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Foreword

The topic of mobile sensing in psychology may seem to be a new field powered by recent
technology, but the quest for more ecological data to measure mood, behavior, and cog-
nition has been an old one. No doubt, Freud wondered about the relationship of what
he observed in the consulting room to what was happening in the real world outside.
And both clinicians and scientists since have wished for better insight into the real-world
experience of people in psychological distress.

There is a highly apocryphal story about the scientist who devotes her life to creat-
ing the ideal mobile sensing tools, only to pass away before seeing these tools adopted in
clinical use. The story is that such virtuous work is rewarded by St. Peter who, because of
her exemplary dedication to improving the human condition, offers her an audience with
God and an opportunity to ask the Almighty a single question. With some trepidation, she
pops the question, “Father, will we ever have a mobile sensing device that is adopted by
patients and providers?” Allegedly, God responds, “Yes, my child. But not in my lifetime.”

At the outset of this important volume on mobile sensing, it’s important to realize
that the task for mobile sensing is neither easy nor quick. It’s really two tasks, both cov-
ered extensively in this volume. First is the challenge of validation. Do the signals on a
wearable or smartphone provide high-quality data, and can those data be tied to some
ground truth? Acquiring high-quality signals in a world of variance, interference, and
nonadherence feels like one of those “not in my lifetime” challenges. But several chap-
ters in this book demonstrate that we can collect high-quality data on location, activity,
emotion, and more. Smartphones, wearables, and social media provide an unprecedented
scale of data, capturing the world outside of the consulting room or psychology lab. Yes,
we need to create standards for quality and we need to integrate mobile sensing data with
other measures, but already we can see the value of this new world of data for giving us
insight into a person’s umuwelt.

The second task, the ground truth problem, is arguably more difficult. For measures
of mood or cognition, what constitutes ground truth? Should we train algorithms to
self-report scales, to diaries of activity and mood, or to clinical ratings? If we are lim-
ited to these measures, is the field of mobile sensing destined to be no better than the
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Vi Foreword

subjective tools we’ve been using for decades? Here the analytic tools may help. As Part
IT of this book makes clear, increasingly sophisticated analytic approaches may help us
refine the signals so that they are more informative than traditional measures and ulti-
mately may offer a new kind of ground truth. But mobile sensing data, in the near term,
will be adjunctive and not replacements for more conventional measures, remembering
that more objective measures are not inherently more valid measures.

These challenges of data collection and data analysis need to be put into the context
of clinical need, as noted in Part III of this book. Beyond the importance of psychological
research, we find ourselves in a mental health crisis with rising rates of suicide, drug-
overdose deaths, and depression in youth. The world of mental health care is supported
by dedicated professionals who generally work in a data-free zone, without objective
data on what is happening outside of the clinic. They may ask about sleep, activity, social
contact, and mood without any objective data on these highly quantitative variables.
Imagine helping someone with diabetes without measuring blood sugar (now trackable
with a continuous glucose monitor) or someone with hypertension without measuring
blood pressure (now trackable with home monitoring systems).

To be clear, our mental health crisis is not caused by this data desert, but better
measurement can be part of the solution. More than half of the population with a mental
disorder are not in care. Remote monitoring can detect a problem and connect people
to care. For those who receive care, diagnosis is largely based on subjective reports in a
single visit. Remote monitoring can provide objective data on how someone is thinking,
feeling, and behaving in the real world, leading to more precise diagnosis. And for those
in treatment, there is a surprising absence of monitoring progress, what the field calls
“measurement-based care.” There is a saying in business that we can’t manage what we
can’t measure. For mental health care to begin to resolve the mental health crisis, we will
need to bake measurement into all aspects of care. Mobile sensing can help to solve this
data desert passively, ecologically, and continuously, at scale.

I stress this clinical need and the promise of remote sensing because we seem to be
in a world in which worries about perils can stifle the promises of innovation. Yes, we
must be mindful of privacy and data provenance. We need to build “with,” not just “for,”
users. Transparency, integrity, and equity are fundamental concerns and essential for
success. But in order for these concerns to be welcomed with creative and compassionate
solutions, they must not become threats to the overall enterprise of using innovation to
solve a public health crisis. We must remember that we face a formidable mental health
challenge, which can be solved only via innovations like mobile sensing.

Will this happen in our lifetimes? Bill Gates famously noted, “We always overesti-
mate the change that will occur in the next 2 years and underestimate the change that
will occur in the next 10.” With recent advances in sensor technology, artificial intelli-
gence, and image analysis, we may be closer than we think. This timely volume provides
a comprehensive picture of just how close we are and what remains to be done.

TaOMAS INSEL, MD

Executive Chair, Vanna Health

Former Director (2002-2015), National
Institute of Mental Health

Author of Healing: Our Path from Mental
Illness to Mental Health



Preface

The rapid developments in the field of modern information technology are opening up
possibilities for psychological research that were inconceivable 20 years ago. A small
device like the smartphone is capable of recording and storing important information
about everyday human experience and behavior in real time. Examples can be seen in
many areas of psychology and neighboring disciplines: It is possible to collect informa-
tion about the location where people currently are, which places they visit, how much
and how fast they move, and the extent to which other people are present. Audio, photo,
and film recordings can be made and sent or shared (and stored) immediately. Internet,
social media, and phone usage behavior can be tracked comprehensively and in real time.
Linking the smartphone with other mobile (e.g., wrist-worn) sensors enables physiologi-
cal measurements outside the lab and tracking, for example, physical activity and sleep
patterns. By using specific apps, questionnaires can be easily presented in tandem with
the direct mobile phone usage tracking. That way, momentary mood states as well as the
subjective perception of and attitudes toward objective events can be captured. Compli-
ance with medical treatments and psychological interventions can be monitored (either
directly via phone usage behavior or indirectly via other mobile sensors). Also, experi-
mental studies can be planned and implemented using the smartphone. These research
methods can allow for unprecedented ecological validity and can facilitate the empirical
evaluation of the generalizability of research findings (across time, settings/contexts, and
populations).

Also, mobile sensing opens new paths for psychological assessment. The intensive
longitudinal assessment of behavioral acts, inner experiences, and physiological activity
in everyday contexts facilitates uncovering individual patterns of psychological attributes
and allows comparing them interindividually. This provides personalized multimethod
assessment strategies that go far beyond retrospective (or momentary or daily) diary
recordings or day reconstruction methods. Individual symptom constellations and their
change over time can be identified, which can form the theoretical and methodologi-
cal basis for development of personalized models of personality and psychopathology.

vii
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Modern psychometric approaches for intensive longitudinal data also allow the applica-
tion of psychometric quality criteria to single-case data to measure individual-specific
constructs and to test their generality. By using modern statistical methods for Big Data,
predictions of future emotional states and behavioral tendencies can be made based on
the richness of data a smartphone and connected mobile sensors can provide. Critical
life situations can potentially be anticipated and alerted to in real time, personalized
interventions can be adapted to momentary contexts, and individuals can obtain helpful
support and advice in their daily lives.

The possibilities mobile sensing opens up for the social, behavioral, biomedical, and
life sciences appear almost infinite and are bound to become even more comprehensive
in the years to come. However, data collection with new information technology also
poses new challenges for research and applied fields. Is everything that is possible also
legally allowed? What are the personal and societal consequences of the possible deep
insights into very private areas of life for research ethics and the relations between the
researchers and those being researched? How can data be stored so that anonymity and
privacy are preserved? How can quality criteria be formulated for this new and rapidly
developing field of research? And how can we ensure that information and predictions
derived from mobile sensing are psychometrically accurate and practically useful as we
move from scientific proof-of-concept measurements to medical/clinical measurements
that aim at supporting and improving the diagnostic process? To find answers to these
questions, the German Data Forum, an independent council that advises the German fed-
eral government and the federal states with respect to the research data infrastructure for
the empirical social, behavioral, and economic sciences, established a working group of
experts in which four of the five editors of this handbook participated. Over the course of
the council’s activity, the need for a comprehensive handbook that would allow students,
researchers, and users of mobile sensing methods to obtain comprehensive and state-of-
the-art information about the many opportunities, promises, challenges, and limitations
that characterize this new area of social and behavioral sciences became apparent.

This handbook is intended to fill this gap. It is based on the conviction that a pro-
found understanding and the sound application of mobile sensing methods require spe-
cific knowledge and competencies:

Knowledge of the scientific background and the key concepts
Knowledge of how to generally plan and conduct a mobile sensing study

Knowledge of the different methods of data collection with mobile sensing, in
terms of both the technological know-how and the methodological how-to

Knowledge of the possibilities and limitations of mobile sensing and of best-
practice examples from different areas of application

In order to turn this handbook idea into reality, the original group of initiators not
only succeeded in inviting another highly renowned colleague as coeditor, but also man-
aged to convince 79 leading international authors, from a range of disciplines, to partici-
pate in the handbook project and contribute their specific mobile sensing expertise in the
form of a chapter. Working on the publication of this handbook, we editors have learned
a great deal about methods and applications of mobile sensing from the chapters provided
by the authors, and we are convinced that readers will as well.
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Editing a handbook with 33 chapters and 84 authors (from a broad range of disci-
plines) is a major challenge and is certainly compounded by the fact that this handbook
project grew to fruition over the course of the COVID-19 pandemic, which confronted
all authors and editors with a whole new set of professional and private challenges. The
loss of a few originally planned and committed chapters is certainly due to these chal-
lenges. We are very grateful and acknowledge with high gratitude and esteem that the
other authors remained committed to the handbook project and submitted high-quality
chapters despite these extraordinary (or, rather, unprecedented) adverse circumstances.
When publishing such a comprehensive handbook, one has to rely on supportive help. We
would like to take this opportunity to thank from the bottom of our hearts our research
assistants, Amelie Spliesgart and Julia Sauer, who critically revised and uniformly for-
matted the individual chapters as well as supervised the formal aspects of this handbook
project. Their help was terrific!
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How to Conduct
Mobile Sensing Research

Gabriella M. Harari, Serena Soh, and Lara Kroencke

Mobile sensing is a methodological approach that leverages digital devices and plat-
forms to collect data about human behavior. This chapter provides a starting point for
researchers interested in conducting mobile sensing research in psychological science by
describing how to conduct sensing studies with smartphones. First, we consider a series
of questions that will help determine whether mobile sensing is the right methodologi-
cal approach for a given study, set of research questions, and target sample of research
participants. Next, we review a series of considerations that will help shape the specific
study implementation, such as the resources available, the platform used for data collec-
tion, and some of the basic features of the study design (e.g., study duration, sampling
rate, strategies for participant engagement, ethical considerations). Finally, we discuss
some recommended practices for data monitoring, data cleaning, and data analysis,
while highlighting the need for standardized guidelines and best practices for conducting
mobile sensing research.

Introduction

Mobile sensing is a methodological approach that leverages digital devices and platforms
to collect data about human behavior. Mobile sensing is used in studies across a broad
range of scientific disciplines (e.g., computer science and engineering, psychological sci-
ence) to answer research questions in both technical and substantive domains. In the
technical domain, mobile sensing research often focuses on software development or
activity recognition in an effort to improve the capabilities of sensing technologies. In the

3



4 BACKGROUND AND KEY CONCEPTS

substantive domain, mobile sensing research often focuses on assessing behaviors and/or
environments to understand people’s daily lives and psychological experiences.

The goal of this chapter is to provide a starting point for researchers interested in
conducting mobile sensing research in psychological science. Our aim here is to provide
a roadmap for those who are considering or preparing to launch a mobile sensing study
by describing how to conduct sensing studies with smartphones in particular. We focus
on smartphones because they are the prototype mobile sensing device and the one most
commonly used in mobile sensing research to date. However, many of the considerations
outlined here also apply to the design of studies that use other sensing technologies to col-
lect sensing data from participants’ wearables (e.g., smartwatches, fitness trackers) and
smart home appliances (e.g., smart speakers).

First, we consider a series of questions that will help determine whether mobile sens-
ing is the right methodological approach for a given study, set of research questions,
and target sample of research participants. Next, we review a series of considerations
that will help shape the specific study implementation, such as the resources available,
the platform used for data collection, and some of the basic features of the study design
(e.g., study duration, sampling rate, strategies for participant engagement). Finally, we
discuss some recommended practices for data monitoring, data cleaning, and data analy-
sis. Overall, this chapter lays the foundation for the more advanced chapters in Part II
(“Mobile Sensors: Technological Know-How and Methodological How-To”) and Part III
(“Analysis of Mobile Sensing Data”) by outlining the basic steps involved in conducting
mobile sensing research. Figure 1.1 provides an overview of the key steps and consider-
ations that shape mobile sensing studies.

Questions to Consider Before You Get Started

Before getting started with mobile sensing research, it is helpful to consider a series of
conceptual questions to determine whether mobile sensing is the best or “right” approach
for a given study. As with any method, there are several benefits and costs associated
with adoption of mobile sensing in research studies. The benefits of adopting mobile
sensing primarily stem from the potential to collect large-scale, fine-grained, real-world
naturalistic observations of people’s behaviors and environments, and to a lesser extent
of people’s verbalized thoughts and feelings. This window into the daily lives of research
participants provides an unprecedented view that is unparalleled when compared to
other methodologies. The costs of adopting mobile sensing stem from the logistical (e.g.,
resources available) and practical hurdles (e.g., analyzing intensive repeated measures
data) that must be overcome to successfully design and conduct a mobile sensing study.
Whether the benefits outweigh the costs for any given study will largely depend on the
research questions one hopes to address and the characteristics of the target population
one hopes to study.

What Are the Research Questions and Target Variables?

The research questions one hopes to address and the phenomenon of interest are two key
factors that can help determine whether mobile sensing methods are appropriate. Gener-
ally, research questions that have a temporal component and are focused on understanding
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6 BACKGROUND AND KEY CONCEPTS

some phenomenon over varying units of time (e.g., momentary, hourly, daily, weekly) are
most suitable for mobile sensing study design. In addition, any questions about the degree
to which people engage in behavior (e.g., frequency or duration of social interactions) are
well suited to mobile sensing study design, whereas, at the time of this writing, research
questions focused on more subjective aspects of behavior (e.g., quality of social interac-
tions) are more challenging to address with mobile sensing studies. For example, several
studies have focused on understanding the behavioral factors associated with college
student well-being and academic performance during the academic term (e.g., Doryab et
al., 2019; Wang et al., 2014, 2018; Wang, Harari, Hao, Zhou, & Campbell, 2015). In
such studies, mobile sensing methods are well suited to addressing the research questions
because they permit objective assessments of behaviors that are known to shape well-
being and performance, such as the degree to which students engage in physical activity
and social interactions, and exhibit certain sleeping patterns. Moreover, the studies ben-
efit from the fact that continuous data are collected to measure the behaviors of interest.
This permits the research team to aggregate the timestamped data in different ways and
allows for multiple investigations of the research question using different approaches and
analytic techniques to obtain a more complete understanding of the phenomena of inter-
est. For example, some research studies have focused on a broad array of student behav-
ior (e.g., physical activity, conversations, studying, partying) at different times of day and
across entire academic terms to understand the factors associated with student well-being
and academic performance (Wang et al., 2014, 2015). In contrast, other studies focused
more narrowly on specific behaviors, such as social behavior (Harari, Miiller, Aung, &
Rentfrow, 2017; Harari, Miller, Stachl, et al., 2020) or mobility behavior (Miiller, Peters,
Matz, Wang, & Harari, 2020; Saeb, Lattie, Schueller, Kording, & Mohr, 2016). These
examples highlight the opportunities introduced by using mobile sensing for answering
research questions about human behavior over time. But it is worth noting that these
studies focused on quantified estimates of the behaviors of interest and did not assess
qualitative information about the behaviors observed (e.g., quality of social interactions
or sleep).

Research questions with a temporal component also include research questions about
dynamic intraindividual processes (Kuper, Modersitzki, Phan, & Rauthmann, 2021). For
instance, researchers might examine how social behaviors are related to well-being states
on the within-person level (i.e., whether individuals feel better after engaging in a con-
versation compared to how they normally feel) and individual differences therein. These
within-person dynamics can best be investigated if the same individuals are observed
repeatedly over time, which is typically the case in mobile sensing research. However,
mobile sensing studies need not be solely focused on intraindividual processes.

Another area of opportunity presented by mobile sensing data is in understand-
ing and objectively assessing interindividual differences, such as people’s characteristic
patterns of behaving over time (i.e., dispositional tendencies; Buss & Craik, 1980). If
collected over long periods of time in which many types of situations are encountered,
researchers can obtain estimates of people’s behavioral tendencies by aggregating con-
tinuous sensing data at the within-person level over many days, weeks, or months for
use in analyses at the between-person level. One point of caution with regard to deriving
estimates of behavioral tendencies is that the research team should consider the implicit
assumption that participants experienced a representative sampling of situations dur-
ing the data collection period (e.g., weak and strong situations; Blum, Rauthmann,
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Gollner, Lischetzke, & Schmitt, 2018). For example, sensing studies conducted during
the COVID-19 pandemic (e.g., Huckins et al., 2020) likely reflect a strong situational
effect on social behavior that could affect behavioral estimates of face-to-face interaction
and computer-mediated communication. These sensed behavioral tendencies can be used
in place of self-reported behavioral tendencies to obtain objective estimates that quantify
how a person actually tends to socialize, be physically active, and engage in various daily
life activities over time. In past studies adopting this approach, the behavioral tendencies
derived from sensing data have been examined in relation to self-reported personality
traits (e.g., conversation, calling, texting, and app use tendencies; Harari, Miiller, Stachl,
et al., 2020; Stachl et al., 2017) and have even been used to predict self-reported per-
sonality traits alongside other sensing features (e.g., Monsted, Mollgaard, & Mathiesen,
2018; Stachl et al., 2020). Chapter 20 provides a review of personality research in this
domain.

In terms of target variables of interest, mobile sensing studies can provide information
about people’s inferred thoughts and feelings, as well as their observed behaviors and sur-
rounding environments. However, they are best suited to providing objective assessments
of behavioral and environmental information that can reflect the surrounding situation.
The behavioral information that can be obtained from mobile sensing studies includes
measures of human movement from accelerometers and Global Positioning System (GPS)
data (e.g., physical activity, mobility patterns; see Chapters 4 and 5), social interactions
from phone usage data (e.g., call and short messaging service [SMS] logs and app use
logs; see Chapters 7 and 8), and various daily activities that are often measured in time
use studies (e.g., some of which can be sensed like eating, sleeping, playing games, and
listening to music; Harari, Miiller, Mishra, et al., 2017; Sonnenberg, Riediger, Wrzus,
& Wagner, 2012; White & Dolan, 2009). The environmental information that can be
obtained from mobile sensing studies includes measures of ambience (e.g., light, noise,
temperature), location (e.g., indoor vs. outdoors, places visited), and proximity to others
(e.g., isolation vs. co-location; Harari, Miiller, & Gosling, 2020). People’s thoughts and
feelings can also be inferred to some extent using sensing data, primarily by relying on
verbal behavior collected from language data from social media (see Chapter 9) or audio
data collected from microphones (see Chapter 10). But given that thoughts and feelings
are inherently subjective phenomena, self-report methods may be a more effective and/
or convenient assessment approach for research focused on such constructs. Table 1.1
provides an overview of the different target variables of interest that can be derived from
sensing data and the data sources needed to obtain them.

Who Are the Research Participants?

Another factor to consider when deciding whether to adopt mobile sensing as a data
collection method for one’s study is the target research population one plans to recruit.
Much of the first wave of mobile sensing research was conducted with college-age young
adults, with the aim of understanding the behaviors that shape their well-being. Target-
ing young adults as research participants in mobile sensing studies comes with several
conveniences—they are generally readily available on university campuses where the
research is being conducted, they are tech-savvy and already own smartphones, and they
may be interested in participating in studies that collect data from their digital devices.
For example, one study of student motivations to self-track showed that young adults
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TABLE 1.1. Overview of Types of Data in Mobile Sensing Research

Type of information assessed

=
|
%)
o0 el
¥ g =
=} —
- = 3 5 &
Data types Description = =7 m =3
Mobile sensors
Accelerometer Orients the phone display horizontally or v v
vertically; can record duration and degree of
physical activity or movement
Bluetooth radio Allows the phone to exchange data with other v v
(BT) BT-enabled devices; can record the number of
unique and repeated interaction partners and
devices and co-located individuals
Global Positioning Obtains the phone location from satellites; can v v
System (GPS) record latitude and longitude coordinates
scans
Light sensor Monitors the brightness of the environment v v
to adjust phone display; can record degree of
ambient light or darkness
Microphone Permits audio for calls; can record duration and v v v v
frequency of conversations, degree of ambient
silence or noise
Wi-Fi scans Permits the phone to connect to a wireless v v
network; can record location information
based on the Wi-Fi network and crowds via the
number of unique scans
Other types of data
Cameras Records images or video; can take pictures or v v v
videos periodically or semicontinuously
Phone use logs Records usage patterns such as notifications v
App use logs Records social interactions, entertainment, v
information-seeking behavior
Language data Obtained from text data collected from the v v v

keyboard

Note. The first two columns of this table are adapted from tables presented in Harari et al. (2016) and Harari,
Stachl, et al. (2021).

were interested in collecting data from their digital devices (e.g., smartphones, wearables)
to improve their productivity and well-being, monitor their mood and daily activities, or
improve their social lives (Harari, Muller, Mishra, et al., 2017).

Of course, not all research questions are about the lives of young people or about
those young people who happen to be enrolled in universities. In such cases, more thought
may need to be given as to how to go about recruiting and incentivizing the target group
to participate in the study (see the section “How to Recruit and Incentivize Participants”
later in this chapter).
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Preparing a Mobile Sensing Study

Having determined that mobile sensing is the right methodology for your research ques-
tions and study, the next step is to consider a series of logistical issues that will help
shape the design of the study. Mobile sensing studies are generally time and resource
intensive, longitudinal in nature, and require careful thought to decisions that can affect
the success of the study. Next, we outline how the resources one has available can shape
subsequent decisions regarding the key features of the study design, such as the mobile
sensing platform used for data collection and whether participants are engaged with the
study. Ultimately, the logistical considerations and design decisions made at this step in
the research planning will affect the quality of the resulting dataset.

What Resources Are Available?

The resources one has at hand to support the launch and completion of the study are a
critical factor in study planning. Three main resources to consider are (1) the individual
members and skillsets of the research team, (2) the financial resources available to sup-
port the study, and (3) the amount of time available to conduct the research.

The research team is a crucial factor in study planning for mobile sensing stud-
ies. The composition of the team and individual skills each member brings to the study
will determine how responsibilities are distributed throughout the study period. In gen-
eral, every sensing study involves several components that require oversight (sometimes
simultaneously) and iteratively inform one another (e.g., pilot testing, data monitoring,
participant interaction, data processing and analysis), making such studies nearly impos-
sible to conduct by an individual alone. Sensing studies are a team effort, but whether
that team is composed of individual students and research assistants or hired staff is a
decision to be made early on in the study planning. Students and research assistants may
be more motivated and invested in the study success given their likely involvement in the
research planning process. However, if accountability is necessary, then hired staff may
be a more reliable source of research support. Ultimately, this decision is contingent on
the resources available.

In terms of skillsets, it is helpful to have team members who are familiar with the
technical aspects of the sensing software being used (whether it be a custom, open-
source, or commercial sensing application) and who are experienced in data science and
programming to facilitate handling large-scale datasets. In addition, it is important to
encourage open communication among the members of the research team throughout the
study planning and data collection stages (e.g., via weekly meetings and/or other forms of
synchronous and asynchronous interaction).

The financial resources available to help support the study are also important consid-
erations when designing a sensing study. The amount of funding available can influence
many of the decisions that must be made during study planning, such as study duration,
number of participants to recruit, and type of sensing software used for data collection.
For example, the study duration influences the amount of funding needed to pay staff
(e.g., graduate students or research assistants hired to work on the project) and the amount
of data that is collected, although the latter also depends on the number of participants
recruited, the number of sensing data types collected, and the sampling frequency used
during data collection. Generally, a study that runs for 1 week and only collects metadata
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from phone logs (e.g., calls, SMS, and app usage) is going to be less costly than a study
that runs for 1 month and frequently collects raw sensor data (e.g., accelerometer, GPS).
This is, in part, due to the storage requirements for such data, which drive up costs during
data collection and subsequent analyses. The number of participants recruited will also
affect the amount of funding needed if individuals are being financially compensated for
their participation (see the section “How to Recruit and Incentivize Participants?” for
alternative types of compensation). In addition, the decision to use a custom application
(specifically developed for the study) or an open-source app (configured based on freely
available software) may be a reasonable solution for research teams with the funds to hire
people who can handle the more technical aspects of managing sensing software. Using
custom or open-source software can permit more flexibility in that features can be cus-
tomized to the needs of a given study, but this approach simultaneously introduces a great
deal of technical complexity and requires more time for preparing and piloting the study
to ensure the software is working as it should. Similarly, the decision to use a commercial
app may come down to whether one can afford the expenses associated with running a
sensing study with a given company. Several commercial sensing apps are available on the
market, with each company naturally offering different rates for their services and hav-
ing their own expenses to consider in providing their services. Some companies charge
researchers based on specific study design characteristics, while others charge a flat ser-
vice fee based on a subscription model (for a brief discussion of academic vs. corporate
sensing research, see Chapter 33). In our own work, we have seen commercial companies
quote anywhere from several hundred (e.g., ~$500 for a 2-day study collecting experi-
ence sampling and GPS data from 200 participants) to tens of thousands of U.S. dollars
for sensing studies (e.g., ~$25,000 for a 4-week study collecting experience sampling
reports and a full suite of many different types of sensing data from 1,000 participants).
Beyond the study duration, the types of data collected and the sampling frequency can
also affect the cost of running a study with a commercial company. So, given the varia-
tion in pricing we have observed in working with commercial companies, we generally
encourage researchers interested in using a commercial app to speak with representatives
of several companies to get estimated quotes for the cost of running a study that meets
their desired specifications. To illustrate these points with more concrete examples, in
Table 1.2 we briefly summarize our recent experiences and approach to conducting two
different mobile sensing studies.

Another main resource required to effectively conduct a mobile sensing study is time
(see Figure 1.1 for example estimates). Running a mobile sensing study (with any team
and set of financial resources) will involve an intensive time commitment during the vari-
ous stages of the study, from design to data collection to analysis. Thoughtful planning
and discussion during the initial stages of the study will be required when the research
team is deciding on the study design characteristics, testing and selecting platforms,
and preparing materials for ethical review boards. Once the study is designed, the data
collection stage is also demanding and can easily become a full-time job for individual
members of the research team when accounting for the data monitoring and participant
interactions required to ensure high data quality. So, it can be helpful for one or more
team members to take the lead on different parts of the study. For example, one person
might be responsible for running a pilot study with the research team to test the sensing
software before the study launches, another person might be responsible for communi-
cating with and onboarding participants during the study, while another person might be
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TABLE 1.2. Study Design Considerations and Examples from Recent Mobile Sensing Studies
Study names

COVID-19 Smartphone Sensing Coping with Corona Project (Back

Considerations Study (Talaifar et al., 2021) et al., 2021)
Study duration 3 weeks 4 weeks
Recruitment process Through an online participant Through a university psychology

recruitment platform (Prolific) and  course
university psychology course

Number of participants 300+ students and adults 1,000+ students
Compensation Course credit or monetary Course credit and weekly feedback
compensation ($10/week) and reports
weekly feedback reports
Sensing software Open-source app (Beiwe) Commercial App (Ksana Health)
Sensing data collected ~ Accelerometer, battery state, Accelerometer, ambient light,
Bluetooth, GPS, gyroscope, battery state, GPS, music, phone
microphone, phone use logs, screen  use logs
time, Wi-Fi
Self-reported data Presurvey; two experience sampling Presurvey; eight experience
collected surveys per day at set times; daily sampling surveys per day at random

audio clip submissions; weekly app  times; postsurvey
usage screenshots

Members of the research Professors (2); doctoral students (3); Professor (1); postdoctoral

team responsible for undergraduate research assistants scholar (1); doctoral students (2);

data collection (3) undergraduate research assistants
(%)

Total cost ~$6,000 (mainly from participant  ~$30,000 (mainly from data

compensation cost and recruitment  collection platform fees)
platform fees)

responsible for monitoring the quality of the incoming data during and after the study.
Of course, many of the tasks required to efficiently design and conduct sensing studies do
ultimately require a collaborative effort. But we have found that many research teams are
able to efficiently conduct studies with this kind of delegation of responsibility, so that
there is a point of contact for troubleshooting issues that may arise with each aspect of
the study.

How to Select a Mobile Sensing Platform?

The selection of a specific mobile sensing platform to use for data collection involves two
key factors—the preferred device operating system (e.g., iOS [internet operating system],
Android) and the type of application (e.g., custom, open-source, or commercial). The
operating system and application selection should be determined based on considerations
about the target research participants, the kinds of data needed for the study, and the
resources available to the research team.

The selection of operating systems is consequential in that it shapes who can partici-
pate in the study and the kinds of sensing data that can be collected. As of 2021, Android
and i0S jointly control approximately 99% of the global market share (Statista, 2021);
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we therefore limit our discussion to these two mobile operating systems. It is also worth
noting that the vast majority of sensing studies to date use applications that run on the
iOS and/or Android phones. If participants are expected to use their own smartphones
during the study, the research team must also consider the type of operating systems most
used by their target sample. Past work has found that iOS users tend to have higher edu-
cation levels, compared to Android users (Gotz, Stieger, & Reips, 2017). But this demo-
graphic difference may not necessarily hold in all countries. In fact, Android phones are
the most widely used phones around the world, having about a 72% share of the mobile
operating system (OS) market (Statista, 2021).

The operating system also influences the kinds of data that can be collected by the
sensing application. Generally speaking, iOS is more restrictive than Android in terms
of the breadth and granularity of data sources that can be collected. This is in part due
to the way that the two OS’s allow third-party apps to access and collect data from
the user’s device. For example, third-party apps on iOS phones are not permitted to
access the user’s application usage logs at the time of this writing, but these sources of
data can be accessed on Android phones (see Chapter 8 for more information about
collecting app use data). So if a sensing study is designed to answer questions about the
kinds of apps people use, the research team will need to identify a sensing platform that
runs on Android phones and focus their recruitment efforts on participants who own
Android phones. However, some data sources are commonly collected across both iOS
and Android operating systems. These common sources of sensing data include acceler-
ometer sensor data and activity classifications (e.g., stationary, walking, running), as well
as GPS data.

The type of application used is also consequential because different sensing applica-
tions require different levels of support from the research team. A custom application is
one that is designed specifically for and by a research team, and it is typically used in
collaboration with computer scientists (e.g., EmotionSense, StudentLife; Rachuri et al.,
2010; Wang et al., 2014). An open-source sensing application, such as AWARE' (Fer-
reira, Kostakos, & Dey, 2015) and Beiwe” (Torous, Kiang, Lorme, & Onnela, 2016), is
one that is freely available for use by researchers. To effectively conduct a mobile sensing
study with a custom or open-source application requires technical knowledge about how
the sensing software operates. This is because if and when issues arise during data collec-
tion, someone on the research team needs to be able to troubleshoot and find a solution
to address the issue. In contrast, a commercial sensing application is one that is operated
and maintained for profit by a company (e.g., Ethica Data, Ksana Health). Conducting
a mobile sensing study with a commercial application requires financial resources, but
the benefits can outweigh the costs if the research team is not particularly interested in,
skilled, or cares to be responsible for the technical details of how sensing systems operate.

How to Decide on a Sampling Strategy and Study Duration?

When selecting a sampling strategy, researchers must take into account many of the con-
siderations introduced thus far, such as research questions, target variables, populations
of interest, and available resources. Sampling strategies in mobile sensing often take the
form of time-based sampling, such as continuous or periodic, or event-based data collec-
tion. Continuous and periodic sampling refers to schedules that collect data consistently
at fixed times or within specifically set intervals, while event-based sampling refers to
schedules that collect data contingent on the occurrence of certain events.
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Time-based strategies include continuous and periodic sampling, which are often
used in mobile sensing research. While continuous collection provides researchers with a
wealth of data leading up to, during, and after the occurrence of the phenomenon being
studied, periodic sampling enables researchers to decide how often and at what intervals
the data are to be collected, depending on the objectives of the study or research question.
Although the frequent and consistent nature of mobile sensing methods is considered to
be one of its primary benefits, continuous sampling is not necessarily the best option for
every study. For example, in the case of GPS data, sampling continuously (e.g., every
minute) would lead to large datasets, challenges in data storage, and additional inconve-
nience to participants due to faster battery drainage. Moreover, participants’ locations
may not change very frequently during certain hours (e.g., during the work day if they are
employed), which means that continuous sampling could result in obtaining redundant
information. Rather, collecting GPS data every set interval of minutes within an hour
(e.g., every 10 minutes) via periodic sampling may be a more appropriate and appealing
option for both researchers and participants. For such reasons, studies like one examin-
ing the behavioral trends of college students through smartphones opt to use periodic
GPS samples when computing outdoor mobility such as traveled distances (Wang et al.,
2014).

Another strategy used in mobile sensing studies is event-based sampling where data
collection is triggered by a predefined event. This strategy is most appropriate when
examining specific phenomena that do not take place at regularly timed intervals, and it
requires researchers to define the events that trigger data collection beforehand. Research-
ers often apply this strategy when studying smartphone use behaviors through metadata
logs, which record events as they occur (e.g., a push notification is logged when it is
received; calls and texts are logged as they are made or received). This sampling strategy
is also commonly used when collecting movement or location-related data. By setting the
events to be significant changes in GPS, the accelerometer, or the Wi-Fi network, data
collected in those instances enable researchers to focus on and identify significant pat-
terns in either activity or location changes. For example, this strategy has been observed
in a study in which smartphone sensing data were used to predict clinical depression and
researchers programmed event-based sampling for iOS users to study location trends by
setting distance filters (Farhan et al., 2016). Event-based sampling helps ensure that data
collection occurs at necessary times, but researchers must be prepared for the potential
technological challenges that may arise. For example, the program may define events
too generally and trigger data collection at unintended times, or technological glitches
in the software may occur as other types of sampling are simpler in terms of data collec-
tion parameters. In the case of using location-related event-based sampling, unintended
data collection may occur if data collection is triggered every time a participant is near
the target location rather than when they are at the target location. Furthermore, GPS-
based sampling can be difficult to program and implement, and additional testing of the
location-contingent sampling will be required to identify potential bugs that might unex-
pectedly hinder data collection. This is why aspects such as ensuring the defined events
are specific enough (e.g., precise distance filters for location-related events) and running
pilot studies with a smaller pool of participants are especially important to these studies.

Once a sampling strategy is decided on, an appropriate study duration should then
be considered given that together they determine the eventual size of the dataset. While
mobile sensing studies typically last weeks to months, certain main considerations must
be kept in mind when deciding on the length of a study. For instance, researchers must
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select a length (and sampling frequency) that enables them to answer their research ques-
tion in terms of whether it examines momentary, hourly, daily, or weekly behavioral
trends. If the study revolves around understanding how smartphone use behavior relates
to well-being at the momentary level, the study duration can be shorter than a similar
study focused on this relation over longer periods of time (e.g., understanding how well-
being changes over the academic term). Lastly, from a logistical standpoint, it is impor-
tant to consider that the combination of sampling rate and study duration determines
eventual dataset size and statistical power. Sampling strategies that lead to a high fre-
quency of data collection paired with long study durations, for example, could pose chal-
lenges for storing, processing, and analyzing the datasets, which may require the research
team to have more advanced technical skills for large-scale analysis. Nonetheless, high
sampling frequencies and long study durations have the benefit of increasing the power
of the statistical analyses conducted. For example, in a recent 4-week study with ~700
participants, we collected around 4 terabytes of data. Even with an experienced and dedi-
cated research team, we have spent a great deal of effort and time deciding on and imple-
menting a workflow regarding how to aggregate, process, and analyze the data. To this
point, the decision on the length of the study should also be made while acknowledging
research team bandwidth and resource limitations. Longer durations often require more
work on the part of the researchers either in monitoring data collection or analyzing the
data afterward, as well as additional resources whether it be the monetary compensation
for participants or costs associated with storing, managing, and analyzing large datasets.

How to Address Ethical Issues?

Conducting mobile sensing research introduces a host of new ethical quandaries for the
social scientist. How can one respect individual privacy while collecting mobile sensing
data from personal devices? How can the data be managed in a secure fashion? How can
the study plans be best communicated to ensure appropriate oversight by relevant ethical
review boards? As illustrated in the sections above, a great deal of data can be collected
that provides detailed information about a person’s behaviors (and to some degree, psy-
chological experiences) in context. This is exciting for scientific discovery, while simulta-
neously concerning with regard to its potential negative effects for the individual partici-
pants. In this section we outline some of the main considerations in the ethical domain
for getting started with mobile sensing research. However, we point interested readers
to Chapter 2 for more detailed discussion of privacy issues and Chapter 3 for discussion
of ethical issues as they relate to transparency and reproducibility in this research area.
Privacy issues are one of the most salient ethical concerns with regard to mobile sens-
ing research. This is because sensing methods permit the collection of fine-grained per-
sonal data, which refers to “any kind of log or sensor data that directly describes an indi-
vidual” (Wiese, Das, Hong, & Zimmerman, 2017, p. 452). The effects of participation on
the individual privacy of the participant depend in large part on (1) the perceptions and
concerns of the participants, and (2) the design of the study and the data management
and analysis plan established by the research team. With regard to the participants, it is
important to consider that people may be uncertain about their privacy preferences and
the consequences of their behavior (Acquisti, Brandimarte, & Loewenstein, 2015). For
example, participants may be unaware or unsure about the kinds of information they
are providing about themselves when they permit collection of GPS data (De Montjoye,
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Hidalgo, Verleysen, & Blondel, 2013) or metadata from phone logs (Mayer, Mutchler,
& Mitchell, 2016), both of which have been shown to be quite revealing about people’s
everyday behaviors. With regard to the design, some factors to consider are the types of
data being collected, the sampling frequency being adopted, and the format of the data
when it is collected. Generally, collecting and analyzing raw data is more sensitive than
collecting and analyzing processed data. For example, collecting the content of com-
munications is obviously more intrusive of participant privacy than collecting informa-
tion about the frequency of communications. Similarly, raw GPS data (i.e., latitude and
longitude coordinates) do not appear particularly sensitive in their raw format, but with
additional preprocessing a person’s home or work location could be inferred. A more
privacy-preserving way of storing such location information would be to store the data
as a categorical variable labeling the place a person was in (e.g., indexing a person was
“home” or at “work”). In contrast, a threat to participant privacy would occur if such
information were stored as the real address of the person’s home or workplace. Given that
participants may find sensing methods to be potentially invasive, special attention should
be paid to facilitating transparency about the data being collected, participant control
over personal data, and generally treating informed consent as a process (e.g., Harari,
2020; Kreuter, Haas, Keusch, Bahr, & Trappmann, 2020; Nebeker et al., 2016).

Data security is another aspect of the data management and analysis plan that is
important to consider. Ensuring data security in a given study will be somewhat contin-
gent on where the study is taking place (e.g., the institution, country), but some practices
are relevant to almost all sensing studies. For example, with regard to the data manage-
ment and analysis plan, some factors to consider are the people who will have access to
the collected data and the strategy for processing and analyzing the data—for instance,
ensuring that only key research personnel have access to personally identifying informa-
tion about participants and that safeguards such as using secure servers for data storage
and analysis can minimize potential concerns on behalf of participants and ethical review
boards. When submitting mobile sensing research for ethical board review, several key
things should be reported to ensure transparency about the design and research plans.
In particular, we recommend describing the types of sensing data being collected, the
format of the data, the location of where the data are stored, and the personnel who will
have access to the files.

How to Recruit and Incentivize Participants?

Participant recruitment and compliance largely depend on the perceived benefits and
costs of taking part in the study from the perspectives of the participants as well as their
ability to fully participate. Because the cost of participating in a mobile sensing study
tends to seem higher than that of other studies and because technologies (e.g., smart-
phones, wearables) or services (e.g., reliable internet access) are required, incentivizing
individuals to make participation more appealing and providing participants with every-
thing they need to actively participate are key to the success of a given study. In general,
participant recruitment tends to be more challenging as people typically have concerns
regarding privacy, personal data collection, data security, and data storage practices (see
Chapter 2). Nevertheless, past mobile sensing studies have successfully recruited research
participants from the student population, the general adult and elderly populations (e.g.,
Rachuri et al., 2010; Rocke, Katana, Fillekes, Martin, & Weibel, 2018; Saeb et al., 20135;
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Stieger et al., 2021), and clinical populations (e.g., individuals undergoing chemotherapy,
or those diagnosed with schizophrenia or bipolar disorder; Ben-Zeev et al., 2017; Low,
2020; Low et al., 2017; Matthews et al., 2016; Wang et al., 2017). In some cases, addi-
tional steps were taken to recruit participants (e.g., from hospitals and treatment centers)
and onboard study participants to orient them to the goals and procedure of the study.

Furthermore, as mobile sensing studies require technologies and services that are not
accessible to everyone, recruiting participants from rural areas, low-income communities,
or developing nations may prove more challenging. According to Pew Research, smart-
phone adoption is growing in countries around the world, but countries with advanced
economies have higher rates of ownership (e.g., in South Korea, Australia, and France,
75-95% of adults own a smartphone), compared to countries with emerging economies
(e.g., in India, Indonesia, and South Africa, 24-60% of adults own a smartphone; Silver,
2019). However, with some creative planning in advance of the study launch, there are
several ways to work around such constraints. For example, participants can be provided
with the devices they need to participate (e.g., smartphones, wearables) and/or the ser-
vices required for data collection for the study duration period (e.g., data plan for their
phone). Providing such devices and services ensures that participants have the basic tech-
nical requirements needed to effectively participate in the study. It also can be a way to
recruit participants from populations that do not readily have such technologies available
to them, and it may help to target non-WEIRD (Western, educated, industrialized, rich,
and democratic) samples (Henrich, Heine, & Norenzayan, 2010).

Once the target participants have been recruited into the study, keeping them incen-
tivized and engaged with the study is another factor to consider. Motivations for par-
ticipating and types of incentives preferred will vary by individual, but past studies have
used monetary compensation, university credit, feedback reports, and lottery systems
with varying levels of success (Farhan et al., 2016; Harari, Miiller, Mishra, et al., 2017;
Wang et al., 2014). Given their longitudinal nature and tendency to span weeks or months
in duration, many sensing studies suffer from attrition due to participants dropping out
over time, which can have negative impacts on the resulting dataset. Additional research
is needed to better understand which incentives are most effective in maintaining high
compliance rates. However, findings thus far suggest that adjusting self-tracking goals to
align with participants’ motivations and providing personalized feedback reports as an
incentive (in addition to other forms of compensation like course credit, money, or prize
lotteries) may help with compliance (Harari, Miiller, Mishra, et al., 2017).

To keep attrition rates low, researchers should also consider how to balance study
length with participant incentives. The success of the study and data collection efforts are
impacted by rates of participation, so research teams have tested out different methods
of incentive dispersion to sustain participant interest over time. For example, incentives
can be spread out over the duration of the study—every few days, weeks, after every
completed task, or all at once poststudy completion (Farhan et al., 2016; Wang et al.,
2014). In a smartphone sensing study conducted within the Coping with Corona project
in the fall of 2020 and spring of 2021 (Back et al., 2021; described in more detail in Table
1.2), the sample of university students recruited to participate received weekly feedback
reports on their psychological states and behavior tendencies based on their sensing data
and experience sampling reports. Students also received course credit after participating
in each of the three steps in the study (i.e., completing a presurvey, self-tracking for 2
weeks, and reflecting on the study experience in a postsurvey). In a second COVID-19
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Smartphone Sensing Study (Talaifar et al., 2021), we used a combination of monetary
compensation and feedback reports as incentives for adults recruited from the commu-
nity, and course credit and feedback reports as incentives for university students. Because
adult participants were recruited through an online participant recruitment site, payment
disbursements occurred when an individual either decided to no longer participate in
the study or at the end of the study. The amount of compensation was dependent on the
amount of time the individual spent participating. Feedback reports were also shared
with participants weekly and included personalized information on their psychological
states and behaviors.

These motivations and incentives should be substantial enough to outweigh the
potential burden of participating whether that burden be the need to follow data upload-
ing protocols, deal with app crashes or bugs, and, in some cases, use another device. As
is the case with any mobile sensing study, typically participants must consistently follow
procedures such as connecting to Wi-Fi and charging one’s device regularly to upload
their data. Additionally, there is a high likelihood that crashes and bugs in the mobile
sensing platforms will arise and require individuals to troubleshoot with the guidance of
the research team. These events are generally unavoidable, though they may pose negli-
gible to varying amounts of burden among individuals in the population of interest and
influence their decision to continue with the study in different manners. Also, researchers
may decide to provide participants with a preprogrammed sensing device (Wang et al.,
2014) rather than have them download a mobile sensing app on their personal device.
This choice has some benefits, such as greater involvement from participant groups who
do not have access to smartphones and services, as well as a standardization in device
models or software, which ensures that all participants have devices with the same sen-
sors necessary for some studies. At the same time, having some participants carry around
a device second to their personal one may add yet another burden for them and lead to
less accurate and missing data (e.g., phone logs; Harari et al., 2016). As providing a device
also becomes more difficult with resource limitations and large samples of participants,
most research teams opt for having participants use their own device when possible.

Furthermore, participant recruitment and incentives depend heavily on the context
and nature of the study, which is why researchers often conduct pilot studies as a smaller-
scale, shorter experiment to gauge what works and what does not. For example, based
on pilot study recruitment and compliance statistics, researchers have general insight into
whether (1) the recruitment strategy is effective, (2) people would be interested in and
willing to participate, and (3) the current incentives are adequate. This also provides an
opportunity to identify technology-related issues that need immediate attention before
involving a large sample of participants or that the research team should be prepared to
help troubleshoot.

Recommendations During and After Data Collection

Once the mobile sensing study has been designed, the next set of recommendations is
more practical and focuses on the steps involved in conducting the study (e.g., monitoring
data quality) and working with the data collected (e.g., data cleaning, processing, and
analysis). Next, we outline our key recommendations, but for more detailed information
we point interested readers to our past work on this topic (see Harari et al., 2016).
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How to Check Participant Compliance and Data Quality?

Data monitoring involves checking compliance and data quality throughout the study. It
is particularly important in sensing studies due to the technical demands and the unique
challenges of the study design. First, sensing data are typically collected passively (i.e.,
without participant engagement), so any irregularities might go unnoticed by partici-
pants. Second, sensing data are collected continuously (i.e., with a high sampling fre-
quency over uninterrupted periods of time), so problems must be detected quickly to
intervene before the data quality is compromised. Third, while there is no need for active
engagement with sensing apps in order for them to collect data, there are certain require-
ments for the app to function properly. For instance, all participants who take part in
the sensing study must have their phone turned on and carry their phone with them as
often as possible. Moreover, participants are often required to charge their phones and
are connected to Wi-Fi regularly so their data can be uploaded. Lastly, some operating
systems close apps that run in the background for too long, so participants have to regu-
larly interact with the app to keep it running. In sum, it is important to regularly check
the incoming data and to remind participants of the app’s requirements.

Data monitoring involves downloading the sensor data and calculating and visu-
alizing summary statistics, such as rates of uploads to the server or number of hours
uploaded per day (Harari et al., 2016). Ideally, summary statistics should be calculated
separately per sensor, as there may be problems with particular data sources. Some com-
mercial platforms (e.g., Ethica Data, Ksana Health) provide data monitoring dashboards,
which display data visualizations to researchers. We recommend checking the incoming
data repeatedly throughout the study (e.g., at the end of each day) and contacting partici-
pants with missing data.

When monitoring the uploaded data, it is crucial to keep track of any problems that
arise during the study. We recommend creating a data monitoring spreadsheet to docu-
ment any issues that occurred during data collection. A rigorous documentation of prob-
lems will help to describe the study procedures later. Moreover, it is a crucial prerequisite
for data cleaning.

How to Clean and Process the Data?

Sensing data are typically messy and should be cleaned before analyses. The data clean-
ing step is sometimes the most difficult step in the analysis, but it is also one of the most
important steps. The choice of data cleaning procedures and their ordering can signifi-
cantly impact the results of further analyses. Therefore, researchers should not use arbi-
trary data cleaning procedures (e.g., removing outliers when they could be real values)
but should carefully think about data cleaning decisions before any analyses are run, and
ideally, all decisions should be preregistered when possible.

Different types of data collection errors can compromise the quality of the data.
With technically demanding data collections, error often results from technical problems.
For instance, the sensing app might crash, or specific sensors might not be working prop-
erly (e.g., the GPS signal might be distorted; Miiller et al., 2022). Moreover, there may
be a lot of missing data if participants turn off their phones or accidentally close the app.

Different techniques are available to identify data collection errors. Unfortunately,
only a few guidelines for data cleaning exist, and the decisions will always depend on
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the unique conditions of the study. Some authors have provided lists of problems they
noticed when cleaning their own data and have provided recommendations for how to
deal with these problems. For instance, in past work we have recommended removing;:
inaccurate or unrealistic data points (e.g., when two events occur simultaneously that do
not seem possible, such as being in two different locations that are physically far apart
within a very short time span); data points with missing timestamps or observations;
duplicated data points; outliers (e.g., values above or below three standard deviations
from the mean); and days or participants with too little data (e.g., less than 15 hours of
data for a given day, or participants with only 1 day of data; Harari, Vaid, et al., 2020;
Miiller et al., 2022). These papers include relevant R code that provides more information
about how one might go about executing these steps. The chapters in Part IT and Part III
of this handbook should also prove valuable for thinking through data cleaning steps for
different types of data and for different analytic techniques.

After data cleaning, the raw sensing data have to be processed before any analysis
can be run. The most common data processing process is to extract behavioral features.
Feature extraction involves computing psychologically meaningful variables that can be
used in further analyses, such as extracting locations visited from GPS data. For instance,
in GPS data, psychologically meaningful locations (e.g., an individual’s home) are typi-
cally represented by many different latitude and longitude coordinates. To extract mobil-
ity features for future analyses, researchers first determine key locations for every par-
ticipant by clustering data points that are in close proximity to each other (for relevant R
packages, see Miiller et al., 2022). Next, researchers can interpret the locations (e.g., the
home is often defined as the cluster where participants spend most of their time during
the night) and calculate mobility features, such as the time spent in different locations
based on the timestamps (Miiller et al., 2022).

As another example, metadata logs (e.g., calls and app usage logs) typically consist
of a list of timestamped events, such as when an app is opened or when an incoming call
is received. Based on the number of entries and the associated timestamps, researchers
can calculate frequencies (e.g., how often participants open an app or receives a phone
call) and durations of events (e.g., Harari, Miiller, Stachl, et al., 2020). Depending on
the research question at hand, the features can be computed for different time intervals
(e.g., across days, times of the day, or days of the week). For instance, researchers may
calculate the frequency of calls for a given day and then average across days to obtain
an estimate representative of a person’s typical daily social tendencies (Harari, Miiller,
Stachl, et al., 2020).

Data from different sensors sometimes have to be combined to derive more complex
features that rely on different sources of information (e.g., engaging in conversations in
specific places). Sensing data can also be merged with self-report data, such as experi-
ence sampling reports. For instance, researchers may use smartphone sensing to obtain
objective information about a person’s behaviors or situational context, and experience
sampling to ask participants about their subjective thoughts or feelings (Harari, Stachl,
Miiller, & Gosling, 2021). A detailed overview of all available features is beyond the
scope of this chapter. However, it should be noted that the datasets are often very large (up
to several gigabytes per participant) and that feature extraction requires advanced pro-
gramming and analytical skills. Therefore, we recommend that psychological researchers
interested in working with the unprocessed, raw sensing data refer to the mobile sensing
literature for guidance on how to extract the variables of interest. As a starting point, we
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direct readers to the Reproducible Analysis Pipeline for Data Streams (RAPIDS) website.”
This comprehensive resource provides an overview of different features and the code
needed to compute them.

How to Analyze the Data?

After data cleaning and feature extraction, the data have to be prepared for analysis.
Often, researchers have to aggregate their variables across different time spans (e.g.,
hourly, daily, weekly level) or levels of analysis (e.g., within-person vs. between-person)
to answer the research question at hand. After data aggregation, researchers should check
the distributions and psychometric properties (e.g., reliability) of all variables and select
an appropriate analytic technique.

Because intensive longitudinal datasets consist of repeated observations from the
same individuals, the analysis approach has to account for the nested structure of the data.
Nested data are often analyzed using multilevel modeling (MLMj; also called hierarchi-
cal linear modeling or random coefficient modeling; Hox, Moerbeek, & van de Schoot,
2018; Snijders & Bosker, 2012). Multilevel growth curve models (Bolger & Laurenceau,
2013) are one of several techniques to model intraindividual changes in variables across
time. By using multilevel growth curve models, researchers can examine how behaviors
change across different time spans (e.g., hours of the day, days of the week, or weeks of
the academic semester) and examine different forms of change (e.g., linear, curvilinear,
discontinuous). Importantly, MLM allows researchers to describe both normative behav-
ior trajectories (e.g., how social behaviors change across the academic semester on aver-
age) as well as interindividual differences in these trajectories (to what extent the change
trajectories differ between people) and how they are related to other individual difference
variables (e.g., whether the differences in trajectories are predicted by personality traits).

In addition to research questions about the effects of time, intensive longitudinal
studies are suited for research questions that focus on relationships between momentary
states or momentary states and situational variables. Here, MLM allows researchers to
disentangle effects on different levels of the analysis (Enders & Tofighi, 2007; Hamaker
& Muthén, 2019). Specifically, when multiple measurements are collected from the same
individuals, it is possible to analyze effects on both the within- and between-person lev-
els. Within-person effects capture how time-point specific deviations from a person’s
average tendency in one variable are related to similar deviations in another variable. For
instance, in a study that repeatedly assessed individuals’ social behaviors (via sensing)
and their mood (via the experience sampling method [ESM]), researchers might examine
whether a given individual feels better after engaging in a social interaction compared
to how they normally feel. Within-person relationships are particularly important when
the focus is on intraindividual dynamics and individual differences therein (Kuper et al.,
2021).

In addition to within-person relationships, researchers can examine between-person
differences in behavioral tendencies. Between-person effects are obtained by aggregating
the continuous sensing data on the person level (e.g., how much a person socializes on
average) and using the behavioral aggregate instead of a self-report variable in further
analyses. These aggregates serve as more objective estimates of how a person actually
tends to behave in their everyday lives (as opposed to how they perceive themselves to

behave).
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Beyond MLM, there are more advanced techniques such as dynamic structural equa-
tion modeling, dynamic network analysis, person-centered/ideographic modeling, and
machine learning. We point interested readers to Part III of this book for more informa-
tion on these techniques for mobile sensing research. No matter the analytic technique
selected to answer one’s research questions, thorough and clear reporting of the data
cleaning, processing, and analysis decisions is crucial for enhancing transparency and
reproducibility in mobile sensing research (see Chapter 3 for more details).

Conclusions

Mobile sensing holds much promise for improving naturalistic observation in psycho-
logical science. The first wave of research studies at the intersection of psychology and
computer science has showcased what is possible using these methods. However, a main
factor that seems to be impeding the widespread use of these methods in the field more
broadly is the lack of know-how regarding the steps involved in conducting a mobile
sensing study. This chapter aims to address this knowledge gap by providing a starting
point for those interested in or getting ready to launch a sensing study. In the future, more
work needs to be done in the field to develop standardized guidelines and best practices
for conducting mobile sensing research.
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CHAPTER 2

Designing for Privacy
In Mobile Sensing Systems

Jason |. Hong

Privacy is a complex topic that involves social, legal, market, user experience, and techni-
cal issues. This chapter is intended for both researchers and developers of mobile sensing
systems, and offers an overview of various definitions of privacy, legal, and pragmatic
reasons to care about privacy, and why privacy is hard to achieve in practice. This chapter
also covers system design issues, including design methods and frameworks for thinking
about privacy, as well as implementation and deployment issues.

Introduction

In recent years, we have seen a Cambrian explosion of mobile devices that weave com-
putation, communication, and sensing into our everyday lives. Today, one can purchase
smart watches, fitness trackers, and wireless earbuds from big box retail stores, and
smart glasses, smart clothes, and other wearables are not far away. These kinds of mobile
sensing devices make it possible to understand human behavior and the world at large at
a scale and fidelity never before possible.

There are many exciting opportunities in this space, for example, monitoring for
major depression (Doryab, Min, Wiese, Zimmerman, & Hong, 2014; Saeb et al., 2015),
measuring sleep quality and quantity (Lane et al., 2014; Min et al., 2014), detecting
earthquakes (Kong, Allen, Schreier, & Kwon, 2016), estimating pollution (Devarakonda
et al., 2013; Hasenfratz, Saukh, Sturzenegger, & Thiele, 2012), quantifying urban noise
(Maisonneuve, Stevens, Niessen, & Steels, 2009), contact tracing, and more. These apps
range from fully autonomous sensing to participatory sensing, where users help gather
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data about the world (Burke et al., 2006). Commercially, fitness apps are perhaps the
most prominent applications of mobile sensing, with Fitbit having sold over 100 million
devices (Statista, 2020a). Health apps are another rapidly growing area, with the U.S.
Food and Drug Administration (FDA) also having recently started to approve smart-
phone apps for medical use.

A fundamental challenge, however, is that the exact same data can be used in posi-
tive ways as well as highly undesirable ways. Typically, these concerns fall under the
broad umbrella term of privacy. Sharing one’s location data can facilitate coordina-
tion and awareness between partners, but can also be abused to spy on romantic part-
ners via spouseware or stalkerware software (Federal Trade Commission [FTC], 2019;
Franceschi-Bicchierai & Cox, 2017). Some smartphone apps gather data about one’s
health, which can be used for quantified self, but they have also led to surprising and
unwanted ads on social media sites (Reader, 2020; Statt, 2019). Even aggregated and
anonymized data poses risks. For example, in 2018, the health fitness app Strava released
a data visualization that aggregated the Global Positioning System (GPS) running routes
of all of its users, which allowed astute observers to pinpoint the locations of likely U.S.
military bases in Syria and Afghanistan (Hern, 2018).

This chapter presents an overview of privacy for mobile sensing, presenting both
research in this area and Privacy by Design, that is, how to embed privacy in the design
and operation of mobile sensing devices and services (Cavoukian, 2009). For a more
general treatment of designing for privacy, see the survey paper by Iachello and Hong
(2007). We start out by discussing why researchers and developers of mobile sensing apps
should care about privacy. Next, we analyze some constraints and forces at play that
make privacy hard to achieve in practice. We continue with a discussion of best practices
in designing and deploying mobile sensing systems, looking at some methods and some
relevant past findings that may help inform designs. We finish with a discussion of techni-
cal issues, including implementation, algorithms, and software architectures.

What Is Privacy?

Privacy is a broad, ill-defined term that captures a wide range of concerns about our
relationships with other people and organizations. In fact, there is not a widely agreed-
upon definition of privacy that fits all of the cases people care about (Solove, 2008). Some
regulations even step around the difficulty of defining privacy by focusing instead on
“data protection.”

One of the oldest definitions of privacy is “the right to be let alone” (Brandeis &
Warren, 1890). Later, in the 1960s, as computer databases were becoming commercially
available, concerns over the ease with which personal information could be collected
and searched led Alan Westin (1967, p. 7) to define privacy as “the claim of individuals,
groups, or institutions to determine for themselves when, how, and to what extent infor-
mation about them is communicated to others.”

However, new computer technologies and new uses led to new perspectives on pri-
vacy. For example, Bellotti and Sellen (1993), in the context of shared media spaces,
centered on end-user control and feedback over one’s data. Palen and Dourish (2003),
building on social psychology, characterized privacy as a dynamic process of boundary
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negotiation. Lederer and colleagues (2004) looked at a complementary notion—that an
important part of privacy is others seeing you the way you want to be seen—building
on Goffman’s (1978) ideas of presentation of self in everyday life. Nissenbaum (2004)
argued for contextual integrity, emphasizing that uses of data need to conform to politi-
cal, ethical, and social norms that might evolve over time. The European Union has
advanced “the right to be forgotten” as a fundamental privacy right, giving people the
option to ask organizations to delete data about them (Daley, 2011). Anonymity is yet
another view of privacy and is an especially popular perspective among computer scien-
tists and statisticians because, unlike the other definitions of privacy, it can be quantified
and compared against other techniques.

These are just some of the many views and definitions of privacy. One reason for this
diversity is that privacy is being encroached on in many ways in modern life. Privacy isn’t
just about Big Brother, or about corporations collecting lots of data about us. Instead,
privacy is about our relationships with all of the individuals and organizations we inter-
act with, each of which poses different issues for privacy and all of which are changing
because of advances in technology. For example, with respect to friends and family, some
privacy concerns might be overly protective parents or nosy siblings. With employers, the
issues might include being constantly monitored at work or workplace discrimination.
With governments, the fears might be civil liberties and mass surveillance. With stalkers
and hackers, the worries might be one’s personal safety or theft of highly personal or
potentially embarrassing information.

A key point here is that we need different solutions for the different problems that
arise in our different relationships. For example, a common element of privacy laws is
notice and consent, which is arguably appropriate for corporations but nonsensical for
friends and family. People don’t hand their friends a privacy policy before chatting. So
while there is no consensus on privacy, these different perspectives helps us focus on spe-
cific aspects of privacy. For example, the “right to be let alone” leads to do not call lists
and spam filters. The “right to be forgotten” leads to people being able to request that
web pages about them be deleted from search engines.

In this chapter, we take a pragmatic view of privacy, loosely defining it as the collec-
tion and use of sensitive data in an appropriate and understandable manner.

Security versus Privacy

Security and privacy are two related but distinct concepts. Security was originally defined
as confidentiality (unauthorized parties cannot see sensitive data), integrity (unauthor-
ized parties cannot modify that data), and availability (ensuring that data or a service
can be used by authorized individuals) (Saltzer & Schroeder, 1975). Today, there are
other useful properties to consider for security, for instance, usability (e.g., people can
correctly understand and configure security settings) and physical safety (e.g., an autono-
mous drone will not crash into buildings).

Security is necessary for privacy, but it is not sufficient. For example, Facebook likely
has strong security measures, but their data practices still raise many concerns. Also,
rather than being a binary state of being secure or not secure, security is more of a spec-
trum with tradeoffs in terms of cost, complexity, and level of protection. Furthermore,
security can be thought of as an ongoing process rather than something you just do once.
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These viewpoints on security also apply to privacy in that there is a spectrum of privacy
and it is an ongoing process.

In this chapter, we assume reasonable security precautions are in place, and instead
we focus on the privacy issues involved with designing, implementing, and deploying
mobile sensing apps. Also, note that there are some arguments about fundamental trade-
offs between security and privacy. These arguments use a different notion of security, one
that is more akin to safety or national security than to computer security. We do not delve
into these discussions in this chapter.

Data Privacy versus Personal Privacy

It is also useful to distinguish between data privacy and personal privacy. Data privacy is
primarily about how organizations collect, use, and protect sensitive data. A major class
of sensitive data is Personally Identifiable Information (PII), which the National Institute
of Standards and Technology (NIST, 2010) defines as “any information that can be used
to distinguish or trace an individual’s identity.” Examples might include one’s name,
street address, unique IDs, and pictures. For mobile sensing apps, it might also include
behavioral patterns and activities. Data privacy has a strong emphasis on policies and
procedures for gathering and using data, many of which are based on Fair Information
Practices (FIPs). Many laws embody the FIPs, such as the European Union’s General Data
Protection Regulation (GDPR) and the U.S. Health Insurance Portability and Account-
ability Act (HIPAA), Children’s Online Privacy Protection Act (COPPA), and Right to
Financial Privacy Act. While there are many variations of FIPs, they typically include
notice and awareness, choice and consent, access and participation, integrity and secu-
rity, and enforcement and redress (Cate, 2006; FTC, 1998).

In contrast, personal privacy focuses on one’s relationships with other individuals,
often with an emphasis on managing one’s presentation of self to others and negotiating
boundaries with others. Examples might include choosing what one shares with friends
on social media, opting to put vague information about a sensitive event in a shared
online calendar, or switching to invisible mode in an online game to avoid interruptions.

Many products and services need to be designed for both data privacy and personal
privacy. Using a mobile sensing fitness app as an example shows that some data privacy
concerns include choosing what data are sensed, selecting what data are sent over the
network, where that data are stored, securing that data, establishing procedures for how
that data are used, making sure users are aware of what data the app collects, offering
basic privacy controls, and having good default settings. Some personal privacy concerns
might include options for users to add friends and share fitness data with their friends,
blocking spammers, and opting in to be part of a global leaderboard.

Note that data privacy tends to be oriented around procedures, in terms of following
a set of rules and checking off a set of boxes. In contrast, personal privacy centers more
on how users of a system might interact with one another, making sure users feel empow-
ered in understanding and controlling what is shared, as well as minimizing the ways that
users can harm others. Privacy tends to be hard to measure in both of these cases, making
it difficult to apply quantitative methods to guide the design process or ensure that things
are improving over time.

In this chapter, we will discuss issues related to design and implementation in the
context of both data privacy and personal privacy.
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Why Care about Privacy?

Many books and scholarly articles have framed privacy variously as a moral right, a basic
human right, or an essential legal right. The European Union’s GDPR Article 1 opens
with “This Regulation protects fundamental rights and freedoms of natural persons and
in particular their right to the protection of personal data.” There is extensive literature
advancing these perspectives on privacy and its importance for individuals and society.

We again take a pragmatic perspective on privacy. In particular, the literature sug-
gests that people’s privacy concerns are often expressed in specific ways, such as protec-
tion from spam (Cranor, Reagle, & Ackerman, 2000) and identity theft (Auxier et al.,
2019), the “creepiness” of being tracked by apps (Shklovski, Mainwaring, Skuladéttir,
& Borgthorsson, 2014), or wanting to avoid undesired social obligations (Hindus, Main-
waring, Leduc, Hagstrom, & Bayley, 2001). These attitudes often result in people not
adopting technologies viewed as invasive. This last point is especially relevant for mobile
sensing apps. A 2015 Pew Research Center survey found that 60% of people chose not
to install an app when they discovered how much personal info it required and 43%
uninstalled it for the same reason (Olmstead & Atkinson, 2015). A survey by Consumers
International (2019) found that 63% of people found connected devices “creepy” in the
way they collect data about people, and 28% of people who do not own smart devices
were concerned enough to not purchase one in the future. In short, if people have signifi-
cant privacy concerns, they won’t adopt the technologies we research and build.

Failure to address privacy can also lead to serious legal repercussions. For example,
the FTC has levied fines on smartphone apps for not informing users what data will
be collected and for what purposes (FTC, 2013a, 2013c). There are also new laws—
most notably, the European Union’s GDPR, the California Online Privacy Protection Act
(CalOPPA), and the California Consumer Protection Act (CCPA)—governing notice and
consent, with heavy fines for noncompliance. Notably, the FTC has started to require
violators to disgorge data. For example, in March 2022, the FTC settled with Weight
Watchers over claims of violating children’s privacy and required them to delete both
improperly collected data and models based on that data (Oberly, Bryan, & Fath, 2022).

In addition, in the United States, there are many different privacy laws, each focused
on specific sectors or demographics, such as children, education, finances, and even video
and digital rentals. In particular, commercial mobile sensing apps focused on health care
in the United States may need to comply with HIPAA as well as FDA regulations. Note
that this is one reason why many mobile sensing apps are positioned as fitness or lifestyle
apps rather than health care apps, so as to avoid these kinds of health care regulations.

Furthermore, mobile sensing apps that record videos and audios of people may need
to comply with local laws. See Chapters 10 (“Behavioral Audio Signal Processing in
Mobile Sensing Research”) and 11 (“Acquisition and Analysis of Camera Sensor Data
[Life Logging]”), this volume, for more details about the range of laws and regulations.

In short, for commercial mobile sensing apps, it may be simpler to avoid recording
video and audio if possible. If video and audio are to be recorded, development teams
should consult a lawyer about the best ways to comply with various international laws
and with any requests for data from law enforcement organizations.

For research-oriented mobile sensing apps, the main requirement is to comply
with one’s Institutional Review Board (IRB) or equivalent. Some criteria are common
to all IRB-approved studies, for example, having clear notice and consent and letting



30 BACKGROUND AND KEY CONCEPTS

participants stop the study at any time. Some other criteria to consider for mobile sensing
apps include keeping data collection to a minimum, preventing potential harms that may
arise due to other people seeing the mobile sensing device (e.g., any stigma) as well as
any sensed data (e.g., a romantic partner), and minimizing risks to people who might be
incidentally recorded (e.g., bystanders). Also, for apps addressing mental well-being, the
research team should consider how to handle situations where the gathered data indicate
that someone may be at risk of harming themselves or others.

Complementary to legal requirements are social norms and expectations of privacy.
In many cases, these norms revolve around privacy for other people rather than the indi-
vidual using a mobile sensing device. As an example, movie theaters ask moviegoers to
turn off their mobile phones so as to not disturb other moviegoers. Perhaps the most
publicized social pushback against mobile sensing devices was with Google Glass, with
people who wore them in public places called “glassholes” (Gross, 2014). A common
concern was that people felt they could be surreptitiously monitored at any time (Hong,
2013). These kinds of social reactions can be difficult to predict, and as we discuss in the
next section, social norms can change over time. However, the main point here is that pri-
vacy needs to consider not just the direct user of a mobile sensing system but also people
who may be indirectly impacted.

In summary, mobile sensing devices need to address privacy concerns on a large num-
ber of fronts, including individual users, legal and regulatory bodies, and social norms.

Why Is Privacy Hard?

Privacy is a complex topic that intertwines thorny legal, social, market, and technical
issues. In this subsection, we look at some of the forces that help shape the privacy land-
scape. These forces are not a complete list, but we discuss them here to help readers
understand some desiderata for privacy as well as constraints on possible solutions.

Technological Capabilities Are Rapidly Growing

Gathering data about people is becoming easier and more pervasive. Everything on the
Web is instrumented, making it trivial to collect Web clicks, social media posts, likes,
and search terms. A typical smartphone has an array of sensors that can continuously
capture data as we go about our daily lives, offering a rich digital portrait of who we are
and what we do.

Data storage has also been improving dramatically, making it practical to store,
index, and search all of these data. Machine learning is also becoming more powerful
and able to infer surprising things about people—for example, using smartphone data to
model the onset of major depression (Doryab et al., 2014; Saeb et al., 2015), using one’s
purchase patterns to deduce pregnancy (Duhigg, 2012), or using one’s friends on Face-
book to infer sexual orientation (Jernigan & Mistree, 2009). This last example is par-
ticularly salient in that an individual might not explicitly disclose sensitive information
about themselves, but this information can still be inferred. The other side of the coin is
that incorrect inferences can also be made, which can impact an individual in unexpected
ways. Overall, these kinds of technical capabilities will only continue to advance, making
it harder for people to control the flow of information about themselves.
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There Are Strong Incentives for Companies to Collect Data about People

Companies want to collect more data about us because more data mean better machine
learning models, which lead to better services, analytics, and ads. Whole industries are
now driven entirely by Big Data, such as search engines, speech recognition, image recog-
nition, recommendations, spam filtering, and fraud detection, just to name a few.

Advertising is a particularly voracious consumer of data. An average online ad dis-
played on a Web page will see clickthrough rates of around 0.05% (SmartInsight, 2020).
Anything that can improve those clickthrough rates, even by a small amount, can be
worth millions of dollars. As such, more data mean more targeted ads that are more
likely to be clicked on.

There are also new kinds of business models for selling hardware based on collect-
ing data about users, known as postpurchase monetization (Gilbert, 2019). For example,
smart TVs are relatively expensive, and margins are razor thin. One way of improving
sales is to lower initial purchase costs, and then use sensors and other tracking to collect
rich data about the owners, to sell the data, and to improve targeted advertising. Thus, in
addition to simply selling the hardware, a company can also create a continuous revenue
stream using sensed data. For example, Vizio, a public company that sells smart TVs,
reported that it had profits of about $48 million from selling hardware and about $38
million from selling viewer data and ads (Lawler, 2021).

These incentives for collecting data also lead companies to push back against privacy
features. For example, Do Not Track was a Web standard that would let people share
tracking preferences with websites. However, the effort ended in 2019 with a note that
“there has not been sufficient deployment of these extensions (as defined) to justify fur-
ther advancement, nor have there been indications of planned support among user agents,
third parties, and the ecosystem at large. The working group has therefore decided to
conclude its work” (W3C Working Group, 2019).

Companies Get Little Pushback on Privacy

In practice, developers get little negative feedback about privacy from consumers. In an
analysis of Google Play reviews, Fu and colleagues (2013) found very few words related
to privacy. Similarly, Ha and Wagner (2013) found that only 1% of app reviews men-
tioned app permissions. Emami-Naeini, Dixon, Agarwal, and Cranor (2019) found simi-
lar issues with IoT (Internet of Things) devices; they reported that most consumers did
not consider privacy and security prior to their purchase and only became concerned later
on because of media reports, comments from friends, or unexpected device behavior.
They also found that finding privacy and security information before a purchase was dif-
ficult, if any existed at all. This combination of imperfect information and lack of nega-
tive feedback leads to what economists call a market failure (Hubbard & O’Brien, 2015).
Suppose that you want to purchase a Web cam. You can go to your favorite electronics
store and compare Web cams based on price, color, and features. However, you can’t eas-
ily compare these Web cams on privacy (or security, for that matter). As a result, privacy
does not strongly influence customer purchases, and so companies are not incentivized
to improve privacy.

Several projects have sought to address this problem, all with a common theme of
improving transparency. For example, PrivacyGrade.org graded apps based on their
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privacy (Lin, Liu, Sadeh, & Hong, 2014). Similarly, Emami-Naeini, Agarwal, Cranor,
and Hibshi (2020) proposed a privacy nutrition label for IoT devices that would summa-
rize behaviors. Since 2021, Apple has mandated that iOS apps must have a privacy nutri-
tion label that reports what data are used to track users (Morse, 2020). Google has also
mandated a new safety section for Android apps highlighting similar information (Frey,
2021). However, a study by Li, Reiman, Agarwal, Cranor, and Hong (2022) suggests that
developers face many challenges in filling out these labels correctly. Furthermore, while
improving transparency should in theory have a positive effect on privacy, it is unclear
how effective they are in practice. For example, as discussed in the next item below, pri-
vacy policies aim to improve transparency but have arguably failed in practice.

Developers Have Low Awareness and Knowledge of Privacy Issues
and Practices

Studies of smartphone app developers have found that few knew about existing privacy
laws or privacy frameworks, what privacy issues they should pay attention to, and how
to address them (Balebako, Marsh, Lin, Hong, & Cranor, 2014; Li, Agarwal, & Hong,
2018). Developers also have low awareness of privacy problems with their apps, with
many not realizing how much data their app is collecting (Agarwal & Hall, 2013; Bale-
bako et al., 2014; Li et al., 2018). Other studies have examined how developers talk
about privacy in online forums. Some developers turn to Stack Overflow for privacy
issues, including company requirements (Tahaei, Vaniea, & Saphra, 2020). On a popular
Android developer forum, Li, Louie, Dabbish, and Hong (2020) found that developers
rarely talked about privacy, and most discussions of privacy were driven by external fac-
tors such as changes to smartphone operating systems or app stores.

A major pain point is lack of awareness of the behaviors of third-party libraries. A
library is a package of code that offers common functionality and is designed to be eas-
ily used by other apps, for example, managing graphics, connecting with social media,
or displaying ads. Many third parties offer libraries to connect with their services, for
example, Facebook and Twitter. These libraries tend to be used as black boxes. However,
in a year-long user study of apps, Chitkara, Gothoskar, Harish, Hong, & Agarwal (2017)
found that over 40% of smartphone apps collect sensitive data only because of these
libraries. In other words, many apps collect sensitive data and share it with multiple third
parties, and their app developers might not even be aware of this behavior.

It's Not Always Clear What the Right Thing to Do Is

Even if a company wants to be respectful of privacy, it’s not always clear how to translate
that wish into practice. For example, while privacy policies are pervasive, past research
has found that few people read them (Auxier et al., 2019, Obar & Oeldorf-Hirsch, 2020).
In many respects, not reading these privacy policies is rational. McDonald and Cranor
(2008) estimated that it would take 25 full days to read all the privacy policies that one
encounters on the Web in a single year.

More broadly, there isn’t a widely accepted set of privacy best practices for devel-
opers to follow. How can designers best assess what kinds of data uses are and are not
acceptable? What is the best way of informing people about data collection practices?
What is the best way of storing data? The effectiveness of today’s framework of notice



Designing for Privacy 33

and consent is also highly questionable. Cate argues that the Fair Information Practice
Principles have failed in practice, stating that “businesses and other data users are bur-
dened with legal obligations while individuals endure an onslaught of notices and oppor-
tunities for often limited choice” (Cate, 2006, p. 1).

Similarly, business metrics for privacy are also unclear. Corporations have many
metrics such as Customer Acquisition Cost, Year over Year Growth, and Retention
Rates. However, it is unclear what the right metrics are for privacy, making it hard to see
if progress is being made. Also, as noted earlier, there is a strong incentive to collect data
because it impacts the bottom line, and so one could go even further by saying that some
business metrics implicitly push against privacy.

The Burden of Privacy on End Users Is Too High

Today, individuals have to make too many decisions about privacy. Does this website
have good privacy protections? Should I install this app? What are all the privacy settings
I need to know for this device? What are all the terms and conditions for this service?
What are trackers, cookies, virtual private networks (VPNs), anonymizers, and incognito
mode, and how do I use them to protect my privacy?

Mobile sensing can exacerbate the burden of privacy. SenseCam is a wearable cam-
era developed by Microsoft Research for lifelogging. SenseCam raised many issues about
personal privacy; for example, what data are captured and when, and what potential
stigmatization may exist since one use of the device was to help people with mental dis-
abilities (King et al., 2013). SenseCam also raised concerns about other people’s privacy,
for example, incidentally recording other people nearby. To address this problem, the
SenseCam researchers designed it to not record audio and made it easy to pause video
recording. A study by other researchers found that other people were generally OK with
using recorded images for limited purposes, and also wanted notice and consent (Nguyen
et al., 2009). However, how to do notice and consent for mobile sensing devices is an
open question, let alone how to make it scale if these devices become commonplace. As a
counterpoint, in an iz situ study where participants wore a lifelogging device, bystanders
expressed no concerns, and participants wanted to control the capture of images in situ
rather than spending time to review images afterward (Hoyle et al., 2014).

In short, the burden of privacy is too high on individual end users, and it will only
get worse as technological capabilities advance and mobile sensing devices become more
common.

Same Device, Same Data, Very Different Reactions

When new technologies are adopted, they are done so in a specific social and cultural
context. Judging whether a given technology or type of data is good or bad for privacy
often depends on how it is used within this context. For example, in my dissertation
(Hong, 2005), I looked at how nurses used locator badges, which could pinpoint the
location of individuals in a hospital. The hospital administration viewed these badges as
useful for coordination (e.g., “Where is Alice?”) and for protection of individuals from
spurious claims (e.g., “The nurse never came to visit me”). However, many nurses felt
these badges would be used for surveillance, for example, tracking how long they were
in the restroom. In cases where there was clear value for nurses and management was
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trusted, locator badges were viewed mostly positively. However, if there were existing
tensions between the nurses and management, the nurses tended to reject the badges. In
other words, the exact same technology was viewed differently depending on external
social and cultural factors.

As another example, Foursquare is a social media app that lets people check in to
a place and share those check-ins with others. One person took these check-in data and
created Girls Around Me, overlaying photos from women’s Foursquare profiles on a map
(Blue, 2012). The same data are arguably acceptable in one context but with a few slight
twists becomes creepy in another.

Complicating matters is the tendency of some users of a system to deliberately try to
harm others. For example, the same technology that might be used to streamline coor-
dination in a healthy relationship can facilitate many forms of intimate partner abuse
(Matthews et al., 2017).

Woven throughout these examples are power imbalances that can color people’s
perceptions of privacy. In the case of the nurses, hospital administration can easily fire
any single individual. For Girls Around Me, there is potential harm from unknown indi-
viduals. For intimate partner violence, there is a strong potential for physical, mental, and
emotional harm from a romantic partner. As such, a major challenge in designing mobile
sensing systems is understanding the different kinds of social contexts and power dynam-
ics in which one’s system might be used, predicting potential misuses and abuses, and
designing the system to mitigate these negative scenarios while facilitating positive ones.

Expectations of Privacy Can Change over Time, Sometimes Dramatically So

Over time, people’s expectations of privacy can change in ways that are hard to predict.
For example, Brandeis and Warren’s (1890) famous definition of privacy as “the right to
be let alone” came about in part because new cameras in the late 19th century made it
possible to take photographs in just several seconds, invading “the sacred precincts of
private and domestic life.” Today, millions of people choose to share photos on publicly
visible social media. Currently, the problem of cameras still exists. The main difference is
that our expectations of how these technologies can be used, as well as social norms and
laws, have changed over many decades.

Expectations of privacy can also change quite rapidly and dramatically. A good
example is the introduction of Facebook’s News Feed in 2006 (D’Onfro, 2016; New-
comb, 2018). Before News Feed, one could only see a person’s status updates by going
to their individual profile pages. What News Feed did was aggregate those updates in a
single place. When News Feed was first made public, people’s initial reactions were pre-
dominantly negative, often viscerally so. Many Facebook groups were formed denounc-
ing News Feed, and Facebook CEO Mark Zuckerberg even publicly responded to all of
the negative press. Facebook stayed its course, however, and in a few months, a lot of the
criticism died out as people saw value in News Feed and became used to it. Nowadays, it
is doubtful that many people would want to give up News Feed.

In summary, people’s initial expectations of privacy are fluid and can change quickly
but not necessarily in ways that are easy to predict. There have been many failures where
product teams have made incorrect assumptions about people’s attitudes and behaviors.
There have also been examples of product teams facing initial resistance due to privacy
concerns, but eventually people have been won over. Furthermore, the research literature
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also does not offer much guidance in terms of findings or methods for differentiating
findings from methods, largely due to the difficulty of studying these kinds of questions
in the wild. As such, the best ways of understanding, managing, and influencing people’s
expectations with respect to privacy remain an open question.

System Design for Privacy

In this section, we examine user-centered design processes for mobile sensing apps, dis-
cussing privacy with respect to functionality as well as user interface design. Note that
there are some existing guidelines for mobile app privacy. For example, FTC (2013b,
2016) offers advice for mobile apps and for mobile health. Similarly, both Apple (2020a)
and Google (2020) offer best practices for app privacy. These are good starting points but
are not sufficient because these guidelines are meant more for conventional apps than for
rich mobile sensing apps.

Similarly, there are several laws governing the use of sensitive data, notice, and con-
sent, such as HIPAA, GDPR, and CCPA. These laws offer a good start but do not offer
much guidance as to design and implementation. Note that GDPR requires a Data Protec-
tion Impact Assessment (DPIA) for new projects that pose “a high risk to the rights and
freedoms of natural persons” (https://gdpr-info.eu/art-35-gdpr). At a high level, a DPTA
involves a description of data processing, an assessment of necessity and proportionality,
and an evaluation of risks to rights and freedoms. The GDPR website has a template that
can be used to help step through this process (GDPR.eu, n.d.).

Here, we examine four different topics related to design:

A privacy risk model, which offers a series of questions to consider about data col-
lection and data use. This kind of risk model is perhaps the most useful thing that
researchers and developers can do, as it guides teams into considering what data
are being collected, how the data are used, and how the data can be protected.

Methods for getting feedback from participants early in the design process while
it is still relatively easy to make changes. This kind of feedback can be used to
validate and refine the privacy risk model.

Optimistic versus pessimistic approaches to privacy.

Choosing defaults for privacy settings.

Privacy Risk Models

Development teams need to carefully consider what data will be collected and how that
data will be protected. Privacy risk models help development teams think through these
issues and their implications. Again, we assume that reasonable security measures are
already in place, for example, ensuring that any passwords are secure, that databases
with sensitive data are locked down properly, and that strong encryption is used when
storing data and when sending it over the network.

Privacy risk models are inspired by the concept of security threat models in computer
security. One security researcher describes the importance of security threat models as
follows:
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[T]he first rule of security analysis is this: understand your threat model. Experience
teaches that if you don’t have a clear threat model—a clear idea of what you are trying
to prevent and what technical capabilities your adversaries have—then you won’t be able
to think analytically about how to proceed. The threat model is the starting point of any
security analysis. (Felten, 2003)

We call this model a privacy risk rather than a privacy threat model because com-
puter security tends to frame the defense of a system in terms of attackers and adversar-
ies, which does not quite capture the rich range of relationships and privacy concerns we
have with other people. For example, a college student might be close with their parents
but still not want to share their current location or activity data with their parents. Simi-
larly, some elderly individuals may be OK with sharing their historical activity and fitness
data with their children, while others might not. It would be incorrect to label these kinds
of relationships as attackers or threats.

Below, we present one privacy risk model for sensor-based systems. This risk model
is an updated version developed by Hong, Ng, Lederer, and Landay (2004) and consists
of a series of questions to consider. Note that these questions are meant as a starting point
for difficult conversations within research and development teams rather than as some-
thing that can offer all of the answers. Furthermore, these questions should be validated
with potential users of the system, and they should be revisited and refined in parallel
with the design and evaluation of early-stage prototypes. We have organized the ques-
tions by user experience design, social, organizational, and technical aspects. Note that
we do not explicitly consider business concerns here, as that is beyond the scope of this
chapter, though they may have significant influence on privacy.

Design Issues

What kinds of personal information are sensed or gathered (e.g., name, email)?

How sensitive is the data? If leaked, can the data be easily linked to a specific indi-
vidual?

Is there a clear value proposition for end users for sharing their personal data? Is this
value proposition clear to end users?

Does this data collection match people’s expectations about the app? For example, it
makes sense for a sleep monitor to use a microphone but perhaps not for a food diary
app.

For each type of sensitive information, is it opt-in or opt-out, or do data sharers even
have a choice?

What is the minimal amount of data needed for the mobile device and associated apps?
Does the data need to be collected at all?

What devices and sensors are used to collect personal information? Who has physical
control over these devices and sensors?

What happens if there are sensing or inferencing errors on the data? Is there potential
for embarrassment or other mishaps?

How are data collection and data use practices conveyed to users?

What kinds of controls and feedback do end users have for managing their personal
data? Are these user interfaces easily understandable and accessible?
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Social Context

Who are the data sharers, the people sharing personal information? What kinds of
concerns do they have?

Who are the data observers, other users who might see and use that personal informa-
tion?

What kinds of personal data are shared with data observers?

What are the relationships between data sharers and data observers? What is the level
and nature of trust? Is there a power imbalance? What incentives do data observers
have to protect data sharers’ personal information (or not, as the case may be)?

Are there potentially malicious data observers (e.g., spammers, stalkers, abusive part-
ners, trolls)? How might they abuse your system?

What are the social and cultural norms around how personal information will be used?
What are the data sharers’ expectations about how personal information will be used?

Are there other stakeholders or third parties who might be directly or indirectly
impacted by the system, for example, passersby incidentally near a mobile sensing
system?

Organizational Context

What are the policies and procedures for accessing the data by people internal to the
organization? What kinds of data and granularities can people internal to the organi-
zation see? How will these be enforced? Will accesses be logged and audited?

Will any collected data be shared with any third parties? Can the data be anonymized
before sharing?

Technical Issues

How are users identified? Is it a device hardware identifier, an app-specific identifier, a
user-specified identifier (such as a username or email address), or an advertising identi-
fier (e.g., Apple’s IDFA or Google’s AAID)? Each has tradeoffs over how much control
users have and how much people can be tracked across devices and apps.

What is the granularity of the information sent or shared, for example, with respect
to space (e.g., room, building, street), time (e.g., continuous, every hour, every day), or
fidelity (e.g., for identity, is it a specific person, a pseudonym, or anonymous)? How
often is information shared? Is it discrete and one time? Is it continuous?

Can the data be processed entirely on the device? Do the data need to leave the device?

What sensitive data are sent to the backend? Where are these data stored? Note that
there may be legal implications based on in which country the data are stored. Who has
access to the data? How long are data retained? What about backups of data?

Note that there are also other models for assessing privacy, including the Privacy
Risk Assessment Methodology (PRAM; NIST, 2015) and Privacy Impact Assessment
(PTA; Wright & De Hert, 2011). These frameworks are derived from information security
and treat privacy in a manner similar to security risks. For example, PRAM asks experts
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to map out the data processing pipeline within the target system and then catalog contex-
tual factors and data actions that process personal information. Experts then enumerate
all potential problems associated with each data action and assign scores to the likelihood
and severity of each problem. In this way, development teams can quantify and prioritize
privacy risks for the organization (e.g., revenue loss from customer abandonment), and
determine appropriate resource allocations to address the risks. Note that both PRAM
and PIA focus more on data privacy rather than personal privacy and center more on pri-
vacy risks for organizations than end users. Furthermore, neither PRAM nor PIA advo-
cates getting feedback from users about privacy.

Iterative Design and Formative Methods
for Probing People’s Privacy Concerns

A common best practice in User Experience (UX) design is to design, implement, and
evaluate systems as an iterative process rather than a waterfall process. That is, it is
better to quickly build cheap mockups and prototypes, put them in front of potential
users, get feedback in the early stages of design, and then repeat the whole process with
more functional prototypes, rather than linearly trying to do design, implementation,
and evaluation just once.

The iterative design process makes it easier to understand people’s potential privacy
concerns early on and adjust the design as a result. It can also shed light on many of the
questions in the privacy risk model (below) and help the development team better under-
stand the tradeoffs involved in the early stages of design, when it is still relatively cheap
and easy to make changes.

An important question then is, how can one build mockups and prototypes of mobile
sensing apps that are good enough to get feedback? One technique is paratyping (Iach-
ello, Truong, Abowd, Hayes, & Stevens, 2006), which combines experience prototyping
with the experience sampling method (ESM). Researchers interact with people as they
normally would. At the end of a social encounter, the researcher would hand over a small
postcard-sized survey to the other individual, which would explain what data would have
been sensed if the mobile sensing device was deployed for real, and ask questions about
one’s perceptions of privacy in that situation. This survey would come prestamped and
could be mailed back to the researchers. For example, Iachello and colleagues (2006)
conducted a paratyping study of a Personal Audio Loop, a device that could continuously
record audio but only retain the last few minutes. Their survey asked people how impor-
tant it would be to be aware of the Personal Audio Loop, how important it would be to
ask for permission first, how long a conversation should be retained, and so on. This
approach lets the researchers investigate people’s potential concerns about mobile sensing
early in the product concept stage.

Experience sampling can be combined with other formative methods to understand
privacy concerns in the early stages of design. For example, Consolvo and colleagues
(2005) used a combination of ESM where participants received hypothetical requests
from people they knew, a nightly voicemail diary study, questionnaires, and interviews
to probe what granularity of location data people are willing to share with their social
relations under different circumstances. They found that the most important factors were
who was making the request, why the request was being made, and what granularity of
location would be most useful to the requester.
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Another technique is to use Wizard of Oz to simulate sensors and any underly-
ing artificial intelligence, making it possible for users to get a richer sense as to what a
mobile sensing system might be like without building the full system first. Topiary (Li,
Hong, & Landay, 2004, 2007) and DART (Maclntyre, Gandy, Dow, & Bolter, 2004) are
two examples of rapid prototyping systems that let a designer mock up interactions for
location-based services and augmented reality, respectively. However, Wizard of Oz tech-
niques have not been used extensively to gather data about people’s perceptions of pri-
vacy, and it may be hard to simulate situations that may lead to concerns. As such, while
Wizard of Oz techniques are generally accepted as a best practice for UX design, it is still
an open question as to the best ways of using it to understand potential privacy concerns.

Surveys and interviews have also been used to probe people’s perceptions of privacy.
For example, Lin and colleagues (2012) used surveyed people’s expectations of privacy
with respect to smartphone apps and their use of sensitive data. Emami-Naeini and col-
leagues (2017) conducted a vignette study with over 1,000 participants, investigating
people’s preferences over 380 IoT data collection and data usage scenarios. They found
that privacy preferences were diverse and context dependent, that participants were more
comfortable with data collection in public settings than private ones, and more likely to
agree to data collection if there was a clear benefit. In particular, they found that get-
ting help in an emergency or other physical safety was viewed highly positively. Zheng,
Apthorpe, Chetty, and Feamster (2018) used interviews to understand people’s percep-
tions of privacy in smart homes. They found that perceived benefit is an important fac-
tor for adoption, that users trust device manufacturers to protect their privacy but don’t
necessarily check that these protections are working as intended, and that there is a lack
of awareness of how much can be inferred with even simple IoT devices. These studies are
good examples of the diversity of methods for understanding people’s needs, and they can
be used in early stages of development.

Optimistic versus Pessimistic Approaches to Privacy

Having identified potential privacy issues, we will now consider ways of addressing these
problems. Many decisions regarding privacy will require difficult conversations about the
tradeoffs involved and how best to protect data and comply with regulations. To a large
extent, these are business decisions that need to be guided by ethics, legal requirements,
and product-market fit. What we offer here is a discussion of two issues that can have
a surprisingly large impact on privacy and adoption, namely, optimistic and pessimistic
approaches to privacy and privacy defaults.

At a high level, there are two strategies for addressing privacy issues. Pessimistic
approaches aim to prevent privacy problems, whereas optimistic approaches seek to
detect and respond to problems. For example, outside of privacy, a pessimistic approach
to people driving over the speed limit might be to require all cars to have speed limit-
ers, which might be automatically adjusted based on one’s GPS location. An optimistic
approach might be to have highway patrol officers or automated cameras look for people
who are speeding and then ticket them.

For privacy, pessimistic approaches might include not collecting data in the first
place, proactively deleting older data, and letting end users block specific individuals
or allow/disallow sharing of specific types of information. In this scenario, end users
often need to take affirmative steps to prevent potential privacy problems. Pessimistic
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approaches are often useful in cases where the likelihood or cost of a privacy violation is
high. However, it can be difficult for developers as well as end users to consider all of the
negative cases beforehand. Furthermore, it can be difficult for end users to find, under-
stand, and configure the appropriate privacy controls.

Optimistic approaches work under the assumption that privacy violations are rela-
tively rare or the cost of a violation is not high (Povey, 1999). Optimistic privacy can be
useful if trust among people or organizations is high or if access to information is critical
(such as hospitals). Examples might include log files, notifications to see who has seen
your information, undo functionality, remove access after the fact, or apply social back-
pressure (such as asking someone not to do something again). For example, smartphone
cameras in Japan and Korea emit a loud camera shutter sound that cannot be turned off,
making it obvious to everyone nearby that a photo is being taken and deterring voyeuris-
tic shots (Parikh, 2019). Optimistic privacy may also be easier to set up in that there may
be fewer things to configure.

Let’s use a social fitness app as an example. This app tracks a person’s running and
can share that person’s stats with a global leaderboard and with friends. A more pessimis-
tic design might have nothing shared and require users to opt-in to all possible kinds of
sharing. Sensed data might also be processed entirely on the device but at the cost of more
battery power and less accurate models. A more optimistic design might have more things
shared by default (e.g., assigning people default pseudonyms for the global leaderboard).
More sensed data might be collected and processed off the device as well.

Pessimistic and optimistic approaches are not mutually exclusive, but rather a
spectrum, and designs will often include elements of both. Pessimistic and optimistic
approaches also do not cover the entire space of possible solutions, though we have found
them to be a useful tool for thinking about potential ways of addressing people’s privacy
concerns. Lastly, pessimistic and optimistic approaches can also apply to backend uses of
data, such as including access control or adding noise to analytics (pessimistic) or logging
all accesses for review (optimistic).

Choosing Default Options for Privacy

Another major design issue centers on what the privacy defaults should be. Palen (1999)
found that most people don’t change the default settings and that defaults have a sig-
nificant influence on what is shared and how systems are adopted. Agre and Rotenberg
(1997, p. 9) make a similar argument for Caller ID: “If CNID [i.e., Caller ID] is blocked
by default, then most subscribers may never turn it on, thus lessening the value of CNID
capture systems to marketing organizations; if CNID is unblocked by default and the
blocking option is inconvenient or little-known, callers’ privacy may not be adequately
protected.”

Using the social fitness app again, we ask, should people have default profiles? Do
these profiles show any personal information by default, such as city or running loca-
tions? Are these profiles searchable by other users by default? Is one’s running stats vis-
ible by others by default? Here, the defaults can range from strongly pessimistic (share
nothing) to strongly optimistic (share everything), and the decision for each of these
defaults can have a major impact on the user experience of the mobile sensing app, as
well as privacy. A challenge here is the lack of enough past research to guide designs. The
best advice we can offer here is to use many kinds of early-stage methods, such as rapid
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prototyping and experience sampling, to understand people’s expectations and to get
early feedback on how different defaults can balance utility with privacy, and the kinds
of defaults that are most attractive for likely early adopters of the system.

User Interface Design for Privacy

There are many challenges in designing user interfaces for privacy for mobile devices,
such as devices having small or no displays, slow input speeds, and multiple devices vying
for one’s attention. While there are some conventions, in general, user interface design for
privacy is far from settled. We are still in the early stages of the technological life cycle
of mobile sensing, and new kinds of best practices and design patterns are still likely to
emerge. As such, this section offers more of an overview on research in user interfaces for
privacy rather than best practices.

Multiple studies have found numerous problems with today’s privacy user interfaces;
for example, these interfaces often lack an explanation of the purposes of data use (Lin et
al., 2012) and habituation caused by recurring notifications (Schaub, Balebako, Durity,
& Cranor, 2015). Past work has also found that subtle design variations can affect per-
ceived risk and corresponding decisions (Gluck et al., 2016; Habib et al., 2020; Nouwens,
Liccardi, Veale, Karger, & Kagal, 2020) and that there are significant individual differ-
ences regarding perceptions of privacy notices (Lin et al., 2014; Liu et al., 2016).

Perhaps the most common way to convey privacy issues to users is the privacy policy.
Both Apple’s App Store and Google Play require apps to have a privacy policy, as do
laws such as CalOPPA, CCPA, and GDPR. However, as noted earlier, privacy policies
tend to be long, are hard to read, and have a clear cost (one’s time) with unclear ben-
efit. Exemplars for how to improve informed consent in the context of research studies
include Nebeker and colleagues (2016), Beierle and colleagues (2020), and Kreuter, Haas,
Keusch, Bahr, and Trappmann (2020).

There is also growing research examining how to improve the readability and under-
standability of privacy information. For example, Emami-Naeni and colleagues (2020)
developed a privacy nutrition label for IoT devices that can be shown on a Web page
or on the box for a device. These labels give consumers relevant privacy information
about such things as sensors, data retention, and encryption before purchasing. Layered
privacy policies are another proposed format. Users are first presented with condensed
information about data collection and its purpose, along with where to go for additional
information (Center for Information Policy Leadership, 2005). However, layered privacy
policies have not been widely adopted, and at least one study suggests that they are not
more understandable than conventional privacy policies (McDonald, Reeder, Kelley, &
Cranor, 2009).

User interfaces for mobile sensing systems also need to make it easy for people to
understand what sensitive permissions they are granting to an app. Past research has
found that Android’s permission model presents many usability challenges. For example,
mobile users have a poor understanding of permissions (Felt et al., 2012; Kelley, Bresee,
Cranor, & Reeder, 2012). They have low attention at install time and cannot correctly
understand the permissions they grant; in addition, current permission warnings are not
effective in helping users make security decisions. There is also a lack of clarity as to
why an app is using sensitive data (Lin et al., 2012). Furthermore, once sensitive data
is allowed, it can be used for multiple purposes in an app. Several studies have also
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examined how people make decisions about whether to install an app, finding that fac-
tors such as perceived utility (Good et al., 2005), purpose of use (Lin et al., 2012), or the
price of the app (Shklovski et al., 2014) have a strong influence.

Taking a step back, we see that there are roughly four points in time when an app can
present privacy-related information to users: before install (e.g., searching for apps); at
install time; at runtime while the app is being used; and after an app has been used. Typi-
cally, the first two points show the kind of sensitive data an app might access, whereas
the latter two show what sensitive data an app is actually accessing. Here, our discussion
will focus on designs for runtime, since the majority of research, as well as the design of
iOS and now Android, has a strong emphasis on that point of intervention.

Access control gadgets are special kinds of secure user interface elements offered by
the operating system that let users grant permission to apps, for example, a button with
a camera icon on it to convey that pressing it will access the device’s camera (Roesner et
al., 2012). Apps can access sensitive data if and only if users interact with these access
control gadgets. PERUIM offers a variant idea, analyzing and modifying a smartphone
app to overlay the names of permissions that will be accessed if the user interacts with a
given graphical user interface (GUI) widget (Li, Guo, & Chen, 2016).

A complementary approach is to help users make better trust decisions. Both
Android and iOS recommend that apps include an explanation of why sensitive data
are being requested, with iOS offering explicit support for explanation strings. Tan and
colleagues (2014) conducted an online survey showing that users are significantly more
likely to allow accesses with explanations. Researchers have also investigated experi-
mental designs. One idea is to leverage the wisdom of crowds. For example, when an
app requests access to sensitive data, ProtectMyPrivacy shows a dialog box to allow
or deny the access, along with what percentage of users chose each option (Agarwal
& Hall, 2013). Lin and colleagues (2012) designed an alternative install-time interface
that showed what percentage of crowd workers expected an app to use a given type of
sensitive data. Another approach is to model user preferences, for example, using such
features as time of day and location to predict and possibly automatically grant permis-
sions (Olejnik et al., 2017; Wijesekera et al., 2017). Das, Degeling, Smullen, and Sadeh,
(2018) proposed personalized privacy assistants, using predictive models to help inform
users about relevant data practices and configure them appropriately.

In addition to controls, researchers have investigated ways of helping users be more
aware of what sensitive data an app is using or has used. The conventional design for
today’s smartphones is to have the operating system show some information on the noti-
fication bar indicating that a certain sensor (e.g., GPS or microphone) is currently turned
on. i0OS also occasionally reminds users of the background location access of a certain
app. One variation on these notifications is showing users after the fact how often an
app uses sensitive data as a nudge (Almuhimedi et al., 2015). More broadly, researchers
have also investigated the design space for just-in-time notifications and have highlighted
important features such as timing (if a user should be notified of a sensitive access imme-
diately or later), channel (via the device itself, a secondary device, or a publicly visible
device), modality (e.g., visual, aural, haptic), control (how choices are provided), and
actionability (making it clear to users what they can do) (Patil, Hoyle, Schlegel, Kapadia,
& Lee, 2015; Schaub et al., 2015). Similarly, Feng, Yao, and Sadeh (2021) developed a
taxonomy for helping end users make privacy choices, specifying such features as type
(e.g., binary or multiple choice), functionality (e.g., presentation or enforcement), timing,
channel, and modality.
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We close with the observation that, broadly speaking, today’s user interfaces for pri-
vacy, as well as laws regarding collection and use of sensitive data, all fall under a current
framework of notice and consent. Numerous papers have commented on the weaknesses
of this approach, for example, that it puts too much burden on individuals, assumes users
have fully rational behavior and a great deal of attention and cognitive processing abili-
ties, and that users have a lot of time and desire to understand tradeoffs (Cate, 2006;
Hong, 2017; McDonald & Cranor, 2008). However, there is currently no clear alterna-
tive to today’s notice and consent, and so it still makes sense for future user interfaces for
privacy to stay within this framework.

System Implementation Issues

We now examine ways of implementing mobile sensing systems. Here, we offer a brief
overview of some of the issues and research related to the front end (the mobile sensing
device) and backend (any cloud servers where personal data might also be stored).

One issue regarding the front end is how to handle sensitive data on the mobile device
in a safe and secure manner. For example, today’s smartphone platforms make it easy
to access sensitive data, but there are many other considerations, such as data storage,
encryption, identifiers, and where inferencing should be done. Researchers have devel-
oped several frameworks and libraries to help, such as AWARE (Ferreira, Kostakos, &
Dey, 2015), Funf (Aharony, Pan, Ip, & Pentland, 2010; www.funf.org), PrivacyStreams
(https://privacystreams.github.io; see also Li et al., 2017), and mCerebrum (Hossain et
al., 2017). These software packages offer a range of functionality, including capturing,
inferring, and using sensor data, the experience sampling method, and management of
personal identifiers. Note that these frameworks are for smartphones only, have limited
technical support, and are oriented toward researchers rather than products. However,
these frameworks point out many useful features that developers should consider for
their own mobile sensing apps, including support for denaturing data before they egress
from one’s mobile sensing device, encryption for storing and sending sensitive data, and
deidentification of users with codes instead of names or phone numbers.

Researchers have also developed many techniques to identify sensitive data in audio
and video streams, as well as selectively degrade the quality or granularity of data (also
known as denaturing). For example, a mobile sensing app might only extract and store
audio features rather than raw audio, distort audio so that speakers cannot be identi-
fied, or scramble the audio so that speakers can be identified but what they are saying
cannot (Smith & Hudson, 19935). For images, there are machine learning classifiers to
detect bystanders in photos (Hasan et al., 2020), sensitive locations such as a bedroom or
bathroom (Templeman, Korayem, Crandall, & Kapadia, 2014), and computer screens in
images (Korayem Templeman, Chen, Crandall, & Kapadia, 2016). While these kinds of
techniques are promising, it is currently not clear if they would be sufficient from a legal
perspective or how well end users might receive them in practice.

With respect to the backend, developers need to consider policies and procedures
for accessing and protecting those data. Many potential issues are already presented in
the privacy risk model; for example, what data are sent to the backend, where are the
data stored, and are data shared with any third parties? This last issue of sharing data
is surprisingly complex, given the rise of Big Data and social media. For example, ear-
lier, we mentioned how the health fitness app Strava released a data visualization that
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aggregated the GPS running routes of all of its users, disclosing the location of likely
military bases around the world (Hern, 2018). Although no specific individual could
be identified, sensitive data were still leaked due to the sheer quantity of data. The
research community has also demonstrated several cases of reidentifying specific indi-
viduals in data thought to be anonymized or sufficiently aggregated (Garfinkel, Abowd,
& Martindale, 2018; Narayanan & Shmatikov, 2008; Sweeney, 2002). Chapter 3, this
volume, has more discussion about the tradeoffs of granting access to raw mobile sens-
ing data to other researchers.

There are also two major considerations for both the front end and the backend. The
first is a technique called differential privacy (Dwork, 2008), which offers quantifiable
guarantees for privacy. The main idea with differential privacy is to add enough noise to
queries so that a dedicated attacker cannot tell whether or not a given element is in that
data. Perhaps the most notable deployments of differential privacy are telemetry data in
the Chrome Web browser (Erlingsson, Pihur, & Korolova, 2014), iOS (Apple, 2020b,
2020c¢), and the U.S. Census (Mervis, 2019). Differential privacy can be applied both
when collecting data on the front end (locally), as is the case with the RAPPOR (Ran-
domized Aggregatable Privacy-Preserving Ordinal Response) system used in Chrome
(Erlingsson et al., 2014), or afterward in the backend on queries on raw data (glob-
ally). Google has also released several open-source tools to help with differential privacy
(Google, n.d.). As of this writing, however, applying differential privacy is still a bit of an
art rather than a science.

Development teams also need to consider how best to support the auditing of data
practices, on both the front end and backend. This auditing needs to go beyond the imme-
diate development team, and, depending on the size of the organization, might include
lawyers, privacy engineers, chief privacy officers, and chief information security officers.
This kind of auditing should make it clear to nontechnical people what kinds of data are
being collected and when, how those data are used, and what control and feedback end
users have over this data collection and data usage. The audit should also examine how
the app’s behavior is conveyed in the app’s privacy policy and whether the app fully com-
plies with what is stated in the privacy policy.

Some Open Research Questions about Privacy

In this section, we pose some open questions about privacy for the research community.
First, can we do better than today’s framework of notice and consent? Presently, end
users bear a great deal of burden in managing their own privacy, which is becoming
increasingly untenable due to the growing number of devices and services that people
interact with, the increasing amount of data collection and inferences, and the knowledge
and skill needed to protect one’s data.

Second, can we create better tools and methods to help product teams with privacy
in the early stages of design? Presently, product teams have to make a lot of guesses
about privacy when they are developing new products. Feedback from surveys, paper
prototypes, and experience sampling methods are useful but might not fully reflect how
people feel about a product later on. Getting feedback late in the process makes it diffi-
cult and expensive to make major changes in design. Better tools and methods in the early
stages of design could also help product teams quickly and cheaply explore more design
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alternatives that match people’s expectations and preferences. For example, Lean Privacy
Review (Jin, Shen, Jain, Kumar, & Hong, 2021) seeks to combine crowdsourcing with a
form of heuristic evaluation for privacy, making it possible for teams to get fast feedback.
However, it has not yet been validated at large scale or in the wild.

Third, can we develop better tools to support developers throughout the entire soft-
ware development life cycle? For example, Li, Neundorfer, Agarwal, and Hong (2021)
proposed using developer-provided annotations about data being collected to semiauto-
matically generate high-quality user interfaces for privacy. Tools to help with auditing
across the entire life cycle of data might also be useful, helping nontechnical people trace
what data are being collected, where the data came from, where the data are stored, and
how the data are being used.

Fourth, are there major cultural differences with respect to personal privacy? Simi-
larly, do things like the Fair Information Practices make sense in other cultural contexts?
Mobile devices and services are being adopted worldwide. However, the vast majority
of research on privacy is situated in North America and Western Europe. It is currently
unclear if there are significant differences, and if there are, how to account for those dif-
ferences in a design.

Conclusion

Mobile sensing technologies offer tremendous opportunities in terms of health care,
safety, sustainability, education, and more. But this vision is possible only if we can find
ways of legitimately addressing people’s privacy concerns, if we can foster trust that the
systems we build can respect people as individuals, and if these systems do what people
expect them to do.

Privacy is a complex topic that is still rapidly evolving, and designing for privacy
requires a great deal of thought and care across all elements of the system. While there is
no one size fits all approach to privacy, in this chapter, we offered an overview of some
of the social, legal, market, UX design, and technical issues involved in building mobile
sensing systems that can offer tangible value while also respecting people’s privacy.
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many staff, master’s students, and undergrad students that helped with our work, including
Mike Czapik, Shawn Hanna, Swarup Sahoo, Judy Chun, Won-Woo Chung, Aniruddh Iyer,
Ally Liu, Shen Lu, Rituparna Roychoudhury, Qian Wang, Shan Wang, Siqi Wang, Vida
Zhang, Jessica Zhao, Yuan Jiang, Haojian Jin, Sam Kim, Evelyn Kuo, Tianshi Li, Jinping
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CHAPTER 3

Transparency and Reproducibility
In Mobile Sensing Research

Cornelia Wrzus and Ramona Schoedel

Researchers have to decide on a multitude of topics during planning, preparing, and
conducting mobile sensing studies, and then analyzing the resulting data. These deci-
sions can alter the answers to a given research question substantially and thus need to be
communicated transparently, thereby allowing others to evaluate the scientific evidence
and to replicate the research. This chapter outlines critical issues of transparent research
along the steps of conducting a mobile sensing study. In summarizing the transparency-
relevant issues of each step, the chapter provides suggestions on how to preregister and
transparently report mobile sensing studies. Because not everything can be known and
decided before the data collection, preregistration might be incomplete, and transparent
reporting in an article can compensate for missing details in preregistration. The chap-
ter’s final section discusses conditions that can undermine replicability despite transpar-
ency. Throughout, we point to potential conflicts and tradeoffs between transparency
and privacy, that is, data protection.

Introduction

Around the same time that the smartphone revolution occurred (Miller, 2012) and mobile
sensing started in psychology and other fields (Aharony, Pan, Ip, Khayal, & Pentland,
2011; Eagle, Pentland, & Lazer, 2009)—that is, around 2010—psychology experienced
another revolution, labeled as the “replication crisis” or alternatively as the “credibil-
ity revolution” (Simmons, Nelson, & Simonsohn, 2011). Unreported flexibility in data
collection and analyses could substantially increase false-positive findings and thus
undermine the replicability and credibility of psychological results (Nosek et al., 2015;
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Simmons et al., 2011). To limit harmful flexibility such as deleting observations and/or
variables to obtain significant results as well as questionable, actually out-of-question
practices such as phrasing hypotheses after obtaining results, guidelines for open and
transparent science have been proposed and now adopted in major scientific journals
(American Psychological Association, 2021; Nosek et al., 2015; Simmons et al., 2011).
Transparency in open science means disclosure of the research process—that is, making
theoretical considerations, study planning, materials, analyses, and data available to oth-
ers. It intends to openly communicate all decisions associated with the research process
to comprehend whether and to what extent the interpretation of results depends on these
decisions (Klein, Hardwicke, et al., 2018). This chapter examines how guidelines derived
for psychological experiments and questionnaire studies can be transferred and adapted
to mobile sensing research.

At first glance, it may seem that mobile sensing methods are less susceptible to ques-
tionable research practices as mobile sensing data appear objective. However, research-
ers have to make many subjective choices during planning, preparing, conducting, and
analyzing mobile sensing studies. To ensure transparency and replicability, these choices
need to be documented and reported, ideally largely before conducting the mobile sens-
ing study and in a standardized way (i.e., in a preregistration of the study). Preregistra-
tion and transparent reporting allow other researchers to reproduce the results with the
original data and to replicate studies as well as findings with new data. Reproducibility
(or verification) is often understood as using the original raw data and analysis scripts
to compute the results again (Clemens, 2017), whereas replicability refers to “repeating
the methodology of a previous study and obtaining the same result” in an independent
sample of participants/observations (Nosek & Errington, 2017, p. 1; see also Steiner,
Wong, & Anglin, 2019).

Mobile sensing, especially in psychology, is a relatively young and also complex
research field in which transparency standards are still under development. Complexity
arises from the multiplicity of available information from many channels and time points
(e.g., momentary or aggregated app use, microphone data over several days and weeks),
as well as the almost infinite number of ways of analyzing and combining this informa-
tion. The data complexity, that is, the “unprecedented collection coverage, the invisibility
of the collection process, the amount of data collected, and the envisioned system inter-
connectivity” (Spiekermann & Langheinrich, 2009, p. 389), leads to concerns regarding
privacy and misuse, which complicate yet do not preclude transparency.

Ideally, a fully transparent mobile sensing study would openly preregister hypothe-
ses, study design (including sampling, procedures, and materials together with software),
and a complete data analysis plan (e.g., Nosek et al., 2015). At the moment, this might be
difficult to achieve in mobile sensing, and the greatest challenges arise in specifying the
preprocessing and analyses before the data collection. The complexity of the workflow
in mobile sensing studies, in comparison to questionnaire-based research and research
with few experimental conditions, often impede the detailed, a priori specification of all
processing and analytic steps. Also, some decisions can only be made after prior analyses
(e.g., when applying machine learning algorithms, selection of variables and algorithms
partly depend on how different algorithms perform during the analyses). Furthermore,
due to the wide variety of data types available in mobile sensing, it is quite feasible to
formulate hypotheses at a conceptual level, but it is much more difficult to establish a
precise and specific operationalization of theoretical constructs in advance. For example,
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a study on communication behaviors can examine indicators of frequency, duration, and
perhaps quality of calls, video calls, text messages, voice messages, communication in
different apps, personal contact (e.g., based on Bluetooth inferred physical proximity or
sound snippets), and many more.

After explaining necessary decisions and challenges at each step of mobile sensing
studies (see Figure 3.1), we summarize suggestions for preregistration (Table 3.1 on page
73) and transparent reporting (Table 3.2 on pages 74-75) at different levels of specificity.
We encourage researchers to apply a two-step procedure:

Define as many preregistration decisions as precisely as possible, for example,
based on piloting.

Report all decisions made over the course of data collection and processing trans-
parently for parts or cases where preregistration was not possible.

Importantly, we also encourage reviewers and readers of mobile sensing studies to
acknowledge the efforts and to consider that appropriate standards are still developing.

Workflow of Transparent Mobile Sensing Studies

The general workflow of a mobile sensing study has steps similar to most other empiri-
cal studies in the behavioral sciences (Figure 3.1). Differences arise within each step and
during onboard processing and preprocessing of data. In addition, transparency of data
and code (i.e., open data, open code) might be highly privacy-sensitive because of poten-
tial (commercial) misuse of the super-rich data. These data are more informative than
electroencephalograms, or even the browser history of stationary computers, because the
captured information is potentially so comprehensive (i.e., breadth of domains such as
communication, location, physical activity) and complete (i.e., covering most to all of an
individual’s daily life).

Research Questions and Hypotheses

Research employing mobile sensing usually falls into one of two areas: The first addresses
mobile sensing as a research topic in itself. For example, do samples of people or situa-
tions differ from samples in other research approaches (e.g., people might differ in age,
digital literacy; situations might differ in intimacy; Beierle et al., 2019; Mehl & Holleran,
2007); how well can mood and daily routines be inferred from smartphone usage (e.g.,
Servia-Rodriguez et al., 2017); how valid is information on people’s physical activity
based on smartphone tracking vs. body-attached sensors (e.g., Thomson et al., 2019)?
The second kind of research uses mobile sensing as just another, potentially more objec-
tive approach to measure behavior and psychological phenomena. For example, how do
differences in trait extraversion manifest in daily social behavior (Harari et al., 2020);
do people show reliable inter- and intraindividual differences in daily day—night activity
patterns (Schoedel et al., 2020)?

For the latter content-focused research questions, it usually will be possible to
specify hypotheses in preregistration based on previous theoretical and empirical work
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FIGURE3.l. Steps of conducting mobile sensing studies. Note: Boxes with dashed frames indicate
optional steps, with open storage and preregistration being strongly recommended for transparent
mobile sensing studies. *Contingent on the study, data, review board, confidentiality agreement,
and country.

(Table 3.1). As in other research areas, specific hypotheses will be helpful during data
analyses when unexpected, even counterintuitive findings emerge, and post-hoc expla-
nations seem all too plausible (Kerr, 1998). At the point of hypothesis specification, the
hypotheses are stated on the construct level, for example “direct interpersonal contact.”
It is not necessary to name the specific parameters derived from the smartphone sensors
already in the hypotheses because measurements and parameters are specified separately
in preregistrations as variables or indicators of the respective constructs. One would
assume effects on the level of the latent construct instead of the measure or indicator. To
clarify, one would also not expect the effects of sleep deprivation on cognitive perfor-
mance to vary substantially among comparable cognitive tests. Still, it is plausible that
the mapping of a construct to specific sensor-based indicators is somewhat more complex
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than that in other studies because no clear standards are available at the moment. For
example, does the number of different apps, the number of starting different apps, the
total app usage time, or yet another parameter indicate excessive app usage best? At
the same time, the hypotheses should be as specific as possible if conceptually distinct
information can be derived from the multitude of available smartphone information (e.g.,
social contact vs. personal contact such as direct, synchronous contact such as calls vs.
indirect, asynchronous contact through text or voice messages). Specific, unambiguous
hypotheses are also necessary to be able to identify conditions for rejecting hypotheses
(Roberts & Pashler, 2000).

Regarding research on mobile sensing itself, for example, its reliability and valid-
ity, researchers will often find themselves in situations when stating clear hypotheses is
impossible. Instead, exploratory research questions will be posed. Exploratory analyses
can be addressed in the project at any time—and labeled as such (Wagenmakers, Wetzels,
Borsboom, van der Maas, & Kievit, 2012)—and sometimes ideas for research questions
arise after the preregistration during the data collection and analyses. In our opinion,
specific indicators can but do not have to be specified in exploratory research, since
examining and comparing different indicators can be addressed during multiverse analy-
ses, sensitivity analyses, or cross-validation (Brandmaier, Chapter 17, this volume; Kass
& Raftery, 1995; Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016; see also the section
“Statistical Analysis”). As discussed by other scholars, both confirmatory and explor-
atory analyses possess distinct advantages and yet allow different conclusions regard-
ing the obtained findings, and need to be labeled as such (Wagenmakers et al., 2012;
Table 3.2). One project can entail both, and we argue that preregistration of exploratory
research questions can still be helpful to minimize the “file-drawer” problem: Until a
study and its results are accepted for publication in a scientific journal, or even if they
are not accepted, the study and its research questions will still be documented, and other
researchers will be able to search for this work. Ideally, the results or a preprint are added
to the project later or stored on specific preprint servers (e.g., PsyArXiv) after the data
collection and linked with the preregistration.

In our experience, it is helpful to think about how potential publications should be
structured already during the preregistration process. Mobile sensing data gathered in
one study can often be used to address several distinct questions because the assessed
data are often quite complex and comprehensive; for example, data on phone usage, app
use, communication, activity, and location are often assessed in one study (Aharony et
al., 2011; Stachl, Au, et al., 2020). Specifying all hypotheses that researchers can think
of in one large preregistration can lead to one of two problems: Reporting all preregis-
tered yet theoretically unrelated hypotheses in one manuscript might lead to conceptual
fuzziness and a lack of focus, thus hampering clarity. Alternatively, selecting a subset of
the preregistered hypotheses that belongs to a specific research question for a manuscript
and leaving out other hypotheses might evoke the impression of cherry-picking. Both
problems can be avoided by either specifying subsections for separate manuscripts (i.e.,
research questions) in one preregistration or preregistering different manuscripts (i.e.,
research questions) separately. Registered reports can further help to solve this dilemma
because such reports include the theoretical background and methods for a specific
research question and are submitted before the data collection starts.

Despite the recommendations described for preregistration of mobile sensing stud-
ies prior to data collection, it will not be possible (with reasonable effort) to preregister
all potential hypotheses in advance because of the wide variety of data types and their



58 BACKGROUND AND KEY CONCEPTS

usefulness for a broad range of research topics and domains (e.g., how does app usage
vary with personality characteristics, gender, age, socioeconomic status, time of day,
mood? .. .). But research projects can still be preregistered after the data collection and
should also be given high priority in mobile sensing. They help the researcher to approach
a research question in a structured manner and to specify the hypotheses, operationaliza-
tion, and analyses given the abundance of data. The occurrence of questionable research
practices, such as a quick screening of data to adjust hypotheses, should be less likely
in mobile sensing studies, since raw data must be preprocessed elaborately to extract
the variables needed for the hypotheses. Of course, researchers must decide responsibly
whether they already know the raw data so well that preregistration is no longer appro-
priate.

Target Population and Target Sensor Samples

While planning and preparing the mobile sensing study, researchers have to decide on
two crucial sampling issues: participants and behaviors. Interestingly, the software/app
to conduct the mobile sensing study and the underlying operating system such as Android
or iOS can affect both the targeted population and targeted behavior samples.

Target Population

In 2020, about 66% of all humans owned a mobile phone, two-thirds of which were
smartphones (Statista, 2020a). In Western countries, such as the United Kingdom, Ger-
many, or the United States, about 80% of the population owned a smartphone (Statista,
2020b). In general, Android-operated smartphones exceeded iOS-based smartphones
(86% vs. 14%; Statista, 2020c). In some countries with high gross domestic product
(GDP) per capita, the more expensive iPhones were somewhat more common; for exam-
ple, iOS operated on 38% of U.K. phones and on 41% of U.S. phones (Statista, 2020c¢).
Some studies have reported iOS users to have higher education and income compared to
Android users, yet such effects are usually small and inconsistent (Go6tz, Stieger, & Reips,
2017; Shaw, Ellis, Kendrick, Ziegler, & Wiseman, 2016; Wang et al., 2018). Small dif-
ferences between iOS and Android users might also be due to smartphone samples being
selective in general, that is, not representing the entire population or containing larger
proportions of a certain group. For example, recent smartphone studies have consisted
mainly of young adults—with a higher sampling probability of men if participants were
recruited online (Beierle et al., 2019; Chittaranjan, Blom, & Gatica-Perez, 2013, Montag
etal., 2015) compared to participants recruited from college courses (Harari et al., 2020).
Notably, the online samples are often still more diverse with respect to age and education
compared to student samples (Beierle et al., 2019; Gosling & Mason, 2015; Montag et
al., 2015). Regarding the transparency of samples, potential sources of selectivity should
be considered carefully and addressed transparently in the preregistration and the pub-
lished report (Keusch, Struminskaya, Antoun, Couper, & Kreuter, 2019; Kreuter, Haas,
Keusch, Bihr, & Trappmann, 2020). This includes where participants are/were recruited,
how they are/were incentivized (Harari et al., 2016), and which information on sociode-
mographic and other characteristics is assessed to later describe the sample and compare
it to the target population (Tables 3.1 and 3.2).
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In addition to the selectivity of the initial sample, researchers should anticipate hid-
den dropout, which leads to selective continuation of data collection. For example, par-
ticipants might use their phones differently than usual due to technical errors, battery
consumption of the sensing app, or awareness of being monitored. Also, participants
might leave the study earlier or temporarily. Missing days in openly available sensing
data (Aharony et al., 2011) hint toward hidden dropout and technical problems. Person
characteristics might covary with hidden dropout: For example, in one study, the more
conscientious participants were, the more reliably they wore wrist sensors, and they thus
produced less missing/hidden dropout (Wiernik et al., 2020). The anticipated dropout
should be included in power estimations of intended sample sizes. For example, if power
analyses suggest a required sample size of 300 for the expected effects, and a dropout rate
of 10% is estimated based on previous research, 333 participants need to be recruited.
In general, power analyses are needed for preparing and registering the study and can be
done based on the sample sizes and effect sizes of previous comparable research. Often no
previous effect sizes are available because the exact same research question has not been
examined before, and it is unknown whether the effects for one personal characteristic,
for example extraversion, can be adopted for a related characteristic, such as the affilia-
tion motive. In addition, one has to keep in mind that effect sizes might be small if mobile
sensing data are linked to other data sources (e.g., questionnaire data) because there is no
shared method variance. The latter is positive but influences the size of effects and thus
the necessary sample size—Dboth regarding participants and observations per participant.
In an additional approach, simulation studies can also estimate complex models. In both
cases, the steps and decisions are documented through referring to previous studies and
the obtained effect sizes and through providing the (ideally annotated) scripts for the
simulation studies (Table 3.1).

Selectivity, that is, individual differences in willingness to share data, might also
depend on the study topic, the provided information, and the technical and data protec-
tion literacy (Beierle et al., 2019; Keusch et al., 2019; Nebeker et al., 2016). In general,
women, and somewhat surprisingly, young adults have been shown to be less willing to
share mobile sensing data (but see Kreuter et al., 2020), while no effects of education or
personality traits have been found (Beierle et al., 2019; Kreuter et al., 2020; Nebeker et
al., 2016). In this respect, transparency also extends to the information provided to par-
ticipants before and during the study implementation. Although one would assume that
providing more information increases transparency, one has to keep in mind that truly
informed consent can be achieved only if the provided information is adapted to the tech-
nical literacy of participants. If the study is conducted solely online without personal con-
tact with participants, researchers need to ensure that participants read and understand
the consent document. Study information might be presented in videos instead of written
text, as most participants spend too little time on screens with consent information to
actually read the information (Beierle et al., 2019; Kreuter et al., 2020). One could specu-
late that issues of selectivity will diminish when smartphone data remain completely
on people’s smartphones and participants share only summary statistics of their phone
usage and sensor information. Interesting ideas have been proposed on how to analyze
data anonymously on the smartphone using predefined algorithms (Dennis et al., 2019).
At the same time, average app usage such as Facebook versus TikTok (at the moment)
already offers substantial information on users’ age, gender, and personality traits (e.g.,
Stachl, Au, et al., 2020). Hence, willingness to participate and thus sample selectivity will
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always be also a question of data protection. Anticipating issues of sample selectivity in
the preregistrations and transparently assessing and reporting sample characteristics and
dropout (Table 3.2) will facilitate progress on these questions.

Target Time and Behavior

Collecting mobile sensing data is generally effortless to researchers and participants
because the app “silently” collects information on phone use and environmental infor-
mation without additional work for participants (i.e., passive ambulatory assessment). As
a result, it is tempting to collect as much information for as long as possible. For exam-
ple, one of the first mobile sensing studies—the Friends and Family Study (conducted at
MIT)—collected information on app use, calls, texting, acceleration, and battery status
for several months up to over one year (Aharony et al., 2011). We state the obvious when
we suggest that researchers confine themselves to the information that is necessary for the
research question and to constrain the duration to the shortest useful period. This is in
line with EU data protection guidelines, which advise data parsimony and allow the col-
lection of only the data that are necessary for the intended purpose (GDPR, Art. 5, §1a,
https://gdpr-info.eu/art-5-gdpr). Accordingly, researchers have to specify assessed param-
eters/sensors, assessment times, duration, and sampling frequency. At the same time,
shorter periods cover a restricted, perhaps selective part of daily life and may lead to less
reliable assessments, potentially compromising the replicability of results at other times.

An alternative thought could be to collect maximally comprehensive data once and
to reuse the data. Again, this seems very tempting and economical but entails the risk
of too much linked information (e.g., location, social activity, health behavior; Servia-
Rodriguez et al., 2017), which is critical from a privacy and data protection perspective,
especially regarding sharing (raw) data (see also Chapter 2, “Designing for Privacy in
Mobile Sensing Systems”). Furthermore, long time periods potentially increase research-
ers’ degrees of freedom if specific periods of the collected data are analyzed separately
(e.g., deleting the first “familiarization” day, excluding holidays). We believe that this
does not constitute a major problem because such analytic decisions would have to be
preregistered or reported transparently.

Some information will be collected using event-based sampling, that is, when some-
thing changes. For example, calls, text messages, and opening/using an app are logged
when this action occurs together with the time of occurrence. Other information is avail-
able continuously (e.g., position and acceleration of phone, light sensor information),
and sampling frequencies have to be determined—basically researchers decide how much
they are willing to miss. Importantly, sampling frequencies will vary between studies and
with different sensors (e.g., GPS vs. acceleration). For example, determining the GPS- and
cell-tower-based position every minute for 2 seconds will result in high-density location
information with up to 86,400 location points per day. Researchers may decide that
during most periods of the day positions will not change that much—GPS having a pre-
cision of 3-10 meters (or 10-30 feet) outdoors—and decide on less frequent sampling.
In contrast, researchers might want to assess smartphone acceleration as an indicator of
physical activity almost continuously instead of only for a few seconds once per minute to
capture most of the movement of the smartphone, that is, its owner. Preprocessing of data
(e.g., averaging activity per minute; see the section “Preprocessing of Data”) will reduce
data bulk. Similarly, researchers could skip or reduce data collection during predefined
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night hours. As mentioned before, highly dense data will affect privacy issues strongly
(Mendes, Cunha, & Vilela, 2020). For example, continuous sound sampling over the
course of a day will record complete conversations and thus corrupt privacy. In con-
trast, random sampling of sounds, including words, for 30 seconds a few times per hour,
for instance, offers rich information on social interactions, daily activities, or depressive
symptoms, but it still ensures privacy (Mehl, 2017; Mehl, Gosling, & Pennebaker, 2006;
Tackman et al., 2019). Any such decisions are plausible and depend on the research ques-
tion, and they just have to be specified in preregistrations or reported transparently after
the data collection. In summary, theoretical considerations and previous work, including
pilot studies, are necessary to decide on the best suited sampling frequency and duration.
Because duration and sampling frequency have to be specified for the app in any case,
they are easily preregistered (Table 3.1).

Preparing Materials Transparently

Materials and Informed Consent

In our view, the greatest challenges for preparing materials transparently apply to the
details in and comprehensiveness of the informed consent for participants and in the
materials provided in repositories for other researchers.

As outlined in the previous section, to be truly informative for participants, study
information has to be not only complete but also adapted to the technical knowledge of
the participants. Several guidelines on how to construct informed consent provide valu-
able advice (Beierle et al., 2019; Nebeker et al., 2016) and yet have to be adapted to spe-
cific research projects. In general, suggestions are to provide understandable summaries
together with detailed study information, to offer examples of what collected data look
like; to ask for permission when it is needed (instead of presenting a long, comprehensive
list in the beginning); to have opt-out options for separate features/functions of the app/
study; and to describe the secured storage and data transfer (Beierle et al., 2019; Kreuter
et al., 2020; Nebeker et al., 2016).

Currently, there is no standard for how to store and document mobile sensing
research materials, and researchers face the challenge of preparing documentation that is
both accurate and understandable, especially for those researchers who are not too famil-
iar with this kind of research. The general aim of open materials is that other researchers
can understand and replicate the research. Again, we assume that this can be achieved at
different levels of specificity (Tables 3.1 and 3.2).

As in other study designs, with minimum effort, a complete list of measures of both
self-reports and mobile sensors (sensing-derived parameters might be decided on later
during the process and can be added later) can be provided, together with the software
and hardware used to collect data. This list will also provide a helpful overview, if more
details are provided (Tables 3.1 and 3.2). When storing items and software code in open
repositories, researchers have to be aware of copyright regulations around items and soft-
ware. In addition, two obstacles for storing software code should be kept in mind. First,
sensing apps often use information already provided by the native operating system of the
mobile phone (e.g., Android, iOS). The operating systems and their various versions can
differ in how information is collected and preprocessed from sensors (Harari et al., 2016;
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Wang et al., 2018). Also, the specific algorithm is often not available from the operating
system developers. Second, storing code openly entails the risk of unauthorized (com-
mercial) usage of code and in the worst case provides information for hackers on how to
introduce malware into the app and/or steal data (Scott, Richards, & Adhikari, 2015).
One helpful solution could be to assess the specific mobile phone types and their operat-
ing systems and later report it. This is similar to describing the apparatus for conducting
electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) studies
together with the software version running on the apparatus.

Piloting the Mobile Sensing Materials

Researchers conducting technology-based studies are well advised to pilot the study setup
and materials before collecting data from dozens or hundreds of people. This is equally
true for mobile sensing studies because many errors can occur during data collection,
such as excessive battery drain, incorrect data storage, or data loss (Harari et al., 2016).
In addition to being able to test that the software and mobile phones function properly,
piloting can facilitate preregistration. Pilot data, even from a few people over a few days,
offer information on the data structure, necessary preprocessing steps, and reliability and
validity of measures and indicators, if they are combined with other information, such as
demographic information, questionnaire answers, or time of day.

Data Collection

Study Onboarding

Data collection in mobile sensing studies begins with the installation of the tracking
app. Researchers can choose among several scenarios for this onboarding procedure. The
first decision concerns whether participants are provided with smartphones or are asked
to use their own (e.g., Harari et al., 2016). Second, researchers have to choose between
online or face-to-face onboarding (e.g., Harari et al., 2020; Schuwerk, Kaltefleiter, Au,
Hoesl, & Stachl, 2019). In the first case, participants download the tracking app from
online stores or private distribution platforms and install the app on their own. The app
can be free or restricted by a study code provided during recruitment. In the second case,
participants come to the lab to install the app together with the investigator (e.g., Stachl
et al., 2017). Finally, researchers have to decide whether to start data collection simulta-
neously for all participants or gradually over a specified period.

These decisions about the design of the onboarding scenario are an important source
of sampling biases in mobile sensing studies, which we illustrate with a few examples
here. First, the specific onboarding scenario might attract people with different traits and
therefore be associated with a self-selection bias. For example, more introverted persons
might be more likely to decide to participate if the onboarding can be carried out in an
uncomplicated way online without further social obligations. However, more suspicious
persons might find it more pleasant to have personal contact with the investigator before
participating in data-intensive mobile sensing studies. The chosen onboarding procedure
might additionally affect dropout. Participants are likely to have a commitment to con-
tinue the study until the end if they have already invested time to come to the lab and
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established a personal relationship with the research staff. Installing the tracking app
from an online app store just as any other app might be associated with a higher feeling
of anonymity, and therefore dropping out of the study could be a less significant hurdle.
So far, these assumptions are speculative because previous mobile sensing studies exam-
ining sample selectivity still use the same onboarding scenario for all participants and
thus cannot offer results about which participants’ characteristics are linked to different
onboarding options (e.g., in-person with direct researcher guidance, independently by
downloading the app; Beierle et al., 2019; Kreuter et al., 2020; Ludwigs, Lucas, Veen-
hoven, Richter, & Arends, 2019). For example, from other demanding or privacy sensi-
tive studies, we know that compliance with the study protocol is higher if participants
had direct contact with researchers or research assistants—perhaps because they met
the persons behind the study. Also, people who download research apps might differ
from people who invest the effort to visit research labs. Thus, the chosen onboarding
procedure might affect replicability of the study in future samples, if diverse onboarding
procedures are used, and thus it should be reported transparently (Table 3.2).

Data Quality Monitoring

After the tracking app installation, the continuous data logging begins. Several chal-
lenges arise from the longitudinal data collection and technical character of the study.
Because data collection occurs in people’s daily life in the absence of research staff, prob-
lems that arise during data collection will likely not be detected immediately but have to
be inferred later on, often leading to missing data.

During the data collection, participants interact with their smartphones as usual. In
doing so, participants sometimes (un-)intentionally revoke permissions that are required
by the tracking app. Depending on the study duration, some participants may change
their smartphones and reinstall the tracking app on a new device. Besides these user
behavior-related challenges, technical incidents can also occur. Despite careful prepara-
tion by extensively testing the tracking app in advance, software issues are sometimes
only discovered during the study when a large variety of different smartphones and oper-
ating systems use the tracking app. Depending on the frequency of occurrence and the
severity of the software bugs, they may need to be fixed during the study period, prompt-
ing participants to update the tracking app and potentially changing the data collection
procedure.

All these cases affect data quality as they result in systematically missing data. An
example for user-initiated systematically missing data is that participants revoke their
permission to track GPS data on weekends because they do not want to be tracked where
they are traveling in their free time for privacy reasons. In this context, researchers should
also think about including a “pause button” to enable participants to consciously pause
data collection (Buschek, Bisinger, & Alt, 2018).

Concerning software-related missing data, it might become apparent only during
the study that, for example, the tracking app does not log certain smartphone events for
older operating system versions, leading to missing data only for participants with older
devices. Finally, missing data can also systematically occur between parts of the study.
For example, during the course of the study, researchers notice from the complaints of
the participants that the high sampling frequency of physical sensor data (e.g., ambient
brightness and noise) leads to high battery consumption. To avoid a high dropout rate,
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a change to a more battery-friendly sampling frequency may need to be made during
the study. In summary, researchers need to assess and document such cases of user- or
software-induced missing data so that they will be able to report it transparently without
generating the impression of selective exclusion of data.

Onboard Processing

Mobile sensing data can be captured in raw form, that is, as unprocessed technical data,
such as those from sensors or other apps. But they can also be processed immediately
during data acquisition. For example, instead of collecting GPS raw data (longitude and
latitude) to be sorted by location type after the data collection phase (Mehrotra et al.,
2017), the application programming interfaces (APIs) of external providers such as the
Google Places API' could be used to directly extract and store relevant information (in this
example, location types such as airport, bar, and church). Meanwhile, many freely avail-
able plug-ins for onboard processing are available, for example, for conversation detection
(see Harari et al., 2020) or activity recognition (Ferreira, Kostakos, & Dey, 2015).

One benefit of onboard processing is the reduced storage and reduced data prepro-
cessing after the data collection (see the section “Preprocessing of Data”). Moreover,
from a data protection point of view, this method has the great advantage of not having
to store the raw data, which usually contain more sensitive information. However, one
challenge is the evaluation of the performance of the onboard processing algorithms and
the validity and reliability of the resulting variables (RatSWD, 2020). Depending on the
onboard processing software, algorithms and their performance measures are often not
published, especially for those from commercial suppliers. For example, instead of stor-
ing raw GPS and physical sensor data, an activity onboard recognition algorithm could
be used to extract the users’ activities (e.g., steps, doing sports, driving, sleeping). If per-
formance measures for the onboard processing are unknown, researchers have no infor-
mation about how well the classification algorithm worked (i.e., with what accuracy the
respective activities were detected on the basis of the raw sensor data). Even with open-
source algorithms, it might be very difficult for researchers to figure out precisely how
the algorithm transforms raw data in, for example, steps per day. When no or limited
information on the reliability and validity of the classification of activities is available,
subsequent results of the data analysis can be interpreted only to a limited extent. Pos-
sible solutions could be to validate onboard processing algorithms through pilot studies,
which can have the additional benefit of testing the algorithm under the conditions and
in the population later examined in the main study—as many algorithms are validated
as proof-of-concept, that is, under laboratory conditions with only a few selected people,
sometimes the developers themselves. At the very least, it is important to document and
report the exact version number of software and, if possible, the software code (Table
3.2), for the later comparison and replication of results.

Preprocessing of Data

Alternatively, or in addition to onboard processing, further processing takes place after
the data collection phase. This offline preprocessing comprises any steps related to the
extraction of variables that can be used for statistical analyses afterward. If not speci-
fied in detail in the preregistration or documented and reported comprehensively, it can
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impede research transparency severely because so many steps are involved in preprocess-
ing. Usually, raw mobile sensing data are tabular data. That means each row represents a
logging event specified by different features represented by the columns. For example, if
a participant uses the Facebook messenger app at 11:03 A.M., a new row containing the
usage event (app usage), the name of the app (Facebook Messenger), the time of occur-
rence (11:03), and further specifications is created in the database. Across the whole
study period, this results in thousands of rows per (!) participant. However, researchers
are usually not interested in raw logging events for statistical modeling but in meaning-
ful variables (e.g., the average daily duration of social interaction). To convert the raw
mobile sensing data into meaningful variables, researchers have to make numerous deci-
sions (Hoffmann et al., 2021; Schoedel et al., 2020), which might affect reproducibility
and replicability, and should be specified before the data collection (Table 3.1). Some of
the decisions depend on the data properties (e.g., distribution, extent of missing data and
outliers, and value range of events to be classified, such as package names of apps used by
participants). These decisions can only be made after the data collection (i.e., not prereg-
istered) and should thus be documented and reported transparently (Table 3.2).

The preprocessing decisions always include procedures for handling missing data.
For example, researchers have to think about how many hours per day data must be
logged to ensure the validity of study days (e.g., Harari et al., 2020). Based on this infor-
mation, the question arises as to when researchers exclude invalid study days and how
many valid study days are necessary per participant to be included in the sample (e.g.,
Wang et al., 2018).

In addition, researchers have to define the temporal characteristics of their variables.
For example, if social interactions are investigated, the researcher has to define what
“weekend” means: Do Friday nights already count as a weekend because the next day is
usually free and participants are freer to decide how they want to spend their time? Or
do Friday evenings belong to the working week because the participants are tired of the
working week and therefore behave differently than on Saturday and Sunday? Accord-
ingly, researchers also have to decide which times define day and night (e.g., Stachl, Au,
et al., 2020) and whether the day should be considered as a whole or in intervals such
as morning, afternoon, evening, and night (e.g., Harari et al., 2020; Wang et al., 2018).

Additionally, content characteristics have to be defined. For example, research ques-
tions usually do not refer to variables that reflect the usage of a specific app (e.g., Face-
book Messenger app), but rather to broader behavioral categories of app usage such as
communication, entertainment, or gaming. Therefore, researchers have to decide which
apps belong to which categories (e.g., Stachl et al., 2017). Furthermore, researchers have
to think about the granularity of the extracted variables. For example, social interaction
could be operationalized by simply extracting communication app usage. However, it
would also be possible to distinguish between communication app usage in dyadic versus
group interactions, or with frequent versus unique interaction partners.

Finally, quantification metrics have to be determined. The logging data collected
over the entire study period are often aggregated to summarized variables. Regarding
measures of central tendency (e.g., the daily average communication app usage), research-
ers can aggregate the raw data using the median, the arithmetic mean, or the robust
mean, depending on the nature of the logging data (e.g., Monsted, Mollgaard, & Stachl,
2018; Montag et al., 2014). Researchers can choose between the standard deviation and
robust estimates for measures of dispersion (e.g., daily variation in the communication
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app usage; e.g., Monsted et al., 2018). Other measures, such as the minimum, the maxi-
mum, or change over time, can be applied to quantify the distribution of smartphone
usage events (e.g., Schoedel et al., 2020).

In summary, researchers have to make many subjective decisions in the process
of variable extraction (Hoffmann et al., 2021). Initial work indicates that these seem-
ingly small subjective decisions in data preprocessing affect statistical results based on
mobile sensing data (Schoedel et al., 2020). As discussed before, sensed variables can
be extracted depending on the part of the week (weekend vs. week; e.g., Harari et al.,
2020). But how do researchers actually define the weekend? From Saturday to Sunday
or from Friday night to Monday morning because these nights are part of the weekend?
For example, the associations between age, gender, conscientiousness, and the duration
of nighttime smartphone nonuse on weekends varied depending on how the weekend was
coded (Schoedel et al., 2020; see Figure 3.2). Consequently, the degrees of freedom in
mobile sensing research imply the risk of selective reporting and, as a consequence, false-
positive findings (Simmons et al., 2011). This means that researchers might try out dif-
ferent specifications in the variable extraction process and only report on those variable
variants for which desired analysis results emerge (Gelman & Loken, 2014). This pro-
cedure, in turn, results in a lack of robustness of findings across studies. Tables 3.1 and
3.2 offer suggestions on preregistering some of these decisions before the data collection
and on transparently reporting the decisions to facilitate replicability in mobile sensing
research. Briefly reporting information in the manuscript and in supplementary materials
about multiverse analyses or sensitivity analyses (Kass & Raftery, 1995; Leamer, 1985;
Steegen et al., 2016), which demonstrate how findings vary (or not) depending on differ-
ent specifications during the data preprocessing, would offer readers the necessary infor-
mation to evaluate the interpretation of the authors (e.g., Schoedel et al., 2020).

Statistical Analysis

After the extraction of meaningful variables, statistical analyses can be performed. As
with any other analysis workflow, researchers get a first overview of the variables of inter-
est by looking at descriptive characteristics and visualizing distributions. In comparison
to research with questionnaire data, technical data in mobile sensing research are often
susceptible to logging errors. Although some of these can be considered already during
data preprocessing (e.g., as presented under “Preprocessing of Data”), by using robust
aggregation measures, outliers and missing values are often present in the extracted vari-
ables. Because there is no “one-size-fits-all” solution for handling them, researchers are
again faced with many options for transforming the extracted dataset into a version
suitable for statistical modeling. These processing steps include primarily data exclusion,
handling of outliers and missing values, and the transformation of variables. With data
from pilot studies, rules for identifying and handling outlier, missing, or non-normally
distributed data can largely be specified in the preregistration (Table 3.1).

As already mentioned, previous studies have shown that the degrees of freedom in
data preparation lead to differences in statistical results (Simonsohn, Simmons, & Nelson,
20135; Steegen et al., 2016) and are thus a risk factor for the nonreplicability of research
results (Hoffmann et al., 2021). Traditionally, computer science might be less prone to
selective reporting because generally results based on different parameters (e.g., features
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extracted from sensing data) and algorithms (e.g., KNN, SVM, LDA; Brandmaier, Chapter
17, this volume) are reported in parallel (e.g., Chittaranjan et al., 2013; Kambham, Stan-
ley, & Bell, 2018). To avoid practices such as selective reporting, various statistical analy-
sis techniques have been proposed. They all follow the general principle of performing
statistical analysis on the multitude of plausible alternatives for data processing decisions,
thereby illustrating the robustness of the results in terms of researchers’ data processing
decisions (Hoffmann et al., 2021). For example, multiverse analyses (Steegen et al., 2016)
require reporting transparently on all processing steps and thinking about plausible alter-
natives for each decision. Originally, the multiverse approach referred to exclusion criteria
for outliers and was then applied to other preprocessing decisions in questionnaire-based
research as well (Steegen et al., 2016). In the interest of robust science, it is recommended
that the principle of multiverse analyses is applied to mobile sensing research as well, but
currently no standards exist. For example, the number of preprocessing steps in mobile
sensing is much larger than that in research with questionnaire data, and, even with much
effort and expense, researchers will only be able to map a selection of preprocessing deci-
sions in a multiverse analysis. By combining arbitrary decision alternatives, many slightly
different datasets are created and then used individually to perform statistical analyses.
Finally, the range of results of all analyses is presented descriptively or visualized in over-
view plots (see Figure 3.2 as an example). Such graphical overviews of results allow read-
ers to evaluate deviations in results based on somewhat different analyses or subsets of
data and thus to judge the robustness of the results at a glance—for example, regarding
the associations between age, gender, conscientiousness and the duration of nighttime
smartphone nonuse on weekends (Schoedel et al., 2020).

In the section “Research Questions and Hypotheses,” we discuss why hypothesis-
based, preregistered statistical analyses in mobile sensing research will be useful and
necessary in future research. In the first steps of mobile sensing research, however, many
explorative analyses are carried out (e.g., Montag et al., 2014; Stachl et al., 2017). One
reason for this exploratory analysis strategy is certainly that mobile sensing offers a much
greater variety of possibilities for operationalizing behavioral variables compared to pre-
vious self-report-based research, and thus allows more researchers’ degrees of freedom.
For example, the variable interpersonal contact can be operationalized in many ways:
(1) communication app usage, (2) social media app usage, (3) (video-)calls, (4) text mes-
sages, (5) voice messages, and (6) in-person contact each regarding frequency, duration,
or the number of unique contacts—already leading to 18 options with this incomplete
list. Direct behavioral equivalents are often missing in the previous literature, which is
why researchers prefer to remain vague by formulating explorative questions.

In line with this observation, predictive approaches, that is, the use of machine learn-
ing techniques, have become established in mobile sensing research (e.g., Mensted et al.,
2018; Stachl, Pargent, et al., 2020; Wang et al., 2018). An advantage of machine learning
methods is that they can handle a large number of predictors in relation to a criterion
to condense information (Brandmaier, Chapter 17, this volume). This means that a large
number of different operationalizations for one construct can be included in the model
without the researcher having to decide in advance on one of the many plausible alterna-
tives.

However, it should be considered that similar variables usually strongly correlate.
A well-known problem in explanation-oriented models in psychology also applies to
machine learning models: Correlated variables complicate interpretation of the results.



91 JO MITATIAO UE SIAIS 1J9] Y3 UO 2911 UOISIIAP Y I 270N (070T) ‘T8 22 [2P20YydS £q Suisuas o[IqOw UT SISA[EUE ISIIAINW © JO UONBIISN[[]

*ssa00e uado 1opun paysiiqnd {(0z07) B 32 [2P20YdS W0l 2131 *([eursLio ay3l ul s10]0d)
$19SBIBP JUAIJJIP [[B SSOIOE S[dWEXa SIY1 Ul PAIB[NO[BD [9POW [2A[1I[NW I3 JO 10301paid 19d S[EAIIIUT 9DUIPIJUOD PUE SIUAIDIFJ20D Y1 sdew 1yS11 93 uo [pued
yoeq "UOHBUIqWOD I19Y3 WOL I[NSAT ([RUISLIO 9Y3 UI SIO[0D JUIIJIP A PIZIJOQUIAS) SI9SBIBP IUIIJIIP Y2IYm SMoYs pue Surssadoidard Surinp apew suoisap

0S50 S20 000 S20- 0S0-S20 000 S20- 0S0- S20-0S50 520 000 S20- 0S0-
T ' - "
—— | ———— —_—
———t | —— ——t
—a— e em— ——
— f— ——
—_—— ———— —_——
— —_— ———
: . . ——
—_— e c— ——
—r | —— —
fum—— | ———— —
(z7) edAiouoiyp-Biageuusoy (27) (t4)]
x (17) oM Auanoeu ApyBIN “Ing Japuse aby
0S0 S20 000 GZ'0- 0S0-0S0 S20 000 GZ'0- 0S°0- 0S50 S0 000 G20~ 050
Ju——— — ——
—a— —— ———
—— e ——
e A o e
—— —— ——
—t — ——
(@) (t4)] (21)
Aungess jeuonows ssaus|qesalby UOISIBABIXT
0S50 520 000 S20- 0S0-050 S20 000 SZ20- 0S0-050 S0 000 SZ20- 0S0-
—_—— —_—— —_—
—_— —_— —_—
—— —— ——
J— —_—— —_—
—e—i —_— ——
— == ——
—e —— —_—
——— e —e
—— — ———
S—— oop——— e
—— ——— ——
—_— —_ —_—
(21 (21) (1)
SSOUSNONUSIOSUOD ssauuadQ adAjouolyn-6iaqauusoy
L 80 ¥'0 00 0S50 S0 000 SZ0- 0S0-056 SC'6 006 SL'8 0S8
—— 4 —— —_——
—_—— —— [ —
—— —_— ———
—_— —_—— J——
—_—— |0|,r —_——
— — p——
— —_— —
— —— ——
pvy et ——
—— —_— ——
—— _ ——
— — ——
—— —_— —_—
(21 (1)
seam Ananoeu) ApybIN ing Yoo Auanoeu| ApybIN inq jdeosayul

(88€2) 265

(88.21) 681

(88€2) 265

(z6L1) 88%

(16L1) L6

(eovL) 88y

(18L1) 265

(oov1) 98¥

(88€2) 26

(2281) ¥0S

(88€2) L6

(¥881) 205

(16L1) 265

(e2v1) ¥0S

(1L611) 26S

(zovL) 66Y

Amnozv mommuz

¢°€ 34NYH

uonendw
ll e | uonez
uonejeq ~HOSUIM
Sl esmis
SHPOM b
uonendw
Bl e ] g
voneleq 1QYINLE
Bl s
- ung - U4 —
uopendw|
l| adniny | uonez
uonajeq “HosuIM
B osmsn —
SHeOM £ -
uopendw
I| aidninn UBiDOW
oneleq /AVINLE
6 asms
T uonendw|
adniniy | uoez
uoneleq -Hosuim
I| asimsi
SHOM b
uonendw|
l| aidninN ]| uepshy
uonelaq 1AVINLE
IS osmusn —
L uop-ug —
uopendw|
B oorn uopez
UGBl -LIOSUIM
ll asms
SHeOM € -
uonendw|
B — ooum ueipol
voneleq /AVINLE
P somen —
sanjep SHO9M JO [SVENEETVY
1°SBI_A  Bussipy Jaipno JjequnN 4o Buipo)

68



Transparency and Reproducibility 69

To understand the prediction performance, methods of interpretable machine learning
are often used to screen the most important variables (Stachl, Pargent, et al., 2020). For
example, using lasso penalized regression with correlated variables, the algorithm simply
selects one of the correlating variables randomly (Zou & Hastie, 2005). Nonlinear mod-
els such as the random forest also provide biased variable importance measures, if predic-
tors are correlated (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). As a consequence, if
the rigid ranking of individual variables is interpreted from one study, replication studies
might fail to identify the (ranking of) exact same important variables. Therefore, the
results of machine learning models should not be interpreted strictly, but rather groups of
meaning-related variables should be considered to formulate ideas for future hypothesis-
driven confirmatory research (e.g., Brandmaier, Chapter 17, this volume; Schoedel et al.,
2018). The groups of variables considered may be defined based on theoretical consider-
ations and previous literature, or they may be data-driven (e.g., considering the variables
before a noticeable drop in variable importance measures occurs). To be able to consider
several variables for future research, results should be reported as comprehensively as
possible, yet without compromising clarity (e.g., Table 1 in de Montjoye, Quoidbach,
Robic, & Pentland, 2013, or Figure 2 in Stachl, Au, et al., 2020).

Storage of Open Data and Open Code

In general, (protected) sharing of data and code is imperative in science and will facilitate
scientific and often also individual progress in any area of psychology and beyond (Joel,
Eastwick, & Finkel, 2018; Van Horn & Ishai, 2007). Also, both scientific associations
and funding agencies emphasize data sharing and provide guidelines to do so (e.g., Amer-
ican Psychological Association, German Research Foundation, NSF, Wellcome Trust; see
Houtkoop et al., 2018; Schonbrodt, Gollwitzer, & Abele-Brehm, 2017).

Making data and analytic code openly accessible has several pros and cons. On the
pro side, with both open data and open code, study results can be easily confirmed by
independent others without having to rely on authors sending the data. Also, additional
analyses (e.g., alternative analytic approaches) can be conducted, which might further
strengthen the conclusions presented in the manuscript. In addition, other researchers
might learn directly how to conduct certain analyses. Importantly, the software versions
that are deployed have to be documented diligently because newer versions might use
different commands and estimating procedures, which might compromise exact repro-
duction of the results with the available code and data. Specific suggestions exist on how
to organize files, software versions, and code to achieve cross-platform and long-term
computational reproducibility (Peikert & Brandmaier, 2019; see also Table 3.2).

One minor concern about open code relates to the statistical software deployed and
the level of documentation. At this point in time, it seems too early to ask researchers
to use a specific (open) software, such as R. As a consequence, others not familiar with
the software or the specific analyses (e.g., random-forest structural equation modeling,
Brandmaier, Prindle, McArdle, & Lindenberger, 2016) will not be able to understand or
repeat the code easily. Thus, the challenge of transparent code is the level of description
of often quite complex code; in part this also applies to other methods (e.g., preprocess-
ing electroencephalogram data: Pedroni, Bahreini, & Langer, 2019; functional magnetic
imaging data: Van Horn & Ishai, 2007).
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In our opinion, the largest consideration is necessary regarding open data and pri-
vacy (see Chapter 2, “Designing for Privacy in Mobile Sensing Systems”). Mobile sens-
ing data potentially include very dense, very private information regarding third per-
sons, finances, health, and (illegal) activities. Accordingly, mobile sensing data should be
strongly protected to ensure the privacy of participants and to prevent misuse.

Psychologists, including the authors themselves, have only begun to understand how
to protect the privacy of participants. Until recently, anonymization—that is, assigning
a random identifier that can be matched with a person through a separately saved key
file—seemed viable. Current advancements in data reengineering and machine learn-
ing have demonstrated that individuals are identifiable with little information, such as
demographic attributes (Rocher, Hendrickx, & De Montjove, 2019). One alternative
could be the sharing of aggregated data, such as means, standard deviations, and covari-
ance matrices, which are sufficient to reproduce certain SEM-based analyses (Muthén &
Muthén, 2023). A second alternative could be to store data in repositories with restricted
access and allow computation only on the computers of the repository with logging of
activities and without the possibility to copy the data—as is the case with the Secure
Data Access Center (in French, CASD, www.casd.eu). A third possibility uses differen-
tial privacy, where random noise is added to data (Fang, Zeng, & Yang, 2020; Gong,
Pan, Xie, Qin, & Tang, 2020). This alternative impedes identification of individuals, yet
retains contained information on a sample level. Not all of these options will be equally
suitable for all research projects, although different access/security classes of data can
be implemented (e.g., Level 0 open data to Level 3 secure data; Schonbrodt et al., 2017).
Furthermore, a few years from now the possibilities to store and share sensitive data both
securely and easily might have increased (see also Joel et al., 2018).

Providing aggregated data precludes the reproducibility of preprocessing to extract
variables, but it ensures the reproducibility of main analyses based on the extracted vari-
ables. Openly available preprocessing code makes this preprocessing step at least trans-
parent. Still, to enable other researchers to sustainably reuse mobile sensing data for new
analyses and therefore to fulfill the claim of Open Data, it will also be necessary in the
long term to find data protection friendly and easy-to-implement solutions for sharing
the raw data. This, in turn, will require a change in research infrastructure over the next
few years.

At the risk of being too cautious, even depersonalized data entail the risk of misuse—
and especially so if transparent accompanying meta-information is reported to a greater
degree. For example, data on political opinions, health problems, or financial informa-
tion might be used to do harm during elections or when individuals enroll in an insurance
plan, if the time and location (e.g., city, region) of data collection is reported (Granville,
2018). In summary, storing code will often be unproblematic (Table 3.2), but the storing
of data and the related access options should be considered carefully to ensure data pro-
tection, privacy, and to guard against misuse.

Publication

Most of the thoughts presented in this section are not specific to mobile sensing stud-
ies. Accordingly, we keep it brief. What might be specific is that, at the moment, miss-
ing knowledge and existing stereotypes regarding mobile sensing studies might bias the
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publication process toward one of two directions. First, reviewers, editors, and readers
might be enthusiastic, yet relatively uninformed about mobile sensing studies. This might
result in an uncritical review process, and it entails the risk of publishing flawed mobile
sensing studies or studies with too little information on all the steps outlined before. Sec-
ond, and likely more common, reviewers, editors, and readers might be overly skeptical
about mobile sensing studies because they do not trust the sensors or software, question
the multitude of available options when preprocessing and analyzing the data, or are
overwhelmed by technical details. In addition, reviewers and editors might underestimate
how time-consuming it is to rerun analyses (e.g., extracting variables with somewhat
changed specifications), and therefore they may suggest analyses that cannot easily be
carried out during typical review phases. Standards from traditional survey research are
often applied, which the mobile sensing field cannot yet achieve because it is still in its
infancy (e.g., standards regarding validation studies for behavioral measures with several
hundred participants). This will likely result in wrongful rejection, delay of the publica-
tion, or “file-drawer problems” (Simonsohn et al., 2015).

We do not claim that a more substantiated psychometric approach to mobile sensing-
based studies is unnecessary. However, at the moment some open-mindedness regarding
data preprocessing approaches and analyses might be necessary—provided that choices
are made consciously and named transparently—so that mobile sensing can gradually
establish itself as a paradigm in the broad field of psychological research. Both being
overly enthusiastic and overly critical can be easily prevented by gaining knowledge of
mobile sensing procedures, analyses, and standards, as well as by applying rigorous yet
realistic standards to mobile sensing studies (e.g., regarding the level of specificity when
preregistering analyses).

To embrace open science fully and to avoid rejection and file-drawer problems,
researchers might decide to publish their findings solely via open access (e.g., preprint
servers such as PsyArXiv or ArXiv) and without structured review processes.” This
allows other researchers with limited access to academic journals, and also journalists
and the general public, to access the study findings. In general, storing the manuscript on
preprint servers and/or linked to the preregistration seems unproblematic. Also, several
high-quality open-access journals and “classical” journals with open-access options exist
that ensure a quality check of the work before publication. At the same time, thousands
of questionable journals exist that publish anything, including fabricated results (Bohan-
non, 2013).

In our opinion, despite the limitations of review processes (Marsh, Jayasinghe, &
Bond, 2008), scientific findings should be carefully reviewed—always, but especially,
when they are openly accessible to a broad public—to ensure that the study procedures
follow the standards of the field and that results are trustworthy. As a side note, pub-
lishing results as open access should not depend on the budget of researchers or their
university. Thus, offering options to authors whose manuscripts pass the review process
but who cannot cover the publication costs, would be highly desirable to advance open
science (e.g., Collabra, www.collabra.org/about/faq). Needless to say, in preparing the
manuscripts that report on mobile sensing studies, researchers should follow the guide-
lines of transparent reporting that also apply to any other scientific study (Appelbaum
et al., 2018; Simmons et al., 2011), and additionally describe the necessary informa-
tion specific to mobile sensing. If too much technical information would distract readers
from the substantial research questions and contribution, such details can now easily be
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communicated in supplementary material directly linked to the article or presented in
open repositories (see, e.g., Stachl, Au, et al., 2020).

Overview and Tentative Guidelines for Preregistration
and Transparent Reporting in Mobile Sensing Studies

To increase transparency and thus replicability, preregistrations have been established in
psychological research (Nosek & Lindsay, 2018). Preregistration of hypotheses counteract
hindsight bias (Kerr, 1998), and preregistration of planned analyses works against con-
firmation biases (e.g., Gelman & Loken, 2014; Wagenmakers et al., 2012; Wagenmakers
& Dutilh, 2016)—both together aiming at minimizing questionable research practices
(e.g., Simmons et al., 2011). Accordingly, preregistrations are also highly recommended
in the field of mobile sensing. Due to the complexity of the workflow in mobile sensing
studies in comparison to questionnaire-based research, it is often difficult to consider
and describe all processing and analytic steps in sufficient detail in advance. We therefore
encourage researchers in the field of mobile sensing to apply a two-step procedure:

Define as many preregistration decisions as precisely as possible. Again, data
from pilot studies will help to achieve this task.

For parts or cases when preregistration is not fully possible, report all decisions
made in the course of data processing in a transparent way.

Throughout this chapter, we pointed to issues relevant for preregistration and report-
ing in mobile sensing studies. We summarized these points and described different levels
of specificity in Tables 3.1 and 3.2. The different levels partly/largely overlap with levels
proposed in Nosek and colleagues (2015). We again state the obvious: A higher level of
transparency is generally better—we cannot think of a counterexample. Still, different
standards can be necessary for highly sensitive data (e.g., raw GPS data) or sensitive
samples (e.g., identifiable patients or public people). Also, one project can follow different
levels for the different tasks, for example, openly reporting materials but offering access
to sensitive data only to authorized researchers. The achievable level of transparency will
depend on the field and research topic and will not necessarily rely solely on the willing-
ness of the researcher. Furthermore, when using commercial/industrial libraries/packages
(e.g., Google Maps), information on validation may not be available to researchers.

Threats to Reproducibility and Replicability
Despite Transparency

In the beginning, we stated that transparency in mobile sensing research is needed for
these studies to be reproduced and findings to be replicated. In this section, we want to
raise the awareness that transparency is a necessary but not sufficient condition for repli-
cating findings. Accordingly, even if researchers follow the suggested preregistration and
reporting standards presented in the previous section, several threats to reproducibility
and replicability exist.
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TABLE 3.1. Suggestions for Preregistration Standards in Mobile Sensing Studies

Level of specificity Level of specificity Level of specificity Level of specificity
Topic 1
Research Neither research  Preregister Preregister some research  Preregister directed
question and  questions nor exploratory research questions and directed hypotheses and
hypotheses hypotheses are questions. hypotheses. specify effect sizes.
preregistered.
Target No consideration  Consider basic Consider various Preregister
population:  of recruitment sources of sample recruitment strategies quota (e.g.,
Selectivity options and how  selectivity (e.g., associated with self- demographics)
they might affect  technical ones: selection bias of according to which
selectivity of the  specific operating participants (e.g., recruitment takes
sample. systems or where and how are they place to control for
smartphone models). recruited?). selectivity effects.
Target Power analyses Conduct power Conduct power estimations Conduct power
population:  are not conducted. estimations based based on effect sizes analyses based
Power on effect sizes reported in previous on simulation
analyses reported in previous publications. Explain all studies. Explain
publications. decisions and annotate all decisions and
code. annotate code.
Target sensor Chosen Specify basic Specify target behaviors Same as Level 2.
samples assessment assessment schedule (e.g., dates such as days
schedules are not  (e.g., study period).  of the week or time of the
explained. year, time windows, and
sampling frequencies).
Materials Materials are not  Provide list of Describe complete Store and explain/
preregistered. constructs together  materials in repository annotate materials
with number of together with items (if not  in repository.
i(fen}s, parameters protected by copyright). Store code for data
erived in mobile . . AR
: . Describe algorithms to collection in a
sensing, and units v h bile sensin mall .
of mobile sensing specify how mobile sensing  maximally generic
parameters are determined. way.
parameters.
Preprocessing (Pre)processing Specify basic (pre-  Make required decisions Store (pre-)
and and data processing decisions about data (pre)processing processing and
statistical analyses are not  (e.g., definition of in advance to reduce analyses code (e.g.,
analyses preregistered. daytimes, handling  researcher degrees of based on pilot
of outliers or freedom. Check for any study) before data
missing values) and  theoretical considerations  collection.
describe analyses. or any earlier work which

can be relied on. Describe
data analyses.

Note. Different levels of specificity (LS) of preregistration standards are presented. LS 0 is shown for comparison and
describes scenarios that do not meet any standard. The levels LS 1 to LS 3 are arranged in ascending order, describing the
lowest to the highest level of specificity of transparent preregistration. For some topics, only fine differences exist between
levels.
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TABLE 3.2. Suggestions for Reporting Standards in Mobile Sensing Studies

Topic

Research
questions and
hypotheses

Target
population

Target sensor
samples

Data
collection:
Onboarding
and quality
monitoring

Data
collection:
Onboard
processing

Preprocessing

Open code

Level of specificity Level of specificity

0

Exploratory and/
or confirmatory
analyses are
reported, but not

labeled differently.

Recruitment and
resulting sample
are not described.

Assessment
schedules are not
explained.

Data collection

procedures are not

reported.

Onboard
processing
software is
mentioned
without further
specifications.

Preprocessing
decisions are not
reported.

Data processing,
analyses, and
results are
reported in the
manuscript.

1

Report
exploratory

research questions

and label as such.

Report basic
information on
how participants
were recruited.

Report basic
assessment
schedule (e.g.,

study period, time

of the year).

Include overview
of data collection
procedures in the
manuscript.

Report exact

version number of

the software.

Give an overview
of preprocessing
decisions in the
manuscript.

Publish code
without further
documentation/
explanation.

Level of specificity

Report on nondirected
hypotheses and, if

necessary, on exploratory

analyses and label them
as such.

Describe recruitment
strategy and report
descriptive information
on sociodemographics of
sample.

Describe target behaviors

(e.g., dates such as days

of the week or time of the

year, time windows, and
sampling frequencies).

Extensively describe data
collection procedures as
supplemental material

of the manuscript (e.g.,
changes to software or
specific incidents during
the study).

Describe onboard
processing algorithms
and, if available from the
manufacturer/developer/
author, provide measures
of validity and reliability.

Report on final
preprocessing decisions
and any changes
compared to the
preregistered steps.

Be aware of the
uncertainty implied by
researcher degrees of
freedom and state them
as a limitation of work
(Hoffmann et al., 2021).

Publish well-documented
code (e.g., codebook
describing variables and
their abbreviations used
in the analysis code;
describe preprocessing
steps).

Level of specificity

Report on directed
hypotheses and,

if necessary, on
exploratory analyses
and label them as such.

Describe recruitment
strategy, dropouts, and
sample characteristics.
Compare sample with
target population
group.

Same as Level 2.

Store and explain/
annotate all materials
for data collection in
open repository.

Describe onboard
processing algorithms
and report validation
measures from own
pilot testing.

Integrate alternative
preprocessing
decisions in the
statistical analysis
by systematically
reporting results and
robustness analysis
(e.g., multiverse
analysis).

Facilitate
reproducibility by
providing well-
documented code/
results by using
software management
tools (e.g., Docker,
Packrat, GitHub; see
Epskamp, 2019; Peikert
& Brandmaier, 2019).

(continued)
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TABLE 3.2. (continued)

Level of specificity Level of specificity Level of specificity Level of specificity
Topic
Open Not openly Publish article on  Publish article in peer- Publish article in peer-
publication  accessible. preprint server reviewed journal with reviewed open-access
without structured open access. journal scoring well
prepublication on the TOP guidelines
peer review. (www.topfactor.org).

Note. Different levels of specificity (LS) of reporting standards are presented. LS 0 is shown for comparison and describes
scenarios that do not meet any standard. The levels LS 1 to LS 3 are arranged in ascending order describing the lowest to
the highest level of specificity of transparent reporting. For some topics, only fine differences exist between levels.

Reproducibility (or verification) is often understood as using the original raw data
and analysis scripts to compute the results again (Clemens, 2017). Replication often refers
to “repeating the methodology of a previous study and obtaining the same result” (i.e.,
method-focused replication, Nosek & Errington, 2017, p. 1) in an independent sample
of participants/observations. Yet replication should mean a research design that tests
whether two (or more) studies produce the same causal effect within the limits of sam-
pling error (i.e., causal effect-focused replication; Steiner et al., 2019, p. 281). The dif-
ferences between reproducibility, method-focused replication, and causal effect-focused
replication become apparent when examining the specifics of mobile sensing.

Mobile sensing data often rely heavily on feature extraction and preprocessing of
sensor data, for example, determining sleep—wake phases through machine learning
algorithms that utilize phone usage and physical sensor data (Min et al., 2014). When
implementing third-party software packages for feature extraction, preprocessing, and
analysis of data, newer versions of the same packages might result in (slightly) altered
results, unknown to the researcher. One solution could be to build dynamic workflows
that manage software versions and changes (i.e., containerization, dependence man-
agement, and version management; Peikert & Brandmaier, 2019). Yet reproduction of
results becomes even more complicated when creating algorithms from original data. For
example, machine learning methods such as deep neural networks (DNNs) build their
algorithms (i.e., feature weights) partly autonomously from researchers based on training
data and optimization procedures (e.g., to predict sleep phases based on physical activ-
ity and other sensor information). When repeating the building of DNNs, differences
in algorithms might arise, simply due to how DNNs work (Hartley & Olsson, 2020).
At the very least, researchers aiming to reproduce results from original data should be
aware that different (versions of) algorithms might lead to (somewhat) different results.
The same applies to replication attempts, when previously published algorithms do not
function the same on new versions of the operating systems: For example, early apps were
allowed to read contacts and access the microphone, whereas some new Android versions
restrict such access heavily.

Method-focused replication, that is, direct replications with new data (i.e., partici-
pants, observations) aim at adhering closely to the published original work (e.g., Klein,
Vianello, et al., 2018). Transparent reporting as described in Table 3.2 facilitates direct
replications, thus identifying, estimating, and reporting the same effects in both the origi-
nal and the replication study (Nosek & Lakens, 2014; Steiner et al., 2019). Still, two
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crucial assumptions necessary for successful replications are not always met in direct,
post-hoc replications (i.e., replicating after results are published). Failing to fulfill these
assumptions threatens the replicability of results from mobile sensing (and other) studies.

The first assumption is that the treatment (or predictors) and the outcomes are sta-
ble across studies (Steiner et al., 2019). On the phenomenological level, the assumption
of stability seems implausible because smartphone functions change so rapidly. Certain
apps (or functions) might no longer be available or might be replaced by a different app,
so that observing usage in a specific population is not possible a few months or years
after the original study. Even the meaning of the same behavior might change quickly; for
example, using text messaging on the smartphone 40 times per day might have indicated
excessive usage in 2015 (Harari et al., 2020), yet this frequency is currently about aver-
age (Stachl, Au, et al., 2020). On the level of measurement, one requirement for direct,
method-focused replication might be to hold sensing software constant across studies.
Yet different research groups use various software solutions, which might differ in their
technical implementations. In addition, even if the same sensing app were to be used
across studies, operating systems today change rapidly, making it impossible to keep mea-
sures constant across time. For example, freely available onboard processing algorithms
(e.g., classifying activity data as standing versus moving) are updated, but providers do
not necessarily make transparent how and which parts of the software change.

The second crucial assumption for successful replications is that the real-world pro-
cess causing the effect must be constant across studies (Steiner et al., 2019). Previous
research hints that digital behaviors and the underlying processes are temporally stable
only across short periods. For example, communication patterns using smartphones
changed even over 4 years (Stachl, Pargent, et al., 2020): People used fewer text mes-
sages, but more social media and communication apps. Subsequently the associations
of specific communication channels with the trait extraversion also changed over time.
Thus, along with rapid technological advances, the meaning of narrow digital behaviors
(e.g., usage patterns, available apps) might change quickly, and previous results will not
be replicable a few years later. Broader and more stable digital behavioral dimensions
might be a possible solution to define outcomes, which are replicable over time (Stachl,
Pargent, et al., 2020). This proposal is also in line with the idea of causal effect-focused
replications, which means to replicate studies focusing on the same theoretical variables
but allowing different measures and study procedures (Nosek & Lakens, 2014; Steiner
et al., 2019). For example, if the association between extraversion and social behavior is
to be replicated, this can be done in a variety of ways operationalized via mobile sens-
ing. For example, social behavior could be equally operationalized as communication
app usage, social media app usage, sensed conversations, or call activities (Harari et al.,
2020). The progression of the field will reveal whether the principle behind causal effect
replications are more appropriate in mobile sensing research.

To summarize, mobile sensing research will likely face direct replication failures
despite transparent reporting, due to rapidly changing digital behavior and technical
solutions. Paradoxically, replication failures underline the importance of transparency
even more. According to Steiner and colleagues (2019, p. 281) “replication failure is not
inherently a problem as long as the researcher is able to understand why the result was
not reproduced.” We argue that transparency in mobile sensing studies can help to foster
this understanding.



Transparency and Reproducibility 77
Conclusion

Mobile sensing in psychology (and beyond) is a quickly developing and complex field.
Transparency, both during preregistration and in the later reporting of studies, will help
the paradigm to prosper because researchers can evaluate and learn from transparent
studies as well as derive standards for conducting mobile sensing studies. The availability
of standards, which are again transparently communicated, will facilitate placing mobile
sensing research solidly within the method repertoire of behavioral research—similar to
EEG, fMRI, or EMA (ecological momentary assessment; Mehl & Connor, 2012)—and
thus allow for the easy and valid study of human behavior within the context that matters
most, that is, daily life.

In our opinion, one of the major unresolved conflicts in mobile sensing research is
still the compromise between achieving a sufficient level of transparency and respecting
the data privacy of the participants. To achieve both goals responsibly, we hope that our
chapter will encourage interdisciplinary research teams to work together on appropriate

technical solutions.
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1. https://developers.google.com/maps/documentation/places.
2.  We fully acknowledge that several high-quality open-access journals exist that review

manuscripts carefully before publication. For these journals, the same reviewing biases

as in “classical” journals—overly enthusiastic or critical—can occur and thus need to be

considered.
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CHAPTER 4

Acquisition and Analysis
of Location Data

Sven Lautenbach, Sarah Lohr, and Markus Reichert

Humans’ moods, thoughts, and their behavior do not result solely from their genetic
background, their learning experience, and other factors, but they are also critically
shaped by the context people are exposed to. For example, humans feel and act differ-
ently when they are alone compared to spending time with others (Gan et al., 2021), at
work compared to being at home, at a funeral compared to having a party, or exposed
to a city environment compared to walking in a forest (e.g., Reichert et al., 2021; Tost et
al., 2019). The definition of context clearly depends on the discipline (e.g., geography vs.
computer science). This term is used in various ways (e.g., Corr & Matthews, 2020), and
the psychological literature often refers to contextual influences in manifold ways—for
example, with respect to time of day and social and environmental factors (e.g., Reichert,
Giurgiu, et al., 2020). In this chapter, we want to operationalize context as factors that
characterize the geolocation where humans are located at a certain point in time (such
as city vs. rural environment, the degree of nature environment, population density, and
air pollution).

Contextual influences impact the general population, that is, both healthy subjects
but also vulnerable populations that are prone to mental disorders. Therefore, scientific
and clinical interest in contextual influences on psychological outcomes is high. Fortu-
nately, we are living in a century of geospatial data and location-based services where
vast amounts of geodata (such as weather data, traffic noise data, distance to urban green
space, points of interests) are available, offering important context information for psy-
chological analysis. A rich suite of tools from geoinformatics is available to connect these
data with georeferenced information from psychological research (e.g., Reichert, Giurgiu,
et al., 2020). These data are often acquired by smartphone sensing via the Global Posi-
tioning System (GPS) and can be merged to other data sources that have been repeatedly
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assessed in the everyday life of participants—for example, ratings of psychological out-
comes such as mood in electronic diaries and physiological signals from mobile sensors
(e.g., electrocardiography, accelerometry).

In this chapter, we highlight a few examples of such research to illustrate how these
method combinations have been applied thus far. There have already been very promis-
ing research endeavors combining geodata with mobile sensing information to investigate
contextual impacts on psychological outcomes.

Almost two decades ago, Froehlich, Chen, Smith, and Potter (2006) assessed loca-
tion via mobile phone data and related it to personal experience. In 2014, Epstein and
colleagues followed 27 polydrug users by tracking geolocation data, stress, mood, and
drug-craving ratings across 16 weeks. Interestingly, and opposed to their initial hypoth-
esis, drug-users’ mood was increased in shabbier compared to tidy neighborhoods, while
their drug craving and stress was decreased. Although this work is of an observational
character and thus precludes any causal conclusions, it interestingly points toward the
potential role of the discrepancy between participant health status and environment (tidy
neighborhoods) for their psychological well-being.

Another study in the field of drug abuse (Gustafson et al., 2014) implemented real-
time feedback on smartphones (also called ecological momentary interventions [EMIs],
ambulatory assessment interventions [AAls], and just-in-time adaptive interventions
[JITAIs]; e.g., Heron & Smyth, 2010; Nahum-Shani et al., 2018). These studies com-
prised real-time tracking and analyses of patients’ location triggering assistance when
participants approached their favorite drinking spots.

In our recent study (Tost et al., 2019), we combined methods from epidemiology,
ambulatory assessment, neuroscience, and geoinformatics, aiming to investigate how
inner-city nature environments may impact affective well-being. We recruited 33 city
dwellers and equipped them with smartphones for assessing time-stamped geolocations.
We asked those participants to additionally provide repeated affective valence ratings (on
smartphone diaries) and to wear accelerometers for physical activity measurement (via)
in their everyday life. After the data acquisition, we quantified the participants’ relative
exposure to green space immediately prior to the e-diary ratings of affective valence.
Multilevel analyses showed that momentary exposure to inner-city green space signifi-
cantly enhanced affective valence. In an independent sample of 52 adult city dwellers, we
replicated this finding (Tost et al., 2019). In this group of participants, we additionally
acquired functional magnetic resonance imaging (fMRI) data and found that prefrontal
cortex activation during the processing of negative emotional stimuli in an fMRI emotion
regulation paradigm was less pronounced in participants exhibiting larger affective bene-
fits from real-life green space compared to low-responsive participants. Interestingly, fur-
ther geoinformatic analyses revealed that those high-responsive participants spent more
time in city neighborhoods that were green-deprived and that were characterized by a
heightened incidence of mental disorders. This led us to the conclusion that momentary
exposure to inner-city green space can serve as a resilience factor that can compensate for
reduced prefrontal resources in the city dweller’s everyday life (Tost et al., 2019).

Just recently, Miiller, Peters, Matz, Wang, and Harari (2020) used impressive lon-
gitudinal Big Data from smartphones to relate geolocation movement patterns (such as
distance traveled and irregularity), as well as experience sampling reports on places vis-
ited (such as home and social places) to psychological well-being. In this highly interest-
ing work, they showed the associations of distance traveled to stress, anxiety, and affect,
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relationships of irregularity to loneliness and depression, and a negative connection of
time spent in social places to loneliness.

The findings exemplified above demonstrate which kind of in-depth insights can be
expected in the coming years and show how investigations on contextual influences can
benefit psychological research. Therefore, in this chapter, we aim to introduce readers to
basic geoinformatic methods that enable researchers to acquire and analyze geolocation
data.

Different Ways to Acquire Location Data

Spatial Coordinate Systems

To be able to connect measurement data from ecological momentary assessments with
existing spatial information, it is important to georeference the measurement data. Put
differently, it is important to attach coordinates to the measurements. A common way
to specify coordinates on earth is to use latitude, longitude, and altitude/elevation. The
irregular shape of the earth (the so-called geoid) can be approximated by a spheroid.
While there are subtleties—such as that the earth is flattened at the poles, thereby requir-
ing an ellipsoid instead of a sphere for more exact representation of a global navigation
satellite system of concern for geodesy, cartography, and geography—here it is fine to
think of our coordinate system as a sphere with a fixed radius.

Positions on the surface of the sphere are defined by angles such as 49.41° N 8.716°
E (which is located in Heidelberg, Germany, Heidelberg Castle; see Figure 4.1). The lati-
tude of a point is the angle between the equatorial plane and the straight line that passes

50°

= He\delberg castle
) o 49.41°,8.716°
- * ~ 49
- - 9
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equator =

center

b) front view: vertical cross-section of the Earth

latitude and longitude:
coordinates of Heidelberg castle

longitude: a) front view of the Earth b) top view: horizontal cross-section of the Earth

FIGURE4.l. An example of how positions on the surface of the sphere are defined by angles, here
using the location of the Heidelberg Castle, Germany (latitude and longitude: 49.41° and 8.716°).
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through that point and the center of the earth. The longitude of a point is the angle east
or west of a reference meridian to another point that passes through that point. A merid-
ian is the half of a so-called great circle on the earth’s surface that passes through the
North Pole and the South Pole; the great circle is thereby split at the poles. The prime or
reference meridian is set by convention; nowadays it is common to use the meridian that
passes through Greenwich in southeast London, England. Together with the distance to
the center, latitude and longitude specify a unique position on the sphere. If just longitude
and latitude are given, we are assuming that the location is at the surface of the earth.

Given a common geographic coordinate system, the question that arises is how to
measure our position (or the position of a location of interest such as the place where a
participant in our experiment is currently located).

Global Navigation Satellite Systems

A global navigation satellite system (GNSS) allows the determination of the location
in a geographic coordinate system based on time signals transmitted by satellites. The
United States’ Global Positioning System (GPS) is the best known GNSS, and GPS is often
used—imprecisely—as synonymous to GNSS. Other systems include Russia’s GLONASS,
China’s BDS, and the European Union’s Galileo (Madry, 2015).

The underlying idea of satellite positioning is to measure the position of the receiver
(e.g., a GPS chip built into smartphones) relative to the known position of several satel-
lites. The distance to the satellites is calculated based on the time it took the signal from
the sender (the satellite) to the receiver (e.g., the GPS chip of a smartphone). To estimate
latitude, longitude, and altitude by triangulation, it is necessary to receive signals from at
least four satellites. Ideally, the satellites would be distributed evenly across the sky; when
clustered, position accuracy distinctly degrades.

Since the signal is transmitted by a radio signal, it is necessary to have a clear line
of sight between receiver and satellites. If this is not the case, as in one example, since
the receiver is located in dense forest, a deep canyon, or indoors, positioning may not be
performed or positioning accuracy may be degraded. Environments full of obstacles such
as large buildings, road infrastructure, and foliage impose challenges for standard GNSS
signals (Madry, 2015): in addition to blockage or attenuation of the signal, the receiver
might receive reflections of the signal or might be affected by other non-GNSS signals in
nearby frequency bands. Blockage by building fronts or other obstacles might also lead to
an unfavorable distribution of available satellites since signals can only be received from
a limited part of the sky. We will expand on how one can deal with these challenges in
the following sections.

The accuracy of a GNSS signal depends on many factors, including satellite geom-
etry, signal blocking, atmospheric conditions, and the features/quality of the receiver;
GPS-enabled smartphones are typically accurate to within a 4.9-meter radius under open
sky (van Diggelen & Ende, 2015). The difference between true and estimated position is
referred to as the user accuracy; it is different from the user range error (URE) reported
by GNSS providers (e.g., Renfro, 2017) since URE is focused on the sender and not the
receiver of the GNSS signal (GPS.gov, 2021). With the help of additional systems such
as wide-area augmentation systems (WAAS) or dual-frequency receivers, a precision of
between 2 meters and 5 meters can be achieved (GPS.gov, 2021). Commercial WAAS are
available for North and Central America, Europe, and North Africa as well as for South
and East Asia and might be an option if higher precision of location recordings is sought
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for the intended analysis. An additional source of uncertainty involves the GNSS receiver.
As Zandbergen (2009) has shown, a smartphone receiver might produce less accurate
results than regular autonomous GNSS receivers.

GNSS can be used to estimate positions, for example, using the smartphones of
study participants. Smartphones are not suitable, however, in indoor settings (see below).
Care should be taken with respect to the accuracy of the estimated position, especially
in areas with a high density of obstacles such as large buildings, road infrastructure, and
foliage: Positions are recorded with an attached uncertainty. If one wants, for example, to
distinguish between recordings inside or outside of buildings, this might result in record-
ings that cannot safely be put in one or the other category. Therefore, uncertainty can
be included in statistical analysis (e.g., as a dimensional variable), or positions might be
filtered to exclude recordings with uncertain assignment (inside/outside). Critical obser-
vations can be identified by buffering participants’ locations and intersecting those buf-
fers with building footprints (see the subsections below for details on those geoprocessing
routines; building footprint data can be freely accessed via OpenStreetMap, or in some
countries such as the United States, by open administrative data). Moreover, indoor and
outdoor positions can be distinguished based on an intersection of position recordings
with building footprints.

Indoor Positioning by Wi-Fi

Studies that focus on indoor settings cannot rely on GNSS to require location data.
Examples of such studies involve analysis of the behavioral and psychological symptoms
of dementia in a nursing home setting (Wang et al., 2019) or analysis of factors influenc-
ing walking distance estimation (Iosa, Fusco, Morone, & Paolucci, 2012).

GNSS is not suitable for indoor positioning because builtup environments do not
allow for a reliable connection between receiver and GNSS satellites. While GNSS can
receive signals in certain indoor environments, it is not able to provide room-level or sub-
room-level location. Indoor positioning must therefore rely on alternative technologies.
This requires the setup of a network of sensors that allow triangulation of the position-
ing of the receiver. Most frequently Wi-Fi is used for indoor navigation and position-
ing (Loveday, Sherar, Sanders, Sanderson, & Esliger, 2015). Other technologies involve
Bluetooth, ZigBee, RFID, UWB, visible light, acoustic signals, and ultrasound (Zafari,
Gkelias, & Leung, 2019).

The underlying idea of Wi-FI positioning systems is to triangulate the position of
the receiver by employing characteristics of wireless local area network hot spots and
other wireless access points. The most commonly used approach relies on measuring the
strength of the Wi-Fi signal (received signal strength indication [RSSI]) and identifying
the access points. If the position of the access point is known in addition to the dampen-
ing of the system with distance to the access point, one can triangulate the position of
the receiver from the received signal strength from several receivers. Identification of the
different access points is based on parameters such as the Service Set Identifier and media
access control address. Precision of the estimation can be improved by an initial calibra-
tion of the system—the so-called scene analysis or fingerprinting. Thereby, it is possible
to account for the variability of the dampening of the signal due to a heterogeneous envi-
ronment (variability in building material, furniture, etc.). A statistical model is then used
to infer the position of the receiver. Any change of the setup (e.g., by moving furniture) is
likely to influence the accuracy of the position estimation.
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A median positioning accuracy of 0.6 meters has been reported for systems based
on RSST and fingerprinting (Kotaru, Joshi, Bharadia, & Katti, 20135). If higher accuracy
is needed, alternative approaches such as Angle of Arrival, Time of Flight, Time Dif-
ference of Arrival, or Return Time of Flight can be used (Dargie & Poellabauer, 2010;
Nguyen, Luo, Li, & Watkins, 2020). These alternative approaches are more demanding
with respect to the technology used for the receiver and/or the sender (Zafari et al., 2019).
Some of those approaches in addition require a line-of-sight connection, which might
not be suitable for all environments (Zafari et al., 2019). In addition to its use for indoor
positioning, WiFi can also enhance the accuracy of the GNSS-based positioning by using
RSSI of WiFi access points (e.g., Stumpp, 2014).

Global System for Mobile Communications

If the focus of the analysis is on larger groups without the need to identify individual
users and if requirements on position tracking are lower, Global System for Mobile Com-
munications (GSM) may be an alternative. Based on triangulation between cell towers
and signal strength, position accuracy depends heavily on the distribution of cell towers.
In urban areas, an accuracy of 50 meters might be achievable, but accuracy will be lower
in rural areas. Accessing the data requires cooperation with the service provider and trig-
gers privacy issues in most countries, adding another layer of complexity to the analysis.

Overview/Summary

In most situations, GNSS-based positioning will be the most suitable choice since receiver
chips are comparably cheap and available on most mobile devices. Whether participants
will be asked to use their own devices or will be equipped with additional devices is a
matter of choice that involves nonspatial aspects such as data privacy and trust, in addi-
tion to the comparability of different devices. Another factor to consider is battery use by
the GNSS sensor, which might impose additional constraints if the participants’ devices
(e.g., smartphones) should be used. If higher positional accuracy is needed, it might be
worthwhile to pay for the use of wide-area augmentation systems. If the experimental
design involves indoor settings, GNSS is not suitable, but it has to be substituted or com-
plemented by other systems such as Wi-Fi-based positioning. In any case, one should be
aware of the uncertainty associated with the different positioning systems and the factors
that influence uncertainty. Ignoring the uncertainty of the location allocation method
used might affect subsequent spatial analysis steps (Wan, Kan, & Wilson, 2017).

Analysis of Location Data

The Power of GIScience: Fusing Information to Coordinates

The above-named techniques make it possible to track locations of study participants
through time and space by repeated recording of the position. These coordinates can
then, for example, be used to analyze the movement patterns of participants. If combined
with ambulatory assessment (AA), psychological variables can be recorded together
with the location. This allows assessment of how psychological variables (e.g., stress,
mood, rumination) change through time and in space. In addition, it is possible to enrich
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measurements of a study participant with information on the environment and thereby
to interpret the measurement in its environmental context, which has proven to be a
non-negligible factor when it comes to understanding, for example, psychiatric risk. For
instance, in an analysis of subjectively perceived stress, it might be of interest to find
the underlying environmental factors surrounding the person’s location that either cause
or prevent a feeling of being stressed. These might be factors such as the proximity to
streets, noise, crowdedness, or even the district’s known crime rates. Instead, positive
stimuli such as green space or water might help one to recover from stress. In other
words, in order to assess the dynamic reactions of humans to their environment, it is not
only valuable but also necessary to combine the recorded geometrical location data with
factual (also called attribute) data, which is enabled through geoinformatic approaches.

The process of analyzing recorded point location data can be structured into three
steps: (1) data acquisition, (2) data processing, and (3) interpretation and visual represen-
tation of the results.

Acquisition of Geographic Data

After the location data are recorded, the first step of their contextual analysis is usually
the acquisition of geographic data on the environmental factors of interest. Depending on
the research question, it might be useful to include several geographic data sources in the
analysis; some common sources will be presented in the following.

It is well known that the social composition of an environment affects individuals.
For example, the perceived well-being of a person suffering from social anxiety will most
likely be low in crowded places. In order to get information on the social vibrancy of a
place, researchers often use data sources from social media such as Twitter or Weibo
posts (e.g., Chen, Hui, Wu, Lang, & Li, 2019). Georeferenced posts, that is, posts with
attached spatial coordinates, can be analyzed with respect to their frequency over time
and density in space, providing information on the crowdedness or emptiness at different
times of a day, week, or year (e.g., Ullah et al., 2019). Furthermore, text mining tools
allow extraction of information from the message text that can be used to assign prevalent
positive or negative sentiments to a place (Li, Westerholt, & Zipf, 2018; Sykora, Jackson,
O’Brien, & Elayan, 2013). Heller and colleagues (2020) showed that novelty and experi-
ential diversity of physical locations and positive affect are bidirectionally linked. They
showed that a sociodemographically heterogeneous district can have an activating effect,
leading to “upward spirals.” Information on sociodemographic and socioeconomic fac-
tors can be obtained, for example, from official census data. For example, the American
Housing Survey (AHS, 2021) provides rich information on socioeconomic indicators such
as median household income, percentage of inhabitants living alone, or the percentage
of age classes at the census tract level. Other countries provide less-open data access by
restricting data access to higher-level administrative units. Commercial geodata provid-
ers might fill that gap by offering finer scale information. Frequently, such information
on finer scales originate from model-based downscaling and not from finer scale data.
For administrative units, which might be necessary to extract the region of interest, sev-
eral sources, such as the Database of Global Administrative Units,! are available.

Apart from social factors, the built or natural elements of the environment influ-
ence humans and their experiences, such as the density of buildings, the proximity to
streets, and noise or air pollution, but also the share of green space or blue space (lakes,
rivers). For this purpose, official data about environmental attributes can be used, such
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as TIGER? or INSPIRE,’ or global crowd-sourced data, such as OpenStreetMap,* which
can be downloaded (e.g., from Geofabrik®). OpenStreetMap offers a large set of attri-
butes that further describe map features (e.g., building types, points of interest such as
shops, bars and restaurants, amenity types, street types). For a more detailed assessment,
3D data can also be used, such as 3D city models or LIDAR data, which even allow for
identification of single objects such as buildings or trees.

A first characterization of a location at a broader scale can be based on information
on its land use or land cover. On the one hand, land cover represents the physical proper-
ties of the surface (e.g., vegetated, buildup, water body) and can be derived based on satel-
lite or aerial imagery. Land use, on the other hand, describes how the land is used (e.g.,
residential, recreational, industrial, agricultural). The relationship between land use and
land cover can be complex since the same land cover (e.g., forest) can be used in different
ways (e.g., recreation, forestry, protected area), and the same land use (e.g. recreation)
can be linked to different land cover (e.g., recreation can be realized on built-up areas
such as Disneyland, at a beach, or in a forest).

Studies show, for example, that inhabitants of areas with larger shares of tree can-
opy, are on average healthier than those living in areas with comparatively higher shares
of grassland (Astell-Burt & Feng, 2019). Exposure to urban green space has been shown
to affect the mental well-being of city dwellers in their everyday life (Tost et al., 2019).

Several sources, such as CORINE Land Cover® or Urban Atlas’ for Europe, the
National Land Cover Database for the United States,® or global datasets such as OSMlan-
duse,” the Copernicus Global Land Service,'” or AVHRR Global Land Cover Classifica-
tion'! provide information on land cover. The INSPIRE geoportal, for example, offers
several datasets on the built and natural environment for the European Union.

Satellite imagery allows further assessment of these areas through their reflectance
ratios. The U.S. Geological Survey (USGS) EarthExplorer'” provides free access to dif-
ferent satellite images for different spatial and temporal units. For example, one com-
monly used measure to assess the vitality of plants is the Normalized Difference Veg-
etation Index (NDVI; Carlson & Ripley, 1997; Cihlar, Laurent, & Dyer, 1991), which
can be used as a proxy for vegetation cover if land cover information is missing. The
NDVI ranges from -1 to 1 and represents water as negative values, built areas and bar-
ren lands as low positive numbers, and larger positive numbers as healthier vegetation.
Digital elevation or digital surface models derived from remote sensing—such as ASTER
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Tachikawa et al.,
2011) or STRM (Shuttle Radar Topography Mission) (Rabus, Eineder, Roth, & Bam-
ler, 2003)—can further provide information on the elevation of a measurement and can
therefore be used to calculate the visual field of a person. Terrain information, together
with three-dimensional city models (Biljecki, Stoter, Ledoux, Zlatanova, & Coltekin,
2015) and information on trees, can, for example, be used to calculate the shadiness of
a place at a given time. Thermal comfort at a location might affect mood and well-being
and could also act as an explanatory factor for the attractiveness of a location.

A large amount of geodata are available as open data. However, data availability
differs between countries. While coarser scale information is regularly available, data
at higher spatial or temporal resolution might not be available or might involve costs
for access. Also, not every dataset might be suitable for the planned analysis. Criteria
to be considered to assess the fitness for purpose are the spatial and temporal resolu-
tion, the recording date, costs, and data quality indicators. Data provided by agencies
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or research information come together with the required metadata (data about the data),
which allows such an assessment. Volunteered Geographic Information such as Open-
StreetMap or data derived from social media tend to be of spatially varying data quality,
and therefore they require additional consideration (e.g., Barron, Neis, & Zipf, 2014;
Mocnik et al., 2019). In addition, spatial phenomena might be represented in different
ways, which affects how data can be further analyzed. Therefore, the next section pro-
vides a brief overview on geoinformatic systems and geoinformatic data models, prior to
the presentation of common geoinformatic functions.

Processing and Analyzing Geographic Data

Geographic information systems (GIS) are software programs that offer a wide range
of tools to work with spatial data (Neteler & Mitasova, 2008). A wide set of GIS and
other tools for data processing are available, ranging from commercial systems, such as
ArcGIS,"® ENVL™ open-source systems such as QGIS" (Menke, 2019), GRASS GIS,'®
GeoDa'” (Anselin & Rey, 2014), to programming languages with geographic mod-
ules, such as Python'® or R" (Brunsdon & Comber, 2016), or spatial databases such as
PostgreSQL/PostGIS (Obe & Hsu, 2011) or Oracle Spatial.?’ While the technical skills
required to use such systems differ, all systems share common concepts. They all allow
combining different spatial datasets by means of an overlay or feature planes technique
(layer concept); one can think of several layers of information that cover the same place
(cf. Figure 4.2). This concept is different from that of joins in conventional relational
database systems which rely on common key fields to link data from different datasets. If
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FIGURE4.2. The layer concept is of fundamental importance in spatial information processing. It
enables working in different layers with their respective data models and visualizing different data
sources at once. The complex reality (bottom layer) is represented either as vector or raster data.
Here, the top layers provide information on GPS positions of participants and trees, represented
as vector points. The middle layers represent buildings and land use (water, green space, streets,
residential) as polygons, while the fifth layer from the top is a raster layer containing NDVI values.
Based on coordinates, information from the different layers can be related using geoprocessing
approaches.
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the positions of participants are enriched by geographic coordinates, links to information
from other spatial datasets such as land use, temperature, distance to points of interest,
and visibility of green space can be established.

Geographic Data Models

The type of analysis that can be used to further process the geodata depends on its rep-
resentation, that is, its data type. Geographic information is characterized by the clear
assignment of each object and its information to a geographical location. Depending on
the phenomenon, this information can be continuous (e.g., population density) or discrete
in space (e.g., the location of a building). Moreover, the phenomena might change rela-
tively smoothly in space (e.g., air temperature in flat terrain outside of builtup areas) or
roughly (e.g., land-use or vegetation cover in residential areas).

When continuous information is not represented as a function, it is discretized to a
tessellation of the space that can consist, for example, of regular raster cells (cf. Figure
4.3). Each cell of the tessellation provides information about the space it covers. In the
case of satellite images, one raster cell might give information on the elevation, tempera-
ture, or reflectance per cell. Discrete information, such as a coordinate pair and its attri-
butes, is usually represented as vector data.

FIGURE4.3. Example raster data. The maps show the amount of green present in the city center
of Mannheim, Germany. The data are stored in a raster format. Each cell contains a value that
represents the amount of vegetation (NDVI).
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Depending on the data type, spatial objects have geometrical, topological and usu-
ally thematic properties and can be further enriched by temporal properties (e.g., date
of recording), meta-information (e.g., recording method, coordinate system), and object
identifiers that allow a well-defined access.

In the two-dimensional space, vector data can be geometrically represented as point
(e.g., a position of a participant, a single trees), line (e.g., rivers, streets, the trajectory of
a participant), or polygon features (e.g., parks, administrative areas, the activity space
of a participant), all of which rely on points, with each point representing an x- and
y-coordinate pair. While a point is stored as a single coordinate pair, a line consists of at
least two points, and a polygon is a closed line consisting of at least three points. A set of
location points of one person could therefore be combined to a line feature if required. If
positions of multiple participants are present in a recording, it will be necessary to group
the measurements first by participant and afterward by time before creating line objects.
It is also possible to create new features based on existing features: One might be inter-
ested in identifying the activity space of a participant based on the individual measure-
ment positions. A simple way to construct the activity space would be to calculate the
convex hull of the activity space and use that for further analysis. The convex hull of a
feature set is the minimum convex polygon that covers all features; convex in this context
implies that all straight-line connections between any two points on the border of the
polygon are completely within the polygon. It would also be possible to construct activ-
ity spaces for different times of the day (e.g., work, home) or days of the week (workdays
and weekdays).

Spatial features can also be described by their position relative to other features.
An observation might be inside a building, next to a bakery, or on the eastern side of a
major road. These so-called topological relations can be used to link different features.
Important topological relations between two objects are “disjoint,” “contains,” “over-
lap,” “meet,” “inside,” “covers,” “covered,” and “equal.” A possible spatial query using
data on a set of trees (point features) and one park (polygon feature) could be to find all
the trees or bushes contained by this park. Many studies have already shown that urban
green spaces with a higher biodiversity promote more positive emotions in humans (e.g.,
Cameron et al., 2020; Fuller et al., 2007). As trees or bushes offer habitats to many spe-
cies, it might be worthy to include them in an analysis. Apart from that, they influence
their environment by providing relevant ecosystem services and contributing to a pleasant
micro-climate. One might be further interested in identifying participant measurements
that were located inside a park, outside of a building, or in a distance of 50 meters from a
bar. Or one might be interested in identifying all the urban green spaces or alcohol-selling
places inside the activity space of a person.

Raster data are geometrically represented as pixels (e.g., satellite imagery, orthopho-
tos), which are aligned matrix-like in rows and columns and therefore provide topologi-
cal information through neighboring cells (cf. Figure 4.3). Compared to vector data, only
the origin of the matrix must be stored, as the location of each cell can easily be computed
due to their regular shape. Information commonly represented by raster data are eleva-
tion (digital elevation models, DEM) or information derived from satellite imagery such
as vegetation indices, land cover information, or surface temperature. It is best suited for
continuous data such as surface temperature or noise, while vector data are best suited
for clearly defined objects such as buildings. Instead of representing the activity space of
a person as a polygon with distinct borders, one might also represent the activity space by
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FIGURE 4.4. Link between geometry and attribute information. Each geometry object in a fea-
ture layer is linked to an attribute table with associated information. The example shows a road
network with information on neighboring street segments and the average daily traffic volume at
the road segment. The selected road segment in the map is highlighted in black, the corresponding
row in the attribute table is highlighted in gray.

a raster in which each cell represents the probability that the cell belongs to the activity
space. This allows a fuzzier representation of the information.

A spatial object can provide thematic information in the form of attributes that
further describe the object (cf. Figure 4.4), such as the answers a participant gave in an
e-diary rating at a specific location, together with the time of the recording and the par-
ticipant ID, the tree species, the height of a building, the air temperature recorded by a
sensor, along with the timestamp or the number of lanes of a street. Frequently, geodata
already contain attribute data. If additional information is available as tabular data (e.g.,
comma-separated values, dBase files, Excel sheets, database tables), it is necessary to
attach the table to the spatial objects. If spatial objects and tabular data join a common
key field, they can easily be combined by a (nonspatial) join of the two tables. For point
data, it is also possible to provide coordinates for the individual objects in the table and
to import the data directly into the GIS.

Common Geoinformatic Functions

A GIS allows for a deeper understanding of spatial information and its interactions
through different possibilities of data modifications, explorations, and analyses (cf.
Table 4.1). Functionality to work with spatial data can be broadly categorized as follows
(Cromley & McLafferty, 2012):
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Measurement (e.g., distance, area)

Topology (e.g., adjacency, overlay)

Network and location analysis (e.g., shortest path routing, accessibility)
Surface analysis (e.g., viewshed and visibility analysis)

Statistical analysis (e.g., spatial sampling, spatial autocorrelation, spatial interpo-
lation)

In the following, we provide an overview of spatial operations. We aim here at fun-
damental operations that might be most suitable in psychological research and related
domains without intimidating the reader with variants and special applications.

To prepare data for the region of interest, a common procedure might be to clip the
data (e.g., the measurements) to the extent of the region of interest. Similar to this spatial
filter, the acquired data points can also be filtered based on their attribute information,
such as the accuracy of the measured location. Depending on the purpose, it could be
useful to geometrically modify vector data by combining, for example, a set of points to
a line. In this way, tracking the points of one person during one day can be united to a
path. It might also be necessary to merge two datasets of the same attribute if none of
them fully covers the study area (e.g., data of two different administrative regions).

A useful function to examine the surroundings of a vector object is the buffer func-
tion. It can be adequate if the object influences its environment or, more generally stated,
the object interacts with its environment through space. Streets influence their surround-
ings in terms of pollution and noise, and a visual field of a person walking through a city
can be modeled by a buffer around the person’s location or the person’s path. Another
possible application is to use a buffer function in order to find all neighboring points of
the same person within a certain time frame in order to downsample the data when a per-
son stayed for a long time in the same place, but different GPS locations were stored due
to the limits of accuracy of the GPS signal. Another approach, in some sense similar to
the buffer, is using networks in order to calculate a certain catchment area. For example,
for a hospital, a network of streets could be used to find all the buildings which in terms
of distance on the streets are closer to the respective hospital than to other hospitals.

Different datasets can also be intersected. It may be of interest to intersect a person’s
visual field at a given location with a layer containing green space polygons. In this way,
the percentage of green space exposure of the environment can be calculated.

Geo information systems (GIS) also allow for calculation of distance and area. This
could be the area of an urban green space, the distance of a person’s location to the next
street, or even the velocity of a person’s movement. However, to measure lengths and
areas, it is necessary to use a metric coordinate system; therefore, it might be necessary
to first reproject your data. Information on the current coordinate system can be found
in the meta information.

With geographic data, spatial statistics can also be assessed to get an understanding
of the spatial distribution of the elements. The point density of GPS measurements can be
calculated for different areas to find out more or less visited areas, or, when dealing with
location data of a heterogeneous group, differences in spatial behavior can be assessed
for the subgroups. For discrete point events, point pattern analysis offers a rich set of
statistical approaches to study the distributional pattern, compare it between groups and
against theoretical distributions, as well as to include covariates in the analysis (Baddeley,
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TABLE 4.1. Elementary Spatial Functions with Examples
Function Input data

Merge

Clip (select
by location)

Select
by attribute

Buffer

Intersection

Note. Data source: OpenStreetMap (2020, https://www.openstreetmap.org).

Description

In this example, buildings
of two administrative areas
(black and gray) are merged
to one (dark gray) building
layer.

Here, a building layer is
clipped to the region of
interest (dark gray area).

In this case, all the primary
roads (black) were selected
from a layer containing all
types of roads (black).

As an approximation of the
surroundings of a person
at a specific location (black
dot), a buffer of 100 meters
(gray) was created.

A buffer around a location
was intersected with all
land-use polygons tagged
as grass to obtain the grass
areas within the person’s
environment.
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Rubak, & Turner, 2016). Another way to analyze, for example, patterns in spatial or
spatiotemporal movement patterns is using specialized cluster analysis (Besag & Newell,
1991; Kulldorf & Nagarwalla, 1995; Zhang, Assun¢do, & Kulldorff, 2010).

Spatial data might also trigger additional challenges. One of the biggest challenges
posed by spatial data is spatial autocorrelation. According to Tobler’s first “law” of geog-
raphy: “Everything is related to everything else, but near things are more related than
distant things” (Tobler, 1970, p. 236). If the data points are spatially autocorrelated
after the structural component of the model has been considered, the usual assumption
of independence of the data points is violated, which might lead to biased estimates and
standard errors. To take this nuisance into account, a rich set of statistical methods
is available that involve but are not restricted to spatial filtering and spatial eigenvec-
tor mapping (Griffith, Chun, & Li, 2019), autoregressive models, generalized estimating
equations, wavelets (Carl, Dormann, & Kiithn, 2008), and spatial Bayesian approaches
(Haining & Li, 2020). These methods vary by complexity, applicable error models, and
computational burden (Dormann et al., 2007).

If temporal information exists, it can also be assessed in the temporal dimension to
assess not only how a spatial pattern looks like, but also if a trend or differences in time
exist. For these cases, a grid that covers the region of interest with symmetrical cells could
also be useful. For each cell, parameters such as the number of measurements of the per-
centage of a certain land cover type (through intersecting the land cover layer with each
cell) can be calculated, which could later be displayed as a heat map.

Potential Nuisance: Different Spatial Coordinate Systems

All functions described above require that information is using the same spatial coordi-
nate system. Unfortunately, different geographic coordinate systems are used in differ-
ent parts of the world because different geographic coordinate systems are better suited
to represent the geoid in different parts of the world. In addition, many operations are
performed on a plane in cartesian coordinates. This requires projection of the coordi-
nates from the sphere or ellipsoid to the plane and leads to projected coordinate systems.
Projected coordinate systems differ in the distortion that is introduced when projecting
the 3D surface to a plane. Distortions depend on scale: For small areas such as cities,
their effect should be small compared to the errors of positioning by GNSS and other
techniques. It is possible to transform data between different geographic and projected
coordinate systems; some tools even perform this function automatically. However, it is
necessary that the coordinate system of the data is known. Nowadays, this information
should be present in most datasets you encounter. Data acquired by GNSS or indoor loca-
tion systems will typically be stored in the world geodetic system 1984 (WGS84) as long
as this is not changed on purpose. Further details on geographic and projected coordinate
systems are, for example, provided by Jenny, Savri¢, Arnold, Marston, and Preppernau
(2017), Kessler and Battersby (2019), and Snyder (1987).

Cartography: Visualization of Geographic Data

Especially when working with geographic data, maps can be useful not only as a carto-
graphic representation of the results, but can also be part of the analysis process and the
interpretation of the results themselves. In comparison to a table, a histogram, or other
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methods of data visualization, a map can show the underlying spatial patterns at one
glance. However, creating good maps is a field in itself, as scale, projection, map symbols,
and their visual variables (such as shape, size, hue, gray tone value, texture) can also lead
to misleading interpretation or even user manipulation when used inappropriately. Car-
tography with its old history therefore provides a wide range of literature with guidelines
for map making. Good starting points for further studies in cartography are Darkes and
Spence (2017), MacEacheren (1995), Monmonier (2018), and Peterson (2015).

Using Spatial Data to Create Experiments

Spatial information can be used not only to analyze and explain the behavior of a person
depending on the environment, but also to design experiments. For example, to under-
stand how environmental factors such as availability of green space, noise level, or air
pollution influence the well-being and mood of a study participant, one could either
passively follow the path of the person through space or actively route the participant to
locations that provide a specific exposure. All that is needed is the location of the par-
ticipant, spatial information about the relevant exposure factors—to identify locations
to which the person should be directed—and a routing service. Commercial and open-
source routing services typically provide an interface that requires the start and the end
coordinates and return the route to the destination. Specialized services allow selection of
different criteria of the envisioned route, such as a green or less noisy route (e.g., Novack,
Wang, & Zipf, 2018). This, for example, allows extending the analysis of Bratman, Ham-
ilton, Hahn, Daily, and Gross (2015), which assigned participants to fixed routes with
different green spaces. Here, the route assigned to a participant could be derived based on
the current location of the participant. It is thereby possible to integrate possible interven-
tions easier into the everyday life of participants.

Conclusion

Spatial context matters in everyday behavior. It can be seen as a confounding factor that
needs to be controlled for or as an interesting study field on its own. Spatial analysis in
psychological research seems to be still in its infancy, which might be more due to lack
of knowledge than to lack of interesting research questions. The spatial turn in other
disciplines has led to the availability of a rich set of tools to collect, manage, analyze,
and visualize spatial data. Spatial data are increasingly publicly available and can be
combined with location data of participants. While working with spatial data is not free
of challenges, a rich set of tools and expertise is available to address those challenges.

How to Continue

While we have covered the basic concepts of location data analyses here, it will presum-
ably be challenging to start with a real-life data analysis from scratch. How to continue
depends on your requirements and on your available resources. If it is sufficient for you
to understand the basic concepts, but you lack the time to dig deeper into the practical
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aspects of spatial data analysis, it might be an option to involve a partner with a GIScience
background into your projects. GIS and spatial data analysis are commonly part of geog-
raphy study programs, so it may be worth it to investigate possibilities at a nearby uni-
versity. Potentially, they are interested in becoming a partner in new, inspiring research
projects. Alternatively, you could hire a consultant to plan and perform the necessary
steps for you. Participating in a project with partners experienced in spatial data analysis
will help to better understand concepts and challenges of spatial analysis as a first step.
If you have the capacity to invest more time and the interest to dive deeper into the topic
on your own, free online resources are available both for commercial software as ArcGis
and for free software as QGIS. Since commercial GIS software comes at a substantial
cost, it might be worth testing a free tool first; with respect to functionality, differences
are usually neglectable. While commercial software comes with extended documenta-
tion, community resources for open GIS software are often sufficient. For QGIS, a good
starting point could be www.qgistutorials.com/en/docs/learning_resources.html. But it
is also worthwhile to check the availability of massive online courses offered by many
universities and to check out some of the books listed in the references of this chapter.
However, be prepared to realize that many examples in applications will (still) be outside
of your domain since business and environmental topics are dominant. However, the
concepts should be easily transferable to your domain. Similar to other domains, to avoid
frustration, at first it is good not to be too ambitious.
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CHAPTER S

Acquisition and Analysis
of Physical Behavior Data

Marco Giurgiu and J. B. J. (Hans) Bussmann

Physical behavior is defined as the observable physical behaviors (PBs; activities, pos-
tures, and movements) that people perform in their regular daily life. It is an umbrella
term covering the constructs physical activity, sedentary behavior, and sleep. These con-
structs are to a large extent similar in measurement methods but with different health
effects, and their outcomes partly depend on each other; for example, the longer a person
sleeps, the less time remains for physical and sedentary activities. However, at the same
time, they are independent of each other and have their own relevance, clinical back-
ground, and research platforms. In this chapter, we will focus on physical activity and
sedentary behavior; sleep will be discussed mainly from the perspective of its dependency
on physical and sedentary behavior. Subsequently, we will address the background, cat-
egories and relevance of PBs; discuss issues of measurement, data processing, and met-
rics; provide an example from psychology; and end with recommendations and future
perspectives.

Introduction

Why Measure PB?

Physical behavior—the observable physical behaviors (PBs; activities, postures, and
movements) that people perform in their regular daily life—is an umbrella term covering
the constructs physical activity, sedentary behavior, and sleep.

Physical activity (PA), defined as any bodily movement produced by skeletal muscles
that require energy expenditure (Caspersen, Powell, & Christenson, 19835), is beneficial
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for physical and mental health outcomes (Warburton & Bredin, 2017). In particular,
being regularly physically active is associated with reduced risk for many noncommuni-
cable diseases such as cardiovascular heart disease, hypertension, diabetes, cancer, and
all-cause mortality (Lee et al., 2012), and it can contribute to the maintenance of healthy
weight (World Health Organization, 2010). Furthermore, being physically active has
benefits for mental health (e.g., lower prevalence of depressive symptoms and anxiety or
improved self-esteem; Schuch et al., 2016), delays the onset of dementia (Livingston et
al., 2017), and contributes to general well-being (Das & Horton, 2012). In simple words,
PA is a well-known protective factor for preventing and managing diseases across the
lifespan.

Although there is strong evidence that PA is beneficial for physical and mental
health, many people are not sufficiently active. For example, researchers have reported
that approximately 80% of U.S. adults and adolescents are insufficiently active, which
means that they do not meet current PA recommendations, for example, being moder-
ately physically active for 150 minutes throughout the week (Piercy et al., 2018; Tremblay
et al., 2017). Technological and social changes in domestic, environmental, and occu-
pational settings have led to an increasingly inactive lifestyle among different cultures
and countries (Church et al., 2011). Especially in wealthier countries (e.g., high-income
Western countries), the transition toward more inactive occupations and personal motor-
ized transportation contributes to a high physical inactivity level. Tremblay describes the
current situation as follows: “People sleep less, sit more, walk less frequently, drive more
regularly, and do less PA than they used to.” (Guthold, Stevens, Riley, & Bull, 2020).

From a health perspective, it is not only PA and exercise that are essential. Epidemio-
logical studies and laboratory studies using sophisticated biology and medical chemistry
methodologies identified unique mechanisms that are distinct from the biological base of
PA and exercising (Hamilton, Healy, Dunstan, Zderic, & Owen, 2008). In this context,
the construct of sedentary behavior (SB) should be discussed, that is, any waking behav-
ior characterized by an energy expenditure < 1.5 metabolic equivalents (METs; 1 MET
equals the amount of energy needed while sitting at rest) while in a sitting, reclining, or
lying posture (Tremblay et al., 2017). The definition involves two parts: a postural and
an intensity part. SB is increasingly recognized as a serious, worldwide public health
concern. Researchers have found that SB is negatively associated with cardiovascular dis-
eases, diabetes, cancer, depression, and other physiological and mental health outcomes
(Ekelund et al., 2016; Gilchrist et al., 2020; Huang et al., 2020). However, there is an
ongoing discussion about the independence of SB effects on health; in other words, can
sufficient PA counter the adverse health effects of SB? Previous studies have emerged,
offering contradictory findings regarding this issue (Biswas et al., 2015; Ekelund et al.,
2016). Even though the dependency between both behaviors is not explicit, SB is an omni-
present behavior in everyday life (Gardner et al., 2019). In particular, previous studies
have shown that adults spend most of their waking moments (i.e., about 8—11 hours per
day) in a sedentary position (Diaz et al., 2016).

Sleep, completing the 24-hour day, is also well known as a health-related behav-
ior. Sleep is a naturally recurring and easily reversible state characterized by reduced
or absent consciousness, perceptual disengagement, immobility, and the adoption of a
characteristic sleeping posture. According to the Consensus Statement of the American
Academy of Sleep Medicine and the Sleep Research Society, sleep is related to several
aspects of human health (Watson et al., 2015). For instance, sleep is critically involved in
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systematic physiology such as metabolism (Magee & Hale, 2012), cardiovascular systems
(Wan Xi, Liu, Zhang, & Fu, 2012), mood regulation (Minkel et al., 2012), brain func-
tions, including neurobehavioral, cognitive and safety-related performance (van Dongen,
Maislin, Mullington, & Dinges, 2003), and many other health-related outcomes (Watson
et al., 2015).

In summary, the components of PB are one of the most important lifestyle factors
related to several mental and physical health conditions. Measurement of it is crucial,
among other things, for understanding the relationships with these health conditions,
identifying people at risk, and evaluating interventions that aim at optimizing PB.

Categorization of PB

We have already stated that PB is an umbrella term. The distinction between the compo-
nents PA, SB, and sleep is, however, just one of the possible categorizations. For example,
PB can also be studied from the perspective of the duration of intensity categories, such as
the subcategories sedentary, light, moderate, and vigorous. In each case and independent
of the categorization used, behaviors can be analyzed relative to each other rather than
as individual entities (Dumuid et al., 2020). The so-called compositional data analysis
(CoDA) offers an advanced approach to take the co-dependencies between PB categories
into account. However, time or duration is not the only relevant aspect of PB. For exam-
ple, sedentary periods can vary in length (e.g., short or long sedentary bouts). Especially
longer bouts, that is, periods of uninterrupted sedentary time (Tremblay et al., 2017),
reached higher attention. Previous studies reported that longer sedentary bouts such as
> 30 minutes may lead to detrimental health effects (Dempsey et al., 2018). In summary,
the relevance of PB outcomes depends not only on the duration, but also on other aspects
such as intensity, frequency, and type.

So far, these subcategories have been discussed from the perspective of health, but
other perspectives and factors can be relevant as well, such as the purpose or context of
an activity. To give an example: PB can be assessed from its context, such as house hold-
ing, commuting, leisure activities, work, and sports. From a physical health perspective,
the purpose or context of PA might not be most crucial, but from the perspective of mean-
ing for a person or mental health, or when a personalized advice is needed, it surely is
important. So far, we mainly focus on PA and SB, but the same principles can be applied
to sleep. The sleep pattern involves the differentiation between the major sleep period
(at night) compared to naps and daytime sleep. Moreover, additional parameters such as
sleep (onset) latency, sleep quality, or sleep efficiency are also relevant aspects to describe
a sleep pattern and are most used in sleep research (Ancoli-Israel et al., 2015; Fekedulegn
et al., 2020). Table 5.1 provides an overview of different operationalization dimensions
for each aspect of PB. Since researchers are increasingly interested in all aspects of PB
by focusing on the interrelatedness of sleep, PA, and SB (Rosenberger et al., 2019), some
research endeavors might be interested in assessing all facets simultaneously and in dif-
ferentiating them during statistical analysis.

One Aim and Many Devices

The technological process has developed new ways to capture human movement and
nonmovement. Nowadays, activity monitors such as accelerometers have become the
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TABLE 5.1. Overview of Different Operationalization Dimensions for Each Aspect of Physical Behavior

Definition

Biological state

Sleep

A naturally recurring

and easily reversible state
characterized by reduced

or absent consciousness,

perceptual disengagement,

immobility, and

the adoption of a
characteristic sleeping
posture

Sleep

Physical activity

Any voluntary movement
produced by skeletal
muscles that results in
energy expenditure

Awake

Sedentary behavior

Any waking behavior
characterized by an
energy expenditure of

1.5 metabolic equivalents
(METs; 1 MET = energy
expenditure in rest), while
in a sitting, reclining, or
lying posture

Awake

Type Sleep at night, nap Activity of daily life, Screen-based sedentary

exercise activities and non-screen-
based activities

Domain At home, not at home Work, home, leisure, Work, home, leisure,
transportation transportation

Energy ~1 MET >1.5 METs (light, <1.5 METs

expenditure moderate, vigorous)

Posture Sitting, reclining, lying Sitting, reclining, lying, Sitting, reclining, lying
standing, other

Bout length Short, moderate, long Short, moderate, long Short, moderate, long

Parameters Sleep time, sleep latency,  Duration, intensity, Sedentary time, sedentary

(examples) wake after sleep onset, amount of PA (e.g., bouts, sedentary breaks

number of awakenings

expressed in counts),

energy expenditure,
number of steps

preferred method due to their portability, affordability, low cost, small size, low power
consumption, and opportunity to obtain large amounts of dense information (Bassett,
2012). Accelerometers are small, wearable devices that record and store acceleration in
gravitational units on one or more axes at sampling rates of typically 20-100 Hz. Accel-
eration signals are then processed to various outcomes (e.g., intensity, energy expenditure,
body postures, or movement quality parameter such as smoothness) within a lower reso-
lution (e.g., seconds) and/or expressed per epoch of 5 seconds, 15 seconds, 30 seconds, 1
minute, and the like. The use of accelerometers to assess PB in daily life has increased sig-
nificantly over the last decade (Burchartz et al., 2020). Multidisciplinary research groups
are using accelerometers in a manifold way in different study settings—for example,
in national surveillance (Troiano et al., 2008) or in clinical studies (Schasfoort et al.,
2018). Parallel to the number of studies, the number of research and consumer devices
with different outcomes has increased as well (Wijndaele et al., 2015). Most importantly,
outcome parameters from different devices are highly dependent on the used algorithm
and processing steps. Mueller, Chimenti, Merkle, and Frey-Law (2020) found large
and inconsistent differences between previously validated scoring methods. Therefore,
although all of these devices have the same aim, that is, to assess and provide accurate
information of PB, the increasing number of scientific and consumer wearables results in
several challenges that merit further remarks.
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First, since the number of available scientific and consumer devices increased mark-
edly (Lamkin, 2018), the data’s parametrization also increasingly varied from device to
device. In particular, because of differences in hardware, software, sets of algorithms, or
data processing steps (e.g., filters, epoch-length, non-wear-time definition), it has become
impossible to compare and pool data. Second, in line with the variety of devices, algo-
rithms, and data processing techniques, there is an ongoing discussion about how the raw
data should be processed optimally and harmoniously, which means in a similar way. In
particular, different possibilities of processing accelerometer raw data into metrics are
presented in the literature—for example, counts (Yang & Hsu, 2010), movement accel-
eration intensity (van Someren, Lazeron, Vonk, Mirmiran, & Swaab, 1996), euclidian
norm minus one (van Hees et al., 2013), or mean amplitude deviation (Vihi-Ypya et al.,
2015). Third, the use of different data collection protocols may also lead to a lack of stan-
dardization. In particular, several decisions such as monitoring period, sensor placement,
or processing steps (e.g., defining a valid day) often vary from study to study and thus
reduce the comparability between study results. Fourth, some studies have shown that
consumer wearables have reasonable validity for estimating PB parameters such as energy
expenditure (Bai et al., 2016), whereas other studies revealed moderate to substantial dif-
ferences for PA parameters (e.g., step-count, activity energy expenditure) when compar-
ing outputs from consumer and research devices (Mikkelsen et al., 2020). This results in
a controversial discussion about applying consumer wearables for research purposes. For
example, Scott (2020) argued that the most significant barrier to using consumer wear-
ables in research and clinical settings is a lack of independent validation. A further main
point is that researchers often do not have access to raw data of consumer wearables and
that they don’t have access to the “black-boxed” algorithms either. In line with this issue,
it should be noted that the pace at which technology is evolving in optimizing algorithms
far exceeds the pace of published validation research. In general, there is a remarkably
shorter product life cycle today, which might be a restriction for longitudinal cohort stud-
ies. Fifth, based on the current lack of standardization, applying proprietary algorithms
should always be replicable. Thus, open-source methods are needed, which are more flex-
ible to use and allow algorithms to be applied to different devices.

Measurement, Data Processing, and Metrics

Why Signal Processing of Acceleration Data Is Necessary
and How It Works

It is not possible to do meaningful analyses with acceleration data before some type of
signal processing has been done. Rectifying, one significant part of signal processing,
may serve as an instructional example. Rectifying means converting the signal’s negative
acceleration (deceleration) to its absolute (positive) value. Normal human movement—
even when walking at a fixed speed—is characterized by body segments (e.g., trunk,
waist, or leg) that are continuously accelerating/decelerating in repeating patterns per
step of stride. The amplitudes of acceleration/deceleration depend on the intensity of
movement. For example, walking fast will result in more and higher amplitudes than
walking slow, while during quiet standing the amplitudes will be minimal. To get mean-
ingful metrics, signal processing is necessary, and this will be explained in detail.
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There are many types of acceleration signal processing. Two important aims of sig-
nal processing are (1) to calculate movement intensity and, subsequently, to estimate
energy expenditure and (2) to estimate the orientation of the sensor and, therefore, the
orientation of the body segment the sensor is attached to. For these purposes, frequently
applied types of signal processing are (1) eliminating the low-frequency gravitational
acceleration, (2) reducing or eliminating high-frequency noise (artifacts, i.e., accelera-
tions not related to movements of interest), and (3) extracting the lower frequency part of
the signal to get an estimate of the gravitational component of the signal. For example,
for the calculation of movement intensity, the acceleration signal is subsequently high-
pass filtered (to eliminate the gravitational component), rectified, low-pass filtered (to
eliminate noise), and then averaged over defined time intervals. Often, the movement
intensity and/or gravitational information of the different axes of the sensors are com-
bined and converted. Eventually, outcomes from these features are calculated, including
type of activity (e.g., walking, standing, sitting), energy cost, and steps.

The results of the different steps of signal processing are shown in the example pre-
sented in Figure 5.1. Most accelerometers measure acceleration in three axes. In Figure
5.1A, the raw acceleration data of a three-axis accelerometer is shown (see y-axis, “raw
acceleration”). The signal is measured in g (1 g = 9.81 m/sec?) with the acceleration sen-
sor’s sampling frequency (e.g., 50 Hz). The measured signal contains the dynamic changes
of the acceleration due to the movement of the device as well as the acceleration due to
gravitation. The inertial component is the oscillating part in Figure 5.1A (starting at
approximately 50 seconds), whereas the gravitational part is depicted by the level differ-
ences (static offset of the gravitational acceleration) that are evident over all 120 seconds
but most clearly in seconds 1 to 50 (e.g., y-axis with a value of -1 g). In other words, the
level differences between axes x, v, and z in Figure 5.1A describe how the device is held
(placed in a three-dimensional space) but not how it is moved. Accordingly, as a first step,
the signal is high-pass filtered to remove the static offset of the gravitational acceleration
(see Figure 5.1B with y-axis “filtered raw acceleration”).

In a second step, higher frequent noise (artifacts; e.g., electronic noise, vibrations
when cycling on a rough road surface, shocks of the sensor) has to be removed. The filter
used for this process influences the outcome of subsequent steps and therefore has to be
designed carefully to eliminate all undesired frequencies without influencing the signal
in the frequency range that should be measured. Human movements, for example, show
a frequency range of 0.25-11 Hz (van Someren et al., 1996). Accordingly, an ideal filter
would leave all movement/motion relevant frequencies in the signal (i.e., it should have a
constant filter characteristic in this frequency range) but would cut off all other frequen-
cies (in this case above 11 Hz). After filtering the signal, noises with higher frequencies
are eliminated, as shown in Figure 5.2. An acceleration signal during walking (gravita-
tional offset already eliminated) is shown in both the time domain (Figure 5.2A) and the
frequency domain (Figure 5.2B). The measured signal contains frequency components
up to 32 Hz. High-frequency parts of the signal, above 11 Hz, would be defined as non-
physiological and would be filtered. Figures 5.2C and 5.2D show the same data with an
additional 11-Hz low-pass filter. Compared to the non-low-pass filtered signal, the time
domain signal is smoothed (comparing Figure 5.2A to 5.2C), and the frequency compo-
nents above 11 Hz are eliminated (comparing Figure 5.2B to 5.2D).

As a third step, the vector magnitude is computed (see the equation below). In detail,
the square of the signal is calculated, which automatically includes the necessary step of
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rectifying the signal. The three axes are then converted into one signal by summing and
square rooting.

Movement Acceleration Intensity (MovAccInt) = \/(axz +ay’ + azz)

The result of building the vector magnitude can be seen in Figure 5.1C (see y-axis,
“Movement Acceleration Intensity”), where only one signal is left that contains only posi-
tive values. In the last step of signal processing, the MovAcclnt is averaged to epochs of
a defined length, such as 30 seconds or a defined activity episode (e.g., going to school).
Figure 5.1D shows the averaged MovAcclnt signal. In our example, averaging was per-
formed at 30-second intervals. The outcome of this last step of signal processing can then
be used for statistical analysis of the assessed data using standard statistical software
packages. However, the presented process accounts for only a one-movement intensity
metric of many.

PB Metrics

Generally, PB metrics are the results of algorithms, which use aggregated raw accelera-
tion signals as input. In other words, the sensor captures and stores the acceleration of
a person during wear time, which will then be processed by using, for example, a band-
pass filter (see the previous section). Given the high variability of research and consumer
wearables, the number of different PB metrics increased measurably. Unfortunately, there
are no internationally accepted standards for signal processing steps, and thus outcome
metrics cannot be compared across devices (Chen & Bassett, 2005). For example, just to
calculate movement intensity, the literature describes several types of signal processing:
mean amplitude deviation (Viha-Ypyd et al., 2015), Euclidian norm minus one (van Hees
et al., 2013), high-pass filtered Euclidean norm (van Hees et al., 2013), high-pass filtered
Euclidean norm plus (van Hees et al., 2013), proportional integrating measure (Jean-
Louis, Kripke, Mason, Elliott, & Youngstedt, 2001), zero crossing method (Acebo et al.,
1999), and time above threshold (Fekedulegn et al., 2020).

The most promising solution to increase comparability between metrics is to provide
open access to raw data and applied algorithms. However, manufacturers are often not
willing to reveal all details. Thus, recently researchers’ efforts have been aimed at increas-
ing the comparability between metrics by using identical software for different types of
accelerometers. A study by Rowlands and colleagues (2018) has shown that identically
processed metrics derived from different devices were largely equivalent. Similar results
were published by Crowley and colleagues (2019), who showed that pooling and identi-
cally harmonizing accelerometer data lead to a negligible difference between different
accelerometers.

A further difficulty encountered in comparing PB metrics centers on the different
and, in some cases, “dimensionless” units. A possible solution might be to transfer PB
metrics into commonly used estimations of energy expenditure. Notably, an additional
“formula” is needed to estimate energy expenditure. This potentially leads to even less
comparability, because the formula behind this calculation is frequently a “black box”
as well as device-dependent. Thus, the prerequisite to enabling comparability is possible
only when the converting algorithm from metrics into energy expenditure estimations
is available for the public (e.g., open-access code). If the converting algorithm might be
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FIGURE5.2. Effect of low-pass filtering on the acceleration signal.

available for the public, researchers can more easily assess, compare, and validate meth-
ods and outcomes.

A growing body of epidemiological literature has shown that SB might be an inde-
pendent risk factor for all-cause mortality and cardiometabolic diseases (Lee & Shiroma,
2014). As a result, the urgency to differentiate between PA and SB during data assess-
ment has increased greatly (Katzmarzyk et al., 2019). However, the first generation of
accelerometers was built to measure the intensity of PA through changes in acceleration.
Thus, even though an accelerometer can indicate the absence of movement, this does not
automatically mean that they can distinguish between body postures such as sitting and
standing, which may increase the intangible risk of an over- or underestimation of SB
(Kang & Rowe, 20135). For instance, standing still and sitting still at the bus stop cannot
be distinguished, whereas, by definition, sitting still is an SB activity and standing still is
non-SB. With regard to the previous part of data processing, applying low-pass filtering
to “remove” movement and to retain the gravitational component overcomes this gap.
Thus, depending on the sensor location, it is possible to estimate the angular orienta-
tion of the sensor and to detect body postures accurately (Janssen & Cliff, 2015). So
far, research shows that attachment of an accelerometer to the thigh is the most logical
position to provide body posture data. With innovative data analytical techniques, body
posture data can also be derived from waist-worn or wrist-worn devices, although so far
with lower levels of reliability/validity.

The fast development of technical features may affect the future of data assessment
and the processing of PB via wearables. In particular, supervised learning approaches
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(e.g., machine learning or deep-learning algorithms) gained more and more popularity
(see Chapters 17 and 18, this volume). In particular, combined with advances in signal
processing techniques and machine learning algorithms, this paved the way to developing
methods capable of automatically identifying postures or types of PA from raw accel-
eration signals (Bastian et al., 2015; Willetts, Hollowell, Aslett, Holmes, & Doherty,
2018). Previous studies suggested that promising automatic posture and activity recog-
nition tools that developed from data acquired in highly controlled environments (i.e.,
in the laboratory) may not perform as well when applied to real-life data (Gyllensten
& Bonomi, 2011). In contrast, other study results demonstrate a superior performance
of PA-type classification algorithms compared with traditional approaches (Ellis, Kerr,
Godbole, Staudenmayer, & Lanckriet, 2016). Similar results have shown that a deep-
learning model performs significantly better in assessing sleep than existing conventional
algorithms (Haghayegh, Khoshnevis, Smolensky, & Diller, 2020). To sum up, the uptake
of supervised learning approaches has been slow in health behavior research, which may
change in the coming years (Trost, 2020).

Scientific Quality Standards

High-quality measurement of PB is essential to draw a conclusion about their influence
on health outcomes. Moreover, the selection of an optimal device is necessary since mea-
surement error can be high. In particular, the sources of error can occur in different
stages of data collection and interpretation (Kang & Rowe, 2015). To give just a few
examples, when collecting raw data, researchers may select the wrong device placement
or use a device with inappropriate sampling frequency. Moreover, as mentioned earlier,
the lack of transparency and validity of “black-boxed” algorithms may hinder research-
ers from drawing valid conclusions. Thus, one key argument for the selection process
is to consider scientific quality standards (see Chapter 17, this volume). In line with the
Consensus-based Standards for the selection of health Measurement INstruments (COS-
MIN; Mokkink et al., 2010) several standards should be noted: (1) validity (the degree
to which an instrument truly measures the construct it purports to measure); (2) reli-
ability (the proportion of the total variance in the measurements, because of “true” dif-
ferences among participants); (3) responsiveness (the ability of the instrument to detect
change over time in the construct); (4) interpretability (e.g., the qualitative meaning of the
obtained scores); and (5) feasibility, ease of analysis, economy, measurement invariance,
and cultural adaptability (Sylvia, Bernstein, Hubbard, Keating, & Anderson, 2014). In
the following paragraphs, we discuss the first two points in depth and address the issue
of reactivity.

Validity

To determine the validity of a device is one of the most critical issues. Researchers inter-
ested in validating accelerometers have to consider several aspects, such as selecting the
appropriate reference method or conceptualizing an adequate study protocol. Whenever
possible, accelerometer outcome should be validated against the gold-standard method.
For example, if the primary outcome of interest is energy expenditure during free-living
activities, it might be reasonable to use portable systems (e.g., indirect calorimetry) as
a reference method. When researchers are interested in validating body postures, it is
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advisable to use video recording as the criterion measure, or if sleep parameters are of pri-
mary interest, researchers may use polysomnography as the reference method. Moreover,
validation of accelerometers in different samples is recommended.

According to a framework published by Keadle, Lyden, Strath, Staudenmayer, and
Freedson (2019), the following five phases should be considered during the validation
process. The initial step (Phase 0) relies on bench testing and refining the monitor’s tech-
nical reliability. In particular, this phase includes mechanical testing of the sensor signal
in a controlled and artificial environment to test the within- and between-device reliabil-
ity and validity of the underlying signals. Especially in the early stages of the application
of accelerometers, the sensors were unstable in terms of mechanical drift and robustness.
This topic has still to be considered and is less important.

The next steps reflect monitor calibration or the development of algorithms to esti-
mate activity energy expenditure, body postures, or metrics from the device signals under
controlled laboratory conditions. Phase I testing includes selected activities of daily living
using fixed start/stop times. Phase II testing extends the earlier phase and includes imple-
menting semi-free-living protocols, including transitions between activities to develop
algorithms further and refine them. Criterion measures are integral to monitoring the
calibration process, and these data are often used to provide initial validity information
about new devices or prediction algorithms. Phase III of the development process involves
a rigorous independent validation under real-world conditions compared with gold-
standard measures (i.e., indirect calorimetry, direct observation, doubly labeled water,
polysomnography) in different study samples by using appropriate statistics. Unfortu-
nately, most studies do not surpass Phase I or Phase II. However, some validation studies
can be mentioned as examples. Toth and colleagues (2018) evaluated the validity of step
counts from various devices compared to direct video observation. In contrast, Valenti,
Camps, Verhoef, Bonomi, and Westerterp (2014) validated energy expenditure from an
accelerometer outcome, whereas total energy expenditure was measured simultaneously
with doubly labeled water under free-living conditions. Phase IV, the final phase of the
development process, involves applying and disseminating algorithms that have success-
fully progressed through previous phases. Thus, aiming to provide open-source code and
instructions for implementing algorithms allows other researchers to use those methods
in surveillance, experimental, clinical trials, or observational studies.

An important aspect of the validity of accelerometers is reactivity. A reactive behavior
results when participants become more active simply because they are wearing a monitor-
ing device. In other words, reactivity occurs when participants alter their behavior due to
being monitored, the novelty of a new device, or social desirability. In fact, reactivity is a
serious issue that reveals a potential source of error. Based on earlier studies, researchers
expected reactivity to be a time issue, which means participants may change their behav-
ior at the beginning of the monitoring period and later return to a more stable pattern
(Rowe, Mahar, Raedeke, & Lore, 2004). Empirical evidence supports these expectations.
In particular, Clemes, Matchett, and Wane (2008) compared the step counts of partici-
pants under two conditions: comparing those who knew they were being tracked with
those who did not know (Clemes et al., 2008). The authors found a significant increase in
the first condition. In contrast, Behrens and Dinger (2007) found no reactivity effect in a
sample of young healthy adults (Behrens & Dinger, 2007). To avoid potential sources of
reactivity, researchers might be aware of the following points: First, devices that display/
provide feedback about PB may enhance the reactivity effect and motivate participants to
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change their behavior. Second, it is recommended that little information be given about
the outcome measure. Third, measurement periods over a longer time period and the
exclusion of the first monitoring day, for instance, may counteract bias due to reactivity
(Dossegger et al., 2014).

Reliability

The reliability criterion refers to the consistency of a response either across multiple tests
within a single assessment (i.e., internal consistency) or across various assessments (i.e.,
stability reliability, test-retest reliability, or between-day variability; Patterson, 2000).
When transferred to accelerometer research, reliability can refer to measurement-related
factors (e.g., technological stability of the sensors, inconsistencies of the data acquisition
and processing, placement of the device) or behavior-related factors (e.g., variability in
PB between days or between seasons). In the early stages of accelerometry, technological
stability (e.g., drift of the accelerometer signal) was a main issue, but it is less important
nowadays. Current research focuses more on the differences or agreement between place-
ment of the same sensor on different body parts (e.g., wrist vs. hip) or on the effects of
undesired placement errors. For example, Stanton, Guertler, Duncan, and Vandelanotte
(2016) have shown that changing the accelerometer placement to 2 ¢cm above and below
the thigh’s midpoint does not produce statistically significant differences.

If researchers are unsure about whether they should select a self-report or a device-
based instrument, the results of studies comparing instruments might be helpful. In par-
ticular, a systematic review indicates that the volume of PA assessment between question-
naires and devices is low to moderately correlated (Prince et al., 2008). In particular,
participants tend to overestimate the amount of PA. Notable differences were also found
when comparing instruments for assessment of SB. Prince and colleagues (2020) com-
pared self-reported and device-based assessment of SB, including 185 unique studies in a
meta-analysis. The results revealed that self-reported measures underestimated sedentary
time by ~ 1.74 hours/day compared to device measures.

A Prototypical Example from Psychology

In psychological research, the usage of accelerometers is applied regularly. Some research-
ers are interested in the within-subject association between PB and psychological con-
structs such as mood, stress, or anxiety in real time and real life by using ambulatory
assessment (AA; Liao, Shonkoff, & Dunton, 2015; Reichert et al., 2020). To present an
example of an AA study, including device-based assessment of PB, we describe the pub-
lished article by Giurgiu, Koch, Plotnikoff, Ebner-Priemer, and Reichert (2020) in more
detail. In particular, we would like to focus on the technical realization; that is, what
does the path from data processing to data analysis look like?

Giurgiu, Koch, and colleagues (2020) compared the influence of different break
patterns (i.e., variations in frequency, intensity, type, duration, and context) on mood
in a healthy sample of university employees (N = 92). Over the study period of 5 days
(3 working and 2 weekend days), participants carried accelerometers and a smartphone
during their daily lives. The smartphone prompted the participants via an acoustic,
visual, and vibration signal every 40 to 100 minutes within the 7:30 A.M. to 9:30 P.M.
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period. In total, participants answered mood questions approximately 10 times per day.
To assess mood, they used the short version of the multidimensional mood question-
naire (MDMQ; Wilhelm & Schoebi, 2007). Giurgiu and colleagues used a mix-sampling
strategy—random triggers at various times combined with a sedentary triggered algo-
rithm. In particular, the thigh sensor analyzed and transferred data on body position
(sitting/lying or upright) via Bluetooth Low Energy (BLE) to the smartphone in real
time. Each time a participant spent more than 30 minutes sitting/lying, the e-diary trig-
gered mood ratings. This approach was implemented to optimize the assessment of the
associations between SB and mood. As main predictors, the authors defined different
break patterns such as duration (uninterrupted sedentary time), frequency (number of
sedentary interruptions), intensity (metabolic equivalent of the break), and context (at
home or work). The information about duration, frequency, and intensity was derived
from the accelerometer, whereas context information was assessed via electronic diaries.
In the process of analyzing data, the following nine steps were described (Giurgiu, Koch,
et al., 2020) (see also Figure 5.3).

First, the sampling scheme and forms (e.g., questions about mood and context) were
created by using the online platform movisensXS (movisens Ltd., 2021). This step included
all setup, such as selecting study duration, specification of the trigger option (e.g., trigger-
ing after 20 minutes or 30 minutes of sitting/lying), and implementing time-out triggers.
Second, immediately before data collection, the study smartphone was connected to the
online platform movisensXS by using the movisensXS-App to download the sampling
scheme and forms via an individual participant code. Third, the chosen trigger option
(e.g., triggering after 30 minutes of sitting) was calibrated to the selected body position
(i.e., lateral aspect of the right thigh) and connected to the smartphone via BLE by using
the movisensXS-App. Fourth, after data collection, the recorded raw acceleration data
were processed in 1-minute intervals by using the manufacturers’ software DataAnalyzer
(v.1.13.5) (movisens Ltd.). During this step, a band-pass filter (0.25 to 11 Hz) automati-
cally eliminated gravitational components or artifacts (e.g., vibrations when cycling on a
rough road surface or sensor shocks). This resulted in an Excel sheet with a self-selected
choice of parameters such as body position, movement acceleration intensity (MAI),
metabolic equivalents or activity class. Fifth, the smartphone entries from the partici-
pants were downloaded from the online platform movisensXS. Sixth, all accelerometer
and ecological momentary assessment (EMA) files from different participants were time-
synchronized and combined into a single data file by using DataMerger (v.1.8.0). Sev-
enth, before the analyses, sedentary break-specific variables such as frequency, duration,
and intensity were parametrized while calculating the cumulated sum of the dichotomous
variable body position (1 = sitting/lying; 0 = upright). Eight, participants were excluded
from the dataset if they did not fulfill the wear-time criteria of at least 2 valid days, that
is, 10 hours of wear time per day (Troiano et al., 2008).

To analyze whether different break characteristics influence mood dimensions in dif-
ferent ways, Giurgiu, Koch, and colleagues (2020) conducted multilevel analyses of the
state-of-the-art procedure in analyzing intensive longitudinal data (Bolger & Laurenceau,
2013). Multilevel analysis has several advantages, notably (1) the analysis of within- and
between-subject effects simultaneously in one statistical model, (2) the analysis of hierar-
chically structured data (i.e., multiple mood assessments nested within participants), and
(3) robustness concerning missing data points (Hoffman, 2015).
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The study results indicated that sedentary breaks were associated with mood among
healthy adults in daily life. In particular, break intensity was associated with an enhance-
ment in all three mood dimensions, and break frequency was related to enhancement
in two of three mood dimensions (valence and energetic arousal). But break duration
was not significantly associated with mood at all. Exploratory analyses revealed that the
effects of break frequency on energetic arousal, as well as the effect of break intensity
on energetic arousal, were significantly higher in the home than in the workplace. The
authors concluded that individuals should break up their SB as frequently as possible
within an hour through at least moderate-intensity activities, such as slow walking; ide-
ally, this practice would take place in any context.

Recommendations

Using accelerometers in health behavior studies and interventions offers huge possibili-
ties, but at the same time, some challenges merit further consideration. A comprehen-
sive assessment of a 24-hour-cycle of PB requires the acquisition of various information,
including biological state (i.e., sleep, awake), movement intensity or energy expenditure,
posture classification, and qualitative aspects (e.g., context and type of behavior). Thus,
the simultaneous acquisition of all aspects of PB reveals a challenging task, and it might
not be possible to select the optimal device and study protocol, which comprises all
aspects. Therefore, as a general recommendation and according to the scientific state-
ment from the American Heart Association (AHA; Strath et al., 2013), the following
decision matrix might be a helpful guide during the selection process for suitable devices
and study protocol. In particular, the decision matrix considers five areas:

Study outcomes—for example, What is your primary outcome variable of inter-
est, and what do you want to describe (e.g., PA, SB, sleep, or the whole 24-hour-
cycle)?

Feasibility and practicality of the device—How many people do you want to
measure?

What is the patient/participant burden? What are assessment time consider-
ations?

Available resources—What are the cost considerations, and are personnel avail-
able? and

Study administration—What are the data processing, data transfer and data
summarization requirements?

The last part of the chapter is reserved for recommendations and future trends for
researchers interested in using accelerometers to assess PB. Because of the multilayered
perspectives, we focused on different points of view and integrated both technical and
conceptual perspectives. Accordingly, recommendations are in line with expert consensus
on aspects such as the utilization and harmonization of accelerometry data (Wijndaele
et al., 2015) or the conceptualization of study protocols (Migueles et al., 2017; Troiano
et al., 2008).
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Data acquisition. The way data are acquired in terms of sensor placement, sample
frequency, and non-wear algorithms highly influences study results and, therefore, com-
parability between studies. Therefore, to compare the results from different accelerom-
eter outcomes, researchers should apply standardized procedures whenever possible.

Signal processing. See the previous point.

Raw data versus preprocessed summary data. Due to limited storage possibilities,
in the past acceleration data were preprocessed in real time and converted into summary
data that were stored. Nowadays, this point is less relevant, and therefore measurement
of raw data is strongly recommended.

Reporting and replicabiliry. All information about the study protocol and data
processing must be reported, including processing characteristics such as filtering or pro-
tocol information such as sensor placement or measurement days. For example, conceal-
ing key elements of data processing is not in accordance with good scientific practice and
hinders replication (Keil et al., 2014; Open Science Collaboration, 2015).

Number of measurement days. Given the inherent variation in behavior over time,
an essential aspect of accelerometer measurement is how many days should be considered
to obtain reliable results. The results of studies have shown that necessary days for a reli-
able assessment vary from 3 to 5 days in adults and 4 to 9 days in children (Donaldson,
Montoye, Tuttle, & Kaminsky, 2016; Sasaki et al., 2018; Trost, Mclver, & Pate, 2005);
from three 24-hour periods to 10 days or 2 weeks (Aadland & Ylvisaker, 2015). An
internationally accepted recommendation emphasizes the recording of 7 days (Pedisic &
Bauman, 2015; Trost et al., 2005). Moreover, researchers should be aware that behavior
varies between weekend and weekdays; thus, at least one weekend day is required (Trost
et al., 2005). The primary outcome of interest could also influence the selection of the
monitoring period. For example, to assess differences between weekday and weekend
sleep patterns, a 14-day recording that captures two weekends is preferred (Acebo et al.,
1999). A further issue that is related to the monitoring period comprises reproducibility.
Researchers have shown that different PB metrics have a considerable amount of random
error from one 7-day monitoring period (Saint-Maurice et al., 2020). It should be real-
ized that the number of measurement days not only depends on the research question, but
also on the outcome of interest and the population. For example, the literature indicates
that people with disabilities and low levels of PA show less between-day variability than
people without disabilities and higher levels of PA.

Seasonal variation. Most studies select a monitoring period of 7 days, intending
to assess habitual PB patterns. However, researchers should consider that PB might be
influenced by seasonal variation. Empirical data revealed that light PA was significantly
higher in summer and spring, whereas SB and time spent in bed were higher in winter
(O’Connell, Griffiths, & Clemes, 2014).

Single- or multisensor system. How many accelerometers should be used? Most
studies used a single wrist or hip-worn accelerometer, which were recommended for
population-based PB research (Sievanen & Kujala, 2017). As of now the hip-worn posi-
tion has proved to be the best single location for the assessment of different physical
activities (Cleland et al., 2013). However, growing interest over the past decade in SB
research indicated that the hip position increases the risk of misclassification between a
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sitting and a standing body position (Kang & Rowe, 2015). In line with point 1 from the
AHA matrix, it depends on the primary outcome of interest. An accelerometer measures
the movement/orientation of the segment to which it is attached, and so no information
on the movement/orientation of other segments can be assessed. A multisensor system
(e.g., attached at the thigh and wrist position) offers more data and information, while at
the same time a further sensor increases participants’ burden. Therefore, researchers may
decide if the additional gain is needed and/or is of sufficient added value.

Sensor position. In line with the previous point, selecting the body position largely
depends on the primary outcome of interest. In particular, the position of choice for sleep
assessment is the nondominant wrist because it optimizes the recording of small move-
ments that occur at the distal extremities when the individual is supine (Ancoli-Israel et
al., 2015; Quante et al., 2015). In some populations such as infants, researchers attach
the accelerometer to the ankle rather than the wrist to limit the child’s engagement with
the device and to promote safety. Moreover, a thigh-worn accelerometer enables dif-
ferentiation between body postures and separates PA from SB (Giurgiu, Bussmann, et
al., 2020). Underlining the importance of sensor placement, Edwardson and colleagues
(2016) have shown that irrespective of the device brand, thigh-worn accelerometers were
highly accurate in differentiating body postures.

Addition of extra data sources. For some research purposes, it might be reason-
able to combine accelerometers with further data sources. For example, if sleep is the pri-
mary outcome, it might help to add the information from a light sensor to detect whether
a person is sleeping or awake. Some manufacturers have already combined light sensors
and PB monitoring within a single device (Ancoli-Israel et al., 2015). Another example
is integrating a barometric pressure sensor to differentiate between sitting and stand-
ing postures during daily activities (Masse, Bourke, Chardonnens, Paraschiv-Tonescu, &
Aminian, 2014).

Qualitative information: Since accelerometers are limited to assess qualitative
aspects of PB such as context or smoothness, researchers may combine self-reported
instruments such as electronic diaries (e.g., application on a smartphone) or question-
naires. In fact, a combination of tools is likely to be the most promising way of assessing
PB if researchers would like to assess a comprehensive picture of a behavior (Skender et
al., 2016). This implies that a mixed-methods approach that combines device-based and
self-reported techniques (e.g., ambulatory assessment) is generally assumed to be most
appropriate.

Identifying missing data: One of the most common issues concerning accelerom-
eters is to identify non-wear periods. This issue is further complicated by the fact that
there is a large variability between methods and non-wear algorithms, and also differ-
ent algorithms within one device. Some researchers defined non-wear times based on
predetermined thresholds (e.g., zero counts for 60 minutes; Oliver, Badland, Schofield,
& Shepherd, 2011). In contrast, other researchers used multiple indicators, such as heart
rate and intensity markers. In general, this is a critical aspect since less movement over
a predetermined period is only a rough estimation to differentiate wear from non-wear
time. Applying such a recommendation may increase the substantial risk of misclassifying
sitting and sleep periods as non-wear times. Optimally, an algorithm can detect “real”
non-wear times (e.g., during water activities, if the sensor is not waterproof). However,
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this depends largely on the accuracy of non-wear time algorithms. Thus, a general sug-
gestion is to encourage participants to fill out a non-wear time diary, including time and
activities during which the sensor was removed during the day.

Identifying a valid day. In line with the previous point, there is a large variability
between existing procedures. Suppose an algorithm can distinguish between wear and
non-wear time. This leads to the issue of how many hours of wear time are necessary to
define a valid day. The most common recommendations emphasize at least 10 hours of
wear time as a precondition for a valid day (Masse et al., 2005). For some populations
(e.g., toddlers or children) the required wear time can be reduced. In case of a large num-
ber of invalid days, it is possible to apply imputation approaches. For example, a multiple
imputation approach relied on time-based, sociodemographic, and health information
(Borghese, Borgundvaag, Mclsaac, & Janssen, 2019).

Epoch length. After data processing, most of the required software packages can
calculate output parameters (e.g., PB metrics, energy expenditure or body postures) in
different time intervals (i.e., epoch lengths). The selection of the epoch lengths affects the
outcome, while most optimal epoch length depends on the primary outcome of interest.
For example, most validated and commonly used epoch lengths are 30 seconds and 1
minute. However, some researchers favor using lower epoch lengths (e.g., 15 seconds)
because they better capture the quick changes in patterns compared to longer epochs
(Janssen & Cliff, 2015). This point should be noted if sit-to-stand transitions are of par-
ticular research interest. Furthermore, epoch length should also be considered when com-
paring data from different studies. In young people (e.g., preschoolers), shorter epochs
(1-15 seconds) are recommended to capture the short bouts of activity that frequently
occur in these age groups (Migueles et al., 2017).

The Future of the Field

The field of assessing PB via wearables is undergoing fast technological change. Devices
that were up to date a moment ago will be obsolete tomorrow. So, what could the near
future bring? We would like to look ahead with some example expectations.

First, technical development will influence hardware and data infrastructure. In par-
ticular, the size of sensors will decrease, the devices will be able to store more data locally,
the technical infrastructure will be improved through, for example, more powerful pro-
cessors or less power consumption, which will enable longer measurement periods, or
data transfer possibilities will increase such as a 5G network, Wi-Fi connections, or data
cloud options. But it is not only technical possibilities that may change; the opportunity
of wearing wearables as a textile or an implantable sensor might also be an option in the
future.

Second, we expect that the current distinction between research-grade and
consumer-grade devices will become less significant. Furthermore, the use of consumer-
grade devices, such as commercial fitness trackers, smartphones, or smartwatches, will
increase, as will their acceptance. This will lower the barriers of the application of activ-
ity monitoring.

Third, from an analytic perspective, we expect that future research endeavors will
result in a better understanding of the underlying mechanisms and determinants of PB.
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Big Data, for example, from surveillance studies, will increasingly become available,
together with advanced data analysis techniques (e.g., applying deep learning).

Fourth, we expect that privacy, safety, data protection, and data ownership will be
more dominant issues on the agenda. Think, for example, about the General Data Protec-
tion Regulation and the role of companies such as Apple, FitBit, and Google, which still

have access to an enormous amount of data.

Finally, we expect that technical elements will be an integral part of health care
systems—for example, more common assessment of PB in hospital and rehabilitation cen-
ters, remote contact with therapist, automated personalized feedback, or remote health

measurement (e.g., ECG, blood pressure, PB).
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CHAPTER 6

Acquisition and Analysis of Ambulatory
Autonomic Nervous System Data

Eco J. C. de Geus and Martin J. Gevonden

This chapter presents an overview of the biology of the autonomic nervous system (ANS)
and the noninvasive ambulatory measurement strategies that can be used to study its
activity in daily life settings. Heart rate variability in the respiratory frequency range
(RSA) is identified as the measure of choice to index parasympathetic nervous system
(PNS) activity, while pre-ejection period (PEP) and nonspecific skin conductance response
(nsSCRs) are the measures of choice to index sympathetic nervous system (SNS) activity.
Valid recording techniques for these measures that are currently available are tolerated
for a number of days at best. To progress to prolonged ambulatory monitoring of ANS
activity across multiple weeks or even months, major improvements in technology are
required that greatly reduce participant burden without compromising validity. Future
contribution of ambulatory assessment to behavioral science, however, does not simply
hinge on technological progress; correct interpretation of the ambulatory measures of
AN activity is at least as important. This will require detailed co-registration of the psy-
chosocial context of the individual as well as of the many nonpsychological determinants
of ANS activity, most prominently physical activity, respiration, and postural changes.
Only ambulatory recordings that allow the separation of the nonpsychological and psy-
chological determinants of ANS activity will move the field forward.

Introduction: Moving Stress Research into Daily Life

Because of its high sensitivity to psychosocial stress, the ANS plays a key role in
almost all models in biobehavioral medicine that try to account for the well-known
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effect of chronic stress exposure on cardiovascular disease (CVD) outcomes (Esler,
2017; Pieper, LaCroix, & Karasek, 1989; Rosengren et al., 2004; Steptoe & Kivimaki,
2012). A vast body of studies on ANS reactivity to stress has shown that frequency,
amplitude, patterning, and duration of such reactivity are strongly personalized in
nature, meaning that the same contextual psychosocial factors can evoke entirely dif-
ferent responses depending on personal resilience and vulnerability characteristics.
Sadly, almost all of this wealth of prior research used short-lasting experiments in the
laboratory, with subjects volunteering to be exposed for relatively brief periods of time
to artificial stressors (e.g., using speeded reaction time tasks, the Trier social stress
test, or their equivalents).

It is likely that the psychological and physiological processes induced by laboratory
conditions are only a poor reflection of the actual processes in everyday real-life situa-
tions. One-time assessment of historic or current exposure to stressors does not do justice
to the complex dynamics of the stress exposures in daily life. Lab stress will often be of
insufficient intensity and duration to trigger the full set of physiological responses that
come into play when stress is “for real” (Busscher, Spinhoven, & de Geus, 2015). It will
thus fail to reveal the slower counter-regulatory responses as well as allostatic adapta-
tions that occur on a time scale of days or weeks. An example is the gradual buildup in
resting blood pressure over the course of a stressful work week that subsides in the week-
end (Vrijkotte, van Doornen, & de Geus, 2000, 2004).

Laboratory studies also preclude examination of the activities that may have the
largest clinical relevance, such as job-related strain, marital conflict, child care or, at
the other end of the spectrum, restful sleep. This may jeopardize the predictive valid-
ity of the physiological recordings, either basal levels or reactivity for later mental and
physical health. In keeping with this idea, superior predictive validity for long-term car-
diovascular health has already been shown for ambulatory blood pressure, where full
24-hour recordings proved better predictors for cardiovascular morbidity and mortality
than laboratory or office measurements (Hansen, Jeppesen, Rasmussen, Ibsen, & Torp-
Pedersen, 2006; Mallion, Baguet, Siche, Tremel, & de Gaudemaris, 1999; Niiranen,
Hanninen, Johansson, Reunanen, & Jula, 2010; Palatini & Julius, 2004; Pickering &
Devereux, 1987; Verdecchia, 2001; Verdecchia et al., 1994; Ward, Takahashi, Stevens,
& Heneghan, 2012).

In short, the dynamics of the physiological stress response, the interaction of its com-
ponents over time across longer time scales of days, weeks, or months, simply cannot be
detected without moving stress research out of the lab and into daily life. This requires
dedicated wearables that may be connected to a smartphone but provide continuous,
more extensive, and higher quality data than built-in smartphone sensors (e.g., using the
camera for intermittent plethysmography). Fortuitously, ongoing technological innova-
tion in such wearables provides unique opportunities for implementation of ambulatory
and ecologically valid stress measures over extended periods in daily life. In the past
decades, portable lightweight and relatively cheap biosensors and data-logging devices
have become available for noninvasive ambulatory assessment of autonomic nervous
system activity. Various listings of these devices have been published (Ebner-Priemer &
Kubiak, 2007; Fahrenberg, Myrtek, Pawlik, & Perrez, 2007; Houtveen & de Geus, 2009;
Peake, Kerr, & Sullivan, 2018), but these listings are typically fated to be outdated when
they appear in print. Table 6.1, which lists a selection of the devices focusing on measures
informative about ANS activity, therefore neither claims to be up to date nor suggests
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134 TECHNOLOGICAL KNOW-HOW AND METHODOLOGICAL HOW-TO

that these are the “best” devices for the signal they purport to record. This table mainly
serves to illustrate four key features:

This is an active field, with many solutions being created to measure a host of
peripheral signals influenced by ANS activity.

Devices tend to be research-oriented, medical care-oriented, or consumer-
oriented.

Not all devices have been independently validated.

Not all devices stand the test of time even when they have been extensively used
or validated.

In the remainder of this chapter, we address some of the neuroanatomical, measure-
ment, and interpretational issues that researchers need to be aware of when they acquire
and analyze ambulatory ANS data with current or future wearable devices.

The Biology of the ANS

The term autonomic nervous system was coined by John Langley in 1898. Unlike the
skeletal motor system, which governs the voluntary action of striated muscles, the auto-
nomic nervous system governs the automated responses of the body’s smooth muscle
organs and glands. Based on anatomical and functional criteria, Langley divided the
ANS into three separate branches: the parasympathetic nervous system (PNS); the sym-
pathetic nervous system (SNS), including the adrenal medulla; and the enteric nervous
system. The enteric system, a collection of neurons embedded within the wall of the
entire gastrointestinal tract that control gastrointestinal motility and secretions, is often
discarded in stress research. Therefore, ANS activity discussed below will refer only to
the activity of the sympathetic and parasympathetic branches.

Functions of the SNS and PNS

Activity of the SNS causes, among other problems, an increase in heart rate, contractility,
blood pressure, breathing rate, bronchodilation, sweat production, epinephrine secre-
tion, and a redistribution of blood flow favoring the muscles. The SNS is therefore often
labeled as the “fight—flight” branch of the ANS. The PNS, on the other hand, promotes
maintenance of the body by acquiring energy from food and getting rid of wastes. Its
activity causes slowing of the heart, constriction of the pupils, stimulation of the gut and
salivary glands, and other responses that help restore energy. The PNS is therefore often
labeled as the “rest and digest” branch of the ANS.

The main function of the ANS is coordinating bodily functions to ensure homeo-
stasis and performing adaptive responses when faced with changes in the external and
internal environment, (e.g., due to physical activity, posture change, food consumption,
or hemorrhage). In addition, the ANS is capable of substantial heterostatic action; it can
prepare the body for anticipated threats to homeostasis even in the absence of actual
changes in bodily activity. The best-known example is the anticipatory response that
prepares the body for physical activity in response to a vast range of stressors that can
be purely symbolic in nature and are often not followed by actual physical activity (i.e.,
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fight or flight) or changes in internal environment (i.e., through blood loss, undernutri-
tion, hypothermia, or infection). This response is called the physiological stress response.

Independence of SNS and PNS

For a long time it was assumed that SNS and PNS work in reciprocal ways; indeed, many
studies of the physiological stress response have capitalized on the occurrence of a recip-
rocal increase in SNS activity and decrease in PNS activity during stress. Such a pattern
gives rise to increases in heart rate (HR) and blood pressure (BP), and HR and BP reactiv-
ity have become the most used variables to indicate changes in ANS activity. Because of
their immediate clinical relevance (both are established risk factors for future CVD; see
Bohm et al., 2010; Mallion et al., 1999; Palatini & Julius, 2004), ambulatory recording
of HR and BP remains extremely valuable. However, a disadvantage of these variables is
that they represent an unknown mix of sympathetic and parasympathetic effects when
the assumption of complete reciprocity does not hold. HR and BP go up when SNS activ-
ity increases, but they likewise increase when PNS activity decreases. Without measure-
ment of either SNS or PNS, there is no telling their relative contributions to any given
change in HR or BP.

It has been shown that the classical reciprocal pattern of sympathetic activation with
parasympathetic deactivation describes only a limited part of the total autonomic space
and that the sympathetic and parasympathetic branches can be activated and deactivated
independently (Berntson, Cacioppo, & Quigley, 1991). Different patterns of coactivation,
reciprocal activation, and co-inhibition are found across individuals performing the same
task or within individuals performing different tasks. For example, dental phobia patients
engaged in a stressful mental arithmetic task showed an increase in their SNS activ-
ity with decreased PNS activity, but when exposed to phobic stimuli the same subjects
showed increased SNS activity with increased PNS activity (Bosch, de Geus, Veerman, &
Amerongen, 2000). Most importantly, the health outcomes of sympathetic hyperreactiv-
ity need not be the same as those of exaggerated parasympathetic withdrawal. Hyperac-
tivity of the SNS has been mostly associated with an increased risk for hypertension, the
metabolic syndrome, and left ventricular failure (Brotman, Golden, & Wittstein, 2007;
Esler, 2000, 2017; Lambert & Lambert, 2011; Lambert, Schlaich, Lambert, Dawood, &
Esler, 2010), while withdrawal of PNS activity causes a reduction in the electrical stabil-
ity of the heart (Vanoli et al., 1991) and may play a key role in the pro-inflammatory state
(Hu, Penninx, et al., 2018; Tracey, 2009).

Inasmuch that the antecedents and consequences of SNS and PNS activity are dif-
ferent, studies in the past two decades began indexing sympathetic and parasympathetic
activity separately. In this chapter, we follow this lead and focus on ambulatory measures
of “pure” sympathetic or “pure” parasympathetic activity.

Measurements of ANS Activity

Anatomy of the ANS

In keeping with many other figures of the ANS, the central nervous system component
of ANS regulation shown in Figure 6.1 is simply summarized by a graphic rendering of
the brain. Whereas we acknowledge that this does no justice to the complexity of the
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ways ANS activity originates in the brain (Beissner, Meissner, Bar, & Napadow, 2013;
Berntson, Bechara, Damasio, Tranel, & Cacioppo, 2007; Koenig, 2020; Lovallo, 2005),
this chapter will focus on the peripheral nerves and the organ systems that are used as a
read-out in ambulatory recordings. Figure 6.1 links the innervation of the organs by the
ANS to the main measures and the measurement strategies in the ambulatory assessment
described in this chapter.

Parasympathetic Nerves

Cranial nerve VII (facial) carries preganglionic axons of the superior salivatory nucleus
and controls the lacrimal glands and the submaxillary and sublingual salivary glands,
measurable by changes in salivary flow rate and protein composition (e.g., a-amylase).
Cranial nerve IX (glossopharyngeal) carries preganglionic axons of the inferior saliva-
tory nucleus, which control the fluid secretion by salivary glands. Preganglionic motor
neurons of the dorsal motor nucleus of the tenth cranial nerve (vagus) carry motor fibers
of a special visceral nucleus, the nucleus ambiguus, which controls the striated muscles of
the pharynx, larynx, esophagus, and the cardiac muscle of the heart.

The preganglionic parasympathetic nerves terminate in parasympathetic ganglia,
which lie within or very close to the organs innervated by the short postganglionic neu-
rons. The pre-ganglionic neurons employ acetylcholine (ACh) as the primary neurotrans-
mitter, which binds to a nicotinic receptor subtype on the postganglionic neurons in the
ganglia. Postganglionic parasympathetic fibers also employ acetylcholine as a primary
neurotransmitter, but the receptor subtypes on the target organ are commonly musca-
rinic. For instance, the parasympathetic postganglionic receptors in the sinoatrial (SA)
node of the heart are type 2 muscarinic (M2), and their activation slows the spontaneous
depolarization of pacemaker cells and hence reduces heart rate.

Sympathetic Nerves

The preganglionic nerves from neurons in the interomediolateral column leave the spinal
cord at the thoracic and lumbar regions. Most axons synapse onto a chain of sympathetic
ganglia that lie close to the spinal cord known as the sympathetic trunk, employing acetyl-
choline as the primary neurotransmitter. The most rostral ganglion, the superior cervical
ganglion, supplies the head and neck, including the salivary glands excreting a-amylase.
The middle cervical ganglion and stellate ganglion supply the heart, lungs, and bronchi.
The celiac, aorticorenal, superior mesenteric, and inferior mesenteric ganglia—named
after their associated arteries, innervate, among others, the kidney and its adrenal glands.

The postganglionic neurons from these sympathetic ganglia to the organs employ
norepinephrine as the primary neurotransmitter, which can act on alpha-1-adrenergic
(e.g., in arterioles) or beta-1- and beta-2-adrenergic receptors (e.g., on the heart). Stimula-
tion of the alpha-1-adrenergic receptors causes vasoconstriction by acting on the smooth
muscles in the medial layer of the blood vessels. Stimulation of the cardiac beta-adrenergic
receptors by norepinephrine released from the cardiac sympathetic nerves (accelerans
nerves) increases the pacemaker frequency of the SA node, thus increasing heart rate, and
in parallel it increases the contractility of the ventricles. Together, vasoconstriction and
increased cardiac performance account for the increase in blood pressure seen during
sympathetic nervous system activity.
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A first exception to the use of norepinephrine as the final effector in the SNS is
found in the sympathetic innervation of eccrine sweat glands, which is cholinergic rather
than adrenergic. A second exception is a set of preganglionic neurons that end in a spe-
cial ganglion, namely, the adrenal medulla. Neurons of this medullary ganglion, rather
than issuing axons to innervate target organs, function as a neuroendocrine organ. Upon
activation by preganglionic neurons, they release norepinephrine (NE), which is rapidly
converted to epinephrine (E), and both are released as hormones into the bloodstream
in an approximate ratio of 5:1 (E:NE). Circulating epinephrine preferentially binds to
beta-2 receptors in the vessels and on the heart, causing vasodilatation (mostly in muscle
tissue) and increases in heart rate and contractility.

Direct Measurement of ANS Activity via Action Potentials

The ideal measurement strategy for ANS activity is to probe the actual bursts of action
potentials in the sympathetic and parasympathetic nerves to a specific organ or tissue.
This can be done in animal studies by using surgically inserted microelectrodes (Ottavi-
ani, Wright, Dawood, & Macefield, 2020; Vallbo, 2018) or by assessing the changes in
ACh and NE concentration in the SA node by microdialysis (Shimizu et al., 2009, 2010).
For a long time, the feasibility of microneurographic recording in humans was limited to
the superficial sympathetic nerves. Direct recordings of sympathetic activity to the skin
and the blood vessels in the muscle can be made from Tungsten electrodes in nerves inner-
vating the skeletal muscle or the skin (Hagbarth, Hallin, Wallin, Torebjork, & Hongell,
1972; Wallin, 1984, 2004). Recently, a safe and feasible way was developed to perform
microneurography of the vagus nerve at the level of the neck using ultrasound guidance
(Ottaviani et al., 2020). Although the vagus is primarily a sensory nerve and its motor
components run to multiple other organs than the heart, repeated probing using careful
correlation of nerve activity to variation in the cardiac cycle was used to specifically iso-
late efferent fibers to the sinoatrial node and record their activity.

Indirect Measurement of ANS Activity
via Neurotransmitter Spillover

Unfortunately, these “gold-standard” measures are too invasive to be routinely used in
research with humans. The alternative is to measure the spillover of ACh or NE from the
presynaptic terminals of (para)sympathetic nerves into the bloodstream, as this would
theoretically scale with nerve activity. However, for ACh this is not feasible because of
the rapid and extensive clearance of the transmitter in the synaptic space by acetylcholin-
esterase. In contrast, norepinephrine does spill over into the bloodstream and can be used
to assess sympathetic nerve activity. By using radioactive tracers, norepinephrine spillover
can even be measured on an organ-to-organ basis (Eisenhofer, 2005; Esler et al., 1988;
Esler & Kaye, 2000; Kingwell et al., 1994), but this is again an invasive procedure that
has been largely abandoned.

Much less invasive measurements of norepinephrine and/or its metabolites in
antecubital venous blood are possible by venapuncture or by assessing the excretion
of norepinephrine and/or metabolites in urine. These methods have major drawbacks,
however, because only a very small proportion of norepinephrine released from sym-
pathetic nerves reaches the bloodstream. Differences in intraneuronal vesicular storage
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and leakage, reuptake, extraneuronal clearance, and urinary filtration/secretion may
(severely) distort the relation between actual sympathetic nervous system activity and
plasma and urine norepinephrine concentrations (Eisenhofer, Kopin, & Goldstein, 2004;
Esler et al., 1990).

Indirect Measurement of ANS Control
via Effects on Innervated Organs

Because direct measurement of activity is not amenable to ambulatory recording and
indirect measurements come with substantial methodological concerns, most human
studies of autonomic activity in real-life settings have focused on the effects of parasym-
pathetic and sympathetic activity on the innervated organs rather than on activity per se.
For ambulatory recording of parasympathetic activity, the only organ considered so far is
the heart. For sympathetic activity, the heart, sweat glands, salivary glands, and adrenal
glands have all been employed in ambulatory recordings. The change from measurement
of activity to measurement of effects should be reflected in the terminology, such that
“sympathetic control” is used rather than “sympathetic activity.” However, we ourselves
have sinned against this principle—often by request of reviewers or editors who find the
term activity more accessible for the readership.

Importantly, relative changes in nerve activity within a single subject will be highly
correlated with the organ effects, but this is not true for absolute differences in nerve
activity between subjects. Between subjects, the individual differences in the anatomical
features (heart size, number of sweat glands), adrenergic and muscarinergic receptor sen-
sitivity, or efficiency of the postsynaptic machinery translating receptor activation into
organ effects will substantially reduce the correlation between absolute ANS activity and
the observable organ response. The takeaway message is that studies aiming to assess
ANS activity by recording organ responses fare much better in within-subject designs
than in between-subject designs.

Validation of Indirect ANS Measures

Because ambulatory assessment of ANS activity is limited in practice to noninvasive and
indirect measurement of its effects on organ systems, validation of such measurements
against direct nerve recording or neurotransmitter spillover is essential. An acceptable
alternative strategy to these invasive gold standards to show that the noninvasive mea-
sure truly detects (only) sympathetic or parasympathetic effects is the use of pharmaco-
logical blockade. SNS effects can be measured by blocking either alpha-1 receptors (e.g.,
phentolamine), beta-adrenergic receptors (e.g., propranolol), or specific classes of these
receptors, like beta-1 (e.g., metoprolol) or beta-2 (ICI 118-551) receptors. This has been
most extensively done for the assessment of cardiac autonomic activity. Cardiac parasym-
pathetic activity, for instance, can be measured in a dose-response way during infusion
of muscarinic receptor antagonists like atropine or glycopyrrolate, effectively removing
all vagal effects on the heart. A putative noninvasive measure of cardiac vagal activity
should therefore gradually reduce to zero during such blockade and be seen to return to
baseline levels during washout (Penttila et al., 2001). Cardiac sympathetic measures, in
turn, should be gradually diminished during B-receptor blockade (Berntson, Cacioppo,
Binkley, et al., 1994; Cacioppo et al., 1994).



140 TECHNOLOGICAL KNOW-HOW AND METHODOLOGICAL HOW-TO

Reliability and Temporal Stability of Indirect ANS Measures

Apart from validation against invasive measures or pharmacological manipulations, it is
important to establish the short-term test-retest reliability and long-term temporal stabil-
ity of ambulatory measures of ANS activity. Whereas we expect substantial variability in
ANS activity in response to daily events, we at the same time expect the average levels of
ANS activity in real-life settings to be a reasonable stable trait. This expectation is rein-
forced by a large literature showing substantial heritability of validated measures of ANS
activity at rest with heritability estimates even further increasing under conditions of
stress (de Geus, Kupper, Boomsma, & Snieder, 2007; de Geus, van Lien, Neijts, & Wil-
lemsen, 2015; Neijts et al., 2015). We would, therefore, not only expect high test-retest
validity across two comparable days within a single week, but we also expect any valid
measure of ANS activity to show at least moderate temporal stability across repeated
assessments spanning years. These expectations are particularly strong when we retest
AN activity across comparable activities like sleep, work, or leisure time. When we find
low test-retest and/or temporal stability for an ambulatory ANS measure, this may be
reflective of poor reliability of the measurement technology or the measure chosen.

Parasympathetic Measures in Ambulatory Assessment
Respiratory Sinus Arrhythmia

The current dominant strategy for ambulatory recording of parasympathetic activity is
through time- or frequency-domain indices of heart rate variability in the respiratory
frequency range, also called respiratory sinus arrhythmia (RSA). RSA is the difference in
heart period during the inspiration and expiration phases of the respiratory cycle caused
by respiratory “gating” (Eckberg, 2003) of the tonic firing of the cholinergic motor neu-
rons in the nucleus ambiguus that innervate the sinoatrial node. Although cardiac sympa-
thetic nerve traffic is gated in a similar way, the effect of the respiratory-related changes
in vagal activity on heart rate variability is much more prominent than the effect of
the respiratory-related changes in sympathetic activity. This is due to the differential
filter characteristics of the muscarinergic acetylcholine receptors and adrenergic recep-
tors (Berntson, Cacioppo, & Quigley, 1993). RSA shows relatively little sensitivity to
sympathetic blockade but is affected in a dose-response way by muscarinergic block-
ers in humans (Grossman & Taylor, 2007; Martinmaki, Rusko, Kooistra, Kettunen, &
Saalasti, 2006) or vagal cooling in animals (Katona & Jih, 1975). This has led to the use
of RSA as a validated proxy for vagal cardiac activity (de Geus, Gianaros, Brindle, Jen-
nings, & Berntson, 2019), although it is acknowledged that change in respiratory behav-
ior (Grossman & Kollai, 1993; Grossman, Wilhelm, & Spoerle, 2004; Ritz & Dahme,
2006) is an important confounder.

AMBULATORY MEASUREMENT STRATEGY FOR RSA

The measurement of RSA requires the continuously recorded time series of the interval
between two beats, the heart period. The heart period is most reliably detected as the
distance between two R-waves in the electrocardiogram (ECG). Ambulatory devices that
give access to a full recording of the ECG are preferable to devices that extract and store
a beat-to-beat heart period time series and do not store the raw signal. Full ECGs allow
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more researchers degrees of freedom to recognize and deal with artifacts of technical or
physiological origin. Technical artifacts can arise from poor electrode contact, faulty
conduction by lead wires, extraneous magnetic or powerline noise, excessive movement,
muscle activity, hardware/software errors, and experimenter-induced data processing
errors. Deviance of physiological origin occurs when heartbeats are not generated by
the SA pacemaker cells. Such beats do not arise from the normal sinus rhythm genera-
tion, typically represent a few percent of the total number of beats, and are referred to
as premature, or ectopic, beats. Two common sources of premature beats are the atria
and ventricles, which can prompt an atrial premature contraction (APC) and ventricular
premature contraction (VPC), respectively. Ectopic beats, other arrhythmic events, and
missing data through technical errors may introduce strong bias in RSA estimation.

Full ECG recording requires the attachment of at least one electrode on the chest and
a ground electrode, or a patch or chest band with two permanent points of contact to the
skin. A disadvantage of continuous skin contact-based ECG recording is that it can be
tolerated for a few days only but is harder to maintain when recordings last over weeks
or months. An alternative to ECG for obtaining the heart period time series is to detect
the distance between two consecutive peaks in a photoplethysmogram (PPG). The PPG
is obtained by using a pulse oximeter which illuminates the skin and measures changes
in light absorption. This has the great advantage of being minimally invasive and is easy
to incorporate into wrist-worn devices that can be worn for prolonged periods of time.
Unfortunately, the reliability of PPG-derived heart period is not as good as that of ECG,
although reliability may be acceptable in conditions with little physical activity (Georgiou
et al., 2018). The reasons for lower quality of PPG-derived chronometrics are manifold,
but two factors stand out. First, the blunt peak in the PPG waveform representing distal
blood flow is inherently less suited to detect interbeat intervals with millisecond precision
than the sharp R-peak in the ECG waveform representing electrical activity generated in
the ventricle. Second, the PPG method has a much lower signal-to-noise ratio than the
ECG, and this difference is strongly amplified during physical activity.

When the respiratory signal is co-registered with the heart periods, RSA can be
derived by peak-valley estimation (pvRSA). Estimates of pvRSA are obtained by subtract-
ing the shortest heart period during heart rate acceleration in the inspiration phase from
the longest heart period during heart rate deceleration in the expiration phase (Grossman
& Taylor, 2007; Katona & Jih, 1975). This is illustrated for heart period and respira-
tion signals extracted from combined ECG and respiratory plethysmography recording
in Figure 6.2.

RSA can also be derived from ECG or PPG recordings only, without an additional res-
piration signal. PNS effects are reflected in time-domain measures such as the root mean
square of successive differences (RMSSD) between successive heart periods (Goedhart,
van der Sluis, Houtveen, Willemsen, & de Geus, 2007) or frequency-domain measures
obtained by Fourier analysis (Akselrod et al., 1981), Wavelet analysis (Houtveen & Mole-
naar, 2001), or autoregressive (AR) modeling of the heart periods time series (Cerutti,
Bianchi, & Mainardi, 2001). Frequency analyses describe the mean amplitudes of the
periodic oscillations of the heart period at different frequencies and provide information
on the amount of their relative contribution to the total variance in the heart period (also
termed power) across the 0-0.5 Hz frequency range. Spectral power in the respiratory
frequency range of 0.15-0.40 Hz can be used to specifically index RSA. This range is also
called the high frequency range, and spectral analysis derived RSA is typically labeled
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FIGURE6.2. RSA computed using the peak-valley method from the ECG and a respiration signal
derived from the thorax impedance signal.

HF or HF-HRV. Many guidelines are available to extract time- or frequency-domain
RSA measures from heart period time series (Grossman, van Beek, & Wientjes, 1990);
an often-used software package is Kubios (Tarvainen, Niskanen, Lipponen, Ranta-aho,
& Karjalainen, 2014).

RELIABILITY AND TEMPORAL STABILITY OF AMBULATORY RSA MEASURES

During a 24-hour ambulatory recording, the different time- and frequency-domain mea-
sures of RSA (e.g., RMSSD, HF, pvRSA) were highly correlated across a wide range of
values for respiration rate and heart rate (Goedhart, van der Sluis, et al., 2007). Out of
these three, RMSSD is the easiest to compute and therefore commonly reported, but it
can include variance in HR in the higher frequency ranges, that is, outside of the actual
respiratory frequency range and not representing parasympathetic activity. HF, unlike
pvRSA, does not need additional recording of a respiration signal, but co-recording of
respiration itself has clear advantages when dealing with momentary within-subject con-
founding. For the average 24-hour levels of RMSSD and HF, high test-retest correlations
were found across a few days (Bigger, Fleiss, Rolnitzky, & Steinman, 1992; Bjelakovic et
al., 2017; Sztajzel, Jung, & de Luna, 2008; Vrijkotte et al., 2001). In addition, good long-
term temporal stability for 24-hour levels of pyRSA, HF and RMSSD has been shown
over periods of 7 months to 6 years (Goedhart, van der Sluis, et al., 2007; Pitzalis et al.,
1996).
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Sympathetic Measures in Ambulatory Assessment

In contrast to ambulatory PNS recording, which is focused entirely on the heart, multiple
organs can be used as a read-out for SNS activity. Importantly, the notion of a single
emergency SNS response that affects all organs to the same extent has proven to be
untenable. In some circumstances, like dynamic whole-body exercise, the SNS acts more
or less as a “unitary system,” but in many other situations it is capable of differentiated
regulation of its activity to separate organs to a substantial degree (Folkow, 2000; Grassi
& Esler, 1999; Hjemdahl, Freyschuss, Juhlin-Dannfelt, & Linde, 1984). For example,
Goedhart, Willemsen, and DeGeus (2007) show only a modest correlation between the
effects of increased SNS activation on the heart and the sweat glands. Even within the
same organ, responsivity to SNS activation can differ based on the specific biological
function assessed. For example, van Lien, Neijts, Willemsen, and de Geus (2015) found
only a modest correlation between SNS effects on ventricular contractility and ventricu-
lar repolarization. Therefore, to provide a more complete picture, ambulatory recording
of SN effects on multiple organ functions should be used whenever possible.

Electrodermal Activity

Recording the activity of the skin as an index of pure sympathetic activity dates back to
the 1880s (Neumann & Blanton, 1970). Because of its ease of use and low cost, despite
not yet being fully understood, electrodermal activity (EDA) recording became a staple
in the psychophysiological toolbox, with highly visible field applications such as the lie
detector test. Different terminology was historically used, often specific to the applied
measurement technique, most notably the galvanic skin response (GSR). We follow the
modern-day convention with EDA as the umbrella term for all electrodermal phenomena,
independent of measurement technique (Boucsein, 2012).

In laboratory recordings, wet Ag/AgCl(“gel”) electrodes are the norm, where con-
ductivity is improved by electrolyte cream or gel, and they are held in place with adhe-
sives. The most used “exosomatic” technique measures the (changes in) conductivity of
the skin to a direct current (DC) applied through a pair of skin electrodes. Concerns
have been voiced about possible electrode polarization with this method, and the use of
alternating current (AC) has been demonstrated to be a viable alternative to avoid poten-
tial problems related to polarization (Pabst, Tronstad, Grimnes, Fowles, & Martinsen,
2017). Because sweat glands are at the highest density in palmar and plantar regions,
approximately 400/mm?2, it is recommended that two electrodes be used at these sites,
typically on the fingers (Boucsein et al., 2012).

Electrodermal activity incorporates both slow tonic shifts in basal skin conductance
level (SCL) and more rapid phasic transient events (see Figure 6.3). Such skin conduc-
tance responses (SCRs) are observed in response to experimental stimuli, often tones
or bursts of white noise in classic laboratory paradigms, and their occurrence, latency,
rise time, and amplitude are metrics (Boucsein, 2012; Dawson, Schell, & Filion, 2000;
Fowles, 1986). SCRs also occur without a clear external event as a trigger. The frequency
of such nonspecific SCRs (nsSCRs) per minute, sometimes termed electrodermal labil-
ity (Mundy-Castle & McKiever, 1953), is thought to reflect SNS activity. Both SCL and
nsSCR frequency have been shown to be influenced by emotional stress (Boucsein, 2012),
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FIGURE6.3. SCL and nsSCRs extracted from a palmar recording of electrodermal activity using
an ambulatory device with the reference electrode placed at a nonobtrusive location.

making them attractive outcome measures for ambulatory studies. A host of quantifica-
tion strategies are available to extract them from longer recordings (Posada-Quintero &
Chon, 2020).

EDA is considered a pure measure of SNS effects because it directly captures the
activity of the eccrine sweat glands. These glands are not innervated by the parasympa-
thetic nervous system, but the sympathetic nervous system only. Acetylcholine release
from the preganglionic sympathetic nerves increases the activity of the sweat glands,
excreting more fluid, which in turn increases the electrical conductivity across the skin
(Foster & Weiner, 1970; Fowles, 1986). This finding is supported by studies measuring
burst of activity directly in the sympathetic nerve, observing subsequent sweat secre-
tion in associated individual sweat glands (Nishiyama, Sugenoya, Matsumoto, Iwase,
& Mano, 2001) and highly correlated electrodermal responses (Wallin, 1981). Further-
more, blockade of preganglionic sympathetic nerves to the skin strongly depresses or
abolishes these responses (Bengtsson, Lofstrom, & Malmgqvist, 1985).

AMBULATORY MEASUREMENT STRATEGIES FOR EDA

When measuring EDA in ambulatory studies the exosomatic DC method is the standard,
but different choices are made from those in the lab regarding electrode type and elec-
trode placement. Gel electrodes work well in short ambulatory recordings (24 hour), but
in longer ambulatory studies, the electrodes can dry out or fall off, and may not be easy to
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reapply by the participant. At the cost of general lower signal levels and potentially more
movement artifacts and signal loss, longer ambulatory studies may opt for the ease of use
and tolerability of dry electrodes. The guiding principle for electrode placement is that
they should not interfere with daily activities to the point that it hurts ecological valid-
ity, while still yielding a signal of acceptable quality for the research question at hand.
Placement should take care to minimize instances of pressure on the electrodes as these
are associated with a local change in conductance called Ebbecke waves, an important
source of movement artifact (Boucsein, 2012). Since the fingers are involved in the bulk
of everyday activity, other parts of the palmar surface with similarly high sweat gland
density are the primary alternative.

Electrode placement on the thenar and hypothenar eminences of the hand allows for
substantial hand use, although they hinder gripping motions and need to be connected by
cable to a measurement device on the arm or elsewhere on the body. Cable and electrode
interference may be mitigated further by retaining only a single active electrode on the
hand and placing a ground electrode on a less obtrusive location at the ventromedial fore-
arm approximately 15 cm below the hand electrode (van der Mee, Duivestein, Gevon-
den, Westerink, & de Geus, 2020). Lightly abrading the reference site reduces resistance,
and using different electrodes for the active and reference sites further optimizes signal
quality. On the thenar eminence, the typical EDA pre-gelled electrodes with isotonic
gel (Ag/AgCl contact, wet liquid gel [0.5% chloride salt] electrolyte, 11-mm-diameter
contact area) can be used, whereas standard ECG electrodes suffice for the ventromedial
forearm. For ECG recording, EDA is considered an artifact; therefore, ECG electrodes
contain a layer of gel designed to short-circuit the skin and minimize skin resistance. In
terms of minimizing discomfort and interference by movement, ambulatory EDA is typi-
cally measured on the side of the nondominant hand. It should be noted that while EDA
on the left and on the right fingers are strongly correlated, there is evidence for potential
functional asymmetry (Kasos et al., 2020).

By far the most user-friendly location for ambulatory assessment of EDA is the wrist,
even though the electrodermal responsiveness here is limited because of lower sweat
gland density, with generally lower signal levels and fewer responses than on the fingers,
as expressed in moderate to low correlations (Kasos et al., 2020; van Dooren, de Vries, &
Janssen, 2012). Thermoregulatory sweating also seems more prominent on the wrist than
emotional sweating. Still, the ease of accessibility and participant acceptance of wearing
a sensor on the wrist have resulted in commercially available devices that measure there,
either on the volar side to maximize electrode contact with sweat glands or on the dorsal
side, to further capitalize on having the electrodes integrated within a wristwatch-style
device (Westerink et al., 2009).

RELIABILITY AND TEMPORAL STABILITY OF AMBULATORY EDA MEASURES

Detailed testing of the reliability and validity of ambulatory EDA in bigger samples is still
sparse (Doberenz, Roth, Wollburg, Breuninger, & Kim, 2010; Hoehn-Saric, McLeod,
Funderburk, & Kowalski, 2004; Westerink et al., 2009). Several authors have stated the
urgent need for such testing and have suggested standardized protocols to do so (Kleckner,
Feldman, Goodwin, & Quigley, 2021; Sagl et al., 2019; van Lier et al., 2020). Tools have
been developed to aid these efforts (Gersak & Drnovsek, 2020). Validation studies of
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24-hour finger-based recording (Boucsein, Schaefer, & Sommer, 2001; Doberenz, Roth,
Wollburg, Maslowski, & Kim, 2011) found sufficient signal stability over time. Valida-
tion studies of ambulatory wrist-based, dry electrode recording against wet electrode
finger or palm-based measures have not always been encouraging. A study comparing a
now discontinued Microsoft wrist-based device to finger-based measures in a stationary
laboratory paradigm (cold pressor) found no correlation between both SCL measures
(Konstantinou et al., 2020). A laboratory study including ambulatory daily life activities
investigating the only currently available dry wrist-based device reported neither correla-
tion nor visual resemblance with finger-based EDA (Menghini et al., 2019).

In our discussion, we may come across as overly critical of this nascent technology.
This assessment should not be misread as an underappreciation of the pioneering work
done so far or as our reluctance to endorse ambulatory assessment of EDA as a good way
forward in stress research. On the contrary, we strongly encourage further ambulatory
research that delineates the appropriate signals, study designs, and analytical methods.

Cardiac Contractility

In humans, cardiac contractility is influenced predominantly by the sympathetic branch
of the ANS. Whereas vagal innervation of the ventricle is sparse and largely nonfunc-
tional, an abundance of beta-adrenergic receptors exert strong inotropic effects on the
cardiac muscle through the opening of calcium channels in the membrane as well as the
T-tubules of the muscle fibers. The calcium influx increases contractile force and con-
traction speed of the ventricle. This increased contractility is reflected in a larger ejection
fraction of the left ventricle, which is the ratio between the stroke volume and the end-
diastolic volume. The ejection fraction can be obtained from recordings of end-diastolic
and end-systolic volumes (the difference equals the stroke volume) by echocardiography
or magnetic resonance imaging (Malm, Frigstad, Sagberg, Larsson, & Skjaerpe, 2004).
Neither of these techniques is amenable to ambulatory recording. Fortunately, changes in
contractility can also be measured noninvasively through use of impedance cardiography.
In impedance cardiography, a high-frequency alternating current is introduced
across the thorax by electrodes at the level of the neck and the belly (Sherwood et al.,
1990). Electrodes at the level of the top and bottom of the sternum measure the changes
in the impedance (dZ) of the enclosed thorax column. The first derivative of the pulsatile
changes in transthoracic impedance (dZ/dt) is called the impedance cardiogram (ICG),
and it reflects the momentary changes in aortic blood flow during the systolic phase.
From the combined ECG and ICG, the pre-ejection period (PEP, in milliseconds [ms]) can
be derived as the time interval between the onset of ventricular depolarization (QRST-
onset) and the opening of the semilunar aortic valves (sharp upstroke in the dZ/dt), as
depicted in Figure 6.4. PEP derived from the ICG correlates well with PEP derived from
echocardiography (Nederend, Ten Harkel, Blom, Berntson, & de Geus, 2017; Noda et
al., 2017), which is another noninvasive method to detect aortic valve opening.
Increases in contractility through increased SNS activity will lead to a shortening of
the PEP, which can be reduced from 110 ms at rest to 100 ms during stress and as low
as 60 ms during intense exercise (Goedhart, Willemsen, et al., 2007; van der Mee et al.,
2020; van Lien, Schutte, Meijer, & de Geus, 2013). Within-subject changes in the PEP
validly index changes in f-adrenergic drive to the left ventricle during manipulations
known to increase cardiac sympathetic activity like epinephrine infusion, amyl nitrite
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FIGURE6.4. PEP and TWA computed from the combined ECG and the ICG signals after R-wave
locked ensemble averaging.

inhalation, mental stress, and exercise. These manipulations systematically shorten the
PEP (Houtveen, Groot, & de Geus, 2005; Krzeminski et al., 2000; Mezzacappa, Kelsey,
& Katkin, 1999; Nelesen, Shaw, Ziegler, & Dimsdale, 1999; Richter & Gendolla, 2009;
Schachinger, Weinbacher, Kiss, Ritz, & Langewitz, 2001; Svedenhag, Martinsson,
Ekblom, & Hjemdahl, 1986). In addition, pharmacological blockade of cardiac sym-
pathetic effects results in the expected lengthening of the PEP (Berntson, Cacioppo, &
Quigley, 1994; Cacioppo et al., 1994; Schachinger et al., 2001), whereas the PEP is hardly
affected by blockade of cardiac vagal effects (Berntson et al., 1994; Cacioppo et al., 1994;
Martinsson, Larsson, & Hjemdahl, 1987).

It is important to again stress that the within-subject changes in PEP closely track
changes in cardiac SNS activity (provided that there are no major posture changes; see
below) but that between-subject differences in the PEP reflect the extent to which subjects
differ in the degree of sympathetic effects on their cardiac contractility. These effects
are correlated with differences in sympathetic activity, but the correlation is likely to
be imperfect. Inotropic responses to norepinephrine and circulating epinephrine will be
modulated by individual differences in the effectiveness of the cardiac f,- and f,-adrener-
gic receptors. Density, affinity, and distribution of these receptors may show large indi-
vidual differences (Liggett, 1995; Liggett et al., 2006). A reassuringly high between-
subject correlation (0.82) was found between PEP levels and cardiac sympathetic effects
as assessed in healthy subjects (Cacioppo et al., 1994), but the relationship might be
weaker in patients with high levels of cardiac sympathetic nerve activity who have very
low ventricular beta-receptor densities.
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AMBULATORY MEASUREMENT STRATEGIES FOR CARDIAC CONTRACTILITY

Originally, the current and measurement ICG electrodes consisted of two 10-cm-wide
tetrapolar aluminium band electrode systems that ran around the neck and around the
lower part of the thorax of participants (van Doornen & de Geus, 1989). However, it
soon became clear that the replacement of the cumbersome bands by four spot elec-
trodes still produced a good ICG signal from which the PEP could be reliably extracted
(Boomsma, de Vries, & Orlebeke, 1989). Feasibility of miniaturization of the electronic
circuitry needed to generate the AC current for thorax impedance recording and signal
storage on memory chips allowed Willemsen, de Geus, Klaver, van Doornen, and Carroll
(1996) to successfully pioneer use of the PEP in a 24-hour ambulatory thorax imped-
ance recording using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS). A
number of other ambulatory devices similarly showed that reliable and valid PEP record-
ing was feasible in naturalistic settings (Cybulski, 2000; Nakonezny et al., 2001; Panag-
iotou et al., 2018; Sherwood, McFetridge, & Hutcheson, 1998).

The major limitation of ambulatory ICG is that neither the hybrid tetrapolar spot-
band electrode configuration nor a configuration with seven skin electrodes is sufficiently
comfortable and inconspicuous to be worn across multiple days, let alone weeks, not in
the least because of the (long) electrode cables connected to the recording device (see left
upper corner of Figure 6.4). However, the number of electrodes can be reduced to five
without loss of signal quality (van der Mee et al., 2020). Moreover, ongoing technological
advances may allow the devices to be reduced in size, permitting the device to be worn
on a chest strap (not unlike the many wearables for the ECG), greatly reducing electrode
cable lengths.

RELIABILITY AND TEMPORAL STABILITY OF CARDIAC CONTRACTILITY MEASURES

High test-retest correlation (>.90) has been found for ambulatory recordings of the PEP
within a single day (van Lien et al., 2015) or even across 2 work days of the same work
week (Vrijkotte, van Doornen, & de Geus, 2004). That ambulatory PEP acts as a stable
trait was further confirmed by demonstrating significant heritability during all periods
of a representative work day, of a magnitude (~40%) comparable even to that for resting
or stress levels attained under controlled laboratory conditions (Neijts et al., 2015). In
addition, good long-term temporal stability (r > .66) of 24-hour measurements has been
observed (Goedhart, Kupper, Willemsen, Boomsma, & de Geus, 2006), which is again
as good as the stability of the pre-ejection period obtained under standardized laboratory
conditions (Burleson et al., 2003; Hu, Lamers, Penninx, & de Geus, 2017).

Other Measures of Ambulatory SNS Activity in Use
Low- TO HIGH-FREQUENCY RATIO OF HEART RATE VARIABILITY

Various metrics based on the low-frequency (LF) component of heart rate variability
(0.04-0.15 Hz) have been proposed as putative measures of SNS activity. Heart rate vari-
ability in the LF band partly arises from the so-called Mayer waves, which are periodic
oscillations in arterial blood pressure around the 0.1-Hz frequency (Julien, 2006). To
keep blood pressure constant, these changes are countered by rapid cardiac vagal activity
but also by slower cardiac and vascular effects of SNS activity. In the late 1980s, Pagani
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and coworkers advanced the notion that a single ratio, the power in the LF band divided
by the power in the high-frequency (HF) band, may capture cardiac sympathetic activity
even if imperfectly (Montano et al., 1994; Pagani et al., 1986; Pagani & Malliani, 2000).
Although its use as an SNS index has become widespread, the LF/HF ratio is rather con-
troversial (Billman, 2013; Reyes Del Paso, Langewitz, Mulder, van Roon, & Duschek,
2013). It does not compare well against invasive measures of sympathetic activity (Grassi
& Esler, 1999) or the PEP (Goedhart, Willemsen, Houtveen, Boomsma, & de Geus,
2008), and stress, exercise, or beta-adrenergic blockade do not systematically induce
the expected changes in the LF/HF ratio that one expects from an SNS index (Ahmed,
Kadish, Parker, & Goldberger, 1994; Jokkel, Bonyhay, & Kollai, 1995).

THE ECG-DERIVED T-WAVE AMPLITUDE

The T wave is the asymmetrical wave in the ECG that comes after the QRS complex and
typically lasts approximately 150 milliseconds. The T-wave amplitude (TWA, in xV)
is defined as the difference between the peak of the T wave and an isoelectric baseline
when only a negligible number of fibers in the cardiac conduction system are depolar-
izing (Furedy, Heslegrave, & Scher, 1984; Kline, Ginsburg, & Johnston, 1998). Changes
in TWA reflect changes in ventricular repolarization (Abildskov, Burgess, Urie, Lux, &
Wyatt, 1977; Haarmark et al., 2010) in which the sympathetic nerves play an impor-
tant role as shown by pharmacological manipulations and direct nerve stimulation stud-
ies (Abildskov, 1985). In humans, a TWA decrease is seen after administration of the
nonselective beta-agonist isoproterenol (Contrada et al., 1989), which is reversed by
beta-blockade with propanolol (Contrada et al., 1989; Furberg, 1968). However, phar-
macological evidence is not unanimous. The clear sympathomimetic effects of tricyclic
antidepressants and serotonin and norepinephrine reuptake inhibitors on the PEP were
not seen for the TWA (Hu, Lamers, Penninx, & de Geus, 2018).

Using 24-hour ambulatory monitoring and ensemble-averaging of the PEP and the
TWA in a sample of 564 healthy adults, it was shown that the TWA showed a mono-
tonic decrease from nighttime sleep to daytime sitting and more physically active behav-
iors (van Lien et al., 2015). Within-participant changes in TWA were significantly but
modestly correlated with changes in the PEP across the 24-hour period (mean r = .35).
However, the TWA proved very sensitive to the mean heart period (mean within-person
7 =.71), invalidating TWA as an exclusive cardiac SNS measure. Van Lien and colleagues
(2015) concluded that ambulatory TWA, though far easier to measure as it requires just
the ECG, should not replace the PEP, which requires both ICG and ECG. Simultaneous
reporting on TWA and PEP does have added value, however, as it provides a more com-
prehensive picture of changes in cardiac SNS activity in real-life settings without requir-
ing an extra signal to be recorded.

SALIVARY ALPHA-AMYLASE SECRETION

The salivary glands are also innervated by the ANS and the secretion of salivary alpha-
amylase (sAA), a digestive enzyme that breaks down insoluble starch into soluble maltose
and dextrin and has been suggested as a noninvasive marker for SNS activity (Nater &
Rohleder, 2009). The attraction of sAA for stress researchers is that it can be measured
from the same salivary samples required to measure the stress hormone cortisol, which
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is already being widely applied to assess the activity of the hypothalamic—pituitary—
adrenocortical (HPA) axis in real-life settings (Schlotz, 2019).

Indeed, increasing central nervous system norepinephrine levels by blocking its reup-
take by atomoxetine nearly doubled sAA secretion (Warren, van den Brink, Nieuwen-
huis, & Bosch, 2017). Furthermore, exposure to stressors known to evoke sympathetic
activation uniformly increase the amount of sAA secreted per unit of time, including
stressful academic examination (Bosch, de Geus, Ring, Nieuw Amerongen, & Stowell,
2004; Chatterton, Vogelsong, Lu, Ellman, & Hudgens, 1996), stressful computer games
(Skosnik, Chatterton, Swisher, & Park, 2000; Takai et al., 2004), watching a stress-
ful video (Bosch, de Geus, Veerman, Hoogstraten, & Nieuw Amerongen, 2003), the
mental arithmetic test (Noto, Sato, Kudo, Kurata, & Hirota, 2005), cold pressor test
(van Stegeren, Wolf, & Kindt, 2008), and the Trier Social Stress Test (Rohleder, Nater,
Wolf, Ehlert, & Kirschbaum, 2004). Administration of the beta-adrenergic antagonists
reduces sA A concentration (Nederfors & Dahlof, 1992) and attenuates the stress-induced
increases in sAA concentration (van Stegeren, Rohleder, Everaerd, & Wolf, 2006).

Nonetheless, various reasons cause us to express concern about the use of sAA as
an ambulatory index of SNS activity. First, the salivary glands are innervated by both
branches of the ANS, not just the sympathetic branch (Proctor & Carpenter, 2001,2007).
Second, the sampling density that can be realized by sAA measurements is by necessity
an order of magnitude less dense than that of wearable devices measuring continuous
signals. During a single day of recording, at most two samples per hour would be feasible,
but that would already be a major burden on participants. Also, sampling cannot take
place during the nighttime. Third, serious methodological concerns have been voiced
about the co-collection of sAA with cortisol using the same chewing-on-cotton-swabs
procedure among others because this does not allow a correction for salivary flow rate
(Bosch, Veerman, de Geus, & Proctor, 2011).

Recommendations for Ambulatory Recording of the ANS

In summary, we prioritize skin-electrode ECG-based RSA, RMSSD, or HF as the pre-
ferred noninvasive method to measure PNS activity in ambulatory assessment studies.
For ambulatory SNS activity, we prioritize the PEP and palm- or finger-based SCL and
nsSCR. For reasons outlined above, we advise against the use of LF/HF as an SNS index.
We also see little merit in using SAA concentration from the cotton swabs used to detect
diurnal cortisol patterns, at least not as a measure of peripheral SNS nerve activity. Co-
registration of the TWA with the PEP seems useful as it only requires the ECG recording
that is already needed for the PEP anyway. To increase user acceptance and the feasibility
of prolonged recording while reducing the risk of changes in the participants’ daily rou-
tines due to the measurement procedures, wrist-based PPG and EDA recording are seen
as promising alternatives for ambulatory PNS and SNS activity recording, respectively.
At the current stage of technology, however, these methods may generate substantially
less reliable signals.

Apart from recording the purer SNS and PNS measures, it remains valuable to per-
form ambulatory recording of the heart rate as a general index of arousal. Heart rate
comes “for free” whenever a PPG or ECG signal needs to be recorded to obtain a cardiac
SNS or PNS measure. As long as it is understood that heart rate is a mixed bag of SNS
and PNS activity, its clinical relevance justifies its reporting in any ambulatory study
that records it. Likewise, the clinical importance of blood pressure makes it a valuable
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parameter in research on ANS activity, particularly when co-recorded with purer cardiac
SNS or PNS measures.

The difficult tradeoff facing today’s researcher in selecting an instrument from Table
6.1 for their ambulatory assessment research is that the correlation between device reli-
ability/validity and end-user acceptance seems to be sharply negative. Research-oriented
devices generally fare best when it comes to validity, but relying on academic groups to
make innovative technology user-friendly and widely available at low cost seems naive at
best. The long-term viability of research devices is also not necessarily higher than those
of commercial companies, the demise of the LifeShirt and Portapres devices being a case
in point. These well-validated devices are no longer produced even if the existing versions
are still in high demand.

The contrast between research- and consumer-oriented devices is compounded by
the lack of empirical evidence on how the balance between measurement error and much
longer recording times (= more repeated measurements) affects the ability of ambulatory
recording to elucidate the within-subject associations between the ANS and psychologi-
cal states in daily life. It is also unknown how well the prolonged measurements can com-
pensate for a larger measurement error when it comes to the predictive validity of ANS
activity for disease outcomes. We hope and expect that the distinction in user-acceptance
of research-oriented, medical application-oriented, and consumer-oriented devices will
increasingly blur and that the demands for demonstrated device reliability/validity will
sharply increase for all three categories.

Interpretational Issues

The availability of (future) wearable technology that is reliable and well validated does not
automatically lead to appropriate scientific interpretation of the measurements generated.
It is at least as important to have a good grasp on the social and psychological events that
lead to the generation of changes in ANS activity. This requires the careful co-registration
in daily life of changes in subjective emotional state (Busscher, Spinhoven, van Gerwen, &
de Geus, 2013; Daly, Delaney, Doran, Harmon, & MacLachlan, 2010; Gentili et al., 2017;
Kimbhy et al., 2017), anxiety-disorder related symptoms (Dennis et al., 2016; Pfaltz et al.,
2015), cognitive functioning (Riediger et al., 2014), components of work stress like job
demand and decisional control (Kamarck, Schwartz, Janicki, Shiffman, & Raynor, 2003),
negative social interactions, including marital conflict (Baucom et al., 2018), cognitive
appraisals (Carnevali, Thayer, Brosschot, & Ottaviani, 2018; Gerteis & Schwerdtfeger,
2016), and behavioral coping strategies (Burg et al., 2017)—to name but a few of the psy-
chological constructs that have been linked to ambulatory ANS activity. Many chapters
in this handbook are devoted to measurement of such psychological factors using either
ecological momentary assessment (EMA) or passive sensing technology, and we point the
reader to the excellent strategies outlined there to co-register the relevant contextual and
psychological factors that are typically of interest to the behavioral scientist.

However, even with careful characterization of the daily-life contextual and psy-
chological factors impacting on ANS activity, an important component of the optimal
ambulatory assessment strategy for ANS is still missing. The high ecological validity
of measuring in a daily-life setting comes at a steep price. The organ systems we use as
read-outs for ANS activity were not primarily devised by evolution to serve as “psycholo-
gist tools.” They serve homeostatic functions meant to keep, among others, blood gas
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concentrations, pH, blood pressure, core temperature, and energy substrate availability
within strict boundaries. The heart is a pump, not a stress-o-meter. The strongest sources
of within-subject variability in ANS activity are nonpsychological in nature and are often
(though not always) outside of the domain of interest of behavioral studies.

The impact of physical activity on cardiac signals, for example, is so pervasive that
many ambulatory researchers have defaulted to asking participants to refrain from inten-
sive physical activity such as leisure-time sports or (prolonged) dancing on recording
days. In addition, a deliberate selection is made of only those fragments of the recording
days where physical activity is stationary across a longer time period, and often selection
sternly retains only those recordings when people are either sitting or lying down (sleep)
and engaged in sedentary or low physical activity (e.g., sitting in a meeting, using a smart-
phone or PC). Since many modern-day jobs are predominantly sedentary, this captures
about 85% of a normal work day (Vrijkotte et al., 2001). However, for jobs like nursing or
manual labor, this strategy would remove large chunks of data. Having to restrain from
sports and exercise further compromises ecological validity. One strategy to circumvent
these limitations is to carefully establish the transfer function between physical activ-
ity and the physiological measure of interest during periods of low psychosocial stress
and then mathematically correct the physiological signal obtained during stress for the
co-registered physical activity. When applied to heart rate, this strategy yields the con-
cept of “additional heart rate” (Brouwer, van Dame, van Erp, Spangler, & Brooks, 2018;
Ebner-Priemer et al., 2007; Myrtek et al., 1988; Myrtek & Foester, 2001; Pfaltz et al.,
2015; Verkuil, Brosschot, Tollenaar, Lane, & Thayer, 2016; Wilhelm, Pfaltz, Grossman,
& Roth, 2006). In this method, one first regresses increasing levels of physical activity
operationalized as oxygen consumption, minute ventilation, or accelerometer output on
the heart rate. Based on the regression parameters, the observed heart rate is compared to
the expected heart rate based on oxygen consumption, minute ventilation, or accelerom-
eter output during the real-life exposures of interest. The difference is the additional heart
rate. “Additional” here literally means that part of the heart rate that cannot be simply
explained by physical activity and therefore must be attributed to psychological factors.

Apart from the strong effects of physical activity, ANS activity is also sensitive to
postural change, caloric intake, fluid consumption, smoking, alcohol or other substance
use, and fluctuations due to circadian rhythms or the menstrual cycle. Some of these
may be correlated to the psychological factors of interest, yielding complex patterns of
confounding on ANS activity (Sperry, Kwapil, Eddington, & Silvia, 2018). In addition,
various factors that only weakly influence SNS and PNS activity themselves can nonethe-
less strongly impact on the measures we use to index such activity. For example, respi-
ratory behavior strongly impacts on RSA measures independent of vagal activity, and
temperature and humidity impact on EDA measures through thermoregulatory rather
than emotional sweating.

Co-Registration of Momentary Within-Person Confounders
Physical Activity, Posture, Respiration, Temperature

Many confounders can be controlled in a laboratory setting by design, for instance, by
measuring all study participants in a no physical activity, supine position between 9 and
10 A.M. while their respiration rate is paced and after they have abstained from smoking
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or drinking coffee in the morning before the experiment. Ambulatory assessment, in con-
trast, aims to make the behavior of the study participants as naturalistic as possible. This
invites a multitude of nonpsychological factors to influence ANS physiology that are no
longer under the control of the experimenter and so must be co-recorded and dealt with
analytically. In Table 6.2, we summarize how the four most important of these factors
impact the ANS and the methods to systematically co-record them.

Various Other Within-Subject Factors Can Affect the ANS

After physical activity and posture, the wake—sleep transition is the factor explaining
most of the variance in 24-hour recordings of cardiac variables, with sharp changes in
SNS and PNS at bedtime and awakening (Kupper et al., 2005). These abrupt transitions
reflect a combination of changes in posture and arousal levels, the latter often occurring
on top of a more general sinusoid pattern of diurnal variation in ANS activity (Eekelen,
Houtveen, & Kerkhof, 2004). This pattern is visible in the gradual increase in PEP and

TABLE 6.2. The Effects of Physical Activity, Posture, Respiration, and Temperature on ANS Measures
and Methods to Systematically Co-Record Them by Ambulatory Devices

Co-recording needed

Confounder ANS effects Concepts Strategies References
Physical HR (++), BP (++), Type of EMA-based self- Aminian et al. (1999);
activity RSA, RMSSD, activities; report; accelerometer;  Bussmann, Ebner-Priemer,
HF (++), PEP (++), energy minute ventilation & Fahrenberg (2009);
SCL (++), expenditure Hendelman, Miller,
nsSCR (++), Bagget, Debold, &
TWA (++) Freedson (2000); Pfaltz et
al. (2015)
Posture HR (+), BP (+), Posture EMA-based self- Berlin & Van Laerhoven
RSA/RMSSD/ report; accelerometer  (2012); Bussmann et al.
HF (+), PEP (++), (+ gyroscope) (2009); Lawal & Bano
SCL (~), (2020); Mannini &
nsSCR (~), Sabatini (2010); Mathie,
TWA (+) Coster, Lovell, & Celler
(2004); Yen & Lin (2020)
Respiration HR (~), BP (~), Respiration  Respiratory inductance Houtveen, Groot, & de
RSA, RMSSD, rate; tidal plethysmography; Geus (2006); Kent et al.
HF (++), volume impedance (2008, 2009); Liu, Allen,
PEP (~), SCL (~), plethysmography; HF  Zheng, & Chen (2019);
nsSCR (~), component in ECG or  Varon et al. (2020)
TWA (~) PPG; morphological
changes in the ECG
Temperature HR (~), BP (~), Ambient Weather/thermostat Engert et al. (2014);
RSA, RMSSD, temperature; data; sensor on Kinugasa & Hirayanagi
HF (~), PEP (~),  skin clothing; thermal (1999); Low, Keller,
SCL (++), temperature; infrared imaging; Wingo, Brothers, &
nsSCR (++), core sensor on skin; Crandall (2011); Ren et al.
TWA (~) temperature ingestible sensor (2011); Turpin, Shine, &
Lader (1983)

Note. ~, +, and ++ indicate the relative strength of impact on ANS measures.
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RSA in the course of the night reflecting decreasing SNS and increasing PNS activity,
although short-term increases in SNS activity in REM sleep have been reported (de Zam-
botti, Trinder, Silvani, Colrain, & Baker, 2018). The total pattern of 24-hour fluctua-
tions in ANS activity derives from a combination of endogenous circadian rhythms and
time-related behavioral variation, including wake—sleep, meals, and work-leisure effects.

During waking hours, the consumption of food and drinks (Adam & Epel, 2007),
noise exposure (Morrison, Haas, Shaffner, Garrett, & Fackler, 2003), smoking (Hayano
et al., 1990; Lucini, Bertocchi, Malliani, & Pagani, 1996; Ohta et al., 2016), alcohol use
(Schwabe, Dickinson, & Wolf, 2011) or other substances (Kennedy et al., 2015; Schmid,
Schonlebe, Drexler, & Mueck-Weymann, 2010) are known to affect ANS activity. A
female-specific factor that needs to be recorded is the phase of the menstrual cycle (von
Holzen, Capaldo, Wilhelm, & Stute, 2016).

Time of day is automatically recorded by almost all devices, but specific co-recording
of the time-to-bed and waking-time, as well as the consumption of food and drinks or
substance use can be done by EMA-based self-report. Increasingly, passive sensing is
being used to detect these behaviors (Berlin & Van Laerhoven, 2012; Harari, Muller,
Aung, & Rentfrow, 2017). Noise exposure can be reasonably approximated by sampling
incoming noise to the smartphone microphone, but this depends on where and how the
phone is carried. Studies specifically focused on stress generated by listening effort (e.g.,
in the hearing impaired) are using more advanced dual audio recorders placed on a pair
of glasses close to the ears (Kowalk, Kissner, von Gablenz, Holube, & Bitzer, 2018).

Between-Subjects Factors

Ambulatory studies of ANS activity do not differ from a typical psychophysiological
experimental setting in the laboratory in that many stable between-subject confound-
ers can impact on the mean and variance of ANS measures. Many studies have exam-
ined individual differences in ANS activity related to age (Hu, Lamers, Penninx, et al.,
2017), sex (Taylor, Arnold, Fu, & Shibao, 2020), body mass index (BMI; Hu, Lamers,
Penninx, et al., 2017), genetics (de Geus, Neijts, & Willemsen, 2015), ethnicity (Hill et
al., 2015), socioeconomic status (SES; Hemingway et al., 2005), chronic pain (Generaal
et al., 2017), disease status, medication use (Licht, Penninx, & de Geus, 2012), habitual
alcohol use (Boschloo et al., 2011), smoking (Hu, Lamers, Penninx, et al., 2017), physical
activity habits (Hu, Lamers, de Geus, & Penninx, 2017), general sleep quality (Tobaldini
et al., 2017), and physical fitness (de Geus, van Doornen, de Visser, & Orlebeke, 1990).
Although the reported associations with ANS measures are not always uniform in sig-
nificance or direction across all studies, it seems prudent to record such factors whenever
possible. A complete review is outside of the scope of this chapter, but the minimum
person-specific characteristics that we recommend to be measured in any study using
ambulatory assessment of the ANS are age, sex, ethnicity, physical activity habits, SES,
disease status, and current medication use.

Analytical Strategy

In a typical ambulatory ANS study, repeated observations of variables are nested within
persons. As explained above, a set of variables should be selected that captures (1) psycho-
physiological measures of interest, (2) the psychosocial context, and (3) the time-varying
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confounders. The ideal strategy is to align the time-axis of sampling for all three sets of
variables, but this is not always feasible. To enforce time alignment, researchers often use
selection. For instance, if EMA is used to detect the number of cigarettes smoked across
the last hour and current positive and negative mood states, the continuous physiological
recording of RSA could be restricted to average of RSA in the 5 minutes before or after
the EMA beep. This would yield an hourly set of variables reflecting mood, recent ciga-
rettes smoked, and a 5-minute averaged RSA value. Temporal resolution could be greatly
improved by successful use of passive sensing and machine learning to estimate emotional
state through analysis of speech snippets, smartphone use, and location data. Likewise,
automated smoking detection from wrist-worn accelerometers could yield a signal every
60 seconds indicating whether the person is smoking. In that case, the repeated measures
structure for all variables would expand to a minute-by-minute basis.

As amply demonstrated elsewhere in this book, multilevel modeling has been shown
to be a powerful approach for analyzing within-person repeated measures data. They
can be used for analyzing more complex nested data structures, that is, minutes, within
days, days within weeks, and so on, and graciously handle unequal numbers of observa-
tions across individuals (missings) or even data left at unequally spaced time intervals
(Hox, Moerbeek, & van de Schoot, 2017). By simultaneously modeling the effects of the
psychosocial context on ANS measures, with the effects of confounders such as time of
day, posture, respiration, and physical activity (or other confounders) on these measures,
one effectively creates a series of partial regression slopes, describing for each subject
the extent to which their ANS activity tends to increase when psychosocial demands
increase, after adjustment for the effects of confounders. Note that when such a model
is used for the parallel effects of stress and physical activity on heart rate, it effectively
recaptures the strategy of computing the additional heart rate that was mentioned previ-
ously in this chapter.

Multilevel models for ambulatory ANS data have the added advantage of allowing
the temporal structure of cross-variable regressions to be person-specific by modeling the
slopes as a random factor. That is, if the effect of stair-climbing on RSA is suspected to
be less strong in a well-trained individual, then individual differences in vigorous exercise
habits can be added as a level 2 factor.

Conclusion

Ambulatory monitoring of PNS activity through RSA, RMSSD, HF, ambulatory moni-
toring of SNS activity through PEP, SCL, nSCRs, and indirect monitoring of SNS and
PNS activity through ambulatory heart rate and BP provides higher ecological validity
and higher predictive validity for clinical outcomes than laboratory studies. The added
validity of an ambulatory psychophysiological study, however, does come with the strong
requirement of solid co-registration of the psychosocial context and a host of confound-
ing influences on the ANS. By far the most important of these influences are physical
activity and the wake—sleep cycle for all ANS measures, postural changes for the PEP,
respiratory behavior (including speech) for all heart-rate variability measures, and tem-
perature and humidity for the EDA-based measures. Provided there is valid registration
of these confounders, solid strategies are available in the data analysis phase to take them
into account. These range from simple post-hoc selection of periods where the levels of



156

TECHNOLOGICAL KNOW-HOW AND METHODOLOGICAL HOW-TO

the confounders are highly comparable, to full modeling of the complex dependency of
the ECG, ICG, and EDA signals on the confounders and regressing these out when com-

puting the relevant ANS measures.

Whereas large improvements in the ambulatory assessment toolkit are still needed,
technology will not be the Achilles’ heel of our understanding of the psychological effects
on ANS regulation in daily life. The more fearsome enemies are the overestimation of
the validity of the measures used and the underappreciation of the complexity of their

underlying biology.
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CHAPTER 7

Analysis of Phone Logs
and Phone Usage Patterns

Sandrine R. Muiller, Aaron Cohen,
Marcel Enge, and John F. Rauthmann

This chapter provides an introduction for researchers working with phone log and screen
usage data. We describe the different data sources related to phone calls, text messages,
and screen use, including example data structures and differences between data under
the i0OS and Android operating systems. We discuss ethical and practical considerations
when planning a smartphone study containing these data. Steps to consider when clean-
ing and computing features from such data are described in detail, including psychomet-
ric considerations and suggestions for data visualization. Finally, we describe limitations
and future directions for passively collected phone log and screen usage data as well as
other phone metadata sources.

Introduction

Phone logs and phone usage patterns have been referred to as organic data, that is, “data
that are generated without any explicit research design elements and are continuously
documented by digital devices” (Xu, Zhang, & Zhou, 2020, p. 1257). Organic data
reflect everyday activities based on natural interactions with technological devices or
platforms (Groves, 2011). Examples of organic data continuously generated by the phone
include logs of sent and received text messages (i.e., short messaging service [SMS]), logs of
outgoing and incoming phone calls, as well as high-level screen activity (i.e., is the screen
turned on or off), and what the battery status is. This stands in contrast to data resulting
from planned investigations (e.g., in-app responses to ecological momentary assessment
surveys). In this chapter, we focus on phone logs (calls and messages, specifically) as well
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as phone (screen) usage patterns because they represent some of the most basic, natural
interactions with smartphones, therefore making them particularly relevant and valuable
in psychological research. We will describe the different steps to analyze phone log and
screen usage data following Xu and colleagues’ (2020) workflow of studies, using organic
data to organize this chapter.

As listed in Figure 7.1, data sources described in this chapter consist of call and
text logs as well as screen usage. When planning a study using or assessing such data,
factors to consider include user demographics, information on the devices participants
are using (as the specific technology may vary between different brands and models), as
well as environmental factors (e.g., economics, politics, culture). Once the study design
has been established and the data have been collected or accessed, preprocessing entails
cleaning the data, followed by computing any relevant metric for analysis. In addition to
data analysis, it is usually helpful to visualize the data and results. Doing so allows for a
comprehensive interpretation of the results, revealing unique insights as well as potential
avenues for future research.

Data Sources

While it is usually possible for phone users to access and export some of their own his-
toric data (such as call and text logs), this will usually involve many manual steps. In the
context of a research study, this can put an additional burden on the participants and
will likely require detailed instructions or even supervision to be accomplished success-
fully. Downloading a smartphone app (see Chapter 1, “How to Conduct Mobile Sensing
Research,” this volume) will almost always be more convenient for the participants and
the researchers involved. In addition, an app can guide participants through the process
of enabling any required settings (e.g., switching on screen time tracking on Android,
which is disabled by default) and allow collection of data in real time (e.g., via an API)
that otherwise does not get stored on the device.

Commonly used open-source apps include the AWARE framework and Funf, while
two notable commercial apps are Metricwire and Ksana Health. Notably, Beiwe includes
both commercial and open-source options. Table 7.1 provides an overview of accessible
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FIGURE7.. Conceptual overview of the analysis of phone logs and phone usage patterns.
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TABLE 7.1. Overview of Accessible Phone Log and Screen Time Data across i0S and Android Operating
Systems

i0S Android

Textlogs  To a sensing app, no text logs are accessible under iOS. To both the user and a sensing
app, the entirety of the historic
records is accessible as long as
those have not been deleted by

To the user, the entirety of the historic records,
including both SMS and iMessages, are accessible
if the phone is set to “keep messages forever” (other

options are 1 year and 30 days), and messages have not the user.
been deleted by the user.

Call logs The last 1,000 calls are available, yet only 100 are Entirety of the historic records
accessible via an iPhone (Bradford, 2021). This means as long as those have not been
that to look back into one’s call history, one would deleted by the user.
need to delete an equivalent number of recent calls.

Furthermore, iCloud must be active to retain the call
history; if it is turned off, all data are stored for 180
days and are then deleted.

Screen time The following screen events can be recorded in real The following screen events
time by a sensing app (e.g., Aware): screen being can be recorded in real time
turned on, turned off, locked, or unlocked. by a sensing app (e.g., Aware):

screen being turned on, turned

Detailed screen activity is not available (e.g., app off. locked. or unlocked

usage). Some apps employ work-arounds such as
routing all traffic through a VPN (e.g., Qustodio) or ~ Detailed screen activity is

extracting the contents of screenshots users take of switched off by default, but
the iOS Screen Time tracking feature in the phone’s if tracking is enabled by the
settings (e.g., Moment), but iOS will not allow an user, the data are accessible.

app direct access to these data. The iOS Screen Time  Tracking can be disabled, and
tracking feature stores and displays screen time for up  the data deleted anytime.
to 7 days only.

phone log and screen time data across the iOS and Android operating systems. As of this
writing, phone logs and phone usage data are generally more easily available on Android
phones (see www.apple.com/privacy for further information on iOS data collection prac-
tices).

In particular, historic data are accessible on Android phones with little to no restric-
tions; that is, an app running on a participant’s phone accessing phone and call logs will
be able to access the entirety of the records as long as those have not been deleted by the
user. For 108, the last 1,000 calls are available, yet only 100 are accessible via an iPhone
(Bradford, 2021). This means that to look back into their own call history, a user will
need to delete an equivalent number of recent calls. For example, a person could delete
the last 50 calls up to 20 times depending on how many calls they have made until the
call record is empty. Furthermore, iCloud must be active to retain the call history; if it is
turned off, all data are stored for 180 days and are then deleted.! However, Apple does
offer an option to request call log data, which is emailed via spreadsheets and takes up
to 7 days to process.

Regarding screen use, a sensing app (e.g., AWARE Framework; see https:/
awareframework.com/screen) will be able to record when the device’s screen is being

turned on (i.e., wake mode), turned off (i.e., sleep mode), locked, or unlocked for both
i0S and Android.
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While not the topic of this chapter, it is worth mentioning that detailed screen activ-
ity such as app usage is more difficult to access. On Android devices, the recording of
detailed screen activity is switched off by default, but if tracking is enabled by the user,
the data get recorded and are in theory accessible to a sensing app. Tracking can be dis-
abled, and the data can be deleted anytime.

For i0OS, Apple’s support site states that “you can see a summary of your device use
for the current day or the past week” using the Screen Time app. The iOS Screen Time
tracking feature stores and displays screen time—which includes app usage—for up to 7
days only. However, iOS will not allow other apps on the device to directly access these
data. Some apps employ work-arounds such as routing all traffic through a virtual pri-
vate network (VPN e.g., Qustodio) or extracting the contents of screenshots users take
of the iOS Screen Time tracking feature in the phone’s settings (e.g., Moment).

Given that (as of writing this chapter) accessibility of log data are more limited under
i0S, there may in many instances be greater opportunities for research afforded using
Android devices. In the remainder of this chapter, where possible, we will point out dif-
ferences with iOS (for further information, see the “Feature Computation” section as
well as https://developer.apple.com).

Call and Text Logs

Call logs contain data about the temporal calling patterns of smartphone users, including
the frequency and duration of calls placed and received as well as the recipients of such
calls across various contexts (Lee, Seo, & Lee, 2010). Text logs contain similar temporal
records for messages that were received and sent via the device’s Messages app. They typi-
cally contain the number of characters and words allowing for potentially more robust
analyses (Battestini, Setlur, & Sohn, 2010). Importantly, neither call nor text logs record
the contents of the call or text message (such as via an audio file or storing the text sent).
Also, note that call and text logs will not include records of calls or messages through
other apps with calling or messaging functionality (such as WhatsApp and Facebook
Messenger). Depending on the population studied, the preferred communication chan-
nels of the participants enrolled in the study might prevent call and text logs from provid-
ing an accurate (or approximated) representation of their communication patterns. For
example, researchers wishing to study the communication behaviors of students might
find that at a specific university, students primarily use WhatsApp and Facebook Mes-
senger for their communication, but a consistent percentage of students’ communication
goes through the Messages app on their phones. This makes the frequency of messaging
a useful relative indicator for identifying more and less social students (even if they are
not providing a reliable approximation of their overall communication frequency). On
the other hand, it is also imaginable that groups among the student population systemati-
cally behave differently (e.g., international students heavily using apps that are popular
in their home countries). Cross-cultural differences within as well as between groups can
introduce biases related to measurement, construct, sample, device-type user practices,
and environmental factors when conducting smartphone sensing research (see Phan,
Modersitzki, Gloystein, & Miiller, 2022, for in an-depth discussion of this topic). Based
on such considerations, researchers might want to consider introducing a prescreen when
enrolling participants in a study related to communication patterns.
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As of this writing, message data are only available for Android. While call data are
available for both iOS and Android, there are some differences. For example, iOS call
records create unique traces for each contact even if the user has been in touch with the
same contact repeatedly, preventing the computation of metrics such as the number of
distinct contacts or amount of interaction with the most frequently called contact. We
point the interested reader planning to collect, or already in possession of, data spanning
across those two operating systems to the Android and iOS developer documentation
(https://developer.android.com and https://developer.apple.com), as well as the documen-
tation for the analysis pipeline in Reproducible Analysis Pipeline for Data Streams (RAP-
IDS; www.rapids.science/1.9).

Tables 7.2 and 7.3 present hypothetical examples of how such data might be struc-
tured for call and text logs (see also, e.g., Beiwe, 2022). Importantly, these data only
contain texts and calls issued from native operating system apps (called “Phone” for
calls and “Messages” for texts on both iOS and Android). One limiting factor of this
approach is that people may use other apps to make calls or send messages (e.g., Face-
book Messenger, WhatsApp, Skype, Google Hangouts, and Facetime), which will not
be captured in these logs (but rather within those apps). However, the logs allow captur-
ing additional information about communication that would not be accessible through
other apps. This, for example, enables identifying the number of communication partners
characterizing ongoing communications with specific other parties (e.g., in the context
of studying dyads such as romantic relationship partners) or capturing the number of
characters and words in a message or the exact duration of a call. In Table 7.2 one user
receives more messages than they send, while the other user sends more than they receive.

TABLE7.2. Example of a Text Message File

Userid Device id Type Body word_count Body_length Timestamp

12345 16890253647 Inbox 26 150 06:00:01 02 12 2021 GMT+0
12345 16890253647 Inbox 22 120 07:37:12 02 12 2021 GMT+0
12345 16890253647 Sent 11 49 06:28:01 03 12 2021 GMT+0
67890 87263749726 Inbox 29 172 16:09:28 02 12 2021 GMT+1
67890 87263749726 Sent S 28 17:13:17 03 12 2021 GMT+1

67890 87263749726 Sent 16 83 15:15:22 03 12 2021 GMT+1

TABLE 7.3. Example of a Call File

Userid Device id Number  Type Duration Timestamp

12345 16890253647 ASF2]S Incoming 9 12:03:04 02 12 2021 GMT+0
12345 16890253647 FSK8H2  Outgoing 26 16:39:21 02 12 2021 GMT+0
12345 16890253647  V2]J9S5 Missed 68 07:24:14 03 12 2021 GMT+0
67890 87263749726 K9L3M2 Incoming 35 09:13:56 02 12 2021 GMT+1
67890 87263749726 K9L3M2  Outgoing 145 18:14:34 03 12 2021 GMT+1

67890 87263749726  J1BOX3 Outgoing 509 23:22:24 03 12 2021 GMT+1
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User 12345 also has an early morning texting habit, while user 67890 sends most of their
messages in the afternoon. Table 7.3 shows that user 67890 places calls to and receives
calls from K9L3M2 (a placeholder for the unique hash that allows tracking of ongoing
conversations with the same person, bot, company, or other entity without identifying
them). The conversations between 67890 and K9L3M2 are also noticeably longer than
the other records, suggesting the possibility of a closer relationship.

Screen Use

There are slightly varying definitions of screen use. The World Health Organization
(2019), for example, refers to it as “time spent passively watching screen-based entertain-
ment (TV, computer, mobile devices). This does not include active screen-based games
where physical activity or movement is required” (p. v). The Merriam-Webster Diction-
ary defines it as “time spent watching television, playing a video game, or using an elec-
tronic device with a screen (such as a smartphone or tablet).” These definitions reveal a
distinction between active and passive screen use, where the former may have beneficial
implications for psychological health (Kaye, Orben, Ellis, Hunter, & Houghton, 2020).
This aligns with the work by the nonprofit organization Common Sense Media, which
surveys teenagers and young adults in their Common Sense Census (Common Sense,
2022). They have seen steady increases in screen time over the years, with a significant
spike during the COVID-19 pandemic. Passive consumption of TV and video makes up
the largest part of daily screen use, with about 3 hours of time spent by teenagers and
young adults. The second largest category is gaming, with about 1.5 hours spent on this
activity daily, reflecting a more active engagement with screens. While the availability
of active and passive engagement options with screen media is not new, developments
in phone technology have increasingly blurred the lines between TV and phones and
allowed for phones to become portable TVs that users can carry in their pockets and
interact with at all times (in addition to, of course, many other functionalities).

According to Reeves, Robinson, and Ram (2020), capturing screen use data may
be particularly challenging, as studies have largely focused on self-reports of screen use
rather than the “moment-by-moment capture of what people are doing and when” (para.
4). In past research, screen use has often been self-reported due to complexities in captur-
ing and classifying such data. Although logging apps can help in collecting more accurate
screen use data, they do not “reveal exactly what people are seeing and doing at any given
moment” (Reeves et al., 2020, para. 3).

Alcott, Gentzkow, and Song (2021) conducted a study investigating screen use limits
for social media use and associated effects on habit forming, self-control issues, and sub-
jective well-being. By utilizing a program called Phone Dashboard to record screen time
and establish screen use limits, 2,000 Android phone users were recruited. Participants
in the experimental group had the ability to set their own screen use limits directly in
Phone Dashboard. Alcott and colleagues found that screen time decreased by more than
20 minutes per day among participants in this group, suggesting a possible correlation
between social media and self-control issues. This study exemplifies how a psychological
study can leverage instantly capturing screen time activity rather than relying on self-
report data.

Introduction of the type of objective measurement possible with smartphones is
helping address difficulties in conceptualizing screen use and overcoming the limitations
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of self-reported data. Kaye and colleagues (2020) recommend focusing on capturing the
behaviors screens are facilitating, for example, relating to social, work, or informational
use, and thereby putting users’ needs at the center of any investigation into the psycholog-
ical and social correlates of their screen use. This may require analysis of the screen’s con-
tent, however, which can be achieved through capturing and analyzing users’ app usage.
Another approach, as employed by the Human Screenome Project at Stanford University,
takes screenshots every 5 seconds, which can allow tracking across different platforms if
the software is installed on multiple devices (Ram et al., 2020). It is of note that neither
of these passive approaches allows capturing whether the phone user processed the infor-
mation on the screen (or, for example, was looking elsewhere) and how they perceived it
(as the same content could be perceived and processed very differently depending on the
person and the context they find themselves in). For example, a user might be looking up
information about a medical condition that they were recently diagnosed with, or a user
might be looking up the same information because they are a medical student preparing
for an exam. In its most basic form (and for the purposes of this chapter), however, screen
use can refer to the time the screen was on and displaying something to the user.

Table 7.4 shows a hypothetical example of a screen use file. Importantly, these data
are only available on Android. Screen logs will typically capture whether the screen came
on or went off (which might, for example, be caused by movement or a notification)
and whether the user has unlocked or locked the screen (depending on the device, for
example, via entering a PIN, or pressing a button or fingerprint reader, or via a face or
eye scan).

Practical and Ethical Considerations during Study Setup
Due to the ease of collection and the availability of historic data, we suspect that there
will be an increasing volume of large international datasets, studies, and collaborations

as time goes on. For the sake of completeness, we therefore point out that in such cases
where the data span across vastly different environments and users, systematic sources

TABLE 7.4. Example of a Screen Use File

User id Device id Screen status Timestamp

12345 16890253647 Unlocked 19:03:04 02 12 2021 GMT+0
12345 16890253647 Locked 19:04:50 02 12 2021 GMT+0
12345 16890253647 On 7:35:09 02 13 2021 GMT+0
12345 16890253647 Off 7:35:12 02 13 2021 GMT+00
12345 16890253647 On 9:33:11 02 13 2021 GMT+00
12345 16890253647 Off 9:33:14 02 13 2021 GMT+00
67890 87263749726 Unlocked 09:10:45 02 12 2021 GMT+1
67890 87263749726 Locked 09:21:11 02 12 2021 GMT+1
67890 87263749726 Unlocked 11:22:16 02 12 2021 GMT+1

67890 87263749726 Locked 11:24:08 02 12 2021 GMT+1
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of heterogeneity might be introduced in the data that require attention depending on the
specific research questions at hand. Blunck and colleagues (2013) note that such sources
might include systematic differences in user characteristics (i.e., demographics and prac-
tices), devices (i.e., properties and abilities), and environments (i.e., ecology, economy,
politics, and culture). Ignoring such sources of variance can introduce systematic biases.
For example, differences in phone plan cost in certain countries might influence how
many calls users make and text messages they send. Additionally, the smartphone users
(or those who are willing to enroll in a study) of one country might be more varied
regarding age, while in another country they are predominantly of a younger age bracket.

Furthermore, ethical considerations include communicating clearly to participants
which types of data will be collected (especially in the case of accessing historical data)
and what will be done with them, while paying particular attention to preserving par-
ticipant privacy (Tamine & Daoud, 2018). To date, we are not aware of any research
showing the specific privacy risks of identifying a person from their phone log data alone,
but it is likely that it would be possible to do so, given that, for example, only one spatio-
temporal (i.e., latitude, longitude, and time) GPS data point can be sufficient to identify
a phone user with close to 100% accuracy (Rossi, Walker, & Musolesi, 2015), or that
phone users have a unique app fingerprint allowing their identification across time and
even different devices (Kurtz, Gascon, Becker, Rieck, & Freiling, 2016). Phone log data
should therefore be treated with the utmost caution. To ensure reproducibility by other
researchers, it is advisable that such data not be shared in their raw format but, rather,
only make aggregate features available publicly (for examples, see also Harari et al.,
2020; Miiller, Peters, Matz, Wang, & Harari, 2020).

Data Preprocessing

The particularities of log data compared to the data produced by more traditional data
collection methods such as surveys or in-lab experiments are related to the data cleaning
and feature computation phases as those will often be far more computationally intensive
and technical than, for example, scoring a survey. However, once those steps have been
completed, the resulting variables can often be dealt with and entered into statistical
models in a very similar manner to how variables resulting from traditional data collec-
tion processes would be.

Data Cleaning

As with any data, it is important to inspect the files first and make sure they are in the
required format for the following steps. If you are using a workflow management system
such as RAPIDS (2022; see the next section), this would mean ensuring that the data
format corresponds to the input requirements.

When doing manual data cleaning or if there are specific requirements, the fol-
lowing steps may be worth considering. First, outliers such as “failed to send” texts,
“unknown” call types, NAs (i.e., missing data), duplicate, and any other atypical data
points should be removed. To the best of our knowledge, this typically only affects a very
small portion of users and/or records, and is less common—but certainly not impos-
sible—in system-generated logs compared to “second-hand” logs accessed via a data
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collection app. Researchers should also consider validating the data entries to ensure no
erroneous records are occurring when using a new data source such as a newly developed
app. Second, the coding process must be conducted in a consistent way, particularly
when combining different samples or data sources such as using existing data collected
with different data collection apps (e.g., one data collection app might store call types
as “incoming,” “outgoing,” and “missed,” and another app might record these as “call
accepted,” “call made,” and “call missed,” respectively). Third, different time zones must
be taken into account. Typically, phones will record timestamps in UTC (Coordinated
Universal Time, the worldwide primary time standard) with an offset describing the dif-
ference between UTC and local time. For example, Pacific Standard Time (PST) corre-
sponds to UTC-08:00; that is, PST is 8 hours behind UTC. Data collection apps do not
necessarily follow this convention and might return the timestamp in local time (e.g.,
PST or GMT). However, many apps (including, e.g., the Aware framework) will provide
Unix time. Unix time corresponds to the seconds that have elapsed since 00:00:00 UTC
on January 1, 1970. Importantly, this does not take different time zones into account but
will be, by definition, provided in UTC. Consequently, researchers working with data
from participants located across different time zones will need to take this into account if
they are interested in the timing of activities. For example, if the study investigates partic-
ipants’ daily rhythms, it would be important to adjust for different time zones so that the
phone records of one participant’s afternoon would not be compared with the records of
another participants’ night but aligned accordingly. This might get complicated further
if participants travel over the course of the data collection period. If needed, Unix time-
stamps can be converted into local time using programming languages such as Python
and R or processing tools such as RAPIDS (2022; see the section “Feature Computation”
for more details). Fourth, setting a possible subset for the duration of the study (or some
other period for which everyone or most participants have data) can be beneficial. Fur-
thermore, there must be clear communication with participants to ensure institutional
review board (IRB) compliance, especially for user records outside of the study period,
as phone logs will allow access of historic data unless the user has emptied their memory
(see the “Data Sources