build a user interface----------------------------------
 public void init()
 {
 Panel p = new Panel(new GridLayout(4, 1, 5, 5));
 p.add(new Label(“Quantity: “, Label.RIGHT));
 p.add(new Label(“Price: “, Label.RIGHT));
 p.add(new Label(“Discount% (<10): “, Label.RIGHT));
 p.add(new Label(“Total: “, Label.RIGHT));
 add(p, “West”);

 p = new Panel(new GridLayout(4, 1, 5, 5));
 p.add(qty);
 p.add(price);
 p.add(disc);
 p.add(total);
 add(p, “Center”);

 qty.addPropertyChangeListener(this);
 price.addPropertyChangeListener(this);
 disc.addVetoableChangeListener(this);
 disc.addPropertyChangeListener(this);
 }

 // --Handle Bound Fields (qty, price, disc)--------------------
-

 public void propertyChange(PropertyChangeEvent pce)

 - 498 -

 {
 // 1. When property is changed, first get each value
 double dQty = qty.getValue();
 double dPrice = price.getValue();
 double dDisc = disc.getValue() / 100.0;

 // 2. Then compute the total and discount
 double dTotal = dQty * dPrice;

 if (dDisc > 0.0)
 dTotal = dTotal - (dTotal * dDisc);

 // 3. Then format the output
 DecimalFormat df = new DecimalFormat(“###,###,##0.00”);
 total.setText(df.format(dTotal));
 }

 // --Handle Constrained Field (disc)-------------------------
 public void vetoableChange(PropertyChangeEvent pce)
 throws PropertyVetoException
 {
 // 1. If the discount is greater than 10%, then Veto change
 Integer newVal = (Integer) pce.getNewValue();
 if (newVal.intValue() > 10)
 {
 throw new PropertyVetoException(“Invalid discount”, pce);
 }
 }

 // --Object fields---
 private BCIntTextField qty = new BCIntTextField();
 private BCIntTextField price = new BCIntTextField();
 private BCIntTextField disc = new BCIntTextField();
 private Label total = new Label(“”, Label.RIGHT);
 }

The BCIntTextFieldTest applet contains three BCIntTextFields named qty,
price, and disc, which represent, naturally enough, quantity, price, and discount. A
regular Label, named total, is used for output.

The init() method of the applet constructs the user interface. First, a set of Labels is
added to the applet, defining each field. Next, the four fields are added to the applet. A
pair of Panels, each using a GridLayout, is used to line up all the components
attractively. The last section of the init() method sends the
addPropertyChangeListener() message to each of the three BCIntTextField
objects. In addition, the addVetoableChangeListener() message is sent to the disc
field. In all cases, this is passed as the argument. You are, in effect, telling each object to
notify you when its state changes. That way you don’t have to check up on them.

The last task in using bound and constrained properties is to handle the messages to
which you’ve subscribed. You do this by writing propertyChange() and
vetoableChange() methods. The propertyChange() method in
BCIntTextFieldTest first retrieves the values from qty, price, and disc, then
computes the new total amount, and finally formats and displays the amount using the

 - 499 -

amount field.

The vetoableChange() method is even less complex. It simply retrieves the value
from the disc field. If it is greater than 10%, it throws a PropertyVetoException. The
mechanism you’ve already built into the BCIntTextField class takes care of rolling the
value back to its previous state. Listing 16.6, BCIntTextFieldTest.html, gives you
the opportunity to try out the bound and constrained properties.

 Listing 16.6 BCIntTextFieldTest.html

 <HTML>
 <HEAD>
 <TITLE>The BCIntTextFieldTest Applet</TITLE>
 </HEAD>
 <BODY>
 <H1>Bound and Constrained</H1>
 The applet below uses bound and constrained fields

 All three textfields send a PropertyChange event whenever
 their value changes. This is used to update the total amount.

 The constrained field, Discount, sends a VetoableChange event
 if you attempt to enter a discount greater than 10%
 <HR>
 <APPLET CODE=BCIntTextFieldTest HEIGHT=300 WIDTH=300>
 </APPLET>
 </BODY>
 </HTML>

 Figure 16.9 shows the BCIntTextFieldTest applet running in a browser.

 Figure 16.9 Running the BCIntTextFieldTest applet

 “Reflection is the capability of a class to discover the methods and fields of another

class. ”

The Reflection API

In addition to support for properties and events, the new Java beans API adds support for
reflection. Reflection is the capability of a class to discover the methods and fields of
another class. It was added to the beans API to enable tool builders to create RAD
environments that easily accommodate any bean that adheres to the property and event

 - 500 -

naming conventions.

 To see the power of Java’s reflection API, take a look at Listing 16.7, which shows the
Reflector class.

 Listing 16.7 The Reflector Class

 // Reflector.java
 import java.awt.*;
 import java.lang.reflect.*;

 public class Reflector
 {
 public static String reflect(String s)
 {
 String ret = “”;
 try
 {

 ret = “Analyzing class “ + s + “...\n”;

 Class c = Class.forName(s);

 ret += “\nPublic Methods:\n====================\n”;
 Method [] meth = c.getMethods();
 for (int i = 0; i < meth.length; i++)
 {
 ret += “ “ + meth[i] + “;\n”;
 }

 ret += “\nPublic Fields:\n====================\n”;
 Field [] fld = c.getFields();
 for (int i = 0; i < fld.length; i++)
 {
 ret += “ “ + fld[i] + “;\n”;
 }

 ret +=”\nPublic Constructors:\n====================\n”;
 Constructor [] con = c.getConstructors();
 for (int i = 0; i < con.length; i++)
 {
 ret += “ “ + con[i] + “;\n”;
 }
 }
 catch (Exception e)
 {
 ret += “\n*** Can only analyze .class files ***\n”;
 ret += “ “ + s + “ is not a .class file\n”;
 }
 return ret;
 }
 }

 - 501 -

The Reflector class has a single static method called reflect() that takes a
String argument representing the name of the class you want to decode. The
reflect() method uses the static forName() method of Class to obtain an object
that represents the class defined in the .class file. The Class class defines a number of
useful methods, several of which reflect() proceeds to call. You can check your JDK
documentation to learn about others.

The methods called by reflect() include getMethods(), getFields(), and
getConstructors(). Each of these methods returns an array, so reflect() includes
loops that iterate over the results they return. The Method, Field, and Constructor objects
each include useful toString() methods that enable them to be concatenated with the
String ret, which is returned as the output.

You can use the reflect() method to create applets and applications that investigate
and decode the methods and fields of any class, even without the source code. Listings
16.8, ReflectApplet.java, and 16.9, ReflectApplet.html, show one
demonstration of this capability. The CD-ROM contains both a console-mode, command-
line application, Reflect.java, as well as a GUI standalone application,
ReflectApp.java.

 Listing 16.8 ReflectApplet.java

 // ReflectApplet.java
 import java.awt.*;
 import java.applet.*;
 import java.awt.event.*;
 import java.lang.reflect.*;

 public class ReflectApplet extends Applet
 implements ActionListener
 {
 TextField theInput = new TextField();
 TextArea theOutput = new TextArea(25, 80);

 public void init()
 {
 setLayout(new BorderLayout());
 setBackground(Color.lightGray);

 add(theOutput, “Center”);
 add(theInput, “North”);

 theInput.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae)
 {
 String theFile = theInput.getText();
 if (theFile != null)
 theOutput.append(Reflector.reflect(theFile));
 }
 }

 Listing 16.9 ReflectApplet.html

 - 502 -

 <HTML>
 <HEAD>
 <TITLE>The Reflection Applet</TITLE>
 </HEAD>
 <BODY>
 <H2>Type a class name in the text field below. The
 Reflection API will show you the public fields
 and methods.
 </H2>
 </HR>
 <APPLET CODE=ReflectApplet HEIGHT=450 WIDTH=550>
 </APPLET>
 </BODY>
 </HTML>

Figure 16.10 shows the result of running ReflectApplet on the Applet class itself.
When you enter a class filename, be sure you don’t add the .class extension, because
that is assumed by the Reflector class. .

 Figure 16.10 Output of the ReflectApplet

You might find it fun to run the ReflectApplet program on unfamiliar classes. If you
experiment thoroughly, you may find that certain types of methods, fields, and
constructors sometimes are not reported by Reflector. This is a feature of Java’s
reflection API, not a bug. Reflection uses the Java SecurityManager to decide what’s
okay and what’s not. If you download the ReflectApplet from a Web server, you’ll find
that its capabilities have been greatly restricted.

As a Java application developer, however, is there any reason for you to learn about the
reflection API, other than sheer curiosity? Yes, there is. Although reflection is certainly
necessary for tool builders, it also makes possible several programming techniques that
should be in the toolbox of every application programmer.

One such technique made possible by reflection is the ability to create dynamic classes,
classes that interpret user input, and act accordingly. Because the reflection API gives you
the ability to extract a Method object from a class by using its name, you can then invoke
the Method object you get back from getMethods(). This technique, clearly explained by
Paul Tremblett in the January 1998 issue of Dr. Dobb’s Journal, is a very easy way for you
to add a macro or scripting capability to your programs.

Persistence and Packaging

 - 503 -

Two other important bean-related technologies that can be useful to application
programmers are object persistence and packaging. Object persistence enables an
object’s state to be written to a file so that it can be stored and retrieved. Such an object
is said to have been serialized. Packaging enables several .class files, as well as
graphics and property files, to be combined into a single file and compressed for efficient
transmission across a network.

 SERIALIZABLE INTERFACE

Listing 16.10 contains the SerialBean class, which shows how a bean’s state can be
stored and retrieved. The class implements the Serializable interface of the
java.io package. (Serialization means that an object can be converted to a stream of
bytes and either sent to a file or transferred over a network connection.) This unusual
interface includes no methods; a class that implements the interface is simply signaling
its willingness to be serialized. The serialization itself is handled by the Java API.

 Listing 16.10 The SerialBean Class

 import java.io.*;

 public class SerialBean implements Serializable
 {
 public static void main(String [] args)
 {
 try
 {
 SerialBean b1 = new SerialBean();

 b1.theClassState = 2;
 b1.theObjectState = 3;
 b1.theTransientState = 4;
 System.out.println(“Original object: “ + b1);

 FileOutputStream out = new FileOutputStream(“tmp”);
 ObjectOutput sout = new ObjectOutputStream(out);
 sout.writeObject(b1);
 sout.close();

 FileInputStream in = new FileInputStream(“tmp”);
 ObjectInputStream sin = new ObjectInputStream(in);
 SerialBean b2 = (SerialBean) sin.readObject();
 System.out.println(“Serialized object: “ + b2);

 System.out.println(“\nPress ENTER/RETURN to
 continue...”);

 System.in.read();
 }
 catch (Exception e)
 {
 System.err.println(e);
 e.printStackTrace();
 }
 }

 - 504 -

 public String toString()
 {
 return “ClassState=” + theClassState + “ “ +
 “ObjectState=” + theObjectState + “ “ +
 “TransientState=” + theTransientState;
 }

 public static int theClassState = 1;
 public int theObjectState = 1;
 public transient int theTransientState = 1;
 }

“ The transient keyword is used to mark fields that need not be saved when an
object is serialized. This makes serializa-tion more efficient by reducing processing
time and storage space.”

The SerialBean class defines three public fields: One is public static, another is
public, and the third is public transient. The transient keyword is used to mark
fields that need not be saved when an object is serialized. This makes serialization more
efficient by reducing processing time and storage space.

To see how serialization works, take a look at the main() method. First, it creates an
object to be serialized, naming it b1. Next, it sets the fields of b1 to values other than
their initial values so that it will later be possible to see that the serialization worked
properly.

To serialize the object, an ObjectOutputStream is wrapped around a
FileOutputStream, and the writeObject() message is sent to the result, with the
b1 object as a parameter. The ObjectOutputStream is then closed, completing the
serialization.

To retrieve the object, an ObjectInputStream is wrapped around a
FileInputStream. The readObject() method returns the retrieved object, which is
typecast to a SerialBean. Implicitly invoking its toString() method by using it in a
println() produces the output shown in Figure 16.11. The output demonstrates that
both nontransient fields were correctly restored.

 Figure 16.11 Running the SerialBean application

 JARs

Packaging the .class files of an applet in a Java archive (JAR) can speed their
transmission over a network, owing to data compression and a single HTTP get request,
instead of one request for each file. The jar command is used to create JAR files. Its

 - 505 -

syntax is as follows:

 jar [options] [manifest] destination input-file [input-files]

The manifest file in this command line describes the contents of the JAR that contains
it. A manifest can be prepared or revised manually, but if you don’t specify a
manifest, the JAR will create one for you. The manifest file can be used by a RAD
tool to help it load the beans contained in the jar file. You don’t need the manifest file to
use the jar file, however, and you omit it by using the M option. The options that can
appear are patterned after those used by the UNIX tar command. They are shown in
Table 16.1.

 Table 16.1 Options Of The Jar Command

 Option

Meaning

 c

Creates a new archive.

 t

Lists the table of contents of an archive.

 x file

Extracts all files (if none are named), or just the named files, from the
archive.

 f

Specifies the JAR filename.

 0

Store only; use no ZIP compression. Make sure that you use this option if
you are creating a jar file that can be put in your CLASSPATH.

 M

Do not create a manifest file for the entries.

 v

Generates verbose output.

 A typical example of creating a JAR file is

 jar cf jarfile *.class

which stores every .class file in the current directory in a JAR file named jarfile. A
manifest file is automatically generated. If any file is a directory, it is processed
recursively.

 When an applet and its associated files (if any) are placed in a JAR file, the JAR file can

be specified in the applet’s HTML file like this:

 <applet code=myapplet.class
 archive=”myjar.jar”
 width=460 height=160>
 </applet>

 The applet is named myapplet, and the JAR file is named myjar.jar. Several JAR files

 - 506 -

can be specified by separating them with commas. The Web server searches all files on
the list for the applet and any files it needs.

 Summary

Components are objects that are designed for reuse, making it easier, faster, and
cheaper to develop applications. Java beans are Sun’s answer to the need for
components. Because they’re written in Java, beans can run on a variety of platforms.
Emulators enable beans to operate within other component frameworks, such as
Microsoft’s ActiveX/COM.

Beans, like other components, are designed for use inside rapid application development
(RAD) tools and other sorts of tools. Programmers can include a bean in a program and
visually manipulate it to customize its state and behavior. Tool builders, bean builders,
and bean users are concerned with different aspects of beans and the beans API.

The Java beans architecture consists of both properties and events. Properties contain
the state of an object, much as object attributes do, but properties can be visually
manipulated in a RAD tool. Beans communicate with other objects by sending them
events and using a publish/subscribe pattern based on the observer/observable pattern.

Bean properties can be simple, Boolean, indexed, or customized. The related accessor
and mutator methods should be named according to a recommendation that facilitates
identifying a bean’s characteristics at design time.

Bean properties can be bound, meaning that subscribers are notified of changes, or
constrained, meaning that a subscriber may veto a pending change. A single property
can be both bound and constrained, but it cannot be constrained without being bound.

The reflection API lets objects determine the members of other objects. The persistence
API uses serialization to enable the storage and retrieval of objects. The jar utility can be
used to package classes and serialized objects for efficient network transmission.

 Questions

 1. The idea of components is to enable the __________ of software across many

applications.

 A. Reuse

 B. Networking

 c. Concurrency

 d. Productivity

 2. The failure of software components to achieve the goal mentioned in question 1 is

primarily due to the lack of a __________.

 3. The most successful component model today is found in __________.

 a. Java

 b. Visual Basic

 c. Smalltalk

 - 507 -

 d. Eiffel

 4. A bean is a component that can be manipulated __________ in a builder tool.

 5. The facility that enables a tool to discover the members of a bean is __________.

 6. The facility that enables the state of a bean to be saved is __________.

 7. (Bound/Constrained) properties cause subscribers to be notified when their value is

changed.

 8. Bound/Constrained) properties cause subscribers to be notified when a change to

their value is pending, enabling a subscriber to veto the change.

 9. Properties with values that take the form of arrays are known as __________

properties.

 10. The name of a method that gets the value of a simple property named lost should be

__________.

Exercises

1.

Study a Java RAD tool, such as Visual Caf . . . for Java or JBuilder, and identify the
types of components and beans it supports. Learn how new components and beans
are added to the tool. Write a simple bean or use one of the beans of this chapter,
and add it to the tool’s inventory.

2.

Write a bean that serves as an interface to the encryption server of Chapter 12. Show
how the bean interface makes the server easier to access and enables transparent
change of the networking technology used by the server. If you have a Java RAD
tool, add the bean to the tool’s inventory.

3.

Using the reflection API, create a GUI class browser that lets you study a class,
scrolling through its members. The browser should let you easily browse classes that
represent types of method return values, method and constructor parameters, and
fields.

4.

Use the jar utility to package an applet, along with some images (GIFs or JPEGs), the
more and the larger the better. Create an HTML file that loads the applet from the JAR
and another that loads the individual files. Compare your browser’s performance in
loading the HTML files from your local hard drive. If you have access to a Web server,
repeat the experiment, downloading the files from the server instead of your local hard
drive. Note: You’ll need to disable your browser’s cache to get accurate results. You
can reset the cache when you’re done.

 To Learn More

 The following books will help you learn more about designing with components and Java

beans, in particular.

The indisputable father of the software component, and the originator of the phrase
Software IC, is Dr. Brad Cox. His book, Object-Oriented Programming: An Evolutionary
Approach (with Andrew Novobilski: Addison-Wesley, 1986, 1991) deals with the
language he pioneered, Objective-C, but the Java programmer interested in components
will find much to learn. His articles, “Planning the Software Industrial Revolution” (IEEE
Software magazine) and “There Is a Silver Bullet” (Byte magazine), expand on his ideas
that widespread use of components and OOP will introduce an entirely new programming
age.

 - 508 -

The difficulties and issues surrounding effective component design can be summed up in
one question: “How do you write reusable software?” A book that addresses this
particular issue is Martin Carroll and Margaret Ellis’s work,

Designing and Coding Reusable C++ (Addison-Wesley, 1995). Although less
philosophical than Cox’s work and more focused on C++, it still raises essential issues
with which the Java component developer should be concerned.

A well-written and well-illustrated book dealing with components generally is The
Essential Distributed Objects Survival Guide, by Robert Orfali, Dan Harkey, and Jeri
Edwards (New York: John Wiley & Sons, 1996).

 The following books deal with Java beans, primarily from the perspective of the bean

builder:

 • Englander, Robert. Developing Java Beans. Sebastopol, California: O’Reilly, 1997.

 • Feghhi, Jalal. Web Developer’s Guide to Java Beans. Albany, New York: Coriolis

Group, 1997.

 • Sridharan, Prashant. Java Beans Developer’s Resource. Upper Saddle River, New

Jersey: Prentice Hall, 1997.

Chapter 17: Designing with Class Libraries

 Overview

Can you juggle? Early in their careers, most programmers learn how—not with balls,
soda cans, or technical manuals, of course, but with tasks. “How’s that new object for the
sales system coming?” asks the boss, not more than five minutes after he asks, “Hey, did
you fix that bug in the purchasing system yet?” If you’re having trouble coping with all
that’s on your plate—and what programmer isn’t—perhaps the software library known as
JGL (pronounced juggle) can help you juggle your software overload.

JGL is the Java Generic Library, patterned after the C++ STL (Software Template
Library) and written by ObjectSpace, Inc. Several vendors, including Borland and
Symantec, have licensed JGL for inclusion in their Java IDEs (interactive development
environments). This is good news. Even better news is that you don’t have to buy a costly
IDE to gain access to JGL. You can download JGL, including class files and sources, and
use it for personal and commercial purposes without charge. You can find JGL at
http://www.objectspace.com.

The Java Generic Library, like the C++ STL, is a library of collections and algorithms.
Collections (sometimes called containers) are classes whose objects are designed to
hold objects of other classes. Java’s built-in arrays are a form of collection, as are the
Vector, Hashtable, and Dictionary classes from the standard Java utility package,
java.util. Algorithm, of course, is a general term that refers to the specific actions a
method performs to accomplish its task. When used to refer to a generic class library like
JGL or the STL, however, algorithm refers to classes that perform generic operations.
Algorithms are usually designed to work on the objects contained in one of the library’s
collection classes. Common algorithms include classes for sorting and searching, which
work just the same whether you’re sorting messages in a mail system or invoices in an
accounting system.

 In this chapter, you will learn:

 • How to use JGL containers, including Sequence, Set, Map, Queue, and Stack, to

 - 509 -

improve your programming productivity

 • How to override Object.clone() to perform a deep or shallow copy

 • How to override Object.hashCode() to properly order elements of a sorted

collection

 • How to use JGL algorithms, predicates, and functions to process data held in your

containers

 • How to use JGL iterators to traverse containers, sparing you the need to write

complicated loops

 • How design principles and design patterns were applied in the development of JGL

Software Reuse

Every era has its quest. In the 16th century, explorers such as Juan Ponce de León
sought the legendary Fountain of Youth, hoping to become immortal by bathing in its
waters. In the 17th and 18th centuries, sea captains and mainland explorers sought a
way around or across the North American continent, hoping to reach the Orient and its
riches.

More recently, in the 20th century, software designers and programmers have sought to
reduce software development costs and increase software quality by finding the key to
software reuse. Just as ancestral explorers before them, these modern explorers have
experienced more failure than success. Generic libraries are designed to change that.

 WHAT IS SOFTWARE REUSE?

An unknown wag once insisted that only one computer program has ever been written.
According to the story, the second computer program contained snippets of code from
the first program, copied by a programmer who wisely preferred to reuse rather than
rewrite. Allegedly, the same is true of all subsequent programs, which have shared code
much the way that asexually reproducing bacteria share DNA.

This so-called code salvaging, popular though it is, isn’t true software reuse, although it
has the same intention. Code salvagers correctly recognize that some tasks are done by
more than one program. By reusing code instead of writing new code, they become more
productive.

True software reuse is planned reuse rather than merely opportunistic reuse. By planning
for software reuse, designers and programmers can increase the amount of code actually
reused, thereby boosting productivity above the level achievable merely by means of
code salvaging. Moreover, planned software reuse can decrease the effort involved in
adapting code for reuse and increase the likelihood that reused code will function
properly. Software reuse aims at

 • Making it easy to find code that might be reusable

 • Making it easy to understand reusable code, so that reuse is less difficult

 • Testing reusable code thoroughly so that no unexpected bugs surface when the code

is reused

 • Decoupling reusable code from the code that contains it, so that the reusable code

requires no changes when it’s used in a new context

 - 510 -

 SOFTWARE REUSE MYTHS

 Like any technical innovation, software reuse has had fans who’ve hyped its benefits

beyond all reality. Among the myths they’ve spawned are these:

 • Software reuse will solve all our software problems.

 • All code should be built for possible reuse.

 • Object-oriented design and programming make software reuse easy.

 “Like any technical innovation, software reuse has had fans who’ve hyped its

benefits beyond all reality.”

As Frederick Brooks points out in his article, “No Silver Bullet,” user expectations tend to
rise to meet our technical capabilities. Even if software reuse were to improve software
development productivity and software quality tenfold, users would soon come to
expect—and demand—performance at twice that level. Software reuse can improve our
ability to develop software, but it won’t forever solve our software problems.

Making it easy to reuse code requires effort. It’s senseless to expend the effort to make a
given software unit reusable unless there’s a reasonable prospect the unit will be reused.
Of course, many software units unexpectedly become candidates for reuse. So you
shouldn’t be hasty in ruling out the possibility that a given software unit may be reused.

Although object-oriented design and programming make creating reusable software
easier, software reuse is seldom easy. Considerable skill and hard work—and maybe
even a little good luck—are required to create reusable software.

 SOFTWARE REUSE OBSTACLES

Martin Carroll and Margaret Ellis, in their book Designing and Coding Reusable C++,
summarize a number of obstacles that constrain the practice of software reuse or reduce
the benefits achieved. Among the obstacles they mention are these:

 • The original programmer of a software unit must recognize that it’s potentially

reusable; otherwise, the programmer won’t plan for the unit’s reuse.

•

The original programmer must expect a reward for making the unit reusable because
of the extra effort required. Unless there’s some incentive, it’s unlikely that the effort
will be expended.

•

Someone must accept responsibility for maintaining the reusable software unit. Often,
the reusable unit will contain errors that will be discovered only after its initial
application. Someone must correct these errors and make corrected software
available to those who’ve reused the unit.

 • The reusing programmer must be able to find, acquire, and use the software unit.

•

The reusing programmer must expect a reward for reusing the software unit. Some
programmers are evaluated based on the number of lines of code they write in a given
period. A programmer working under such a regime has an incentive to rewrite code
rather than reuse it.

 - 511 -

•

Possible use contexts are unknown to the original programmer and continually
change. This greatly complicates writing truly reusable code. Java’s cross-platform
capabilities do ease this burden considerably, in comparison to platform-dependent
languages such as C++.

•

Reusing programmers often have conflicting requirements. There is an old saying: “He
who trims himself to please everyone will soon find himself whittled away.” The
opposite tends to be true of reusable software: trying to please everyone results in fat,
complex software. No one likes to work with fat, complex software, so software that
tries to please everyone may end up pleasing no one.

 LIBRARY DESIGN PRINCIPLES

One important form of software reuse is creating reusable components, such as the Java
beans described in the previous chapter. However, as pointed out in that chapter, beans
are intended for visual manipulation. Software components intended for programmatic
manipulation aren’t usually implemented as beans. Instead, they’re implemented as
libraries. For example, Java’s Abstract Window Toolkit (AWT) and the Java Database
Connectivity (JDBC) application programming interface are both implemented as
libraries.

Libraries are often designed so that the functions they provide can be extended. The
object-oriented principle of inheritance is the most common means of extending the
capabilities of library members. Anticipating the desires of users is one of the most
challenging tasks faced by the designer of a class library.

Another important property of a well-designed class library is interface consistency. When
the functions of a class library must be used sometimes in one way and sometimes in
another, it makes it much more difficult for programmers to become proficient in using the
library. For example, if a container library requires you to add() an element to one type of
container but put() it to another, you may find it difficult to remember when to add()
and when to put(). If the inconsistencies are too many or too annoying, you may even
choose to write new code rather than use the library.

Obviously, a class library won’t be used unless its performance is acceptable. But, as
William Wulf observed, “More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—including blind
stupidity.” Balancing concern for proper performance against reusability and other
concerns is another significant challenge for the class library designer.

A final crucial issue in class library design is the library’s error-handling mechanisms. Only
the application programmer knows the true significance of an error. Therefore, the
application programmer—not the library designer—must decide the application’s error
strategy. Some class library implementations violate this principle, hamstringing the
application programmer by constraining the error-handling options. Fortunately, Java’s
exception mechanism provides a way for library designers to signal that an error has
occurred, without reducing the options available to the application programmer.

 The Java Generic Library

The Java Generic Library (JGL) is an example of a generally well-designed class library.
The remainder of this chapter examines the structure and mechanisms of JGL in some
detail. By studying the design of JGL, you can learn much about how class library design
should be done. Moreover, your knowledge of JGL will provide additional practical benefit
because you’ll know how to tap its power for reuse in your own programs.

JGL, like other class libraries, does much to overcome limitations of its host language
(Java). Beyond arrays, Java provides little help in organizing collections of data. The
java.util package includes the Vector, Hashtable, and Stack classes and the

 - 512 -

Enumeration interface, but that’s about the size of it. Of course, in its youth, C++ was
no better. In fact, it was worse, providing only arrays. But C++ has matured by adopting
the Standard Template Library as part of its language standard.

 Good news: You don’t have to wait for Java to grow up to gain access to a variety of

useful objects that let you build and manipulate collections. JGL provides the following:

 • 11 powerful and flexible types of collections

 • Adapter classes that let you use Java arrays and Vectors as though they were JGL

collections

 • More than 50 algorithms and function objects that let you transform data held in JGL

collections

 • The ability to work with distributed collections and algorithms, when used with

ObjectSpace Voyager—which is also free for the download.

Because JGL supports version 1.1 of the Java Developer’s Kit, you can serialize
collections and iterators transparently. This lets you work with collections at runtime and
then save them to nonvolatile storage (for example, a disk file) when you’re done. That
way, they’ll still be there when the proverbial rainy day arrives. In return for a little
programming effort, JGL gives you much of the power of an object-oriented database
management system at less than 0.1 percent of the cost (because, of course, JGL is
free!).

To run the JGL examples in this chapter, you must download and install the JGL class
library from http://www.objectspace.com, where you’ll find detailed installation
instructions. After you install the JGL libraries, you need to modify your CLASSPATH to
include the JGL libraries. If you’ve installed JGL in a directory called JGL on your C:\
drive, for instance, you would add

 C:\JGL\lib\jgl3.0.0.jar

to your current CLASSPATH. Of course, the actual name of the file you point to depends
on the version of JGL you download. JGL 3.0 is designed for use with JDK 1.1, but you
can still get version 2, which also works with earlier versions of the JDK, if, for instance,
you’re writing applets that need to work in a wide variety of browsers.

 THE Container FAMILY

Figure 17.1 shows several collection interfaces provided by JGL, each of which extends
the root interface Container. Each subinterface is itself extended, as you’ll soon see.
By the time grandchild and great-grandchild interfaces are tallied, the prolific Container
interface sires 11 collection interfaces and 10 wrapper interfaces—one for each of the
eight Java primitive types, one for Object, and one for Vector.

 Figure 17.1 The JGL Container interface

 - 513 -

Collections by Any Other Name

It’s unfortunate that the authors of JGL chose the name Container for the root
interface of all collections because confusion with the java.awt.Container
class is inevitable. If you use JGL to write a program that also uses the
java.awt.Container class, even the Java compiler can become confused. The
way to cope with this is to fully qualify the name Container: always write
java.awt.Container or COM.objectspace.jgl.Container, whichever you mean.
Fortunately, most programs seldom directly refer to either sort of Container; each
Container lets its children do most of the work.

 To help avoid confusion, we’ll refer to collections rather than containers,

except when we refer to the specific JGL interface or AWT class.

 Table 17.1 shows the methods included within the Container interface. Every JGL

collection class is responsible for handling these methods.

 Table 17.1 Methods Of The Jgl Container Interface

 Method

Function

 add()

Adds an element to the Container

 clear()

Removes every element from the Container

 clone()

Returns a copy of the Container

 elements()

Returns an Enumeration positioned at the start of the
Container

 equals()

Returns true if the contents of the Container match those of
a specified Container

 finish()

Returns an iterator positioned at the finish of the Container

 isEmpty()

Returns true if the Container contains no elements

 maxSize()

Returns the maximum number of elements in the Container

 remove()

Removes the element(s) represented by Enumerations

 size()

Returns the current number of elements in the Container

 start()

Returns an iterator positioned at the start of the Container

 - 514 -

 toString()

Returns a string that describes the Container

Most of the methods and their functions in Table 17.1 should be familiar to you, because
they resemble the sort of methods defined by the JDK’s Vector class. For now, you can
think of an iterator as a specialized form of Enumeration. Iterators, like Enumerations, let
you traverse a collection, viewing or manipulating its elements one by one. You’ll learn
more about JGL’s iterators later in this chapter.

 REFERENCE VERSUS VALUE SEMANTICS

All JGL container classes hold objects. Although this might seem to be a restatement of
an obvious fact, when applied to container classes, it brings up an important question:
When you put an object into a collection, do you want to store a copy of the object or a
reference to the original object itself?

 “An important question: When you put an object into a collection, do you want to

store a copy of the object or a reference to the original object itself? ”

A program designed to go through your employee database, updating everyone’s salary
according to the latest contract, would want to make sure that it was dealing with the
actual employee object themselves. It would want to hold references to objects; this is
called reference semantics. On the other hand, if you were writing a “what-if” program
that tried to ascertain the financial effect on your company of slashing every employee’s
salary by 50 percent, you’d be better advised to have your program make a copy of each
employee object rather than work with references; this is called value semantics.

Unfortunately, this simple distinction is further complicated by the copy semantics of the
objects you’re storing. If you use a collection that dutifully makes a copy of each object as
you add it, you have to find out what the object itself means when you ask it to make a
copy. Although you might think that every copy is the same, that’s not entirely correct; an
object may be copied by using a deep copy or a shallow copy. A shallow copy simply
means that a class adopts reference semantics as its copy semantic. When the class
makes a copy of an object, it copies only the reference to the actual object rather than
make a duplicate of the actual object itself. A class that makes deep copies works just the
opposite; when you make a copy of such an object, the object returns a duplicate of itself,
not simply a reference.

 When designing classes destined to be used inside a collection, you control the type of

copy semantics that the class uses by overriding its clone() method.

 CLONES: DEEP COPY AND SHALLOW COPY

You might be unfamiliar with the clone() method, which certainly presents some
important subtleties worthy of digression. You may recall that the Object class supports
a clone() method, but you may not know exactly what the method is for or how it
works. You may have tried invoking it, in which case your program probably terminated
with a CloneNotSupportedException. Before calling for increases in the AFDC (Aid
to Families with Dependent Clones) program, it would be good to learn a little more about
the problem.

 Like the Serializable interface that tells a client whether the objects of a class are

 - 515 -

willing to be serialized, the Cloneable class tells a client whether the objects of a class
are willing to be cloned—that is, copied. If you want a class to be cloneable, your class
should implement the Cloneable interface and override the Object.clone() method.
The former is easy because, like Serializable, the Cloneable class requires no
methods or fields. The latter, however, presents some complications.

You might have suspected that copying things isn’t entirely straightforward. After all, if it
were, the Object class would implement a clone() method that did something more
useful than throwing a CloneNotSupportedException, right? The complication is one
of choosing between the two ways of copying an object: shallow copying and deep
copying. Java’s designers couldn’t know in advance which way would be appropriate for
your objects, so they took the easy way out: they left not only the decision, but also the
implementation, up to you.

 To see how to copy an object, look at Listing 17.1, which shows the CopyTest class.

 Listing 17.1 The CopyTest Class

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

 public class CopyTest extends Applet implements ActionListener
 {
 LittlePig theLittlePig, theShallowClone;
 BigPig theBigPig, theDeepClone;

 Button theSpeakButton = new Button(“Speak”);
 Button theModifyButton = new Button(“Morph to Dog”);

 Panel[] thePigPanel = new Panel[4];

 public void init()
 {
 theLittlePig = new LittlePig();
 theShallowClone = (LittlePig) theLittlePig.clone();

 theBigPig = new BigPig();
 theDeepClone = (BigPig) theBigPig.clone();

 for (int i = 0; i < thePigPanel.length; i++)
 {
 thePigPanel[i] = new Panel();
 thePigPanel[i].setLayout(new BorderLayout());
 }

 setLayout(new GridLayout(2, 3));
 add(thePigPanel[0]);
 add(thePigPanel[1]);
 add(theModifyButton);
 add(thePigPanel[2]);
 add(thePigPanel[3]);
 add(theSpeakButton);

 - 516 -

 thePigPanel[0].add(new Label(“Little Pig:”), “North”);
 thePigPanel[0].add(theLittlePig, “Center”);

 thePigPanel[1].add(new Label(“Big Pig:”), “North”);
 thePigPanel[1].add(theBigPig, “Center”);

 thePigPanel[2].add(new Label(“Shallow Clone:”), “North”);
 thePigPanel[2].add(theShallowClone, “Center”);

 thePigPanel[3].add(new Label(“Deep Clone:”), “North”);
 thePigPanel[3].add(theDeepClone, “Center”);

 theModifyButton.addActionListener(this);
 theSpeakButton.addActionListener(this);
 theSpeakButton.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event)
 {
 Object source = event.getSource();
 if (source == theSpeakButton)
 {
 theLittlePig.speak();
 theShallowClone.speak();
 theBigPig.speak();
 theDeepClone.speak();
 theSpeakButton.setEnabled(false);
 }
 else if (source == theModifyButton)
 {
 theLittlePig.setTalk(“Arf!”);
 theBigPig.setTalk(“Arf!”);
 theModifyButton.setEnabled(false);
 theSpeakButton.setEnabled(true);
 }
 }
 }

CopyTest creates two different kinds of objects: a LittlePig and a BigPig. A
LittlePig, as you’ll see in a moment, responds to a clone() message by returning a
shallow copy of itself. A BigPig responds to the same message by returning a deep
copy of itself.

Figure 17.2 shows the output of the applet, which highlights the difference between a
shallow copy and a deep copy. Looking back to the init() method of CopyTest, you
can see that for each type of Pig, it performs the following steps:

 - 517 -

 Figure 17.2 Output of the CopyTest applet

 1. Creates an object.

 2. Clones the object.

 3. Adds the object to the applet window.

When the user clicks the Speak button, a speak() message is sent to each original
object or clone. When the user clicks the Morph to Dog button, a setTalk() message is
sent to each original object; no message is sent to either clone. The setTalk()
message causes an object to say “Arf” in response to a speak() message. Though
neither clone object receives the setTalk() message, the shallow clone object says
“Arf” along with its original, the LittlePig object. The LittlePig object and its
shallow clone share data, so changes to one can affect the other. Figure 17.2 shows this
result.

 The deep clone of the BigPig object continues to say “O-o-o-o-oink!” as a pig should. To

see why this happens, look at Listing 17.2, the LittlePig class.

 Listing 17.2 The LittlePig Class

 class LittlePig extends Canvas
 {
 public Object clone()
 {
 return new LittlePig(thePigTalk);
 }

 public void setTalk(String text)
 {
 thePigTalk.setTalk(text);
 repaint();
 }

 public void speak()
 {
 repaint();
 }

 public void paint(Graphics g)

 - 518 -

 {
 g.drawString(thePigTalk.getTalk(), 10, 10);
 }

 public LittlePig()
 {
 thePigTalk = new PigTalk(“Oink!”);
 }

 public LittlePig(PigTalk talk)
 {
 thePigTalk = talk;
 }

 private PigTalk thePigTalk;
 }

A LittlePig object contains a private field named thePigTalk, a PigTalk object.
When a LittlePig is constructed by using the default constructor, the PigTalk is
initialized by using the String “Oink!” If the client provides a reference to a PigTalk, a
second constructor builds the LittlePig and stuffs the reference into the LittlePig’s
field.

The clone() method is short and sweet: it uses the one-argument constructor to return
a new LittlePig that has the same PigTalk reference in its field thePigTalk as the
original.

Did you catch that? Not a reference to a PigTalk with the same value, but a reference
to the same PigTalk. That’s the essence of a shallow copy, and that’s what causes the
pig clone to begin sounding like a dog.

The setTalk() method alters the value of a LittlePig’s PigTalk object. When a
shallow copy is used to clone a LittlePig, the original and the clone share a reference
to a single PigTalk object. When the original LittlePig receives a message that
causes it to change the value of the PigTalk object, the original and the clone are
affected because they “share” references to a single PigTalk. Figure 17.3 illustrates this
situation.

 Figure 17.3 Shallow versus deep copy

 To see how BigPig performs its deep copy, look at Listing 17.3.

 Listing 17.3 The BigPig Class

 - 519 -

 class BigPig extends Canvas
 {
 public Object clone()
 {
 return new BigPig(thePigTalk);
 }

 public void setTalk(String text)
 {
 thePigTalk.setTalk(text);
 repaint();
 }

 public void speak()
 {
 repaint();
 }

 public void paint(Graphics g)
 {
 g.drawString(thePigTalk.getTalk(), 10, 10);
 }

 public BigPig()
 {
 thePigTalk = new PigTalk(“O-o-o-o-oink!”);
 }

 public BigPig(PigTalk talk)
 {
 thePigTalk = new PigTalk(talk.getTalk());
 }
 private PigTalk thePigTalk;
 }

The only difference between BigPigs and LittlePigs (other than the fact that
BigPigs are initialized by their default constructor to say “O-o-o-o-oink!” rather than
“Oink!”) is their implementation of the clone() method. If you examine the methods,
you’ll find them identical. But each calls the one-argument constructor of its class, and
these constructors are slightly different. Look at the one-argument constructor of
BigPig, which, as you recall, performs a deep copy. Rather than return a clone sharing
a reference to the same PigTalk as the original, BigPig’s one-argument constructor
creates a new PigTalk. The original and the clone have their own PigTalk, so
changes to the one don’t affect the other. Figure 17.3 shows how the deep copy works.

To see the rest of the applet, look at Listing 17.4, the PigTalk class. You shouldn’t find
anything surprising there. The class simply encapsulates a string of text, providing
accessor and mutator methods for use by clients LittlePigs and BigPigs.

 Listing 17.4 The PigTalk Class

 class PigTalk
 {
 public String getTalk()

 - 520 -

 {
 return theText;
 }

 public void setTalk(String text)
 {
 theText = text;
 }

 public PigTalk(String text)
 {
 setTalk(text);
 }

 private String theText;
 }

When you create a new cloneable class, you’re responsible for implementing the
clone() method. You can implement a shallow copy, which is quick and efficient, or a
deep copy, which avoids commingling of data. To implement a deep copy, you must
create new instances of each field that has an object type. Of course, if any of these
objects contain other objects, you’ll need to copy them as well, unless you’re willing to
have them co-mingled. This process should continue to the children of the original object,
its grandchildren, and so on (that is, recursively). You can stop, of course, when you
reach the root class Object or when you reach an object that has no fields with object
types. Don’t forget, however, to handle the “siblings” of such an object—they may have
any number of generations of descendants that must be cloned.

“When you create a new cloneable class, you’re responsible for implementing the
clone() method. You can implement a shallow copy, which is quick and efficient,
or a deep copy, which avoids commingling of data.”

 COLLECTION OPERATIONS AND ERRORS

 In addition to the clone() method, you may want your objects to override these three

methods:

 • equals()

 • hashCode()

 • toString()

If you don’t understand what the equals() method is used for and why you may need to
override it, or what the toString() method is about, review Chapter 3, “Teach Yourself
Java in 21 Minutes.” The hashCode() method is less often used; you’ll see why it can
be important in the section on Maps.

Keep in mind that JGL’s collection classes store Objects. You can subclass a collection
so that it accepts only objects of a specific type—Integers, for example. But there’s no
way that the Java compiler can flag source code statements that attempt to load a Float

 - 521 -

into your Integer-only collection. Your subclass can check the type of each element as
it’s inserted, but this will occur at runtime, not at compile time. This is one weakness of
Java in comparison to C++, which comes equipped with templates that can provide
compile-time checking of element types.

If you add a type-specific collection, your collection should throw an Exception of the
proper type when its type is violated. Table 17.2 shows the Exceptions thrown by JGL.
The IllegalArgumentException is the Exception your class should throw. Every
Exception thrown by JGL is a subclass of RuntimeException, a Java class that,
along with Error, represents unchecked exceptions. All that really means is that you
aren’t required to add a try-catch or throws to methods that may throw one. (If you’re
interested in the design rationale behind checked and unchecked exceptions, be sure to
read Appendix B in James Gosling’s book, The Java Programming Language, where he
strongly argues against allowing unchecked exceptions in your code.)

 Table 17.2 Jgl Exceptions

 Exception

Meaning

 InvalidOperationException

An invalid operation was attempted.

 IllegalArgumentException

An illegal argument was supplied to a method.

 IndexOutOfBoundsException

An illegal index was supplied to an operation.

 NullPointerException

An attempt was made to add a null key or value.

 Sequences: BETTER Vectors

In the same way that Java’s Vectors improve on arrays, JGL’s Sequences improve on
Java’s Vectors. Like a Vector, a Sequence is a collection whose elements are
accessed by using an index and which automatically expands to make room for new
elements. JGL includes five different kinds of Sequences:

 • Arrays, the plain vanilla variety of Sequence

 • Deques, a variety of Sequence optimized for fast insertion at the beginning or end

 • SLists, a variety of Sequence optimized for even faster insertion at the beginning or

end than a Deque, but which provides slower traversal

 • DLists, a variety of Sequences optimized for fast insertion at any point, but which

provides slow traversal

 • Array Adapters, a variety of Sequence that makes it possible to use JGL’s

Container methods on arrays of Java primitives or objects and on Java Vectors

 Figure 17.4 shows JGL’s Sequence classes and their relationships. All of them support

the methods shown in Table 17.3.

 - 522 -

 Figure 17.4 JGL’s Sequence classes

 Table 17.3 The Jgl Sequence Interface

 Method

Function

 at()

Returns the item at a specified index

 back()

Returns the last item

 contains()

Returns true if a particular element is present

 count()

Counts the number of matching elements

 front()

Returns the first item

 indexOf()

Returns the index of a particular element

 remove()

Removes a particular value

 replace()

Replaces one value with another

 popBack()

Removes and returns the item at the end

 popFront()

Removes and returns the item at the beginning

 pushBack()

Inserts an item at the end

 pushFront()

Inserts an item at the beginning

 put()

Replaces the item at a specified index

 Creating a Sequence is simple. For example, to create an Array, you can write:

 Array theArray = new Array();

 - 523 -

JGL’s array adapters make it easy for you to work with arrays of Java primitives or
objects, or Java Vectors. When you read adapter, you may think of the Adapter design
pattern mentioned in Chapter 11, “Patterns: Proven Designs.” However, JGL’s array
adapters really work like the wrappers of the Decorator design pattern. You use a
wrapper to add Sequence behavior to a Java array or Vector. For example, to work
with an array of ints by using the Sequence methods, you can write:

 int [] theInts = { -1, 0, 1, 2, 3, 4 };
 IntArray theIntArray = new IntArray(theInts);

Table 17.4 gives the name of the JGL array adapter for each type of Java array. In
addition to the wrappers shown in Table 17.4, you can use the VectorArray class to
add Sequence behavior to a Java Vector.

 Table 17.4 Array Adapter Classes

 Java Type

Adapter Class

Element Type

 Boolean []

BooleanArray

Boolean

 Byte []

ByteArray

Integer

 Char []

CharArray

Character

 Double []

DoubleArray

Double

 Float []

FloatArray

Float

 Int []

IntArray

Integer

 Long []

LongArray

Long

 Object []

ObjectArray

Not applicable

 Short []

ShortArray

Integer

Just as JGL’s Sequences improve on Java’s Vectors, JGL’s Maps improve on
Java’s Hashtables. Maps allow you to store key-value pairs and rapidly retrieve
the value associated with a key.”

 Maps: BETTER HASHTABLES

 Just as JGL’s Sequences improve on Java’s Vectors, JGL’s Maps improve on Java’s

 - 524 -

Hashtables. Maps allow you to store key-value pairs and rapidly retrieve the value
associated with a key. JGL’s Maps include the following:

 • HashMap, which performs better than Java’s Hashtables

 • OrderedMap, a variety of Map that allows you to retrieve its elements in sequence

 • HashMultiMap, a variety of HashMap that allows you to put() multiple key-value

pairs having the same key value

 • OrderedMultiMap, a variety of OrderedMap that allows you to put()multiple key-

value pairs having the same key value

 Figure 17.5 shows JGL’s Map classes and their relationships. Maps support the methods

shown in Table 17.5.

 Figure 17.5 The JGL Map methods

 Table 17.5 The Jgl Map Methods

 Method

Function

 add()

If the key doesn’t exist or duplicates are allowed, associate the
value with the key and return null; otherwise, don’t modify the
map and return the current value associated with the key.

 elements/keys()

Returns a JDK Enumeration over the container’s
values/keys.

 get()

Returns the first value associated with a particular key.

 put()

If the key doesn’t exist, associate the value with the key and
return null; otherwise, replace the first value associated with
the key and return the old value.

Removes all the key-value pairs with a particular key.

 - 525 -

 remove()

You never directly instantiate a HashMultiMap or OrderedMultiMap. If you provide
the argument true to a HashMap or OrderedMap constructor, JGL will construct a
HashMultiMap or OrderedMultiMap, as appropriate:

 HashMap DupsNo = new HashMap();
 HashMap DupsOK = new HashMap(true);

As you may recall, this is an application of the Factory Method design pattern. Notice that
the get() method always returns the first key-value pair, if any, having the specified key
value. You can put() multiple key-value pairs with the same key value to a
HashMultiMap or a OrderedMultiMap, but only the most recently put() value is
accessible. Notice that the remove() method removes all key-value pairs with a given
key value.

A peculiarity of the OrderedMap is that it uses the hashCode() method, not the key
value, to order stored elements. If you think about it, this makes sense. OrderedMap
needs some way of knowing whether one element is greater than, less than, or equal to
another. For some types of elements—Strings and Integers, for example—the
desired behavior is intuitively obvious. But how should OrderedMap compare two
instances of your Wonk class?

The answer is that you must override the default implementation of the
Object.hashCode() method so that the values returned produce the ordering you
desire. Neglecting this step is one of the most common errors in using Maps. The
HashTest class, shown in Listing 17.5, demonstrates what happens when you fail to
override the method. It also demonstrates some interesting behavior of the default
implementation of Object.equals().

 Listing 17.5 The HashTest Class

 import java.applet.*;
 import java.awt.*;
 import COM.objectspace.jgl.*;
 import java.util.Enumeration;

 public class HashTest extends Applet
 {
 TextArea [] theText = new TextArea[3];
 TextArea theCurrentText;
 String [] theType = { “Hash”, “Smart Hash”, “Genius Hash” };

 public void init()
 {
 setLayout(new GridLayout(1, 3));
 setFont(new Font(“Monospaced”, Font.PLAIN, 10));

 int n = 0;
 for (int i = HashFactory.HASH; i <= HashFactory.GENIUS_HASH;
 i++)

 {
 theText[n] = new TextArea();

 - 526 -

 add(theText[n]);
 theCurrentText = theText[n];
 writeText(theType[n]);
 writeText(“”);
 n++;

 Hash h1 = HashFactory.createHash(i, 2);
 Hash h2 = HashFactory.createHash(i, 1);
 Hash h3 = HashFactory.createHash(i, 1);

 writeText(“Element values and hashcodes”);
 writeText(“”);
 writeText(“h1: “ + h1);
 writeText(“h2: “ + h2);
 writeText(“h3: “ + h3);
 writeText(“”);
 writeText(“”);

 writeText(“Equality and identity:”);
 writeText(“”);
 if (h3.equals(h2))
 writeText(“h3.equals(h2)”);
 else
 writeText(“!h3.equals(h2)”);
 if (h3.hashCode() == h2.hashCode())
 {
 writeText(“h3.hashCode() == “);
 writeText(“ h2.hashCode()”);
 }
 else
 {
 writeText(“h3.hashCode() != “);
 writeText(“ h2.hashCode()”);
 }
 writeText(“”);
 writeText(“”);

 COM.objectspace.jgl.OrderedMap map =
 new COM.objectspace.jgl.OrderedMap();

 map.put(h1, “1”);
 map.put(h2, “2”);
 map.put(h3, “3”);

 writeText(“Number of entries: “ + map.size());
 writeText(“”);
 Enumeration e = map.keys();
 while (e.hasMoreElements())
 {
 writeText(e.nextElement().toString());
 }
 writeText(“”);

 - 527 -

 writeText(“”);
 }
 }

 public void writeText(String text)
 {
 theCurrentText.append(text);
 theCurrentText.append(“\n”);
 }
 }

“The default implementation of equals() works like the == operator: It returns
true if two references refer to the same object (as determined by their hash codes)
and false otherwise.”

HashTest uses a factory method, HashFactory.createHash(), to create three
Hash objects and puts them to an OrderedMap. It uses a loop to perform this
experiment three times, once for each of three varieties of Hash object. You can see its
output in Figure 17.6.

 Figure 17.6 Output of the HashTest applet

The three varieties of Hash are Hash, SmartHash, and GeniusHash. As you can see,
applying the equals() method to two Hashes with the same contents doesn’t
necessarily return true. Also, neither Hash nor SmartHash is properly ordered by the
OrderedMap; only the GeniusHash is properly treated.

To see what went wrong and what went right, begin by looking at Listing 17.6, the Hash
class. Hash is the base class for SmartHash and GeniusHash. It provides a constructor
and a toString() accessor; its state is represented by an Integer. From the Object
class, it inherits default implementations of equals() and hashCode(). The default
implementation of hashCode() uses an object’s reference as its result. The default
implementation of equals() works like the == operator: It returns true if two references
refer to the same object (as determined by their hash codes) and false otherwise. That’s
why the Hash object misbehaves inside HashTest. Even if two Hashes have the same
value, they’re considered to be unequal.

 Listing 17.6 The Hash Class

 - 528 -

 class Hash
 {
 // inherits equals() from Object

 // inherits hashCode() from Object

 public String toString()
 {
 return “Value=” + theInteger + “ Hash Code=” + hashCode();
 }

 public Hash(int n)
 {
 theInteger = new Integer(n);
 }

 public Integer theInteger;
 }

To improve on the behavior of the Hash class, the SmartHash class (shown in Listing
17.7) provides an improved implementation of the equals() method. The improved
method looks at the state of the Hash classes and returns true if both have the same
state. They don’t need to be the same object, as long as they have the same value.

 Listing 17.7 The SmartHash Class

 class SmartHash extends Hash
 {
 // inherits hashCode() from Object

 public boolean equals(Object h)
 {
 if (! (h instanceof Hash)) return false;
 return theInteger.intValue() == ((Hash) h).
 theInteger.intValue();

 }

 public SmartHash(int n)
 {
 super(n);
 }
 }

Notice in Figure 17.6 that the two SmartHashes, like the Hashes, are improperly
ordered by the OrderedMap. To fix this flaw, the GeniusHash class implements an
improved hashCode() method, as shown in Listing 17.8.

 Listing 17.8 The GeniusHash Class

 class GeniusHash extends SmartHash
 {
 // inherits equals() from SmartHash

 - 529 -

 public int hashCode()
 {
 return theInteger.hashCode();
 }

 public GeniusHash(int n)
 {
 super(n);
 }
 }

To make things simple for itself, GeniusHash.hashCode() simply sends the
hashCode() message to its Integer field and returns the result to the caller. The
implementation of hashCode() provided by the Integer class returns the value ofthe
encapsulated int as its result. Therefore, two GeniusHashes that hold the same value
not only test as equal (using the equals() method), they also have hash codes that
reflect their proper relative places in a numerical ordering. Look back at Figure 17.6 to
verify that GeniusHash works as advertised.

To complete the picture, Listing 17.9 shows the HashFactory class. Recall that its
createHash() method was used by HashTest to create a Hash, SmartHash, or
GeniusHash, depending on the value of the argument supplied.

 Listing 17.9 The HashFactory Class

 class HashFactory
 {
 public static Hash createHash(int type, int value)
 {
 Hash result = null;
 switch (type)
 {
 case HASH:
 result = new Hash(value);
 break;
 case SMART_HASH:
 result = new SmartHash(value);
 break;
 case GENIUS_HASH:
 result = new GeniusHash(value);
 break;
 }
 return result;
 }

 public static final int HASH = 1;
 public static final int SMART_HASH = 2;
 public static final int GENIUS_HASH = 3;
 }

 Sets: WHAT THE JDK NEVER GAVE YOU

 - 530 -

Have you ever wanted to find out what elements are in one collection but not in another?
Or have you ever wanted to combine the elements of two containers, discarding any
duplicates? Nothing in the JDK helps you perform such common operations, but the JGL
Set interface, and its implementing classes HashSet and OrderedSet, are exactly what
you need.

 Figure 17.7 shows the Set classes and the relationships between them. Table 17.6

shows the methods of the Set interface.

 Table 17.6 The Jgl Set Interface

 Method

Function

 put()

Replaces the first matching object or adds it if none exists

 get()

Returns the first matching object

 count()

Returns the number of key/value pairs that match a particular key

 remove()

Removes all matching objects

 Figure 17.7 The JGL Set classes

You may wonder why you don’t see methods implementing set intersection, set union,
and so forth in the table. That’s because they’re implemented within a special algorithm
class named SetOperations. Algorithms are the subject of an upcoming section.

 Queues AND Stacks: SPECIALIZED COLLECTIONS

The Stack, Queue, and PriorityQueue classes add push() and pop() methods to
the methods of the Container interface. Stack resembles Java’s java.util.Stack
but has superior performance. It’s a last-in, first-out (LIFO) collection. The similar Queue
is a first-in, first-out (FIFO) collection and works the way lines at the grocery market work:

 - 531 -

the customer first in line is the one served first. The PriorityQueue extends the Queue
by allowing each element to be tagged with a priority. Elements with a high priority are
popped off the queue ahead of other elements, regardless of the order in which they
arrived. Figure 17.8 shows these special classes.

 Figure 17.8 The JGL Stack, Queue, and PriorityQueue classes

 Listing 17.10 shows the PriorityTest class, a simple demonstration of the
PriorityQueue. PriorityTest does the following:

 1. Creates an int array.

 2. Creates a PriorityQueue.

 3. Pushes the elements of the int array onto the PriorityQueue, one by one. The

hash value of each element becomes its priority.

 4. Pops the elements off the PriorityQueue and prints them.

 Listing 17.10 The PriorityTest Class

 import java.applet.*;
 import java.awt.*;
 import COM.objectspace.jgl.*;

 public class PriorityTest extends Applet
 {
 TextArea theInputText = new TextArea();
 TextArea theOutputText = new TextArea();

 public void init()
 {
 setLayout(new GridLayout(1, 2));
 add(theInputText);
 add(theOutputText);

 int [] inputs = { 1, 2, 3, 3, 1, 2 };

 writeText(theInputText, “Input values:”);
 writeText(theInputText, “”);
 for (int i = 0; i < inputs.length; i++)

 - 532 -

 {
 writeText(theInputText, “” + inputs[i]);
 }

 PriorityQueue q = new PriorityQueue();

 for (int i = 0; i < inputs.length; i++)
 {
 q.push(new Integer(inputs[i]));
 }

 writeText(theOutputText, “Output values:”);
 writeText(theOutputText, “”);

 while (! q.isEmpty())
 {
 writeText(theOutputText, q.pop().toString());
 }
 }

 public void writeText(TextArea area, String text)
 {
 area.append(text);
 area.append(System.getProperty(“line.separator”));
 }
 }

 Figure 17.9 shows the output of the applet. Notice that the elements are printed in

numerical order, according to their priority.

 Figure 17.9 Output of the PriorityTest applet

 JGL includes a rich repertoire of more than 40 algorithms, implemented as a set of

classes.”

 Algorithms: Who Has the Loops?

 - 533 -

JGL includes a rich repertoire of more than 40 algorithms, implemented as a set of
classes. You might wonder why the algorithms are separately implemented from the data
on which they operate, recalling the warnings against “spectral classes” earlier in the
book. You might feel that JGL’s design isn’t entirely in keeping with the object-oriented
notion of encapsulation. In JGL, the Sort class knows how to sort an Array, but an
Array doesn’t know how to sort itself. Doesn’t this seem kind of backward?

Well, you’re not alone in noticing this. Noted computer scientist Tim Budd remarked on
this aspect of the C++ Standard Template Library when he wrote that it seems almost
“anti-object oriented.” Budd doesn’t necessarily see that as a bad thing, however. And if
you think about the alternative—requiring every container class to re-implement generic
operations, like sorting and searching—you’ll realize that the approach taken by the JGL
(and STL) designers makes a whole lot of sense. Rather than think about generic
algorithms and generic containers as a compromise to object-oriented principles,
recognize them as a very specific and particular exception.

 Table 17.7 shows various JGL algorithm classes and the methods they implement. Most

of the methods are static and can be called without creating an object.

 Table 17.7 The Jgl Algorithms

 Class

Algorithms

 Applying

forEach(), inject()

 Comparing

equal(), lexicographicalCompare(), median(),
mismatch()

 Copying

copy(), copyBackward()

 Counting

accumulate(), adjacentDifference(), count(),
countIf()

 Filling

fill(), fillN()

 Filtering

reject(), select(), unique(), uniqueCopy()

 Finding

adjacentFind(), detect(), every(), find(),
findIf(), some()

 Heap

makeHeap(), popHeap(), pushHeap(), sortHeap()

 MinMax

minElement(), maxElement()

 Permuting

nextPermutation(), prevPermutation()

 Printing

print(), println(), toString()

 Removing

remove(), removeCopy(), removeCopyIf(),
removeIf()

 Replacing

replace(), replaceCopy(), replaceIf()

 - 534 -

 Reversing

reverse(), reverseCopy()

 Rotating

rotate(), rotateCopy()

 SetOperations

includes(), setDifference(), setIntersection(),
setSymmetricDifference(), setUnion()

 Shuffling

randomShuffle()

 Sorting

sort()

 Swapping

iterSwap(), swapRanges()

 Transforming

collect(), transform()

The JGL’s algorithm classes are useful and powerful. They let you accomplish—with a
single message—operations that would otherwise require loops or even nested loops.
Using these algorithms can make your loopy programs much more straightforward. As a
demonstration, consider Listing 17.11, which shows the ApplyTest class.

 Listing 17.11 The ApplyTest Class

 import java.applet.*;
 import java.awt.*;
 import COM.objectspace.jgl.*;

 public class ApplyTest extends Applet
 {
 TextArea theInputText = new TextArea();
 TextArea theOutputText = new TextArea();

 public void init()
 {
 setLayout(new GridLayout(2, 1));
 add(theInputText);
 add(theOutputText);

 Array a = new Array();
 a.add(new Employee(“Adam”, 20000.0f));
 a.add(new Employee(“Betty”, 30000.0f));
 a.add(new Employee(“Charles”, 25000.0f));

 writeText(theInputText, “Input values:”);
 writeText(theInputText, a.toString());

 Applying.forEach(a, new SalaryRaise(0.05f));
 writeText(theOutputText, “Output values:”);
 writeText(theOutputText, a.toString());
 }

 - 535 -

 public void writeText(TextArea area, String text)
 {
 area.append(text);
 area.append(“\n”);
 }
 }

This applet creates an Array that holds Employee objects. Each Employee object
includes a name and a salary. By sending the forEach() message to the Applying
class and passing the Array and a function object (you’ll learn about those in just a
moment), the salary of each employee is updated without so much as a while, do-while,
or for. Figure 17.10 shows the output of the applet.

 Figure 17.10 Output of the ApplyTest applet

Listing 17.12 shows the Employee class, which encapsulates a name and salary along
with some accessor and mutator methods. The key method is the stepSalary()
mutator, which is used to give an employee a raise (or possibly a cut) in pay.

 Listing 17.12 The Employee Class

 class Employee
 {
 public String getName()
 {
 return theName;
 }

 public float getSalary()
 {
 return theSalary;
 }

 public void setSalary(float salary)
 {
 theSalary = salary;
 }

 public void stepSalary(float raise)
 {
 setSalary((1.0f + raise) * getSalary());
 }

 - 536 -

 public String toString()
 {
 return “Name=” + theName + “ Salary=” + theSalary;
 }

 public Employee(String name, float salary)
 {
 theName = name;
 setSalary(salary);
 }

 private String theName;
 private float theSalary;
 }

Listing 17.13 shows the function object used in ApplyTest. Function objects are a
variation on the Command design pattern. They encapsulate an operation but don’t
encapsulate a specific target for the operation. The SalaryRaise class implements the
UnaryFunction interface. JGL also provides a similar BinaryFunction interface. The
built-in function classes provided by JGL are the topic of the next section.

 Listing 17.13 The SalaryRaise Class

 class SalaryRaise implements UnaryFunction
 {
 public Object execute(Object o)
 {
 if (! (o instanceof Employee))
 throw new IllegalArgumentException(“That’s no employee!”);
 Employee e = (Employee) o;
 e.stepSalary(theRaise);
 return e;
 }

 public SalaryRaise(float raise)
 {
 theRaise = raise;
 }

 private float theRaise;
 }

 "Just as objects of the Command design pattern represent frozen (that is, encapsulated)

commands, function objects represent frozen functions.”

 Function Objects: Frozen Algorithms

Just as objects of the Command design pattern represent frozen (that is, encapsulated)
commands, function objects represent frozen functions. By freezing a function as a
function object, you can send it to objects as an argument. Thus, if you write a method—
say, animate()—that takes a function object as a parameter, you can actually pass the

 - 537 -

method used to perform the animation operations as an argument. This is particularly
useful with algorithmic methods like apply(), which can be used to apply the frozen
function to each element of a collection.

JGL includes more than 40 predicate functions (that is, functions that return true or
false) and almost 20 other functions. You also can define your own function objects by
subclassing UnaryFunction or BinaryFunction. JGL’s predicate functions are used
mainly to modify the way an algorithm works. Not every algorithm accepts predicates.
Consult the JGL documentation to determine what functions are available and whether
an algorithm you’re interested in can use predicate functions.

 As an example of function use, Listing 17.14 shows the TransformTest class.

 Listing 17.14 The TransformTest Class

 import java.applet.*;
 import java.awt.*;
 import COM.objectspace.jgl.*;

 public class TransformTest extends Applet
 {
 TextArea theText = new TextArea();

 public void init()
 {
 setLayout(new BorderLayout());
 add(theText, “Center”);

 Array saturday = new Array();
 saturday.add(new Integer(100));
 saturday.add(new Integer(150));

 writeText(“Sales:”);
 writeText(“”);
 writeText(saturday.toString());

 Array sunday = new Array();
 sunday.add(new Integer(25));
 sunday.add(new Integer(35));
 writeText(sunday.toString());

 Array total = new Array();

 Transforming.transform(
 saturday,
 sunday,
 total,
 new PlusNumber());

 writeText(“”);
 writeText(“”);
 writeText(“Summary:”);
 writeText(“”);
 writeText(“Product totals=” + total);

 - 538 -

 Integer grand = (Integer) Applying.inject(total, new
Integer(0),
 new PlusNumber());

 writeText(“Grand total=” + grand);
 }

 public void writeText(String text)
 {
 theText.append(text);
 //area.append(System.getProperty(“line.separator”));
 theText.append(“\n”);
 }
 }

The TransformTest class uses the Transforming.transform() method and the
PlusNumber() unary function to add weekend sales by product at the Bug Boutique. It
also uses the Applying.inject() method to determine the grand total sales of all
products over the weekend.

Saturday’s sales of 100 units of one product and 150 units of another are stored in one
Array. Sunday’s sales of 25 units of the first product and 35 units of the other are stored
in another Array. A third Array is used to hold the total sales by product, which the
transform() method computes. Notice that the program is loopless—iteration is
implicit in the methods invoked, not explicit in the client program.

The inject() method works somewhat unusually. The function specified as its third
argument is first applied to its second argument and the first element of the collection
give as its first argument. Here, the PlusNumber() method, which simply adds two
integers, is applied to 0 and the first element of the collection. The result, of course, is the
value of the first element of the collection.

What’s interesting is what comes next: the PlusNumber() method is now applied to the
current result and to the second element of the collection. The result is the sum of the
first and second elements of the collection. This process is then repeated until all
elements of the collection are processed. When the smoke clears, you’re left with the
sum of the elements of the collection. This probably seems roundabout; it does trade one
sort of complexity (the use of loops) for another sort of complexity (iterative application of
a function). If you’re more comfortable using loops, by all means do so. The object is to
write a clear, nearly bug-free program, not to use the latest technology. Figure 17.11
shows the output of the applet.

 Figure 17.11 Ouput of the TransformTest applet

 - 539 -

 Iterators: Progress and Regress

If you often find yourself running forward and backward and expect your programs to do
the same, you’ll greet JGL’s iterators with enthusiasm. Iterators are nothing more than
industrial-strength Enumerations. In fact, JGL’s iterators implement the Enumeration
interface. But, as any fan of TV infomercials will tell you, the phrase industrial-strength
makes all the difference in the world.

 JGL supports five different types of iterators, as shown in Table 17.8.

 Table 17.8 Jgl’s Iterator Interfaces

 Interface

Description

 InputIterator

Can read one item at a time, in a forward direction only

 OutputIterator

Can write one item at a time, in a forward direction only

 ForwardIterator

Combines characteristics of input and output iterators

 BidirectionalIterator

Like ForwardIterator, plus the capability to move backward

 RandomAccessIterator

Like BidirectionalIterator, plus the capability to jump by an
arbitrary distance

Table 17.9 shows the methods supported by the various iterators. Notice that, in contrast
to Enumerations, which provide only single-step forward movement, JGL’s iterators
provide multistep forward and backward movement. JGL also provides an
OutputIterator that you can use to put elements into a collection, and a
RandomAccessIterator that lets you retrieve elements by means of an index.

 Table 17.9 Jgl’s Iterator Methods

 Method

Function

 advance()

Advances by one element

 advance(int)

Advances by a specified number of elements

 atBegin()

Returns true if positioned at the first item of the
input stream

 atEnd()

Returns true if positioned after the last item in the
input stream

 - 540 -

 clone()

Returns a clone of the iterator

 distance(ForwardIterator)

Returns the distance from one iterator to another
(ForwardIterators only)

 get()

Returns the object at the current position

 index()

Returns the index of the current position
(RandomAccessIterators only)

 less(RandomAccessIterator)

Returns true if the iterator is before a specified
iterator (RandomAccessIterators only)

 put(Object)

Sets the object at the current position to a specified
value (OutputIterators only)

 retreat()

Retreats by one element
(BidirectionalIterators only)

 retreat(int)

Retreats by a specified number of elements
(BidirectionalIterators only)

Most JGL collections support the most general iterator interface—the
RandomAccessIterator. Table 17.10 shows the concrete iterator class returned by
each collection class and the iterator interface that the returned class implements.

 Table 17.10 Jgl’s Container-Iterator Relationships

 Container

Associated Iterator

Iterator Interface

 Array

ArrayIterator

RandomAccessIterator

 BooleanArray

BooleanIterator

RandomAccessIterator

 ByteArray

ByteIterator

RandomAccessIterator

 CharArray

CharIterator

RandomAccessIterator

 Deque

DequeIterator

RandomAccessIterator

 DoubleArray

DoubleIterator

RandomAccessIterator

 FloatArray

FloatIterator

RandomAccessIterator

 IntArray

IntIterator

RandomAccessIterator

 DList

DListIterator

BidirectionalIterator

 - 541 -

 HashMap

HashMapIterator

ForwardIterator

 ObjectArray

ObjectIterator

RandomAccessIterator

 OrderedMap

OrderedMapIterator

BidirectionalIterator

 OrderedSet

OrderedSetIterator

BidirectionalIterator

 PriorityQueue

ArrayIterator

RandomAccessIterator

 Queue

Same as underlying
sequence

Same as underlying sequence

 HashSet

HashSetIterator

ForwardIterator

 ShortArray

ShortIterator

RandomAccessIterator

 SList

SListIterator

ForwardIterator

 Stack

Same as underlying
sequence

Same as underlying sequence

 VectorArray

VectorIterator

RandomAccessIterator

"Although the designers of JGL have made your job much easier by implementing
common data structures, chances are that someday you’ll have to implement a class
library of your own.”

Design Hints

Although the designers of JGL have made your job much easier by implementing
common data structures, chances are that someday you’ll have to implement a class
library of your own. You may never have to write your own Vector class, but you may
find yourself writing a framework for banking, real estate, or aardvark farming. When you
do, you’ll want to keep some things in mind:

•

Use consistent names. JGL classes and interfaces follow a consistent naming
pattern. For example, the names of each iterator end in Iterator, making it much
easier for you to learn where things are and how things work. You should follow this
example in your library.

•

Use clear, reasonable names. The designers of JGL weren’t afraid to use long
names when doing so contributed to clarity. They could have given all the iterators
names ending in It. But by giving each iterator a name that tells you what it is, they
made it easy for you to extrapolate from what you know. When you design your library,
you should do likewise.

•

Use consistent mechanisms. Throughout JGL, you use the get() method to
retrieve an element of a collection. You use the elements() method to get an
Enumeration over the elements of a collection and so forth. Things work consistently
throughout the library. This is due, in large part, to the use of interfaces, which impose

 - 542 -

a common mechanism on classes that implement them. You should use interfaces to
establish consistent mechanisms in any library you design.

•

Use consistent error handling. JGL defines an error policy consisting of a set of
Exceptions and the circumstances under which they’re thrown. Every method adheres
to the policy, so you know what you’ll get, even when things go wrong. You should
emulate this example in your own libraries.

 Summary

Software reuse can increase software development productivity and software quality.
JGL is a free Java library that provides many useful collection classes, along with
algorithms and functions that operate on them. JGL’s main collection types include
Sequences, Maps, Sets, Queues and Stacks. Sequences resemble Java’s arrays
and Vectors. Maps resemble Hashtables. Sets make it easy to perform common set
operations like intersection and union. Queues are like Java’s Stacks, except that they
are first-in, first-out (FIFO) rather than last-in, first-out (LIFO).

Shallow copying results in clone objects that share references to underlying fields. Deep
copying instantiates new objects so that the clone and the original reference distinct
fields.

JGL’s OrderedMap classes depend on an object’s hash code to determine the proper
ordering of elements. You must override the Object.hashCode() method so that it
returns a value consistent with the desired ordering of your collection.

Algorithms let you iterate over the elements of a container without using explicit loops.
This can make your programs more or less clear, depending on your point of view.
Function objects encapsulate an algorithm in a manner similar to that of the Command
design pattern.

 JGL provides several powerful iterators that extend the capabilities of the JDK
Enumeration class.

 Questions

 For multiple-choice items, indicate all correct responses.

 1. The root interface implemented by JGL’s collections isCollection

 b. Container

 c. Enumeration

 d. Vector

 2. A __________ copy results in shared references, but a __________ copy instantiates

new objects so that there are no shared references.

 3. The methods required by the Cloneable interface include

 a. clone()

 b. copy()

 c. deepCopy()

 - 543 -

 d. none of the above

 4. JGL’s Sequence classes resemble the JDK class

 a. Array

 b. Enumeration

 c. Hashtable

 d. Vector

 5. An OrderedMap orders its elements by the return value of the __________ method.

 6. The equals() method

 a. Is defined in the Object class

 b. Shouldn’t be used to compare objects

 c. Tests whether two objects have the same state

 d. Tests whether two references refer to the same object

 7. The set operation methods that manipulate Set objects are defined in the class

 a. Algorithm

 b BinaryFunction

 c Set

 d SetOperations

 8 The Stack, Queue, and PriorityQueue classes add the __________ and

__________ methods to those defined by the Container interface.

 9 JGL’s __________ are closely related to the JDK’s Enumerations.

 10. An important principle of library design is to use __________ names, mechanisms, and

error handling.

 Exercises

 1. Write a JGL class that can read lines of text from a disk file, alphabetize the lines, and

write the result to a disk file.

2.

By using JGL classes, write a simple employee database browser. The browser
should let you traverse forward and backward through a collection of employee
elements, search for employee elements by name or employee number, add new
employees, and change existing employees. Employees should be characterized by
name, address, telephone number, email, and salary. Your program should be able to
save the collection to a disk file, restore the collection from a disk file, and print the

 - 544 -

collection.

3.

Write a program that tests JGL classes, comparing their performance to that of similar
JDK classes. Your program should test various operations, including gets, puts, and
traversals. Use the Factory Method design pattern to parameterize the choice of JGL
and JDK classes.

4.

Write a class that uses a JGL collection of your choice to store serialized objects,
represented by byte arrays. Include some methods that let a client serialize and store
an object in a single call, making the class easy to use. Your class should be capable of
serializing itself, saving its elements to a disk file.

To Learn More

 The following books will help you learn more about designing with class libraries:

•

Horstmann, Cay. Practical Object-Oriented Development in C++ and Java. New York:
John Wiley & Sons, 1997. This book gives some good advice on designing your own
class libraries in C++ and Java. Most of the material deals with C++, but the book
includes many useful hints and tips for designing Java class libraries.

•

Carrol, Martin, and Margaret A. Ellis. Designing and Coding Reusable C++. Reading,
Massachusetts: Addison-Wesley, 1995. This book deals exclusively with writing
reusable C++ libraries, but many of the principles apply equally well to Java libraries.

•

Budd, Timothy. Data Structures in C++ Using the Standard Template Library. Reading
Massachusetts: Addison-Wesley, 1998. Although there are no specific books on using
the Java Generic Libraries, several books will help you use the C++ Standard
Template Libraries, on which JGL is modeled. One of the best is this introductory
computer science text by Tim Budd.

For an introduction to the general subject of data structures in Java, several texts have
recently appeared. Although these books don’t deal with container class libraries
specifically, the will help you understand how and where to use the fundamental data
structures that such libraries contain:

 • Lafore, Robert. Data Structures In Java. Corte Madera, California: Waite Group Press,

1998.

 • Standish, Thomas. Data Structures in Java. Reading, Massachusetts: Addison-

Wesley, 1997.

 • Weiss, Mark Allen. Data Structures and Problem Solving Using Java. Reading,

Massachusetts: Addison-Wesley, 1998.

The Weiss and Standish books are academic texts aimed at a sophomore-level computer
science data structures course, as is Budd’s book. By contrast, Lafore’s text is aimed at a
more general audience, suitable for programming professionals and self-study.

Chapter 18: Architectures: Design-in-the-
Huge

 Overview

What makes a good design? Well, that depends. Whether a design is good or not
depends a lot on whether it “fits” into the world around it. At the end of Michael Crichton’s
best-selling novel Jurassic Park, the recently revived inhabitants of the ancient world
found our modern version a very good fit indeed, as they began to eat their way across

 - 545 -

the jungles of Central America. Truly a frightening thought. But, think for a second about
a very different type of creature: the microbe. Although the threat of catching a common
cold pales when compared to being pursued by a Tyrannosaurus rex or a pride of
velociraptors, in many ways, the design of the microbe is better than that of the dinosaur.
The microbe has been able to change and adapt to its environment, but the dinosaur has
not. Like it or not, the flu that laid you up last winter is better adapted to the modern world
than is Tyrannosaurus rex.

In this chapter, you’ll study the design of a different type of dinosaur: information system
architectures. Architectures are to designs what dinosaurs are to lizards. They represent
the upper end in size and scope. Architectural design is sometimes referred to as
“design-in-the-huge.” Like the 80-foot long brachiosaurus plodding through Jurassic
marshes, architectures move relatively slowly. But, also like the brachiosaurus, they are
always in danger of extinction as rapid changes in the technological climate overwhelm
their capability to adapt.

 If you work with computer-based information systems, you know that you must keep up

your own skills as well, or likewise fall by the wayside. In this chapter, you will learn:

 • What the elements of an information system architecture are.

 • How changes in technology have caused major changes in information system

architectures.

 • How the invention of time sharing and the dumb terminal lead to the first era of

information systems: the traditional architecture.

 • How the proliferation of the PC led to systems built around a new architecture: file

server systems.

 • How the widespread acceptance of the relational database led to client/server

architectures.

 • How Java and the Web are leading the charge toward new types of systems: thin

clients and distributed architectures.

 • How to choose an information system architecture.

“An information system architecture is simply a design pattern that describes the way in
which the various application programs that your company uses are related to each
other.”

 Information System Architectures and Components

Information system (IS) architecture sounds like a very complex and esoteric subject. In
fact, an information system architecture is simply a design pattern that describes the way
in which the various application programs that your company uses are related to each
other. Your company might have a payroll system that runs on a mainframe computer
while word processing is done on PCs connected to a file server. Your sales and
inventory information might be stored in a relational database that you can query through
your PC, but which also provides the raw material for your executive reporting system.

The relationship between these various application programs—payroll, word processing,
sales, and inventory—is your IS architecture. Most of this book has focused on the
relationships between objects. This is different. The IS architecture is the highest, or most
general, level at which you’ll work as a designer. As you can see from Figure 18.1, when
you design an IS architecture, you fit applications together; when you design an

 - 546 -

application, you fit objects together.

 Figure 18.1 An information system architecture

 PHYSICAL COMPONENTS

When you learned to design objects, the pieces or components you had to work with
were attributes and methods. You arranged these components to create objects that
were robust and effective. When you design an IS architecture, there are also some basic
parts you focus on. The three main building blocks are:

•

Clients: These are devices, usually computers, that let people use your system. A
client usually provides the user with a keyboard and video display. Today, modern
clients will also normally provide a graphical user interface and a pointing device
(mouse). Tomorrow’s clients might give their users voice recognition, notepads, or
scanners.

•

Servers: These are the computers that provide services to the client devices. If you
have a local area network at work, you might have a server on which you can store
your files. Your company might use a database server to store transaction or sales
information. If you have a Web page, the HTML files are stored on a Web server.

•

The network: Clients and servers can’t work together unless they have some way to
communicate. The network is the hardware (network interface cards and cabling) and
software (network operating system) that puts clients in touch with servers. When a
client device wants something from a server, it sends its request over the network. The
server, which handles each request in turn, then sends the results back to the client
who made the request, via the network.

 LOGICAL COMPONENTS

As you’ll soon see, there are many possible ways you can arrange these three elements.
Some arrangements have been so widely used that they are recognized as design
patterns. However, in addition to arranging clients, servers, and networks in different
configurations—the physical design of your information system—designing an IS
architecture requires that you consider the logical structure of your system as well. To
design the logical structure, most applications require you to consider these three types
of processing:

•

User interface: Every system must have some method of getting input from the user
and presenting output to the user. This part of your logical design is sometimes called
the presentation component.

 - 547 -

•

Application logic: In an IS architecture, the application logic is simply “what the
program does.” If an application processes payroll, the application logic is the part of
the system that is concerned with processing the payroll correctly and accurately. The
application logic part of your logical design is sometimes called the business rules
component.

•

Data management: The data management component of your IS architecture is
concerned with storing information for later use and with retrieving that stored
information. When you design this part of your architecture you’ll make decisions
about databases, files, and the distribution and transmission of information.

In Chapter 4, “Encapsulation: Classes and Methods,” you saw that one of the marks of a
good object-oriented design is that it distributes the processing between different objects.
Rather than having one object that does all the work, you give each object its own little
piece of responsibility. When you design an IS architecture, you’ll face a similar set of
design decisions. You have three different physical components and three different
logical components; which component should do which portion of the processing, and in
what way?

Architectures differ in the way they allocate the required processing among clients and
servers. Some architectures place almost all the processing burden on a single server;
others place most of the burden on individual clients. Not only must you decide “who gets
to do what,” but you also must decide how it’s going to be done. Different architectures
use different technologies to provide the user interface, the application processing, and
the data storage component. Now let’s take a look at what your choices are.

 USER INTERFACE TECHNOLOGY

 Several technologies have been used to provide users with an interface (a user interface)

to computer applications.

 Dumb Terminals

A popular early technology that is still sometimes used today is the dumb terminal. Dumb
terminals usually consist of a video display, a keyboard, and some type of network or
serial connection to a server. You don’t have to (nor can you) program a dumb terminal.
An architecture that uses dumb terminals places all three logical components—interface,
logic, and storage—on the server. Dumb terminals fulfill the role of client in many
information systems, particularly large systems.

The chief virtue of the dumb terminal is its low cost and simplicity. Its greatest liability is
its lack of local processing power and its limited capability. Dumb terminals are equipped
with a keyboard, but most lack a pointing device. Dumb terminals can display text, but
many cannot display lines or graphics. Rapid changes in technology—the development of
inexpensive microprocessors and random access memory—have driven down the cost of
more capable clients, however, erasing much of the cost advantage that dumb terminals
once held.

 X-Terminals

One step up from the dumb terminal (in terms of capability) is the X-terminal. X-terminals
are designed to run the X Window graphical user interface, an interface system that
dominates the UNIX world.

Like a dumb terminal, the X-terminal is a specialized device rather than a general-
purpose computer. But, unlike the dumb terminal, the X-terminal provides an input
pointing device and a graphical video display. X-terminals span a wide range of prices.
Low-end models cost only several hundred dollars. High-end models with high-resolution
color displays can cost more than a well-equipped PC.

 - 548 -

Graphical user interfaces, like those provided by the X-terminal, are generally easier for
users to learn and use than text-based user interfaces based on dumb terminals. The
savings in training costs help offset the higher hardware cost of X-terminals or other
graphical user interfaces.

 Personal Computers

The dominant user interface technology today, in terms of popularity, is the IBM-
compatible personal computer (PC) equipped with Microsoft Windows. PCs are
everywhere. Like the X-terminal, a Windows PC is equipped with a pointing device and
always provides a graphical video display. Because a PC is a general-purpose computer,
you can use software to make it appear as a dumb terminal or as an X-terminal when
necessary. This provides your users with two capabilities: They can run general-purpose
application software, such as a spreadsheet program or a word processor, and still
access your company’s legacy IS applications (which expect users to connect via dumb
terminals), both using a single system.

Another advantage of using PCs as the user interface element of your architecture is that
many workers have PCs at home for personal use. They are familiar with the standard
ways to access Windows user interface elements and can run the same word processor,
for example, at home and at work. Even though an X-terminal can cost less, it can’t run
shrink-wrapped software that has been written for PCs. If you base the interface
component of your IS architecture on X-terminals, you might have to provide your
workers with PCs as well as X-terminals so that they can run the productivity applications
they’ll need to get their jobs done. Of course, if you use PC-based hardware, you could
provide your users with an X-terminal software emulator. Either way, though, an X-
terminal-based information system generally leads to higher desktop costs than the
Windows-based system. Of course, desktop costs are only one component of your
information systems architecture. You’ll have to weigh all the advantages and
disadvantages.

 The NC Solution

If you read the news, you can’t have missed all the hoopla over network computers
(NCs). A fourth alternative technology, the Java-enabled network computer, might
become the dominant user-interface solution of the next decade. Many people are betting
that this will come to pass.

Network computers stand somewhere between X-terminals and PCs in terms of
processing power. An X-terminal has more processing power than a dumb terminal, but
the only processing that the X-terminal does is to present the user interface. None of the
application logic—the real work of your system—can be carried out on the X-terminal;
that is still relegated to the server. Like the PC, the network computer is a general-
purpose processor. Unlike the PC, however, the NC is designed to be simple,
inexpensive, and trouble-free. If you’ve just spent the last week reinstalling Windows for
the umpteenth time, you might be asking, “Where do I sign up?”

Before you put a For Sale sign on your PC, you’ll want to ask what you give up by
implementing an NC solution. Like the dumb terminal and the X-terminal, NC machines
will not run the same desktop applications that users currently use. Because NC
machines usually don’t have a hard or floppy disk (one reason why they’re less
expensive) and because they won’t necessarily run the Windows operating system,
user’s can’t load Word, Excel, Lotus, or WordPerfect.

On a brighter note, network computers are designed to run Java software, and to run it
even better than a standard PC. As soon as Java-based desktop applications are widely
used and familiar to computer users, network computers might begin to displace
Windows-based PCs as the dominant user interface technology.

 - 549 -

 Table 18.1 summarizes user interface technologies.

 Table 18.1 User Interface Technologies

 Technology

Characteristics

 Dumb terminals

Low cost, keyboard input, text-based output

 X-terminals

Intermediate cost, keyboard and pointing device input,
graphical output, specialized software, limited popularity

 Windows-based PCs

High cost, keyboard and pointing device input, graphical
output, shrink-wrapped software

 Network computers

Intermediate cost, keyboard and pointing device input,
graphical output, shrink-wrap software promised

 APPLICATION TECHNOLOGY

In contrast to the whirlwind changes in user interface technology, technology for
application processing has been relatively stagnant. Many information systems in use
today were originally designed and implemented during the 1960s, using the COBOL
programming language.

 “In contrast to the whirlwind changes in user interface technology, technology for

application processing has been relatively stagnant.”

There have been many changes in programming languages and tools since then. These
new technologies—integrated development environments, application frameworks, rapid-
application development (RAD) environments, visual GUI builders—all help you to
develop and deploy applications much more quickly than you could using COBOL. But, in
terms of affecting the IS architecture—the distribution of application processing between
the client and server components of the design—little has changed. When they are
deployed, such systems seem no different to your user than those built using COBOL.
Unless your new application has a distinctive user interface or runs a little slower or
faster, your users won’t know anything has changed at all. Remember, to the user, the
user interface is the system.

Java and related technologies might change that. Java provides entirely new ways to
distribute the application processing between client and server components in your
design, as well as new ways to deploy applications. Using applets, applications, and
Java’s capabilities to distribute different parts of the same application remotely across the
network (using CORBA and RMI), you can create systems with much greater control over
which portions reside on client stations, and which portions reside on the server. You’ll
learn more about these options later in this chapter.

 DATA MANAGEMENT TECHNOLOGY

 - 550 -

When you consider the third element of your IS architecture, data storage, you’ll find two
main alternatives: files and databases. A system based on files uses your operating
system’s application programming interface (API) to store data in files that are specific to
your application. A system based on a database uses the Structured Query Language
(SQL) to communicate with a database server that takes care of the details of file
storage.

 File-Based Systems

Traditionally, information systems have relied on files to store persistent information. A
utility company might have a customer file and a billing file, for example. The application
that sends out utility bills might use both, whereas the sales reporting application might
need only the billing file.

Because files use simpler technology than databases, you might find designing and
implementing a file-based system easier than one using a database. However, there are
several reasons to consider long and hard before you commit to this decision. Although
simplicity—and occasionally, performance—are obvious attractions, the drawbacks of a
file-based system include the following:

•

Reduced functionality: A file-based system often provides less functionality than a
system that uses a database. Most operating systems provide only limited support for
file sharing. When information is going to be used throughout your company, such
issues as file locking, deadlock detection, and control over who is allowed access to
which information (data security), all must be addressed by your application rather
than by the underlying data storage system.

•

Reduced robustness: Operating system APIs do not generally address the need to
control the redundancy of data stored in files. This means that the same information
might be present several times in your files, often in slightly different forms. Such
uncontrolled redundancy can result in lost or inaccurate data—a mortal sin for an
information system.

•

Lack of scalability: File-based systems tend to be nonscalable; that is, unable to
support large-scale use. You can write a system that works perfectly for your
workgroup or office but fails to run correctly and efficiently when you try to deploy it
across your entire company or on different hardware. File-based systems also tend to
be inflexible, due to the limited support provided by the operating system API and the
lack of specialized data management tools.

 Database Systems

Although a system based on a database, like those you studied in Chapter 14,
“Designing Persistent Objects: Database Design and Implementation,” can be harder to
design and implement, you’ll find that a database management system (DBMS) gives you
the necessary tools that your operating system’s file API lacks. It’s generally easier for
you to control data redundancy and provide for application security and integrity using a
database than with files. As a result, systems based on a database tend to fare better
when moved to different hardware or deployed across the corporation than those based
on files.

Another major advantage of using database technology includes modern database
support for SQL. Although there are dialectical differences from vendor to vendor, SQL
has emerged as a popular universal language for database access. If you base your
design on SQL databases, therefore, your architecture will tend to be less idiosyncratic
than if you base it on files. The following are other advantages of using a SQL database
for the data management portion of your logical architecture:

 • SQL databases typically provide a plethora of useful tools and functions that can

 - 551 -

greatly increase the flexibility of a system.

•

SQL databases are capable of handling ad hoc requests for information. Using SQL,
you can formulate queries that you never considered when you were designing the
system. SQL enables you to retrieve your information in a timely manner, without
requiring special programming. Most file-based systems are not up to this challenge.

•

SQL databases support data independence, often entirely lacking in file-based
systems. Data independence means that the DBMS insulates your application
programs from changes to the structure of the data. For example, the simple
maintenance task of adding a new field to a file-based system can require extensive
reprogramming. If you’ve based your design on a database, however, your application
programs see only those table columns they use. Adding a new table column generally
does not affect existing programs; only those programs that use the new column must
be modified.

In principle, you could build this same functionality into your file-based system. However,
by the time you were finished you would have written the same kind of code that DBMS
vendors have already included in their products. This is generally too costly compared to
the relatively low cost of a DBMS. By building a system around a database, you gain
significant capability at low cost.

 Table 18.2 summarizes the differences between file-based systems and systems based

on a database.

 Table 18.2 Data Management Technologies

 Technology

Pros

Cons

 Files

Easy to design and
implement

Limited support for data sharing
Inflexible

Nonscalable

 Databases

Include useful data
management tools

Harder to design and implement

Support for SQL

Flexible

Support for ad hoc queries

Scalable

Data independence

 Designing IS Architectures

Every design activity that you’ve studied so far has notations and diagrams that help you
focus on relevant aspects of the design problem. Designing IS architectures is no
exception. You’ll find two types of diagrams particularly useful:

 - 552 -

 • Geographical decomposition diagrams

 • Network connectivity diagrams

 GEOGRAPHICAL DECOMPOSITION DIAGRAMS

Geographical decomposition diagrams show how the users of your system are related
geographically. These diagrams are simple to understand and easy to prepare. Figure
18.2 shows a sample geographical decomposition diagram for the Bug Boutique, that
ever-hopeful group of entrepreneurs you met in Chapter 5, “Designing Classes and
Objects.”

 Figure 18.2 A geographical decomposition diagram

As you can see, the Bug Boutique’s Inventory Control System serves three distribution
centers. Only one of the three, the London center, is shown in detail. There are four types
of users at the London center:

 • The inventory manager

 • The shipping clerks

 • The buyers

 • The key suppliers

The rounded corners of the symbol for the suppliers indicate that they are connected to
the system via the London center but are located at a remote site. Their actual location is
not given. The symbols for the clerks, the buyers, and the suppliers are replicated,
indicating that they represent groups of users rather than an individual user.

There is no standardized form for the geographical decomposition diagram, so you can
use other symbols if you prefer. Some designers like to indicate a group by placing an
asterisk (*) in the upper-right corner of the corresponding symbol. Another common
variation is to use a trapezoid or parallelogram to indicate a remote location, rather than a
rounded rectangle.

 NETWORK CONNECTIVITY DIAGRAMS

The second diagram that you’ll use to describe or design an IS architecture is called the
network connectivity diagram. Whereas the geographical decomposition diagram focuses
on users, the network connectivity diagram is used to show the clients and servers that
make up your IS architecture. Figure 18.3 shows a network connectivity diagram.

 - 553 -

 Figure 18.3 A network connectivity diagram

The clients and servers are usually shown pictorially but, if you lack access to a drawing
program that provides convenient, ready-made symbols, you can draw a network
connectivity diagram in schematic form. Figure 18.4 shows a schematic network
connectivity diagram.

 Figure 18.4 A schematic network connectivity diagram

Often, when drawing a network connectivity diagram, you’ll want to include additional
information describing the configuration of the hosts (a generic term referring to either a
client or a server) or the processing they perform. You’ll see such diagrams in the next
section, which walks you through some of the alternative architectures that other
designers have used.

“Whereas the geographical decomposition diagram focuses on users, the network
connectivity diagram is used to show the clients and servers that make up your IS
architecture.”

 Architectural Alternatives

 - 554 -

Now that you have some tools for describing information system architectures, you’re
ready to learn about some specific architectures in use today. Information system
architectures have changed over the years as technological change has enabled
designers to try new arrangements. Sometimes new designs have proven impractical and
have been abandoned; other designs have proven themselves and often exist side by
side with systems that have survived from previous eras. Sometimes, the old
infrastructure becomes so frail that a new system entirely replaces it—sort of an urban
renewal for computer systems.

Four general IS architectures are in widespread use today. Each of these architectures
evolved in response to changes in the technological environment. In order from oldest to
youngest, they are:

 • The traditional architecture, which developed in the mainframe computer era

 • The file server architecture, which followed the widespread introduction of

microcomputers and local area networks (LANs)

 • The client/server architecture, an outgrowth of the development of relational databases

 • The distributed architecture, based on the adoption of ubiquitous telecommunications

and networking

Although each of these architectures was prevalent during a particular era, you don’t
need to slavishly submit to the current architectural fad. As you design the IS architecture
for your system, you might find yourself using ideas from several of these different
computing paradigms.

“The first computers, built at the end of the 1940s, processed information in batch
mode. Users provided input in the form of punched cards and received their output
on printed listings.”

 THE TRADITIONAL ARCHITECTURE

The first computers, built at the end of the 1940s, processed information in batch mode.
Users provided input in the form of punched cards and received their output on printed
listings. Users seldom had direct contact with the computer. Instead, they used pencil
and paper, completing forms that were sent to a keypunch group where the data was
transcribed from the forms to punched cards.

These early computers were “single-tasking” machines; they ran only a single job at a
time. Usually a single computer operator was responsible for “feeding” the machine. Even
these crude machines, however, had voracious appetites, and their handlers were not
able to feed them as quickly as they could consume their data. Furthermore, while they
were being “fed”—during input and output operations—the central processing unit stood
idle, waiting for its data to arrive so it could go to work. Early computers had quite a bit of
time on their hands—very, very expensive time. These systems were so primitive they
can scarcely be said to have had an architecture.

The development of preemptive multitasking—the capability of the CPU to perform
several tasks in parallel, switching between tasks in an attempt to keep the CPU fully
occupied—opened the door for more efficient use of the expensive mainframes of the
day. The replacement of the punched-card stack with the CRT terminal, or dumb terminal
as it’s called today, and advances in communication technology opened the doors in the

 - 555 -

early 1960s to time sharing and online systems. With time sharing, the CPU time that had
previously stood idle waiting for I/O operations to complete was divided up and sold off
piecemeal to subscribers. Although each subscriber got only a fraction of the computer’s
attention, the computer was capable of switching between users so quickly, that each
had the illusion of being the only user—at least until the number of subscriptions sold
exhausted the computer’s idle capacity. With the proper software support, it was possible
for the CRT terminal user to type data directly into the computer and view the results
almost immediately. A new era in computing had begun, initiated by technological
improvement of the user interface.

Figure 18.5 is a network connectivity diagram that shows a typical instance of the
traditional information system architecture. Although a dumb terminal contains a small
CPU, the traditional (sometimes called host-based) architecture places the mainframe on
center stage. The mainframe does essentially all the user interface processing, along
with application processing and data management.

 Figure 18.5 The traditional architecture

The traditional architecture of the 1960s was dominated by expensive mainframe
computers. Most organizations that could afford a computer at all could afford only one.
Application software was also primitive by modern standards. COBOL was the dominant
programming language. Building online applications was a more complex and difficult
task than building batch-oriented systems such as payroll and billing, and systems
support for user-interface technology was weak. Data management was likewise
primitive, and databases were scarce. Operating system support for file sharing was
weak. Along with the shortcomings of support for terminals, this made development of
multiuser applications a difficult endeavor.

The high cost of computers, and initially even of dumb terminals, made the traditional
architecture a costly step. Many organizations simply could not afford to “go online” and
continued batch processing of data into the 1970s and beyond. This was particularly true
of organizations that had deployed large, batch-oriented systems. Such systems were too
large to be quickly or inexpensively replaced.

The traditional information system architecture was not, however, without certain
benefits. Because the information systems group had custody of the data, which was fully
contained within the organization’s mainframe, they were able to exercise considerable
control. Data security, therefore, was high. Moreover, such systems were generally as
reliable as the technology on which they depended, and were scalable. Many very large
systems built using this architecture continue to operate successfully today.

In the 1970s, minicomputers were introduced, leading to a drop in computer prices.
However, the hardware cost of systems built using the traditional architecture was not the
only cost. Because of the limited support for user interface management and data
management provided by operating systems, online systems remained difficult and

 - 556 -

expensive to develop.

“The introduction of the microprocessor and the development of inexpensive local
area networks (LANs) provoked another evolutionary jump in information system
architecture.“

 Table 18.3 summarizes the pros and cons of the traditional information system

architecture.

 Table 18.3 Summary Of The Traditional Architecture

 Server hardware

Mainframe or minicomputer

 Client hardware

Dumb terminals

 User interface

technology

Keyboard input, text output

Application
programming
technology

COBOL plus operating system APIs

 Data management

technology

File system

 Cost

Medium (minicomputer) to high (mainframe)

 Reliability

High

 Security

High

 Scalability

High

 Flexibility

Low

 THE FILE SERVER ARCHITECTURE

The introduction of the microprocessor and the development of inexpensive local area
networks (LANs) provoked another evolutionary jump in information system architecture.
As PC prices dropped, they began to infiltrate corporate America. Today, of course, it’s
hard to find a desk in any business that doesn’t have at least one computer sitting on it.

With the introduction of the PC, IS managers, who had previously controlled all of the
computing resources, tried to make the new machine “fit.” Some organizations equipped
PCs with terminal emulators so that users could tap into the organization’s existing
information system, organized using the traditional model.

 Some designers, on the other hand, wondered whether the PC could be used to replace

 - 557 -

the server at the center of the traditional architecture. Because PCs had so much
processing power—at least compared to dumb terminals—creating an architecture with
PC clients would allow the designer to move much of the processing currently carried out
on the server over to the client. Whereas the traditional information system architecture
featured a dumb client and a smart server, this new file server architecture featured a
smart client and a dumb server. Figure 18.6 illustrates the file server architecture.

 Figure 18.6 The file server architecture

Although it connected the clients to the server using a high-bandwidth local area network
(LAN) rather than the lower-speed networks used in the traditional architecture, the file
server architecture generally continued to use a text-based, rather than graphical,
approach to the user interface. Various programming languages were used, including
BASIC, C, and several proprietary data manipulation languages like dBASE III and
Paradox.

The server in a file server-based system did little more than transmit to clients the
contents of file records they requested, or write to its hard drives the contents of file
records transmitted by clients. On most systems, these files appeared just like an
extension of the user’s local file system. When the user wanted to run an application on
such a system—say, a word processor or spreadsheet—the code was transported over
the network where it was loaded into memory on the client’s machine and executed. File
server-based applications executed (or ran) on the client machine, not on the server. In
effect, the file server acted like a large, external disk drive.

When used to support workgroup productivity applications such as word processing or
spreadsheets, file servers were easily capable of supporting hundreds of users. However,
for data-intensive information systems, the file server architecture was intrinsically limited.
If, for example, the president of The Bug Boutique wanted to find out how many of his
one million customers were repeat customers, the file server might have to transmit the
entire file over the network to his local machine where it could be processed. The file
server operating system was incapable of sorting through the data and sending only the
necessary information. As you can imagine, if 10 or 20 of the Bug Boutique’s employees
asked for such information on a routine basis, the network could easily get bogged down.

 The file-system architecture also suffered from several other weaknesses. The two

biggest problems were security and reliability:

•

Security was often low. When a user logged in to a PC server, the server’s files simply
appeared as additional local drives attached to the client PC. An unruly user could
often access the files using an editor or other program and read them, alter them, or
damage them.

•

Reliability was also low because the software configuration tended to be fragile. To
reduce network traffic, many file server-based applications used index files stored on
the file server. However, because the file server did not actually process the data,

 - 558 -

these indexes had to be maintained on the local, client machines. When an individual
machine would crash, perhaps running out of memory when adding a record or
building an index, the index files would be corrupted for everyone else using the
system on the network. Each client node on the network thus became dependent on
the proper operation of all the clients on the network.

Flexibility of the file server architecture was high, however. Such systems were relatively
easy to program, in part because really large or complex problems could not be adapted
to the architecture. Relative to systems built using the traditional architecture, systems
built using the file server architecture provided a high return on the hardware/software
investment. Because they were also inexpensive to deploy, many small- and medium-
size businesses built such systems.

 Table 18.4 summarizes the file server architecture.

 Table 18.4 Summary Of The File Server Architecture

 Server hardware

PC

 Client hardware

PCs

 User interface technology

Textual

 Application programming

Various languages technology

 Data management

technology

File system

 Cost

Low

 Reliability

Low

 Security

Low

 Scalability

Low

 Flexibility

High

 CLIENT/SERVER ARCHITECTURES

 Two technological changes led to the next step in IS architecture evolution:

 • The availability of high-performance relational database management systems

(DBMS)

 • The acceptance and widespread availability of a common graphical user interface, in

this case, Microsoft Windows

 “The client/server architecture…aims for balance; any given type of processing can

 - 559 -

be allocated to the client or the server, according to whichever is best suited for the
role.”

Up to this point, the distribution of computing responsibility had been lopsided: the
traditional architecture put almost all the responsibility on the server, whereas the file
server architecture placed most of the load on the client. The client/server architecture,
by contrast, aims for balance; any given type of processing can be allocated to the client
or the server, according to whichever is best suited for the role. This configuration has
been aptly referred to as a smart-client, smart-server configuration.

In practice, the advantages afforded by a centralized relational database almost always
lead designers to allocate data management processing to the server rather than the
client. As you’ll see in the next section, however, newer architectures have questioned
this assumption, with interesting results. Figure 18.7 shows a typical instance of the
client/server architecture.

 Figure 18.7 The client/server architecture

In its simplest form, the client/server architecture simply replaces the PC-based file
server of the file server architecture with a PC running a relational database server.
Notice that the weakness of the file server-based architecture was not the use of the PC
as the server, but, in a sense, its under-use. A general-purpose network operating
system (NOS) such as Novell NetWare or Windows NT Server is designed to provide
client access to files. A database server, such as Oracle, Informix, or Sybase, which
might also run on a PC using a network operating system, is designed to perform
significant data processing for clients. And, if the PC hardware itself becomes a limitation,
systems based on a database server can be scaled up to support hundreds or even
thousands of users, by simply replacing the server PC with a minicomputer (or even a
mainframe).

Using a relational database instead of a set of files significantly increases the security
and reliability of the architecture. The relational database also makes it easier to respond
to ad hoc queries and provides mechanisms for achieving data independence, which
enhances system flexibility.

Because they have only recently been developed, and because the client portion of the
client/server architecture is almost always a PC running a modern operating system,
client/server systems almost always include a graphical user interface rather than the
text-based interface of earlier generations. This makes client/server systems much easier
for users to learn than traditional or file server systems. And, the still-continuing reign of
Microsoft Windows as the de facto standard for user interfaces, at home and at work, has
helped propel this architecture to the forefront.

 - 560 -

The client/server architecture, apart from its use of more advanced technologies for data
management and user interface management, benefits from a relaxation of design rigidity
inherent in previous architectures, which were all or nothing. In earlier architectures either
all the processing was done by the server or (nearly) all was done by the client.
Client/server introduced the term rightsizing as system designers sought to choose
configurations that allocated the right task to the right box (that is, the right size of
computer).

Too often, rightsizing was simplistically taken to refer to the practice of replacing an
organization’s mainframe computer with a less expensive minicomputer, a common
practice encouraged by the intense cost pressures on businesses during the client/server
era. Although replacing the mainframe computer was often a positive step, the real
significance of rightsizing was that the designer had a choice.

Lately, as designers have gained experience by observing the systems they’ve designed,
they have begun using a modified form of the client/server architecture, called the three-
tier client/server architecture. The original form of client/server architecture split
processing responsibility between a client, which usually provided user-interface and
business logic, and a server, which took over the data-management tasks. Because of
this division, the traditional client/server architecture consequently has become known as
the two-tier client/server architecture. Figure 18.8 shows a typical instance of the three-
tier client/server architecture.

 Figure 18.8 The three-tier client/server architecture

 The three-tier client/server architecture tries to solve several problems that hamper two-

tier client/server architectures:

•

Driver maintenance: In a two-tier system, each client system must be equipped with
a driver for each database it accesses. Because vendors regularly distribute product
updates, information systems staff must continually maintain and configure the drivers.

•

Database costs: As client/server systems have become more popular, database
vendors have begun charging for their products based on the maximum number of
concurrent users. Because applications generally hold databases open for the duration
of the user session, this constrains the number of clients the two-tier architecture can
economically support.

The three-tier architecture attacks these problems by interposing a so-called middleware
server between the client and the database. In a three-tier architecture, your clients no
longer communicate directly with the database. Instead, they communicate with the
middleware server and must be equipped only with a relatively simple driver for the
middleware server, instead of a driver for each database. In addition to acting as a

 - 561 -

conduit for connecting to the data-management server, the middle tier has become the
ideal place to put the business logic portion of your application. Thus, when you change a
business rule used in your application, you need only update the middleware server, and
not the hundreds of clients using your program. Clients in three-tier architectures have
come to be known as thin clients because they are easier to configure and maintain than
so-called fat clients.

Middleware servers have done their parts well, caching data to improve performance and
allowing multiple clients to share a single database connection, thereby reducing
database licensing costs. Today, the two-tier and three-tier client/server architectures are
those most commonly used for new system development. The client/server architecture
is summarized in Table 18.5.

“The central idea of distributed architectures is that a single, centralized database
might not be the ideal way to structure your organization’s data, particularly if your
organization is itself geographically dispersed.”

 Table 18.5 Summary Of The Client/Server Architecture

 Server hardware

PC

 Client hardware

PCs

 User interface technology

Graphical

 Application programming

Various languages technology

 Data management

technology

Relational database

 Cost`

Low to medium

 Reliability

High

 Security

High

 Scalability

High

 Flexibility

High

 DISTRIBUTED ARCHITECTURES

You’ve seen the traditional architecture, the ruler of the mainframe era; the file server
architecture that rode the wave of PCs and local area networks to prominence; and the
rise and refinement of two- and three-tier client/server architectures. What then is the
fourth architecture: the distributed architecture? The term distributed architecture is
commonly used to refer to any architecture in which a client accesses more than one
server concurrently. Therefore, client/server architectures and distributed architectures

 - 562 -

overlap to a degree. In many client/server systems, however, a single server does almost
all the work. Processing in such systems is not substantially distributed among the
participating servers; therefore, they are better seen as client/server systems than as
distributed systems.

The central idea of distributed architectures is that a single, centralized database might
not be the ideal way to structure your organization’s data, particularly if your organization
is itself geographically dispersed. Suppose your company has offices in New York,
Chicago, and Los Angeles. A nondistributed client/server architecture might consist of a
central database located in Chicago and network connections reaching from Chicago to
New York and Los Angeles.

This means that data pertaining to the Los Angeles office is stored in Chicago—even
data that would be of no interest outside Los Angeles. To process its data, the Los
Angeles office must transmit it and receive it across the network linking it with Chicago,
possibly incurring costly telecommunications charges. In contrast, a distributed
architecture, like that shown in Figure 18.9, attempts to locate data nearer to the point at
which it’s used most.

 Figure 18.9 The distributed architecture

Two enabling technologies are key to your successful design and development of a
distributed system: CORBA and RMI, which were presented in Chapter 13, “Designing
Remote Objects.” Before choosing a distributed architecture, be sure that you and your
programmers have a solid understanding of one or both of these technologies. CORBA,
RMI, and similar technologies let you change the topology of your application without
changing its classes. This topology independence is analogous to the data independence
provided by a database management system and can similarly reduce the effort and cost
of maintaining a distributed system.

Most developers, however, have had little or no experience in using CORBA or RMI.
Unless you’re willing to be exposed to significant risk of failure, your project plan should
include education and training in these technologies.

 JAVA AND THE WEB

Since the 1950s, user interfaces have gone from punched cards to point-and-click high-
resolution displays. Database technologies have gone from reels of magnetic tape to
online relational DBMS systems and data warehouses. But application processing
technology has gone through no such upheaval—at least until now. Today, of course,
there is Java.

 The Java language and its APIs provide two key capabilities lacking in other popular

languages:

 - 563 -

 • Portability

 • Automatic software distribution

“Because Java programs are portable, Java is an ideal language for implementing
client software, which can then be run on any platform that offers a Java
interpreter.”

Because Java programs are portable, Java is an ideal language for implementing client
software, which can then be run on any platform that offers a Java interpreter. Thus,
platform independence can be added to the data independence provided by a relational
database and the topology independence provided by an object request broker, such as
CORBA or RMI.

In addition to being portable, Java programs are distributable. As shown in Figure 18.10,
Java applets are automatically downloaded from a server when accessed, assuring that
the user is running the latest (hopefully the most correct) version of the software. Related
push technologies, such as Marimba’s Castanet, allow updates to Java applications to be
automatically propagated to client systems. Combined with a thin-client driver that talks to
a middleware server, this can greatly reduce requirements for software maintenance of
your client computers.

 Figure 18.10 Running a Java applet

Together, Java and the Web provide you, the designer, with new architectural options. You
can use the Web as a part of your telecommunications infrastructure, which can now reach
outside your organization into the homes and businesses of millions of people. This opens
up opportunities for you to develop new kinds of applications or to retrofit your existing
applications for the Web. Even for those organizations with sensitive data best kept
isolated from the Web, Java and intranets provide a completely new way to deploy and
manage your application portfolio.

Choosing an Architecture

How should you choose an IS architecture? Well, your choice will be determined largely
by the technologies available to you. Choosing which technologies to implement,
however, is not really simple. As you ride technological waves from the past, to the
present, and on to the future, you can erroneously end up too far ahead of the wave. If

 - 564 -

you had attempted to implement a client/server system during the early 1960s, for
example, you would have faced a Herculean task. But, it’s also possible to lag too far
behind; this won’t often result in complete and abject failure, but your
organization will not be getting the best return on dollars invested in information
technology, and you might be slowly building a ground-swell of user dissatisfaction.

The contingent, changing nature of information system architectures makes it difficult,
and risky, to venture detailed advice. However, you won’t go far wrong in following these
broad principles:

•

Don’t get swept up in the latest architecture fad: Fads come and go, but good design
abides forever. Recall how the concept of rightsizing became the oversimplified
concept of downsizing. Search for, and analyze, the principles that underlie a new
architecture before jumping on board.

•

Provide users with an interface that is easy to learn and efficient to use. This is not as
straightforward as it sounds. Graphical user interfaces are popular and easy to learn.
However, applications that are easy to learn are not always easy to use when the user
is no longer a novice. Remember, a user will be a novice only once; they’ll be a user
forever. Consider your users’ productivity when you design your user interface.

•

Allocate processing to clients and servers according to which can do the job better.
Avoid dogmatism like that inherent in the traditional architecture and the file server
architecture.

•

Stay abreast of middleware products that might reduce the cost of maintaining client
configurations and database licenses. Client/server technology changes rapidly. Use
your Web browser to bookmark the pages of middleware vendors and regularly check
their pages for product updates.

•

Consider using distributed computing as a means of reducing telecommunications
costs and balancing the processing load. Although telecommunications costs are
dropping, they can still be enormous. Distributed computing is one tactic for coping,
and poses the added possibility of reducing processor costs as well.

•

If you decide to design a distributed system, make sure your programmers and other
designers are trained in the use of distributed technologies such as CORBA or RMI.
Because they’re new, these technologies are not yet well understood by most designers
and programmers. Don’t learn about them the hard way, by fielding a system that fails.
Do your homework before committing to a distributed design.

 The End of the Line

Well, you’ve finally reached the end of the line, where all readers must disembark.
Thanks for your diligent persistence, which we hope is rewarded many times over. Keep
reading about design. Keep reviewing the designs of others. And, most of all, keep
designing.

“Like any craft, the only real way to learn is through practice: Listen to your users;
strive to accurately and completely understand their wants and needs; keep
stocked at all times a full kit of up-to-date technical options.”

Like any craft, the only real way to learn is through practice: Listen to your users; strive to
accurately and completely understand their wants and needs; keep stocked at all times a
full kit of up-to-date technical options.

 - 565 -

Remember, your job as a designer is to act as an agent for those who will use the artifacts
you build. Be honest about your own failures. As Henry Ford said, “A mistake is an event,
the full benefit of which has not yet been turned to your advantage.” Try to see each failure
as an opportunity to modify your design, bringing it ever closer to firmness, commodity, and
delight.

 Summary

An information system architecture is a pattern that describes typical relationships
between clients, servers, and the network that joins them. Change in three key
technologies has driven change in information system architecture: user interface
technology, data management technology, and application processing technology. Over
several decades, user interfaces have moved from textual to graphical, and data
management has moved from file servers to relational databases accessed via
Structured Query Language. With the advent of Java, applications have begun moving to
a distributed, network-centered mode.

The traditional information system architecture—sometimes called the dumb-client,
smart-server architecture—featured dumb terminals and a mainframe computer. Cheap
microprocessors led to the file-sever information systems architecture—the smart-client,
dumb-server architecture—featuring PC-based clients and a PC-based file server.

More recently, information systems have been built according to the client/server or
distributed computing architectures. These architectures—the smart-client, smart-sever
architectures—are more general than early architectures, allocating processing to client
or server according to whichever is better suited to the task.

Whereas client/server generally involves a single primary server, distributed computing
involves multiple clients and servers that cooperate in storing and processing
geographically dispersed data. Technologies like CORBA and RMI, which help decouple
an application from its network topology, are key to implementing a distributed
information system architecture.

Java and related technologies provide new options for designers, who can avail
themselves of platform-independent programs that are automatically downloaded, so that
the most current version is the one run. Network-based applications, whether on the Web
or an organization’s intranet, are rapidly growing in use.

Questions

 For multiple-choice items, indicate all correct responses.

 1. An information system architecture is nothing more than a design __________.

 a. Document

 b. Pattern

 c. Formula

 d. Heuristic

 2. The primary elements of an information system architecture are

 a. Clients

 - 566 -

 b. Servers

 c. Networks

 d. Applications

 3. The three primary technologies that have driven the evolution of information system

architectures are

 a. User interface

 b. Application processing

 c. Programming languages

 d. Data management

 4. A __________ is a special PC designed to run Java better than a standard PC.

 5. The traditional information system architecture was characterized by low/high cost

and low/high flexibility.

 6. The file server information system architecture was characterized by low/high cost

and low/high flexibility.

 7. The client/server information system architecture usually allocates database

processing to the __________.

 8. The distributed information system architecture is characterized by the use of multiple

__________.

 9. Thin clients require the use of a __________ server, which requires the client to load

only a single driver.

 10. The key facilities offered by Java and its APIs, from an architectural standpoint, are

 a. SQL compatibility

 b. Portability

 c. Automatic software distribution

 d. An open standard

 Exercises

1.

Draw a geographical decomposition diagram and a network connectivity diagram for
the customer deposit/withdrawal system of a small bank. Assume the bank has
ATMs, branch offices, and a headquarters. Use fictional location names taken from
your local community.

2.

Using the Web, explore at least three alternative middleware technologies. The JDBC
home page on Sun Microsoft’s Java site will help you find them. Prepare a summary
of their relative strengths and weaknesses, relative to one another and relative to two-
tier client/server architectures.

 - 567 -

3.

Using the Web, explore at least three alternative “push” technologies that can help
keep software and data on a client system up to date. Prepare a summary of their
relative strengths and weaknesses. Use a search engine to help you find the home
pages of companies that offer push technologies.

4.

Using the Web or current periodicals, prepare a description of network computer
products currently available. Show a network connectivity diagram that illustrates their
use in a typical application of your choice.

 To Learn More

 The following books will help you learn more about information system architectures:

 • Watterson, Karen. Client/Server Technology for Managers. Reading, Massachusetts:

Addison-Wesley, 1995.

 • This an excellent introduction to the organizational issues that surround client/server

computing.

 • Orfali, Robert, and Dan Harkey. Client/Server Programming with Java and CORBA.

New York: John Wiley & Sons, 1997.

•

Several of the references given in Chapter 13 are helpful in understanding how
CORBA and RMI shape information system architectures. This title is particularly
useful.

 The following books deal with architecture and design conceptually, without reference to

specific technologies:

 • Rechtin, Eberhardt. Systems Architecting: Creating and Building Complex Systems.

Englewood Cliffs, New Jersey: Prentice Hall, 1991.

 • Witt, Bernard, F. Terry Baker, and Everett Merritt. Software Architecture and Design:

Principles, Models, and Methods. New York: Van Nostrand Reinhold, 1994.

Appendix A: Glossary

 1NF First normal form. No columns with repeating groups or compound values.

 2NF Second normal form. If the table has a composite key, every column must depend

on all of the key.

 3NF Third normal form. No column is allowed to depend on any value except the primary

key value.

abstract class A class that contains one or more abstract methods or is specified as
abstract. An abstract class can’t be used to instantiate objects, although it can be
extended.

 abstract method A method that has no implementation. The enclosing class is implicitly

an abstract class.

 abstraction Ignoring the irrelevant so as to focus on the essential.

 accessor A method that doesn’t alter the state (attributes) of an object, having the

purpose of returning information.

 - 568 -

 accidental difference When visual elements appear different but the difference doesn’t
signify a difference in meaning or purpose.

 ActiveX The current name for controls based on COM. Succeeds OLE/OCX.

 ad hoc queries Requests to retrieve information in ways that weren’t anticipated when

the data was stored.

 adapter (1) A class designed to make the built-in Java classes act like the classes in a

container class library. (2) A class that implements the Adapter pattern.

 Adapter pattern A design pattern that provides a default implementation for a set of

messages.

algorithm The precise instructions used to carry out a task. When used in the context of
a collection class library, algorithm refers to generic code to perform operations such as
searching or sorting, without regard to the type of collection searched or sorted.

API Acronym for application programming interface, the facilities offered by your
operating system or programming language that allow your programs to access its
features.

 application logic The processing specific to your application, as compared to generic

operations such as user-interface design and data management.

 application technology Different methods for distributing application processing

between clients and servers.

 association A uses relationship.

 asynchronous interaction Interaction that doesn’t occur according to a prearranged

schedule, in which multiple operations are simultaneously ongoing.

 attribute An element of data contained in an object, as specified within the object’s

class.

 AWT The Abstract Window Toolkit, the Java component that manages graphical user

interfaces.

 batch mode systems Programs that primarily process data without interactive user

input. The program that prints your payroll check is typically a batch-mode program.

 BDK Sun’s Bean Development Kit.

 Bean A software component built according to the JavaBeans architecture.

 Bean builder A programmer who creates Beans, which can be used inside a visual

application builder.

 Bean event The mechanism used by Beans to communicate with other Beans. Bean

events provide the framework for building component-based applications.

 Bean property The mechanism used in the JavaBeans API to store state information

that can be visually manipulated.

 Bean user A programmer who builds Java applications by using Beans inside a RAD

environment.

 - 569 -

 BeanBox A tool supplied in Sun’s Bean Development Kit for testing interaction between
Beans.

 bi-directional relationship An association in which objects exchange messages.

 Boolean property A single Boolean value manipulated by using the isXX() and setXX()

methods.

 bottom-up An approach to software development that stresses experimentation and

adaptation.

 bound property A type of property that accepts subscribers and notifies them when its

value changes.

 business rules The logic that determines how your application runs. Another term for

application logic.

 button A component that normally triggers an action when clicked.

 canonical grid A standardized layout grid that can be used as the basis for several

different layouts: two-column, three-column, and so on.

cardinality (1) The number of objects that may participate in a single instance of an
object relationship. (2) The number of rows involved on each side of a database
relationship. Key database cardinality relationships are 1:N (one-to-many), 1:1 (one-to-
one), and N:N (many to many).

 catalog A database whose tables store information about other databases in an

information system.

 CGI Common Gateway Interface, a facility that lets Web servers return the output of a

program execution as a document.

checkbox A component that stores an on/off choice, often used to specify an option.
When part of a group of checkboxes, each checkbox can be on or off, allowing users to
request combinations of options.

 CHI Acronym for computer-human interaction.

choice A list box control that’s activated and “dropped down” when users click a small
arrow on the control. A choice control preserves valuable screen real estate by showing
only the current choice.

 clarity The extent to which the designer’s intentions are conveyed to users by the

interface.

 class A combination of data and the operations that can be performed on that data.

 class diagram A design tool that shows the attributes and methods of a class.

 class library A collection of classes designed to work together to perform a particular

job. The AWT, the JDBC, and the JGL are all examples of class libraries.

 class relationship A relationship between classes.

client (1) The person or company who authorizes and pays for construction of your
system. (2) An object or module that uses—or makes requests of—another object or
module. (3) The desktop computer or terminal used to access a computer-based

 - 570 -

information system.

 client object An object that sends messages to other (server) objects.

client/server architecture An information systems architecture in which processing
responsibility is shared by the server and the client. Typically, the client performs the
user-interface tasks and the server performs the data management tasks.

 Clonable interface Used to mark a class as supporting the clone() method.

COBOL Acronym for Common Business Oriented Language. A computer programming
language developed near the end of the 1950s, used primarily for data processing
applications.

 code salvaging The practice of using “cut-and-paste” to reuse portions of a previous

program in a current program.

 coherence The extent to which similar elements are grouped to form a unified whole,

having all the parts work together.

 cohesion A property of an interface that represents a single, whole abstraction.

 collaboration A relationship between two classes, in which one uses services provided

by the other (the collaborator) to perform its function.

 collaboration diagram A design tool that shows a single use case.

 collection A class designed to hold objects. Collection classes are also sometimes

called data structures.

 column Used to store the individual attributes of a database table.

 COM Acronym for Component Object Model. Microsoft’s architecture for communication

between its software components in Windows 95/NT.

 Command pattern A design pattern that allows a message to be encapsulated as an

object so that it can be stored, passed as an argument, or manipulated.

 commodity A software product that has the quality of commodity is fit for its intended

purpose; it works and is effective.

 composite key The use of several columns to form a key.

 Composite pattern A design pattern that allows one object to contain other (nested)

objects.

 composition relationship A relationship that exists when an object is composed of one

or more objects.

 compound object An object composed of other objects.

 compound value A single column composed of several separate values.

 concurrent program A program that works simultaneously on multiple tasks.

 constrained property A bound property that also allows its subscribers to prohibit a

particular change.

 - 571 -

 contraction Overriding a method inherited from a superclass with an empty method.

copy semantics The method that an object uses (either by reference or by value) to
produce a copy of an object. By default, Java uses reference copy semantics for objects
and value copy semantics for primitive types. To change the semantics for a class,
override clone().

 CORBA Acronym for Common Object Request Broker. A set of specifications for

creating distributed information systems, using various technologies.

 coupling The relative degree to which a relationship causes participating objects to

depend on one another.

 CRC card A design tool prepared by using a 3∞5 card that shows the responsibilities

and collaborations of a class.

 critical code Statements that execute only if a designated monitor is available.

 CRT Acronym for cathode ray tube, the dominant technology used to make computer

video displays.

customization (1) The extent to which users can select an interaction model they prefer,
and suppress others. (2) The Java API facility that allows a bean builder to create custom
tools that can be invoked to manipulate the bean when it’s added to a RAD environment.

 customized property A property that’s not simple, Boolean, or indexed. Requires using

the BeanInfo interface.

data independence The ability to change a data source (such as a database table or a
file) without affecting the applications that use that data source. Database systems
usually exhibit more data independence, whereas file-based systems tend to exhibit less.

 data integrity A software quality factor that indicates low risk of inaccurate or lost data.

data management The tasks necessary to enable access to a data source. Typically,
data management tasks include providing facilities for security and protection of data, for
mediating contention, and for controlling data redundancy.

data redundancy Storing the same information in multiple places in the database. Data
redundancy can lead to data corruption if one part of the data is updated and another
isn’t.

 database anomaly Data corruption or loss, usually as a result of storing data in non-

normalized tables.

 database driver Software that allows your application to “talk to” a database

management system.

 database engine Synonym for database management system.

database management system Software that provides generic data management
facilities (access, security, locking, recovery, and transactions) for a variety of
applications.

database normalization The process of checking your tables to make sure that they
conform to certain rules designed to avoid database anomalies. Steps are first normal
form (1NF), second normal form (2NF), and third normal form (3NF).

 - 572 -

 database server Synonym for database management system.

 DBMS Acronym for database management system.

 DCOM Acronym for Distributed Component Object Model, a Microsoft architecture for

distributed computing.

 deadlock A condition in which two or more threads mutually wait for the other(s), with

the result that none actually execute.

 decomposition Breaking a complex structure into a set of smaller, simpler structures.

 Decorator pattern A design pattern that allows the capabilities of an object to be

extended at runtime.

 deep copy To make a copy of an object, deep copying uses value semantics to make

an entirely new object.

 delete anomaly May occur when deleting a row of an unnormalized table. The anomaly

causes information about a related entity instance to be lost.

 delight A software product that has the quality of delight is attractive and a pleasure to

use; it is elegant.

 deque Abbreviation for double-ended queue (pronounced “deck”). An array-like

container that allows elements to be added at either the front or back.

design (1) A process of determining the structure and composition of a product,
balancing the demands of commodity, firmness, and delight. (2) A software development
activity that identifies an appropriate technical solution that satisfies the system
requirements.

 design pattern A common design problem and its solutions, described and packaged

for ease of application.

design time Occurring when designing an application—as opposed to when running the
finished application. Programmers can visually manipulate Java beans during design
time.

distributed architecture An architecture that distributes additional processing on
multiple servers and isn’t typically tied to a single database server. Distributed
architectures usually include the use of technologies like RMI and CORBA.

 DOD Acronym for the U.S. Department of Defense.

 downsizing (1) Taking an application running on a mainframe and putting it on a

minicomputer or PC. (2) Corporate staff reductions designed to increase profitability.

 DPI or dpi Acronym for dots per inch. Unit of measure for the resolution of video-display

terminals and laser or inkjet printers.

 dumb terminal A terminal (keyboard and video CRT display) with no local processing

power or storage.

 E/R modeling Entity-relationship modeling. The first step in logical database design.

 elegance A quality of a visual interface that possesses novelty, simplicity, economy, and

 - 573 -

efficiency.

 encapsulation A technique that separates the interface of a class from its

implementation.

 entity Information about a thing or concept. Like objects, entities are usually the nouns

in a database design model.

 environment The hardware and software environment in which a program runs.

 exception mechanisms The means by which errors are returned to users of a class

library.

 Factory pattern A design pattern that allows construction of an instance of a specified

subclass of a given superclass.

 feedback The extent to which your users can tell what happened when they interacted

with your interface.

file-based system An information system based on files unique to that system. A file-
system based architecture puts the responsibility for data integrity on each application
that accesses the data.

 FileDialog class A Java class that uses the native file-picking dialog to select files.

file-server architecture An architecture that uses a local area network to provide
centralized file storage for a group of PCs. In the file-server architecture, application
processing is performed on the client, not the server.

fine-grained components Components designed for general-purpose use. GUI
controls, networking components, and graphics controls are all examples of fine-grained
components.

 firmness A software product that has the quality of firmness is fast and small and

continues working in a wide range of situations; it’s efficient and robust.

 first normal form No columns with repeating groups or compound values.

 FK Acronym for foreign key.

 flexibility The ability to have the same application run across several different

architectures.

 font A particular size and style of a typeface.

 foreign key A key used to identify rows in another table for purposes of linking two

tables in a relationship. A foreign key is the primary key in the foreign table.

 forgiveness The extent to which your interface allows your users to recover from

mistakes.

form follows function Guiding principle of the Bauhaus design movement. Stipulates
that the ideal design eschews ornamentation, and instead flows from the functional
description of the artifact.

 function objects Algorithms that can be instantiated and passed as objects to other

methods.

 - 574 -

 functionality The functions or services provided by an object.

 generalization A superclass is a generalization of its subclass.

generic programming Writing programs and classes that are unconcerned about the
type of objects they operate on. The Java Generic Library, for instance, is designed to
provide collections and algorithms that operate on many different objects.

 geographic decomposition diagram Shows the location of users in an information

system architecture.

 goal-oriented design An interaction methodology that ignores how things are currently

accomplished and instead asks, “What does the user want to accomplish?”

 guarded method A method that tests a condition and executes only if the condition is

true; otherwise, it waits for the condition to asynchronously change.

 GUI Acronym for graphical user interface. Also sometimes called the WIMP interface for

its chief distinguishing elements: windows, icons, menus, and pointing devices.

 hashtable A collection organized as key-value pairs. The actual implementation of a

hashtable may use either a vector or a list.

 hierarchy A pyramidal model that shows how categories are related.

 high bandwidth The ability to move large amounts of data over a network, very quickly.

 host A generic term that can refer to clients and servers (because they can both host

applications) but which usually refers only to a server.

 host application The program the supplies the framework in which components

operate.

 host-based computing An alternative term for the traditional mainframe-based IS

architecture.

 IC Acronym for integrated circuit. A prebuilt electronic component used to construct

computers.

IDE Acronym for integrated development environment. These programming tools give
programmers a single environment for building programs rather than individual editors
and debuggers.

 IDL Acronym for Interface Definition Language, which allows the interface of an object to

be described in a language-independent manner.

 IIOP Acronym for Internet Inter-ORB Protocol, which allows objects to interact across a

network by using object request brokers.

 implementation (1) The private attributes and methods of a class. (2) The details of how

an object accomplishes its services.

incremental development An approach to software development that divides a system
into many pieces, each of which has value to the user, and strives to deliver each piece
rapidly.

 indexed property A set of values that can be individually set and retrieved or can be set

and retrieved en masse.

 - 575 -

information systems architecture The arrangement and deployment of applications
and responsibilities. The IS architecture includes the physical components (clients,
servers, and the network) and the logical components (user interface, application logic,
and data management).

 inheritance A relation between two classes in which one inherits the attributes and

methods of another.

 inner class A Java 1.1 feature that allows one or more classes to be defined within the

body of an enclosing class.

 insert anomaly An anomaly associated with an unnormalized table, in which adding a

new record causes inconsistent or invalid data.

 instance An individual object of some class.

 interaction diagram A diagram that shows the interactions among the objects of a

program.

interface (1) The publicly available attributes and methods of a class. (2) The services
an object provides to client objects. (3) The Java language keyword and construct used
to define a pure specification which may be implemented by a class.

 interface consistency An interface is consistent when all the methods use similar

naming conventions and similar copy semantics.

 interface repository A CORBA database that describes object services and interfaces

for accessing them.

 interface technology Methods of user interaction: menus, buttons, mice, overlapping

windows, and so forth.

 introspection The Java API facility that allows a builder tool to inspect the class file of a

bean and determine the properties and events that the bean responds to.

 iterator A class that works in concert with a collection class to allow you to traverse the

elements in the class.

 Iterator pattern A design pattern that allows the elements of a collection to be

sequentially traversed, without exposing the structure of the collection.

 JAR file A Java archive file that allows you to package multiple class, graphic, and

property files in a single disk file. Built using the jar utility from the JDK.

 JavaBean Software component built using Java, designed to be used in Java programs

and manipulated in a Java GUI builder tool.

 JDBC Acronym for the Java Database Connectivity package, which provides Java

programs access to SQL and legacy database systems.

 JDBC-ODBC bridge A software program that connects JDBC programs to ODBC-

compliant databases.

JGL The Java Generic Library from ObjectSpace Inc. A freely available class library
based on the generic programming ideas developed in the C++ Standard Template
Library.

 key A column whose value identifies each row.

 - 576 -

 LAN Acronym for local area network. A high-speed network between relatively nearby

computers (for example, the same office or building).

 large-grained component A component designed to solve a problem in a specific

industry or for a particular type of product.

 layout grid Use of symmetrical or regular divisions to arrange your layout.

 layout manager A class used to position and size visual components in a Java program.

list A linear collection in which elements aren’t necessarily contiguous and the next
element relationship is explicitly specified by a reference held as part of the element.
Lists provide only sequential traversal.

 list box A vertically scrolling list of strings that allows users to select one or several of

the strings.

 liveness failure A program failure due to starvation or deadlock.

 logical database design The process of determining which entities and relationships

will be required in your database.

 logical design The partitioning of different tasks—user interface, application logic, and

data management—among the different physical elements of your IS architecture.

 mandatory association An association that must exist between or among a set of

objects.

 map A container class organized as key-value pairs. A dictionary is a type of map.

 master-genie syndrome A method of interaction that requires particular responses be

given in a particular order to accomplish a task.

 message Sent to an object, it triggers a behavior.

 method (1) A behavior or operation of an object. (2) A procedure used by an object to

respond to a message, as specified within the object’s class.

 methodology A prescribed way of using software abstractions that includes a process,

notations, and heuristics.

 middleware server A server program that sits between the database server and the

client software, which may provide driver or business-logic services.

 modal interface Another name for a master-genie interface.

 model An abstract representation of something real or imaginary.

 monitor An invisible 1-bit field associated with every object, used to synchronize access

to the object.

monospaced typeface A typeface in which every character has the same width, as
opposed to a proportional face in which some characters (such as m) are wider than
others (such as i). The popular Courier font is a monospaced typeface.

 multitasking The ability of a computer to run several programs apparently

 - 577 -

simultaneously by switching between them.

 mutator A method that alters the state (attributes) of an object.

MVC pattern The model-view-controller pattern that alerts a client when the state of a
server is changed. Implemented in Java by using the Observable class and the Observer
interface.

 NC The Network Computer. An inexpensive, Java-based computer with limited local

storage but with extensive local processing capabilities.

network The combination of hardware (cables and network interface cards) and
software (network operating system) that allows different computers to communicate and
work together, sharing data and applications.

 network connectivity diagram Shows the location of clients and servers in an

information system architecture.

 null layout manager Removing the layout manager so you can position and size each

component by using absolute pixel measurements.

 object The building block of an object-oriented program, an object possesses identity,

data (called state), and behavior.

 object bus A network that links objects by using one or more object request brokers.

 object relationship A relationship between objects.

 object-oriented design A design methodology based on object-oriented programming.

 object-oriented programming Programming that uses classes and objects as the

fundamental components of a program.

 Observer pattern A design pattern that keeps client objects advised of changes in the

state of a server object.

 OCX control The successor technology to OLE controls.

 ODBC Acronym for the Open Database Connectivity standard. A standard method for

communicating with different database servers.

 OLE control A control that uses Object Linking and Embedding; Microsoft’s original

name for its 32-bit software components.

online systems Applications that provide interactive, instantaneous access to data,
rather than process it in large chunks. Your bank’s ATM machine is part of an online
system.

 OOD Object-oriented design.

 operation (1) The phase during the life of a software system in which it is in actual use.

(2) A method or service provided by an object.

 optional association An association that may, but need not, exist between or among a

set of objects.

 optional relationship Whether the rows on both sides of a relationship must be present

for either to exist.

 - 578 -

 ORB Acronym for object request broker, which provides references to remote objects

and marshals method arguments and return values.

 overload To define a new method with the same name but a different signature (number

and types of arguments) as a method in the same class or a superclass.

 overloaded constructor A constructor that exists in several forms, each having a

different number or types of arguments.

 override To define a new method with the same name and signature (number and types

of arguments) as a method in a superclass.

 palette The visual library of components inside a RAD environment, from which a bean

user can select components.

 paradigm A perspective or way of looking at something; a pattern.

 parameter marshaling An RPC facility that automatically sends procedure or function

arguments across a network connection.

 part-of relationship A composition relationship.

 persistence The ability to store data on a (semi)permanent medium, such as magnetic

tape or disks.

 physical database design The process of translating your logical database model to

tables, rows, and columns.

 physical design The architectural choices you’ll make in deciding which types of clients,

servers, and network your system will use.

 PK Acronym for primary key.

polymorphic inheritance A relationship that holds when a class implements methods
specified in an interface or inherited from an abstract superclass, but also overrides one
or more methods inherited from a superclass.

 polymorphism The ability of two subclasses of a single superclass to respond

differently to an identical message.

 predicate functions Function objects that allow you to query the state of an object in a

collection class, and which generally return Boolean results.

 predictability The extent to which your users can tell what will happen when they

interact with your interface.

preemptive multitasking The ability to switch between execution of programs that
weren’t specially written to allow this. Multitasking that requires special programming is
called cooperative multitasking.

 presentation component The portion of your information system that presents data to

users and with which users interact.

 primary key The non-optional value that uniquely identifies each row in a database

table.

 priority queue A queue in which elements are kept in sorted order, so that the item with

 - 579 -

the highest priority is always at the front of the queue. Items of the same priority are
accessed as a regular FIFO queue.

 problem summary paragraph A paragraph that describes a problem to be solved in

terms of the characteristics any solution must possess.

 procedural decomposition A structured design technique that attempts to find a series

of steps that, performed in sequence, solve a given problem.

 procedure (1) A single step within a process. (2) Within a procedural program, a unit of

code larger than a statement.

 process (1) The steps necessary to carry out a task. (2) A separate flow of control within

a program, which has its own address space.

 programming The software development activity that produces the program source

code.

 property support classes Classes used to manage both bound and constrained

properties and which facilitate maintaining lists of subscribers.

 property sheet A dialog box that displays the properties of a component and provides

the environment for manipulating those properties.

 prototyping An approach to software development that relies on working models of the

system to explore system requirements.

 proxy A server stub or skeleton server.

 Publish-subscribe The design pattern used to describe how beans communicate.

 push technologies The ability to send information to a client without the client first

initiating a request.

 queue A sequence in which elements may only be added at the end and removed at the

front. A queue is thus a first-in-first-out (FIFO) data structure.

 race condition A computation for which the result varies depending on the order of

execution of multiple threads.

 RAD Acronym for Rapid Application Development.

 RAD tool A component-based software development tool that relies on programmers

visually arranging the interface and manipulating components.

 radio button A component that allows users to make a single selection from many.

Works like old-fashioned radio buttons in an automobile.

 reference semantics When adding an element to a container or making a copy of an

object, produces a reference to the original object rather than a duplicate object.

 referential attribute A field that refers to an object.

 reflection The Java API facility used to support introspection.

 relational database Collections of files arranged into tables with a formalized structure

uniting them. Also refers to the software that manages such collections.

 - 580 -

 relational DBMS Database management systems based on E.F. Codd’s relational
database concepts. Today, almost all DBMS systems are relational.

 relationship Rules governing the connections between different entities. Relation-ships

include the optional/required quality and cardinality.

 reliability A software quality factor that refers to an architecture or system’s capability to

ensure the integrity of data and availability of access.

 repeating groups When a single column in a single row holds multiple (array-like)

values.

 requirements analysis A software development activity that identifies the requirements

a system must satisfy to achieve its goal.

 responsibility A service or operation provided by a class.

 rightsizing Partitioning processing among clients and servers to make use of the best

qualities of each.

RMI Acronym for Remote Method Invocation, a Java technology used to create
distributed systems with Java components. Where not all the components are Java-
based, you should use CORBA instead.

 row Instance of an individual entity stored in a table. A row is composed of multiple

columns.

 RPC Acronym for remote procedure call, a technology that allows programs to invoke

functions that run on remote computers.

 runtime The period during which a component-based application is interacting with

users. Components have both a runtime and a design-time interface.

 runtime exceptions Exceptions that are part of the built-in Java exception hierarchy and

are thrown by the Java virtual machine.

 safety failure A program failure due to a race condition.

 sans serif typeface A type family that doesn’t have small filigrees at the ends of each

stroke. Popular sans serif faces include Helvetica and Arial.

scalability An architecture’s capability to be moved to larger and more powerful
hardware or to be deployed in wider distribution without unwanted deterioration of its
performance.

 SDLC Acronym for the Software Development Life Cycle, a division of the task of

creating software into a series of activities, performed in phases.

 second normal form If the table has a composite key, every column must depend on all

of the key.

 security The ability to manage and control access to data.

 self relationship When a single entity is related to itself, such as the parts in a parts

catalog.

 sequence A container in which one element follows (or precedes) another. Sequences

include lists and vectors but not trees.

 - 581 -

 Serializable interface Used to mark a class to indicate that all the methods and

attributes of the class can be made persistent (that is, copied to a file or stream.)

 serialization The Java API facility that allows a bean to convert its state into a stream

and then send that stream over the network or save it to a persistent medium.

serif typeface A type family that includes small filigrees at the ends of each stroke.
Originally designed to make stone-carved letters more durable. Serif faces include Times
Roman and Century Schoolbook.

 server object An object that responds to messages sent by client objects, by performing

actions or returning data.

 server stub A client-side program that acts as a stand-in for a server running on a

remote computer.

 set A map that includes the restriction that only unique values can be stored.

 shallow copy To make a copy of an object, shallow copying uses reference semantics

to return a new reference to the same object.

 signature The number and types of arguments of a method.

 simple extension A relationship that holds when a subclass adds new fields or methods

to those it inherits from its superclass, but doesn’t override any superclass methods.

 simple property A property that manipulates a single non-boolean value by using the

getXX() and setXX() methods.

 single-direction relationship An association in which an object sends messages to

another object, but the second object sends no messages to the first object.

 Singleton pattern A design pattern that ensures that a class has only a single instance.

 skeleton server A server-side program that acts as a stand-in for a client running on a

remote computer.

 software components Highly reusable software objects designed to be manipulated in

a RAD tool.

 software crisis The prevalence of software that’s late, costs too much, or doesn’t work

as planned.

software reuse Creating objects and classes that can be “dropped into” a current
project, or of creating classes that operate on a wide variety of different objects. The
goals of software reuse include reduced software costs and increased software reliability.
Generic programming and component software are both methods of software reuse.

 spatial grouping Using white space to put similar visual elements closer to each other

and separate disparate elements.

 specialization A subclass is a specialization of its superclass.

 specification inheritance A relationship that holds when a class implements the

methods specified in an interface or inherited from an abstract superclass.

 SQL Acronym for Structured Query Language, the standard language for accessing data

 - 582 -

in the relational databases of a client/server system.

 squint test Viewing a visual design by squinting so that the most noticeable attributes

are apparent.

 stack A sequence where elements may only be added at the front and removed from the

front. A stack is thus a last-in-first-out (LIFO) data structure.

 starvation A condition in which a thread doesn’t get sufficient access to the CPU and

therefore can’t do its work.

 STL Acronym for the Standard Template Library. Part of the Standard C++ Library,

which provides generic collections and algorithms.

 Strategy pattern A design pattern that generalizes the Command design pattern,

encapsulating an entire family of algorithms.

 structured design A methodology based on structured programming.

 software development life cycle A division of the task of creating software into a series

of activities, performed in phases.

 structured programming A technique that simplifies the structure of a program’s flow of

control.

 subclass A class that inherits the attributes and methods of a superclass.

 subtype A subclass is said to be a subtype of its superclass, because an instance of the

subclass may appear wherever an instance of the superclass is allowed.

 summary paragraph A paragraph that describes what a program must do, used as a

starting point for design.

 superclass A class that provides its attributes and methods to a subclass.

 symmetry The regular positioning of elements and groups in a visual interface.

 SystemColor class A Java class that allows you to specify component colors, which

users can change through the operating system utilities.

 tables Information about a single entity in a relational database. Tables are organized as

rows and columns.

 task-oriented design An interaction methodology that focuses on automating the

manual procedures currently used.

 template A file used as a starting point for writing the source code of a Java class.

 testing A software development activity that attempts to assess and improve the quality

of the software.

 thin client An architecture in which the client (desktop) machine is responsible for the

user-interface portion of the application.

 third normal form No column is allowed to depend on any value except the primary key

value.

 - 583 -

 thread A separate flow of control within a program that shares an address space
(access to fields) with other threads.

thread-safe An object whose state remains valid during execution of its methods by
multiple threads. By design, a thread-safe object isn’t subject to safety or liveness
failures.

three-tier client/server The use of a separate server program that acts as an
intermediary between client software and database servers. Such middleware can
provide both driver and business logic services.

 time-sharing The use of preemptive multitasking in the traditional architecture to allow

multiple clients to simultaneously connect to a single server.

 tool builder A programmer who or organization that creates environments for building

applications by using components. Borland, Symantec, and Microsoft are all tool builders.

 top-down An approach to software development that stresses planning, control, and

documentation.

traditional IS architecture The use of dumb terminals and superservers (large-scale
servers). In the traditional architecture, all of an application’s processing, including user-
interface processing, is carried out on the server. This is the traditional mainframe type of
application.

 transaction A business event or user request to which a system must record or

respond.

two-tier client/server The processing in a two-tier application is shared between the
client and the server machine, with the server usually performing the data-management
chores. The client will usually handle the business logic and the user-interface portion of
the application.

 typeface A family of type styles, such as Times Roman or Helvetica.

unchecked exceptions Exceptions that are subclasses of RuntimeException or Error,
and don’t require programmers to specify the exceptions that may be thrown by the
affected method.

 update anomaly An anomaly, resulting from unnormalized database structure, in which

changing the data in a single row causes the data in other rows to become inconsistent.

 usability The extent to which the “feel” of an application helps or hinders users.

 use case A description of a transaction that focuses on the interactions between related

objects.

 user interface The part of a computer program that interacts with users.

 uses relationship A relationship that exists when an object sends a message to another

object.

value semantics When adding an element to a container or making a copy of an object,
value semantics produces a duplicate of the original object, rather than just a reference to
the original.

 VBX control A control that uses Visual Basic Extensions, software components used in

Microsoft’s Visual Basic for 16-bit Windows.

 - 584 -

 VCL control A control that uses the Visual Component Library, the component model
used in Borland’s Delphi and C++ Builder development environments.

vector A collection (data structure) in which elements are arranged in a contiguous,
linear order, and which provides random, indexed access to its elements. Similar to an
array, the vector is resizable.

 veto The action a subscriber takes when disallowing a change specified by a publisher.

 visual manipulation The ability to directly manipulate—by dragging, dropping, and

working with property sheets—the design-time representation of a software component.

waterfall model An approach to software development that endeavors to treat the
software development life cycle activities as phases and to move strictly forward from one
phase to the next.

 weak association A relationship that exists when an object depends on another object

but never sends messages to or receives messages from the other object.

 X-terminal Specialized terminal hardware for accessing applications based on the UNIX

X-Windows system.

 Appendix B: Bibliography

 Alexander, Christopher. A Pattern Language: Towns, Buildings, Construction. New York:

Oxford University Press, 1977.

 Alexander, Christopher. A Timeless Way of Building. New York: Oxford University Press,

1987.

 Arnold, Ken, and James Gosling. The Java Programming Language. Reading,

Massachusetts: Addison-Wesley, 1996.

 Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd ed. Redwood

City, California: Benjamin/Cummings, 1994.

 Borenstein, Nathaniel. Programming as if People Mattered. Princeton, New Jersey:

Princeton University Press, 1991.

 Bruce, Thomas A. Designing Quality Databases with IDEF1X Information Methods. New

York: Dorset House, 1992.

 Budd, Timothy. Data Structures in C++ Using the Standard Template Library. Reading,

Massachusetts: Addison-Wesley, 1998.

 Carrol, Martin, and Margaret A. Ellis. Designing and Coding Reusable C++. Reading,

Massachusetts: Addison-Wesley, 1995.

 Constantine, Larry L. Constantine on Peopleware. New Jersey: Hall Computer Books,

1995.

 Cooper, Alan. About Face: The Essentials of User Interface Design. Foster City,

California: Programmers Press, 1995.

 Cornell, Gary, and Cay S. Horstmann. Core Java 1.1: Fundamentals. Englewood Cliffs,

New Jersey: Prentice Hall, 1997.

 Cox, Brad. “There Is a Silver Bullet.” Byte, Oct. 1990, pp. 209-218.

 - 585 -

 Cox, Brad. “Planning the Software Industrial Revolution,” IEEE Software, Nov. 1990, pp.

25-33.

 Cox, Brad, and Andrew Novobilski. Object-Oriented Programming: An Evolutionary

Approach. Reading, Massachusetts: Addison-Wesley, 1986.

 Date, C.J. An Introduction to Database Systems, 6th ed. Reading, Massachusetts:

Addison-Wesley, 1995.

 Degrace, P., and L. Stahl. Wicked Problems, Righteous Solutions: A Catalog of Modern

Software Engineering Paradigms. Englewood Cliffs, New Jersey: Yourdon Press, 1990.

 DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams. New

York: Dorset House Publishing Co., 1987.

 DeMarco, Tom and Timothy Lister. Software State-of-the-Art: Selected Papers. New

York: Dorset House Publishing Co., 1990.

 Englander, Robert. Developing Java Beans. Sebastopol, California: O’Reilly, 1997.

 Feghhi, Jalal. Web Developer’s Guide to Java Beans. Albany, New York: Coriolis Group,

1997.

 Fowler, Martin, with Kendall Scott. UML Distilled: Applying the Standard Object Modeling

Language. Reading, Massachusetts: Addison-Wesley, 1997.

 Gabriel, Richard P. Patterns of Software: Tales from the Software Community. New York:

Oxford University Press, 1996.

 Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Reading, Massachusetts: Addison-Wesley, 1995.

 Gilbert, Stephen, and Bill McCarty. Object-Oriented Programming in Java. Corte Madera,

California: The Waite Group Press, 1997.

 Gosling, James, Bill Joy, and Guy Steele. The Java Language Specification. Reading,

Massachusetts: Addison-Wesley, 1996.

 Hernandez, Michael J. Database Design for Mere Mortals: A Hands-On Guide to

Relational Database Design. Reading, Massachusetts: Addison-Wesley, 1997.

 Hoare, C.A.R. Communicating Sequential Processes. New York: Prentice Hall, 1985.

 Holub, Alan. Enough Rope to Shoot Yourself in the Foot: Rules for C and C++

Programming. New York: McGraw-Hill, 1995.

 Horstmann, Cay. Mastering Object-Oriented Design in C++. New York: John Wiley &

Sons, 1995.

 Horstmann, Cay. Practical Object-Oriented Development in C++ and Java. New York:

John Wiley & Sons, 1997.

 Knuth, Donald. The Art of Computer Programming: Fundamental Algorithms (vol. 1, 3rd

ed.). Reading, Massachusetts: Addison-Wesley, 1997.

 Lafore, Robert. Data Structures In Java. Corte Madera, California: The Waite Group

Press, 1998.

 - 586 -

 Lea, Doug. Concurrent Programming in Java: Design Principles and Patterns. Reading,

Massachusetts: Addison-Wesley, 1997.

 Lemay, Laura, and Charles Perkins. Teach Yourself Java 1.1 in 21 Days. Indianapolis,

Indiana: Sams Publishing, 1997.

 Lemay, Laura, and Charles Perkins. Laura Lemay’s Java 1.1 Interactive Course. Corte

Madera, California: The Waite Group Press, 1997.

 Manasi, Mark. Secrets of Effective GUI Design. Alameda, California: Sybex, 1994.

 McConnell, Steve. Code Complete. Redmond, Washington: Microsoft Press, 1993.

 McConnell, Steve. Rapid Development: Taming Wild Software Schedules. Redmond,

Washington: Microsoft Press, 1996.

McIntosh, Harry, and Lynnzy Orr. Talk Java to Me : The Interactive Click, Listen, and
Learn Guide to Java Programming. Corte Madera, California: The Waite Group Press,
1996.

 Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.

Reading, Massachusetts: Addison-Wesley, 1997.

 Microsoft Press. The Windows Interface Guidelines for Software Design. Redmond,

Washington: 1995.

 Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces. Englewood Cliffs, New

Jersey: SunSoft Press, 1995.

 Norman, Donald. The Design of Everyday Things. New York: Doubleday, 1990.

 Orfali, Robert, and Dan Harkey. Client/Server Programming With Java And CORBA. New

York: John Wiley & Sons, 1997.

 Orfali, Robert, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects Survival

Guide. New York: John Wiley & Sons, 1996.

 Otte, Randy, Paul Patrick, and Mark Roy. Understanding CORBA: The Common Object

Request Broker Architecture. Upper Saddle River, New Jersey: Prentice Hall, 1996.

 Page-Jones, M. The Practical Guide to Structured Systems Design. Englewood Cliffs,

New Jersey: Yourdon Press, 1988.

 Pree, Wolfgang. Design Patterns for Object-Oriented Software Development. New York:

ACM Press Books, 1995.

 Pressman, R. Software Engineering: A Practitioner’s Approach, 4th ed. New York:

McGraw-Hill, 1996.

 Priestley, Mark. Practical Object-Oriented Design. New York: McGraw-Hill, 1997.

 Rechtin, Eberhardt. Systems Architecting: Creating And Building Complex Systems.

Englewood Cliffs, New Jersey: Prentice Hall, 1991.

 Riel, Arthur J. Object-Oriented Design Heuristics. Reading, Massachusetts: Addison-

Wesley, 1996.

 - 587 -

 Rubinstein, Richard, and Harry Hersh. The Human Factor: Designing Computer Systems
for People. Bedford, Massachusetts: Digital Press, 1984.

 Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs, New

Jersey: Prentice Hall, 1991.

 Sedgewick, Robert. Algorithms in C++. Reading, Massachusetts: Addison-Wesley, 1992.

 Siegel, Jon. CORBA: Fundamentals and Programming. New York: John Wiley & Sons,

1996.

 Simon, Herbert. The Sciences of the Artificial. Cambridge, Massachusetts: MIT Press,

1996.

 Sridharan, Prashant. Java Beans Developer’s Resource. Upper Saddle River, New

Jersey: Prentice Hall, 1997.

 Standish, Thomas. Data Structures in Java. Reading, Massachusetts: Addison-Wesley,

1997.

 Watterson, Karen. Client/Server Technology For Managers. Reading, Massachusetts:

Addison-Wesley, 1995.

 White, Iseult. Using the Booch Method: A Rational Approach. Redwood City, California:

Benjamin/Cummings, 1994.

 Wiess, Mark Allen. Data Structures and Problem Solving Using Java. Reading,

Massachusetts: Addison-Wesley, 1998.

 Wilkinson, Nancy. Using CRC Cards: An Informal Approach to Object-Oriented

Development. New York: SIGS, 1995.

 Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented

Software. Englewood Cliffs, New Jersey: Prentice Hall, 1990.

 Witt, Bernard, F. Terry Baker, and Everett Merritt. Software Architecture And Design:

Principles, Models, and Methods. New York: Van Nostrand Reinhold, 1994.

Yourdon, Edward, and Larry Constantine. Structured Design: Fundamentals of a Discipline
of Computer Program and System Design. Englewood Cliffs, New Jersey: Yourdon Press,
1986.

 Appendix C: Product Reference

 Java Generic Library

 The Java Generic Library (JGL) is available from ObjectSpace, Inc. at its Web site

http://www.objectspace.com/.

 CORBA Products and Information

Sun Microsystems, Inc. maintains a Web page that can help you locate CORBA products
at http://jsg.cuesta.com/. Searching for the keyword CORBA will access the current list of
products.

 Another excellent source for information on CORBA products from many vendors is the

Web site maintained by Software Technologies Ltd. at http://www.sw-technologies.com/.

 - 588 -

The site also contains useful information on Java, databases, middleware, and many
other topics.

Sun distributes a lightweight CORBA ORB that’s compatible with Java 1.1. The product,
known as Java IDL, can be downloaded at no cost from http:// java.sun.com/
products/jdk/idl/index.html.

IBM, Netscape, Oracle, and Sun have released a joint position paper proposing CORBA
extensions to integrate Java beans. Current information on this effort is available on the
Object Management Group’s web page (http://www.omg.org/) and the Web sites of the
participants.

 Visigenic’s Visibroker, used as the basis for the CORBA example in Chapter 13, can be

found at http://www.visigenic.com/.

Appendix D: Quiz Answers

 Chapter 1

 1. A designer approaching a software product from the engineering perspective would

most likely be concerned with the quality of firmness.

 2. When you ignore irrelevant or extraneous details, you are using the process of

abstraction.

 3. A map, a novel, and a blueprint are all examples of a model of something real or

imaginary.

 4. An effective way to understand a complex process is to break it into smaller pieces,

using the process called decomposition.

 5. A software designer who was primarily concerned with creating attractive buttons and

screen layouts would be focusing on the design quality of delight.

 6. b. complex, easily changed, and invisible.

 7. A software development methodology uses a notation to represent a set of models,

and prescribes a process for using those models.

 8. A designer acts as an agent for the client, designing artifacts that meet the client’s

needs. Her designs will exhibit the quality of commodity if she is successful.

 9. The abstraction process of classification allows us to tell the difference between a

garden hose and a rattlesnake.

 10. A primary reason for designing a program before writing it is because it is less

expensive to make a change to a design than to a shipping program.

 Chapter 2

 1. The principle of combining, in an object, the data that describes its state and the

operations that can be performed on the data is called encapsulation.

 2. The data and operations of an object that are visible externally comprise its interface.

 3. The data and operations of an object that are not visible externally comprise its

implementation.

 - 589 -

 4. The principle of inheritance allows object-oriented designers to classify objects based

on similarity of properties.

 5. The principle of polymorphism allows objects that belong to different classes to

respond distinctively to identical messages.

 6. The requirements analysis activity of the SDLC involves understanding and

documenting user requirement.

 7. The design activity of the SDLC involves choosing a system structure capable of

satisfying the Requirements Specification.

 8. During the programming activity of the SDLC, the software is actually written.

 9. The testing activity of the SDLC aims at ensuring the software is of suitable quality.

 10. A class is a pattern, or blueprint, used to construct actual objects.

 11. A development process that uses experimental software to better understand user

requirements is prototyping.

 Chapter 3

1.

The source code for a Java program is created by using a text editor, and the
executable code is created by compiling the source code with the Java compiler,
javac.

 2. A Java program that runs in the context of a Web browser is called an applet,

whereas a program that runs by using the java interpreter is called an application.

 3. b. class

 4. Every Java source file can contain only one public class, but may include other helper

classes, provided they are not created with public access.

 5. The public class JaguarButton must be contained in the file named

JaguarButton.java.

 6. In a class definition, the fields describe the attributes of the object, whereas the

methods define its behavior.

7.

Methods and fields can have access specifiers that determine their visibility. If you
want to create a field that is only accessible by the methods of the same class, you
would use the access private.

8.

False. Attributes that are declared as static, not those that are declared as final, are
shared among all instances of the class. Individual fields are created for all other
defined attributes.

9.

Two differences between primitive types and objects are an object can store many
values, whereas a primitive stores a single value. Objects are manipulated by using
methods, whereas primitives use operators for the same purpose.

 10. False. To support the principle of encapsulation, you will usually make the fields in your

class private, while making your methods public.

 - 590 -

 Chapter 4

 1. For any kind of object, one way of looking at it is to describe its attributes, whereas

another equally valid way is to describe its behavior.

 2. The interface of a well-designed object describes the services that the client of the

object wants performed.

 3. The implementation of an object is the manner or techniques it uses to carry out its

functions.

4.

When designing classes, abstraction is the process of discovering the essential
behavior of an object. These behaviors are used to construct the object’s public
interface.

 5. The purpose of a well-designed class is to model an abstraction from the user’s point

of view.

 6. The first step in designing a class begins by identifying the class’ environment, client

objects, and functionality.

 7. A summary paragraph describes the client’s conceptual model in an informal way.

 8. Your object’s client is anyone or anything that sends your object messages.

9.

Three common techniques that will help you implement your designs are to begin
with a template, write a main() method that exercises your class, and use stub
methods to refine your interface before looking at the details.

10.

Your class will define three types of attributes: object attributes (or fields), which store
the state of each individual object; class attributes, which share state among all
members of the class; and constant class attributes, which store unchanging state.

 11. The “Prime Directive” for object attributes is that all state variables should be declared

private.

 12. An object contains both data and methods that operate on that data. Objects with no

data are ghosts!

 13. The principle of cohesion says that every class should model a single abstraction.

 14. Using static final constants allows you to use your facility for recognition, rather than

rely on recall.

 15. When constructing an object, Java gives you the opportunity to decide which

superclass constructor should be called first by using the super() method.

 16. To write all your constructors in terms of the working constructor, you can use the

special this() method.

 17. The most important consideration when writing constructors is to make sure that all

fields are initialized and that all invariants are satisfied.

18.

When dealing with errors that occur in your methods, you have the options of doing
nothing, stopping the program after testing (by writing an assert() method), fixing the
mistake (which is called defensive programming), or throwing an exception, which is
the preferred way of dealing with errors in Java.

 - 591 -

 19. Methods that change the state of an object (called mutators) must be very careful to
preserve the invariants of the class.

 20. Methods that return information to the client without changing the state of the object are

called accessors.

 Chapter 5

 1. a. Problem summary

 2. CRC cards are used to identify classes, responsibilities, and collaborations.

 3. a. collaborate

 4. An object that receives a message has the responsibility for handling it.

 5. A collaboration diagram depicts the sequence in which objects exchange messages

in a single use-case scenario.

 6. A class diagram specifies the attributes and methods of a class.

 7. To a system user, the user interface is the system.

 8. b. iterative

 9. A good tool for helping the user visualize the user interface is prototyping.

 10. True.

Chapter 6

 1. d. All of the above

 2. c. What the software should do, from the user’s perspective

 3. c. Defining requirements and brainstorming general classes and their responsibilities

 4. b. Class Responsibility Collaborations

 5. a. Underline nouns in the problem statement, trying to discover candidate classes

 6. a. Be conceptual, rather than technically complete

 7. c. Class responsibilities

 8. d. Build “slack time” into the schedule to provide a buffer against unforeseen

circumstances

Chapter 7

 1. Experience-based rules that help you decide which relationships to implement and

the best way to implement them are called heuristics.

 2. A relationship where no messages are passed between two objects, yet the

 - 592 -

relationship cannot be eliminated, is called a simple or weak association.

 3. A uses relationship exists between two objects when one object sends messages to

another object.

 4. d. Composition relationship

 5. b. Uses relationship

 6. False. You can implement a uses relationship in several ways.

 7. False. Using a referential attribute doesn’t imply containment. Containment is

determined by whether the object shares a semantic part-of relationship.

 8. False. A weak association may be necessary to capture an important relationship,

even when the classes do not directly communicate.

 9. public class PaintThis extends Applet
 {
 public void init()
 {
 // First method--pass an argument
 graphics g = getGraphics();
 paintMe(g);
 }
 public void paintMe(Graphics g)
 {
 // Second method--create an instance
 Graphics g = getGraphics();
 g.setBackground(Color.red);
 repaint();
 }
 }

 10. The term used to describe the mutual dependence of two objects upon each other is

coupling. All things being equal, lower is better than higher.

 Chapter 8

 1. A composite or aggregate object is one in which other objects are encapsulated as

the composite object’s fields.

 2. a. Complexity is hidden behind a simpler interface.

 c. Composition provides a method to structure an object-oriented program.

 d. Composite objects are generally easier to use than trying to use all of the parts that

make them up.

 3. True.

 4. In a composition relationship, a part can be contained in only one whole. By contrast,

an object may participate in several using relationships.

 In composition, the lifetime of the parts is usually the same as the lifetime of the

 - 593 -

composite object. The parts of a composite object are created when the composite
object is created, and the parts of a composite object are destroyed when the
composite object is destroyed. In a uses relationship, the lifetime of individual objects
is not dependent on the lifetime of the relationship.

 5. True.

 6. b. The interface may become crowded with features, making the class harder to use

and understand.

 7. Con: Too many layers may increase the communication overhead in your program.

 Pro: Layers allow you to change one part without affecting the others.

 8. True.

 9. b. Either arrays or Vectors.

10.

By using a composition relationship, the SalesInvoice doesn’t have to be concerned
with the details of each LineItem object (or the fields that it contains). You may indeed
want to use LineItem objects when the invoices are gone, for inventory or sales
analysis.

Chapter 9

 1. True.

 2. c. abstract

 3. In Java, you can create two classes that share a similar behavior, even if they aren’t

otherwise related, by having them both implement the same interface.

 4. In Java, if you have two classes that are both specialized versions of a more general

class, you can have both classes extend the same superclass.

 5. False. This is contraction and it violates the meaning of inheritance.

6.

In a correctly written program, any method that uses an object of the superclass
Animal, should be able to replace that object with an object of Animal’s subclass,
Rhinoceros. This is called the Substitution (or Substitutability or Liskov
Substitutability) principle.

 7. False. A Student isA Person. Not every Person isA Student.

 8. b. Polymorphic inheritance

9.

When creating a new subclass from an existing class, you can use the protected
access modifier to allow subclasses access to your data, but prohibit modification by
objects of your class.

10.

False. Adding new arguments, or changing the type of existing arguments, overloads
the method, thus creating two methods of the same name. The original method isn’t
overridden.

Chapter 10

 - 594 -

 1. d. a triangle

 2. To depict an abstract class or interface in a class diagram, you italicize the name of

the “class.”

 3. c. dotted

 4. True.

 5. d. superclass

 6. a. are abstract

 7. Restructuring a set of classes so that common elements can reside in a base class is

called refactoring.

Chapter 11

 1. a. Name

 b. Problem

 c. Solution

 d. Consequences

 2. Another name for the Decorator design pattern is wrapper/filter.

 3. b. java.io

 4. The Factory Method design pattern is useful when a client must create objects having

different types.

 5. The Singleton design pattern limits the number of instances a class can create.

6.

The Iterator design pattern is known to Java programmers as
Enumerator/Enumeration because of the corresponding interface of the java.util
package.

 7. b. Collection

 8. b. hasMoreElements()

 c. nextElement()

 9. The Command design pattern encapsulates a message and its receiver in an object.

 10. a. Adapter

 Chapter 12

 1. False. Many of the most popular object-oriented languages do not provide built-in

support for concurrent programming.

 - 595 -

 2. a. Improved response to events

 c. Support for parallel computing on multiprocessor systems

 3. One potential drawback of using threads is the possibility of program deadlock due to

failure to satisfy liveness conditions.

 4. A thread is initiated by using the start() method, which causes the run() method of the

thread to execute.

 5. a. Extending the Thread class

 b. Implementing the Runnable interface

 6. The run() method of a thread can/cannot throw an IOException.

 7. The Booch-style interaction diagram shows objects and classes along the top edge of

the diagram.

 8. a. invariant

 d. safety

 9. The two Java data types for which atomic updates are not guaranteed are long and

double.

 10. The guarded wait typically consumes more/fewer CPU cycles than the busy wait.

 Chapter 13

 1. False. RPC does not allow you to call object or class methods.

 2. The restructuring of parameters for transmission over a byte stream is called

marshaling.

 3. a. Obtaining references to remote objects

 c. Getting parameters to, and returning values from, remote objects

 4. The part of an object request broker that runs on the client system is known as a stub

and the part that runs on the server system is known as the skeleton.

 5. a. Sockets

 b. CGI

 c. RMI

 d. CORBA

 6. The chief advantage of implementing a system using sockets is high performance.

 7. b. RMI

 - 596 -

 d. DCOM

 8. The principle advantage of RMI is that it’s free.

 9. The technology offering the greatest range of facilities and services for remote

computing is CORBA.

 10. rmiregistry

Chapter 14

 1. d. entity

 2. A database table column contains values for a single attribute of an entity.

 3. a. Package, 3. Catalog

 b. Class, 1. Table

 c. Object, 2. Row

 d. Field, 4. Column

 4. On an E/R diagram, the rectangles represent entities.

 5. On an E/R diagram, the lines represent relationships.

 6. The cardinality of a relationship refers to the number of instances of the related

entities that participate in an instance of the relationship.

 7. Any N:N relationships in the E/R diagram must be replaced by a pair of 1:N

relationships.

 8. c. normalized

 9. If a database table is in third normal form, every non-key column of the table depends

on no other column except that/those of the primary key.

 10. Database prototyping helps determine whether database performance will be

acceptable.

Chapter 14

 1. d. entity

 2. A database table column contains values for a single attribute of an entity.

 3. a. Package, 3. Catalog

 b. Class, 1. Table

 c. Object, 2. Row

 d. Field, 4. Column

 - 597 -

 4. On an E/R diagram, the rectangles represent entities.

 5. On an E/R diagram, the lines represent relationships.

 6. The cardinality of a relationship refers to the number of instances of the related

entities that participate in an instance of the relationship.

 7. Any N:N relationships in the E/R diagram must be replaced by a pair of 1:N

relationships.

 8. c. normalized

 9. If a database table is in third normal form, every non-key column of the table depends

on no other column except that/those of the primary key.

 10. Database prototyping helps determine whether database performance will be

acceptable.

Chapter 16

 1. a. reuse

 2. The failure of software components to achieve the goal mentioned in question 1 is

primarily due to the lack of a standard.

 3. b. Visual Basic

 4. A Bean is a component that can be manipulated visually in a builder tool.

 5. The facility that allows a tool to discover the members of a Bean is

introspection/reflection.

 6. The facility that allows the state of a Bean to be saved is persistence/serialization.

 7. Bound properties cause subscribers to be notified when their value is changed.

 8. Constrained properties cause subscribers to be notified when a change to their value

is pending, allowing a subscriber to veto the change.

 9. Properties with values that take the form of arrays are known as indexed properties.

 10. The name of a method that gets the value of a simple property named lost should be

getLost().

Chapter 17

 1. b. Container

 2. A shallow copy results in shared references, but a deep copy instantiates new objects

so that there are no shared references.

 3. d. none of the above

 4. d. Vector

 - 598 -

 5. An OrderedMap orders its elements by the return value of the hashCode() method.

 6. a. Is defined in the Object class.

 7. d. SetOperations

 8. The Stack, Queue, and PriorityQueue classes add the pop() and push() methods to

those defined by the Container interface.

 9. JGL’s iterators are closely related to the JDK’s Enumerations.

 10. An important principle of library design is to use consistent names, mechanisms, and

error handling.

 Chapter 18

 1. b. pattern

 2. a. Clients

 b. Servers

 c. Networks

 3. a. user interface

 b. application processing

 d. data management

 4. A network computer is a special PC designed to run Java better than a standard PC.

 5. The traditional information system architecture was characterized by high cost and

low flexibility.

 6. The file server information system architecture was characterized by low cost and

high flexibility.

 7. The client/server information system architecture usually allocates database

processing to the server.

 8. The distributed information system architecture is characterized by the use of multiple

servers.

 9. Thin clients require the use of a middleware server, which requires the client to load

only a single driver.

 10. b. portability

 c. automatic software distribution

