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The topic of mobile sensing in psychology may seem to be a new field powered by recent 
technology, but the quest for more ecological data to measure mood, behavior, and cog-
nition has been an old one. No doubt, Freud wondered about the relationship of what 
he observed in the consulting room to what was happening in the real world outside. 
And both clinicians and scientists since have wished for better insight into the real-world 
experience of people in psychological distress.

There is a highly apocryphal story about the scientist who devotes her life to creat-
ing the ideal mobile sensing tools, only to pass away before seeing these tools adopted in 
clinical use. The story is that such virtuous work is rewarded by St. Peter who, because of 
her exemplary dedication to improving the human condition, offers her an audience with 
God and an opportunity to ask the Almighty a single question. With some trepidation, she 
pops the question, “Father, will we ever have a mobile sensing device that is adopted by 
patients and providers?” Allegedly, God responds, “Yes, my child. But not in my lifetime.”

At the outset of this important volume on mobile sensing, it’s important to realize 
that the task for mobile sensing is neither easy nor quick. It’s really two tasks, both cov-
ered extensively in this volume. First is the challenge of validation. Do the signals on a 
wearable or smartphone provide high-quality data, and can those data be tied to some 
ground truth? Acquiring high-quality signals in a world of variance, interference, and 
nonadherence feels like one of those “not in my lifetime” challenges. But several chap-
ters in this book demonstrate that we can collect high-quality data on location, activity, 
emotion, and more. Smartphones, wearables, and social media provide an unprecedented 
scale of data, capturing the world outside of the consulting room or psychology lab. Yes, 
we need to create standards for quality and we need to integrate mobile sensing data with 
other measures, but already we can see the value of this new world of data for giving us 
insight into a person’s umwelt.

The second task, the ground truth problem, is arguably more difficult. For measures 
of mood or cognition, what constitutes ground truth? Should we train algorithms to 
self-report scales, to diaries of activity and mood, or to clinical ratings? If we are lim-
ited to these measures, is the field of mobile sensing destined to be no better than the 
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subjective tools we’ve been using for decades? Here the analytic tools may help. As Part 
II of this book makes clear, increasingly sophisticated analytic approaches may help us 
refine the signals so that they are more informative than traditional measures and ulti-
mately may offer a new kind of ground truth. But mobile sensing data, in the near term, 
will be adjunctive and not replacements for more conventional measures, remembering 
that more objective measures are not inherently more valid measures.

These challenges of data collection and data analysis need to be put into the context 
of clinical need, as noted in Part III of this book. Beyond the importance of psychological 
research, we find ourselves in a mental health crisis with rising rates of suicide, drug-
overdose deaths, and depression in youth. The world of mental health care is supported 
by dedicated professionals who generally work in a data-free zone, without objective 
data on what is happening outside of the clinic. They may ask about sleep, activity, social 
contact, and mood without any objective data on these highly quantitative variables. 
Imagine helping someone with diabetes without measuring blood sugar (now trackable 
with a continuous glucose monitor) or someone with hypertension without measuring 
blood pressure (now trackable with home monitoring systems).

To be clear, our mental health crisis is not caused by this data desert, but better 
measurement can be part of the solution. More than half of the population with a mental 
disorder are not in care. Remote monitoring can detect a problem and connect people 
to care. For those who receive care, diagnosis is largely based on subjective reports in a 
single visit. Remote monitoring can provide objective data on how someone is thinking, 
feeling, and behaving in the real world, leading to more precise diagnosis. And for those 
in treatment, there is a surprising absence of monitoring progress, what the field calls 
“measurement-based care.” There is a saying in business that we can’t manage what we 
can’t measure. For mental health care to begin to resolve the mental health crisis, we will 
need to bake measurement into all aspects of care. Mobile sensing can help to solve this 
data desert passively, ecologically, and continuously, at scale.

I stress this clinical need and the promise of remote sensing because we seem to be 
in a world in which worries about perils can stifle the promises of innovation. Yes, we 
must be mindful of privacy and data provenance. We need to build “with,” not just “for,” 
users. Transparency, integrity, and equity are fundamental concerns and essential for 
success. But in order for these concerns to be welcomed with creative and compassionate 
solutions, they must not become threats to the overall enterprise of using innovation to 
solve a public health crisis. We must remember that we face a formidable mental health 
challenge, which can be solved only via innovations like mobile sensing.

Will this happen in our lifetimes? Bill Gates famously noted, “We always overesti-
mate the change that will occur in the next 2 years and underestimate the change that 
will occur in the next 10.” With recent advances in sensor technology, artificial intelli-
gence, and image analysis, we may be closer than we think. This timely volume provides 
a comprehensive picture of just how close we are and what remains to be done.

Thomas Insel, MD 
Executive Chair, Vanna Health 
Former Director (2002−2015), National  
    Institute of Mental Health 
Author of Healing: Our Path from Mental  
    Illness to Mental Health
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The rapid developments in the field of modern information technology are opening up 
possibilities for psychological research that were inconceivable 20 years ago. A small 
device like the smartphone is capable of recording and storing important information 
about everyday human experience and behavior in real time. Examples can be seen in 
many areas of psychology and neighboring disciplines: It is possible to collect informa-
tion about the location where people currently are, which places they visit, how much 
and how fast they move, and the extent to which other people are present. Audio, photo, 
and film recordings can be made and sent or shared (and stored) immediately. Internet, 
social media, and phone usage behavior can be tracked comprehensively and in real time. 
Linking the smartphone with other mobile (e.g., wrist-worn) sensors enables physiologi-
cal measurements outside the lab and tracking, for example, physical activity and sleep 
patterns. By using specific apps, questionnaires can be easily presented in tandem with 
the direct mobile phone usage tracking. That way, momentary mood states as well as the 
subjective perception of and attitudes toward objective events can be captured. Compli-
ance with medical treatments and psychological interventions can be monitored (either 
directly via phone usage behavior or indirectly via other mobile sensors). Also, experi-
mental studies can be planned and implemented using the smartphone. These research 
methods can allow for unprecedented ecological validity and can facilitate the empirical 
evaluation of the generalizability of research findings (across time, settings/contexts, and 
populations).

Also, mobile sensing opens new paths for psychological assessment. The intensive 
longitudinal assessment of behavioral acts, inner experiences, and physiological activity 
in everyday contexts facilitates uncovering individual patterns of psychological attributes 
and allows comparing them interindividually. This provides personalized multimethod 
assessment strategies that go far beyond retrospective (or momentary or daily) diary 
recordings or day reconstruction methods. Individual symptom constellations and their 
change over time can be identified, which can form the theoretical and methodologi-
cal basis for development of personalized models of personality and psychopathology. 
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Modern psychometric approaches for intensive longitudinal data also allow the applica-
tion of psychometric quality criteria to single-case data to measure individual-specific 
constructs and to test their generality. By using modern statistical methods for Big Data, 
predictions of future emotional states and behavioral tendencies can be made based on 
the richness of data a smartphone and connected mobile sensors can provide. Critical 
life situations can potentially be anticipated and alerted to in real time, personalized 
interventions can be adapted to momentary contexts, and individuals can obtain helpful 
support and advice in their daily lives.

The possibilities mobile sensing opens up for the social, behavioral, biomedical, and 
life sciences appear almost infinite and are bound to become even more comprehensive 
in the years to come. However, data collection with new information technology also 
poses new challenges for research and applied fields. Is everything that is possible also 
legally allowed? What are the personal and societal consequences of the possible deep 
insights into very private areas of life for research ethics and the relations between the 
researchers and those being researched? How can data be stored so that anonymity and 
privacy are preserved? How can quality criteria be formulated for this new and rapidly 
developing field of research? And how can we ensure that information and predictions 
derived from mobile sensing are psychometrically accurate and practically useful as we 
move from scientific proof-of-concept measurements to medical/clinical measurements 
that aim at supporting and improving the diagnostic process? To find answers to these 
questions, the German Data Forum, an independent council that advises the German fed-
eral government and the federal states with respect to the research data infrastructure for 
the empirical social, behavioral, and economic sciences, established a working group of 
experts in which four of the five editors of this handbook participated. Over the course of 
the council’s activity, the need for a comprehensive handbook that would allow students, 
researchers, and users of mobile sensing methods to obtain comprehensive and state-of-
the-art information about the many opportunities, promises, challenges, and limitations 
that characterize this new area of social and behavioral sciences became apparent.

This handbook is intended to fill this gap. It is based on the conviction that a pro-
found understanding and the sound application of mobile sensing methods require spe-
cific knowledge and competencies:

•	Knowledge of the scientific background and the key concepts

•	Knowledge of how to generally plan and conduct a mobile sensing study

•	Knowledge of the different methods of data collection with mobile sensing, in 
terms of both the technological know-how and the methodological how-to

•	Knowledge of the possibilities and limitations of mobile sensing and of best-
practice examples from different areas of application

In order to turn this handbook idea into reality, the original group of initiators not 
only succeeded in inviting another highly renowned colleague as coeditor, but also man-
aged to convince 79 leading international authors, from a range of disciplines, to partici-
pate in the handbook project and contribute their specific mobile sensing expertise in the 
form of a chapter. Working on the publication of this handbook, we editors have learned 
a great deal about methods and applications of mobile sensing from the chapters provided 
by the authors, and we are convinced that readers will as well.
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Editing a handbook with 33 chapters and 84 authors (from a broad range of disci-
plines) is a major challenge and is certainly compounded by the fact that this handbook 
project grew to fruition over the course of the COVID-19 pandemic, which confronted 
all authors and editors with a whole new set of professional and private challenges. The 
loss of a few originally planned and committed chapters is certainly due to these chal-
lenges. We are very grateful and acknowledge with high gratitude and esteem that the 
other authors remained committed to the handbook project and submitted high-quality 
chapters despite these extraordinary (or, rather, unprecedented) adverse circumstances. 
When publishing such a comprehensive handbook, one has to rely on supportive help. We 
would like to take this opportunity to thank from the bottom of our hearts our research 
assistants, Amelie Spliesgart and Julia Sauer, who critically revised and uniformly for-
matted the individual chapters as well as supervised the formal aspects of this handbook 
project. Their help was terrific!
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PA R T 
I

Mobile Sensing
BACKGROUND AND KEY CONCEPTS





Gabriella M. Harari, Serena Soh, and Lara Kroencke

C H A P T E R  O V E R V I E W

Mobile sensing is a methodological approach that leverages digital devices and plat-
forms to collect data about human behavior. This chapter provides a starting point for 
researchers interested in conducting mobile sensing research in psychological science by 
describing how to conduct sensing studies with smartphones. First, we consider a series 
of questions that will help determine whether mobile sensing is the right methodologi-
cal approach for a given study, set of research questions, and target sample of research 
participants. Next, we review a series of considerations that will help shape the specific 
study implementation, such as the resources available, the platform used for data collec-
tion, and some of the basic features of the study design (e.g., study duration, sampling 
rate, strategies for participant engagement, ethical considerations). Finally, we discuss 
some recommended practices for data monitoring, data cleaning, and data analysis, 
while highlighting the need for standardized guidelines and best practices for conducting 
mobile sensing research.

Introduction

Mobile sensing is a methodological approach that leverages digital devices and platforms 
to collect data about human behavior. Mobile sensing is used in studies across a broad 
range of scientific disciplines (e.g., computer science and engineering, psychological sci-
ence) to answer research questions in both technical and substantive domains. In the 
technical domain, mobile sensing research often focuses on software development or 
activity recognition in an effort to improve the capabilities of sensing technologies. In the 
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substantive domain, mobile sensing research often focuses on assessing behaviors and/or 
environments to understand people’s daily lives and psychological experiences.

The goal of this chapter is to provide a starting point for researchers interested in 
conducting mobile sensing research in psychological science. Our aim here is to provide 
a roadmap for those who are considering or preparing to launch a mobile sensing study 
by describing how to conduct sensing studies with smartphones in particular. We focus 
on smartphones because they are the prototype mobile sensing device and the one most 
commonly used in mobile sensing research to date. However, many of the considerations 
outlined here also apply to the design of studies that use other sensing technologies to col-
lect sensing data from participants’ wearables (e.g., smartwatches, fitness trackers) and 
smart home appliances (e.g., smart speakers).

First, we consider a series of questions that will help determine whether mobile sens-
ing is the right methodological approach for a given study, set of research questions, 
and target sample of research participants. Next, we review a series of considerations 
that will help shape the specific study implementation, such as the resources available, 
the platform used for data collection, and some of the basic features of the study design 
(e.g., study duration, sampling rate, strategies for participant engagement). Finally, we 
discuss some recommended practices for data monitoring, data cleaning, and data analy-
sis. Overall, this chapter lays the foundation for the more advanced chapters in Part II 
(“Mobile Sensors: Technological Know-How and Methodological How-To”) and Part III 
(“Analysis of Mobile Sensing Data”) by outlining the basic steps involved in conducting 
mobile sensing research. Figure 1.1 provides an overview of the key steps and consider-
ations that shape mobile sensing studies.

Questions to Consider Before You Get Started

Before getting started with mobile sensing research, it is helpful to consider a series of 
conceptual questions to determine whether mobile sensing is the best or “right” approach 
for a given study. As with any method, there are several benefits and costs associated 
with adoption of mobile sensing in research studies. The benefits of adopting mobile 
sensing primarily stem from the potential to collect large-scale, fine-grained, real-world 
naturalistic observations of people’s behaviors and environments, and to a lesser extent 
of people’s verbalized thoughts and feelings. This window into the daily lives of research 
participants provides an unprecedented view that is unparalleled when compared to 
other methodologies. The costs of adopting mobile sensing stem from the logistical (e.g., 
resources available) and practical hurdles (e.g., analyzing intensive repeated measures 
data) that must be overcome to successfully design and conduct a mobile sensing study. 
Whether the benefits outweigh the costs for any given study will largely depend on the 
research questions one hopes to address and the characteristics of the target population 
one hopes to study.

What Are the Research Questions and Target Variables?

The research questions one hopes to address and the phenomenon of interest are two key 
factors that can help determine whether mobile sensing methods are appropriate. Gener-
ally, research questions that have a temporal component and are focused on understanding 
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some phenomenon over varying units of time (e.g., momentary, hourly, daily, weekly) are 
most suitable for mobile sensing study design. In addition, any questions about the degree 
to which people engage in behavior (e.g., frequency or duration of social interactions) are 
well suited to mobile sensing study design, whereas, at the time of this writing, research 
questions focused on more subjective aspects of behavior (e.g., quality of social interac-
tions) are more challenging to address with mobile sensing studies. For example, several 
studies have focused on understanding the behavioral factors associated with college 
student well-being and academic performance during the academic term (e.g., Doryab et 
al., 2019; Wang et al., 2014, 2018; Wang, Harari, Hao, Zhou, & Campbell, 2015). In 
such studies, mobile sensing methods are well suited to addressing the research questions 
because they permit objective assessments of behaviors that are known to shape well-
being and performance, such as the degree to which students engage in physical activity 
and social interactions, and exhibit certain sleeping patterns. Moreover, the studies ben-
efit from the fact that continuous data are collected to measure the behaviors of interest. 
This permits the research team to aggregate the timestamped data in different ways and 
allows for multiple investigations of the research question using different approaches and 
analytic techniques to obtain a more complete understanding of the phenomena of inter-
est. For example, some research studies have focused on a broad array of student behav-
ior (e.g., physical activity, conversations, studying, partying) at different times of day and 
across entire academic terms to understand the factors associated with student well-being 
and academic performance (Wang et al., 2014, 2015). In contrast, other studies focused 
more narrowly on specific behaviors, such as social behavior (Harari, Müller, Aung, & 
Rentfrow, 2017; Harari, Müller, Stachl, et al., 2020) or mobility behavior (Müller, Peters, 
Matz, Wang, & Harari, 2020; Saeb, Lattie, Schueller, Kording, & Mohr, 2016). These 
examples highlight the opportunities introduced by using mobile sensing for answering 
research questions about human behavior over time. But it is worth noting that these 
studies focused on quantified estimates of the behaviors of interest and did not assess 
qualitative information about the behaviors observed (e.g., quality of social interactions 
or sleep).

Research questions with a temporal component also include research questions about 
dynamic intraindividual processes (Kuper, Modersitzki, Phan, & Rauthmann, 2021). For 
instance, researchers might examine how social behaviors are related to well-being states 
on the within-person level (i.e., whether individuals feel better after engaging in a con-
versation compared to how they normally feel) and individual differences therein. These 
within-person dynamics can best be investigated if the same individuals are observed 
repeatedly over time, which is typically the case in mobile sensing research. However, 
mobile sensing studies need not be solely focused on intraindividual processes.

Another area of opportunity presented by mobile sensing data is in understand-
ing and objectively assessing interindividual differences, such as people’s characteristic 
patterns of behaving over time (i.e., dispositional tendencies; Buss & Craik, 1980). If 
collected over long periods of time in which many types of situations are encountered, 
researchers can obtain estimates of people’s behavioral tendencies by aggregating con-
tinuous sensing data at the within-person level over many days, weeks, or months for 
use in analyses at the between-person level. One point of caution with regard to deriving 
estimates of behavioral tendencies is that the research team should consider the implicit 
assumption that participants experienced a representative sampling of situations dur-
ing the data collection period (e.g., weak and strong situations; Blum, Rauthmann, 
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Göllner, Lischetzke, & Schmitt, 2018). For example, sensing studies conducted during 
the COVID-19 pandemic (e.g., Huckins et al., 2020) likely reflect a strong situational 
effect on social behavior that could affect behavioral estimates of face-to-face interaction 
and computer-mediated communication. These sensed behavioral tendencies can be used 
in place of self-reported behavioral tendencies to obtain objective estimates that quantify 
how a person actually tends to socialize, be physically active, and engage in various daily 
life activities over time. In past studies adopting this approach, the behavioral tendencies 
derived from sensing data have been examined in relation to self-reported personality 
traits (e.g., conversation, calling, texting, and app use tendencies; Harari, Müller, Stachl, 
et al., 2020; Stachl et al., 2017) and have even been used to predict self-reported per-
sonality traits alongside other sensing features (e.g., Mønsted, Mollgaard, & Mathiesen, 
2018; Stachl et al., 2020). Chapter 20 provides a review of personality research in this 
domain.

In terms of target variables of interest, mobile sensing studies can provide information 
about people’s inferred thoughts and feelings, as well as their observed behaviors and sur-
rounding environments. However, they are best suited to providing objective assessments 
of behavioral and environmental information that can reflect the surrounding situation. 
The behavioral information that can be obtained from mobile sensing studies includes 
measures of human movement from accelerometers and Global Positioning System (GPS) 
data (e.g., physical activity, mobility patterns; see Chapters 4 and 5), social interactions 
from phone usage data (e.g., call and short messaging service [SMS] logs and app use 
logs; see Chapters 7 and 8), and various daily activities that are often measured in time 
use studies (e.g., some of which can be sensed like eating, sleeping, playing games, and 
listening to music; Harari, Müller, Mishra, et al., 2017; Sonnenberg, Riediger, Wrzus, 
& Wagner, 2012; White & Dolan, 2009). The environmental information that can be 
obtained from mobile sensing studies includes measures of ambience (e.g., light, noise, 
temperature), location (e.g., indoor vs. outdoors, places visited), and proximity to others 
(e.g., isolation vs. co-location; Harari, Müller, & Gosling, 2020). People’s thoughts and 
feelings can also be inferred to some extent using sensing data, primarily by relying on 
verbal behavior collected from language data from social media (see Chapter 9) or audio 
data collected from microphones (see Chapter 10). But given that thoughts and feelings 
are inherently subjective phenomena, self-report methods may be a more effective and/
or convenient assessment approach for research focused on such constructs. Table 1.1 
provides an overview of the different target variables of interest that can be derived from 
sensing data and the data sources needed to obtain them.

Who Are the Research Participants?

Another factor to consider when deciding whether to adopt mobile sensing as a data 
collection method for one’s study is the target research population one plans to recruit. 
Much of the first wave of mobile sensing research was conducted with college-age young 
adults, with the aim of understanding the behaviors that shape their well-being. Target-
ing young adults as research participants in mobile sensing studies comes with several 
conveniences—they are generally readily available on university campuses where the 
research is being conducted, they are tech-savvy and already own smartphones, and they 
may be interested in participating in studies that collect data from their digital devices. 
For example, one study of student motivations to self-track showed that young adults 
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were interested in collecting data from their digital devices (e.g., smartphones, wearables) 
to improve their productivity and well-being, monitor their mood and daily activities, or 
improve their social lives (Harari, Müller, Mishra, et al., 2017).

Of course, not all research questions are about the lives of young people or about 
those young people who happen to be enrolled in universities. In such cases, more thought 
may need to be given as to how to go about recruiting and incentivizing the target group 
to participate in the study (see the section “How to Recruit and Incentivize Participants” 
later in this chapter).

TABLE 1.1.  Overview of Types of Data in Mobile Sensing Research

Data types Description

Type of information assessed

T
ho

ug
ht

s

Fe
el

in
gs

B
eh

av
io

rs

E
nv

ir
on

m
en

t

Mobile sensors

Accelerometer Orients the phone display horizontally or 
vertically; can record duration and degree of 
physical activity or movement

 

Bluetooth radio 
(BT)

Allows the phone to exchange data with other 
BT-enabled devices; can record the number of 
unique and repeated interaction partners and 
devices and co-located individuals

 

Global Positioning 
System (GPS) 
scans

Obtains the phone location from satellites; can 
record latitude and longitude coordinates

 

Light sensor Monitors the brightness of the environment 
to adjust phone display; can record degree of 
ambient light or darkness

 

Microphone Permits audio for calls; can record duration and 
frequency of conversations, degree of ambient 
silence or noise

   

Wi-Fi scans Permits the phone to connect to a wireless 
network; can record location information 
based on the Wi-Fi network and crowds via the 
number of unique scans

 

Other types of data

Cameras Records images or video; can take pictures or 
videos periodically or semicontinuously

  

Phone use logs Records usage patterns such as notifications 
App use logs Records social interactions, entertainment, 

information-seeking behavior


Language data Obtained from text data collected from the 
keyboard

  

Note. The first two columns of this table are adapted from tables presented in Harari et al. (2016) and Harari, 
Stachl, et al. (2021).
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Preparing a Mobile Sensing Study

Having determined that mobile sensing is the right methodology for your research ques-
tions and study, the next step is to consider a series of logistical issues that will help 
shape the design of the study. Mobile sensing studies are generally time and resource 
intensive, longitudinal in nature, and require careful thought to decisions that can affect 
the success of the study. Next, we outline how the resources one has available can shape 
subsequent decisions regarding the key features of the study design, such as the mobile 
sensing platform used for data collection and whether participants are engaged with the 
study. Ultimately, the logistical considerations and design decisions made at this step in 
the research planning will affect the quality of the resulting dataset.

What Resources Are Available?

The resources one has at hand to support the launch and completion of the study are a 
critical factor in study planning. Three main resources to consider are (1) the individual 
members and skillsets of the research team, (2) the financial resources available to sup-
port the study, and (3) the amount of time available to conduct the research.

The research team is a crucial factor in study planning for mobile sensing stud-
ies. The composition of the team and individual skills each member brings to the study 
will determine how responsibilities are distributed throughout the study period. In gen-
eral, every sensing study involves several components that require oversight (sometimes 
simultaneously) and iteratively inform one another (e.g., pilot testing, data monitoring, 
participant interaction, data processing and analysis), making such studies nearly impos-
sible to conduct by an individual alone. Sensing studies are a team effort, but whether 
that team is composed of individual students and research assistants or hired staff is a 
decision to be made early on in the study planning. Students and research assistants may 
be more motivated and invested in the study success given their likely involvement in the 
research planning process. However, if accountability is necessary, then hired staff may 
be a more reliable source of research support. Ultimately, this decision is contingent on 
the resources available.

In terms of skillsets, it is helpful to have team members who are familiar with the 
technical aspects of the sensing software being used (whether it be a custom, open-
source, or commercial sensing application) and who are experienced in data science and 
programming to facilitate handling large-scale datasets. In addition, it is important to 
encourage open communication among the members of the research team throughout the 
study planning and data collection stages (e.g., via weekly meetings and/or other forms of 
synchronous and asynchronous interaction).

The financial resources available to help support the study are also important consid-
erations when designing a sensing study. The amount of funding available can influence 
many of the decisions that must be made during study planning, such as study duration, 
number of participants to recruit, and type of sensing software used for data collection. 
For example, the study duration influences the amount of funding needed to pay staff 
(e.g., graduate students or research assistants hired to work on the project) and the amount 
of data that is collected, although the latter also depends on the number of participants 
recruited, the number of sensing data types collected, and the sampling frequency used 
during data collection. Generally, a study that runs for 1 week and only collects metadata 

�	 How to Conduct Mobile Sensing Research	 9



from phone logs (e.g., calls, SMS, and app usage) is going to be less costly than a study 
that runs for 1 month and frequently collects raw sensor data (e.g., accelerometer, GPS). 
This is, in part, due to the storage requirements for such data, which drive up costs during 
data collection and subsequent analyses. The number of participants recruited will also 
affect the amount of funding needed if individuals are being financially compensated for 
their participation (see the section “How to Recruit and Incentivize Participants?” for 
alternative types of compensation). In addition, the decision to use a custom application 
(specifically developed for the study) or an open-source app (configured based on freely 
available software) may be a reasonable solution for research teams with the funds to hire 
people who can handle the more technical aspects of managing sensing software. Using 
custom or open-source software can permit more flexibility in that features can be cus-
tomized to the needs of a given study, but this approach simultaneously introduces a great 
deal of technical complexity and requires more time for preparing and piloting the study 
to ensure the software is working as it should. Similarly, the decision to use a commercial 
app may come down to whether one can afford the expenses associated with running a 
sensing study with a given company. Several commercial sensing apps are available on the 
market, with each company naturally offering different rates for their services and hav-
ing their own expenses to consider in providing their services. Some companies charge 
researchers based on specific study design characteristics, while others charge a flat ser-
vice fee based on a subscription model (for a brief discussion of academic vs. corporate 
sensing research, see Chapter 33). In our own work, we have seen commercial companies 
quote anywhere from several hundred (e.g., ~$500 for a 2-day study collecting experi-
ence sampling and GPS data from 200 participants) to tens of thousands of U.S. dollars 
for sensing studies (e.g., ~$25,000 for a 4-week study collecting experience sampling 
reports and a full suite of many different types of sensing data from 1,000 participants). 
Beyond the study duration, the types of data collected and the sampling frequency can 
also affect the cost of running a study with a commercial company. So, given the varia-
tion in pricing we have observed in working with commercial companies, we generally 
encourage researchers interested in using a commercial app to speak with representatives 
of several companies to get estimated quotes for the cost of running a study that meets 
their desired specifications. To illustrate these points with more concrete examples, in 
Table 1.2 we briefly summarize our recent experiences and approach to conducting two 
different mobile sensing studies.

Another main resource required to effectively conduct a mobile sensing study is time 
(see Figure 1.1 for example estimates). Running a mobile sensing study (with any team 
and set of financial resources) will involve an intensive time commitment during the vari-
ous stages of the study, from design to data collection to analysis. Thoughtful planning 
and discussion during the initial stages of the study will be required when the research 
team is deciding on the study design characteristics, testing and selecting platforms, 
and preparing materials for ethical review boards. Once the study is designed, the data 
collection stage is also demanding and can easily become a full-time job for individual 
members of the research team when accounting for the data monitoring and participant 
interactions required to ensure high data quality. So, it can be helpful for one or more 
team members to take the lead on different parts of the study. For example, one person 
might be responsible for running a pilot study with the research team to test the sensing 
software before the study launches, another person might be responsible for communi-
cating with and onboarding participants during the study, while another person might be 
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responsible for monitoring the quality of the incoming data during and after the study. 
Of course, many of the tasks required to efficiently design and conduct sensing studies do 
ultimately require a collaborative effort. But we have found that many research teams are 
able to efficiently conduct studies with this kind of delegation of responsibility, so that 
there is a point of contact for troubleshooting issues that may arise with each aspect of 
the study.

How to Select a Mobile Sensing Platform?

The selection of a specific mobile sensing platform to use for data collection involves two 
key factors—the preferred device operating system (e.g., iOS [internet operating system], 
Android) and the type of application (e.g., custom, open-source, or commercial). The 
operating system and application selection should be determined based on considerations 
about the target research participants, the kinds of data needed for the study, and the 
resources available to the research team.

The selection of operating systems is consequential in that it shapes who can partici-
pate in the study and the kinds of sensing data that can be collected. As of 2021, Android 
and iOS jointly control approximately 99% of the global market share (Statista, 2021); 

TABLE 1.2.  Study Design Considerations and Examples from Recent Mobile Sensing Studies

Considerations

Study names

COVID-19 Smartphone Sensing 
Study (Talaifar et al., 2021)

Coping with Corona Project (Back 
et al., 2021)

Study duration 3 weeks 4 weeks

Recruitment process Through an online participant 
recruitment platform (Prolific) and 
university psychology course

Through a university psychology 
course

Number of participants 300+ students and adults 1,000+ students

Compensation Course credit or monetary 
compensation ($10/week) and 
weekly feedback reports

Course credit and weekly feedback 
reports

Sensing software Open-source app (Beiwe) Commercial App (Ksana Health)

Sensing data collected Accelerometer, battery state, 
Bluetooth, GPS, gyroscope, 
microphone, phone use logs, screen 
time, Wi-Fi

Accelerometer, ambient light, 
battery state, GPS, music, phone 
use logs

Self-reported data 
collected

Presurvey; two experience sampling 
surveys per day at set times; daily 
audio clip submissions; weekly app 
usage screenshots

Presurvey; eight experience 
sampling surveys per day at random 
times; postsurvey

Members of the research 
team responsible for 
data collection

Professors (2); doctoral students (3); 
undergraduate research assistants 
(3)

Professor (1); postdoctoral 
scholar (1); doctoral students (2); 
undergraduate research assistants 
(5)

Total cost ~$6,000 (mainly from participant 
compensation cost and recruitment 
platform fees)

~$30,000 (mainly from data 
collection platform fees)
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we therefore limit our discussion to these two mobile operating systems. It is also worth 
noting that the vast majority of sensing studies to date use applications that run on the 
iOS and/or Android phones. If participants are expected to use their own smartphones 
during the study, the research team must also consider the type of operating systems most 
used by their target sample. Past work has found that iOS users tend to have higher edu-
cation levels, compared to Android users (Götz, Stieger, & Reips, 2017). But this demo-
graphic difference may not necessarily hold in all countries. In fact, Android phones are 
the most widely used phones around the world, having about a 72% share of the mobile 
operating system (OS) market (Statista, 2021).

The operating system also influences the kinds of data that can be collected by the 
sensing application. Generally speaking, iOS is more restrictive than Android in terms 
of the breadth and granularity of data sources that can be collected. This is in part due 
to the way that the two OS’s allow third-party apps to access and collect data from 
the user’s device. For example, third-party apps on iOS phones are not permitted to 
access the user’s application usage logs at the time of this writing, but these sources of 
data can be accessed on Android phones (see Chapter 8 for more information about 
collecting app use data). So if a sensing study is designed to answer questions about the 
kinds of apps people use, the research team will need to identify a sensing platform that 
runs on Android phones and focus their recruitment efforts on participants who own 
Android phones. However, some data sources are commonly collected across both iOS 
and Android operating systems. These common sources of sensing data include acceler-
ometer sensor data and activity classifications (e.g., stationary, walking, running), as well 
as GPS data.

The type of application used is also consequential because different sensing applica-
tions require different levels of support from the research team. A custom application is 
one that is designed specifically for and by a research team, and it is typically used in 
collaboration with computer scientists (e.g., EmotionSense, StudentLife; Rachuri et al., 
2010; Wang et al., 2014). An open-source sensing application, such as AWARE1 (Fer-
reira, Kostakos, & Dey, 2015) and Beiwe2 (Torous, Kiang, Lorme, & Onnela, 2016), is 
one that is freely available for use by researchers. To effectively conduct a mobile sensing 
study with a custom or open-source application requires technical knowledge about how 
the sensing software operates. This is because if and when issues arise during data collec-
tion, someone on the research team needs to be able to troubleshoot and find a solution 
to address the issue. In contrast, a commercial sensing application is one that is operated 
and maintained for profit by a company (e.g., Ethica Data, Ksana Health). Conducting 
a mobile sensing study with a commercial application requires financial resources, but 
the benefits can outweigh the costs if the research team is not particularly interested in, 
skilled, or cares to be responsible for the technical details of how sensing systems operate.

How to Decide on a Sampling Strategy and Study Duration?

When selecting a sampling strategy, researchers must take into account many of the con-
siderations introduced thus far, such as research questions, target variables, populations 
of interest, and available resources. Sampling strategies in mobile sensing often take the 
form of time-based sampling, such as continuous or periodic, or event-based data collec-
tion. Continuous and periodic sampling refers to schedules that collect data consistently 
at fixed times or within specifically set intervals, while event-based sampling refers to 
schedules that collect data contingent on the occurrence of certain events.
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Time-based strategies include continuous and periodic sampling, which are often 
used in mobile sensing research. While continuous collection provides researchers with a 
wealth of data leading up to, during, and after the occurrence of the phenomenon being 
studied, periodic sampling enables researchers to decide how often and at what intervals 
the data are to be collected, depending on the objectives of the study or research question. 
Although the frequent and consistent nature of mobile sensing methods is considered to 
be one of its primary benefits, continuous sampling is not necessarily the best option for 
every study. For example, in the case of GPS data, sampling continuously (e.g., every 
minute) would lead to large datasets, challenges in data storage, and additional inconve-
nience to participants due to faster battery drainage. Moreover, participants’ locations 
may not change very frequently during certain hours (e.g., during the work day if they are 
employed), which means that continuous sampling could result in obtaining redundant 
information. Rather, collecting GPS data every set interval of minutes within an hour 
(e.g., every 10 minutes) via periodic sampling may be a more appropriate and appealing 
option for both researchers and participants. For such reasons, studies like one examin-
ing the behavioral trends of college students through smartphones opt to use periodic 
GPS samples when computing outdoor mobility such as traveled distances (Wang et al., 
2014).

Another strategy used in mobile sensing studies is event-based sampling where data 
collection is triggered by a predefined event. This strategy is most appropriate when 
examining specific phenomena that do not take place at regularly timed intervals, and it 
requires researchers to define the events that trigger data collection beforehand. Research-
ers often apply this strategy when studying smartphone use behaviors through metadata 
logs, which record events as they occur (e.g., a push notification is logged when it is 
received; calls and texts are logged as they are made or received). This sampling strategy 
is also commonly used when collecting movement or location-related data. By setting the 
events to be significant changes in GPS, the accelerometer, or the Wi-Fi network, data 
collected in those instances enable researchers to focus on and identify significant pat-
terns in either activity or location changes. For example, this strategy has been observed 
in a study in which smartphone sensing data were used to predict clinical depression and 
researchers programmed event-based sampling for iOS users to study location trends by 
setting distance filters (Farhan et al., 2016). Event-based sampling helps ensure that data 
collection occurs at necessary times, but researchers must be prepared for the potential 
technological challenges that may arise. For example, the program may define events 
too generally and trigger data collection at unintended times, or technological glitches 
in the software may occur as other types of sampling are simpler in terms of data collec-
tion parameters. In the case of using location-related event-based sampling, unintended 
data collection may occur if data collection is triggered every time a participant is near 
the target location rather than when they are at the target location. Furthermore, GPS-
based sampling can be difficult to program and implement, and additional testing of the 
location-contingent sampling will be required to identify potential bugs that might unex-
pectedly hinder data collection. This is why aspects such as ensuring the defined events 
are specific enough (e.g., precise distance filters for location-related events) and running 
pilot studies with a smaller pool of participants are especially important to these studies.

Once a sampling strategy is decided on, an appropriate study duration should then 
be considered given that together they determine the eventual size of the dataset. While 
mobile sensing studies typically last weeks to months, certain main considerations must 
be kept in mind when deciding on the length of a study. For instance, researchers must 
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select a length (and sampling frequency) that enables them to answer their research ques-
tion in terms of whether it examines momentary, hourly, daily, or weekly behavioral 
trends. If the study revolves around understanding how smartphone use behavior relates 
to well-being at the momentary level, the study duration can be shorter than a similar 
study focused on this relation over longer periods of time (e.g., understanding how well-
being changes over the academic term). Lastly, from a logistical standpoint, it is impor-
tant to consider that the combination of sampling rate and study duration determines 
eventual dataset size and statistical power. Sampling strategies that lead to a high fre-
quency of data collection paired with long study durations, for example, could pose chal-
lenges for storing, processing, and analyzing the datasets, which may require the research 
team to have more advanced technical skills for large-scale analysis. Nonetheless, high 
sampling frequencies and long study durations have the benefit of increasing the power 
of the statistical analyses conducted. For example, in a recent 4-week study with ~700 
participants, we collected around 4 terabytes of data. Even with an experienced and dedi-
cated research team, we have spent a great deal of effort and time deciding on and imple-
menting a workflow regarding how to aggregate, process, and analyze the data. To this 
point, the decision on the length of the study should also be made while acknowledging 
research team bandwidth and resource limitations. Longer durations often require more 
work on the part of the researchers either in monitoring data collection or analyzing the 
data afterward, as well as additional resources whether it be the monetary compensation 
for participants or costs associated with storing, managing, and analyzing large datasets.

How to Address Ethical Issues?

Conducting mobile sensing research introduces a host of new ethical quandaries for the 
social scientist. How can one respect individual privacy while collecting mobile sensing 
data from personal devices? How can the data be managed in a secure fashion? How can 
the study plans be best communicated to ensure appropriate oversight by relevant ethical 
review boards? As illustrated in the sections above, a great deal of data can be collected 
that provides detailed information about a person’s behaviors (and to some degree, psy-
chological experiences) in context. This is exciting for scientific discovery, while simulta-
neously concerning with regard to its potential negative effects for the individual partici-
pants. In this section we outline some of the main considerations in the ethical domain 
for getting started with mobile sensing research. However, we point interested readers 
to Chapter 2 for more detailed discussion of privacy issues and Chapter 3 for discussion 
of ethical issues as they relate to transparency and reproducibility in this research area.

Privacy issues are one of the most salient ethical concerns with regard to mobile sens-
ing research. This is because sensing methods permit the collection of fine-grained per-
sonal data, which refers to “any kind of log or sensor data that directly describes an indi-
vidual” (Wiese, Das, Hong, & Zimmerman, 2017, p. 452). The effects of participation on 
the individual privacy of the participant depend in large part on (1) the perceptions and 
concerns of the participants, and (2) the design of the study and the data management 
and analysis plan established by the research team. With regard to the participants, it is 
important to consider that people may be uncertain about their privacy preferences and 
the consequences of their behavior (Acquisti, Brandimarte, & Loewenstein, 2015). For 
example, participants may be unaware or unsure about the kinds of information they 
are providing about themselves when they permit collection of GPS data (De Montjoye, 
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Hidalgo, Verleysen, & Blondel, 2013) or metadata from phone logs (Mayer, Mutchler, 
& Mitchell, 2016), both of which have been shown to be quite revealing about people’s 
everyday behaviors. With regard to the design, some factors to consider are the types of 
data being collected, the sampling frequency being adopted, and the format of the data 
when it is collected. Generally, collecting and analyzing raw data is more sensitive than 
collecting and analyzing processed data. For example, collecting the content of com-
munications is obviously more intrusive of participant privacy than collecting informa-
tion about the frequency of communications. Similarly, raw GPS data (i.e., latitude and 
longitude coordinates) do not appear particularly sensitive in their raw format, but with 
additional preprocessing a person’s home or work location could be inferred. A more 
privacy-preserving way of storing such location information would be to store the data 
as a categorical variable labeling the place a person was in (e.g., indexing a person was 
“home” or at “work”). In contrast, a threat to participant privacy would occur if such 
information were stored as the real address of the person’s home or workplace. Given that 
participants may find sensing methods to be potentially invasive, special attention should 
be paid to facilitating transparency about the data being collected, participant control 
over personal data, and generally treating informed consent as a process (e.g., Harari, 
2020; Kreuter, Haas, Keusch, Bähr, & Trappmann, 2020; Nebeker et al., 2016).

Data security is another aspect of the data management and analysis plan that is 
important to consider. Ensuring data security in a given study will be somewhat contin-
gent on where the study is taking place (e.g., the institution, country), but some practices 
are relevant to almost all sensing studies. For example, with regard to the data manage-
ment and analysis plan, some factors to consider are the people who will have access to 
the collected data and the strategy for processing and analyzing the data—for instance, 
ensuring that only key research personnel have access to personally identifying informa-
tion about participants and that safeguards such as using secure servers for data storage 
and analysis can minimize potential concerns on behalf of participants and ethical review 
boards. When submitting mobile sensing research for ethical board review, several key 
things should be reported to ensure transparency about the design and research plans. 
In particular, we recommend describing the types of sensing data being collected, the 
format of the data, the location of where the data are stored, and the personnel who will 
have access to the files.

How to Recruit and Incentivize Participants?

Participant recruitment and compliance largely depend on the perceived benefits and 
costs of taking part in the study from the perspectives of the participants as well as their 
ability to fully participate. Because the cost of participating in a mobile sensing study 
tends to seem higher than that of other studies and because technologies (e.g., smart-
phones, wearables) or services (e.g., reliable internet access) are required, incentivizing 
individuals to make participation more appealing and providing participants with every-
thing they need to actively participate are key to the success of a given study. In general, 
participant recruitment tends to be more challenging as people typically have concerns 
regarding privacy, personal data collection, data security, and data storage practices (see 
Chapter 2). Nevertheless, past mobile sensing studies have successfully recruited research 
participants from the student population, the general adult and elderly populations (e.g., 
Rachuri et al., 2010; Röcke, Katana, Fillekes, Martin, & Weibel, 2018; Saeb et al., 2015; 
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Stieger et al., 2021), and clinical populations (e.g., individuals undergoing chemotherapy, 
or those diagnosed with schizophrenia or bipolar disorder; Ben-Zeev et al., 2017; Low, 
2020; Low et al., 2017; Matthews et al., 2016; Wang et al., 2017). In some cases, addi-
tional steps were taken to recruit participants (e.g., from hospitals and treatment centers) 
and onboard study participants to orient them to the goals and procedure of the study.

Furthermore, as mobile sensing studies require technologies and services that are not 
accessible to everyone, recruiting participants from rural areas, low-income communities, 
or developing nations may prove more challenging. According to Pew Research, smart-
phone adoption is growing in countries around the world, but countries with advanced 
economies have higher rates of ownership (e.g., in South Korea, Australia, and France, 
75–95% of adults own a smartphone), compared to countries with emerging economies 
(e.g., in India, Indonesia, and South Africa, 24–60% of adults own a smartphone; Silver, 
2019). However, with some creative planning in advance of the study launch, there are 
several ways to work around such constraints. For example, participants can be provided 
with the devices they need to participate (e.g., smartphones, wearables) and/or the ser-
vices required for data collection for the study duration period (e.g., data plan for their 
phone). Providing such devices and services ensures that participants have the basic tech-
nical requirements needed to effectively participate in the study. It also can be a way to 
recruit participants from populations that do not readily have such technologies available 
to them, and it may help to target non-WEIRD (Western, educated, industrialized, rich, 
and democratic) samples (Henrich, Heine, & Norenzayan, 2010).

Once the target participants have been recruited into the study, keeping them incen-
tivized and engaged with the study is another factor to consider. Motivations for par-
ticipating and types of incentives preferred will vary by individual, but past studies have 
used monetary compensation, university credit, feedback reports, and lottery systems 
with varying levels of success (Farhan et al., 2016; Harari, Müller, Mishra, et al., 2017; 
Wang et al., 2014). Given their longitudinal nature and tendency to span weeks or months 
in duration, many sensing studies suffer from attrition due to participants dropping out 
over time, which can have negative impacts on the resulting dataset. Additional research 
is needed to better understand which incentives are most effective in maintaining high 
compliance rates. However, findings thus far suggest that adjusting self-tracking goals to 
align with participants’ motivations and providing personalized feedback reports as an 
incentive (in addition to other forms of compensation like course credit, money, or prize 
lotteries) may help with compliance (Harari, Müller, Mishra, et al., 2017).

To keep attrition rates low, researchers should also consider how to balance study 
length with participant incentives. The success of the study and data collection efforts are 
impacted by rates of participation, so research teams have tested out different methods 
of incentive dispersion to sustain participant interest over time. For example, incentives 
can be spread out over the duration of the study—every few days, weeks, after every 
completed task, or all at once poststudy completion (Farhan et al., 2016; Wang et al., 
2014). In a smartphone sensing study conducted within the Coping with Corona project 
in the fall of 2020 and spring of 2021 (Back et al., 2021; described in more detail in Table 
1.2), the sample of university students recruited to participate received weekly feedback 
reports on their psychological states and behavior tendencies based on their sensing data 
and experience sampling reports. Students also received course credit after participating 
in each of the three steps in the study (i.e., completing a presurvey, self-tracking for 2 
weeks, and reflecting on the study experience in a postsurvey). In a second COVID-19 

16	 Background and Key Concepts 	



Smartphone Sensing Study (Talaifar et al., 2021), we used a combination of monetary 
compensation and feedback reports as incentives for adults recruited from the commu-
nity, and course credit and feedback reports as incentives for university students. Because 
adult participants were recruited through an online participant recruitment site, payment 
disbursements occurred when an individual either decided to no longer participate in 
the study or at the end of the study. The amount of compensation was dependent on the 
amount of time the individual spent participating. Feedback reports were also shared 
with participants weekly and included personalized information on their psychological 
states and behaviors.

These motivations and incentives should be substantial enough to outweigh the 
potential burden of participating whether that burden be the need to follow data upload-
ing protocols, deal with app crashes or bugs, and, in some cases, use another device. As 
is the case with any mobile sensing study, typically participants must consistently follow 
procedures such as connecting to Wi-Fi and charging one’s device regularly to upload 
their data. Additionally, there is a high likelihood that crashes and bugs in the mobile 
sensing platforms will arise and require individuals to troubleshoot with the guidance of 
the research team. These events are generally unavoidable, though they may pose negli-
gible to varying amounts of burden among individuals in the population of interest and 
influence their decision to continue with the study in different manners. Also, researchers 
may decide to provide participants with a preprogrammed sensing device (Wang et al., 
2014) rather than have them download a mobile sensing app on their personal device. 
This choice has some benefits, such as greater involvement from participant groups who 
do not have access to smartphones and services, as well as a standardization in device 
models or software, which ensures that all participants have devices with the same sen-
sors necessary for some studies. At the same time, having some participants carry around 
a device second to their personal one may add yet another burden for them and lead to 
less accurate and missing data (e.g., phone logs; Harari et al., 2016). As providing a device 
also becomes more difficult with resource limitations and large samples of participants, 
most research teams opt for having participants use their own device when possible.

Furthermore, participant recruitment and incentives depend heavily on the context 
and nature of the study, which is why researchers often conduct pilot studies as a smaller-
scale, shorter experiment to gauge what works and what does not. For example, based 
on pilot study recruitment and compliance statistics, researchers have general insight into 
whether (1) the recruitment strategy is effective, (2) people would be interested in and 
willing to participate, and (3) the current incentives are adequate. This also provides an 
opportunity to identify technology-related issues that need immediate attention before 
involving a large sample of participants or that the research team should be prepared to 
help troubleshoot.

Recommendations During and After Data Collection

Once the mobile sensing study has been designed, the next set of recommendations is 
more practical and focuses on the steps involved in conducting the study (e.g., monitoring 
data quality) and working with the data collected (e.g., data cleaning, processing, and 
analysis). Next, we outline our key recommendations, but for more detailed information 
we point interested readers to our past work on this topic (see Harari et al., 2016).

�	 How to Conduct Mobile Sensing Research	 17



How to Check Participant Compliance and Data Quality?

Data monitoring involves checking compliance and data quality throughout the study. It 
is particularly important in sensing studies due to the technical demands and the unique 
challenges of the study design. First, sensing data are typically collected passively (i.e., 
without participant engagement), so any irregularities might go unnoticed by partici-
pants. Second, sensing data are collected continuously (i.e., with a high sampling fre-
quency over uninterrupted periods of time), so problems must be detected quickly to 
intervene before the data quality is compromised. Third, while there is no need for active 
engagement with sensing apps in order for them to collect data, there are certain require-
ments for the app to function properly. For instance, all participants who take part in 
the sensing study must have their phone turned on and carry their phone with them as 
often as possible. Moreover, participants are often required to charge their phones and 
are connected to Wi-Fi regularly so their data can be uploaded. Lastly, some operating 
systems close apps that run in the background for too long, so participants have to regu-
larly interact with the app to keep it running. In sum, it is important to regularly check 
the incoming data and to remind participants of the app’s requirements.

Data monitoring involves downloading the sensor data and calculating and visu-
alizing summary statistics, such as rates of uploads to the server or number of hours 
uploaded per day (Harari et al., 2016). Ideally, summary statistics should be calculated 
separately per sensor, as there may be problems with particular data sources. Some com-
mercial platforms (e.g., Ethica Data, Ksana Health) provide data monitoring dashboards, 
which display data visualizations to researchers. We recommend checking the incoming 
data repeatedly throughout the study (e.g., at the end of each day) and contacting partici-
pants with missing data.

When monitoring the uploaded data, it is crucial to keep track of any problems that 
arise during the study. We recommend creating a data monitoring spreadsheet to docu-
ment any issues that occurred during data collection. A rigorous documentation of prob-
lems will help to describe the study procedures later. Moreover, it is a crucial prerequisite 
for data cleaning.

How to Clean and Process the Data?

Sensing data are typically messy and should be cleaned before analyses. The data clean-
ing step is sometimes the most difficult step in the analysis, but it is also one of the most 
important steps. The choice of data cleaning procedures and their ordering can signifi-
cantly impact the results of further analyses. Therefore, researchers should not use arbi-
trary data cleaning procedures (e.g., removing outliers when they could be real values) 
but should carefully think about data cleaning decisions before any analyses are run, and 
ideally, all decisions should be preregistered when possible.

Different types of data collection errors can compromise the quality of the data. 
With technically demanding data collections, error often results from technical problems. 
For instance, the sensing app might crash, or specific sensors might not be working prop-
erly (e.g., the GPS signal might be distorted; Müller et al., 2022). Moreover, there may 
be a lot of missing data if participants turn off their phones or accidentally close the app.

Different techniques are available to identify data collection errors. Unfortunately, 
only a few guidelines for data cleaning exist, and the decisions will always depend on 
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the unique conditions of the study. Some authors have provided lists of problems they 
noticed when cleaning their own data and have provided recommendations for how to 
deal with these problems. For instance, in past work we have recommended removing: 
inaccurate or unrealistic data points (e.g., when two events occur simultaneously that do 
not seem possible, such as being in two different locations that are physically far apart 
within a very short time span); data points with missing timestamps or observations; 
duplicated data points; outliers (e.g., values above or below three standard deviations 
from the mean); and days or participants with too little data (e.g., less than 15 hours of 
data for a given day, or participants with only 1 day of data; Harari, Vaid, et al., 2020; 
Müller et al., 2022). These papers include relevant R code that provides more information 
about how one might go about executing these steps. The chapters in Part II and Part III 
of this handbook should also prove valuable for thinking through data cleaning steps for 
different types of data and for different analytic techniques.

After data cleaning, the raw sensing data have to be processed before any analysis 
can be run. The most common data processing process is to extract behavioral features. 
Feature extraction involves computing psychologically meaningful variables that can be 
used in further analyses, such as extracting locations visited from GPS data. For instance, 
in GPS data, psychologically meaningful locations (e.g., an individual’s home) are typi-
cally represented by many different latitude and longitude coordinates. To extract mobil-
ity features for future analyses, researchers first determine key locations for every par-
ticipant by clustering data points that are in close proximity to each other (for relevant R 
packages, see Müller et al., 2022). Next, researchers can interpret the locations (e.g., the 
home is often defined as the cluster where participants spend most of their time during 
the night) and calculate mobility features, such as the time spent in different locations 
based on the timestamps (Müller et al., 2022).

As another example, metadata logs (e.g., calls and app usage logs) typically consist 
of a list of timestamped events, such as when an app is opened or when an incoming call 
is received. Based on the number of entries and the associated timestamps, researchers 
can calculate frequencies (e.g., how often participants open an app or receives a phone 
call) and durations of events (e.g., Harari, Müller, Stachl, et al., 2020). Depending on 
the research question at hand, the features can be computed for different time intervals 
(e.g., across days, times of the day, or days of the week). For instance, researchers may 
calculate the frequency of calls for a given day and then average across days to obtain 
an estimate representative of a person’s typical daily social tendencies (Harari, Müller, 
Stachl, et al., 2020).

Data from different sensors sometimes have to be combined to derive more complex 
features that rely on different sources of information (e.g., engaging in conversations in 
specific places). Sensing data can also be merged with self-report data, such as experi-
ence sampling reports. For instance, researchers may use smartphone sensing to obtain 
objective information about a person’s behaviors or situational context, and experience 
sampling to ask participants about their subjective thoughts or feelings (Harari, Stachl, 
Müller, & Gosling, 2021). A detailed overview of all available features is beyond the 
scope of this chapter. However, it should be noted that the datasets are often very large (up 
to several gigabytes per participant) and that feature extraction requires advanced pro-
gramming and analytical skills. Therefore, we recommend that psychological researchers 
interested in working with the unprocessed, raw sensing data refer to the mobile sensing 
literature for guidance on how to extract the variables of interest. As a starting point, we 
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direct readers to the Reproducible Analysis Pipeline for Data Streams (RAPIDS) website.3 
This comprehensive resource provides an overview of different features and the code 
needed to compute them.

How to Analyze the Data?

After data cleaning and feature extraction, the data have to be prepared for analysis. 
Often, researchers have to aggregate their variables across different time spans (e.g., 
hourly, daily, weekly level) or levels of analysis (e.g., within-person vs. between-person) 
to answer the research question at hand. After data aggregation, researchers should check 
the distributions and psychometric properties (e.g., reliability) of all variables and select 
an appropriate analytic technique.

Because intensive longitudinal datasets consist of repeated observations from the 
same individuals, the analysis approach has to account for the nested structure of the data. 
Nested data are often analyzed using multilevel modeling (MLM; also called hierarchi-
cal linear modeling or random coefficient modeling; Hox, Moerbeek, & van de Schoot, 
2018; Snijders & Bosker, 2012). Multilevel growth curve models (Bolger & Laurenceau, 
2013) are one of several techniques to model intraindividual changes in variables across 
time. By using multilevel growth curve models, researchers can examine how behaviors 
change across different time spans (e.g., hours of the day, days of the week, or weeks of 
the academic semester) and examine different forms of change (e.g., linear, curvilinear, 
discontinuous). Importantly, MLM allows researchers to describe both normative behav-
ior trajectories (e.g., how social behaviors change across the academic semester on aver-
age) as well as interindividual differences in these trajectories (to what extent the change 
trajectories differ between people) and how they are related to other individual difference 
variables (e.g., whether the differences in trajectories are predicted by personality traits).

In addition to research questions about the effects of time, intensive longitudinal 
studies are suited for research questions that focus on relationships between momentary 
states or momentary states and situational variables. Here, MLM allows researchers to 
disentangle effects on different levels of the analysis (Enders & Tofighi, 2007; Hamaker 
& Muthén, 2019). Specifically, when multiple measurements are collected from the same 
individuals, it is possible to analyze effects on both the within- and between-person lev-
els. Within-person effects capture how time-point specific deviations from a person’s 
average tendency in one variable are related to similar deviations in another variable. For 
instance, in a study that repeatedly assessed individuals’ social behaviors (via sensing) 
and their mood (via the experience sampling method [ESM]), researchers might examine 
whether a given individual feels better after engaging in a social interaction compared 
to how they normally feel. Within-person relationships are particularly important when 
the focus is on intraindividual dynamics and individual differences therein (Kuper et al., 
2021).

In addition to within-person relationships, researchers can examine between-person 
differences in behavioral tendencies. Between-person effects are obtained by aggregating 
the continuous sensing data on the person level (e.g., how much a person socializes on 
average) and using the behavioral aggregate instead of a self-report variable in further 
analyses. These aggregates serve as more objective estimates of how a person actually 
tends to behave in their everyday lives (as opposed to how they perceive themselves to 
behave).
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Beyond MLM, there are more advanced techniques such as dynamic structural equa-
tion modeling, dynamic network analysis, person-centered/ideographic modeling, and 
machine learning. We point interested readers to Part III of this book for more informa-
tion on these techniques for mobile sensing research. No matter the analytic technique 
selected to answer one’s research questions, thorough and clear reporting of the data 
cleaning, processing, and analysis decisions is crucial for enhancing transparency and 
reproducibility in mobile sensing research (see Chapter 3 for more details).

Conclusions

Mobile sensing holds much promise for improving naturalistic observation in psycho-
logical science. The first wave of research studies at the intersection of psychology and 
computer science has showcased what is possible using these methods. However, a main 
factor that seems to be impeding the widespread use of these methods in the field more 
broadly is the lack of know-how regarding the steps involved in conducting a mobile 
sensing study. This chapter aims to address this knowledge gap by providing a starting 
point for those interested in or getting ready to launch a sensing study. In the future, more 
work needs to be done in the field to develop standardized guidelines and best practices 
for conducting mobile sensing research.

Notes
1.	 https://awareframework.com.

2.	 www.beiwe.org.

3.	 www.rapids.science/1.6.
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C H A P T E R  O V E R V I E W

Privacy is a complex topic that involves social, legal, market, user experience, and techni-
cal issues. This chapter is intended for both researchers and developers of mobile sensing 
systems, and offers an overview of various definitions of privacy, legal, and pragmatic 
reasons to care about privacy, and why privacy is hard to achieve in practice. This chapter 
also covers system design issues, including design methods and frameworks for thinking 
about privacy, as well as implementation and deployment issues.

Introduction

In recent years, we have seen a Cambrian explosion of mobile devices that weave com-
putation, communication, and sensing into our everyday lives. Today, one can purchase 
smart watches, fitness trackers, and wireless earbuds from big box retail stores, and 
smart glasses, smart clothes, and other wearables are not far away. These kinds of mobile 
sensing devices make it possible to understand human behavior and the world at large at 
a scale and fidelity never before possible.

There are many exciting opportunities in this space, for example, monitoring for 
major depression (Doryab, Min, Wiese, Zimmerman, & Hong, 2014; Saeb et al., 2015), 
measuring sleep quality and quantity (Lane et al., 2014; Min et al., 2014), detecting 
earthquakes (Kong, Allen, Schreier, & Kwon, 2016), estimating pollution (Devarakonda 
et al., 2013; Hasenfratz, Saukh, Sturzenegger, & Thiele, 2012), quantifying urban noise 
(Maisonneuve, Stevens, Niessen, & Steels, 2009), contact tracing, and more. These apps 
range from fully autonomous sensing to participatory sensing, where users help gather 
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data about the world (Burke et al., 2006). Commercially, fitness apps are perhaps the 
most prominent applications of mobile sensing, with Fitbit having sold over 100 million 
devices (Statista, 2020a). Health apps are another rapidly growing area, with the U.S. 
Food and Drug Administration (FDA) also having recently started to approve smart-
phone apps for medical use.

A fundamental challenge, however, is that the exact same data can be used in posi-
tive ways as well as highly undesirable ways. Typically, these concerns fall under the 
broad umbrella term of privacy. Sharing one’s location data can facilitate coordina-
tion and awareness between partners, but can also be abused to spy on romantic part-
ners via spouseware or stalkerware software (Federal Trade Commission [FTC], 2019; 
Franceschi-Bicchierai & Cox, 2017). Some smartphone apps gather data about one’s 
health, which can be used for quantified self, but they have also led to surprising and 
unwanted ads on social media sites (Reader, 2020; Statt, 2019). Even aggregated and 
anonymized data poses risks. For example, in 2018, the health fitness app Strava released 
a data visualization that aggregated the Global Positioning System (GPS) running routes 
of all of its users, which allowed astute observers to pinpoint the locations of likely U.S. 
military bases in Syria and Afghanistan (Hern, 2018).

This chapter presents an overview of privacy for mobile sensing, presenting both 
research in this area and Privacy by Design, that is, how to embed privacy in the design 
and operation of mobile sensing devices and services (Cavoukian, 2009). For a more 
general treatment of designing for privacy, see the survey paper by Iachello and Hong 
(2007). We start out by discussing why researchers and developers of mobile sensing apps 
should care about privacy. Next, we analyze some constraints and forces at play that 
make privacy hard to achieve in practice. We continue with a discussion of best practices 
in designing and deploying mobile sensing systems, looking at some methods and some 
relevant past findings that may help inform designs. We finish with a discussion of techni-
cal issues, including implementation, algorithms, and software architectures.

What Is Privacy?

Privacy is a broad, ill-defined term that captures a wide range of concerns about our 
relationships with other people and organizations. In fact, there is not a widely agreed-
upon definition of privacy that fits all of the cases people care about (Solove, 2008). Some 
regulations even step around the difficulty of defining privacy by focusing instead on 
“data protection.”

One of the oldest definitions of privacy is “the right to be let alone” (Brandeis & 
Warren, 1890). Later, in the 1960s, as computer databases were becoming commercially 
available, concerns over the ease with which personal information could be collected 
and searched led Alan Westin (1967, p. 7) to define privacy as “the claim of individuals, 
groups, or institutions to determine for themselves when, how, and to what extent infor-
mation about them is communicated to others.”

However, new computer technologies and new uses led to new perspectives on pri-
vacy. For example, Bellotti and Sellen (1993), in the context of shared media spaces, 
centered on end-user control and feedback over one’s data. Palen and Dourish (2003), 
building on social psychology, characterized privacy as a dynamic process of boundary 
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negotiation. Lederer and colleagues (2004) looked at a complementary notion—that an 
important part of privacy is others seeing you the way you want to be seen—building 
on Goffman’s (1978) ideas of presentation of self in everyday life. Nissenbaum (2004) 
argued for contextual integrity, emphasizing that uses of data need to conform to politi-
cal, ethical, and social norms that might evolve over time. The European Union has 
advanced “the right to be forgotten” as a fundamental privacy right, giving people the 
option to ask organizations to delete data about them (Daley, 2011). Anonymity is yet 
another view of privacy and is an especially popular perspective among computer scien-
tists and statisticians because, unlike the other definitions of privacy, it can be quantified 
and compared against other techniques.

These are just some of the many views and definitions of privacy. One reason for this 
diversity is that privacy is being encroached on in many ways in modern life. Privacy isn’t 
just about Big Brother, or about corporations collecting lots of data about us. Instead, 
privacy is about our relationships with all of the individuals and organizations we inter-
act with, each of which poses different issues for privacy and all of which are changing 
because of advances in technology. For example, with respect to friends and family, some 
privacy concerns might be overly protective parents or nosy siblings. With employers, the 
issues might include being constantly monitored at work or workplace discrimination. 
With governments, the fears might be civil liberties and mass surveillance. With stalkers 
and hackers, the worries might be one’s personal safety or theft of highly personal or 
potentially embarrassing information.

A key point here is that we need different solutions for the different problems that 
arise in our different relationships. For example, a common element of privacy laws is 
notice and consent, which is arguably appropriate for corporations but nonsensical for 
friends and family. People don’t hand their friends a privacy policy before chatting. So 
while there is no consensus on privacy, these different perspectives helps us focus on spe-
cific aspects of privacy. For example, the “right to be let alone” leads to do not call lists 
and spam filters. The “right to be forgotten” leads to people being able to request that 
web pages about them be deleted from search engines.

In this chapter, we take a pragmatic view of privacy, loosely defining it as the collec-
tion and use of sensitive data in an appropriate and understandable manner.

Security versus Privacy

Security and privacy are two related but distinct concepts. Security was originally defined 
as confidentiality (unauthorized parties cannot see sensitive data), integrity (unauthor-
ized parties cannot modify that data), and availability (ensuring that data or a service 
can be used by authorized individuals) (Saltzer & Schroeder, 1975). Today, there are 
other useful properties to consider for security, for instance, usability (e.g., people can 
correctly understand and configure security settings) and physical safety (e.g., an autono-
mous drone will not crash into buildings).

Security is necessary for privacy, but it is not sufficient. For example, Facebook likely 
has strong security measures, but their data practices still raise many concerns. Also, 
rather than being a binary state of being secure or not secure, security is more of a spec-
trum with tradeoffs in terms of cost, complexity, and level of protection. Furthermore, 
security can be thought of as an ongoing process rather than something you just do once. 
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These viewpoints on security also apply to privacy in that there is a spectrum of privacy 
and it is an ongoing process.

In this chapter, we assume reasonable security precautions are in place, and instead 
we focus on the privacy issues involved with designing, implementing, and deploying 
mobile sensing apps. Also, note that there are some arguments about fundamental trade
offs between security and privacy. These arguments use a different notion of security, one 
that is more akin to safety or national security than to computer security. We do not delve 
into these discussions in this chapter.

Data Privacy versus Personal Privacy

It is also useful to distinguish between data privacy and personal privacy. Data privacy is 
primarily about how organizations collect, use, and protect sensitive data. A major class 
of sensitive data is Personally Identifiable Information (PII), which the National Institute 
of Standards and Technology (NIST, 2010) defines as “any information that can be used 
to distinguish or trace an individual’s identity.” Examples might include one’s name, 
street address, unique IDs, and pictures. For mobile sensing apps, it might also include 
behavioral patterns and activities. Data privacy has a strong emphasis on policies and 
procedures for gathering and using data, many of which are based on Fair Information 
Practices (FIPs). Many laws embody the FIPs, such as the European Union’s General Data 
Protection Regulation (GDPR) and the U.S. Health Insurance Portability and Account-
ability Act (HIPAA), Children’s Online Privacy Protection Act (COPPA), and Right to 
Financial Privacy Act. While there are many variations of FIPs, they typically include 
notice and awareness, choice and consent, access and participation, integrity and secu-
rity, and enforcement and redress (Cate, 2006; FTC, 1998).

In contrast, personal privacy focuses on one’s relationships with other individuals, 
often with an emphasis on managing one’s presentation of self to others and negotiating 
boundaries with others. Examples might include choosing what one shares with friends 
on social media, opting to put vague information about a sensitive event in a shared 
online calendar, or switching to invisible mode in an online game to avoid interruptions.

Many products and services need to be designed for both data privacy and personal 
privacy. Using a mobile sensing fitness app as an example shows that some data privacy 
concerns include choosing what data are sensed, selecting what data are sent over the 
network, where that data are stored, securing that data, establishing procedures for how 
that data are used, making sure users are aware of what data the app collects, offering 
basic privacy controls, and having good default settings. Some personal privacy concerns 
might include options for users to add friends and share fitness data with their friends, 
blocking spammers, and opting in to be part of a global leaderboard.

Note that data privacy tends to be oriented around procedures, in terms of following 
a set of rules and checking off a set of boxes. In contrast, personal privacy centers more 
on how users of a system might interact with one another, making sure users feel empow-
ered in understanding and controlling what is shared, as well as minimizing the ways that 
users can harm others. Privacy tends to be hard to measure in both of these cases, making 
it difficult to apply quantitative methods to guide the design process or ensure that things 
are improving over time.

In this chapter, we will discuss issues related to design and implementation in the 
context of both data privacy and personal privacy.
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Why Care about Privacy?

Many books and scholarly articles have framed privacy variously as a moral right, a basic 
human right, or an essential legal right. The European Union’s GDPR Article 1 opens 
with “This Regulation protects fundamental rights and freedoms of natural persons and 
in particular their right to the protection of personal data.” There is extensive literature 
advancing these perspectives on privacy and its importance for individuals and society.

We again take a pragmatic perspective on privacy. In particular, the literature sug-
gests that people’s privacy concerns are often expressed in specific ways, such as protec-
tion from spam (Cranor, Reagle, & Ackerman, 2000) and identity theft (Auxier et al., 
2019), the “creepiness” of being tracked by apps (Shklovski, Mainwaring, Skúladóttir, 
& Borgthorsson, 2014), or wanting to avoid undesired social obligations (Hindus, Main-
waring, Leduc, Hagström, & Bayley, 2001). These attitudes often result in people not 
adopting technologies viewed as invasive. This last point is especially relevant for mobile 
sensing apps. A 2015 Pew Research Center survey found that 60% of people chose not 
to install an app when they discovered how much personal info it required and 43% 
uninstalled it for the same reason (Olmstead & Atkinson, 2015). A survey by Consumers 
International (2019) found that 63% of people found connected devices “creepy” in the 
way they collect data about people, and 28% of people who do not own smart devices 
were concerned enough to not purchase one in the future. In short, if people have signifi-
cant privacy concerns, they won’t adopt the technologies we research and build.

Failure to address privacy can also lead to serious legal repercussions. For example, 
the FTC has levied fines on smartphone apps for not informing users what data will 
be collected and for what purposes (FTC, 2013a, 2013c). There are also new laws—
most notably, the European Union’s GDPR, the California Online Privacy Protection Act 
(CalOPPA), and the California Consumer Protection Act (CCPA)—governing notice and 
consent, with heavy fines for noncompliance. Notably, the FTC has started to require 
violators to disgorge data. For example, in March 2022, the FTC settled with Weight 
Watchers over claims of violating children’s privacy and required them to delete both 
improperly collected data and models based on that data (Oberly, Bryan, & Fath, 2022).

In addition, in the United States, there are many different privacy laws, each focused 
on specific sectors or demographics, such as children, education, finances, and even video 
and digital rentals. In particular, commercial mobile sensing apps focused on health care 
in the United States may need to comply with HIPAA as well as FDA regulations. Note 
that this is one reason why many mobile sensing apps are positioned as fitness or lifestyle 
apps rather than health care apps, so as to avoid these kinds of health care regulations.

Furthermore, mobile sensing apps that record videos and audios of people may need 
to comply with local laws. See Chapters 10 (“Behavioral Audio Signal Processing in 
Mobile Sensing Research”) and 11 (“Acquisition and Analysis of Camera Sensor Data 
[Life Logging]”), this volume, for more details about the range of laws and regulations.

In short, for commercial mobile sensing apps, it may be simpler to avoid recording 
video and audio if possible. If video and audio are to be recorded, development teams 
should consult a lawyer about the best ways to comply with various international laws 
and with any requests for data from law enforcement organizations.

For research-oriented mobile sensing apps, the main requirement is to comply 
with one’s Institutional Review Board (IRB) or equivalent. Some criteria are common 
to all IRB-approved studies, for example, having clear notice and consent and letting 
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participants stop the study at any time. Some other criteria to consider for mobile sensing 
apps include keeping data collection to a minimum, preventing potential harms that may 
arise due to other people seeing the mobile sensing device (e.g., any stigma) as well as 
any sensed data (e.g., a romantic partner), and minimizing risks to people who might be 
incidentally recorded (e.g., bystanders). Also, for apps addressing mental well-being, the 
research team should consider how to handle situations where the gathered data indicate 
that someone may be at risk of harming themselves or others.

Complementary to legal requirements are social norms and expectations of privacy. 
In many cases, these norms revolve around privacy for other people rather than the indi-
vidual using a mobile sensing device. As an example, movie theaters ask moviegoers to 
turn off their mobile phones so as to not disturb other moviegoers. Perhaps the most 
publicized social pushback against mobile sensing devices was with Google Glass, with 
people who wore them in public places called “glassholes” (Gross, 2014). A common 
concern was that people felt they could be surreptitiously monitored at any time (Hong, 
2013). These kinds of social reactions can be difficult to predict, and as we discuss in the 
next section, social norms can change over time. However, the main point here is that pri-
vacy needs to consider not just the direct user of a mobile sensing system but also people 
who may be indirectly impacted.

In summary, mobile sensing devices need to address privacy concerns on a large num-
ber of fronts, including individual users, legal and regulatory bodies, and social norms.

Why Is Privacy Hard?

Privacy is a complex topic that intertwines thorny legal, social, market, and technical 
issues. In this subsection, we look at some of the forces that help shape the privacy land-
scape. These forces are not a complete list, but we discuss them here to help readers 
understand some desiderata for privacy as well as constraints on possible solutions.

Technological Capabilities Are Rapidly Growing

Gathering data about people is becoming easier and more pervasive. Everything on the 
Web is instrumented, making it trivial to collect Web clicks, social media posts, likes, 
and search terms. A typical smartphone has an array of sensors that can continuously 
capture data as we go about our daily lives, offering a rich digital portrait of who we are 
and what we do.

Data storage has also been improving dramatically, making it practical to store, 
index, and search all of these data. Machine learning is also becoming more powerful 
and able to infer surprising things about people—for example, using smartphone data to 
model the onset of major depression (Doryab et al., 2014; Saeb et al., 2015), using one’s 
purchase patterns to deduce pregnancy (Duhigg, 2012), or using one’s friends on Face-
book to infer sexual orientation (Jernigan & Mistree, 2009). This last example is par-
ticularly salient in that an individual might not explicitly disclose sensitive information 
about themselves, but this information can still be inferred. The other side of the coin is 
that incorrect inferences can also be made, which can impact an individual in unexpected 
ways. Overall, these kinds of technical capabilities will only continue to advance, making 
it harder for people to control the flow of information about themselves.
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There Are Strong Incentives for Companies to Collect Data about People

Companies want to collect more data about us because more data mean better machine 
learning models, which lead to better services, analytics, and ads. Whole industries are 
now driven entirely by Big Data, such as search engines, speech recognition, image recog-
nition, recommendations, spam filtering, and fraud detection, just to name a few.

Advertising is a particularly voracious consumer of data. An average online ad dis-
played on a Web page will see clickthrough rates of around 0.05% (SmartInsight, 2020). 
Anything that can improve those clickthrough rates, even by a small amount, can be 
worth millions of dollars. As such, more data mean more targeted ads that are more 
likely to be clicked on.

There are also new kinds of business models for selling hardware based on collect-
ing data about users, known as postpurchase monetization (Gilbert, 2019). For example, 
smart TVs are relatively expensive, and margins are razor thin. One way of improving 
sales is to lower initial purchase costs, and then use sensors and other tracking to collect 
rich data about the owners, to sell the data, and to improve targeted advertising. Thus, in 
addition to simply selling the hardware, a company can also create a continuous revenue 
stream using sensed data. For example, Vizio, a public company that sells smart TVs, 
reported that it had profits of about $48 million from selling hardware and about $38 
million from selling viewer data and ads (Lawler, 2021).

These incentives for collecting data also lead companies to push back against privacy 
features. For example, Do Not Track was a Web standard that would let people share 
tracking preferences with websites. However, the effort ended in 2019 with a note that 
“there has not been sufficient deployment of these extensions (as defined) to justify fur-
ther advancement, nor have there been indications of planned support among user agents, 
third parties, and the ecosystem at large. The working group has therefore decided to 
conclude its work” (W3C Working Group, 2019).

Companies Get Little Pushback on Privacy

In practice, developers get little negative feedback about privacy from consumers. In an 
analysis of Google Play reviews, Fu and colleagues (2013) found very few words related 
to privacy. Similarly, Ha and Wagner (2013) found that only 1% of app reviews men-
tioned app permissions. Emami-Naeini, Dixon, Agarwal, and Cranor (2019) found simi-
lar issues with IoT (Internet of Things) devices; they reported that most consumers did 
not consider privacy and security prior to their purchase and only became concerned later 
on because of media reports, comments from friends, or unexpected device behavior. 
They also found that finding privacy and security information before a purchase was dif-
ficult, if any existed at all. This combination of imperfect information and lack of nega-
tive feedback leads to what economists call a market failure (Hubbard & O’Brien, 2015). 
Suppose that you want to purchase a Web cam. You can go to your favorite electronics 
store and compare Web cams based on price, color, and features. However, you can’t eas-
ily compare these Web cams on privacy (or security, for that matter). As a result, privacy 
does not strongly influence customer purchases, and so companies are not incentivized 
to improve privacy.

Several projects have sought to address this problem, all with a common theme of 
improving transparency. For example, PrivacyGrade.org graded apps based on their 
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privacy (Lin, Liu, Sadeh, & Hong, 2014). Similarly, Emami-Naeini, Agarwal, Cranor, 
and Hibshi (2020) proposed a privacy nutrition label for IoT devices that would summa-
rize behaviors. Since 2021, Apple has mandated that iOS apps must have a privacy nutri-
tion label that reports what data are used to track users (Morse, 2020). Google has also 
mandated a new safety section for Android apps highlighting similar information (Frey, 
2021). However, a study by Li, Reiman, Agarwal, Cranor, and Hong (2022) suggests that 
developers face many challenges in filling out these labels correctly. Furthermore, while 
improving transparency should in theory have a positive effect on privacy, it is unclear 
how effective they are in practice. For example, as discussed in the next item below, pri-
vacy policies aim to improve transparency but have arguably failed in practice.

Developers Have Low Awareness and Knowledge of Privacy Issues 
and Practices

Studies of smartphone app developers have found that few knew about existing privacy 
laws or privacy frameworks, what privacy issues they should pay attention to, and how 
to address them (Balebako, Marsh, Lin, Hong, & Cranor, 2014; Li, Agarwal, & Hong, 
2018). Developers also have low awareness of privacy problems with their apps, with 
many not realizing how much data their app is collecting (Agarwal & Hall, 2013; Bale-
bako et al., 2014; Li et al., 2018). Other studies have examined how developers talk 
about privacy in online forums. Some developers turn to Stack Overflow for privacy 
issues, including company requirements (Tahaei, Vaniea, & Saphra, 2020). On a popular 
Android developer forum, Li, Louie, Dabbish, and Hong (2020) found that developers 
rarely talked about privacy, and most discussions of privacy were driven by external fac-
tors such as changes to smartphone operating systems or app stores.

A major pain point is lack of awareness of the behaviors of third-party libraries. A 
library is a package of code that offers common functionality and is designed to be eas-
ily used by other apps, for example, managing graphics, connecting with social media, 
or displaying ads. Many third parties offer libraries to connect with their services, for 
example, Facebook and Twitter. These libraries tend to be used as black boxes. However, 
in a year-long user study of apps, Chitkara, Gothoskar, Harish, Hong, & Agarwal (2017) 
found that over 40% of smartphone apps collect sensitive data only because of these 
libraries. In other words, many apps collect sensitive data and share it with multiple third 
parties, and their app developers might not even be aware of this behavior.

It’s Not Always Clear What the Right Thing to Do Is

Even if a company wants to be respectful of privacy, it’s not always clear how to translate 
that wish into practice. For example, while privacy policies are pervasive, past research 
has found that few people read them (Auxier et al., 2019, Obar & Oeldorf-Hirsch, 2020). 
In many respects, not reading these privacy policies is rational. McDonald and Cranor 
(2008) estimated that it would take 25 full days to read all the privacy policies that one 
encounters on the Web in a single year.

More broadly, there isn’t a widely accepted set of privacy best practices for devel-
opers to follow. How can designers best assess what kinds of data uses are and are not 
acceptable? What is the best way of informing people about data collection practices? 
What is the best way of storing data? The effectiveness of today’s framework of notice 
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and consent is also highly questionable. Cate argues that the Fair Information Practice 
Principles have failed in practice, stating that “businesses and other data users are bur-
dened with legal obligations while individuals endure an onslaught of notices and oppor-
tunities for often limited choice” (Cate, 2006, p. 1).

Similarly, business metrics for privacy are also unclear. Corporations have many 
metrics such as Customer Acquisition Cost, Year over Year Growth, and Retention 
Rates. However, it is unclear what the right metrics are for privacy, making it hard to see 
if progress is being made. Also, as noted earlier, there is a strong incentive to collect data 
because it impacts the bottom line, and so one could go even further by saying that some 
business metrics implicitly push against privacy.

The Burden of Privacy on End Users Is Too High

Today, individuals have to make too many decisions about privacy. Does this website 
have good privacy protections? Should I install this app? What are all the privacy settings 
I need to know for this device? What are all the terms and conditions for this service? 
What are trackers, cookies, virtual private networks (VPNs), anonymizers, and incognito 
mode, and how do I use them to protect my privacy?

Mobile sensing can exacerbate the burden of privacy. SenseCam is a wearable cam-
era developed by Microsoft Research for lifelogging. SenseCam raised many issues about 
personal privacy; for example, what data are captured and when, and what potential 
stigmatization may exist since one use of the device was to help people with mental dis-
abilities (King et al., 2013). SenseCam also raised concerns about other people’s privacy, 
for example, incidentally recording other people nearby. To address this problem, the 
SenseCam researchers designed it to not record audio and made it easy to pause video 
recording. A study by other researchers found that other people were generally OK with 
using recorded images for limited purposes, and also wanted notice and consent (Nguyen 
et al., 2009). However, how to do notice and consent for mobile sensing devices is an 
open question, let alone how to make it scale if these devices become commonplace. As a 
counterpoint, in an in situ study where participants wore a lifelogging device, bystanders 
expressed no concerns, and participants wanted to control the capture of images in situ 
rather than spending time to review images afterward (Hoyle et al., 2014).

In short, the burden of privacy is too high on individual end users, and it will only 
get worse as technological capabilities advance and mobile sensing devices become more 
common.

Same Device, Same Data, Very Different Reactions

When new technologies are adopted, they are done so in a specific social and cultural 
context. Judging whether a given technology or type of data is good or bad for privacy 
often depends on how it is used within this context. For example, in my dissertation 
(Hong, 2005), I looked at how nurses used locator badges, which could pinpoint the 
location of individuals in a hospital. The hospital administration viewed these badges as 
useful for coordination (e.g., “Where is Alice?”) and for protection of individuals from 
spurious claims (e.g., “The nurse never came to visit me”). However, many nurses felt 
these badges would be used for surveillance, for example, tracking how long they were 
in the restroom. In cases where there was clear value for nurses and management was 
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trusted, locator badges were viewed mostly positively. However, if there were existing 
tensions between the nurses and management, the nurses tended to reject the badges. In 
other words, the exact same technology was viewed differently depending on external 
social and cultural factors.

As another example, Foursquare is a social media app that lets people check in to 
a place and share those check-ins with others. One person took these check-in data and 
created Girls Around Me, overlaying photos from women’s Foursquare profiles on a map 
(Blue, 2012). The same data are arguably acceptable in one context but with a few slight 
twists becomes creepy in another.

Complicating matters is the tendency of some users of a system to deliberately try to 
harm others. For example, the same technology that might be used to streamline coor-
dination in a healthy relationship can facilitate many forms of intimate partner abuse 
(Matthews et al., 2017).

Woven throughout these examples are power imbalances that can color people’s 
perceptions of privacy. In the case of the nurses, hospital administration can easily fire 
any single individual. For Girls Around Me, there is potential harm from unknown indi-
viduals. For intimate partner violence, there is a strong potential for physical, mental, and 
emotional harm from a romantic partner. As such, a major challenge in designing mobile 
sensing systems is understanding the different kinds of social contexts and power dynam-
ics in which one’s system might be used, predicting potential misuses and abuses, and 
designing the system to mitigate these negative scenarios while facilitating positive ones.

Expectations of Privacy Can Change over Time, Sometimes Dramatically So

Over time, people’s expectations of privacy can change in ways that are hard to predict. 
For example, Brandeis and Warren’s (1890) famous definition of privacy as “the right to 
be let alone” came about in part because new cameras in the late 19th century made it 
possible to take photographs in just several seconds, invading “the sacred precincts of 
private and domestic life.” Today, millions of people choose to share photos on publicly 
visible social media. Currently, the problem of cameras still exists. The main difference is 
that our expectations of how these technologies can be used, as well as social norms and 
laws, have changed over many decades.

Expectations of privacy can also change quite rapidly and dramatically. A good 
example is the introduction of Facebook’s News Feed in 2006 (D’Onfro, 2016; New-
comb, 2018). Before News Feed, one could only see a person’s status updates by going 
to their individual profile pages. What News Feed did was aggregate those updates in a 
single place. When News Feed was first made public, people’s initial reactions were pre-
dominantly negative, often viscerally so. Many Facebook groups were formed denounc-
ing News Feed, and Facebook CEO Mark Zuckerberg even publicly responded to all of 
the negative press. Facebook stayed its course, however, and in a few months, a lot of the 
criticism died out as people saw value in News Feed and became used to it. Nowadays, it 
is doubtful that many people would want to give up News Feed.

In summary, people’s initial expectations of privacy are fluid and can change quickly 
but not necessarily in ways that are easy to predict. There have been many failures where 
product teams have made incorrect assumptions about people’s attitudes and behaviors. 
There have also been examples of product teams facing initial resistance due to privacy 
concerns, but eventually people have been won over. Furthermore, the research literature 
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also does not offer much guidance in terms of findings or methods for differentiating 
findings from methods, largely due to the difficulty of studying these kinds of questions 
in the wild. As such, the best ways of understanding, managing, and influencing people’s 
expectations with respect to privacy remain an open question.

System Design for Privacy

In this section, we examine user-centered design processes for mobile sensing apps, dis-
cussing privacy with respect to functionality as well as user interface design. Note that 
there are some existing guidelines for mobile app privacy. For example, FTC (2013b, 
2016) offers advice for mobile apps and for mobile health. Similarly, both Apple (2020a) 
and Google (2020) offer best practices for app privacy. These are good starting points but 
are not sufficient because these guidelines are meant more for conventional apps than for 
rich mobile sensing apps.

Similarly, there are several laws governing the use of sensitive data, notice, and con-
sent, such as HIPAA, GDPR, and CCPA. These laws offer a good start but do not offer 
much guidance as to design and implementation. Note that GDPR requires a Data Protec-
tion Impact Assessment (DPIA) for new projects that pose “a high risk to the rights and 
freedoms of natural persons” (https://gdpr-info.eu/art-35-gdpr). At a high level, a DPIA 
involves a description of data processing, an assessment of necessity and proportionality, 
and an evaluation of risks to rights and freedoms. The GDPR website has a template that 
can be used to help step through this process (GDPR.eu, n.d.).

Here, we examine four different topics related to design:

1.	 A privacy risk model, which offers a series of questions to consider about data col-
lection and data use. This kind of risk model is perhaps the most useful thing that 
researchers and developers can do, as it guides teams into considering what data 
are being collected, how the data are used, and how the data can be protected.

2.	 Methods for getting feedback from participants early in the design process while 
it is still relatively easy to make changes. This kind of feedback can be used to 
validate and refine the privacy risk model.

3.	 Optimistic versus pessimistic approaches to privacy.

4.	 Choosing defaults for privacy settings.

Privacy Risk Models

Development teams need to carefully consider what data will be collected and how that 
data will be protected. Privacy risk models help development teams think through these 
issues and their implications. Again, we assume that reasonable security measures are 
already in place, for example, ensuring that any passwords are secure, that databases 
with sensitive data are locked down properly, and that strong encryption is used when 
storing data and when sending it over the network.

Privacy risk models are inspired by the concept of security threat models in computer 
security. One security researcher describes the importance of security threat models as 
follows:
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[T]he first rule of security analysis is this: understand your threat model. Experience 
teaches that if you don’t have a clear threat model—a clear idea of what you are trying 
to prevent and what technical capabilities your adversaries have—then you won’t be able 
to think analytically about how to proceed. The threat model is the starting point of any 
security analysis. (Felten, 2003)

We call this model a privacy risk rather than a privacy threat model because com-
puter security tends to frame the defense of a system in terms of attackers and adversar-
ies, which does not quite capture the rich range of relationships and privacy concerns we 
have with other people. For example, a college student might be close with their parents 
but still not want to share their current location or activity data with their parents. Simi-
larly, some elderly individuals may be OK with sharing their historical activity and fitness 
data with their children, while others might not. It would be incorrect to label these kinds 
of relationships as attackers or threats.

Below, we present one privacy risk model for sensor-based systems. This risk model 
is an updated version developed by Hong, Ng, Lederer, and Landay (2004) and consists 
of a series of questions to consider. Note that these questions are meant as a starting point 
for difficult conversations within research and development teams rather than as some-
thing that can offer all of the answers. Furthermore, these questions should be validated 
with potential users of the system, and they should be revisited and refined in parallel 
with the design and evaluation of early-stage prototypes. We have organized the ques-
tions by user experience design, social, organizational, and technical aspects. Note that 
we do not explicitly consider business concerns here, as that is beyond the scope of this 
chapter, though they may have significant influence on privacy.

Design Issues

•	What kinds of personal information are sensed or gathered (e.g., name, email)?

•	How sensitive is the data? If leaked, can the data be easily linked to a specific indi-
vidual?

•	 Is there a clear value proposition for end users for sharing their personal data? Is this 
value proposition clear to end users?

•	Does this data collection match people’s expectations about the app? For example, it 
makes sense for a sleep monitor to use a microphone but perhaps not for a food diary 
app.

•	For each type of sensitive information, is it opt-in or opt-out, or do data sharers even 
have a choice?

•	What is the minimal amount of data needed for the mobile device and associated apps? 
Does the data need to be collected at all?

•	What devices and sensors are used to collect personal information? Who has physical 
control over these devices and sensors?

•	What happens if there are sensing or inferencing errors on the data? Is there potential 
for embarrassment or other mishaps?

•	How are data collection and data use practices conveyed to users?

•	What kinds of controls and feedback do end users have for managing their personal 
data? Are these user interfaces easily understandable and accessible?
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Social Context

•	Who are the data sharers, the people sharing personal information? What kinds of 
concerns do they have?

•	Who are the data observers, other users who might see and use that personal informa-
tion?

•	What kinds of personal data are shared with data observers?

•	What are the relationships between data sharers and data observers? What is the level 
and nature of trust? Is there a power imbalance? What incentives do data observers 
have to protect data sharers’ personal information (or not, as the case may be)?

•	Are there potentially malicious data observers (e.g., spammers, stalkers, abusive part-
ners, trolls)? How might they abuse your system?

•	What are the social and cultural norms around how personal information will be used?

•	What are the data sharers’ expectations about how personal information will be used?

•	Are there other stakeholders or third parties who might be directly or indirectly 
impacted by the system, for example, passersby incidentally near a mobile sensing 
system?

Organizational Context

•	What are the policies and procedures for accessing the data by people internal to the 
organization? What kinds of data and granularities can people internal to the organi-
zation see? How will these be enforced? Will accesses be logged and audited?

•	Will any collected data be shared with any third parties? Can the data be anonymized 
before sharing?

Technical Issues

•	How are users identified? Is it a device hardware identifier, an app-specific identifier, a 
user-specified identifier (such as a username or email address), or an advertising identi-
fier (e.g., Apple’s IDFA or Google’s AAID)? Each has tradeoffs over how much control 
users have and how much people can be tracked across devices and apps.

•	What is the granularity of the information sent or shared, for example, with respect 
to space (e.g., room, building, street), time (e.g., continuous, every hour, every day), or 
fidelity (e.g., for identity, is it a specific person, a pseudonym, or anonymous)? How 
often is information shared? Is it discrete and one time? Is it continuous?

•	Can the data be processed entirely on the device? Do the data need to leave the device?

•	What sensitive data are sent to the backend? Where are these data stored? Note that 
there may be legal implications based on in which country the data are stored. Who has 
access to the data? How long are data retained? What about backups of data?

Note that there are also other models for assessing privacy, including the Privacy 
Risk Assessment Methodology (PRAM; NIST, 2015) and Privacy Impact Assessment 
(PIA; Wright & De Hert, 2011). These frameworks are derived from information security 
and treat privacy in a manner similar to security risks. For example, PRAM asks experts 
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to map out the data processing pipeline within the target system and then catalog contex-
tual factors and data actions that process personal information. Experts then enumerate 
all potential problems associated with each data action and assign scores to the likelihood 
and severity of each problem. In this way, development teams can quantify and prioritize 
privacy risks for the organization (e.g., revenue loss from customer abandonment), and 
determine appropriate resource allocations to address the risks. Note that both PRAM 
and PIA focus more on data privacy rather than personal privacy and center more on pri-
vacy risks for organizations than end users. Furthermore, neither PRAM nor PIA advo-
cates getting feedback from users about privacy.

Iterative Design and Formative Methods  
for Probing People’s Privacy Concerns

A common best practice in User Experience (UX) design is to design, implement, and 
evaluate systems as an iterative process rather than a waterfall process. That is, it is 
better to quickly build cheap mockups and prototypes, put them in front of potential 
users, get feedback in the early stages of design, and then repeat the whole process with 
more functional prototypes, rather than linearly trying to do design, implementation, 
and evaluation just once.

The iterative design process makes it easier to understand people’s potential privacy 
concerns early on and adjust the design as a result. It can also shed light on many of the 
questions in the privacy risk model (below) and help the development team better under-
stand the tradeoffs involved in the early stages of design, when it is still relatively cheap 
and easy to make changes.

An important question then is, how can one build mockups and prototypes of mobile 
sensing apps that are good enough to get feedback? One technique is paratyping (Iach-
ello, Truong, Abowd, Hayes, & Stevens, 2006), which combines experience prototyping 
with the experience sampling method (ESM). Researchers interact with people as they 
normally would. At the end of a social encounter, the researcher would hand over a small 
postcard-sized survey to the other individual, which would explain what data would have 
been sensed if the mobile sensing device was deployed for real, and ask questions about 
one’s perceptions of privacy in that situation. This survey would come prestamped and 
could be mailed back to the researchers. For example, Iachello and colleagues (2006) 
conducted a paratyping study of a Personal Audio Loop, a device that could continuously 
record audio but only retain the last few minutes. Their survey asked people how impor-
tant it would be to be aware of the Personal Audio Loop, how important it would be to 
ask for permission first, how long a conversation should be retained, and so on. This 
approach lets the researchers investigate people’s potential concerns about mobile sensing 
early in the product concept stage.

Experience sampling can be combined with other formative methods to understand 
privacy concerns in the early stages of design. For example, Consolvo and colleagues 
(2005) used a combination of ESM where participants received hypothetical requests 
from people they knew, a nightly voicemail diary study, questionnaires, and interviews 
to probe what granularity of location data people are willing to share with their social 
relations under different circumstances. They found that the most important factors were 
who was making the request, why the request was being made, and what granularity of 
location would be most useful to the requester.
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Another technique is to use Wizard of Oz to simulate sensors and any underly-
ing artificial intelligence, making it possible for users to get a richer sense as to what a 
mobile sensing system might be like without building the full system first. Topiary (Li, 
Hong, & Landay, 2004, 2007) and DART (MacIntyre, Gandy, Dow, & Bolter, 2004) are 
two examples of rapid prototyping systems that let a designer mock up interactions for 
location-based services and augmented reality, respectively. However, Wizard of Oz tech-
niques have not been used extensively to gather data about people’s perceptions of pri-
vacy, and it may be hard to simulate situations that may lead to concerns. As such, while 
Wizard of Oz techniques are generally accepted as a best practice for UX design, it is still 
an open question as to the best ways of using it to understand potential privacy concerns.

Surveys and interviews have also been used to probe people’s perceptions of privacy. 
For example, Lin and colleagues (2012) used surveyed people’s expectations of privacy 
with respect to smartphone apps and their use of sensitive data. Emami-Naeini and col-
leagues (2017) conducted a vignette study with over 1,000 participants, investigating 
people’s preferences over 380 IoT data collection and data usage scenarios. They found 
that privacy preferences were diverse and context dependent, that participants were more 
comfortable with data collection in public settings than private ones, and more likely to 
agree to data collection if there was a clear benefit. In particular, they found that get-
ting help in an emergency or other physical safety was viewed highly positively. Zheng, 
Apthorpe, Chetty, and Feamster (2018) used interviews to understand people’s percep-
tions of privacy in smart homes. They found that perceived benefit is an important fac-
tor for adoption, that users trust device manufacturers to protect their privacy but don’t 
necessarily check that these protections are working as intended, and that there is a lack 
of awareness of how much can be inferred with even simple IoT devices. These studies are 
good examples of the diversity of methods for understanding people’s needs, and they can 
be used in early stages of development.

Optimistic versus Pessimistic Approaches to Privacy

Having identified potential privacy issues, we will now consider ways of addressing these 
problems. Many decisions regarding privacy will require difficult conversations about the 
tradeoffs involved and how best to protect data and comply with regulations. To a large 
extent, these are business decisions that need to be guided by ethics, legal requirements, 
and product-market fit. What we offer here is a discussion of two issues that can have 
a surprisingly large impact on privacy and adoption, namely, optimistic and pessimistic 
approaches to privacy and privacy defaults.

At a high level, there are two strategies for addressing privacy issues. Pessimistic 
approaches aim to prevent privacy problems, whereas optimistic approaches seek to 
detect and respond to problems. For example, outside of privacy, a pessimistic approach 
to people driving over the speed limit might be to require all cars to have speed limit-
ers, which might be automatically adjusted based on one’s GPS location. An optimistic 
approach might be to have highway patrol officers or automated cameras look for people 
who are speeding and then ticket them.

For privacy, pessimistic approaches might include not collecting data in the first 
place, proactively deleting older data, and letting end users block specific individuals 
or allow/disallow sharing of specific types of information. In this scenario, end users 
often need to take affirmative steps to prevent potential privacy problems. Pessimistic 
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approaches are often useful in cases where the likelihood or cost of a privacy violation is 
high. However, it can be difficult for developers as well as end users to consider all of the 
negative cases beforehand. Furthermore, it can be difficult for end users to find, under-
stand, and configure the appropriate privacy controls.

Optimistic approaches work under the assumption that privacy violations are rela-
tively rare or the cost of a violation is not high (Povey, 1999). Optimistic privacy can be 
useful if trust among people or organizations is high or if access to information is critical 
(such as hospitals). Examples might include log files, notifications to see who has seen 
your information, undo functionality, remove access after the fact, or apply social back-
pressure (such as asking someone not to do something again). For example, smartphone 
cameras in Japan and Korea emit a loud camera shutter sound that cannot be turned off, 
making it obvious to everyone nearby that a photo is being taken and deterring voyeuris-
tic shots (Parikh, 2019). Optimistic privacy may also be easier to set up in that there may 
be fewer things to configure.

Let’s use a social fitness app as an example. This app tracks a person’s running and 
can share that person’s stats with a global leaderboard and with friends. A more pessimis-
tic design might have nothing shared and require users to opt-in to all possible kinds of 
sharing. Sensed data might also be processed entirely on the device but at the cost of more 
battery power and less accurate models. A more optimistic design might have more things 
shared by default (e.g., assigning people default pseudonyms for the global leaderboard). 
More sensed data might be collected and processed off the device as well.

Pessimistic and optimistic approaches are not mutually exclusive, but rather a 
spectrum, and designs will often include elements of both. Pessimistic and optimistic 
approaches also do not cover the entire space of possible solutions, though we have found 
them to be a useful tool for thinking about potential ways of addressing people’s privacy 
concerns. Lastly, pessimistic and optimistic approaches can also apply to backend uses of 
data, such as including access control or adding noise to analytics (pessimistic) or logging 
all accesses for review (optimistic).

Choosing Default Options for Privacy

Another major design issue centers on what the privacy defaults should be. Palen (1999) 
found that most people don’t change the default settings and that defaults have a sig-
nificant influence on what is shared and how systems are adopted. Agre and Rotenberg 
(1997, p. 9) make a similar argument for Caller ID: “If CNID [i.e., Caller ID] is blocked 
by default, then most subscribers may never turn it on, thus lessening the value of CNID 
capture systems to marketing organizations; if CNID is unblocked by default and the 
blocking option is inconvenient or little-known, callers’ privacy may not be adequately 
protected.”

Using the social fitness app again, we ask, should people have default profiles? Do 
these profiles show any personal information by default, such as city or running loca-
tions? Are these profiles searchable by other users by default? Is one’s running stats vis-
ible by others by default? Here, the defaults can range from strongly pessimistic (share 
nothing) to strongly optimistic (share everything), and the decision for each of these 
defaults can have a major impact on the user experience of the mobile sensing app, as 
well as privacy. A challenge here is the lack of enough past research to guide designs. The 
best advice we can offer here is to use many kinds of early-stage methods, such as rapid 
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prototyping and experience sampling, to understand people’s expectations and to get 
early feedback on how different defaults can balance utility with privacy, and the kinds 
of defaults that are most attractive for likely early adopters of the system.

User Interface Design for Privacy

There are many challenges in designing user interfaces for privacy for mobile devices, 
such as devices having small or no displays, slow input speeds, and multiple devices vying 
for one’s attention. While there are some conventions, in general, user interface design for 
privacy is far from settled. We are still in the early stages of the technological life cycle 
of mobile sensing, and new kinds of best practices and design patterns are still likely to 
emerge. As such, this section offers more of an overview on research in user interfaces for 
privacy rather than best practices.

Multiple studies have found numerous problems with today’s privacy user interfaces; 
for example, these interfaces often lack an explanation of the purposes of data use (Lin et 
al., 2012) and habituation caused by recurring notifications (Schaub, Balebako, Durity, 
& Cranor, 2015). Past work has also found that subtle design variations can affect per-
ceived risk and corresponding decisions (Gluck et al., 2016; Habib et al., 2020; Nouwens, 
Liccardi, Veale, Karger, & Kagal, 2020) and that there are significant individual differ-
ences regarding perceptions of privacy notices (Lin et al., 2014; Liu et al., 2016).

Perhaps the most common way to convey privacy issues to users is the privacy policy. 
Both Apple’s App Store and Google Play require apps to have a privacy policy, as do 
laws such as CalOPPA, CCPA, and GDPR. However, as noted earlier, privacy policies 
tend to be long, are hard to read, and have a clear cost (one’s time) with unclear ben-
efit. Exemplars for how to improve informed consent in the context of research studies 
include Nebeker and colleagues (2016), Beierle and colleagues (2020), and Kreuter, Haas, 
Keusch, Bähr, and Trappmann (2020).

There is also growing research examining how to improve the readability and under-
standability of privacy information. For example, Emami-Naeni and colleagues (2020) 
developed a privacy nutrition label for IoT devices that can be shown on a Web page 
or on the box for a device. These labels give consumers relevant privacy information 
about such things as sensors, data retention, and encryption before purchasing. Layered 
privacy policies are another proposed format. Users are first presented with condensed 
information about data collection and its purpose, along with where to go for additional 
information (Center for Information Policy Leadership, 2005). However, layered privacy 
policies have not been widely adopted, and at least one study suggests that they are not 
more understandable than conventional privacy policies (McDonald, Reeder, Kelley, & 
Cranor, 2009).

User interfaces for mobile sensing systems also need to make it easy for people to 
understand what sensitive permissions they are granting to an app. Past research has 
found that Android’s permission model presents many usability challenges. For example, 
mobile users have a poor understanding of permissions (Felt et al., 2012; Kelley, Bresee, 
Cranor, & Reeder, 2012). They have low attention at install time and cannot correctly 
understand the permissions they grant; in addition, current permission warnings are not 
effective in helping users make security decisions. There is also a lack of clarity as to 
why an app is using sensitive data (Lin et al., 2012). Furthermore, once sensitive data 
is allowed, it can be used for multiple purposes in an app. Several studies have also 
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examined how people make decisions about whether to install an app, finding that fac-
tors such as perceived utility (Good et al., 2005), purpose of use (Lin et al., 2012), or the 
price of the app (Shklovski et al., 2014) have a strong influence.

Taking a step back, we see that there are roughly four points in time when an app can 
present privacy-related information to users: before install (e.g., searching for apps); at 
install time; at runtime while the app is being used; and after an app has been used. Typi-
cally, the first two points show the kind of sensitive data an app might access, whereas 
the latter two show what sensitive data an app is actually accessing. Here, our discussion 
will focus on designs for runtime, since the majority of research, as well as the design of 
iOS and now Android, has a strong emphasis on that point of intervention.

Access control gadgets are special kinds of secure user interface elements offered by 
the operating system that let users grant permission to apps, for example, a button with 
a camera icon on it to convey that pressing it will access the device’s camera (Roesner et 
al., 2012). Apps can access sensitive data if and only if users interact with these access 
control gadgets. PERUIM offers a variant idea, analyzing and modifying a smartphone 
app to overlay the names of permissions that will be accessed if the user interacts with a 
given graphical user interface (GUI) widget (Li, Guo, & Chen, 2016).

A complementary approach is to help users make better trust decisions. Both 
Android and iOS recommend that apps include an explanation of why sensitive data 
are being requested, with iOS offering explicit support for explanation strings. Tan and 
colleagues (2014) conducted an online survey showing that users are significantly more 
likely to allow accesses with explanations. Researchers have also investigated experi-
mental designs. One idea is to leverage the wisdom of crowds. For example, when an 
app requests access to sensitive data, ProtectMyPrivacy shows a dialog box to allow 
or deny the access, along with what percentage of users chose each option (Agarwal 
& Hall, 2013). Lin and colleagues (2012) designed an alternative install-time interface 
that showed what percentage of crowd workers expected an app to use a given type of 
sensitive data. Another approach is to model user preferences, for example, using such 
features as time of day and location to predict and possibly automatically grant permis-
sions (Olejnik et al., 2017; Wijesekera et al., 2017). Das, Degeling, Smullen, and Sadeh, 
(2018) proposed personalized privacy assistants, using predictive models to help inform 
users about relevant data practices and configure them appropriately.

In addition to controls, researchers have investigated ways of helping users be more 
aware of what sensitive data an app is using or has used. The conventional design for 
today’s smartphones is to have the operating system show some information on the noti-
fication bar indicating that a certain sensor (e.g., GPS or microphone) is currently turned 
on. iOS also occasionally reminds users of the background location access of a certain 
app. One variation on these notifications is showing users after the fact how often an 
app uses sensitive data as a nudge (Almuhimedi et al., 2015). More broadly, researchers 
have also investigated the design space for just-in-time notifications and have highlighted 
important features such as timing (if a user should be notified of a sensitive access imme-
diately or later), channel (via the device itself, a secondary device, or a publicly visible 
device), modality (e.g., visual, aural, haptic), control (how choices are provided), and 
actionability (making it clear to users what they can do) (Patil, Hoyle, Schlegel, Kapadia, 
& Lee, 2015; Schaub et al., 2015). Similarly, Feng, Yao, and Sadeh (2021) developed a 
taxonomy for helping end users make privacy choices, specifying such features as type 
(e.g., binary or multiple choice), functionality (e.g., presentation or enforcement), timing, 
channel, and modality.
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We close with the observation that, broadly speaking, today’s user interfaces for pri-
vacy, as well as laws regarding collection and use of sensitive data, all fall under a current 
framework of notice and consent. Numerous papers have commented on the weaknesses 
of this approach, for example, that it puts too much burden on individuals, assumes users 
have fully rational behavior and a great deal of attention and cognitive processing abili-
ties, and that users have a lot of time and desire to understand tradeoffs (Cate, 2006; 
Hong, 2017; McDonald & Cranor, 2008). However, there is currently no clear alterna-
tive to today’s notice and consent, and so it still makes sense for future user interfaces for 
privacy to stay within this framework.

System Implementation Issues

We now examine ways of implementing mobile sensing systems. Here, we offer a brief 
overview of some of the issues and research related to the front end (the mobile sensing 
device) and backend (any cloud servers where personal data might also be stored).

One issue regarding the front end is how to handle sensitive data on the mobile device 
in a safe and secure manner. For example, today’s smartphone platforms make it easy 
to access sensitive data, but there are many other considerations, such as data storage, 
encryption, identifiers, and where inferencing should be done. Researchers have devel-
oped several frameworks and libraries to help, such as AWARE (Ferreira, Kostakos, & 
Dey, 2015), Funf (Aharony, Pan, Ip, & Pentland, 2010; www.funf.org), PrivacyStreams 
(https://privacystreams.github.io; see also Li et al., 2017), and mCerebrum (Hossain et 
al., 2017). These software packages offer a range of functionality, including capturing, 
inferring, and using sensor data, the experience sampling method, and management of 
personal identifiers. Note that these frameworks are for smartphones only, have limited 
technical support, and are oriented toward researchers rather than products. However, 
these frameworks point out many useful features that developers should consider for 
their own mobile sensing apps, including support for denaturing data before they egress 
from one’s mobile sensing device, encryption for storing and sending sensitive data, and 
deidentification of users with codes instead of names or phone numbers.

Researchers have also developed many techniques to identify sensitive data in audio 
and video streams, as well as selectively degrade the quality or granularity of data (also 
known as denaturing). For example, a mobile sensing app might only extract and store 
audio features rather than raw audio, distort audio so that speakers cannot be identi-
fied, or scramble the audio so that speakers can be identified but what they are saying 
cannot (Smith & Hudson, 1995). For images, there are machine learning classifiers to 
detect bystanders in photos (Hasan et al., 2020), sensitive locations such as a bedroom or 
bathroom (Templeman, Korayem, Crandall, & Kapadia, 2014), and computer screens in 
images (Korayem Templeman, Chen, Crandall, & Kapadia, 2016). While these kinds of 
techniques are promising, it is currently not clear if they would be sufficient from a legal 
perspective or how well end users might receive them in practice.

With respect to the backend, developers need to consider policies and procedures 
for accessing and protecting those data. Many potential issues are already presented in 
the privacy risk model; for example, what data are sent to the backend, where are the 
data stored, and are data shared with any third parties? This last issue of sharing data 
is surprisingly complex, given the rise of Big Data and social media. For example, ear-
lier, we mentioned how the health fitness app Strava released a data visualization that 

�	 Designing for Privacy	 43



aggregated the GPS running routes of all of its users, disclosing the location of likely 
military bases around the world (Hern, 2018). Although no specific individual could 
be identified, sensitive data were still leaked due to the sheer quantity of data. The 
research community has also demonstrated several cases of reidentifying specific indi-
viduals in data thought to be anonymized or sufficiently aggregated (Garfinkel, Abowd, 
& Martindale, 2018; Narayanan & Shmatikov, 2008; Sweeney, 2002). Chapter 3, this 
volume, has more discussion about the tradeoffs of granting access to raw mobile sens-
ing data to other researchers.

There are also two major considerations for both the front end and the backend. The 
first is a technique called differential privacy (Dwork, 2008), which offers quantifiable 
guarantees for privacy. The main idea with differential privacy is to add enough noise to 
queries so that a dedicated attacker cannot tell whether or not a given element is in that 
data. Perhaps the most notable deployments of differential privacy are telemetry data in 
the Chrome Web browser (Erlingsson, Pihur, & Korolova, 2014), iOS (Apple, 2020b, 
2020c), and the U.S. Census (Mervis, 2019). Differential privacy can be applied both 
when collecting data on the front end (locally), as is the case with the RAPPOR (Ran-
domized Aggregatable Privacy-Preserving Ordinal Response) system used in Chrome 
(Erlingsson et al., 2014), or afterward in the backend on queries on raw data (glob-
ally). Google has also released several open-source tools to help with differential privacy 
(Google, n.d.). As of this writing, however, applying differential privacy is still a bit of an 
art rather than a science.

Development teams also need to consider how best to support the auditing of data 
practices, on both the front end and backend. This auditing needs to go beyond the imme-
diate development team, and, depending on the size of the organization, might include 
lawyers, privacy engineers, chief privacy officers, and chief information security officers. 
This kind of auditing should make it clear to nontechnical people what kinds of data are 
being collected and when, how those data are used, and what control and feedback end 
users have over this data collection and data usage. The audit should also examine how 
the app’s behavior is conveyed in the app’s privacy policy and whether the app fully com-
plies with what is stated in the privacy policy.

Some Open Research Questions about Privacy

In this section, we pose some open questions about privacy for the research community. 
First, can we do better than today’s framework of notice and consent? Presently, end 
users bear a great deal of burden in managing their own privacy, which is becoming 
increasingly untenable due to the growing number of devices and services that people 
interact with, the increasing amount of data collection and inferences, and the knowledge 
and skill needed to protect one’s data.

Second, can we create better tools and methods to help product teams with privacy 
in the early stages of design? Presently, product teams have to make a lot of guesses 
about privacy when they are developing new products. Feedback from surveys, paper 
prototypes, and experience sampling methods are useful but might not fully reflect how 
people feel about a product later on. Getting feedback late in the process makes it diffi-
cult and expensive to make major changes in design. Better tools and methods in the early 
stages of design could also help product teams quickly and cheaply explore more design 
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alternatives that match people’s expectations and preferences. For example, Lean Privacy 
Review (Jin, Shen, Jain, Kumar, & Hong, 2021) seeks to combine crowdsourcing with a 
form of heuristic evaluation for privacy, making it possible for teams to get fast feedback. 
However, it has not yet been validated at large scale or in the wild.

Third, can we develop better tools to support developers throughout the entire soft-
ware development life cycle? For example, Li, Neundorfer, Agarwal, and Hong (2021) 
proposed using developer-provided annotations about data being collected to semiauto-
matically generate high-quality user interfaces for privacy. Tools to help with auditing 
across the entire life cycle of data might also be useful, helping nontechnical people trace 
what data are being collected, where the data came from, where the data are stored, and 
how the data are being used.

Fourth, are there major cultural differences with respect to personal privacy? Simi-
larly, do things like the Fair Information Practices make sense in other cultural contexts? 
Mobile devices and services are being adopted worldwide. However, the vast majority 
of research on privacy is situated in North America and Western Europe. It is currently 
unclear if there are significant differences, and if there are, how to account for those dif-
ferences in a design.

Conclusion

Mobile sensing technologies offer tremendous opportunities in terms of health care, 
safety, sustainability, education, and more. But this vision is possible only if we can find 
ways of legitimately addressing people’s privacy concerns, if we can foster trust that the 
systems we build can respect people as individuals, and if these systems do what people 
expect them to do.

Privacy is a complex topic that is still rapidly evolving, and designing for privacy 
requires a great deal of thought and care across all elements of the system. While there is 
no one size fits all approach to privacy, in this chapter, we offered an overview of some 
of the social, legal, market, UX design, and technical issues involved in building mobile 
sensing systems that can offer tangible value while also respecting people’s privacy.
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C H A P T E R  O V E R V I E W

Researchers have to decide on a multitude of topics during planning, preparing, and 
conducting mobile sensing studies, and then analyzing the resulting data. These deci-
sions can alter the answers to a given research question substantially and thus need to be 
communicated transparently, thereby allowing others to evaluate the scientific evidence 
and to replicate the research. This chapter outlines critical issues of transparent research 
along the steps of conducting a mobile sensing study. In summarizing the transparency- 
relevant issues of each step, the chapter provides suggestions on how to preregister and 
transparently report mobile sensing studies. Because not everything can be known and 
decided before the data collection, preregistration might be incomplete, and transparent 
reporting in an article can compensate for missing details in preregistration. The chap-
ter’s final section discusses conditions that can undermine replicability despite transpar-
ency. Throughout, we point to potential conflicts and tradeoffs between transparency 
and privacy, that is, data protection.

Introduction

Around the same time that the smartphone revolution occurred (Miller, 2012) and mobile 
sensing started in psychology and other fields (Aharony, Pan, Ip, Khayal, & Pentland, 
2011; Eagle, Pentland, & Lazer, 2009)—that is, around 2010—psychology experienced 
another revolution, labeled as the “replication crisis” or alternatively as the “credibil-
ity revolution” (Simmons, Nelson, & Simonsohn, 2011). Unreported flexibility in data 
collection and analyses could substantially increase false- positive findings and thus 
undermine the replicability and credibility of psychological results (Nosek et al., 2015; 
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Simmons et al., 2011). To limit harmful flexibility such as deleting observations and/or 
variables to obtain significant results as well as questionable, actually out-of-question 
practices such as phrasing hypotheses after obtaining results, guidelines for open and 
transparent science have been proposed and now adopted in major scientific journals 
(American Psychological Association, 2021; Nosek et al., 2015; Simmons et al., 2011). 
Transparency in open science means disclosure of the research process—that is, making 
theoretical considerations, study planning, materials, analyses, and data available to oth-
ers. It intends to openly communicate all decisions associated with the research process 
to comprehend whether and to what extent the interpretation of results depends on these 
decisions (Klein, Hardwicke, et al., 2018). This chapter examines how guidelines derived 
for psychological experiments and questionnaire studies can be transferred and adapted 
to mobile sensing research.

At first glance, it may seem that mobile sensing methods are less susceptible to ques-
tionable research practices as mobile sensing data appear objective. However, research-
ers have to make many subjective choices during planning, preparing, conducting, and 
analyzing mobile sensing studies. To ensure transparency and replicability, these choices 
need to be documented and reported, ideally largely before conducting the mobile sens-
ing study and in a standardized way (i.e., in a preregistration of the study). Preregistra-
tion and transparent reporting allow other researchers to reproduce the results with the 
original data and to replicate studies as well as findings with new data. Reproducibility 
(or verification) is often understood as using the original raw data and analysis scripts 
to compute the results again (Clemens, 2017), whereas replicability refers to “repeating 
the methodology of a previous study and obtaining the same result” in an independent 
sample of participants/observations (Nosek & Errington, 2017, p.  1; see also Steiner, 
Wong, & Anglin, 2019).

Mobile sensing, especially in psychology, is a relatively young and also complex 
research field in which transparency standards are still under development. Complexity 
arises from the multiplicity of available information from many channels and time points 
(e.g., momentary or aggregated app use, microphone data over several days and weeks), 
as well as the almost infinite number of ways of analyzing and combining this informa-
tion. The data complexity, that is, the “unprecedented collection coverage, the invisibility 
of the collection process, the amount of data collected, and the envisioned system inter-
connectivity” (Spiekermann & Langheinrich, 2009, p. 389), leads to concerns regarding 
privacy and misuse, which complicate yet do not preclude transparency.

Ideally, a fully transparent mobile sensing study would openly preregister hypothe-
ses, study design (including sampling, procedures, and materials together with software), 
and a complete data analysis plan (e.g., Nosek et al., 2015). At the moment, this might be 
difficult to achieve in mobile sensing, and the greatest challenges arise in specifying the 
preprocessing and analyses before the data collection. The complexity of the workflow 
in mobile sensing studies, in comparison to questionnaire-based research and research 
with few experimental conditions, often impede the detailed, a priori specification of all 
processing and analytic steps. Also, some decisions can only be made after prior analyses 
(e.g., when applying machine learning algorithms, selection of variables and algorithms 
partly depend on how different algorithms perform during the analyses). Furthermore, 
due to the wide variety of data types available in mobile sensing, it is quite feasible to 
formulate hypotheses at a conceptual level, but it is much more difficult to establish a 
precise and specific operationalization of theoretical constructs in advance. For example, 
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a study on communication behaviors can examine indicators of frequency, duration, and 
perhaps quality of calls, video calls, text messages, voice messages, communication in 
different apps, personal contact (e.g., based on Bluetooth inferred physical proximity or 
sound snippets), and many more.

After explaining necessary decisions and challenges at each step of mobile sensing 
studies (see Figure 3.1), we summarize suggestions for preregistration (Table 3.1 on page 
73) and transparent reporting (Table 3.2 on pages 74–75) at different levels of specificity. 
We encourage researchers to apply a two-step procedure:

1.	 Define as many preregistration decisions as precisely as possible, for example, 
based on piloting.

2.	 Report all decisions made over the course of data collection and processing trans-
parently for parts or cases where preregistration was not possible.

Importantly, we also encourage reviewers and readers of mobile sensing studies to 
acknowledge the efforts and to consider that appropriate standards are still developing.

Workflow of Transparent Mobile Sensing Studies

The general workflow of a mobile sensing study has steps similar to most other empiri-
cal studies in the behavioral sciences (Figure 3.1). Differences arise within each step and 
during onboard processing and preprocessing of data. In addition, transparency of data 
and code (i.e., open data, open code) might be highly privacy-sensitive because of poten-
tial (commercial) misuse of the super-rich data. These data are more informative than 
electroencephalograms, or even the browser history of stationary computers, because the 
captured information is potentially so comprehensive (i.e., breadth of domains such as 
communication, location, physical activity) and complete (i.e., covering most to all of an 
individual’s daily life).

Research Questions and Hypotheses

Research employing mobile sensing usually falls into one of two areas: The first addresses 
mobile sensing as a research topic in itself. For example, do samples of people or situa-
tions differ from samples in other research approaches (e.g., people might differ in age, 
digital literacy; situations might differ in intimacy; Beierle et al., 2019; Mehl & Holleran, 
2007); how well can mood and daily routines be inferred from smartphone usage (e.g., 
Servia-Rodríguez et al., 2017); how valid is information on people’s physical activity 
based on smartphone tracking vs. body-attached sensors (e.g., Thomson et al., 2019)? 
The second kind of research uses mobile sensing as just another, potentially more objec-
tive approach to measure behavior and psychological phenomena. For example, how do 
differences in trait extraversion manifest in daily social behavior (Harari et al., 2020); 
do people show reliable inter- and intraindividual differences in daily day–night activity 
patterns (Schoedel et al., 2020)?

For the latter content-focused research questions, it usually will be possible to 
specify hypotheses in preregistration based on previous theoretical and empirical work 
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(Table 3.1). As in other research areas, specific hypotheses will be helpful during data 
analyses when unexpected, even counterintuitive findings emerge, and post-hoc expla-
nations seem all too plausible (Kerr, 1998). At the point of hypothesis specification, the 
hypotheses are stated on the construct level, for example “direct interpersonal contact.” 
It is not necessary to name the specific parameters derived from the smartphone sensors 
already in the hypotheses because measurements and parameters are specified separately 
in preregistrations as variables or indicators of the respective constructs. One would 
assume effects on the level of the latent construct instead of the measure or indicator. To 
clarify, one would also not expect the effects of sleep deprivation on cognitive perfor-
mance to vary substantially among comparable cognitive tests. Still, it is plausible that 
the mapping of a construct to specific sensor-based indicators is somewhat more complex 

  FIGURE 3.1.    Steps of conducting mobile sensing studies. Note: Boxes with dashed frames indicate 
optional steps, with open storage and preregistration being strongly recommended for transparent 
mobile sensing studies. *Contingent on the study, data, review board, confidentiality agreement, 
and country.

Defining research question 
and hypotheses

Data collection including 
on-board processing

Preprocessing of data

Publication

Selecting target population 
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(including software)
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materials
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including hypotheses 
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and open code

Statistical analyses

56	 Background and Key Concepts 	



than that in other studies because no clear standards are available at the moment. For 
example, does the number of different apps, the number of starting different apps, the 
total app usage time, or yet another parameter indicate excessive app usage best? At 
the same time, the hypotheses should be as specific as possible if conceptually distinct 
information can be derived from the multitude of available smartphone information (e.g., 
social contact vs. personal contact such as direct, synchronous contact such as calls vs. 
indirect, asynchronous contact through text or voice messages). Specific, unambiguous 
hypotheses are also necessary to be able to identify conditions for rejecting hypotheses 
(Roberts & Pashler, 2000).

Regarding research on mobile sensing itself, for example, its reliability and valid-
ity, researchers will often find themselves in situations when stating clear hypotheses is 
impossible. Instead, exploratory research questions will be posed. Exploratory analyses 
can be addressed in the project at any time—and labeled as such (Wagenmakers, Wetzels, 
Borsboom, van der Maas, & Kievit, 2012)—and sometimes ideas for research questions 
arise after the preregistration during the data collection and analyses. In our opinion, 
specific indicators can but do not have to be specified in exploratory research, since 
examining and comparing different indicators can be addressed during multiverse analy-
ses, sensitivity analyses, or cross-validation (Brandmaier, Chapter 17, this volume; Kass 
& Raftery, 1995; Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016; see also the section 
“Statistical Analysis”). As discussed by other scholars, both confirmatory and explor-
atory analyses possess distinct advantages and yet allow different conclusions regard-
ing the obtained findings, and need to be labeled as such (Wagenmakers et al., 2012; 
Table 3.2). One project can entail both, and we argue that preregistration of exploratory 
research questions can still be helpful to minimize the “file-drawer” problem: Until a 
study and its results are accepted for publication in a scientific journal, or even if they 
are not accepted, the study and its research questions will still be documented, and other 
researchers will be able to search for this work. Ideally, the results or a preprint are added 
to the project later or stored on specific preprint servers (e.g., PsyArXiv) after the data 
collection and linked with the preregistration.

In our experience, it is helpful to think about how potential publications should be 
structured already during the preregistration process. Mobile sensing data gathered in 
one study can often be used to address several distinct questions because the assessed 
data are often quite complex and comprehensive; for example, data on phone usage, app 
use, communication, activity, and location are often assessed in one study (Aharony et 
al., 2011; Stachl, Au, et al., 2020). Specifying all hypotheses that researchers can think 
of in one large preregistration can lead to one of two problems: Reporting all preregis-
tered yet theoretically unrelated hypotheses in one manuscript might lead to conceptual 
fuzziness and a lack of focus, thus hampering clarity. Alternatively, selecting a subset of 
the preregistered hypotheses that belongs to a specific research question for a manuscript 
and leaving out other hypotheses might evoke the impression of cherry-picking. Both 
problems can be avoided by either specifying subsections for separate manuscripts (i.e., 
research questions) in one preregistration or preregistering different manuscripts (i.e., 
research questions) separately. Registered reports can further help to solve this dilemma 
because such reports include the theoretical background and methods for a specific 
research question and are submitted before the data collection starts.

Despite the recommendations described for preregistration of mobile sensing stud-
ies prior to data collection, it will not be possible (with reasonable effort) to preregister 
all potential hypotheses in advance because of the wide variety of data types and their 
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usefulness for a broad range of research topics and domains (e.g., how does app usage 
vary with personality characteristics, gender, age, socioeconomic status, time of day, 
mood? . . . ). But research projects can still be preregistered after the data collection and 
should also be given high priority in mobile sensing. They help the researcher to approach 
a research question in a structured manner and to specify the hypotheses, operationaliza-
tion, and analyses given the abundance of data. The occurrence of questionable research 
practices, such as a quick screening of data to adjust hypotheses, should be less likely 
in mobile sensing studies, since raw data must be preprocessed elaborately to extract 
the variables needed for the hypotheses. Of course, researchers must decide responsibly 
whether they already know the raw data so well that preregistration is no longer appro-
priate.

Target Population and Target Sensor Samples

While planning and preparing the mobile sensing study, researchers have to decide on 
two crucial sampling issues: participants and behaviors. Interestingly, the software/app 
to conduct the mobile sensing study and the underlying operating system such as Android 
or iOS can affect both the targeted population and targeted behavior samples.

Target Population

In 2020, about 66% of all humans owned a mobile phone, two-thirds of which were 
smartphones (Statista, 2020a). In Western countries, such as the United Kingdom, Ger-
many, or the United States, about 80% of the population owned a smartphone (Statista, 
2020b). In general, Android-operated smartphones exceeded iOS-based smartphones 
(86% vs. 14%; Statista, 2020c). In some countries with high gross domestic product 
(GDP) per capita, the more expensive iPhones were somewhat more common; for exam-
ple, iOS operated on 38% of U.K. phones and on 41% of U.S. phones (Statista, 2020c). 
Some studies have reported iOS users to have higher education and income compared to 
Android users, yet such effects are usually small and inconsistent (Götz, Stieger, & Reips, 
2017; Shaw, Ellis, Kendrick, Ziegler, & Wiseman, 2016; Wang et al., 2018). Small dif-
ferences between iOS and Android users might also be due to smartphone samples being 
selective in general, that is, not representing the entire population or containing larger 
proportions of a certain group. For example, recent smartphone studies have consisted 
mainly of young adults—with a higher sampling probability of men if participants were 
recruited online (Beierle et al., 2019; Chittaranjan, Blom, & Gatica-Perez, 2013, Montag 
et al., 2015) compared to participants recruited from college courses (Harari et al., 2020). 
Notably, the online samples are often still more diverse with respect to age and education 
compared to student samples (Beierle et al., 2019; Gosling & Mason, 2015; Montag et 
al., 2015). Regarding the transparency of samples, potential sources of selectivity should 
be considered carefully and addressed transparently in the preregistration and the pub-
lished report (Keusch, Struminskaya, Antoun, Couper, & Kreuter, 2019; Kreuter, Haas, 
Keusch, Bähr, & Trappmann, 2020). This includes where participants are/were recruited, 
how they are/were incentivized (Harari et al., 2016), and which information on sociode-
mographic and other characteristics is assessed to later describe the sample and compare 
it to the target population (Tables 3.1 and 3.2).
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In addition to the selectivity of the initial sample, researchers should anticipate hid-
den dropout, which leads to selective continuation of data collection. For example, par-
ticipants might use their phones differently than usual due to technical errors, battery 
consumption of the sensing app, or awareness of being monitored. Also, participants 
might leave the study earlier or temporarily. Missing days in openly available sensing 
data (Aharony et al., 2011) hint toward hidden dropout and technical problems. Person 
characteristics might covary with hidden dropout: For example, in one study, the more 
conscientious participants were, the more reliably they wore wrist sensors, and they thus 
produced less missing/hidden dropout (Wiernik et al., 2020). The anticipated dropout 
should be included in power estimations of intended sample sizes. For example, if power 
analyses suggest a required sample size of 300 for the expected effects, and a dropout rate 
of 10% is estimated based on previous research, 333 participants need to be recruited. 
In general, power analyses are needed for preparing and registering the study and can be 
done based on the sample sizes and effect sizes of previous comparable research. Often no 
previous effect sizes are available because the exact same research question has not been 
examined before, and it is unknown whether the effects for one personal characteristic, 
for example extraversion, can be adopted for a related characteristic, such as the affilia-
tion motive. In addition, one has to keep in mind that effect sizes might be small if mobile 
sensing data are linked to other data sources (e.g., questionnaire data) because there is no 
shared method variance. The latter is positive but influences the size of effects and thus 
the necessary sample size—both regarding participants and observations per participant. 
In an additional approach, simulation studies can also estimate complex models. In both 
cases, the steps and decisions are documented through referring to previous studies and 
the obtained effect sizes and through providing the (ideally annotated) scripts for the 
simulation studies (Table 3.1).

Selectivity, that is, individual differences in willingness to share data, might also 
depend on the study topic, the provided information, and the technical and data protec-
tion literacy (Beierle et al., 2019; Keusch et al., 2019; Nebeker et al., 2016). In general, 
women, and somewhat surprisingly, young adults have been shown to be less willing to 
share mobile sensing data (but see Kreuter et al., 2020), while no effects of education or 
personality traits have been found (Beierle et al., 2019; Kreuter et al., 2020; Nebeker et 
al., 2016). In this respect, transparency also extends to the information provided to par-
ticipants before and during the study implementation. Although one would assume that 
providing more information increases transparency, one has to keep in mind that truly 
informed consent can be achieved only if the provided information is adapted to the tech-
nical literacy of participants. If the study is conducted solely online without personal con-
tact with participants, researchers need to ensure that participants read and understand 
the consent document. Study information might be presented in videos instead of written 
text, as most participants spend too little time on screens with consent information to 
actually read the information (Beierle et al., 2019; Kreuter et al., 2020). One could specu-
late that issues of selectivity will diminish when smartphone data remain completely 
on people’s smartphones and participants share only summary statistics of their phone 
usage and sensor information. Interesting ideas have been proposed on how to analyze 
data anonymously on the smartphone using predefined algorithms (Dennis et al., 2019). 
At the same time, average app usage such as Facebook versus TikTok (at the moment) 
already offers substantial information on users’ age, gender, and personality traits (e.g., 
Stachl, Au, et al., 2020). Hence, willingness to participate and thus sample selectivity will 
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always be also a question of data protection. Anticipating issues of sample selectivity in 
the preregistrations and transparently assessing and reporting sample characteristics and 
dropout (Table 3.2) will facilitate progress on these questions.

Target Time and Behavior

Collecting mobile sensing data is generally effortless to researchers and participants 
because the app “silently” collects information on phone use and environmental infor-
mation without additional work for participants (i.e., passive ambulatory assessment). As 
a result, it is tempting to collect as much information for as long as possible. For exam-
ple, one of the first mobile sensing studies—the Friends and Family Study (conducted at 
MIT)—collected information on app use, calls, texting, acceleration, and battery status 
for several months up to over one year (Aharony et al., 2011). We state the obvious when 
we suggest that researchers confine themselves to the information that is necessary for the 
research question and to constrain the duration to the shortest useful period. This is in 
line with EU data protection guidelines, which advise data parsimony and allow the col-
lection of only the data that are necessary for the intended purpose (GDPR, Art. 5, §1a, 
https://gdpr-info.eu/art-5-gdpr). Accordingly, researchers have to specify assessed param-
eters/sensors, assessment times, duration, and sampling frequency. At the same time, 
shorter periods cover a restricted, perhaps selective part of daily life and may lead to less 
reliable assessments, potentially compromising the replicability of results at other times.

An alternative thought could be to collect maximally comprehensive data once and 
to reuse the data. Again, this seems very tempting and economical but entails the risk 
of too much linked information (e.g., location, social activity, health behavior; Servia-
Rodríguez et al., 2017), which is critical from a privacy and data protection perspective, 
especially regarding sharing (raw) data (see also Chapter 2, “Designing for Privacy in 
Mobile Sensing Systems”). Furthermore, long time periods potentially increase research-
ers’ degrees of freedom if specific periods of the collected data are analyzed separately 
(e.g., deleting the first “familiarization” day, excluding holidays). We believe that this 
does not constitute a major problem because such analytic decisions would have to be 
preregistered or reported transparently.

Some information will be collected using event-based sampling, that is, when some-
thing changes. For example, calls, text messages, and opening/using an app are logged 
when this action occurs together with the time of occurrence. Other information is avail-
able continuously (e.g., position and acceleration of phone, light sensor information), 
and sampling frequencies have to be determined—basically researchers decide how much 
they are willing to miss. Importantly, sampling frequencies will vary between studies and 
with different sensors (e.g., GPS vs. acceleration). For example, determining the GPS- and 
cell-tower-based position every minute for 2 seconds will result in high-density location 
information with up to 86,400 location points per day. Researchers may decide that 
during most periods of the day positions will not change that much—GPS having a pre-
cision of 3–10 meters (or 10–30 feet) outdoors—and decide on less frequent sampling. 
In contrast, researchers might want to assess smartphone acceleration as an indicator of 
physical activity almost continuously instead of only for a few seconds once per minute to 
capture most of the movement of the smartphone, that is, its owner. Preprocessing of data 
(e.g., averaging activity per minute; see the section “Preprocessing of Data”) will reduce 
data bulk. Similarly, researchers could skip or reduce data collection during predefined 
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night hours. As mentioned before, highly dense data will affect privacy issues strongly 
(Mendes, Cunha, & Vilela, 2020). For example, continuous sound sampling over the 
course of a day will record complete conversations and thus corrupt privacy. In con-
trast, random sampling of sounds, including words, for 30 seconds a few times per hour, 
for instance, offers rich information on social interactions, daily activities, or depressive 
symptoms, but it still ensures privacy (Mehl, 2017; Mehl, Gosling, & Pennebaker, 2006; 
Tackman et al., 2019). Any such decisions are plausible and depend on the research ques-
tion, and they just have to be specified in preregistrations or reported transparently after 
the data collection. In summary, theoretical considerations and previous work, including 
pilot studies, are necessary to decide on the best suited sampling frequency and duration. 
Because duration and sampling frequency have to be specified for the app in any case, 
they are easily preregistered (Table 3.1).

Preparing Materials Transparently

Materials and Informed Consent

In our view, the greatest challenges for preparing materials transparently apply to the 
details in and comprehensiveness of the informed consent for participants and in the 
materials provided in repositories for other researchers.

As outlined in the previous section, to be truly informative for participants, study 
information has to be not only complete but also adapted to the technical knowledge of 
the participants. Several guidelines on how to construct informed consent provide valu-
able advice (Beierle et al., 2019; Nebeker et al., 2016) and yet have to be adapted to spe-
cific research projects. In general, suggestions are to provide understandable summaries 
together with detailed study information, to offer examples of what collected data look 
like; to ask for permission when it is needed (instead of presenting a long, comprehensive 
list in the beginning); to have opt-out options for separate features/functions of the app/
study; and to describe the secured storage and data transfer (Beierle et al., 2019; Kreuter 
et al., 2020; Nebeker et al., 2016).

Currently, there is no standard for how to store and document mobile sensing 
research materials, and researchers face the challenge of preparing documentation that is 
both accurate and understandable, especially for those researchers who are not too famil-
iar with this kind of research. The general aim of open materials is that other researchers 
can understand and replicate the research. Again, we assume that this can be achieved at 
different levels of specificity (Tables 3.1 and 3.2).

As in other study designs, with minimum effort, a complete list of measures of both 
self-reports and mobile sensors (sensing-derived parameters might be decided on later 
during the process and can be added later) can be provided, together with the software 
and hardware used to collect data. This list will also provide a helpful overview, if more 
details are provided (Tables 3.1 and 3.2). When storing items and software code in open 
repositories, researchers have to be aware of copyright regulations around items and soft-
ware. In addition, two obstacles for storing software code should be kept in mind. First, 
sensing apps often use information already provided by the native operating system of the 
mobile phone (e.g., Android, iOS). The operating systems and their various versions can 
differ in how information is collected and preprocessed from sensors (Harari et al., 2016; 
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Wang et al., 2018). Also, the specific algorithm is often not available from the operating 
system developers. Second, storing code openly entails the risk of unauthorized (com-
mercial) usage of code and in the worst case provides information for hackers on how to 
introduce malware into the app and/or steal data (Scott, Richards, & Adhikari, 2015). 
One helpful solution could be to assess the specific mobile phone types and their operat-
ing systems and later report it. This is similar to describing the apparatus for conducting 
electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) studies 
together with the software version running on the apparatus.

Piloting the Mobile Sensing Materials

Researchers conducting technology-based studies are well advised to pilot the study setup 
and materials before collecting data from dozens or hundreds of people. This is equally 
true for mobile sensing studies because many errors can occur during data collection, 
such as excessive battery drain, incorrect data storage, or data loss (Harari et al., 2016). 
In addition to being able to test that the software and mobile phones function properly, 
piloting can facilitate preregistration. Pilot data, even from a few people over a few days, 
offer information on the data structure, necessary preprocessing steps, and reliability and 
validity of measures and indicators, if they are combined with other information, such as 
demographic information, questionnaire answers, or time of day.

Data Collection

Study Onboarding

Data collection in mobile sensing studies begins with the installation of the tracking 
app. Researchers can choose among several scenarios for this onboarding procedure. The 
first decision concerns whether participants are provided with smartphones or are asked 
to use their own (e.g., Harari et al., 2016). Second, researchers have to choose between 
online or face-to-face onboarding (e.g., Harari et al., 2020; Schuwerk, Kaltefleiter, Au, 
Hoesl, & Stachl, 2019). In the first case, participants download the tracking app from 
online stores or private distribution platforms and install the app on their own. The app 
can be free or restricted by a study code provided during recruitment. In the second case, 
participants come to the lab to install the app together with the investigator (e.g., Stachl 
et al., 2017). Finally, researchers have to decide whether to start data collection simulta-
neously for all participants or gradually over a specified period.

These decisions about the design of the onboarding scenario are an important source 
of sampling biases in mobile sensing studies, which we illustrate with a few examples 
here. First, the specific onboarding scenario might attract people with different traits and 
therefore be associated with a self-selection bias. For example, more introverted persons 
might be more likely to decide to participate if the onboarding can be carried out in an 
uncomplicated way online without further social obligations. However, more suspicious 
persons might find it more pleasant to have personal contact with the investigator before 
participating in data-intensive mobile sensing studies. The chosen onboarding procedure 
might additionally affect dropout. Participants are likely to have a commitment to con-
tinue the study until the end if they have already invested time to come to the lab and 
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established a personal relationship with the research staff. Installing the tracking app 
from an online app store just as any other app might be associated with a higher feeling 
of anonymity, and therefore dropping out of the study could be a less significant hurdle. 
So far, these assumptions are speculative because previous mobile sensing studies exam-
ining sample selectivity still use the same onboarding scenario for all participants and 
thus cannot offer results about which participants’ characteristics are linked to different 
onboarding options (e.g., in-person with direct researcher guidance, independently by 
downloading the app; Beierle et al., 2019; Kreuter et al., 2020; Ludwigs, Lucas, Veen-
hoven, Richter, & Arends, 2019). For example, from other demanding or privacy sensi-
tive studies, we know that compliance with the study protocol is higher if participants 
had direct contact with researchers or research assistants—perhaps because they met 
the persons behind the study. Also, people who download research apps might differ 
from people who invest the effort to visit research labs. Thus, the chosen onboarding 
procedure might affect replicability of the study in future samples, if diverse onboarding 
procedures are used, and thus it should be reported transparently (Table 3.2).

Data Quality Monitoring

After the tracking app installation, the continuous data logging begins. Several chal-
lenges arise from the longitudinal data collection and technical character of the study. 
Because data collection occurs in people’s daily life in the absence of research staff, prob-
lems that arise during data collection will likely not be detected immediately but have to 
be inferred later on, often leading to missing data.

During the data collection, participants interact with their smartphones as usual. In 
doing so, participants sometimes (un-)intentionally revoke permissions that are required 
by the tracking app. Depending on the study duration, some participants may change 
their smartphones and reinstall the tracking app on a new device. Besides these user 
behavior-related challenges, technical incidents can also occur. Despite careful prepara-
tion by extensively testing the tracking app in advance, software issues are sometimes 
only discovered during the study when a large variety of different smartphones and oper-
ating systems use the tracking app. Depending on the frequency of occurrence and the 
severity of the software bugs, they may need to be fixed during the study period, prompt-
ing participants to update the tracking app and potentially changing the data collection 
procedure.

All these cases affect data quality as they result in systematically missing data. An 
example for user-initiated systematically missing data is that participants revoke their 
permission to track GPS data on weekends because they do not want to be tracked where 
they are traveling in their free time for privacy reasons. In this context, researchers should 
also think about including a “pause button” to enable participants to consciously pause 
data collection (Buschek, Bisinger, & Alt, 2018).

Concerning software-related missing data, it might become apparent only during 
the study that, for example, the tracking app does not log certain smartphone events for 
older operating system versions, leading to missing data only for participants with older 
devices. Finally, missing data can also systematically occur between parts of the study. 
For example, during the course of the study, researchers notice from the complaints of 
the participants that the high sampling frequency of physical sensor data (e.g., ambient 
brightness and noise) leads to high battery consumption. To avoid a high dropout rate, 
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a change to a more battery-friendly sampling frequency may need to be made during 
the study. In summary, researchers need to assess and document such cases of user- or 
software-induced missing data so that they will be able to report it transparently without 
generating the impression of selective exclusion of data.

Onboard Processing

Mobile sensing data can be captured in raw form, that is, as unprocessed technical data, 
such as those from sensors or other apps. But they can also be processed immediately 
during data acquisition. For example, instead of collecting GPS raw data (longitude and 
latitude) to be sorted by location type after the data collection phase (Mehrotra et al., 
2017), the application programming interfaces (APIs) of external providers such as the 
Google Places API1 could be used to directly extract and store relevant information (in this 
example, location types such as airport, bar, and church). Meanwhile, many freely avail-
able plug-ins for onboard processing are available, for example, for conversation detection 
(see Harari et al., 2020) or activity recognition (Ferreira, Kostakos, & Dey, 2015).

One benefit of onboard processing is the reduced storage and reduced data prepro-
cessing after the data collection (see the section “Preprocessing of Data”). Moreover, 
from a data protection point of view, this method has the great advantage of not having 
to store the raw data, which usually contain more sensitive information. However, one 
challenge is the evaluation of the performance of the onboard processing algorithms and 
the validity and reliability of the resulting variables (RatSWD, 2020). Depending on the 
onboard processing software, algorithms and their performance measures are often not 
published, especially for those from commercial suppliers. For example, instead of stor-
ing raw GPS and physical sensor data, an activity onboard recognition algorithm could 
be used to extract the users’ activities (e.g., steps, doing sports, driving, sleeping). If per-
formance measures for the onboard processing are unknown, researchers have no infor-
mation about how well the classification algorithm worked (i.e., with what accuracy the 
respective activities were detected on the basis of the raw sensor data). Even with open-
source algorithms, it might be very difficult for researchers to figure out precisely how 
the algorithm transforms raw data in, for example, steps per day. When no or limited 
information on the reliability and validity of the classification of activities is available, 
subsequent results of the data analysis can be interpreted only to a limited extent. Pos-
sible solutions could be to validate onboard processing algorithms through pilot studies, 
which can have the additional benefit of testing the algorithm under the conditions and 
in the population later examined in the main study—as many algorithms are validated 
as proof-of-concept, that is, under laboratory conditions with only a few selected people, 
sometimes the developers themselves. At the very least, it is important to document and 
report the exact version number of software and, if possible, the software code (Table 
3.2), for the later comparison and replication of results.

Preprocessing of Data

Alternatively, or in addition to onboard processing, further processing takes place after 
the data collection phase. This offline preprocessing comprises any steps related to the 
extraction of variables that can be used for statistical analyses afterward. If not speci-
fied in detail in the preregistration or documented and reported comprehensively, it can 
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impede research transparency severely because so many steps are involved in preprocess-
ing. Usually, raw mobile sensing data are tabular data. That means each row represents a 
logging event specified by different features represented by the columns. For example, if 
a participant uses the Facebook messenger app at 11:03 A.M., a new row containing the 
usage event (app usage), the name of the app (Facebook Messenger), the time of occur-
rence (11:03), and further specifications is created in the database. Across the whole 
study period, this results in thousands of rows per (!) participant. However, researchers 
are usually not interested in raw logging events for statistical modeling but in meaning-
ful variables (e.g., the average daily duration of social interaction). To convert the raw 
mobile sensing data into meaningful variables, researchers have to make numerous deci-
sions (Hoffmann et al., 2021; Schoedel et al., 2020), which might affect reproducibility 
and replicability, and should be specified before the data collection (Table 3.1). Some of 
the decisions depend on the data properties (e.g., distribution, extent of missing data and 
outliers, and value range of events to be classified, such as package names of apps used by 
participants). These decisions can only be made after the data collection (i.e., not prereg-
istered) and should thus be documented and reported transparently (Table 3.2).

The preprocessing decisions always include procedures for handling missing data. 
For example, researchers have to think about how many hours per day data must be 
logged to ensure the validity of study days (e.g., Harari et al., 2020). Based on this infor-
mation, the question arises as to when researchers exclude invalid study days and how 
many valid study days are necessary per participant to be included in the sample (e.g., 
Wang et al., 2018).

In addition, researchers have to define the temporal characteristics of their variables. 
For example, if social interactions are investigated, the researcher has to define what 
“weekend” means: Do Friday nights already count as a weekend because the next day is 
usually free and participants are freer to decide how they want to spend their time? Or 
do Friday evenings belong to the working week because the participants are tired of the 
working week and therefore behave differently than on Saturday and Sunday? Accord-
ingly, researchers also have to decide which times define day and night (e.g., Stachl, Au, 
et al., 2020) and whether the day should be considered as a whole or in intervals such 
as morning, afternoon, evening, and night (e.g., Harari et al., 2020; Wang et al., 2018).

Additionally, content characteristics have to be defined. For example, research ques-
tions usually do not refer to variables that reflect the usage of a specific app (e.g., Face-
book Messenger app), but rather to broader behavioral categories of app usage such as 
communication, entertainment, or gaming. Therefore, researchers have to decide which 
apps belong to which categories (e.g., Stachl et al., 2017). Furthermore, researchers have 
to think about the granularity of the extracted variables. For example, social interaction 
could be operationalized by simply extracting communication app usage. However, it 
would also be possible to distinguish between communication app usage in dyadic versus 
group interactions, or with frequent versus unique interaction partners.

Finally, quantification metrics have to be determined. The logging data collected 
over the entire study period are often aggregated to summarized variables. Regarding 
measures of central tendency (e.g., the daily average communication app usage), research-
ers can aggregate the raw data using the median, the arithmetic mean, or the robust 
mean, depending on the nature of the logging data (e.g., Mønsted, Mollgaard, & Stachl, 
2018; Montag et al., 2014). Researchers can choose between the standard deviation and 
robust estimates for measures of dispersion (e.g., daily variation in the communication 
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app usage; e.g., Mønsted et al., 2018). Other measures, such as the minimum, the maxi-
mum, or change over time, can be applied to quantify the distribution of smartphone 
usage events (e.g., Schoedel et al., 2020).

In summary, researchers have to make many subjective decisions in the process 
of variable extraction (Hoffmann et al., 2021). Initial work indicates that these seem-
ingly small subjective decisions in data preprocessing affect statistical results based on 
mobile sensing data (Schoedel et al., 2020). As discussed before, sensed variables can 
be extracted depending on the part of the week (weekend vs. week; e.g., Harari et al., 
2020). But how do researchers actually define the weekend? From Saturday to Sunday 
or from Friday night to Monday morning because these nights are part of the weekend? 
For example, the associations between age, gender, conscientiousness, and the duration 
of nighttime smartphone nonuse on weekends varied depending on how the weekend was 
coded (Schoedel et al., 2020; see Figure 3.2). Consequently, the degrees of freedom in 
mobile sensing research imply the risk of selective reporting and, as a consequence, false-
positive findings (Simmons et al., 2011). This means that researchers might try out dif-
ferent specifications in the variable extraction process and only report on those variable 
variants for which desired analysis results emerge (Gelman & Loken, 2014). This pro-
cedure, in turn, results in a lack of robustness of findings across studies. Tables 3.1 and 
3.2 offer suggestions on preregistering some of these decisions before the data collection 
and on transparently reporting the decisions to facilitate replicability in mobile sensing 
research. Briefly reporting information in the manuscript and in supplementary materials 
about multiverse analyses or sensitivity analyses (Kass & Raftery, 1995; Leamer, 1985; 
Steegen et al., 2016), which demonstrate how findings vary (or not) depending on differ-
ent specifications during the data preprocessing, would offer readers the necessary infor-
mation to evaluate the interpretation of the authors (e.g., Schoedel et al., 2020).

Statistical Analysis

After the extraction of meaningful variables, statistical analyses can be performed. As 
with any other analysis workflow, researchers get a first overview of the variables of inter-
est by looking at descriptive characteristics and visualizing distributions. In comparison 
to research with questionnaire data, technical data in mobile sensing research are often 
susceptible to logging errors. Although some of these can be considered already during 
data preprocessing (e.g., as presented under “Preprocessing of Data”), by using robust 
aggregation measures, outliers and missing values are often present in the extracted vari-
ables. Because there is no “one-size-fits-all” solution for handling them, researchers are 
again faced with many options for transforming the extracted dataset into a version 
suitable for statistical modeling. These processing steps include primarily data exclusion, 
handling of outliers and missing values, and the transformation of variables. With data 
from pilot studies, rules for identifying and handling outlier, missing, or non-normally 
distributed data can largely be specified in the preregistration (Table 3.1).

As already mentioned, previous studies have shown that the degrees of freedom in 
data preparation lead to differences in statistical results (Simonsohn, Simmons, & Nelson, 
2015; Steegen et al., 2016) and are thus a risk factor for the nonreplicability of research 
results (Hoffmann et al., 2021). Traditionally, computer science might be less prone to 
selective reporting because generally results based on different parameters (e.g., features 
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extracted from sensing data) and algorithms (e.g., kNN, SVM, LDA; Brandmaier, Chapter 
17, this volume) are reported in parallel (e.g., Chittaranjan et al., 2013; Kambham, Stan-
ley, & Bell, 2018). To avoid practices such as selective reporting, various statistical analy-
sis techniques have been proposed. They all follow the general principle of performing 
statistical analysis on the multitude of plausible alternatives for data processing decisions, 
thereby illustrating the robustness of the results in terms of researchers’ data processing 
decisions (Hoffmann et al., 2021). For example, multiverse analyses (Steegen et al., 2016) 
require reporting transparently on all processing steps and thinking about plausible alter-
natives for each decision. Originally, the multiverse approach referred to exclusion criteria 
for outliers and was then applied to other preprocessing decisions in questionnaire-based 
research as well (Steegen et al., 2016). In the interest of robust science, it is recommended 
that the principle of multiverse analyses is applied to mobile sensing research as well, but 
currently no standards exist. For example, the number of preprocessing steps in mobile 
sensing is much larger than that in research with questionnaire data, and, even with much 
effort and expense, researchers will only be able to map a selection of preprocessing deci-
sions in a multiverse analysis. By combining arbitrary decision alternatives, many slightly 
different datasets are created and then used individually to perform statistical analyses. 
Finally, the range of results of all analyses is presented descriptively or visualized in over-
view plots (see Figure 3.2 as an example). Such graphical overviews of results allow read-
ers to evaluate deviations in results based on somewhat different analyses or subsets of 
data and thus to judge the robustness of the results at a glance—for example, regarding 
the associations between age, gender, conscientiousness and the duration of nighttime 
smartphone nonuse on weekends (Schoedel et al., 2020).

In the section “Research Questions and Hypotheses,” we discuss why hypothesis-
based, preregistered statistical analyses in mobile sensing research will be useful and 
necessary in future research. In the first steps of mobile sensing research, however, many 
explorative analyses are carried out (e.g., Montag et al., 2014; Stachl et al., 2017). One 
reason for this exploratory analysis strategy is certainly that mobile sensing offers a much 
greater variety of possibilities for operationalizing behavioral variables compared to pre-
vious self-report-based research, and thus allows more researchers’ degrees of freedom. 
For example, the variable interpersonal contact can be operationalized in many ways: 
(1) communication app usage, (2) social media app usage, (3) (video-)calls, (4) text mes-
sages, (5) voice messages, and (6) in-person contact each regarding frequency, duration, 
or the number of unique contacts—already leading to 18 options with this incomplete 
list. Direct behavioral equivalents are often missing in the previous literature, which is 
why researchers prefer to remain vague by formulating explorative questions.

In line with this observation, predictive approaches, that is, the use of machine learn-
ing techniques, have become established in mobile sensing research (e.g., Mønsted et al., 
2018; Stachl, Pargent, et al., 2020; Wang et al., 2018). An advantage of machine learning 
methods is that they can handle a large number of predictors in relation to a criterion 
to condense information (Brandmaier, Chapter 17, this volume). This means that a large 
number of different operationalizations for one construct can be included in the model 
without the researcher having to decide in advance on one of the many plausible alterna-
tives.

However, it should be considered that similar variables usually strongly correlate. 
A well-known problem in explanation-oriented models in psychology also applies to 
machine learning models: Correlated variables complicate interpretation of the results. 
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To understand the prediction performance, methods of interpretable machine learning 
are often used to screen the most important variables (Stachl, Pargent, et al., 2020). For 
example, using lasso penalized regression with correlated variables, the algorithm simply 
selects one of the correlating variables randomly (Zou & Hastie, 2005). Nonlinear mod-
els such as the random forest also provide biased variable importance measures, if predic-
tors are correlated (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). As a consequence, if 
the rigid ranking of individual variables is interpreted from one study, replication studies 
might fail to identify the (ranking of) exact same important variables. Therefore, the 
results of machine learning models should not be interpreted strictly, but rather groups of 
meaning-related variables should be considered to formulate ideas for future hypothesis-
driven confirmatory research (e.g., Brandmaier, Chapter 17, this volume; Schoedel et al., 
2018). The groups of variables considered may be defined based on theoretical consider-
ations and previous literature, or they may be data-driven (e.g., considering the variables 
before a noticeable drop in variable importance measures occurs). To be able to consider 
several variables for future research, results should be reported as comprehensively as 
possible, yet without compromising clarity (e.g., Table 1 in de Montjoye, Quoidbach, 
Robic, & Pentland, 2013, or Figure 2 in Stachl, Au, et al., 2020).

Storage of Open Data and Open Code

In general, (protected) sharing of data and code is imperative in science and will facilitate 
scientific and often also individual progress in any area of psychology and beyond (Joel, 
Eastwick, & Finkel, 2018; Van Horn & Ishai, 2007). Also, both scientific associations 
and funding agencies emphasize data sharing and provide guidelines to do so (e.g., Amer-
ican Psychological Association, German Research Foundation, NSF, Wellcome Trust; see 
Houtkoop et al., 2018; Schönbrodt, Gollwitzer, & Abele-Brehm, 2017).

Making data and analytic code openly accessible has several pros and cons. On the 
pro side, with both open data and open code, study results can be easily confirmed by 
independent others without having to rely on authors sending the data. Also, additional 
analyses (e.g., alternative analytic approaches) can be conducted, which might further 
strengthen the conclusions presented in the manuscript. In addition, other researchers 
might learn directly how to conduct certain analyses. Importantly, the software versions 
that are deployed have to be documented diligently because newer versions might use 
different commands and estimating procedures, which might compromise exact repro-
duction of the results with the available code and data. Specific suggestions exist on how 
to organize files, software versions, and code to achieve cross-platform and long-term 
computational reproducibility (Peikert & Brandmaier, 2019; see also Table 3.2).

One minor concern about open code relates to the statistical software deployed and 
the level of documentation. At this point in time, it seems too early to ask researchers 
to use a specific (open) software, such as R. As a consequence, others not familiar with 
the software or the specific analyses (e.g., random-forest structural equation modeling, 
Brandmaier, Prindle, McArdle, & Lindenberger, 2016) will not be able to understand or 
repeat the code easily. Thus, the challenge of transparent code is the level of description 
of often quite complex code; in part this also applies to other methods (e.g., preprocess-
ing electroencephalogram data: Pedroni, Bahreini, & Langer, 2019; functional magnetic 
imaging data: Van Horn & Ishai, 2007).
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In our opinion, the largest consideration is necessary regarding open data and pri-
vacy (see Chapter 2, “Designing for Privacy in Mobile Sensing Systems”). Mobile sens-
ing data potentially include very dense, very private information regarding third per-
sons, finances, health, and (illegal) activities. Accordingly, mobile sensing data should be 
strongly protected to ensure the privacy of participants and to prevent misuse.

Psychologists, including the authors themselves, have only begun to understand how 
to protect the privacy of participants. Until recently, anonymization—that is, assigning 
a random identifier that can be matched with a person through a separately saved key 
file—seemed viable. Current advancements in data reengineering and machine learn-
ing have demonstrated that individuals are identifiable with little information, such as 
demographic attributes (Rocher, Hendrickx, & De Montjove, 2019). One alternative 
could be the sharing of aggregated data, such as means, standard deviations, and covari-
ance matrices, which are sufficient to reproduce certain SEM-based analyses (Muthén & 
Muthén, 2023). A second alternative could be to store data in repositories with restricted 
access and allow computation only on the computers of the repository with logging of 
activities and without the possibility to copy the data—as is the case with the Secure 
Data Access Center (in French, CASD, www.casd.eu). A third possibility uses differen-
tial privacy, where random noise is added to data (Fang, Zeng, & Yang, 2020; Gong, 
Pan, Xie, Qin, & Tang, 2020). This alternative impedes identification of individuals, yet 
retains contained information on a sample level. Not all of these options will be equally 
suitable for all research projects, although different access/security classes of data can 
be implemented (e.g., Level 0 open data to Level 3 secure data; Schönbrodt et al., 2017). 
Furthermore, a few years from now the possibilities to store and share sensitive data both 
securely and easily might have increased (see also Joel et al., 2018).

Providing aggregated data precludes the reproducibility of preprocessing to extract 
variables, but it ensures the reproducibility of main analyses based on the extracted vari-
ables. Openly available preprocessing code makes this preprocessing step at least trans-
parent. Still, to enable other researchers to sustainably reuse mobile sensing data for new 
analyses and therefore to fulfill the claim of Open Data, it will also be necessary in the 
long term to find data protection friendly and easy-to-implement solutions for sharing 
the raw data. This, in turn, will require a change in research infrastructure over the next 
few years.

At the risk of being too cautious, even depersonalized data entail the risk of misuse—
and especially so if transparent accompanying meta-information is reported to a greater 
degree. For example, data on political opinions, health problems, or financial informa-
tion might be used to do harm during elections or when individuals enroll in an insurance 
plan, if the time and location (e.g., city, region) of data collection is reported (Granville, 
2018). In summary, storing code will often be unproblematic (Table 3.2), but the storing 
of data and the related access options should be considered carefully to ensure data pro-
tection, privacy, and to guard against misuse.

Publication

Most of the thoughts presented in this section are not specific to mobile sensing stud-
ies. Accordingly, we keep it brief. What might be specific is that, at the moment, miss-
ing knowledge and existing stereotypes regarding mobile sensing studies might bias the 
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publication process toward one of two directions. First, reviewers, editors, and readers 
might be enthusiastic, yet relatively uninformed about mobile sensing studies. This might 
result in an uncritical review process, and it entails the risk of publishing flawed mobile 
sensing studies or studies with too little information on all the steps outlined before. Sec-
ond, and likely more common, reviewers, editors, and readers might be overly skeptical 
about mobile sensing studies because they do not trust the sensors or software, question 
the multitude of available options when preprocessing and analyzing the data, or are 
overwhelmed by technical details. In addition, reviewers and editors might underestimate 
how time-consuming it is to rerun analyses (e.g., extracting variables with somewhat 
changed specifications), and therefore they may suggest analyses that cannot easily be 
carried out during typical review phases. Standards from traditional survey research are 
often applied, which the mobile sensing field cannot yet achieve because it is still in its 
infancy (e.g., standards regarding validation studies for behavioral measures with several 
hundred participants). This will likely result in wrongful rejection, delay of the publica-
tion, or “file-drawer problems” (Simonsohn et al., 2015).

We do not claim that a more substantiated psychometric approach to mobile sensing-
based studies is unnecessary. However, at the moment some open-mindedness regarding 
data preprocessing approaches and analyses might be necessary—provided that choices 
are made consciously and named transparently—so that mobile sensing can gradually 
establish itself as a paradigm in the broad field of psychological research. Both being 
overly enthusiastic and overly critical can be easily prevented by gaining knowledge of 
mobile sensing procedures, analyses, and standards, as well as by applying rigorous yet 
realistic standards to mobile sensing studies (e.g., regarding the level of specificity when 
preregistering analyses).

To embrace open science fully and to avoid rejection and file-drawer problems, 
researchers might decide to publish their findings solely via open access (e.g., preprint 
servers such as PsyArXiv or ArXiv) and without structured review processes.2 This 
allows other researchers with limited access to academic journals, and also journalists 
and the general public, to access the study findings. In general, storing the manuscript on 
preprint servers and/or linked to the preregistration seems unproblematic. Also, several 
high-quality open-access journals and “classical” journals with open-access options exist 
that ensure a quality check of the work before publication. At the same time, thousands 
of questionable journals exist that publish anything, including fabricated results (Bohan-
non, 2013).

In our opinion, despite the limitations of review processes (Marsh, Jayasinghe, & 
Bond, 2008), scientific findings should be carefully reviewed—always, but especially, 
when they are openly accessible to a broad public—to ensure that the study procedures 
follow the standards of the field and that results are trustworthy. As a side note, pub-
lishing results as open access should not depend on the budget of researchers or their 
university. Thus, offering options to authors whose manuscripts pass the review process 
but who cannot cover the publication costs, would be highly desirable to advance open 
science (e.g., Collabra, www.collabra.org/about/faq). Needless to say, in preparing the 
manuscripts that report on mobile sensing studies, researchers should follow the guide-
lines of transparent reporting that also apply to any other scientific study (Appelbaum 
et al., 2018; Simmons et al., 2011), and additionally describe the necessary informa-
tion specific to mobile sensing. If too much technical information would distract readers 
from the substantial research questions and contribution, such details can now easily be 
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communicated in supplementary material directly linked to the article or presented in 
open repositories (see, e.g., Stachl, Au, et al., 2020).

Overview and Tentative Guidelines for Preregistration 
and Transparent Reporting in Mobile Sensing Studies

To increase transparency and thus replicability, preregistrations have been established in 
psychological research (Nosek & Lindsay, 2018). Preregistration of hypotheses counteract 
hindsight bias (Kerr, 1998), and preregistration of planned analyses works against con-
firmation biases (e.g., Gelman & Loken, 2014; Wagenmakers et al., 2012; Wagenmakers 
& Dutilh, 2016)—both together aiming at minimizing questionable research practices 
(e.g., Simmons et al., 2011). Accordingly, preregistrations are also highly recommended 
in the field of mobile sensing. Due to the complexity of the workflow in mobile sensing 
studies in comparison to questionnaire-based research, it is often difficult to consider 
and describe all processing and analytic steps in sufficient detail in advance. We therefore 
encourage researchers in the field of mobile sensing to apply a two-step procedure:

1.	 Define as many preregistration decisions as precisely as possible. Again, data 
from pilot studies will help to achieve this task.

2.	 For parts or cases when preregistration is not fully possible, report all decisions 
made in the course of data processing in a transparent way.

Throughout this chapter, we pointed to issues relevant for preregistration and report-
ing in mobile sensing studies. We summarized these points and described different levels 
of specificity in Tables 3.1 and 3.2. The different levels partly/largely overlap with levels 
proposed in Nosek and colleagues (2015). We again state the obvious: A higher level of 
transparency is generally better—we cannot think of a counterexample. Still, different 
standards can be necessary for highly sensitive data (e.g., raw GPS data) or sensitive 
samples (e.g., identifiable patients or public people). Also, one project can follow different 
levels for the different tasks, for example, openly reporting materials but offering access 
to sensitive data only to authorized researchers. The achievable level of transparency will 
depend on the field and research topic and will not necessarily rely solely on the willing-
ness of the researcher. Furthermore, when using commercial/industrial libraries/packages 
(e.g., Google Maps), information on validation may not be available to researchers.

Threats to Reproducibility and Replicability 
Despite Transparency

In the beginning, we stated that transparency in mobile sensing research is needed for 
these studies to be reproduced and findings to be replicated. In this section, we want to 
raise the awareness that transparency is a necessary but not sufficient condition for repli-
cating findings. Accordingly, even if researchers follow the suggested preregistration and 
reporting standards presented in the previous section, several threats to reproducibility 
and replicability exist.
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TABLE 3.1.  Suggestions for Preregistration Standards in Mobile Sensing Studies

Topic
Level of specificity

0
Level of specificity

1
Level of specificity

2
Level of specificity

3

Research 
question and 
hypotheses

Neither research 
questions nor 
hypotheses are 
preregistered.

Preregister 
exploratory research 
questions.

Preregister some research 
questions and directed 
hypotheses.

Preregister directed 
hypotheses and 
specify effect sizes.

Target 
population: 
Selectivity

No consideration 
of recruitment 
options and how 
they might affect 
selectivity of the 
sample.

Consider basic 
sources of sample 
selectivity (e.g., 
technical ones: 
specific operating 
systems or 
smartphone models).

Consider various 
recruitment strategies 
associated with self-
selection bias of 
participants (e.g., 
where and how are they 
recruited?).

Preregister 
quota (e.g., 
demographics) 
according to which 
recruitment takes 
place to control for 
selectivity effects.

Target 
population: 
Power 
analyses

Power analyses 
are not conducted.

Conduct power 
estimations based 
on effect sizes 
reported in previous 
publications.

Conduct power estimations 
based on effect sizes 
reported in previous 
publications. Explain all 
decisions and annotate 
code.

Conduct power 
analyses based 
on simulation 
studies. Explain 
all decisions and 
annotate code.

Target sensor 
samples

Chosen 
assessment 
schedules are not 
explained.

Specify basic 
assessment schedule 
(e.g., study period).

Specify target behaviors 
(e.g., dates such as days 
of the week or time of the 
year, time windows, and 
sampling frequencies).

Same as Level 2.

Materials Materials are not 
preregistered.

Provide list of 
constructs together 
with number of 
items, parameters 
derived in mobile 
sensing, and units 
of mobile sensing 
parameters.

Describe complete 
materials in repository 
together with items (if not 
protected by copyright).

Describe algorithms to 
specify how mobile sensing 
parameters are determined.

Store and explain/
annotate materials 
in repository.

Store code for data 
collection in a 
maximally generic 
way.

Preprocessing 
and 
statistical 
analyses

(Pre)processing 
and data 
analyses are not 
preregistered.

Specify basic (pre-
processing decisions 
(e.g., definition of 
daytimes, handling 
of outliers or 
missing values) and 
describe analyses.

Make required decisions 
about data (pre)processing 
in advance to reduce 
researcher degrees of 
freedom. Check for any 
theoretical considerations 
or any earlier work which 
can be relied on. Describe 
data analyses.

Store (pre-)
processing and 
analyses code (e.g., 
based on pilot 
study) before data 
collection.

Note. Different levels of specificity (LS) of preregistration standards are presented. LS 0 is shown for comparison and 
describes scenarios that do not meet any standard. The levels LS 1 to LS 3 are arranged in ascending order, describing the 
lowest to the highest level of specificity of transparent preregistration. For some topics, only fine differences exist between 
levels.
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TABLE 3.2.  Suggestions for Reporting Standards in Mobile Sensing Studies

Topic
Level of specificity 

0
Level of specificity 

1
Level of specificity 

2
Level of specificity  

3

Research 
questions and 
hypotheses

Exploratory and/
or confirmatory 
analyses are 
reported, but not 
labeled differently.

Report 
exploratory 
research questions 
and label as such.

Report on nondirected 
hypotheses and, if 
necessary, on exploratory 
analyses and label them 
as such.

Report on directed 
hypotheses and, 
if necessary, on 
exploratory analyses 
and label them as such.

Target 
population

Recruitment and 
resulting sample 
are not described.

Report basic 
information on 
how participants 
were recruited.

Describe recruitment 
strategy and report 
descriptive information 
on sociodemographics of 
sample.

Describe recruitment 
strategy, dropouts, and 
sample characteristics. 
Compare sample with 
target population 
group.

Target sensor 
samples

Assessment 
schedules are not 
explained.

Report basic 
assessment 
schedule (e.g., 
study period, time 
of the year).

Describe target behaviors 
(e.g., dates such as days 
of the week or time of the 
year, time windows, and 
sampling frequencies).

Same as Level 2.

Data 
collection: 
Onboarding 
and quality 
monitoring

Data collection 
procedures are not 
reported.

Include overview 
of data collection 
procedures in the 
manuscript.

Extensively describe data 
collection procedures as 
supplemental material 
of the manuscript (e.g., 
changes to software or 
specific incidents during 
the study).

Store and explain/
annotate all materials 
for data collection in 
open repository.

Data 
collection: 
Onboard 
processing

Onboard 
processing 
software is 
mentioned 
without further 
specifications.

Report exact 
version number of 
the software.

Describe onboard 
processing algorithms 
and, if available from the 
manufacturer/developer/
author, provide measures 
of validity and reliability.

Describe onboard 
processing algorithms 
and report validation 
measures from own 
pilot testing.

Preprocessing Preprocessing 
decisions are not 
reported.

Give an overview 
of preprocessing 
decisions in the 
manuscript.

Report on final 
preprocessing decisions 
and any changes 
compared to the 
preregistered steps.

Be aware of the 
uncertainty implied by 
researcher degrees of 
freedom and state them 
as a limitation of work 
(Hoffmann et al., 2021).

Integrate alternative 
preprocessing 
decisions in the 
statistical analysis 
by systematically 
reporting results and 
robustness analysis 
(e.g., multiverse 
analysis).

Open code Data processing, 
analyses, and 
results are 
reported in the 
manuscript.

Publish code 
without further 
documentation/ 
explanation.

Publish well-documented 
code (e.g., codebook 
describing variables and 
their abbreviations used 
in the analysis code; 
describe preprocessing 
steps).

Facilitate 
reproducibility by 
providing well-
documented code/
results by using 
software management 
tools (e.g., Docker, 
Packrat, GitHub; see 
Epskamp, 2019; Peikert 
& Brandmaier, 2019).

(continued)
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Reproducibility (or verification) is often understood as using the original raw data 
and analysis scripts to compute the results again (Clemens, 2017). Replication often refers 
to “repeating the methodology of a previous study and obtaining the same result” (i.e., 
method-focused replication, Nosek & Errington, 2017, p. 1) in an independent sample 
of participants/observations. Yet replication should mean a research design that tests 
whether two (or more) studies produce the same causal effect within the limits of sam-
pling error (i.e., causal effect-focused replication; Steiner et al., 2019, p. 281). The dif-
ferences between reproducibility, method-focused replication, and causal effect-focused 
replication become apparent when examining the specifics of mobile sensing.

Mobile sensing data often rely heavily on feature extraction and preprocessing of 
sensor data, for example, determining sleep–wake phases through machine learning 
algorithms that utilize phone usage and physical sensor data (Min et al., 2014). When 
implementing third-party software packages for feature extraction, preprocessing, and 
analysis of data, newer versions of the same packages might result in (slightly) altered 
results, unknown to the researcher. One solution could be to build dynamic workflows 
that manage software versions and changes (i.e., containerization, dependence man-
agement, and version management; Peikert & Brandmaier, 2019). Yet reproduction of 
results becomes even more complicated when creating algorithms from original data. For 
example, machine learning methods such as deep neural networks (DNNs) build their 
algorithms (i.e., feature weights) partly autonomously from researchers based on training 
data and optimization procedures (e.g., to predict sleep phases based on physical activ-
ity and other sensor information). When repeating the building of DNNs, differences 
in algorithms might arise, simply due to how DNNs work (Hartley & Olsson, 2020). 
At the very least, researchers aiming to reproduce results from original data should be 
aware that different (versions of) algorithms might lead to (somewhat) different results. 
The same applies to replication attempts, when previously published algorithms do not 
function the same on new versions of the operating systems: For example, early apps were 
allowed to read contacts and access the microphone, whereas some new Android versions 
restrict such access heavily.

Method-focused replication, that is, direct replications with new data (i.e., partici-
pants, observations) aim at adhering closely to the published original work (e.g., Klein, 
Vianello, et al., 2018). Transparent reporting as described in Table 3.2 facilitates direct 
replications, thus identifying, estimating, and reporting the same effects in both the origi-
nal and the replication study (Nosek & Lakens, 2014; Steiner et al., 2019). Still, two 

TABLE 3.2.  (continued)

Topic
Level of specificity 

0
Level of specificity 

1
Level of specificity 

2
Level of specificity  

3

Open 
publication

Not openly 
accessible.

Publish article on 
preprint server 
without structured 
prepublication 
peer review.

Publish article in peer- 
reviewed journal with 
open access.

Publish article in peer-
reviewed open-access 
journal scoring well 
on the TOP guidelines 
(www.topfactor.org).

Note. Different levels of specificity (LS) of reporting standards are presented. LS 0 is shown for comparison and describes 
scenarios that do not meet any standard. The levels LS 1 to LS 3 are arranged in ascending order describing the lowest to 
the highest level of specificity of transparent reporting. For some topics, only fine differences exist between levels.

�	 Transparency and Reproducibility	 75



crucial assumptions necessary for successful replications are not always met in direct, 
post-hoc replications (i.e., replicating after results are published). Failing to fulfill these 
assumptions threatens the replicability of results from mobile sensing (and other) studies.

The first assumption is that the treatment (or predictors) and the outcomes are sta-
ble across studies (Steiner et al., 2019). On the phenomenological level, the assumption 
of stability seems implausible because smartphone functions change so rapidly. Certain 
apps (or functions) might no longer be available or might be replaced by a different app, 
so that observing usage in a specific population is not possible a few months or years 
after the original study. Even the meaning of the same behavior might change quickly; for 
example, using text messaging on the smartphone 40 times per day might have indicated 
excessive usage in 2015 (Harari et al., 2020), yet this frequency is currently about aver-
age (Stachl, Au, et al., 2020). On the level of measurement, one requirement for direct, 
method-focused replication might be to hold sensing software constant across studies. 
Yet different research groups use various software solutions, which might differ in their 
technical implementations. In addition, even if the same sensing app were to be used 
across studies, operating systems today change rapidly, making it impossible to keep mea-
sures constant across time. For example, freely available onboard processing algorithms 
(e.g., classifying activity data as standing versus moving) are updated, but providers do 
not necessarily make transparent how and which parts of the software change.

The second crucial assumption for successful replications is that the real-world pro-
cess causing the effect must be constant across studies (Steiner et al., 2019). Previous 
research hints that digital behaviors and the underlying processes are temporally stable 
only across short periods. For example, communication patterns using smartphones 
changed even over 4 years (Stachl, Pargent, et al., 2020): People used fewer text mes-
sages, but more social media and communication apps. Subsequently the associations 
of specific communication channels with the trait extraversion also changed over time. 
Thus, along with rapid technological advances, the meaning of narrow digital behaviors 
(e.g., usage patterns, available apps) might change quickly, and previous results will not 
be replicable a few years later. Broader and more stable digital behavioral dimensions 
might be a possible solution to define outcomes, which are replicable over time (Stachl, 
Pargent, et al., 2020). This proposal is also in line with the idea of causal effect-focused 
replications, which means to replicate studies focusing on the same theoretical variables 
but allowing different measures and study procedures (Nosek & Lakens, 2014; Steiner 
et al., 2019). For example, if the association between extraversion and social behavior is 
to be replicated, this can be done in a variety of ways operationalized via mobile sens-
ing. For example, social behavior could be equally operationalized as communication 
app usage, social media app usage, sensed conversations, or call activities (Harari et al., 
2020). The progression of the field will reveal whether the principle behind causal effect 
replications are more appropriate in mobile sensing research.

To summarize, mobile sensing research will likely face direct replication failures 
despite transparent reporting, due to rapidly changing digital behavior and technical 
solutions. Paradoxically, replication failures underline the importance of transparency 
even more. According to Steiner and colleagues (2019, p. 281) “replication failure is not 
inherently a problem as long as the researcher is able to understand why the result was 
not reproduced.” We argue that transparency in mobile sensing studies can help to foster 
this understanding.
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Conclusion

Mobile sensing in psychology (and beyond) is a quickly developing and complex field. 
Transparency, both during preregistration and in the later reporting of studies, will help 
the paradigm to prosper because researchers can evaluate and learn from transparent 
studies as well as derive standards for conducting mobile sensing studies. The availability 
of standards, which are again transparently communicated, will facilitate placing mobile 
sensing research solidly within the method repertoire of behavioral research—similar to 
EEG, fMRI, or EMA (ecological momentary assessment; Mehl & Connor, 2012)—and 
thus allow for the easy and valid study of human behavior within the context that matters 
most, that is, daily life.

In our opinion, one of the major unresolved conflicts in mobile sensing research is 
still the compromise between achieving a sufficient level of transparency and respecting 
the data privacy of the participants. To achieve both goals responsibly, we hope that our 
chapter will encourage interdisciplinary research teams to work together on appropriate 
technical solutions.

Notes
1.	 https://developers.google.com/maps/documentation/places.

2.	 We fully acknowledge that several high-quality open-access journals exist that review 
manuscripts carefully before publication. For these journals, the same reviewing biases 
as in “classical” journals—overly enthusiastic or critical—can occur and thus need to be 
considered.
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C H A P T E R  O V E R V I E W

Humans’ moods, thoughts, and their behavior do not result solely from their genetic 
background, their learning experience, and other factors, but they are also critically 
shaped by the context people are exposed to. For example, humans feel and act differ-
ently when they are alone compared to spending time with others (Gan et al., 2021), at 
work compared to being at home, at a funeral compared to having a party, or exposed 
to a city environment compared to walking in a forest (e.g., Reichert et al., 2021; Tost et 
al., 2019). The definition of context clearly depends on the discipline (e.g., geography vs. 
computer science). This term is used in various ways (e.g., Corr & Matthews, 2020), and 
the psychological literature often refers to contextual influences in manifold ways—for 
example, with respect to time of day and social and environmental factors (e.g., Reichert, 
Giurgiu, et al., 2020). In this chapter, we want to operationalize context as factors that 
characterize the geolocation where humans are located at a certain point in time (such 
as city vs. rural environment, the degree of nature environment, population density, and 
air pollution).

Contextual influences impact the general population, that is, both healthy subjects 
but also vulnerable populations that are prone to mental disorders. Therefore, scientific 
and clinical interest in contextual influences on psychological outcomes is high. Fortu-
nately, we are living in a century of geospatial data and location- based services where 
vast amounts of geodata (such as weather data, traffic noise data, distance to urban green 
space, points of interests) are available, offering important context information for psy-
chological analysis. A rich suite of tools from geoinformatics is available to connect these 
data with georeferenced information from psychological research (e.g., Reichert, Giurgiu, 
et al., 2020). These data are often acquired by smartphone sensing via the Global Posi-
tioning System (GPS) and can be merged to other data sources that have been repeatedly 
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assessed in the everyday life of participants—for example, ratings of psychological out-
comes such as mood in electronic diaries and physiological signals from mobile sensors 
(e.g., electrocardiography, accelerometry).

In this chapter, we highlight a few examples of such research to illustrate how these 
method combinations have been applied thus far. There have already been very promis-
ing research endeavors combining geodata with mobile sensing information to investigate 
contextual impacts on psychological outcomes.

Almost two decades ago, Froehlich, Chen, Smith, and Potter (2006) assessed loca-
tion via mobile phone data and related it to personal experience. In 2014, Epstein and 
colleagues followed 27 polydrug users by tracking geolocation data, stress, mood, and 
drug-craving ratings across 16 weeks. Interestingly, and opposed to their initial hypoth-
esis, drug-users’ mood was increased in shabbier compared to tidy neighborhoods, while 
their drug craving and stress was decreased. Although this work is of an observational 
character and thus precludes any causal conclusions, it interestingly points toward the 
potential role of the discrepancy between participant health status and environment (tidy 
neighborhoods) for their psychological well-being.

Another study in the field of drug abuse (Gustafson et al., 2014) implemented real-
time feedback on smartphones (also called ecological momentary interventions [EMIs], 
ambulatory assessment interventions [AAIs], and just-in-time adaptive interventions 
[JITAIs]; e.g., Heron & Smyth, 2010; Nahum-Shani et al., 2018). These studies com-
prised real-time tracking and analyses of patients’ location triggering assistance when 
participants approached their favorite drinking spots.

In our recent study (Tost et al., 2019), we combined methods from epidemiology, 
ambulatory assessment, neuroscience, and geoinformatics, aiming to investigate how 
inner-city nature environments may impact affective well-being. We recruited 33 city 
dwellers and equipped them with smartphones for assessing time-stamped geolocations. 
We asked those participants to additionally provide repeated affective valence ratings (on 
smartphone diaries) and to wear accelerometers for physical activity measurement (via) 
in their everyday life. After the data acquisition, we quantified the participants’ relative 
exposure to green space immediately prior to the e-diary ratings of affective valence. 
Multilevel analyses showed that momentary exposure to inner-city green space signifi-
cantly enhanced affective valence. In an independent sample of 52 adult city dwellers, we 
replicated this finding (Tost et al., 2019). In this group of participants, we additionally 
acquired functional magnetic resonance imaging (fMRI) data and found that prefrontal 
cortex activation during the processing of negative emotional stimuli in an fMRI emotion 
regulation paradigm was less pronounced in participants exhibiting larger affective bene-
fits from real-life green space compared to low-responsive participants. Interestingly, fur-
ther geoinformatic analyses revealed that those high-responsive participants spent more 
time in city neighborhoods that were green-deprived and that were characterized by a 
heightened incidence of mental disorders. This led us to the conclusion that momentary 
exposure to inner-city green space can serve as a resilience factor that can compensate for 
reduced prefrontal resources in the city dweller’s everyday life (Tost et al., 2019).

Just recently, Müller, Peters, Matz, Wang, and Harari (2020) used impressive lon-
gitudinal Big Data from smartphones to relate geolocation movement patterns (such as 
distance traveled and irregularity), as well as experience sampling reports on places vis-
ited (such as home and social places) to psychological well-being. In this highly interest-
ing work, they showed the associations of distance traveled to stress, anxiety, and affect, 
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relationships of irregularity to loneliness and depression, and a negative connection of 
time spent in social places to loneliness.

The findings exemplified above demonstrate which kind of in-depth insights can be 
expected in the coming years and show how investigations on contextual influences can 
benefit psychological research. Therefore, in this chapter, we aim to introduce readers to 
basic geoinformatic methods that enable researchers to acquire and analyze geolocation 
data.

Different Ways to Acquire Location Data

Spatial Coordinate Systems

To be able to connect measurement data from ecological momentary assessments with 
existing spatial information, it is important to georeference the measurement data. Put 
differently, it is important to attach coordinates to the measurements. A common way 
to specify coordinates on earth is to use latitude, longitude, and altitude/elevation. The 
irregular shape of the earth (the so-called geoid) can be approximated by a spheroid. 
While there are subtleties—such as that the earth is flattened at the poles, thereby requir-
ing an ellipsoid instead of a sphere for more exact representation of a global navigation 
satellite system of concern for geodesy, cartography, and geography—here it is fine to 
think of our coordinate system as a sphere with a fixed radius.

Positions on the surface of the sphere are defined by angles such as 49.41° N 8.716° 
E (which is located in Heidelberg, Germany, Heidelberg Castle; see Figure 4.1). The lati-
tude of a point is the angle between the equatorial plane and the straight line that passes 

  FIGURE 4.1.    An example of how positions on the surface of the sphere are defined by angles, here 
using the location of the Heidelberg Castle, Germany (latitude and longitude: 49.41° and 8.716°).
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through that point and the center of the earth. The longitude of a point is the angle east 
or west of a reference meridian to another point that passes through that point. A merid-
ian is the half of a so-called great circle on the earth’s surface that passes through the 
North Pole and the South Pole; the great circle is thereby split at the poles. The prime or 
reference meridian is set by convention; nowadays it is common to use the meridian that 
passes through Greenwich in southeast London, England. Together with the distance to 
the center, latitude and longitude specify a unique position on the sphere. If just longitude 
and latitude are given, we are assuming that the location is at the surface of the earth.

Given a common geographic coordinate system, the question that arises is how to 
measure our position (or the position of a location of interest such as the place where a 
participant in our experiment is currently located).

Global Navigation Satellite Systems

A global navigation satellite system (GNSS) allows the determination of the location 
in a geographic coordinate system based on time signals transmitted by satellites. The 
United States’ Global Positioning System (GPS) is the best known GNSS, and GPS is often 
used—imprecisely—as synonymous to GNSS. Other systems include Russia’s GLONASS, 
China’s BDS, and the European Union’s Galileo (Madry, 2015).

The underlying idea of satellite positioning is to measure the position of the receiver 
(e.g., a GPS chip built into smartphones) relative to the known position of several satel-
lites. The distance to the satellites is calculated based on the time it took the signal from 
the sender (the satellite) to the receiver (e.g., the GPS chip of a smartphone). To estimate 
latitude, longitude, and altitude by triangulation, it is necessary to receive signals from at 
least four satellites. Ideally, the satellites would be distributed evenly across the sky; when 
clustered, position accuracy distinctly degrades.

Since the signal is transmitted by a radio signal, it is necessary to have a clear line 
of sight between receiver and satellites. If this is not the case, as in one example, since 
the receiver is located in dense forest, a deep canyon, or indoors, positioning may not be 
performed or positioning accuracy may be degraded. Environments full of obstacles such 
as large buildings, road infrastructure, and foliage impose challenges for standard GNSS 
signals (Madry, 2015): in addition to blockage or attenuation of the signal, the receiver 
might receive reflections of the signal or might be affected by other non-GNSS signals in 
nearby frequency bands. Blockage by building fronts or other obstacles might also lead to 
an unfavorable distribution of available satellites since signals can only be received from 
a limited part of the sky. We will expand on how one can deal with these challenges in 
the following sections.

The accuracy of a GNSS signal depends on many factors, including satellite geom-
etry, signal blocking, atmospheric conditions, and the features/quality of the receiver; 
GPS-enabled smartphones are typically accurate to within a 4.9-meter radius under open 
sky (van Diggelen & Ende, 2015). The difference between true and estimated position is 
referred to as the user accuracy; it is different from the user range error (URE) reported 
by GNSS providers (e.g., Renfro, 2017) since URE is focused on the sender and not the 
receiver of the GNSS signal (GPS.gov, 2021). With the help of additional systems such 
as wide-area augmentation systems (WAAS) or dual-frequency receivers, a precision of 
between 2 meters and 5 meters can be achieved (GPS.gov, 2021). Commercial WAAS are 
available for North and Central America, Europe, and North Africa as well as for South 
and East Asia and might be an option if higher precision of location recordings is sought 
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for the intended analysis. An additional source of uncertainty involves the GNSS receiver. 
As Zandbergen (2009) has shown, a smartphone receiver might produce less accurate 
results than regular autonomous GNSS receivers.

GNSS can be used to estimate positions, for example, using the smartphones of 
study participants. Smartphones are not suitable, however, in indoor settings (see below). 
Care should be taken with respect to the accuracy of the estimated position, especially 
in areas with a high density of obstacles such as large buildings, road infrastructure, and 
foliage: Positions are recorded with an attached uncertainty. If one wants, for example, to 
distinguish between recordings inside or outside of buildings, this might result in record-
ings that cannot safely be put in one or the other category. Therefore, uncertainty can 
be included in statistical analysis (e.g., as a dimensional variable), or positions might be 
filtered to exclude recordings with uncertain assignment (inside/outside). Critical obser-
vations can be identified by buffering participants’ locations and intersecting those buf-
fers with building footprints (see the subsections below for details on those geoprocessing 
routines; building footprint data can be freely accessed via OpenStreetMap, or in some 
countries such as the United States, by open administrative data). Moreover, indoor and 
outdoor positions can be distinguished based on an intersection of position recordings 
with building footprints.

Indoor Positioning by Wi‑Fi

Studies that focus on indoor settings cannot rely on GNSS to require location data. 
Examples of such studies involve analysis of the behavioral and psychological symptoms 
of dementia in a nursing home setting (Wang et al., 2019) or analysis of factors influenc-
ing walking distance estimation (Iosa, Fusco, Morone, & Paolucci, 2012).

GNSS is not suitable for indoor positioning because builtup environments do not 
allow for a reliable connection between receiver and GNSS satellites. While GNSS can 
receive signals in certain indoor environments, it is not able to provide room-level or sub-
room-level location. Indoor positioning must therefore rely on alternative technologies. 
This requires the setup of a network of sensors that allow triangulation of the position-
ing of the receiver. Most frequently Wi-Fi is used for indoor navigation and position-
ing (Loveday, Sherar, Sanders, Sanderson, & Esliger, 2015). Other technologies involve 
Bluetooth, ZigBee, RFID, UWB, visible light, acoustic signals, and ultrasound (Zafari, 
Gkelias, & Leung, 2019).

The underlying idea of Wi-FI positioning systems is to triangulate the position of 
the receiver by employing characteristics of wireless local area network hot spots and 
other wireless access points. The most commonly used approach relies on measuring the 
strength of the Wi-Fi signal (received signal strength indication [RSSI]) and identifying 
the access points. If the position of the access point is known in addition to the dampen-
ing of the system with distance to the access point, one can triangulate the position of 
the receiver from the received signal strength from several receivers. Identification of the 
different access points is based on parameters such as the Service Set Identifier and media 
access control address. Precision of the estimation can be improved by an initial calibra-
tion of the system—the so-called scene analysis or fingerprinting. Thereby, it is possible 
to account for the variability of the dampening of the signal due to a heterogeneous envi-
ronment (variability in building material, furniture, etc.). A statistical model is then used 
to infer the position of the receiver. Any change of the setup (e.g., by moving furniture) is 
likely to influence the accuracy of the position estimation.
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A median positioning accuracy of 0.6 meters has been reported for systems based 
on RSSI and fingerprinting (Kotaru, Joshi, Bharadia, & Katti, 2015). If higher accuracy 
is needed, alternative approaches such as Angle of Arrival, Time of Flight, Time Dif-
ference of Arrival, or Return Time of Flight can be used (Dargie & Poellabauer, 2010; 
Nguyen, Luo, Li, & Watkins, 2020). These alternative approaches are more demanding 
with respect to the technology used for the receiver and/or the sender (Zafari et al., 2019). 
Some of those approaches in addition require a line-of-sight connection, which might 
not be suitable for all environments (Zafari et al., 2019). In addition to its use for indoor 
positioning, WiFi can also enhance the accuracy of the GNSS-based positioning by using 
RSSI of WiFi access points (e.g., Stumpp, 2014).

Global System for Mobile Communications

If the focus of the analysis is on larger groups without the need to identify individual 
users and if requirements on position tracking are lower, Global System for Mobile Com-
munications (GSM) may be an alternative. Based on triangulation between cell towers 
and signal strength, position accuracy depends heavily on the distribution of cell towers. 
In urban areas, an accuracy of 50 meters might be achievable, but accuracy will be lower 
in rural areas. Accessing the data requires cooperation with the service provider and trig-
gers privacy issues in most countries, adding another layer of complexity to the analysis.

Overview/Summary

In most situations, GNSS-based positioning will be the most suitable choice since receiver 
chips are comparably cheap and available on most mobile devices. Whether participants 
will be asked to use their own devices or will be equipped with additional devices is a 
matter of choice that involves nonspatial aspects such as data privacy and trust, in addi-
tion to the comparability of different devices. Another factor to consider is battery use by 
the GNSS sensor, which might impose additional constraints if the participants’ devices 
(e.g., smartphones) should be used. If higher positional accuracy is needed, it might be 
worthwhile to pay for the use of wide-area augmentation systems. If the experimental 
design involves indoor settings, GNSS is not suitable, but it has to be substituted or com-
plemented by other systems such as Wi-Fi-based positioning. In any case, one should be 
aware of the uncertainty associated with the different positioning systems and the factors 
that influence uncertainty. Ignoring the uncertainty of the location allocation method 
used might affect subsequent spatial analysis steps (Wan, Kan, & Wilson, 2017).

Analysis of Location Data

The Power of GIScience: Fusing Information to Coordinates

The above-named techniques make it possible to track locations of study participants 
through time and space by repeated recording of the position. These coordinates can 
then, for example, be used to analyze the movement patterns of participants. If combined 
with ambulatory assessment (AA), psychological variables can be recorded together 
with the location. This allows assessment of how psychological variables (e.g., stress, 
mood, rumination) change through time and in space. In addition, it is possible to enrich 
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measurements of a study participant with information on the environment and thereby 
to interpret the measurement in its environmental context, which has proven to be a 
non-negligible factor when it comes to understanding, for example, psychiatric risk. For 
instance, in an analysis of subjectively perceived stress, it might be of interest to find 
the underlying environmental factors surrounding the person’s location that either cause 
or prevent a feeling of being stressed. These might be factors such as the proximity to 
streets, noise, crowdedness, or even the district’s known crime rates. Instead, positive 
stimuli such as green space or water might help one to recover from stress. In other 
words, in order to assess the dynamic reactions of humans to their environment, it is not 
only valuable but also necessary to combine the recorded geometrical location data with 
factual (also called attribute) data, which is enabled through geoinformatic approaches.

The process of analyzing recorded point location data can be structured into three 
steps: (1) data acquisition, (2) data processing, and (3) interpretation and visual represen-
tation of the results.

Acquisition of Geographic Data

After the location data are recorded, the first step of their contextual analysis is usually 
the acquisition of geographic data on the environmental factors of interest. Depending on 
the research question, it might be useful to include several geographic data sources in the 
analysis; some common sources will be presented in the following.

It is well known that the social composition of an environment affects individuals. 
For example, the perceived well-being of a person suffering from social anxiety will most 
likely be low in crowded places. In order to get information on the social vibrancy of a 
place, researchers often use data sources from social media such as Twitter or Weibo 
posts (e.g., Chen, Hui, Wu, Lang, & Li, 2019). Georeferenced posts, that is, posts with 
attached spatial coordinates, can be analyzed with respect to their frequency over time 
and density in space, providing information on the crowdedness or emptiness at different 
times of a day, week, or year (e.g., Ullah et al., 2019). Furthermore, text mining tools 
allow extraction of information from the message text that can be used to assign prevalent 
positive or negative sentiments to a place (Li, Westerholt, & Zipf, 2018; Sykora, Jackson, 
O’Brien, & Elayan, 2013). Heller and colleagues (2020) showed that novelty and experi-
ential diversity of physical locations and positive affect are bidirectionally linked. They 
showed that a sociodemographically heterogeneous district can have an activating effect, 
leading to “upward spirals.” Information on sociodemographic and socioeconomic fac-
tors can be obtained, for example, from official census data. For example, the American 
Housing Survey (AHS, 2021) provides rich information on socioeconomic indicators such 
as median household income, percentage of inhabitants living alone, or the percentage 
of age classes at the census tract level. Other countries provide less-open data access by 
restricting data access to higher-level administrative units. Commercial geodata provid-
ers might fill that gap by offering finer scale information. Frequently, such information 
on finer scales originate from model-based downscaling and not from finer scale data. 
For administrative units, which might be necessary to extract the region of interest, sev-
eral sources, such as the Database of Global Administrative Units,1 are available.

Apart from social factors, the built or natural elements of the environment influ-
ence humans and their experiences, such as the density of buildings, the proximity to 
streets, and noise or air pollution, but also the share of green space or blue space (lakes, 
rivers). For this purpose, official data about environmental attributes can be used, such 
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as TIGER2 or INSPIRE,3 or global crowd-sourced data, such as OpenStreetMap,4 which 
can be downloaded (e.g., from Geofabrik5). OpenStreetMap offers a large set of attri-
butes that further describe map features (e.g., building types, points of interest such as 
shops, bars and restaurants, amenity types, street types). For a more detailed assessment, 
3D data can also be used, such as 3D city models or LiDAR data, which even allow for 
identification of single objects such as buildings or trees.

A first characterization of a location at a broader scale can be based on information 
on its land use or land cover. On the one hand, land cover represents the physical proper-
ties of the surface (e.g., vegetated, buildup, water body) and can be derived based on satel-
lite or aerial imagery. Land use, on the other hand, describes how the land is used (e.g., 
residential, recreational, industrial, agricultural). The relationship between land use and 
land cover can be complex since the same land cover (e.g., forest) can be used in different 
ways (e.g., recreation, forestry, protected area), and the same land use (e.g. recreation) 
can be linked to different land cover (e.g., recreation can be realized on built-up areas 
such as Disneyland, at a beach, or in a forest).

Studies show, for example, that inhabitants of areas with larger shares of tree can-
opy, are on average healthier than those living in areas with comparatively higher shares 
of grassland (Astell-Burt & Feng, 2019). Exposure to urban green space has been shown 
to affect the mental well-being of city dwellers in their everyday life (Tost et al., 2019).

Several sources, such as CORINE Land Cover6 or Urban Atlas7 for Europe, the 
National Land Cover Database for the United States,8 or global datasets such as OSMlan-
duse,9 the Copernicus Global Land Service,10 or AVHRR Global Land Cover Classifica-
tion11 provide information on land cover. The INSPIRE geoportal, for example, offers 
several datasets on the built and natural environment for the European Union.

Satellite imagery allows further assessment of these areas through their reflectance 
ratios. The U.S. Geological Survey (USGS) EarthExplorer12 provides free access to dif-
ferent satellite images for different spatial and temporal units. For example, one com-
monly used measure to assess the vitality of plants is the Normalized Difference Veg-
etation Index (NDVI; Carlson & Ripley, 1997; Cihlar, Laurent, & Dyer, 1991), which 
can be used as a proxy for vegetation cover if land cover information is missing. The 
NDVI ranges from –1 to 1 and represents water as negative values, built areas and bar-
ren lands as low positive numbers, and larger positive numbers as healthier vegetation. 
Digital elevation or digital surface models derived from remote sensing—such as ASTER 
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Tachikawa et al., 
2011) or STRM (Shuttle Radar Topography Mission) (Rabus, Eineder, Roth, & Bam-
ler, 2003)—can further provide information on the elevation of a measurement and can 
therefore be used to calculate the visual field of a person. Terrain information, together 
with three-dimensional city models (Biljecki, Stoter, Ledoux, Zlatanova, & Çöltekin, 
2015) and information on trees, can, for example, be used to calculate the shadiness of 
a place at a given time. Thermal comfort at a location might affect mood and well-being 
and could also act as an explanatory factor for the attractiveness of a location.

A large amount of geodata are available as open data. However, data availability 
differs between countries. While coarser scale information is regularly available, data 
at higher spatial or temporal resolution might not be available or might involve costs 
for access. Also, not every dataset might be suitable for the planned analysis. Criteria 
to be considered to assess the fitness for purpose are the spatial and temporal resolu-
tion, the recording date, costs, and data quality indicators. Data provided by agencies 
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or research information come together with the required metadata (data about the data), 
which allows such an assessment. Volunteered Geographic Information such as Open-
StreetMap or data derived from social media tend to be of spatially varying data quality, 
and therefore they require additional consideration (e.g., Barron, Neis, & Zipf, 2014; 
Mocnik et al., 2019). In addition, spatial phenomena might be represented in different 
ways, which affects how data can be further analyzed. Therefore, the next section pro-
vides a brief overview on geoinformatic systems and geoinformatic data models, prior to 
the presentation of common geoinformatic functions.

Processing and Analyzing Geographic Data

Geographic information systems (GIS) are software programs that offer a wide range 
of tools to work with spatial data (Neteler & Mitasova, 2008). A wide set of GIS and 
other tools for data processing are available, ranging from commercial systems, such as 
ArcGIS,13 ENVI,14 open- source systems such as QGIS15 (Menke, 2019), GRASS GIS,16

GeoDa17 (Anselin & Rey, 2014), to programming languages with geographic mod-
ules, such as Python18 or R19 (Brunsdon & Comber, 2016), or spatial databases such as 
PostgreSQL/PostGIS (Obe & Hsu, 2011) or Oracle Spatial.20 While the technical skills 
required to use such systems differ, all systems share common concepts. They all allow 
combining different spatial datasets by means of an overlay or feature planes technique 
(layer concept); one can think of several layers of information that cover the same place 
(cf. Figure 4.2). This concept is different from that of joins in conventional relational 
database systems which rely on common key fields to link data from different datasets. If 

 FIGURE 4.2.  The layer concept is of fundamental importance in spatial information processing. It 
enables working in different layers with their respective data models and visualizing different data 
sources at once. The complex reality (bottom layer) is represented either as vector or raster data. 
Here, the top layers provide information on GPS positions of participants and trees, represented 
as vector points. The middle layers represent buildings and land use (water, green space, streets, 
residential) as polygons, while the fifth layer from the top is a raster layer containing NDVI values. 
Based on coordinates, information from the different layers can be related using geoprocessing 
approaches.
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the positions of participants are enriched by geographic coordinates, links to information 
from other spatial datasets such as land use, temperature, distance to points of interest, 
and visibility of green space can be established.

Geographic Data Models

The type of analysis that can be used to further process the geodata depends on its rep-
resentation, that is, its data type. Geographic information is characterized by the clear 
assignment of each object and its information to a geographical location. Depending on 
the phenomenon, this information can be continuous (e.g., population density) or discrete 
in space (e.g., the location of a building). Moreover, the phenomena might change rela-
tively smoothly in space (e.g., air temperature in flat terrain outside of builtup areas) or 
roughly (e.g., land-use or vegetation cover in residential areas).

When continuous information is not represented as a function, it is discretized to a 
tessellation of the space that can consist, for example, of regular raster cells (cf. Figure 
4.3). Each cell of the tessellation provides information about the space it covers. In the 
case of satellite images, one raster cell might give information on the elevation, tempera-
ture, or reflectance per cell. Discrete information, such as a coordinate pair and its attri-
butes, is usually represented as vector data.

  FIGURE 4.3.    Example raster data. The maps show the amount of green present in the city center 
of Mannheim, Germany. The data are stored in a raster format. Each cell contains a value that 
represents the amount of vegetation (NDVI).
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Depending on the data type, spatial objects have geometrical, topological and usu-
ally thematic properties and can be further enriched by temporal properties (e.g., date 
of recording), meta-information (e.g., recording method, coordinate system), and object 
identifiers that allow a well-defined access.

In the two-dimensional space, vector data can be geometrically represented as point 
(e.g., a position of a participant, a single trees), line (e.g., rivers, streets, the trajectory of 
a participant), or polygon features (e.g., parks, administrative areas, the activity space 
of a participant), all of which rely on points, with each point representing an x- and 
y-coordinate pair. While a point is stored as a single coordinate pair, a line consists of at 
least two points, and a polygon is a closed line consisting of at least three points. A set of 
location points of one person could therefore be combined to a line feature if required. If 
positions of multiple participants are present in a recording, it will be necessary to group 
the measurements first by participant and afterward by time before creating line objects. 
It is also possible to create new features based on existing features: One might be inter-
ested in identifying the activity space of a participant based on the individual measure-
ment positions. A simple way to construct the activity space would be to calculate the 
convex hull of the activity space and use that for further analysis. The convex hull of a 
feature set is the minimum convex polygon that covers all features; convex in this context 
implies that all straight-line connections between any two points on the border of the 
polygon are completely within the polygon. It would also be possible to construct activ-
ity spaces for different times of the day (e.g., work, home) or days of the week (workdays 
and weekdays).

Spatial features can also be described by their position relative to other features. 
An observation might be inside a building, next to a bakery, or on the eastern side of a 
major road. These so-called topological relations can be used to link different features. 
Important topological relations between two objects are “disjoint,” “contains,” “over-
lap,” “meet,” “inside,” “covers,” “covered,” and “equal.” A possible spatial query using 
data on a set of trees (point features) and one park (polygon feature) could be to find all 
the trees or bushes contained by this park. Many studies have already shown that urban 
green spaces with a higher biodiversity promote more positive emotions in humans (e.g., 
Cameron et al., 2020; Fuller et al., 2007). As trees or bushes offer habitats to many spe-
cies, it might be worthy to include them in an analysis. Apart from that, they influence 
their environment by providing relevant ecosystem services and contributing to a pleasant 
micro-climate. One might be further interested in identifying participant measurements 
that were located inside a park, outside of a building, or in a distance of 50 meters from a 
bar. Or one might be interested in identifying all the urban green spaces or alcohol-selling 
places inside the activity space of a person.

Raster data are geometrically represented as pixels (e.g., satellite imagery, orthopho-
tos), which are aligned matrix-like in rows and columns and therefore provide topologi-
cal information through neighboring cells (cf. Figure 4.3). Compared to vector data, only 
the origin of the matrix must be stored, as the location of each cell can easily be computed 
due to their regular shape. Information commonly represented by raster data are eleva-
tion (digital elevation models, DEM) or information derived from satellite imagery such 
as vegetation indices, land cover information, or surface temperature. It is best suited for 
continuous data such as surface temperature or noise, while vector data are best suited 
for clearly defined objects such as buildings. Instead of representing the activity space of 
a person as a polygon with distinct borders, one might also represent the activity space by 
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a raster in which each cell represents the probability that the cell belongs to the activity 
space. This allows a fuzzier representation of the information.

A spatial object can provide thematic information in the form of attributes that 
further describe the object (cf. Figure 4.4), such as the answers a participant gave in an 
e-diary rating at a specific location, together with the time of the recording and the par-
ticipant ID, the tree species, the height of a building, the air temperature recorded by a 
sensor, along with the timestamp or the number of lanes of a street. Frequently, geodata 
already contain attribute data. If additional information is available as tabular data (e.g., 
comma-separated values, dBase files, Excel sheets, database tables), it is necessary to 
attach the table to the spatial objects. If spatial objects and tabular data join a common 
key field, they can easily be combined by a (nonspatial) join of the two tables. For point 
data, it is also possible to provide coordinates for the individual objects in the table and 
to import the data directly into the GIS.

Common Geoinformatic Functions

A GIS allows for a deeper understanding of spatial information and its interactions 
through different possibilities of data modifications, explorations, and analyses (cf. 
Table 4.1). Functionality to work with spatial data can be broadly categorized as follows 
(Cromley & McLafferty, 2012):

  FIGURE 4.4.    Link between geometry and attribute information. Each geometry object in a fea-
ture layer is linked to an attribute table with associated information. The example shows a road 
network with information on neighboring street segments and the average daily traffic volume at 
the road segment. The selected road segment in the map is highlighted in black, the corresponding 
row in the attribute table is highlighted in gray.
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•	Measurement (e.g., distance, area)

•	Topology (e.g., adjacency, overlay)

•	Network and location analysis (e.g., shortest path routing, accessibility)

•	Surface analysis (e.g., viewshed and visibility analysis)

•	Statistical analysis (e.g., spatial sampling, spatial autocorrelation, spatial interpo-
lation)

In the following, we provide an overview of spatial operations. We aim here at fun-
damental operations that might be most suitable in psychological research and related 
domains without intimidating the reader with variants and special applications.

To prepare data for the region of interest, a common procedure might be to clip the 
data (e.g., the measurements) to the extent of the region of interest. Similar to this spatial 
filter, the acquired data points can also be filtered based on their attribute information, 
such as the accuracy of the measured location. Depending on the purpose, it could be 
useful to geometrically modify vector data by combining, for example, a set of points to 
a line. In this way, tracking the points of one person during one day can be united to a 
path. It might also be necessary to merge two datasets of the same attribute if none of 
them fully covers the study area (e.g., data of two different administrative regions).

A useful function to examine the surroundings of a vector object is the buffer func-
tion. It can be adequate if the object influences its environment or, more generally stated, 
the object interacts with its environment through space. Streets influence their surround-
ings in terms of pollution and noise, and a visual field of a person walking through a city 
can be modeled by a buffer around the person’s location or the person’s path. Another 
possible application is to use a buffer function in order to find all neighboring points of 
the same person within a certain time frame in order to downsample the data when a per-
son stayed for a long time in the same place, but different GPS locations were stored due 
to the limits of accuracy of the GPS signal. Another approach, in some sense similar to 
the buffer, is using networks in order to calculate a certain catchment area. For example, 
for a hospital, a network of streets could be used to find all the buildings which in terms 
of distance on the streets are closer to the respective hospital than to other hospitals.

Different datasets can also be intersected. It may be of interest to intersect a person’s 
visual field at a given location with a layer containing green space polygons. In this way, 
the percentage of green space exposure of the environment can be calculated.

Geo information systems (GIS) also allow for calculation of distance and area. This 
could be the area of an urban green space, the distance of a person’s location to the next 
street, or even the velocity of a person’s movement. However, to measure lengths and 
areas, it is necessary to use a metric coordinate system; therefore, it might be necessary 
to first reproject your data. Information on the current coordinate system can be found 
in the meta information.

With geographic data, spatial statistics can also be assessed to get an understanding 
of the spatial distribution of the elements. The point density of GPS measurements can be 
calculated for different areas to find out more or less visited areas, or, when dealing with 
location data of a heterogeneous group, differences in spatial behavior can be assessed 
for the subgroups. For discrete point events, point pattern analysis offers a rich set of 
statistical approaches to study the distributional pattern, compare it between groups and 
against theoretical distributions, as well as to include covariates in the analysis (Baddeley, 
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TABLE 4.1. Elementary Spatial Functions with Examples
Function Input data Output Description

Merge In this example, buildings 
of two administrative areas 
(black and gray) are merged 
to one (dark gray) building 
layer.

Clip (select 
by location)

Here, a building layer is 
clipped to the region of 
interest (dark gray area).

Select 
by attribute

In this case, all the primary 
roads (black) were selected 
from a layer containing all 
types of roads (black).

Buffer As an approximation of the 
surroundings of a person 
at a specific location (black 
dot), a buffer of 100 meters 
(gray) was created.

Intersection A buffer around a location 
was intersected with all 
land-use polygons tagged 
as grass to obtain the grass 
areas within the person’s 
environment.

Note. Data source: OpenStreetMap (2020, https://www.openstreetmap.org).
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Rubak, & Turner, 2016). Another way to analyze, for example, patterns in spatial or 
spatiotemporal movement patterns is using specialized cluster analysis (Besag & Newell, 
1991; Kulldorf & Nagarwalla, 1995; Zhang, Assunção, & Kulldorff, 2010).

Spatial data might also trigger additional challenges. One of the biggest challenges 
posed by spatial data is spatial autocorrelation. According to Tobler’s first “law” of geog-
raphy: “Everything is related to everything else, but near things are more related than 
distant things” (Tobler, 1970, p.  236). If the data points are spatially autocorrelated 
after the structural component of the model has been considered, the usual assumption 
of independence of the data points is violated, which might lead to biased estimates and 
standard errors. To take this nuisance into account, a rich set of statistical methods 
is available that involve but are not restricted to spatial filtering and spatial eigenvec-
tor mapping (Griffith, Chun, & Li, 2019), autoregressive models, generalized estimating 
equations, wavelets (Carl, Dormann, & Kühn, 2008), and spatial Bayesian approaches 
(Haining & Li, 2020). These methods vary by complexity, applicable error models, and 
computational burden (Dormann et al., 2007).

If temporal information exists, it can also be assessed in the temporal dimension to 
assess not only how a spatial pattern looks like, but also if a trend or differences in time 
exist. For these cases, a grid that covers the region of interest with symmetrical cells could 
also be useful. For each cell, parameters such as the number of measurements of the per-
centage of a certain land cover type (through intersecting the land cover layer with each 
cell) can be calculated, which could later be displayed as a heat map.

Potential Nuisance: Different Spatial Coordinate Systems

All functions described above require that information is using the same spatial coordi-
nate system. Unfortunately, different geographic coordinate systems are used in differ-
ent parts of the world because different geographic coordinate systems are better suited 
to represent the geoid in different parts of the world. In addition, many operations are 
performed on a plane in cartesian coordinates. This requires projection of the coordi-
nates from the sphere or ellipsoid to the plane and leads to projected coordinate systems. 
Projected coordinate systems differ in the distortion that is introduced when projecting 
the 3D surface to a plane. Distortions depend on scale: For small areas such as cities, 
their effect should be small compared to the errors of positioning by GNSS and other 
techniques. It is possible to transform data between different geographic and projected 
coordinate systems; some tools even perform this function automatically. However, it is 
necessary that the coordinate system of the data is known. Nowadays, this information 
should be present in most datasets you encounter. Data acquired by GNSS or indoor loca-
tion systems will typically be stored in the world geodetic system 1984 (WGS84) as long 
as this is not changed on purpose. Further details on geographic and projected coordinate 
systems are, for example, provided by Jenny, Šavrič, Arnold, Marston, and Preppernau 
(2017), Kessler and Battersby (2019), and Snyder (1987).

Cartography: Visualization of Geographic Data

Especially when working with geographic data, maps can be useful not only as a carto-
graphic representation of the results, but can also be part of the analysis process and the 
interpretation of the results themselves. In comparison to a table, a histogram, or other 
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methods of data visualization, a map can show the underlying spatial patterns at one 
glance. However, creating good maps is a field in itself, as scale, projection, map symbols, 
and their visual variables (such as shape, size, hue, gray tone value, texture) can also lead 
to misleading interpretation or even user manipulation when used inappropriately. Car-
tography with its old history therefore provides a wide range of literature with guidelines 
for map making. Good starting points for further studies in cartography are Darkes and 
Spence (2017), MacEacheren (1995), Monmonier (2018), and Peterson (2015).

Using Spatial Data to Create Experiments

Spatial information can be used not only to analyze and explain the behavior of a person 
depending on the environment, but also to design experiments. For example, to under-
stand how environmental factors such as availability of green space, noise level, or air 
pollution influence the well-being and mood of a study participant, one could either 
passively follow the path of the person through space or actively route the participant to 
locations that provide a specific exposure. All that is needed is the location of the par-
ticipant, spatial information about the relevant exposure factors—to identify locations 
to which the person should be directed—and a routing service. Commercial and open-
source routing services typically provide an interface that requires the start and the end 
coordinates and return the route to the destination. Specialized services allow selection of 
different criteria of the envisioned route, such as a green or less noisy route (e.g., Novack, 
Wang, & Zipf, 2018). This, for example, allows extending the analysis of Bratman, Ham-
ilton, Hahn, Daily, and Gross (2015), which assigned participants to fixed routes with 
different green spaces. Here, the route assigned to a participant could be derived based on 
the current location of the participant. It is thereby possible to integrate possible interven-
tions easier into the everyday life of participants.

Conclusion

Spatial context matters in everyday behavior. It can be seen as a confounding factor that 
needs to be controlled for or as an interesting study field on its own. Spatial analysis in 
psychological research seems to be still in its infancy, which might be more due to lack 
of knowledge than to lack of interesting research questions. The spatial turn in other 
disciplines has led to the availability of a rich set of tools to collect, manage, analyze, 
and visualize spatial data. Spatial data are increasingly publicly available and can be 
combined with location data of participants. While working with spatial data is not free 
of challenges, a rich set of tools and expertise is available to address those challenges.

How to Continue

While we have covered the basic concepts of location data analyses here, it will presum-
ably be challenging to start with a real-life data analysis from scratch. How to continue 
depends on your requirements and on your available resources. If it is sufficient for you 
to understand the basic concepts, but you lack the time to dig deeper into the practical 
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aspects of spatial data analysis, it might be an option to involve a partner with a GIScience 
background into your projects. GIS and spatial data analysis are commonly part of geog-
raphy study programs, so it may be worth it to investigate possibilities at a nearby uni-
versity. Potentially, they are interested in becoming a partner in new, inspiring research 
projects. Alternatively, you could hire a consultant to plan and perform the necessary 
steps for you. Participating in a project with partners experienced in spatial data analysis 
will help to better understand concepts and challenges of spatial analysis as a first step. 
If you have the capacity to invest more time and the interest to dive deeper into the topic 
on your own, free online resources are available both for commercial software as ArcGis 
and for free software as QGIS. Since commercial GIS software comes at a substantial 
cost, it might be worth testing a free tool first; with respect to functionality, differences 
are usually neglectable. While commercial software comes with extended documenta-
tion, community resources for open GIS software are often sufficient. For QGIS, a good 
starting point could be www.qgistutorials.com/en/docs/learning_resources.html. But it 
is also worthwhile to check the availability of massive online courses offered by many 
universities and to check out some of the books listed in the references of this chapter. 
However, be prepared to realize that many examples in applications will (still) be outside 
of your domain since business and environmental topics are dominant. However, the 
concepts should be easily transferable to your domain. Similar to other domains, to avoid 
frustration, at first it is good not to be too ambitious.

Notes
	 1.	 https://gadm.org

	 2.	 www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html

	 3.	 https://inspire-geoportal.ec.europa.eu

	 4.	 https://openstreetmap.org

	 5.	 https://geofabrik.de

	 6.	 https://land.copernicus.eu/pan-european/corine-land-cover

	 7.	 land.copernicus.eu/local/urban-atlas

	 8.	 https://mrlc.gov

	 9.	 https://osmlanduse.org

	10.	 https://land.copernicus.eu/global/products/lc

	 11.	 http://prettymap.mooncoder.com/maps/metadata/data.html

	12.	 https://earthexplorer.usgs.gov

	13.	 https://arcgis.com

	14.	 https://nv5geospatial.com/Products/ENVI

	15.	 https://qgis.org

	16.	 https://grass.osgeo.org

	17.	 https://geoda.software.informer.com

	18.	 https://python.org
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	19.	 https://R-project.org

	20.	 https://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_intro.htm
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C H A P T E R  O V E R V I E W

Physical behavior is defined as the observable physical behaviors (PBs; activities, pos-
tures, and movements) that people perform in their regular daily life. It is an umbrella 
term covering the constructs physical activity, sedentary behavior, and sleep. These con-
structs are to a large extent similar in measurement methods but with different health 
effects, and their outcomes partly depend on each other; for example, the longer a person 
sleeps, the less time remains for physical and sedentary activities. However, at the same 
time, they are independent of each other and have their own relevance, clinical back-
ground, and research platforms. In this chapter, we will focus on physical activity and 
sedentary behavior; sleep will be discussed mainly from the perspective of its dependency 
on physical and sedentary behavior. Subsequently, we will address the background, cat-
egories and relevance of PBs; discuss issues of measurement, data processing, and met-
rics; provide an example from psychology; and end with recommendations and future 
perspectives.

Introduction

Why Measure PB?

Physical behavior—the observable physical behaviors (PBs; activities, postures, and 
movements) that people perform in their regular daily life—is an umbrella term covering 
the constructs physical activity, sedentary behavior, and sleep.

Physical activity (PA), defined as any bodily movement produced by skeletal muscles 
that require energy expenditure (Caspersen, Powell, & Christenson, 1985), is beneficial 
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for physical and mental health outcomes (Warburton & Bredin, 2017). In particular, 
being regularly physically active is associated with reduced risk for many noncommuni-
cable diseases such as cardiovascular heart disease, hypertension, diabetes, cancer, and 
all-cause mortality (Lee et al., 2012), and it can contribute to the maintenance of healthy 
weight (World Health Organization, 2010). Furthermore, being physically active has 
benefits for mental health (e.g., lower prevalence of depressive symptoms and anxiety or 
improved self-esteem; Schuch et al., 2016), delays the onset of dementia (Livingston et 
al., 2017), and contributes to general well-being (Das & Horton, 2012). In simple words, 
PA is a well-known protective factor for preventing and managing diseases across the 
lifespan.

Although there is strong evidence that PA is beneficial for physical and mental 
health, many people are not sufficiently active. For example, researchers have reported 
that approximately 80% of U.S. adults and adolescents are insufficiently active, which 
means that they do not meet current PA recommendations, for example, being moder-
ately physically active for 150 minutes throughout the week (Piercy et al., 2018; Tremblay 
et al., 2017). Technological and social changes in domestic, environmental, and occu-
pational settings have led to an increasingly inactive lifestyle among different cultures 
and countries (Church et al., 2011). Especially in wealthier countries (e.g., high-income 
Western countries), the transition toward more inactive occupations and personal motor-
ized transportation contributes to a high physical inactivity level. Tremblay describes the 
current situation as follows: “People sleep less, sit more, walk less frequently, drive more 
regularly, and do less PA than they used to.” (Guthold, Stevens, Riley, & Bull, 2020).

From a health perspective, it is not only PA and exercise that are essential. Epidemio-
logical studies and laboratory studies using sophisticated biology and medical chemistry 
methodologies identified unique mechanisms that are distinct from the biological base of 
PA and exercising (Hamilton, Healy, Dunstan, Zderic, & Owen, 2008). In this context, 
the construct of sedentary behavior (SB) should be discussed, that is, any waking behav-
ior characterized by an energy expenditure ≤ 1.5 metabolic equivalents (METs; 1 MET 
equals the amount of energy needed while sitting at rest) while in a sitting, reclining, or 
lying posture (Tremblay et al., 2017). The definition involves two parts: a postural and 
an intensity part. SB is increasingly recognized as a serious, worldwide public health 
concern. Researchers have found that SB is negatively associated with cardiovascular dis-
eases, diabetes, cancer, depression, and other physiological and mental health outcomes 
(Ekelund et al., 2016; Gilchrist et al., 2020; Huang et al., 2020). However, there is an 
ongoing discussion about the independence of SB effects on health; in other words, can 
sufficient PA counter the adverse health effects of SB? Previous studies have emerged, 
offering contradictory findings regarding this issue (Biswas et al., 2015; Ekelund et al., 
2016). Even though the dependency between both behaviors is not explicit, SB is an omni-
present behavior in everyday life (Gardner et al., 2019). In particular, previous studies 
have shown that adults spend most of their waking moments (i.e., about 8–11 hours per 
day) in a sedentary position (Diaz et al., 2016).

Sleep, completing the 24-hour day, is also well known as a health-related behav-
ior. Sleep is a naturally recurring and easily reversible state characterized by reduced 
or absent consciousness, perceptual disengagement, immobility, and the adoption of a 
characteristic sleeping posture. According to the Consensus Statement of the American 
Academy of Sleep Medicine and the Sleep Research Society, sleep is related to several 
aspects of human health (Watson et al., 2015). For instance, sleep is critically involved in 
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systematic physiology such as metabolism (Magee & Hale, 2012), cardiovascular systems 
(Wan Xi, Liu, Zhang, & Fu, 2012), mood regulation (Minkel et al., 2012), brain func-
tions, including neurobehavioral, cognitive and safety-related performance (van Dongen, 
Maislin, Mullington, & Dinges, 2003), and many other health-related outcomes (Watson 
et al., 2015).

In summary, the components of PB are one of the most important lifestyle factors 
related to several mental and physical health conditions. Measurement of it is crucial, 
among other things, for understanding the relationships with these health conditions, 
identifying people at risk, and evaluating interventions that aim at optimizing PB.

Categorization of PB

We have already stated that PB is an umbrella term. The distinction between the compo-
nents PA, SB, and sleep is, however, just one of the possible categorizations. For example, 
PB can also be studied from the perspective of the duration of intensity categories, such as 
the subcategories sedentary, light, moderate, and vigorous. In each case and independent 
of the categorization used, behaviors can be analyzed relative to each other rather than 
as individual entities (Dumuid et al., 2020). The so-called compositional data analysis 
(CoDA) offers an advanced approach to take the co-dependencies between PB categories 
into account. However, time or duration is not the only relevant aspect of PB. For exam-
ple, sedentary periods can vary in length (e.g., short or long sedentary bouts). Especially 
longer bouts, that is, periods of uninterrupted sedentary time (Tremblay et al., 2017), 
reached higher attention. Previous studies reported that longer sedentary bouts such as 
≥ 30 minutes may lead to detrimental health effects (Dempsey et al., 2018). In summary, 
the relevance of PB outcomes depends not only on the duration, but also on other aspects 
such as intensity, frequency, and type.

So far, these subcategories have been discussed from the perspective of health, but 
other perspectives and factors can be relevant as well, such as the purpose or context of 
an activity. To give an example: PB can be assessed from its context, such as house hold-
ing, commuting, leisure activities, work, and sports. From a physical health perspective, 
the purpose or context of PA might not be most crucial, but from the perspective of mean-
ing for a person or mental health, or when a personalized advice is needed, it surely is 
important. So far, we mainly focus on PA and SB, but the same principles can be applied 
to sleep. The sleep pattern involves the differentiation between the major sleep period 
(at night) compared to naps and daytime sleep. Moreover, additional parameters such as 
sleep (onset) latency, sleep quality, or sleep efficiency are also relevant aspects to describe 
a sleep pattern and are most used in sleep research (Ancoli-Israel et al., 2015; Fekedulegn 
et al., 2020). Table 5.1 provides an overview of different operationalization dimensions 
for each aspect of PB. Since researchers are increasingly interested in all aspects of PB 
by focusing on the interrelatedness of sleep, PA, and SB (Rosenberger et al., 2019), some 
research endeavors might be interested in assessing all facets simultaneously and in dif-
ferentiating them during statistical analysis.

One Aim and Many Devices

The technological process has developed new ways to capture human movement and 
nonmovement. Nowadays, activity monitors such as accelerometers have become the 
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preferred method due to their portability, affordability, low cost, small size, low power 
consumption, and opportunity to obtain large amounts of dense information (Bassett, 
2012). Accelerometers are small, wearable devices that record and store acceleration in 
gravitational units on one or more axes at sampling rates of typically 20–100 Hz. Accel-
eration signals are then processed to various outcomes (e.g., intensity, energy expenditure, 
body postures, or movement quality parameter such as smoothness) within a lower reso-
lution (e.g., seconds) and/or expressed per epoch of 5 seconds, 15 seconds, 30 seconds, 1 
minute, and the like. The use of accelerometers to assess PB in daily life has increased sig-
nificantly over the last decade (Burchartz et al., 2020). Multidisciplinary research groups 
are using accelerometers in a manifold way in different study settings—for example, 
in national surveillance (Troiano et al., 2008) or in clinical studies (Schasfoort et al., 
2018). Parallel to the number of studies, the number of research and consumer devices 
with different outcomes has increased as well (Wijndaele et al., 2015). Most importantly, 
outcome parameters from different devices are highly dependent on the used algorithm 
and processing steps. Mueller, Chimenti, Merkle, and Frey-Law (2020) found large 
and inconsistent differences between previously validated scoring methods. Therefore, 
although all of these devices have the same aim, that is, to assess and provide accurate 
information of PB, the increasing number of scientific and consumer wearables results in 
several challenges that merit further remarks.

TABLE 5.1.  Overview of Different Operationalization Dimensions for Each Aspect of Physical Behavior
Sleep Physical activity Sedentary behavior

Definition A naturally recurring 
and easily reversible state 
characterized by reduced 
or absent consciousness, 
perceptual disengagement, 
immobility, and 
the adoption of a 
characteristic sleeping 
posture

Any voluntary movement 
produced by skeletal 
muscles that results in 
energy expenditure

Any waking behavior 
characterized by an 
energy expenditure of 
1.5 metabolic equivalents 
(METs; 1 MET = energy 
expenditure in rest), while 
in a sitting, reclining, or 
lying posture

Biological state Sleep Awake Awake

Type Sleep at night, nap Activity of daily life, 
exercise

Screen-based sedentary 
activities and non-screen-
based activities

Domain At home, not at home Work, home, leisure, 
transportation

Work, home, leisure, 
transportation

Energy 
expenditure

~1 MET >1.5 METs (light, 
moderate, vigorous)

≤1.5 METs

Posture Sitting, reclining, lying Sitting, reclining, lying, 
standing, other

Sitting, reclining, lying

Bout length Short, moderate, long Short, moderate, long Short, moderate, long

Parameters 
(examples)

Sleep time, sleep latency, 
wake after sleep onset, 
number of awakenings

Duration, intensity, 
amount of PA (e.g., 
expressed in counts), 
energy expenditure, 
number of steps

Sedentary time, sedentary 
bouts, sedentary breaks
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First, since the number of available scientific and consumer devices increased mark-
edly (Lamkin, 2018), the data’s parametrization also increasingly varied from device to 
device. In particular, because of differences in hardware, software, sets of algorithms, or 
data processing steps (e.g., filters, epoch-length, non-wear-time definition), it has become 
impossible to compare and pool data. Second, in line with the variety of devices, algo-
rithms, and data processing techniques, there is an ongoing discussion about how the raw 
data should be processed optimally and harmoniously, which means in a similar way. In 
particular, different possibilities of processing accelerometer raw data into metrics are 
presented in the literature—for example, counts (Yang & Hsu, 2010), movement accel-
eration intensity (van Someren, Lazeron, Vonk, Mirmiran, & Swaab, 1996), euclidian 
norm minus one (van Hees et al., 2013), or mean amplitude deviation (Vähä-Ypyä et al., 
2015). Third, the use of different data collection protocols may also lead to a lack of stan-
dardization. In particular, several decisions such as monitoring period, sensor placement, 
or processing steps (e.g., defining a valid day) often vary from study to study and thus 
reduce the comparability between study results. Fourth, some studies have shown that 
consumer wearables have reasonable validity for estimating PB parameters such as energy 
expenditure (Bai et al., 2016), whereas other studies revealed moderate to substantial dif-
ferences for PA parameters (e.g., step-count, activity energy expenditure) when compar-
ing outputs from consumer and research devices (Mikkelsen et al., 2020). This results in 
a controversial discussion about applying consumer wearables for research purposes. For 
example, Scott (2020) argued that the most significant barrier to using consumer wear-
ables in research and clinical settings is a lack of independent validation. A further main 
point is that researchers often do not have access to raw data of consumer wearables and 
that they don’t have access to the “black-boxed” algorithms either. In line with this issue, 
it should be noted that the pace at which technology is evolving in optimizing algorithms 
far exceeds the pace of published validation research. In general, there is a remarkably 
shorter product life cycle today, which might be a restriction for longitudinal cohort stud-
ies. Fifth, based on the current lack of standardization, applying proprietary algorithms 
should always be replicable. Thus, open-source methods are needed, which are more flex-
ible to use and allow algorithms to be applied to different devices.

Measurement, Data Processing, and Metrics

Why Signal Processing of Acceleration Data Is Necessary  
and How It Works

It is not possible to do meaningful analyses with acceleration data before some type of 
signal processing has been done. Rectifying, one significant part of signal processing, 
may serve as an instructional example. Rectifying means converting the signal’s negative 
acceleration (deceleration) to its absolute (positive) value. Normal human movement—
even when walking at a fixed speed—is characterized by body segments (e.g., trunk, 
waist, or leg) that are continuously accelerating/decelerating in repeating patterns per 
step of stride. The amplitudes of acceleration/deceleration depend on the intensity of 
movement. For example, walking fast will result in more and higher amplitudes than 
walking slow, while during quiet standing the amplitudes will be minimal. To get mean-
ingful metrics, signal processing is necessary, and this will be explained in detail.
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There are many types of acceleration signal processing. Two important aims of sig-
nal processing are (1) to calculate movement intensity and, subsequently, to estimate 
energy expenditure and (2) to estimate the orientation of the sensor and, therefore, the 
orientation of the body segment the sensor is attached to. For these purposes, frequently 
applied types of signal processing are (1) eliminating the low-frequency gravitational 
acceleration, (2) reducing or eliminating high-frequency noise (artifacts, i.e., accelera-
tions not related to movements of interest), and (3) extracting the lower frequency part of 
the signal to get an estimate of the gravitational component of the signal. For example, 
for the calculation of movement intensity, the acceleration signal is subsequently high-
pass filtered (to eliminate the gravitational component), rectified, low-pass filtered (to 
eliminate noise), and then averaged over defined time intervals. Often, the movement 
intensity and/or gravitational information of the different axes of the sensors are com-
bined and converted. Eventually, outcomes from these features are calculated, including 
type of activity (e.g., walking, standing, sitting), energy cost, and steps.

The results of the different steps of signal processing are shown in the example pre-
sented in Figure 5.1. Most accelerometers measure acceleration in three axes. In Figure 
5.1A, the raw acceleration data of a three-axis accelerometer is shown (see y-axis, “raw 
acceleration”). The signal is measured in g (1 g = 9.81 m/sec²) with the acceleration sen-
sor’s sampling frequency (e.g., 50 Hz). The measured signal contains the dynamic changes 
of the acceleration due to the movement of the device as well as the acceleration due to 
gravitation. The inertial component is the oscillating part in Figure 5.1A (starting at 
approximately 50 seconds), whereas the gravitational part is depicted by the level differ-
ences (static offset of the gravitational acceleration) that are evident over all 120 seconds 
but most clearly in seconds 1 to 50 (e.g., y-axis with a value of –1 g). In other words, the 
level differences between axes x, y, and z in Figure 5.1A describe how the device is held 
(placed in a three-dimensional space) but not how it is moved. Accordingly, as a first step, 
the signal is high-pass filtered to remove the static offset of the gravitational acceleration 
(see Figure 5.1B with y-axis “filtered raw acceleration”).

In a second step, higher frequent noise (artifacts; e.g., electronic noise, vibrations 
when cycling on a rough road surface, shocks of the sensor) has to be removed. The filter 
used for this process influences the outcome of subsequent steps and therefore has to be 
designed carefully to eliminate all undesired frequencies without influencing the signal 
in the frequency range that should be measured. Human movements, for example, show 
a frequency range of 0.25–11 Hz (van Someren et al., 1996). Accordingly, an ideal filter 
would leave all movement/motion relevant frequencies in the signal (i.e., it should have a 
constant filter characteristic in this frequency range) but would cut off all other frequen-
cies (in this case above 11 Hz). After filtering the signal, noises with higher frequencies 
are eliminated, as shown in Figure 5.2. An acceleration signal during walking (gravita-
tional offset already eliminated) is shown in both the time domain (Figure 5.2A) and the 
frequency domain (Figure 5.2B). The measured signal contains frequency components 
up to 32 Hz. High-frequency parts of the signal, above 11 Hz, would be defined as non-
physiological and would be filtered. Figures 5.2C and 5.2D show the same data with an 
additional 11-Hz low-pass filter. Compared to the non-low-pass filtered signal, the time 
domain signal is smoothed (comparing Figure 5.2A to 5.2C), and the frequency compo-
nents above 11 Hz are eliminated (comparing Figure 5.2B to 5.2D).

As a third step, the vector magnitude is computed (see the equation below). In detail, 
the square of the signal is calculated, which automatically includes the necessary step of 
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rectifying the signal. The three axes are then converted into one signal by summing and 
square rooting.

	 Movement Acceleration Intensity (MovAccInt) = ( )2 2 2ax ay az+ +

The result of building the vector magnitude can be seen in Figure 5.1C (see y-axis, 
“Movement Acceleration Intensity”), where only one signal is left that contains only posi-
tive values. In the last step of signal processing, the MovAccInt is averaged to epochs of 
a defined length, such as 30 seconds or a defined activity episode (e.g., going to school). 
Figure 5.1D shows the averaged MovAccInt signal. In our example, averaging was per-
formed at 30-second intervals. The outcome of this last step of signal processing can then 
be used for statistical analysis of the assessed data using standard statistical software 
packages. However, the presented process accounts for only a one-movement intensity 
metric of many.

PB Metrics

Generally, PB metrics are the results of algorithms, which use aggregated raw accelera-
tion signals as input. In other words, the sensor captures and stores the acceleration of 
a person during wear time, which will then be processed by using, for example, a band-
pass filter (see the previous section). Given the high variability of research and consumer 
wearables, the number of different PB metrics increased measurably. Unfortunately, there 
are no internationally accepted standards for signal processing steps, and thus outcome 
metrics cannot be compared across devices (Chen & Bassett, 2005). For example, just to 
calculate movement intensity, the literature describes several types of signal processing: 
mean amplitude deviation (Vähä-Ypyä et al., 2015), Euclidian norm minus one (van Hees 
et al., 2013), high-pass filtered Euclidean norm (van Hees et al., 2013), high-pass filtered 
Euclidean norm plus (van Hees et al., 2013), proportional integrating measure (Jean-
Louis, Kripke, Mason, Elliott, & Youngstedt, 2001), zero crossing method (Acebo et al., 
1999), and time above threshold (Fekedulegn et al., 2020).

The most promising solution to increase comparability between metrics is to provide 
open access to raw data and applied algorithms. However, manufacturers are often not 
willing to reveal all details. Thus, recently researchers’ efforts have been aimed at increas-
ing the comparability between metrics by using identical software for different types of 
accelerometers. A study by Rowlands and colleagues (2018) has shown that identically 
processed metrics derived from different devices were largely equivalent. Similar results 
were published by Crowley and colleagues (2019), who showed that pooling and identi-
cally harmonizing accelerometer data lead to a negligible difference between different 
accelerometers.

A further difficulty encountered in comparing PB metrics centers on the different 
and, in some cases, “dimensionless” units. A possible solution might be to transfer PB 
metrics into commonly used estimations of energy expenditure. Notably, an additional 
“formula” is needed to estimate energy expenditure. This potentially leads to even less 
comparability, because the formula behind this calculation is frequently a “black box” 
as well as device-dependent. Thus, the prerequisite to enabling comparability is possible 
only when the converting algorithm from metrics into energy expenditure estimations 
is available for the public (e.g., open-access code). If the converting algorithm might be 
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available for the public, researchers can more easily assess, compare, and validate meth-
ods and outcomes.

A growing body of epidemiological literature has shown that SB might be an inde-
pendent risk factor for all-cause mortality and cardiometabolic diseases (Lee & Shiroma, 
2014). As a result, the urgency to differentiate between PA and SB during data assess-
ment has increased greatly (Katzmarzyk et al., 2019). However, the first generation of 
accelerometers was built to measure the intensity of PA through changes in acceleration. 
Thus, even though an accelerometer can indicate the absence of movement, this does not 
automatically mean that they can distinguish between body postures such as sitting and 
standing, which may increase the intangible risk of an over- or underestimation of SB 
(Kang & Rowe, 2015). For instance, standing still and sitting still at the bus stop cannot 
be distinguished, whereas, by definition, sitting still is an SB activity and standing still is 
non-SB. With regard to the previous part of data processing, applying low-pass filtering 
to “remove” movement and to retain the gravitational component overcomes this gap. 
Thus, depending on the sensor location, it is possible to estimate the angular orienta-
tion of the sensor and to detect body postures accurately (Janssen & Cliff, 2015). So 
far, research shows that attachment of an accelerometer to the thigh is the most logical 
position to provide body posture data. With innovative data analytical techniques, body 
posture data can also be derived from waist-worn or wrist-worn devices, although so far 
with lower levels of reliability/validity.

The fast development of technical features may affect the future of data assessment 
and the processing of PB via wearables. In particular, supervised learning approaches 

  FIGURE 5.2.    Effect of low-pass filtering on the acceleration signal.
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(e.g., machine learning or deep-learning algorithms) gained more and more popularity 
(see Chapters 17 and 18, this volume). In particular, combined with advances in signal 
processing techniques and machine learning algorithms, this paved the way to developing 
methods capable of automatically identifying postures or types of PA from raw accel-
eration signals (Bastian et al., 2015; Willetts, Hollowell, Aslett, Holmes, & Doherty, 
2018). Previous studies suggested that promising automatic posture and activity recog-
nition tools that developed from data acquired in highly controlled environments (i.e., 
in the laboratory) may not perform as well when applied to real-life data (Gyllensten 
& Bonomi, 2011). In contrast, other study results demonstrate a superior performance 
of PA-type classification algorithms compared with traditional approaches (Ellis, Kerr, 
Godbole, Staudenmayer, & Lanckriet, 2016). Similar results have shown that a deep-
learning model performs significantly better in assessing sleep than existing conventional 
algorithms (Haghayegh, Khoshnevis, Smolensky, & Diller, 2020). To sum up, the uptake 
of supervised learning approaches has been slow in health behavior research, which may 
change in the coming years (Trost, 2020).

Scientific Quality Standards

High-quality measurement of PB is essential to draw a conclusion about their influence 
on health outcomes. Moreover, the selection of an optimal device is necessary since mea-
surement error can be high. In particular, the sources of error can occur in different 
stages of data collection and interpretation (Kang & Rowe, 2015). To give just a few 
examples, when collecting raw data, researchers may select the wrong device placement 
or use a device with inappropriate sampling frequency. Moreover, as mentioned earlier, 
the lack of transparency and validity of “black-boxed” algorithms may hinder research-
ers from drawing valid conclusions. Thus, one key argument for the selection process 
is to consider scientific quality standards (see Chapter 17, this volume). In line with the 
Consensus-based Standards for the selection of health Measurement INstruments (COS-
MIN; Mokkink et al., 2010) several standards should be noted: (1) validity (the degree 
to which an instrument truly measures the construct it purports to measure); (2) reli-
ability (the proportion of the total variance in the measurements, because of “true” dif-
ferences among participants); (3) responsiveness (the ability of the instrument to detect 
change over time in the construct); (4) interpretability (e.g., the qualitative meaning of the 
obtained scores); and (5) feasibility, ease of analysis, economy, measurement invariance, 
and cultural adaptability (Sylvia, Bernstein, Hubbard, Keating, & Anderson, 2014). In 
the following paragraphs, we discuss the first two points in depth and address the issue 
of reactivity.

Validity

To determine the validity of a device is one of the most critical issues. Researchers inter-
ested in validating accelerometers have to consider several aspects, such as selecting the 
appropriate reference method or conceptualizing an adequate study protocol. Whenever 
possible, accelerometer outcome should be validated against the gold-standard method. 
For example, if the primary outcome of interest is energy expenditure during free-living 
activities, it might be reasonable to use portable systems (e.g., indirect calorimetry) as 
a reference method. When researchers are interested in validating body postures, it is 
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advisable to use video recording as the criterion measure, or if sleep parameters are of pri-
mary interest, researchers may use polysomnography as the reference method. Moreover, 
validation of accelerometers in different samples is recommended.

According to a framework published by Keadle, Lyden, Strath, Staudenmayer, and 
Freedson (2019), the following five phases should be considered during the validation 
process. The initial step (Phase 0) relies on bench testing and refining the monitor’s tech-
nical reliability. In particular, this phase includes mechanical testing of the sensor signal 
in a controlled and artificial environment to test the within- and between-device reliabil-
ity and validity of the underlying signals. Especially in the early stages of the application 
of accelerometers, the sensors were unstable in terms of mechanical drift and robustness. 
This topic has still to be considered and is less important.

The next steps reflect monitor calibration or the development of algorithms to esti-
mate activity energy expenditure, body postures, or metrics from the device signals under 
controlled laboratory conditions. Phase I testing includes selected activities of daily living 
using fixed start/stop times. Phase II testing extends the earlier phase and includes imple-
menting semi-free-living protocols, including transitions between activities to develop 
algorithms further and refine them. Criterion measures are integral to monitoring the 
calibration process, and these data are often used to provide initial validity information 
about new devices or prediction algorithms. Phase III of the development process involves 
a rigorous independent validation under real-world conditions compared with gold-
standard measures (i.e., indirect calorimetry, direct observation, doubly labeled water, 
polysomnography) in different study samples by using appropriate statistics. Unfortu-
nately, most studies do not surpass Phase I or Phase II. However, some validation studies 
can be mentioned as examples. Toth and colleagues (2018) evaluated the validity of step 
counts from various devices compared to direct video observation. In contrast, Valenti, 
Camps, Verhoef, Bonomi, and Westerterp (2014) validated energy expenditure from an 
accelerometer outcome, whereas total energy expenditure was measured simultaneously 
with doubly labeled water under free-living conditions. Phase IV, the final phase of the 
development process, involves applying and disseminating algorithms that have success-
fully progressed through previous phases. Thus, aiming to provide open-source code and 
instructions for implementing algorithms allows other researchers to use those methods 
in surveillance, experimental, clinical trials, or observational studies.

An important aspect of the validity of accelerometers is reactivity. A reactive behavior 
results when participants become more active simply because they are wearing a monitor-
ing device. In other words, reactivity occurs when participants alter their behavior due to 
being monitored, the novelty of a new device, or social desirability. In fact, reactivity is a 
serious issue that reveals a potential source of error. Based on earlier studies, researchers 
expected reactivity to be a time issue, which means participants may change their behav-
ior at the beginning of the monitoring period and later return to a more stable pattern 
(Rowe, Mahar, Raedeke, & Lore, 2004). Empirical evidence supports these expectations. 
In particular, Clemes, Matchett, and Wane (2008) compared the step counts of partici-
pants under two conditions: comparing those who knew they were being tracked with 
those who did not know (Clemes et al., 2008). The authors found a significant increase in 
the first condition. In contrast, Behrens and Dinger (2007) found no reactivity effect in a 
sample of young healthy adults (Behrens & Dinger, 2007). To avoid potential sources of 
reactivity, researchers might be aware of the following points: First, devices that display/
provide feedback about PB may enhance the reactivity effect and motivate participants to 
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change their behavior. Second, it is recommended that little information be given about 
the outcome measure. Third, measurement periods over a longer time period and the 
exclusion of the first monitoring day, for instance, may counteract bias due to reactivity 
(Dössegger et al., 2014).

Reliability

The reliability criterion refers to the consistency of a response either across multiple tests 
within a single assessment (i.e., internal consistency) or across various assessments (i.e., 
stability reliability, test–retest reliability, or between-day variability; Patterson, 2000). 
When transferred to accelerometer research, reliability can refer to measurement-related 
factors (e.g., technological stability of the sensors, inconsistencies of the data acquisition 
and processing, placement of the device) or behavior-related factors (e.g., variability in 
PB between days or between seasons). In the early stages of accelerometry, technological 
stability (e.g., drift of the accelerometer signal) was a main issue, but it is less important 
nowadays. Current research focuses more on the differences or agreement between place-
ment of the same sensor on different body parts (e.g., wrist vs. hip) or on the effects of 
undesired placement errors. For example, Stanton, Guertler, Duncan, and Vandelanotte 
(2016) have shown that changing the accelerometer placement to 2 cm above and below 
the thigh’s midpoint does not produce statistically significant differences.

If researchers are unsure about whether they should select a self-report or a device-
based instrument, the results of studies comparing instruments might be helpful. In par-
ticular, a systematic review indicates that the volume of PA assessment between question-
naires and devices is low to moderately correlated (Prince et al., 2008). In particular, 
participants tend to overestimate the amount of PA. Notable differences were also found 
when comparing instruments for assessment of SB. Prince and colleagues (2020) com-
pared self-reported and device-based assessment of SB, including 185 unique studies in a 
meta-analysis. The results revealed that self-reported measures underestimated sedentary 
time by ~ 1.74 hours/day compared to device measures.

A Prototypical Example from Psychology

In psychological research, the usage of accelerometers is applied regularly. Some research-
ers are interested in the within-subject association between PB and psychological con-
structs such as mood, stress, or anxiety in real time and real life by using ambulatory 
assessment (AA; Liao, Shonkoff, & Dunton, 2015; Reichert et al., 2020). To present an 
example of an AA study, including device-based assessment of PB, we describe the pub-
lished article by Giurgiu, Koch, Plotnikoff, Ebner-Priemer, and Reichert (2020) in more 
detail. In particular, we would like to focus on the technical realization; that is, what 
does the path from data processing to data analysis look like?

Giurgiu, Koch, and colleagues (2020) compared the influence of different break 
patterns (i.e., variations in frequency, intensity, type, duration, and context) on mood 
in a healthy sample of university employees (N = 92). Over the study period of 5 days 
(3 working and 2 weekend days), participants carried accelerometers and a smartphone 
during their daily lives. The smartphone prompted the participants via an acoustic, 
visual, and vibration signal every 40 to 100 minutes within the 7:30 A.M. to 9:30 P.M. 
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period. In total, participants answered mood questions approximately 10 times per day. 
To assess mood, they used the short version of the multidimensional mood question-
naire (MDMQ; Wilhelm & Schoebi, 2007). Giurgiu and colleagues used a mix-sampling 
strategy—random triggers at various times combined with a sedentary triggered algo-
rithm. In particular, the thigh sensor analyzed and transferred data on body position 
(sitting/lying or upright) via Bluetooth Low Energy (BLE) to the smartphone in real 
time. Each time a participant spent more than 30 minutes sitting/lying, the e-diary trig-
gered mood ratings. This approach was implemented to optimize the assessment of the 
associations between SB and mood. As main predictors, the authors defined different 
break patterns such as duration (uninterrupted sedentary time), frequency (number of 
sedentary interruptions), intensity (metabolic equivalent of the break), and context (at 
home or work). The information about duration, frequency, and intensity was derived 
from the accelerometer, whereas context information was assessed via electronic diaries. 
In the process of analyzing data, the following nine steps were described (Giurgiu, Koch, 
et al., 2020) (see also Figure 5.3).

First, the sampling scheme and forms (e.g., questions about mood and context) were 
created by using the online platform movisensXS (movisens Ltd., 2021). This step included 
all setup, such as selecting study duration, specification of the trigger option (e.g., trigger-
ing after 20 minutes or 30 minutes of sitting/lying), and implementing time-out triggers. 
Second, immediately before data collection, the study smartphone was connected to the 
online platform movisensXS by using the movisensXS-App to download the sampling 
scheme and forms via an individual participant code. Third, the chosen trigger option 
(e.g., triggering after 30 minutes of sitting) was calibrated to the selected body position 
(i.e., lateral aspect of the right thigh) and connected to the smartphone via BLE by using 
the movisensXS-App. Fourth, after data collection, the recorded raw acceleration data 
were processed in 1-minute intervals by using the manufacturers’ software DataAnalyzer 
(v.1.13.5) (movisens Ltd.). During this step, a band-pass filter (0.25 to 11 Hz) automati-
cally eliminated gravitational components or artifacts (e.g., vibrations when cycling on a 
rough road surface or sensor shocks). This resulted in an Excel sheet with a self-selected 
choice of parameters such as body position, movement acceleration intensity (MAI), 
metabolic equivalents or activity class. Fifth, the smartphone entries from the partici-
pants were downloaded from the online platform movisensXS. Sixth, all accelerometer 
and ecological momentary assessment (EMA) files from different participants were time-
synchronized and combined into a single data file by using DataMerger (v.1.8.0). Sev-
enth, before the analyses, sedentary break-specific variables such as frequency, duration, 
and intensity were parametrized while calculating the cumulated sum of the dichotomous 
variable body position (1 = sitting/lying; 0 = upright). Eight, participants were excluded 
from the dataset if they did not fulfill the wear-time criteria of at least 2 valid days, that 
is, 10 hours of wear time per day (Troiano et al., 2008).

To analyze whether different break characteristics influence mood dimensions in dif-
ferent ways, Giurgiu, Koch, and colleagues (2020) conducted multilevel analyses of the 
state-of-the-art procedure in analyzing intensive longitudinal data (Bolger & Laurenceau, 
2013). Multilevel analysis has several advantages, notably (1) the analysis of within- and 
between-subject effects simultaneously in one statistical model, (2) the analysis of hierar-
chically structured data (i.e., multiple mood assessments nested within participants), and 
(3) robustness concerning missing data points (Hoffman, 2015).
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The study results indicated that sedentary breaks were associated with mood among 
healthy adults in daily life. In particular, break intensity was associated with an enhance-
ment in all three mood dimensions, and break frequency was related to enhancement 
in two of three mood dimensions (valence and energetic arousal). But break duration 
was not significantly associated with mood at all. Exploratory analyses revealed that the 
effects of break frequency on energetic arousal, as well as the effect of break intensity 
on energetic arousal, were significantly higher in the home than in the workplace. The 
authors concluded that individuals should break up their SB as frequently as possible 
within an hour through at least moderate-intensity activities, such as slow walking; ide-
ally, this practice would take place in any context.

Recommendations

Using accelerometers in health behavior studies and interventions offers huge possibili-
ties, but at the same time, some challenges merit further consideration. A comprehen-
sive assessment of a 24-hour-cycle of PB requires the acquisition of various information, 
including biological state (i.e., sleep, awake), movement intensity or energy expenditure, 
posture classification, and qualitative aspects (e.g., context and type of behavior). Thus, 
the simultaneous acquisition of all aspects of PB reveals a challenging task, and it might 
not be possible to select the optimal device and study protocol, which comprises all 
aspects. Therefore, as a general recommendation and according to the scientific state-
ment from the American Heart Association (AHA; Strath et al., 2013), the following 
decision matrix might be a helpful guide during the selection process for suitable devices 
and study protocol. In particular, the decision matrix considers five areas:

1.	 Study outcomes—for example, What is your primary outcome variable of inter-
est, and what do you want to describe (e.g., PA, SB, sleep, or the whole 24-hour-
cycle)?

2.	 Feasibility and practicality of the device—How many people do you want to 
measure?

3.	 What is the patient/participant burden? What are assessment time consider-
ations?

4.	 Available resources—What are the cost considerations, and are personnel avail-
able? and

5.	 Study administration—What are the data processing, data transfer and data 
summarization requirements?

The last part of the chapter is reserved for recommendations and future trends for 
researchers interested in using accelerometers to assess PB. Because of the multilayered 
perspectives, we focused on different points of view and integrated both technical and 
conceptual perspectives. Accordingly, recommendations are in line with expert consensus 
on aspects such as the utilization and harmonization of accelerometry data (Wijndaele 
et al., 2015) or the conceptualization of study protocols (Migueles et al., 2017; Troiano 
et al., 2008).
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	• Data acquisition. The way data are acquired in terms of sensor placement, sample 
frequency, and non-wear algorithms highly influences study results and, therefore, com-
parability between studies. Therefore, to compare the results from different accelerom-
eter outcomes, researchers should apply standardized procedures whenever possible.

	• Signal processing. See the previous point.

	• Raw data versus preprocessed summary data. Due to limited storage possibilities, 
in the past acceleration data were preprocessed in real time and converted into summary 
data that were stored. Nowadays, this point is less relevant, and therefore measurement 
of raw data is strongly recommended.

	• Reporting and replicability. All information about the study protocol and data 
processing must be reported, including processing characteristics such as filtering or pro-
tocol information such as sensor placement or measurement days. For example, conceal-
ing key elements of data processing is not in accordance with good scientific practice and 
hinders replication (Keil et al., 2014; Open Science Collaboration, 2015).

	• Number of measurement days. Given the inherent variation in behavior over time, 
an essential aspect of accelerometer measurement is how many days should be considered 
to obtain reliable results. The results of studies have shown that necessary days for a reli-
able assessment vary from 3 to 5 days in adults and 4 to 9 days in children (Donaldson, 
Montoye, Tuttle, & Kaminsky, 2016; Sasaki et al., 2018; Trost, McIver, & Pate, 2005); 
from three 24-hour periods to 10 days or 2 weeks (Aadland & Ylvisaker, 2015). An 
internationally accepted recommendation emphasizes the recording of 7 days (Pedisic & 
Bauman, 2015; Trost et al., 2005). Moreover, researchers should be aware that behavior 
varies between weekend and weekdays; thus, at least one weekend day is required (Trost 
et al., 2005). The primary outcome of interest could also influence the selection of the 
monitoring period. For example, to assess differences between weekday and weekend 
sleep patterns, a 14-day recording that captures two weekends is preferred (Acebo et al., 
1999). A further issue that is related to the monitoring period comprises reproducibility. 
Researchers have shown that different PB metrics have a considerable amount of random 
error from one 7-day monitoring period (Saint-Maurice et al., 2020). It should be real-
ized that the number of measurement days not only depends on the research question, but 
also on the outcome of interest and the population. For example, the literature indicates 
that people with disabilities and low levels of PA show less between-day variability than 
people without disabilities and higher levels of PA.

	• Seasonal variation. Most studies select a monitoring period of 7 days, intending 
to assess habitual PB patterns. However, researchers should consider that PB might be 
influenced by seasonal variation. Empirical data revealed that light PA was significantly 
higher in summer and spring, whereas SB and time spent in bed were higher in winter 
(O’Connell, Griffiths, & Clemes, 2014).

	• Single- or multisensor system. How many accelerometers should be used? Most 
studies used a single wrist or hip-worn accelerometer, which were recommended for 
population-based PB research (Sievanen & Kujala, 2017). As of now the hip-worn posi-
tion has proved to be the best single location for the assessment of different physical 
activities (Cleland et al., 2013). However, growing interest over the past decade in SB 
research indicated that the hip position increases the risk of misclassification between a 
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sitting and a standing body position (Kang & Rowe, 2015). In line with point 1 from the 
AHA matrix, it depends on the primary outcome of interest. An accelerometer measures 
the movement/orientation of the segment to which it is attached, and so no information 
on the movement/orientation of other segments can be assessed. A multisensor system 
(e.g., attached at the thigh and wrist position) offers more data and information, while at 
the same time a further sensor increases participants’ burden. Therefore, researchers may 
decide if the additional gain is needed and/or is of sufficient added value.

	• Sensor position. In line with the previous point, selecting the body position largely 
depends on the primary outcome of interest. In particular, the position of choice for sleep 
assessment is the nondominant wrist because it optimizes the recording of small move-
ments that occur at the distal extremities when the individual is supine (Ancoli-Israel et 
al., 2015; Quante et al., 2015). In some populations such as infants, researchers attach 
the accelerometer to the ankle rather than the wrist to limit the child’s engagement with 
the device and to promote safety. Moreover, a thigh-worn accelerometer enables dif-
ferentiation between body postures and separates PA from SB (Giurgiu, Bussmann, et 
al., 2020). Underlining the importance of sensor placement, Edwardson and colleagues 
(2016) have shown that irrespective of the device brand, thigh-worn accelerometers were 
highly accurate in differentiating body postures.

	• Addition of extra data sources. For some research purposes, it might be reason-
able to combine accelerometers with further data sources. For example, if sleep is the pri-
mary outcome, it might help to add the information from a light sensor to detect whether 
a person is sleeping or awake. Some manufacturers have already combined light sensors 
and PB monitoring within a single device (Ancoli-Israel et al., 2015). Another example 
is integrating a barometric pressure sensor to differentiate between sitting and stand-
ing postures during daily activities (Masse, Bourke, Chardonnens, Paraschiv-Ionescu, & 
Aminian, 2014).

	• Qualitative information: Since accelerometers are limited to assess qualitative 
aspects of PB such as context or smoothness, researchers may combine self-reported 
instruments such as electronic diaries (e.g., application on a smartphone) or question-
naires. In fact, a combination of tools is likely to be the most promising way of assessing 
PB if researchers would like to assess a comprehensive picture of a behavior (Skender et 
al., 2016). This implies that a mixed-methods approach that combines device-based and 
self-reported techniques (e.g., ambulatory assessment) is generally assumed to be most 
appropriate.

	• Identifying missing data: One of the most common issues concerning accelerom-
eters is to identify non-wear periods. This issue is further complicated by the fact that 
there is a large variability between methods and non-wear algorithms, and also differ-
ent algorithms within one device. Some researchers defined non-wear times based on 
predetermined thresholds (e.g., zero counts for 60 minutes; Oliver, Badland, Schofield, 
& Shepherd, 2011). In contrast, other researchers used multiple indicators, such as heart 
rate and intensity markers. In general, this is a critical aspect since less movement over 
a predetermined period is only a rough estimation to differentiate wear from non-wear 
time. Applying such a recommendation may increase the substantial risk of misclassifying 
sitting and sleep periods as non-wear times. Optimally, an algorithm can detect “real” 
non-wear times (e.g., during water activities, if the sensor is not waterproof). However, 
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this depends largely on the accuracy of non-wear time algorithms. Thus, a general sug-
gestion is to encourage participants to fill out a non-wear time diary, including time and 
activities during which the sensor was removed during the day.

	• Identifying a valid day. In line with the previous point, there is a large variability 
between existing procedures. Suppose an algorithm can distinguish between wear and 
non-wear time. This leads to the issue of how many hours of wear time are necessary to 
define a valid day. The most common recommendations emphasize at least 10 hours of 
wear time as a precondition for a valid day (Mâsse et al., 2005). For some populations 
(e.g., toddlers or children) the required wear time can be reduced. In case of a large num-
ber of invalid days, it is possible to apply imputation approaches. For example, a multiple 
imputation approach relied on time-based, sociodemographic, and health information 
(Borghese, Borgundvaag, McIsaac, & Janssen, 2019).

	• Epoch length. After data processing, most of the required software packages can 
calculate output parameters (e.g., PB metrics, energy expenditure or body postures) in 
different time intervals (i.e., epoch lengths). The selection of the epoch lengths affects the 
outcome, while most optimal epoch length depends on the primary outcome of interest. 
For example, most validated and commonly used epoch lengths are 30 seconds and 1 
minute. However, some researchers favor using lower epoch lengths (e.g., 15 seconds) 
because they better capture the quick changes in patterns compared to longer epochs 
(Janssen & Cliff, 2015). This point should be noted if sit-to-stand transitions are of par-
ticular research interest. Furthermore, epoch length should also be considered when com-
paring data from different studies. In young people (e.g., preschoolers), shorter epochs 
(1–15 seconds) are recommended to capture the short bouts of activity that frequently 
occur in these age groups (Migueles et al., 2017).

The Future of the Field

The field of assessing PB via wearables is undergoing fast technological change. Devices 
that were up to date a moment ago will be obsolete tomorrow. So, what could the near 
future bring? We would like to look ahead with some example expectations.

First, technical development will influence hardware and data infrastructure. In par-
ticular, the size of sensors will decrease, the devices will be able to store more data locally, 
the technical infrastructure will be improved through, for example, more powerful pro-
cessors or less power consumption, which will enable longer measurement periods, or 
data transfer possibilities will increase such as a 5G network, Wi-Fi connections, or data 
cloud options. But it is not only technical possibilities that may change; the opportunity 
of wearing wearables as a textile or an implantable sensor might also be an option in the 
future.

Second, we expect that the current distinction between research-grade and 
consumer-grade devices will become less significant. Furthermore, the use of consumer-
grade devices, such as commercial fitness trackers, smartphones, or smartwatches, will 
increase, as will their acceptance. This will lower the barriers of the application of activ-
ity monitoring.

Third, from an analytic perspective, we expect that future research endeavors will 
result in a better understanding of the underlying mechanisms and determinants of PB. 

122	 Technological Know-How and Methodological How-To 	



Big Data, for example, from surveillance studies, will increasingly become available, 
together with advanced data analysis techniques (e.g., applying deep learning).

Fourth, we expect that privacy, safety, data protection, and data ownership will be 
more dominant issues on the agenda. Think, for example, about the General Data Protec-
tion Regulation and the role of companies such as Apple, FitBit, and Google, which still 
have access to an enormous amount of data.

Finally, we expect that technical elements will be an integral part of health care 
systems—for example, more common assessment of PB in hospital and rehabilitation cen-
ters, remote contact with therapist, automated personalized feedback, or remote health 
measurement (e.g., ECG, blood pressure, PB).
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Eco J. C. de Geus and Martin J. Gevonden

C H A P T E R  O V E R V I E W

This chapter presents an overview of the biology of the autonomic nervous system (ANS) 
and the noninvasive ambulatory measurement strategies that can be used to study its 
activity in daily life settings. Heart rate variability in the respiratory frequency range 
(RSA) is identified as the measure of choice to index parasympathetic nervous system 
(PNS) activity, while pre- ejection period (PEP) and nonspecific skin conductance response 
(nsSCRs) are the measures of choice to index sympathetic nervous system (SNS) activity. 
Valid recording techniques for these measures that are currently available are tolerated 
for a number of days at best. To progress to prolonged ambulatory monitoring of ANS 
activity across multiple weeks or even months, major improvements in technology are 
required that greatly reduce participant burden without compromising validity. Future 
contribution of ambulatory assessment to behavioral science, however, does not simply 
hinge on technological progress; correct interpretation of the ambulatory measures of 
ANS activity is at least as important. This will require detailed co- registration of the psy-
chosocial context of the individual as well as of the many nonpsychological determinants 
of ANS activity, most prominently physical activity, respiration, and postural changes. 
Only ambulatory recordings that allow the separation of the nonpsychological and psy-
chological determinants of ANS activity will move the field forward.

Introduction: Moving Stress Research into Daily Life

Because of its high sensitivity to psychosocial stress, the ANS plays a key role in 
almost all models in biobehavioral medicine that try to account for the well-known 
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effect of chronic stress exposure on cardiovascular disease (CVD) outcomes (Esler, 
2017; Pieper, LaCroix, & Karasek, 1989; Rosengren et al., 2004; Steptoe & Kivimaki, 
2012). A vast body of studies on ANS reactivity to stress has shown that frequency, 
amplitude, patterning, and duration of such reactivity are strongly personalized in 
nature, meaning that the same contextual psychosocial factors can evoke entirely dif-
ferent responses depending on personal resilience and vulnerability characteristics. 
Sadly, almost all of this wealth of prior research used short-lasting experiments in the 
laboratory, with subjects volunteering to be exposed for relatively brief periods of time 
to artificial stressors (e.g., using speeded reaction time tasks, the Trier social stress 
test, or their equivalents).

It is likely that the psychological and physiological processes induced by laboratory 
conditions are only a poor reflection of the actual processes in everyday real-life situa-
tions. One-time assessment of historic or current exposure to stressors does not do justice 
to the complex dynamics of the stress exposures in daily life. Lab stress will often be of 
insufficient intensity and duration to trigger the full set of physiological responses that 
come into play when stress is “for real” (Busscher, Spinhoven, & de Geus, 2015). It will 
thus fail to reveal the slower counter-regulatory responses as well as allostatic adapta-
tions that occur on a time scale of days or weeks. An example is the gradual buildup in 
resting blood pressure over the course of a stressful work week that subsides in the week-
end (Vrijkotte, van Doornen, & de Geus, 2000, 2004).

Laboratory studies also preclude examination of the activities that may have the 
largest clinical relevance, such as job-related strain, marital conflict, child care or, at 
the other end of the spectrum, restful sleep. This may jeopardize the predictive valid-
ity of the physiological recordings, either basal levels or reactivity for later mental and 
physical health. In keeping with this idea, superior predictive validity for long-term car-
diovascular health has already been shown for ambulatory blood pressure, where full 
24-hour recordings proved better predictors for cardiovascular morbidity and mortality 
than laboratory or office measurements (Hansen, Jeppesen, Rasmussen, Ibsen, & Torp-
Pedersen, 2006; Mallion, Baguet, Siche, Tremel, & de Gaudemaris, 1999; Niiranen, 
Hanninen, Johansson, Reunanen, & Jula, 2010; Palatini & Julius, 2004; Pickering & 
Devereux, 1987; Verdecchia, 2001; Verdecchia et al., 1994; Ward, Takahashi, Stevens, 
& Heneghan, 2012).

In short, the dynamics of the physiological stress response, the interaction of its com-
ponents over time across longer time scales of days, weeks, or months, simply cannot be 
detected without moving stress research out of the lab and into daily life. This requires 
dedicated wearables that may be connected to a smartphone but provide continuous, 
more extensive, and higher quality data than built-in smartphone sensors (e.g., using the 
camera for intermittent plethysmography). Fortuitously, ongoing technological innova-
tion in such wearables provides unique opportunities for implementation of ambulatory 
and ecologically valid stress measures over extended periods in daily life. In the past 
decades, portable lightweight and relatively cheap biosensors and data-logging devices 
have become available for noninvasive ambulatory assessment of autonomic nervous 
system activity. Various listings of these devices have been published (Ebner-Priemer & 
Kubiak, 2007; Fahrenberg, Myrtek, Pawlik, & Perrez, 2007; Houtveen & de Geus, 2009; 
Peake, Kerr, & Sullivan, 2018), but these listings are typically fated to be outdated when 
they appear in print. Table 6.1, which lists a selection of the devices focusing on measures 
informative about ANS activity, therefore neither claims to be up to date nor suggests 
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that these are the “best” devices for the signal they purport to record. This table mainly 
serves to illustrate four key features:

1.	 This is an active field, with many solutions being created to measure a host of 
peripheral signals influenced by ANS activity.

2.	 Devices tend to be research-oriented, medical care-oriented, or consumer-
oriented.

3.	 Not all devices have been independently validated.

4.	 Not all devices stand the test of time even when they have been extensively used 
or validated.

In the remainder of this chapter, we address some of the neuroanatomical, measure-
ment, and interpretational issues that researchers need to be aware of when they acquire 
and analyze ambulatory ANS data with current or future wearable devices.

The Biology of the ANS

The term autonomic nervous system was coined by John Langley in 1898. Unlike the 
skeletal motor system, which governs the voluntary action of striated muscles, the auto-
nomic nervous system governs the automated responses of the body’s smooth muscle 
organs and glands. Based on anatomical and functional criteria, Langley divided the 
ANS into three separate branches: the parasympathetic nervous system (PNS); the sym-
pathetic nervous system (SNS), including the adrenal medulla; and the enteric nervous 
system. The enteric system, a collection of neurons embedded within the wall of the 
entire gastrointestinal tract that control gastrointestinal motility and secretions, is often 
discarded in stress research. Therefore, ANS activity discussed below will refer only to 
the activity of the sympathetic and parasympathetic branches.

Functions of the SNS and PNS

Activity of the SNS causes, among other problems, an increase in heart rate, contractility, 
blood pressure, breathing rate, bronchodilation, sweat production, epinephrine secre-
tion, and a redistribution of blood flow favoring the muscles. The SNS is therefore often 
labeled as the “fight–flight” branch of the ANS. The PNS, on the other hand, promotes 
maintenance of the body by acquiring energy from food and getting rid of wastes. Its 
activity causes slowing of the heart, constriction of the pupils, stimulation of the gut and 
salivary glands, and other responses that help restore energy. The PNS is therefore often 
labeled as the “rest and digest” branch of the ANS.

The main function of the ANS is coordinating bodily functions to ensure homeo-
stasis and performing adaptive responses when faced with changes in the external and 
internal environment, (e.g., due to physical activity, posture change, food consumption, 
or hemorrhage). In addition, the ANS is capable of substantial heterostatic action; it can 
prepare the body for anticipated threats to homeostasis even in the absence of actual 
changes in bodily activity. The best-known example is the anticipatory response that 
prepares the body for physical activity in response to a vast range of stressors that can 
be purely symbolic in nature and are often not followed by actual physical activity (i.e., 
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fight or flight) or changes in internal environment (i.e., through blood loss, undernutri-
tion, hypothermia, or infection). This response is called the physiological stress response.

Independence of SNS and PNS

For a long time it was assumed that SNS and PNS work in reciprocal ways; indeed, many 
studies of the physiological stress response have capitalized on the occurrence of a recip-
rocal increase in SNS activity and decrease in PNS activity during stress. Such a pattern 
gives rise to increases in heart rate (HR) and blood pressure (BP), and HR and BP reactiv-
ity have become the most used variables to indicate changes in ANS activity. Because of 
their immediate clinical relevance (both are established risk factors for future CVD; see 
Bohm et al., 2010; Mallion et al., 1999; Palatini & Julius, 2004), ambulatory recording 
of HR and BP remains extremely valuable. However, a disadvantage of these variables is 
that they represent an unknown mix of sympathetic and parasympathetic effects when 
the assumption of complete reciprocity does not hold. HR and BP go up when SNS activ-
ity increases, but they likewise increase when PNS activity decreases. Without measure-
ment of either SNS or PNS, there is no telling their relative contributions to any given 
change in HR or BP.

It has been shown that the classical reciprocal pattern of sympathetic activation with 
parasympathetic deactivation describes only a limited part of the total autonomic space 
and that the sympathetic and parasympathetic branches can be activated and deactivated 
independently (Berntson, Cacioppo, & Quigley, 1991). Different patterns of coactivation, 
reciprocal activation, and co-inhibition are found across individuals performing the same 
task or within individuals performing different tasks. For example, dental phobia patients 
engaged in a stressful mental arithmetic task showed an increase in their SNS activ-
ity with decreased PNS activity, but when exposed to phobic stimuli the same subjects 
showed increased SNS activity with increased PNS activity (Bosch, de Geus, Veerman, & 
Amerongen, 2000). Most importantly, the health outcomes of sympathetic hyperreactiv-
ity need not be the same as those of exaggerated parasympathetic withdrawal. Hyperac-
tivity of the SNS has been mostly associated with an increased risk for hypertension, the 
metabolic syndrome, and left ventricular failure (Brotman, Golden, & Wittstein, 2007; 
Esler, 2000, 2017; Lambert & Lambert, 2011; Lambert, Schlaich, Lambert, Dawood, & 
Esler, 2010), while withdrawal of PNS activity causes a reduction in the electrical stabil-
ity of the heart (Vanoli et al., 1991) and may play a key role in the pro-inflammatory state 
(Hu, Penninx, et al., 2018; Tracey, 2009).

Inasmuch that the antecedents and consequences of SNS and PNS activity are dif-
ferent, studies in the past two decades began indexing sympathetic and parasympathetic 
activity separately. In this chapter, we follow this lead and focus on ambulatory measures 
of “pure” sympathetic or “pure” parasympathetic activity.

Measurements of ANS Activity

Anatomy of the ANS

In keeping with many other figures of the ANS, the central nervous system component 
of ANS regulation shown in Figure 6.1 is simply summarized by a graphic rendering of 
the brain. Whereas we acknowledge that this does no justice to the complexity of the 
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ways ANS activity originates in the brain (Beissner, Meissner, Bar, & Napadow, 2013; 
Berntson, Bechara, Damasio, Tranel, & Cacioppo, 2007; Koenig, 2020; Lovallo, 2005), 
this chapter will focus on the peripheral nerves and the organ systems that are used as a 
read-out in ambulatory recordings. Figure 6.1 links the innervation of the organs by the 
ANS to the main measures and the measurement strategies in the ambulatory assessment 
described in this chapter.

Parasympathetic Nerves

Cranial nerve VII (facial) carries preganglionic axons of the superior salivatory nucleus 
and controls the lacrimal glands and the submaxillary and sublingual salivary glands, 
measurable by changes in salivary flow rate and protein composition (e.g., a -amylase). 
Cranial nerve IX (glossopharyngeal) carries preganglionic axons of the inferior saliva-
tory nucleus, which control the fluid secretion by salivary glands. Preganglionic motor 
neurons of the dorsal motor nucleus of the tenth cranial nerve (vagus) carry motor fibers 
of a special visceral nucleus, the nucleus ambiguus, which controls the striated muscles of 
the pharynx, larynx, esophagus, and the cardiac muscle of the heart.

The preganglionic parasympathetic nerves terminate in parasympathetic ganglia, 
which lie within or very close to the organs innervated by the short postganglionic neu-
rons. The pre-ganglionic neurons employ acetylcholine (ACh) as the primary neurotrans-
mitter, which binds to a nicotinic receptor subtype on the postganglionic neurons in the 
ganglia. Postganglionic parasympathetic fibers also employ acetylcholine as a primary 
neurotransmitter, but the receptor subtypes on the target organ are commonly musca-
rinic. For instance, the parasympathetic postganglionic receptors in the sinoatrial (SA) 
node of the heart are type 2 muscarinic (M2), and their activation slows the spontaneous 
depolarization of pacemaker cells and hence reduces heart rate.

Sympathetic Nerves

The preganglionic nerves from neurons in the interomediolateral column leave the spinal 
cord at the thoracic and lumbar regions. Most axons synapse onto a chain of sympathetic 
ganglia that lie close to the spinal cord known as the sympathetic trunk, employing acetyl-
choline as the primary neurotransmitter. The most rostral ganglion, the superior cervical 
ganglion, supplies the head and neck, including the salivary glands excreting a -amylase. 
The middle cervical ganglion and stellate ganglion supply the heart, lungs, and bronchi. 
The celiac, aorticorenal, superior mesenteric, and inferior mesenteric ganglia—named 
after their associated arteries, innervate, among others, the kidney and its adrenal glands.

The postganglionic neurons from these sympathetic ganglia to the organs employ 
norepinephrine as the primary neurotransmitter, which can act on alpha-1-adrenergic 
(e.g., in arterioles) or beta-1- and beta-2-adrenergic receptors (e.g., on the heart). Stimula-
tion of the alpha-1-adrenergic receptors causes vasoconstriction by acting on the smooth 
muscles in the medial layer of the blood vessels. Stimulation of the cardiac beta-adrenergic 
receptors by norepinephrine released from the cardiac sympathetic nerves (accelerans 
nerves) increases the pacemaker frequency of the SA node, thus increasing heart rate, and 
in parallel it increases the contractility of the ventricles. Together, vasoconstriction and 
increased cardiac performance account for the increase in blood pressure seen during 
sympathetic nervous system activity.
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A first exception to the use of norepinephrine as the final effector in the SNS is 
found in the sympathetic innervation of eccrine sweat glands, which is cholinergic rather 
than adrenergic. A second exception is a set of preganglionic neurons that end in a spe-
cial ganglion, namely, the adrenal medulla. Neurons of this medullary ganglion, rather 
than issuing axons to innervate target organs, function as a neuroendocrine organ. Upon 
activation by preganglionic neurons, they release norepinephrine (NE), which is rapidly 
converted to epinephrine (E), and both are released as hormones into the bloodstream 
in an approximate ratio of 5:1 (E:NE). Circulating epinephrine preferentially binds to 
beta-2 receptors in the vessels and on the heart, causing vasodilatation (mostly in muscle 
tissue) and increases in heart rate and contractility.

Direct Measurement of ANS Activity via Action Potentials

The ideal measurement strategy for ANS activity is to probe the actual bursts of action 
potentials in the sympathetic and parasympathetic nerves to a specific organ or tissue. 
This can be done in animal studies by using surgically inserted microelectrodes (Ottavi-
ani, Wright, Dawood, & Macefield, 2020; Vallbo, 2018) or by assessing the changes in 
ACh and NE concentration in the SA node by microdialysis (Shimizu et al., 2009, 2010). 
For a long time, the feasibility of microneurographic recording in humans was limited to 
the superficial sympathetic nerves. Direct recordings of sympathetic activity to the skin 
and the blood vessels in the muscle can be made from Tungsten electrodes in nerves inner-
vating the skeletal muscle or the skin (Hagbarth, Hallin, Wallin, Torebjork, & Hongell, 
1972; Wallin, 1984, 2004). Recently, a safe and feasible way was developed to perform 
microneurography of the vagus nerve at the level of the neck using ultrasound guidance 
(Ottaviani et al., 2020). Although the vagus is primarily a sensory nerve and its motor 
components run to multiple other organs than the heart, repeated probing using careful 
correlation of nerve activity to variation in the cardiac cycle was used to specifically iso-
late efferent fibers to the sinoatrial node and record their activity.

Indirect Measurement of ANS Activity  
via Neurotransmitter Spillover

Unfortunately, these “gold-standard” measures are too invasive to be routinely used in 
research with humans. The alternative is to measure the spillover of ACh or NE from the 
presynaptic terminals of (para)sympathetic nerves into the bloodstream, as this would 
theoretically scale with nerve activity. However, for ACh this is not feasible because of 
the rapid and extensive clearance of the transmitter in the synaptic space by acetylcholin-
esterase. In contrast, norepinephrine does spill over into the bloodstream and can be used 
to assess sympathetic nerve activity. By using radioactive tracers, norepinephrine spillover 
can even be measured on an organ-to-organ basis (Eisenhofer, 2005; Esler et al., 1988; 
Esler & Kaye, 2000; Kingwell et al., 1994), but this is again an invasive procedure that 
has been largely abandoned.

Much less invasive measurements of norepinephrine and/or its metabolites in 
antecubital venous blood are possible by venapuncture or by assessing the excretion 
of norepinephrine and/or metabolites in urine. These methods have major drawbacks, 
however, because only a very small proportion of norepinephrine released from sym-
pathetic nerves reaches the bloodstream. Differences in intraneuronal vesicular storage 
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and leakage, reuptake, extraneuronal clearance, and urinary filtration/secretion may 
(severely) distort the relation between actual sympathetic nervous system activity and 
plasma and urine norepinephrine concentrations (Eisenhofer, Kopin, & Goldstein, 2004; 
Esler et al., 1990).

Indirect Measurement of ANS Control  
via Effects on Innervated Organs

Because direct measurement of activity is not amenable to ambulatory recording and 
indirect measurements come with substantial methodological concerns, most human 
studies of autonomic activity in real-life settings have focused on the effects of parasym-
pathetic and sympathetic activity on the innervated organs rather than on activity per se. 
For ambulatory recording of parasympathetic activity, the only organ considered so far is 
the heart. For sympathetic activity, the heart, sweat glands, salivary glands, and adrenal 
glands have all been employed in ambulatory recordings. The change from measurement 
of activity to measurement of effects should be reflected in the terminology, such that 
“sympathetic control” is used rather than “sympathetic activity.” However, we ourselves 
have sinned against this principle—often by request of reviewers or editors who find the 
term activity more accessible for the readership.

Importantly, relative changes in nerve activity within a single subject will be highly 
correlated with the organ effects, but this is not true for absolute differences in nerve 
activity between subjects. Between subjects, the individual differences in the anatomical 
features (heart size, number of sweat glands), adrenergic and muscarinergic receptor sen-
sitivity, or efficiency of the postsynaptic machinery translating receptor activation into 
organ effects will substantially reduce the correlation between absolute ANS activity and 
the observable organ response. The takeaway message is that studies aiming to assess 
ANS activity by recording organ responses fare much better in within-subject designs 
than in between-subject designs.

Validation of Indirect ANS Measures

Because ambulatory assessment of ANS activity is limited in practice to noninvasive and 
indirect measurement of its effects on organ systems, validation of such measurements 
against direct nerve recording or neurotransmitter spillover is essential. An acceptable 
alternative strategy to these invasive gold standards to show that the noninvasive mea-
sure truly detects (only) sympathetic or parasympathetic effects is the use of pharmaco-
logical blockade. SNS effects can be measured by blocking either alpha-1 receptors (e.g., 
phentolamine), beta-adrenergic receptors (e.g., propranolol), or specific classes of these 
receptors, like beta-1 (e.g., metoprolol) or beta-2 (ICI 118–551) receptors. This has been 
most extensively done for the assessment of cardiac autonomic activity. Cardiac parasym-
pathetic activity, for instance, can be measured in a dose–response way during infusion 
of muscarinic receptor antagonists like atropine or glycopyrrolate, effectively removing 
all vagal effects on the heart. A putative noninvasive measure of cardiac vagal activity 
should therefore gradually reduce to zero during such blockade and be seen to return to 
baseline levels during washout (Penttila et al., 2001). Cardiac sympathetic measures, in 
turn, should be gradually diminished during b -receptor blockade (Berntson, Cacioppo, 
Binkley, et al., 1994; Cacioppo et al., 1994).
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Reliability and Temporal Stability of Indirect ANS Measures

Apart from validation against invasive measures or pharmacological manipulations, it is 
important to establish the short-term test–retest reliability and long-term temporal stabil-
ity of ambulatory measures of ANS activity. Whereas we expect substantial variability in 
ANS activity in response to daily events, we at the same time expect the average levels of 
ANS activity in real-life settings to be a reasonable stable trait. This expectation is rein-
forced by a large literature showing substantial heritability of validated measures of ANS 
activity at rest with heritability estimates even further increasing under conditions of 
stress (de Geus, Kupper, Boomsma, & Snieder, 2007; de Geus, van Lien, Neijts, & Wil-
lemsen, 2015; Neijts et al., 2015). We would, therefore, not only expect high test–retest 
validity across two comparable days within a single week, but we also expect any valid 
measure of ANS activity to show at least moderate temporal stability across repeated 
assessments spanning years. These expectations are particularly strong when we retest 
ANS activity across comparable activities like sleep, work, or leisure time. When we find 
low test–retest and/or temporal stability for an ambulatory ANS measure, this may be 
reflective of poor reliability of the measurement technology or the measure chosen.

Parasympathetic Measures in Ambulatory Assessment

Respiratory Sinus Arrhythmia

The current dominant strategy for ambulatory recording of parasympathetic activity is 
through time- or frequency-domain indices of heart rate variability in the respiratory 
frequency range, also called respiratory sinus arrhythmia (RSA). RSA is the difference in 
heart period during the inspiration and expiration phases of the respiratory cycle caused 
by respiratory “gating” (Eckberg, 2003) of the tonic firing of the cholinergic motor neu-
rons in the nucleus ambiguus that innervate the sinoatrial node. Although cardiac sympa-
thetic nerve traffic is gated in a similar way, the effect of the respiratory-related changes 
in vagal activity on heart rate variability is much more prominent than the effect of 
the respiratory-related changes in sympathetic activity. This is due to the differential 
filter characteristics of the muscarinergic acetylcholine receptors and adrenergic recep-
tors (Berntson, Cacioppo, & Quigley, 1993). RSA shows relatively little sensitivity to 
sympathetic blockade but is affected in a dose–response way by muscarinergic block-
ers in humans (Grossman & Taylor, 2007; Martinmaki, Rusko, Kooistra, Kettunen, & 
Saalasti, 2006) or vagal cooling in animals (Katona & Jih, 1975). This has led to the use 
of RSA as a validated proxy for vagal cardiac activity (de Geus, Gianaros, Brindle, Jen-
nings, & Berntson, 2019), although it is acknowledged that change in respiratory behav-
ior (Grossman & Kollai, 1993; Grossman, Wilhelm, & Spoerle, 2004; Ritz & Dahme, 
2006) is an important confounder.

Ambulatory Measurement Strategy for RSA

The measurement of RSA requires the continuously recorded time series of the interval 
between two beats, the heart period. The heart period is most reliably detected as the 
distance between two R-waves in the electrocardiogram (ECG). Ambulatory devices that 
give access to a full recording of the ECG are preferable to devices that extract and store 
a beat-to-beat heart period time series and do not store the raw signal. Full ECGs allow 
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more researchers degrees of freedom to recognize and deal with artifacts of technical or 
physiological origin. Technical artifacts can arise from poor electrode contact, faulty 
conduction by lead wires, extraneous magnetic or powerline noise, excessive movement, 
muscle activity, hardware/software errors, and experimenter-induced data processing 
errors. Deviance of physiological origin occurs when heartbeats are not generated by 
the SA pacemaker cells. Such beats do not arise from the normal sinus rhythm genera-
tion, typically represent a few percent of the total number of beats, and are referred to 
as premature, or ectopic, beats. Two common sources of premature beats are the atria 
and ventricles, which can prompt an atrial premature contraction (APC) and ventricular 
premature contraction (VPC), respectively. Ectopic beats, other arrhythmic events, and 
missing data through technical errors may introduce strong bias in RSA estimation.

Full ECG recording requires the attachment of at least one electrode on the chest and 
a ground electrode, or a patch or chest band with two permanent points of contact to the 
skin. A disadvantage of continuous skin contact-based ECG recording is that it can be 
tolerated for a few days only but is harder to maintain when recordings last over weeks 
or months. An alternative to ECG for obtaining the heart period time series is to detect 
the distance between two consecutive peaks in a photoplethysmogram (PPG). The PPG 
is obtained by using a pulse oximeter which illuminates the skin and measures changes 
in light absorption. This has the great advantage of being minimally invasive and is easy 
to incorporate into wrist-worn devices that can be worn for prolonged periods of time. 
Unfortunately, the reliability of PPG-derived heart period is not as good as that of ECG, 
although reliability may be acceptable in conditions with little physical activity (Georgiou 
et al., 2018). The reasons for lower quality of PPG-derived chronometrics are manifold, 
but two factors stand out. First, the blunt peak in the PPG waveform representing distal 
blood flow is inherently less suited to detect interbeat intervals with millisecond precision 
than the sharp R-peak in the ECG waveform representing electrical activity generated in 
the ventricle. Second, the PPG method has a much lower signal-to-noise ratio than the 
ECG, and this difference is strongly amplified during physical activity.

When the respiratory signal is co-registered with the heart periods, RSA can be 
derived by peak-valley estimation (pvRSA). Estimates of pvRSA are obtained by subtract-
ing the shortest heart period during heart rate acceleration in the inspiration phase from 
the longest heart period during heart rate deceleration in the expiration phase (Grossman 
& Taylor, 2007; Katona & Jih, 1975). This is illustrated for heart period and respira-
tion signals extracted from combined ECG and respiratory plethysmography recording 
in Figure 6.2.

RSA can also be derived from ECG or PPG recordings only, without an additional res-
piration signal. PNS effects are reflected in time-domain measures such as the root mean 
square of successive differences (RMSSD) between successive heart periods (Goedhart, 
van der Sluis, Houtveen, Willemsen, & de Geus, 2007) or frequency-domain measures 
obtained by Fourier analysis (Akselrod et al., 1981), Wavelet analysis (Houtveen & Mole-
naar, 2001), or autoregressive (AR) modeling of the heart periods time series (Cerutti, 
Bianchi, & Mainardi, 2001). Frequency analyses describe the mean amplitudes of the 
periodic oscillations of the heart period at different frequencies and provide information 
on the amount of their relative contribution to the total variance in the heart period (also 
termed power) across the 0–0.5 Hz frequency range. Spectral power in the respiratory 
frequency range of 0.15–0.40 Hz can be used to specifically index RSA. This range is also 
called the high frequency range, and spectral analysis derived RSA is typically labeled 
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HF or HF-HRV. Many guidelines are available to extract time- or frequency- domain 
RSA measures from heart period time series (Grossman, van Beek, & Wientjes, 1990); 
an often-used software package is Kubios (Tarvainen, Niskanen, Lipponen, Ranta-aho, 
& Karjalainen, 2014).

Reliability and Temporal Stability of Ambulatory RSA Measures

During a 24-hour ambulatory recording, the different time- and frequency- domain mea-
sures of RSA (e.g., RMSSD, HF, pvRSA) were highly correlated across a wide range of 
values for respiration rate and heart rate (Goedhart, van der Sluis, et al., 2007). Out of 
these three, RMSSD is the easiest to compute and therefore commonly reported, but it 
can include variance in HR in the higher frequency ranges, that is, outside of the actual 
respiratory frequency range and not representing parasympathetic activity. HF, unlike 
pvRSA, does not need additional recording of a respiration signal, but co- recording of 
respiration itself has clear advantages when dealing with momentary within- subject con-
founding. For the average 24-hour levels of RMSSD and HF, high test– retest correlations 
were found across a few days (Bigger, Fleiss, Rolnitzky, & Steinman, 1992; Bjelakovic et 
al., 2017; Sztajzel, Jung, & de Luna, 2008; Vrijkotte et al., 2001). In addition, good long-
term temporal stability for 24-hour levels of pvRSA, HF and RMSSD has been shown 
over periods of 7 months to 6 years (Goedhart, van der Sluis, et al., 2007; Pitzalis et al., 
1996).

 FIGURE 6.2.  RSA computed using the peak- valley method from the ECG and a respiration signal 
derived from the thorax impedance signal.
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Sympathetic Measures in Ambulatory Assessment

In contrast to ambulatory PNS recording, which is focused entirely on the heart, multiple 
organs can be used as a read-out for SNS activity. Importantly, the notion of a single 
emergency SNS response that affects all organs to the same extent has proven to be 
untenable. In some circumstances, like dynamic whole-body exercise, the SNS acts more 
or less as a “unitary system,” but in many other situations it is capable of differentiated 
regulation of its activity to separate organs to a substantial degree (Folkow, 2000; Grassi 
& Esler, 1999; Hjemdahl, Freyschuss, Juhlin-Dannfelt, & Linde, 1984). For example, 
Goedhart, Willemsen, and DeGeus (2007) show only a modest correlation between the 
effects of increased SNS activation on the heart and the sweat glands. Even within the 
same organ, responsivity to SNS activation can differ based on the specific biological 
function assessed. For example, van Lien, Neijts, Willemsen, and de Geus (2015) found 
only a modest correlation between SNS effects on ventricular contractility and ventricu-
lar repolarization. Therefore, to provide a more complete picture, ambulatory recording 
of SNS effects on multiple organ functions should be used whenever possible.

Electrodermal Activity

Recording the activity of the skin as an index of pure sympathetic activity dates back to 
the 1880s (Neumann & Blanton, 1970). Because of its ease of use and low cost, despite 
not yet being fully understood, electrodermal activity (EDA) recording became a staple 
in the psychophysiological toolbox, with highly visible field applications such as the lie 
detector test. Different terminology was historically used, often specific to the applied 
measurement technique, most notably the galvanic skin response (GSR). We follow the 
modern-day convention with EDA as the umbrella term for all electrodermal phenomena, 
independent of measurement technique (Boucsein, 2012).

In laboratory recordings, wet Ag/AgCl(“gel”) electrodes are the norm, where con-
ductivity is improved by electrolyte cream or gel, and they are held in place with adhe-
sives. The most used “exosomatic” technique measures the (changes in) conductivity of 
the skin to a direct current (DC) applied through a pair of skin electrodes. Concerns 
have been voiced about possible electrode polarization with this method, and the use of 
alternating current (AC) has been demonstrated to be a viable alternative to avoid poten-
tial problems related to polarization (Pabst, Tronstad, Grimnes, Fowles, & Martinsen, 
2017). Because sweat glands are at the highest density in palmar and plantar regions, 
approximately 400/mm², it is recommended that two electrodes be used at these sites, 
typically on the fingers (Boucsein et al., 2012).

Electrodermal activity incorporates both slow tonic shifts in basal skin conductance 
level (SCL) and more rapid phasic transient events (see Figure 6.3). Such skin conduc-
tance responses (SCRs) are observed in response to experimental stimuli, often tones 
or bursts of white noise in classic laboratory paradigms, and their occurrence, latency, 
rise time, and amplitude are metrics (Boucsein, 2012; Dawson, Schell, & Filion, 2000; 
Fowles, 1986). SCRs also occur without a clear external event as a trigger. The frequency 
of such nonspecific SCRs (nsSCRs) per minute, sometimes termed electrodermal labil-
ity (Mundy-Castle & McKiever, 1953), is thought to reflect SNS activity. Both SCL and 
nsSCR frequency have been shown to be influenced by emotional stress (Boucsein, 2012), 
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making them attractive outcome measures for ambulatory studies. A host of quantifica-
tion strategies are available to extract them from longer recordings (Posada-Quintero & 
Chon, 2020).

EDA is considered a pure measure of SNS effects because it directly captures the 
activity of the eccrine sweat glands. These glands are not innervated by the parasympa-
thetic nervous system, but the sympathetic nervous system only. Acetylcholine release 
from the preganglionic sympathetic nerves increases the activity of the sweat glands, 
excreting more fluid, which in turn increases the electrical conductivity across the skin 
(Foster & Weiner, 1970; Fowles, 1986). This finding is supported by studies measuring 
burst of activity directly in the sympathetic nerve, observing subsequent sweat secre-
tion in associated individual sweat glands (Nishiyama, Sugenoya, Matsumoto, Iwase, 
& Mano, 2001) and highly correlated electrodermal responses (Wallin, 1981). Further-
more, blockade of preganglionic sympathetic nerves to the skin strongly depresses or 
abolishes these responses (Bengtsson, Lofstrom, & Malmqvist, 1985).

Ambulatory Measurement Strategies for EDA

When measuring EDA in ambulatory studies the exosomatic DC method is the standard, 
but different choices are made from those in the lab regarding electrode type and elec-
trode placement. Gel electrodes work well in short ambulatory recordings (24 hour), but 
in longer ambulatory studies, the electrodes can dry out or fall off, and may not be easy to 

  FIGURE 6.3.    SCL and nsSCRs extracted from a palmar recording of electrodermal activity using 
an ambulatory device with the reference electrode placed at a nonobtrusive location.
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reapply by the participant. At the cost of general lower signal levels and potentially more 
movement artifacts and signal loss, longer ambulatory studies may opt for the ease of use 
and tolerability of dry electrodes. The guiding principle for electrode placement is that 
they should not interfere with daily activities to the point that it hurts ecological valid-
ity, while still yielding a signal of acceptable quality for the research question at hand. 
Placement should take care to minimize instances of pressure on the electrodes as these 
are associated with a local change in conductance called Ebbecke waves, an important 
source of movement artifact (Boucsein, 2012). Since the fingers are involved in the bulk 
of everyday activity, other parts of the palmar surface with similarly high sweat gland 
density are the primary alternative.

Electrode placement on the thenar and hypothenar eminences of the hand allows for 
substantial hand use, although they hinder gripping motions and need to be connected by 
cable to a measurement device on the arm or elsewhere on the body. Cable and electrode 
interference may be mitigated further by retaining only a single active electrode on the 
hand and placing a ground electrode on a less obtrusive location at the ventromedial fore-
arm approximately 15 cm below the hand electrode (van der Mee, Duivestein, Gevon-
den, Westerink, & de Geus, 2020). Lightly abrading the reference site reduces resistance, 
and using different electrodes for the active and reference sites further optimizes signal 
quality. On the thenar eminence, the typical EDA pre-gelled electrodes with isotonic 
gel (Ag/AgCl contact, wet liquid gel [0.5% chloride salt] electrolyte, 11-mm-diameter 
contact area) can be used, whereas standard ECG electrodes suffice for the ventromedial 
forearm. For ECG recording, EDA is considered an artifact; therefore, ECG electrodes 
contain a layer of gel designed to short-circuit the skin and minimize skin resistance. In 
terms of minimizing discomfort and interference by movement, ambulatory EDA is typi-
cally measured on the side of the nondominant hand. It should be noted that while EDA 
on the left and on the right fingers are strongly correlated, there is evidence for potential 
functional asymmetry (Kasos et al., 2020).

By far the most user-friendly location for ambulatory assessment of EDA is the wrist, 
even though the electrodermal responsiveness here is limited because of lower sweat 
gland density, with generally lower signal levels and fewer responses than on the fingers, 
as expressed in moderate to low correlations (Kasos et al., 2020; van Dooren, de Vries, & 
Janssen, 2012). Thermoregulatory sweating also seems more prominent on the wrist than 
emotional sweating. Still, the ease of accessibility and participant acceptance of wearing 
a sensor on the wrist have resulted in commercially available devices that measure there, 
either on the volar side to maximize electrode contact with sweat glands or on the dorsal 
side, to further capitalize on having the electrodes integrated within a wristwatch-style 
device (Westerink et al., 2009).

Reliability and Temporal Stability of Ambulatory EDA Measures

Detailed testing of the reliability and validity of ambulatory EDA in bigger samples is still 
sparse (Doberenz, Roth, Wollburg, Breuninger, & Kim, 2010; Hoehn-Saric, McLeod, 
Funderburk, & Kowalski, 2004; Westerink et al., 2009). Several authors have stated the 
urgent need for such testing and have suggested standardized protocols to do so (Kleckner, 
Feldman, Goodwin, & Quigley, 2021; Sagl et al., 2019; van Lier et al., 2020). Tools have 
been developed to aid these efforts (Gersak & Drnovsek, 2020). Validation studies of 
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24-hour finger-based recording (Boucsein, Schaefer, & Sommer, 2001; Doberenz, Roth, 
Wollburg, Maslowski, & Kim, 2011) found sufficient signal stability over time. Valida-
tion studies of ambulatory wrist-based, dry electrode recording against wet electrode 
finger or palm-based measures have not always been encouraging. A study comparing a 
now discontinued Microsoft wrist-based device to finger-based measures in a stationary 
laboratory paradigm (cold pressor) found no correlation between both SCL measures 
(Konstantinou et al., 2020). A laboratory study including ambulatory daily life activities 
investigating the only currently available dry wrist-based device reported neither correla-
tion nor visual resemblance with finger-based EDA (Menghini et al., 2019).

In our discussion, we may come across as overly critical of this nascent technology. 
This assessment should not be misread as an underappreciation of the pioneering work 
done so far or as our reluctance to endorse ambulatory assessment of EDA as a good way 
forward in stress research. On the contrary, we strongly encourage further ambulatory 
research that delineates the appropriate signals, study designs, and analytical methods.

Cardiac Contractility

In humans, cardiac contractility is influenced predominantly by the sympathetic branch 
of the ANS. Whereas vagal innervation of the ventricle is sparse and largely nonfunc-
tional, an abundance of beta-adrenergic receptors exert strong inotropic effects on the 
cardiac muscle through the opening of calcium channels in the membrane as well as the 
T-tubules of the muscle fibers. The calcium influx increases contractile force and con-
traction speed of the ventricle. This increased contractility is reflected in a larger ejection 
fraction of the left ventricle, which is the ratio between the stroke volume and the end-
diastolic volume. The ejection fraction can be obtained from recordings of end-diastolic 
and end-systolic volumes (the difference equals the stroke volume) by echocardiography 
or magnetic resonance imaging (Malm, Frigstad, Sagberg, Larsson, & Skjaerpe, 2004). 
Neither of these techniques is amenable to ambulatory recording. Fortunately, changes in 
contractility can also be measured noninvasively through use of impedance cardiography.

In impedance cardiography, a high-frequency alternating current is introduced 
across the thorax by electrodes at the level of the neck and the belly (Sherwood et al., 
1990). Electrodes at the level of the top and bottom of the sternum measure the changes 
in the impedance (dZ) of the enclosed thorax column. The first derivative of the pulsatile 
changes in transthoracic impedance (dZ/dt) is called the impedance cardiogram (ICG), 
and it reflects the momentary changes in aortic blood flow during the systolic phase. 
From the combined ECG and ICG, the pre-ejection period (PEP, in milliseconds [ms]) can 
be derived as the time interval between the onset of ventricular depolarization (QRST-
onset) and the opening of the semilunar aortic valves (sharp upstroke in the dZ/dt), as 
depicted in Figure 6.4. PEP derived from the ICG correlates well with PEP derived from 
echocardiography (Nederend, Ten Harkel, Blom, Berntson, & de Geus, 2017; Noda et 
al., 2017), which is another noninvasive method to detect aortic valve opening.

Increases in contractility through increased SNS activity will lead to a shortening of 
the PEP, which can be reduced from 110 ms at rest to 100 ms during stress and as low 
as 60 ms during intense exercise (Goedhart, Willemsen, et al., 2007; van der Mee et al., 
2020; van Lien, Schutte, Meijer, & de Geus, 2013). Within-subject changes in the PEP 
validly index changes in b -adrenergic drive to the left ventricle during manipulations 
known to increase cardiac sympathetic activity like epinephrine infusion, amyl nitrite 
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inhalation, mental stress, and exercise. These manipulations systematically shorten the 
PEP (Houtveen, Groot, & de Geus, 2005; Krzeminski et al., 2000; Mezzacappa, Kelsey, 
& Katkin, 1999; Nelesen, Shaw, Ziegler, & Dimsdale, 1999; Richter & Gendolla, 2009; 
Schachinger, Weinbacher, Kiss, Ritz, & Langewitz, 2001; Svedenhag, Martinsson, 
Ekblom, & Hjemdahl, 1986). In addition, pharmacological blockade of cardiac sym-
pathetic effects results in the expected lengthening of the PEP (Berntson, Cacioppo, & 
Quigley, 1994; Cacioppo et al., 1994; Schachinger et al., 2001), whereas the PEP is hardly 
affected by blockade of cardiac vagal effects (Berntson et al., 1994; Cacioppo et al., 1994; 
Martinsson, Larsson, & Hjemdahl, 1987).

It is important to again stress that the within-subject changes in PEP closely track 
changes in cardiac SNS activity (provided that there are no major posture changes; see 
below) but that between-subject differences in the PEP reflect the extent to which subjects 
differ in the degree of sympathetic effects on their cardiac contractility. These effects 
are correlated with differences in sympathetic activity, but the correlation is likely to 
be imperfect. Inotropic responses to norepinephrine and circulating epinephrine will be 
modulated by individual differences in the effectiveness of the cardiac b1- and b2-adrener-
gic receptors. Density, affinity, and distribution of these receptors may show large indi-
vidual differences (Liggett, 1995; Liggett et al., 2006). A reassuringly high between-
subject correlation (0.82) was found between PEP levels and cardiac sympathetic effects 
as assessed in healthy subjects (Cacioppo et al., 1994), but the relationship might be 
weaker in patients with high levels of cardiac sympathetic nerve activity who have very 
low ventricular beta-receptor densities.

  FIGURE 6.4.    PEP and TWA computed from the combined ECG and the ICG signals after R-wave 
locked ensemble averaging.
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Ambulatory Measurement Strategies for Cardiac Contractility

Originally, the current and measurement ICG electrodes consisted of two 10-cm-wide 
tetrapolar aluminium band electrode systems that ran around the neck and around the 
lower part of the thorax of participants (van Doornen & de Geus, 1989). However, it 
soon became clear that the replacement of the cumbersome bands by four spot elec-
trodes still produced a good ICG signal from which the PEP could be reliably extracted 
(Boomsma, de Vries, & Orlebeke, 1989). Feasibility of miniaturization of the electronic 
circuitry needed to generate the AC current for thorax impedance recording and signal 
storage on memory chips allowed Willemsen, de Geus, Klaver, van Doornen, and Carroll 
(1996) to successfully pioneer use of the PEP in a 24-hour ambulatory thorax imped-
ance recording using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS). A 
number of other ambulatory devices similarly showed that reliable and valid PEP record-
ing was feasible in naturalistic settings (Cybulski, 2000; Nakonezny et al., 2001; Panag-
iotou et al., 2018; Sherwood, McFetridge, & Hutcheson, 1998).

The major limitation of ambulatory ICG is that neither the hybrid tetrapolar spot-
band electrode configuration nor a configuration with seven skin electrodes is sufficiently 
comfortable and inconspicuous to be worn across multiple days, let alone weeks, not in 
the least because of the (long) electrode cables connected to the recording device (see left 
upper corner of Figure 6.4). However, the number of electrodes can be reduced to five 
without loss of signal quality (van der Mee et al., 2020). Moreover, ongoing technological 
advances may allow the devices to be reduced in size, permitting the device to be worn 
on a chest strap (not unlike the many wearables for the ECG), greatly reducing electrode 
cable lengths.

Reliability and Temporal Stability of Cardiac Contractility Measures

High test–retest correlation (>.90) has been found for ambulatory recordings of the PEP 
within a single day (van Lien et al., 2015) or even across 2 work days of the same work 
week (Vrijkotte, van Doornen, & de Geus, 2004). That ambulatory PEP acts as a stable 
trait was further confirmed by demonstrating significant heritability during all periods 
of a representative work day, of a magnitude (~40%) comparable even to that for resting 
or stress levels attained under controlled laboratory conditions (Neijts et al., 2015). In 
addition, good long-term temporal stability (r > .66) of 24-hour measurements has been 
observed (Goedhart, Kupper, Willemsen, Boomsma, & de Geus, 2006), which is again 
as good as the stability of the pre-ejection period obtained under standardized laboratory 
conditions (Burleson et al., 2003; Hu, Lamers, Penninx, & de Geus, 2017).

Other Measures of Ambulatory SNS Activity in Use

Low‑ to High‑Frequency Ratio of Heart Rate Variability

Various metrics based on the low-frequency (LF) component of heart rate variability 
(0.04–0.15 Hz) have been proposed as putative measures of SNS activity. Heart rate vari-
ability in the LF band partly arises from the so-called Mayer waves, which are periodic 
oscillations in arterial blood pressure around the 0.1-Hz frequency (Julien, 2006). To 
keep blood pressure constant, these changes are countered by rapid cardiac vagal activity 
but also by slower cardiac and vascular effects of SNS activity. In the late 1980s, Pagani 
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and coworkers advanced the notion that a single ratio, the power in the LF band divided 
by the power in the high-frequency (HF) band, may capture cardiac sympathetic activity 
even if imperfectly (Montano et al., 1994; Pagani et al., 1986; Pagani & Malliani, 2000). 
Although its use as an SNS index has become widespread, the LF/HF ratio is rather con-
troversial (Billman, 2013; Reyes Del Paso, Langewitz, Mulder, van Roon, & Duschek, 
2013). It does not compare well against invasive measures of sympathetic activity (Grassi 
& Esler, 1999) or the PEP (Goedhart, Willemsen, Houtveen, Boomsma, & de Geus, 
2008), and stress, exercise, or beta-adrenergic blockade do not systematically induce 
the expected changes in the LF/HF ratio that one expects from an SNS index (Ahmed, 
Kadish, Parker, & Goldberger, 1994; Jokkel, Bonyhay, & Kollai, 1995).

The ECG‑Derived T‑Wave Amplitude

The T wave is the asymmetrical wave in the ECG that comes after the QRS complex and 
typically lasts approximately 150 milliseconds. The T-wave amplitude (TWA, in mV) 
is defined as the difference between the peak of the T wave and an isoelectric baseline 
when only a negligible number of fibers in the cardiac conduction system are depolar-
izing (Furedy, Heslegrave, & Scher, 1984; Kline, Ginsburg, & Johnston, 1998). Changes 
in TWA reflect changes in ventricular repolarization (Abildskov, Burgess, Urie, Lux, & 
Wyatt, 1977; Haarmark et al., 2010) in which the sympathetic nerves play an impor-
tant role as shown by pharmacological manipulations and direct nerve stimulation stud-
ies (Abildskov, 1985). In humans, a TWA decrease is seen after administration of the 
nonselective beta-agonist isoproterenol (Contrada et al., 1989), which is reversed by 
beta-blockade with propanolol (Contrada et al., 1989; Furberg, 1968). However, phar-
macological evidence is not unanimous. The clear sympathomimetic effects of tricyclic 
antidepressants and serotonin and norepinephrine reuptake inhibitors on the PEP were 
not seen for the TWA (Hu, Lamers, Penninx, & de Geus, 2018).

Using 24-hour ambulatory monitoring and ensemble-averaging of the PEP and the 
TWA in a sample of 564 healthy adults, it was shown that the TWA showed a mono-
tonic decrease from nighttime sleep to daytime sitting and more physically active behav-
iors (van Lien et al., 2015). Within-participant changes in TWA were significantly but 
modestly correlated with changes in the PEP across the 24-hour period (mean r = .35). 
However, the TWA proved very sensitive to the mean heart period (mean within-person 
r = .71), invalidating TWA as an exclusive cardiac SNS measure. Van Lien and colleagues 
(2015) concluded that ambulatory TWA, though far easier to measure as it requires just 
the ECG, should not replace the PEP, which requires both ICG and ECG. Simultaneous 
reporting on TWA and PEP does have added value, however, as it provides a more com-
prehensive picture of changes in cardiac SNS activity in real-life settings without requir-
ing an extra signal to be recorded.

Salivary Alpha‑Amylase Secretion

The salivary glands are also innervated by the ANS and the secretion of salivary alpha-
amylase (sAA), a digestive enzyme that breaks down insoluble starch into soluble maltose 
and dextrin and has been suggested as a noninvasive marker for SNS activity (Nater & 
Rohleder, 2009). The attraction of sAA for stress researchers is that it can be measured 
from the same salivary samples required to measure the stress hormone cortisol, which 
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is already being widely applied to assess the activity of the hypothalamic–pituitary–
adrenocortical (HPA) axis in real-life settings (Schlotz, 2019).

Indeed, increasing central nervous system norepinephrine levels by blocking its reup-
take by atomoxetine nearly doubled sAA secretion (Warren, van den Brink, Nieuwen-
huis, & Bosch, 2017). Furthermore, exposure to stressors known to evoke sympathetic 
activation uniformly increase the amount of sAA secreted per unit of time, including 
stressful academic examination (Bosch, de Geus, Ring, Nieuw Amerongen, & Stowell, 
2004; Chatterton, Vogelsong, Lu, Ellman, & Hudgens, 1996), stressful computer games 
(Skosnik, Chatterton, Swisher, & Park, 2000; Takai et al., 2004), watching a stress-
ful video (Bosch, de Geus, Veerman, Hoogstraten, & Nieuw Amerongen, 2003), the 
mental arithmetic test (Noto, Sato, Kudo, Kurata, & Hirota, 2005), cold pressor test 
(van Stegeren, Wolf, & Kindt, 2008), and the Trier Social Stress Test (Rohleder, Nater, 
Wolf, Ehlert, & Kirschbaum, 2004). Administration of the beta-adrenergic antagonists 
reduces sAA concentration (Nederfors & Dahlöf, 1992) and attenuates the stress-induced 
increases in sAA concentration (van Stegeren, Rohleder, Everaerd, & Wolf, 2006).

Nonetheless, various reasons cause us to express concern about the use of sAA as 
an ambulatory index of SNS activity. First, the salivary glands are innervated by both 
branches of the ANS, not just the sympathetic branch (Proctor & Carpenter, 2001, 2007). 
Second, the sampling density that can be realized by sAA measurements is by necessity 
an order of magnitude less dense than that of wearable devices measuring continuous 
signals. During a single day of recording, at most two samples per hour would be feasible, 
but that would already be a major burden on participants. Also, sampling cannot take 
place during the nighttime. Third, serious methodological concerns have been voiced 
about the co-collection of sAA with cortisol using the same chewing-on-cotton-swabs 
procedure among others because this does not allow a correction for salivary flow rate 
(Bosch, Veerman, de Geus, & Proctor, 2011).

Recommendations for Ambulatory Recording of the ANS

In summary, we prioritize skin-electrode ECG-based RSA, RMSSD, or HF as the pre-
ferred noninvasive method to measure PNS activity in ambulatory assessment studies. 
For ambulatory SNS activity, we prioritize the PEP and palm- or finger-based SCL and 
nsSCR. For reasons outlined above, we advise against the use of LF/HF as an SNS index. 
We also see little merit in using SAA concentration from the cotton swabs used to detect 
diurnal cortisol patterns, at least not as a measure of peripheral SNS nerve activity. Co-
registration of the TWA with the PEP seems useful as it only requires the ECG recording 
that is already needed for the PEP anyway. To increase user acceptance and the feasibility 
of prolonged recording while reducing the risk of changes in the participants’ daily rou-
tines due to the measurement procedures, wrist-based PPG and EDA recording are seen 
as promising alternatives for ambulatory PNS and SNS activity recording, respectively. 
At the current stage of technology, however, these methods may generate substantially 
less reliable signals.

Apart from recording the purer SNS and PNS measures, it remains valuable to per-
form ambulatory recording of the heart rate as a general index of arousal. Heart rate 
comes “for free” whenever a PPG or ECG signal needs to be recorded to obtain a cardiac 
SNS or PNS measure. As long as it is understood that heart rate is a mixed bag of SNS 
and PNS activity, its clinical relevance justifies its reporting in any ambulatory study 
that records it. Likewise, the clinical importance of blood pressure makes it a valuable 
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parameter in research on ANS activity, particularly when co-recorded with purer cardiac 
SNS or PNS measures.

The difficult tradeoff facing today’s researcher in selecting an instrument from Table 
6.1 for their ambulatory assessment research is that the correlation between device reli-
ability/validity and end-user acceptance seems to be sharply negative. Research-oriented 
devices generally fare best when it comes to validity, but relying on academic groups to 
make innovative technology user-friendly and widely available at low cost seems naive at 
best. The long-term viability of research devices is also not necessarily higher than those 
of commercial companies, the demise of the LifeShirt and Portapres devices being a case 
in point. These well-validated devices are no longer produced even if the existing versions 
are still in high demand.

The contrast between research- and consumer-oriented devices is compounded by 
the lack of empirical evidence on how the balance between measurement error and much 
longer recording times (= more repeated measurements) affects the ability of ambulatory 
recording to elucidate the within-subject associations between the ANS and psychologi-
cal states in daily life. It is also unknown how well the prolonged measurements can com-
pensate for a larger measurement error when it comes to the predictive validity of ANS 
activity for disease outcomes. We hope and expect that the distinction in user-acceptance 
of research-oriented, medical application-oriented, and consumer-oriented devices will 
increasingly blur and that the demands for demonstrated device reliability/validity will 
sharply increase for all three categories.

Interpretational Issues

The availability of (future) wearable technology that is reliable and well validated does not 
automatically lead to appropriate scientific interpretation of the measurements generated. 
It is at least as important to have a good grasp on the social and psychological events that 
lead to the generation of changes in ANS activity. This requires the careful co-registration 
in daily life of changes in subjective emotional state (Busscher, Spinhoven, van Gerwen, & 
de Geus, 2013; Daly, Delaney, Doran, Harmon, & MacLachlan, 2010; Gentili et al., 2017; 
Kimhy et al., 2017), anxiety-disorder related symptoms (Dennis et al., 2016; Pfaltz et al., 
2015), cognitive functioning (Riediger et al., 2014), components of work stress like job 
demand and decisional control (Kamarck, Schwartz, Janicki, Shiffman, & Raynor, 2003), 
negative social interactions, including marital conflict (Baucom et al., 2018), cognitive 
appraisals (Carnevali, Thayer, Brosschot, & Ottaviani, 2018; Gerteis & Schwerdtfeger, 
2016), and behavioral coping strategies (Burg et al., 2017)—to name but a few of the psy-
chological constructs that have been linked to ambulatory ANS activity. Many chapters 
in this handbook are devoted to measurement of such psychological factors using either 
ecological momentary assessment (EMA) or passive sensing technology, and we point the 
reader to the excellent strategies outlined there to co-register the relevant contextual and 
psychological factors that are typically of interest to the behavioral scientist.

However, even with careful characterization of the daily-life contextual and psy-
chological factors impacting on ANS activity, an important component of the optimal 
ambulatory assessment strategy for ANS is still missing. The high ecological validity 
of measuring in a daily-life setting comes at a steep price. The organ systems we use as 
read-outs for ANS activity were not primarily devised by evolution to serve as “psycholo-
gist tools.” They serve homeostatic functions meant to keep, among others, blood gas 
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concentrations, pH, blood pressure, core temperature, and energy substrate availability 
within strict boundaries. The heart is a pump, not a stress-o-meter. The strongest sources 
of within-subject variability in ANS activity are nonpsychological in nature and are often 
(though not always) outside of the domain of interest of behavioral studies.

The impact of physical activity on cardiac signals, for example, is so pervasive that 
many ambulatory researchers have defaulted to asking participants to refrain from inten-
sive physical activity such as leisure-time sports or (prolonged) dancing on recording 
days. In addition, a deliberate selection is made of only those fragments of the recording 
days where physical activity is stationary across a longer time period, and often selection 
sternly retains only those recordings when people are either sitting or lying down (sleep) 
and engaged in sedentary or low physical activity (e.g., sitting in a meeting, using a smart-
phone or PC). Since many modern-day jobs are predominantly sedentary, this captures 
about 85% of a normal work day (Vrijkotte et al., 2001). However, for jobs like nursing or 
manual labor, this strategy would remove large chunks of data. Having to restrain from 
sports and exercise further compromises ecological validity. One strategy to circumvent 
these limitations is to carefully establish the transfer function between physical activ-
ity and the physiological measure of interest during periods of low psychosocial stress 
and then mathematically correct the physiological signal obtained during stress for the 
co-registered physical activity. When applied to heart rate, this strategy yields the con-
cept of “additional heart rate” (Brouwer, van Dame, van Erp, Spangler, & Brooks, 2018; 
Ebner-Priemer et al., 2007; Myrtek et al., 1988; Myrtek & Foester, 2001; Pfaltz et al., 
2015; Verkuil, Brosschot, Tollenaar, Lane, & Thayer, 2016; Wilhelm, Pfaltz, Grossman, 
& Roth, 2006). In this method, one first regresses increasing levels of physical activity 
operationalized as oxygen consumption, minute ventilation, or accelerometer output on 
the heart rate. Based on the regression parameters, the observed heart rate is compared to 
the expected heart rate based on oxygen consumption, minute ventilation, or accelerom-
eter output during the real-life exposures of interest. The difference is the additional heart 
rate. “Additional” here literally means that part of the heart rate that cannot be simply 
explained by physical activity and therefore must be attributed to psychological factors.

Apart from the strong effects of physical activity, ANS activity is also sensitive to 
postural change, caloric intake, fluid consumption, smoking, alcohol or other substance 
use, and fluctuations due to circadian rhythms or the menstrual cycle. Some of these 
may be correlated to the psychological factors of interest, yielding complex patterns of 
confounding on ANS activity (Sperry, Kwapil, Eddington, & Silvia, 2018). In addition, 
various factors that only weakly influence SNS and PNS activity themselves can nonethe-
less strongly impact on the measures we use to index such activity. For example, respi-
ratory behavior strongly impacts on RSA measures independent of vagal activity, and 
temperature and humidity impact on EDA measures through thermoregulatory rather 
than emotional sweating.

Co‑Registration of Momentary Within‑Person Confounders

Physical Activity, Posture, Respiration, Temperature

Many confounders can be controlled in a laboratory setting by design, for instance, by 
measuring all study participants in a no physical activity, supine position between 9 and 
10 A.M. while their respiration rate is paced and after they have abstained from smoking 
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or drinking coffee in the morning before the experiment. Ambulatory assessment, in con-
trast, aims to make the behavior of the study participants as naturalistic as possible. This 
invites a multitude of nonpsychological factors to influence ANS physiology that are no 
longer under the control of the experimenter and so must be co-recorded and dealt with 
analytically. In Table 6.2, we summarize how the four most important of these factors 
impact the ANS and the methods to systematically co-record them.

Various Other Within‑Subject Factors Can Affect the ANS

After physical activity and posture, the wake–sleep transition is the factor explaining 
most of the variance in 24-hour recordings of cardiac variables, with sharp changes in 
SNS and PNS at bedtime and awakening (Kupper et al., 2005). These abrupt transitions 
reflect a combination of changes in posture and arousal levels, the latter often occurring 
on top of a more general sinusoid pattern of diurnal variation in ANS activity (Eekelen, 
Houtveen, & Kerkhof, 2004). This pattern is visible in the gradual increase in PEP and 

TABLE 6.2.  The Effects of Physical Activity, Posture, Respiration, and Temperature on ANS Measures 
and Methods to Systematically Co-Record Them by Ambulatory Devices

Confounder ANS effects

Co-recording needed

Concepts Strategies References

Physical 
activity

HR (++), BP (++), 
RSA, RMSSD, 
HF (++), PEP (++), 
SCL (++), 
nsSCR (++), 
TWA (++)

Type of 
activities; 
energy 
expenditure

EMA-based self-
report; accelerometer; 
minute ventilation

Aminian et al. (1999); 
Bussmann, Ebner-Priemer, 
& Fahrenberg (2009); 
Hendelman, Miller, 
Bagget, Debold, & 
Freedson (2000); Pfaltz et 
al. (2015)

Posture HR (+), BP (+), 
RSA/RMSSD/
HF (+), PEP (++), 
SCL (~), 
nsSCR (~), 
TWA (+)

Posture EMA-based self-
report; accelerometer 
(+ gyroscope)

Berlin & Van Laerhoven 
(2012); Bussmann et al. 
(2009); Lawal & Bano 
(2020); Mannini & 
Sabatini (2010); Mathie, 
Coster, Lovell, & Celler 
(2004); Yen & Lin (2020)

Respiration HR (~), BP (~), 
RSA, RMSSD, 
HF (++), 
PEP (~), SCL (~), 
nsSCR (~), 
TWA (~)

Respiration 
rate; tidal 
volume

Respiratory inductance 
plethysmography; 
impedance 
plethysmography; HF 
component in ECG or 
PPG; morphological 
changes in the ECG

Houtveen, Groot, & de 
Geus (2006); Kent et al. 
(2008, 2009); Liu, Allen, 
Zheng, & Chen (2019); 
Varon et al. (2020)

Temperature HR (~), BP (~), 
RSA, RMSSD, 
HF (~), PEP (~), 
SCL (++), 
nsSCR (++), 
TWA (~)

Ambient 
temperature; 
skin 
temperature; 
core 
temperature

Weather/thermostat 
data; sensor on 
clothing; thermal 
infrared imaging; 
sensor on skin; 
ingestible sensor

Engert et al. (2014); 
Kinugasa & Hirayanagi 
(1999); Low, Keller, 
Wingo, Brothers, & 
Crandall (2011); Ren et al. 
(2011); Turpin, Shine, & 
Lader (1983)

Note. ~, +, and ++ indicate the relative strength of impact on ANS measures.
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RSA in the course of the night reflecting decreasing SNS and increasing PNS activity, 
although short-term increases in SNS activity in REM sleep have been reported (de Zam-
botti, Trinder, Silvani, Colrain, & Baker, 2018). The total pattern of 24-hour fluctua-
tions in ANS activity derives from a combination of endogenous circadian rhythms and 
time-related behavioral variation, including wake–sleep, meals, and work–leisure effects.

During waking hours, the consumption of food and drinks (Adam & Epel, 2007), 
noise exposure (Morrison, Haas, Shaffner, Garrett, & Fackler, 2003), smoking (Hayano 
et al., 1990; Lucini, Bertocchi, Malliani, & Pagani, 1996; Ohta et al., 2016), alcohol use 
(Schwabe, Dickinson, & Wolf, 2011) or other substances (Kennedy et al., 2015; Schmid, 
Schonlebe, Drexler, & Mueck-Weymann, 2010) are known to affect ANS activity. A 
female-specific factor that needs to be recorded is the phase of the menstrual cycle (von 
Holzen, Capaldo, Wilhelm, & Stute, 2016).

Time of day is automatically recorded by almost all devices, but specific co-recording 
of the time-to-bed and waking-time, as well as the consumption of food and drinks or 
substance use can be done by EMA-based self-report. Increasingly, passive sensing is 
being used to detect these behaviors (Berlin & Van Laerhoven, 2012; Harari, Muller, 
Aung, & Rentfrow, 2017). Noise exposure can be reasonably approximated by sampling 
incoming noise to the smartphone microphone, but this depends on where and how the 
phone is carried. Studies specifically focused on stress generated by listening effort (e.g., 
in the hearing impaired) are using more advanced dual audio recorders placed on a pair 
of glasses close to the ears (Kowalk, Kissner, von Gablenz, Holube, & Bitzer, 2018).

Between‑Subjects Factors

Ambulatory studies of ANS activity do not differ from a typical psychophysiological 
experimental setting in the laboratory in that many stable between-subject confound-
ers can impact on the mean and variance of ANS measures. Many studies have exam-
ined individual differences in ANS activity related to age (Hu, Lamers, Penninx, et al., 
2017), sex (Taylor, Arnold, Fu, & Shibao, 2020), body mass index (BMI; Hu, Lamers, 
Penninx, et al., 2017), genetics (de Geus, Neijts, & Willemsen, 2015), ethnicity (Hill et 
al., 2015), socioeconomic status (SES; Hemingway et al., 2005), chronic pain (Generaal 
et al., 2017), disease status, medication use (Licht, Penninx, & de Geus, 2012), habitual 
alcohol use (Boschloo et al., 2011), smoking (Hu, Lamers, Penninx, et al., 2017), physical 
activity habits (Hu, Lamers, de Geus, & Penninx, 2017), general sleep quality (Tobaldini 
et al., 2017), and physical fitness (de Geus, van Doornen, de Visser, & Orlebeke, 1990). 
Although the reported associations with ANS measures are not always uniform in sig-
nificance or direction across all studies, it seems prudent to record such factors whenever 
possible. A complete review is outside of the scope of this chapter, but the minimum 
person-specific characteristics that we recommend to be measured in any study using 
ambulatory assessment of the ANS are age, sex, ethnicity, physical activity habits, SES, 
disease status, and current medication use.

Analytical Strategy

In a typical ambulatory ANS study, repeated observations of variables are nested within 
persons. As explained above, a set of variables should be selected that captures (1) psycho-
physiological measures of interest, (2) the psychosocial context, and (3) the time-varying 
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confounders. The ideal strategy is to align the time-axis of sampling for all three sets of 
variables, but this is not always feasible. To enforce time alignment, researchers often use 
selection. For instance, if EMA is used to detect the number of cigarettes smoked across 
the last hour and current positive and negative mood states, the continuous physiological 
recording of RSA could be restricted to average of RSA in the 5 minutes before or after 
the EMA beep. This would yield an hourly set of variables reflecting mood, recent ciga-
rettes smoked, and a 5-minute averaged RSA value. Temporal resolution could be greatly 
improved by successful use of passive sensing and machine learning to estimate emotional 
state through analysis of speech snippets, smartphone use, and location data. Likewise, 
automated smoking detection from wrist-worn accelerometers could yield a signal every 
60 seconds indicating whether the person is smoking. In that case, the repeated measures 
structure for all variables would expand to a minute-by-minute basis.

As amply demonstrated elsewhere in this book, multilevel modeling has been shown 
to be a powerful approach for analyzing within-person repeated measures data. They 
can be used for analyzing more complex nested data structures, that is, minutes, within 
days, days within weeks, and so on, and graciously handle unequal numbers of observa-
tions across individuals (missings) or even data left at unequally spaced time intervals 
(Hox, Moerbeek, & van de Schoot, 2017). By simultaneously modeling the effects of the 
psychosocial context on ANS measures, with the effects of confounders such as time of 
day, posture, respiration, and physical activity (or other confounders) on these measures, 
one effectively creates a series of partial regression slopes, describing for each subject 
the extent to which their ANS activity tends to increase when psychosocial demands 
increase, after adjustment for the effects of confounders. Note that when such a model 
is used for the parallel effects of stress and physical activity on heart rate, it effectively 
recaptures the strategy of computing the additional heart rate that was mentioned previ-
ously in this chapter.

Multilevel models for ambulatory ANS data have the added advantage of allowing 
the temporal structure of cross-variable regressions to be person-specific by modeling the 
slopes as a random factor. That is, if the effect of stair-climbing on RSA is suspected to 
be less strong in a well-trained individual, then individual differences in vigorous exercise 
habits can be added as a level 2 factor.

Conclusion

Ambulatory monitoring of PNS activity through RSA, RMSSD, HF, ambulatory moni-
toring of SNS activity through PEP, SCL, nSCRs, and indirect monitoring of SNS and 
PNS activity through ambulatory heart rate and BP provides higher ecological validity 
and higher predictive validity for clinical outcomes than laboratory studies. The added 
validity of an ambulatory psychophysiological study, however, does come with the strong 
requirement of solid co-registration of the psychosocial context and a host of confound-
ing influences on the ANS. By far the most important of these influences are physical 
activity and the wake–sleep cycle for all ANS measures, postural changes for the PEP, 
respiratory behavior (including speech) for all heart-rate variability measures, and tem-
perature and humidity for the EDA-based measures. Provided there is valid registration 
of these confounders, solid strategies are available in the data analysis phase to take them 
into account. These range from simple post-hoc selection of periods where the levels of 
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the confounders are highly comparable, to full modeling of the complex dependency of 
the ECG, ICG, and EDA signals on the confounders and regressing these out when com-
puting the relevant ANS measures.

Whereas large improvements in the ambulatory assessment toolkit are still needed, 
technology will not be the Achilles’ heel of our understanding of the psychological effects 
on ANS regulation in daily life. The more fearsome enemies are the overestimation of 
the validity of the measures used and the underappreciation of the complexity of their 
underlying biology.
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C H A P T E R  O V E R V I E W

This chapter provides an introduction for researchers working with phone log and screen 
usage data. We describe the different data sources related to phone calls, text messages, 
and screen use, including example data structures and differences between data under 
the iOS and Android operating systems. We discuss ethical and practical considerations 
when planning a smartphone study containing these data. Steps to consider when clean-
ing and computing features from such data are described in detail, including psychomet-
ric considerations and suggestions for data visualization. Finally, we describe limitations 
and future directions for passively collected phone log and screen usage data as well as 
other phone metadata sources.

Introduction

Phone logs and phone usage patterns have been referred to as organic data, that is, “data 
that are generated without any explicit research design elements and are continuously 
documented by digital devices” (Xu, Zhang, & Zhou, 2020, p.  1257). Organic data 
reflect everyday activities based on natural interactions with technological devices or 
platforms (Groves, 2011). Examples of organic data continuously generated by the phone 
include logs of sent and received text messages (i.e., short messaging service [SMS]), logs of 
outgoing and incoming phone calls, as well as high-level screen activity (i.e., is the screen 
turned on or off), and what the battery status is. This stands in contrast to data resulting 
from planned investigations (e.g., in-app responses to ecological momentary assessment 
surveys). In this chapter, we focus on phone logs (calls and messages, specifically) as well 
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as phone (screen) usage patterns because they represent some of the most basic, natural 
interactions with smartphones, therefore making them particularly relevant and valuable 
in psychological research. We will describe the different steps to analyze phone log and 
screen usage data following Xu and colleagues’ (2020) workflow of studies, using organic 
data to organize this chapter.

As listed in Figure 7.1, data sources described in this chapter consist of call and 
text logs as well as screen usage. When planning a study using or assessing such data, 
factors to consider include user demographics, information on the devices participants 
are using (as the specific technology may vary between different brands and models), as 
well as environmental factors (e.g., economics, politics, culture). Once the study design 
has been established and the data have been collected or accessed, preprocessing entails 
cleaning the data, followed by computing any relevant metric for analysis. In addition to 
data analysis, it is usually helpful to visualize the data and results. Doing so allows for a 
comprehensive interpretation of the results, revealing unique insights as well as potential 
avenues for future research.

Data Sources

While it is usually possible for phone users to access and export some of their own his-
toric data (such as call and text logs), this will usually involve many manual steps. In the 
context of a research study, this can put an additional burden on the participants and 
will likely require detailed instructions or even supervision to be accomplished success-
fully. Downloading a smartphone app (see Chapter 1, “How to Conduct Mobile Sensing 
Research,” this volume) will almost always be more convenient for the participants and 
the researchers involved. In addition, an app can guide participants through the process 
of enabling any required settings (e.g., switching on screen time tracking on Android, 
which is disabled by default) and allow collection of data in real time (e.g., via an API) 
that otherwise does not get stored on the device.

Commonly used open-source apps include the AWARE framework and Funf, while 
two notable commercial apps are Metricwire and Ksana Health. Notably, Beiwe includes 
both commercial and open-source options. Table 7.1 provides an overview of accessible 
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phone log and screen time data across the iOS and Android operating systems. As of this 
writing, phone logs and phone usage data are generally more easily available on Android 
phones (see www.apple.com/privacy for further information on iOS data collection prac-
tices).

In particular, historic data are accessible on Android phones with little to no restric-
tions; that is, an app running on a participant’s phone accessing phone and call logs will 
be able to access the entirety of the records as long as those have not been deleted by the 
user. For iOS, the last 1,000 calls are available, yet only 100 are accessible via an iPhone 
(Bradford, 2021). This means that to look back into their own call history, a user will 
need to delete an equivalent number of recent calls. For example, a person could delete 
the last 50 calls up to 20 times depending on how many calls they have made until the 
call record is empty. Furthermore, iCloud must be active to retain the call history; if it is 
turned off, all data are stored for 180 days and are then deleted.1 However, Apple does 
offer an option to request call log data, which is emailed via spreadsheets and takes up 
to 7 days to process.

Regarding screen use, a sensing app (e.g., AWARE Framework; see https://
awareframework.com/screen) will be able to record when the device’s screen is being 
turned on (i.e., wake mode), turned off (i.e., sleep mode), locked, or unlocked for both 
iOS and Android.

TABLE 7.1.  Overview of Accessible Phone Log and Screen Time Data across iOS and Android Operating 
Systems

iOS Android

Text logs To a sensing app, no text logs are accessible under iOS.

To the user, the entirety of the historic records, 
including both SMS and iMessages, are accessible 
if the phone is set to “keep messages forever” (other 
options are 1 year and 30 days), and messages have not 
been deleted by the user.

To both the user and a sensing 
app, the entirety of the historic 
records is accessible as long as 
those have not been deleted by 
the user.

Call logs The last 1,000 calls are available, yet only 100 are 
accessible via an iPhone (Bradford, 2021). This means 
that to look back into one’s call history, one would 
need to delete an equivalent number of recent calls. 
Furthermore, iCloud must be active to retain the call 
history; if it is turned off, all data are stored for 180 
days and are then deleted.

Entirety of the historic records 
as long as those have not been 
deleted by the user.

Screen time The following screen events can be recorded in real 
time by a sensing app (e.g., Aware): screen being 
turned on, turned off, locked, or unlocked.

Detailed screen activity is not available (e.g., app 
usage). Some apps employ work-arounds such as 
routing all traffic through a VPN (e.g., Qustodio) or 
extracting the contents of screenshots users take of 
the iOS Screen Time tracking feature in the phone’s 
settings (e.g., Moment), but iOS will not allow an 
app direct access to these data. The iOS Screen Time 
tracking feature stores and displays screen time for up 
to 7 days only.

The following screen events 
can be recorded in real time 
by a sensing app (e.g., Aware): 
screen being turned on, turned 
off, locked, or unlocked.

Detailed screen activity is 
switched off by default, but 
if tracking is enabled by the 
user, the data are accessible. 
Tracking can be disabled, and 
the data deleted anytime.

170	 Technological Know‑How and Methodological How‑To 	



While not the topic of this chapter, it is worth mentioning that detailed screen activ-
ity such as app usage is more difficult to access. On Android devices, the recording of 
detailed screen activity is switched off by default, but if tracking is enabled by the user, 
the data get recorded and are in theory accessible to a sensing app. Tracking can be dis-
abled, and the data can be deleted anytime.

For iOS, Apple’s support site states that “you can see a summary of your device use 
for the current day or the past week” using the Screen Time app. The iOS Screen Time 
tracking feature stores and displays screen time—which includes app usage—for up to 7 
days only. However, iOS will not allow other apps on the device to directly access these 
data. Some apps employ work-arounds such as routing all traffic through a virtual pri-
vate network (VPN; e.g., Qustodio) or extracting the contents of screenshots users take 
of the iOS Screen Time tracking feature in the phone’s settings (e.g., Moment).

Given that (as of writing this chapter) accessibility of log data are more limited under 
iOS, there may in many instances be greater opportunities for research afforded using 
Android devices. In the remainder of this chapter, where possible, we will point out dif-
ferences with iOS (for further information, see the “Feature Computation” section as 
well as https://developer.apple.com).

Call and Text Logs

Call logs contain data about the temporal calling patterns of smartphone users, including 
the frequency and duration of calls placed and received as well as the recipients of such 
calls across various contexts (Lee, Seo, & Lee, 2010). Text logs contain similar temporal 
records for messages that were received and sent via the device’s Messages app. They typi-
cally contain the number of characters and words allowing for potentially more robust 
analyses (Battestini, Setlur, & Sohn, 2010). Importantly, neither call nor text logs record 
the contents of the call or text message (such as via an audio file or storing the text sent). 
Also, note that call and text logs will not include records of calls or messages through 
other apps with calling or messaging functionality (such as WhatsApp and Facebook 
Messenger). Depending on the population studied, the preferred communication chan-
nels of the participants enrolled in the study might prevent call and text logs from provid-
ing an accurate (or approximated) representation of their communication patterns. For 
example, researchers wishing to study the communication behaviors of students might 
find that at a specific university, students primarily use WhatsApp and Facebook Mes-
senger for their communication, but a consistent percentage of students’ communication 
goes through the Messages app on their phones. This makes the frequency of messaging 
a useful relative indicator for identifying more and less social students (even if they are 
not providing a reliable approximation of their overall communication frequency). On 
the other hand, it is also imaginable that groups among the student population systemati-
cally behave differently (e.g., international students heavily using apps that are popular 
in their home countries). Cross-cultural differences within as well as between groups can 
introduce biases related to measurement, construct, sample, device-type user practices, 
and environmental factors when conducting smartphone sensing research (see Phan, 
Modersitzki, Gloystein, & Müller, 2022, for in an-depth discussion of this topic). Based 
on such considerations, researchers might want to consider introducing a prescreen when 
enrolling participants in a study related to communication patterns.
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As of this writing, message data are only available for Android. While call data are 
available for both iOS and Android, there are some differences. For example, iOS call 
records create unique traces for each contact even if the user has been in touch with the 
same contact repeatedly, preventing the computation of metrics such as the number of 
distinct contacts or amount of interaction with the most frequently called contact. We 
point the interested reader planning to collect, or already in possession of, data spanning 
across those two operating systems to the Android and iOS developer documentation 
(https://developer.android.com and https://developer.apple.com), as well as the documen-
tation for the analysis pipeline in Reproducible Analysis Pipeline for Data Streams (RAP-
IDS; www.rapids.science/1.9).

Tables 7.2 and 7.3 present hypothetical examples of how such data might be struc-
tured for call and text logs (see also, e.g., Beiwe, 2022). Importantly, these data only 
contain texts and calls issued from native operating system apps (called “Phone” for 
calls and “Messages” for texts on both iOS and Android). One limiting factor of this 
approach is that people may use other apps to make calls or send messages (e.g., Face-
book Messenger, WhatsApp, Skype, Google Hangouts, and Facetime), which will not 
be captured in these logs (but rather within those apps). However, the logs allow captur-
ing additional information about communication that would not be accessible through 
other apps. This, for example, enables identifying the number of communication partners 
characterizing ongoing communications with specific other parties (e.g., in the context 
of studying dyads such as romantic relationship partners) or capturing the number of 
characters and words in a message or the exact duration of a call. In Table 7.2 one user 
receives more messages than they send, while the other user sends more than they receive. 

TABLE 7.2.  Example of a Text Message File
User id Device id Type Body word_count Body_length Timestamp

12345 16890253647 Inbox 26 150 06:00:01 02 12 2021 GMT+0

12345 16890253647 Inbox 22 120 07:37:12 02 12 2021 GMT+0

12345 16890253647 Sent 11 49 06:28:01 03 12 2021 GMT+0

67890 87263749726 Inbox 29 172 16:09:28 02 12 2021 GMT+1

67890 87263749726 Sent   5 28 17:13:17 03 12 2021 GMT+1

67890 87263749726 Sent 16 83 15:15:22 03 12 2021 GMT+1

TABLE 7.3.  Example of a Call File
User id Device id Number Type Duration Timestamp

12345 16890253647 A5F2J5 Incoming     9 12:03:04 02 12 2021 GMT+0

12345 16890253647 F5K8H2 Outgoing   26 16:39:21 02 12 2021 GMT+0

12345 16890253647 V2J9S5 Missed   68 07:24:14 03 12 2021 GMT+0

67890 87263749726 K9L3M2 Incoming   35 09:13:56 02 12 2021 GMT+1

67890 87263749726 K9L3M2 Outgoing 145 18:14:34 03 12 2021 GMT+1

67890 87263749726 J1B0X3 Outgoing 509 23:22:24 03 12 2021 GMT+1
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User 12345 also has an early morning texting habit, while user 67890 sends most of their 
messages in the afternoon. Table 7.3 shows that user 67890 places calls to and receives 
calls from K9L3M2 (a placeholder for the unique hash that allows tracking of ongoing 
conversations with the same person, bot, company, or other entity without identifying 
them). The conversations between 67890 and K9L3M2 are also noticeably longer than 
the other records, suggesting the possibility of a closer relationship.

Screen Use

There are slightly varying definitions of screen use. The World Health Organization 
(2019), for example, refers to it as “time spent passively watching screen-based entertain-
ment (TV, computer, mobile devices). This does not include active screen-based games 
where physical activity or movement is required” (p. v). The Merriam-Webster Diction-
ary defines it as “time spent watching television, playing a video game, or using an elec-
tronic device with a screen (such as a smartphone or tablet).” These definitions reveal a 
distinction between active and passive screen use, where the former may have beneficial 
implications for psychological health (Kaye, Orben, Ellis, Hunter, & Houghton, 2020). 
This aligns with the work by the nonprofit organization Common Sense Media, which 
surveys teenagers and young adults in their Common Sense Census (Common Sense, 
2022). They have seen steady increases in screen time over the years, with a significant 
spike during the COVID-19 pandemic. Passive consumption of TV and video makes up 
the largest part of daily screen use, with about 3 hours of time spent by teenagers and 
young adults. The second largest category is gaming, with about 1.5 hours spent on this 
activity daily, reflecting a more active engagement with screens. While the availability 
of active and passive engagement options with screen media is not new, developments 
in phone technology have increasingly blurred the lines between TV and phones and 
allowed for phones to become portable TVs that users can carry in their pockets and 
interact with at all times (in addition to, of course, many other functionalities).

According to Reeves, Robinson, and Ram (2020), capturing screen use data may 
be particularly challenging, as studies have largely focused on self-reports of screen use 
rather than the “moment-by-moment capture of what people are doing and when” (para. 
4). In past research, screen use has often been self-reported due to complexities in captur-
ing and classifying such data. Although logging apps can help in collecting more accurate 
screen use data, they do not “reveal exactly what people are seeing and doing at any given 
moment” (Reeves et al., 2020, para. 3).

Alcott, Gentzkow, and Song (2021) conducted a study investigating screen use limits 
for social media use and associated effects on habit forming, self-control issues, and sub-
jective well-being. By utilizing a program called Phone Dashboard to record screen time 
and establish screen use limits, 2,000 Android phone users were recruited. Participants 
in the experimental group had the ability to set their own screen use limits directly in 
Phone Dashboard. Alcott and colleagues found that screen time decreased by more than 
20 minutes per day among participants in this group, suggesting a possible correlation 
between social media and self-control issues. This study exemplifies how a psychological 
study can leverage instantly capturing screen time activity rather than relying on self-
report data.

Introduction of the type of objective measurement possible with smartphones is 
helping address difficulties in conceptualizing screen use and overcoming the limitations 
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of self-reported data. Kaye and colleagues (2020) recommend focusing on capturing the 
behaviors screens are facilitating, for example, relating to social, work, or informational 
use, and thereby putting users’ needs at the center of any investigation into the psycholog-
ical and social correlates of their screen use. This may require analysis of the screen’s con-
tent, however, which can be achieved through capturing and analyzing users’ app usage. 
Another approach, as employed by the Human Screenome Project at Stanford University, 
takes screenshots every 5 seconds, which can allow tracking across different platforms if 
the software is installed on multiple devices (Ram et al., 2020). It is of note that neither 
of these passive approaches allows capturing whether the phone user processed the infor-
mation on the screen (or, for example, was looking elsewhere) and how they perceived it 
(as the same content could be perceived and processed very differently depending on the 
person and the context they find themselves in). For example, a user might be looking up 
information about a medical condition that they were recently diagnosed with, or a user 
might be looking up the same information because they are a medical student preparing 
for an exam. In its most basic form (and for the purposes of this chapter), however, screen 
use can refer to the time the screen was on and displaying something to the user.

Table 7.4 shows a hypothetical example of a screen use file. Importantly, these data 
are only available on Android. Screen logs will typically capture whether the screen came 
on or went off (which might, for example, be caused by movement or a notification) 
and whether the user has unlocked or locked the screen (depending on the device, for 
example, via entering a PIN, or pressing a button or fingerprint reader, or via a face or 
eye scan).

Practical and Ethical Considerations during Study Setup

Due to the ease of collection and the availability of historic data, we suspect that there 
will be an increasing volume of large international datasets, studies, and collaborations 
as time goes on. For the sake of completeness, we therefore point out that in such cases 
where the data span across vastly different environments and users, systematic sources 

TABLE 7.4.  Example of a Screen Use File
User id Device id Screen status Timestamp

12345 16890253647 Unlocked 19:03:04 02 12 2021 GMT+0

12345 16890253647 Locked 19:04:50 02 12 2021 GMT+0

12345 16890253647 On 7:35:09 02 13 2021 GMT+0

12345 16890253647 Off 7:35:12 02 13 2021 GMT+00

12345 16890253647 On 9:33:11 02 13 2021 GMT+00

12345 16890253647 Off 9:33:14 02 13 2021 GMT+00

67890 87263749726 Unlocked 09:10:45 02 12 2021 GMT+1

67890 87263749726 Locked 09:21:11 02 12 2021 GMT+1

67890 87263749726 Unlocked 11:22:16 02 12 2021 GMT+1

67890 87263749726 Locked 11:24:08 02 12 2021 GMT+1
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of heterogeneity might be introduced in the data that require attention depending on the 
specific research questions at hand. Blunck and colleagues (2013) note that such sources 
might include systematic differences in user characteristics (i.e., demographics and prac-
tices), devices (i.e., properties and abilities), and environments (i.e., ecology, economy, 
politics, and culture). Ignoring such sources of variance can introduce systematic biases. 
For example, differences in phone plan cost in certain countries might influence how 
many calls users make and text messages they send. Additionally, the smartphone users 
(or those who are willing to enroll in a study) of one country might be more varied 
regarding age, while in another country they are predominantly of a younger age bracket.

Furthermore, ethical considerations include communicating clearly to participants 
which types of data will be collected (especially in the case of accessing historical data) 
and what will be done with them, while paying particular attention to preserving par-
ticipant privacy (Tamine & Daoud, 2018). To date, we are not aware of any research 
showing the specific privacy risks of identifying a person from their phone log data alone, 
but it is likely that it would be possible to do so, given that, for example, only one spatio-
temporal (i.e., latitude, longitude, and time) GPS data point can be sufficient to identify 
a phone user with close to 100% accuracy (Rossi, Walker, & Musolesi, 2015), or that 
phone users have a unique app fingerprint allowing their identification across time and 
even different devices (Kurtz, Gascon, Becker, Rieck, & Freiling, 2016). Phone log data 
should therefore be treated with the utmost caution. To ensure reproducibility by other 
researchers, it is advisable that such data not be shared in their raw format but, rather, 
only make aggregate features available publicly (for examples, see also Harari et al., 
2020; Müller, Peters, Matz, Wang, & Harari, 2020).

Data Preprocessing

The particularities of log data compared to the data produced by more traditional data 
collection methods such as surveys or in-lab experiments are related to the data cleaning 
and feature computation phases as those will often be far more computationally intensive 
and technical than, for example, scoring a survey. However, once those steps have been 
completed, the resulting variables can often be dealt with and entered into statistical 
models in a very similar manner to how variables resulting from traditional data collec-
tion processes would be.

Data Cleaning

As with any data, it is important to inspect the files first and make sure they are in the 
required format for the following steps. If you are using a workflow management system 
such as RAPIDS (2022; see the next section), this would mean ensuring that the data 
format corresponds to the input requirements.

When doing manual data cleaning or if there are specific requirements, the fol-
lowing steps may be worth considering. First, outliers such as “failed to send” texts, 
“unknown” call types, NAs (i.e., missing data), duplicate, and any other atypical data 
points should be removed. To the best of our knowledge, this typically only affects a very 
small portion of users and/or records, and is less common—but certainly not impos-
sible—in system-generated logs compared to “second-hand” logs accessed via a data 
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collection app. Researchers should also consider validating the data entries to ensure no 
erroneous records are occurring when using a new data source such as a newly developed 
app. Second, the coding process must be conducted in a consistent way, particularly 
when combining different samples or data sources such as using existing data collected 
with different data collection apps (e.g., one data collection app might store call types 
as “incoming,” “outgoing,” and “missed,” and another app might record these as “call 
accepted,” “call made,” and “call missed,” respectively). Third, different time zones must 
be taken into account. Typically, phones will record timestamps in UTC (Coordinated 
Universal Time, the worldwide primary time standard) with an offset describing the dif-
ference between UTC and local time. For example, Pacific Standard Time (PST) corre-
sponds to UTC-08:00; that is, PST is 8 hours behind UTC. Data collection apps do not 
necessarily follow this convention and might return the timestamp in local time (e.g., 
PST or GMT). However, many apps (including, e.g., the Aware framework) will provide 
Unix time. Unix time corresponds to the seconds that have elapsed since 00:00:00 UTC 
on January 1, 1970. Importantly, this does not take different time zones into account but 
will be, by definition, provided in UTC. Consequently, researchers working with data 
from participants located across different time zones will need to take this into account if 
they are interested in the timing of activities. For example, if the study investigates partic-
ipants’ daily rhythms, it would be important to adjust for different time zones so that the 
phone records of one participant’s afternoon would not be compared with the records of 
another participants’ night but aligned accordingly. This might get complicated further 
if participants travel over the course of the data collection period. If needed, Unix time-
stamps can be converted into local time using programming languages such as Python 
and R or processing tools such as RAPIDS (2022; see the section “Feature Computation” 
for more details). Fourth, setting a possible subset for the duration of the study (or some 
other period for which everyone or most participants have data) can be beneficial. Fur-
thermore, there must be clear communication with participants to ensure institutional 
review board (IRB) compliance, especially for user records outside of the study period, 
as phone logs will allow access of historic data unless the user has emptied their memory 
(see the “Data Sources” section in this chapter). Ideally, computing estimates based on 
the same time frames is good practice and may lead to more consistent results.

Depending on the research question under investigation, one can perform any date 
conversions they might like, such as adding a variable for weekend days or a variable for 
time of the day (e.g., morning, afternoon, evening, or night). Lastly, due to the cyclical 
nature of such data (e.g., fewer calls/messages at night and more on Fridays; Harari et al., 
2020, p. 218), one should make sure to perform due diligence prior to cleaning of time/
weekly trends.

Feature Computation

Researchers processing phone log data themselves will likely find using a combination 
of Python and R most useful. Another option is the additional use of a data analysis sys-
tem such as RAPIDS (Vega et al., 2021; for recent studies using this system, see Moshe 
et al., 2021; Opoku Asare et al., 2021). RAPIDS is a workflow management system for 
reproducible data analysis purposes and has been developed to work optimally with data 
captured (among others) using the AWARE (2021) framework, but it will also work on 
other files as long as they have the correct configuration. After installing RAPIDS on 
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a computer, data are typically uploaded as a MySQL database or .csv file. Typically, 
data processing—including feature extraction—is performed at the level of the individ-
ual participant. If required for modeling, these individual variables are then merged in 
a following step. Time segments (frequency, periodic, or event based) are selected as 
well as whether data come from multiple time zones. The final configuration step is to 
select which features should be computed (e.g., frequency of outgoing calls, screen time), 
depending on which types of data are being used. Once these steps have been performed, 
a simple command executes use of the software for analysis.

Table 7.5 details the types of features available for the different data sources. For 
the first data type, calling behaviors, features are obtainable for incoming, outgoing, and 
missed call types. Also, the data provided by Android devices allow aggregation for spe-
cific contacts. The second data type, texting behaviors, is only available on Android, with 
features including type of message received and sent—again, also aggregable for specific 
contacts. Android features for the third data type, screen use, involves the unlock episode 
(i.e., the time between consecutive pairs of unlock and off events), while iOS allows con-
secutive pairs of unlock and lock events.

Furthermore, additional related features can be computed that rely on a combina-
tion with other data sources that lie outside of the scope of this chapter. For example, one 
might be interested in duration of ringing or response time to an incoming call (Stachl et 
al., 2020). With regards to text messages, it is possible to use data-analytical tools such 
as Python or R as well as additional data sources that do not get stored by the phone’s 
OS-compute additional metrics such as time between arrival and reading of a message 
(Pielot, De Oliveira, Kwak, & Oliver, 2014), counts of (potentially multiple) categories of 
text message contents or topics (e.g., positive vs. negative words; Battestini et al., 2010), 
variety of simultaneous conversations (Battestini et al., 2010), keystrokes and letter dele-
tions (Bae, Chung, Ferreira, Dey, & Suffoletto, 2018; Buschek, Bisinger, & Alt, 2018), 
number of words on screenshots, category of currently active applications on screen (e.g., 
social, games, music, and video), and indicators for screenshots in which participants 
generate content (e.g., typing/recording a message or social media posts; Reeves et al., 
2021). Which features to compute will be guided by the research questions and poten-
tially data availability.

Psychometric Considerations

Smartphone-based metrics such as those described in this chapter are often very skewed 
and might be highly variable (see, e.g., Harari et al., 2020). This needs to be consid-
ered when computing base rates and descriptive statistics and verifying any assumptions 
that need to be met before applying certain statistical models. Computing base rates and 
descriptive statistics can also be highly interesting in their own right and potentially merit 
the main focus of a research study. Depending on the research question at hand, it can 
also be helpful to explore the relationships of any computed metrics with each other and 
create composites; one option could be factor analysis (see, e.g., Müller et al., 2020).

Establishing reliability can be a further challenge when employing metrics that have 
not been previously introduced and studied with regard to their psychometric properties. 
Relatedly, validity issues may also arise with phone log data. Xu and colleagues (2020) 
note that this may be due to the choice of analytical software, as “automated algorithms 
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TABLE 7.5.  Overview of Features Describing Calling, Texting, and Screen Use Behaviors
Data type Possible features References

Calling behaviors Number of calls Harari et al. (2020); RAPIDS (2021)

Duration of calls Harari et al. (2020); RAPIDS (2021)

Android only: Number of unique hash-
encoded contacts (overall or for specific 
call types)

RAPIDS (2021)

Date and time for a specific call (e.g., first 
or last call for a specific day)

RAPIDS (2021)

Texting behaviors 
(Android only)

Number of texts Harari et al. (2020); RAPIDS (2021)

Length of texts Harari et al. (2020); RAPIDS (2021)

Number of unique hash-encoded contacts 
(overall or for specific message types)

RAPIDS (2021)

Date and time for a specific message (e.g., 
first/last text for a specific day)

RAPIDS (2021)

Count of unread SMS Burns et al. (2011)

Number of conversations (conversation = 
2+ text messages, at least one incoming 
and one outgoing, with a maximum 
20-minute response time)

Battestini et al. (2010)

Number of text messages for single 
conversations

Battestini et al. (2010)

Number of simultaneous conversations Battestini et al. (2010)

Response time Battestini et al. (2010)

Combining calling 
and texting 
(Android only)

Similarity of calling and messaging 
contact lists

Stachl et al. (2020)

Total number of call and text contacts Stachl et al. (2020)

Screen use Number of unlock episodes RAPIDS (2021)

Duration of unlock episodes RAPIDS (2021)

Time of first/last unlock episode for a 
specific day

RAPIDS (2021)

Number and duration of lock/unlock 
events or screen on/off events

Abdullah et al. (2016); Wang et al. 
(2018)

Overall phone (non)activity (during a 
specific time period, e.g., days vs. nights)

Stachl et al. (2020)

Note. Features are aggregated for a specific time period, such as a day or a week. Typically (and where possible), 
a range of derived statistical parameters such as mean, sum, min, max, entropy, and regularity are included for 
each feature.
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designed to replace human coders in the information-extraction process can make mis-
takes” (p. 1262). In addition, validity issues could stem from the data generation process 
itself, as researchers have less control over system-generated data in terms of, for exam-
ple, establishing the relationship between data points or variables. For instance, shifts 
in cultural norms about common methods of communication could change the causes 
of different phone use creating both validity and reliability issues. Reliability or valid-
ity issues can also arise regarding whether a certain form of communication becomes 
encrypted and people start using that form of communication more due to an enhanced 
sense of privacy, or if the phone software changes how it logs phone usage or significantly 
alters features (e.g., calls not being limited to voice but also offering a video option).

Visualizations

When building visualizations, key considerations are the target audience and the nature of 
the report in which they are included. For example, one might choose to display the data 
differently if individual-level visualizations are made for inclusion in feedback reports 
about data generated for every study participant as compared to the types of visualiza-
tion one might choose to include in the write-up of a study for publication in a scientific 
journal. Examples of such visualizations are included in Harari and colleagues (2020) 
and RAPIDS as well as in Figure 7.2, which shows the duration of incoming calls for two 
hypothetical samples. Sample 1 consists of persons with a fairly stable calling behavior 
during daytime as well as across the week. Sample 2, however, seems to consist of per-
sons who are less active in the morning but comparatively very active in the evenings and 
night, as well as more active during the weekend than during the week.

Another approach, frequency time charts, is illustrated in Figure 7.3 (see, e.g., Bat-
testini et al., 2010, for additional examples). Here, the user rarely texted between mid-
night and 6:00 A.M., which seems to be their usual sleeping time. There is higher activity 
in the evening (7:00 P.M. to 11:00 P.M.) and around lunch time (10:00 A.M. to 1:00 P.M.). 
On Wednesdays between 3:00 P.M. and 7:00 P.M., the user seems to have some event or 
activity where they never text. On weekends (Friday 2:00 P.M. to Sunday 2:00 A.M.), the 
user seems to text more during the day and stay up longer for texting at night than dur-
ing weekdays.
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  FIGURE 7.2.    Example visualizations of hypothetical log data for duration of incoming calls for two 
different samples.
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Similar time use visualizations are also possible for screen use data (with different 
colors for different apps; see, e.g., the Human Screenome Project; Reeves et al., 2021). 
Another possibility is circular visualization, that is, displaying patterns/timelines in a 
circular fashion around a clock center (Reeves et al., 2021). Finally, the clustering of dif-
ferent (and in particular larger quantities of) variables can also be visualized with the help 
of heatmap colored correlation matrices (see, e.g., Stachl et al., 2020; Wang et al., 2018). 
Both nomothetic and idiographic approaches can be examined (or even integrated) with 
such data. For example, users’ screen use can be ideographically assessed in their own 
environments, while nomothetic approaches can be employed to predict future screen use.

Limitations and Future Directions

Limitations

One main limitation of the described approach regarding phone and text logs is that 
people might use other apps to make calls (e.g., Skype and Facetime) and send messages 
(e.g., Facebook Messenger and WhatsApp). So far, the number and use of messaging apps 
have only been increasing over the years (Yu & Poger, 2019). In particular, more privacy- 
preserving options (e.g., Signal, Telegram, and Threema) have been becoming increas-
ingly popular (Doffman, 2021; Witman, 2021). In light of this change, researchers might 
want to integrate multiple data sources to collect the data appropriate to their research 
question (e.g., integrate social media app usage behavior if social behaviors are of interest; 
see also Harari et al., 2020). We would consider each data source to consist of manifest 
variables. Researchers should consider whether these variables reflect or form latent vari-
ables. However, with the types of data described in this chapter, we imagine that in most 
cases these variables will be treated as manifest variables. Screen use or battery usage 
does not usually integrate multiple data sources because only rarely are competing (or 
complementary) apps for this purpose installed on people’s phones. While, for example, 
a variety of apps and phone behaviors are related to social behaviors (e.g., phone calls, 
text messages, social media apps), screen usage (if enabled by the user) is usually captured 
only by an OS- specific app. However, validity analyses can also be performed on these 

 FIGURE 7.3.  Time chart of text message frequency of a hypothetical user across 2 weeks.
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variables with the help of custom-built apps (e.g., Kristensen et al., 2022) and concerted 
efforts to collect multiple, similar datasets for a user. In addition, there may also be 
opportunities for using “system” log data such as screen or battery usage for support in 
addition (or as opposed to) as the “main star” of the analysis. For example, Opoku Asare 
and colleagues (2021) investigated the percentage of battery charging and discharging to 
measure user activity, and Chen and colleagues (2013) predicted sleep duration from a 
number of data points, including the timing and duration of charge events.

Finally, the differences in available data, user behavior, and affordances between 
different operating systems pose a particular challenge—for both data collection and 
analysis. Researchers interested in collecting data across, for example, Android and iOS 
devices will need to use two study apps and take the different data origins into account 
when analyzing their data.

The mere log data also do not tell you what exactly people saw and processes—only 
that something was activated on the phone or used. In fact, you often probably do not 
even know if it was the same user operating the phone (though usually it should be). The 
point is that even the seemingly more objective data from logs may be devoid of psycho-
logical richness and not capture what we think or hope they might capture.

Future Directions

Future work should focus on both identifying and developing additional data sources, as 
well as ensuring that the currently available data are being leveraged to their maximum 
potential. Because what we have presented in this chapter is meant to serve as a guide or 
framework for analyzing phone log data, it might not fully capture the intricacies and 
complexities of digitally mediated behavior. Therefore, for data already at our disposal, 
another promising avenue is to relate log data to or combine them with other sensor data, 
such as calls, texts, and screen usage in different locations; co-usage or parallel activity 
such as navigating with help of maps app while talking on the phone; or taking a picture 
to send it over right away. To identify additional data sources from the smartphone in its 
current configuration, there are some more niche data that (1) have so far received little 
attention (e.g., battery status, notification settings, other system meta data), (2) have 
not yet been able to be turned into psychologically meaningful data (e.g., battery status 
and phone charging behavior), or (3) have not been able to be properly analyzed so far 
because more specialized and complex techniques are required (e.g., the analysis of typ-
ing patterns might require the installation of a separate keyboard and use of advanced 
statistical techniques such as natural language processing. Furthermore, there might be 
more log data in the future as phones become increasingly complex with additional sen-
sors added, as well as the Internet of Things, virtual (and augmented) realities, and con-
nected environmental devices and sensors. As such, it is, for example, possible that in 
the future log data from a smart fridge could be used to infer caloric and nutrient intake 
(Fujiwara et al., 2018) and for that data to be used for psychological research purposes 
(e.g., studying relationships between mood, self-regulation, and caloric intake).

We believe that we have only scratched the surface of what technology will enable 
us to do and that passively collected data will become more and more ubiquitous, infor-
mative, and powerful as we learn to leverage it. We hope that this chapter inspires more 
research using these types of data, as well as a rigorous approach when doing so.
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Note
1.	 Due to conflicting information and limited information regarding Apple’s data policies, 

one should perform their own due diligence when attempting to use iOS for phone log 
data.
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C H A P T E R  O V E R V I E W

App usage data provide some of the most psychologically rich information one can collect 
using mobile sensing methods. Here, we discuss how data from the applications (“apps”) 
people use to enhance the functionality of their mobile devices can advance research in 
all subdisciplines of psychology. First, we describe prior psychological work on app usage 
behavior. Next, we provide a detailed guide for researchers interested in working with 
app usage data. Specifically, we discuss different ways to (1) collect app usage data (e.g., 
usage logs, screenshots), (2) categorize individual apps and app categories, (3) analyze 
app usage data (e.g., considering app adoption, usage quantities, sequences, within- app 
behavior), and (4) enrich app usage data (e.g., using application programming interfaces 
[APIs], experience sampling). We conclude by discussing technical and ethical challenges 
posed by app usage research, as well as an outlook on the future of app usage on new 
kinds of mobile devices.

Virtually all user activity on a smartphone is mediated through “apps,” short for 
“applications.” Apps are defined as “self- contained software designed for a mobile device 
and performing specific tasks for mobile users” (Amalfitano, Fasolino, Tramontana, & 
Robbins, 2013, p. 002), developed with “the limitations and features of mobile devices 
in mind” (Clement, 2019). On a smartphone, calling, texting, surfing the Web, taking a 
photo, sending an email, examining a map, buying a product, listening to a song, and so 
on all require the user to open and interact with an application. Arguably, apps are what 
distinguish smartphones from regular mobile phones. After all, apps were the channel 
through which companies like Apple expanded the basic functionality of the phone, turn-
ing it from a device used primarily to make calls and send texts to a full- fledged computer 
that put the internet in people’s pockets. For Apple, the competitive advantage offered by 
apps was so important that, in 2010, they trademarked the phrase “There’s an app for 
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that.” Today, this phrase is truer than ever: There are almost 2 million apps in Apple’s 
App Store and more than 2.5 million apps in the Google Play Store (Clement, 2020).

Given the centrality of the app to the user’s experience of the smartphone, it is sur-
prising that researchers interested in mobile sensing methods have devoted so little atten-
tion to app usage. The lack of research examining app usage is even harder to understand 
when one considers the kinds of psychological insights that app usage has the potential 
to reveal. As this chapter will show, app usage provides a rich window into people’s lives 
and thus can be used to advance research in all subdisciplines of psychology.

This chapter provides an organizing framework for the analysis of app usage data, 
aiming to lower the barriers of entry for this kind of research. The first section describes 
prior work conducted with app usage data. After describing what has been done, we 
outline how researchers can go about collecting and analyzing app usage data in their 
own research. More specifically, in the second section, we discuss how app usage can 
be collected through self-reports, usage logs, and screenshots on phones running on the 
Android and the iPhone operating system (iOS). In the third section, we propose several 
ways of characterizing and analyzing the usage of individual apps and app categories, 
considering usage quantity, sequences, and within-app behavior. Finally, we provide an 
outlook on the future of app usage research.

Overview of Existing Research  
That Leverages App Usage

In this section, we provide a short overview of past studies that have investigated app 
usage for research purposes. We start by briefly reviewing research in human–computer 
interaction before describing app usage research in various subdisciplines of psychology. 
These studies serve as initial inspiration for how psychologists can leverage app usage to 
understand human cognition, emotion, and behavior. However, because research on app 
usage in psychology is still quite scarce, we provide further ideas for how it could be used 
in future research.

Two caveats are worth noting regarding the existing app usage research reviewed 
in this section. First, the vast majority of studies on mobile application usage have relied 
exclusively on data from Android phones because app usage data is currently almost 
impossible to log on iPhones. Such restrictions were implemented by Apple to protect the 
personal data of smartphone users, but they also impose obvious challenges to research-
ers. To our knowledge, only two studies have analyzed iPhone app usage by modifying the 
iPhone (Gordon et al., 2019; Morrison, Xiong, Higgs, Bell, & Chalmers, 2018). We return 
to methods for circumventing the limitations presented by iPhones (e.g., through the use 
of screenshots rather than app usage logs) in our section on the collection of app usage 
data. Second, although apps can be installed on other mobile devices like tablets, we focus 
specifically on smartphone app usage because this has been the focus of most research. 
We return to the issue of app usage on other devices in our outlook on the future of apps.

App Usage in Human–Computer Interaction Research

Most past studies on mobile app usage have been conducted by human–computer inter-
action (HCI) researchers interested in describing, understanding, and predicting how 

�	 Usage in Psychological Research	 185



people use apps on their phones. (For a review of investigations of app usage in HCI, refer 
to Church, Ferreira, Banovic, & Lyons, 2015.) These studies examine user behavior with 
the goal of optimizing the usability and user experience of phones or individual apps. 
For example, knowing when people are likely to open an app (Hang & De Luca, 2013; 
Xu et al., 2013) can serve to programmatically optimize the starting routines of apps. 
The earliest HCI reports systematically investigating mobile application use date back to 
2005 (Demumieux & Losquin, 2005; Froehlich, Chen, Consolvo, Harrison, & Landay, 
2007). These early, small-scale studies were the first to keep track of app-related events 
that happen on early generation mobile phones through system logs. These researchers 
recognized logging app usage as an opportunity to objectively analyze what people do 
with their phones.

One of the first large-scale studies on smartphone app usage was conducted by Böh-
mer, Hecht, Schöning, Krüger, and Bauer (2011). Their study used a custom logging app 
to record app usage from 4,100 smartphone users and provided descriptive estimates on 
average daily app usage. Specifically, the study described app usage with regard to the 
time of day (e.g., less overall usage at night, news apps in the morning), the length of 
app usage sessions (i.e., the amount of time spent continuously using applications), and 
the sequence in which participants tended to use apps (e.g., “Communication–Camera–
Communication”). The study also provided the first description of how apps are used dif-
ferently across cultures and contexts. For example, European participants in their sample 
were 1.21 times more likely to use an internet browser app in comparison to participants 
from the United States, who seemed to rely more heavily on specific apps. Recent studies 
have been able to replicate most of Böhmer and colleagues’ (2011) findings (Church et 
al., 2015; Ferreira, Goncalves, Kostakos, Barkhuus, & Dey, 2014; Gordon et al., 2019; 
Morrison et al., 2018; Welke, Andone, Blaszkiewicz, & Markowetz, 2016).

While research in HCI was not conducted with psychological research questions 
in mind, their findings and methods are very relevant to psychological science. Descrip-
tive studies of naturalistic app usage, for example, essentially discuss what psychologists 
would refer to as daily behavior measured in the field. Similarly, studies in computer 
science aiming to predict personality traits from application usage for the purpose of per-
sonalizing smartphone services (Chittaranjan, Blom, & Gatica-Perez, 2013; De Mont-
joye, Quoidbach, Robic, & Pentland, 2013) can provide valuable input for research in 
personality and social psychology.

App Usage in Psychological Research

Compared to the breadth of empirical studies in HCI, app usage has rarely been studied 
in psychological science, despite the fact that the potential of smartphones for research in 
psychology has been highlighted repeatedly (Harari et al., 2016; Harari, Müller, Aung, 
& Rentfrow, 2017; Miller, 2012). The vast quantity and diversity of apps, as well as the 
highly idiosyncratic way they are used by each person, make app usage ideal for inves-
tigating intra- and interindividual differences in the wild. In fact, individuals’ app usage 
data alone can successfully identify unique users (Tu et al., 2018). Perhaps unsurprisingly 
then, researchers in personality and differential psychology were the first to investigate 
how app usage maps on to individual differences in self-reported personality traits.

Initial studies in personality psychology correlated self-reported app usage and the 
Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, and 
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emotional stability) (Butt & Phillips, 2008; Kim, Briley, & Ocepek, 2015; Lane, 2012). 
These early studies did not fully capitalize on the potential of app usage for objectively 
capturing daily behavior since self-reports are subject to a number of limitations such as 
social desirability, memory-related, and response-style biases (Paulhus & Vazire, 2007; 
Van Vaerenbergh & Thomas, 2013). In fact, there are large discrepancies between self-
reported digital media use and actual digital media use (Davidson, Shaw, & Ellis, 2022; 
Parry et al., 2021).

More recent and methodologically advanced studies in personality psychology have 
quantified app usage via direct measurement of the phone’s app usage logs (Chittaranjan 
et al., 2013; Harari et al., 2019; Montag et al., 2015; Schoedel et al., 2019; Stachl et 
al., 2017, 2020). Many of these studies focused on communication and social behavior, 
finding that communication apps tend to be more frequently used by people with higher 
scores in extraversion (Harari et al., 2019; Montag et al., 2015; Stachl et al., 2017) and 
less frequently by people with lower scores in emotional stability (Harari et al., 2019; 
Stachl et al., 2020). A few studies have started to investigate apps beyond those used pri-
marily for communication (Chittaranjan et al., 2013; Schoedel et al., 2019; Stachl et al., 
2017, 2020). For example, studies show that conscientiousness is negatively associated 
with the use of gaming apps (Stachl et al., 2017) and positively associated with the use of 
weather apps (Stachl et al., 2020).

Personality traits are not the only psychological construct related to app usage data. 
In the area of clinical psychology, mobile app usage holds great potential for the inves-
tigation and assessment of clinically relevant constructs and psychopathology (Thomeé, 
2018). Even though clinical research on app usage is scarce, one study (Gao, Li, Zhu, Liu, 
& Liu, 2016) showed that use of certain app categories is related to social anxiety and 
loneliness. For example, higher loneliness scores were associated with more frequent use 
of apps from the categories “health and fitness,” “browser,” and “social media.” Find-
ings like these might help to better explain the mechanisms perpetuating certain psycho-
pathologies. Furthermore, if mental disorders have behavioral correlates in mobile app 
usage, mobile sensing could serve as a way to assess and detect these disorders earlier on.

A few pioneering studies have started to evaluate whether behavioral data from 
smartphones can help predict disorders such as depression, schizophrenia, and anxiety 
(Fukazawa et al., 2019; Saeb et al., 2016; Saeb, Lattie, Schueller, Kording, & Mohr, 2015; 
Wang et al., 2014). These studies have mostly relied on parameters of physical activity 
(e.g., accelerometer) rather than app use. However, the incorporation of app usage data 
could further improve the prediction of psychopathological episodes or onsets (Tuarob et 
al., 2017) because behaviors that are mediated by apps (e.g., music consumption, social 
media use) have been previously found to be related to mental disorders (Miranda & 
Claes, 2008; Woods & Scott, 2016). If early-stage pathologies can be predicted with 
sufficient accuracy, mobile apps could notify a person or health care provider about the 
possible onset of, for example, a depressive episode and the need to seek professional 
assessment and help (Ferdous, Osmani, & Mayora, 2015).

App usage data can also provide information about more specific, clinically relevant 
symptoms. Mood states, which are a critical aspect of the majority of mental disorders, 
might be reflected in mobile app usage. This is supported by preliminary results from 
Ferdous and colleagues (2015) who predicted stress levels from app usage logs. Although 
the study’s very small sample (N = 28) undermines its generalizability, the study high-
lights the potential of longitudinal app usage data for investigating affective and other 
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clinically relevant states. For example, sleep duration and quality, which have also been 
linked to psychological disorders, could be detected by considering app use throughout 
the night. Some sleep research shows that chronobiological daytime–nighttime behav-
iors can indeed be inferred from the usage of certain apps (e.g., alarm clock apps in the 
morning; Peng & Zhu, 2020; Schoedel et al., 2020). Again, the detection of poor mood 
or sleep could serve as a trigger for optimally timing clinical interventions (e.g., therapy 
sessions or exercises).

Because most mobile sensing studies are observational, mobile app usage can usu-
ally be considered only as a correlate of mental disorders or symptoms; its causal role in 
relation to such disorders remains unclear (Thomeé, 2018). The use of certain apps might 
very well causally contribute to psychopathology. One obvious example is smartphone 
addiction, which can be predicted from the increased usage of specific app categories 
such as social media or gaming apps (Choi et al., 2017). In contrast, mobile app usage 
might also have positive effects on well-being. From a health psychology perspective, 
there are many health and mental wellness apps (varying in quality) that aim to improve 
various aspects of users’ well-being, ranging from apps that reduce stress to those that 
encourage physical exercise. Here, app usage data can help to test the negative or positive 
effect of the use of certain apps.

The efficacy of health apps for changing cognition or behavior has mostly been 
investigated in experimental designs without mobile sensing (e.g., Bostock, Crosswell, 
Prather, & Steptoe, 2019; Flett, Hayne, Riordan, Thompson, & Conner, 2019). How-
ever, sensing app usage could help to clarify whether health apps were regularly used. 
Furthermore, app usage data, including the mere presence of health apps on a person’s 
phone, could reveal health-related behavior change goals or needs. Indeed, in 2012, one 
in five smartphone users in the United States had at least one health-related app installed 
on their phone (Krebs & Duncan, 2015).

Beyond personality and clinical psychology, the analysis of mobile app usage can 
also be adopted by cognitive psychologists to complement and extend rigorous labora-
tory studies with more objective, in vivo measurements of behavior. However, at this 
point, more exploratory research is needed to identify the cognitive correlates of mobile 
app usage. Aside from investigating the associations between fluid intelligence and the 
usage frequency of lifestyle apps (Stachl et al., 2017), these cognitive markers could, for 
example, be found by analyzing behavior in mobile gaming apps (Quiroga et al., 2015) 
or in other apps that require sensory discrimination (Melnick, Harrison, Park, Bennetto, 
& Tadin, 2013). Recently, researchers have analyzed app usage behaviors to identify cog-
nitive impairments in the elderly (Rauber, Fox, & Gatys, 2019). Similarly, preliminary 
research has shown that app usage can discriminate between cognitively impaired and 
healthy adults (Gordon et al., 2019). These results provide some initial evidence that the 
number of apps a person uses seems to be an indicator of cognitive health. Such findings 
from exploratory mobile sensing research can be used for inductive theory generation 
and refinement. Cognitive scientists might begin to theorize about why certain patterns 
of app usage behavior are more indicative of cognitive functionality than others, even if 
the total frequency or duration of app usage is the same.

Another, more applied area of psychological research that could directly benefit 
from data on app usage is marketing psychology. Most obviously, many companies track 
the use of their branded apps to measure and enhance user engagement (Khomych, 2019). 
An area that has received less attention is how personality traits predicted from app usage 
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data (Stachl et al., 2020) could improve the effectiveness of personalized advertisements 
within smartphone apps. A similar approach has already been tested for personality pre-
dictions based on social media usage data (Matz, Kosinski, Nave, & Stillwell, 2017).

App usage may also be relevant to researchers in industrial and organizational (I/O) 
psychology to the extent that apps can be used to address personnel selection and produc-
tivity in the workplace. Given the previously mentioned relationships between app usage 
and certain traits known to predict job performance (e.g., conscientiousness, cognitive 
ability; Avis, Kudisch, & Fortunato, 2002; Schmidt, 2002), app usage could be used in 
the future as a tool in employee selection if research shows that the predictive validity 
of sensed data rivals the predictive validity of data collected with more conventional 
assessment methods. Indeed, some companies have “gamified” their hiring practices, 
leveraging the assumption that skills displayed in gaming apps can be indicators of job-
relevant skills (Georgiou, Gouras, & Nikolaou, 2019). It is also conceivable, though ethi-
cally questionable, to study employee productivity by tracking the amount of time spent 
on work-related (e.g., email apps) versus leisure apps (e.g., social media apps). Similar 
practices have recently produced a backlash against large companies (e.g., Lecher, 2019; 
Yeginsu, 2018). Therefore, we want to highlight that, especially in the realm of marketing 
and I/O, smartphone sensing methods generally and app usage data in particular present 
ethical challenges.

How to Collect App Usage Data

Now that we have highlighted existing research on mobile app usage, we describe how 
researchers can collect app usage data. There are different approaches to measuring app 
usage, which differ in both technical sophistication and the granularity of the resulting 
data. The approach one chooses depends in part on the operating system of the par-
ticipants’ devices. In recent years, the number of available mobile operating systems has 
shrunk from several dozen to two systems dominating the market. In 2020, Android 
smartphones made up about three-quarters of the worldwide smartphone market and 
the iOS operating system running on iPhones comprised the remaining quarter (O’Dea, 
2020a). Other mobile operating systems (e.g., Windows, Blackberry) have become rela-
tively rare and are therefore less relevant for researchers at the moment. Thus, here we 
focus exclusively on the Android and iOS operating systems.

Self‑Reports

As previously mentioned, the very first attempts to quantify app usage behavior in psy-
chology followed the well-beaten path of using self-reports to quantify behaviors. For 
example, Kim and colleagues (2015) asked participants to indicate whether they used 
a particular type of application, while Alkhalaf, Tekian, and Park (2018) investigated 
self-reported daily app usage durations. Similarly, Lane (2012) had participants rate the 
importance of different app types. These pioneering studies reported the first insights 
into app usage behavior, but their data were affected by the well-known problems inher-
ent to self-reports (Baumeister, Vohs, & Funder, 2007; Boase & Ling, 2013; Paulhus 
& Vazire, 2007; Van Vaerenbergh & Thomas, 2013). In particular, given the increas-
ing speed at which people switch between large numbers of apps, it is very difficult for 
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participants to accurately reconstruct their app usage at fine granularities (Reeves et al., 
2021). Therefore, retrospective self-reports are not a good choice for assessing app usage 
behavior. They are, however, useful for screening participants for different mobile oper-
ating systems or for usage of certain apps relevant to a specific research question (e.g., 
“Do you use apps for fishing?”).

Accessing Usage Logs

The current gold-standard method for quantifying app usage involves accessing the smart-
phone’s app usage logs. Android offers an API that lists the apps users have installed at 
a given point in time. This API can be incorporated into a custom sensing research app 
that, once installed by participants, retrieves the full list of apps on participants’ devices 
(Frey, Xu, & Ilic, 2017; Seneviratne, Seneviratne, Mohapatra, & Mahanti, 2014a, 2014b; 
Xu, Frey, Fleisch, & Ilic, 2016).

To get data on the actual usage (rather than mere presence) of apps, researchers can 
develop more sophisticated applications that regularly retrieve system statistics for which 
apps are being used over a period of time. This logging approach generates a timestamp-
sorted list of usage events that can be aggregated to obtain usage frequencies or durations 
(for more details, see the section “App Usage Quantity”). In Table 8.1, we provide an 
exemplary app usage log from an Android smartphone, collected with the PhoneStudy 
mobile sensing app (Schoedel, Kunz, et al., 2022; Stachl et al., 2020). The list contains 
the time and date of each event, as well as the description of the app used during the 
event. For example, Table 8.1 shows that the smartphone user opened the Twitter app on 
October 5, 2014, at 08:22:04 A.M.

Currently, there are multiple free and open-source Android research apps that read 
out app usage statistics (e.g., the AWARE mobile sensing framework; Ferreira, Kostakos, 
& Dey, 2015). In addition, a number of commercial businesses offer sensing study 
research services, with mobile apps capable of sensing Android app usage (e.g., EARS: 
Lind, Byrne, Wicks, Smidt, & Allen, 2018; the Murmuras framework: Andone et al., 
2016; the Insights app: Montag et al., 2019; movisens services: Movisens GmbH, 2020). 
Several research groups around the world have also developed custom mobile sensing 
apps (e.g., the Emotion Sense app: Servia-Rodriguez et al., 2017; the StudentLife app: 
Wang et al., 2014), some of which allow for the logging of app use (e.g., the PhoneStudy 
app: Stachl et al., 2020).

For all solutions presented above, app-logging is currently possible only on the 
Android operating system. For iOS, it is more difficult to measure app use because 
Apple prohibits third-party access to app usage logs. Currently, the only option to 
directly access app usage logs on iPhones is to remove the software restrictions imposed 
by Apple with “jailbroken” devices. The jailbreak enables root access to the iOS oper-
ating system and allows for the installation of specially programmed mobile sensing 
applications (Gordon et al., 2019; Morrison et al., 2018). The practical implementation 
of the jailbreak approach for research purposes is controversial. Participants in mobile 
sensing studies are usually asked to use their own phones for the duration of the study. 
Deliberately jailbreaking participants’ own iPhones is not advisable from an ethical and 
legal perspective since the jailbreak is not authorized and can cause warranty issues 
for users. One solution is to recruit iPhone users who already have jailbroken devices 
(Morrsion et al., 2018). However, this sample is most likely not fully representative 
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of iOS users, as users who jailbreak their iPhones tend to be older and more techni-
cally literate (McMillan, Morrison, & Chalmers, 2013). An alternative study design 
was introduced by Gordon and colleagues (2019), who cooperated with Apple to pro-
vide participants with specially modified iPhones for the duration of the study period, 
allowing them access to phone logs. To our knowledge, Gordon and colleagues and 
Morrison and colleagues (2018) are the only two published studies directly measuring 
app usage from iPhone logs.

TABLE 8.1.  App Usage and Screen Activity Logs on Android
Timestamp Time Date App/activity Android package

1,412,490,008,000.00 08:20:08 2014-10-05 ON_LOCKED

1,412,497,210,000.00 08:20:10 2014-10-05 ON_UNLOCKED

1,412,497,228,000.00 08:20:28 2014-10-05 Instagram com.instagram.android

1,412,497,324,000.00 08:22:04 2014-10-05 Twitter com.twitter.android

1,412,497,510,000.00 08:25:10 2014-10-05 Homescreen com.android.systemui

1,412,497,516,000.00 08:25:16 2014-10-05 OFF_LOCKED

1,412,497,523,000.00 08:25:23 2014-10-05 ON_LOCKED

1,412,497,528,000.00 08:25:28 2014-10-05 ON_UNLOCKED

1,412,497,531,000.00 08:25:32 2014-10-05 Weather com.sec.android.widgetapp.ap.hero.
accuweather

1,412,497,544,000.00 08:25:44 2014-10-05 Homescreen com.android.systemui

1,412,497,572,000.00 08:26:12 2014-10-05 OFF_LOCKED

1,412,499,304,000.00 08:55:04 2014-10-05 ON_LOCKED

1,412,499,306,000.00 08:55:06 2014-10-05 ON_UNLOCKED

1,412,499,306,000.00 08:55:06 2014-10-05 PopupuiReceiver com.sec.android.app.popupuireceiver

1,412,499,336,000.00 08:55:36 2014-10-05 Push-Ups com.runtastic.android.pushup.lite

1,412,499,397,000.00 08:56:37 2014-10-05 OFF_LOCKED

1,412,499,921,000.00 09:05:21 2014-10-05 ON_LOCKED

1,412,499,922,000.00 09:05:22 2014-10-05 ON_UNLOCKED

1,412,499,927,000.00 09:05:27 2014-10-05 Wash Post com.washingtonpost.rainbow

1,412,500,671,000.00 09:17:51 2014-10-05 SMS/MMS com.android.mms

1,412,500,677,000.00 09:17:57 2014-10-05 Homescreen com.android.systemui

1,412,500,680,000.00 09:18:00 2014-10-05 OFF_LOCKED

1,412,500,756,000.00 09:19:16 2014-10-05 ON_LOCKED

Note. The table illustrates timestamp-sorted app usage (shaded rows) and screen activity (unshaded rows) logs from an 
Android smartphone, collected with the PhoneStudy mobile sensing application. These logs reveal date, time, and name 
of a launched app, which can be used to calculate usage durations for individual apps (i.e., the time between the launch 
of an app and the next app launch or a screen switch off) or sessions when several apps were used. This particular user’s 
logs reveal four active smartphone usage sessions where the apps “Instagram,” “Twitter,” “AccuWeather,” “Runtastic 
Push-Ups,” “Washington Post,” and “SMS/MMS” were used. The phone’s own system apps “Homescreen” and “Popu-
puiReceiver” (an app delivering pop-up notifications) were also used during these sessions.
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Screenshot‑Based Data Collection

Complementing the straightforward approach of accessing usage logs, researchers 
have developed more creative ways to measure app usage behavior with smartphone 
screenshots. One screenshot approach leverages the self-tracking feature included on 
many smartphones. Researchers can infer the daily or weekly duration of app usage 
from users’ screenshots of the system-inherent Digital Wellbeing tool on Android (ver-
sion 9 and higher) and the Screen Time application on iOS (iOS 12 and higher; Gower 
& Moreno., 2018; Sewall, Bear, Merranko, & Rosen, 2020). For example, participants 
can be instructed as part of an experience sampling protocol (Gower & Moreno, 2018; 
Ubochi, 2019) to take a screenshot of the Screen Time application at the end of the day. 
These screenshots would depict the usage duration for each app they opened that day, 
both on the level of individual apps and by app category (see Figure 8.1 for an exemplary 
screenshot). Timing is of the essence because screenshots taken too early in the day might 
miss important app usage behaviors. Another practical consideration is that research-
ers must specify whether participants should take only one screenshot of the most used 

  FIGURE 8.1.    Manual screenshots of daily app usage durations on iOS as provided by the Apple 
Screen Time app. The figure on the left depicts app usage duration at the app level. The figure on 
the right depicts app usage duration at the category level. Screenshots can be taken for the present 
day or the day before. In addition to daily app usage estimates, the Apple Screen Time app also 
provides weekly usage estimates.
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applications or several screenshots to capture all apps that have been used on a given day. 
Recording the most used apps may be sufficient given that smartphone users spend more 
than 50% of their time in one app and 97% in their top 10 apps (Comscore, 2017).

One limitation of this manual screenshot approach is that screenshots do not allow 
for the inference of daytime distributions or frequencies of app usage, which may be 
needed for certain research questions (e.g., chronotype studies). That said, given the diffi-
culty of collecting data from iPhone app logs, this approach may be useful for researchers 
interested in collecting data from participants with iOS phones. Moreover, the approach 
might even be transferred to other, less common operating systems (e.g., Windows 
phones), as long as they have system-inherent or third-party apps for self-tracking app 
usage (e.g., the Digitox app). As a hybrid approach between screenshots and self-reports, 
the app usage summaries from self-tracking apps may also be assessed via questionnaires, 
for example, by asking participants to manually transfer their usage durations to daily 
(or weekly) surveys.

A second, more elaborate method for retrieving information on app usage from 
smartphone screenshots has recently been introduced by Reeves and colleagues (2021). 
They developed the Screenomics application for Android, which automatically captures 
screenshots of participants’ visible smartphone screens at researcher-chosen intervals (e.g., 
every 5 seconds) whenever the screen is on (Reeves et al., 2021; Yang, Ram, Robinson, 
& Reeves, 2019). This method is unparalleled, as it enables researchers to capture the 
full app usage experience as a sequence of viewed screens, which, in turn, allows for even 
richer analysis. Researchers can investigate both quantitative aspects of app usage (e.g., 
duration or frequency) and qualitative aspects of the behavior performed within an app 
(e.g., what an individual is viewing, typing). A potential downside of this approach is that 
only behaviors that are visible on the screen during the sampling window (e.g., every 5 
seconds) can be collected. For example, connectivity data (e.g., Bluetooth, Wifi), behav-
iors that occur with the screen turned off (e.g., calls, music listening, fitness tracking) or 
that fall outside the sampling window (e.g., some notifications), will be missed if only 
periodic screenshots are collected.

Researchers interested in this approach should be aware that extracting data from 
such a vast number of smartphone screenshots requires laborious data preprocessing 
efforts. To investigate app usage, screenshots have to be classified according to the spe-
cific application being used (Chiatti et al., 2019; Ram et al., 2020). The manual annota-
tion of screenshots is very time consuming. Raters typically need an average of 2 hours 
to annotate 1,000 screenshots (Yang et al., 2019). Assuming average smartphone use of 
3 hours per day (Wurmser, 2018), a 1-week study period would yield 15,120 screenshots 
(taken at 5-second intervals) and would thus require more than 30 hours of manual 
annotation per participant. As manual annotations can usually not be crowdsourced 
due to the highly sensitive nature of smartphone data, more efficient and (semi-)auto-
mated methods for information extraction are required (Chiatti et al., 2019; Reeves et 
al., 2021). For example, Ram and colleagues (2020) introduce a machine learning-based 
approach for extracting app classifications from screenshots.

Implications of Data Availability on Android versus iOS

As should be clear, the restricted accessibility of app usage data on the iOS operating 
system makes it difficult for psychologists to investigate the app usage of iPhone users. 
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Thus, it is not surprising that few studies have investigated app usage on iOS and most 
research has focused on Android users. This almost exclusive focus on Android users 
could bias the findings if systematic differences between Android versus iOS users exist. 
However, previous studies found no or only small differences in the demographic char-
acteristics and personality traits of Android and iOS users (Götz, Stieger, & Reips, 2017; 
Shaw, Ellis, Kendrick, Ziegler, & Wiseman, 2016). The only reliable difference concerns 
users’ budgets, as iOS users seem to be wealthier. This difference could, in turn, influ-
ence app usage behavior, as iOS users might use more premium apps and fewer free apps. 
Furthermore, some applications are exclusively available for either of the two systems. 
However, even if the availability of specific apps is not identical between both systems, it 
is very likely that apps of the same type and functionality are available on both systems. 
The potential scope of app usage behavior should therefore not be compromised for either 
operating system, and app usage patterns should be fairly comparable across systems.

Enriching App Usage Data

App usage data can provide detailed, quantitative information on everyday behaviors. 
Still, app usage data are limited with regard to the nature of behaviors. For example, use 
of the Spotify app does not tell us what types of music somebody likes or even if they are 
listening to music or a podcast (Sust, Stachl, Kudchadker, Bühner, & Schoedel, 2023). 
Luckily, there are multiple ways app usage data can be enriched with additional infor-
mation on context, location, or subsequent behaviors. Here, we briefly introduce some 
suitable methods for data enrichment.

Sensor Fusion

The most obvious way to enrich app usage data is with additional data from sensors 
and logs on the smartphone. GPS data, for example, can be used to relate behavioral 
measures to different locations (Matz & Harari, 2020). In that vein, Do, Blom, and 
Gatica-Perez (2011) used GPS data to compare app usage frequencies at different loca-
tions (e.g., home, work, friend’s house). They also leveraged Bluetooth data to create app 
usage durations for moments when participants were alone versus around others. Data 
on physical activity can also be used to better contextualize app usage. In their study, 
Böhmer, Hecht, Schöning, Krüger, and Bauer (2011) analyzed app usage in combination 
with accelerometer sensor data and found that participants in a moving state (i.e., travel-
ing faster than 25 kilometers/hour) were 2.26 times more likely to use multimedia apps 
(e.g., music players). Many more traceable behaviors from smartphones can be combined 
with app usage data to increase the informativeness of the data with regard to different 
contexts and situations.

Web APIs

Another relatively easy way to enrich app usage data with additional information is 
through the use of standardized APIs, which enable the user to retrieve information via 
a standardized syntax request. In-app data on the music (i.e., songs, artists, and albums) 
that a participant has listened to can be used to retrieve additional information on song 
characteristics (Stachl et al., 2020; Sust et al., 2023). As another example, location-based 
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APIs (e.g., OpenStreetMaps, Google’s Places, Here) can be used to enrich app usage data 
at different GPS positions (i.e., longitude, latitude), ground-level elevations (i.e., 1,032-m 
ground elevation), landmarks or places (e.g., cafés, shops), and ground types (e.g., wood-
land, street; see Schoedel, Kunz, et al., 2022). API calls can also be used in a sequential 
fashion. Once some information has been retrieved from a web API, this information can 
be used for further API requests.

With this approach, an initially low-dimensional dataset can quickly be enriched 
with additional information for much richer analyses. While most APIs offer a free lim-
ited quota for researchers, the effective labeling of app usage data can quickly exceed 
those quotas and inflict significant financial costs (e.g., reverse geocoding with Google’s 
Places API [2020] currently costs $5 for 1,000 requests). Hence, it is often worthwhile to 
explore free alternatives, such as OpenStreetMaps (OpenStreetMap) for geodata.

Web Scraping

A cheaper, yet legally more challenging, approach to enrich app usage data is with web 
scraping scripts (Glez-Peña, Lourenço, López-Fernández, Reboiro-Jato, & Fdez-Riverola, 
2014). The process of web scraping is similar to a human worker copying/pasting infor-
mation from websites with the goal of assigning the copied information to existing data. 
Web scraping automates this process by using a website’s underlying structure (e.g., 
HTML) to retrieve information from that website. While web scraping represents a more 
general approach to the retrieval of information from websites, it can be used specifically 
to enrich app usage data. Major app stores, for example, provide a range of additional 
information on the apps they distribute (e.g., number of downloads, popularity ratings). 
App stores also group apps in category systems, which can be scraped to categorize apps 
for research purposes (e.g., Böhmer et al., 2011; Gordon et al., 2019). In the section on 
analyzing app usage, we go into more detail on categorizing apps. In summary, web 
scraping can help to effectively enrich app usage data with additional information that is 
not accessible through sensors on the phone, APIs, or self-reports.

Experience Sampling

One alternative to enriching app usage data after their initial collection is to employ an 
event-triggered experience sampling approach during the data collection (Van Berkel, 
Ferreira, & Kostakos, 2017). Experience sampling items can be triggered by the launch or 
the prolonged usage (e.g., 20 seconds of usage) of a certain app or app category. Then, par-
ticipants are prompted to answer a few short questions about their app usage. Research-
ers can use this approach to collect whatever information they need regarding app usage. 
For example, app usage data can be enriched with details about in-app behavior (e.g., 
What content did participants read while using a news app?), mood or cognitions related 
to the app use (e.g., How did participants feel after using social media apps?), or context 
(e.g., Were participants working or watching TV while checking their messages?). In this 
fashion, Ferreira and colleagues (2014) asked participants whether their app use was self-
initiated or triggered by a notification and whether they were alone or in a social context 
while using an app.

Theoretically, the informative power of this approach seems impressive, but it is 
very burdensome for participants and may be problematic in terms of compliance and 
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retention. Furthermore, the interruptions caused by the experience sampling might inter-
fere with participants’ natural app usage. Finally, experience sampling is subject to the 
drawbacks of self-reports mentioned earlier on.

How to Analyze App Usage

After collecting (and potentially enriching) app usage data, researchers are presented 
with multiple options for analyzing their data. Here, we first introduce a superordinate 
decision about the organization of apps as individual apps or categories, which is relevant 
to all analyses of app usage. Then, we present different types of information that can 
be extracted from app usage data and discuss their potential for informing psychology 
researchers about human behavior. We describe multiple approaches to analyzing each 
type of app usage data, summarized in Table 8.2, and illustrate each approach with 
examples from existing research.

Organizing App Usage

When analyzing app usage, researchers must decide how they want to characterize app 
usage. Next, we present the two standard options for organizing apps and discuss their 
advantages and limitations for the analysis of app usage. Any decisions about the follow-
ing strategies should be informed by the research question at hand and should be made 
prior to analyzing the data.

TABLE 8.2.  Summary of App Usage Data Sources and Features

Data source Objectivity Difficulty

Operating 
system App usage features

Android iOS Adoption Quantity Sequences
In-app 

behavior Context

Self-report 
(survey)

Low Very Low      

Self-report 
(ESM)

Medium Low      

App usage 
logs

High High    

Screenshots 
(manual)

High Medium    

Screenshots 
(screenomics)

High Very High     

Note. This table reflects our interpretation of the current state of app usage data sources and features based on methods 
used in existing research. It is highly likely that other data sources will be developed, data from existing sources will 
become easier to collect, and new app usage features will be created. Data source = the method used to collect usage data 
on single apps or app categories; Objectivity = the degree to which the data source is free from bias; Difficulty = the diffi-
culty of data collection and analysis for the average psychological scientist; Operating System = data source availability for 
participants with Android and iOS smartphones; Adoption = apps installed on participants’ phones; Quantity = frequency 
and duration of app usage; Sequences = order in which apps or app categories are used; In-App Behavior = participants’ 
digital behavior while using apps; Context = participants’ nondigital behaviors and context during app usage. Checkmarks 
in gray indicate that extracting that feature from the data source is possible but not recommended.
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Individual App Usage

The systematic analysis of app usage allows researchers to investigate human behavior in 
great detail. In particular, it allows for investigating very specific behaviors at the level 
of individual apps. For example, Montag and colleagues (2015) investigated whether 
using WhatsApp on the smartphone is related to individual differences in demograph-
ics or personality traits. Beyond its relevance in observational studies, individual app 
usage is also relevant to experimental studies investigating whether usage of certain apps 
has the desired effect. For example, clinical psychologists might be interested in analyz-
ing whether people who regularly use a certain mindfulness app experience less stress 
(Bostock et al., 2019).

Analyzing the usage of one individual app is fruitful only when the app is installed 
by all participants (in observational studies) or at least by half of the participants (in the 
experimental condition). Therefore, in observational studies of individual apps, it makes 
sense to focus on very popular apps. Researchers interested in the use of a specific app 
should screen for participants who use that app (e.g., via a screening questionnaire). 
Another approach is to directly instruct participants to download the respective app to 
participate in the study. Although this reduces ecological validity in observational stud-
ies, the instructed download (and use) of a certain app can serve as a manipulation that 
increases internal validity in experimental settings, allowing for causal conclusions that 
would otherwise not be warranted.

Very often researchers are interested in the full variety of mobile app usage. In such 
cases, capturing app usage patterns at the single app level may be challenging because 
there are currently over 2 million different apps (Clement, 2020). If participants use rare 
apps, a large proportion of the measured data on app usage will be very sparse. Thus, 
one would require a very large sample to detect systematic patterns within thousands of 
individual apps. Instead, in cases where researchers are interested in gaining a more com-
prehensive portrait of participants’ app usage, we recommend the use of app categories.

App Categories

It is often helpful to consider app usage behavior in terms of psychologically meaningful 
categories. For example, rather than examining the effect of WhatsApp use on well-
being, researchers can examine the well-being effects of using communication or social 
media apps. This is a useful approach for a number of reasons. First, many apps serve 
similar functions. If a researcher is interested in the effects of digitally mediated socializ-
ing, they likely want to capture behavior on all socializing apps on an individual’s phone, 
not just one. Second, many apps are functionally interchangeable. For example, individu-
als in a given sample may use Spotify and/or Deezer to listen to music. Researchers inter-
ested in music listening behavior would be wasting behavioral data if they considered 
only one of these apps. Third, analyzing app categories may be preferable to analyzing 
individual apps simply because the app categories capture more behavioral occurrences 
than the individual apps. An individual may spend only 10 minutes a day on Facebook 
but 1 hour a day on social media apps combined. Fourth, use of a single app is hard to 
interpret—one must be familiar with the respective app. In contrast, use of a meaningful 
app category is easier to interpret because the category is often determined by the func-
tion of the app (e.g., communication apps).
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Apps can be categorized in an a priori or post-hoc manner, driven by either research 
questions or practical considerations. For example, some previous studies have aggre-
gated app usage based on existing category systems suggested by app distribution plat-
forms. Böhmer and colleagues (2011) used the category system provided by the Google 
Play Store (Google, 2019), and Gordon and colleagues (2019) used the categories of the 
App Store (Apple, 2020). However, as Stachl and associates (2017) pointed out, app 
categories on commercial platforms are assigned based on consumer-oriented marketing 
considerations rather than an optimal grouping of app content or functionality (e.g., the 
dating app Tinder is classified as a “Lifestyle” app, despite the existence of a more specific 
“Dating” app category). Because preassigned commercial categories are often too gen-
eral, default categorizations should not be readily used without additional manual checks 
or modifications (Frey et al., 2017). For example, Stachl and colleagues (2020) manually 
reassigned the most frequently used apps in their sample to 70 categories. More specifi-
cally, the categories were labeled according to the app’s official description available on 
the internet, and the results were cross-checked by three researchers. Only recently, Scho-
edel, Oldemeier, Bonauer, and Sust (2022) created a freely available app categorization 
scheme specifically for psychological research purposes. They iteratively developed and 
validated 26 psychologically meaningful high-level categories and manually classified 
over 3,000 commonly used smartphone apps reporting inter-rater agreements. However, 
the manual categorization of apps into semantic categories is always somewhat subjective 
and influenced by the cultural and temporal context, which varies over space and time. 
Therefore, more objective, automated approaches to the categorization of apps based on 
their textual descriptions or their sequential usage have been proposed (Berardi, Esuli, 
Fagni, & Sebastiani, 2015; Ma, Muthukrishnan, & Simpson, 2016).

Researchers can also tailor categorizations to the specific research question at hand. 
One way to customize app categorizations is to choose a higher or lower order to define 
app categories. For example, Stachl and colleagues (2020) used the higher-order cat-
egory “communication and social behavior,” while Harari and colleagues (2019) inves-
tigated “messaging” and “social media” as two separate categories to capture socializing 
behavior in greater detail. However, more narrowly defined app categories can compli-
cate the unambiguous assignment of apps with multiple functionalities (Ma et al., 2016). 
For example, the Facebook app could be considered as both a “messaging” app and a 
“social media” app. To avoid inconsistent categorizations, researchers must very care-
fully define distinct categories or use a multi-label approach to assign ambiguous apps to 
several categories at once (e.g., Xu, Ibrahim, Zheng, & Archer, 2014). Alternatively, they 
might replace the app categorization by continuous ratings on category scales or percent-
age distributions. As an example, the Facebook app could be conceptualized as 20% 
“messaging” and 80% “social media.” Another approach for researchers interested in 
app usage on a more behavioral level is abandoning app categories and describing apps 
in terms of their available functionalities (Xu, Dutta, Datta, & Ge, 2018). App function-
alities (e.g., posting content, commenting) can either be labeled manually or extracted 
from app descriptions or reviews in an automated fashion (Berardi et al., 2015; Xu et al., 
2018). Considering WhatsApp as an example, Xu and colleagues (2018) identified the 
functions “message,” “address book,” and “voice note,” among others. Finally, it must 
be noted that the variety of customization approaches to app categorization introduces 
researcher degrees of freedom into the study of app usage. Please refer to the summary 
of practical recommendations on how to deal with analytical freedom in the analysis of 
app usage.
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Extracting Information from App Usage

For both individual apps and app categories, there are multiple options for analyzing 
app usage data. Below, we present the most common ways to extract behavioral infor-
mation from app usage data, starting with methods that are least revealing of human 
behavior and ending with methods that provide the most granular behavioral informa-
tion. Thereby, we focus on the extraction of variables from app usage logs because, as 
previously mentioned, directly accessing usage logs is currently most prevalent in studies 
collecting app usage data in psychology.

App Adoption

Some of the first studies to investigate app usage examined which apps were installed on 
a given user’s phone, termed app adoption (Seneviratne et al., 2014a, 2014b; Xu et al., 
2016). The total number of installed apps is often referred to as users’ app capacity (e.g., 
Xu et al., 2016). However, the most common measure of app adoption is the number of 
apps installed from different app categories (e.g., Frey et al., 2017; Gordon et al., 2019; 
Seneviratne et al., 2014b). For example, Xu and colleagues (2016) used the number of 
installations per app category to predict the Big Five personality traits. In another analy-
sis, the researchers operationalized app adoption as a binary variable indicating whether 
or not participants were adopters of a certain app category. In addition, the adoption of 
specific apps can serve as an indicator of certain psychological characteristics. For exam-
ple, the lack of apps known to collect a lot of private data could be indicative of users’ 
privacy concerns (e.g., Gu, Xu, Xu, Zhang, & Ling, 2017; Pentina, Zhang, Bata, & Chen, 
2016). Moreover, researchers can investigate changes in app adoption (e.g., the number 
or specific apps installed) over time. In this way, De Nadai, Cardoso, Lima, Lepri, and 
Oliver (2019) analyzed app adoption over a 6-month period to discover individual differ-
ences in the exploration of new apps.

Despite its many research applications, the informative power of app adoption is 
limited as it does not reflect actual app usage, such as how often (frequency) or for how 
long (duration) apps are being used (Xu et al., 2016). In other words, frequently used apps 
cannot be distinguished from rarely used or unused apps that users forgot about or did 
not bother to remove (Malmi & Weber, 2016). Preinstalled apps, in particular, are not a 
function of the user’s individual choice (Welke et al., 2016).

App Usage Quantity

To investigate actual app usage behavior, researchers must employ measurement 
approaches that create continuous usage data. During preprocessing, these data can 
be aggregated into meaningful variables, whereby the most common metrics are usage 
quantities, such as frequency and duration of app usage (Böhmer et al., 2011; Gordon 
et al., 2019; Harari et al., 2019; Morrison et al., 2018; Stachl et al., 2017; Tu et al., 
2021). While frequencies are easy to calculate by summing up usage events of a certain 
type (e.g., all “Homescreen” events in Table 8.1), app durations are more complicated 
to extract as illustrated by the following example. The app usage logs in Table 8.1 con-
tain timestamped information on app launches but not on usage durations. Therefore, 
researchers have to make analytic decisions about when active app usage ends. The end 
of app usage may be determined by the launch of a new app so that the time interval 
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between two app launches defines app usage duration. However, app usage can also be 
terminated by switching off the phone or other events such as screen activity and calls. In 
Table 8.1, we enriched app usage logs with information on screen use activity to calculate 
how long a certain app was opened before the screen was turned off or another app was 
opened (e.g., in line 3 of Table 8.1, Instagram was open for 1 minute and 36 seconds).

As app usage durations differ greatly between and within smartphone users, they 
have received special attention in research (e.g., Church et al., 2015; Ferreira et al., 2014). 
Ferreira and colleagues (2014) defined the concept of micro-usages as very brief interac-
tions with an app. By clustering app usage durations, they discovered a natural break 
at 15 seconds, distinguishing micro-usage from more prolonged, intense app usage (see 
also Church et al., 2015; Gordon et al., 2019; Morrison et al., 2018). The occurrence of 
micro-usage depends on the different apps. For example, Ferreira and colleagues found 
that the majority of interactions with calendar apps are defined by micro-usage, while 
only 15% of browser app usages are shorter than 15 seconds.

Researchers can aggregate app usage quantities with regard to different time inter-
vals (e.g., on an hourly, daily, or weekly level). Harari and colleagues (2019) considered 
the daily duration of social media and messaging app usage as relevant indicators of 
sociability behavior. In contrast, Böhmer and colleagues (2011) explored app usage dura-
tions and frequencies for each hour of the day. Moreover, researchers can compute usage 
quantities for socially defined time periods, (e.g., daytime or weekday/weekend; Stachl 
et al., 2020).

App Usage Sequences

The use of an app can also be considered within the context of other app usage events 
(Böhmer et al., 2011; Morrison et al., 2018; Peng & Zhu, 2020) by identifying “app ses-
sions” from smartphone status logs. Continuous app usage allows researchers to organize 
discrete app usage into behavioral sequences, so-called app sessions (Peng & Zhu, 2020). 
According to their definition, app sessions include all apps that were used consecutively 
without the phone being shut off for a given period of time (e.g., 30 seconds; see Böhmer 
et al., 2011; Rauber et al., 2019). The time spent per app session is often referred to as 
session length (Morrison et al., 2018; Peng & Zhu, 2020). App usage sessions can either 
include only one app or several different apps (Peng & Zhu, 2020). So-called multi-app 
sessions are particularly interesting for psychologists because they reveal a variety of 
behavioral information. One common metric is the repertoire size calculated from the 
number of (unique) applications that occur during one session (e.g., Böhmer et al., 2011; 
Morrison et al., 2018; Peng & Zhu, 2020). For example, Gordon and colleagues (2019) 
used the number of different apps per session as an indicator of cognitive decline in older 
adults.

One measure that might reveal specific behavioral intentions is the order of apps used 
within one session (Peng & Zhu, 2020). Sequential patterns can be identified by pairwise 
sequence analysis techniques (Peng & Zhu, 2020; Rauber et al., 2019). For example, 
Rauber and colleagues (2019) differentiated sequences of app categories of healthy versus 
cognitively impaired participants. A systematic investigation of smartphone usage pat-
terns revealed the most used app sequence to be communication apps, followed by social 
network apps, which might indicate a desire to socialize (Peng & Zhu, 2020). In addition, 
transitioning or switching between the apps within one session can be analyzed in terms 
of frequency, speed, or directionality (Gordon et al., 2019; Peng & Zhu, 2020).
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These approaches extract typical usage sequences from empirical data in a bottom-
up fashion. A complementary approach could be to predefine meaningful app usage 
sequences to answer specific research questions. For example, researchers could inves-
tigate whether well-being improves when people engage a mindfulness app after using 
a social media app. Yet another approach to app sessions is to consider them as unique 
characteristics of a person rather than as common behavioral patterns. Tu and colleagues 
(2018) were indeed able to identify participants based on the unique set of apps they used.

Expanding the scope of app sequences, Peng and Zhu (2020) suggested investigat-
ing so-called mobile trajectories. These are higher-order sequential processes in which 
the user may alternate between several app sessions. In this manner, Jeong, Jung, and 
Lee (2020) explored how people switch between work and leisure app sessions on smart-
phones. Considering even longer time frames, Tu and colleagues (2021) compared the 
weekly app usage patterns of 1,600 users over the course of 3 years, identifying long-
term changes in individual app usage and relating them to the socioeconomic attributes 
of users.

Within‑App Behavior

There is one major limitation to investigating app usage adoption, quantities, and 
sequences. It remains unclear what exactly participants are doing while using an appli-
cation and what the intentions of their actions are (Reeves et al., 2021). Consider social 
media apps as an example. These apps allow users to perform diverse behaviors ranging 
from randomly browsing content to searching for specific content to posting their own 
content to commenting or communicating. These different behaviors cannot be distin-
guished by analyzing frequencies and durations, but they might have unique implications 
psychologically. In particular, active (e.g., liking or sharing content) and passive (e.g., 
reading comments, viewing pictures) use of social media has been shown to constitute 
separate behaviors with unique relations to psychological outcomes (Burke, Marlow, & 
Lento, 2010; Escobar-Viera et al., 2018). The ability to characterize within-app behav-
ior would help provide answers to many more psychologically relevant questions: While 
using messaging apps, who are people interacting with and what are they talking about? 
When browsing the internet, what are people searching for (e.g., the latest political news 
or movie reviews)? These are just some examples of the very specific and diverse behav-
ioral information that can be extracted from in-app behavior.

While some studies have started investigating these specific behaviors for certain 
social media platforms (e.g., Instagram; Ferwerda, Schedl, & Tkalcic, 2015), no stud-
ies have investigated the within-app behavior via mobile sensing. This is because it is 
currently not possible to directly collect within-app behavior on either the Android1 or 
the iOS operating system due to the privacy restrictions of the respective operating sys-
tems. One of the few exceptions to such restrictions are music apps, for which custom 
research applications can record song listening records (Sust et al., 2023). To measure the 
full scope of within-app behaviors, researchers have to come up with more innovative 
approaches.

The Screenomics app, for example, collects high-frequent screenshot sequences 
of participants’ app usage, which can be analyzed with regard to within-app behavior 
(Reeves et al., 2021). Ram and colleagues (2020) introduced different types of content-
related information that can be extracted from the text and images of screenshots: active 
production versus passive consumption of app contents, the sentiment of the consumed 
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media, or the presence of very specific content. For example, Reeves and colleagues 
(2021) searched app screenshots for keywords related to the “presidency” (e.g., “White 
House,” “Clinton”) to investigate an individual’s exposure to U.S. political news. Hypo-
thetically, app screenshots could even be analyzed with regard to the performance of 
specific actions, such as writing or reading text messages (Chiatti et al., 2019; Reeves et 
al., 2021).

Although to our knowledge there have been no systematic attempts other than the 
Screenomics project to analyze within-app behavior, we want to lay out some potential 
technical workarounds that could leverage in-app behavioral data. The most feasible 
option is to directly ask participants about their within-app behavior after using the 
respective app via event-triggered experience sampling (see our section “Enriching App 
Usage Data”; e.g., Randall & Rickard, 2012). A more objective, but technically more 
challenging, approach could build on methods for tracking keystrokes (Buschek, De 
Luca, & Alt, 2015) or eye movements (Paletta et al., 2014; Strobl et al., 2019) on smart-
phones. The position of touch or gaze while using an app could be put into context with 
the respective app’s architecture to infer the concrete behavior performed. Furthermore, 
researchers could consider app usage in combination with keyboard inputs to analyze the 
text participants entered into the app’s interface during usage (Bemmann & Buschek, 
2020).

Summary of Practical Recommendations

Analysis of app usage data opens up a wide range of new possibilities for the systematic 
investigation of behavior in the wild. There are myriad approaches to analyzing app 
usage data, ranging from simple aggregations of app usage frequencies to complex model-
based retrieval of within-app behavioral information. However, the diversity of analyti-
cal possibilities presented throughout this chapter also leads to a dramatic increase in the 
researcher’s degrees of freedom (Wicherts et al., 2016). Reducing the researcher’s degrees 
of freedom is important for restricting questionable research practices such as HARK-
ING and p-hacking (Head, Holman, Lanfear, Kahn, & Jennions, 2015; Kerr, 1998). 
Thus, we highly recommend preregistering methodological decisions when analyzing app 
usage.

Researchers interested in conducting a study that incorporates app usage data should 
consider several issues during the planning and preregistration process, prior to data col-
lection. First, researchers should decide how to collect app usage data. Even though this 
decision is determined in part by the researcher’s technological know-how, we recom-
mend employing objective methods for collecting continuous app usage data (e.g., data 
logging rather than self-report). Second, researchers should decide whether and how app 
usage data will be enriched. Even more importantly, researchers must think about the 
analysis of their collected app usage data. They must specify whether analyses will be 
conducted at the individual-app level (e.g., WhatsApp) or on a categorical level (e.g., com-
munication apps), as this decision will strongly affect statistical inferences. Researchers 
who wish to analyze app categories must specify which categories they plan to consider 
(e.g., broad vs. narrow categories). Moreover, they must define how apps will be assigned 
to these categories (e.g., categories provided by the app store vs. manual coder labeling). 
For custom categorizations, ideally, the complete assignment of apps to categories should 
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be preregistered, along with the underlying rationale (e.g., “If the app offers audio calls or 
texting as the primary functionality, we will assign the app category ‘Communication’ ”).

Finally, researchers have to decide what kind of information they want to extract 
from the app usage data (e.g., app adoption/app usage quantities/app sessions/in-app 
behavior). For usage durations, in particular, they must define which smartphone events 
depict the end of app usage (e.g., the launch of another app and/or the next screen-lock 
event). Similarly, it is useful to set an upper limit for the duration of app usage because 
in some instances logging errors might cause implausibly long usage durations (e.g., 24 
hours). Furthermore, researchers should specify for which time period app usage quanti-
ties shall be aggregated (e.g., by day or by hour).

While these are the most relevant methodological considerations, specific approaches 
to analyzing app usage might require even more a priori considerations. However, we 
recognize that with an abundance of options and few existing benchmarks in this novel 
field of research, creating a preregistration can be challenging. Those collecting app 
usage data for the first time will likely encounter issues that they did not anticipate in 
their preregistration and that will require ad-hoc solutions. This is a natural part of the 
research process, and we merely recommend that researchers report any deviations from 
and additions to their preregistered protocol. In addition, we would like to note that this 
section only covers those aspects of research transparency that are specifically relevant 
for analyzing app usage. For a more comprehensive discussion on the topic of researcher 
degrees of freedom in mobile sensing research, we refer interested readers to Chapter 3, 
this volume, on transparency and reproducibility.

Challenges and Future Directions  
for App Usage Research in Psychology

Psychological research has only just begun to scratch the surface of what is possible with 
app usage data. Indeed, app usage has the potential to reveal much more about people’s 
feelings, thoughts, and behaviors than what we have mentioned thus far. Therefore, 
we end this chapter by providing an outlook on the future directions of mobile sensing 
research that incorporates app usage data. First, however, we want to discuss some of the 
technological, practical, and ethical challenges that researchers will need to overcome 
before fully realizing the full potential of app usage in psychology.

Technological Challenges

Concerning technological challenges, continuous app usage remains difficult to access as 
many “off-the-shelf” mobile sensing apps (e.g., Beiwe: Torous, Kiang, Lorme, & Onnela, 
2016) and most research apps (e.g., Emotion Sense: Servia-Rodriguez et al., 2017) are 
not able to collect app usage data. In particular, it remains virtually impossible to inves-
tigate app usage on iPhones. Therefore, in samples where a majority of participants 
own an iPhone, a large portion of app usage behavior remains inaccessible to research-
ers. Perhaps the biggest technological challenge will be to develop methods to collect 
within-app behaviors that do not rely on self-report measures. As previously mentioned, 
these alternative methods are currently quite limited, and, where they do exist, they are 
custom-made, cumbersome, and resource-intensive for participants and researchers. 
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Another technological hurdle is that even when app usage is collected, processing and 
categorizing the respective data remain very challenging because many psychologists are 
not experienced in complex data analytics and computer science methodologies. In sum, 
technological developments that make the collection, storage, and analysis of app usage 
easier for the average psychological scientist would most likely increase the adoption of 
app usage methods in psychological research.

Of course, private corporations are already collecting iPhone app usage and within-
app behavior. Therefore, one potential strategy could be accessing these existing data 
for use in psychological research. Public–private partnerships wherein companies pro-
vide specialized software frameworks for researchers (e.g., Apple ResearchKit) or pro-
vide them with anonymized user data in a mutually agreed upon, systematized process, 
have been explored in domains outside of mobile sensing (King & Persily, 2018; Stroud, 
Tucker, Franco, & Kiewiet de Jonge, 2020). Unfortunately, such partnerships have not 
always proven effective (Hegelich, 2020). Hence, a promising alternative may be legisla-
tion that guarantees public access to the public’s data in a standardized form. Within 
such legal frameworks, several of which have already been enacted (California Consumer 
Privacy Act, 2018; Goodman & Flaxman, 2016), citizens can request their data from 
private companies and choose to donate the data to science (Christen, Domingo-Ferrer, 
Herrmann, & van den Hoven, 2017). However, these legal mandates will be ineffective 
in increasing researchers’ access to app usage data unless people are educated about their 
data rights, know how research initiatives may benefit from their data, and are motivated 
to donate their data.

Ethical Challenges

We have described many ways of collecting and analyzing app usage for scientific inves-
tigations. However, the data collection methods that yield the richest, most granular, 
and highest quality usage data (e.g., continuous screenshots) are also the most invasive. 
Recruitment for mobile sensing studies will likely become more difficult the more exten-
sive the data collection gets because participants may perceive the observation of their 
(in-)app usage behavior as a violation of their privacy. As the public becomes more knowl-
edgeable about digital privacy issues, access to app usage and other sensing logs may 
become more restricted. Such restrictions offer significant progress for citizens’ data pro-
tection rights but may impede app usage research.

Given participants’ privacy concerns, compensating participants appropriately 
may be even more critical in mobile sensing studies collecting detailed app usage data 
(Keusch, Struminskaya, Antoun, Couper, & Kreuter, 2019; Kreuter, Haas, Keusch, Bähr, 
& Trappmann, 2020). Alternatively, nonmonetary incentives (e.g., feedback on psycho-
logical constructs) could create added value for participants who participate in app usage 
studies (Servia-Rodriguez et al., 2017). Another solution may be to use more sophisti-
cated, technical approaches to better protect users’ privacy. For example, recent techno-
logically sophisticated techniques like federated learning, distributed computing, differ-
ential privacy, and on-device data aggregation techniques allow researchers to minimize 
the collection of personal data by training predictive models directly on the user’s smart-
phone, avoiding downloading user data to centralized servers, and performing parts of 
the analysis on different machines (McMahan, Moore, Ramage, Hampson, & Aguera y 
Arcas, 2016; Wang et al., 2019). These techniques, however, are very complex and will 
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require psychologists to cooperate with computer scientists and software engineers to 
execute effectively.

The Future of App Usage on Other Smart Devices

Smartphones are currently the most popular mobile device. Half of the world population 
owns a smartphone (O’Dea, 2020b), so it is unsurprising that smartphones have been the 
focus of most mobile app research. Yet, apps can also be installed on other mobile devices 
that are increasing in popularity, such as tablet computers or smartwatches (Musil, 2016; 
Zickuhr & Rainie, 2019). App usage on these devices can be collected and analyzed 
similarly to app usage on smartphones. However, there are differences in methodological 
considerations across the different devices that need to be better understood to advance 
the analysis of app usage beyond smartphones. Some differences that are already appar-
ent relate to the types of apps and their usage frequencies on various devices, such as 
smartwatches versus smartphones.

Regarding the types of apps available, a systematic analysis of 14,000 smartwatch 
apps found that many smartwatch apps fall into categories similar to smartphone app 
categories (e.g., games, music/audio). However, one of the most popular smartwatch 
app categories was personalization (i.e., apps that change the interface of the watch; 
Chauhan, Seneviratne, Kaafar, Mahanti, & Seneviratne, 2016), which is an uncommon 
smartphone app category in the current literature. In contrast, only 9% of smartwatch 
apps fall in the communication category (Visuri et al., 2017), which is a crucial app cat-
egory for smartphones, whose original purpose is to facilitate communication (Bröhl et 
al., 2018). Therefore, different app categorizations might be needed for different devices, 
depending on the device’s central functionalities and the age of the respective technology 
(e.g., novel technologies usually offer increased personalization functionalities).

The nature of app usage also differs on different types of devices. Similar to smart-
phone users (Ferreira et al., 2014), smartwatch users tend to engage in micro-usage of 
apps; however, the average session length is even shorter on smartwatches (Visuri et al., 
2017). Smartphone and smartwatch app usage behaviors also differ in that smartwatch 
users rarely launch the apps directly (Liu et al., 2017). Instead, smartwatch apps send 
frequent push notifications and remain active in the background. Thus, Liu and col-
leagues (2017) distinguish between two components of smartwatch app usage: app activ-
ity (wherein the app is visibly present on the interface) and app service (wherein the app 
operates in the background without being visibly present on the interface), with app activ-
ity being less common than app service. App activity is less frequent in part because the 
user interface of smartwatches is so small and visually impoverished, precluding many 
behaviors that people can perform on smartphone and tablet apps (Chun, Dey, Lee, & 
Kim, 2018).

In contrast to the increasing popularity of research on smartwatch app usage, only a 
few studies have investigated app usage on tablet computers, even though 75% of tablet 
users have downloaded an app to their device, and 38% use six or more tablet apps every 
week (Purcell, 2011). Studies that have examined app use on tablets have focused on 
rather narrow applied settings like classrooms and hospitals (Amelink, Scales, & Tront, 
2012; Diliberto-Macaluso & Hughes, 2016; Rick, 2012; Zhao, Tai-Seale, Longhurst, 
& Clay, 2019). Given the greater similarity between the tablet and smartphone user 
interface, the smartphone app data collection and analysis methods described in this 
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chapter are likely to be more generalizable to tablets than smartwatches. However, future 
work should more systematically document which devices people use for different app-
mediated behaviors so that researchers interested in a given behavior can collect data 
from the most relevant device.

An even more promising direction that future mobile sensing research could take 
is to combine sensor log streams from different devices. While the smartphone plays a 
central role in many people’s lives, app usage logged on multiple devices should provide a 
more complete picture of a person’s daily behaviors than app usage logged on their smart-
phone alone. Consumers tend to increasingly own additional smart devices that could 
provide complementary sensing and logging capabilities (Westcott et al., 2019). This is 
particularly important since many apps are now synchronized across multiple devices 
that a person may own (Årsand, Muzny, Bradway, Muzik, & Hartvigsen, 2015; Liu et 
al., 2017) and people sometimes use multiple devices simultaneously (Jokela, Ojala, & 
Olsson, 2015). That said, integrating data from multiple devices is a topic that all mobile 
sensing research (not just app usage research) will need to tackle. For a more in-depth 
discussion on mobile sensing beyond the smartphone, see Chapter 12, this volume.

Toward More Experimental App Usage Studies

Many have called for more experimental and confirmatory studies in mobile sensing 
research to add the benefit of high internal validity (i.e., establishing causality) to the 
benefits of high ecological validity already inherent to mobile sensing studies (Gordon et 
al., 2019; Rachuri et al., 2010). However, like other mobile sensing studies, research with 
a focus on app usage tends to be purely observational and exploratory. We believe that 
app usage research, in particular, is uniquely suitable for experimental manipulations 
and confirmatory research (even if, by definition, mobile sensing offers less control over 
experimental conditions).

One interesting avenue for future research is to randomly assign participants to use 
different versions of a researcher-developed app, with each version hypothesized to have 
diverging effects according to a priori theorizing. To provide a more concrete example, 
different behavioral feedback mechanisms within a health app could be tested for their 
effects on adherence to an exercise protocol, measured via the smartphone’s sensors. 
Or the same app could be installed for all participants but with random assignment of 
how the app is framed psychologically (e.g., goal-oriented or leisure-oriented; Stieger 
et al., 2020). Alternatively, participants could be randomly assigned to either continue 
their app usage as usual or to remove certain apps from their phones, allowing research-
ers to examine the psychological effects of removing various features of digital media 
from daily life. For example, researchers randomly assigned participants to deactivate 
their Facebook account and found that well-being increased and political polarization 
decreased (Allcott, Braghieri, Eichmeyer, & Gentzkow, 2020). A similar study could be 
conducted with app usage by having participants delete all social media or news-related 
apps from their phone.

As a closing remark, we want to emphasize that app usage research, in general, 
is not only suitable for nomothetic investigations. The richness of app usage data also 
allows for an increased focus on idiographic processes in the modeling of the individuals. 
Highlighted by recent research (Ram et al., 2020) and in contrast to traditional ana-
lytic approaches emphasizing between-subjects and group-level analyses, app usage, and 
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mobile sensing data, in general, can provide detailed reflections of a given individual’s 
unique daily behavioral trajectories (Harari et al., 2016).

Conclusion

The quantitative analysis of app usage offers a uniquely comprehensive view of in vivo 
human activities. Obviously, the analysis of app usage data depends on the continued 
existence of apps. Recent technological trends suggest that apps may not always main-
tain their supremacy in the user experience. We are witnessing the rise of speech- and 
camera-based devices (e.g., Amazon’s Alexa or Auctify’s glasses) that fulfill voice requests 
(“Alexa, play music”) and mediate what people see. Even though these devices access 
apps in the background, the user’s experience is no longer dependent on interaction with 
clearly recognizable, self-contained apps. In other words, the user may ask the device to 
play music rather than to open the Spotify app. Therefore, in the future, analyzing app 
usage at the level of the individual app may be less meaningful. This may be even more 
true if devices are replaced by technologies that are integrated more seamlessly into the 
human body (i.e., brain–computer interfaces) that do not require the user to consciously 
interact with apps in the ways they do currently on their devices.

However, currently and for the foreseeable future, apps are the organizing principle 
that allows users to both navigate and expand the functionalities of their smartphones. 
Until there is a radical shift in how the smartphone user’s experience is organized, we 
anticipate that mobile apps will continue to dominate people’s digital life. Thus, mobile 
app usage data is a valuable and largely untapped source of information about people’s 
thoughts, feelings, and behaviors. We believe that psychological scientists who leverage 
this new source of information in their research will uncover important new insights 
about human life in the 21st century.

  Note
1.	 It is possible but not advisable to retrieve within-app behavior by exploiting accessibility 

services on Android phones.
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C H A P T E R  O V E R V I E W

A core aspect of our lives is often embedded in the communities where we live. The inter-
connectedness of our interactions and experiences impinges on our well-being. A better 
understanding of well-being will help us devise proactive support strategies. However, 
the existing methodologies used to assess well-being are limited in both scale and timeli-
ness. These limitations are being surmounted by our ubiquitous technologies. Given their 
ubiquity and wide use, social media can be considered a “passive sensor” that can provide 
a complementary source of unobtrusive and naturalistic data regarding well-being. This 
chapter showcases research on well-being in two situated communities (which are geo-
graphically co- located, diverse, and close-knit communities where individuals share dis-
tinctive social ties), college campuses, and workplaces, based on methods from machine 
learning, time- series, natural language, and causal inference analysis of social media 
data. In this chapter, first, we leverage social media data on online communities on Red-
dit to study the evolution of stress following gun violence events on college campuses, 
and second, we leverage LinkedIn data to measure the role of ambiguity and its relation-
ship to workplace productivity and well-being. These studies have theoretical, practical, 
and methodological implications for various stakeholders, including researchers, prac-
titioners, and policymakers. This research can provide building tools and applications 
through these digital and sensing data- driven methodologies to support well-being.

Introduction

The past few years have seen an increasing interest in the research and development of pas-
sive sensing approaches to improve our understanding of our well-being. Simultaneously, 
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research reveals that social media technologies provide unique advantages as a passive 
sensing modality (Saha et al., 2019f). Social media platforms, such as Facebook, Twitter, 
Instagram, Reddit, Snapchat, and LinkedIn, are pervasive and widely used by large pop-
ulations (Greenwood, Perrin, & Duggan, 2016), enabling individuals to share thoughts 
and connect with others. The social media provide a low-cost, large-scale, nonintrusive 
means of data collection, which not only focuses on the linguistic and social behaviors 
of individuals but also may reveal naturalistic patterns of mood, behavior, cognition, 
psychological states, and social milieu, both in real time and across longitudinal time 
(Golder & Macy, 2011). Simultaneously, research has utilized social media platforms as a 
“passive sensor” (Saha, Chan, de Barbaro, Abowd, & De Choudury, 2017) and an unob-
trusive source of behavioral data self-recorded and self-initiated by individuals in their 
natural settings. Considerable research highlights the potential and feasibility of the abil-
ity of social media data-driven approaches to (semi-)automatically assess the health and 
well-being of both individuals and communities (Chancellor & De Choudhury, 2020; 
Culotta, 2014; De Choudhury & Counts, 2013; Guntuku, Buffone, Jaidka, Eichtaedt, & 
Ungar, 2019; Saha et al., 2019f).

Language can help us understand the individual’s psychological state (Pennebaker 
& Chung, 2007). In recent years, several studies have demonstrated that social media 
data can help us to understand the psychological and mental health states of individuals 
and communities (Spiro, 2016). Researchers have leveraged social media data at scale 
to quantitatively identify conditions and symptoms related to diseases (Paul & Dredze, 
2011), disease contagion (Sadilek, Kautz, & Silenzio, 2012), mood and depressive dis-
orders (De Choudhury & Counts, 2013), mental health (Birnbaum, Ernala, Rizvi, De 
Choudhury, & Kane, 2017; Coppersmith, Dredze, Harman, & Holingshead, 2015; Saha 
et al., 2019f), posttraumatic stress disorder (Coppersmith, Harman, & Dredze, 2014), 
eating disorders (Chancellor, Lin, Goodman, Zerwas, & De Choudhury, 2016), suicidal 
ideation (De Choudhury, Kiciman, Dredze, Coppersmith, & Kumar, 2016), psychotic 
symptoms (Ernala, Rizvi, Birnbaum, Kane, & De Choudhury, 2017), addictive behav-
iors (Moreno, Christakis, Egan, Brockman, & Becker, 2011), grief (Brubaker, Kivran-
Swaine, Taber, & Hayes, 2012; Glasgow, Fink, & Boyd-Graber, 2014), and substance 
use (Chancellor, Nitzburg, Hu, Zampieri, & De Choudhury, 2019; Saha et al., 2019f). 
From the standpoint of collective well-being, Culotta (2014) inferred county-level mental 
health using Twitter data.

Relatedly, the social media have facilitated analysis of personality traits and their 
relationship to psychological and psychosocial well-being, through machine learning and 
linguistic analysis (Quercia, Kosinski, Stillwell, & Crowcroft, 2011; Kosinski, Stillwell, 
& Graepel, 2013; Schwartz et al., 2013). In addition, crisis literature has found promis-
ing evidence supporting the potential of social media language to better understand the 
psychological impacts of external events and crisis (De Choudhury et al., 2014; Mark et 
al., 2012; Palen, 2008; Starbird, Palen, Hughes, & Vieweg, 2010). This body of work 
highlights that online platforms have become a safe haven for people, enabling them 
to interact and express themselves during their times of upheavals (Al-Ani, Mark, & 
Semaan, 2010; Fitzhugh, Gibson, Spiro, & Butts, 2016; Mark et al., 2012; Starbird et 
al., 2010). Notably, Cohn, Mehl, and Pennebaker (2004) studied psychological markers 
using social media language following 9/11.
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Social Media and Well‑Being in Situated Communities

According to Murphey (1999), communities are grounded in locally meaningful reali-
ties. Consequently, situated communities are typically defined as groups of people in 
geographic spaces where they share some form of physical co-location (workplaces, resi-
dential compounds, neighborhoods, and localities, school and college campuses), or even 
physically co-located interests and demography. Here, individuals share social interac-
tions and bear common and distinctive social ties and interests, including third places 
(i.e., places where people spend time between home [“first” place] and work [“second” 
place]; Oldenburg, 1999). Individuals belonging to the same situated communities often 
access common resources and institutions dedicated to the well-being and prosperity of 
these individuals (Poland & Maré, 2005).

The social ecological model implies the interdependence of behavior and well-being 
among individuals and the community in which they are situated (Sallis & Owen, 1998; 
Walcott-McQuigg, Zerwic, Dan, & Kelley, 2001). Therefore, through the interconnect-
edness and interdependencies that derive from human interactions, experiences, and 
concerns, individual and collective well-being become interlinked in situated communi-
ties. For example, crime or violence in a neighborhood will cause alertness and anxiety 
among all or most neighborhood residents. The absence of appropriate and proactive 
support strategies may exacerbate the neighborhood’s overall well-being manifold owing 
to these interdependencies and interconnectedness in situated communities. For instance, 
the lack of timely supportive interventions following an external crisis can proliferate 
community-cascading acute stress experiences, leading to several negative consequences. 
The overwhelming amount of stress that usually follows crisis can lead to long-term nega-
tive mental health outcomes, including posttraumatic stress disorder, acute stress disor-
der, borderline personality disorder, or adjustment disorder (Wood, Foy, Layne, Pynoos, 
& Boyd James, 2002). A better understanding of psychosocial dynamics can help devise 
strategies to address well-being concerns in situated communities.

However, capturing the subjective aspects of individual lives in their situated con-
texts is a challenging undertaking (Atkinson, Bagnall, Corcoran, South, & Curtis, 2020). 
Traditional and most existing approaches to understanding behavior and well-being in 
these communities are limited and are typically reactive (Tourangeau, Rips, & Rasinski, 
2000). These approaches are based largely on discrete occurrences of events, and there is 
no way to continually and comprehensively assess well-being dynamics in situated com-
munities. Studies of human behavior and well-being have typically relied on self-reported 
survey data from individuals. In the last few decades, these approaches have been found 
to have a variety of limitations. For instance, self-reported data suffer from subjective 
assessments, recall, and hindsight biases. These surveys are often retrospective. That is, 
information is gathered after an event has occurred or after an individual has experienced 
a specific change (Tourangeau et al., 2000). Recent research has recognized the value 
of in-the-moment data recording and acquisition approaches. One prominent example 
centers on using active logging approaches, such as ecological momentary assessments 
(EMAs) capturing an individual’s momentary state (Wang et al., 2014). However, active 
sensing involves the challenges of scale, access, and cost (Scollon, Prieto, & Diener, 
2009). EMAs are often disseminated through prompts to impose a response burden on 
participants through disruptions (Suh, Shahriaree, Hekler, & Kientz, 2016). This leads 
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to a tradeoff between balancing the construct validity of participant responses and their 
compliance (Chan et al., 2018). Subsequently, researchers have employed various forms of 
passive sensing (Wang et al., 2014), such as logging an individual’s phone usage or track-
ing physical activity via wearable sensors, and these sensing technologies have been sig-
nificantly successful in studying human behavior, well-being, and psychosocial dynamics 
(Wang et al., 2014).

Social media represent one such passive sensing platform, whose promise is situated 
in the notion that many human behaviors and attributes have social underpinnings when 
viewed through the lens of the social-ecological model (Catalano, 1979). This chapter 
seeks to overcome the gap in studying well-being in situated communities by using social 
media data. In particular, we focus on two situated communities: college campuses and 
workplaces. These communities are unique in age, demographics, and socioeconomic 
characteristics, as well as day-to-day activities, goals, and concerns.

Social Media and Well‑Being in College Campuses

College campuses are close-knit, largely geographically co-located communities, where 
students typically experience mental well-being concerns (Eisenberg, Golberstein, & 
Gollust, 2007). Colleges are valued institutions that help build upon a society’s founda-
tions and serve as an arena where the growth and stability of future generations begin. 
With regard to the population of college students, Ellison, Steinfield, and Lampe (2007) 
found a positive relationship between social media usage and maintenance of social capi-
tal, and Manago, Taylor, and Greenfield (2012) found that social media help college 
students satisfy their psychosocial needs. Given the near-universal use of social media 
among youth (Pew Research Center, 2021) and because social media platforms enable 
individuals to share and disclose mental health issues (Eisenberg, Hunt, & Speer, 2012), 
researchers have begun to leverage social media as an unobtrusive and passive source of 
data to infer and understand the mental health and well-being of college students (Liu, 
Zhu, & Young, 2018; Mark, Wang, Niiya, & Reich, 2016; Moreno, Jelenchick, et al., 
2011). Of particular relevance is the work of Bagroy, Kumaraguru, and De Choudhury 
(2017), who built a collective mental health index of colleges employing social media 
(Reddit) data. Manago and colleagues (2012) found that social networking helps satisfy 
the psychosocial needs of college students, and Moreno, Jelenchick, and colleagues (2011) 
studied mental health disclosures by college students on social media. Prior research 
has also inferred other behavioral and psychological attributes of college students, using 
social media (Mark et al., 2016; Valkenburg, Peter, & Schouten, 2006). Recent research 
has revealed the construct validity of social media-based mental health assessments of 
college students in predicting on-campus mental health consultations (Saha, Yousuf, 
Boyd, Pennebaker, & De Choudhury, 2022).

Social Media and Well‑Being in Workplaces

In the last decade, researchers have used social media technologies to study employee 
behavior in the workplace (De Choudhury & Counts, 2013). For example, IBM research-
ers (Ehrlich & Shami, 2010) compared employees’ use of social media platforms, particu-
larly their motivations for using these platforms (Twitter). They reported that, both at 
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home and at work, social media made workers, especially mobile workers, feel more con-
nected to other employees and helped boost their position in the workplace. Studies found 
that social media use is positively correlated with workplace well-being (Shami, Nichols, 
& Chen, 2014). Increased social media interactions within the workplace, through plat-
forms such as IBM’s Beehive, were found to improve both personal and professional net-
working, career advancements, and innovation (DiMicco et al., 2008; Farzan et al., 2008; 
Geyer et al., 2008). Other works have also found that social media technologies have 
promoted positive relationships between workplace and employee behavior (De Choud-
hury & Counts, 2013; Erez, Misangyi, Johnson, LePine, & Halverson, 2008; Fowler & 
Christakis, 2008; Guillory et al., 2011). In an early work, Skeels and Grudin (2009) con-
ducted a longitudinal study of employee motivations and use of social media platforms. 
Taken together, social media use, both within and outside of the workplace, contribute to 
the worker’s well-being and professional stature through increased connectivity, reputa-
tion building, and networking opportunities. Social media and online engagement plat-
forms have facilitated efforts to study employee behavior and satisfaction (Archambault 
& Grudin, 2012; De Choudhury & Counts, 2013; Mitra, Muller, Sadt Shami, Goles-
tani, & Masli., 2017; Shami, Yang, et al., 2014; Skeels & Grudin, 2009). Analytical and 
computational approaches on language and network dynamics have gleaned correlates 
of employee job satisfaction and well-being, such as engagement (Hickman, Saha, De 
Choudhury, & Tay, 2019; Mitra et al., 2017; Shami, Muller, Pal, Masli, & Geyer, 2015), 
employee affect (De Choudhury & Counts, 2013; Saha et al., 2019c), social pulse (Shami, 
Nichols, et al., 2014), reputation (Jacovi, Guy, Kremer-Davidson, Porat, & Aizenbud-
Reshef, 2014), organizational relationships (Brzozowski, 2009; Gilbert, 2012; Mitra & 
Gilbert, 2012), and workplace behavior (Mark, Iqbal, Czerwinski, & Johns, 2014). Ano-
nymized platforms such as Glassdoor provide “safe spaces” for employees to share and 
assess their workplace experience (Boyd & Ellison, 2007; Kollock, 1999) and to measure 
organizational culture (Das Swain et al., 2020). These studies indicate the value of unob-
trusive data sources in understanding workplace experiences.

This chapter highlights research that examines problems applicable to and critical 
for situated communities and leverages social media data that reflect the online analog 
of offline (physically co-located) situated communities. For example, we leverage col-
lege subreddit data for college campuses where college students express and share topics 
and interests about their day-to-day academic, personal, and college lives (Saha & De 
Choudhury, 2017; Saha, Weber, & De Choudhury, 2018). Similarly, we leverage LinkedIn 
data for employees in workplace communities in order to show how employees’ job roles 
relate to their workplace performance and experiences (Saha et al., 2019e). These datas-
ets uniquely allow us to capture the social and environmental context required for a bet-
ter understanding of well-being. Thus, the contributions highlighted in this chapter are 
threefold: (1) using social media data that particularly and uniquely capture the behavior 
of situated communities, (2) adopting theory-driven computational and causal methods 
to make conclusive research claims on well-being dynamics, and (3) discussing the chal-
lenges given the limitations of social media data and how methods combining social 
media and other behavioral data can circumvent these challenges toward reaching a com-
prehensive understanding of human behavior.

Employing an interdisciplinary context that includes psychology and the social 
sciences and considering theoretical, practical, design, methodological, and ethical 
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perspectives has implications for a variety of stakeholders, including researchers, practi-
tioners, administrators, and policymakers. A major implication of these studies concerns 
building tools and applications that leverage these data-driven methodologies to improve 
well-being in practice. The following two sections review our research conducted in two 
situated communities: college campuses and workplaces. Particularly showcased is the 
role of social media in a variety of dimensions concerning mental and psychological well-
being.

Measuring Stress Associated with Gun Violence 
on College Campuses

In this section, we discuss our prior research on the use of computational methods to 
infer mental well-being (stress) in crisis situations (e.g., gun violence incidents; Saha & De 
Choudhury, 2017). College students undergo stress throughout the year due to academic, 
personal relationships, environmental, and social factors (Ross, Niebling, & Heckert, 
1999). Mental health concerns are pervasive in the college student population (Hirsch & 
Ellis, 1996). Crises on college campuses can cause acute stress and have long-term nega-
tive consequences, including posttraumatic stress, acute stress, borderline personality, or 
adjustment disorders (Wood et al., 2002). Violent incidents on college campuses ranging 
from mass shootings to acts of terrorism have proliferated in the recent past. A survey 
from Everytown for Gun Safety Support Research1 reports that between 2013 and 2016, 
76 incidents of gun violence occurred on U.S. college campuses, resulting in more than 
100 casualties. Many of these incidents not only affect those involved in the incidents 
directly, but also leave profound negative psychological impacts on the general campus 
community (Zajacova, Lynch, & Espenshade, 2005). It is vital to understand the poten-
tial impacts of violent incidents on the college student’s psyche.

Two complementary research directions guided our work. First, studies in psycho-
linguistics and crisis informatics presented promising evidence that the language shared 
on social media could help us determine the psychological states of individuals and col-
lectives (De Choudhury, Monroy-Hernandez, & Mark, 2014; Mark et al., 2012; Starbird 
et al., 2010). Second, over 90% of young adults or individuals of college age use social 
media.2 This facilitated our ability to study college students’ mental well-being unobtru-
sively and passively (Bagroy et al., 2017). Our three research aims were as follows:

•	Aim 1: Infer stress expressions in social media posts.

•	Aim 2: Quantify temporal changes in stress expressions following gun violence 
incidents on campuses.

•	Aim 3: Quantify linguistic changes in stress expressions following gun violence 
incidents on campuses.

We studied gun violence incidents reported between 2012 and 2016 on 12 U.S. col-
lege campuses. For each campus, we obtained data from corresponding college subred-
dits. For the first aim, we developed an inductive transfer learning approach to infer stress 
expressed in Reddit posts, which achieved a mean accuracy of 82%. Using this classi-
fier, we identified high-stress posts shared in the 12 college subreddits. Then, targeting 
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the second and third aims, we developed techniques drawing from the time-series and 
natural language analysis. Complete details of the study are available in Saha and De 
Choudhury (2017); here we summarize our approach to collecting and analyzing the 
social media data and the main findings to illustrate how social media data can help us 
understand and predict mental well-being on college campuses.

Data

Gathering Campus‑Specific Gun Violence Data

For our study (Saha & De Choudhury, 2017), we adopted the definition of gun violence 
on college campuses, as published by Everytown for Gun Safety Support Research3: 
“a shooting involving discharge of a firearm inside a college building or on campus 
grounds and not in self-defense.” Everytown for Gun Safety is an American nonprofit 
organization that conducts gun violence research in the United States. However, since 
there is no single database for gun violence incidents on college campuses, we adopted 
a snowball approach to curate our dataset (Ayers, Althouse, Leas, Alcorn, & Dredze, 
2016; Pavlick & Callison-Burch, 2016): (1) We collected a seed list of gun violence 
incidents on U.S. college campuses from Everytown for Gun Safety Research; we also 
used this list in prior work (Ayers et al., 2016); (2) we augmented this seed list with 
additional incidents that satisfy the same definition we cited above (we consulted cred-
ible online sources in an iterative fashion).4 Our curated list consisted of gun-related 
incidents of violence that took place both on and in close proximity to the college cam-
pus between 2012 and 2017.

Finding a Campus‑Specific Social Media Data Source

The social media data source of our study is Reddit, particularly college subreddits. In 
colleges with subreddits, we filtered at least 500 subscribers on the day of the campus 
incident, guided by prior work (see Bagroy, Kumaraguru, & De Choudhury, 2017). 
Twelve such colleges met the criteria, and there were between 969 (r/NAU) and 8,936 
(r/OSU) subscribers in these subreddits.

Compiling Treatment and Control Data from Social Media

Because our study examined statistical differences in the expression of stress around 
gun violence incidents, we ensured that the measured differences in stress were indeed 
attributable to the incidents rather than to other unobserved or latent variables. In the 
statistics literature, these concerns regarding quantification of an “outcome” (stress) are 
typically mitigated by adopting randomized experiments, where, given a “treatment” 
(gun violence incident) in the target population, an equivalent population is assigned to a 
“control” (gun violence free) condition to rule out the effects that might be attributable 
to confounding or omitted variables (Holland, 1986; Petticrew et al., 2005). Since an 
experimental approach was inappropriate for our study, we adopted matching to compile 
our data, drawing from the causal inference literature (Rosenbaum & Rubin, 1985). Spe-
cifically, for each of the 12 incidents, we identified two separate time periods of campus 
subreddit data collection: a treatment period and a control period.
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1.  Treatment period. We identified a period of 2 months before and 2 months after 
the gun violence incident on each campus. Our rationale for marking this as our period 
of analysis was based on prior work published by Kumar, Dredze, Coppersmith, and De 
Choudhury (2015), which observed that the effects of societal upheaval persisted for only 
a limited period of time. Because we focused on college campuses that tended to follow a 
4-month semester or a 2.5-month quarterly academic system, we deduced that a 4-month 
period around each incident that closely followed the academic system would help us 
detect meaningful stress changes attributable to the incident.

2.  Control period. For the combined period of 2 months before and 2 months after 
the gun-related violence incident on each campus, we identified an equivalent period 
of 4 months from the previous year. Gathering data from the same period in the past 
year (when no gun violence was reported) is likely to rule out confounding effects in the 
measuring temporal or linguistic differences in stress attributable to academic calendar 
factors, or seasonal and periodic events that impact students’ experiences, lifestyle, and 
activities. Because we identified this period specific to each campus, we ruled out the pos-
sibility of incorporating confounding effects attributable to campus characteristics or the 
nature of student population and their demographics.

We used Google BigQuery to collect data from each college subreddit during the 
Treatment and Control periods. This dataset consisted of 113,337 posts5 (Table 9.1). We 
further demarcated each Treatment and Control dataset into before and after samples 
based on whether the date of a post in the Treatment (or Control) dataset was prior to 
or followed the reported incident at the corresponding campus (or the same date in the 
previous year).

TABLE 9.1.  Gun Violence in U.S. College Campuses during 2012–2016 Used in Our Work
College Incident #n Subreddit Users #Posts

University of Southern California 2012-10-31   4 r/USC 1,143   2,676

University of Maryland 2013-02-12   3 r/UMD 2,201   9,578

University of Central Florida 2013-03-18   1 r/ucf 2,886 13,708

Massachusetts Institute of Technology 2013-04-18   3 r/mit 1,568   1,682

Purdue University 2014-01-21   1 r/Purdue 3,605 11,172

University of California Santa Barbara 2014-05-23 21 r/UCSantaBarbara 3,278 17,682

Florida State University 2014-11-20   4 r/fsu 3,859   8,150

University of South Carolina 2015-02-05   2 r/Gamecocks 1,903   1,661

University of North Carolina at Chapel 
Hill

2015-02-10   3 r/chapelhill 2,025   1,177

North Arizona University 2015-10-09   4 r/NAU    969   1,025

University of California, Los Angeles 2016-06-01   2 r/ucla 6,301   9,454

Ohio State University 2016-11-28 14 r/OSU 8,936 35,372

Note. We also include the date, number of casualties (#n), and descriptive statistics of the corresponding sub-
Reddit communities
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Aim 1: Infer Stress Expressions in Social Media Posts

It is hard to obtain large-scale ground-truth stress expressions data on social media. To 
overcome this challenge, we adopted a transfer learning approach through which we built 
a supervised machine learning model to classify stress expressions in posts into the binary 
labels High Stress and Low Stress. We used this classifier to machine label posts in the 
college subreddits.

Our stress class definition is based on the established psychometric measure of stress 
as per the Perceived Stress Scale (PSS; Cohen, Kamarck, & Mermelstein, 1983). The 
widely used 10-item version of PSS identifies three categories: (1) Scores ranging from 0 
to 13, minimal stress; (2) 14–26, moderate stress; and (3) 27–40, extreme stress. Typi-
cally, factor analysis (Hewitt et al., 1992) reveals two factors, based on this scoring. This 
motivates our choice of two classes: Low Stress and High Stress.

We collected all 1,402 posts from the subreddit r/stress from December 2010 to Jan-
uary 2017. The r/stress community allows individuals to self-report and disclose stressful 
experiences and is a support community. For example, two (paraphrased) post excerpts 
say: “Feel like I am burning out (again . . . ) Help: what do I do?”; and “How do I calm 
down when I get triggered?.” The community is heavily moderated, so we considered 
these 1,402 posts as ground-truth data for High Stress posts. Next, we obtained a second 
dataset of over 100,000 random posts from subreddits listed on Reddit’s landing page. 
We randomly sampled 2,000 posts from this dataset and considered it as ground-truth 
data for Low Stress posts.

On the above training dataset, we obtained features for the stress classifier: We used 
Stanford CoreNLP’s sentiment analysis model to retrieve the sentiment class of the posts 
and the top 500 n-grams (n = 3). We developed a binary support vector machine (SVM) 
classifier (with a linear kernel) for detecting High Stress and Low Stress in posts. We used 
this classifier to machine label all Before and After posts shared in the Control and Treat-
ment datasets associated with the 12 campuses.

Corresponding to our first aim, we present the results of the machine learning clas-
sifier of stress. Our binary SVM classifier uses 5,000 n-gram features and three bool-
ean sentiment features, Positive, Negative, and Neutral; the number of n-gram features 
was determined based on systematic parameter sweep. We used a k-fold (k = 5) cross-
validation technique to evaluate our model and achieved a mean accuracy of 0.82. This 
accuracy beats the baseline accuracy (based on a chance model) of 0.68 on this dataset. 
Table 9.2 reports the performance metrics of the stress classifier, and Figure 9.1 shows 
the receiver operating characteristic (ROC) curve of the same. We find that our classifier 
yields a low number of false positives (average precision 0.82), as well as low false nega-
tives (average recall 0.82), indicating robust performance on test data. Table 9.3 reports 
the top 30 features of our stress classifier.

To understand the temporal and linguistic dynamics of High Stress, we applied the 
stress classifier to machine label the posts. With the help of three human raters, who were 
expert in social media analytics and affect dynamics, we validated a random sample of 
151 of the classifier labeled posts (79 High Stress and 72 Low Stress posts). Our experts 
adopted the Perceived Stress Scale (Cohen et al., 1983) to examine how stressful experi-
ences from the scale (e.g., feelings of nervousness, anger, lack of control) are expressed in 
each post. Our raters reached a high agreement (Fleiss’s kappa = 0.84), and we found an 
accuracy of 82% for the stress classification.
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Aim 2: Quantify Temporal Changes in Stress Expressions 
around Campus Gun Violence

We examined the temporal variability of High Stress expressed in subreddit posts around 
each campus gun violence (Treatment data) and a similar period in the previous year 
(Control data). We aggregated posts shared per day, and then we normalized the number 
of posts labeled as High Stress on each day. In order to assign weightage to the number of 
High Stress posts on a day as well as its proportion in this normalization, we employed 
a variant of the TF-IDF (term frequency- inverse document frequency) estimation tech-
nique: We multiplied the proportion of High Stress posts in a day with the squared root 
of their count on the same day. We obtained the temporal variability in stress for both 
Control and Treatment datasets, spanning the Before and After periods. Then, we used 
0–lag cross correlation to assess how the manifestations of High Stress around incidents 
differ from the same in a comparable time frame in the past.
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 FIGURE 9.1.  ROC curve for the stress classifier.

TABLE 9.2. Performance Metrics of Stress Classification 
per k-Fold Cross-Validation (k = 5)
Metric Mean Stdev. Median Max.

Accuracy 0.82 0.11 0.78 0.90

Precision 0.83 0.14 0.77 0.92

Recall 0.82 0.09 0.78 0.88

F1-score 0.82 0.11 0.79 0.89

ROC-AUC 0.90 0.08 0.78 0.95
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We quantified changes in stress expressions by estimating the trend of High Stress 
before and after the incidents. We computed z-scores of High Stress posts on each day 
for the Before and After samples in the Treatment dataset. We also measured an average 
change in z-scores between Before and After samples.

Time Domain Analysis of High‑Stress Posts

Figure 9.2 shows the normalized volume of High Stress content in the Treatment and 
Control datasets. We find that High Stress posts are shared in the college subreddits 
throughout the period spanning across the Treatment and Control datasets, in varying 
degrees. These posts consist of content ranging across varieties of academic and college-
life-specific topics including, admission, examinations, and assignments. This observa-
tion aligns with prior literature that situates various college-life-specific factors that are 
attributable to student stress (Ross et al., 1999); that stress is a persistent psychological 
observation among college students (Bayram & Bilgel, 2008). When we examine the day 
of the gun violence incident and its vicinity, we observe a peak in the normalized volume 
of High Stress posts in a majority of the subreddits that is considerably distinct in r/ucf, r/
Purdue, r/UCSantaBarbara, r/NAU, r/OSU. The peak in stress in the Treatment year, as 
compared to the Control year, suggests that campus gun violence contributes to increased 
stress immediately following the incident. We find that the mean normalized stress in the 
Treatment year is higher than the same for Control across all campuses (1.35 vs. 1.19). 
A cross-correlation analysis of the temporal occurrences of High Stress posts in Control 
and Treatment datasets shows statistical significance.

How does the expression of High Stress in the college subreddits change in the 
aftermath of the gun violence incidents compared to the incident before? To answer this 
question, we report the findings of our proposed before–after analysis. A 0-lag cross-
correlation for Before and After samples within the Treatment dataset shows statistical 
significance. Next, we computed the z-scores of High Stress expressed on each day. The 
mean change in z-score between Before and After samples ranged from –0.30 (r/NAU) to 
0.83 (r/Purdue), with 9 out of 12 subreddits exhibiting a positive change in expression of 
High Stress. We conducted Mann-Whitney U tests of Before and After day-wise z-scores, 

TABLE 9.3.  Top 30 Features in Stress Classifier
Feature p log(score) Feature p log(score) Feature p log(score) Feature p log(score)

stress *** 9.63 thank *** 6.20 breathing *** 6.44 health *** 5.87

try *** 7.46 meet *** 6.17 techniques *** 6.33 week *** 5.86

work *** 7.20 life *** 6.07 feel *** 6.30 minutes *** 5.83

anxiety *** 7.05 sleep *** 6.03 exercise *** 6.30 doctor *** 5.83

meditation *** 6.88 problems *** 5.98 time *** 6.25 mental *** 5.83

help *** 6.81 control *** 5.95 play *** 6.23 relax *** 5.72

focus *** 6.62 job *** 5.89 body *** 6.21 stressful *** 5.67

luck *** 6.62 good *** 5.87

Note. Statistical significance reported after Bonferroni correction.
***p < .001.

�	 Computational Modeling of Social Media Data	 225



revealing the statistical significance for each subreddit. More careful examination indi-
cates that the z-scores of High Stress in the days following the incident in most of the 
subreddits have a trend line (based on fitting a linear model) yielding a negative slope. 
Specifically, we observe the most negative slopes in the cases of r/Purdue (–0.03) and r/
OSU (–0.03). However, the trend line fits for High Stress z-scores in the Before period 
do not show such a trend—the mean slope during the period preceding the gun violence 
incidents is 0.001, revealing approximately a stable pattern.

Overall, our results suggest that the expression of High Stress in the aftermath of 
gun violence shows an abrupt shift in temporal pattern, peaking significantly around the 
day of the incidents, and thereafter showing a downward trend.

Frequency Domain Analysis of High‑Stress Posts

Our final analysis for the second aim centers around understanding how the various 
gun violence incidents on campuses disrupt the periodicity of sharing High Stress posts. 
Working within the frequency domain, we apply Fast- Fourier Transform (FFT) on the 
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 FIGURE 9.2.  Temporal variation in the expression of High Stress. The reference line represents the 
date of gun violence incident.
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distribution of High Stress posts in Treatment data. For each college subreddit, Figure 9.3 
shows the distribution of frequencies F(t) during Before and After periods as heatmaps. 
The color intensity of a cell in a specific heatmap indicates the probability of a certain 
frequency, P(F(t)) (measured in terms of days). Discussing our main observations from the 
heatmaps, in case of r/USC (Figure 9.3(a)), we find that High Stress posts in the Before 
period show high periodicity (i.e., exhibit peaks in expression) around every 4 and 13 
days, whereas the same in the After period occurred every 5, 7, and 11 days.

We note that for r/Gamecocks, which we found to show an aberrant pattern com-
pared to other subreddits in the time domain analysis, according to its frequency domain 
analysis distribution heatmap (Figure 9.3h), there was a significant change in the period-
icity of expression of high stress following the gun violence incident at the University of 
Southern Carolina (14% change in spectral density and a SMAP difference of 17).

Aim 3: Quantify Linguistic Changes in Stress Expressions  
around Campus Gun Violence

For this aim, we adopted two language analyses: (1) psycholinguistic characterization 
and (2) open-vocabulary linguistic analysis.

Psycholinguistic Characterization

We characterized the psycholinguistics of High Stress posts in Treatment data using 
Linguistic Inquiry and Word Count (LIWC; Pennebaker, Mehl, & Niederhoffer, 2003). 
We compared High Stress Treatment posts from the Before and After samples across 
(1)  affective attributes (anger, anxiety, negative, and positive affect, sadness, swear), 
(2) cognitive attributes (causation, inhibition, cognitive mechanics, discrepancies, nega-
tion, tentativeness, certainty), (3) perception (feeling, hearing, insight, seeing, perception), 
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  FIGURE 9.3.    Frequency distribution heatmaps of stress in the Treatment dataset. The x-axis, F(t), 
represents frequency, where t is in terms of days; the density of color, Pr(F(t)), represents the prob-
ability of High Stress at F(t).
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(4) interpersonal focus (categories: first person singular and plural, second person, third 
person, indefinite pronoun), (5) temporal references (future tense, past tense, present 
tense), (6)  lexical density and awareness (adverbs, verbs, article, exclusive, inclusive, 
preposition, quantifier, auxiliary verbs, relative, conjunction), (7) biological concerns 
(bio, body, death, health, sexual), (8) personal concerns (achievement, home, money, 
religion), and (9) social concerns (family, friends, humans, social, work). We conducted 
Welch’s t-test, followed by Benjamini-Hochberg-Yekutieli False Discovery Rate (FDR) 
correction (Table 9.4).

Affect

Starting with Affective Attributes, we observe that High Stress posts in the After dataset 
show higher occurrences of anger, negative affect, and swear words. Some example post 

TABLE 9.4.  Welch’s t-Test Comparing the Psycholinguistic Attributes of High-Stress Treatment Posts Shared 
before and after Gun Violence Incidents
Category Before After DD% t-stat. p Category Before After DD% t-stat. p

Affective Attributes Temporal References

Anger 0.008 0.010 23.34     3.558 *** Future Tense 0.037 0.035  –6.15 –2.15 *

Anxiety 0.007 0.003 –61.81 –11.499 *** Past Tense 0.056 0.061    8.58     3.79 ***

Negative Affect 0.007 0.009 20.55     3.376 *** Present Tense 0.116 0.113  –2.20 –1.79 *

Positive Affect 0.072 0.036 –50.56 –27.978 *** Lexical Density and Awareness

Sadness 0.002 0.002 14.42     1.554 * Article 0.117 0.144 22.93   16.72 ***

Swear 0.006 0.007 12.46 1.5765 * Exclusive 0.032 0.064 99.31   33.66 ***

Cognitive Attributes Preposition 0.219 0.181 –17.38 –21.99 ***

Causation 0.027 0.013 –51.95 –23.312 *** Quantifier 0.023 0.043 86.01   25.47 ***

Inhibition 0.008 0.005 –36.48 –7.824 *** Biological Concerns

Negation 0.029 0.041 41.90   13.334 *** Bio 0.012 0.014 10.62     2.48 **

Perception Body 0.004 0.005 16.30     2.07 ***

Feel 0.004 0.006 34.59     3.225 ** Health 0.003 0.007 97.39     8.84 ***

Hear 0.014 0.009 –35.49 –7.518 *** Death 0.001 0.003 155.22     6.41 ***

Insight 0.041 0.020 –50.24 –26.544 *** Personal and Social Concerns

Percept 0.017 0.018    4.22     1.137 * Achievement 0.037 0.016 –55.66 –25.51 ***

See 0.019 0.018  –7.11 –1.896 * Home 0.005 0.009   93.94   10.15 ***

Interpersonal Focus Money 0.022 0.011 –48.75 –16.66 ***

1st P. Plural 0.013 0.010 –24.94 –5.011 *** Religion 0.003 0.004   43.82     2.87 **

1st P. Singular 0.061 0.080 32.47   15.864 *** Family 0.002 0.003   41.67     2.61 **

3rd P. 0.015 0.012 –18.78 –3.740 ** Friends 0.004 0.006   65.55     5.35 ***

Note. Statistical significance reported after Benjamini–Hochberg–Yekutieli False Discovery Rate Correction.
***p < .001; **.001 < p < .01; *01 < p < .05.
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snippets include, “why the hell do they have a giant assault rifle?” and “I guess since 
campus is a gun free zone we’re all fucked.” At the same time, High Stress posts in the 
After period show significantly lowered levels of positive affect words. This indicates 
that the students may be engaging over Reddit to express their relatively higher negative 
perceptions, reactions, and thoughts apropos the gun violence incidents.

Cognition and Perception

For Cognition and Perception, we observe that words related to causation, inhibition, 
and insight are used significantly less often in the After period. Prior work has attributed 
this psycholinguistic expression to lowered cognitive functioning (Bagroy et al., 2017), 
which is a symptom of high stress. However, negation words occur more frequently in 
the After period, and so do the words related to feel. Per prior work (Pennebaker et al., 
2003), this kind of greater perceptual expressiveness is associated with language that 
depicts personal and first-hand accounts of events and experiences. Likewise, in our case, 
they indicate that the subreddit users are more expressive of their feelings in the after-
math of the campus gun violence incidents.

Linguistic Style

Corresponding to linguistic style attributes, Before and After High Stress posts show 
distinctive Interpersonal Focus. We find that the use of first person singular pronouns 
increases by 32% after gun violence, but that of first person plural and third person 
pronoun words decreases. We conjecture that users posting in the college subreddits may 
be resorting to social media to share their personal experiences and opinions about the 
incident. In the case of Temporal References, we find reduced use of future and present 
tense, and increased use of past tense in the After period. Higher use of the past tense 
indicates tendency to recollect prior experiences and events (Tausczik & Pennebaker, 
2010), which in our case, might be an orientation toward discussing the gun violence 
incident on the campus.

Biological Concerns

Our results show that words referring to bio, body, health, and death increase in the 
After period. We conjecture that the High Stress posts shared following the gun violence 
incidents tend to relate to the after-effects, casualties, and implications of the incident for 
students’ safety, well-being, and life.

Personal and Social Concerns

We observe revealing patterns for Personal and Social Concerns. First, words related to 
achievement occur significantly less (55%) in the period After the gun violence incidents. 
The lower usage of achievement words indicates a decline in engagements in career and 
academic topic-related discussions in the aftermath of the campus gun-related violence. 
Next, we find that the usage of words relating to social life and relationships, notably, 
family, friends, and home, increase After the incidents. Through these social orientation 
words, we ask the subreddit users to share social well-being impressions and perceptions 
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of solidarity in the context of the incidents. In addition, some of these incidents, such as 
the UNC Chapel Hill or the OSU attack were violence attributed to religious radicalism 
or religious hate crime, which we conjecture contribute to the higher occurrence of reli-
gion words in the After period.

Open‑Vocabulary Lexical Analysis

We examined the lexical cues shared in High Stress posts in Treatment data around the 
gun violence incidents. We analyzed linguistic markers as manifested in the subreddits 
immediately after gun violence on a college campus. Within the High Stress Treatment 
posts, we first extracted the 30 most frequently occurring n-grams (n = 1,2,3) on the day 
of the incident. Figure 9.4 shows the 30-day Before and After temporal trends of usage of 
n-grams. We find that “class” occurs consistently in High Stress posts until the incident 
dates, but its usage declines considerably in the following week. In contrast, keywords 
such as “people,” “friend,” “hope,” and “feel” showed increased occurrence in the imme-
diate aftermath of the event—aligning with the observations from the psycholinguis-
tic analysis and involving the emergence of a social orientation and greater perceptual 
expression following the incidents. The n-grams describing the nature, manifestation, 
and implications of the specific campus incidents (e.g., “police,” “shooting,” “safe,” and 
“gun”) had dense and increased concentration of usage following the day of the incident.

We drilled down further for each of the 12 colleges and, employing the Log Like-
lihood Ratio (LLR) measure, we extracted the top 50 n-grams (n = 3) from the High 
Stress posts within 7 days following the day of gun violence, and then we compared the 
occurrences in High Stress posts in the 7 days preceding the day of the incident. Table 
9.5 reports the n-grams, for which we obtained an LLR of over 0.75. We find keywords 
specific to the gun violence incidents such as the geographical sites (e.g., “campus center” 
in r/USC, “tower 1” in r/ucf, “isla vista” in r/UCSantaBarbara, “library” in r/fsu, “pub-
lic health” in r/Gamecocks, and “parking” in r/OSU). Additionally, we find the presence 
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of “muslims” in r/chapelhill and r/OSU, where the incidents were attributed to religious 
hate crimes or radicalism. We find keywords relating to the victim or the perpetrator’s 
name and occupations. Summarily, this analysis shows that the high stress expressed in 
the posts of the college subreddits in the immediate aftermath of the gun-related violence 
may be a consequence of the incidents in the respective campuses.

Implications

We employed a causal inference-based analytical approach, in conjunction with com-
putational techniques, to examine the evolution stress following gun violence events on 
college campuses. Compared to a control (gun violence-free) time period on each cam-
pus, our methods revealed a change in the volume of posts expressing high stress fol-
lowing the violent incidents, including a considerable change in the patterns of stress 
expressed in the immediate aftermath of the incidents. Psycholinguistic characterization 
of the high stress posts indicates that campus populations exhibited reduced cognitive 
processing and greater self-attention and social orientation, and that they participated 

TABLE 9.5.  Lexicon of Selected n-Grams (n = 1, 2, 3) Occurring Considerably Higher  
in Posts Shared 7 Days after the Day of Gun-Related Violence, as Compared to 7 Days before  
the Day of Gun-Related Violence
Subreddit After > Before (LLR ≥ (0.75))

r/USC problems, night, security, shooting, party, events, fingerprint, entrances, email, 
dps, campus center, event, trojan, defense, safe

r/UMD athletics, gun, supercar, cars, shoot, department, school, fire, community, 
sports, college, park

r/ucf assault, assault rifle, weapon, tower 1, rifle, gun, police

r/mit state, lincoln, stay safe, watertown, officer, officers, police, scanner, second, 
shots, shots fired, house, bpd, unknown, clear, confirmed, custody, dexter, 
fired, fuck, spruce, suspect, black, boston

r/Purdue shooter, police, shooting, news, place, building, ee, campus, guy, heard, day, 
gt, know, student, people, today

r/UCSanta-Barbara videos, victims, gun, mental, isla vista, guy, news, community, post, police, 
person, help, feel, love, iv, life, point, friends

r/fsu mental, safe, shooting, strozier, ok, news, library, shooter, friends, victims, 
hope, stay, post, time, people, information, good

r/Gamecocks alert, murder/suicide, public health, public health research, research center, 
shooter, shooting, students, support, lockdown, faculty staff, counseling 
center, building, health research center, cancelled

r/chapelhill pretty, muslims, writing, religion, high, hicks, help, pound, students, execution 
style, execution, universal, world, abusalha, 30 serv, support, parking, unc

r/NAU astronomy, jones, kill, kill people, meth, problem, harder, professors, self, self 
defense, shooter, shot, tour, guns kill people, year, guns, fight, class, defense, 
gun, asu, shooting

r/ucla safe, confirmed, police, klug, shooter, gun, guns, health, mental, saying, 
professor, situation

r/OSU safe, police, muslims, gun, removed, parking, post, stay, wrong
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more in death-related conversations. Additionally, a lexical analysis of high stress posts 
shows distinctive temporal trends in the use of incident-specific words, providing further 
evidence of the impact of the incidents on the stress responses of campus populations.

Theoretical Implications

We presented our findings in the context of psychological theories surrounding trauma 
and crisis and made two major observations: (1) Psychological stress may be automati-
cally inferred from social media content by employing supervised learning approaches 
and (2) inferred stress levels on a college campus may indicate the responses of individu-
als exposed to the reported gun-related violence incident. To arrive at these findings, we 
made a methodological contribution in our study as to how stress changes, both temporal 
and linguistic, can be measured following a violent incident on campus, drawing from 
machine learning and time-series analysis techniques. Therefore, our work has implica-
tions for researchers’ study of the sociopsychological responses of a population exposed 
to a crisis. We discuss these implications below.

Freud (2003) argued that external reality (e.g., traumatic events) can have profound 
effects on an individual’s pysche and can be the cause of emotional upheaval, stress, and 
traumatic neurosis. He suggested that the personal impact of the trauma, the inability 
to find conscious expressions for it, and the unpreparedness of the individual can cause 
a breach to the stimulus barrier and overwhelm the defense mechanisms (Freud, 1977). 
Our study examined these theoretical constructs in a data-driven manner. For instance, 
the linguistic analytical methods suggest that distinctive psycholinguistic cues in high-
stress posts are shared after a gun violence incident compared to before the incident. As 
an example, language related to biological concerns increases remarkably following the 
incident. In contrast, more general topics closely related to stress in a college population, 
such as financial and career-related concerns, are significantly reduced following the 
incident.

Furthermore, a notable finding of our study comes from the incident-specific lexical 
analysis: The content shared on social media immediately following the violent incidents 
appears to be largely topically related to the events themselves. McCann and Pearlman 
(1990), working within the framework of cognitive theory, proposed seven fundamental 
psychological need areas that arise following a crisis event: frame of reference, safety, 
dependency/trust of self and others, power, esteem, intimacy, and independence. Words 
such as “stay safe,” “support,” “hope,” “help,” and “self,” whose usage increases in high-
stress social media posts following violent incidents, are some of the expressions that 
many need at such times.

Our methods also help reveal the nuances in acute stress responses on college cam-
puses following violent incidents, which tend to offset more persistent chronic stress 
expressions. For instance, although students experience stress throughout the year for 
both academic and personal reasons (Ross et al., 1999), a college campus’s stress expres-
sion changes considerably after gun violence. In essence, as campus social media posts 
reveal, stress as a construct is prevalent (possibly chronic in nature) across time; yet the 
nature of this construct changes drastically (possibly becoming more acute) around a crit-
ical crisis incident. This also reveals the temporal and linguistic “signatures” of expres-
sion of such acute stress, such as altered periodicities or increase/decrease in specific 
psycholinguistic words which can be gleaned with our proposed machine learning and 
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time-series analysis approaches. These findings support similar observations that have 
been made regarding the manifestation of psychological states in response to chronic 
violence (De Choudhury et al., 2014), war (Mark et al., 2012), and terrorist attacks (Lin 
& Margolin, 2014). Moreover, in close alignment with prior work (Al-Ani et al., 2010), 
we also observe that postviolence acute stress levels subside within days to follow and 
approach the baseline levels of generally persistent chronic stress. This interpretation is 
consistent with prior work on crisis informatics (Mark et al., 2012) and with Foa, Steke-
tee, and Rothbaum’s (1989) emotional processing theory.

Practical Implications

Our proposed techniques provide a mechanism for quantifying the impacts and severity 
of a crisis, as well as the corresponding community responses. Our techniques can be 
used as unobtrusive sensors of stress and the linguistic and temporal changes it brings 
during crises. These methodologies may be leveraged in future situations where causes of 
stress may not be so apparent or known, as was the case in our study assessing stress and 
associated student responses in everyday—crisis free—contexts, where a variety of day-
to-day but unanticipated academic, personal, or social concerns may contribute to stress.

For instance, since sudden bursts of stress can be detrimental in the long term, 
McFarlane (2010), with our work, population-centric stress tracking tools can be built. 
These tools can significantly advance current practices in terms of how college authorities 
engage with the student community following crisis incidents. Typically, these practices 
include broad campus-wide communication of the context and outcomes of the incident, 
followed by specialized programs to direct psychological counseling and rehabilitation 
support to students who may need help. Our work can complement existing techniques 
and tools for assessing stress among individuals (Pórarinsdóttir, Kessing, & Faurholt-
Jepsen, 2017). Using tools that leverage our methods, college authorities can learn about 
the pervasiveness of stress following a crisis event and the extent to which its normal pat-
tern has been disrupted. This can enable them to make more informed decisions about 
the nature of crisis communication that should take place on campus, such as balanc-
ing informational alerts with adequately sensitive and focused assurance. Additionally, 
administrators will be able to reach a better understanding of students’ counseling or 
rehabilitation resource needs. They will also be able to identify specific stress-induced 
temporal or linguistic responses that negatively impact specific student groups. This can 
allow them to take adequate action in a timely manner (e.g., conducting campus-wide 
awareness and mitigation campaigns on mental well-being, or making tailored provisions 
to improve the student body’s mental resilience and morale.

Furthermore, since we leverage social media of the specific affected communities 
(college campuses), they can help identify their unique “signatures” or idiosyncratic pat-
terns in stress expressions. Our approaches may also help discover the presence of protec-
tive factors surrounding stress in specific communities/campuses, including how a cam-
pus’s stress expression deviates from an expected pattern of stress on any campus affected 
by a similar crisis. This information can be valuable to crisis rehabilitation efforts, includ-
ing how specific campuses may adopt policies or strategies to enhance the idiosyncratic 
aspects relating to the community, that exacerbate or protect against stress.

Finally, we note that the impact of a violent incident transcends observed casual-
ties, and its perception can be very subjective at an individual level. Our work provides 
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a way to account for the “invisible wounds” (Holdeman, 2009) or “hidden casualties” 
(Prothrow-Stith & Quaday, 1995) in a crisis, which tend not to get reported or measured 
adequately. In essence, we observe that in the aftermath of campus gun-related violence, 
campus-specific social media like Reddit acts as a unique platform, allowing campus 
populations to express their emotions and stress their circumstances, (semi)anonymously, 
amid feelings of fear and trauma. These techniques enable the capturing of a “quantita-
tive narrative” of these self-disclosed stress experiences of campus populations exposed 
to crisis events, which, we believe, can eventually inform historical accounts about cam-
pus life – insights critical to ensuring the well-being of situated communities.

Using LinkedIn Data to Measure Role Ambiguity 
in the Workplace

In this section, we discuss social-media-based modeling approaches to assessing well-being 
in another form of situated community—the workplace (Saha et al., 2019e). Employee 
satisfaction and well-being are of prime interest to both individuals and organizations. 
Researchers have concluded that employee-subjective well-being is one of the prime deter-
minants of important outcomes that range across (1) health and longevity, (2) income, 
productivity, and organizational behavior, and (3) individual and social behavior (De 
Neve, Diener, Tay, & Xuereb, 2013). We present a research study that is motivated to 
help fill the gaps in state-of-the-art assessments of workplace well-being metrics. The 
study has implications for designing individual- and organization-facing tools designed 
to improve organizational functioning and well-being.

The complexities related to an individual’s job role, or the expectations applied to an 
individual within and beyond an organization’s boundaries, can impact their job satis-
faction (Van Sell, Brief, & Schuler, 1981). In fact, any sort of discrepancy between what 
an employer expects and what an employee does at the workplace can impact well-being 
and performance, as employees can find themselves pulled in various directions as they 
try to respond to the many statuses they hold. According to role theory, role conflict, role 
ambiguity, and role overload are three aspects of the job role that contribute to workplace 
stress (Kahn, Wolfe, Quinn, Snoek, & Rosenthal, 1964; Pearce, 1981). Among the role 
constructs, role ambiguity has been considered to be the most significant one, and it is 
also the focus of the current study (Kahn et al., 1964).

Role ambiguity broadly includes uncertainties about role definition, expectations, 
responsibilities, tasks, and behaviors involved in one or more facets of the task envi-
ronment (Jackson & Schuler, 1985; Kahn et al., 1964; Schmidt, Roesler, Kusserow, & 
Rau, 2014). Role ambiguity has both objective and subjective components. Objective 
role ambiguity refers to external conditions in the individual’s workplace environment, 
whereas subjective role ambiguity relates to the amount of ambiguity that the individual 
perceives in their workplace owing to the information gap they face (Kahn et al., 1964). 
Furthermore, role ambiguity leads to dissatisfaction, distrust, lack of loyalty, turnover, 
absenteeism, low performance, anxiety-stress, and increased heart rate (Van Sell et al., 
1981). There is sufficient evidence demonstrating how role ambiguity negatively affects 
one’s organizational life in terms of their physiological, behavioral, psychological, and 
performance-related measures (Kahn, Byosiere, & Dunnette, 1992; Schmidt et al., 2014).

Traditionally, role ambiguity is measured using survey instruments that record 
employee responses to their perceived clarity of assigned tasks, expectations on the job, 
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expectations of peers, and if these peers explicitly mention their expectations from the 
focal employee (Rizzo, House, & Lirtzman, 1970). In particular, these methods not only 
suffer from subjective biases (Smith, Tisak, & Schmieder, 1993), but also are only able 
to capture the “perceived” component of role ambiguity. Individuals may or may not be 
aware that they are working on things beyond their job requirements, such as when there 
is an information gap, or if they are investing their effort to gain knowledge and experi-
ence (Fried, Ben-David, Tiegs, Avital, & Yeverechyahu, 1998; King & King, 1990). Thus, 
it is unclear how useful these measures are (Ritter, Matthews, Ford, & Henderson, 2016). 
Researchers have argued that the lack of an instrument capable of measuring objective 
and perceived facets of ambiguity may impede both theory development and application 
of research results (Breaugh & Colihan, 1994).

Furthermore, as a result of the technology adopted in the workplace, the landscape 
of work is evolving at an unprecedented speed. This changed landscape demands continu-
ous development of skills (Chancellor & Counts, 2018; Jhaver, Cranshaw, & Counts, 
2019). A recent study by McKinsey Global Institute has predicted enormous workforce 
transitions in the years ahead. By 2030, it is estimated that as many as 375 million work-
ers globally will likely need to transition to new occupational categories and learn new 
skills (Manyika et al., 2017). However, no approach has been defined to proactively gauge 
individuals’ fit with their assigned roles, nor has any guidance been provided regarding 
interventions that will help overcome role ambiguity. An organization that can proac-
tively deal with role ambiguity will benefit from employees with increased satisfaction, 
well-being, and productivity.

Our study has contributed to the research gap and advances the theory by introduc-
ing a novel way of measuring role ambiguity. Juxtaposing traditional surveys with mod-
ern sensor-derived measures of well-being, we combine methods adopted from natural 
language analysis and statistical modeling to examine the relationship of LinkedIn-based 
Role Ambiguity (LibRA) with the well-being and job performance of individuals. Specifi-
cally, we focus on three objectives:

•	To measure role ambiguity using unobtrusively obtained LinkedIn data.

•	To examine the relationship of LibRA with individual well-being and job perfor-
mance.

•	To investigate what factors may contribute to one’s LibRA, relating to their intrin-
sic traits, LinkedIn’s platform-specific characteristics, preferences, and goals of 
use of professional social networking service.

Data

Study Background

The dataset in this study (Saha et al., 2019e) originated primarily from a large-scale 
multisensor study of workplace behaviors called the Tesserae Project (Mattingly et al., 
2019; Mirjafari et al., 2019; Saha et al., 2019a). This study, approved by the Institutional 
Review Board (IRB), recruited 757 participants, all of whom were information workers 
in cognitively demanding fields (e.g., engineering, consultancies, management) across the 
United States. These participants were recruited from January 2018 through July 2018 
and completed an initial set of questionnaires related to demographics, job performance, 
personality, intelligence, affect, anxiety, alcohol and tobacco use, exercise, sleep, and 
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stress, personal attributes, and well-being, administrated via psychometrically validated 
survey instruments. They also received daily surveys on a set of these attributes and 
three sensors: location-tracking Bluetooth beacons; a wearable device (smartwatch); and 
a phone agent—a smartphone application (Wang et al., 2014). In addition, some partici-
pants authorized collection of their historical social media data. As compensation, they 
either received a series of staggered stipends totaling up to $750 or participated in a set 
of weekly lottery drawings (multiples of $250 drawings), depending on their employer 
restrictions. Because the participants were enrolled over a 6-month period (January–July 
2018) in a staggered fashion, data collection varied, with a range of time between 59 and 
97 days (or an average of 68 days).

Social Media Data: LinkedIn

Social media was deployed as a passive sensing modality of behaviors and well-being in 
Tesserae (Mattingly et al., 2019; Saha et al., 2019a). The study asked the participants to 
provide their Facebook and LinkedIn data (unless they did not consent to do so or did not 
have either account); consent was sought only from those participants who had existing 
Facebook or LinkedIn accounts prior to entering the study.

Of the 757 participants in the study, 529 provided their LinkedIn data. Our work 
accounts for those with self-described portfolios and their passively sensed and self-
reported well-being and job performance data. Therefore, we filtered out “blinded” par-
ticipants and those without any self-description in their LinkedIn profile, particularly in 
their profile and job summary. This led us to a LinkedIn dataset of 257 individuals. All 
the ensuing analyses in this study were limited to these 257 individuals’ data. For every 
participant, we obtained their self-presented profile and job summary, which included 
current and previous jobs.

Self‑Reported Data

During enrollment, participants responded to a set of initial survey questionnaires related 
to demographics (age, sex, education, type of occupation, role in the company, and 
income). They additionally answered an initial survey questionnaires of personality traits 
and executive function. We also collected self-reported data on job performance. These 
are described below.

For the 257 participants with complete LinkedIn data, we obtained their big-five 
personality traits, as assessed by the Big Five Inventory (BFI-2) scale (Soto & John, 2017; 
Tett, Jackson, & Rothstein, 1991), and executive function, especially their fluid and crys-
tallized intelligence, as assessed by the Shipley scale (Cattell, 1987; Schneider & McGrew, 
2012; Shipley, 2009).

For job performance, we obtained two kinds of measures: Task Performance and 
Organizational Citizenship. To assess task performance, we used two scales, IRB (In-
Role Behavior; Williams & Anderson, 1991) and ITP (Individual Task Proficiency; 
Griffin, Neal, & Parker, 2007). The IRB scale contains seven items, including questions 
such as adequately performed assigned duties, failed to perform essential duties, and 
performed expected tasks, each of which can be rated on a scale of 1 (strongly disagree) 
to 7 (strongly agree). The ITP scale contains three items: carried out core parts of the 
job well, completed core tasks well using standard procedures, and ensured that the 
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tasks were completed properly. Each of these items can be rated on a scale of 1 (very 
little) to 5 (a great deal). For organizational citizenship, we administered the Organi-
zational Citizenship Behavior scale (Fox, Spector, Goh, Bruursema, & Kessler, 2012). 
Organizational citizenship characterizes an individual’s activities that are not typically or 
formally rewarded by the management or voluntary activities that are outside one’s core 
responsibilities but that promote the welfare and effectiveness of the organization and its 
members (Cortina & Luchman, 2012; Organ, 1988).

Passively Sensed Behavior and Well‑Being Data

To passively sense participants’ behavior and the well-being measures of participants, 
the study deployed three modalities of sensing technologies (Bin Morshed et al., 2019; 
Mattingly et al., 2019): (1) Bluetooth beacons were provided to the participants (two 
static and two portable Gimbal beacons; API, 2018) to essentially sense their presence at 
work and home locations, and consequently to help assess their commute and desk time 
as well; (2) a wearable (Garmin Vivosmart (API); Garmin, n.d.) was provided to each 
participant to continually track their health measures, such as heart rate, arousal, and 
physical activity in the form of sleep, footsteps, and calories lost; and (3) a smartphone 
application was installed on the participants’ smartphones to leverage their smartphone-
based mobile sensors to track their mobility and physical activity (Wang et al., 2014).

Objective 1.  Measuring Role Ambiguity from LinkedIn (LibRA)

Defining and Assessing LibRA: LinkedIn‑Based Role Ambiguity

Drawing on the theoretical definition of role ambiguity, we operationalized LinkedIn-
based Role Ambiguity (LibRA) as the quantified differences in the self-explained roles 
and responsibilities of the individual against that posted by the company for the same 
role in the organization. We obtained the self-explained job summary from an individ-
ual’s LinkedIn profile, and for each specific role of individuals, the company provided a 
job description. These job descriptions are typically posted on job posting websites, such 
as Glassdoor, LinkedIn, Indeed, and the Google job search portal—where the Google 
job search portal collates both exact and nearest matching job descriptions from mul-
tiple websites, including the company’s own website (LinkedIn, Glassdoor, Indeed, etc.) 
and sorts them relative to the search query. Figure 9.5 shows an example LinkedIn role 
description and company-published role description for the same role of Software Devel-
opment Engineer at the same location of the company.

We first mapped the above self-reported LinkedIn job descriptions, and the com-
pany described job descriptions in a multidimensional space of job aspects, for which 
we leveraged O*NET. O*NET6 is an online database and job ontology that contains a 
comprehensive list of jobs and their descriptions, elaborating on eight notable aspects of 
the job role: abilities, interests, knowledge, skills, work activities, work context, work 
styles, and work values. These aspects are grounded in the literature and have been used 
in prior work to study employee behavior (Tambe & Hitt, 2012).

We used word-embeddings, particularly pretrained GloVe vectors (Pennington et al., 
2014; Saha et al., 2019f), to project the role descriptions of individuals and companies in 
a 50-dimensional word-vector space to obtain rich lexico-semantic context surrounding 
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the hand-curated job descriptors above (Saha et al., 2019d). We used cosine similarities 
to obtain two vector projections in the eight-dimensional job aspect space per individual 
i: (1) one that is obtained from their LinkedIn summary ( 1

iv ) and (2) one that is obtained 
from the same role’s company description ( 2

iv ). Then, the overall LibRA is measured as 
the euclidean distance between 1

iv  and 2
iv . We obtained the aspect-wise LibRA of an indi-

vidual as the absolute difference per dimension of 1
iv  and 2

iv .

Evaluating the Validity of LibRA against the Gold Standard

We draw on modern validity theory (Crocker & Algina, 1986) to compare the LibRA 
of the individuals against a gold-standard validated survey on measuring role ambiguity. 
The Michigan Assessment of Organization survey instrument measures an individual’s 
role ambiguity, role conflict, and role overload (Nadler, Jenkins, Cammann, & Lawler, 
1975). We randomly sampled a subset of 77 participants from our entire participant pool 
to answer the Michigan Assessment of Organization survey (Nadler et al., 1975). Cor-
relating the survey-based role ambiguity with LibRA, we found Spearman’s correlation 
coefficient to be 0.22 (p < .05). Consequently, a statistically significant correlation does 
imply criterion validity and hints at construct validity in our claim that LibRA does con-
tain information that is also captured by gold-standard, validated survey instruments on 
role ambiguity.

Objective 2.  Examining the Relationship of LibRA  
with Well‑Being and Performance

Theoretical Underpinnings and Hypotheses

Role Ambiguity and Well‑Being

While there is no single conceptualization of well-being, the broad categories that well-
being encompasses are physiological, psychological, and behavioral aspects (Kahn et al., 
1992; Schmidt et al., 2014). Within the scope of our dataset, we study the relationship of 
LibRA with one’s physiological measures (heart rate and sleep: Caplan & Jones, 1975; 
Chang & Hancock, 2003), psychological measures (stressful arousal: Sullivan & Bhagat, 
1992), and behavior at the workplace (time spent at the desk and time spent at the work-
place: Zenger & Lazzarini, 2004). Specifically, we test for the following hypotheses in the 
relationship of LibRA with well-being attributes.

•	H1. Greater role ambiguity is associated with increased heart rate.

•	H2. Greater role ambiguity is associated with increased arousal.

•	H3. Greater role ambiguity is associated with decreased sleep.

•	H4. Greater role ambiguity is associated with reduced work hours.

Role Ambiguity and Job Performance

Role ambiguity refers to the uncertainty regarding tasks that an employee needs to per-
form as part of their job role in the company. An employee with greater clarity will be 
able to better perform the required tasks. Lower role ambiguity makes it easier to meet 
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expectations, helps the employee to become more motivated, and encourages such intrin-
sically motivated employees to perform more efficiently (Frey & Osterloh, 2001; Furn-
ham, Eracleous, & Chamorro-Premuzic, 2009). We studied the relationship of LibRA 
with two dimensions of job performance (Rotundo & Sackett, 2002; Viswesvaran & 
Ones, 2000; Williams & Anderson, 1991): (1) task performance and (2) organizational 
citizenship behavior. We tested the following hypotheses:

•	H5. Greater role ambiguity is associated with decreased task performance.

•	H6. Greater role ambiguity is associated with decreased organizational citizen-
ship.

Testing Hypotheses and the Convergent Validity of LibRA

To establish the convergent validity of LibRA, we adopted a theory-driven approach to 
outline hypotheses on the relationship of LibRA with job performance and well-being. 
We studied the relationship of LibRA with passively sensed well-being and job perfor-
mance measures. For every well-being or performance measure M, we built linear regres-
sion models with M as the dependent variable, and LibRA as an independent variable and 
controlled for demographic, personality, and executive function measures per individual. 
For all the regression models, we used the variance inflation factor (VIF) to eliminate 
multicollinearity of covariates (if any) (O’Brien, 2007).

Testing Hypothesis 1.  Greater Role Ambiguity  
Is Associated with Increased Heart Rate

High heart rate is associated with an increase in stress (Benetos, Rudnichi, Thomas, 
Safar, & Guize, 1999; Hellhammer & Schubert, 2012). Greater role ambiguity is associ-
ated with increased heart rate, which is identified as a major predictor of coronary heart 
rate (Benetos et al., 1999; Caplan & Jones, 1975). We obtained the participants’ heart 
rate measures through the wearable sensor and fit a linear regression model with the aver-
age heart rate in the study period per individual. Given that physical activities are associ-
ated with heart rate (Goodie, Larkin, & Schauss, 2000), we controlled for each partici-
pant’s physical activity. The regression model reveals a positive standardized coefficient 
(0.10) with statistical significance for LibRA (Table 9.6). This supports our Hypothesis 1.

Testing Hypothesis 2.  Greater Role Ambiguity  
Is Associated with Increased Arousal

Arousal is a physiological response that is related to one’s heart rate variability and is 
associated with stress, fatigue, and anxiety (Dienstbier, 1989; Hellhammer & Schubert, 
2012). These well-being measures are known to become exacerbated in the presence of 
role ambiguity (Abramis, 1994; Caplan & Jones, 1975). In our project, the wearable sen-
sor allows us to obtain participant arousal, particularly their sympathetic nervous system 
(SNS) arousal measures in a continuous fashion. In particular, for every individual, it 
scores the arousal level from restful to stressful on a scale of 1–100 at every 3-minute 
granularity. Here, the restful duration is when an individual relaxes or recovers from 
stress (API). We build two separate regression models, one with median duration of high 
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stressful arousal (75–100), and one with median duration of restful arousal (1–25) per 
individual. We find that LibRA shows a positive standardized coefficient (0.42) in the 
former model and a negative standardized coefficient (–0.22) in the latter model (Table 
9.6). This suggests that individuals with high LibRA are more likely to show higher stress-
ful arousal and lower restful arousal. Therefore, our observations support Hypothesis 2.

Testing Hypothesis 3.  Greater Role Ambiguity  
Is Associated with Decreased Sleep

Sleep is important to an individual’s well-being; it reduces the negative impact of stress 
as well as improving overall health (Blaxton, Bergeman, Whitehead, Braum, & Payne, 
2017). Given that stress reduces sleep, and sleep reduces stress, a stressed person is likely 
to sleep less (Van Reeth et al., 2000). If role ambiguity is stressful, we hypothesize that 
high role ambiguity will correspond with reduced sleep duration. The wearable sensor 
collected participant sleep durations. We build a linear regression model with median 
duration of sleep per individual. We find that LibRA shows a negative standardized coef-
ficient (–0.16) with statistical significance (Table 9.6). Therefore, Hypothesis 3 is sup-
ported in our dataset.

Testing Hypothesis 4.  Greater Role Ambiguity  
Is Associated with Decreased Work‑Hours

Role ambiguity is known to affect an individual’s workplace behavior (Pearce, 1981). The 
Bluetooth beacons sense if a participant is at work, at home, or commuting; it addition-
ally captures how long the participant is at and away from the desk. We built two regres-
sion models, one with the duration at work and the other with the duration at desk when 
at work (this model additionally controlled for duration at work). For these distributions, 

TABLE 9.6.  Summary of Standardized Coefficients of Regression Models of Well-Being
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c2 tests could not reject the null hypotheses that they were significantly different from a 
Poisson distribution (p > 0.05). Therefore, instead of using purely linear regression mod-
els, we built negative binomial regression models (Hilbe, 2011) that essentially regress 
the logarithm of the dependent variables with the independent variables (Hilbe, 2011). 
We found that LibRA shows a negative standardized coefficient in both models (–0.41 
for duration at work and –0.12 for duration at desk; see Table 9.6). This suggests that 
individuals with high LibRA are not only less likely to spend time at work, but also less 
likely to spend time at desk when at work. These observations support Hypothesis 4.

Testing Hypothesis 5.  Greater Role Ambiguity  
Is Associated with Decreased Task Performance

For the measures of In-Role Behavior (IRB) and Individual Task Performance (ITP), we 
built two linear regression models each—one that uses an aggregated (median) value of 
task performance and one that uses a change in task performance over the duration of 
the study. We found that LibRA shows a negative association with both aggregated ITP 
(–0.33) and change in ITP (–0.20) per individual. Similarly, LibRA also shows a negative 
association with both aggregated IRB (–0.29) and change in IRB (–0.20) per individual 
(Table 9.7). Our observations suggest that individuals with higher LibRA not only have a 
greater likelihood of performing badly at work, but also their performance worsens over 
time. Therefore, our observations support Hypothesis 5.

Testing Hypothesis 6.  Greater Role Ambiguity  
Is Associated with Decreased Organizational Citizenship

Like the above, we built two linear regression models—one that uses an aggregated 
(median) value of Organizational Citizenship Behavior (OCB) and one that uses a change 
in OCB over the duration of the study. We found that LibRA shows a negative association 
with both aggregated OCB and change in OCB per individual (Table 9.7). These obser-
vations suggest that individuals with higher LibRA show a greater likelihood of poorer 
OCB, which also worsens over time — a tendency associated with being disinclined to be 

TABLE 9.7.  Summary of Standardized Coefficients of Regression Models of Task Performance
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altruistic or help colleagues at workplace. Therefore, our observations support Hypoth-
esis 6.

Objective 3. Investigating the Factors Affecting LibRA

Finally, we studied the factors that contribute to LibRA assessment. We investigated the 
extent to which appropriating data shared online may bring forth new dimensions to 
consider while employing LibRA for practical use. We delved deeper using a qualitative 
examination of a sample of our dataset described below. We separately matched those 
pairs of individuals who belonged to IT roles and those who belonged to non-IT roles. 
Figure 9.6 plots the pair-wise Mahalanobis distances and the absolute differences in their 
role ambiguities. We focus on those individuals (the shaded region in Figure 9.6) who are 
similar in individual attributes but show high differences in LibRA.

Next, among the individuals in the above sample, we manually looked at their 
LinkedIn job descriptions. While these individuals were very similar in personality, 
demographic traits, and roles in the company (because of matching), we found differ-
ences in their style of writing and LinkedIn self-presentation (also highlighted in the 
Figure 9.6 examples). Given the affordances and the uniqueness of LinkedIn as a profes-
sional social networking platform, we deduced a few plausible reasons that could poten-
tially influence the virtual self-presentation of the individuals, and in turn, lead to varied 
inferred role ambiguity. We now discuss these factors, which are not disjointed and could 
be interrelated.

Individuals’ Organizational Behavior

Individuals who are looking for new jobs or endeavors may write a more detailed portfo-
lio on LinkedIn profiles, whereas individuals who are generally “settled” are not as likely 
to provide detailed descriptions (Skeels & Grudin, 2009). This could also be a different 
type of job than what they are currently involved in altogether as well. An alternative con-
jecture could also be that only a few individuals write and “highlight” work experiences, 
rather than describing responsibilities and tasks at work. We also found individuals who 
described their role with people skills beyond their tasks. These could be individuals who 
exhibit proactive behaviors in the organizations (Crant, 2000): they show anticipatory, 
change-oriented, and self-initiated behavior and tend to act in advance of a future situ-
ation rather than react later. Although these individuals have high role ambiguity, they 
may show desirable individual characteristics (proactive behavior and leadership traits) 
in organizations (Bateman & Crant, 1993; Crant, 2000).

Individual‑Intrinsic Factors

Prior research has shown that people may self-promote and appear honest and less 
deceptive on their professional social networking profiles (Guillory & Hancock, 2012; 
Van Dijck, 2013). However, the degree and the way in which they self-present them-
selves can vary. We can look at it from the perspective of growth versus fixed mindset 
(Dweck, 2009). Those with a “fixed mindset” believe their abilities are innate, whereas 
those with a “growth mindset” believe that abilities can be acquired through effort and 
study. Complementary research has also coined the expressions benefit mindset, global 
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mindset, productive mindset, and defensive mindset, all of which illustrate the intrinsic 
behaviors of individuals who contribute to their skill development, proficiency, and self-
presentation in organizations (Buchanan & Kern, 2017; Gupta & Govindarajan, 2002). 
We conjecture that similar traits permeate online self-promotion practices on LinkedIn.

Job‑Related Factors

Ambiguity in job titles adds ambiguity to the job role. We find pairs of individuals where 
one is an Associate, while the other is a Specialist. Both of these titles are generic and 
do not convey much information to the employees. In contrast, the fact that recently 
companies have been coming up with “cool” job titles (e.g., ninja) to gain visibility and 
distinctiveness can add other complexities to role ambiguity (Sapone, 2019). Addition-
ally, some individuals may work on confidential projects, and they are bound by nondis-
closure agreements. Furthermore, the size of a company can influence the self-description 
behaviors (Zide, Elman, & Shahani-Denning, 2014).

Audience, Privacy, and Platform Factors

Finally, use of the LinkedIn platform varies across individuals. Two participants in our 
sample described what their company does, rather than their roles. LinkedIn also func-
tions as a marketplace for job seekers, and individuals tend to share credible information 
because they have a conceptualization of an “invisible audience” (Bernstein et al., 2013), 
and they do not want to appear as dishonest (Guillory & Hancock, 2012). At the same 
time, employee surveillance and subjective expectation of privacy shares a competing 
relationship, and the perception of being “surveilled” can influence one’s self-disclosure 
on the platform (Ghoshray, 2013; Jacobson & Tufts, 2013; Tufekci, 2008). Furthermore, 
the employee’s own mental models about LinkedIn privacy might be a factor behind what 
they share (Caramujo & da Silva, 2015).

Implications

Our findings align with the propositions put forth by role theory, that greater LibRA 
measure is associated with factors related to depleted well-being such as increased heart 
rate, increased arousal, decreased sleep, and decreased work hours, and is associated with 
lower job performance such as decreased task performance and decreased organizational 
citizenship behavior. Our work has theoretical and practical implications surrounding 
this new measure of role ambiguity assessed from people’s professional social networking 
data from the perspective of employees, organizations, and social computing platforms.

Theoretical Implications

Traditionally, registries and census organizations have served as an analogous source of 
data for people’s professional portfolios. Our study revealed the feasibility of measuring 
a role-related construct (here LibRA) at scale via a previously unexplored, low-cost, and 
unobtrusive source of data. Research is advancing in ways that these data can be used 
to operationalize and derive existing measures in novel ways. Thereby, this study revisits 
old questions in labor economics where existing efforts have been limited to statistical 
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numbers such as salary distribution and unemployment rates. This study can potentially 
complement these numbers with richer information on satisfaction and well-being at 
scale.

Our work lays the foundation for studying employee well-being through unob-
trusive online data sources that set up marketplaces for employees. These data sources 
include other professional networking websites such as Meetup, Xing, and Jobcase. Being 
platform-agnostic (i.e., demonstrating interoperability across operating platforms), meth-
ods in this study can be easily replicated in other platforms or other contexts.

This work shows a means to objectively assess the differences in “what the individual 
considers and self-describes themselves to be doing,” “what the company hired them for, 
or what their job description states.” That is, the individual may only be showing norma-
tive and socially influenced behavior at work, or they may show there is an information 
gap, or reveal that they intend to invest more effort in learning and gathering experience 
themselves. These behaviors are oblivious to the presence of role ambiguity. It is challeng-
ing to capture such “unaware role ambiguities” using traditional approaches, as they are 
tuned to measure the “perceived role ambiguity.” Language can reflect differences in per-
sonal as well as situational traits (Goffman, 1981). This additionally makes our measure 
less subjectively biased than traditional methods of measuring role ambiguity.

Practical Implications

Presently, job and skillset training at organizations is not streamlined (Noe, Hollenbeck, 
Gerhart, & Wright, 2017). Either organizations train a lot of employees in a batch, or 
they mentor them individually. However, with more information regarding how employ-
ees perceive their role, employers can identify the area of training required that will 
reduce role ambiguity and enhance the productivity of employees. This method can help 
reduce the time to identify such role ambiguity gaps, reducing training and employee 
well-being costs. This, in turn, can improve employee retention for companies by identi-
fying turnover intentions.

Aligning with and confirming the literature (Ladany & Friedlander, 1995), our find-
ings suggest that LibRA is not dependent on individual differences such as personality, 
gender, supervisory role, and executive function. This can inform organizations how 
these roles or titles can be transformed to match the skill-level, task-assignment level, and 
incentive-level restructuring. The interest in human resource management is still nascent, 
but it is promising in the research literature. Cross-disciplinary literature pertaining to 
workplaces and online technologies provide potential use-cases attracting the attention 
of designers (Shami, Yang, et al., 2014). Our work has a number of implications for 
designing and developing organization-centric technologies, as follows:

1.  First, tools can be built that suggest carefully chosen, fine-tuned job titles for 
companies, based on LibRA (Baron & Bielby, 1986; Grant et al., 2014). This implica-
tion is particularly important because younger organizations sometimes offer (higher-
ranking or impressive-sounding) titles to employees in lieu of higher salaries, but this 
strategy has been reported to backfire due to increased role ambiguity, which affects 
employee productivity and well-being (Sapone, 2019). Adopting tools that inform orga-
nizations about existing ambiguities in specific job roles, therefore, may help protect 
against workplace stress (Lazarus, 1995). Moreover, job agencies and resume-matching 
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consultancies already are making heavy use of professional social networking platforms 
such as LinkedIn (Koch, Gerber, & de Klerk, 2018). Such agencies can use the insights 
gained from our approach to match and recommend suitable jobs to prospective employ-
ees.

2.  Second, this study can help design workplace tools and dashboards to enhance 
organizational “health” or functioning. Such dashboards can unobtrusively and proac-
tively assess employee role ambiguities at scale, taking employees’ privacy considerations 
into account. In fact, many companies already provide their employees with internal 
social media platforms (DiMicco et al., 2008), online engagement forums, or even email 
profile description spaces, where they can regularly update their self-explained expertise 
and role descriptions, along with manager- or peer-appraised testimonials. By leveraging 
such internal datasets, companies can potentially adopt these dashboards to gauge role 
ambiguity to make informed role matching for open positions in internal hiring. Compa-
nies can restructure and reassign current employees with appropriate incentivization and 
compensation on their task and workload.

Conclusion

As noted above, spatial and contextual attributes influence the well-being of individuals 
and collectives within situated communities (Galster, 1998). Therefore, ensuring that the 
members cope with psychological and cognitive demands is essential for both individual 
and collective well-being. This requires identifying and understanding psychological 
changes in the circumstances of both normalcy and crisis.

This chapter highlighted the computational techniques and frameworks used to 
measure well-being in situated communities employing social media data and advocated 
building rigorous but ethical approaches by critically reflecting about practical and real-
world consequences. We situated the findings in an interdisciplinary context, including 
psychology and social science, and we discussed theoretical, practical, and methodologi-
cal implications catering to a variety of stakeholders, including researchers, practitioners, 
administrators, and policymakers.

Nonetheless, the computational use of social media data for understanding the 
well-being of situated communities does raise some unavoidable ethical considerations. 
In recent years, data-driven behavioral inferences, like the kind discussed in this chap-
ter, have come under scrutiny due to privacy breaches such as the Cambridge Analytica 
scandal (Cadwalladr & Graham-Harrison, 2018). This work renews attention to the 
challenges that may arise when college student or employee data are appropriated for 
surveillance purposes in a situated community; as Van Dijck (2013) noted, “LinkedIn’s 
functionality goes beyond its self-claimed ambition as a professional matchmaker, and 
ventures into behavioral monitoring.” With research like this, use of people’s online self-
presentation to infer their offline behavior (with high-risk outcomes such as one’s mental 
health or profession) heightens several complexities related to one’s perception of ethics 
and privacy, and consequently their behavior on social media.

More elaborately, as per Goffman’s theory of self-presentation Goffman (1959), indi-
viduals may present two kinds of information: one that they intend to “give off” and one 
that “leaks through” without any intention (Goffman, 1959; Miller, 1995). This implies 
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that both of the intentions may be present in the data used for this research. Socially con-
necting with peers online may provide social support as well as support the bridging and 
bonding of social capital and publishing role descriptions. Online portfolios on social 
media may benefit the individuals in many ways, including professional development and 
support of career growth. However, we recognize that studies such as the ones presented 
in this chapter may appropriate these data without the awareness of the individuals them-
selves. College campus administrators may use these data to identify which students are 
likely to succeed academically, while employers may make inferences about role ambigu-
ity and subsequent job satisfaction to make decisions on rewarding, promotions, or even 
retention and layoffs. To regulate such practices through the use of social media data, 
student and employee rights protection agencies and lawmaking bodies should consider 
issuing guidelines on how organizations engage in data-driven decision making for their 
student bodies, workforces, and broadly situated communities.

In addition, individuals may also start gaming the system and describe themselves 
in language that is more attuned with positive mental health or their role descriptions 
at work to gain academic, professional, or social advantages (Van Dijck, 2013). Such 
deceptive behavior calls for action for stakeholders with diverse interests ranging from 
academia and industry, as this adds complexities, and they may even impact the social 
computing ecosystem of use on Reddit or LinkedIn in contrast to how it is used currently. 
This may, in turn, bring into question the potential efficacy of using social media data 
prospectively to design interventions or support policy and decision making for improved 
well-being outcomes, via what is known as the “observer effect” (de Bianchi, 2013). 
Future research that involves stakeholders in situated communities and participatory 
approaches will be needed to unpack and overcome these challenges, as well as build trust 
in how social media-based computational inferences may support broader societal good.

Finally, we acknowledge limitations in the use of campus-specific social media data 
in modeling stress to identify the after-effects of violent incidents. First and importantly, 
we recognize that, although college students or information workers in various compa-
nies constitute a demographic in which social media penetration is among the highest 
(Greenwood et al., 2016), possibly because not every student or employee uses them. 
Our approach therefore cannot account for social media nonuse or for those who use 
platforms whose data cannot be collected for research purposes in an ethical manner. 
Augmenting our data with other social media sources (e.g., Twitter), including individu-
als’ self-reported (qualitative and quantitative) data or other forms of passively sensed 
signals (e.g., smartphone or wearable use) can circumvent some of these limitations. They 
constitute promising directions for future work that employs computational approaches 
for assessing well-being.

Notes
1.	 everytownresearch.org.

2.	 pewinternet.org.

3.	 www.everytown.org.

4.	 These sources include gunviolencearchive.org, time.com, motherjones.com, huffington-
post.com, and en.wikipedia.org.
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5.	 We refer to posts within college sub-Reddits as a unified term for both posts and com-
ments.

6.	 O*Net (onetonline.org) is developed under the sponsorship of the U.S. Department of 
Labor/Employment and Training Administration (USDOL/ETA).
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C H A P T E R  O V E R V I E W

Convergent advances in on- device computing and machine learning are creating possibil-
ities for the ubiquitous use of wearable devices in a variety of health- related applications. 
Audio is an essential stream of information that can be measured via such devices. Audio 
sensing in naturalistic settings can provide insight into a person’s day-to-day life and 
hence infer meaningful patterns in their lifestyle from an acoustic perspective. Egocentric 
audio recordings can provide important cues about a person’s mental state and well-being 
(e.g., stress, social interaction patterns, as well as the ambient context of a person’s sur-
roundings). In this chapter, we provide an overview of mobile audio acquisition methods 
and fundamental audio processing techniques, showcasing some of the state-of-the-art 
methodologies in this domain. We discuss example studies that highlight the utility of 
audio- derived cues for a variety of applications in psychology research and practice.

Acquiring Audio in Mobile Settings

Investigating audio signals in natural environments can help researchers model and 
understand social activity in everyday life (Narayanan & Georgiou, 2013; Pantic, 
 Pentland, Nijholt, & Huang, 2006). Traditional audio sensing systems, such as hand-
held microphones and lapel mics, are cumbersome, hard to use, expensive, and not scal-
able. They also present risks to privacy by recording and storing raw audio. Driven by 
the recent advances in microelectronics technology, many modern wearable sensors and 
mobile devices today can capture important audio information (e.g., egocentric audio, 
environmental audio) about an individual over a prolonged period in real-world settings. 

Rajat Hebbar, Arindam Jati, Tiantian Feng, Ramon Reyes, 
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Additionally, these wearable and mobile sensors can now gather audio data for human 
behavior analysis without relying on sensors installed in physical infrastructure. The 
audio data captured from these modern sensing systems have opened new possibilities for 
understanding human behavior (Jiang et al., 2018; Sashima & Kawamoto, 2019; S. Yang 
et al., 2018).

Audio Sensing Overview

In this section, we introduce two broad types of audio sensing: environmental audio 
sensing and egocentric audio sensing. Then, we will go over the challenges of utilizing 
mobile technologies to sense and sample audio information. Finally, we will introduce 
some state-of-the-art systems in sensing audio information in the natural environment.

Environmental Audio Sensing

It has been well established that environmental audio is a rich source of information 
that can be used to make inferences about our surroundings, such as event detection and 
location classification. Two research fields associated with audio analysis are audio event 
detection (Gemmeke et al., 2017) and acoustic scene classification (Stowell, Giannoulis, 
Benetos, Lagrange, & Plumbley, 2015). The infrastructure used for such tasks include the 
installation of microphones.

The traditional method of recording audio is to connect several low-cost micro-
phones to a single computer and run audio analysis on that computer. However, this 
infrastructure requires the installation of long wires between the personal computers and 
the microphones, and may not be achievable for the study running in a natural environ-
ment. Some recent researchers have prototyped audio sensing devices using mobile sens-
ing devices. One example is the iSENSE platform (Buschmann & Pfisterer, 2007), which 
consists of compact data-logging devices called PINPoint, which can periodically sense 
environmental audio. The Mobile Sensing Platform (Choudhury et al., 2008) is another 
such sensing system, and EnviroMic is another recently designed low-cost experimental 
prototype of a distributed acoustic monitoring system working in the outdoor environ-
ment (Luo et al., 2007). This system aims to monitor acoustic information among animal 
populations. The system can coordinate audio sampling tasks among different sensors 
deployed in the environment.

Egocentric Audio Sensing

With the availability of multisensor wearable devices (e.g., GoPro), egocentric (centered 
around a certain person) audio recordings have become popular in many areas such 
as extreme sports, health monitoring, and lifelogging. In egocentric audio, the world is 
recorded from the user’s perspective, capturing the context of the user’s activities. (Fig-
ure 10.1 shows a generic egocentric audio processing framework). Audio information 
from the egocentric view allows researchers to track human behaviors automatically and 
objectively. Such audio data also have important elements in the field of activity recogni-
tion (Stork, Spinello, Silva, & Arras, 2012), emotion classification (Busso et al., 2004), 
and context inference (Cai, Lu, Hanjalic, Zhang, & Cai, 2006).
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The early developed solutions for sensing egocentric audio, such as EAR (Mehl, 
Pennebaker, Crow, Dabbs, & Price, 2001), can record small fractions of audio from an 
egocentric perspective at regular intervals. However, these sensing systems pose privacy 
concerns by recording and saving the raw audio. Some recent egocentric audio sensing 
systems, like SoundSense (H. Lu et al., 2009), are capable of running machine learning 
techniques on resource- limited mobile devices to classify and record the activities users 
are performing. Similar mobile platforms, like EmotionSense (Rachuri et al., 2010), can 
detect emotion as well as activities and surroundings from the audio. These devices per-
form on- device training and classification for privacy protection.

Challenges

In this section, we discuss the challenges in acquiring audio (both environmental and 
egocentric audio) in mobile settings for human behavior research.

Background Noise

The signal- to-noise ratio (SNR) is typically low in an audio signal collected in the natural 
environment, making postprocessing a challenging task. This is particularly problematic 
in environmental audio sensing systems when the recording microphone is far from the 
acoustic sources. Researchers have proposed installing multiple audio recording modules 
in the surroundings to resolve this problem. Similar to environmental audio sensing sys-
tems, the egocentric audio recording solutions, like SoundSense and EAR (electronically 
activated recorder), usually suffer from poor recording quality because people commonly 
carry phones in their pockets or handbags. Hip-worn device holsters, commonly used 
in EAR studies, are also far from the wearer’s mouth. To improve the quality of audio 
recordings in an egocentric sensing setup, researchers have designed recording solutions, 
such as TAR (TILES Audio Recorder) (Feng, Nadarajan, Vaz, Booth, & Narayanan, 
2018), that can be easily placed close to the wearer’s mouth.
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 FIGURE 10.1.  Egocentric audio sensing and processing.
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Privacy

Privacy protection has already been recognized as an important issue in the design of 
audio sensing applications. Audio recordings from both the environment or egocentric 
view can contain sensitive information about an individual. Thus, it would be problem-
atic to record, store, and transmit raw audio during the data collection process. A possible 
solution to this problem is to store task-specific features instead of raw audio recordings, 
such that neither verbal speech nor lexical content can be reconstructed (Langheinrich, 
2001). These features are referred to as privacy-sensitive features that preserve infor-
mation about conversation style and dynamics. For example, StudentLife (R. Wang et 
al., 2014) is a recent study that implements applications on smartphone devices to pro-
cess audio on the fly and record features. TILES is another large-scale human behavior 
study in the hospital environment that implemented a wearable audio recording system to 
record audio features from health care providers. Some other systems choose to directly 
infer and save high-level descriptors from the audio data to preserve user privacy. These 
high-level descriptors include emotions, audio events, and surrounding context.

Ease of Use

Ease of use is a critical factor in the development of audio sensing solutions. Human 
behavior study typically takes place in a naturalistic environment. Thus, the installation 
of audio data collection sensors needs to require minimum effort. Researchers are recom-
mended to deploy wireless sensor nodes for sensing environmental audio. Additionally, 
wearable and mobile data logging hardware are ideal tools to collect egocentric audio 
data. Some customization on the hardware may be considered as presented in TAR and 
EAR (Feng et al., 2018; Mehl et al., 2001) to increase the comfort of participants in wear-
ing the sensors.

Scalability

A big hurdle in designing audio sensing systems presented in the human behavior study is 
the solution’s scalability. Here, scalability is associated with the ability to deploy an increas-
ing number of systems and the ability to adopt modifications from different contributors. 
For example, many notable efforts in developing wearable audio recorders include devices 
like the Sociometer (Choudhury & Pentland, 2003), which are not commercially avail-
able, making large-scale deployment prohibitive. Implementing the audio sensing solutions 
using commercially available hardware and open-source software can improve scalability. 
For example, commercially available smartwatches and smartphones are good options in 
the design of audio sensing systems. Open hardware like Arduino (www.arduino.cc) can 
be considered as candidates for customized design audio sensing applications. Open-source 
software tools, such as openSMILE (Eyben, Wöllmer, & Schuller, 2010) and Kaldi (Povey 
et al., 2011), can be configured to run on many hardware devices.

Sampling and Battery Life

One common challenge for designing audio sensing systems for human behavior study 
is the mobile device’s limited battery capacity. The sampling process in mobile devices is 
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a major source of power consumption. For instance, empirical results in TAR show that 
the mobile devices can run for 10 hours with low sampling frequency, but the battery 
would be drained entirely within 6 hours if the device sampled half of the time. Hence, 
excessive energy consumption may become a major obstacle to broader acceptance of 
mobile audio sensing services in human behavioral studies. To achieve energy efficiency 
in mobile sensing applications, researchers proposed periodic sensing and sleeping tech-
niques (Y. Wang, Krishnamachari, Zhao, & Annavaram, 2010) instead of continuous 
sampling. Machine learning approaches such as the Markov Decision Process have been 
integrated into mobile sensing devices to obtain the “optimal” data sampling policy 
(Y. Wang, Krishnamachari, & Annavaram, 2012). Applying these sampling approaches 
can also reduce redundant information since environmental audio events or conversa-
tions do not happen continuously by nature.

Audio Features

As discussed in the last section, extracting audio features plays an important role in 
preserving privacy in audio sensing applications. Additionally, audio features provide dis-
criminative information useful for classification tasks while neglecting background noise 
and other confounding factors. Over the last several decades, a plethora of audio features 
have been designed in the field of audio analysis. (Refer to Alías, Socoró, & Sevillano, 
2016, for details on various features.) Many of these features were developed for specific 
tasks such as speech recognition, speaker recognition, and audio context classification. 
Thus, the selection of robust audio features plays a critical role in different audio sens-
ing applications for human behavior study. The audio feature extraction approach is 
typically based on frame-based processing. During this process, the audio signals are 
first divided into frames, often using a Hamming or Hanning window (Prabhu, 2014). 
Subsequently, features are extracted from each frame, and this sequence of feature vec-
tors is used to represent an audio signal. Here, we focus on presenting five types of audio 
features commonly used in audio analysis: time-domain, frequency-domain, cepstrum, 
energy, and perceptually driven features.

Time‑Domain Features

Frequently used time-domain audio features include zero crossing rate and waveform 
extrema. Zero crossing rate is the number of times the sign of the signal changes in a 
given window. It measures the abnormality of an audio segment. The waveform extrema 
features state the maximum and minimum values in the signal (Swain, Routray, & 
Kabisatpathy, 2018).

Frequency‑Domain Features

Frequency-domain features such as harmonicity, spectral centroid, spectral flatness, 
spectral roll-off, spectral moment, band energy, bandwidth, fundamental frequency, and 
spectral flux are frequently included with other developed sets of features. Most of these 
features provide measures about spectrum shape (Chu, Narayanan, & Kuo, 2009).
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Cepstrum Features

Cepstral features are typically computed on the cepstrum, which is the inverse Fourier 
transform of the log-magnitude of the signal power spectrum. The most widely used 
features in this category are Mel-frequency cepstral coefficients (MFCCs). This feature 
set has wide applications such as speaker recognition, emotion detection, and audio event 
detection (Lu & Zhang, 2002).

Energy Features

Frequently used energy features include signal energy, log energy derivatives, and energy 
entropy. Signal energy is the total signal energy over a frame, and log energy derivatives 
are derivatives of logarithm power in adjacent data frames. Energy entropy is calculated 
over the energies extracted from a set of audio frames. These features have applications 
in audio event detection, emotion recognition, and so on (Swain et al., 2018).

Perceptually Driven Features

Perceptually driven features are time-domain, frequency-domain, or cepstral features that 
consider the human auditory and vocal structure. For example, the Mel-scale in MFCCs 
is used to mimic the nonlinear perception of the human ear to different frequencies. Two 
other feature sets of this kind are prosodic and voice quality features (Friedland, Viny-
als, Huang, & Muller, 2009). Commonly used prosodic features are pitch and intensity. 
Voice quality features include jitter (pitch modulation), shimmer (amplitude modulation), 
unvoiced rate (proportion of unvoiced frames in a sequence), and harmonic-to-noise ratio 
(proportion of periodic vs. nonperiodic signal).

Speech Processing Pipeline

The field of speech processing has seen rapid advancements over recent decades. Speech 
processing has found applications in people’s daily lives in the form of virtual assistants, 
mobile applications, and teleconferences, to name a few. With significant advances in 
computational power over the last decade, real-time speech processing is now a real-
ity that lends itself to on-device applications such as mobile phones, smart devices, and 
egocentric recorders. In this section, we discuss a few speech processing modules that are 
salient to many such applications.

Voice Activity Detection

The primary module in any speech processing pipeline is invariably a voice activity detec-
tion (VAD) system. The role of this module is to detect the absence/presence of human 
voices in an audio recording. Such a system requires a high resolution of operation (typi-
cally 10 ms) to detect pauses between words and account for variable rate of speech 
across people and conversational settings (Ramirez, Górriz, & Segura, 2007).

Early efforts in VAD explored statistical methods, particularly using likelihood 
ratio tests to determine VAD decisions (Sohn, Kim, & Sung, 1999). The Gaussian 
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statistical models were replaced by Laplacian and Gamma distributions (Chang, Kim, 
& Mitra, 2006), shown to result in robust parametric representation of noisy speech. 
Other approaches include energy-based methods (Renevey & Drygajlo, 2001). While 
such methods work for clean audio conditions, they often degrade in regions of low-
SNR and nonstationary noise types such as babble (Ramirez, Segura, Benıtez, De La 
Torre, & Rubio, 2004). Deep-learning-based methods have been effective in modeling 
large amounts of data augmented with a variety of noise types. Recurrent neural net-
works were shown to be able to effectively capture context to outperform traditional 
methods (Hughes & Mierle, 2013), and convolutional neural networks have also been 
shown to be powerful lightweight counterparts in many applications (Sehgal & Kehtar-
navaz, 2018).

Variability in acoustic conditions and a large number of background noise types 
pose challenges to most VAD systems. For example, VAD systems developed for meet-
ing domains have been shown to perform poorly in conditions with atypical background 
audio conditions such as music and nonstationary noise (Sahidullah & Saha, 2012). Since 
VAD is used as a preprocessing module for subsequent speech systems such as speech 
recognition, speaker recognition and/or diarization, gender identification, and the like, 
its use comprises most speech processing applications, including virtual assistants such as 
Alexa and Siri, teleconferencing systems, and hearing aids. Consequently, a VAD system 
is required to have low computational latency for any real-time application. Furthermore, 
since errors in a VAD system propagate through subsequent systems, such errors would 
adversely affect the end-application.

Features

Early approaches used relatively simple audio features such as pitch, energy, and zero-
crossing rate (Graf, Herbig, Buck, & Schmidt, 2015). Due to differences in the nature of 
frequency distributions in speech and nonspeech regions, spectral features such as linear 
predictive coefficients and MFCCs have also become popular features. With increases in 
computational resources and the evolution of deep-learning methods, spectrograms have 
become increasingly popular, since they contain uncompressed spectral information, pro-
viding more detailed input representation compared to MFCCs.

Online VAD

With the increased use of real-time voice assistants and teleconferencing applications, 
online VAD systems are a crucial element to processing speech in real time. A direct 
application for online VAD in psychology is in wearable devices like TAR, providing 
richer information and reducing the load on coders. A key necessity for an online VAD 
system is low computational latency. Consequently, features that are lightweight and easy 
to extract are favored for real-time applications. The International Telecommunication 
Union has specified a standard for VAD (ITU-T Recommendation database, n.d.), which 
is widely used for Voice over Internet Protocol applications. This VAD uses full band 
energy, low band energy, zero crossing rate, and line spectral frequencies as features. 
VAD solutions have been proposed for embedded systems, including smart-technology 
devices such as phones, watches, and earphones (Lezzoum, Gagnon, & Voix, 2014; 
Sehgal & Kehtarnavaz, 2018).
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Speaker Diarization

Speaker diarization is the task of classifying speech segments into different speaker iden-
tities, answering the question “who spoke and when?” (Park et al., 2021). Traditional 
diarization systems comprise multiple sequential modules, commonly, voice activity 
detection, speaker-homogeneous segmentation, speaker clustering, and speaker label-
ing of clusters, as depicted in Figure 10.2. Additionally, modules for the purposes of 
resegmentation, cluster recombination, and overlap detection have also been developed 
to improve the performance of diarization systems over time.

The bulk of effort in advancing diarization systems over the years has focused on 
three aspects of the pipeline (Park et al., 2021): (1) developing speaker-discriminative 
features for clustering, (2) similarity metric for computing affinity matrix, and (3) the 
clustering algorithm. Cosine similarity and probabilistic linear discriminant analysis (Sell 
& Garcia-Romero, 2014), a supervised similarity metric, are commonly used similarity 
metrics. Agglomerative hierarchical clustering and spectral clustering are the most popu-
lar clustering techniques (Park et al., 2021), with hierarchical clustering being favored 
for long-form data due to its ability to cluster without knowing the number of speakers 
a priori. Speaker diarization tends to perform poorly in audio conditions with diverse 
acoustic backgrounds (e.g., models developed on controlled audio domains such as tel-
ephonic speech and meetings deployed on in-the-wild audio; Park et al., 2021). This prob-
lem has been largely alleviated with the procurement of large-scale “in-the-wild” labeled 
datasets (Chung, Nagrani, & Zisserman, 2018; Ryant et al., 2019). Challenges remain 
in nonconventional domains, however, such as egocentric audio. Dealing with a variable 
and unknown number of speakers also remains an open challenge.

Speaker diarization finds applications in many audio domains that involve multiparty 
interactions such as telephone conversations, meetings, broadcast news, counseling ses-
sions, and multimedia. For many of these applications, detecting speaker identities can also 
be an intermediary step toward further analysis such as role recognition, audio indexing, 
and retrieval. In psychology, diarization is useful in separating speech from the speaker of 
interest from those in their surroundings. Diarization can also be used to develop speaker-
specific models to enhance other systems such as speech and emotion recognition.

Features

A key necessity for features used for speaker diarization is high interspeaker variabil-
ity and low intraspeaker variability for improved speaker discriminability. Ideally, such 

  FIGURE 10.2.    Speaker diarization pipeline.
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features must also be disentangled from sources of audio variability such as channel 
information and background music/noise.

Due to the compressed yet robust nature of MFCCs, they are the most commonly 
used audio features in several applications, including speaker diarization. Typically, 
13–23 MFCC coefficients, along with their first and/or second derivatives, are used. 
Other audio features include pitch, line spectrum pairs (Lu & Zhang, 2002), perceptual 
linear prediction (PLP) coefficients, and prosodic features (Friedland et al., 2009). Total 
variability modeling was used to decompose speech features into speaker and channel-
dependent factors (Dehak, Kenny, Dehak, Dumouchel, & Ouellet, 2010). The resulting 
representation of speaker-specific characteristics, called the i-vector, can be estimated 
using expectation maximization. First developed for the task of speaker verification, 
i-vectors have since been used for speaker diarization (Park et al., 2021; Sell & Garcia-
Romero, 2014). More recently, neural-network-based features developed on speaker-
labeled datasets have outperformed i-vector-based methods for most applications. Some 
of the popular embeddings include x-vectors (Snyder, Garcia-Romero, Sell, Povey, & 
Khudanpur, 2018) and d-vectors (Wan, Wang, Papir, & Moreno, 2018). In addition to 
leveraging large amounts of data, these representations impose fewer constraints on the 
distribution of features as compared to i-vectors.

Online Diarization

In online diarization systems, the framework is quite different, since decisions can be 
made only using speech data up to a given time. There are two key differences from 
offline systems: (1) homogeneous speech segmentation is replaced by a speaker change 
point detection, and (2) speaker clustering is replaced by open-set speaker tracking (Kwon 
& Narayanan, 2003b). Because the number of speakers is not known a priori, speaker 
tracking is done in an online fashion, with new speakers being enrolled on the fly. Since 
the amount of data for new speakers is often not enough to build robust speaker mod-
els, generic speaker models on a predetermined training set were developed as a way of 
initializing speaker models (Kwon & Narayanan, 2003b). Several modeling techniques 
have been explored for these generic models, including Universal Background Models 
and Gender Background Models (Kwon & Narayanan, 2003a, 2005). Recently, neural-
network-based approaches have been explored. One prominent method uses recurrent 
neural networks as a generative method of updating speakers (Zhang et al., 2019).

Foreground Speech Detection

In the context of egocentric audio, a special application of speaker diarization is foreground 
speech detection, that is, detecting speech from the person wearing the audio recorder. This 
module acts as a temporal mask to filter out background speech sources. In this scenario, 
all speakers, apart from the person wearing the device, are considered background sources. 
Since foreground detection is unique to egocentric applications, little work has been done 
in literature exploring methods for this task. A recent work explored using existing meeting 
databases with stationary microphone setups to develop methods that can be used for ego-
centric devices (Nadarajan, Somandepalli, & Narayanan, 2019). Another work showed 
that features obtained from VAD tasks can be transfer-learned for foreground detection in 
a coarsely labeled setup on audio collected using EAR (Hebbar et al., 2021).
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Automatic Speech Recognition

Automatic speech recognition (ASR) is the task of transcribing a segment of recorded 
audio by decoding the sequence of words spoken. ASR is one of the most widely used 
speech processing modules that bridges the gap to natural language processing, which is 
the field of study of human language, for example, English, in the form of words, sen-
tences and documents. As such, ASR systems find use in applications such as sentiment 
analysis, machine translation, and text classification (Junqua & Haton, 2012).

Typical ASR systems comprise three submodules: (1) feature extraction module, 
(2) acoustic model (AM), and (3) language model (LM) (Yu & Deng, 2016), as shown 
in Figure 10.3. AM is used to model a predefined set of acoustic phonemes. Phonemes, 
typically monosyllabic sound-forms, form the building blocks for words in a language. 
A typical set for English consists of 44 phonemes, which in combination can be used to 
pronounce every word in a given lexicon (dictionary), even accounting for multiple pro-
nunciations. The task of the AM is to produce a set of probabilities for each phoneme 
through time. These probabilities are then decoded to find the phoneme sequence that 
maximizes the probability of a given word being spoken.

Traditionally, Gaussian mixture models (GMM) based on Hidden Markov models 
(HMM) systems have been widely used for AMs (Benzeghiba et al., 2007). Here, GMMs 
are used to model individual phonemes based on audio features. HMMs, parametrized 
by an initial probability vector and transition probability matrix, model the transition 
between different GMM states. More recently, deep neural- networks have replaced 
GMMs in the AM, giving rise to hybrid DNN-HMM systems (Yu & Deng, 2016).

 FIGURE 10.3.  Automatic speech recognition schematic.
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LM is used to detect the most probable sequence of words, using the knowledge of 
most commonly co-occurring words. The typical LM is an n-gram, which models the 
probability of n words occurring in sequence. More recently, neural network models have 
replaced n-grams to develop more powerful LM using large amounts of data.

In the context of on-device processing for egocentric applications, end-to-end sys-
tems have been proposed, including connectionist-temporal-classification, recurrent-
neural-network transducer, and attention-based models (Kim et al., 2020). These are not 
only low latency but also have been shown to outperform traditional methods.

Apart from the typical challenges of channel variability and background noise, there 
are a few challenges that are unique to ASR (Benzeghiba et al., 2007). ASR tends to 
degrade in cases of spontaneous speech, as opposed to read-speech. Incomplete pronun-
ciation, merging together of words, and colloquial speech pose challenges to AM. Non-
native speakers of a language (e.g., English) develop different dialects of the language, 
which leads to increased acoustic variability, posing additional challenges to the AM. 
Similarly, the frequency of words in the spoken language is different from those in the 
written language, and also changes between different cultures, adversely affecting the 
LM. Child speech also poses challenges to ASR, especially during the development stage 
of a child’s speech production.

Ambient Acoustic Events and Scenes

The human auditory system experiences a multitude of different sounds in the environ-
ment – from natural sources like chirping birds and waterfalls, or artificial sources like 
machines, vehicles, or music players. The amount and variety of sounds we encounter in 
our everyday life can vary depending on multiple factors—for example, the nature of our 
occupation, our mobility between different acoustic locales, duration of exposure to differ-
ent sound sources, and even habits and daily routines. With the rapid advancement of wear-
able sensing technology, it is becoming easier to capture and sense acoustic cues from both 
the user (the person wearing the sensor) and their ambient environment. In the following 
section, we will discuss automated technologies developed for detecting and recognizing 
ambient sounds and scenes. We will also present some recent developments in characteriz-
ing the ambient acoustic environment from the egocentric perspective of the user, especially 
when the user is experiencing dynamically evolving ambient environments.

Detection and Classification of Audio Events and Acoustic Scenes

Audio Events

The first step in machine-assisted understanding of the effects of ambient acoustics on 
our life is to detect the presence and type of a particular sound, and identify its duration 
of activity. This has spawned a broad area of research in “machine hearing,” known as 
audio event detection (AED) and classification (Gemmeke et al., 2017; Hershey et al., 
2017; Stowell et al., 2015). An audio event is defined as a specific type of sound, like the 
alarm clock, door knock, or sea waves. Audio event detection refers to the human-like 
ability of machines to understand and recognize a particular sound and its onset and 
offset times. Classification refers to categorizing the detected sound into a predefined 
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semantic audio class labels such as door knock. The semantic class labels are generally 
annotated by humans following a predefined ontology such as the audio set ontology 
defined in Gemmeke and colleagues (2017).

Acoustic Scenes

While audio event detection can give us useful information about the sound and noise 
sources in the surrounding environment, we are also interested in the overall acoustic 
ambience popularly known as the acoustic scene (Barchiesi, Giannoulis, Stowell, & 
Plumbley, 2015; Mesaros et al., 2017; Stowell et al., 2015). Typical examples of acoustic 
scenes are park, office, kitchen, and restaurant. An acoustic scene is generally composed 
of several audio events. Acoustic scene classification (ASC) can be defined as predicting 
the semantic label of an ambient environment from an audio stream recorded in that 
environment. Detecting the acoustic scene might be helpful to an AED system as well, 
since the acoustic scene can provide prior information about which audio events might be 
present. For example, a typical office acoustic scene might consist of audio from human 
speech, keyboards, phones, and air conditioner vents.

Machine Learning Pipeline

While AED and ASC are related, most of the prior literature tackles the two problems 
separately. Although there are numerous different methods for each of those tasks (good 
survey articles are Barchiesi et al., 2015; Mesaros et al., 2017; Stowell et al., 2015, and 
some examples provided at the end of this section), the basic principle is learning a super-
vised audio classifier. The only differences between these methods are the semantic labels 
used for classification. Figure 10.4 shows a typical machine learning pipeline for learning 
an audio classifier.

The preprocessing module represents all the (optional) audio signal-level preprocess-
ing steps such as resampling, normalization, and removing silence regions. The acoustic 
feature extraction module extracts some time-frequency representation of the audio sig-
nal such as spectrogram, mel-spectrogram, or MFCC features. The learning model is a 
classifier that is being trained to predict the semantic class of the audio signal. Recently, 
deep neural networks (Goodfellow, Bengio, & Courville, 2016) have become the most 
widely employed approach to classification due to their impressive learning capabilities 
(Hershey et al., 2017).

Examples of the “Learning Model”

Here we briefly describe the different learning models (see Figure 10.4) proposed for 
audio event detection and classification and acoustic scene classification.

Audio Event Detection and Classification

Classical methods (Mesaros, Heittola, Eronen, & Virtanen, 2010) include the usage of 
GMM, non-negative matrix factorization, and support vector machines. Recently, neural 
networks have replaced classical techniques. Convolutional neural networks trained on 
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~70 million YouTube recordings with “weak labels” (Hershey et al., 2017) set a new stan-
dard in this field. Another approach proposed models trained on weakly labeled audio, 
which can be transferred to other tasks (Kumar, Khadkevich, & Fugen, 2018).

Acoustic Scene Classification

There are two main approaches to learning a model for ASC (Stowell et al., 2015). The 
first one can be thought of as a “bag-of-frames” approach. It computes a long-term sta-
tistical distribution of low-level audio features, and tries to map it to the semantic label 
of the acoustic scenes. MFCC features were found to be effective in this approach. A 
classical bag-of-frames approach used GMMs for each class to model their distributions 
(Aucouturier, Defreville, & Pachet, 2007). Recently, convolutional networks were used to 
learn appropriate filters and the feature-to-class mapping during training (Hershey et al., 
2017). Recurrent networks, effective in capturing context, have also been used for several 
sound event recognition tasks (Phan et al., 2017).

The second approach for ASC exploits the relationship between AED and ASC, 
based on the idea of an acoustic scene as a “dictionary of acoustic atoms.” They generally 
try to learn intermediate representations (or atoms) that indicate a set of high-level fea-
tures. The atoms generally represent audio events that constitute the final acoustic scene. 
Matching pursuits (Chu et al., 2009) is one such technique.

Egocentric Perspective

To investigate the effect of ambient sounds on physiological and psychological health, 
acoustic scenes and events a person experiences must be analyzed from their egocentric 
perspective. It is further useful if the person encounters dynamically evolving acoustic 
scenes. For example, nurses in a hospital might encounter diverse acoustic environments 
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in their work shift, as they move from one location to another—for example, from nurs-
ing station to patient room, to lounge, and to medication center. Each one of these locales 
has unique acoustic characteristics. For example, nursing stations might have more 
human speech compared to the medication centers, and thus, they can represent different 
acoustic scenes. To continuously track acoustic scenes as the nurse moves, we need two 
important tools discussed so far in this chapter: (1) wearable sensing that can capture 
audio from the user’s surroundings and (2) an algorithm that can predict the background 
acoustic scene at a particular point of time. Limited research efforts have been made in 
the egocentric domain. A recent work explored dynamically varying acoustic scenes that 
the staff, wearing TAR devices, encounter in a large critical care hospital (Jati et al., 
2021). Significant correlations were found between different behavioral and psychologi-
cal attributes of the employees and the dynamics of their movement between different 
acoustic scenes in the workplace.

Applications in Psychology

In this section, we discuss the role of human speech and ambient audio in psychology, 
and how the audio processing systems described in this chapter can be useful for psy-
chologists.

Several acoustic measures have been associated with increased symptoms of clinical 
depression, using severity on the Hamilton Depression Rating Scale (HDRS) scale as a 
proxy. It was found that speaking rate and pitch variations were highly negatively cor-
related with HDRS scores (higher score ⇒ greater severity; Cannizzaro, Harel, Reilly, 
Chappell, & Snyder, 2004). Another study showed that pause time between utterances 
decreased as symptom severity decreased in patients (Yang, Fairbairn, & Cohn, 2012). 
Speaking rate has been shown to increase at the onset of Parkinson’s disease, due to 
reduced articulator movement, at the cost of articulation clarity (Cannizzaro et al., 
2004). However, later stages of the disease are characterized by reduced speech rates.

A study based on self-reported assessments showed that social well-being is closely 
associated with both the quantity and quality of interactions (Sun, Harris, & Vazire, 
2019). Life satisfaction is also associated with the amount of alone time, conversation 
time, and substantive conversations (Milek et al., 2018). Additionally, personality traits 
have been associated with speech patterns (Tackman et al., 2020). Research has also 
characterized the psychologically meaningful aspects of nonverbal audio content. For 
example, acoustic characteristics could be used to distinguish between affiliative, reward-
based, and dominant laughter (Wood, Martin, & Niedenthal, 2017).

Certain natural sounds tend to have positive effects on our mind, for example, in 
recovering from a stressful situation (Alvarsson, Wiens, & Nilsson, 2010). On the con-
trary, certain ambient sounds and noises can be harmful to our physiological and psy-
chological health as well. For example, exposure to ambient noise was found to cause 
change in heart rate variability (Kraus et al., 2013), elicit annoyance (Clark & Stansfeld, 
2007), disturb sleep patterns (Muzet, 2007; Stansfeld & Matheson, 2003), and even 
act as a stressor (Westman & Walters, 1981). The effect of noisy acoustic environments 
on job performance is well known and has been extensively studied. Depending on the 
subjective noise sensitivity, workplace sounds and noises can cause increased annoyance 
(Clark & Stansfeld, 2007) and decreased concentration (Banbury & Berry, 2005), which 
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eventually leads to decreased productivity and job performance (Mak & Lui, 2012). This 
motivates the need to understand the type, intensity, and duration of exposure to dif-
ferent sounds and noises to analyze their effects on our physiological and psychological 
health.

Conducting studies like those we have described can be laborious and time consum-
ing, and are usually only performed at a small scale, in terms of number of participants 
and number of days recorded. In the context of egocentric devices, state-of-the-art audio 
processing modules described in the prior sections can be used to reduce the process-
ing time and largely automate the feature-extraction process. Foreground detection can 
be used to isolate the foreground speaker of interest, following which vocal prosodic 
features of interest can be extracted and analyzed as was done in the studies shown. In 
certain cases, it may be of interest to analyze speech from the participants’ partner, or 
other social environments (such as friends and colleagues). In this case, a more complex 
speaker diarization system can be used to segregate speakers. Qualitative studies demand 
the need for content-based analysis. Nature of conversation, sentiment, and quality of 
interaction can be estimated from the text transcription, which is the product of an ASR 
system. Finally, ASC can be used to detect ambient scenes, which provide cues to a per-
son’s daily routines.

Conclusions and Future Directions

Mobile audio sensing is a relatively recent phenomenon that has been made possible due 
to recent advances in hardware infrastructure, software tools, as well as cutting-edge 
research in audio technology. In this chapter, we provide a window into the array of 
commonly used speech processing and ambient sensing techniques, and how they can 
be adapted to the egocentric setting. Several studies discussed in this chapter show the 
relevance of audio analysis to psychological health and monitoring, and how incorporat-
ing such tools into egocentric devices can help scale and automate the monitoring. The 
field of egocentric audio processing is still young and provides scope for several threads 
of research directions. While these are promising signs, it is important to keep in mind 
the challenges that such applications face, such as privacy, resource constraints and scal-
ability hurdles in hardware.
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C H A P T E R  O V E R V I E W

In this chapter, we discuss wearable imaging in the context of human lifestyle and behav-
ior sensing. We consider imaging as both context information to derive labels for other 
sensor data and as a measure of daily situations to study people’s lives. We begin with a 
brief historical perspective and discuss how the capture of everyday situations and activi-
ties can be used as an alternative to direct observation in field studies; our focus is on the 
acquisition of ground- truth labels to train activity recognition systems. Next, we describe 
the practical challenges associated with wearable cameras, such as placement and posi-
tioning, and we contrast these challenges against those of other popular sensing modali-
ties. Several lifelogging application scenarios are presented, including event segmentation, 
localization, dietary monitoring, action recognition, and social interaction analysis. The 
chapter concludes with lifelogging privacy considerations, future opportunities, and best 
practices and recommendations for how to best leverage wearable cameras in research.

Introduction

Over the last two decades, advances in camera technologies and computer vision algo-
rithms have greatly expanded the role of wearable imaging in mobile sensing. Hard-
ware advances are largely attributed to the skyrocketing adoption of the smartphone 
in the last 10 years, which has been driving innovations in mobile technologies at a fast 
pace. Because camera performance has become increasingly important to smartphone 
users, today’s high-end handsets contain not one but multiple specialized cameras (e.g., 
wide, ultra-wide, telephoto). Consequently, small, lightweight, powerful camera sys-
tems designed for mobile phones have become widely available and have made their way 
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into embedded devices and wearable computing platforms. On the software side, deep-
learning algorithms and the increasing computing capability of today’s systems has fueled 
breakthroughs in computer vision. These developments have contributed to new perfor-
mance heights in tasks such as object detection, motion tracking, action recognition, 
pose estimation, and semantic segmentation. This chapter focuses on wearable imaging 
and how these developments have created new opportunities in mobile lifelogging. We 
consider imaging as both context information to derive labels for other sensor data and 
as a measure of daily situations to study people’s lives.

Personal Capture  
of Everyday Situations and Activities

Fundamentally, wearable imaging involves capturing photos and videos with an outward-
facing camera mounted on the body. Early work in wearable imaging, which is also 
referred to as egocentric vision, stretches back more than two decades, with pioneering 
work in human-centered wearable computing by Mann (1997) and Starner (1999).

Years later, and inspired by early visions of pervasive life capture (Bush, 1945), 
research in the field gave rise to lifelogging, the practice of recording one’s own everyday 
situations and activities through the lens of digital technologies. While the granularity 
of capture and the digital tools employed in lifelogging vary, the richness in detail and 
unique perspective afforded by wearable cameras made these devices popular with early 
lifeloggers. Designed to be worn around the neck on a lanyard, the SenseCam enabled 
early work in visual lifelogging (Gemmell, Bell, Lueder, Drucker, & Wong, 2002; Hodges 
et al., 2006). In addition to having a camera capable of passively capturing a photograph 
every 20 seconds, it also contained motion, temperature, light, and passive infrared sen-
sors. SenseCam proved useful in health research, validating the use of egocentric imaging 
for many applications such as rehabilitation of individuals with cognitive impairment and 
brain injuries (Hodges, Berry, & Wood, 2011), diet behavior monitoring (Castro et al., 
2015; Hossain, Imtiaz, Ghosh, Bhaskar, & Sazonov, 2020; Thomaz, Parnami, Essa, & 
Abowd, 2013), and physical activity tracking (Ekelund et al., 2020). While the SenseCam 
was created exclusively as a research tool and is no longer supported, it inspired many 
commercial products focused on mobile situations and activity capture such as the GoPro 
camera and movisensXS.1

Lifelogging Camera Recordings  
as an Interpretable Proxy for Direct Observation

Mobile sensing is motivated by the opportunity to leverage sensors in smartphones and 
wearable devices to make inferences about people in their lives; people’s physiological 
health, emotional state, social interactions, daily activities, the environment in which they 
live, and much more. To translate low-level sensor data (e.g., accelerometer data, sounds) 
into high-level predictions about complex behaviors such as dancing, supervised machine 
learning methods are typically used, and annotated examples must be obtained as part 
of model training. An annotated example consists of the raw sensor data collected during 
a target activity and a label that uniquely describes the activity (e.g., cooking, writing). 

278	 Technological Know-How and Methodological How-To 	



In laboratory experiments, where participants perform tasks while being continuously 
monitored by researchers, it is often possible to acquire sensor data and annotate it accu-
rately. Annotation labels are often created by the researchers themselves upon reviewing 
recorded videos of the activities. However, in real-world and free-living settings, when 
individuals perform activities in a naturalistic way, often spontaneously and unobserved, 
obtaining labels is a significant challenge. As noted by Bao and Intille (2004), the most 
realistic training and test data for mobile sensing is real-world data acquired from sub-
jects as they go about their day, performing their everyday tasks.

Traditionally, three approaches have been utilized to address the challenges of data 
annotation: direct observation, retrospective self-report of activities, and self-reports 
obtained through experience sampling method (Larson & Csikszentmihalyi, 2014). 
Direct observation requires a researcher to monitor individuals throughout the day; it is 
highly intrusive in natural environments, does not scale well to large numbers of partici-
pants, and can be costly. Crucially, it is not a good fit for activities and situations that 
are inherently private such as personal grooming and bathroom activities. With self-
report surveys, individuals fill out a form indicating what they did and when after events 
occurred. This method addresses the key limitations of direct observation, but it also 
suffers from important shortcomings. Most critically, retrospective self-report instru-
ments are prone to recall errors and biases (Napa Scollon, Prieto, & Diener, 2009) and 
do not offer the temporal precision required to be accurately associated with the underly-
ing sensor data. Lastly, self-reports obtained through the experience sampling method 
(ESM) deliver prompts to individuals throughout the day, requiring them to input what 
they are doing in situ. While recall errors are eliminated with this approach, biases can 
still influence what is ultimately reported. Additionally, ESM is usually highly burden-
some and disruptive since they force individuals to constantly interrupt their activities. 
Consequently, experience sampling compliance tends to drop over time as individuals get 
fatigued and progressively ignore prompts. Despite these factors, ESM has been exten-
sively adopted, and various platforms have been implemented in support of experience 
sampling in the Ubicomp community (Froehlich, Chen, Consolvo, Harrison, & Landay, 
2007; Xiong, Huang, Barnes, & Gerber, 2016).

Recently, the availability of wearable imaging has opened up new possibilities in 
data annotation. Wearable cameras that were originally designed to capture everyday 
situations and activities have been successfully appropriated for data labeling. The same 
richness in detail that made wearable cameras appealing to lifeloggers also proved to 
be highly useful in data annotation. While methodological limitations and weaknesses 
remain, a wearable camera recording egocentric photos and videos on a regular basis is 
effectively a proxied version of a scalable, less intrusive, and more private form of direct 
observation.

High Data Volume:  
The Need for Segmentation and Summarization

Whether to capture personal situations and activities or to support annotation for human 
behavior analysis, one of the most significant challenges in passive wearable imaging is 
handling large amounts of rich visual data. A system designed to capture photos every 30 
seconds can generate over 2,000 images per day, or approximately 700,000 images every 
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year. This magnitude of data demands efficient methods for summarization with mini-
mum semantic loss. Systems designed for data aggregation and basic visualization have 
been implemented (Thomaz, 2020), but deeper transformations of long, untrimmed, and 
continuous egocentric streams into meaningful temporal segments are critical. These seg-
ments share semantic attributes such as backgrounds and sounds characterizing the same 
event. Semantic attributes are typically modeled by appearance-based features, such as 
objects, scenes, and people.

Because of the limited amount of annotated data for this task, temporal segmenta-
tion cannot be efficiently addressed by using supervised learning. Recently, Dias and 
Dimiccoli (2018) proposed a neural network-based model and a long short-term memory 
network (LSTM)-based model performing a self-supervised pretext task consisting of 
predicting the concept vectors of temporal neighbor frames, given the concept vector of 
the current frame. For example, since one frame contains concepts such as dishes, glasses, 
knife, and tap, the pretext task is to guess what concepts are present in temporally neigh-
boring frames, that is, in a time interval before and just after the given frame. The ground 
truth for this pretext task can be obtained without manual annotations by just applying 
an object detector (or whatever feature extractor) to each frame. As a by-product of this 
pretext task, the model will modify feature frames to make them more similar to those 
of frames having the same temporal context, and therefore likely to belong to the same 
event. In this way, the single-image sequence itself is used to learn new features, with-
out need for an annotated training dataset. This approach has shown interesting results 
and has been revisited (Garcia del Molino, Lim, & Tan, 2018). More recently, Dimic-
coli and Wendt (2020) proposed a joint feature learning and clustering approach that 
learns a low-dimensional representation that reflects a temporal and semantic structure 
of events. Once the image sequence (e.g., over 2 hours) has been partitioned into semanti-
cally homogeneous segments (e.g., five episodes), a visual summary is typically obtained 
by extracting one or more key frames for each segment.

Automated Recognition  
of Human Activities and Context

Over the last decade, advances in machine learning and computer vision algorithms have 
amplified the capabilities of wearable imaging. While first-person photos were only used 
as a basis for data annotation in the past, they can now take the place of other forms 
of sensor data as input into classifiers of human behaviors and context. In particular, 
the rapid development of supervised deep-learning-based approaches in recent years has 
made it possible to partially cope with the technical challenges imposed by wearable 
devices by leveraging large training datasets. The first and most characteristic challenge 
for activity recognition from egocentric visual data is that only the camera wearer’s hands 
are sometimes visible throughout the images, and hence the recognition methods can rely 
only on scene context such as manipulated objects, other people, and the environment. 
Much of the research on first-person action recognition from videos has been focused 
on exploiting different egocentric features: the camera wearer’s visible hands (Cartas, 
Dimiccoli, & Radeva, 2017a), the objects with which the wearer interacts (McCandless 
& Grauman, 2013), head motion (also called ego-motion; Poleg, Arora, & Peleg, 2014), 
gaze (Li, Liu, & Rehg, 2018) and, their temporal structure (Cartas, Radeva, & Dimiccoli, 
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2021), or a combination of them (Cartas, Luque, Radeva, Segura, & Dimiccoli, 2019). 
A deeper overview of these methods and their applicability to real-world scenarios can 
be found in Dimiccoli, Cartas, and Radeva (2019). This section provides more details on 
activity recognition from visual lifelogging that is captured by lifelog cameras over a long 
period of time (from one to several weeks), since they are more suited to daily activity 
monitoring and lifestyle characterization.

Early approaches to daily activity monitoring via wearable photo cameras have 
focused on a single user or a few users and have leveraged contextual information to deal 
with the ambiguity of pictorial information. In particular, focusing on a single user, Cas-
tro and colleagues (2015) exploited the fact that typically the same activity takes place 
in the same room or at the same time of the day, and they used color and time metadata 
in a random forest fusion strategy to improve activity classification obtained with a con-
volutional neural network (CNN). A generalization of this approach to multiple users 
has used the output of different layers of a CNN as contextual information (Cartas, 
Marín, Radeva, & Dimiccoli, 2017). While these approaches have modeled each image 
as independent of all the others, more recently long short-term memory network-based 
approaches have modeled the temporal coherence at the object/context level of temporally 
adjacent images to improve classification performance.

Since visual lifelogs are typically very long, Cartas, Dimicoli, and Radeva (2017b) 
proposed different training strategies for a CNN + LSTM architecture that use overlap-
ping batches of consecutive frames instead of a single long sequence. Recently, all these 
algorithms have been tested on a new large-scale dataset, the ADLEgodataset (Cartas, 
Radeva, & Dimiccoli, 2020), acquired by 15 people wearing a Narrative Clip camera in 
an unconstrained setting. It includes 35 activities of daily life acquired during 12.7 days 
on average for each person, for a total of 191. For people seen during training, the CNN 
+ LSTM trained in a sliding window fashion achieved 80.12% accuracy for the 35 activi-
ties. Conversely, for unseen people, best performance was achieved at 79.87% without 
previous event segmentation.

Given a new egocentric dataset representing activities of daily living, a recommended 
strategy for analysis would be to apply a standard action recognition algorithm such as 
those described by Cartas and colleagues (2017a), with a domain adaptation strategy by 
Cartas and associates (2020). Using a small amount of labeled data of this new dataset 
will ensure better predictions (Cartas et al., 2020).

Wearable Camera Placement and Orientation

An important consideration when using and deploying wearable cameras is determin-
ing where the camera should be placed on the body and what its orientation should be. 
Both of these parameters directly affect what can be captured and should be picked 
according to the envisioned application or data collection goal. Following SenseCam, 
which pioneered the use of wearable cameras in lifelogging, wearable cameras have been 
traditionally worn on the chest (see Figure 11.1). Facing directly forward, the camera 
records a frontal view of activities, capturing the wearer’s hands, overall context, items 
in the environment, and objects manipulated. Head-mounted cameras produce images 
with these characteristics as well, but at eye level, which allows for a larger and more 
dynamic field-of-view since the camera follows head movements. However, both of these 
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camera positions pose privacy challenges and, since they can easily capture bystanders 
without their consent, we discuss the privacy considerations of wearable cameras in more 
detail in the “Mitigating Privacy Concerns” section. When chest- mounted cameras are 
pointed upward, these privacy concerns are minimized since the field of view includes 
the wearer’s head and usually a ceiling as background. This orientation is useful to track 
personal health behaviors involving head or facial activities such as eating, drinking, and 
brushing teeth. On the other hand, the amount of contextual detail provided is limited 
since the camera does not capture the individual’s surroundings.

A promising placement for wearable cameras is on the head but pointing downward 
instead of forward (see Figure 11.2). In this orientation, the privacy of bystanders is 
preserved, as is the case with the upward- facing chest camera, but with the advantage of 
capturing much more contextual information. The first to experiment with this camera 
position was Starner, Weaver, and Pentland (1998) more than two decades ago while 
implementing an American Sign Language (ASL) recognizer; a baseball cap- mounted 
camera captured video of the user’s hands, which were tracked for gestures.

Researchers have explored other placements for wearable cameras as well. Alharbi 
and colleagues (2018) examined two alternative camera locations: shoulder and wrist. In 

 FIGURE 11.1.  Setup showing a chest- mounted wearable camera pointing upwards.

 FIGURE 11.2.  Camera placement and orientation provide different perspectives, with implications 
for the size of the field of view, what activities get captured, and privacy exposure.
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a study with 24 participants, the shoulder camera was deemed very similar to the chest 
camera in terms of its visibility on the body, but it was less recognizable as a camera. Not 
surprisingly, the wrist camera was considered the least obtrusive and least noticeable of 
the options considered. Additionally, participants reported more control and flexibility 
on the recording functionality; one participant reported that it is easy to cover the camera 
when going to the bathroom, for example. On the other hand, due to motion artifacts, 
the quality of imaging recorded on the wrist is usually of lower quality than what is cap-
tured with a head or chest-mounted camera.

Health Applications

Situation and activity capture from a first-person perspective permits the objective 
recording and observation of activities in real-world settings that are highly relevant to 
health and clinical applications, such as dietary intake and sedentary behaviors (Doherty 
et al., 2013). Monitoring and quantifying lifestyle behaviors in situ is highly useful as it 
guides policy and serves as the starting point for interventions. In this section, we provide 
examples of how wearable imaging has been applied toward measuring activities of daily 
living, dietary behaviors, and social interactions.

Physical Activity and Sedentary Behaviors

Numerous studies have shown the link between health outcomes and physical activ-
ity. More recently, measures quantifying lack of physical activity have gained attention. 
Sedentary behaviors are extremely relevant even for individuals who might be considered 
active (Ekelund et al., 2020). However, sedentary behaviors and physical activities have 
been traditionally recorded using accelerometers, and they have relied on questionnaires 
for ground truth. However, as previously discussed, self-report methods are prone to 
errors, biases, and inaccuracies. Using a wearable camera as a proxy for direct observa-
tion, Kerr and colleagues (2013) compared sedentary behavior estimates between wear-
able imaging and accelerometry, showing a 30-minute per day difference between the 
two. In addition to being more temporally accurate, the wearable camera provided much 
greater insight into the sedentary activities themselves. More specifically, accelerometers 
are unable to identify detailed type and context behavioral information. Not surprisingly, 
TV watching is strongly correlated with sedentarism and obesity in adults and children. 
Zhang and Rehg (2018) used head-mounted wearable cameras to detect moments of 
screen-watching during daily life activities. In their work, they show that wearable cam-
eras do not provide a measure of visual attention, but attention to screens can be reliably 
inferred by detecting and tracking the location of screens within the camera’s field of 
view.

Automated Dietary Monitoring

Recording in a truly objective manner when, what, and how much individuals eat is one 
of the most challenging behavior-tracking problems health researchers face today. The 
variability in the types of food people eat and how they eat it make this effort particularly 
difficult. The ability to reveal what people consume in a visual way, whether at home or 
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not, that is, without instrumenting the environment, has motivated researchers to explore 
wearable imaging for many years. For instance, Sun and colleagues (2015) developed 
a complete custom wearable system aimed at dietary monitoring a decade ago. But as 
previously discussed, one hurdle with passive sensing is that significant amounts of sen-
sor data are typically collected and must be later reviewed for patterns of interest. With 
wearable imaging, this means examining thousands of images every day for every single 
person, which is an extremely large undertaking. Thomaz, Parnami, Bidwell, and col-
leagues (2013) investigated the feasibility of scaling the annotation task by outsourcing 
it to crowdworkers. In a study that included 17,575 egocentric images captured in real-
world settings, detecting eating moments was possible with 89.68% accuracy. However, 
the recall measure was only 63.26%, underscoring the difficulty of spotting every eating 
moment.

Short eating episodes such as eating snacks on the go were particularly difficult 
to detect using a passive, time-lapsed photographic approach. To record such eating 
moments, the photo capture had to be perfectly timed with intake gestures, which can 
be sparse. An example of this scenario is shown in Figure 11.3; out of many first-person 
photos taken while the participant was driving to work, only one photo provided evidence 
that an eating event occurred. To make matters even more challenging, the lighting con-
ditions when the photos were taken makes recognition of objects particularly difficult.

While determining when someone eats is important and a keystone to automated 
dietary monitoring, the central question that drives most researchers in the field is what 
a person consumes and how much.

Many efforts have been made to automatically recognize foods in photographs that 
have been manually, and thus explicitly, captured, such as Platemate (Noronha, Hysen, 
Zhang, & Gajos, 2011). However, fewer implementations have been studied from the 
context of lifelogging. Bettadapura, Thomaz, Parnami, Abowd, and Essa (2015) showed 
how to automatically determine food when eating in restaurants. In this work, they lever-
aged the location of where the picture was taken to infer the restaurant. With additional 
information about the restaurant obtained using online resources, coupled with state-
of-the-art computer vision techniques, the researchers showed they could recognize the 
food being consumed. More recently, Fitbyte captures visuals of the food through instru-
mented eyeglasses as a person eats; the capture is triggered by motion sensors that detect 
food intake (Bedri, Li, Khurana, Bhuwalka, & Goel, 2020). Lastly, researchers have also 

  FIGURE 11.3.    Consecutive first-person photos in which only one shows evidence of an eating activ-
ity, with the food circled. Short eating episodes such as eating snacks on the go can be difficult to 
detect using a time-lapsed wearable camera.
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attempted to use egocentric imaging to estimate how much people eat, by capturing pho-
tos during the course of a meal (Liu et al., 2012).

Social Interactions Analysis

Social interactions are a fundamental and integral part of human life. It is well known that 
being socially connected promotes a person’s overall and psychological health (Umberson 
& Karas Montez, 2010). Advances in sensing technology and wearable cameras have 
offered the opportunity to observe and objectively analyze human social interactions in a 
naturalistic setting and over a long period of time. However, detecting social interaction 
beyond the mere presence of other people, from an unconstrained stream of images, by 
relying solely on nonverbal features, is a challenging task.

Most prior work focused on detecting social interactions from egocentric images 
or photostreams (Aghaei, Dimiccoli, & Radeva, 2015, 2016b) have exploited the theory 
of F-formations proposed by Kendon (1976). When humans get involved in social inter-
actions, they tend to stand in determined close positions to other interacting people to 
avoid occlusions, and they organize orientations in order to naturally place the focus on 
the subjects of interest. F-formation is hence defined as a geometric pattern that people 
instinctively tend to form when interacting. More specifically, the o-space within an 
F-formation is a convex empty space surrounded by the people involved in a social inter-
action, where every participant looks inward into it and no external people are allowed 
in this region (see Figure 11.4). A typical approach to detect such patterns from videos is 
to extract a bird’s view model of the scene, where mutual distances between people and 
their head orientations are visualized as if the scene was recorded from the top, as shown 
in Figure 11.4.

Research based on this approach first localizes the appearance of each person in 
the scene along the video or photo-stream (see Figure 11.5). Afterward, head pose and 
3D location for each person along the sequence are estimated to build the set of fea-
tures for the analysis. To estimate the distance of each individual from the camera, typi-
cally a regression model that learns the depth relationships on a two-dimensional sur-
face is trained. The analysis of temporal change in these features is crucial for detecting 
and understanding social interactions. Toward this goal, several strategies have been 

  FIGURE 11.4.    Example of F-formation, a geometrical pattern formed by interacting people. The 
o-space is shared by interacting people, the p-space is the space where interacting people stand, 
and people in the r-space are not interacting.
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proposed. While Aghaei and colleagues (2015) adopt a voting strategy, the more recent 
approach by Aghaei and colleagues (2016b) models F-formation detection as a binary 
classification problem (interacting/noninteracting). A sequence is represented by a multi-
dimensional time series, where at each time step, a feature vector represents a frame, and 
the time series is classified using an LSTM (Aghaei et al., 2016b).

Only a few works have gone beyond the detection task in the egocentric domain 
(Aghaei, Dimiccoli, Ferrer, & Radeva, 2018; Aghaei, Dimiccoli, & Radeva, 2017; Aimar, 
Radeva, & Dimiccoli, 2019). Aghaei and colleagues (2018) introduced a pipeline for 
automatically characterizing the social patterns of a person from the analysis of egocen-
tric photostreams of a user over a long period of time, and showed its effectiveness on a 
test user. To discover people with whom the camera wearer interacts more often, Aghaei 
and colleagues (2017) used a fully unsupervised approach for face clustering from ego-
centric photo-streams collected over a long period of time. Since a person’s appearance 
may change drastically on different days or even at different times of the day, this prob-
lem is very challenging. To cope with the extreme intraclass variability of faces, first the 
appearance of multiple faces into a same event is tracked (Aghaei, Dimiccoli, & Radeva, 
2016a), and then considering a set of constraints (for instance, faces in a same image 
correspond to different individuals), similar faces across the events are clustered into an 
unknown number of groups.

Aghaei and colleagues (2018) classifies social interactions into formal and informal 
meetings. A formal meeting is defined as a preplanned event where two or more people 
come together at a preplanned place at a particular time to discuss specific matters for the 
purposes of achieving a specific goal. Meanwhile, an informal meeting is more casual, 
requires less planning, and usually can take place at any casual space ranging from a park 
to a hall. Classification is achieved by leveraging several features, including global image 
features extracted from a pretrained CNN that characterize the surrounding environ-
ment, and facial expression (emotion) features.

The proposed pipeline was validated on a test set acquired by one user who wore the 
camera under free-living conditions over a 1-month period. It is worth noting that the 
test user did not participate in acquiring the training set used for training the model. An 
example of a social interaction temporal map that can be obtained using this approach is 
shown in Figure 11.6.

A more detailed classification of people’s social life in visual lifelogs, based on 
Bugental’s domain-based social theory (Bugental, 2000), has been recently proposed by 
Aimar and colleagues (2019). Bugental’s theory includes specific domains with examples 

  FIGURE 11.5.    Example of a bird’s view model extracted from an egocentric image. The bottom 
person on the right image corresponds to the camera wearer. Image from Aghaei et al. (2015).
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of common relations, characterized by specific attributes and behaviors. Specifically, it 
includes 5 domains (coalitional group, attachment, reciprocity, hierarchical power, mat-
ing) and 16 related subcategories.

A psychology study aimed at detecting social interactions from pictures collected by 
a wearable lifelogging camera should rely on Aghaei and colleagues (2016b). If instead 
the goal is to understand the type of social interactions, in Bugental’s spirit, the individual 
is having, then Aimar and colleagues (2019) should be the reference work. For a more 
detailed characterization of the person’s social style in terms of frequency, diversity, and 
duration, the work by Aghaei and associates (2018) proposes a complete pipeline.

Mitigating Privacy Concerns

As we have shown, photos and videos captured with wearable cameras can provide accu-
rate depictions of an individual’s activities and context in situ, enabling a large number 
of applications. However, this power and capability comes with a significant tradeoff: 
privacy concerns. Passive egocentric vision often records sensitive or undesirable informa-
tion on the person wearing the camera, whether at home, at work, around family, or in 
public spaces. As a result, conducting human-subject studies that involve wearable imag-
ing demands special attention. In particular, institutional review boards (IRBs) often 
impose strict requirements on the collection, manipulation, and annotation of egocentric 
photos and videos. Specific concerns include whether individuals can be identified in the 
photos and how they will be annotated, if necessary. For example, in the context of an 
automated dietary monitoring application, Thomaz and colleagues (2013) employed a 
two-stage review procedure to meet the demands of the IRB office at their institution and 
get approval to conduct their study. In the first step, all participants who wore the wear-
able camera were required to review all captured images and delete any photos they were 
not comfortable sharing with the research team. In the second phase, the researchers 
gained access to the photos and reviewed them for any other evidence that could pose a 
threat to participants. Additionally, researchers were required to discard any first-person 
photo that depicted an individual, whether fully or partially. As individuals went on about 
their day while wearing the camera (e.g., meeting friends, having meals, taking public 
transportation), it was common for the images to record other people, that is, bystanders, 
or the camera wearer (e.g., when facing a mirror). All of these photos had to be deleted. In 

  FIGURE 11.6.    Example of social interaction temporal map of a user during 1 week. Different colors 
correspond to different people the user was interacting with. Multiple lines are indicative of a 
social interaction with multiple persons. Circles and squares indicate informal and formal meet-
ings respectively. Image from Aghaei et al. (2018).
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this specific case, the annotation procedure was performed by Amazon Mechanical Turk 
workers, that is, nontrustworthy third parties, which called for additional precautionary 
steps to reduce or, ideally, eliminate the possibility of privacy violations.

To address privacy concerns in wearable imaging without discarding photos, a 
vast array of privacy-mitigating techniques have been developed over the years. These 
approaches fall into different categories, according to the type of protection they attempt 
to provide and for whom. Wearability permits unconstrained movement; therefore, it is 
valuable to have mechanisms that support capture in certain locations and not others. 
This was the impetus behind PlaceAvoider, which applies image analysis to identify and 
blacklist rooms where photos should not be taken (Templeman, Korayem, Crandall, & 
Kapadia, 2014). The approach required individuals to take photographs of sensitive areas 
such as bathrooms and bedrooms, which were then used to build visual models of these 
spaces. As researchers pointed out, this approach is complementary to GPS, which can 
locate the device within a geographical area but is not reliable enough indoors. Addi-
tionally, it does not require special instrumentation in every room such as beacons or 
custom-built imaging disablers (Hightower & Borriello, 2001; Truong, Patel, Summet, 
& Abowd, 2005).

Perhaps counterintuitively, even everyday situations and activities that might seem 
low-risk from a privacy standpoint can still pose acute threats to privacy. A particu-
larly relevant scenario is the capture of computer and phone screens. For example, an 
office worker whose job involves performing tasks on a computer might have username, 
passwords, and sensitive documents revealed by egocentric photos. In fact, recent stud-
ies indicate that computer screens represent the most significant privacy concern for 
those wearing cameras since so much time is often spent in front of devices that display 
sensitive information (Hoyle et al., 2014). To address this concern, Korayem, Temple-
man, Chen, Crandall, and Kapadia (2016) explored how computer vision approaches 
could be used to automatically detect screens in egocentric photos. This proved chal-
lenging as object detection with first-person imaging requires examining photos that are 
often blurry and hard to interpret. Using CNNs and models pretrained with ImageNet 
(Krizhevsky, Sutskever, & Hinton, 2012), the researchers obtained around 90% accuracy 
in screen detection when testing with 1,842 first-person photos captured in naturalistic 
settings by 36 participants.

Beyond those wearing the camera, egocentric vision can also be highly concerning 
to others who might end up photographed or video-recorded. In other words, wearable 
imaging has the potential to greatly enhance the vulnerability of bystanders (Ferdous, 
Chowdhury, & Jose, 2017). Egocentric photos might catch bystanders in embarrassing 
situations or undesirable poses, or they may reveal information they would rather not 
have on record. Denning, Dehlawi, and Kohno (2014) examined how bystanders respond 
to the presence of augmented reality (AR) glasses with built-in cameras. In this work, 
the researchers wore a mock AR device in cafés around a city over the course of 12 field 
sessions and conducted semistructured interviews with 31 individuals on their reactions 
to the device. They found that bystanders assumed these devices were used for recording 
and “were predominantly split between having indifferent and negative reactions to the 
device.” In a different study, lifeloggers stated that bystanders should be informed about 
lifelogging devices (Hoyle et al., 2014).

When it comes to protecting the privacy of bystanders in egocentric photos, the obvi-
ous approach is to employ face detection and simply delete photos that uniquely identify 
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a person in front of the camera. This approach is suboptimal, however. Photos that pose 
privacy concerns might also contain evidence of behaviors or any other information rel-
evant to a given relevant task. Representations such as the privacy-saliency matrix were 
developed to make this balance explicit (Thomaz, Parnami, Bidwell, Essa, & Abowd, 
2013). Instead of deleting photos with faces, a common approach is to obfuscate them 
through selecting filtering (Vishwamitra, Knijnenburg, Hu, & Caine, 2017). Similarly, 
an interesting solution is to anonymize the photos instead of blurring or blocking them. 
Ren, Lee, and Ryoo (2018) showed promising results using generative adversarial net-
works (GANs). An anonymizer modifies the original video to remove privacy-sensitive 
information while attempting to maximize spatial action detection performance, and a 
discriminator extracts privacy-sensitive information from the anonymized videos.

Before faces can be blurred, blocked, or anonymized, they must first be reliably 
detected. Over the last decade, deep-learning algorithms have greatly improved the per-
formance of computer vision tasks, enabling higher performance accuracies in object 
detection and identification (Krizhevsky et al., 2012), but further progress is needed for 
facial recognition. In particular, while face detection algorithms are very accurate today, 
they are not immune to false negatives in unconstrained environments (Masi, Wu, Has-
sner, & Natarajan, 2018). Even a single lapse in facial recognition could result in a con-
siderable privacy threat. One way to avoid missing faces in first-person images is to blur 
the entire photo, regardless of whether it contains faces. This approach guarantees that 
if there are faces, they are not clearly visible and thereby do not pose a privacy concern. 
Additionally, any other piece of information in view that could be sensitive information 
(e.g., a bank account number) is also protected. The downside of this method is that all 
images are affected, which comes at the expense of lower inference accuracy. Examining 
a dataset of 84,078 egocentric images, Dimiccoli, Marín, and Thomaz (2018) studied the 
trade-off between image quality and inference performance. Their research demonstrated 
a statistically significant positive relationship between the amount of image degradation 
and participants’ willingness to be captured by wearable cameras.

Future Outlook and Opportunities

As discussed in this chapter, wearable cameras have been successfully explored in numer-
ous applications over the past two decades. During this time, much has changed in 
the technology landscape, and new opportunities have emerged. Camera systems have 
advanced significantly due in large part to the introduction and rapid adoption of smart-
phones and portable action cameras. The pace of smartphone development in particular 
has demanded increasingly more sophisticated imaging sensing hardware, driving down 
costs and making these components available to myriad devices such as indoor cam-
eras and aerial drones. Compact and powerful image sensors, sometimes referred to as 
imagers, are now liberating wearable cameras from their traditional form factor (e.g., 
worn on a lanyard) to a much wider range of placements such as mounted on eyeglasses. 
Additionally, factors that previously limited the use of imagers are no longer as critical as 
they used to be. For example, power consumption has always been a concern with imag-
ing systems, but recent imagers can capture grayscale images at 30 frames per second 
(FPS), using less than 1 mW.2 Processing photo and video streams in real time is now 
also possible thanks to optimization in CNNs and the introduction of frameworks such 
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as MobileNet, which offer competitive performance in computer vision tasks (Howard 
et al., 2017). Real-time inference of human activities under low-power conditions is a 
critical capability because it greatly enhances privacy protection. This feature eliminates 
the need for photos and videos to be saved and transferred to another device for analysis. 
Fully self-contained imagers that output inferences without providing access to the raw 
data, and thus mitigating privacy concerns, could become widely acceptable as sensors of 
human-centered activities.

Thanks to enhancements in power, computational inference, and onboard data 
processing, we foresee an increase in usage of imagers in the future. In the context of 
wearables, we expect the development of new lifelogging and behavior sensing systems 
that make use of multiple imagers, each capturing a different perspective depending on 
placement and orientation. This is important because existing wearable cameras are con-
strained in what they can capture by their single-lens field of view. A multi-imager system 
could embed all cameras into one device such as a smartwatch (Tong, Tailor, & Lane, 
2020) or consist of several imagers that can be individually placed on different parts of 
the body as needed to suit a specific type of capture or application. New directions in 
imaging technology (e.g., 360-degree cameras) provide new alternatives for expanding 
the reach of lifelogging as well.

From a human-centered perspective, privacy and social discomfort have been impor-
tant factors limiting wider adoption of passive wearable imaging technology. Most peo-
ple are not comfortable in the presence of others who could be recording movements and 
behaviors passively; the sight of an exposed camera lens is often cause for concern. How-
ever, social media has greatly increased the prominence of photos and videos in popular 
culture and the public discourse. As a result, perceptions around camera-based devices, 
being captured on camera, and the utility and applications of photos in general are rap-
idly evolving. Cameras are all around us; police officers wear them as body cameras, 
doorbell cameras record us as we stroll by homes in our neighborhoods, and emerging 
camera-based augmented reality systems promise breakthrough new applications that 
will change the way we learn, work, and play. While we do not anticipate that individuals 
will be comfortable with wearable cameras in the short term, societal changes will likely 
increase acceptance of wearable imaging in the future.

Best Practices for Using Lifelogging in Research

Consider a scenario in which a psychologist is interested in exploring the extent to which 
people’s social behaviors change depending on who they are with. As an example, an 
individual might be reserved and timid with family but highly extroverted with friends. 
Traditionally, researchers have had to depend on self-reported instruments such as sur-
veys filled out by the study participants themselves to answer these types of research 
questions. However, these instruments are known to suffer from numerous limitations 
and biases. As discussed, lifelogging offers a rich and compelling alternative to captur-
ing situations, settings, and individual behaviors in a passive and unbiased way. In this 
section, we provide practical guidance for how to employ lifelogging in a research study 
in key areas while taking into account considerations that have been discussed in this 
chapter.
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Selecting a Device

The GoPro and other cameras similar to it have been extensively used in lifelogging 
research for many years. When meeting capture requirements, these cameras continue to 
be a reliable option. An alternative approach to using a traditional camera is to program a 
smartphone to record video and audio and have participants wear the phone on a lanyard 
around the neck. We have had success with this approach since it offers a large degree 
of flexibility; for example, capture intervals are not restricted to presets (e.g., recording 
a photo every 30 seconds and 60 seconds only), and additional data can be captured 
alongside video clips and photos (e.g., audio, inertial measurements from the device’s sen-
sors, location). Moreover, smartphones can be configured to process audio, videos and 
photos as they are captured in order to perform additional tasks (e.g., classify foreground 
versus background speech) or minimize privacy risks (e.g., blur faces that are captured 
in the first-person photos). Lastly, the communication capabilities of phones can also be 
useful, such as to log data capture metrics in a remote server and allow researchers to 
verify that data collection in the field is taking place as expected. We should note that 
despite the popularity of chest-mounted cameras, the use of head-mounted cameras has 
increased substantially in the last few years thanks to the availability of new devices such 
as the Vuzix Blade, Pupil Labs, ZShades, ORDRO EP6, iVue Rincon 1080, and Weeview. 
Looking forward, this trend will likely continue as augmented reality (AR) technologies 
mature. Devices such as Spectacles and Ray-Ban Stories, designed specifically for the 
consumer market, have the potential to become socially acceptable, which is an essential 
requirement for lifelogging systems aiming to capture natural behaviors.

Setting a Sampling Frequency

Determining how often to take a snapshot or record a video clip is usually one of the first 
steps when setting up and configuring a lifelogging system. Data collection frequency 
tends to be application specific, and collecting more data than necessary imposes an extra 
strain on battery power, a scarce resource in a mobile setting. It is often useful to con-
duct a pilot study to determine what the sampling frequency should be, with the goal of 
optimizing activity capture fidelity. In the event that power consumption is an issue, con-
textual triggers can be considered. With triggers, data capture is not continuous; instead, 
it is initiated only when a contextual criterion is met, such as when the individual is in a 
specific location, a certain amount of physical activity is detected, or an auditory signal 
is present (e.g., speech). Once a capture pipeline has been established, capturing data 
is straightforward and thousands of images or hours of videos can be easily recorded. 
However, the more data that are collected, the more effort and time must be allocated to 
annotation—and the higher the privacy risk that participants are exposed to.

Obtaining IRB Approval

The process of obtaining IRB approval to run a lifelogging study varies greatly depend-
ing on the institution and expertise of the IRB officers assigned to review the study pro-
tocol. Capturing audio, video, and photos in real time will understandably be cause for 
concern. To protect the privacy of bystanders, a basic first step is to clearly communicate 
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that face detection algorithms will be applied to the data and identified faces will be 
blurred. However, face detection alone might not be enough. In one of our experiences, 
we were required to agree to eliminate photos that contained any body part based on the 
argument that any part of the body could uniquely identify an individual (e.g., a ring on 
a finger, a tattoo on a leg). The implications of this decision were significant; we could 
neither automate nor outsource this body part identification task and so we had to review 
all photos manually, greatly increasing our workload. Also, it forced us to discard many 
photos that contained evidence of activities and context that we were interested in. Other 
measures that have proved successful in demonstrating sensitivity to privacy concerns 
include (1) requiring participants to review their own photos and videos and delete any 
data they would rather not share with researchers, (2) instructing participants to tem-
porarily remove the lifelogging device or turn it off in certain settings and events (e.g., 
bathroom, religious activity), and (3) processing data onboard the lifelogging device if at 
all possible, thus eliminating the need to save the photos and video after capture.

Lifelogging is usually associated with capture of photos and videos, but special 
attention must be dedicated to audio as well. For privacy protection, it is possible to apply 
filters to the data in order to make speech and other relevant sounds unintelligible to a 
human while preserving the underlying characteristics of the signal for machine analysis. 
Overall, given the nuances of these various techniques and potential for misinterpreta-
tion, we have found it productive and time-saving to review the procedures and methods 
of a lifelogging study with the IRB officer in person. Lastly, and beyond institutional 
approach, it is important to be aware of and follow regulations regarding privacy pro-
tection and security of communications. For example, in the United States, many states 
require that all parties consent to recordings. In these states, an individual who is lifelog-
ging should let others in their vicinity know that a recording is taking place. In practice, 
this has been achieved by researchers having lifelogging study participants wear a badge 
communicating that a recording is in progress.

Visualizing, Annotating, and Processing Images and Videos

Researchers have often employed custom solutions to visualize, annotate, and analyze 
lifelogging data. It is not uncommon for companies that make wearable cameras to pro-
vide tools that can be used to retrieve and browse media captured by the cameras, but 
these packages do not include support for data annotation and processing. One of the 
difficulties of working with lifelogging data is that it might be combined with data from 
other sensors (e.g., smartwatch inertial measurements), and thus a data synchronization 
step is required. However, while not specialized for lifelogging, general-purpose tools for 
audio and video recordings exist. One of the most popular packages is ELAN, which has 
been successfully adapted to lifelogging data (Wittenburg, Brugman, Russel, Klassmann, 
& Sloetjes, 2006).

Notes
1.	 www.movisens.com/de/produkte/movisensxs

2.	 www.himax.com.tw.
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C H A P T E R  O V E R V I E W

Wearable sensors hold multiple advantages: Having sensors that are closer, on the skin, to 
the human user allows for more information and, when those sensors are worn through-
out the day (and, in many cases, even night and day), the data these sensors produce tend 
to cover many aspects of the user’s life. This chapter attempts to predict what type of 
wearable sensors— for there are many—and to what extent wearables will be particu-
larly attractive as mobile sensors in psychology. As is the case with predictions, this only 
makes sense when looking at the prevailing and current trends in research in the area 
of wearable sensing, in order to be able to extrapolate what might become feasible in 
the coming years and decades. Technology- wise, this does not only depend on the sen-
sors themselves: Other key components that have become common in wearables, such 
as wireless communication and energy demands, are equally important in this picture. 
Furthermore, the concept of wearable sensing does not depend only on the used hardware 
components: The information that is generated from the sensor signals, and where and 
how this information is analyzed, abstracted, and interpreted, are equally important. 
From these analyses of what will become technically possible in wearable sensing, a set 
of promising applications is extracted and presented in the final section of this chapter.

Introduction

Wearable computing as a scientific discipline has been around since 1997, when there was 
barely a commercial market for wearables— certainly not the vast market we see today 
(Martin, Starner, Siewiorek, Kunze, & Van Laerhoven, 2021). Wearable sensors in psy-
chology and medical research predate this field, with wearable actigraphs, pedometers, 
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and similar devices already in use for decades in psychological experiments and studies 
before that (Benoit, Royant-Parola, Borbely, Tobler, & Widlöcher, 1985; Brown, Smolen-
sky, D’Alonzo, & Redman, 1990). This chapter gives an overview of what we can expect 
to emerge in terms of new modalities and information that can be gathered from human 
study participants, and how these new technologies can be expected to impact psychol-
ogy in the near and far future. The focus will be mostly on sensor technologies that have 
become mature or are nearly ready to be integrated in wearables. What this chapter 
avoids is a prediction on which devices will appear on the market and become available 
as wearable mass-deployment tools for psychology, in a similar way that smartphones 
have now become ubiquitous and mobile sensors, simply because this entails many other 
factors such as marketing and social acceptance.

A first goal of this chapter is thus to provide an overview of what wearable sensors 
are coming up for use in psychology research. What is already certain is that several tech-
nological breakthroughs that are happening as we write or read this will lead to novel 
ways to extract more, more reliable, and more fine-grained information from humans. 
Wearable devices will not only become increasingly smaller and more comfortable to 
wear, but will also deliver more useful information over longer time spans. It is impor-
tant to keep in mind, though, that the information these new sensor devices deliver will 
not always be as crisp and clear to interpret from the start. Actigraphs initially recorded 
with so-called counts of a person’s amount of physical activity over time, but they were 
then found to be hard to translate across different devices that used different mechanical 
constructs to generate these counts. Similarly, many newer sensors might initially deliver 
data that will be hard to reproduce or translate in future studies.

A second goal of this chapter is to stress that future wearables are about to increas-
ingly produce estimates of much higher-level information than the absolute measurements 
that we are used to today. Instead of collecting the raw inertial data of a smartwatch or 
counting steps, for instance, these wearables will increasingly be able to directly deliver 
what physical activities the user performs—“playing the piano for 2.5 hours,” “cooking 
dinner for 20 minutes,” or “rock climbing in the afternoon”—or what affective states the 
wearer might be in. This is much more attractive, both from a technological perspective 
as there is less information to store and communicate at a relatively low processing cost, 
and from an information perspective as well, for these data are easier to interpret. But it 
also holds dangers and pitfalls: These predictions will never work with 100% accuracy 
for every use, and the methods—algorithms running on the wearable, basically—that 
perform these predictions will be susceptible to certain biases. An outstanding question 
is whether dealing with such inaccuracies will be a small price to pay for avoiding having 
to spend a lot of the wearable’s energy in collecting large amounts of “raw” sensor data 
that require large efforts in retrospective “big data” analysis.

In the next sections, this chapter first describes the large variety of wearable devices 
and then details in a nonexhaustive list how sensors offer great potential to impact psy-
chology in terms of the information they can objectively measure over long periods of 
time, before putting them into perspective in terms of what values they really capture. 
After that, some research trends are described that detail how wearables will be able to 
capture large amounts of data, whose analysis and extraction of essential information 
can be useful for psychology, especially in “in the wild” experiments where participants 
are observed through the wearable sensors over longitudinal recording sessions and in 
their natural habitats.
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Types of Wearables

Wearable devices come in a surprisingly large variety, depending on the scenario in which 
they are deployed and where on the body they are worn. Beyond the classical activity 
trackers that are typically worn on the hip or wrist (Kim, He, Lyons, & Starner, 2007), 
other form factors include glasses and rings (Colley, Inget, Lappalainen, & Häkkilä, 2017) 
embedded in shoes, textile garments, tattoos applied on the skin (Vega et al., 2017), and 
so-called earables that are worn in the ears (Kawsar et al., 2018). Research methods have 
been devised that quantify the wearing comfort of these devices (Knight, Baber, Schwirtz, 
& Bristow, 2002), and best practices have emerged in the past decades that link, for par-
ticular sensors, the optimal placement to increase the measurement reliability.

Guidelines on human factors surrounding wearability were first introduced in 
Gemperle, Kasabach, Stivoric, Bauer, and Martin (1998) and have since then been updated 
regularly for newer technologies and application considerations. The work of Zeagler 
(2017) has contributed a web-based set of body maps with references and design consid-
erations, detailing for all areas on the body where a designer should most likely place a 
wearable device. These maps also show that the most likely locations for wearable tech-
nology to be successful in general are the hands, wrists, forearms, upper arms, upper chest 
area above the breast, forehead, ears, and mid-thighs. Keep in mind the ongoing minia-
turization of sensors as well as the drive for producing system-on-chips that not only led 
to smaller and more energy-efficient, but also more reusable designs (Saleh et al., 2006).

Sensors to Look Out for in Wearables

Certain sensing technologies have in past years been rapidly miniaturized and integrated 
in wearable prototypes. As we will show, some of the most prolific ones are introduced to 
give a sense of what type of sensors might experience a widespread breakthrough in com-
mercial wearables to come out in the future. These are roughly listed here in order of cer-
tainty of appearance in future wearables, with the first one already present in most people.

Inertial Sensors

Inertial sensors cover a family of sensors that can measure orientation and changes in 
orientation, so that they are optimal for characterizing movements of the body they are 
attached to (Randell & Muller, 2000). They have been used to measure the amount of 
motion, as well as to detect particular gestures, ranging from step counting to counting 
and analyzing training exercises in sports. In terms of advances in miniaturization and 
integration, inertial sensors have experienced one of the most remarkable transitions in 
the past decades. These sensors are nowadays referred to as inertial measurement units 
(IMUs), which is appropriate as these are not single sensors but rather a grouping of 
about a dozen sensors (accelerometers, gyroscope, and magnetometers, all sensing in 
three dimensions) integrated in the same package (Ayazi, 2011). They can be regarded 
as successors of the old actigraphy devices and accelerometers, since they basically sense 
motion, while delivering much more accurate data in terms of movement and sensor ori-
entation over time (Fong, Ong, & Nee, 2008). Current sensors have been so minimized 
through MEMS technology advances, that they occupy only a tiny footprint on any 
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device, and they are mass-produced in such high batches that their cost has dropped to 
an all-time low. As a result, IMUs are integrated into almost every wearable device, smart 
watches, smart glasses, or wireless earbuds. Their low-energy footprint has enabled large 
studies in which participants are monitored over longer periods of time through such 
wearables, for instance (Purta et al., 2016).

Meanwhile, the miniaturization of mechanical and electrical sensor designs for IMUs 
has stabilized; both research and industry have now predominantly focused on digitally 
processing the sensor signals, locally on the sensor chip. Off-the-shelf sensor devices 
come with their own processing capabilities, which meanwhile can be reprogrammed as 
well, and they deliver many functions, including sensor fusion and detection of patterns 
of interest within the sensor signals. Wearable developers “just” need to glue the IMU to 
a processor, which then can digitally speak to each other and where much of the infor-
mation extraction is done on the IMU, freeing up capabilities on the wearable’s main 
processor. IMU sensors offer a blueprint for many sensors that, due to their popularity, 
might follow a similar evolution in becoming tiny, low-cost, and requiring little energy.

Electrocardiography, Electrodermal Activity, Electrooculography, 
Electromyography, and Photoplethysmography

The following set of sensors, which detects a person’s vital signs, has been used in a medi-
cal context for decades. In all these sensor types, their proper attachment to the human 
body is critical for their readings. The electrode design or the mechanical attachment 
design that keeps the sensor placed firmly on the skin so that motion and skin condi-
tion will not change the readings is just as important as how their signals are amplified 
and filtered. For standard three-point electrocardiography (or ECG), three electrodes 
are placed on the wearer’s torso, measuring the depolarization and repolarization of the 
heart muscle during each heartbeat. For clinical purposes, 12-lead ECG is typically used, 
whereas wearable devices have recently been introduced that perform one-lead ECG, 
such as the Apple Watch Series 4 and above (Strik et al., 2020). ECG samples are col-
lected with frequencies up to 1,024 samples per second. When collected at such high 
frequency, the signal is capable of downsampling to 256 readings per second without loss 
of information (Soleymani, Lichtenauer, Pun, & Pantic, 2011). This results in a signal 
that allows capture of the heart rate, heart rate variability, and other parameters related 
to the cardiac cycle. For additional details on physiological recordings in daily life, see 
also Chapter 6, this volume.

Electrodermal activity (EDA) records skin resistance or skin conductance by mea-
suring resistance between two electrodes that are placed on the skin, usually where the 
wearer tends to sweat (Dawson, Schell, & Filion, 2000). This sensor is particularly sus-
ceptible to the wearer’s skin type, as well as external influences such as changing humid-
ity, temperature, or physical activity. Relative changes in the signal have been shown to 
be useful, however, and wearables such as the Empatica E4 (https://www.empatica.com/
research/e4/) have integrated this sensor and provide measurements at rates of several 
readings per second (Milstein & Gordon, 2020).

Electromyogram (EMG) sensors have not yet been widely incorporated in wearables 
but nevertheless show much promise for use in analyses of human movement (Kleissen, 
Buurke, Harlaar, & Zilvold, 1998). In EMG, electrodes are attached to the skin above a 
muscle; the difference in electrical potential generated when the muscle cells are activated 
is then recorded by the surface electrodes. Measurements are typically recorded from 30 
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to 1,000 samples per second (van Boxtel, 2001). Depending on how the electrodes are 
attached to the skin, noise from movement or nearby muscles tends to enter the signal, 
often requiring substantial filtering of the signal. The muscles around the eyes can be 
monitored using a similar principle with the help of electrooculography (EOG) electrodes 
that can be built in the nose pad and bridge of glasses to detect the wearer’s eye movement 
and events such as blinking. An early wearable product that integrated such sensors is the 
JINS MEME glasses (Uema & Inoue, 2017).

The overall measurement principle of photoplethysmography (PPG) is straightfor-
ward: The sensor is placed on the skin of the user and uses a light source (typically a light-
emitting diode [LED]) to illuminate the skin, as well as a light sensor to measure over 
time how much light is reflected back from (or through, for the fingertip or earlobe for 
example) the skin (Tamura, Maeda, Sekine, & Yoshida, 2014). Blood flow through the 
skin tissue is in this way picked up, allowing several interesting measures to be extracted 
from the resulting signal, such as the person’s pulse or heart rate variability, but also other 
information such as breathing rate or the blood’s oxygen levels. Wearables have seen a 
proliferation of PPG as these sensors do not need electrodes to be placed on the skin, 
though other problems, such as motion artifacts when the pressure on the skin changes 
or when ambient light interferes with the photodiodes, do remain. Furthermore, where 
the sensor is placed has a significant effect on the signal quality (Hartmann et al., 2019).

Location, Microphones, Cameras, and Depth Sensors

Until now, the sensors we have mentioned in this section have been introspective; they are 
placed on and are directed to the wearer’s skin and directly provide information about 
the wearer. What is happening in the wearer’s environment may be equally interesting: 
The information used ever since mobile phones obtained integrated GPS and wireless 
locationing capabilities is location tracking over time. The modules that allow a device to 
sense its location are only slowly moving toward some wearable devices, however. Sensor 
types that are equally lacking a pervasive presence in current wearables constitute some 
of the more interesting modalities in terms of producing data straightforward enough to 
interpret: sounds (Franke, Lukowicz, Kunze, & Bannach, 2009), images, and video clips 
from a wearable device can provide valuable data for use in psychological trials in mul-
tiple ways. Early prototypes in this area include the Microsoft SenseCam (Chowdhury, 
Ferdous, & Jose, 2016), which has the formfactor of a large pendant or clip that can 
be attached to clothing. With miniaturized (three-dimensional) cameras, which include 
depth data of the scenes they observe, slowly finding their way in mobile smartphones, 
these can also be expected to appear in wearable devices. Because of the energy they need 
to conduct the sensing, though, as well as the amount of data generated (sound requires 
thousands of samples per second, images or video frames are represented by large matri-
ces of color [and depth] data), they will not likely be introduced in the near future for 
small wearables that need to operate over longer periods of time.

The above categories have been listed as some of the more interesting wearable-
specific sensors for psychology research. This is also just a subset of sensors that will be 
integrated in wearables, as many other, nonwearable, computing devices such as smart-
phones already contain valuable sensors (as discussed in Chapter 13, this volume). Excel-
lent examples here are the array of sensors that can be used to localize a user from 
their smartphone, or the log which other users (through Bluetooth communication) were 
close by. Further developments for these sensors can and likely will eventually lead to 

�	 Beyond the Smartphone	 301



their integration into wearable devices that the user carries more often, and is especially 
promising for obtaining a more complete coverage over time (Van Laerhoven, Borazio, 
& Burdinski, 2015). The following section will cover a subsequent challenge that follows 
after the physical sensor packages are obtained in hardware: the analysis and processing 
of their output data.

Making Sense of the Sensor Data

Many of the sensors discussed in the previous section have become available as minia-
ture, energy-efficient packages that can be directly integrated into wearables. This does 
not mean, however, that all of them will definitely find their way into every commercial 
wearable device in the future or that their data can reliably be used across multi-user psy-
chological studies. Some key differences in the way they operate and in the signals that 
these sensor chips deliver are as follows.

	• Sensors’ output data can be delivered in absolute units or relative values. Iner-
tial sensors tend to come with calibration routines and to deliver values that come in 
well-defined units such as milli-g/s (for the amount of acceleration) or representations 
such as quaternions (for full IMU sensors, giving the sensor a three-dimensional orienta-
tion within a specified orientation frame; see Grützmacher, Kempfle, Van Laerhoven, & 
Haubelt, 2021). When attaching the sensor to another person on another day, but being 
exposed to the same acceleration or orientation, the resulting values will be comparable 
across these different persons. This is not the case for the raw data collected by EDA 
sensors or PPG sensors, for instance: Integrated sensors that measure reflected light for a 
particular setup, or charge or voltage differences between particular electrodes, provide 
a raw signal that will differ significantly between users, skin types, sensor properties, or 
situations. If any of these parameters are changed—a PPG sensor using a different light 
intensity, the user moving their limbs, the environment being warmer or more humid—
the resulting measurements will likely be completely different.

	• Filters almost always impact the sensor data. All sensors described in the previous 
section can provide users or researchers with the measurements as they were picked up, 
but this “raw” signal in this case can be highly variable. Every sensor is prone to noise, 
drift, or other sources of error that result in a sensor signal that rarely matches the aimed-
for information. To remedy this problem, sensors therefore contain multiple analog or 
digital constructs that modify the original physical signal, making it smoother and in the 
process losing some information about the measurement process (Wolling, Heimes, & 
Van Laerhoven, 2019). Reconstructing or reproducing the exact settings in which data 
are collected as a result becomes much harder as physical sensor chips are phased out and 
replaced by others. For some of the sensor types discussed earlier in this chapter, these 
changes can be bounded within a small margin of error, so that the recorded informa-
tion can be considered to be reliable and reusable. For other sensor types, however, there 
exists an inherent danger that the recorded data are nearly impossible to compare to 
similar data at a later stage.

	• Sensors’ estimates often obfuscate accuracy. An increasing number of sensor 
packages comes with embedded processing capabilities to provide an early abstraction of 
the raw signal or deliver the output data in absolute units, for instance, as heartbeats per 
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minute or step count. (The LIS2DS12 accelerometer, for instance, has an internal step 
counter and step detection in the chip package.1) Among the dangers of locally process-
ing such estimates and aggregated metrics are that (1) they tend to be sensor-specific and 
(2) they often lack clear accuracy measures for these estimates: The algorithms that do 
the translation between the raw data and the estimates are rarely documented well and 
might have been written for one particular application, for example a step counter for 
noncritical fitness applications. Such algorithms might produce data that seem to have a 
clear unit (e.g., steps or heartbeats per minute), but since these embedded algorithms dif-
fer between sensors, the accuracy of these measurements might differ significantly: Data 
from one study with one sensor series can thus become difficult to compare to other data 
from another study with a different sensor manufacturer, version, or firmware.

	• The importance of the energy footprint. Why are the above differences important 
to wearable sensors in particular? For most of the previously discussed sensors, process-
ing the data within a wearable module is significantly more energy efficient than storing 
or forwarding the data via a wireless communication link, with wireless communication 
being orders of magnitude more energy demanding than sampling and processing sensor 
data (Razzaque & Dobson, 2014). Since the wearable form-factor favors small, com-
fortable to wear, and energy-efficient components, designers of these wearable sensors 
are facing a tradeoff: Either the sensor produces a large amount of data that contain all 
details but also cost a lot of energy to be stored or transferred, or the data are abstracted 
within the sensor chip to lead to an energy-efficient component but with a loss of gener-
alization. Having a wearable unit that is able to hold longer on one battery charge is in 
view of this tradeoff often seen as more attractive than providing data that allow a more 
thorough analysis at a later time.

The foregoing discussion is worth keeping in mind when selecting wearable devices; 
the type and make of the integrated sensors often have a large impact and applicability 
for psychological studies. In the next section, we describe several research trends that 
take the abstraction of sensor data one step further by fusing information over time and 
from multiple sensors into higher-level concepts, such as user activity or affective state. 
Currently, most of these trends assume that data are collected and that analysis takes 
place on computing equipment with sufficient memory and processing resources. For 
some of these research trends, first steps have already been taken to embed these systems 
into the wearable devices themselves.

Wearable Sensor Information

The physical sensor devices that are integrated in wearable form represent one interesting 
aspect; what is eventually done with their data is an equally interesting one. The previ-
ous section has shown that many sensors provide so much data that their storage locally 
on the wearable, or transferring these data wirelessly elsewhere, is expensive in terms of 
energy. An alternative to abstracting the sensor signals that we can see in current sensors 
is the compression of sensor data: Similar to how images or movies that are taken with 
a camera are heavily compressed, usually only a fraction of the original data is retained, 
and other sensors routinely use compression to keep the amount of data down to a sus-
tainable amount. The processing power needed to perform the compression typically 
outweighs the fact that only a fraction of the data needs to be stored or sent wirelessly. A 
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second set of methods (and those we will focus on in this section), go beyond compres-
sion by extracting only the essential information needed for later applications from the 
sensor data. The advantage of this is a significantly lower-energy footprint (making the 
wearable smaller and requiring less recharging interruptions), which makes the resulting 
dataset smaller and less prone to contain private data from the study participants that 
is “hidden” in the large quantities of recorded sensor streams. With the aforementioned 
techniques and processing methods in mind, the next subsections will describe types of 
information that could impact future psychology research tremendously. The eventual 
aim is the wearable device’s automatic and in vivo recognition of a person’s activity, 
affect, and attention (Van Laerhoven, 2021).

Wearable Activity Recognition

The first activity recognition papers using wearable sensors, such as Van Laerhoven and 
Cakmakci (2000), demonstrated the feasibility of using data from body-worn acceler-
ometers to detect physical activities such as sitting, standing, walking, running, climb-
ing stairs, or riding a bicycle. This research was followed by varying the location where 
these sensors were being placed (from more data-friendly locations such as the knee to 
more comfortable and easier to wear locations such as the wrist, or by having multiple 
sensors) and by improving the accelerometers by combining them with gyroscopes and 
magnetometers to be able to track orientation of the sensor more reliably (as an IMU, 
see also the section “Sensors to Look Out for in Wearables”). Activity recognition has 
meanwhile grown into its own research area in which many sensors and algorithms have 
been evaluated on a growing number of benchmark datasets that hold the sensor record-
ings of volunteers performing several target activities that are to be detected. Important 
to note here is that activity recognition with wearable sensors has witnessed several waves 
in the way these research projects were set up and validated over the past decades. (For 
additional details, see also Chapter 5, this volume.)

Early research efforts focused on hardware prototypes that integrated and combined 
new sensors, such as capacitive sensing around the neck (Lukowicz, Amft, Roggen, & 
Cheng, 2010), sensing pressure changes in a house (Patel, Reynolds, & Abowd, 2008), or 
detection of activities with minute motions such as the EOG reading (Troester, Bulling, 
& Roggen, 2011). The main goal of these studies was to demonstrate that such modalities 
could in principle, often in well-controlled lab studies, be used as an interesting sensor 
modality to discern certain activities. These research contributions were less focused on 
the maximization of the detection accuracy of such systems or the demonstration that 
such systems could work in any environment.

Following these first explorations, more research in sensor data analysis and classi-
fiers in activity recognition has led to focus on the accuracy of the systems. Best practices 
emerged that were combined into a common evaluation pipeline, in which researchers 
pressed for more realistic sensor data and reproducibility (Blanke, Larlus, Van Laerhoven, 
& Schiele, 2010), as well as demonstrated the need for proper evaluation procedures 
(Hammerla & Plötz, 2015). These studies had less focus on the perfect usability or dura-
bility of the sensor systems under consideration.

Activity recognition has now arrived in a third phase where researchers use wearable 
sensors that tend to target deployments with actual users, over longer stretches of time, 
in real-world settings. More focus is currently also being placed on the system’s usabil-
ity, durability, and applicability. As current machine learning approaches have moved to 
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deep-learning models that allow so-called end-to-end learning, typical models now con-
centrate on convolutional neural networks (CNNs) and long short-term memory (LSTM) 
models, but also other alternatives are under consideration, for example, Murahari and 
Plötz (2018). The interesting concept of transfer learning promises to be able to learn 
models for activity classification from large datasets and to transfer—not learn from 
scratch—the learned model to new data or activities. Transfer learning has proven to be 
especially useful in computer vision research, where large image databases have already 
been collected. With regard to activity recognition from wearable data, this concept is 
still very much in its infancy (Hoelzemann & Van Laerhoven, 2020).

Wearable Affect Recognition

Current research has expanded from image-based affect recognition to the wearable 
approach, as image-based systems can only perform a temporal- and spatial-limited 
assessment of a person’s affect state, for instance while driving (Affectiva, www.affec-
tiva.com) or when triggered by the person (Abadi et al., 2015). Affect recognition systems 
that are wearable can detect the user’s affective state continuously, 24 hours per day, 
7 days a week, and ubiquitously, throughout the person’s day-to-day routines. Initial 
research on these approaches such as Gjoreski, Luštrek, Gams, and Gjoreski (2017) or 
Budner, Eirich, and Gloor (2017) have shown that large amounts of long-term data can 
be used for a more comprehensive analysis that might even point to overall behavioral 
patterns of the wearer. These publications also regularly use correlations between affec-
tive states and environmental conditions, such as outdoor temperature, weather condi-
tions, location, short audio analysis (such as detection of laughter), sleep quality informa-
tion, calendar metadata, and nearby persons, to map this information to situations where 
the person tends to be stressed. Essential for such a correlation analysis is contextual 
information to make the analysis understandable and insightful.

In a recent and comprehensive survey on wearable affect recognition, Schmidt, Reiss, 
Dürichen, and Van Laerhoven (2019) pointed out four other challenges besides long-term 
reasoning that remain to be tackled in this field: valence detection, hardware, datasets, 
and algorithmic challenges. For valence detection, physiological changes and the arousal 
axis of the circumplex model (Valenza, Citi, Lanatá, Scilingo, & Barbieri, 2014) have 
been linked in many previous studies. It is therefore not that surprising that approaches of 
stress detection and arousal assessment (Valenza, Lanata, & Scilingo, 2012) report accu-
racies of such methods that are high and encouraging. Valence-related changes in human 
physiology are subtler, though, and more difficult to detect automatically and conse-
quently show poorer results, such as in Schmidt, Reiss, Dürichen, and Van Laerhoven 
(2018). Hardware to record physiological data in affect recognition studies is mostly 
limited to smartwatch-like devices such as the Empatica E4 or chest-worn belts such as 
AutoSense (Ertin et al., 2011). Smart patches have to date found little application in affect 
recognition studies, but sensors and processing hardware can be integrated into the fabric 
(Reiss, Amft, & Barfield, 2015). Typical information such as ECG, EDA, and inertial 
data is bound to be supplemented by blood pressure (Vrijkotte, Van Doornen, & De 
Geus, 2000) information such as pulse wave transit time (Gesche, Grosskurth, Küchler, 
& Patzak, 2012), body microphones on the chest or abdomen (Pandia, Ravindran, Cole, 
Kovacs, & Giovangrandi, 2010), and chemical-electrophysiological sensors (Imani et al., 
2016). More datasets to test affect recognition approaches are constantly being intro-
duced; robust affect recognition systems are ideally benchmarked on redundant data 
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streams and different affective states (stress, amusement, neutral), such as the WESAD 
(WEarable Stress and Affect Data set; Schmidt et al., 2018) benchmark. Algorithmic 
challenges are continually being solved in recent research as well: With end-to-end 
approaches such as deep neural networks like CNNs, methods to preprocess the sensor 
signals (called features) to allow classification is no longer such a big design problem. 
These methods are more challenging to implement on smaller wearable devices, however 
(Bhattacharya & Lane, 2016).

Wearable Attention Recognition

For decades, attention has been focused on wearable interfaces, for wearable devices can 
be used anywhere and anytime. Thad Starner’s prediction still holds: that is, that the issue 
of attention, especially divided attention that focuses on the ability to allocate attention 
to simultaneous tasks, in wearable interfaces “will be key to developing compelling wear-
able products in the future” (2002, p. 91). With the advent of smart glasses, which incor-
porate miniature cameras that point inward at the wearer’s pupils (Morimoto, Koons, 
Amir, & Flickner, 2000), enabling the user’s gaze tracking, attention recognition has 
become a third type of application with a large spectrum of sensing applications for 
psychology. Although cameras are still relatively large and power hungry, several such 
systems have become cost-effective for shorter or laboratory-bound studies. At the same 
time, generic methods to analyze the camera data and fuse this with other sensors, such 
as inertial sensing data, have emerged (Kassner, Patera, & Bulling, 2014).

Added to eye-tracking modules, which use cameras worn near the eyes, have come 
newer types of sensing devices. One modality that has seen first integrations into com-
mercial products is the earlier-mentioned EOG electrodes embedded in smart glasses 
(Kunze, Utsumi, Shiga, Kise, & Bulling, 2013); these electrodes can coarsely detect eye 
movements and blinking, allowing one to distinguish what type of document the wearer 
is reading. Small on-skin patches have proven feasible in capacitive sensing of the wear-
er’s eye blinking in first studies (Luo, Fu, Chu, Vega, & Kao, 2020). New techniques 
for ongoing attention detection and eye-tracker calibration (Murauer, Haslgrübler, & 
Ferscha, 2018) also are used for researching aspects of attention, during both strenuous 
tasks and everyday activities, such as face-to-face conversations (Gupta, Strivens, Tag, 
Kunze, & Ward, 2019) and moments of eye contact between adults and children (Ye et 
al., 2012). Wearable attention research has thus expanded from ever accurate tracking of 
coordinates where the user’s gaze is focusing at, to a more diverse set of data involving 
attention information.

Conclusions

This chapter presents an overview of current trends in wearable sensing systems. The 
ultimate aim was to predict what types of wearable sensors might become available in the 
future and in particular how these might impact future psychological studies.

What information can be collected from people in future studies through wearable 
sensors? We have seen that presently robust and detailed movement and activity of the 
wearer through IMUs can already be captured in current wearable devices. The near 
future will see mostly improvements in how these data can be analyzed and interpreted 
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on the sensor devices themselves. Other pieces of information entail vital signs of the 
user. Most of these are of course already known in psychology, but wearables allow this 
information to be captured in a person’s daily routines, in their day-to-day lives, and over 
much longer 24/7 periods of time. Video and depth data offer visual information that 
researchers can easily interpret afterward, with a multitude of applications in validating 
other sensor data.

Which challenges do wearable sensor technologies pose? Usage of wearable sensors 
should always take the reproducibility and accuracy of the information they deliver into 
consideration. Many sensor technologies have become mature enough to deliver data 
that can be compared and interpreted, even when the devices are no longer available, 
but plenty of systems have been introduced in which this is more difficult. The rapid 
developments in the area of sensor chips is one reason, but another reason is the drive 
especially in wearables for a quick abstraction of sensor data to keep systems small and 
energy efficient.

Three types of information that can be extracted and abstracted from the wearable 
sensors’ data streams were proposed as especially promising, which in the future could 
be delivered by a wearable device: (physical) activities, affect, and attention. Although we 
are still far from having commercial systems that can deliver any type of activity, affective 
state, or attention model, some systems have started to emerge that can reliably deliver 
some basic concepts in this direction. For activity recognition systems, some wearable 
systems are capable of counting steps, identifying fitness workouts, or detecting basic 
activities such as sleeping or sitting still over prolonged stretches of time. For affect detec-
tion systems, binary stress detection approaches have shown good performance results 
in selected, controlled settings. For attention, coarse eye motions and eye blinks can be 
detected.

The final, more technical message of this chapter is that opportunistic, Big Data-
driven approaches (all that can be sensed is recorded, leaving it to after-the-fact analysis 
on high-performance clusters of computing power to extract the more important infor-
mation) are not likely to become widely adopted in wearable sensing in the near future. 
Wearables need to remain comfortable, primarily (apart from other factors such as hav-
ing appealing designs and being socially acceptable), and current battery technologies 
do not allow wearables to store or send more than the most essential data only. This 
bottleneck often leads wearable device developers to favor abstracting the sensor data as 
soon as possible to keep the system small and low power, as a tradeoff. Approaches that 
aim at recording the original, more precise, and large amounts of data do remain harder 
to implement.

  Note
1.	 www.st.com/en/mems-and-sensors/lis2ds12.html.
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C H A P T E R  O V E R V I E W

Combining passive mobile sensing with active assessments is a silver bullet in psycho-
logical everyday life research, as both approaches can highly benefit from each other. 
Enriching e- diaries with continuous mobile sensing allows triggering the right question at 
the right time point. Conversely, enriching mobile sensing with momentary assessments 
enables us to understand the psychological content of mobile sensing parameters. After 
a short introduction to e-diary research, two main themes structure this chapter. In the 
first part, we will highlight conceptual and design issues of sensor- triggered e- diaries and 
add practical examples from research using activity- triggered, GPS- triggered, physiology- 
triggered, and audio- or video- triggered e- diaries. In the second part, we will explain 
how e-diary assessments enable uncovering the psychological content of pure sensing 
parameters. We close our chapter by presenting the ambulatory assessment toolbox as 
well as highlighting conclusions, limitations, and prospects.

E‑Diaries as an Active Assessment Tool in Psychology

During the last decade, e- diaries became more and more used in psychological research, 
driven by technological progress in the area of digital mobile tools (e.g., smartphones), 
the general population’s increasing acceptance of those tools, as well as advances in 
statistical approaches to analyze the resulting longitudinal data. Multiple terms have 
been used to describe e-diary methods in psychology, including the experience sampling 
method (ESM; Csikszentmihalyi & Larson, 1987), ecological momentary assessment 
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(EMA; Stone & Shiffman, 1994), or ambulatory assessment (Fahrenberg & Myrtek, 
1996). These terms are often used interchangeably, although their historical antecedents 
and original aims differ (Wilhelm, Perrez, & Pawlik, 2012). Usually, we adopt the term 
ambulatory assessment (Trull & Ebner-Priemer, 2013) in accordance with the name of 
the primary organization that brings together investigators of daily-life research meth-
ods, the Society for Ambulatory Assessment (www.ambulatory-assessment.org). How-
ever, for the present chapter, our focus is on how to combine passive mobile sensing 
with active e-diary assessments and, therefore, to avoid confusion, we refrain from using 
higher-ranking terms such as ambulatory assessment or ecological momentary assess-
ment. To gain more basic information on conventional diary approaches, see Mehl and 
Conner (2012).

Although terms and their meaning are subject to debate, these methods are dis-
tinctly characterized by a set of specific features or advantages, namely, (1) the assess-
ment in real-life environments, therewith limiting lab-based biases and increasing the 
ecological validity of findings (Reis, 2012); (2) the assessment in real time, or close to real 
time, therewith limiting retrospective distortions (Schwarz, 2012); and (3) the focus on 
investigating within-subject mechanisms, processes, and dynamics, therewith enabling 
an idiographic focus (Hamaker, 2012). Above all, these methods are sought to provide 
a representative and (nearly) unbiased sample of an individual’s emotions, thoughts, and 
behaviors as they unfold in daily life.

In comparison with classical retrospective questionnaire-based research in psychol-
ogy, e-diary research involves additional methodological decisions, most importantly 
the time-based design. As mentioned earlier, e-diaries are best suited to catch emotions, 
thoughts, and behaviors as they occur dynamically in daily life. As those parameters 
(e.g. emotions) cannot be assessed continuously, specific sampling strategies have to be 
designed to catch those dynamics. Sampling strategies can be very heterogeneous and 
span from high-frequency sampling such as having e-diary assessments every 15 min-
utes (Ebner-Priemer, Kuo, et al., 2007) to once-daily end-of-day diaries over a total 
assessment period of one year or more (Ebner-Priemer et al., 2020). When defining a 
time-based design, the first question is about the goal of the assessment itself. Shiffman 
(2007), and quite similarly Fahrenberg, Myrtek, Pawlik, and Perrez (2007), differenti-
ate specific strategies, such as getting complete coverage of the phenomena of interest 
over time (e.g., having the exact number of smoked cigarettes), drawing representative 
samples of moments or events in everyday life (having, e.g., hourly ratings of the current 
mood) or mapping the dynamics of specific processes. Although higher-order strate-
gies or rules on how to design these sampling strategies are rarely at hand, one com-
mon understanding is that the sampling frequency must fit the dynamics of interest 
(Bolger, Davis, & Rafaeli, 2003; Ebner-Priemer & Sawitzki, 2007). Thus, faster chang-
ing psychological processes (i.e., processes with a higher dynamic) should be assessed 
with a higher sampling frequency, that is, more assessments within a given time frame. 
However, when designing the sampling scheme, the researcher has to carefully balance 
the sampling time interval, the number of items at each assessment, and the length of 
the assessment period to ensure high acceptance, good compliance, and low reactivity 
(Santangelo, Bohus, & Ebner-Priemer, 2014; Wrzus & Neubauer, 2021). This balance 
can be achieved by trying to keep the number of repeated inquiries and the assessment 
period as short as possible and only as long and as frequent as necessary (Dejonckheere 
& Erbas, 2021).
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Enhancing E‑Diary Assessments with Passive Mobile Sensing 
and Real‑Time Analysis: The Case of Sensor‑Triggered Diaries

Even with elaborated time-based designs, one major obstacle in e-diary research is still 
the ability to deliver the right question at the right time point. This endeavor may sound 
trivial, but it can be most complex, especially when the events of interest are rare. A prac-
tical example may be helpful to clarify this point. In one of our studies, we were interested 
in the effects of a green environment on mood (Tost et al., 2019). How can we ensure 
that during the rare moments of visiting parks or walking through the woods, e-diary 
assessments are posed? Context-triggered e-diary assessments can do the trick, with pas-
sive sensing on environmental data, screening continuously how green the environment 
is, real-time analyses to identify moments of interest (e.g., parks), and context-triggered 
assessments to obtain mood assessments in those specific situations and moments of 
interest. Those sensor-triggered assessments are not yet included in mainstream psycho-
logical research, partly because of hard- and software constraints, but multiple empirical 
studies have been conducted, mainly in the following four areas: (1) activity-triggered 
e-diaries, (2) physiology-triggered e-diaries, (3) GPS-triggered e-diaries, and (4) audio- or 
video-triggered assessments.

Sensor‑Triggered E‑Diaries: The Rationale

We begin our explanation of the rationale of sensor-triggered e-diaries using the example 
of activity-triggered e-diaries, as this is, in our view, the most easily explained sensor-
triggered diary (Ebner-Priemer, Koudela, Mutz, & Kanning, 2013; Kanning, Ebner-
Priemer, & Schlicht, 2013). The encompassing research question in several papers on 
this topic was to examine the relationship between physical activity and mood with the 
hypothesis that physical activity can improve momentary mood. In a paper from 2013, 
Ebner-Priemer, Koudela, Mutz, and Kanning nicely visualized the underlying idea of trig-
gered assessments as pictured in Figure 13.1.

Figure 13.1A depicts physical activity assessed via a wearable fixed on the hip over 
a 24-hour time course in a single subject (three-dimensional accelerometer varioport-E; 
rectified AC-values were smoothed by a moving average over 10 minutes). The 24-hour 
time course is characterized by low physical activity during nighttime (22.00 through 
06.00) and several peaks of high physical activity during daytime (e.g., at around 07.00, 
15.00, and 17.00 on day 1 and at around 08.00 on day 2). What would happen if we were 
to combine this passive mobile sensing with fixed e-diary assessments like assessments 
every 60 minutes? E-diary assessments would temporarily coincide with some peaks of 
physical activity, as illustrated in Figure 13.1B, but other peaks would be missed; that is, 
those peaks would not be accompanied with e-diary ratings, and no information about 
these rather rare events would be gathered. To address the relationship between physical 
activity and momentary mood via e-diary ratings, the maximization of the variance is 
key. In the example at hand, this would mean obtaining e-diary assessments during all 
episodes of high physical activity as well as during episodes of low physical activity, as 
depicted in Figure 13.1C. This results in the maximization of assessed variance, or, in 
other words, an intentional oversampling of episodes of interest, which in our example 
are the rare events of high physical activity. (Of course, there are caveats to consider, such 
as ensuring that data from the entire spectrum is represented; we will attend to these 
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caveats in detail later in this chapter.) Such an approach might be best understood when 
compared to classical laboratory research. One indisputable advantage of laboratory 
research is the possibility of experimental manipulation. The experimenter defines which 
stimuli will be presented to the participant. To achieve meaningful findings, significant 
stimuli are usually presented. To study in a laboratory context how physical activity 
influences mood states, an experimenter would try to cover the full range of physical 
activity. Just letting participants walk at 2.3, 2.4, and 2.5 miles per hour (mph) might not 
be sufficient to reveal the existing effects. Adding experimental conditions with 2.0, 4.0, 
and 6.0 miles per hour, therewith including the full natural spectrum, would maximize 
the variance of the independent variable. This very same idea, namely, getting the full 
spectrum of possible experiences, constitutes the basis of sensor-triggered diaries, with 
the additional advantages of heightened ecological validity.

Whereas in hindsight it is evident when to trigger assessments (e.g., around 07.00, 
15.00, and 17.00 at day 1 in our example), it is unfortunately much more complex in real 
time. Related to Figure 13.1B, it seems evident that in order to investigate the relation-
ship between physical activity and mood, the peak of physical activity at 17.00 should be 
accompanied by an e-diary mood assessment. Under the assumption that the relationship 
between both parameters is linear, a huge effect on mood should be expected at this time 
point. However, from a real-life perspective, it is unclear, at this very moment, if this 
peak will still increase from 150 to 250 milli-g, as the peak before at around 16:00, or 
if the current 150 milli-g will stay the maximum. In other words, we are searching for 
significant events without knowing the width of these events, which vary between and 
within participants. Some participants are rather active, whereas others are true couch 
potatoes. In addition, physical activity does also differ within-subjects, with weekends 

  FIGURE 13.1.    (A) Time course over 24 hours of physical activity (10-minute moving average) in a 
single subject; (B) combined with a fixed e-diary assessment in 1-hour intervals; or (C) combined 
with an interactive e-diary assessment. From Ebner-Priemer et al. (2013).
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showing different patterns compared to weekdays. We have used adaptive thresholds in 
our studies to cover this issue. In the following, we will report our real-time algorithm to 
detect episodes of physical activity in more detail. However, this is again just an illustra-
tive example, as the other sensor-triggered diaries work in a quite similar fashion.

Setting Up a Sensor‑Triggered E‑Diary: Conceptual Decisions

Incredible, yet not much noticed, pioneer work on sensor-triggered assessments was 
already done in the last century by Michael Myrtek (summarized in Myrtek, 2004). 
Most of our conceptual decisions are based on his valuable work, which will be described 
in more detail in the next section on physiology-triggered e-diaries. From a conceptual 
point of view, several basic decisions have to be made when setting up an algorithm for 
sensor-triggered assessments: (1) defining events, (2) considering the dynamical relations 
between the parameters of interest, (3) defining the number of intended events, (4) decid-
ing about the adaptive threshold, and (5) defining how to determine thresholds (see also 
Ebner-Priemer et al., 2013, for further details). We provide insights into the theoretical 
and empirical basis for these five decisions in the given example for activity-triggered 
e-diaries as reported in Ebner-Priemer and colleagues (2013):

1.  Following the work of Myrtek (2004), we defined three events as triggers for the 
e-diary: an activity event, an inactivity event, and a time-limited event. Assessing both, 
the event of interest and the opposite event (i.e., instances of activity and inactivity in 
this example), might sound trivial, but we have seen empirical studies in which research-
ers forgot to assess their control condition, thereby making analyses nearly impossible. 
Time-limit events are interspersed when no activity or inactivity events are detected over 
a longer period of time. To have time-limit events, that is, having assessments at least 
every 2 hours, provides assessments during normal/medium values of the parameter of 
interest (which might be useful in case of nonlinear relations) and enables statistical con-
trol of autocorrelation processes. Moreover, these time-limit events may provide the par-
ticipant with the information that the system is still running properly.

2.  Considering the expected dynamical relation between the parameters of interest, 
in our case physical activity and mood, is also of great importance. Based on the prior 
e-diary-based work of Schwerdtfeger, Eberhardt, and Chmitorz (2008) in which they 
showed that the temporal relation between affective states and physical activity was most 
pronounced in short periods, and also based on the guidelines (Haskell et al., 2007) that 
postulate that being physically active for a minimum of 10 minutes leads to health ben-
efits, we assumed that relatively short time frames would be most suitable. Accordingly, 
we have set the length of an event at 10 minutes.

3.  As the number of events per day, we chose 10, as this comes with reasonable 
participant burden, still enables us to consider autocorrelations, and permits every event 
type several times a day.

4.  Thresholds were defined to be adaptive: When physical activity, measured in milli-
g, was low throughout the data collection period (i.e., a very inactive subject), both the 
activity and the inactivity thresholds decreased from one e-diary assessment to the next. 
In this way, e-diary assessments during the most active and least active episodes were 
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determined for each subject regardless of the absolute amount of activity. This approach 
also works fine for very active individuals: When too many activity episodes are detected 
(which is the same as too few inactivity episodes), the thresholds for both the activity and 
the inactivity episodes are increased to obtain less e-diary ratings during their individual 
most active and more e-diary scores during individual least active episodes. To achieve a 
similar number of events, we set the aspired ratio for activity/inactivity episodes to 1:1. 
Technically, we stored the number of detected (and triggered) events and simultaneously 
calculated the ratio between inactivity and activity episode-based triggers. After at least 
six triggers (settling phase), adapting the thresholds was activated. If the (activity/inactiv-
ity)–trigger ratio was above 2.05, both thresholds were increased by 5%, and if the ratio 
was below 0.95, both thresholds were decreased by 5%. In addition, the occurrence of 
time-limit triggers (i.e., no activity or inactivity event could be detected), the threshold 
for activity episodes was decreased by 5% and the threshold for inactivity episodes was 
increased by 5% (i.e., increasing the chance for both events). See also Meschtscherja-
kov, Reitberger, and Tscheligi (2010) on adaptive thresholds for user behavior-driven and 
context-triggered experience sampling.

5.  We defined the thresholds using a combination of theoretical, empirical, and 
time-based design considerations. Again, details can be found in the paper by Ebner-
Priemer and colleagues (2013). There we also validated our activity-triggered approach 
showing that the assessment of rare events (mood assessment during physically active 
episodes) was quadrupled compared to a random e-diary sampling. However, it must be 
noted as a limitation that the ability to improve the number of assessed events of interest 
is constricted by the actual frequency of those events. For example, assessing a bedridden 
patient, no algorithm will be able to find an actual active episode. Although our algo-
rithm uses adaptive thresholds, which are not fixed to absolute values but we look for the 
most active episodes in each participant, the algorithm fails in subjects with no variability 
regarding their activity. Good feasibility and compliance of activity-triggered assessments 
have been reported in the literature (e.g., Dunton, Dzubur, & Intille, 2016).

Beyond Activity‑Triggered E‑Diaries:  
Methodological Considerations and Studies

A subtheme of activity-triggered e-diaries is sedentariness-triggered e-diaries, as they 
also use acceleration data from wearables. However, sedentariness is more than missing 
activity, from both an empirical and a conceptual perspective. There is growing evidence 
that sedentariness is a risk factor for human health over and above low physical activity 
(World Health Organization [WHO], 2020). In particular, longer sedentary bouts, such 
as more than 30 minutes of uninterrupted sitting, may lead to detrimental health effects 
(WHO, 2020). Importantly, definitions of sedentariness have two components: body pos-
ture and movement intensity or energy expenditure. The Sedentary Behavior Research 
Network (Tremblay et al., 2017, p. 9) defined sedentariness as “any waking behavior 
characterized by an energy expenditure ≤ 1.5 metabolic equivalents (METs), while in a 
sitting, reclining, or lying posture.” Accordingly, it is of great importance to reveal body 
posture from the acceleration device to estimate sedentariness.

In a methodological paper, Giurgiu, Niermann, Ebner-Priemer, and Kanning 
(2020) described their approach for sedentariness-triggered assessments, combining an 
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accelerometer with real-time analyses capabilities (move 4; www.movisens.com) via Blue-
tooth Low Energy to an e-diary (movisensXS; www.movisens.com) for real-time feedback. 
In detail, a thigh-worn sensor analyzes data on body position (differentiating between a 
sitting or lying position, and an upright position; for details on how to get body position 
data from accelerative signals, see Chapter 5, this volume) and sends this information in 
real time to the smartphone. Each time a specific, uninterrupted amount of time was spent 
in a sedentary posture (e.g., 20 or 30 minutes), the e-diary was triggered.

Giurgiu, Niermann, and colleagues (2020) could show in multiple datasets that the 
sedentariness-triggered algorithm captured about 83% of all sedentary bouts, which was 
superior to simulations of randomly triggered prompts. These authors even argued that 
not using a sedentariness-triggered design poses the risk of an incomplete picture of sed-
entariness since rare events (such as sedentary bouts while on public transport) might be 
missed. Convincingly, the authors argued that their real-time feedback algorithm might 
be the prospective basis for just-in-time adaptive interventions (JITAIs; Nahum-Shani et 
al., 2018) to reduce sedentariness and its negative health outcomes.

As JITAIs are handled by Nahum-Shani in Chapter 30, this volume, we just want to 
emphasize that tailored suggestions for physical activity based on context (Klasnja et al., 
2019) or on past activity (Mayer et al., 2018) are promising, as is the possibility of detect-
ing eating behavior via accelerometry. Goldstein, Hoover, Evans, and Thomas (2021) 
report on an accelerative-device-driven algorithm that tracks eating lapses in obese par-
ticipants, demonstrating discrepancies of reports (and their distributions) that compare 
device-based detection to time-based e-diary assessments. Expanding on such a setup, 
Mondol and colleagues (2020) report a system that combines smart wearables, smart-
phones, Bluetooth beacons, and an eating gesture detection algorithm to monitor family 
eating dynamics in all members of a family simultaneously.

Activity‑Triggered E‑Diaries: Empirical Findings

The activity-triggered approach has been successfully used in a series of studies to tackle 
the real-life relationship between physical activity and mood in healthy populations 
(Reichert et al., 2016, 2017) and patient samples (Reichert, Schlegel, et al., 2020), in 
students (Kanning, Ebner-Priemer, & Brand, 2012), and the elderly (Kanning, Ebner-
Priemer, & Schlicht, 2015), showing that both constructs are associated across time. 
Using activity-triggered e-diaries, Reichert and colleagues (2016) revealed that mood is 
an antecedent driving spontaneous nonexercise activity (such as climbing stairs or catch-
ing the train) within a person’s everyday life (replicated by Koch et al., 2018, in adoles-
cents). Reichert and colleagues (2017) also found that structured exercise activities (such 
as jogging and playing soccer) versus spontaneous nonexercise activities (such as climbing 
stairs, catching the train) do show distinct within-subject effects on mood (replicated for 
incidental activities by Koch et al., 2020, in adolescents).

Similar to activity-triggered approaches, the sedentariness-triggered e-diaries not 
only revealed superiority in methodological studies over and above pure random sam-
pling but could also contribute substantial findings to the existing literature (Kanning, 
Niermann, Ebner-Priemer, & Giurgiu, 2021). To reduce sedentary time, for example, 
with JITAIs, it is important to understand its antecedents and consequences, as well as its 
social and environmental contexts, such as where, when, and with whom it takes place, 
and what people are doing while being sedentary. Giurgiu and colleagues (2019; Giurgiu, 
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Plotnikoff, et al., 2020) investigated the relationship between sedentary behavior and 
mood in everyday life and found evidence of a reciprocal relationship between both con-
structs. Put simply, being more sedentary in daily life led to lower levels of well-being and 
energy (Giurgiu et al., 2019), whereas higher momentary ratings of valence and energetic 
arousal predicted lower amounts of subsequent sedentary behavior, moderated by con-
text (home vs. work; Giurgiu, Plotnikoff, et al., 2020). In addition, the article by Giurgiu, 
Koch, and colleagues (2020) was one of the first studies indicating that in everyday life on 
a within-subject level, breaking up sedentary behavior may indeed enhance one’s mood.

GPS‑Triggered Diaries: Empirical Findings

Contextual factors have a critical impact on human behavior, emotions, thoughts, and 
symptomatology. Examples from a clinical perspective include the influence of inter-
personal interactions at work on depressive symptomatology, the occurrence of anxiety 
and panic in an elevator, and substance use depending on the social setting or persons 
present. Thus, when assessing human behavior, emotions, thoughts, and symptomatol-
ogy, knowledge of context is of great importance. Fortunately, aspects of context can 
be estimated via geolocation (e.g., via GPS tracking). Froehlich and colleagues (2006) 
had 15 years before already assessed the geolocation and investigated its relationship to 
personal experience, combining e-diaries with GPS tracking. Again using geolocation 
tracking, Epstein and colleagues (2014) showed a decreased craving in polydrug users 
when being located in more disordered neighborhoods. In a similar vein, Gustafson and 
colleagues (2014) implemented real-time feedback based on GPS data into a smartphone 
application, aiming to provide mental support for patients with alcohol use disorder 
when approaching their favorite bar.

Real-time analyses of GPS data during patients’ daily lives allow detection of sit-
uations/contexts of interest and obtaining additional parameters and information via 
GPS-triggered assessments. The goal here again is to be able to obtain detailed informa-
tion in very specific situations. One of the first examples of GPS-triggered diaries is the 
landmark study from Froehlich, Chen, Smith, and Potter (2006) with the intriguing title 
“Voting with Your Feet: An Investigative Study of the Relationship between Place Visit 
Behaviour and Preference.” They triggered new e-diary assessments, when the analyzed 
GPS signal shifted from “mobile” to “stationary” and remained in that state for at least 
10 minutes, revealing a new place visit.

In a more recent study, we investigated how inner-city green spaces relate to affective 
well-being and its neurobiological underpinnings (Tost et al., 2019). Prior work suggested 
that urbanicity had negative effects on the prevalence of mental disorders and also on 
neural social stress processing. However, the underlying factors of these negative effects 
(such as air pollution and light or noise exposure) remained unknown. To shed light on 
these questions, Tost and colleagues (2019) monitored whereabouts continuously over 1 
week using GPS tracking in two separate samples (33 participants and 52 participants, 
respectively). A combined assessment strategy was implemented so that mood ratings 
were collected via GPS-triggered e-diaries as well as via time-based samplings, that is, 
the assessments were randomly prompted during the daytime within a range of 40 to 100 
minutes. The GPS-trigger algorithm monitored the distance between the current and the 
previous locations of the participants in real time and triggered additional e-diary assess-
ments, whenever distances larger than 500 meters were covered. The sampling strategy 
was implemented in movisensXS (movisens GmbH, https://xs.movisens.com).
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The algorithm was based on two methodological studies showing the superiority of 
GPS-triggered e-diary assessment when searching for rare environmental contexts, such 
as parks and other areas with high green density (Dorn et al., 2015; Törnros et al., 2016). 
In detail, Dorn and colleagues (2015) added a spatial component incorporating the land 
use associated with the participant’s location, resulting in more unique trigger positions 
and an increase of triggers at less frequently visited land uses, helping to obtain a spatial 
spreading of the e-diary assessed locations. Törnros and colleagues (2016) simulated 
four different sampling schemes: two location-based sampling schemes incorporating the 
environmental characteristics (land use and population density), a pure time-based sam-
pling scheme triggering reports every hour as well as an activity-triggered design. Their 
location-based sampling obtained more unique trigger positions, more triggers during 
rarely visited types of land use, and a greater spatial spread compared to the sampling 
strategies based on time or distance.

However, the GPS-triggered e-diaries not only were interesting from a methodological 
perspective but also delivered meaningful findings concerning content (Tost et al., 2019). 
Urban greenery (lawns, shrubs, trees) were mapped via high-resolution (20 × 20 cm) aerial 
photographs of the region to momentary mood ratings. Both samples of Tost and colleagues 
(2019) showed a positive relationship between urban greenery and mood. Multilevel analy-
ses revealed a green space-induced mood enhancement. In addition, interindividual differ-
ences of this intraindividual relationship suggest that individuals with higher psychological 
risk especially benefited from this momentary mechanism, as well as participants who 
showed less activation in the dorsolateral prefrontal cortex (a structure associated with 
emotion regulation) during negative emotion processing. In further analyses on this dataset 
with GPS-triggered e-diaries, Reichert, Braun, and colleagues (2020) were able to show a 
specific association of everyday life activity with momentary mood ratings mediated by the 
subgenual part of the anterior cingulate cortex, a key emotion regulatory site.

In an ongoing multisite addiction research consortium (Heinz et al., 2020), we are 
assessing trajectories of losing and regaining control over drug intake. From a method-
ological perspective, this is challenging as multiple time frames might be of importance 
at the same time. Losing control might happen subtly over many months, but also on 
an hourly basis. Accordingly, we set up a sophisticated time-based design with various 
real-time algorithms to catch meaningful variance across different time frames, with 
a 12-month assessment period per participant. Specifically, we implemented geofence-
triggered e-diaries. Drinking spots in the study region were subjected to a digital map. 
An interactive algorithm triggers participants to fill out e-diary assessments when they 
approach such a spot.

Physiology‑Triggered E‑Diaries: Empirical Findings

The godfather of triggered diaries is, without doubt, Michael Myrtek. He started a 
research program developing physiology-triggered e-diaries in the 1990s (summarized 
in Myrtek, 2004) as a member of the Psychophysiological Research Group at the Univer-
sity of Freiburg (Germany). Being interested in psychophysiological covariation in daily 
life, he developed a real-time algorithm to separate emotional and physical influences 
on physiological processes, the so-called additional heart rate. As extensively explicated 
by de Geus and Gevonden in Chapter 6, this volume, on physiological measures in daily 
life, physiological processes heavily depend on physical behavior, such as physical activ-
ity and posture (see also Brouwer, van Dam, van Erp, Spangler, & Brooks, 2018). In 
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detail, physiological processes are more dependent on posture (more explained variance) 
than on psychological processes (less explained variance). Accordingly, it is inevitable 
to control for these confounds, if we are interested in the psychological influences such 
as emotions or stress on these physiological processes. Myrtek (2004) called the heart 
rate part, which was partly corrected for activity influences, “additional heart rate.” As 
pronounced affective episodes are quite rare in daily life (i.e., they do not happen several 
times a day in regular intervals; for an excellent illustration of such a rare occasion, see 
Wilhelm & Grossman, 2010), Myrtek monitored heart rate and physical activity in daily 
life and separated in real time heart rate increases, which were not caused by physical 
activity, the so-called additional heart rate. This additional heart rate was taken as a 
physiological indicator of momentary emotional activation or mental stress (for a critical 
view and alternative possibilities to explore real-life estimates of emotion based on heart 
rate, see Brouwer et al., 2018). When the recorder–analyzer system detected that the 
additional heart rate exceeded a certain threshold, a handheld PC was triggered, which 
in turn signaled the participant to self-report momentary affective states. Our earlier 
reported activity-triggered diary methods were strongly influenced by Myrtek’s work, as 
he already integrated currently used components such as adaptive thresholds and time-
limit events. His real-time additional-heart-rate-triggered algorithm has been used and 
validated in many studies measuring a total of 1,300 participants over a 24-hour period 
each (Myrtek, 2004); these studies investigated psychological phenomena such as intero-
ception, perceptions of emotions, as well as stress at work and during leisure time. Unfor-
tunately, applications of physiology-triggered diaries in everyday life are still extremely 
rare, which can be partly explained by the fact that most physiological recorder systems 
do not provide real-time analyses and interfaces for e-diaries. However, the progress in 
mobile digital technology in the last decade has made such approaches much easier to 
implement, and, although still far from being a mainstream method, we see new studies 
with physiology-triggered e-diaries popping up occasionally. We will report those studies 
in the next section of this chapter.

More recent studies that used the original algorithm by Myrtek (2004) did investi-
gate, for example, the relation between affect, memory, and physiological processes in 
daily life. Loeffler, Myrtek, and Peper (2013) could demonstrate that psychophysiological 
arousal (additional heart rate) at the time of encoding word lists in daily life, enhanced 
the recall of negative words in negative emotional conditions, whereas low psychophysio-
logical arousal did facilitate the recall of positive words, therewith evidencing the ecologi-
cal validity of traditional laboratory findings. In a follow-up paper, Loeffler and Peper 
(2014) broadened their findings to include psychophysiological instability. Ebner-Priemer 
and colleagues (2008; Ebner-Priemer, Welch, et al., 2007) also used Myrtek’s original 
algorithm to investigate psychophysiological covariation in patients with borderline per-
sonality disorder. Although they could show, as expected, heightened additional heart 
rate in the patient sample (Ebner-Priemer, Welch, et al., 2007) as well as significant rela-
tions between affective reports and physiological parameters in daily life (Ebner-Priemer 
et al., 2008), investigating physiological parameters in mental health samples comes with 
limitations as some mental health medications are known for their effects on cardiovas-
cular processes (Ebner-Priemer, Welch, et al., 2007).

In a more recent paper, Hoemann and colleagues (2020) used a physiology-triggered 
e-diary approach, which they label “context-aware experience sampling.” They used real-
time analyses to trigger e-diaries during heart rate increases, which were not accompa-
nied by physical activity. Due to technical reasons, they only used 8-hour recordings and 

320	 Technological Know-How and Methodological How-To 	



manually adjusted thresholds. As a novel and promising approach, they used machine 
learning to better understand the huge variability within and between participants as 
well as within and across emotion categories (see also Hoemann et al., 2021).

Van Halem, Van Roekel, Kroencke, Kuper, and Denissen (2020) reported a very rare 
example of an electrodermal-activity-triggered e-diary. Electrodermal activity (EDA) is a 
very interesting signal, as it is purely driven by sympathetic activity. This is in contrast to 
heart rate, which is driven by sympathetic and parasympathetic branches of the heart (for 
details, see the contribution of de Geus and Gevonden in Chapter 6, this volume). EDA 
is less robust and not so easy to assess in daily life. However, van Halem and colleagues 
(2020) provided participants with gelled electrodes attached to the palmar surface and 
added kinesiology tape and special gloves to ensure proper fit in daily life situations. Trig-
gers were both random and based on momentary increases in the skin conductance level 
(SCL) controlled for physical activity (steps). The algorithm was implemented in movisen-
sXS in combination with an EdaMove3 sensor (both from www.movisens.com). As an 
adaptive algorithm was not at hand, van Halem and colleagues based their thresholds at 
the beginning of each recording on a previously acquired distribution of SCL values. Dur-
ing the ongoing recording, they increasingly complemented the group threshold by per-
sonal cutoffs based on the person’s own SCL distribution. As hypothesized, the authors 
could show a meaningful relation between sympathetic activation (SCL) and subjective 
ratings of arousal and positive energy. Even more worth reading is their methodological 
considerations on how to define future SCL-triggered e-diaries, taking the dependency of 
level and slope of these signals into account (law of initial values). The groundwork for 
heart rate variability-triggered e-diaries has been set by Verkuil, Brosschot, Tollenaar, 
Lane, and Thayer (2016).

Audio‑ or Video‑Triggered E‑Diaries: Empirical Findings

Wu and colleagues (2021) reported a fascinating approach using hearing aids to trig-
ger e-diaries to shed light on compliance and missing data in e-diary assessments. In 
detail, they recruited hearing aid users and provided specific study hearing aids capable 
of logging and transmitting environmental sound information in real time to a connected 
smartphone which in turn triggered e-diary assessments. Logging data on unanswered 
e-diary prompts revealed that missing data occurred systematically in situations that 
were less quiet and contained more speech, noise, and machine sounds, pointing to more 
challenging environments. Regarding the advantages of using real-time analyses and fea-
ture extraction of highly sensitive data on privacy, see also the section “Conclusions, 
Limitations, and Future Prospects” on future prospects in this chapter. Regarding video 
data, real-time analysis and logging using Google glasses have been described (e.g., by 
Ye, Moynagh, Albatal, & Gurrin, 2014).

Enhancing Passive Mobile Sensing with E‑Diary Assessments

Although up to now we have highlighted just the advantages of adding mobile sensing to 
classical e-diary research, especially promoting the possibilities of continuous real-time 
analyses and sensor-triggered diaries, the opposite method, enhancing mobile sensing 
with e-diary assessments, is, of course, also very promising. Whereas mobile sensing data 
can be assessed over prolonged periods of time with a high sampling frequency and low 
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participant burden, those parameters (like smartphone on/off, number of phone calls, 
physical activity estimated by GPS, and acceleration data of the smartphone) are mostly 
not the psychological parameters of interest but rather are just approximations of psy-
chologically relevant parameters. This becomes evident when we look at physical activity. 
Physical activity has been successfully used to predict the course of Parkinson’s disease, 
depressive symptomatology, the success of hip replacement, cancer-related fatigue, fitness 
level, epileptic seizure, personality traits, pain, cardiovascular processes, manic episodes, 
and so on. But what do we know if we detect decreased physical activity over the past 
week in a given participant? Is this evidence for increased pain, for an upcoming depres-
sive episode, for influenza, or for COVID? Considering classical psychometric concepts, 
the reliability in assessing physical activity via accelerometers is usually high, but the 
validity clearly depends on the construct of interest. Frankly, many digital phenotyping 
parameters are unspecific (data upload, incoming calls, battery power) and are not very 
closely related to the psychological phenomena of interest. E-diary assessments can help 
to better understand mobile sensing parameters.

The automated real-time prediction of upcoming affective episodes in patients with 
bipolar disorder may serve as an example to further elaborate this issue. In this scenario, 
mobile sensing or digital phenotyping is a prime candidate (Ebner-Priemer & Santangelo, 
2020; Ebner-Priemer et al., 2020), as mobile sensing parameters are closely related to the 
psychopathology of interest (e.g., altered sleep, altered activity, altered communicative-
ness) and prevention of new episodes is a major treatment goal. The basic idea of these 
approaches is quite simple. Namely, those mobile sensing parameters that are closely 
related to psychopathological features are monitored and analyzed in real time, and if 
an algorithm detects that a critical number of parameters exceed certain thresholds, the 
patient or the treating psychiatrist is alarmed (Mühlbauer et al., 2018). However, how do 
we train such an algorithm? We need high-resolution ground truth labels to learn what 
critical thresholds and parameters are.

The golden standard in digital phenotyping in bipolar patients was for a long time to 
have diagnostic interviews each month (Ebner-Priemer & Santangelo, 2020). However, such 
assessments do not deliver dimensional fluctuating values of real-time psychopathology con-
tinuously over prolonged periods of time. In other words, with such infrequent assessments 
a precise determination of a beginning new episode is impossible. However, this would 
be exactly the information we need for training our algorithms. Thus, a more promising 
approach is to statistically combine retrospective dimensional and categorical interviews 
(covering the last weeks) with daily e-diary self-ratings, resulting in a latent psychopathol-
ogy variable dimensionally fluctuating from day to day (see Ebner-Priemer et al., 2020). In 
other words, mobile sensing can profit from e-diaries to fully leverage its potential.

Conclusions, Limitations, and Future Prospects

As stated several times in this chapter, we see great potential in combining passive mobile 
sensing with more active e-diary assessments, leveraging benefits for both approaches. Or 
stated in other words, we do not understand what we consider an artificial differentia-
tion between mobile sensing and e-diary assessments. Both share the same advantages 
and goals, like getting ecological valid data in real time to model within-subject dynam-
ics, predicting upcoming events, and delivering personalized interventions at the right 
moments. Accordingly, our technological setup, the Ambulatory Assessment toolbox (see 

322	 Technological Know-How and Methodological How-To 	



Figure 13.2), intertwines both approaches inseparably (see also Kubiak & Smyth, 2019, 
for such a mobile sensing framework).

The Ambulatory Assessment toolbox expanded significantly during the last decade. 
Meanwhile, location tracking and sensing smartphone parameters (digital phenotypes) 
complement the more classical parameters such as e-diaries and physiological assess-
ments. Real-time onboard analyses, in addition, enable all kinds of triggered diaries, 
real-time predictions, and just-in-time interventions. They all support our ambition to 
understand, predict, and change human behavior and experience in daily life.

After praising the advantages of combining mobile sensing with e-diary assessments, 
we have to describe some practical and a few more specific limitations. First, not all 
wearables and e-diary systems can conduct real-time analyses and provide interfaces to 
work together properly. Accordingly, we emphasize that if real-time interactions between 
sensor and smartphone are of interest, a careful selection of devices and extensive test-
ing are indispensable. Second, technological possibilities for sensor-triggered assessments 
increase steadily. To infer social interactions, Bluetooth and Radio-Frequency Identifi-
cation tracking of nearby devices can be used; to track physical activity and traveling, 
Magnetometer and Geolocation are useful; weather conditions assessed by barometers 
and microphone, camera, and touch sensors offer additional possibilities for potential 
sensor-triggered assessments. However, for psychological phenomena for which no con-
tinuously accessible objective data exist, real-time monitoring and analyses to trigger 
e-diary assessments are an option. In such cases, proxies for psychological assessments 
are used, sometimes with limited validity. Accordingly, heart rate variability is a common 
proxy for relaxation, stress, rumination, and cognitive demands, just to name a few.

Third, another related limitation concerns the frequency of the phenomena of inter-
est. Triggered e-diaries will only be able to prompt participants if the expected behavior 
occurs. For example, if researchers are interested in drinking episodes in bars, but the 
participant does not visit these spots, there will be no drinking-spot-triggered assess-
ments. Thus, to actually profit from the sensor-triggered assessments to increase insights 
into the variable of interest over and above a time-triggered assessment scheme, one has 
to choose the triggers with great care

  FIGURE 13.2.    Ambulatory Assessment toolbox.
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Fourth, algorithms cannot foresee the duration of events. If we aim to understand 
the psychological effects of strolling, it remains difficult to initiate an e-diary assessment 
directly after such an event, as we do not know its total duration in advance. In other 
words, triggering an assessment after 30 minutes of strolling might come too early, as the 
participant would show this behavior for a whole hour (for a discussion on timing, see 
also op den Akker, Moualed, Jones, & Hermens, 2011). Even more convincing examples 
can be made for sedentariness. To investigate the activity–affect relation, we triggered 
e-diaries after a defined period of activity. However, another promising approach might 
be to search for 5 minutes of rest terminating a physical activity episode. This would 
answer questions regarding how participants feel after episodes of physical activity and 
not during such episodes. Unfortunately, the dynamic processes and relations of psycho-
logical phenomena are still rarely investigated (Trull, Lane, Koval, & Ebner-Priemer, 
2015). Combining different sampling procedures (such as sensor-triggered prompts, 
time-out prompts [when the searched phenomenon is not at hand for a given period], and 
pure random prompts) might help to enlarge the amount of variance captured.

Fifth, when investigating the advantages of sensor-triggered e-diaries, the most con-
vincing evidence would be to show increased correlations between both parameters of 
interests (such as physical activity and mood) when using sensor-triggered e-diaries com-
pared to time-based assessments in a single dataset. Unfortunately, there are no datasets 
at hand that simultaneously used sensor-triggered and time-based assessment of the same 
participant during the same time frame. More sophisticated designs should be imple-
mented in future studies.

As the last limitation, we mention that sensor-triggered e-diaries with interventional 
feedback (which might overlap conceptually with just-in-time adaptive interventions by 
a large degree) might fall under specific regulation by respective authorities, such as the 
FDA (U.S. Food and Drug Administration) or the EMA (European Medicines Agency), 
which might come with tremendous restrictions regarding both hard- and software.

Quite briefly, we want to report on future prospects. All the current developments in 
technology, such as making devices mobile, smart, connected, and miniaturized (Ponnada 
et al., 2022), will push these methods, as well as their widespread use in the general popu-
lation. In addition, recent advances in artificial intelligence (AI; such as deep-learning or 
all-neural models) enable sophisticated real-time pattern detection for personalized psy-
chology (Koppe, Guloksuz, Reininghaus, & Durstewitz, 2019). The next major step, at 
least in our view, might be AI solving current data protection problems in mobile sensing. 
In two-party consent states, recording social interactions via speech or video is currently 
quite limited. However, if smart algorithms might enable real-time analyses and feature 
extraction on the mobile devices themselves, storing just the extracted pseudonymized 
features might push future research, for example, on emotion recognition in speech (Sale-
kin et al., 2017) or on eating behavior in families documented via videos (Bell et al., 
2019), just to name two possibilities.
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C H A P T E R  O V E R V I E W

This chapter discusses how the three major psychometric criteria of objectivity, reliability, 
and validity can be applied to determine the quality of mobile sensing data. In particular, 
modern statistical approaches for analyzing interindividual and intraindividual measure-
ment precision and reliability, and a combination of both, are described and illustrated. 
Based on a layered, hierarchical model for personal sensing data, several aspects of valid-
ity are discussed. In order to assess the validity of mobile sensing data, recommendations 
with respect to unit and value calibration are formulated. Several approaches for estimat-
ing the agreement of mobile sensing data with gold- standard measures (mean squared 
deviation, concordance correlation coefficient, limits of agreement, total deviation index, 
latent variable approaches) are presented and illustrated. Moreover, issues concerning 
construct, convergent, criterion- related, and ecological validity are examined. Finally, 
recommendations of the German Data Forum concerning data collection, reliability, and 
validity are presented.

Introduction

In recent years, wearable sensors have become an innovative measurement tool that has 
been increasingly applied in quite different areas of psychology (see Chapters 20 to 32, 
this volume). Like all other measurement tools of the empirical sciences, they have to 
meet certain quality standards to ensure that the data gathered in empirical studies can 
be trusted and that conclusions drawn from the results of these studies are valid. In this 
chapter, we discuss specific challenges of mobile sensing that are related to the three 
major psychometric quality criteria of objectivity, reliability, and validity. We will treat 
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each quality criterion separately, and present psychometric approaches to analyze these 
quality criteria for mobile sensing data. We will focus on wearable sensors such as activ-
ity trackers but will discuss psychometric issues with respect to other types of sensor data 
(e.g., communication behavior) in the discussion section.

Data Collection and Objectivity

The first important step in the construction of a psychological measurement such as an 
ability test or a questionnaire is the process of item construction and item selection. The 
meaning of the psychological measurement strongly depends on the items and the way the 
item responses are integrated into a single (or multiple) measurement(s). This process has 
to be well documented, transparent, and traceable. Wearables do not consist of different 
items, but modern wearables assess a variety of different signals that are typically inte-
grated into a single measurement. For example, accelerometers are widely used to assess 
physical activity (e.g., Henriksen, Johansson, Hartvigsen, Grimsgaard, & Hopstock, 
2020; von Haaren-Mack, Bussmann, & Ebner-Priemer, 2020). Accelerometers differ not 
only in the sensors being used, but also in the way raw signals are filtered and processed 
(Chen, Janz, Zhu, & Brychta, 2012). Often, not the raw signals per se are stored but only 
the processed data (Chen et al., 2012). In order to understand the final measurement 
provided by a wearable, the data processing steps have to be well documented. However, 
in particular for consumer-wearable activity trackers, the data processing methods are 
typically not provided by sensor manufacturers but kept secret (Evenson, Goto, & Furb-
erg, 2015). In particular, if the data stemming from different sensors are combined (e.g., 
using GPS data in combination with accelerometer and physiological measurement) to 
get a measure (e.g., indicating activity), the algorithm of combining the data is often not 
documented (Düking, Fuss, Holmberg, & Sperlich, 2018). Moreover, the data processing 
methods applied can change between hardware and software updates made by the same 
manufacturer, which complicates the comparison of measurements over time (Rat für 
Sozial, & Wirtschaftsdaten [RatSWD; German Data Forum], 2020). Therefore, the ver-
sion of the sensors and software used should be well documented (Düking et al., 2018), 
and the benefits and drawbacks of using consumer products for scientific research should 
be seriously weighed against the use of scientific products (RatSWD, 2020).

Also, the correct placement of the wearable is important. For example, not all parts 
of the body are equally suited for the placement of wearable activity sensors, and there 
are areas that are preferable for specific purposes (Yang & Hsu, 2010). Moreover, placing 
sensors at multiple areas simultaneously is often necessary to get accurate measurements 
(Komukai & Ohmura, 2019). Therefore, the correct placement is important and concerns 
the quality standard of objectivity (e.g., Price, 2017), in particular implementation objec-
tivity (Schermelleh-Engel, Kelava, & Moosbrugger, 2006). In this context, objectivity 
means that the result of the measurement does not depend on the person who has fixed 
the wearable at the body parts prescribed. In order to make an appropriate replication 
study possible, the documentation of the placement of the wearables is necessary (Düking 
et al., 2018).

As wearables can produce implausible data, it is recommended to check the data 
quality directly after the data collection (von Haaren-Mack et al., 2020) and remove 
implausible values. Depending on the researcher being responsible for data checking, the 
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results could differ between researchers. This concerns the statistical evaluation objectiv-
ity (Schermelleh-Engel et al., 2006). All preprocessing steps conducted by a researcher 
before the creation of the final dataset have to be considered for judging statistical evalu-
ation objectivity. Therefore, in order to make replication studies possible and to check the 
quality criterion of statistical evaluation objectivity, the datasets belonging to different 
steps of data preprocessing should be stored separately and every step of data preprocess-
ing should be documented. Moreover, statistical evaluation objectivity also refers to all 
statistical analyses that are done using the data provided by wearables. If, for example, 
statistical learning methods are used for activity recognition (e.g., Balli & Saǧbas, 2017), 
these analyses have to be documented (e.g., by providing the program codes along with 
the datasets).

Measurement Precision and Reliability

A second major quality criterion for psychological measurements is high measurement 
precision. The measurement of a psychological construct should not be distorted by mea-
surement error. We use the term construct in a broad sense as a latent variable underlying 
an observable behavior, feeling, or thought. That means that behaviors such as bodily 
activity are also considered as constructs as they can typically not be assessed with-
out measurement error. If one was able to measure a psychological construct under the 
same conditions repeatedly, the obtained measurement values should not differ from each 
other. However, measurement error cannot be completely avoided in empirical studies. 
Therefore, it is important to assess the degree of measurement precision. In measurement 
error theory, also called classical psychometric test theory (e.g., Lord & Novick, 1968; 
Steyer, 2015), an observed variable Y is decomposed into a latent true score variable T 
and a measurement error variable E:

	 Y = T + E	 (14.1)

Moreover, the variance of the observed variable Y can be decomposed into the vari-
ance of the true score variable T and the variance of the measurement error variable E 
(Lord & Novick, 1968):

	 = +σ σ σ2 2 2
Y T E	 (14.2)

The error variance σ 2
E and the standard deviation of the error variable sE, the stan-

dard error of measurement (SEM), are measures of measurement precision. If the values 
of the observed variable stem from different individuals, the SEM indicates the degree 
of interindividual differences that are due to measurement error. If the values of the 
observed variable stem from the same individual (measured repeatedly), the SEM indi-
cates the degree of intraindividual differences that are due to measurement error. The 
smaller the SEM, the higher is the precision of measurement.

Because the value of the SEM depends on the metric of the observed variable, it is 
difficult to use the SEM to compare the precision of measurement across different mea-
surements. In order to make the values comparable, the error variance can be divided by 
the variance of the observed variable. This unreliability coefficient
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can take on values between 0 (perfect precision) and 1 (perfect imprecision). The counter-
part of the unreliability coefficient is the reliability coefficient

	 =Rel
σ
σ

2

2
( ) T

Y

Y 	 (14.4)

indicating the precision of measurement in a standardized form, taking on values from 0 
(perfect imprecision) to 1 (perfect precision). If the values of the observed variable indicate 
interindividual differences, we call the reliability coefficient interindividual reliability 
(sometimes also called between-person reliability; Schuurman & Hamaker, 2019). If the 
values of the observed variables are repeatedly obtained from the same individual, we call 
it intraindividual reliability (sometimes also called within-person reliability; Schuurman 
& Hamaker, 2019). If multiple measurements are available from multiple individuals, 
interindividual differences in intraindividual reliability can be considered (see Holtmann, 
Eid, & Kanning, Chapter 15, this volume; Schuurman & Hamaker, 2019). All three 
aspects offer interesting insights into the measurement quality of wearables and will be 
shortly discussed.

Interindividual Precision and Reliability

High interindividual reliability is important if one is interested in interindividual differ-
ences. If a researcher wants to analyze interindividual differences in activity, it is impor-
tant that interindividual differences in the observed activity scores mainly represent 
interindividual differences in true activity scores. High reliability values indicate that 
observed activity differences are mainly due to true activity differences. A reliability coef-
ficient of 0 indicates that there are no true interindividual differences and that analyzing 
interindividual differences is not reasonable in a study.

Because the variance of an observed variable is decomposed into two parts (true 
score variance, error variance), it is not possible to estimate the true score and error vari-
ance based on one observed variable. In measurement error theory, measurement models 
have been developed that allow the estimation of the true score and error variances as 
well as the reliability coefficients. These models require that the construct of interest 
(e.g., activity) is assessed by multiple wearables (e.g., activity trackers, accelerometers) at 
the same time (see, e.g., Kubala et al., 2020). There are, in general, two approaches to 
obtain multiple measurements (e.g., Evenson et al., 2015; RatSWD, 2020): Interdevice 
reliability requires that the multiple wearables under study are the same products, that is, 
that they stem from the same production series of the same manufacturer and therefore 
do not differ in their general characteristics (parallel-form method; e.g., Eid & Schmidt, 
2014). Intradevice reliability refers to the repeated measurement with the exact same 
device (retest method; e.g., Eid & Schmidt, 2014). Interindividual differences in fluc-
tuations over time, however, only indicate measurement error influences if the construct 
under consideration is stable over time. If this is not the case, fluctuations are also due 
to true situational influences. Separating situational influences from measurement error 
in the case of only one measurement (with one device) on each occasion of measurement, 
however, requires the application of rather complex psychometric methods to disentangle 
unsystematic measurement error from systematic situational influences (RatSWD, 2020). 
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Therefore, application of the intradevice method for analysis of interindividual reliability 
is limited, and it is typically not applied (Evenson et al., 2015).

Classical unidimensional models of measurement error theory (classical test theory), 
which can be applied to estimate the reliability based on multiple measurements, assume 
that the different wearables measure the same construct C (e.g., activity). In the most 
general model, the model of t -congeneric variables (Jöreskog, 1971), it is assumed that 
the true score variables Ti belonging to the different wearables (i = 1, . . . , k) are linear 
functions of the common construct to be assessed:

	 Ti = a i + l i ⋅ C	 (14.5)

where a i denotes an intercept term, l i a (factor) loading, and C the factor capturing the 
common construct measured by the true score variables Ti. Consequently, the observed 
variables can be decomposed in the following way:

	 Yi = Ti + Ei = a i + l i ⋅ C + Ei	 (14.6)

For the variance of an observed variable, the following decomposition holds:

	 σ σ σ λ σ σ= + = +⋅2 2 2 2 2 2
i i i iY T E i C E

	 (14.7)

Because the mean values of the error variables are 0(µ
iE
 = 0), the mean values of the 

observed variables are decomposed in the following way:

	 µ µ µ α λ µ= + = + ⋅
i i iY T E i i C 	 (14.8)

The intercepts a i and the loading parameters l i indicate that the wearables can dif-
fer in the metric in which they assess the construct. For example, if body temperature is 
measured by one wearable in degrees Celsius and by another wearable in degrees Fahr-
enheit, the intercepts and loading parameters will differ, as Celsius and Fahrenheit mea-
surements are linear functions of each other. Because the construct can be measured by 
methods that differ in their metrics—like Celsius and Fahrenheit—it is necessary to give 
the construct a metric in order to be able to give the scores of the construct C a meaning. 
This is also necessary for estimating the model parameters that depend on the metric of 
the construct chosen. There are different ways to give the factor a metric. For this chap-
ter, we define the metric of a factor by fixing one intercept a i to 0 and one factor loading 
l i to 1. For reasons of simplicity, these restrictions can be put on the first observed vari-
able: a1 = 0 and l1 = 1. As a consequence, the construct equals the true score variable of 
the first observed variable: C = T1

The model of t -congeneric variables is a one-factor model of factor analysis. The 
parameters of the model—the intercepts a i and loading parameters l i as well as the 
variances σ 2

C and σ 2
iE
—can be estimated if there are at least three observed variables (i.e., 

wearables applied). The assumptions of the models can be tested if there are at least four 
observed variables (wearables applied; e.g., Steyer, 2015). If the model fits the data, the 
error variances and the SEM of the wearables can be interpreted as the degree of interin-
dividual imprecision, and the reliability coefficients can be estimated and interpreted as 
a measure of interindividual reliability. In order to estimate the parameters and test the 
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model assumptions, software for confirmatory factor analysis (CFA), such as the freely 
available R package lavaan (Rosseel, 2012), can be used. Many textbooks are available 
showing how such models can be specified and tested (e.g., Gana & Broc, 2019, for 
lavaan; Brown, 2015, for other software packages such as LISREL, Mplus, EQS, and 
SAS/CALIS).

The requirement of at least four observed wearables for testing the model is demand-
ing because wearing four wearables might not always be possible. However, several spe-
cial cases of the model of t -congeneric variables can be applied with fewer observed 
variables. For example, if the wearables (e.g., activity monitors) stem from the same pro-
duction series and are placed at parts of the body that ensure the same construct is mea-
sured (see, e.g., Picard, Fedor, & Ayzenberg, 2016), they can be considered to be inter-
changeable. In this case, it is reasonable to assume that the single wearables do not differ 
in the intercepts, loadings, and error variances. These assumptions that define the model 
of t -parallel variables can be tested, and the model parameters can be estimated with 
only two observed variables (e.g., two activity watches from the same product series). 
The model of t -parallel variables implies that the observed variables do not differ in their 
means and variances. In this case, the reliability coefficient equals the intraclass correla-
tion coefficient (ICC; McGraw & Wong, 1996). For example, according to the analyses 
by Kubala and colleagues (2020), the assumptions of equal means and equal variances 
seem to be reasonable for analyzing the reliability of activity monitors stemming from the 
same production series. These researchers found relatively large reliability coefficients for 
assessing sleep time by commercial activity monitors (ICC between .86 and .99).

BOX 14.1.  Empirical Application:  
Measurement of Total Sleep Time with Activity Monitors

We will illustrate some statistical methods with a dataset that was simulated and based 
on results reported by Kubala and colleagues (2020). In their study, several commer-
cial activity monitors were compared with a gold-standard accelerometer (Actiwatch). 
To estimate interdevice reliability, a subsample of participants had to wear two wear-
ables of the same product line at the same time. We denote with CW the consumer 
wearable and GSW the gold-standard wearable. Data were simulated for 100 indi-
viduals. We use the simulated data only to describe the general proceeding and how 
results could be interpreted. In order to estimate the interdevice reliability, a model of 
t -parallel variables was specified separately for each device. (As we show later in this 
chapter, the analyses of the different devices could also be combined in one model.) 
Such a model fits well for both CW (χ 2

2 = 2.357, df = 2, p = 0.308) and GSW (χ 2
2 = 

1.263, df = 2, p = 0.532). Because the intercepts and error variances are equal within 
the model, three parameters were estimated for each model. The factor mean (mean 
sleeping time in minutes) is 464.375 for CW and 417.213 for GSW. The error vari-
ance for CW is 2,846.755 and 111.473 for GSW. Therefore, the SEMs are 53.355 
(CW) and 10.558 (GSW). Because both wearables are measuring sleeping time with 
the same metric (minutes), the SEMs can be compared, showing that the measurement 
precision is higher for GSW than for CW. The factor variances are 17,185.086 (CW) 
and 5,970.908 (GSW). Therefore, the reliabilities are .858 (CW) and .982 (GSW). The 
results show that the measurement precision is very high for GSW but lower for CW.
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Other special cases of the model of t -congeneric variables are less restrictive than 
the model of t -parallel variables (see, e.g., Bandalos, 2018; Eid & Schmidt, 2014; Steyer, 
2015). All these models can be analyzed with computer programs for CFA, and they can 
be tested against each other to find the most parsimonious, well-fitting model. They can 
also be applied to test specific hypotheses about the measurement quality of different 
wearables.

Intraindividual Precision and Reliability

Intraindividual precision and reliability refer to the situation when the different scores 
of an observed variable stem from a single individual. Mobile sensing studies are often 
longitudinal studies in which individuals are repeatedly measured over many occasions 
of measurement. In such a design, the true score of an individual can vary across time, 
indicating variability in true states (e.g., momentary activity). Intraindividual reliability 
indicates to which degree the observed variability is due to true state variability (e.g., Hu 
et al., 2016). In fact, all the requirements that have been discussed for interindividual reli-
ability are also true for intraindividual reliability by replacing individuals with occasions 
of measurement. In particular, multiple observed variables and a measurement model 
are required. However, traditional models of CFA can usually not simply be applied by 
just replacing individuals with occasions of measurement. Traditional unidimensional 
models of CFA assume that the units of measurement (e.g., individuals) are independent 
from each other. This assumption might not be reasonable for time-series data, in which 
a serial dependency of the scores across time is common (e.g., autocorrelation). In order 
to take care of this serial dependency, models of CFA for single-case data have been devel-
oped. For example, dynamic factor analysis (Browne & Zhang, 2007; Molenaar, 1985) 
allows the CFA of single-case data by taking the serial dependency into account. The 
freely available software DyFa2.03 (Browne & Zhang, 2005), and also the commercial 
program Mplus (Muthén & Muthén, 1998–2017), allow the estimation of a dynamic 
factor model. The assessment of individual SEM is necessary if one wants to use mobile 
sensing for individual assessment and calculate confidence intervals for person param-
eters (factor scores, true scores) under the assumption of individual differences in SEM.

Interindividual Differences in Intraindividual Precision and Reliability

If individuals differ in measurement precision, the analysis of such differences might be 
important for mobile sensing research in order to understand the conditions for mea-
surement precision. The analysis of interindividual differences in intraindividual preci-
sion is possible if multivariate time-series data are available from many individuals (e.g., 
Schuurman & Hamaker, 2019). Recent developments in psychometric modeling such as 
dynamic structural equation modeling (DSEM; see Asparouhov, Hamaker, & Muthén, 
2018; also see Holtmann et al., Chapter 15, this volume) allow the estimation of interin-
dividual differences in intraindividual error variances (typically quantified with respect 
to the logarithm of the error variance).

Multivariate time series from multiple individuals also make it possible to analyze 
characteristics of the dynamic process. For example, interindividual differences in intra-
individual variability (true systematic state fluctuations; e.g., Nesselroade & Ram, 2004) 
have gained interest in many different areas such as affect (e.g., Eid & Diener, 1999) 
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or clinical psychology (e.g., Ebner-Priemer et al., 2007). Intraindividual variability and 
instability are typically assessed by the intraindividual standard deviation or the mean 
square successive difference (e.g., Ebner-Priemer, Eid, Kleindienst, Stabenow, & Trull, 
2009). Interindividual reliability can also be estimated for dynamic features such as intra-
individual variability (Du & Wang, 2018; Eid & Diener, 1999).

Validity

Validity is the most important quality criterion of empirical research. According to Mes-
sick (1989, p. 13), “validity is an integrated evaluative judgment of the degree to which 
empirical evidence and theoretical rationales support the adequacy and appropriateness 
of inferences and actions based on test scores and other modes of assessment.” Hence, 
validity in mobile sensing research refers to all inferences based on mobile sensing data. 
These inferences can be quite complex and can refer to different levels of human behavior 
and experiences. Mohr, Zhang, and Schueller (2017) have proposed a layered, hierar-
chical model for personal sensing data that they consider a “sensemaking framework” 
(p. 25) and that could be used as a framework for validity studies. This model consists 
of four levels, ranging from different raw sensor data (lowest level) to different clinical 
constructs (highest level). In order to illustrate how this framework can be used for valid-
ity studies, the layers for three single-sensor types (location, movement, ambient light) 
are extracted from the more comprehensive figure in Mohr and colleagues (2017, Figure 
1) and presented here in Table 14.1 along with respective validity issues. From a psycho
metric perspective, construct validity is the most important validity concept. It refers to 
the question of whether the inferences from the measurements to the underlying con-
struct are adequate and appropriate (Messick, 1995). All other validity facets mentioned 
in Table 14.1—with the exception of ecological validity—are facets of construct validity 
and refer to specific inferences and strategies to analyze construct validity.

Level 1: Single Sensors

The different sensors are considered on Level 1 of Mohr and colleagues’ (2017) frame-
work. There exist, for example, many different accelerometers and activity trackers (e.g., 
Henriksen et al., 2020). They are applied for quite different purposes, for example, the 
monitoring of activity (e.g., duration, intensity), energy expenditure, or sleep (e.g., Hen-
riksen et al., 2020; Kubala et al., 2020). Different sensors also differ in the way the raw 
signal is processed. Accelerometers, for example, can differ in their outcome measures 
(e.g., counts per unit time) because of “different transducers, amplifiers, sampling fre-
quencies, and signal filters” (Chen et al., 2012, p. 15). There can be strong differences 
in the measurement quality between sensors, in particular, if consumer-based wearables 
are also applied (Peake, Kerr, & Sullivan, 2018). Therefore, a basic important question is 
to which degree these sensors measure what they intend to measure and to which degree 
inferences with respect to the intended purpose are valid. Two aspects have to be con-
sidered. The first aspect refers to the basic signals that are obtained (e.g., the number of 
steps counted) and whether these signals are the same (or very similar) when obtained 
by different sensors and—in the best case—by a gold-standard method. In order to ana-
lyze this question, different sensors have to be worn at the same time (e.g., Kubala et al., 
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2020). High agreement across sensors indicates high convergent validity. The second 
aspect refers to the validity of the conclusions drawn with respect to the intended pur-
pose. Because the data obtained by a sensor can be used for different purposes, valid-
ity with respect to each purpose has to be analyzed, and the validity of the conclusions 
obtained by the same sensor can differ between purposes (Bassett, Rowlands, & Trost, 
2012). One way to analyze this type of validity is to compare the sensor measures with 
gold-standard methods for different purposes. For example, a gold-standard method for 
the measurement of sleep is polysomnography (Kubala et al., 2020), and a gold-standard 
method for the assessment of energy expenditure is the doubly labeled water technique 
(Plasqui & Westerterp, 2007).

Calibration

A first important aspect for analyzing the quality of a sensor and a basis for validity stud-
ies is calibration (Bassett et al., 2012). Bassett and colleagues (2012) distinguish between 

TABLE 14.1.  Part of the Layered, Hierarchical Sensemaking Framework of Mohr et al. (2017) for Location 
and Movement Sensors
Layer Relevant variables Validity issues

Clinical state Depression
Anxiety
Other clinical constructs

Construct validity
Separating trait from state and dynamic aspects

Criterion-related validity
Prediction and separation of clinical constructs 
and groups by integration of different behavioral 
markers

Ecological validity
Representativeness of situations, contexts, time 
points?

High-level 
behavioral markers

Hedonic activity
Psychomotor activity
Fatigue
Stress
Social avoidance

Construct validity
Appropriate integration of low-level features

Convergent validity
Convergence with nonsensor-based assessment 
of constructs (e.g., self-report, observer data)

Low-level features Activity type (e.g., walk, 
run, or drive)

Movement intensity
Bedtime/waketime

Construct validity
Assessment of context, annotations

Convergent validity
Convergence with nonsensor-based assessment 
of constructs (e.g., ambulatory self-report 
assessment, day reconstruction method)

Sensors Location (e.g., GPS or Wi-Fi)
Movement (e.g., gyroscope 

or accelerometer)
Ambient light

Construct/convergent validity
Gold-standard validation

Note. The first two columns are extracted from Figure 1 in Mohr et al. (2017, p. 26).
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two types of calibration: unit calibration and value calibration. Unit calibration refers to 
the question of whether a sensor correctly measures the direct signal. It can be analyzed 
by gold-standard physical calibration checks (see Bassett et al., 2012). Value calibration 
refers to the transformation of a direct signal into other measurement units that are 
needed for the intended purpose (Bassett et al., 2012). For example, for measuring energy 
expenditure or activity intensity by accelerometers, different value calibrations are neces-
sary (Bassett et al., 2012). Value calibration of accelerometers, for example, requires that 
data from (1) multiple individuals being representative for the intended population who 
(2) perform different activities (covering an appropriate range of intensity and being rep-
resentative for the intended purpose), (3) obtained by different wearables, and (4) simul-
taneously assessed criterion variables are collected (Bassett et al., 2012; Welk, 2005). 
Based on these data, value calibration can be done by applying statistical methods such as 
regression analysis or pattern recognition methods (Bassett et al., 2012; see Chapters 17 
and 18, this volume, on machine learning and neural networks, respectively). Bassett and 
colleagues discuss the strengths and weaknesses of different value calibration methods. 
After calibration has been done, the validity of conclusions that are drawn based on these 
derived values has to be assessed in validation studies by analyzing the convergence and 
agreement with gold-standard methods.

Agreement

Agreement indicates the similarity of two measures. Choudhary and Nagaraja (2017, 
p. 6) define perfect agreement by P(Y1 = Y2) = 1, where Y1 and Y2 are two different mea-
surements and P denotes the probability. Considering the difference D = Y2 – Y1, perfect 
agreement means that the probability that the difference for a randomly selected indi-
vidual from the population equals 0 is 1: P(D = 0) = 1. This definition of perfect agree-
ment requires that the two measurements obtained by the two different methods (e.g., 
gold standard and sensor) do not differ in their metric. If, for example, activity duration 
is measured by one method in seconds and by the other measure in milliseconds, perfect 
agreement would not be possible. However, if the two metrics can be transformed into 
each other (e.g., multiplying seconds by 1,000), the difference values can be considered 
for the values transformed into the same metric. Defining perfect agreement in this way 
is reasonable for analyzing the convergent validity of measurements obtained in the unit 
calibration step, but it might be questionable for validating measurements obtained in 
the value calibration step because such calibrated values of accelerometers might differ 
in their metric from gold-standard methods, such as polysomnography or the doubly 
labeled water technique. In these cases, regression-based methods might be more appro-
priate (see the section “Latent Agreement”).

Disagreement is represented by the difference, D, between the two measurements, 
for example, the sensor measurement and the gold-standard measurement. This differ-
ence is sometimes divided by the value of the gold-standard measurement to get a more 
comparable measure of disagreement (Shcherbina et al., 2017). Carstensen (2010) and 
Choudhary and Nagaraja (2017) give a comprehensive overview of different biometric 
approaches for measuring agreement, statistical models, and graphical approaches for 
various research designs (e.g., multiple methods, longitudinal designs) and different data 
situations (e.g., continuous data, categorical data), the planning of agreement studies, 
and sample size determination. They also discuss in detail how special data situations 
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such as non-normal distributions and heteroscedasticity can be dealt with. Given the 
space limitations, we will only present some basic concepts and selected measures of 
agreement and illustrate them with our simulated datasets that stem from a multivariate 
normal distribution.

Mean Squared Deviation

The mean squared deviation (MSD) is the mean value of the squared difference variable 
D2 (Lin, 2000):

	 = µ 2D
MSD 	 (14.9)

Perfect agreement will be present if MSD equals 0. The larger the MSD, the larger is the 
amount of disagreement. The value of the MSD depends on the difference of the means 
(µ
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ρ
1 2Y Y  of the two variables Y1 and Y2 in the following way (Choudhary & Nagaraja, 2017, 

p. 54):
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If the first method is, for example, the gold-standard method, the mean difference 
(µ

2Y  – µ
1Y
) can be interpreted as a mean bias. It is important to note that a perfect correla-

tion (ρ
1 2Y Y  = 1) is not sufficient to get a perfect agreement (MSD = 0). Perfect agreement 

additionally requires that the mean bias (µ
2Y  – µ

1Y
) is 0 and that the variances are equal. 

This shows that the assumption of agreement is much stronger than that of a perfect cor-
relation.

Concordance Correlation Coefficient

The values of the MSD have a lower but no upper limit. In order to obtain a measure of 
agreement whose values are bounded by –1 and 1 (like the correlation coefficient), the 
MSD is rescaled in the following way (Choudhary & Nagaraja, 2017; Lin, 1989) that 
defines the concordance correlation coefficient (CCC):
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MSD0 is the MSD value that one obtains by assuming that the two measures are uncor-
related (ρ

1 2Y Y  = 0):

	 ( )= − + +µ µ σ σ
1 2 1 2

2 2 2
0 Y Y Y YMSD

The CCC equals 0 if the two measures are uncorrelated. It reaches its maxi-
mum in the case of perfect agreement (MSD = 0). The CCC equals –1 if the two mea-
sures are perfectly negatively correlated (ρ

1 2Y Y  = –1) and do not differ in their means 
and variances. Lin (1989) has shown that the CCC equals the Pearson correlation 
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multiplied by a bias correction factor Cb that indicates to which degree the regression 
line for the two variables deviates from the 45-degree line passing through the ori-
gin. Hence, the CCC is the product of a coefficient indicating precision (ρ

1 2Y Y ) and a 
coefficient indicating accuracy (Cb) (Lin, 2000). According to Lin (2000, p.  255), 
precision indicates “how closely observations fall on the fitted linear line,” whereas 
accuracy indicates “how closely the fitted line agrees with the identity line.” The dif-
ference in the standard deviations can be expressed as a standardized effect-size mea-
sure that is called scale shift (Lin, 1989, p. 258): v = s1/s 2. A standardized effect size 
for the mean difference is the location shift relative to the scale (Lin, 1989, p.  258):  

( )µ µ σ σ= − ⋅1 2 1 2/u .

Other Measures of Agreement

There are two other measures of agreement that are used for special purposes and that 
we will describe shortly.

Limits of Agreement

Another approach to measure agreement based on the difference variable D is the limits 
of agreement (LoA) approach (Bland & Altman, 1999; Choudhary & Nagaraja, 2017). 
It assumes that the difference variable D is normally distributed with the mean value mD 
and the standard deviation sD. A measure of agreement is the interval around mD that 
covers the middle 100 ⋅ (1 – p)% of the population distribution of D (Choudhary & 

BOX 14.2.  Empirical Application: MSD and CCC

We illustrate the coefficients of agreement by estimating their value for the measure-
ment of total sleep time by the first GSW and the first CW. The MSD is relatively large: 
MSD = 15,903.905, even if one takes into consideration that the metric is squared 
minutes. The CCC was estimated with the CCC function of the R package DescTools 
(Signorell et al., 2021). This function estimates the CCC according to Lin’s (1989) 
equation using the empirical variances (sum of squares divided by the sample size n, 
not by n – 1). The estimated CCC value and its two-sided 95% confidence interval are

	 CCC = .414, CI95% = [.280; .532]

This value is significantly different from 0 and indicates a moderate agreement 
between the two activity monitors. The estimated CCC is smaller than the corre-
lation coefficient of r = .525 because (1) the mean difference is 48.815, indicating 
that the CW overestimates the total sleep time by 48.815 minutes compared to the 
GSW (which indicates a rather strong bias), and (2) the standard deviation of the CW 
is larger (136.339) compared to the GSW (78.489). The estimated scale shift equals 
1.737 and indicates strong differences in the standard deviations. Also, the estimated 
location shift of 0.472 indicates a substantive bias. The estimated bias constant of 
0.789 indicates a diminution of the correlation factor that is due to differences in the 
location and scale of the two methods.
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Nagaraja, 2017, p. 60). This can be estimated by the sample mean Dx  and sample stan-
dard deviation σ̂D. The 100 ⋅ (1 – p)% limits of agreement are defined by the lower limit 

Dx  – z(1–p)/2 ⋅ σ̂D and the upper limit Dx  + z(1–p)/2 ⋅ σ̂D of this interval.

Total Deviation Index

A further measure of agreement is the total deviation index [TDI(1–p); Lin, 2000], which 
is defined as follows (Choudhary & Nagaraja, 2017):

	 TDI(1 – p) = 100(1 – p)th percentile of |D|	 (14.12)

The smaller the value of TDI(1 – p), the larger is the agreement. For a fixed p value and 
a fixed criterion d  of sufficient agreement, the hypotheses H0: TDI(1 – p) ≥ d  and H1: 
TDI(1 – p) < d  can be tested by calculating an upper 100 ⋅ (1 – a )% confidence limit ul 
for TDI(1 – p) and comparing it with d  (Choudhary & Nagaraja, 2017; Lin, 2000). If ul 
< d , a sufficient limit of agreement is obtained.

Latent Agreement

The agreement measures presented so far are calculated for two different devices (e.g., 
wearable, gold-standard measure). The disagreement can be due to different reasons. 
First, the disagreement might only be due to the imprecision with which each device 
measures the construct under consideration. Second, the disagreement might be due to 
structural differences between the devices, for example, differences in the mean values 
(mean bias), in the discrimination ability (bias with respect to the variances), or in the 
way that individuals interact with the measurement such that the amount of disagreement 
depends on the individual. This source of disagreement would imply that the true scores 
underlying the two measurements are generally not the same. Third, disagreement can be 
due to both sources. In order to separate the two sources of disagreement, it is important 
to obtain at least two measures of the same method at the same time. For measurements 
obtained by a wearable, this can be managed by wearing two devices of the same model. 
For example, in the validity study of Kubala and colleagues (2020), a subsample of par-
ticipants wore two commercial activity monitors of the same model type of the same 
manufacturer on the same (nondominant) wrist. For the gold-standard measure, it is 
also necessary to obtain two measures by wearing two devices of the same type. If gold-
standard measures refer to physical measurements like the doubly labeled water method, 
one can use, for example, duplicate measurements (e.g., Trabulsi et al., 2003).

Having two indicators (observed variables) i for each device, a two-factor CFA model 
can be applied (see Figure 14.1a). In this model there is one factor for each method k (e.g., 
gold-standard method, wearable) on which the two observed variables (belonging to the 
same method) load. Because the two measurements were obtained by applying the same 
type of device two times, it is reasonable to assume that the two measurements obtained 
for each device are exchangeable and that a model of t -parallel variables is appropriate. 
This model assumes equal intercepts, loadings, and error variances for the two indica-
tors, implying equal means and variances for the observed variable:

	 Yik = Tik + Eik = Ck + Eik	 (14.13)
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This model assumes that there is perfect latent intra-device agreement on the level 
of true scores for the two measurements and that observed intra-device disagreement is 
only due to unsystematic measurement error.

Latent Inter‑Device Agreement and CCC: The Two‑Factor Model

The latent inter-device agreement can be scrutinized by analyzing the associations 
between the two factors. The latent factor means µ

1C  and µ
2C , variances σ

1

2
C  and σ

2

2
C , cova-

riance σ
1 2C C , and correlation ρ

1 2C C  can be taken into consideration. Moreover, the CCC 
can be estimated by entering the estimated latent parameters into Equation 14.11. CFA 
allows us to test several hypotheses that are important for evaluating latent agreement 
measured by the CCC: (1) equality of factor means: µ

1C  = µ
2C , (2) equality of factor vari-

ances: σ
1

2
C  = σ

2

2
C , and (3) perfect correlation: ρ

1 2C C  = 1.

  FIGURE 14.1.    Latent variable models for analyzing agreement. (a) Correlated factor model, (b) latent 
regression model, (c) two-method measurement model. Yik, observed variable; Ck, latent construct 
(factor); M2, latent method residual variable; Eik, residual error variable; b1, regression coefficient; 
i, indicator; k, method.
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Perfect latent inter-device agreement requires that all three assumptions hold; that 
means that all true score variables are equal, but the observed variables belonging to dif-
ferent devices can differ in the error variances (and the reliabilities):

	 Yik = Tik + Eik = C + Eik	 (14.14)

If the error variances are also the same, a model of t -parallel variables holds.

Analyzing Bias: Two‑Method Measurement Model

The two-factor model can be reformulated by regressing the factor of the method that has 
to be validated on the factor of the gold-standard method (see Figure 14.1b). The latent 
regression is defined by

	 C2 = b 0 + b1 ⋅ C1 + M2	 (14.15)

As a consequence, the expected value and the variance of C2 (assessed by the method 
to be validated) depend on the expected value and variance of C1 (assessed by the gold-
standard method) in the following way:

	 µ β β µ= + ⋅
2 10 1C C 	 (14.16)

	  σ β σ σ= +⋅
2 1 2

2 2 2 2
1C C M 	 (14.17)

The intercept b 0 is called fixed bias, and the regression slope b1 is called propor-
tional bias or level-dependent bias by Choudhary and Nagaraja (2017, p. 13). The values 
of the latent regression residual variable M2 indicate the deviation of an individual score 
on C2 from its expectation given C1: M2 = C2 – µ

2 1C C , where µ
2 1C C  = E(C2|C1). A positive 

BOX 14.3.  Empirical Application: Latent CCC

In our empirical application with two CW and two GSW, the correlated two-factor 
model with a t -parallel measurement model for each factor fits the data very well (χ 2

7  
= 4.730, df = 7, p = .693). Assuming equal factor means, factor variances, and a perfect 
correlation results in models not fitting the data. The latent CCC and 95% bootstrap 
confidence interval were estimated with the computer program Mplus (Muthén & 
Muthén, 1998–2017) using 1,000 bootstrap samples and model constraints to define 
the latent CCC. The estimated latent CCC value and its two-sided 95% confidence 
interval are

	 CCC = .470, CI95% = [.346; .587]

The value of the latent CCC is higher than the observed one because of the correction 
for measurement error. The estimated latent CCC is smaller than the latent correlation 
of .589 because the factor means (µ

1C  = 417.213, 
2Cm  = 464.375) and variances (σ

1

2
C  = 

5970.909, s
2

2
C  = 17184.869) differ.
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value, for example, indicates that the individual score on the method to be validated is 
higher than expected given the value obtained by the gold-standard method. The values 
on M2 represent the individual method bias (Geiser, Eid, West, Lischetzke, & Nussbeck, 
2012). If the variance of M2 = 0, then there is no individual bias at all.

The expected difference C2 – C1 for a given value of C1 is called conditional method 
bias and can be calculated by (see Geiser et al., 2012, for a proof):

	 ( )2 1 1C C Cµ −
 = b 0 + (b1 – 1) ⋅ C1	 (14.18)

If b1 = 1 the conditional bias does not depend on the value obtained by the gold-standard 
method, but it only depends on b 0. If in addition b 0 > 0, there is a positive fixed bias, and 
the values obtained by the method to be validated are higher than the values obtained 
by the gold-standard method by the fixed value b 0. This explains why the intercept b 0 is 
called fixed bias. If b 0 < 0, there is a negative fixed bias. If b1 = 1 and b 0 = 0, the condi-
tional method bias is 0.

If b1 > 1, the conditional bias increases with the values obtained by the gold-standard 
method. If b1 < 1, the conditional bias decreases with the values obtained by the gold-
standard method. This shows that, if b1 ≠ 1, the bias depends on and is proportional to 
the values obtained by the gold-standard method, explaining its name proportional bias 
or level-dependent bias.

The unconditional expected value ( )−µ
2 1C C  is called general method bias and can be 

calculated by (see Geiser et al., 2012, for a proof):

	 ( )−µ
2 1C C  = b 0 + (b1 – 1) ⋅ µ

1C 	 (14.19)

The general bias is 0 if b1 = 1 and b 0 = 0. That means that, on average, there is no bias. 
However, there could still be individual biases.

Perfect agreement refers to the situation that b 0 = 0, b1 = 1, and σ
2

2
M  = 0. That means 

there is no bias at all. Perfect consistency, on the other hand, requires only that σ
2

2
M  = 0. 

In this case, the latent correlation is 1, and the rankings of the individuals on both vari-
ables are identical. This could be the case, for example, if the two methods differ in their 
metric (like temperatures measured in degrees Celsius and Fahrenheit). In this case, per-
fect agreement can be obtained by rescaling the values of the non-gold-standard method 
so that they are equivalent to the gold-standard method. The degree of consistency can 
be measured by the consistency coefficient (Eid, Lischetzke, Nussbeck, & Trierweiler, 
2003):
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β σ β σ
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Con C 	 (14.20)

The consistency coefficient corresponds to the coefficient of determination in regres-
sion analysis; that is, it is a squared (latent) correlation. It is a measure of convergent 
validity that only considers the degree of linear relationship and not the agreement per 
se. It is particularly reasonable as a measure of convergent validity if the methods differ 
in their metrics. Its counterpart, the method specificity coefficient, represents that part of 
the variance of the second factor that is due to method effects, that is, individual biases 
(Eid et al., 2003):
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The model depicted in Figure 14.1b is equivalent to the model depicted in Figure 
14.1c. The model in Figure 14.1c is called the two-method measurement model (Graham, 
2012; Lawes, Schultze, & Eid, 2020). It can be applied to analyze the same bias ques-
tions as we have discussed for the model in Figure 14.1b. In this reformulated model, the 
method-specific residual variable M2 is a factor that can be related to other variables. This 
is important, for example, for analyzing individual method effects (Koch, Holtmann, 
Bohn, & Eid, 2018). If one wants to understand why a measurement obtained by a wear-
able (e.g., accelerometer) differs from the expected value given the gold-standard measure 
(e.g., the doubly labeled water method), the two-method model would be the appropriate 
measurement model to analyze this research question. If method effects can be explained 
by covariates, these covariates can then be used to correct the nonstandard measurements 
in order to get measures that are closer to the gold-standard method.

The two-method measurement model is used in planned missing data designs to 
optimize the statistical power for predicting a criterion variable, given a fixed research 
budget. For example, if a researcher wants to predict physical or mental health (criterion 
variable) by energy expenditure, energy expenditure can be measured by the expensive 
gold-standard doubly labeled water method or by a less expensive but less valid activity 

BOX 14.4.  Empirical Application:  
Two-Method Measurement Model

The two-method measurement model is a reformulation of the correlated two-factor 
model and shows, therefore, the same fit. The estimated regression coefficient is close 
to 1 (β1 = 0.998). A model in which this parameter is fixed to 1 fits the data very well 
(χ 2

8  = 4.730, df = 8, p = 0.786) and is not significantly worse than the model with a free 
regression slope (the c2 difference equals 0). This shows that there is no proportional 
or level-dependent bias. In this model, the estimated intercept is β0 = 47.213, which is 
significantly different from 0 (p < .001). Hence, there is a strong fixed bias of 47.213. 
Because the regression slope equals 1, the fixed bias equals the estimated factor mean 
difference of 47.213 minutes of sleep time. Because the slope equals 1, the conditional 
method bias (Equation 14.18) equals the fixed bias, which means that the conditional 
bias is independent from the value of the gold-standard method. That means that one 
expects the same conditional mean difference of the two methods for each value of the 
gold-standard method. Because the two factors are not perfectly correlated, there is a 
certain amount of individual method bias. The method specificity coefficient and its 
95% bootstrap confidence interval (1,000 bootstrap samples) are

( ) 2

1 2

2

2 95%2 2 2
1

ˆ 11,232.438
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This shows that 69.3% of the true CW variance is not predicted by the GSW fac-

tor and that there is a strong amount of individual bias. The consistency coefficient, on 
the other hand, shows that 30.7 % of the variance is predictable by the gold-standard 
method (Con(C2) = .307, CI95% = [.230; .404]).

�	 A Psychometric Perspective	 347



tracker. The researcher has a fixed research budget and wants to optimize the prediction 
by obtaining the lowest standard error of the regression coefficient predicting health by the 
gold-standard method, given this fixed research budget. It can be shown that this aim can 
be achieved by a planned missing data design in which all participants provide data for the 
health measures and the activity tracker measures, but only a randomly selected subsample 
is additionally assessed by the expensive gold-standard method. The optimal sample sizes 
of the whole sample and the subsample can be determined if the research budget, the costs 
of the two methods, and the expected model parameters are known. Lawes and colleagues 
(2020) provide a program that can be used to determine the optimal sample size.

Assessing Low‑Level Features: Combination of Different Sensors

Whereas Level 1 of Mohr and colleagues’ (2017) framework refers to the quality of single 
sensors, Level 2 considers the assessment of low-level features by the combination of dif-
ferent sensors. According to Mohr and associates, “features are constructs measured by, 
and proximal to, the sensor data” (p. 25). Feature examples are location type (e.g., home, 
work) that are inferred from location sensors like GPS or activity type (e.g., walk, drive) 
that are measured using several sensors (e.g., location and movement sensors). There are 
different methods to infer features from sensor data. Features can be defined by research-
ers based on their expertise but also by statistical methods such as machine learning. The 
inference of features from sensor data has to be validated. Often the measurement of 
context information (such as the situations in which individuals are) and the integration 
of other information obtained by nonsensor methods are necessary. This information 
can be obtained by self-reports or other reports. In order to get this information, the 
collection of sensor data can be combined with ambulatory assessment procedures that 
allow the assessment of activities, feelings, situations, contexts, and locations in real time 
and in situ, for instance, via self-reports. For example, von Haaren-Mack and colleagues 
(2020) recommend combining accelerometry with electronic diaries. They emphasize 
that activity-triggered e-diaries (interactive multimodal ambulatory monitoring) are a 
promising method to assess self-reports triggered by and linked to specific activities. 
These self-reports can also be used to validate inferences from sensor data to features 
obtained by statistical methods. Context information can also be assessed retrospectively 
by the day reconstruction method (Kahneman, Krueger, Schkade, Schwarz, & Stone, 
2004). Day reconstruction means that participants retrospectively split the day into dif-
ferent episodes and describe what they were doing, feeling, and so on. This method can 
be adapted to specific purposes. The information obtained can be compared with the sen-
sor data collected in specific episodes. Compared to ambulatory assessment procedures, 
however, this method has the disadvantage that it depends on retrospective assessments. 
Because the collection of additional data such as context information is often necessary 
to understand the psychological meaning of sensor data and their combinations, it has to 
be an integral part of the research and validation process.

Assessing High‑Level Behavioral Markers:  
Integration of Low‑Level Features

According to Mohr and colleagues (2017, p. 26), “behavioral markers are higher-level 
features, reflecting behaviors, cognitions, and emotions, that are measured using low-
level features and sensor data.” As examples they present behavioral markers such as 
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hedonic activity, fatigue, depressed mood, or stress. They emphasize that most often, 
machine learning and data-mining methods are used to infer high-level behavior markers 
from low-level features and sensor data. These methods are presented in several chapters 
in this volume. The validity of these inferences has to be analyzed. Several validation 
methods have been developed for machine learning methods (see Brandmaier, Chapter 
17, this volume) that can be applied. Moreover, for many constructs it might be necessary 
to analyze how measures obtained by these methods converge with measures stemming 
from other methods, for example, the self-report of behavioral markers such as depressed 
mood, stress, and social avoidance. For example, if fatigue is inferred from location 
type, activity type, and movement intensity (Mohr et al., 2017), this inferred indicator of 
fatigue can be correlated with self-report measures of fatigue and should show a certain 
degree of convergent validity.

Analyzing More Global Psychological Constructs

The highest level of Mohr and colleagues’ (2017) framework is called clinical state and 
comprises more global constructs such as depression or anxiety. The term clinical state 
is certainly due to the fact that Mohr and associates’ work was published in a journal 
of clinical psychology. In a broader sense, this highest level refers to all types of psycho-
logical constructs that are defined based on high-level behavioral markers. In order to 
measure constructs such as depression, behavioral markers have to be assessed repeat-
edly over time, and inferences based on these longitudinal data have to be validated. For 
example, depressed mood has to be measured repeatedly in daily lives, and its stability 
or persistence across time has to be considered. This also holds true for behavioral mark-
ers such as hedonic activity or social avoidance. Many statistical models for longitudinal 
data analysis have been developed in recent years that can be applied to separate stable 
components from variable components varying systematically due to situational influ-
ences as well as unsystematic measurement errors (e.g., Cole, Martin, & Steiger, 2005; 
Eid, Holtmann, Santangelo, & Ebner-Priemer, 2017; Hamaker, Kuiper, & Grasman, 
2015; Steyer, Mayer, Geiser, & Cole, 2015). These models also have been extended to 
intensive longitudinal data with many occasions of measurements. DSEM (Asparouhov 
et al., 2018), for example, integrates models of time series and multilevel analysis with 
models of CFA and allows the analysis of interindividual differences in longitudinal pro-
cesses in a sophisticated way. For example, it is possible to scrutinize interindividual dif-
ferences in different components of a dynamic process, such as interindividual differences 
in intraindividual variability, inertia, and measurement error variances (see Holtmann et 
al., Chapter 15, this volume).

Validity issues, however, do not only refer to data analytic methods but also to 
design issues. Inferences about more global constructs based on repeatedly measured sen-
sor data, such as depression, require that the situations in which the data are collected 
are randomly selected or at least representative of a person’s life. If the selection of situa-
tions is biased, the ecological validity, a facet of external validity, is threatened (RatSWD, 
2020). It is likely that individuals do not wear wearables in all situations of their life, and 
for ethical, in particular privacy reasons, they are allowed to interrupt and stop the data 
collection process. Moreover, some sensors like location sensors (e.g., GPS) are not able to 
collect data everywhere (e.g., in a subway). This can challenge the validity of conclusions 
about habitual behaviors and feelings, the distribution of states, and dynamic aspects of 
behaviors and feelings. Therefore, assessment of situational information, information 
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about the use of wearables, and individual deviations from the intended data collection 
plan is recommended.

Another aspect of external validity is the sampling of individuals (RatSWD, 2020). 
If individuals are not randomly sampled from an underlying population, the results of a 
study might not be generalizable to the whole population. From a psychometric point of 
view, this might be a problem when statistical norms (comparable with norms for psycho-
metric tests and questionnaires) are developed. This is not yet the case. However, given 
the strong influence of mobile sensing on psychological assessment, the development of 
statistical norms might be an important future endeavor. Therefore, the sampling process 
should be well documented in each mobile sensing study (RatSWD, 2020).

Summary and Recommendations

Traditional psychometric quality criteria that are widely used in psychology can be applied 
to mobile sensing data. They have to take the peculiarities of the assessment and data 
production process into account. This chapter has shown how psychometric methods 
can be used to analyze facets of objectivity, reliability, and validity. The analysis of these 
quality criteria typically requires basic psychometric research projects because many 
requirements (such as wearing multiple sensors and availability of gold-standard mea-
sures) are usually not and do not have to be fulfilled in every research project. However, 
researchers applying special mobile sensing methods should make sure that these quality 
criteria have been analyzed in previous research projects focusing on the measurement 
quality of these sensing methods. Construction of an intelligence test requires extensive 
basic psychometric research; it is also necessary that basic psychometric research pro-
grams are established for mobile sensing research. If the results of such basic psycho-
metric studies are not available, researchers should exploit all available data in terms of 
validity analyses. For example, they can split the total length of their study into different 
periods, analyze the stability of their measures, and check whether these stability coef-
ficients are plausible. They can look at the correlation structure of their measures and 
check if they are in line with theoretical expectations. Even if they are not able to conduct 
a comprehensive psychometric study, they can think about how to integrate some of the 
aspects presented in this chapter to enhance the possibility of checking their data quality 
(e.g., by administering two instead of one wearable and collecting multimethod data such 
as additional situational data or questionnaire data).

This chapter focused on wearable mobile sensing. The methods for analyzing reliabil-
ity and agreement, for example, are based on the concept of measurement error of physics 
(which is also the basic concept of measurement error theory in psychometrics) and the 
availability of gold-standard methods. Psychometrically speaking, they typically refer to 
so-called reflective indicators that can be considered observed variables of an underlying 
latent variable (such as the models depicted in Figure 14.1). At first glance, they do not 
refer to composite (formative) indicators. Composite indicators are linearly weighted to 
represent the psychological characteristic of interest (Bollen & Bauldry, 2011). They are 
the independent variables for defining a dependent formative variable (construct) and are 
not dependent manifest variables of an underlying independent variable (construct). For 
example, a researcher might be interested in combining different behavioral measures of 
social activity (e.g., log-file behavior, frequency of outgoing calls, posting behavior) for 

350	 Analysis of Mobile Sensing Data 	



optimally predicting satisfaction with social relationships. In this case, there is no under-
lying construct. Even in this case, however, concepts and ideas presented in this chapter 
can be used to analyze the quality of such composite scores. For example, the day can 
be divided into 30-minute periods, each of which is randomly assigned to two time sets. 
Based on the behavioral indicators assessed in the two time sets, a composite can be calcu-
lated for each of them, and the strength of the two composites’ correlation can be checked.

The German Data Forum has developed recommendations for data collection using 
new information technology (RatSWD, 2020). The recommendations on data collection, 
reliability, and validity are depicted in Figures 14.2–14.4, with the permission of the 
German Data Forum. They also summarize the major recommendations given in this 
chapter.

  FIGURE 14.2.    Recommendations of the German Data Forum: Data collection. From RatSWD 
(2020, p. 14).

1. Data collection requires comprehensive documentation of the data collection process. 
Documentation of data collection using new information technology should contain 
information on the following aspects:
•	 All sensors and software used (manufacturer, type, production year, software version)
•	 Raw data that were collected and stored
•	 All the data processing steps leading to the derived data
•	 Contextual information (e.g., the situation in which the data were collected)

2. Researchers should weigh the benefits of consumer products against more expensive, 
scientific products. Measuring attributes of interest without access to raw data or 
knowledge of the product’s signal processing is hard to justify in a scientific context.

3. Sensor data should be recorded as raw data in a standard format and in their original 
(native) resolution. The use of lossless types of compression is advisable.

4. If the device already processes sensor data into higher-quality information, it is important 
to know the way it does so. If data analytics procedures such as machine learning 
are employed for such processes, training data and the respective model should be 
documented, and program codes and program versions should be provided.

5. Manufacturers should archive the documentation of all their sensors and data 
processing algorithms for all versions of the sensors. However, this is unlikely with 
common consumer products. It is therefore advisable to archive the data sheets when 
buying a product. Researchers should also try to document hard- and software updates.

  FIGURE 14.3.    Recommendations of the German Data Forum: Reliability. From RatSWD (2020, 
p. 15).

1. Information on the measurement precision of sensors should be made transparent 
by manufacturers and documented in scientific publications that rely on sensor data.

2. Empirical research projects should make transparent the methods used to determine 
measurement precision. This can be done using a range of methods (e.g., parallel-
forms method, testing–retesting method).

3. When reducing complex data (e.g., audio, video, text data) using coding procedures, the 
quality of the reduction techniques should be documented (e.g., through assessing 
intercoder reliability, that is, the level of agreement between different coders).
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  FIGURE 14.4.    Recommendations of the German Data Forum: Validity. From RatSWD (2020, 
pp. 19 and 20).

Construct Validity

1. For sensors used in scientific studies, validation studies should demonstrate the convergence 
with gold-standard methods.

2. The validity of results based on sensors should be examined in theory-driven validation 
studies (including the use of other data sources, e.g., behavioral observations and 
questionnaires).

3. In the case of ambiguous signals, the validity of inferences should be verified—to the extent 
that this is consistent with standards of data protection and research ethics—by including 
additional methods as well as by documenting the data collection context. This is particularly 
important when collecting data on physiological processes in everyday life situations.

4. Whenever data are generated or evaluated using algorithms, technical validation studies should 
be used to assess the correctness of algorithms. Moreover, these data should be matched with 
real-world data (“ground truth”). To the extent possible, this comparison should be performed 
and documented in every data collection process (using subsamples). Pilot studies should at 
least be used where this is not possible in real-life applications.

External Validity

5. It must be documented when selective samples of situations lead to missing data and—if 
possible and reasonable—it must be reconstructed and corrected using appropriate methods. 
These can include the following:

a. Subsequent interviewing of participants (e.g., using appropriately implemented questions 
on a smartphone); this can give some indication of reasons for missing data and possibly 
facilitate the reconstruction of missing data. However, such subsequent questioning can be 
viewed negatively by the respondents.

b. Assessing selectivity in the recorded situations can be made possible by comparing the 
frequency of occurrence of such situations in datasets collected through different methods 
(mobile sensing, experience sampling, field observations, questionnaires). Studies that do 
this systematically are extremely rare, however, there are some examples are to be found in 
research on illegal drugs (Linas et al., 2016).

c. If viable (depending on the burden on the participants and existing resources), the data 
collection period or data collection frequency can be increased. Data can be collected 
every 60, 30, or 15 minutes, for a brief duration in certain situations. It is also possible 
to survey levels of acceptance, or annoyance, and to estimate the influence on survey 
compliance. Generally, such procedures may lead to higher compliance (Trull & Ebner-
Priemer, 2013). Yet, systematic studies on this issue are also still very rare (Stone et al., 2003).

d. To estimate the amount of missing data, it can help to document how often participants 
resorted to editing and censoring their data.

e. Providing incentives for participation (e.g., financial compensation) can increase compliance 
(Göritz, 2014).

(continued)
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C H A P T E R  O V E R V I E W

This chapter describes modeling strategies for the analysis of mobile sensing data by 
dynamic structural equation modeling (DSEM; Asparouhov, Hamaker, & Muthén, 
2018). DSEM combines time- series modeling, multilevel modeling, structural equation 
modeling, and time- varying effects modeling within one modeling framework. Thereby, 
DSEM covers a large variety of powerful modeling strategies suited for the analysis of 
intensive longitudinal data. The described models separate stable between- person dif-
ferences from within- person temporal dynamics and measurement error components. 
On the within- person level, reciprocal dependencies between latent variables across time 
are modeled. On the between- person level, individual differences in the within- person 
dynamics or average levels, as well as associations with external covariates, can be mod-
eled. Several extensions of the model (e.g., random measurement error, inclusion of time- 
varying covariates) are discussed. We illustrate the models with an application for the 
joint analysis of physical activity (accelerometer; wearable sensor data) and self- reported 
energetic arousal (electronic diary data).

Introduction

Recent technological advances have initiated an increase in the use of different ambu-
lant data collection methods, with longitudinal data being collected more intensively and 
at the same time less invasively (Mehl & Conner, 2012; Trull & Ebner- Priemer, 2014). 
A shift in data collection methods toward mobile sensing thereby proliferates intensive 
longitudinal data (ILD) in the psychological sciences. These new ILD typically consist 
of a large number of repeated measurements (from one or more individuals), which are 
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closely spaced in time. ILD with many measurements that are taken within short time 
intervals are usually gathered to investigate stable processes (as opposed to developmental 
processes; see, e.g., Jongerling, Laurenceau, & Hamaker, 2015; McNeish & Hamaker, 
2020; Ram & Gerstorf, 2009). In stable processes, dynamics across time are assumed to 
consist mainly of short-term variability around a stable mean, as no systematic changes 
or long-lasting developments are expected within a short assessment period (e.g., several 
days). Research questions thereby often focus on time-dependent (co-)variation between 
different variables that occur within the individual, calling for an idiographic approach to 
studying longitudinal data (Molenaar, 2004). This within-person variability across time 
is the main focus when analyzing stable process data (Ram & Gerstorf, 2009) and when 
investigating questions regarding within-person dynamic interactions between several 
variables across time, interindividual differences in these dynamics, or the effect of covari-
ates on the presence of peaks and valleys in the dynamic process. A researcher might, for 
instance, investigate how physical activity (PA) and energetic arousal (EA) reciprocally 
influence each other across time within the same person. Is there a reciprocal cross-lagged 
association between PA and experienced energy level? Does high PA lead to a directly 
following increase or a decrease in energy level, and does a high-energy level predict an 
increase in PA? Why do some people show larger variability in their experienced energy 
level? And which external covariates explain why energy level is higher than expected at 
certain time points or why the effect of PA on subsequent energy levels is higher for some 
persons than for others? These questions refer to dynamics that occur on the within-
person level; that is, they tackle reciprocal relationships between PA and EA within a 
person across time. Furthermore, we are interested in interindividual differences in these 
dynamics, as, for instance, PA may lead to a burst of energy in some individuals, while 
others who do not regularly exercise may rather feel exhausted while doing it.

The aforementioned technical developments and the increased availability of ILD 
stimulated advances in statistical models to analyze ILD (e.g., Asparouhov et al., 2018; 
Hedeker, Mermelstein, & Demirtas, 2008; Lane, Gates, Pike, Beltz, & Wright, 2019; 
Oravecz, Tuerlinckx, & Vandekerckhove, 2009). Models that are suited to answer the 
aforementioned questions are, among others, multilevel time-series models, which sepa-
rate stable between-person differences from within-person temporal dynamics (Aspa-
rouhov et al., 2018; Jongerling et al., 2015, Schuurman, Ferrer, de Boer-Sonnenschein, & 
Hamaker, 2016; Song & Ferrer, 2012). On the within-person level, individual time series 
capture within-person dynamics across time. On the between-person level, individual 
differences in within-person dynamics and associations with external covariates can be 
modeled. Furthermore, by fitting a model for an entire (random) sample of individuals, 
group effects capturing average effects across individuals are estimated, thereby facilitat-
ing the generalization of results to a larger population of individuals.

One disadvantage of classical (multilevel) autoregressive time-series models is that 
they do not consider potential measurement error in the variables. However, many con-
structs of interest in psychological research are not directly observable, and measure-
ments are not perfectly reliable (see Eid & Holtmann, Chapter 14, this volume). It has 
been shown that if measurements are affected by measurement error, disregarding this 
measurement error in autoregressive models may result in bias of the autoregressive 
parameters (Schuurman & Hamaker, 2019; Schuurman, Houtveen, & Hamaker, 2015; 
Staudenmayer & Buonaccorsi, 2005). In latent variable models (e.g., confirmatory factor 
analysis [CFA], structural equation modeling [SEM]), measurement error is accounted 
for by using multiple (parallel) indicators to measure the latent construct of interest.
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The DSEM approach introduced by Asparouhov and colleagues (2018) combines 
multivariate time-series modeling with multilevel modeling, as well as structural equa-
tion modeling. To this date, DSEM has been applied to the analysis of mobile sensing 
data in only a few instances, such as the joint modeling of smartphone use and procrasti-
nation (Aalbers, vanden Abeele, Hendrickson, de Marez, & Keijsers, 2021) or of physical 
activity and sleep time in schoolchildren (Armstrong et al., 2021).

In this chapter, we introduce the basic ideas of DSEM, illustrate its use for the joint 
analysis of sensor and self-report ambulatory assessment (AA) data, and discuss several 
model extensions for extended research questions.

DSEM for Wearable Sensor and Self‑Report AA Data

In the following, we will shortly introduce both single- and multiple-indicator models 
and discuss differences between the two model variants.1 In most applications, signals 
obtained from wearable devices will be measured using one measurement device, thereby 
providing only one measured indicator variable. In this case, single-indicator models 
need to be used. In contrast, in AA studies collecting self-report data, it is common 
that participants are asked to rate several items intended to measure a common underly-
ing psychological construct. The availability of several items per construct provides the 
possibility of applying multiple-indicator models. Hence, in applications investigating 
the joint dynamics between signals obtained from wearable devices and self-reported 
ambulatory assessments, hybrid models combining both a single-indicator measurement 
model (for the wearable device data) and a multiple-indicator measurement model (for 
the self-reported data obtained with more than one item per construct) will be common. 
This last case is illustrated in the data application section, in which the joint dynamics of 
PA and self-reported EA across time are analyzed. We present the example of PA and EA 
for a wearable device measure and a self-report measure, respectively, in the following 
model descriptions.

Measurement Models

Suppose EA is assessed by self-reports using two items, YE1,it and YE2,it, which are repeat-
edly administered to participants (i = 1, . . . , N) across several measurement time points 
(t = 1, .  .  .  , T). As a special case of a multilevel structural equation model, DSEM 
allows for a decomposition of the observed variables YE1,it and YE2,it into several latent 
between- and within-level components (see Figure 15.1A). The latent variables mE1,i and 
mE2,i denote the person-specific and indicator-specific latent means of YE1,it and YE2,it 
across time, respectively:

	 YE1,it = mE1,i + ( )
1,
w

E itY 	 (15.1)

	 YE2,it = mE2,i + ( )
2,
w

E itY 	 (15.2)

These person-specific mean variables mE1,i and mE2,i can be considered as latent trait 
variables that are stable across the observed time period. Between-person differences in 
these trait scores thereby reflect systematic trait-like differences between persons; for 
instance, some persons may generally feel a higher level of EA as compared to other 
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persons on average. By modeling separate latent trait variables for each indicator, the 
model accounts for potential time-invariant item heterogeneity (Eid, Holtmann, Santan-
gelo, & Ebner-Priemer, 2017). The variables ( )

1,
w

E itY  and ( )
2,
w

E itY  capture the time-specific 
deviations of the observed variables from this stable person mean. The superscript (w) 
indicates that these are within-level variables that capture the within-person fluctua-
tion of the scores around the person-specific stable trait across time. A person might for 
instance show a high habitual level of EA (e.g., trait mE1,i) but a reduced level as compared 
to their habitual level at a specific time point (e.g., negative value of ( )

1,
w

E itY ).

  FIGURE 15.1.    Measurement model (A; decomposition), latent between-person (B), and latent 
within-person (C) model for the dynamic structural equation model of physical activity (PA) and 
energetic arousal (EA). Following Curran and Bauer (2007) and Hamaker et al. (2018), circles 
indicate that the parameter of the respective path is estimated as a latent variable with a mean 
and variance at the between-person level. i: individual; t: time point; YE1,it / YE2,it / YP,it: Observed 
variables of EA, indicator 1 and 2, and PA; ( )w

itEA  /  ( )w
itPA : latent within-person variables of EA 

and PA; mE1,i / mE2,i / mP,i: random, person-specific mean of the respective construct and indicator; 
eE1,it / eE2,it / eP,it: measurement error variables; fE,i / fP,i: random, person-specific autoregressive 
effects; fEP,i: person-specific slope of the latent cross-lagged regression of ( )w

itEA  at time t on ( )
( )

−1
w
i tPA  

at time (t – 1); fEP,i: person-specific slope of the latent cross-lagged regression of ( )w
itPA  at time 

point t on ( )
( )

−1
w
i tEA  at time point (t – 1); h it: common factor for the innovations; dE,it / dP,it: residual 

innovations not shared with the respective other construct at time t; 2 2 2
, , , )( /) )( / (ln ln lnσ σ ση δ δi E i P i : 

logarithm of the random, person-specific common and residual innovation variances for person i.
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In multiple-indicator models, it is assumed that the two indicators measure a com-
mon within-level factor. That is, the two variables ( )

1,
w

E itY  and ( )
2,
w

E itY  are assumed to measure 

a common within-level latent factor of energetic arousal, ( )w
itEA  (see Figures 15.1A and 

15.2). That part of ( )
1,
w

E itY  and ( )
2,
w

E itY  that is not shared across the two indicators and thereby 

is not captured by ( )w
itEA  is represented in the measurement error variables eE1,it and eE2,it:

	 ( )
1,
w

E itY  = ( )w
itEA  + eE1,it	 (15.3)

	 ( )
2,
w

E itY  = ( )w
itEA  + eE2,it	 (15.4)

That is, residual variance (variation due to eE1,it or eE2,it) and true within-person 
fluctuations (variation in ( )w

itE ) across time are separated by factorizing two parallel indi-
cators.2 The measurement error variables are assumed to be independently and identi-
cally normally distributed with eE1,it ~ N(0,  2

1Eεσ ), eE2,it ~ N(0,  2
2Eεσ ) and cov(eE1,it, eE2) = 0.

  FIGURE 15.2.    Alternative representation of the measurement and latent within-person model for 
the dynamic structural equation model of physical activity (PA) and energetic arousal (EA). i: 
individual; t: time point; YE1,it / YE2,it / YP,it: Observed variables of EA, indicator 1 and 2, and PA; 

( )w
itEA  /  ( )w

itPA : latent within-person state variables of EA and PA; mE1,i / mE2,i / mP,i: random, person-
specific mean of the respective construct and indicator; eE1,it / eE2,it / eP,it: measurement error vari-
ables; fE,i / fP,i: random, person-specific autoregressive effects; fEP,i: person-specific slope of the 
latent cross-lagged regression of ( )w

itEA  at time t on ( )
( )

−1
w
i tPA  at time (t – 1); fPE,i: person-specific 

slope of the latent cross-lagged regression of ( )w
itPA  at time point t on ( )

( )
−1

w
i tEA  at time point (t – 1); 

zE,it / z P,it: latent innovations of EA and PA.
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Suppose physical activity was measured by one accelerometer and actual PA was 
averaged across predefined time periods, for instance, by splitting the timeline into con-
secutive 10-minute intervals or by averaging PA across a specified time interval preceding 
an electronic diary prompt. Consequently, one observed indicator is available for model-
ing PA, calling for a single-indicator model. In this model, the observed variable YP,it for 
person i’s PA at time point t is decomposed into three parts:

	 YP,it = mP,i + ( )w
itPA  + eP,it	 (15.5)

where mP,i is the latent person-specific average PA level across the observed time period, 
( )w
itPA  denotes the latent within-person deviation of the true PA at time t from the person-

specific mean level mP,i, and eP,it denotes a residual variable. Note that in case of a single-
indicator model, residual variance and true within-person fluctuations across time are not 
separated by factorizing two parallel indicators. The separation of both components is 
possible only if the dynamic process across time is modeled. As elaborated in the next sec-
tion, it is assumed that the dynamics on the within-person level show a systematic pattern 
in that true within-person fluctuations are serially dependent across time, for instance, 
following an autoregressive (AR) process of order 1 (AR[1] or potentially higher). That 
is, true levels of ( )w

itPA  at time t are assumed to show carryover effects to subsequent time 
points. In contrast, the residual variables eP,it are assumed to be serially uncorrelated 
(independently and identically normally distributed with mean zero across all time points 
t). That is, the residual variable eP,it in the single-indicator measurement model captures 
all within-person fluctuations that are not carried forward in time—that is, deviations 
from the stable person mean mP,i that do not affect subsequent levels of YP,it. The residual 
variable eP,it might therefore capture any time-specific components that are unsystematic, 
such as measurement error, but also other fluctuations due to time-specific situational 
effects that are of short duration and have no impact on future states of the measured 
construct. Whether external effects on the process are captured by ( )w

itPA  or eP,it (referred 
to as measurement error in the following) therefore depends in part on the frequency 
of measurements taken and the time interval between adjacent observations (Schuur-
man et al., 2015). This single-indicator model variant is referred to as the (two-level) 
measurement error AR(1) [MEAR(1)] model in the univariate case in Asparouhov and 
colleagues (2018) and as the measurement error vector AR(1) (MEVAR(1)) model in the 
multivariate case in Schuurman and Hamaker (2019). It has to be stressed that estimation 
of this model requires large sample sizes on the within-person level (see Asparouhov et 
al., 2018). That is, in order to separate ( )w

itPA  and eP,it in empirical applications, a large 
number of measurement time points per person (e.g., ≥200) is required. It is therefore 
recommended to reduce model complexity in smaller samples by reducing the number 
of random effects in the model (e.g., by holding measurement error variance, innovation 
variance, or both equal across persons). In order to separate the two error components 
more appropriately, multiple indicators of the same construct are recommended. In some 
applications using questionnaire data, multiple indicators can be obtained by grouping 
the items into different parcels.

Within‑Person Processes

On the within-person level, the dynamic interplay of occasion-specific state variables 
across time is modeled. DSEMs can accommodate a large variety of modeling strategies, 
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including autoregressive and moving average effects of flexible order (see Asparouhov et 
al., 2018, and Asparouhov & Muthén, 2020, for a detailed description of different mod-
els covered by the DSEM framework).

BOX 15.1.  Autocorrelation, Autoregressive Effects,  
and Moving Average Effects

Autocorrelation refers to the correlation of a variable with itself at previous time 
points, with the lag of the autocorrelation quantifying the temporal distance between 
the correlated time series. For instance, a lag-1 autocorrelation is simply the correla-
tion of each observation with the directly preceding observation of the same variable. 
Analogously, a lag-k autocorrelation is the correlation of a variable with its observa-
tions k time points earlier. Autocorrelated series can be modeled by autoregressive 
(AR) effects of order k, regressing a variable on its past k values. An AR(1) process is, 
for instance, given by

	 ( )1 tt tY c Yφ ε−= + + 	 (15.6)

The autoregressive parameter f  in Equation 15.6 should assume values in the 
interval (–1; 1) only, as |f | ≤  1 implies a nonstationary time series (Hamilton, 1994). 
A series is called (weakly) stationary if its mean, variance, and autocovariance are 
constant across time (the autocorrelation only depends on the time lag between the 
correlated series; Hamilton, 1994). The stationarity of the series should be ensured 
before estimating a time-series model (see Box 15.6).

As an alternative to AR effects, serial dependency might be explained by a moving 
average (MA) process, in which the current value of a variable is regressed on previous 
random shocks, with a respective time lag q. An MA(q) process is, for instance, given 
by

	 ( ) ( ) ( )1 21 2 t q tt t t qY µ θ ε θ ε θ ε ε− − −= + + +…+ + 	 (15.7)

with independent and identically distributed e t (with mean 0 and variance s 2). Both 
AR and MA components might be combined within one model (so-called ARMA(p, 
q) models). AR and MA components result in different autocorrelated series, and the 
decision on the respective model and order p and q of the AR and MA components 
can, for instance, be based on visual inspections of plots of the autocorrelation func-
tion and partial autocorrelation functions (Jebb, Tay, Wang, & Huang, 2015). In prac-
tice, AR models might be preferred due to ease of interpretation of the model param-
eters. As shown by Granger and Morris (1976), an AR(p) model with an additional 
random measurement error term (White Noise; WN), which is not carried forward 
in time, can be equivalently modeled by an ARMA(p, p) model without this random 
measurement error. However, Schuurman and colleagues (2015) found that the AR(p) 
+ WN model performed better with respect to parameter recovery. We refer the inter-
ested reader to Jebb and colleagues (2015) for an introduction to time-series analysis 
for psychological research.

 In the following, we focus on the simplest and most common case of autoregres-
sive and cross-lagged effects of order 1. The respective within-level latent dynamics are 
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depicted in Figure 15.1B. An alternative representation of the decomposition and within-
level dynamics is given in Figure 15.2. In this model, it is assumed that the time-specific 
within-level occasion-specific variables ( )w

itEA  and ( )w
itPA  show serial dependency across 

time. The serial dependency within a variable is modeled by an autoregressive process 
of order 1, regressing the latent occasion-specific variable at time point t on the latent 
occasion-specific variable at the previous time point t – 1. Additionally, it is assumed that 
EA and PA reciprocally affect each other across time:

	 ( )
( )
( )

( )
( )

, , ,1 1  w ww
it E i EP i E iti t i tEA EA PAφ φ ζ− −= + + 	 (15.8)

	 ( )
( )
( )

( )
( )

, , ,1 1  w ww
it P i PE i P iti t i tPA PA EAφ φ ζ− −= + + 	 (15.9)

The autoregressive parameters fE,i and fP,i quantify the carryover effect of EA and 
PA, respectively, across subsequent measurement time points. The strength of the AR 
parameter indicates how each variable affects itself across time. A positive AR effect 
indicates that scores of subsequent measurement occasions are positively correlated and 
are thereby similar (e.g., a relatively high value is followed by a relatively high value). 
AR effects are sometimes termed inertia, and positive values are interpreted as a sign for 
resistance to change across time (Suls, Green, & Hillis, 1998). AR effects close to zero 
indicate that future values cannot be well predicted by past values and that the return 
from elevated or reduced levels to baseline levels is relatively fast. A negative AR effect, 
in contrast, indicates that relatively elevated levels are typically followed by relatively low 
levels and vice versa (a pattern that is rather uncommon for psychological constructs).

The cross-lagged parameters fEP,i and fPE,i capture the effect of PA on subsequent EA 
and vice versa (controlled for autoregressive effects). A positive cross-lagged effect fPE,i 
would, for instance, indicate that a high level of EA is associated with a subsequent elevated 
level of PA (controlled for previous PA). That is, the cross-lagged effects capture potential 
reciprocal effects between PA and EA over time, that is, predictive relationships. Note that 
these are within-person associations, which are to be interpreted relative to the person-
mean. That is, the cross-lagged effects capture whether an elevated activity score relative 
to the respective person’s average activity predicts an increase or decrease in the person’s 
energetic arousal level (relative to the person’s average energy level), and vice versa.

All autoregressive and cross-lagged parameters in Equations 15.8 and 15.9 are 
assumed to be constant across time points t, but have an index i, indicating that they are 
estimated as person-specific parameters. That is, subjects may vary with respect to the 
degree of autoregressive as well as reciprocal effects between psychological and physical 
states. While it is possible to reduce model complexity by fixing the respective param-
eters to equality across persons, the possibility of modeling interindividual differences 
in latent within-person dynamics is an attractive feature for the analysis of sensor data 
with DSEM and mirrors the observation that intraindividual dynamics are likely to vary 
across persons. Note that sample-size requirements increase with model complexity. See, 
for instance, Schultzberg and Muthén (2018) for required sample sizes for different model 
variants.

The variables zE,it and zP,it capture components in ( )w
itEA  and ( )w

itPA  that remain 
unexplained by previous within-level states (fluctuations around the predicted trajec-
tory). These autoregressive residuals are termed innovations or dynamic errors and cap-
ture the effect of perturbations on the system at time t by anything not accounted for in 
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the model (e.g., unobserved events). The term dynamic error mirrors the idea that the 
innovations are carried forward to future time points through the autoregressive effects 
and thereby affect future values of the system. This characteristic distinguishes dynamic 
errors from measurement errors, which are specific to a single time point. Note that in 
order for measurement error and innovations to be distinguishable in the single-indicator 
case, the series has to contain a substantive amount of time dependency. If the AR and 
cross-lagged effects equal zero, these two sources of variance cannot be separated and 
the model is not identified. For small dynamic effects (close to zero), empirical identifica-
tion might become difficult (Schuurman et al., 2015). In this case, it is recommended that 
measurement error variances be fixed to zero.

The variances of these innovations are measures of unexplained true-score variabil-
ity across time. Within-level variance (innovation as well as measurement error variance) 
is typically estimated as a fixed parameter across clusters (here: persons) in multilevel 
analyses. Restricting within-level innovation variances to equality implies that unex-
plained variation in the time series, and thereby the predictability of upcoming values, 
is equally high for all persons. However, persons may potentially vary with respect to 
the quantity and quality in which external events are experienced as well as to their 
sensitivity and reactivity with respect to these events and thereby with respect to their 
unexplained variation (peaks and valleys) in their temporal dynamics. Recent develop-
ments allow for the estimation of person-specific innovation variances and thereby for 
investigating interindividual differences in intraindividual variability across time as well 
as correlates of such interindividual differences (multilevel location scale model; Hedeker, 
Mermelstein, & Demirtas, 2008; Jongerling et al., 2015). As shown by Jongerling and 
colleagues (2015), ignoring interindividual differences in innovation variances can result 
in biased estimates of the autoregressive effects (see also Asparouhov et al., 2018). Con-
sidering interindividual differences in innovation variances, the innovations are assumed 
to be multivariate normally distributed with mean zero and subject-specific variances, 

2
,E iζσ  and 2

,P iζσ , and covariance szEP,i, that is,
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	 (15.10)

The person-specific innovation covariances capture the temporal coupling between 
the innovations of PA and EA. That is, the covariance reflects the amount to which 
external and internal unobserved factors simultaneously affect PA and EA at the same 
time point and thereby models the temporal coupling of time-specific components in 
both constructs (i.e., in the deviations from values predicted based on past observations). 
Following Hamaker, Asparouhov, Brose, Schmiedek, and Muthén (2018), these person-
specific covariances are modeled by a common factor h it:

	 zE,it = h it + dE,it	 (15.11)

	 zP,it = h it + dP,it	 (15.12)

where h it captures the commonalities between the innovations, and dE,it and dP,it are 
construct-specific, unique components of the innovations, which are uncorrelated across 
constructs (see Figure 15.1B). The common factor and the residual (unique) innovations 
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are assumed to be independently and identically normally distributed for each person 
i, with h it ~ N(0,  2

,iησ ), dE,it ~ N(0,  2
,E iδσ ), and dP,it ~ N(0,  2

,P iδσ ). This approach is taken 
as it ensures that the covariance matrix of the innovations is positive definite for each 
individual (Hamaker et al., 2018). A disadvantage of this approach is that innovation 
covariances have to be a priori specified to be either positive or negative for all individu-
als. A negative correlation is obtained by setting the factor loading of h it in either Equa-
tion 15.11 or Equation 15.12 to –1. Based on the decomposition in Equations 15.11 and 
15.12, the innovation variances 2

,E iζσ  and 2
,P iζσ  are only indirect model parameters given 

by the sum of the innovation covariance and the respective residual innovation variance:

	 szEP,i = 2
,iησ 	 (15.13)

	 2
,E iζσ  = 2

,iησ  + 2
,E iδσ 	 (15.14)

	 2
,P iζσ  = 2

,iησ  + 2
,P iδσ 	 (15.15)

BOX 15.2.  Unequal Time Intervals between Observations

Unequal time intervals between adjacent observations pose a challenge for the analy-
sis of intensive longitudinal data. Unequally spaced observations might not be preva-
lent in signals obtained with wearable sensors if these are measured continuously. 
However, nonequidistant observations (across time and/or individuals) are frequent in 
experience sampling data, in which participants might be prompted at random time 
points, participants might miss to answer a prompt, or nighttime interrupts measure-
ments taken in intervals of 1 to 2 hours during day time over several days.

The models presented above are discrete time models, in which the strengths of 
the lagged effects (autoregressive and cross-lagged) are specific to the respective time 
interval between the observations. Furthermore, the models assume that the lagged 
effects are constant across time. There are different ways to account for varying dis-
tances between adjacent observations. For instance, in Mplus (Muthén & Muthén, 
1998–2017), researchers can make use of the tinterval option provided for DSEM 
analyses. A dataset with equally spaced observations is approximated by inserting 
missing values between subsequent observed values according to the desired time inter-
val specified by the user. That is, a time grid with fixed time increments is imposed on 
the supposedly continuous time dimension, creating segments of the specified length. 
Mplus appends the data by inserting missing values to each grid not containing an 
observation. The inserted missing values can be easily estimated and updated in each 
Markov chain Monte Carlo sampling step (see Box 15.3), along with the remaining 
model parameters and latent variables. Thereby, lagged effects obtain a constant inter-
pretation with respect to the requested time interval.

The choice of an appropriate time grid is crucial, as the quality of the estimation 
depends on the accuracy with which the time intervals between the observations are 
approximated, as well as on the amount of missing data that are inserted. With respect 
to the specified time scale, larger requested (transformed) time intervals were found 
to lead to more bias in parameter estimates (Asparouhov et al., 2018). In contrast, 
smaller requested time intervals lead to more accurate approximations of the original 
observed time scale, while inserting larger amounts of missing data, which might lead 
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to convergence problems. Asparouhov and colleagues (2018) recommend inserting 
between 80 and 95% of missing data, depending on model complexity, while choosing 
a time interval that is interpretable from a substantial point of view (with respect to 
the time metric of the observations).

Note that this is an approximate solution in which observed values falling into a 
specific segment of the imposed time grid may have been observed at any time within 
this segment and might be slightly shifted forward or backward in time by the algo-
rithm. See, for instance, Voelkle and Oud (2013) or Oravecz and colleagues (2009) for 
an alternative, continuous time-modeling approach.

Alternative Model for Within‑Person Processes:  
Simultaneous/Concurrent Regression

In the dataset analyzed in the present illustrative application, each participant’s PA was 
averaged across the 10 minutes preceding a person’s self-reported EA during preprocess-
ing. That is, the dataset contains one measure of PA, indicating average actual PA in the 
10 minutes directly preceding reported EA (both located in the same line of the datafile). 
Time intervals between self-reports of EA varied across persons and between measure-
ment occasions, with a median of 45 minutes and a mean of 108 minutes. That is, the 
measurements of EA at occasion (t – 1) were, on average, observed 108 minutes before 
the observation at occasion t, while PA was observed for the 10 minutes preceding each 
EA measurement. We accounted for the variation in the time intervals between adja-
cent EA measurements, such that model parameters are estimated for a time interval of 
approximately 30 minutes between two measurement occasions t and (t – 1) (see Box 15.2 
for further information). Additionally, to account for the large differences between the 
time lag between previous PA and subsequent EA and the time lag between previous EA 
and subsequent PA in the present dataset, we used a different variant of the within-level 
model structure described above. That is, we chose to model the effect of PA on EA as a 
simultaneous regression effect, where the most recent observation of PA to predict EA is 
that of the same measurement occasion:

	 ( )
( )
( ) ( )

( )
( )

, , , ,11     ww ww
it E i EP i it EP i E iti t i tEA EA PA PAφ β φ ζ−−= + + + 	 (15.16)

where fE,i is the autoregressive effect of EA, bEP,i captures the effect of PA on the level 
of EA directly following the PA measure (simultaneous regression), and fEP,i captures 
the effect of PA on EA with a time lag of approximately 30–40 minutes. In contrast, for 
predicting PA by EA, the most recent observation of EA is that obtained at the foregoing 
measurement occasion:

	 ( )
( )
( )

( )
( )

, , ,1 1   w ww
it P i PE i P iti t i tPA PA EAφ φ ζ− −= + + 	 (15.17)

As a result of the simultaneous regression of ( )w
itEA  on ( )w

itPA  of the same measurement 
occasion, the innovation of EA, zE,it, is a residual with respect to ( )w

itPA , such that the 
innovations between EA and PA are modeled to be uncorrelated, with

	 ( )2
, , ~ 0,E it E iN ζζ σ 	 (15.18)

�	 Dynamic Structural Equation Modeling	 367



	 ( )2
, , ~ 0, P it P iN ζζ σ 	 (15.19)

See Figure 15.3 for a visual representation of the within-level dynamics in the model 
including a simultaneous regression.

Between‑Level Structure

On the between-person level, interindividual differences in the stable trait variables and in 
the within-person dynamics, as well as associations between these person-specific para
meters, are modeled (see Figure 15.1C). As in standard multilevel models, the individual 
parameters from the within-person level are assumed to come from a distribution with a 
mean corresponding to the average effect across persons (fixed effect) and a variance of 
person-specific deviations from this average effect (random effect). That is, the person-
specific variables and parameters are decomposed into average, fixed effects g  and person-
specific deviations from the respective fixed effect, ui. For the model with a simultaneous 
regression effect (see Equations 15.16–15.19), this decomposition is given by
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The fixed effects gmE1, gmE2, and gmP are the average trait levels of EA and PA across 
all persons (expectations of the latent trait variables); the fixed effects g fE, g fP, g fEP, g fPE, 
and g bEP reflect the average AR, cross-lagged, and simultaneous regression effects across 
all individuals; and gszE and gszP denote the average individual log-innovation variances 
of EA and PA, respectively. The individual deviations ui are assumed to come from a mul-
tivariate normal distribution, that is, ui ~ MVN(0, YY), where YY is the covariance matrix 
of the random effects (in this case with dimension 10 × 10). The variances in YY quantify 
the variation in the individual parameters across individuals, for instance, the amount of 
interindividual differences in trait scores of EA and PA or in cross-lagged effects between 
the latent states of EA and PA. The covariances capture the associations between the 
person-specific parameters; for instance, a positive correlation between umE1,i / umE2,i and 
umP,i would indicate that persons with high trait levels of EA tend to also have high trait 
levels of PA, and vice versa.

On the between-person level, random effects are modeled as latent variables, such 
that the between-person level model can also contain measurement equations (e.g., a 
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common between-person factor for the two trait factors of EA) or structural equations. 
That is, factor models or path models can be specified on the between-person level, with 
the possibility of including additional (latent or observed) time-invariant variables as pre-
dictors or outcomes of the random effects. We could, for instance, use external variables 
such as age, body mass index, or athleticism to explain interindividual differences in 
persons’ average levels of or unexplained variability in PA and EA. Interindividual differ-
ences in the parameters describing average levels and dynamics of PA across time might 
be used to predict differences in indices of health or well-being.

Note that the logs of the person-specific variances (ln( 2
,E iζσ ) and ln( 2

,P iζσ )) are mod-
eled on the between-person level; that is, gszE and gszP refer to the average log of the 
innovation variances, and uszE,i and uszP,i refer to the individual deviations of the indi-
vidual log innovation variances from the average log innovation variances. The respec-
tive variance in YY is the variance (across persons) of the log of the individual innovation 
variances. Individual innovation variances are thereby assumed to follow a log-normal 
distribution on the between-person level (Asparouhov et al., 2018), ensuring that esti-
mates of innovation variances will be positive for each individual (Hamaker et al., 2018). 
Additionally, the log of the variances can be easily modeled within a multivariate normal 
distribution alongside the remaining random effects to investigate potential correlations 
between person-specific innovation variances and stable trait levels or dynamic (lagged) 
parameters. This log transformation should be kept in mind when interpreting coeffi-
cients regarding innovation variances on the between-person level (e.g., when including 
predictor variables for individual innovation variances on the between-person level; see, 
e.g., McNeish & Hamaker, 2020, for an illustrative interpretation of such regression 
coefficients).

In theory, any of the random effects could be excluded from the model, or between-
level covariances could be set to zero for parsimony. In case of low variation across 
participants (i.e., very small random effect variances), it might be advisable to reduce 
model complexity by fixing the respective parameter across individuals. Furthermore, 
we recommend adjusting model complexity to the available between- and within-level 
sample sizes (see Schultzberg & Muthén, 2018, and Asparouhov et al., 2018, for simula-
tion studies).

BOX 15.3.  Bayesian Estimation  
and Markov Chain Monte Carlo Sampling

Dynamic SEMs in Mplus are estimated in a Bayesian framework using Markov chain 
Monte Carlo (MCMC) sampling techniques. We will not provide a detailed coverage 
of Bayesian statistics or MCMC sampling here, but we will provide a very short intro-
duction of the basic idea and terminology. Note that MCMC sampling can be used as 
a computational tool to facilitate estimation of complex models, without necessarily 
relying on the philosophical underpinnings of Bayesian methods (Asparouhov et al., 
2018). For detailed information on Bayesian statistics and MCMC estimation, we refer 
the reader to Kruschke (2015), McElreath (2020), or Gelman and colleagues (2014), 
and for short introductions, we refer the reader to Kruschke, Aguinis, and Joo (2012), 
van de Schoot and colleagues (2014), or Song and Lee (2012).

In Bayesian statistics, parameters are considered random variables, and the 
uncertainty about a parameter’s value is reflected in the parameter’s probability 
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distribution. Prior beliefs about a parameter’s distribution are updated with informa-
tion from observed data to obtain a posterior probability distribution of the respective 
parameter (Song & Lee, 2012). That is, while classical estimation procedures such as 
maximum likelihood (ML) estimation provide a point estimate for each parameter, 
Bayesian statistics provides a (posterior) distribution for each model parameter. Prior 
beliefs regarding a parameter’s location may, for instance, stem from previous research 
results. This prior belief, as well as the uncertainty associated with it, are quantified in 
terms of a prior distribution. Disregarding philosophical differences, Bayesian and ML 
approaches are asymptotically equivalent (Song & Lee, 2012), with the effect of the 
prior distribution decreasing with increasing sample sizes. Furthermore, if researchers 
do not wish to incorporate prior beliefs into the analysis, they can make use of unin-
formative prior distributions (also called flat or diffuse priors, which contain no or 
little information on the parameter’s location within the admissible parameter space). 
Per default, Mplus uses uninformative prior distributions; for details, see Asparouhov 
and Muthén (2010) and Asparouhov and colleagues (2018). Recently, McNeish (2019) 
has proposed the use of weakly informative, so-called admissible-range-restricted pri-
ors to improve the performance of DSEMs in small sample sizes.

For many complex models, the joint posterior distribution of the model param-
eters cannot be derived analytically, such that sampling methods are needed. That is, 
posterior distributions are approximated by use of MCMC methods. MCMC is an 
iterative sampling process that generates a Markov chain of draws from the posterior 
distribution, generating a large representative sample of parameter values from the 
posterior (see Kruschke, 2015, or McElreath, 2020, for an introduction). A param-
eter’s posterior distribution can then be described by summarizing the MCMC sam-
ples drawn from the posterior, for example, by use of a measure of central tendency 
(e.g., mean or median), the standard deviation, as well as percentiles of the posterior 
distribution. For instance, the 2.5 and 97.5 percentiles serve as boundaries of a 95% 
credible interval (CI; as an analog of a confidence interval). Different from classical 
frequentist confidence intervals, the interpretation of a 95% credible interval is that, 
given the observed data, there is a 95% probability that the true parameter lies within 
the interval. CIs may be consulted to decide whether a parameter estimate can be con-
sidered to be different from a previously specified value (e.g., zero). Note that relying 
on CIs to test deviations from zero is not advisable for variance parameters, as these 
are often precluded from assuming negative values by use of corresponding priors (see 
below for alternative decision rules regarding variance parameters). Typically, at least 
two parallel MCMC chains are sampled, with a large number of iterations (determin-
ing the sample size of draws from the posterior), where a certain percentage of draws 
at the beginning of the chain is discarded (burn-in; since the chain may not yet have 
converged to the target distribution). Researchers may decide to use only every kth 
sampled value to avoid high autocorrelation between the samples.

An advantage of MCMC procedures is that (nonlinear) transformations of the 
estimated model parameters can be easily sampled, along with their respective CIs, 
even if these parameters follow unknown or possibly skewed distributions. Further-
more, missing data are sampled, along with the remaining model parameters in each 
MCMC iteration, from its respective conditional posterior distribution, taking the 
within-person dynamics (serial dependency) into account. Thereby, data that are 
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missing at random can be easily handled within MCMC estimation, without further 
required modeling steps or loss of information.

Estimation via MCMC sampling requires careful checks of convergence diagnos-
tics to ensure that the sampler has converged to the target distribution. To this end, 
convergence statistics such as the Potential Scale Reduction (PSR; Gelman-Rubin con-
vergence diagnostic; Gelman & Rubin, 1992) should be combined with visual diag-
nostics of trace plots, autocorrelation plots, and posterior density plots. The PSR is a 
convergence criterion for parallel MCMC chains, which is based on comparing within-
chain and between-chain variance, with a value of 1 indicating that the chains have 
converged to a common distribution (see Asparouhov & Muthén, 2010, for details). 
For guidelines on convergence checking and the interpretation of MCMC plots, see, 
for example, Kruschke (2015, Ch. 7.5) or McElreath (2020, Ch. 9). For a checklist of 
steps in the practical implementation of Bayesian estimation, see Depaoli and van de 
Schoot (2017).

For the purpose of model comparisons of DSEMs estimated by MCMC methods, 
Mplus (version 8.4, Muthén & Muthén, 1998–2017) currently provides the deviance 
information criterion (DIC) as well as Bayes factors (BF). The DIC (Asparouhov et al., 
2018; Spiegelhalter, Best, Carlin, & van der Linde, 2002) can be used as an index of 
relative model fit for nested or non-nested models, given that the models have the same 
latent variables (with relatively lower DIC values indicating better model fit). That 
is, the DIC should be implemented with caution, as it cannot be naively applied for 
comparisons of any two possible models, and DIC estimation tends to be unstable in 
complex time-series models including latent variables (Asparouhov et al., 2018; Aspa-
rouhov & Muthén, 2020). The Bayes factor is a likelihood ratio quantifying the rela-
tive evidence in the data for an hypothesis over a competing hypothesis (for details see, 
e.g., Hoijtink, Mulder, van Lissa, & Gu, 2019). For details on how to request BFs for 
variance parameters in Mplus, see Muthén and Asparouhov (2012). To decide on the 
necessity to include random effects in the model, Asparouhov and Muthén (personal 
communication, July 2, 2021) recommend a different approach, using a cutoff value of 
z > 3, with z = parameter estimate / standard error.

Illustrative Application to Physical Activity  
and Energetic Arousal Data

We applied the dynamic SEM described above to data on physical activity (accelerometer) 
and energetic arousal (self-report) obtained in a convenience sample of undergraduate 
students and citizens of a city in the southern part of Germany in 2009. Self-report rat-
ings of EA were assessed via electronic diaries (e-diaries; smartphones), which prompted 
participants randomly about every 45 minutes during a predefined 14-hour daytime 
period (8:00 A.M. to 10:00 P.M.) across 1 to 3 days. EA was assessed with two items of the 
short mood scale (Wilhelm & Schoebi, 2007), which has been explicitly developed and 
evaluated for AA studies. It is a bipolar scale (tired vs. wake; energetic vs. nonenergetic). 
Participants answered to the prompt “At this moment, I feel . . . ” by moving a slider from 
the left end (e.g., tired) to the right end (e.g., wake). We changed the original 7-point rat-
ing scale to a 6-point scale to force participants to decide between the two poles. Inverse 
items were recoded such that high values reflect high levels of EA.
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PA was assessed continuously and objectively with hip-worn accelerometers (vario-
port-e, Becker, Meditech, Karlsruhe). Accelerometers are used to measure the intensity, 
rate of occurrence, and duration of a physically active episode. To analyze associations 
between PA and EA, the activity values during the 10 minutes preceding each entry into 
the e-diary were averaged. For further information on the conducted data preprocess-
ing steps see Kanning (2013). To reduce the skewness of the PA measure, actual PA was 
rescaled by taking its natural logarithm, resulting in a measure of actual PA measured in 
log-milli-g, with observed values in the range between –7.07 and 7.18 (with mean = 3.86, 
25% quantile = 2.94, median = 4.08, and 75% quantile = 4.84). Note that on this scale, 
pure sitting episodes would elicit values of around 2.3, walking episodes of around 5.9, 
and jogging episodes of around 6.9.

The dataset comprised observations from 166 participants, of which 84 were female, 
with an average age of 40.5 years (min = 18, max = 74, SD = 17.8, median = 30.5). 
Note that only participants who provided at least 10 valid self-reports were included 
in the present analyses. On average, the resulting dataset includes observations on 19.2 
time points per person (min = 10, max = 42, median = 19), with a median time inter-
val between adjacent observations of 45 minutes (min = 3 minutes, 25% quantile = 39 
minutes, 75% quantile = 68 minutes, max = 26 hours). To account for nonequidistant 
observations, we made use of the tinterval option in Mplus, which was set to produce 
approximately equal time intervals of 30 minutes. An interval of 30 minutes was cho-
sen because it should sufficiently well approximate the observed time intervals reported 

BOX 15.4.  Standardization in Multilevel Time-Series Models

In the analysis of ILD, we are typically interested in comparing the relative strengths 
of different predictor variables in the dynamics of psychological processes that occur 
on the within-person level. That is, between-person differences in average trait levels 
are not of primary interest when we are judging the relative strengths of cross-lagged 
effects on the within-person level. As proposed by Schuurman and colleagues (2016), 
to compare the relative strengths of different predictors in the within-person dynam-
ics, the parameters should be standardized on the within-person level. By standardiz-
ing on the within-person level, standardized cross-lagged effects quantify the propor-
tion of uniquely explained variance in the within-person dynamics, considering each 
individual’s unique variability in the covariate and outcome across time (i.e., some 
individuals may have larger/smaller variances for the same psychological construct). 
To obtain within-person standardized estimates, regression coefficients are standard-
ized for each individual separately (similar to standardization in n = 1 time-series mod-
els) and then are averaged across individuals to obtain an average standardized effect 
estimate (Schuurman et al., 2016). Furthermore, the proportion of variance explained 
by the within-person dynamics is calculated on the within-person level and is subse-
quently averaged to obtain an average R2 estimate for within-level (latent) variables. 
Within-person standardized autoregressive and cross-lagged effects can be interpreted 
as the person-specific standard deviations that the outcome variable increases when 
the predictor variable increases by one person-specific standard deviation (Schuurman 
et al., 2016), controlling for the autoregressive dependency. In contrast, between-level 
parameters are standardized based on the between-person variances.
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above (using time intervals of 15 minutes did produce convergence problems). Using a 
time interval of 30 minutes, approximately 70% missings were inserted into the dataset.

With no prior hypotheses on the parameter locations, we used the uninformative 
prior distributions provided as default priors in Mplus (see Asparouhov & Muthén, 2010, 
as well as Asparouhov et al., 2018, for details). MCMC estimation was conducted using 
two MCMC chains, which ran with a minimum of 600,000 iterations per chain with a 
thinning factor of 40. That is, only every 40th iteration per chain was used as a sample 
for constructing the posterior distribution. The first half of each chain was discarded 
as a burn-in period. That is, posterior distributions comprised at least 15,000 samples. 
MCMC sampling was stopped when the PSR fell below a threshold of 1.01 for the first 
time after the minimum number of iterations was sampled. Mixing of the MCMC chains 
was further checked by visual inspection of trace plots.

Due to the described preprocessing steps, an average PA measure was available for 
the 10 minutes directly preceding each EA self-report. Therefore, we applied the model 
that includes a simultaneous regression effect of PA on EA, as described above and 
depicted in Figure 15.3. For comparisons and interpretation of within-person dynamics, 
we make use of average within-person standardized estimates (Schuurman et al., 2016).

Within‑Person Dynamics

The results in Table 15.1 show that both PA and EA exhibit positive autocorrelation 
across time, with average within-person standardized AR effects of 0.711 for EA (95% 
CI [0.653; 0.757]) and 0.498 for PA (95% CI [0.421; 0.591]). This implies that persons 
who feel energetic at one occasion tend to feel similarly energetic at the next one (30 
minutes later), with high carryover effects. If the level of EA is perturbed by an external 

  FIGURE 15.3.    Latent within-person dynamics in the dynamic structural equation model with a 
simultaneous effect of physical activity (PA) on energetic arousal (EA). i: individual; t: time point; 

( )w
itEA  /  ( )w

itPA : latent within-person variables of EA and PA; bEP,i: person-specific slope of the latent 
simultaneous regression of ( )w

itEA  at time t on ( )w
itPA  at time t; fE,i / fP,i: random, person-specific 

autoregressive effects; fEP,i: person-specific slope of the latent cross-lagged regression of ( )w
itEA  at 

time t on ( )
( )

−1
w
i tPA  at time (t – 1); fPE,i: person-specific slope of the latent cross-lagged regression of 

( )w
itPA  at time point t on ( )

( )
−1

w
i tEA  at time point (t – 1); zE,it / z P,it: latent innovations of EA and PA.
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TABLE 15.1.  Parameter Estimates of the DSEM of Energetic Arousal and Physical Activity
Energetic arousal Physical activity

Estimate 95% CI Estimate 95% CI

Unstandardized parameter estimates

Var(eE1) / Var(e P)   0.713 [0.661; 0.767]   0.254 [0.131; 0.363]

Var(eE2)   0.454 [0.413; 0.497]

Fixed effects

gmE1 / gmP   3.228 [3.096; 3.377]   3.859 [3.774; 3.941]

gmE2   3.035 [2.916; 3.153]

g fE / g fP   0.712 [0.665; 0.765]   0.511 [0.424; 0.597]

g bEP   0.368 [0.266; 0.504]

g fEP / g fPE –0.260 [–0.394; –0.161]   0.115 [0.048; 0.188]

gszP / gszP –1.383 [–1.670; –1.147] –0.462 [–0.758; –0.197]

Random effect variances

mE1 / mP   0.551 [0.401; 0.764]   0.102 [0.056; 0.171]

mE2   0.330 [0.221; 0.480]

fE / fP   0.023 [0.013; 0.040]   0.048 [0.029; 0.079]

bEP   0.062 [0.029; 0.127]

fEP / fPE   0.047  [0.020; 0.101]   0.028 [0.011; 0.062]

ln( 2
Eζσ ) / ln( 2

Pζσ )   1.179 [0.786; 1.811]   0.709 [0.419; 1.161]

Standardized parameter estimates

Within-person standardization (averaged across clusters)

fE / fP   0.711 [0.653; 0.757]   0.498 [0.421; 0.591]

bEP   0.364 [0.288; 0.479]

fEP / fPE –0.256 [–0.378; –0.168]   0.120 [0.062; 0.174]
2 2/E Pz zs s   0.334 [0.278; 0.386]   0.616 [0.539; 0.677]

R-squared

Within-level (averaged across clusters)

YE1 / YP     .570 [.537; .601]     .815 [.716; .919]

YE2     .666 [.634; .697]

EA(w) / PA(w)     .666 [.614; .720]     .384 [.323; .461]

Note. Estimated parameters denote posterior medians and 95% CIs denote Bayesian credibility intervals. Within-per-
son standardized parameters are within-person-level standardized estimates averaged across clusters. R2 measures for 
EA(w) / PA(w) denote averaged within-person explained variance with respect to the measurement-error-free latent con-
struct on the within-person level, and those for YE1, YE2, and YP refer to explained variance in the observed variables 
on the within-person level. E / EA: energetic arousal; P / PA: physical activity; E1: first item of energetic arousal (awake); 
E2: second item of energetic arousal (energetic); bEP: person-specific simultaneous regression coefficient of ( )w

itEA  on 
( )w
itPA ; eE1 / eE2 / eP: measurement error variables; g fE / g fP: average autoregressive effect of EA(w) / PA(w); g bEP: average effect 

of the simultaneous regression of ( )w
itEA  on ( )w

itPA ; g fEP: average effect of the cross-lagged regression of ( )w
itEA  on ( )

( )
−1

w
i tPA ; g fPE: 

average effect of the cross-lagged regression of ( )w
itPA  on ( )

( )
−1

w
i tEA ; gszE / gszP: average log innovation variance of latent con-

struct EA(w) / PA(w); ln( 2
Eζσ ) / ln( 2

Pζσ ): logarithm of the random, person-specific innovation variances; mE1 / mE2 / mP: random, 
person-specific mean of the respective construct and indicator; fE / fP: random, person-specific autoregressive effects; fEP: 
person-specific slope of the latent regression of ( )w

itEA  at time point t on ( )
( )

−1
w
i tPA  at time point (t – 1); fPE: person-specific 

slope of the latent regression of ( )w
itPA  at time point t on ( )

( )
−1

w
i tEA  at time point (t – 1); YE1 / YE2 / YP: observed variables of EA, 

indicator 1 and 2, and PA; EA(w) / PA(w): latent within-person state variables of EA and PA.



event (e.g., lack of sleep, a strong coffee), EA is expected to only slowly return to the 
person’s respective baseline level. Although there is a positive carryover from PA levels at 
one occasion to PA at the next occasion, this effect is smaller for PA as compared to EA.

With respect to the simultaneous effect, we observe that PA in the temporally pre-
ceding 10 minutes affects EA such that higher PA is associated with higher levels of 
EA (average within-person standardized effect: bEP = 0.364, 95% CI [0.288; 0.479]). 
In contrast, higher levels of PA lead to lower levels of EA 30 to 40 minutes later (fEP = 
–0.256, 95% CI [–0.378; –0.168]). That is, on average, higher PA is followed by a direct/
simultaneous increase in EA, with a subsequent decrease in EA half an hour later. EA at 
time t – 1 affects the level of PA at time t, with higher levels of EA predicting higher levels 
of PA 20 to 30 minutes later (fPE = 0.120, 95% CI [0.062; 0.174]).

Autoregressive, simultaneous and cross-lagged regression effects vary substantially 
across individuals, with random effect variances ranging from 0.023 to 0.062 (see Table 
15.1). Note that, although the reported variances may seem small, autoregressive param-
eters are restricted to the interval [–1; 1], such that small variances may indicate sub-
stantial between-person variance. For instance, under the assumption of normality, an 
average autoregressive effect of g fP = 0.511 (fixed effect of PA) with a random effect vari-
ance of 0.048 implies that 95% of the individuals’ person-specific autoregressive effects 
lie between [.082; .940]. That is, there seem to be substantial interindividual differences 
in the dynamic processes within persons. As estimates of variance parameters are pre-
vented from dropping below zero by the Mplus default prior distributions, the respective 
credibility intervals are less informative with respect to a deviation of random effect 
variances from zero (unless the lower bound is far above zero). We requested the Bayes 
factors for the hypotheses that the random effect variances are smaller than 0.001. In 
this case, a BF of x suggests that a model in which the respective variance is < 0.001 is 
x times more likely than a model with a variance deviating from zero. Often, a BF > 3 is 
used as a cutoff for positive evidence against the comparison hypothesis (here: nonzero 
random-effect variance; Kass & Raftery, 1995). For the present model, the values of the 
requested BFs suggest keeping all random effects in the model (BFs < 3 in all cases). Using 
the rule of thumb that variances with z < 3 (with z = parameter estimate / standard error) 
can be dropped from the model, we could consider excluding the random effects for the 
cross-lagged and the simultaneous regression effects (see Table 15.1). Note that there is no 
harm in including a random effect if the true parameter is nonrandom, given the required 
sample sizes for the respective model complexity are met. Otherwise, it is recommended 
that nonessential random effects be excluded from the model. In the case of substantial 
random effect variances, considering the fixed effects only might be misleading, and 
fixed effects close to zero do not necessarily indicate that the respective parameter (e.g., 
cross-lagged effect) could be excluded from the model.

The average innovation variances for latent state EA and PA are exp(–1.383) = 0.251 
and exp(–0.462) = 0.630, respectively. Within-person standardized innovation variances 
averaged across persons are 0.334 (CI = [0.278; 0.386]) for EA and 0.616 (CI = [0.539; 
0.677]) for PA, indicating that, on average, there is a larger amount of unexplained vari-
ability in PA as compared to EA. Innovation variances of both EA and PA vary across 
persons, with random effect variances on the log-scale of 1.179 and 0.709. These log-
scale random effects can be interpreted such that, for instance, under the assumption 
of normality,  95% of the individuals’ innovation variances of EA fall in the interval 
between exp(–1.383 – 1.960 ⋅ 1.179) = 0.030 and exp(–1.383 + 1.960 ⋅ 1.179) = 2.107.
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Extension: Random Measurement Error Variances and Covariance

The presented DSEMs can be extended by including person-specific measurement error 
variances and covariances. Assume PA and EA were measured by one indicator variable, 
respectively. In this case, the measurement models are single-indicator models for both 
variables, with the respective measurement error variables eE,it and eP,it capturing all 
effects on the within-level constructs that are not carried forward to the next measure-
ment occasion. That is, they capture any perturbations that are truly time-point specific 
in that they do not affect future states of the process. Thereby, when jointly modeling 
multiple constructs across time, measurement error variables might correlate across con-
structs within persons and measurement time points. A positive correlation would indi-
cate that an unobserved external event resulted in a simultaneous increase or decrease of 
both variables at the same time, while being so spurious that the effect does not last to 
the next measurement occasion. Assume, for instance, that energetic arousal and tense 
arousal are modeled jointly in a bivariate DSEM across time. An unexpected loud noise 
occurring nearby might lead to a sudden increase in a person’s tense arousal and ener-
getic arousal levels at that moment in time, while the effect dissipates immediately after 
the person has made out the (harmless) source of the experienced noise. The increases in 
both energetic and tense arousal subside quickly and are not carried forward to the next 

BOX 15.5.  Within-Person Reliabilities

Multilevel time-series models offer the possibility of estimating different types of reli-
ability for the observed variables: reliability with respect to trait scores and reliabil-
ity with respect to within-person fluctuations across time (Schuurman & Hamaker, 
2019). The first type of reliability is the relevant entity for inferences regarding inter-
individual trait differences, which Schuurman and Hamaker (2019) call between-
person reliability. The second type of reliability is relevant for inferences regarding 
intraindividual variations across time. Within-person reliability refers to the propor-
tion of within-person true-score variance relative to the total within-person variance 
across time, a measure that may vary across individuals. Between-person differences 
in within-person variability may therefore originate from interindividual differences 
in autoregressive and cross-lagged effects as well as innovation variances on the one 
hand and, in case measurement error variances are modeled as random parameters, 
differences in measurement error variability on the other hand. Average within-person 
reliability as well as the variance of within-person reliabilities across individuals can 
be inspected. In the model with random measurement error variances, the estimated 
average within-person reliabilities are .623 (CI [.594; .652]) and .693 (CI [.665; .720]) 
for the two indicators of EA and .692 (CI [.539; 0.819]) for PA. Note that for single-
indicator measurement models (used for PA in the present example), the error variable 
may partly contain reliable, time-specific components (see the section “Measurement 
Models”), which might lower the reliability estimates. Within-person reliabilities var-
ied across persons with a central 95% interval of [.30; .90] for the item awake, a 
central 95% interval of [.25; .93] for the item energetic, and a central 95% interval of 
[.28; .92] for physical activity.
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measurements taken 1 or 2 hours later. A substantive correlation between concurrent 
residual variables of the two constructs thereby indicates that these do not only capture 
random measurement error, but also partly contain systematic effects caused by unob-
served external factors. In a DSEM model with correlated error variables, the residual 
variables eE,it and eP,it are assumed to be multivariate normally distributed with person-
specific error variances and covariance:
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                   
	 (15.21)

We extended the model in the current data application to incorporate random, 
person-specific residual variances for both PA and EA. Note that in case of multiple-
indicator models, in which measurement error variance is identified by use of two paral-
lel indicators, it is not reasonable to model correlations between random measurement 
error variables of different constructs (e.g., PA and EA in the present data application), as 
measurement error variables are theoretically expected to only consist of random noise. 
That is, we did not include simultaneous correlations between the error variable of PA 
and the measurement error variables of EA. Parameter estimates are presented in Table 
15.2. In comparison to the model with fixed error variances (assuming the error vari-
ances are the same for all individuals), average (measurement) error variance for PA has 
increased (average within-level standardized variance of 0.308 as compared to 0.185), 
with a respective decrease of the average within-person reliability of PA (see Box 15.5).3 
The transition from fixed to random error variances changed the parameters of the 
within-level dynamics. Specifically, with respect to the average within-person standard-
ized effects, the simultaneous effect of PA on EA increased to 0.457 (stronger positive 
effect), the cross-lagged effect of PA on EA half an hour later decreased to –0.350 (stron-
ger negative effect), and the cross-lagged effect of EA on PA half an hour later decreased 
to 0.097 (slightly smaller positive effect). On average, autoregressive and cross-lagged 
effects could explain 68.8% and 47.3% of the within-person latent occasion-specific vari-
ance in EA and PA, respectively. Random effect variances as well as further parameter 
estimates along with their credibility intervals are given in Table 15.2.

Between‑Person Associations

For parsimony, between-level random effect correlations are presented for the model 
without random measurement error and if substantially differing from zero only. As 
expected, we observe a strong positive correlation between the stable trait levels of the 
two indicators of EA (r(mE2, mE1) = .721; CI = [.586; .815]), indicating that the stable 
trait measured by the item awake is positively correlated with the stable trait measured 
by the item energetic. Stable trait levels of PA substantially correlate with stable levels of 
EA (r(mP, mE1) =.305 and r(mP, mE2) = .425 with CIs [.009; .555] and [.112; .666], respec-
tively), indicating that there is systematic between-person association between persons’ 
average amount of PA and EA. Furthermore, individuals with high average levels of EA 
tend to show less unexplained (occasion-specific) variability in their dynamics of EA 
across time (r(mE1, ln( 2

Eζσ )) = –.334 and r(mE2, ln( 2
Eζσ )) = –.343 with CIs [–.553; –.086] 

and [–.589; –.063]), while individuals with higher average levels of PA tend to show less 
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TABLE 15.2.  Parameter Estimates of the DSEM of Energetic Arousal and Physical Activity with Random 
Measurement Error Variances

Energetic arousal Physical activity

Estimate 95% CI Estimate 95% CI

Unstandardized parameter estimates

Fixed effects

gmE1 / gmP   3.240 [3.097; 3.380]   3.861 [3.773; 3.944]

gmE2   3.023 [2.900; 3.145]

g fE / g fP   0.709 [0.641; 0.769]   0.587 [0.483; 0.686]

g bEP   0.469 [0.301; 0.713]

g fEP / g fPE –0.351 [–0.579; –0.195] 0.088 [0.017; 0.162]

gszE / gszP –1.449 [–1.760; –1.193] –0.909 [–1.374; –0.471]

gseE1 / gseP –0.694 [–0.876; –0.523] –1.194 [–2.036; –0.723]

gseE2 –1.194 [–1.287; –0.891]

Random effect variances

mE1 / mP 0.566 [0.419; 0.772] 0.112 [0.065; 0.180]

mE2 0.376 [0.267; 0.529]

fE / fP 0.028 [0.014; 0.049] 0.045 [0.026; 0.078]

bEP 0.099 [0.041; 0.248]

fEP / fPE 0.075  [0.028; 0.196] 0.034 [0.014; 0.071]

ln( 2
Eζσ ) / ln( 2

Pζσ ) 1.198 [0.781; 1.806] 0.930 [0.407; 1.806]

ln( 2
1Eεσ ) / ln( 2

Pεσ ) 0.909 [0.631; 1.304] 1.227 [0.595; 2.756]

ln( 2
2Eεσ ) 0.982 [0.696; 1.400]

Standardized parameter estimates

Within-person standardization (averaged across clusters)

fE / fP   0.707 [0.650; 0.770] 0.591 [0.492; 0.694]

bEP   0.457 [0.317; 0.653]

fEP / fPE –0.350 [–0.552; –0.206] 0.097 [0.037; 0.162]
2
Eζσ  /  2

Pζσ   0.312 [0.242; 0.372] 0.527 [0.417; 0.611]
2

1Eεσ  /  2
Pεσ   0.377 [0.348; 0.406] 0.308 [0.181; 0.461]

2
2Eεσ   0.307 [0.280; 0.335]

(continued)
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unexplained (occasion-specific) variability in PA across time (r(mP, ln( 2
Pζσ )) = –.545; CI 

= [–.796; –.215]). Higher carryover in PA is associated with less unexplained variability 
in PA across time (r(fP, ln( 2

Pζσ )) = –.363; CI = [–.636; –.021]). The same holds for EA 
(r(fE, ln( 2

Eζσ )) = –.709; CI = [–.873; –.455]). Individuals who experience a weaker posi-
tive simultaneous effect of PA on EA tend to also have a weaker negative effect of PA 
on EA half an hour later (r(fEP, bEP) = –.788; CI = [–.931; –.468]). That is, individuals 
tend to vary with respect to the strength of the effect that PA exerts on EA in general. 
Additionally, individuals with comparatively large degrees of unexplained variability in 
PA (innovation variance) tend to exhibit weaker positive simultaneous effects of PA on 
EA (r(ln( 2

Pζσ ), bEP) = –.533; CI = [–.781; –.177]) and weaker negative (i.e., negative values 
closer to zero) cross-lagged effects of PA on EA (r(ln( 2

Pζσ ), fEP) = .450; CI = [.024; .753]).
In conclusion, the results suggest that high PA is associated with a simultaneous 

increase in experienced EA and a decrease in EA half an hour later. The results are in 
line with previous research. For instance, AA studies observed that EA and momentary 
volume of PA were positively associated, whereas this association subsided over time 
(Kanning & Schoebi, 2016; Reichert et al., 2016).

Further Model Extensions

Besides including covariates as predictors or outcomes on the between-person level (see 
the section “Between-Level Structure”), we may be interested in including time-varying 
covariates in our model. We might for instance ask why EA shows variability across time 

TABLE 15.2.  (continued)

Energetic arousal Physical activity

Estimate 95% CI Estimate 95% CI

R-squared

Within-level (averaged across clusters)

YE1 / YP .623 [.594; .652] .692 [.539; 0.819]

YE2 .693 [.665; .720]

EA(w) / PA(w) .688 [.628; .758] .473 [.389; .583]

Note. Estimated parameters denote posterior medians and 95% CIs denote Bayesian credibility intervals. Within-person 
standardized parameters are within-person-level standardized estimates averaged across clusters. R2 measures for 
EA(w) / PA(w) denote averaged within-person explained variance with respect to the measurement-error-free latent con-
struct on the within-person level, and those for YE1, YE2, and YP refer to explained variance in the observed variables on 
the within-person level. E / EA: energetic arousal; P / PA: physical activity; E1: first item of energetic arousal (awake); E2: 
second item of energetic arousal (energetic); bEP: person-specific simultaneous regression coefficient of ( )w

itEA  on ( )w
itPA ; 

g fE / g fP: average autoregressive effect of EA(w) / PA(w); g bEP: average effect of the simultaneous regression of ( )w
itEA  on ( )w

itPA ; 
g fEP: average effect of the cross-lagged regression of ( )w

itEA  on ( )
( )

−1
w
i tPA ; g fPE: average effect of the cross-lagged regression 

of ( )w
itPA  on ( )

( )
−1

w
i tEA ; gszE / gszP: average log innovation variance of latent construct EA(w) / PA(w); gseE1 / gseE2 / gseP: average 

(fixed effect) of the logarithm of the random measurement error variance for indicator 1 and 2 for EA / PA; ln( 2
Eζσ ) / ln( 2

Pζσ ): 
logarithm of the random, person-specific innovation variances; 2 2 2

1 2/ /E E Pε ε εσ σ σ : random, person-specific error variances; 
mE1 / mE2 / mP: random, person-specific mean of the respective construct and indicator; fE / fP: random, person-specific 
autoregreesive effects; fEP: person-specific slope of the latent regression of ( )w

itEA  at time point t on ( )
( )

−1
w
i tPA  at time point 

(t – 1); fPE: person-specific slope of the latent regression of ( )w
itPA  at time point t on ( )

( )
−1

w
i tEA  at time point (t – 1); YE1 / YE2 / YP: 

Observed variables of EA, indicator 1 and 2, and PA; EA(w) / PA(w): latent within-person state variables of EA and PA.
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and which covariates (e.g., quality and length of the last night’s sleep or contextual effects 
of work and leisure time; Kanning, 2013) might explain observed drops and increases 
in EA. Time-varying (observed or latent) covariates can be easily incorporated into the 
DSEM, while researchers have to decide whether the effects of time-varying covariates 
are assumed to carry forward in time or are truly time-specific. For instance, if a time-
varying (observed or latent) covariate Xit is added as a predictor variable in Equation 
15.8, Xit affects ( )w

itEA  at time t but also at later time points, as the effect is carried for-
ward in time by an indirect effect of Xit on future EA by the autoregressive effect of EA. 
(This type of model is called an indirect model by Asparouhov et al., 2018). Alternatively, 
in the model termed direct model in Asparouhov and colleagues (2018), Xit only affects 
concurrent ( )w

itEA , and there is no accumulated effect of Xit across time. This is achieved 
by separating the structural and autoregressive parts of the model, with Xit being part of 
the structural model. For instance, in the direct model, autoregression for within-level EA 
is modeled for the residuals fit of EA after controlling for Xit:

	 ( )  w
it i it itEA X fθ= + 	 (15.22)

	 ( ), ,1 it E i E iti tf φ ζ−= +f 	 (15.23)

Equation 15.22 specifies the structural part of the model which includes the contem-
poraneous regressions between the variables (nondynamic), and Equation 15.23 specifies 
the residual part (dynamic part of ( )w

itEA ). Note that the meaning and interpretation of 
the regression parameters differ between the two modeling strategies, with parameters 
in the direct model sometimes being easier to interpret (e.g., when Xit represents time in 
a growth curve model). Asparouhov and Muthén (2020) propose selecting a modeling 
approach (direct or indirect) by the focus of the research question (i.e., focus on contem-
poraneous relations vs. dynamic structural relations) or by determining the appropriate 
model for a covariate by estimation of a full model (both indirect and direct effects) and 
inspection of the respective regression coefficients. The modeling framework to model 
autoregressive processes on the structural regression residuals (direct model) is termed 
residual DSEM (RDSEM), which is discussed in detail in Asparouhov and Muthén. They 
present several alternative modeling strategies for the inclusion of covariates and address 
further issues such as identification, the exogeneity of covariates, or the effect of missing 
data to adjust for unequally spaced observations. They conclude that (1) it is advisable to 
treat the covariate as an endogenous variable and account for its autocorrelation across 
time instead of treating it as exogenous and that (2) the estimation of the structural 
regression coefficients is more robust with respect to how unequally spaced time inter-
vals are treated when using the direct (RDSEM) as compared to the indirect modeling 
approach.

BOX 15.6.  Trends, Cyclical Effects, and Growth Curve Models

The models described in this chapter are suited to analyze stable process data. That is, 
the outcome variables are assumed to not systematically change across the observed 
time period, and fluctuations center around a stable mean value across time. Time-
series models require the series to be stationary, which implies (among other assump-
tions; see Box 15.1) that the expected value of the series is constant across time. If 
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the assumption of stationarity is violated by a trend in the data, the series has to be 
detrended before model estimation, or the trend can be directly modeled within the 
model by including time as a time-varying covariate (Jebb et al., 2015). In the same 
vein, seasonal or cyclical effects (e.g., weekly cycles) have to be addressed as they vio-
late the stationarity assumption by introducing a recurring pattern of change in the 
series’ mean.

To model subject-specific linear trends in EA, time can be included as a predictor 
of EA on the within-person level, resulting in the estimation of a linear growth curve 
model:

	 ( )  w
it i itEA t fθ= + 	 (15.24)

	 ( ), ,1 it E i E iti tf φ ζ−= +f 	 (15.25)

where t denotes time and q i captures the linear growth of individual i across time. 
Note that in Equations 15.24 and 15.25, we chose a direct modeling approach; that 
is, the autoregressive part is modeled separately from the trend/growth curve compo-
nent, such that the conditional expectation of EA depends only on its trait value as 
well as on ti, facilitating the interpretation of the model parameters (see Asparouhov 
et al., 2018). This model can be easily specified by use of RDSEM. Analogously, cycli-
cal components could, for instance, be specified by use of sine or cosine functions of 
time in Equation 15.24 (see, e.g., Liu & West, 2016; Zhou, Wang, & Zhang, 2019). 
Another approach to model growth in DSEM is to use a cross-classified DSEM (see 
the following section).

Cross‑Classified DSEM

Another form of nonstationarity that might occur in intensive longitudinal data arises 
from changes in the dynamic parameters across time. The models covered in this chapter 
assume that the dynamic effects are constant across time; for instance, autocorrelation 
does not change over the observation period, and the effect of time-varying covariates is 
the same across all measurement occasions. This assumption is relaxed in time-varying 
effects models, which allow for time-specific effects in the intercepts, autoregressive 
parameters, or within-level relationships between variables (e.g., Bringmann, Ferrer, 
Hamaker, Borsboom, & Tuerlinckx, 2018; Tan, Shiyko, Li, Li, & Dierker, 2012). Besides 
the aforementioned modeling techniques that are unified in the DSEM framework (i.e., 
multilevel, time series, and structural equation modeling), DSEM also comprises time-
varying effects modeling by modeling time-varying effects as random effects across time 
within a cross-classified modeling approach. That is, cross-classified DSEM incorporates 
both person-specific and time-specific random effects. By modeling changes in inter-
cepts and slopes across time by means of time-specific random effects, it is not necessary 
to specify a functional form of the effects over time. However, a prerequisite for esti-
mating time-specific effects by a cross-classified DSEM is that the time scale is aligned 
across all individuals (Asparouhov et al., 2018). A requirement that is not met in many 
intensive longitudinal datasets (for instance, when participants are prompted to respond 
to an e-diary question at random times during the day, as is the case in the presented 
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application) might, however, be quite often met when data are obtained continuously 
across time by wearable sensors and are potentially split into equivalent time intervals for 
every participant by the researcher.

Summary

The flexibility of the DSEM framework allows extensive modeling strategies, and myriad 
different models can be specified under the umbrella of DSEM, the presentation of which 
is beyond the scope of this chapter. Besides the manifold advantages and possibilities 
offered by DSEM, a small note of caution has to be added with respect to the sample size 
requirements of the models. That is, modeling person-specific dynamics on the within-
person level, including random effects for many or even all relevant model parameters, 
requires a large number of repeated measurements per person. When combining data 
from wearable sensors with e-diaries, the required number of observed time points (e.g., 
more than 50, 100, or even 200, depending on model complexity; see Asparouhov et al., 
2018; Schultzberg & Muthén, 2018) might exceed the actual number of available observa-
tions in many datasets. In this case, it might be necessary to reduce model complexity by 
reducing the number of random effects in the model. However, if continuously measured 
signals from wearable sensors are analyzed without additional data from e-diaries, the 
amount of available time points should easily surmount the required sample sizes, with 
many potential areas of application. One such application of the DSEM model described 
in this chapter is the analysis of dyadic data obtained with wearable sensors. For instance, 
research on emotional synchrony investigated the temporal coupling between behavior, 
emotional experiences, and their underlying physiology in parent–child dyads or roman-
tic couples (e.g., Amole, Cyranowski, Wright, & Swartz, 2017; Woody, Feuer, Sosoo, 
Hastings, & Gibb, 2016). That is, when focusing, for instance, on the synchrony of heart 
rate variability, heart rate variability could be measured in parallel for each member of 
the dyad across an extended time period. The resulting time series from each dyad can 
be analyzed by treating each member of the dyad as a different variable in a bivariate 
DSEM. In this example, cross-lagged effects and innovation correlations would provide 
dyad-specific indices of the temporal coupling of heart rate variability between the two 
members of a dyad (also see Laurenceau & Bolger, 2012).

Another possible area of application is for the purpose of validating measurements 
obtained with wearable sensors (see Eid & Holtmann, Chapter 14, this volume). To 
assess construct validity, the latent agreement between measurements obtained by two 
devices of the same type or by devices of different types (e.g., a gold-standard method and 
a comparison method) can be investigated. That is, several devices designed to measure 
the same variable are worn simultaneously, and the latent agreement between the devices 
can be investigated with respect to the average signal as well as the temporal fluctuations 
captured by each device.

For the purpose of this chapter, we focused on one modeling approach within the 
extensive DSEM framework that might be the most commonly applied model for the 
analysis of e-diary and wearable sensor data. We discussed several model extensions, 
such as random measurement error or the inclusion of time-invariant and time-varying 
covariates. However, only a fraction of the DSEM modeling capabilities fits into one sin-
gle chapter. We therefore encourage interested readers to dive into the extensive literature 
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covering advanced DSEM models and further modeling alternatives and model exten-
sions.

Notes
1.	 In the following, the terms single and multiple indicator refer to the number of observed 

variables per latent construct (measurement model). In contrast, the terms univariate 
and multivariate refer to the number of constructs included in one model.

2.	 Note that in longitudinal models with two or more indicators per latent construct, a 
tau-congeneric measurement structure (see Eid & Holtmann, Chapter 14, in this volume) 
with time-invariant but freely estimated factor loadings per indicator could be specified 
(intercepts on the within-level are set to zero by definition). For ease of model presenta-
tion, we focus on the more parsimonious model variant with loading parameters fixed to 
one in the following example.

3.	 Note, however, that judging by the Bayes factor as well as the z > 3 rule of thumb, the 
random measurement error for PA could be excluded from the model in the present data. 
Furthermore, the present data do not comprise the number of within-level observations 
per person required for accurate parameter estimation for a model of this complexity, 
and results are presented for illustrative purposes only.
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C H A P T E R  O V E R V I E W

Psychological dynamics are central to psychological theories. However, the methods for 
capturing psychological dynamics have lagged far behind the theories, leaving research-
ers to rely on nondynamic methods for theory testing and building. Such a mismatch 
between theories and methods creates a gap that can threaten the psychological process. 
From the perspective of a longtime theory– method gap in personality psychology, this 
chapter illustrates how dynamic methods can help to close this gap. We review four sta-
tistical methods for estimating dynamic networks from time series of data of active and 
passive sensing: association networks, graphical vector autoregressive models, unified 
structural equational models, and dynamic exploratory graph analysis. Using a focal par-
ticipant, we demonstrate the shared and unique features of each of these methods, make 
recommendations for when to use each of these models, and highlight core challenges 
these and other dynamic methods will have to tackle moving forward.

Dynamic Systems Analysis

Since the rise of empirical psychology in the 19th century, psychologists have attempted 
to specify theories of psychological processes and phenomena, including consciousness 
(Wundt, 1911), attitudes (G. W. Allport, 1954), personality (e.g., G. W. Allport, 1960; 
Baumert et al., 2017; Beck & Jackson, 2020b, 2020d), work performance (Campbell & 
Wiernik, 2015; Dalal, Bhave, & Fiset, 2014), intergroup processes (F. H. Allport, 1920), 
and more. A common feature of these theories is that they specify how one or more psy-
chological processes and/or phenomena unfold over short and long time spans. In other 
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words, psychological theories are dynamic. For example, theories of personality sug-
gest that personality should drive the types of situations individuals select to participate 
in (e.g., Emmons & Diener, 1986), that individuals should modify the situations they 
encounter (e.g., Funder & Colvin, 1991), and that situations should impact personality 
as both a stable entity (e.g., Wrzus, Wagner, & Riediger, 2016) and as its expression (e.g., 
Sherman, Rauthmann, Brown, Serfass, & Jones, 2015). These theories also suggest that 
how individuals navigate these patterns between personality and situations reflects per-
sonality itself (e.g., Mischel & Shoda, 1995). Despite this, personality is typically stud-
ied by looking at how broad, aggregated, and often decontextualized personality traits 
(1) predict the life events people experience (e.g., Beck & Jackson, 2021b), (2) change over 
time (e.g., Graham et al., 2020), and (3) are predicted by events or experiences individuals 
have (e.g., Bleidorn, 2012; Bleidorn et al., 2013). Thus, the dynamic nature of the theory 
is not reflected in either the measurement or the modeling of personality specifically and 
psychology more broadly. This has led to a widening gap between theories of psychol-
ogy and the methods applied to test them, but such gaps between theory and method in 
psychology can have great consequences for theory building and testing.

In this chapter, we address the theory–method gap in psychology from the perspec-
tive of the study of personality. We summarize broad classes of dynamic psychologi-
cal theories in personality, how challenges to collecting dynamic data have widened the 
theory–method gap, how active and passive mobile sensing data have the opportunity to 
close this gap, and how dynamic networks can aid analyzing and interpreting such data 
in alignment with dynamic psychological theories. We specifically highlight four network 
models: graphical vector autoregressive models (graphical VAR), unified structural equa-
tion models (uSEM), dynamic exploratory graph analysis (dynEGA), and how dynamic 
theory can guide associated analytical decisions. Finally, we close by connecting these 
back to psychology more broadly.

Personality Dynamics

Allport and the Rise of Personality Theory

The role of dynamics in the study of personality goes back to its earliest days of personal-
ity psychology. Gordon Allport, one of the “fathers” of personality as an empirical dis-
cipline (e.g., 1937), wrote about personality as a dynamic phenomenon. As he defined it, 
personality was “the dynamic organization within the individual of those psychophysical 
systems that determine his unique adjustments to his environment” (Allport, 1937, p. 48). 
Each piece of this definition deserves consideration and underscores dynamic elements of 
personality theory. First, the definition explicitly uses the word “dynamic,” implying that 
personality is not simply a static factor over time. Second, personality is an organization, 
or structure, albeit a dynamic one. Third, personality exists within the individual or is 
idiographic or person-specific. Fourth, what makes up the structure of personality is 
(psychophysical) systems, meaning that the structure (or the organization of features that 
are relevant) within an individual may dynamically shift over time and across situations. 
Finally, personality is explicitly about unique adjustments to the environment, which are 
likely to be unique to them. In other words, transactions with the environment are also 
best considered idiographically.
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Despite this dynamic core of one of the earliest theories of personality by a founder 
of the field who remains heavily cited to this day, the personality literature over the past 
century largely concerns studies of population-level (i.e., variable-centered, nomothetic 
approaches) personality traits and their relationship to outcomes (e.g., Beck & Jackson, 
2021b), how they change (e.g., Graham et al., 2020), and what they are associated with 
more broadly. This is a strong contrast to the person-level (i.e., person-centered, idio-
graphic approach) that Allport advocated for in his definition of personality. Some have 
labeled this contrast the two sciences of personality—one whose goal was to describe 
how people differed from one another on shared attributes (a nomothetic approach) and 
another whose goal was to describe and explain individuals holistically (an idiographic 
approach), with a focus on why people behaved similarly or differently across time and 
contexts (see Beck & Jackson, 2021d; Winter & Barenbaum, 1999).

According to Allport (1937, 1968), what these nomothetic approaches captured were 
not the dynamic structures alluded to in his definition. Instead, these “common” traits 
captured measurable aspects of psychological experience and behavior that are often 
experienced or exhibited by many people in a similar manner. In other words, common 
traits reflected similar idiographic traits (and variability in those traits) across people, 
but, as they reflect idiographic traits, such common traits have no true (i.e., causal) real-
ity of their own. Instead, Allport (1960) saw personality as an open system made up of 
a number of other psychophysical systems. Indeed, he laid out theoretical evidence of 
ways in which personality theory and research adhered to the main criteria of open sys-
tems: (1) input and output of both energy and matter; (2) homeostasis (i.e., equilibria), 
both achieved and maintained even across great disruption; (3) an increase in the order 
of the system over time; and (4) transactional relationships with the environment (All-
port, 1960). Allport also argued that nomothetic conceptualizations of personality were 
a closed system that were a consequence of the open-system nature of the idiographic 
personality.

Cattell and the Data Box

Despite his theoretical contributions to personality, Allport did much less to test those 
theoretical propositions. For example, how we could measure and model personality idio-
graphically and link that with nomothetic personality traits was largely not addressed. 
Instead, studies by Raymond Cattell largely structured work toward measuring and mod-
eling personality at different levels of aggregation. In introducing the data box, Cattell 
(1946a) argued that persons could be conceptualized into three dimensions that indexed 
people (P1 to PN), variables (X1 to Xp), and occasions or time (T1 to Tt). Different ways 
of “slicing” or aggregating across dimensions of the data box reflected the wide array of 
questions psychologists could ask and answer. For example, typical nomothetic questions 
focus on the person (P) and variable (X) dimensions and aggregate across the occasion 
(T) dimension, thereby addressing the question of the structure of individual differences 
within a population of people, which he termed the R-technique (see Figure 16.1).

Cattell’s work on the data box and factor-analytic approaches moved forward both 
the science of between-person differences and the study of idiographic personality dynam-
ics. Indeed, he formalized methods for estimating idiographic personality structure by 
slicing the data box into variable (X) and occasion (T) dimensions and fixing the person 
dimension (see Figure 16.1). He termed this slicing of the data box the P-technique, in 
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which factor- analytic models were applied to X × T matrices for individual people (Cat-
tell, 1943). However, the goal of P- technique was to reduce the data to smaller clusters 
that could be subsumed under a single label rather than to understand the dynamic com-
plexities of how the underlying indicators unfolded within and across people. Such meth-
ods would emerge later and will be the focus of later sections of this chapter.

Challenges in Dynamic Data Collection

One major factor in the theory– method gap in the study of personality has been that 
the available means for and methods of collecting dynamic data have been quite limited. 
Empirically understanding how personality unfolds over time often requires time- series 
data, and most statistical techniques require rather large sets of data in order to be able 
to capture and uncover dynamic features well. But the rise of smartphones has created 
new opportunities for psychological researchers to collect dynamic data in everyday 
life. First, the experience sampling method (ESM; Csikszentmihalyi & Larson, 1987), 
which we will refer to as “active sensor data” because it requires participants to actively 
provide responses, allowed researchers to collect repeated samples of sets of variables 
from an individual multiple times within or across days or weeks. Second, smartphones 
are also constantly collecting so- called passive sensor data, including audio data (from 
microphones), accelerometer data, location data, and social media posts, among others. 
Finally, smartphones and computers can be linked to other passive sensor devices, such 
as physiological monitors of heart rate, blood pressure, skin conductance, sleep quality, 
and movement.

Together, these new sources of data provide a unique opportunity to capture times- 
series data that can be used to better understand personality— and other psychological, 
social, and biological phenomena— more dynamically. The collection of such data opens 

 FIGURE 16.1.  Two ways to “slice” Cattell’s (1946b) data box to produce R-technique (nomothetic) 
and P-technique (idiographic) factor-analytic structures. In the R-technique, one collapses across 
or slices across the occasions dimension (T) to get the common structure of variables across peo-
ple, perhaps solely applicable to a particular time or population. In the P-technique, one slices 
across individuals to find the unique structure of variables within a particular person across time.
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up new opportunities for assessing all the dimensions of Cattell’s data box by making 
it easier to collect multiple observations (T) from different individuals (P) across sets 
of variables (X). In other words, researchers could tackle large-dimension person (P) × 
observation (T) questions, fixing the variable (X), among others.

Recent Work on Within‑Person Personality Processes

Although Allport and Cattell, among others, advocated for the consideration of dynamic 
and dispositional approaches to understanding personality, the latter half of the 20th 
century saw personality largely diverge on two tracks—one interested in how personality 
unfolds over time and another examining personality as broad, aggregated traits. Fueled 
by the rise of the experience sampling method in particular, an emphasis on within-
person variability began to work its way back into personality near the turn of the cen-
tury. In the 1970s and 1980s, both Zuckerman (1979) and Buss and Craik (1980) had 
contended that personality traits were aggregates of personality states. At the turn of the 
21st century, Fleeson (2001) updated this proposition and demonstrated its empirical 
validity using ESM data. This and later empirical work became the basis of whole trait 
theory (Conner, Tennen, Fleeson, & Barrett, 2009; Fleeson, 2004; Fleeson & Jayawick-
reme, 2015). Means, standard deviations, and other density distribution parameters of 
personality states captured the descriptive properties of personality, while leaving the 
explanatory properties of personality largely open.

In addition, increased computing power made regression-based techniques for deal-
ing with dynamic, time-series data in which participants have multiple observations more 
available. Statistically, such data are considered nested, with observations nested within 
person. Nested data violate assumptions of independence of errors in basic linear regres-
sion and require specialized methods, such as multilevel modeling (MLM). Unlike basic 
regression, MLM allows one to estimate different error terms for observations and units/
groups (i.e., persons), thus, explicitly modeling within-person variability (Holtmann, Eid, 
& Kanning, Chapter 15, this volume; Snijders & Bosker, 2011). Moreover, it allows 
researchers to condition such variability on broader, person-level phenomena as well as 
momentary factors. As such, some have argued that MLM is “idiothetic” and helps to 
bridge the gap between nomothetic assessments of personality that focus on between-
person differences and idiographic assessments of personality that focus on within-
person variability (e.g., Conner et al., 2009).

Personality: Descriptive, Predictive, and Explanatory

Despite its promise, MLM is a statistical model, that is, a tool to test theories, not create 
them. Stated simply, a statistical method alone cannot dissolve idiographic-nomothetic 
tensions (see Fried, 2020) without having a clear and precise link with theories of per-
sonality. Many personality theorists have clearly argued that personality states vary over 
time and should be connected to personality traits (e.g., Baumert et al., 2017; Fleeson, 
2001; Fleeson & Jayawickreme, 2015), but the links these theories offer for why states are 
linked to traits do not align with the theories. Indeed, the data-generating process, such 
as the open system Allport (1960) advocated, of the unfolding of complex psychological 
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phenomena is unlikely to be captured with MLM. Several researchers have laid out evi-
dence suggesting that using between-person models, like factor analysis and MLM, to 
investigate “within-person processes,” which are often thought be the data-generating 
entities, is often misleading and does not allow for strong (causal) conclusions (Bors-
boom, Mellenbergh, & van Heerden, 2003; Fisher, Medaglia, & Jeronimus, 2018; Mole-
naar, 2004). Such an observation should not be taken lightly, as it suggests that infer-
ences based on between-person models may be misleading at best and wholly incorrect at 
worst, which could lead to a new kind of credibility crisis in psychology (Moeller, 2021).

Dynamic Methods for Mobile Sensing

In the first sections, we argued that psychology is facing a gap between theory and meth-
ods. Then, we briefly introduced challenges to collecting data for answering dynamic 
questions as well as a small subset of methods often applied to dynamic data. Using per-
sonality as an example, we detailed work on the dynamic nature of personality theories 
as well as how factor analysis and latent traits are not good candidate data-generating 
(i.e., explanatory) models for personality, as well as most psychological constructs. In this 
section, we next detail a different class of methods that rely on dynamic systems theories 
and network analysis that show promise for closing the theory–method gap when inte-
grated with mobile sensing data. Before beginning, we want to note that although the 
methods detailed below draw upon machine learning methods in some cases, we will be 
focusing on time-series and dynamic systems model approaches, leaving the details of 
machine learning methods to other chapters in this volume (e.g., Chapter 17, this volume) 
and elsewhere (e.g., Renner et al., 2020).

First, network approaches provide a framework for thinking about psychological 
measurement that extends across levels of multiple dimensions of Cattell’s data box. 
Based on dynamic systems theory, a network approach asserts that latent traits are emer-
gent properties of interactions among a set of indicators, rather than simply showing how 
levels of a variable tend to discriminate among individuals (e.g., Cramer et al., 2012). In 
other words, such models assume that indicators, not latent traits, are causal and that 
the processes through which latent traits emerge as measurable phenomena emerge from 
reliable patterning among indicators that have diverse causal underpinnings.

Network approaches have seen an explosion (e.g., Robinaugh, Hoekstra, Toner, & 
Borsboom, 2020), with some touting the great advantages these models offer (Beck & 
Jackson, 2021c; Borsboom & Cramer, 2013; Cramer et al., 2012), and others reflecting 
some of the downfalls (e.g., Forbes, Wright, Markon, & Krueger, 2019, 2021; although 
see Jones, Williams, & McNally, 2021, for a rejoinder), particularly in cross-sectional 
research that does not utilize time-series designs. Such cross-sectional work can, in some 
cases, merely reify the methods and findings of existing structural theory–method gaps in 
the guise of using models used in the study of dynamics. Networks highlight and summa-
rize relationships among indicators, visually and quantitatively representing relationships 
between indicators that reveal both direct (i.e., relationships between two indicators) and 
indirect (i.e., relationships between two indicators separated by one or more intermediate 
indicators) relationships between them. However, only a few studies have used network 
approaches to examine personality (e.g., Beck & Jackson, 2020a, 2021c; Christensen, 
Cotter, & Silvia, 2019; Costantini et al., 2019; A. G. C. Wright et al., 2019). Despite the 
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promise of these studies, the dearth of research on this topic makes it unclear to what 
extent network approaches apply to the time series of passive and active mobile sensing 
data.

Importantly, a network approach is not a single model; there are a growing num-
ber of instantiations and parameterizations of network-based models, four of which we 
will focus on in the present chapter: correlations, graphical vector autoregressive models 
(graphical VAR), unified structural equation models (uSEM), and dynamic exploratory 
graph analysis (dynEGA). Rather, network approaches, much like other structural meth-
ods such as factor analysis, are a set of statistical tools that can be applied to the pair-
wise relationships among a number of indicators, typically structured as matrices. And 
the models that underlie them are those that result in such matrix-structured estimates. 
Broadly, the rows and columns indicate the nodes (or variables) under investigation, while 
the cells of the matrices represent the edges (or relationships) among the nodes. Below, we 
will demonstrate each of these four methods using an example participant from Beck and 
Jackson (2020a). In that paper, Beck and Jackson demonstrated each of these methods 
except dynEGA. The present chapter additionally extends this to dynEGA and includes 
a more detailed comparison of each. The data come from a longitudinal experience sam-
pling study of personality that collected nine indicators of four of the Big Five (Extraver-
sion [2], Agreeableness [2], Conscientiousness [2], and Neuroticism [3]) four times per 
day (approximately 4 hours apart) for 2 weeks. This resulted in a multivariate time series 
for each participant with p = 9 indicators and t = ~56 time points. Although this example 
uses active sensor data, passive sensor data can also be readily incorporated into each of 
these models.

Concerns and Considerations in Node Selection

Before considering each of the methods, we first want to highlight that a critical part of 
matching theory and methods is also the design and measures of a study. Indeed, theory–
method gaps can also arise when the indicators or variables used are not in alignment 
with theoretical propositions. Thus, perhaps the most important question when con-
sidering whether to represent and understand data or models from a network perspec-
tive concerns the definitions of the nodes and edges (Beck & Jackson, 2021c; Piccirillo, 
Beck, & Rodebaugh, 2019)—that is, what are the indicators (nodes) and the relation-
ships among them (edges)? For example, should the lowest-level measurement unit be raw 
mobile sensing data, or should the data be composited into higher-order constructs (e.g., 
to reduce multicollinearity a priori)? Just as important as the definition of the nodes is the 
definition of the edges, which can represent adjacency (or co-occurrences), correlations, 
partial correlations, frequencies, individual differences, and more (see Beck & Jackson, 
2021e; Wood, Spain, & Harms, 2017). Moreover, the edges can represent different time 
scales. Contemporaneous (also known as lag 0; while relationships) relationships esti-
mate probabilistic within-person same time point relationships—that is, the tendency 
for two manifestations of personality to occur at the same time (i.e., co-occur)—and 
can be thought of as “while” relationships. In contrast, lagged and cross-lagged relation-
ships (also known as lag 1 or simply “lagged”; if–then contingent relationships) esti-
mate probabilistic within-person, cross-time point and cross-indicator (or cross-lagged) 
relationships—that is, the tendency for two manifestations of personality to follow the 
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other across measurement occasions— and can be thought of as if–then relationships, 
partialing out associations with other features (e.g., J. C. Wright & Mischel, 1987). 
Below, we integrate these relationships within the discussion of each method, beginning 
with introducing the basics of networks in the association networks before linking them 
to personality theory.

Association Networks

The simplest time- series procedure for constructing a “dynamic” network is zero-order 
correlations among the variables (X) dimension across the time (T) dimension for each 
person individually (see Figure 16.2). Called “association networks,” these are the cor-
relation matrices that P-technique factor analysis (or any other form of factor analysis or 
principal components analysis) attempts to reduce. Figure 16.2 shows a visual representa-
tion of the steps from raw data to representing person- specific correlations as a network.

These association networks traditionally focus on concurrent associations among 
psychological, behavioral, or other states, which results in a symmetric matrix. But the 
data can also be lagged in order to look at bidirectional associations among the indicators 
(i.e., a nonsymmetric matrix). Relative to zero-order association networks, cross- lagged 
networks have some advantages. They are more dynamic by considering how levels of 
states are associated across time rather than at the same time. Because most psychologi-
cal theories concern the changes in states, cross- lagged models come closer to aligning 
with theories.

Moreover, they offer a method for testing complex sets of relationships that are 
a hallmark of many key models of personality (G. W. Allport, 1937; Cervone, 2005; 
Mischel & Shoda, 1995), thus providing initial inroads for closing the theory– method 
gap in personality. Such relationships are complex not only in that they can include a 
large number of predictors but also in what those predictors are. For example, within 
such a framework, one can include different forms of active and passive sensor data, such 
as ESM, location data, heart rate, and more.

 FIGURE 16.2.  A simplified analytic procedure for using network tools on idiographic time-series 
data from raw data (left) to modeling relationships among variables (V1 to VP) and formatting 
them as a matrix (middle) to visually displaying them as a network.
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How do such models help close the theory–method gap? To illustrate, we will con-
sider a dynamic theory of personality and how these methods can be applied. Condi-
tional frameworks of personality (J. C. Wright & Mischel, 1987) propose that personal-
ity can be conceived of as if–then relationships between behaviors and contexts. If– thens 
are also reflective of an open systems perspective (i.e., external influences impact the 
system, but it retains its coherence; G. W. Allport, 1960). When conceptualizing cross-
lagged VAR models in these frameworks, we see how these models, coupled with sensor 
data, close the theory–method gap. Lagged relationships can capture if–then contingent 
relationships, while contemporaneous associations capture while relationships. In other 
words, cross-lagged VAR models allow personality researchers to test for conditional 
associations that characterize the study of how personality unfolds in the context of 
individuals’ daily lives.

For example, the first row of Figure 16.3 shows the contemporaneous and lagged 
association network of one participant. Because association networks allow all pathways 
to be estimated (i.e., there is no feature selection procedure), all edges are plotted. To help 
ease understanding of the visualization, stronger associations have darker and thicker 
lines, positive associations have solid lines, and negative associations have dashed lines. 
There is, for example, a dark, thick, and dashed edge between two indicators of Consci-
entiousness, reliable and lazy, which indicates that while this participant felt they were 
not reliable, they also felt lazy and vice versa. The dark, thick, and solid edge between 
reliable (Conscientiousness) and outgoing (Extraversion), in contrast, indicates that while 
this participant felt outgoing (E), they also felt reliable (C) and vice versa. Of all the 
nodes, the reliable (C) node has the darkest, thickest edges between it and other nodes, 
which indicates that many of this participant’s other experiences tended to covary with 
how reliable they felt.

In the lagged networks, there are also arrows on the edges, indicating the tempo-
ral direction of the effect. As can be seen in the figure, the worried (Neuroticism) node 
has dark, thick dashed lines from it to lazy (Conscientiousness), rude (Agreeableness), 
relaxed (N), and kind (A). In other words, if someone was worried (N) at present, then 
they would be likely to be less lazy (C), rude (A), relaxed (N), and kind (A) at the next 
time point. Other nodes, like outgoing (E), have thin pale lines extending from it, sug-
gesting that it does not strongly predict experiences at the next time point. It also suggests 
that there were a number of strong reciprocal effects, including the strong positive one 
between rude (A) and relaxed (N), suggesting that if . . . this participant was more relaxed 
(N) now, then they were rude (A) later and vice versa. Finally, there were a number of 
self-feedback loops, which are often thought of as inertia in the emotion literature. When 
positive, like the one for lazy (C), this indicates that laziness was a self-perpetuating cycle 
(Ong & Ram, 2017). If they acted lazy, then this participant was likely to continue to 
do so. Negative feedback loops, like the small one for quiet (E), are thought to represent 
negative reinforcement cycles (Hamaker, Grasman, & Kamphuis, 2016). In this case, it 
could indicate that being quiet had negative consequences such that the participant was 
likely to change their behavior.

Association networks, which are based on zero-order correlations, have some dis-
advantages, particularly when there is overlapping variance among the indicators. Thus, 
some have argued for the importance of examining the unique relationships among the 
indicators using partial correlations or regression (e.g., Epskamp & Fried, 2018). In such 
cases, the possibility of overcontrolling or overfitting the model increases (assuming the 
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  FIGURE 16.3.    Sample network visualizations of four different network models: association net-
works (top row), graphical vector autoregressive (graphical VAR) models (second row), unified 
structural equation models (uSEM; third row), and dynamic exploratory graph analysis (dynEGA) 
using generalized linear local approximation of derivatives (GLLA; bottom row). For each, the 
right column indicates contemporaneous (lag 0, while) relationships among indicators, while the 
left column indicates lagged (lag 1, if–then) relationships among indicators.
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number of observations remains constant). Recently, there have been a number of pro-
posed models for examining such complex models without overfitting, which we will 
detail now: graphical VAR, uSEM, and dynEGA.

Graphical VAR

New techniques for the basic lagged, or vector autoregressive (VAR) model (e.g., Bring-
mann et al., 2016; Epskamp, Waldorp, Mõttus, & Borsboom, 2018; Gates & Molenaar, 
2012; Wild et al., 2010), have been proposed and implemented (in a limited manner) to 
account for dynamic relationships among predictors. Typically, these use some method 
for pruning model pathways to prevent or reduce the effects of multicollinearity (e.g., 
graphical LASSO; Friedman, Hastie, & Tibshirani, 2008). These methods produce par-
tial correlations or multiple regression coefficients, which capture the unique relation-
ships among diverse phenomena that may influence manifestations of psychological phe-
nomena.

Graphical VAR uses a two-stage procedure to estimate two networks: a within-time, 
contemporaneous network (i.e., a symmetrical matrix) and an across-time, cross-lagged 
network (i.e., a nonsymmetrical matrix; Epskamp & Fried, 2018; Wild et al., 2010). 
The lagged and contemporaneous networks are estimated sequentially, such that lagged 
networks are estimated by regressing each indicator on all other indicators (including the 
focal indicator itself) at the previous time point. Contemporaneous networks are esti-
mated using the concentration matrix (i.e., the inverse) of the residual covariance matrix 
of the lagged networks to detrend participants’ responses (e.g., Flury & Levri, 1999).

To prevent overfitting, these models are regularized using a variant of the least 
absolute shrinkage and selection operator (LASSO; Tibshirani, 1996), graphical LASSO 
(glasso; Friedman et al., 2008). Essentially, regularization uses a constraint to prevent 
overfitting. Edges that fall below the constraint are set to 0, which effectively reduces the 
dimensionality of the network by eliminating the estimation of these pathways. glasso 
includes a tuning parameter that can be set to control the sparsity of the network (the 
dimensions set to 0). The best-fitting network is found by testing a range of penalty 
parameters (lambda) for both the contemporaneous and lagged networks and using an 
information criterion to compare the models at different values of the tuning parameter. 
Different values of the hyperparameter gamma can be chosen to optimize prediction 
accuracy in order to minimize an information criterion, such as the Bayesian informa-
tion criterion (BIC) or the extended BIC (eBIC; Chen & Chen, 2008). Notably, when the 
hyperparameter gamma is set to 0, the information criterion is simply BIC.

Graphical VAR produces two sets of p × p matrices of partial correlations, sym-
metric partial contemporaneous correlations (PCCs), and asymmetric partial directed 
correlations (PDCs), which are derived from the regression coefficients. First, the PDCs 
are calculated by rescaling the regression coefficients using the residual variances on the 
diagonal of the residual covariance matrix. Next, the PCCs are estimated by taking the 
inverse of the residual covariance matrix (see Wild et al., 2010).

The resulting networks from the graphical VAR procedure can be understood to be 
similar to the association networks presented in the previous section. However, there are 
three key differences. First, rather than zero-order correlations, these networks represent 
the partial correlations between each indicator after partialing out overlapping with vari-
ance with all other indicators. Second, because graphical VAR uses regularization to 
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constrain the edges, not all edges are present. Third, the contemporaneous network is 
based on the residuals of the lagged network. As a result, the contemporaneous network 
in Figure 16.3 can be interpreted as while relationships. For example, while this partici-
pant felt lazy, they tended to not feel lazy or depressed. However, how reliable they felt 
had no association to how worried they felt, but while they felt worried, they felt more 
depressed and less outgoing.

The lagged network suggests a different, more interpretable pattern than the asso-
ciation network. As is clear in Figure 16.3, almost all of the edges point toward the rude 
(A) node. In other words, if this participant felt quiet (E), reliable (C), depressed (N), lazy 
(C), or kind (A) now, then they tended to be ruder (A) later. In contrast, if they were more 
outgoing (E), worried (N), and relaxed (N) now, then they tended to be less rude (A) later. 
There were only two small self-feedback-loops for the lazy (C) and depressed (N) nodes. 
Both of these were the strongest self-feedback-loops in the lagged association network 
as well and indicate that feeling lazy (C) or depressed (N) had strong inertia—that is, if 
the participant felt this way, then they were likely feeling similar at the next time point.

uSEM

uSEM is another method for estimating partial contemporaneous and lagged relation-
ships between indicators (Gates, Molenaar, Hillary, Ram, & Rovine, 2010; Kim, Zhu, 
Chang, Bentler, & Ernst, 2007). Although its overall goal to estimate these contem-
poraneous and lagged associations is similar to graphical VAR, it differs in a few key 
ways. First, rather than sequentially estimating a lagged and contemporaneous network, 
respectively, uSEM estimates these contemporaneous and lagged estimates simultane-
ously. As a result, uSEM does not result in two p × p networks, one symmetric and one 
asymmetric. Instead, it results in a p × 2*p asymmetric matrix, which has been split up 
and visualized separately in Figure 16.3, for comparison with other methods. Second, 
rather than using regularization to penalize the regression coefficients, uSEM uses an 
iterative, automatic search procedure for retaining pathways in the model using Lagrange 
multiplier tests. Starting with an empty model, the procedure adds each indicator and 
tests the overall improvement in model fit according to the Lagrange multiplier tests. 
The variable that results in the largest jump in the test is included. Then the procedure 
is repeated with the remaining variables until there is no longer a significant jump in the 
Lagrange multiplier tests.

uSEM allows researchers to answer similar questions as graphical VAR and associa-
tion networks. However, its implementation within the group iterative multiple model 
estimation (GIMME) procedure also provides a unique opportunity for merging idio-
graphic and group-level approaches and easy implementation in R using the gimme pack-
age (Lane et al., 2021). The GIMME procedure is a data-driven procedure for estimating 
both group-level and idiographic patterns of pathways in time-series data (Lane, Gates, 
Pike, Beltz, & Wright, 2019). As currently implemented in the gimme package (Lane, 
Gates, Molenaar, Hallquist, & Pike, 2016) in R, the procedure estimates a series of 
uSEMs for each person and constructs a group-level structure based on the individual-
level models. It does not estimate a group-level matrix of point estimates. Instead, it 
produces a group-level matrix of pathways that will be estimated for all individuals. 
uSEM uses an iterative procedure for retaining pathways in the individual models using 
Lagrange multiplier tests. The GIMME procedure begins by estimating the pathways to 
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be retained at the group-level (i.e., in all individual-level models) by estimating individual-
level models and retaining group-level pathways for those paths that were shared by 75% 
of the participants. Starting with a null model, pathways are iteratively added to the 
group-level structure (i.e., in all participants’ final unique models) when the largest pro-
portion of individuals (above a chosen threshold, 75% by default) show a better model 
fit according to the Lagrange multiplier tests. This procedure is continued until no addi-
tional pathways improve fit above the threshold. Idiographic models are then built using 
the uSEM procedure described earlier.

The difference between the glasso regularization used by graphical VAR and the 
stepwise Lagrange multiplier tests is important. Regularization retains or eliminates 
all pathways simultaneously by optimizing a fit criterion like eBIC or BIC (among oth-
ers) and choosing the best-fitting model. In contrast, uSEM iteratively adds paths to the 
model that optimizes Lagrange multiplier tests. Although these can produce almost iden-
tical results to regularized graphical VAR models, some longitudinal evidence suggests 
that graphical VAR models demonstrate somewhat better test–retest consistency than 
GIMME models in shorter time series (e.g., N ~ 50 assessments/person; Beck & Jackson, 
2020a, 2021b). However, recent promising work has aimed to integrate regularization 
into the GIMME procedure in so-called hybrid GIMME (Luo et al., 2023). This proce-
dure can now be readily implemented using the gimme package in R.

The uSEM models can be interpreted similarly to the graphical VAR models with 
two main exceptions. Although both the uSEM and graphical VAR models represent par-
tial associations between indicators, uSEM coefficients are not correlations unless they 
are provided standardized data or unless the coefficients themselves were standardized 
based on the residual covariance matrix. In addition, the contemporaneous associations 
are directed and simultaneously estimated with lagged associations, which results in 
directed contemporaneous associations. Although these are still interpreted as the same 
time-point associations, the goal is to better understand how changes in one may pre-
cede changes in the other. For example, the strong, negative association between reliable 
(C) and lazy (C) evidenced by the dark, thick dashed line between the two nodes, was 
evidence across each method. However, in uSEM, this association is directed, such that 
feeling reliable (C) precedes feeling less lazy (C). Similarly, uSEM suggests that the posi-
tive association between worried (N) and depressed (N) is directional, such that feeling 
worried (N) precedes feeling depressed (N).

Using uSEM as part of the GIMME procedure, this participant’s lagged network 
only contains self-feedback-loops. Each of the nine nodes has a self-feedback loop. Of 
these, five are positive, suggesting self-perpetuating cycles. If the participant felt worried 
(N), depressed (N), kind (A), reliable (C), or lazy (C) now, then they were likely to feel 
similarly later. They also had four negative self-feedback loops, suggesting negative rein-
forcement patterns. If they felt relaxed (N), quiet (E), outgoing (E), or rude (A) now, then 
they were likely to feel less so later.

dynEGA

Finally, dynEGA is a network-based approach that merges network science with dynamic 
systems theory through derivatives (Golino, Christensen, Moulder, Kim, & Boker, 2022). 
Rather than examining levels of indicators that co-occur (contemporaneous) or covary 
across fixed intervals (lagged), dynEGA examines the extent to which changes in levels 
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of indicators covary over time. From a theoretical perspective, this has the advantage 
of more closely capturing how psychological phenomena change over time rather than 
just whether they tend to have similar levels at observed moments. More pragmatically, 
by using derivatives, they also overcome issues introduced by missing assessments when 
using fixed interval lags as in the previously described methods (see the section “Choos-
ing a Network Model” below for a more thorough discussion).

In order to estimate these networks, the first step is to take the raw time-series data 
of levels of indicators across time and transform them into derivatives using the general-
ized local linear approximation (GLLA; Boker, Deboeck, Edler, & Keel, 2010; Deboeck, 
Montpetit, Bergeman, & Boker, 2009). Using time-delay embedding, first- (velocity) and 
second- (acceleration or changes in velocity) order derivatives are estimated using GLLA. 
Then, patterns of associations of derivatives among the derivatives are evaluated using 
exploratory graph analysis (Golino et al., 2020; Golino & Epskamp, 2017).

Like graphical VAR, dynEGA uses glasso regularization using eBIC for tuning 
parameter selection for purposes of feature selection and to help prevent overfitting. 
But unlike both graphical VAR and uSEM, dynEGA also specifically focuses on under-
standing network topology as part of the model fitting procedure. dynEGA specifically 
uses community detection algorithms in order to understand how nodes cluster together, 
similar to how factor-analytic approaches can be applied for dimension reduction of 
psychometric data (e.g., Golino et al., 2020). Although multiple community detection 
algorithms are available, both in general and as implemented in the EGAnet package in 
R, in the example participant in the bottom row of Figure 16.3, we opted for the Louvain 
community detection algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). It 
has several advantages relative to other community detection algorithms, including its 
speed, its multilevel structure, and its overall performance (Gates, Henry, Steinley, & 
Fair, 2016).

Unlike association networks, graphical VAR, and GIMME, dynEGA does not 
produce both lagged and contemporaneous matrices of associations among indicators. 
Rather, both level and change are incorporated into a single matrix that captures partial 
correlations of change or the degree to which different indicators have similar velocity 
across the time series. As shown in the bottom row of Figure 16.3, the resulting sym-
metric matrix of associations can be visually represented similar to contemporaneous 
networks. The network shares many of the same edges as graphical VAR and uSEM, 
with many of the main differences being smaller (i.e., thinner and lighter) edges. As is 
clear in the figure, if reliability (C) was decreasing, then laziness (C) also tended to be 
increasing and vice versa. In addition, if laziness (C) was increasing, then relaxation (N) 
was also often increasing and rudeness (A) was sometimes decreasing. Indeed, one major 
difference between the graphical VAR network and the dynEGA network is the greater 
number of associations between changes in rudeness (A) with changes in other nodes. 
In graphical VAR, rudeness (A) was strongly predicted by previous time-point levels of 
other indicators in the lagged network but was not associated with any indicators in the 
contemporaneous network. In contrast, in the dynEGA network, increases in rudeness 
(A) were weakly associated with increases in how outgoing (E) the participant was as 
well as how reliable (C) they felt as well as with decreases in laziness (C), as noted previ-
ously. This may be because dynEGA is incorporating both level and change into the asso-
ciations, while graphical VAR attempts to separate these out by sequentially estimating 
lagged and contemporaneous associations, respectively.
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dynEGA additionally emphasizes how the nodes cluster via community detection, 
in this case using Louvain. The Louvain algorithm identified three communities in this 
participant’s experiences, with (1) rude (A), lazy (C), reliable (C), and depressed (N); (2) 
quiet (E), outgoing (E), and kind (A); and (3) relaxed (N) and worried (N) all falling into 
communities. This is notable because it suggests that the participant’s experiences did not 
fall neatly into their putative Big Five domains. Instead, we learn that this participant’s 
experiences of depression (N) and how rude (A) they are linked to how lazy (C) and 
reliable (C) they feel, while how kind (A) they are is more related to how quiet (E) and 
outgoing (E) they feel. In other words, the participant’s more affiliative behaviors appear 
to be linked to how social they feel, while some emotions and behavioral responses are 
linked more to productivity.

Choosing a Network Model

In the previous section, we described four different network models that can be applied 
to time-series data, such as those collected via active (e.g., EMA) or passive sensing (e.g., 
mobile sensing). None of these models is the “correct” choice under all conditions. Rather, 
each model has unique features and advantages under different conditions. Briefly, in this 
section, we will make a small number of recommendations to help guide the choice of 
a model on the basis of research questions, temporal properties of the data, and design 
considerations.

First, an important consideration when choosing a model is the structure of the data. 
Lagged methods, such as those used in lagged association networks, graphical VAR, and 
uSEM assume fixed intervals between assessments. If the intervals are not fixed, either 
due to a different sampling schedule (e.g., pseudo random, event contingent, etc.), late 
responses, missing responses, or overnight periods, the lags are agnostic to the different 
intervals between assessments. Such gaps can have two consequences:

1.  The most common recommendation to deal with missing assessments is to add 
empty rows to the time series. Then, because lags are created by shifting the rows of the 
time series, missing values can multiply. Thus, even with relatively high adherence to sam-
pling protocols, researchers could be left with less than 50% of usable observations when 
using lags. When missing periods are due to overnight periods and there are multiple 
assessments per day, another alternative is to use multilevel models in which observations 
can be nested within days to parse day variance from observation variance. However, this 
does not fully solve the issue when using lagged estimates without adding empty rows for 
overnight periods. Moreover, their application to the models described above can require 
more data due to the need to estimate parameters at both the observation and day level.

2.  To the extent that the observed interval is critical in capturing contingent rela-
tionships, unequal intervals could greatly reduce both the sensitivity and specificity of 
the lagged model. Some more recently developed models, like continuous time VAR mod-
els (CT-VAR; de Haan-Rietdijk, Voelkle, Keijsers, & Hamaker, 2017; Ryan, Kuiper, & 
Hamaker, 2018), aim to deal with the limitations of assumptions of fixed interval lags, 
but the necessary data requirements (upward of 100 assessments of each indicator) can 
sometimes be prohibitive, particularly when coupling less frequent active sensing with 
more frequent passive sensing. But dynEGA performs well even under these conditions, 
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with time-delayed GLLA showing good performance on short time series and regulariza-
tion increasing the sparsity of the network as a whole (Golino et al., 2020; Hardt, Boker, 
& Bergeman, 2020).

Second, the choice of model also depends on which aspects of a network are of inter-
est. For example, in some cases, contemporaneous, concurrent associations alone may be 
of interest, making the estimation of lagged networks seem unnecessary. However, it is 
not possible to estimate only contemporaneous associations using either graphical VAR 
or uSEM. Rather, in both cases, both lagged and contemporaneous associations will 
always be estimated. In such cases, simply examining an association network of contem-
poraneous correlations may seem sufficient, coupled with follow-up examinations of the 
network topology via techniques like the Louvain community detection algorithm. How-
ever, examining contemporaneous associations alone ignores the autocorrelative struc-
ture of multivariate time series, which can confound and introduce bias into estimates of 
contemporaneous associations (McCleary, Hay, Meidinger, & McDowall, 1980). Thus, 
many recommend detrending the time series through differencing or residual-based 
regression approaches (Wang & Maxwell, 2015), which is similar to the residual-based 
approach used by graphical VAR’s sequential estimation of lagged and contemporaneous 
associations (Wild et al., 2010). uSEM does so indirectly at best, which may not fully 
account for the trends in the data, so detrending preprocessing is recommended prior to 
analysis. Finally, dynEGA directly captures the autocorrelative structure of the data using 
time-delay embedding and by examining associations of change (i.e., GLLA derivatives).

Given each of these, how do you choose a model? Our general recommendation is 
that no model should be taken as ground truth. Each should be examined across a range of 
tuning parameters, data cleaning choices, and modeling choices in order to better under-
stand the robustness of the results. Similar to multiverse (Steegen, Tuerlinckx, Gelman, 
& Vanpaemel, 2016) and specification curve analyses (Simonsohn, Simmons, & Nelson, 
2020), this recommendation suggests considering how differences across methods can 
bias our inferences when selecting a single model or specification of a model. Instead, 
by examining the impact of a range of choices, we can better understand the robustness 
and boundary conditions of the observed patterns, associations, and more. For example, 
the models presented in Figure 16.1 suggest that while the contemporaneous associations 
were quite consistently recovered across methods, the lagged associations differed greatly. 
This suggests that the lagged associations are likely unstable and should be interpreted 
with caution at best and disregarded completely at worst. These comparisons are also 
in line with the test–retest consistency of these models across 1 year (Beck & Jackson, 
2020a) and the COVID-19 pandemic (Beck & Jackson, 2021a), which suggest much bet-
ter consistency for contemporaneous associations than lagged associations.

Considering all of this together, we want to highlight that the goal of using these 
methods is to most aptly and accurately represent the research question at hand and 
the data available to test it. There will never be one “correct” model to apply to a set 
of data or to answer a research question, so researchers are left with the challenge of 
addressing the theory–method match in each research endeavor and at each stage of each 
endeavor. Above we have aimed to demonstrate a series of models that can be used to 
estimate dynamic associations in multivariate time-series data from active and passive 
mobile sensing. Furthermore, we linked these conditional and open systems frameworks 
of personality to demonstrate how interpreting the models in line with these helps to close 
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the theory–method gap (G. W. Allport, 1960; Beck & Jackson, 2020a, 2020b; Wright & 
Mischel, 1987).

Personality as a Dynamic System

As demonstrated above, using network tools can help to close the theory–method gap 
by examining associations among features dynamically in ways that address questions 
raised by Allport, Cattell, and others. Below, we outline a few final considerations and 
possible additions to the dynamic network models reviewed in the previous section, most 
of which take advantage of a key passive sensor datapoint collected in almost all studies: 
date and time stamps. More broadly, in our view, mobile sensing data are ideal to expand 
and answer these questions because of the possibility of more frequent assessment.

Formal and Verbal Theories of Personality Dynamics

In 1957, Cattell noted the importance of incorporating time effects into models of person-
ality. In addition to discussing periodicity and cycles in psychological states, he argued 
that accounting for different time effects is important for creating reliable models from 
which conclusions can be drawn, writing that “the task of research is first to establish 
statistically and experimentally the nature of the rhythms and then to trace them to 
internal physiological or external environmental sources, or both” (Cattell, 1957, p. 610).

More colloquially, timing is an important dimension in understanding personality. 
When we consider the theories we have about the personalities of others, the frequency 
of, duration of, and change in experiences all play an important role in the ways we 
understand them. Colloquial phrases such as “[They] are so often tired” (frequency), 
“[They] can get stuck in an anxious state for days” (duration), and “[They] can turn on 
a dime” (change), all highlight how time is an explicit part of how we understand and 
describe the personalities of others.

Thus, the methods appropriate for building personality theory require that the way 
that manifestations unfold over time, not just their momentary or aggregated levels, are 
incorporated. Although autocorrelations can help to capture persistence and dynEGA 
can help to capture rates of change, none of the previously reviewed methods is, at face 
value, able to deal with cyclical processes, time of day effects, and diurnal cycles. Below, 
however, we close our discussion of these methods by briefly reviewing evidence on such 
cycles in psychological phenomena and how they can be incorporated into dynamic net-
work models.

Cycles in Psychological Processes

When describing the personality of others, another frequent description includes time of 
day effects. You might hear, for example, “Don’t talk to [them] in the morning. [They]’ll 
chew your head off!” or “I tend to fade after lunch.” Such descriptors signal possible 
diurnal cycles in psychological processes and phenomena. Indeed, accumulating evidence 
suggests not only that some psychological processes demonstrate reliable diurnal pattern 
(e.g., Broughton, 1975; Stone, Smyth, Pickering, & Schwartz, 1996) across people but 
also that there are individual differences in such diurnal patterns that partially underlie 
broader individual differences. Some studies have tested how such cycles relate to broader 
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between-person traits, such as higher circadian rhythm values (i.e., more pronounced 
24-hour cycles) of phone usage being associated with Extraversion (Wang et al., 2018). 
Other studies have tested how passive mobile sensing indicators are associated with 
active mobile sensing indicators, such as personality states. One such study found that 
time of day was associated with Extraversion across people using both linear regression 
and machine learning prediction models (Rüegger et al., 2020).

Although such studies examining diurnal cycles and time of day effects of mobile 
sensing data are great steps forward, most such studies still search for group-level pat-
terns or attempt to link the patterns to between-person personality traits. Many of these 
studies do not report the variability of mobile sensing indicators either within or across 
people. Thus, there are many theoretically relevant open questions about how diurnal 
cycle and time of day effects can be used to better understand personality and other psy-
chological phenomena, such as whether we can detect behavioral descriptors such as “I 
tend to fade after lunch,” how such patterns cluster together within and across people, 
and so on.

Quite simply, these diurnal and time of day effects can be included as nodes in the 
dynamic network methods reviewed in the previous sections (see Beck & Jackson, 2021b; 
e.g., code on calculating each of the terms below). First, for example, a time of day node 
that is dummy coded as “morning,” “midday,” “afternoon,” “evening,” and “night” could 
help address differences in each of the other nodes across the day. In other words, particu-
larly when coupled with feature selection techniques, like glasso, any edges between these 
nodes and nodes from active or passive sensing indicate a time of day effect, partialing 
out all other relationships between other nodes—that is, a robust time of day effect for 
that indicator. Second, cosinor terms can be included, particularly when denser, passive 
sensing data are utilized. The most commonly used terms are both one- and two-period 
sine and cosine functions of decimal time (since midnight). Because these represent a more 
continuous but more complex method for addressing time of day effects, we recommend 
using them with careful planning and attention. Finally, trends can be included, such as 
linear, quadratic, and cubic trends across the time series. These are particularly important 
when the act of completing active or passive sensing is thought to potentially impact par-
ticipants’ behaviors and experiences. By including such trends across time, researchers can 
directly address questions about changes in the levels of the indicators across time as well 
as interpret associations among them adjusting for such trends.

Conclusion

Psychology is a dynamic science, yet much of the study of psychology relies on aggregat-
ing across dynamics of psychological phenomena and looking at individual differences 
or group-level differences of such aggregates. This creates a gap between psychological 
theories and the methods used to test them. In this chapter, we discussed how dynamic 
passive and active mobile sensing data can be used to help close the gap. Using theoretical 
and empirical findings from the domain of personality psychology, we argued for both 
the importance of dynamics for studying and testing personality theory and for its utility 
in everyday life.

Our representation of both personality theory and dynamic methods was far from 
exhaustive. Rather, we hoped to demonstrate how theoretical propositions, both simple 
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and complex, both narrow and sweeping, could be linked to dynamic methods better 
suited to testing the proposition than methods that rely on aggregates. In the simplest 
case, we argued that propositions that personality is a readiness for response (Allport, 
1937) could be captured by looking at personality as rates of change of personality states. 
In a broader, more complex case, we highlighted how Allport’s (1960) proposition that 
personality is an open system could be tested using dynamic systems approaches that 
build structural and mathematical models of dynamic features.

We believe that by bringing the theory–method gap in personality specifically and 
psychology more broadly to the fore, psychologists can make more active and informed 
choices in their model selection in ways that will better align theory and methods. By 
demonstrating a small number of dynamic models, we hope that readers of this chapter 
will consider how they may relate to theories in all disciplines of psychology. Moreover, 
we hope that much as we endeavored to start with a theory and then make the case for 
why different models test its proposition, readers of this chapter will walk similar avenues 
and test old dynamic questions with new dynamic methods.
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C H A P T E R  O V E R V I E W

From the perspective of traditional statistics as taught in the behavioral and social sci-
ences, machine learning reflects a paradigm shift from explanation to prediction. With 
machine learning, we can leverage flexible forms of regression that allow us more freedom 
in discovering patterns of associations between potentially large numbers of independent 
and dependent variables. A particular focus is placed on ensuring the generalizability of 
results to new samples. This chapter summarizes various fundamental machine learning 
approaches such as decision trees, regularized regression, quadratic discriminant analy-
sis, naïve Bayes, and support vector machines. Feature generation, model selection, and 
model evaluation are considered from a practical perspective. The utility of the various 
learning approaches is illustrated by using the different methods to predict daily life 
activities from smartphone data.

Introduction

Machine learning is a central part of the broader field of artificial intelligence. It is con-
cerned with algorithms that give computers the ability to learn to solve a well- defined 
task without being explicitly programmed to do so. The idea can be traced back to early 
computer pioneers such as Alan Turing. In 1950, Turing proposed substituting the philo-
sophical question “Can machines think?” by a behavioristic definition of the problem, 
namely, that one can assent to the question if a machine behaves as if it could think 
(Turing, 1950). In his chapter “Learning Machines,” Turing imagined a program that 
matches the “output” of human intelligence and noted that we should strive for a “child 
program” that learns to solve any task by learning instead of by being programmed.
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Meanwhile, machine learning has arrived in everyday technology, in industry, as 
well as in scientific research. I vividly recall the question posed by a scientist during the 
discussion of a lecture on the benefits of machine learning for neuroscience research; he 
asked: “What do these machines know better about dealing with my data than I do?” I 
appreciated the question because it shows the necessary level of skepticism that we should 
maintain when encountering such learning machines and their powerful promises. From 
the perspective of traditional statistics as taught in the behavioral and social sciences, 
machine learning is a paradigm shift from explanation to prediction that uses flexible 
forms of regression allowing us more freedom in discovering patterns of associations 
between potentially large numbers of independent and dependent variables (with a par-
ticular focus on ensuring generalization to new samples; Berk, 2008). By the term predic-
tion I generally mean the estimation of an outcome regardless of whether it represents a 
present or future state. However, there is no shortcut from a well-predicting model with 
practical utility to a novel psychological theory. Still, prediction itself is often a valuable 
goal and the fact that a predictive model outperforms the most recent theoretical model 
can say a lot about the value of the theory (see the discussion in Brandmaier, Prindle, 
McArdle, & Lindenberger, 2016). Machine learning is particularly useful when human 
expertise either does not exist or is difficult to formalize into a predictive model. In 
mobile sensing data, machine learning promises to be highly useful because it is often dif-
ficult to handcraft models for large and complex datasets for which purely theory-based 
approaches become unfeasible. We may be able to derive simple rules, for example, derive 
the orientation of a phone from its accelerometer readings (because we know that gravity 
exerts a constant force on the spring inside the sensor) or infer a person’s wake–sleep level 
by forming rules based on time of day, upper body orientation, and overall activity level 
of an accelerometer owing to our common knowledge (i.e., when people sleep, it tends to 
be nighttime and they usually lie horizontally while hardly moving). However, the larger 
the number of sensors, the larger the diversity of recorded signals, and with more compli-
cated decision and prediction problems, it will soon become impossible to handcraft such 
rules. This is where machine learning approaches show their full strength.

Machine learning is usually divided into three major areas, all of which deal with 
learning structure and regularities from observed data. These areas are supervised learn-
ing, unsupervised learning, and reinforcement learning, and they are distinguished by 
the assumptions made about the environment and the structure of the learning task. In 
supervised learning, the goal is to predict continuous outcomes (regression) or discrete 
outcomes (classification), and we assume the existence of a dataset from which we can 
infer the associations of features and known target values or classes. The models that per-
form classification tasks are typically referred to as classifiers. In unsupervised learning, 
there are no outcomes, and the goal is to find underlying patterns such as simple features 
or clusters in the data (see Chapter 19, this volume). Reinforcement learning deals with 
approaches that learn to make optimal sequences of decisions as reactions to an observ-
able environment in order to achieve a certain goal. These algorithms are most useful in 
robotics, self-driving cars, or computer games, for example. This chapter gives a brief 
overview of fundamental ideas of supervised learning in the context of mobile sensor 
data and gives pointers to relevant literature in which these concepts can be examined in 
more detail.

I mostly illustrate supervised learning approaches to predict everyday activities from 
accelerometry, but the algorithms and challenges presented here generalize to a broader 

410	 Analysis of Mobile Sensing Data 	



class of prediction problems in which we would like to predict discrete outcomes from 
continuous sensor data (e.g., depression status; Elhai et al., 2018). I discuss algorithms 
and ideas at a conceptual level, so that readers can get an overview of possible approaches 
to classification and regression from a machine learning perspective. This requires sim-
plification of some problems, sacrificing depth and detail for the sake of the bigger pic-
ture. Readers interested in more detailed information should consult the original articles 
on the presented approaches and foundational books on machine learning. Researchers 
who present useful overviews include Hastie, Tibshirani, and Friedman (2009), Bishop 
(2006), and Murphy (2012). Also, I would like to recommend Berk (2008) and James, 
Witten, Hastie, and Tibshirani (2013) for their emphasis on practical applications and 
hands-on R codes.

Most examples presented in this chapter are based on open data from the WISDM 
Smartphone and Smartwatch Activity and Biometrics Dataset (Weiss, Yoneda, & Haya-
jneh, 2019), which can be downloaded from the UCI Machine Learning Database (https://
archive.ics.uci.edu). This dataset comprises data from 51 participants, each performing 
18 activities (e.g., walking, sitting, eating soup, eating pasta, writing, or folding clothes) 
for 3 minutes per activity. The sensor data were collected at a rate of 20 Hz from accel-
erometers and gyroscopes of both a smartwatch and a smartphone. The regression and 
classification approaches I present are predominantly based on time window approaches 
that capture local properties of time series. I briefly discuss how these approaches can 
be extended to models that explicitly model temporal dependency in sequential data. 
The methods presented here are implemented in various well-documented R packages. 
Comprehensive interfaces to various algorithms are provided by caret (Kuhn, 2020) 
and tidymodels (Kuhn & Wickham, 2020). The decision tree was estimated with 
partykit (Hothorn & Zeileis, 2015), and the regularized regression with glmnet 
(Friedman, Hastie, & Tibshirani, 2010).

Features

A feature is a measurable property of a phenomenon of interest. The predominant 
approach to making inferences about sensor data, such as recognizing activities from 
smartwatch data, is a window-based feature engineering and feature selection approach 
because many models profit from transforming raw sensor data into more meaningful 
and less noisy features (Fukazawa et al., 2020; Stachl et al., 2020). In this approach, we 
first manually generate (“engineer”) meaningful features from raw sensor recordings in 
small time windows. For example, we compute average acceleration in one direction or 
the number of apps opened on a smartphone. Then we select a model to make predic-
tions based on these features. The optimal choice of window size depends primarily on 
the type of sensor, the derived features, the outcome, and the sampling frequency (Bao 
& Intille, 2004). Typical window sizes cover several seconds, such that a given activity 
(or major components of it) are included (but also see motion-primitive-based approaches 
for shorter components, e.g., Zhang & Sawchuk, 2012). The WISDM dataset has a fixed 
window size of 10 seconds sampled at 20 Hz, such that each window covers 200 data 
points from which features were generated.

It is also possible to classify directly on the raw sensor values. However, the more 
prior knowledge we impart to the classifier by creating high-level features, the more 
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successfully it will perform (in the sense of both accuracy and robustness). Yet, the more 
uninformative information we provide, the less successful the classifier will tend to be 
(we will return to this thought later). A variety of features computed from raw values 
have proven useful in empirical applications. Most commonly, standard distributional 
characteristics of sensor readings are used as features, such as the mean, standard devia-
tion, skewness, and kurtosis. For example, in accelerometer data, the mean and variance 
already bear a lot of information about physical activity (see Figure 17.1). The mean 
captures the average deflection of the proof mass in the sensor and, thus, directly trans-
lates to the orientation of the device in space and may help to infer posture. The vari-
ance directly captures the magnitude of activity over a given period of time and may 
help to derive the motion and intensity of activity. Numerous other features have proven 
to work well with different types of sensors. For example, from video images, we may 
derive centroid, edge, and optical flow features; from GPS, it may be location and speed; 
from speech snippets, it may be overall signal power (i.e., loudness) or power in selected 
frequency bands (see Fukazawa et al., 2020, for a survey on features used to predict the 
user’s mental state). Thoughtful feature engineering often already solves the prediction 
problem to a large extent. In contrast, even the best predictive algorithm will fail if fea-
tures are mostly uninformative about the prediction goal. When choosing among predic-
tive algorithms, we may prefer those that perform some sort of implicit or explicit feature 
selection, sometimes also referred to as variable selection (performed by algorithms such 
as decision trees or regularization). Often, more parsimonious models with fewer selected 

  FIGURE 17.1.    A two-dimensional feature space for activity classification. Observations of different 
activities (shown in different shapes) are plotted with the empirical average deflection measured on 
the x-axis of the accelerometer in a smartwatch (which partly reflects rotation of the arm in one 
axis) against the variance of activity on the y-axis (reflecting physical activity in one direction). A 
typical classification problem is to predict a person’s activity from such features. As can be seen, 
these two features alone are already quite informative for distinguishing various activities. This 
figure is available at https://github.com/brandmaier/mobile-sensing-figures under a CC-BY4.0 
license.
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features are found to be more accurate and to generalize better because they safeguard 
against overfitting to noise in the data. In time-critical applications (e.g., when predic-
tions are to be made very fast, or computational power or also battery power is limited on 
a wearable device), decreasing the number of features may increase the efficiency of the 
algorithm or decrease costs by relying on the deployment of fewer measurement devices 
or on cheaper hardware requirements (Guyon & Elisseeff, 2003).

Algorithms

Instance‑Based Learning

A simple and intuitive idea for implementing a learning machine is to let it memorize 
all observations and then make predictions based on how similar a novel observation 
will be to what it has memorized. This idea is known as instance-based learning or lazy 
learning. In this paradigm, learning degrades to a simple storage process, and no explicit 
model will emerge that could then provide explanations about the phenomena of interest. 
The most widely known algorithm implementing this idea is k-nearest neighbors (kNN; 
Altman, 1992). To predict a new observation, the algorithm searches all known observa-
tions and retrieves the k-nearest neighbors in feature space, given some distance metric 
(typically, Euclidean distance for continuous features). Then, it predicts the majority class 
(in classification problems) or the mean (in regression problems) of the target variable of 
these neighbors. An illustration of kNN-based decision boundaries in a two-dimensional 
feature space is given in Figure 17.2. It shows how kNN partitions the feature space into 
neighborhoods of activities. The smoothness of the partition depends on the choice of k. 
As k goes up, smoothness increases.

  FIGURE 17.2.    Decision boundaries of k-nearest neighbor classification with k = 1 (left) and k = 
15 (right) shown in black lines. The graph axes correspond to the absolute deviation of the sen-
sor’s x-axis (shown on the graph’s x-axis) and the mean of the sensor’s z-axis (shown on the 
graph’s y-axis) for classifying the activities of jogging versus brushing teeth. With increasing k, 
the smoothness of the decision boundaries increases. This figure is available at https://github.com/
brandmaier/mobile-sensing-figures under a CC-BY4.0 license.
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kNN is attractive because it almost works “out of the box,” and with enough obser-
vations, it can learn quite complex decision boundaries. It is fast in the learning phase 
but may require excessive amounts of storage space, and may be time-consuming when 
making predictions. This is because naive implementations have to search all stored data 
points to retrieve the nearest neighbors. kNN has several other problems in practice. 
With Euclidean distances, features with a larger range will dominate the remaining fea-
tures to the extreme that a single feature may dominate all others. Therefore, it is advis-
able to standardize all variables before using kNN. Furthermore, the Euclidean distance 
is particularly sensitive to outliers because extreme values greatly impact the squared dif-
ference between observations. This is why the Manhattan distance (the sum of absolute 
differences) may yield more robust results in high-dimensional spaces.

Probably most importantly, kNN has no feature-reduction mechanism; that is, 
all features contribute to the (dis)similarity of data points. If the prediction task really 
depends only on a few of many features, the true nearest neighbors may actually be not 
near but far away from each other in the space spanned by the features. Or put differ-
ently, as we add uninformative predictors, sparsity of the feature space increases (the 
same number of observations will reside in a larger space), making neighbors less similar 
to each other, and decreasing the predictive accuracy of our model. For example, imagine 
that our data points cover the observed space randomly and uniformly. Let us assume 
that the observed space is one-dimensional (there is only one feature). If we zoom into a 
neighborhood that covers only 10%, we will find about 10% of the observed points there. 
In a cubic space (three features), we will find only 0.13 = 0.1% of points in a neighbor-
hood that covers 10% of each dimension. In other words, the more dimensions in our 
feature space, the less likely it is to find a nearest neighbor that is close by and the more 
difficult it is to infer general rules. To some extent, we can solve this problem with more 
data, but we also need to be aware of this fundamental limitation of learning from data. 
Machine learning is often applied in high-dimensional feature spaces (that is, when the 
number of features is large) because it is typically difficult to build theory-based models 
in these scenarios (Brandmaier et al., 2016; Stachl et al., 2020). Therefore, in practice, 
we may want to switch to other algorithms that implicitly or explicitly perform feature 
selection. Also, if we can exclude features based on theoretical considerations, we should 
always do so prior to running a machine learning analysis to improve its chances of find-
ing a generalizable solution.

Linear Discriminant Analysis, Quadratic Discriminant Analysis, 
and Naive Bayes

When discussing kNN, we realized that storing all observed examples is an inefficient 
way of learning because it neither scales well nor provides an interpretable model. What 
if we abstracted from the individual instances by modeling the observed distribution 
over instances? By adding distributional assumptions about the features, we should be 
able to obtain a more robust model that is also amenable to further inspection, allowing 
us to access the mechanics of the classifier (e.g., which features are most important for 
predictions). For example, assuming a multivariate normal distribution of features per 
class, it will be sufficient to store the parameters of the normal distribution instead of the 
individual observations. A multivariate normal distribution in k dimensions (i.e., when 
there are k features) has k mean parameters and (k2 + k)/2 in the covariance matrix. If 
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we have a total of m different classes in a prediction task, we need to estimate m ⋅ (k2 
+ 3k)/2 parameters. For example, if we have two features and four classes, we need to 
estimate 20 model parameters (see Figure 17.3). With this probabilistic representation, 
prediction will now be much more rapid because we do not have to search all observa-
tions as in kNN, but rather we compute the likelihood of a new observation under the 
class-conditional distributions. If Y represents the class to be predicted and X the feature 
vector, our machine learning challenge can be formalized as learning the probability of 
observing Y given X, denoted as P(Y|X). Using Bayes’s theorem, we can rewrite this as

	
( )

( )
( | )

( | )
P Y P X Y

P Y X
P X

=

From this, we can deduce that we need to obtain two types of information: the prior 
probabilities P(Y) for each class Y and the probability densities of X within each class Y 
denoted as P(X|Y). The term P(X) is treated as a constant irrelevant for deciding between 
classes. If we perfectly knew priors and the class-conditional densities, we could derive 
an optimal classifier, the so-called Bayes optimal classifier, from this. No other classi-
fier could do better because the only error this classifier makes is due to irreducible noise 
(e.g., measurement error or inherent randomness). Note that in practice, the normality 
assumption might be oversimplified; and even if we knew the correct type of distribution, 
we would need to estimate parameters from limited and unreliable data, both of which 
lead to loss of accuracy in prediction.

  FIGURE 17.3.    Two-dimensional feature space spanned by the sensor’s average x-axis value (plotted 
on the graph’s x-axis) and the variance of the y-axis of the accelerometer in a smartwatch (plot-
ted on the graph’s y-axis). Data points represent four activity classes (jogging, walking, folding 
clothes, and drinking). Left: Linear discriminant analysis (LDA) fits a set of linear decision bound-
aries in this space. Right: Quadratic discriminant analysis (QDA) fits a set of quadratic decision 
boundaries into the space. Here, neither approach perfectly separates the training set into the 
labeled classes. This figure is available at https://github.com/brandmaier/mobile-sensing-figures 
under a CC-BY4.0 license.
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This probabilistic approach assuming Gaussian feature distributions is typically 
referred to as quadratic discriminant analysis (QDA; Hastie et al., 2009). Linear dis-
criminant analysis (LDA) is a special case of QDA in which the variances and covariances 
are assumed to be identical across all classes. LDA leads to fewer parameters to estimate, 
with each parameter estimated from a larger number of data points; that is, the variance 
and covariance estimates will be more precise. Assume we have 50 features and 4 classes, 
then we would need to estimate p ⋅ (p + 1)/2 = (50 ⋅ 51)/2 = 1,275 free parameters in the 
covariance matrix for an LDA, respectively, k ⋅ p ⋅ (p + 1)/2 = 4 ⋅ 1,275 = 5,100 param-
eters in the covariance matrix for a QDA. At the same time, we increase the chance of 
misspecification when using LDA because identical feature covariances across classes are 
typically a severe oversimplification of reality. Figure 17.3 illustrates the class-conditional 
distributions in a two-dimensional feature space as estimated by LDA and QDA. As can 
be seen, LDA leads to linear decision boundaries and QDA leads to quadratic decision 
boundaries (hence their names). A further simplification of the model (further trading 
fidelity for simplicity and robustness) is the naive Bayes classifier in which we assume 
independence of the class-conditional features and thus simply ignore all covariances to 
drastically reduce the number of parameters estimated—in the above example, reducing 
the number of estimated parameters in the covariance matrices to 3 ⋅ 50 = 150 variance 
estimates.

The LDA model can be reexpressed such that the ratio of the log-posterior odds for 
the predicted classes is a linear model. This is true for the logistic regression, too, and 
one may wonder whether they are identical. In fact, their form is identical, but they opti-
mize different loss functions and one may say that the logistic regression makes fewer 
assumptions. Ultimately, this means that if observations are really Gaussian, LDA will be 
more efficient; however, if class-conditional distributions are non-Gaussian or distorted 
by heavy outliers, logistic regression may perform better. Hastie and colleagues (2009) 
argue that, in practice, both models often yield similar results. But what if we are not 
willing to make parametric assumptions about the features while allowing for the genera-
tion of interpretable prediction rules? The next section covers an entirely nonparametric 
approach to prediction using decision trees.

Decision Trees

Decision trees are nonparametric models for classification and regression that are widely 
used across many domains because they yield interpretable models in the form of if–else 
decision rules. Figure 17.4 shows a decision tree. These decision rules are created hier-
archically such that the collection of rules can be represented as a tree. Each inner node 
(shown as circles here) has a logical decision rule that assigns observations uniquely to 
one of its child nodes. Starting from the root node (top node) and following the respec-
tive branches of each decision node, one arrives at a leaf node (also, terminal node) that 
makes a prediction about the outcome. Learning decision trees from data is done by 
recursive partitioning, that is, by choosing splits of the data over and over again that 
maximally reduce uncertainty about the outcome. For classification, entropy is a general 
measure to quantify uncertainty. Entropy of a random variable with probabilities pi for 
the ith of M discrete states is computed as

	   
1
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M
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For regression problems, trees typically maximize a variance-explained criterion. 
Trees recursively divide the feature space by axis-parallel splits because every smaller-
than-x relation divides the feature space into a “left” and “right” subspace. This is illus-
trated in Figure 17.4 using a prediction task from smartwatch data. The resulting axis-
parallel splits implied by the decision nodes are given in Figure 17.5. With this in mind, 
decision trees can be seen as adaptive nearest neighbor algorithms because (1) a large 
number of potential neighborhoods are searched before an actual neighborhood is defined 
and (2) the resulting terminal node neighborhoods are defined by different sets of features. 
A given predictor may help to define one neighborhood but may be irrelevant for another. 
Because searching all possible trees for a given set of predictors is computationally infea-
sible, trees are grown using a greedy model search procedure called recursive partitioning: 
Best splits are always chosen as being locally optimal, which does not guarantee finding 
the globally best tree but often yields reasonable and interpretable results in practice.

Decision trees are simple yet powerful methods because they adapt to the complex-
ity of the data as much as the available information affords it. At the same time, they are 
notorious for being unstable (Strobl, Malley, & Tutz, 2009). Small perturbations to the 
training data (such as adding or removing a few cases, for example, by changing an out-
lier correction procedure or continuing to sample) sometimes drastically change a deci-
sion tree because different splits selected further up the tree lead to ever larger subsequent 

  FIGURE 17.4.    A decision tree for classifying smartwatch accelerometer data into one of four activi-
ties (jogging, walking, folding clothes, and drinking). The tree selected the average of the x-axis 
(XAVG) as the two first splits that reduce entropy about the outcome maximally. This corresponds 
to the orientation of the arm on which the watch is worn. To further discriminate between folding 
clothes and jogging, the variance (corresponding to vigor of activity) in the y-axis (YAVG) is most 
discriminative. The p values correspond to a test of no association between a given feature and the 
outcome. This figure is available at https://github.com/brandmaier/mobile-sensing-figures under 
a CC-BY4.0 license.
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changes in the conditionally selected splits. This is particularly true if predictors are 
highly correlated. To not only acknowledge but leverage this problem, Breiman (2001) 
introduced random forests as a principled way to make predictions by using ensembles of 
trees. The core idea is to combine several “weak” learners and combine their individual 
predictions to an ensemble prediction by either taking the mean of all predictions (regres-
sion) or a majority vote (classification). One can show that averaging predictions of inde-
pendent learners can lower the variance while maintaining the bias of the learners. The 
beneficial effect of averaging is decreased by the degree of correlation among the learners. 
Therefore, random forests force individual trees in the forests to become independent by 
building the trees based on randomization of the original data. In random forests, each 
tree is built on a random sample of the training data (either by bootstrapping, that is, sam-
pling with replacement, or subsampling, that is, sampling without replacement). Random 
forests trade the straightforward interpretability of simple trees for higher robustness 
and increased predictive power, and they belong to the most successful prediction algo-
rithms across a variety of problems (Fernández-Delgado, Cernadas, Barro, & Amorim, 
2014). To examine which features have played a role in predictions of a random forest, 
we can compute measures of variable importance averaged over all trees. The current 
best practice is to compute permutation-based conditional variable importance (Strobl, 
Boulesteix, Kneib, Augustin, & Zeileis, 2008). By permuting one predictor at a time, the 
drop in the predictive performance of the model is taken as a proxy for the importance 
of that predictor. Figure 17.6 illustrates estimated variable importance derived from con-
ditional variable importance for the acceleration data used in the classification example 
(with activities drinking, folding, jogging, and walking). Of note is the finding by Strobl 
and colleagues (2008) that earlier but still widely used (marginal) variable importance 
measures are biased toward correlated predictor variables and should be avoided.

  FIGURE 17.5.    Axis-parallel splits in feature space based on the tree shown in Figure 17.4. The two 
features selected by the tree are the average of the x-axis of a smartwatch accelerometer (shown 
on the x-axis of the plot) and the average of the y-axis of a smartwatch accelerometer (shown on 
the y-axis of the plot). This figure is available at https://github.com/brandmaier/mobile-sensing-
figures under a CC-BY4.0 license.
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Decision trees and random forests can be extended beyond univariate regression and 
classification problems to multivariate outcomes. These multivariate outcomes can either 
be model-based, as they are in structural equation model trees and forests (Brandmaier 
et al., 2016; Brandmaier, von Oertzen, McArdle, & Lindenberger, 2013), or model-free, 
such as in multivariate tree boosting (Miller, Lubke, McArtor, & Bergeman, 2016).

Regularization

Earlier, I briefly discussed that implicitly or explicitly, we are often interested in feature 
selection. This is not only because we may be looking for a solution that is cheap to imple-
ment (using fewer sensors) but also because simpler models often seem to perform better. 
A simple heuristic is to sequentially add or remove features. These approaches are sub-
sumed under best subset selection but are notoriously unstable, depend on order effects, 
and are prone to overfit (but see recursive feature elimination as a model-agnostic, useful 
approach; Guyon, Weston, Barnhill, & Vapnik, 2002). A more elegant approach is regu-
larization, also known as shrinkage or penalization. Regularized regression solves the 
variable-selection problem by adding a penalty term to the least-squares fit function that 
penalizes solutions for the magnitude of their regression coefficients. This favors sparse 
solutions in which only few predictors are allowed to be “active.” By adding the penalty 
term, we constrain our model to be simpler than what the data “say” and thus force noisy 
estimates of unimportant variables to become zero. This works particularly well when the 
number of features is large, the sample size is rather small, and the true model is sparse. 
In these cases, chances are great that ordinary least squares (OLS) regression will tend to 
overfit the data, capturing noise in the training data, while regularized models will be less 

  FIGURE 17.6.    Variable importance as derived from random forests based on predicting four differ-
ent activities (jogging, walking, folding clothes, other) based on mean (AVG), peak (PEAK), and 
variance (VAR) of x-, y-, and z-axis accelerometer readings, and their correlations (COR). Left: 
Marginal variable importance (potentially biased by correlated variables). Right: Conditional vari-
able importance. This figure is available at https://github.com/brandmaier/mobile-sensing-figures 
under a CC-BY4.0 license.
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susceptible to this noise and generalize better to new data. However, this also means that 
our regularized regression coefficients will become biased estimates of the true values 
(if we had the correct model) but because the variance (which is the extent to which the 
estimated parameters of a model will deviate from their central tendency across differ-
ent samples) of our estimates decreases, we can expect a lower prediction error from this 
approach (see also Yarkoni & Westfall, 2017). A computationally simple optimization 
function that yields ridge regression is given by extending the OLS equation:
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where xi are some features of observation i (of a total of N observations) and yi the 
outcome; bb  is the vector of regression coefficients, and l  is a weight that governs the 
strength of the regularization term, which is added to the common OLS loss function. 
The regularization term 2

2|| ||b  is the so-called L2 norm of bb  and is computed as the sum of 
the squared regression coefficients. Note that features should be standardized, such that 
the penalty does not depend on the scale of the features. A more effective penalization is 
acquired by the least absolute shrinkage and selection operator (LASSO), which uses the 
sum of the absolute regression coefficients as the penalty (L1 norm). LASSO’s absolute 
shrinkage pulls regression coefficients more strongly to zero than the relative shrinkage 
of the ridge. The elastic net combines both penalties and introduces a mixture parameter, 
a , that governs the relative impact of the penalties. Both l  and a  typically need to be 
determined either by model selection criteria (such as the Bayesian information criterion, 
BIC) or by cross-validation (see the section “Model Selection” later in this chapter).

Figure 17.7 shows an application of regularization to a logistic regression model 
classifying the activities “walking” and “jogging” based on smartwatch accelerometer 
data. The initial model has 21 predictors, of which only 12 survive after regularization. 
The strongest predictors are the average activity of the x-axis (potentially reflecting a 
different hand orientation on average) and indicators of activity intensity (absolute devia-
tion and standard deviation of the y-axis), whereas neither other activity indicators (such 
as variance of all axes) nor frequency components (Mel-frequency cepstral coefficients, 
MFCC) are retained.

Support Vector Machine

The linear model has proved successful across many areas because its simplicity makes 
it robust. We have seen that we can estimate its parameters with different optimization 
goals in mind, such as least squares, LDA, or regularization. But at least one more opti-
mization goal is worth discussing: the principle of maximum margin. This simple yet 
convincing principle is implemented by the support vector machine (SVM; Boser, Guyon, 
& Vapnik, 1992; Schölkopf & Smola, 2002). The idea behind SVM is to find a (linear) 
decision boundary between two classes that maximizes the separability of the observa-
tions from the two classes. To this end, we try to find the maximal gap—the so-called 
margin—between the observations from two classes and place a separating hyperplane 
right into the middle. Intuitively, this makes a lot of sense because only a few data points 
then determine the margin, and extreme values become less influential. Support vectors 
are those data points that are closest to the separating hyperplane and determine its posi-
tion and orientation. Figure 17.8 illustrates a two-class problem and the support vectors 
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that define the margin. One can show that maximizing the margin boils down to mini-
mizing a quadratic function in the regression coefficients (under additional constraints 
to guarantee correct classification results). A variety of quadratic solvers can solve this 
problem efficiently and accurately. However, model fitting involves inverting a matrix, 
which has a runtime that is cubic in the number of features, and thus SVM becomes 
unfeasible for very large datasets.

What if the data points are not linearly separable? For example, there may be highly 
noisy measurements, or the true decision boundary may be nonlinear. SVMs leverage 
two further ideas to flexibly handle a variety of classification and regression tasks effi-
ciently. First, we abandon the idea of a hard margin in favor of a soft margin that allows 
some observations to be “not exactly right”; that is, they may lie within the margin or 
even on the wrong side of the margin. To handle these cases, we introduce slack vari-
ables for each observation that can be thought of as something like a misfit indicator for 
each observation. It allows for observations on the wrong side of the margin or inside 
the margin. The larger the total slack, the more we are willing to accept linear decision 
boundaries even though perfect separation is impossible. So, our new objective becomes: 
Minimize the slack while maximizing the margin. The tradeoff between complexity and 
(mis)fit is again governed by a regularization parameter, often called cost parameter C.

Finally, the SVM owes much of its success to the kernel trick. The kernel trick allows 
SVM to fit linear decision boundaries in feature spaces that have more dimensions than the 
original space. Selecting a kernel is akin to an explicit (nonlinear) feature transformation, 

  FIGURE 17.7.    Results from a regularized logistic regression model with LASSO penalty. Only the 
most influential values are shown. Left plot: on the x-axis, the L1 norm of the coefficients (i.e., the 
sum of the absolute values of the regression coefficients) is shown. The y-axis shows the regular-
ized regression coefficients. The lines represent the regression coefficients as they are gradually 
shrunken toward zero. The dashed line indicates the best model as found by cross-validation. 
Right plot: The absolute regularized coefficients of the “surviving” variables according to cross-
validation. This figure is available at https://github.com/brandmaier/mobile-sensing-figures under 
a CC-BY4.0 license.
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even though the features are actually never projected into this high-dimensional space. 
This allows for very flexible learning approaches that remain mathematically tractable 
and efficiently solvable. For example, the quadratic kernel solves the learning problem in 
a space in which the feature dimensions are all original features and all pairwise products 
of all features (including the product of each feature with itself). The linear kernel simply 
retains the original feature space. One of the most widely used is the radial basis function 
(RBF) kernel (often the default in software implementations). This kernel can be seen as 

  FIGURE 17.8.    Two-dimensional feature space for classifying two activities based on the acceler-
ometer features variance of z-axis and variance of the y-axis. Observations are shown as circles 
or rectangles either representing the activity brushing teeth or folding clothes. Support vectors 
are indicated by black dots inside the observations. The top panels have a large margin (more 
support vectors), and the lower panels a small margin (fewer support vectors) based on different 
cost parameters (0.1 vs. 100). Note the outlying rectangle close to the cloud of circles, which has a 
high influence with hard margins. Softer margins reduce the impact of this outlier. The left-hand 
panels show linear kernels, and the right-hand panels, radial basis function (RBF) kernels. The 
learned decision boundary is the border between the gray and white areas. This figure is available 
at https://github.com/brandmaier/mobile-sensing-figures under a CC-BY4.0 license.
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a smooth version of the nearest neighbor or rather the nearest centroid approach because 
it fits Gaussian distributions to every point to define important neighborhoods in the 
feature space. The choice of kernel becomes a further tuning parameter and determines 
the possible shapes of the decision boundary.

Figure 17.8 illustrates linear and nonlinear decision boundaries from four different 
SVM models based on different combinations of kernels (linear and RBF) and cost param-
eters (little and much slack). Note that all four panels show the same two-dimensional 
feature space with identical observations (shown as circles). In the left-hand plots, a linear 
kernel was chosen, and on the right, an RBF kernel was selected. In SVM, C trades off 
the costs of misfit and the costs of allowing for slack. A low-cost C means that allowing 
for slack is relatively cheap compared to increases in misfit. In the top panels, the cost 
parameter was chosen to be low (allowing for rather more slack, soft margin) whereas 
the cost parameter in the bottom panel was chosen to be high (allowing for little slack, 
hard margin). We can see that the SVM approach can lead to decidedly different decision 
boundaries that lead to very different generalizations. Deciding between the optimal ker-
nel and cost is usually an empirical problem and is, as with all other approaches we have 
seen so far, best treated as a model selection problem (see the section “Model Selection” 
in this chapter). For example, in Figure 17.8, the RBF kernel with a small margin has the 
lowest cross-validated error estimate (no misclassification), whereas all others make one 
misclassification error on average.

Sequence Learning

We have looked at classification and regression approaches that were devised for inde-
pendent observations; that is, any temporal dependencies among observations beyond the 
current windows were ignored. In many mobile sensing applications, we are dealing with 
continuous streams of data with informative temporal structure. We have avoided explic-
itly modeling the continuous nature of time by generating features that model local prop-
erties of the time series (such as mean, variance, or dominant frequency). However, this 
requires at least some prior knowledge of which of these properties carry information; 
in particular, it does not allow us to model dependencies over time scales that go beyond 
these local windows. A further problem is that we often train these window-based classi-
fiers on clean data (maybe obtained in a lab under well-controlled conditions) with clear 
start and endpoints, whereas realistic sensor readings may be much noisier and activities 
do not show clear boundaries. Ultimately, all this leads us to recognize the necessity of 
models that explicitly model time or at least consider larger time scales in one way or 
another. One very general class of models—(deep) recurrent neural networks—can effi-
ciently learn compressed representations of time series directly from the raw sensor val-
ues. Understanding the theory and details of technical implementations of these networks 
requires a level of sophistication that is beyond the scope of a few paragraphs, and this 
is why this volume dedicates an entire chapter to deep neural networks (see Arizmendi et 
al., Chapter 18, this volume).

In Chapter 19 (this volume), I discuss hidden Markov models (HMMs), which are 
simple probabilistic models for the segmentation of sequential data. HMMs can also be 
used as classifiers. HMMs are very similar to LDA, QDA, and naive Bayes with respect 
to how they model observations probabilistically—with the difference that HMMs 
explicitly model temporal dependency by assuming an underlying sequence of states. For 
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classification tasks, one HMM is then used for each target class (e.g., activity), and a given 
sequence of observations is labeled with the associated class of the HMM that has the 
highest likelihood of having produced the observed sequence (Wang, Chen, Sun, She, & 
Wu, 2011). The individual HMMs thus learn the feature sequences within an activity, and 
we can expect them to outperform static, window-based classification techniques, par-
ticularly when activities are complex conjunctions of simpler primitive motions. Also, we 
should expect that explicitly modeling the hierarchical nature of activities should produce 
even better results (e.g., Ronao & Cho, 2014). Similarly, if information about the sequen-
tial dependence of activities is available, one would ideally also model a second-order 
Markov process that describes the transition between states (e.g., that it is very unlikely 
to transition from “taking the stairs” to “asleep” but likely to transition from “sitting” 
to “eating”) to improve classification. As with all classification algorithms, HMM will 
also profit from a careful selection of meaningful features. If handcrafting the features 
is difficult, classification approaches can be used as a first variable selection approach. 
For example, a random forest approach could be used to select optimal features for static 
classification with the hope that they will also prove useful for a dynamic model. Alter-
natively, one could also use model selection approaches (such as cross-validation or infor-
mation criteria) to select the best features among a candidate set of features, but this may 
quickly become unfeasible because of the exponentially large search space.

Performance Metrics

How do we know how well our preferred prediction algorithm solves a given problem? 
To evaluate the predictive performance of regression problems, we can resort to the com-
mon metrics we know from linear regression, such as root mean squared error, mean 
absolute error, or R2. For classification problems, there are a variety of different per-
formance metrics. The simplest metric for classification tasks is accuracy, which counts 
the proportion of correct predictions among all predictions. Accuracy seems intuitive to 
understand but may be misleading when classes are imbalanced. Assume that a classifier 
is supposed to predict a dangerous fall from continuous accelerometer data in a smart-
watch in order to automatically send out a distress call. If, in a training set, the number 
of dangerous falls is only 0.01%, any classifier that always predicts the majority class 
of “no dangerous fall” will have an accuracy of 99.99%. To communicate the average 
performance per class considering unequal proportions of cases in each class, we should 
rather report balanced accuracy. This assumes that the proportion of errors in each class 
matters instead of the absolute number of errors overall. To more closely inspect the type 
of errors a classifier makes, we can compute a confusion matrix. A confusion matrix is a 
table that shows the absolute number of cases for which a given class was predicted for 
each true class. It allows us to understand which class labels a classifier confuses when it 
makes incorrect predictions.

In two-class problems, further measures that are often reported are precision and 
recall. They are typically used in information retrieval to quantify how relevant query 
results are to the actual query. Precision (also known as positive predictive value) is the 
proportion of retrieved relevant results from all retrieved results, and recall is the pro-
portion of retrieved relevant results from all relevant results (Murphy, 2012). Suppose a 
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classifier for recognizing night sleep phases from continuous accelerometry data identi-
fies eight sleep phases in a dataset containing 14 true sleep phases and some wake phases. 
Of the eight phases identified as sleep phases, seven were indeed sleep phases (true posi-
tives), while the remaining one was actually a wake phase (false positive). The classifier’s 
precision is 7/8 = 87.5%, and its recall is 7/14 = 50%. It misses half of the phases (low 
recall), but those that it detects are mostly correctly classified (high precision). Because 
we want a classifier to maximize both recall and precision, it seems useful to evaluate 
the average of precision and recall (note that the average of rates is computed with the 
harmonic mean), and this is known as the F-measure or F1 score (Murphy (2012):
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Model Selection

How should we select among the various available classifiers to solve a specific data-
analytic problem? The “no free lunch” theorem (Wolpert, 1996) has something impor-
tant to say about this question: There is no universal best classifier for all possible prob-
lems. However, this is no reason to throw in the towel. In restricted problem spaces, there 
may very well be classes of optimal classifiers. Fernández-Delgado and colleagues (2014) 
have shown that across a variety of prediction problems, random forests performed best, 
closely followed by SVM and boosting approaches. Which classifier is best for a particu-
lar problem depends on many factors, including the type of sensors, the chosen features, 
population characteristics, the classification goal, and our domain knowledge. A general 
rule of thumb is to choose classifiers with a high bias (that is, simple models) when sample 
size is low and many features are in question. Ultimately, the question of what works best 
is an empirical question; that is, we need to select the best classifier based on estimates 
of its expected performance. If researchers try out different approaches, I recommend 
reporting all of them (e.g., as supplementary materials). Note that when selecting among 
a set of candidate classifiers, it is important to never use the same data for parameter 
estimation, model evaluation, and model selection—unless one employs corrections for 
model complexity (see Burnham & Anderson, 2002). Otherwise, our estimates of model 
performance will be biased toward more complex models because complex models will 
always seem to fit better on the data they were trained on. This is obvious in simple 
regression models. Just adding predictors (even though they may be pure noise and bear 
no information about the outcome) will increase the model fit to the training data (such 
as R2). Thus, instead of in-sample model fit, we should rather evaluate out-of-sample 
model fit, that is, the expected error on new, previously unseen data.

Ideally, we should keep separate datasets sampled from the same population to train 
a model (i.e., estimating parameters) and to test a model (that is, evaluating its perfor-
mance). The test set is kept separate until all data- and modeling-related decisions are 
fixed and only then is the test set used to estimate the performance of the final model. 
If there is no dedicated test set, one can simply split the initially available sample into a 
training and a test set. Particularly when the sample size is small, there may sometimes be 
considerable variability in the performance estimate across different random partitions 
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into a training and test set. To reduce this variability, one may resort to cross-validation, 
which allows all data to be used in turn for both training and testing. In k-fold cross-
validation, data are split into k partitions. Then, in k rounds, every partition is the test 
set once while the remaining partitions form the training set. Finally, the resulting k test 
set error estimates are averaged to obtain a cross-validation-based estimate of prediction 
error. With n data points, the largest choice of k is n, yielding n-fold cross-validation, 
typically referred to as leave-one-out cross-validation. The choice of the number of folds 
trades off various properties of the estimator, such as bias, variance, and computation 
time. Established approaches are 5-fold and 10-fold cross-validation, which work well in 
practice.

It is important to emphasize the distinction between estimates of expected predic-
tion errors from a hold-out set and from cross-validation. The hold-out set estimates the 
error we can expect from the model trained from the training data at hand; that is, the 
error is conditioned on the (fixed) training set and the parameters of the model. In cross-
validation, we simulate repeated random draws from the population (the folds) and, thus, 
estimate the expected error of the method when trained on a new sample (of the same size) 
from the population; that is, the training set is treated as a random variable over which 
we integrate. In other words, the difference lies in whether we estimate the expected error 
from the given model (with given parameters) or from the given model class.

Finally, I would like to briefly point out some typical pitfalls in evaluating and select-
ing models. First of all, I would like to reiterate the need to ensure that there is no flow 
of information between training and test set. A common mistake is to perform some 
variable selection on the complete dataset before splitting into the training and test set. 
This seems to make good sense because we expect models to be more robust if we feed 
only informative variables into the model. While the robustness argument is valid, this 
approach leads to bias when subsequent model selection is done on cross-validation or 
the split-sample hold-out set approach because information from the test set has already 
leaked into the training data. The rule of thumb is to restrict all decisions regarding data 
processing that depend on the actual observations on the basis of the training set and not 
on all available data (e.g., data transformation, outlier exclusion, feature selection, and 
feature extraction).

Figure 17.9 illustrates the biases we may face when we do not carefully choose unbi-
ased model selection and evaluation strategies. In this example, I randomly generated 
five uninformative features with 100 observations each and repeated the simulation 200 
times. I independently generated a random dichotomous outcome, such that the expected 
accuracy should be 50%, as any classifier can do no better than guess. I trained an LDA 
on the training set and evaluated it on a hold-out set. Across the simulated trials, we 
obtain an unbiased estimate of its chance performance (dashed darker curve), with some 
deviations around it based on the uncertainty incurred by the small, noisy sample. Now, 
if we evaluate the performance on the training set (the in-sample error), we obtain the 
solid darker curve, which is considerably more optimistic and will be increasingly so with 
growing model complexity (we used the same data for model estimation and evaluation). 
If we evaluated accuracy on a hold-out set but selected the best among five competing 
classifiers (we use the same training data for model evaluation and selection), we would 
obtain the lighter dashed curve. If we selected the best among five classifiers and used the 
best classifier’s training set error estimate, we would observe the largest overoptimism 
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(same data for estimation, evaluation, and selection; solid lighter curve). Note that under 
all conditions, there was nothing to learn and classifiers could only perform at chance 
level.

Conclusions and Future Directions

Machine learning approaches provide us with flexible modeling techniques that allow us 
to find multivariate and nonlinear functions in high-dimensional data that promise good 
prediction and generalization to unseen data. Machine learning methods tend to be more 
complex than classical statistical approaches. This is because they typically allow for 
more complex functions and thus have a larger number of model parameters and tuning 
parameters. This increases the danger of overfitting, thereby jeopardizing the utility of 
the resulting model. Typically, we need not only to estimate the best parameters from a 
model but also to select the best model from a model family. And often, we even compare 
different model families to each other, which again necessitates more data or intricate 
selection and evaluation schemes such as nested cross-validation (e.g., Karch, Sander, von 
Oertzen, Brandmaier, & Werkle-Bergner, 2015; Stachl et al., 2020). However, machine 
learning approaches particularly focus on the problem of overfitting, and proper model 
evaluation and selection increase the chances that models generalize to new data. Ide-
ally, a set of candidate models is selected based on theoretical considerations and is then 
subjected to optimization, under the condition that the same data should never be used 
for model estimation, model selection, and model evaluation. Furthermore, we need to 
bear in mind that predicting well is not necessarily the same as explaining well. The usual 
caveats of causality also apply to machine learning algorithms that mostly exploit corre-
lational associations. Finally, when selecting among models that predict best, we may not 
necessarily pick the model that yields the closest representation of reality. Even if the true 
model is contained in a pool of models from which we select the best predicting model, 

  FIGURE 17.9.    Bias in model evaluation and selection as a function of training versus test set evalua-
tion and of take-the-best versus single classifier. The Bayes optimal classification rate is the chance 
level. Using the same model for model fitting and model evaluation leads to overoptimistic results 
(in-sample error). Instead, out-of-sample error yields unbiased estimates—unless model selection 
is also performed using the out-of-sample error (best of 5). This figure is available at https://github.
com/brandmaier/mobile-sensing-figures under a CC-BY4.0 license.
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we may pick a too simple model because it makes better predictions (for example, when 
measurements are noisy and sample size is low; Shmueli, 2010). Therefore, we need to be 
careful when we are reconciling predictive models with our theorizing about the subject 
matter. Still, prediction itself is often a valuable goal, and predictive models can provide 
a benchmark for theory-oriented models and, in the best case, inform the development of 
existing theories (Brandmaier et al., 2016).

Taking Machine Learning Out of the Laboratory

A major challenge for the application of machine learning algorithms for mobile sens-
ing is the careful collection of training data representative of the target task. The first 
issue is ecological validity. The environment from which annotated training data are 
gathered may differ from the deployment environment (a problem also known as data 
shift [Quioñero-Candela, Sugiyama, Schwaighofer, & Lawrence, 2009] or concept drift 
[Stachl et al., 2020]). For example, selecting the best classifier for activity recognition 
from lab-based training data may not necessarily yield a robust classifier for deploy-
ment outside the lab because activities such as walking might be less natural and more 
homogeneous under laboratory conditions. Second, we may expect gradual or sudden 
shifts in how features are predictive of the selected targets. For example, sensors may 
gradually slip out of place or participants may suddenly change the way they perform 
certain activities. Third, obtaining reliable and valid training data is time-consuming and 
expensive. Taken together, it seems advisable to regard the training set as a constantly 
changing, dynamic pool of information that needs to be monitored. Our algorithms may 
therefore need to be (re-)calibrated accordingly when deployed for longer periods of time. 
Some algorithms presented here can be used for novelty detection, such that they indicate 
that new observations are dissimilar to the training data. Take, for example, a person 
who starts a new sport in which the observed activity patterns no longer match any of 
the previously observed ones. Novelty detection could be leveraged to detect such new 
observations and request manual labeling. One further general approach that has proven 
useful in these settings is active learning. There, the learning algorithm actively suggests 
which as yet unlabeled observations (from a large pool of observations) need to be labeled 
to improve predictions best (Settles & Craven, 2008). On the level of model selection, it 
also seems advisable to keep multiple models and track their performances over time to 
investigate which model class will continue performing well.

Implicitly, we have been assuming that the cost of misclassification is symmetric. 
That is, no matter whether a classifier confuses “walking” with “running” or “walk-
ing” with “sleeping,” the cost of misclassification is the same. For example, if we were 
planning to prompt people to rate their affect in an experience sampling study and used 
a classifier to determine whether they were awake before prompting them, it would be 
costlier to falsely predict “awake” when they really were asleep (jeopardizing the partici-
pant’s willingness to further participate in this disruptive study) than to predict “asleep” 
when they were actually awake (missing an opportunity to sample affect). In these cases, 
one should include this weighting into the cost function. This is particularly straightfor-
ward in decision trees and random forests because they allow us to specify cost functions 
directly. A related problem is class imbalance. For example, when predicting suicidal 
ideation from smartphone usage, we will likely have only a few cases in the training data, 
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and a classifier will, most likely, always end up predicting the majority class (“no suicidal 
ideation”) for all cases. This is because the simplest model does not make an error most 
of the time. A more complex model may trade off false positives and false negatives but 
is not likely to reduce total errors. In practice, one then typically resorts to methods of 
resampling the training data, such as undersampling the majority class, oversampling 
the minority class, generating synthetic cases, or all these options at once (e.g., with the 
Synthetic Minority Over-sampling TEchnique [SMOTE]; see Chawla, Bowyer, Hall, & 
Kegelmeyer, 2002).

Person‑Specific Models

As a final remark, I would like to emphasize that we tacitly assumed that optimal clas-
sification algorithms hold across individuals; that is, we have not explicitly accounted 
for individual differences in the link between features and outcomes. For classification 
problems, such as activity recognition, this works as long as the variation within classes 
(i.e., activities) does not exceed between-class variation. To assess the extent to which 
we can expect a classifier trained across multiple persons to generalize to a previously 
unseen person, we can use leave-one-person-out cross-validation. If interindividual dif-
ferences are large (an assumption that is often plausible in human behavior), there may 
be a need for person-specific models (Karch et al., 2015) or at least subgroup-specific 
models. These models will likely require larger amounts of training data and will thus 
pose additional challenges in implementation. Future work needs to address how both 
group-specific and person-specific models can be combined to solve classification and 
regression tasks in mobile sensing applications most efficiently and accurately.
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C H A P T E R  O V E R V I E W

Deep learning includes a broad class of nonlinear statistical models that are useful for 
handling the kind of high- dimensional time- series data often encountered in mobile sens-
ing research. Researchers can use deep learning for a variety of modeling tasks, includ-
ing classifying individuals based on patterns collected from a mobile device and making 
predictions about future actions by a participant based on previous actions. This chapter 
provides an overview of deep- learning methods for mobile sensing data. We specifically 
focus on time- series data since most mobile sensing data are collected as a temporally 
ordered series of observations. We first provide example applications of deep learning 
to psychological and mobile sensing data. We continue with a general overview of deep 
learning and then provide descriptions of some successful deep- learning models: convo-
lutional neural networks (CNNs) and long short-term memory (LSTM) neural networks. 
Finally, we describe two empirical examples from the literature in depth.

Introduction

Deep- learning methods are powerful analytic tools for psychological researchers and 
clinicians who collect mobile sensing data. Current deep- learning methods have their 
origin in mid-20th- century models of biological learning called artificial neural networks 
(ANNs). What makes a method “deep” is that the original input data are processed 
sequentially through a number of steps called layers that are intended to transform the 
data in such a way that they can be used to accurately predict an outcome of interest; 
we will describe this process in detail below. While initially motivated by biological and 
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neural science pursuits, deep learning can be applied to an array of data types and attend 
to varied research questions. Among other applications, deep learning allows researchers 
to (1) classify individuals based on patterns of behaviors and (2) make predictions about 
future actions by a participant. Here, we provide an overview of deep-learning methods 
for mobile sensing time-series data. For psychologists, the data may include psychophysi-
ological, ecological momentary assessment (EMA) or the mobile phone accelerometer.

We begin with examples of applications of deep learning to psychological and mobile 
sensing data. We focus on applications for classifying and forecasting time series, com-
mon problems for mobile sensing data. We continue with a general overview of deep 
learning and then provide descriptions of current state-of-the-art architectures for clas-
sification using CNNS and LSTM neural networks. Finally, we describe two empirical 
examples from the literature in depth (Killian, Passino, Nandi, Madden, & Clapp, 2019; 
Suhara, Xu, & Pentland, 2017) to provide context for what questions we can answer 
with deep learning and tips and tricks for making the most of deep-learning methods. As 
this chapter focuses primarily on applications on mobile data, the interested reader wish-
ing to learn more about deep learning in general is referred to Goodfellow, Bengio, and 
Courville (2016) for a comprehensive book that includes a brief history of deep learning, 
foundational concepts in machine learning, and modern methodology.

Applications of Deep Learning to Psychology

Deep-learning methods have been applied to a variety of questions and are now gaining 
traction outside the field of computer science. Reviews of neural network approaches and 
tutorials on deep-learning software are being published in behavioral journals (Pang, 
Nijkamp, & Wu, 2020; Urban & Gates, 2021). In particular, clinical research benefits 
from the robust classification abilities of deep learning. For example, neuroimaging, a 
field with high-dimensional data, has found use for deep learning in feature extraction 
and classification of disease severity; see Vieira, Pinaya, and Mechelli (2017) for a review 
of recent work in this area. Self-report data have been used in this framework to detect 
whether or not an individual is depressed (Victor, Aghajan, Sewart, & Christian, 2019), 
and medical data have been used to predict likelihood of suicide by patients (Sanderson, 
Bulloch, Wang, Williamson, & Patten, 2020). Additionally, video footage of participants 
has been used to detect facial microexpressions (Peng, Wang, Chen, Liu, & Fu, 2017). 
The flexibility of deep-learning approaches to different types of data and the ability of 
deep learning to handle high-dimensional data in a computationally efficient manner 
make deep learning approaches useful for mobile sensing data. For time-series data, a 
common data type in mobile sensing, deep learning is particularly useful for classifica-
tion and forecasting, especially in data with long-term time dependencies. Feature-based 
approaches, such as the windowing approaches discussed by Brandmaier in Chapter 17, 
this volume, can handle time-dependent data but do not handle long time dependencies 
well, thus making deep-learning approaches a useful tool in cases of long-term dependen-
cies.

Classification Applications to Time‑Series Data

In addition to the examples mentioned above, deep learning has been used in the field 
of computer science for classifying time series. In fact, time-series data extracted from 

�	  Deep-Learning Methods	 433



wearable sensors is a common data type for computer scientists studying classifica-
tion. Much of this work has come from collaborations with psychologists. For example, 
researchers trained a CNN (a model class we explain in more detail later) on wearable 
sensor data to classify stretches of time indicative of stereotypical motor movement in 
participants with autism spectrum disorders (Mohammadian Rad et al., 2018). Wear-
able sensors were also used for predicting sleep quality based on daytime physical activ-
ity data (Sathyanarayana et al., 2016). In this case, a CNN outperformed logistic regres-
sion.

Much sensor data can be collected without requiring wearable technology. This type 
of passive sensing data is useful because of its relatively unobtrusive nature. For example, 
researchers used features from mobile phone data, including audio, Bluetooth, call logs, 
number of apps the phone was running, text messaging, and conversations to classify 
stressed and unstressed students. Stress assessments were collected via EMA (Acikmese 
& Alptekin, 2019). A similar study used GPS features for classification of stressed and 
unstressed students in passive data combined with survey data (Shaw, Simsiri, Deznaby, 
Fiterau, & Rahaman, 2019). Speech recognition is another time-series classification 
problem for which feature extraction methods from mobile data are being developed and 
advances in CNNs are being made (Baumeister & Montag, 2019). Similarly, methods are 
being developed for classifying human activity from mobile data, with the goal of being 
able to detect if someone is walking, running, lying down, climbing stairs, standing, bik-
ing, driving, and so on (Hammerla, Halloran, & Plötz, 2016; Lima, Souto, El-Khatib, 
Jalali, & Gama, 2019; Ronao & Cho, 2016; Wang, Chen, Hao, Peng, & Hu, 2019; Yao, 
Hu, Zhao, Zhang, & Abdelzaher, 2017).

Forecasting Applications

Although applications of using forecasting on human sensor data are far less common 
than classification applications, they are becoming more common. Forecasting physi-
ological and behavioral data is quickly emerging as a tool for clinicians. In particular, 
forecasting is a potentially useful method for clinicians who aim to make real-time deci-
sions of whether an intervention is necessary.

We can understand the potential for this advancement by considering the common 
applications for forecasting time series. For example, forecasting electricity load demand 
allows utility companies to provide enough power supply as predicted by future needs 
while also keeping costs of operation to a minimum (Qiu, Ren, Suganthan, & Amara-
tunga, 2017). For similar reasons, we may want to forecast internet traffic. More well-
known examples are forecasting stock prices, so that stockholders can make decisions on 
whether to buy, sell, or hold a stock or forecasting weather (Gamboa, 2017). All these 
examples use forecasting to make decisions based on what we expect to happen in the 
future. Similarly, we can apply the forecasting function to mobile sensing data collected 
from humans. For example, researchers provide a deep-learning framework for predict-
ing and intervening prior to onset of psychosis (Koppe, Guloksuz, Reininghaus, & Durst-
ewitz, 2019), predicting future stress based on GPS data (Mikelsons, Smith, Mehrotra, 
& Musolesi, 2017), and predicting falls in older adults based on accelerometer data (Nait 
Aicha, Englebienne, Van Schooten, Pijnappels, & Kröse, 2018).
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Deep Learning

Deep-learning methods continue to be modified, created, and tested to accommodate 
new research questions and data types. The goal of this section is to acquaint readers 
with common foundations for emerging deep-learning methods. We also seek to prime 
the reader to use these methods in their own work by explaining common steps that can 
be used in practice when preparing to use deep-learning methods.

Foundations

We now introduce concepts fundamental to understanding the technical aspects of deep 
learning, focusing on those typically used as foundations for emerging methods. Deep 
learning has received a lot of hype in recent years (Marcus, 2018). One successful model-
ing approach for deep learning, artificial neural networks (ANNs), has a much longer 
history, dating to the mid-20th century (McCulloch & Pitts, 1943; Rosenblatt, 1958). 
ANNs were initially inspired by biological neural mechanisms (e.g., Rumelhart, Hinton, 
& Williams, 1986) and aim to consolidate and transfer information, much like how 
learning proceeds in biological systems. In more modern parlance, ANNs are statistical 
models for nonlinear regression. Although psychologists often need to carefully select 
the variables that are to be included in statistical models to obtain accurate predictions, 
ANNs may avoid this preprocessing step by automatically extracting their own (typically 
uninterpretable) representations of the data to use for making predictions. This ability 
has helped deep ANNs produce major breakthroughs in computer vision and natural 
language processing (LeCun, Bengio, & Hinton, 2015).

Despite all the hype, basic deep-learning models are not mysterious and compli-
cated. In fact, ANNs are very similar to statistical models commonly used by psycholo-
gists. ANNs are especially closely related to generalized linear models (GLMs), a family 
of models that includes linear and logistic regression. We will clarify this relationship 
with the following example. We begin with a cross-sectional dataset where yi denotes 
the observed outcome and xi denotes the observed p × 1 vector of predictors for the ith 
individual, i = 1, . . . , N . For instance, imagine that our data were collected via a large 
clinical survey designed to measure mental health and substance use. In this setting, yi 
could be a binary outcome that is equal to one when individual i meets the criteria for 
major depressive disorder (MDD) and is equal to zero otherwise, while xi could be a 2 × 
1 vector whose elements xi,1 and xi,2 are binary predictors indicating whether individual 
i meets the criteria for nicotine use disorder (NUD) and alcohol use disorder (AUD), 
respectively; a similar (worked) example is considered by Urban and Gates (2021). Our 
goal is to determine whether meeting MDD criteria can be accurately predicted based on 
whether an individual meets NUD and AUD criteria. A GLM could be used to predict 
the outcome as

	 yi = f(wTxi + b) + e i    i = 1, . . . , N	 (18.1)

where w is a p × 1 vector of regression weights (in our example, p = 2), (⋅)T denotes the 
vector transpose, b is an intercept, f is an inverse link function, and e i is an error term. 
Since yi is a binary outcome in our example, we can conduct a logistic regression by 
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choosing f to be the inverse logistic link or sigmoid function f (z) = 1/(1 + exp[–z]). If yi 
were a continuous outcome such as age or income, we could conduct a linear regression 
by choosing f to be the identity function f (z) = z.

Unfortunately, the simple GLM described above is not flexible enough to model 
highly nonlinear relationships between predictors and outcomes. For instance, suppose 
our dataset was generated as follows:

	 xi,1 ~ Bernoulli(0.5)	 (18.2)

	 xi,2 ~ Bernoulli(0.4)

	 ( )( )( )∼ − + =⋅ ,1 ,2  Bernoulli 2 4 Ii i iy f x x

where f(⋅) is the sigmoid function and I(xi,1 = xi,2) is an indicator function that is equal to 
one when the ith individual’s NUD and AUD diagnoses are the same and is equal to zero 
when their diagnoses are different. In words, people in our dataset have a 50% and 40% 
chance of meeting criteria for NUD and AUD, respectively. Additionally, each person’s 
chance of meeting MDD criteria is high when they meet both NUD and AUD criteria or 
when they meet neither NUD nor AUD criteria, but their chance of meeting MDD crite-
ria is low when they only meet either NUD or AUD criteria. This relationship could not 
be captured by the GLM in Equation 18.1 unless an interaction term was included in the 
model a priori. Including interactions and other nonlinearities a priori might be feasible 
for small models with only a few predictors (e.g., our example) but becomes increasingly 
difficult as the number of predictors grows.

Interestingly, the problem of modeling complicated nonlinearities (without needing 
to specify these nonlinearities a priori) can be solved by applying a sequence of GLMs 
to our predictors where the output of each GLM is used as input to a subsequent GLM. 
“Stacking” several GLMs in this manner forms the basis of one of the simplest ANN 
models: the multilayer perceptron (MLP) or feedforward neural network. The words 
“multilayer” and “feedforward” are meant to convey that the predictors xi are passed 
through a sequence of processing steps called layers before being used to predict the out-
come yi. To understand how an MLP layer processes the input data, suppose we collect 
p1 different GLMs, each with its own regression weights ( )1

jw  and intercept ( )1
jb  j = 1, . . . , 

p1. Here, the superscript (1) indicates the first layer. If we apply each of our GLMs to the 
input data separately as follows:

	 ( ) ( ) ( )( ) ( )T1 1 1 1
,i j j i jh f b = + 

 
w x     j = 1, . . . , p1	 (18.3)

we end up with a set of p1 different output values ( )1
,i jh , each of which provides a single-

number summary of the input data. In analogy with biological neurons, each GLM is 
called a neuron because it produces output by summarizing information in the input data 
it receives; the set of p1 different neurons taken together forms an MLP layer of width 
p1. Note that the width can be the same size of the input layer or larger. If we collect the 
regression weights into a p1 × p matrix W(1) whose jth row is ( )1 T( )jw , stack the intercepts 
( )1
jb  into a p1 × 1 vector b(1), and stack the p1 single-number summaries hi,j into a p1 × 1 

vector ( )1
ih , we can write our first MLP layer more concisely as

	 ( ) ( ) ( ) ( )( )1 1 1 1  i if= +h W x b 	 (18.4)
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The inverse link function f(1)(⋅) is called an activation function in the context of deep 
learning. Typical choices for MLP activation functions will be discussed further below. 
The elements of ( )1

,i jh  of ( )1
ih  are called hidden layer variables because they are not typically 

visible to the user; rather, they are used as internal representations of the input data that 
help the model obtain accurate predictions.1 To make our MLP more flexible, we could 
increase our model’s depth by adding more processing layers as follows:

	 ( ) ( ) ( ) ( ) ( )( )1l l l l l
i if −= +h W h b 	 (18.5)

where l is the total number of MLP layers, W(l) is a pl × pl-1 weight matrix, b(l) is a pl × 1 
intercept vector, f(l)(⋅) is an activation function, and ( )l

ih  is a pl × 1 vector of hidden layer 
variables. Once the input data have passed all the way through the model, and we have 
arrived at the final hidden layer vector ( )L

ih , the MLP predicts the outcomes using a single 
neuron:

	 ( ) ( )( ) ( ) ( )T1 1 1L L L L
i i iy f b ε+ + + = + + 

 
w h 	 (18.6)

where w(L+1) is a pL × 1 vector of regression weights, b(L+1) is an intercept, f(L+1)(⋅) is the 
final activation function, and e i is an error term.

To complement the use of equations, MLPs and other ANNs are often depicted 
using schematic diagrams. These diagrams are closely related to the path diagrams used 
to depict variables and their relationships in structural equation modeling. Specifically, 
ANN schematic diagrams are directed graphs where circles represent variables (observed 
or hidden) and arrows between circles represent neurons. To continue our example, sup-
pose we wish to use an MLP with two hidden layers of width four to predict MDD. This 
model can be depicted using the directed graph shown in Figure 18.1. On the left side of 
the figure, we note that the predictors x and the outcome y are called the input layer and 
the output layer, respectively, while all the intermediate layers are called hidden layers. 
On the right-hand side, we write the equations corresponding to the diagram.

The number, widths, and types of the hidden layers, as well as the absence or pres-
ence of connections between variables (i.e., arrows/neurons), are collectively called the 
model’s architecture. The model’s activation functions are particularly essential architec-
tural components. Specifically, the hidden layer activation functions f (1), . . . , f (L) enable 
MLPs and other ANNs to approximate complicated nonlinear relationships rather than 
purely linear relationships (e.g., Cybenko, 1989). A common choice for each f (1), . . . , 
f (L) is the rectified linear unit (ReLU) function f (z) = max(z, 0), which sets all neurons 
with negative values to zero (Figure 18.2a). ANNs with ReLU hidden layers are often 
easy to fit and perform well (e.g., Glorot, Bordes, & Bengio, 2011; Jarrett, Kavukcuo-
glu, Ranzato, & LeCun, 2009; Nair & Hinton, 2010). Another hidden layer activation 
function that will be useful for the models considered in this chapter is the hyperbolic 
tangent (tanh) function f(z) = (exp[2z] – 1)/(exp[2z] + 1), which outputs a value between 
1 and –1 (Figure 18.2b). Similar to GLMs, the form of the final activation function f (L+1) 
depends on the outcome variables. For example, if the outcomes are continuous, we set f 
(L+1) to the identity function (Figure 18.2c); if the outcomes are binary, we set f (L+1) to the 
sigmoid function (Figure 18.2d).

Although the activation functions for MLPs and other ANNs are typically fixed a 
priori, the number and widths of the hidden layers are often determined empirically using 
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the data at hand. However, using a single dataset for model selection typically produces 
a model that performs well in the sample at hand but performs poorly when applied to 
new, previously unseen samples. This phenomenon is called overfitting and is well known 
in machine learning (see Brandmaier, Chapter 17, this volume, for a discussion of over-
fitting). Fortunately, several techniques exist for empirically choosing a well-performing 
MLP architecture while avoiding overfitting. With large datasets (e.g., N ≥ 2,000), a 

  FIGURE 18.1.    Schematic representation of a multilayer perceptron with two hidden layers, each of 
width four. The input data at the bottom of the figure include three different predictors.

  FIGURE 18.2.    Several common activation functions used to build artificial neural networks.
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typical approach in deep learning is to first divide the data randomly into three disjoint 
subsets called the training set, the validation set, and the test set. Next, several MLPs 
with different architectural settings are fitted using the training set, and each MLP’s 
performance is evaluated using the validation set (e.g., by computing each MLP’s predic-
tive accuracy on the validation set). The MLP with the best validation set performance is 
selected and refitted on the combined training and validation set data.

Finally, the refitted MLP is evaluated on the test set to get an approximate sense of 
how the model will perform with new, previously unseen data. With smaller datasets and 
models, approaches based on cross-validation are typically used to prevent overfitting, 
although this approach is computationally infeasible because of its very large datasets 
and MLPs, which involve multiple runs of the models with varying subsets of the sample 
to test and train (see Brandmaier, Chapter 19, this volume, as well as Appendix B in 
Urban & Gates, 2021, for overviews of cross-validation). For practical guidance regard-
ing choosing model architectures and avoiding overfitting for MLPs, see Heaton (2008, 
Ch. 8), Bengio (2012), or Smith (2018).

Estimating MLP parameters (i.e., the regression weight matrices and intercepts) is 
more challenging than estimating GLM parameters. Fitting GLMs is straightforward 
because GLMs typically have a unique set of parameter values that produce the best-
performing model, and fitting procedures are typically guaranteed to come very close 
to these optimal values. MLPs, on the other hand, have many different sets of param-
eter values that produce well-performing models (i.e., MLPs are overparameterized; see 
Urban and Gates, 2021, for a discussion of this point), and fitting procedures are not 
always guaranteed to come close to these optimal values. Fitting in MLPs and other 
ANNs begins with choosing a loss function to measure model performance. A common 
loss function for continuous outcomes is the mean squared error ( )2ˆi ii

y y−∑  which is 
the same loss function used in linear regression and measures the distance between the 
true outcomes yi and the outcomes predicted by the model ˆ iy . A common loss function 
for binary outcomes is the binary cross-entropy ii

y∑ log ˆ iy  + (1 – yi) log(1 – ˆ iy ) which is 
the same loss function used in logistic regression and measures the distance between 
the true outcome yi (which is equal to 1 or 0) and the MLP’s predicted probability that 
the outcome is equal to one given by ˆ iy . The goal is to find the MLP parameters that 
minimize the loss function (i.e., to find the best-performing MLP). Fitting in MLPs and 
other ANNs relies heavily on an algorithm called backpropagation (BP), which is used to 
efficiently compute the gradients of the loss function with respect to the MLP parameters 
(Linnainmaa, 1976; Rumelhart et al., 1986). Gradients are multivariate derivatives that 
provide information about the magnitude and direction in which the MLP parameters 
should be updated to reduce the loss function by a small amount. Once gradients are 
obtained using BP, a stochastic gradient (SG) method such as stochastic gradient descent 
(Robbins & Monro, 1951) or Adam (Kingma & Ba, 2014) combines the gradient with an 
update rule to change the parameter values a certain amount. BP and the SG method are 
applied to iteratively update the MLP parameters until adequate performance is achieved 
on the training set. Since fitting MLPs using SG methods involves a good deal of random-
ization, in practice we recommend fitting models several times using different random 
seeds to assess the stability of the model’s performance.

To demonstrate the above concepts, we simulated a dataset of size N = 5,000 accord-
ing to the example in Equation 18.2 and then used the MLP implemented in the Python 
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package scikit-learn (Version 0.23.1; Pedregosa et al., 2011) to predict MDD using 
individuals’ NUD and AUD diagnoses. Our MLP had two hidden layers of width four 
as shown in Figure 18.1. We otherwise fitted our MLP using the scikit-learn package 
defaults, which include ReLU hidden layer activation functions, a sigmoid final activa-
tion function, the binary cross-entropy loss, and the Adam SG method. Our fitted MLP 
obtained an accuracy of 0.87 (i.e., 87% of MDD cases were predicted correctly). This 
was much higher than the accuracy of 0.56 obtained by a logistic regression classifier 
(also fitted using scikit-learn), suggesting that unlike the logistic regression classifier, 
the MLP successfully captured the nonlinear relationship between the predictors and 
the outcome. We note, however, that unlike logistic regression, the MLP parameters are 
not directly interpretable due to overparameterization (Urban & Gates, 2021). Code to 
reproduce this example is available online at https://github.com/cjurban/MobileSensing.

Like Urban and Gates (2021), we now review how our fitted MLP makes predictions 
using new input data. Suppose we want to use our MLP to predict the MDD diagnosis for 
an individual who meets NUD criteria but not AUD criteria. We begin with our MLP’s 
first layer, which multiplies our individual’s predictor vector x by the regression weight 
matrix W(1) and then adds the intercepts b(1) to produce a new vector a(1):
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a(1) = W(1)x + b(1)

	 (18.7) 
 

The vector a(1) is a modified version of the input data x and is sometimes called an activa-
tion. We next apply the ReLU activation function to our activation to compute the first 
hidden layer vector:

	 ( ) ( ) ( )( ) [ ]T1 1 1 0.00 0.00 0.00 1.29f a= =h  	 (18.8)

which simply sets any negative values in a(1) to zero. The second MLP layer repeats this 
process with the first hidden layer vector h(1) as its input—multiply by the weight matrix 
W(2), add the intercepts b(2), then apply the ReLU activation function f(2)(⋅):
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h(2) = f(2)(W(2)h(1) + b(2)) 

	 (18.9) 
 
 

Finally, our MLP predicts the outcome using a single neuron with a sigmoid activa-
tion function f(3)(⋅):
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The value 0.11 is the predicted probability that the individual has been diagnosed with 
MDD.

Although MLPs are very flexible in theory, in many practical settings they perform 
worse than specialized ANNs that have been designed to model specific kinds of data 
(e.g., image data or time-series data). However, understanding MLPs and their asso-
ciated terminology (e.g., hidden layers, activation functions) is an important first step 
toward understanding the state-of-the-art, specialized ANNs used to solve challenging 
real-world problems. As described above, MLPs may be thought of as “stacks” of GLMs. 
Rather than stacking GLMs, other ANNs stack different transformations that can be 
layered together in a variety of complicated ways. In the next section, we describe special-
ized ANN architectures that have been successfully used for processing sequential data 
(e.g., time series).

Common NN Architectures for Sensor Data

Long Short‑Term Memory

LSTMs are a special case of a type of ANN called a recurrent neural network (RNN). 
While GLMs and MLPs typically aim to model cross-sectional data where observations 
are assumed to be independent, RNNs aim to account for the dependencies between 
observations that arise in time-series data (Ordóñez & Roggen, 2016). RNNs maintain 
a hidden state that is updated at each time point based on the hidden state values at the 
previous time point as well as the current observed variable values. In this sense, RNNs 
are closely related to classical time-series approaches such as dynamic factor analysis 
(Molenaar, 1985) that model the relationships between latent variables over time (Urban 
& Gates, 2021). In practice, however, RNNs perform poorly with large numbers of time 
points (which is often the case for psychological time series) due to vanishing or explod-
ing gradients. In the case of vanishing gradients, the gradient along which estimation 
occurs becomes so small that the weights are only slightly updated, potentially stopping 
the estimation process. In the case of exploding gradients, the gradient becomes so large 
that weights are updated by large amounts that lead to an unstable model, also poten-
tially stopping the estimation process (Fawaz et al., 2019; Hochreiter & Schmidhuber, 
1997; Lipton, Berkowitz, & Elkan, 2015).

LSTMs address the shortcomings of traditional RNNs using a special component 
called a cell state in combination with a technique called gating. To illustrate these con-
cepts, let’s use an example of number of daily recorded steps. The cell state is an extra 
hidden layer vector that acts like the LSTM’s long-term memory, storing important infor-
mation from previous time points. For our step-count example, this information could 
include the current trend of increasing, decreasing, or constant steps as well as any lagged 
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processes such as the previous day’s step count or the previous 2 days’ step count, and so 
on. This is similar to modeling trends or autoregressive effects in more traditional time-
series models.

The cell state differs from the hidden layer in that it is used to store information, 
while the hidden layer is used to predict the outcome (e.g., number of steps) at each time 
point. Gating aims to control the flow of information through the model: Instead of 
allowing information to flow through the model in an unrestricted manner, LSTMs use 
multiplication factors called gates to determine what information to keep, what informa-
tion to forget, and what information to update. For example, some information may not 
be predictive of today’s step count, while other information is predictive. Maybe knowing 
that it is a weekend and the participant walked 5,000 steps yesterday is informative, but 
how many steps they walked on a weekday 4 months ago is not informative. The gating 
would keep the information about day of week and yesterday’s step count but “forget” 
the information from 4 months ago.

Some LSTM gates are implemented using sigmoid activation functions (see Figure 
18.2d). These gates output values between 0 and 1, which are then multiplied by different 
model components such as the cell state or the hidden layer. Multiplying by 0 lets no input 
information through, multiplying by 1 lets all input information through, and multiply-
ing by intermediate values lets a fraction of input information through. Continuing with 
the step-count example, we see that information on the step count on a weekday from 4 
months ago would be multiplied by zero, while information that it is a weekday may be 
multiplied by 1. Perhaps yesterday’s step count is only slightly informative, so that infor-
mation is given an intermediate weight. Other LSTM gates are implemented using tanh 
activation functions, which output values between –1 and 1 (Figure 18.2b). Multiplying 
by a tanh gate produces a positive or negative proportion of the input information, which 
can then be used to add or subtract information from different model components. Using 
sigmoid and tanh gates permits making small changes to the information transmitted 
across time points, resulting in more stable gradients and better accounting for long-term 
dependencies (Acikmese & Alptekin, 2019; Lipton et al., 2015).

Figure 18.3 illustrates a single LSTM layer or memory cell. In this figure, ht–1 is 
the hidden layer vector from the previous time point, and ht is the hidden layer vector at 
time t. The hidden layer is used to predict the outcome value at each time point and then 

  FIGURE 18.3.    Schematic representation of a single long short-term memory neural network “cell.”
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is passed forward to the next time point. ct–1 is the cell state at the previous time point, 
and ct is the cell state at the current time point. The previous hidden layer ht–1 first goes 
through the forget gate to produce the forget layer ft. The forget gate takes information 
from the previous hidden layer and decides how much information to lose using a sigmoid 
activation function. The forget layer is removing information. The input layer it deter-
mines which elements of the cell state to update. The input layer is adding information. 
The tanh layer creates a new vector of values based on a candidate cell state tc . Finally, 
the last sigmoid layer, ot decides which values to output. This then goes to the second 
tanh layer to standardize values between –1 and 1 (Acikmese & Alptekin, 2019; Lipton et 
al., 2015; Ordóñez & Roggen, 2016). In equation form, ft, the forget gate, which decides 
which information from the prior hidden state to retain, is defined as

	 ft = s (Wfxt + Ufht–1 + bf)	 (18.11)

The input gate, it, which dictates what information to keep, is defined as

	 it = s (Wixt + Uiht–1 + bi)	 (18.12)

and the output gate, ot, is defined as

	 ot = s (Woxt + Uoht–1 + bo)	 (18.13)

where s  is the sigmoid function, Wo is a matrix of the weights for the current input, xt is 
the input from the current timepoint, Uo is a matrix of the weights for the previous hidden 
state (ht–1), and bo is a vector of the biases for the given gate.

Therefore, the equation for ht is

	 ht = (ot)⨀tanh(ct)	 (18.14)

where ot is the output gate at time t, ct is the cell state at time t, and ⨀ denotes the ele-
mentwise product. The equation for the candidate cell state, tc  is

	 tc  = tanh(Wcxt + Ucht–1 + bc)⨀tanh(ct) = tanh	 (18.15)

The equation for the current cell state, ct is

	 ct = ftct–1 + it⨀ tc 	 (18.16)

(Ordóñez & Roggen, 2016). For a comprehensive and beginner-friendly technical expla-
nation of LSTMs, we recommend readers check out the review by Lipton and colleagues 
(2015).

Convolutional Neural Networks

CNNs are the most common deep-learning method for classification in general. Made 
popular for image recognition, CNNs can also work well for time-series classification 
(Fawaz et al., 2019). CNNs work by applying a filter or “convolving” raw data. During 
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the training of the model, optimal parameters are found for predicting some class of 
labeled time series (e.g., whether mobile phone accelerometer data indicates standing, 
sitting, or walking), and during the testing of the model, the class of a time series is 
predicted based on its filtered characteristics. In the most common case of classifying 
photographs, a picture passes through a filter, simplifying the data but retaining features 
important for classifying the image (Michelucci, 2018). For image recognition, CNNs are 
preferred to feedforward networks because they retain the pixel dependencies of images 
(i.e., that one pixel is beside some other pixel; Krizhevsky, Sutskever, & Hinton, 2012). 
In the case of time series, we want to retain the time dependencies of the data, making 
CNNs an appropriate modeling technique for time series.

A CNN can have multiple layers/filters, with each filter outputting a filtered time 
series based on the original time series. Typically, a CNN has at least one convolutional 
layer, one pooling layer, and one fully connected layer. If we are looking at daily step 
count, the convolutional layers could represent weekday versus weekend relationship, a 
seasonal fluctuation (e.g., more steps taken in warmer months than colder months), or 
a general trend (e.g., an increase in daily steps), among other relationships. Typically, 
the initial convolutional layer extracts general features (e.g., a trend), while additional 
convolutional layers extract more fine-grained features (e.g., how many steps you take 
on a Monday when you had 20,000 steps yesterday; Zhao, Lu, Chen, Liu, & Wu, 2017).

CNNs also have at least one pooling layer but can have more than one. Pooling lay-
ers reduce the dimensionality of the dataset. Max pooling returns the maximum value for 
a section of data, and average pooling returns the average value for a section of data. One 
benefit of pooling methods is noise reduction. For example, if we collect the number of 
steps taken each minute, we may have additional information/noise. Pooling the data into 
1-hour or 1-day windows would reduce the noise and computational load. After the con-
volutional and pooling layers, we have a fully connected layer. This is where classification 
occurs. The data are flattened into a single vector, backpropagation, an algorithm used to 
obtain the gradient for estimation, is performed, and the data are classified (Krizhevsky 
et al., 2012).

Recently, researchers have argued that the traditional approach of using the RNN 
framework should be reconsidered (Bai, Kolter, & Koltun, 2018). Extensions of tradi-
tional CNNs, such as temporal convolutional neural networks (TCNs), can be used in 
modeling sequential data. They often outperform LSTMs (a type of RNN) and are sim-
pler to train, requiring less computation. We note here that LSTMs and TCNs are not 
necessarily mutually exclusive. In fact, some researchers have proposed using combina-
tions of the two frameworks (Ordóñez & Roggen, 2016). Also, TCNs are not a distinct 
type of architecture from CNNs but instead describe an approach for accounting for 
long-term dependencies in the CNN architecture (Bai et al., 2018).

Practical Steps and Considerations

Some steps are common across deep-learning techniques. Here we outline practical 
steps for any research using deep-learning methods. The first three steps—identifying a 
research question, preparing data, and choosing an analytic model—are best practices 
for any research project. The final two, choosing tuning parameters and training the 
model, are more specific to machine learning applications. Information in these steps is 
not comprehensive but should instead be taken as a starting point for how to set up how 
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you analyze your data using these methods. Two empirical examples will follow, demon-
strating these steps in practice.

1.  Research question. Just as is the case with traditional statistical methods, we must 
develop a question in order to develop a model appropriate for our question. Is the primary 
goal to predict or forecast when some event will occur, or is it to classify a given event 
at a given time? If one is trying to identify when (and if) a time-sensitive intervention is 
warranted, then the goal is to predict when an adverse event (e.g., binging on alcohol use; 
suicide attempt) may occur so that one might intervene before this happens. Here, the 
outcome can be a continuous or a categorical variable. However, if the goal is to classify a 
given state, this would imply a categorical outcome variable. Other considerations might 
be needed. For example, do you wish to predict an event sometime in the next day or in 
the next month? Are you interested in classifying people or events (i.e., temporal states)? 
Clearly stating the research question will help guide the decision points to follow.

2.  Preprocessing, rescaling, and feature generation. Feature extraction is often an 
exploratory process, especially since these methods and data types are new. Thus, it is not 
always known what aspects of the data best represent the predictive qualities of the data. 
Here, background knowledge and information gleaned from prior research are utilized 
to ensure that useful variables are utilized. Considerations include whether to bin the 
data to be aggregated within windows of time, and if so, how? Options might be to take 
the mean, standard deviation, maximum, and minimum of the values in each window of 
time (e.g., 10-second increments for data continuously gathered). Some researchers may 
also use raw data if prior theory is not available and computational resources permit. The 
researcher needs to think critically about which features may be helpful toward investi-
gating their question of interest.

We note here that rescaling is often an important step in preprocessing. Not only 
does it make the code more efficient, but it also makes the model more stable since models 
are often sensitive to larger values. This occurs because large values can cause estimated 
weights to change substantially, making the gradient process more volatile. It is recom-
mended that data are either standardized or rescaled to be in the range of 0 to 1 (Bishop, 
1995).

Examples of these decision points will be presented in the empirical examples.

3.  Choosing a model. These final steps are often completed several times until a sat-
isfactory model is discovered. The selection of a modeling framework should be informed 
by what prior researchers have done, as well as emerging insights into the appropriateness 
of a given deep-learning method for your specific research question. Researchers must be 
aware of the relative gains and assumptions when selecting which method to use.

Choosing the number and types of layers is not always straightforward, although 
there are a variety of recommendations. We recommend Michelucci’s (2018) book on 
applied deep learning and Beysolow’s (2017) book on deep learning using R for further 
information on choosing a network architecture. Beysolow’s book contains examples of 
common architectures, which is often a good starting point for choosing an appropriate 
architecture.

Sometimes, multiple methods are used to identify which one performs best for a 
given dataset, or multiple approaches are used in tandem. Care must be taken to avoid 
overfitting, as discussed extensively in Chapter 17.
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4.  Choosing tuning parameters. Parameters often must be tuned, or altered, to iden-
tify the final model that reaches the highest accuracy by whatever outcome the researcher 
uses. Some tuning parameters, referred to as hyperparameters, need to be explored by 
the researcher and will be study-specific and based on a combination of prior theory and 
model performance. These values cannot be derived or estimated during the modeling 
approach. Although these values must be indicated prior to starting the analyses, research-
ers can iterate across these values to identify which ones perform best. As an example, the 
researcher may wonder if coding the input features in 10-second bins outperforms coding 
them into 20-second bins. While this decision occurred during the preprocessing stage, 
one might still consider it a hyperparameter as it is set by the researcher and different val-
ues for the length of bins can be used to see which is best. Some algorithms may require 
the user to either enter a parameter for the model, such as a starting value or the number 
of nodes to use in a given layer. Although many programs have defaults for these tuning 
parameters, it is important to consider whether these defaults work for your particular 
model. Another consideration is the computational time and potential for overfitting in 
exploring several hyperparameters.

5.  Training and testing the model. A hallmark of machine learning is using one 
portion of the data to train (or learn) the model and then use the holdout data to test 
how accurate the prediction or classification is on data not used to inform the model. It 
is typical to see researchers use 75% of individuals in the training set and the remaining 
25% for the testing set. Another approach, called k-fold cross-validation, partitions the 
sample into k subsets, and then holds out each subset in turn to identify the generaliz-
ability of the predictive model to new data (Stone, 1974).

Selection of a final model occurs by using measures that are the most relevant perfor-
mance measures for the given research question. For instance, if one is aiming to predict 
or classify into a binary category, then measures such as sensitivity and specificity, first 
introduced by Yerushalmy (1947), may be used. Sensitivity assesses the ability to detect 
an event occurring that really did occur (i.e., true positives), whereas specificity provides 
the ratio of the number of times an event was coded as zero when it truly was a zero (i.e., 
true negatives). If one is concerned mostly about correctly classifying an event as occur-
ring when it really did occur, then they may wish to optimize sensitivity and select the 
model that had the highest sensitivity. This is particularly helpful if the cost of missing an 
event is high, such as if one wishes to identify a potential suicide attempt. Here, having a 
high number of false positives (low specificity), or incorrectly predicting this event, might 
be worth the cost if the prediction of true events is high. On the other hand, if the cost 
of falsely identifying an event is high, then one might want to optimize specificity. This 
may be warranted if it is intrusive or expensive to intervene, and the repercussions of not 
intervening are low.

One measure that balances both false- and true-positive rates is using the area under 
the receiver–operator characteristic curve (AUC-ROC; Melo, 2013). The ROC curve 
depicts the balance of sensitivity with the rate of false positives. The false-positive rate is 
equal to one minus the true negative rate (specificity). Figure 18.4 depicts the ROC curve 
for an example dataset available in the AUC R package (Ballings & Van den Poel, 2013). 
With sensitivity on the y-axis and the false-positive rate on the x-axis, one can see if 
increases in sensitivity come at the cost of an increase in false positives. High sensitivity 
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with a low false-positive rate (the left side of this chart) suggests that the detection of true 
positives occurs at a high rate without the introduction of false positives. If this curve 
followed the straight diagonal line in the graph, that would indicate that the detection 
of true positives was equal to that of false positives, which is not ideal. When the curve 
is above this line, as seen here, that indicates the true positive rate becomes high before 
the rate of false positives becomes high. For instance, when sensitivity hits .80, the false-
positive rate is only about .23, indicating an acceptable specificity rate of .77. The area 
under this curve can be quantified, with high values indicating better separation of the 
classes. We can see from the figure that the area under the curve obtained from the data 
is greater than the area obtained when looking under the straight diagonal line.

This overview of deep learning primes the reader to have a baseline understand-
ing. From this foundation, one can explore emerging methods that are best for specific 
research questions. We now turn specifically to examples of the use of a couple of deep-
learning methods in classification and prediction for psychological inquiry using mobile 
sensing data. Here we provide more details on the use of these methods and empirical 
examples.

Empirical Example:  
Using Deep Learning for Classification

Deep learning addresses the two main issues common to traditional time-series clas-
sification methods: efficiency and dimensionality (Fawaz, Forestier, Weber, Idoumghar, 
& Muller, 2019). Deep-learning algorithms often are both efficient and able to classify 
multivariate time series. CNNs, presented earlier, are the primary model type for using 
deep learning for time-series classification. Several extensions of the basic CNN have 
been proposed and used for time-series classification, and more approaches continue to 
emerge. In many cases, deep-learning methods outperform other approaches. For exam-
ple, InceptionTime, an algorithm employing a CNN, outperformed the current state of 
the art approach of a nearest neighbor algorithm with dynamic time warping (DTW; 
Fawaz et al., 2019). In another study, a CNN-based approach with DTW outperformed 
the traditional neural network (NN) combined with DTW across datasets in a large time-
series classification archive (Fawaz et al., 2019).

  FIGURE 18.4.    Example of area under the receiver–operator characteristic curve.
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Here, we provide an example of time-series classification from the literature where 
accelerometer data were used to predict high (>.08) blood alcohol levels. Additionally, 
researchers wanted to avoid the use of more sensitive personal data, such as location or 
call data. Accelerometer data are less invasive than location data as they provide infor-
mation only on movements but not on location. Ultimately, researchers were interested 
in training a model that uses noninvasive, nonsensitive data and would allow for just-in-
time adaptive interventions (JITAI) to prevent heavy drinking.

Data

Data from this study are available at the University of California Irvine Machine Learn-
ing Repository (Dua & Graff, 2019). The dataset includes time series from 13 under-
graduate students wearing SCRAM (Secure Continuous Remote Alcohol Monitor) ankle 
bracelets, a wearable device that collects blood alcohol levels transdermally at 30-minute 
intervals. (Obtaining blood alcohol levels continuously is not feasible, even with trans-
dermal trackers.) These recordings were collected over a 1-day “bar crawl.” Cell phone 
accelerometer data were also collected, with the goal of classifying intoxication over 
10-second intervals based on the accelerometer data. Data were collected over an 18-hour 
period. Although the TAC (transdermal alcohol content) readings were measured as a 
ratio variable, classification was dichotomized to above or below the legal limit for driv-
ing of 0.08.

Method

We break down the process used by the researchers into several steps, which can be 
applied to your own data.

1.  Research question. Here, the researchers’ overarching goal was to infer whether 
passively collected cell phone accelerometer data are related to the likelihood of intoxica-
tion, using SCRAM ankle bracelets as the ground truth. More specifically, they planned 
to classify 10-second segments of accelerometer data as either not intoxicated or intoxi-
cated in order for the classification system to be applicable to JITAIs.

2.  Preprocessing, rescaling, and feature generation. Prior to conducting any analy-
ses, the researchers filtered the data to remove noisy elements. They also shifted the TAC 
data by 45 minutes because of the lag between consumption of alcohol and registration 
of alcohol in the body and segmented the data into 10-second intervals. Researchers ulti-
mately developed 1,215 features from the accelerometer data, which they applied to each 
10-second segment of time.

Examples of these features include calculations as simple as the mean or standard 
deviation of the segment. They also used spectral methods, obtaining the mean of the 
frequencies or the entropy of energy. Another useful method is to find features from 
the literature that have shown predictive value. The researchers in the current study did 
this by including features such as the average time between two steps and the difference 
between the maximum and minimum of one stride. One novel contribution of the study 
was the use of mel-frequency cepstral coefficients (MFCC). The researchers note that this 
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feature type is typically used for classifying sound data, but ultimately, they found this 
feature type improved the accuracy of some of the tested models.

There was no mention of rescaling the data in this study, perhaps because of the 
methods used for feature generation.

3.  Choosing a model. In this case, the researchers tested multiple models to make 
comparisons about which features and model parameters predicted high TAC best. Here, 
we focus on the CNN since it is most relevant to the present topic. The network architec-
ture consisted of six layers: a convolutional layer, a pooling layer, a batch normalization 
layer, a fully connected layer, a dropout layer, and a fully connected layer. Batch normal-
ization standardizes the output from the previous layer. A batch normalization layer can 
be used to improve the speed of convergence or avoid unstable gradients (Ioffe & Szegedy, 
2015). A dropout layer is a form of regularization, setting the weights of nodes to zero. 
This is a useful method to prevent overfitting (Srivastava et al., 2014).

4.  Choosing tuning parameters. In the current study, researchers had to decide what 
an appropriate threshold for intoxication would be, what window length was best for 
segmenting the data, and how many features to retain. Researchers used a combination 
of theoretical knowledge and data-driven methods to arrive at an ideal value. They used a 
grid-based search on each of the three parameters. When choosing the number of features 
to retain segmentation length, they chose the values that maximized accuracy. How-
ever, because the onset of binge drinking, according to the National Institute on Alcohol 
Abuse and Alcoholism, is defined as a blood alcohol content (BAC) of 0.08, they chose to 
value interpretability over accuracy.

Other tuning parameters the researcher may want to consider are initial weights and 
learning rates. Initial weights may be helpful in preventing the convergence of estimated 
weights at local minima. This is useful if you have an expectation for the weights based 
on previous research. Learning rates determine the step size in convergence toward the 
minimum of the loss function. Larger learning rates will converge more quickly but may 
not be as accurate as a smaller learning rate (Michelucci, 2018).

5.  Training and testing the model. In the study being described, 25% of the sample 
was randomly chosen to be in the test set. As a reminder, the test set is the set we apply our 
trained model to in order to see if the model can accurately classify new cases. Research-
ers trained the CNN using cross-entropy loss and reached 74.3% accuracy, which is a 
moderate level of accuracy. Researchers tested several segmentation methods and lengths, 
ultimately finding that a 10-second segment improved classification accuracy (Killian et 
al., 2019).

Empirical Example:  
Using Deep Learning for Forecasting

Like classification, a wide range of types of neural networks are used to forecast future 
values or states. These include deep belief networks (DBNs; Ball, Anderson, & Chan, 
2017; Gamboa, 2017; Qiu et al., 2017), event-based deep belief networks (EBDNs; Qiu 
et al., 2017), deep transformers (Wu, Green, Ben, & O’Banion, 2020), and ensemble 
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methods that forecast based on combinations of learning algorithms (Ball et al., 2017; 
Gamboa, 2017; Qiu et al., 2014).

Most often, researchers use a variation of either a CNN (Cui, Chen, & Chen, 2016; 
Qiu et al., 2014), sometimes referred to as a TCN in the context of time series (Chen, 
Kang, Chen, & Wang, 2020; Yang & Liu, 2019) or an RNN (Gamboa, 2017; Koppe 
et al., 2019; Lipton et al., 2015; Qiu et al., 2014) because of the models’ approaches to 
handling time-related dependencies. A commonly used variation of the RNN is the long 
short-term memory (LSTM) neural network (Mikelsons et al., 2017; Mikus et al., 2018; 
Suhara et al., 2017), described in the introduction to this chapter. TCNs, an extension 
of CNNs, are current state-of-the-art in deep learning for time-series data (Yang & Liu, 
2019).

Like the section on classification, we provide an empirical example so that research-
ers can better understand the process of using deep-learning methods for forecasting. 
In the previous example, researchers wanted to classify accelerometer data so that if a 
person demonstrates behaviors indicative of intoxication, some intervention can be made. 
With forecasting, there is a similar goal of JITAIs; however, instead of predicting a state 
given the indicators of that state, the researcher wants to predict future states based on 
the previous states. More specifically, in the study we explore here, researchers were 
interested in predicting future depressed mood based on a combination of past reports of 
depressed mood and behavior in ecological momentary assessment (EMA) data (Suhara 
et al., 2017).

Data

Researchers collected EMA data from 2,382 individuals who self-reported experiencing 
depression via a smartphone application over 22 months. To be included in the analyses, 
participants had to make self-reports on 28 consecutive days. Every morning, afternoon, 
and evening, participants reported both mood and behavior. Behaviors included going 
to work, working at home, doing nothing at home, or being sick in bed. In addition, 
participants reported when they went to bed and when they woke up, medication usage, 
and hospital attendance.

Method

Many of the steps are like those in the CNN classification example. However, forecast-
ing presents a few additional issues to consider. Additionally, although recent research 
suggests that temporal extensions of CNNs are preferable to RNNs and LSTMs, there 
are few examples of TCNs applied to mobile sensing in the literature, likely due to the 
novelty of the method. In this example, we provide an example that uses RNNs and 
LSTMs; however, many of the data preparation decision points will carry over to other 
neural network architectures.

1.  Research question. We know that with forecasting, we are trying to predict future 
values. We could choose to forecast one observation ahead at a time (iteratively) or as a 
batch (e.g., predicting 10 future values at once). In the current study, researchers were 
interested in predicting whether an individual would have one severe depression day in 
the next n days based on reports from the past 14 days. Additionally, they had two 
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questions they wanted to answer: (a) Can past mood and behavior predict future mood? 
(b) Does a longer-term history provide better accuracy than modeling based on short-
term histories?

2.  Preprocessing, rescaling, and feature generation. Researchers ran the model 
using two different feature sets. One model predicted future depression based on past 
depression only. The second model included behavioral features. The labeled dataset was 
created by dividing user data into 28-day nonoverlapping blocks, in which the first 21 
days were used as the user history, and the last 7 days were examined for existence of 
a severe depressive episode. The current study used 14 days as the user history, but the 
21-day user history window was created so that the researchers could test a range of user 
history periods. Also, the researchers treated the 28-day blocks independently rather than 
as nested. Allowing for nesting within individuals to be accounted for could potentially 
improve model accuracy when predicting depressive episodes for a given individual, but 
that was not explored. Labeling was completed by creating an output variable for each 
value of n in which the researchers were interested.

3.  Choosing a model. Because they were interested in incorporating long-term 
effects into the model, researchers chose to use an LSTM. The architecture follows the 
same pattern as described previously in the section on LSTMs. An embedding layer was 
included to model day-of-the-week effects. An embedding layer is a type of layer that 
reduces dimensionality. For example, one could reduce categorical variables (in this case, 
day-of-the-week) to integer values. Finally, there was a fully connected layer with 64 
nodes.

4.  Choosing tuning parameters. The outcome, severe depression, was defined as 
having negative feelings all day combined with physical inactivity. As explained previ-
ously, researchers also ran the model across several combinations of k (number of days 
used to predict future depression) and n (number of depressive days predicted in the next 
10 days). A dropout of 0.1 was chosen. Again, dropout is a method of randomly removing 
units and their connections during training to prevent overfitting (Srivastava et al., 2014)

5.  Training and testing the model. In this study, the training and test datasets were 
divided among individuals. Seventy-five percent of individuals were assigned to the train-
ing set and 25% of individuals were assigned to the test set. This was done to see if the 
model could make predictions about individuals that were not in the training set. In fore-
casting, there are several methods for splitting a training and test set, depending on the 
goal of the research. In cases where we are forecasting for one person instead of several 
people, backtesting is recommended. Backtesting is a method for checking how well the 
model would have performed if it was used on past data (Virdi, 2011). If we only have 
one individual, we would need to split the training and test set based on observations 
across time.

Results found that modeling the previous 2 weeks of self-reports was sufficient for 
forecasting depression. Performance improved substantially from using 1 day of self-
reports to 14 days of self-reports but only improved slightly after the 14-day mark.

The feature set that performed best included both mood and behavioral variables, 
achieving an AUC-ROC of .886. This was only slightly better than using only mood in 
the feature set (AUC-ROC = .846). The model performed best when predicting at least 1 
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depressive day occurred out of the next 10 and progressively worsened when more days 
were predicted.

Conclusions

This chapter summarized current applications of deep learning on mobile sensing data, 
provided an overview of fundamental deep-learning concepts, and provided two exam-
ples from the literature demonstrating classification and forecasting using a CNN and a 
LSTM. Prior to readily available mobile sensing technologies, psychological data outside 
the laboratory mostly consisted of daily diary data, initially collected on paper, a collec-
tion method that can become laborious for some participants. Passive sensing, as well as 
some mobile EMA methods, provide a data collection method that lessens the mental 
burden on participants, allowing researchers to collect data that are more “real-world.” 
These data are typically high-dimensional and are not necessarily linear in nature. Deep 
learning addresses these concerns and provides a framework for solving classification 
and forecasting problems efficiently. Just-in-time adaptive interventions are particularly 
interesting uses of mobile sensing data. Having models that can learn and react efficiently 
is beneficial to timely interventions.

We reviewed important steps in the process of modeling data using a neural net-
work. Many of these steps will be familiar to researchers using traditional statistical 
techniques. For example, formulating an appropriate model for your research question 
is common among all techniques. Many of the questions researchers ask when choosing 
tuning parameters may seem familiar since some tuning parameters involve defining a 
theoretically relevant cutoff point. This is also applicable to feature generation and pre-
processing steps.

Deep learning is a rapidly developing field, and current state-of-the-art techniques 
are being updated quickly. CNNs are flexible and are constantly being updated to find 
new solutions to new problems. However, the literature reviewed here and the empirical 
examples presented are a good starting point for researchers interested in adding deep 
learning to their statistics toolkit.

  Note
1.	 MLPs are closely related to methods such as partial least squares (Wold, 1974), which 

automatically extract the latent variable representation of the predictors that is most 
helpful for predicting the outcomes. See Urban and Gates (2021) for discussion of the 
relationship between deep learning and traditional latent variable models.
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C H A P T E R  O V E R V I E W

Getting a grasp of time series in the context of mobile sensing is challenging. Datasets 
are typically large, heterogeneous (including, for example, GPS, accelerometry, ambi-
ent light, or audio), and it is often difficult to come up with exact, testable theories. 
Unsupervised learning approaches can help us to reduce data dimensionality by decreas-
ing either the number of variables or the number of observations. The former category 
encompasses approaches such as principal and independent component analysis, and the 
latter category comprises various clustering approaches that reduce observations to a few 
underlying groups. A special focus is on clustering approaches for time series, such as per-
mutation distribution clustering and dynamic time warping. Hidden Markov models are 
also discussed, which allow for the reduction of complex time series, the determination 
of event boundaries, or prediction. All of these approaches make large datasets easier to 
handle, easier to visualize, and easier to model.

Introduction

Making sense of multivariate time series such as those arising from mobile sensing in 
psychology is challenging for several reasons. Datasets are typically large (in the sense of 
hundreds and thousands of repeated observations across multiple variables and people), 
they arise from quite different sources (such as GPS, accelerometry, light, temperature, 
audio, video, or information about nearby devices), and it is difficult, if not impossible, 
to come up with comprehensive, testable theories that reflect all dependencies and intrica-
cies of the constructs of interest and the instruments that measured them. Irrespective of 
whether we believe we have a good theory to start modeling with or whether we opt for 
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an exploratory machine learning approach, we face the challenge of finding and repre-
senting simple yet informative patterns in our data. The sheer volume of data can make 
it difficult to explore, visualize, and understand them. They also challenge modeling 
approaches because it is more likely that we violate model assumptions (such as indepen-
dence of predictors or certain distributional assumptions) or that we accidentally pick 
up seemingly informative patterns that actually arose by chance alone, which is usually 
referred to as overfitting. Furthermore, large datasets may not fit into the computer’s 
memory, or the required computation time of a given analysis may make it impracti-
cal. And, finally, we face the curse of dimensionality (see Chapter 17, this volume) that 
essentially tells us that high-dimensional data often make it difficult to glean knowledge 
of general rules. This is where dimensionality reduction (Vlachos, 2010) may come to 
the rescue. Dimensionality reduction approaches select variables or combinations of vari-
ables, such that we retain a smaller and simpler, but similarly information-rich dataset 
that is easier to store, handle, visualize, and understand, and promises more robust and 
generalizable inferences for a given problem.

Chapters 17 and 18 (this volume) have focused primarily on supervised learning 
approaches to modeling time-series data arising from mobile sensing applications. In 
supervised learning, the primary challenge was to best predict an outcome in regres-
sion or classification tasks by learning from examples that were assumed to be correctly 
labeled. In these scenarios, we can use the known outcomes from a given training set to 
inform our dimensionality reduction. But what if such labels do not exist? In this case, 
we can resort to techniques that are described under the umbrella term of unsupervised 
learning and help us reduce data dimensionality by decreasing either the number of vari-
ables or the number of observations. In this chapter, I summarize projection-based meth-
ods (e.g., principal components analysis) that assume that data arise from unobserved 
sources we aim to recover in order to obtain a few informative and predictive features. 
Next, I describe various approaches to clustering with a particular emphasis on time-
series clustering. Clustering may help us reduce data dimensionality with respect to the 
number of observations by mapping potentially many observations to a few underlying 
clusters. Last, I show how sequences of observations can be reduced to sequences of latent 
discrete states, which is particularly useful for time-series segmentation. All approaches 
described here serve the goal of making large datasets easier to handle and easier to visu-
alize. A further goal is to make the results of subsequent confirmatory modeling or pre-
dictive modeling approaches simpler, computationally less demanding, and more robust 
(by reducing the chance of overfitting).

Projection Methods

Projection methods aim to find a mapping of a large number of variables to a smaller 
number of variables with the hope that the resulting components (i.e., the projected vari-
ables) retain most of the information but are a simpler representation. There are various 
projection methods that mostly try to achieve two goals at the same time. They try to 
minimize redundancy in the resulting components while trying to maximize the infor-
mation in them. If we succeed with this approach, we can retain only a small set of 
components that retain most of the information of the original variables, and subsequent 
data analysis will become easier to handle and potentially even more robust. The classic 
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and most widely used projection method is principal component analysis (PCA; Jolliff, 
1986). PCA assumes that important information is in the variances and covariances of 
the observed variables. It captures information as variability and aims at preserving as 
much of it as possible. Redundancy is captured as covariation, and projected compo-
nents are chosen to be uncorrelated. Finally, PCA assumes that the observed variables 
are linear combinations of the components. Finding such new variables, the principal 
components (PCs), reduces to solving an eigenvector problem, and the literature describ-
ing this approach dates back at least to Hotelling (1933) and Pearson (1901). If we want 
to use a stronger criterion of nonredundancy, we could choose a projection onto sources 
that are not only uncorrelated but statistically independent. This leads to independent 
component analysis (ICA; Jutten & Herault, 1991). Statistical independence of two ran-
dom variables means that information about one random variable does not change our 
knowledge about the other. In general, if two random variables are independent, they are 
also uncorrelated but not vice versa.

With most projection methods, the resulting components are linear combinations of 
many, if not all, original variables. Consequently, few to none of the original variables 
can be entirely discarded (e.g., in future data collection), even though simpler models are 
often more accurate and more interpretable (Ma & Huang, 2008). Other than removing 
items with low loadings, a formal solution to this problem is to employ sparse variants 
of projection methods (similar to rotation to simple structure in factor models), which 
enforce components that are simple combinations of the observed variables. In the fol-
lowing sections, I briefly describe the two most common projection approaches, PCA and 
ICA, and some of their variants.

Principal Component Analysis

PCA is the standard approach to dimensionality reduction (Jolliff, 1986). Principal com-
ponents are new variables that are linear projections of the original variables. They are 
chosen such that components are uncorrelated (i.e., redundancy is minimized) and sorted 
in order of variance explained in the original data (i.e., information is maximized). PCA 
is fast to compute and yields simple projections of complex data across many situations. 
Importantly, it has no tuning parameter and thus is straightforward to use. PCA assumes 
that data are generated from uncorrelated sources that are observed as linear mixtures.

Features obtained from a PCA projection have several useful properties. First of all, 
they are uncorrelated, which solves problems with algorithms that cannot handle cor-
related features well. Second, the projected features will be ranked by the magnitude of 
explained variance in the original space, such that the first component explains most of 
the variance. PCA is quite similar to classic factor analysis (FA) models. Both assume that 
the essential information in observed signals is in the variances and covariances and that 
the observations are linear combinations of the sources.

PCA can be regarded as a special case of exploratory factor analysis in which the 
observed variables are indeed projected onto uncorrelated latent sources, but there is no 
explicit measurement model. If a projection on few PCA components is chosen, the result-
ing residual errors are typically not orthogonal (other than in typical FA). Exploratory FA 
encompasses a variety of other choices for determining the optimality of the projection 
(e.g., the option of correlated latent sources, or various rotations to simple structure). Con-
firmatory FA may be favorable if there is a theory-driven model available that prescribes 
a particular measurement model or structural relationships (see Chapter 14, this volume). 
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Because principal components are ordered by decreasing magnitude of explained variance, 
PCA can be used to select only a few of the resulting components as features for subsequent 
classification or regression tasks, or for visualization, thus allowing us to trade off simplic-
ity for fidelity. Figure 19.1 shows the first two principal components (PC1 and PC2) of a 
set of features derived from accelerometry in a smartwatch (see Chapter 17, this volume, 
for a description of the WISDM dataset used here). The original features are shown as 
arrows and are the average activity (XAVG, YAVG, and ZAVG), the dominant frequency 
(XPEAK, YPEAK, and ZPEAK), and average absolute deviations from the mean of the 
sensor readings (XABSDEV, YABSDEV, and ZABSDEV) in each of the three dimensions. 
For example, we can see that the average of the y-axis sensor and the absolute deviations 
from the mean of the y-axis are projected onto the same axis, while they are almost per-
pendicular to the average of the x-axis. The resulting projected two-dimensional space 
separates the observations of the different activities well and may serve as a useful starting 
point for further supervised learning tasks (see Chapters 17 and 18, this volume).

It is common practice to apply PCA to noncontinuous scales (such as rating scale 
items), but strictly this is in violation of the PCA assumptions. It is advisable rather to 
perform a PCA on a polychoric correlation matrix for ordinal variables or tetrachoric 
correlation matrix for binary variables, or to resort to approaches tailored to other distri-
butions. For example, Linting, Meulman, Groenen, and van der Koojj (2007) proposed 

  FIGURE 19.1.    Latent-space representation of various activities (brushing teeth, clapping hands, jog-
ging, sitting, standing, or walking) derived from features of smartphone accelerometry in the 
WISDM dataset. The plot axes represent the first two principal components of a feature space 
spanned by the sensor’s average x-, y-, and z-readings (XAVG, YAVG, and ZAVG); the sen-
sor’s dominant frequency in x-, y-, and z-axes (XPEAK, YPEAK, and ZPEAK); and the sen-
sor’s absolute deviations in x-, y-, and z-axes (XABSOLDEV, YABSOLDEV, and ZABSOLDEV). 
The first principal component (x-axis) explains 56% of the variance, and the second principal 
component explains 20% of the variance. Arrows indicate the projection of the features onto 
the two-dimensional space. For example, we can see that in the projection, XAVG and YAVG 
are almost orthogonal, whereas YPEAK, ZPEAK, XABSOLDEV, and YABSOLDEV are highly 
dependent. This figure is available at https://github.com/brandmaier/mobile-sensing-figures under 
a CC-BY4.0 license.
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a nonlinear PCA approach that can deal with variables at their appropriate measurement 
level. A disadvantage of PCA may be that the resulting components (even though only 
one or only a few are selected) are each linear combinations of all original variables. This 
means that a potentially large set of features need to be gathered that are then projected 
to the underlying source space. If we assume that not all observations are influenced by 
all sources, the PCA model will likely overfit to some degree. To enforce a sparse solu-
tion, we can resort to sparse PCA (Zou, Hastie, & Tibshirani, 2006), which constrains 
the number of nonzero coefficients in the projection using regularization (see Chapter 
17, this volume). However, ensuring sparsity and orthogonality is not trivial, and there 
are several approaches to estimate sparse PCA (see Zou & Xue, 2018, for an overview).

Independent Component Analysis

In PCA, we assumed that each source is uncorrelated with all others and the sources 
linearly mix to a set of observed signals. The goal was to find a few sources with little 
redundancy. Redundancy was captured in a correlation metric and was thus limited to 
second-order moments. If we want to capture redundancy as statistical independence, 
thus accounting for higher-order moments, we can use ICA (Jutten & Herault, 1991). 
ICA retrieves the source signals by maximizing the statistical independence of the 
sources. ICA algorithms differ by how they estimate the projection. This can be achieved 
by choosing the projection such that either the non-Gaussianity of the resulting sources 
is maximized or their mutual information is minimized (Hyvärinen & Oja, 2000). Both 
PCA and ICA assume linearity of components. However, the projected space recovered 
by PCA is identified only up to rotation. ICA uses the higher-order moments to identify 
the best rotation to obtain independent sources. Note that the algorithm cannot recover 
the scale of the independent sources; that is, the amplitude of the signal is arbitrary. Also, 
unlike the case in PCA, the estimated sources are returned in no particular order.

ICA is typically used as a computational method for separating a multivariate sig-
nal into additive, mutually independent subcomponents, with the goal of recovering the 
true underlying signals (and not only the original subspace as in PCA, which may still be 
rotated). Commonly, the cocktail-party problem is used to illustrate the goal of an ICA: 
Given a room full of speakers (at a cocktail party), can you isolate the speech signals of 
the individual speakers? Similar problems are often encountered in the analysis of mobile 
sensing data. For example, Kobana, Takahashi, Kitsunezaki, Tobe, and Lopez (2014) 
used ICA to separate continuous multidimensional accelerometer readings of cyclists into 
a “road signal” and a pedaling signal. Then they used the unmixed “road signal” in order 
to classify road conditions. Mantyjarvi, Himberg, and Seppanen (2001) used two tri-
axial accelerometers, one each attached to the left and right hip of the participant. They 
showed that classification of activities improved considerably and best when ICA sources 
were used for subsequent classification instead of the raw sensor values.

Clustering

Clustering encompasses unsupervised learning approaches to group similar objects 
together while dissimilar objects are placed far apart from each other, with the goal of dis-
covering latent similarity structure (Murphy, 2012). As input, clustering algorithms usu-
ally take a feature matrix, with one or more features per object and a function to compute 
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their similarity. The goal is to form groups, that is, clusters, of objects. These clusters can 
either be flat (also called partitional clustering) or arranged in a hierarchical structure. 
Partitional clustering algorithms typically require specification of the number of clus-
ters prior to the analysis. Hierarchical clustering, in contrast, provides an entire hierar-
chy of grouping relationships at various levels at a glance. Unlike in supervised learning 
approaches (see Chapter 17, this volume), no well-defined optimization goal exists because 
there is no specified outcome that is to be predicted. Without a given ground truth, there 
is no objective loss function that can be optimized. This is why some regard clustering as 
an ill-defined problem. However, one can still see clustering as a useful approach to make 
sense of data. We can use it as a technique to reduce the complexity of the data by reducing 
many observations to a few representative clusters if we can find a meaningful or theoreti-
cally plausible similarity function that allows us to interpret the results.

Clustering Algorithms

A variety of approaches exist to compute a clustering from a given dissimilarity matrix. 
Here, I will only describe the two most common algorithms, hierarchical clustering 
(Johnson, 1967) and k-means (MacQueen, 1967). Other clustering algorithms that have 
practically useful properties are density-based clustering (Ester, Kriegel, Sander, & Xu, 
1996) or spectral clustering (von Luxburg, 2007).

Hierarchical Clustering

Sequential agglomerative hierarchical nonoverlapping clustering (Johnson, 1967) creates 
a hierarchical structure of clusters by sequentially merging objects to clusters until a single 
cluster with all objects is obtained. Initially, each object is its own cluster. Based on a 
chosen dissimilarity measure, the hierarchical clustering is obtained by repeatedly merg-
ing the two closest clusters. This leads to a tree-like structure of clusters where the root of 
the tree is the top-level cluster with all members and the leaves are the individual objects. 
To compute the dissimilarity of two clusters, we need a cluster dissimilarity measure as a 
function of the dissimilarity measure of objects. There are three common linkage func-
tions to achieve this computation. Complete linkage defines cluster distance as the smallest 
maximum pairwise distance of cluster members and is rather sensitive to outliers. Single 
linkage computes distances as the smallest minimum pairwise distance and tends to form 
long chains rather than compact subgroups. Average linkage computes the cluster distance 
as the average distance of all combinations of pairs of members from each cluster and is a 
compromise between the two former approaches. An example of hierarchical clustering on 
accelerometer raw data based on the Euclidean distance is given in Figure 19.2. Here, we 
see that clustering the raw sensor data of a single axis of an accelerometer already yields 
clusters of “walking” activity and “jogging” activity that can be well separated.

K‑Means Clustering

K-means clustering (also known as Lloyd’s algorithm; MacQueen, 1967) is a simple clus-
tering algorithm that produces a predefined number k of clusters. The clustering solu-
tion is represented by cluster centers, and all objects are members of the cluster with the 
closest center. The idea of the approach resembles the nearest neighbor notion in clas-
sification (see Chapter 17, this volume). The algorithm starts with random cluster centers 
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and iterates between two steps (a classic expectation– maximization algorithm). First, it 
computes the nearest cluster center for every member and then moves the cluster center to 
the center of all members. Obviously, the solution of the algorithm depends on the initial 
randomly assigned cluster centers, and results may differ across runs. Furthermore, the 
number of clusters must be chosen a priori, and it is difficult to check the appropriateness 
of the number of clusters. If k cannot be determined a priori, one must resort to heu-
ristics, such as the elbow method (similar to a scree plot in exploratory factor analysis), 
cross- validation of the squared distance to cluster centers, or an internal validity heu-
ristic (see the section “Evaluating Clustering Algorithms” below). The cluster centers in 
k-means are geometric cluster centers and, thus, are also referred to as centroids. Because 
they are averages, cluster centers almost never represent an observed object; instead they 
represent a hypothetical average object. K- medoids (Kaufman & Rousseeuw, 1987) is a 
variant of k-means in which cluster centers are always observed objects.

DBSCAN

Density- based spatial clustering of applications with noise (DBSCAN; Ester et al., 1996; 
Schubert, Sander, Ester, Kriegel, & Xu, 2017) clusters together points in dense neighbor-
hoods. It can be considered a nonparametric density estimator that marks densely popu-
lated regions as clusters. The algorithm classifies observations as either core points, directly 
reachable points, or outliers. For this classification, it has two hyperparameters— the neigh-
borhood radius ∈ and the minimum number of neighbors p—for an observation to be a 
core point. A cluster is then defined as all observations (core points or noncore points) that 
are reachable from any of its members. Any remaining nonreachable point is an outlier. The 
advantage of DBSCAN over k-means is that the nonparametric density estimation of the 
clusters allows for complex cluster shapes, whereas k-means always forms spherical shapes.

 FIGURE 19.2.  Clustering of raw sensor signals of a single axis of an accelerometer in the WISDM 
dataset. The clustered objects are time- series segments of 5 seconds in length recorded from a 
participant performing the activities “walking” and “jogging.” Similarity was computed by the 
Euclidean distance. Segments are well separated according to their activity. Left: The cluster den-
drogram representing the hierarchical clustering with complete linkage. Height represents dissimi-
larity of segments. Right: Multidimensional scaling to a two- dimensional space. In both represen-
tations, we can see that walking segments are more similar to each other than jogging segments 
are to each other. This figure is available at https://github.com/brandmaier/mobile- sensing- figures 
under a CC-BY4.0 license.
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Instead of having to specify the number of clusters in advance, DBSCAN has the 
cluster density as the central parameter. It is often considered an advantage that the num-
ber of clusters does not have to be chosen, yet in practice it is usually just as difficult to 
choose the density.

Measures of Dissimilarity

The most important decision in the application of clustering algorithms is the choice of 
dissimilarity measure (typically, a distance metric). The dissimilarity measure formalizes 
what we mean when we say two objects are similar or are not. It principally determines 
our substantial interpretation of the clustering results. A particular clustering solution 
is thus hardly ever right or wrong but rather represents a structuring of a dataset given 
a chosen formalization of similarity. The very same dataset may be clustered in differ-
ent ways, and each of these solutions may be insightful and useful for a different group 
of researchers, at a different time, or in different applications. For non-time-series data, 
often, the Euclidean distance is used. A generalization for the dissimilarity between two 
objects x and y with p features is the Minkowski metric (Hennig, 2020):
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which becomes the Manhattan distance (sum of absolute differences of all p features) for 
m = 1, the Euclidean distance (sum of squared distance of all p features) for m = 2, or the 
Chebyshev distance (maximum of all feature distances) for m = ∞.

In high-dimensional spaces (that is, when the number of features is large), unsu-
pervised approaches such as clustering suffer from the curse of dimensionality just like 
supervised approaches (see Chapter 17, this volume). Here, the curse of dimensionality 
means that as the number of features increases, there is a loss of meaningful distinction 
between similar and dissimilar objects. One solution to perform clustering in high dimen-
sions effectively and efficiently is to first apply ideas of feature selection and extraction, 
for example, selecting variables and/or performing a projection to a few principal com-
ponents (Assent, 2012). As alternatives to such global dimensionality reduction, there 
are approaches to find clusters with locally lower dimensionality (for an overview, see 
Steinbach, Ertöz, & Kumar, 2004).

Multidimensional Scaling

Dimensionality reduction techniques project high-dimensional observations onto a 
lower-dimensional space that may be easier to work with, easier to plot, or easier to 
understand. In the context of clustering, objects are typically given by their distances or 
dissimilarities in a chosen metric. Given a distance matrix with all pairwise distances of a 
set of objects, multidimensional scaling (MDS) places each object into an N-dimensional 
space (with N being chosen by the user, typically, N = 2), such that the distances in the 
original space are preserved as well as possible in the embedded space. For example, we 
may be given a list of cities in Germany and a matrix of their aerial distances. MDS can 
be used to place the cities into a two-dimensional space, such that the distance matrix of 
the resulting two-dimensional coordinates of the cities is as close as possible to the input 
distance matrix. In this example, the embedding will mostly work without loss of preci-
sion (with little loss of fit induced by the curvature of Earth). In other examples, objects 
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may actually reside in high-dimensional spaces, and a projection to low dimensions may 
incur a large loss of fidelity. This loss is usually referred to as strain. A simple way to 
define strain is the metric MDS approach, in which we use the sum of the Euclidean dis-
tance of distances in the original space and the projected space:

	 ( )2, ,Strain i j i ji j
d z

<
= −∑

with di,j being the distance between object i and j in the original space and zi,j the distance 
between objects i and j in the projected space. It is easy to compute a gradient and apply 
standard optimization algorithms to solve this problem. Note that the optimized solution 
lays out objects in the projected space relative to each other, so the solution is optimal up 
to rotation and mirroring. Examples of MDS are shown in Figures 19.2 and 19.5. Alter-
native projection approaches have gained a lot of traction in the field of machine learn-
ing, such as t-distributed stochastic neighborhood embedding (t-SNE; van der Maaten & 
Hinton, 2008). This approach does not optimize the projection error in the distances of 
all objects but in local neighborhoods and can thus create compelling visualizations in 
complex datasets.

Time‑Series Clustering

When time series are subject to clustering, we need to select distance measures that cap-
ture temporal structure of the time series. In principle, we could simply treat a time series 
as a high-dimensional data point (with as many dimensions as the length of the time 
series) and use the Euclidean distance to evaluate their dissimilarity. In fact, this is often 
done to produce satisfactory results (e.g., see the example in Figure 19.2). However, one 
may encounter some problems with this approach (see Brandmaier, 2015). First, we would 
lose important information about the temporal dependency of measurements because we 
would treat all dimensions (i.e., time points) as independent. Second, we would not be 
able to compare time series of different lengths. Third, we would limit our notion of 
similarity to absolute quadratic differences among pairs of identical time points across 
objects. Even only slight lags, drift, outliers, or differences in process noise may easily 
obscure true similarities. Therefore, a host of different approaches have been suggested 
to model the similarity of time series (Liao, 2005; Montero & Vilar, 2014). Roughly, we 
can group them into different types of approaches: clustering based on a parametric time-
series model (e.g., similarity of autoregressive process parameters), similarity in shape 
(e.g., the Euclidean distance), or structure (e.g., Fourier coefficients; Faloutsos, Rangana-
than, & Manolopoulos, 1994), or clustering based on relative complexity (e.g., permuta-
tion distribution clustering; Brandmaier, 2015). A variety of dissimilarity measures have 
been proposed in the literature, and it is impossible to list them all (but see Liao, 2005; 
Montero & Vilar, 2014). Here, I list a selection of metrics that have useful properties for 
clustering mobile sensing data and seem to work well across different domains.

Dynamic Time Warping

The Euclidean distance is not robust against shifts in the time series. A simple one-lag 
shift of one time series versus another may result in very large dissimilarity estimates. 
In particular, such shifts may not only be global but also local, for example, if two time 
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series are identical up to some local accelerations or decelerations of one of the two. This 
calls for elastic dissimilarity measures that can handle local and global distortions in 
time. Dynamic time warping (DTW; Berndt & Clifford, 1994) was designed to be invari-
ant to those elastic differences. It is an algorithm matching each observation of one time 
series to an observation in the other time series in a monotonically increasing way, which 
means that several indices of one time series can be matched to a single one in the other 
time series (representing a local time warp) and no pair of matchings can cross. At the 
same time, the first indices and last indices always match. Figure 19.3 illustrates the dif-
ference between a Minkowski-type error measure (such as Euclidean distance) and DTW. 
The bottom time series was derived from the top time series by shifting it down by five 
units and by accelerating the signal between the third and sixth measurement. The DTW 
algorithm finds the optimal match satisfying all the restrictions with minimal cost, where 
the cost is the sum of absolute differences, for each matched pair of indices. Sometimes, 
DTW finds an optimal matching with extreme warps, such that most time points of one 
series are matched to only a few time points of the other. Extensions of the algorithm 
have been designed to avoid extreme warps by restricting warps to a maximum length 
(Sakoe & Chiba, 1978).

Symbolic Representations

Continuous time series may also be transformed into symbolic representations with the 
hope that symbolic analysis approaches can be exploited to find structure in these data, 
such as those from text mining or bioinformatics (e.g., hashing, Markov models, or pre-
fix trees; Lin, Keogh, Wei, & Lonardi, 2007). Deriving symbolic representations from 
continuous observations is also called tokenization, quantization, or discretization, and 
there are a host of different approaches to choose from (Daw, Finney, & Tracy, 2003). Lin 
and colleagues (2007) have proposed a symbolic time-series representation called SAX to 

  FIGURE 19.3.    Schematic distances between time series. Left: A one-to-one mapping based on the 
distance of corresponding time points. The sum of the light gray lines corresponds to Manhat-
tan distance, and the sum of the squared distances corresponds to the Euclidean distance. Right: 
Dynamic time-warping distance based on time-warped matching. The gray lines indicate how the 
upper time series is to be warped to best match the lower time series. This figure is available at 
https://github.com/brandmaier/mobile-sensing-figures under a CC-BY4.0 license.
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allow for clustering, anomaly detection, motif discovery, and visualization of continuous 
time series in a symbolic space. First, the time series is divided into segments, and each 
segment is replaced by the average of its data points. This is called the piecewise approxi-
mate aggregation (PAA) of the time series. Then, the value of each segment is replaced by 
a symbol such that the “breakpoints” will produce equal-sized areas under a Gaussian 
curve. Using the algorithm requires choosing both the number of resulting symbols and 
the window size of the PAA.

Symbolic representations allow various techniques for matching strings. For exam-
ple, longest common subsequence (LCS) finds the longest subsequence shared by two 
strings. For two strings ABDCBDBABCB and BBBDBAAAABC, the LCS is BDBA, and 
thus the similarity is the length of that common sequence, 4. This measure can be stan-
dardized to range between zero and one by dividing the subsequence length by the maxi-
mum of the length of each time series. Finally, one typically converts the standardized 
similarity metric into a dissimilarity metric by computing one minus the standardized 
length. Furthermore, some extensions to continuous time series use a threshold model 
to determine whether or not two observations match (Vlachos, Kollios, & Gunopulos, 
2002). LCS belongs to the class of edit distance measures. Edit distances are those dis-
tances that compute the cost for turning one string into another by allowing insertions, 
deletions, and substitutions. LCS can be seen as an edit distance that allows deletions and 
insertions but no substitutions (to find the common substrings). Other well-known edit 
distances are the Hamming distance that counts the number of positions at which two 
strings are different (thus, it only allows substitutions to compute matching cost) and the 
Levenshtein distance that is successfully used in spelling correction, allowing all three 
operations to compute matching cost.

Permutation Distribution Clustering

To measure the complexity of a time series, Bandt and Pompe (2002) proposed permuta-
tion entropy—a single number that tells us the predictability of a time series based on 
the frequency of observed order patterns of a given length, m. The order pattern is simply 
the order of observed values (obtained as the sorting indices of the observed values) in 
windows of length m (see Figure 19.4). If we observe the values 5, 10, 8, 2, 1, the order 
pattern is 5-4-1-3-2. (The fifth value is the lowest, the fourth value is the second-lowest, 

  FIGURE 19.4.    All six order patterns for embedding dimension 3. The panels show the schematic 
orders of three different values and the respective order pattern below. This figure is available at 
https://github.com/brandmaier/mobile-sensing-figures under a CC-BY4.0 license.
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the first is the third- lowest, and so forth.) For windows of length m there are m! different 
order patterns. The entropy of the order patterns yields an informative measure about 
the local predictability of a time series with some interesting properties. It is invariant to 
monotonous transformations of the time series, such as a changing mean or variance. In 
particular, the order patterns will be unchanged whether or not we normalize the time 
series. Also, extreme outliers play a much smaller role because no matter how far away 
they are, they only change a few local order patterns (if at all). Lastly, the order pat-
terns can be computed in a single pass over the time series, which makes the approach 
highly efficient. Brandmaier (2015) proposed computing dissimilarities between permu-
tation distributions to assess complexity- based similarity between time series resulting in 
permutation distribution clustering (PDC). To choose optimal values of the embedding 
dimension m and possibly a time lag t between observations, PDC provides an entropy- 
based heuristic. The entropy heuristic selects the embedding dimension such that the 
entropy of the resulting distributions is maximal. The result of PDC is a dissimilarity 
matrix based on the relative complexity of time series and is typically rendered as a hier-
archical clustering diagram.

Differences between selected clusters can also be tested using a hypothesis testing 
framework based on multinomial likelihood ratio tests. Figure 19.5 shows an application 
of PDC to the raw sensor readings of accelerometer data from different activities. This is 
similar to the example given in Figure 19.2, in which the Euclidean distance was used to 
form clusters based on shape features of the time series. Here, however, the time series are 
clustered with respect to their similarity in permutation distributions. In this example, 
all activities (e.g., writing, standing, sitting, brushing teeth) were subject to clustering. As 
can be seen from both the dendrogram and the MDS, all eating- and drinking- related 
activities are close to each other (shown as polygons on the MDS plot), and the activities 
with low intensity are clustered together (e.g., sitting, standing, writing), even though the 
clustering algorithm was not exposed to this information.

 FIGURE 19.5.  Left: Hierarchical clustering solution of everyday activities using permutation distri-
bution clustering of one- dimensional accelerometer data from the WISDM dataset. Right: MDS 
projection of the solution on the left-hand side reveals compact clusters (polygons correspond to 
types of activity). This figure is available at https://github.com/brandmaier/mobile- sensing- figures 
under a CC-BY4.0 license.
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Evaluating Clustering Algorithms

To evaluate cluster solutions, we can either resort to measures of internal or external 
validity. Measures of internal validity are heuristics that mostly relate the average simi-
larity of cluster members to the average dissimilarity of members from different clusters. 
Internal validity is high if the average similarity among cluster members is high and their 
similarity to members of other clusters is low. However, these measures always remain 
heuristics because clusters, even though well separated, may not be useful for a given 
task. Measures of external validity evaluate how well a given clustering matches a known 
ground truth. Usually, we do not know the ground truth (this is why we apply unsuper-
vised learning approaches after all) and measures of external validity are mostly impor-
tant for studying the behavior of clustering in simulation studies or comparative studies. 
If some ground truth is available in practical applications (e.g., some labels are known in 
a dataset), one should rather switch to supervised learning approaches (see Chapter 17, 
this volume) than clustering. Finally, one may also be interested in the stability of a clus-
tering algorithm, which can be assessed by the variability of the clustering solution over 
subsets (e.g., Ben-Hur, Elisseeff, & Guyon, 2001). In the following, I describe two heu-
ristics for evaluating internal validity and three measures for evaluating external validity.

Internal Validity

The silhouette width is a measure of how similar an object is to members of its own 
cluster compared to members of other clusters and thus combines a measure of separa-
tion and compactness. Computation of silhouette requires computation of two interim 
values. For each object, we first compute the average distance to all members in its own 
cluster, a(i). Second, we compute the average distance to all members of clusters it does 
not belong to, b(i). Then, we define silhouette width as

	 ( ) ( ) ( )
( ) ( )max ,

b i a i
s i

a i b i

−
=
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Based on this definition, s(i) ranges between –1 (object is well matched to its neigh-
bors), and +1 (object is badly matched to its neighbors). For each cluster, we obtain the sil-
houette value as the average over the s(i) values of its members. Like most distance-based 
measures, silhouette prefers spherical clusters; a recent extension promises to reduce this 
preference by emphasizing compactness over connectedness (Lengyel & Botta-Dukát, 
2019).

Dunn Index

The Dunn index (Dunn, 1974) is defined as the ratio between the minimal intercluster 
distance to maximal intracluster distance. The goal of this index is to identify both dense 
and well-separated clusters. The index ranges between zero and infinity, and higher val-
ues indicate clustering solutions that are well separated. For each clustering solution, the 
Dunn index is calculated as follows:

	
( )
( )

between1

within1

min ,

max
i j n

i n

d i j
D

d i
≤ ≤ ≤

≤ ≤

=

468	 Analysis of Mobile Sensing Data 	



where dbetween(i, j) represents the intercluster distance between two clusters i and j of n 
clusters, and dwithin(i) is a measure of the intracluster distance. Both can be defined in 
various ways. A common choice is the distance of the cluster centroids for dbetween and the 
maximal distance of any pair of members within a cluster as dwithin.

External Validity

Good scores on an internal criterion do not necessarily translate into effectiveness for a 
given task, particularly because the same data may show different interesting clustering 
solutions. An alternative to the evaluation of internal criteria is a direct evaluation of a 
given problem for which ground truth is known. Cluster effectiveness can then be given 
with measures of external validity.

Purity

Assume we know the true clustering of objects into clusters. For a given clustering solu-
tion, let Nij be the number of objects in cluster i that belong to true cluster j. Let Ni be the 
total number of objects in cluster i. Then, we can define the purity of a cluster as

	 max ij
i j

i

N
p

N
=

—that is, the proportion of cases in the majority class in the cluster. Then, let overall 
purity be the weighted sum of the cluster purities:

	 Purity i
ii

N
p

N
= ∑

Purity ranges between 0 for bad clusterings and 1 for perfect clusterings. Note, how-
ever, that the trivial clustering (each object is its own cluster) always achieves perfect 
purity.

Rand Index

Another common summary statistic to quantify the overlap of partitions is the Rand 
index (Rand, 1971), also known as the simple matching coefficient. It can be used to 
assess the (dis)similarity of different clustering solutions or of a given clustering solution 
and a known ground truth. For a pair of clustering solutions X and Z, we first create 
a 2 × 2 contingency table. The following terminology assumes that Z is a ground truth 
reference, but the index can be applied to any set of two clusterings. Now, we count the 
number of pairs of objects that are in the same cluster in both X and Z (true positives 
[TP]); the number of pairs that are not in the same cluster in both X and Z (true negatives 
[TN]); the number of pairs that are in different clusters in X but in the same cluster in Z 
(false negatives [FN]); and the number of pairs that are in the same cluster in X but in dif-
ferent clusters in Z (false positives [FP]). Then, we compute the accuracy of the decisions 
to cluster pairs of objects correctly into the same or different clusters:

	
TP TN

R
TP FP FN TN

+
=

+ + +
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Like accuracy in classification, TP and TN are weighted equally, and other measures 
of classification performance such as the F-score can be employed (see Chapter 17, this 
volume). The Rand index is zero if both TP and TN are zero (and thus similar objects 
are never together in any cluster and only dissimilar objects are clustered together). The 
adjusted Rand index is also sometimes reported, where the Rand index is adjusted for the 
expected similarities based on a random model. Another related measure is the Jaccard 
index (Jaccard, 1912), which is similar to R but removes the TN from both numerator 
and denominator. Thus, the Jaccard index does not reward correctly putting dissimilar 
objects into dissimilar clusters (as measured by TN). This may be particularly useful 
when clusters are many and small.

Leave‑One‑Out Cross‑Validation

To evaluate the clustering performance of an algorithm when a ground truth clustering is 
known, leave-one-out cross-validation (LOO-CV) is a robust method to assess the inher-
ent structure of a dissimilarity matrix (Stone, 1974). LOO-CV iterates over the rows of a 
dissimilarity matrix, finds the closest neighbor for each object, and counts the frequency 
of matches, that is, the proportion of objects that have the same true group identity as 
their nearest neighbor.

Hidden Markov Models

In this chapter, we have regarded clustering methods to find patterns of similarity in time 
series. In mobile sensing applications, it can be useful to use the concept of dissimilarity 
in time series for time-series segmentation—most importantly, to find event boundar-
ies, such as the beginning or end of an activity. A widely used approach for modeling 
streams of observations in applications such as speech recognition or activity recognition 
are hidden Markov models. A Markov chain describes the way a system moves through 
different discrete states over time. To form a Markov chain, we start by defining a finite 
set of states, for example, a set of different activities of interest (such as “walking” or 
“sleeping”). Markov models are probabilistic models that model dependence over time 
with the simplifying assumption that dependence on only the previous state is sufficient 
to model the process of interest. For a complete definition, we also need an initial state 
(or a distribution representing the probability of each state being the initial state) and a 
transition matrix that describes the probabilities with which the system either stays in the 
current state or moves to a given different state. Such Markov chains can be estimated 
by observing a system long enough (even though this only permits estimation of a single 
initial state) or by gathering multiple observations of the same system (allowing one to 
estimate a distribution over initial states). In both cases, we can estimate the transition 
matrix from data if the observed process is ergodic (which in this context roughly corre-
sponds to the intuition that the process must not “get stuck” in some subchain and never 
return to the other states). All this assumes that we can directly observe the state of a 
system (e.g., a given activity).

Whenever the states are not directly observable, we can resort to hidden Markov 
models (HMMs). In HMMs, we still assume that the Markov assumption is true (the 
probability of transitioning from one state to another depends only on the current state), 
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but the states are only indirectly measured with stochastic measurements. Each discrete 
state is associated with a probability density function that determines the likelihood of 
an observation (which may be multivariate), given that the system is in that state. For 
example, when the hidden states represent activity classes such as walking or sleeping, the 
observations could be the continuous sensor readings of a smartphone.

HMMs are similar to latent mixture models with the mixture components coupled 
over time. Assuming that the observations come from a multivariate normal distribu-
tion, an HMM is identical to a Gaussian mixture model in which we postulate that the 
system occasionally jumps from one state (that is, mixture component) to another as time 
evolves. Based on the Markov assumptions, we further assume that these jumps (or rather 
their probabilities) are fully described by a transition matrix.

In unsupervised learning challenges, we can use an HMM to infer underlying and 
unobserved states from a multivariate time series. For example, when we have no labels 
but only raw sensor data, we can use an HMM to infer the most likely sequence of 
underlying states. These states then represent a lower-dimensional representation than 
the observed, potentially multivariate signals, and they may be used as the primary unit 
for further analyses (see Figure 19.6). For example, we may then label the states post-hoc 

  FIGURE 19.6.    Estimated sequence of states from a hidden Markov model on a sequence of simu-
lated, continuous sensor readings. The top row shows simulated sensor readings that were gener-
ated from a Gaussian distribution with a mean difference of two units between the two activities. 
The middle row shows the true states that were randomly drawn with a state switching probability 
of 90%. The bottom row shows the estimated posterior probabilities of being in the respective 
states. This figure is available at https://github.com/brandmaier/mobile-sensing-figures under a 
CC-BY4.0 license.
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based on participants’ self-reports or raters, or we may simply use them as a sparser level 
of description or make inferences about the (un)predictability of the person. A critical 
question is then the choice of the number of states because it cannot be directly inferred 
from the data (larger number of states will always lead to better fit on the training data). 
As usual, we may want to use some generalization criterion like the Bayesian information 
criterion (BIC) or cross-validation to determine the optimal number of states in an HMM 
(Murphy, 2012).

A recent extension of the HMM model allows for modeling non-Markovian dwell 
times in a given state. This can be achieved by modeling the dwell time in each state with 
a Poisson process, which is appropriate for modeling the number of events occurring in 
a fixed interval of time. Because the Poisson assumption makes the hidden state process 
non-Markovian, the resulting model class is called the hidden semi-Markov model (Yu, 
2010).

Applications

A variety of research studies have been published involving mobile sensing data that use 
clustering, and some examples are presented here. For many applications, locating the 
user is valuable to infer their daily routines (e.g., whether they went shopping, went to 
work, or went out for sports) and their potential impact on psychological variables such 
as well-being or affect. While GPS and the signal strength of nearby routers provides 
spatial information, its inaccuracy ranges between 10 and 100 meters (up to about 110 
yards) and makes it impossible to decide whether the device owner is, say, in a coffee 
shop or in the next-door clothing store. The SurroundSense approach (Azizyan, Constan-
dache, & Roy Choudhury, 2009) uses ambient fingerprinting by leveraging sound, light, 
color, and movement patterns to obtain fingerprints of the user’s environment. They used 
clustering to create fingerprints of accelerometer traces yielding three clusters of sitting, 
browsing (e.g., in a clothing store), and walking. Because users often point their phone 
downward while using it (e.g., while checking messages), SurroundSense takes pictures of 
the environment’s floor. They converted all pictures from the same location (e.g., store) to 
a hue-luminance-saturation space and used k-means clustering to create ambient color-
light fingerprints of places using the cluster centroids and sizes. To better understand 
users’ movement and mobility patterns, Wang and colleagues (2018) used the DBSCAN 
algorithm to cluster the sampled coordinates during a day. The resulting clusters repre-
sented the users’ significant locations and dwell times. Saeb and colleagues (2015) used a 
cluster analysis approach to determine places where the participants of their study spent 
most of their time, such as home, office, or park. They first divided GPS-based location 
data into stationary and transitional states based on estimates of movement speed (at a 1 
kilometer/hour threshold). Then, they used k-means clustering to identify the clusters. To 
determine the number of clusters, starting with k = 1, they increased the number of clus-
ters until the distance of the farthest point in each cluster to its cluster center fell below 
500 meters. The number of clusters was then used as a feature for a subsequent prediction 
task, classifying people into depressed and nondepressed people. The best predictor of 
depression was roaming entropy, an index of the variability of the time participants spent 
at a given location. Roaming entropy was previously shown to be an excellent marker of 
developmental differences in both brain and behavior in an animal model (Freund et al., 
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2013). To assess the social behavior of students on campus, Wang, Harari, Hao, Zhou, 
and Campbell (2015) investigated the partying versus nonpartying behavior of students 
by applying k-means clustering to audio signals (e.g., presence of music or chatter) and 
activity recordings (e.g., dancing). Based on the clustering solution, they conjectured that 
the audio features alone were sufficiently informative to discriminate party versus non-
party times in the dataset.

DTW is typically applied to handwriting classification or speech recognition. Pham, 
Plötz, and Olivier (2010) demonstrated that DTW can be used to classify various low-
level food preparation activities (such as chopping, peeling, slicing, dicing, scraping, shav-
ing, scooping, stirring, coring, or spreading), while DTW can adjust for the individual 
differences in the speed with which these activities are executed (e.g., chopping vegetables 
fast versus slow).

Dobbins and Rawassizadeh (2018) used feature selection to refine accelerometer 
data in order to detect physical activity, arguing that smaller feature sets are compu-
tationally more efficient and thus more energy efficient on a mobile device. They used 
heuristics based on PCA and correlational statistics to select only those variables that 
largely contribute to the first principal components and remove those that are highly 
correlated with others to remove redundancy. Then, they evaluated k-means, hierarchi-
cal clustering, and DBSCAN on the selected features. Biswas and colleagues (2015) also 
used k-means clustering for preprocessing features for a subsequent classification task 
of fundamental human forearm movements using a wrist-worn sensor. For segmenting 
continuous data streams from wearable accelerometers, Kuppevelt and colleagues (2019) 
used hidden semi-Markov models, which they claim are much easier to interpret than 
complex temporal learning approaches such as deep neural networks.

R Packages

There are various R packages that implement unsupervised learning approaches. PCA is 
available as function prcomp() from the stats package, which is part of the base R instal-
lation (R Core Team, 2021). Various ICA implementations are available from the package 
ica (Helwig, 2018). The stats package also offers k-means clustering with the function 
kmeans() and hierarchical clustering with the function hclust(). The Comprehensive 
R Archive Network (CRAN) has a taskview that lists all major packages for clustering 
(https://cran.r-project.org/web/views/Cluster.html). The package TSclust (Montero & 
Vilar, 2014) offers various dissimilarity metrics for clustering time series, including an 
interface to permutation distribution clustering from package pdc (Brandmaier, 2015). 
The HMM in Figure 19.6 was estimated with the R package depmixS4 (Visser & Speek-
enbrink, 2010).

Summary

This chapter reviews a variety of approaches that can be subsumed under the umbrella of 
time-series data mining or knowledge discovery in databases (Fayyad, Piatetsky-Shapiro, 
& Smyth, 1996). These approaches are useful to make sense of multivariate, intensive, 
and complex time-series data or features that were derived from time series (such as 
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Fourier coefficients, mean signal, or signal power). I would like to stress that there is no 
single best approach that promises success in all situations. The approaches presented in 
this chapter all make different assumptions about the data-generating process and need 
to be carefully chosen in accordance with the respective project and data-analytic goal. I 
reviewed approaches for dimensionality reduction that help to project multivariate data-
sets, and specifically those with time series, to lower dimensions, as well as clustering 
approaches that group together individual observations into those that are similar to each 
other in their inherent structure. Both groups of methods can be regarded as methods 
that aim to reduce the complexity of observed data such that we obtain simpler represen-
tations. Projection methods obtain simpler representations by reducing the complexity 
in the number of variables, and clustering methods obtain simpler representations by 
reducing the complexity in the number of observations. If we imagine our data arranged 
in a cube, we can also reduce complexity in a third dimension, namely, time. Those 
algorithms that define similarities between time series almost always implicitly reduce 
the complexity in time to solve the clustering problem. We can also explicitly use those 
algorithms to find simpler representations of time (for example, symbolic representations 
or order patterns). The hope is that simpler representations aid us in understanding the 
data by means of either inspection (such as visualization) or modeling, which may profit 
from simpler representations in terms of increased robustness and generalizability.
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C H A P T E R  O V E R V I E W

Advances in mobile technology and the ubiquity of the smartphone have allowed a deeper 
understanding of aspects of personality than is possible with traditional self- report meth-
ods. Mobile sensing allows us to track sensor measurements and device usage statis-
tics that describe the environment and the behavior of the user. In this chapter, we give 
a detailed overview of the types of mobile sensing data available on smartphones and 
introduce a concrete example of an app showcasing how mobile sensing studies can be 
conducted in personality science. Furthermore, we give an extensive overview of existing 
studies, related to both relatively stable personality traits and variable personality states 
and dynamics. We summarize each study’s core results and present an overview of the 
state of the art in the field. We conclude with a glimpse into future directions in the field 
of mobile sensing in personality science.

Introduction

Personality research can draw on a wide range of methods and measures to explore and 
better understand human personality in everyday life as well as in laboratory settings 
(Allemand & Mehl, 2017; Robins, Fraley, & Krueger, 2007; Wrzus & Mehl, 2015). In 
addition to traditional self- report questionnaires, recent advances in computational social 
science have highlighted the potential of predictive technologies that use the digital foot-
prints created by individuals to automatically infer their personality using machine learn-
ing. One particular type of predictive technology that holds great promise for comple-
menting the existing toolbox of personality researchers is mobile sensing. Mobile sensing
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refers to the utilization of digital devices (e.g., smartphones, tablets, smartwatches) and 
mobile sensors to collect data about individuals’ daily behaviors and the situations they 
might encounter. For example, GPS sensors embedded in a variety of devices can provide 
granular insights into the whereabouts of individuals (e.g., visit to a coffee shop), the 
likely behaviors associated with specific locations (e.g., chat with friends), as well as the 
potential situational characteristics associated with these locations (e.g., social atmo-
sphere).

Recent advances in computer technology, computer science, and software develop-
ment have led to almost unlimited possibilities for mobile sensing when it comes to infer-
ring personal characteristics about the owner and the environment (Boubiche, Imran, 
Maqsood, & Shoaib, 2019; Laport-López, Serrano, Bajo, & Campbell, 2020; Miller, 
2012). Among all sensing devices, smartphones have taken on a particularly prominent 
role in our everyday lives: The rapid growth in popularity of smartphones across the 
globe, their increasing availability and decreasing costs have made them the most ubiq-
uitous digital device in today’s connected world (Verto Analytics, 2017). Because smart-
phones are an integral part of people’s lives, this digital device is very attractive for 
collecting large amounts of sensing data in natural as well as laboratory settings. Smart-
phone sensing allows researchers to study inter- and intraindividual differences in human 
behavior on a large scale and at high levels of granularity using tools and techniques from 
computer and information sciences (Baumeister & Montag, 2019; Insel, 2017; Montag, 
Duke, & Markowetz, 2016; Seifert, Hofer, & Allemand, 2018; Yarkoni, 2012). Similarly, 
developments in statistical techniques and applications of computational methods such as 
machine learning—which are well suited to manage and analyze large amounts of data 
gathered from smartphone sensing studies—have contributed to the increasing interest 
in smartphone sensing within personality research (Bleidorn & Hopwood, 2019; Brand-
maier, Chapter 17, this volume; Stachl, Pargent, et al., 2020).

There are at least two reasons why mobile sensing can meaningfully complement the 
existing toolbox of personality science. First, mobile sensing provides a unique method 
to automatically track daily behaviors and experiences across different life situations 
and contexts without requiring individuals to self-report on their subjective experiences 
and behaviors. Over time, such momentary assessments allow identification of stable 
patterns of experiences and behaviors, that is, personality traits. In other words, smart-
phone sensing is an innovative approach for unobtrusive, passive ambulatory assess-
ments and complements ambulatory self-report assessments (Harari et al., 2016; Miller, 
2012; Trull & Ebner-Priemer, 2014). Second, the wide range of built-in mobile sensors 
on smartphones allows researchers to extract a broad spectrum of potentially interesting 
person-centric behavioral information (e.g., activities, mobility patterns) and context-
centric information (e.g., information about the surroundings and life contexts of the 
sensed person) (Harari et al., 2016; Laport-López et al., 2020). This gets us closer to the 
personality triad, which is about assessing persons, situations, and behaviors in concert 
(Funder, 2006). Moreover, the combination of sensing data with other types of data 
from personality research (e.g., observer reports, physiological assessments, experimental 
approaches) may lead to unique and novel perspectives on personality constructs, pro-
cesses, and dynamics.

Although mobile sensing is an exciting and promising method for personality sci-
ence, it is important to provide further evidence for the validity and reliability of this 
method. To ascertain that personality science reaps the full potential of mobile sensing 
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in its endeavor to describe, explain, and predict individual differences, the idiosyncratic 
opportunities and challenges provided by mobile sensing technologies need to be better 
understood both theoretically and empirically. For example, it is crucial to show that 
sensing methods do not just work in isolation but can provide incremental external valid-
ity to the existing and established toolbox of personality research.

Scope of This Chapter

The majority of published mobile sensing studies to date have examined associations 
between smartphone-sensed information and self-reported personality traits. We build on 
this work to synthesize the existing work on personality traits and foreshadow interesting 
opportunities for future work focused on personality states. In line with a working defi-
nition by Baumert and colleagues (2017), we define personality traits as “relatively stable 
interindividual differences in the degree of coherent behaviors, thoughts, and feelings” 
(p. 528). Traits describe basic dimensions on which individuals are typically perceived to 
differ. These individual differences are often organized within the prominent conceptual 
framework of the Big Five, which includes five broad traits (cf. John, Naumann, & Soto, 
2008): neuroticism (negative emotionality; Soto & John, 2017), extraversion, openness 
to experience (open-mindedness; Soto & John, 2017), agreeableness, and conscientious-
ness. In the context of mobile sensing studies, personality traits are typically measured 
with the help of self-report questionnaires that are administered before, during, or after 
the study period. In addition to personality traits, we also discuss links between smart-
phone sensing and how personality traits are expressed or manifested in given situations 
as states. Personality states reflect “the degree of coherent behaviors, thoughts, and feel-
ings at a particular time” (Baumert et al., 2017, p. 528). Personality states are usually 
measured repeatedly over short periods of time. Whereas state levels can vary over short 
time periods, trait levels typically develop slowly or in rather persistent manners. Despite 
this temporal difference between traits and states, the content of states and traits can be 
identical. In this chapter, we use the term personality states in a broad sense that also 
includes affective states such as depressive states.

The main purpose of the current chapter is to discuss the potential of mobile sensing 
for personality science. First, we introduce a conceptual framework for the categorization 
of contextual sensing data for smartphone applications. Second, we discuss how mobile 
sensing contributes to personality assessment through behavioral data. Here, we present 
research on the prediction of individual differences in personality traits with smartphone 
sensor data as well as smartphone usage data. Third, we discuss the role of mobile sens-
ing for research on personality dynamics such as personality states. Fourth, we illustrate 
how researchers can integrate mobile sensing into personality research using one smart-
phone application as an example. Fifth, we discuss the lessons learned from building and 
implementing such an application and highlight important future directions.

Categorization of Mobile Sensing Data

In computer science, the data that can be collected via mobile sensing are often referred 
to as context data. Context is typically defined as something that characterizes an entity 
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relevant to the user or application (Dey, 2001). For example, a weather warning applica-
tion will process the user’s geolocation as context data. Context data can be used beyond 
the purpose of offering services to users. Specific context data sources or a combination 
of data sources can give insight into the user’s behaviors, preferences, or personality 
traits. For example, the number of pictures taken or the usage of particular apps may 
yield important information about the user’s context. A person taking many pictures and 
regularly checking Google Maps is likely spending time in a somewhat unfamiliar place 
that he or she enjoys.

In the following, we present a categorization framework based on context data 
(Beierle, Tran et al., 2018a, 2020), giving an overview of the types of data available from 
current Android smartphones (see Table 20.1). iOS devices (iPhones) typically do not 
make all of these data points available. The four context data categories are (1) physical 
conditions and activity, (2) device status and usage, (3) core functions usage, and (4) app 
usage. Furthermore, an additional technical category constitutes the explicit permission 
by the user to allow an app to access data from the given source.

TABLE 20.1.  Context Data Framework for the Categorization of Context Data 
for Smartphone Applications

Category

PermissionPhysical Device Core functions Apps

Location • •

Weather • (•)

Ambient light sensor •

Ambient noise level • •

Accelerometer •

Gyroscope •

Activity •

Steps •

Screen and lock state •

Headphone plug •

Battery and charging •

Wi-Fi •

Bluetooth •

Calls metadata • •

Music metadata • (•)

Photos metadata • •

Notifications metadata • • •

App usage • •

App traffic • •

Note. The last column indicates if an explicit user permission is required (Android).

482	 Applications in Psychological Science 	



The category physical conditions and activity deals with the physical context of 
the user that is not related to the interaction with the smartphone. Here, sensors deliver 
data without the user interacting with the phone, for example, location or step count. 
The ambient light sensor typically offers data only when the screen is active (i.e., when 
the user is interacting with the phone). However, as the light sensor’s data are related 
to the physical context (i.e., the light level of the environment of the user), we regard it 
as part of the physical category. The category device status and usage designates data 
related to the status and the connectivity of the smartphone. This comprises screen/lock 
state, headphone connection status, battery level and charging status as well as Wi-Fi 
and Bluetooth connectivity. Core functions usage deals with the users’ interaction with 
core functionalities of the phone, regardless of which specific apps they are using for it. 
The core functions comprise calling, music listening, taking photos, and dealing with 
notifications. The fourth category, app usage, is concerned with data about the usage and 
traffic of specific apps. Notifications fit both in the core functions and the apps categories 
because they can be related to either. Overall, the four categories comprise data related 
to the user’s surroundings and everyday behaviors as well as specific behaviors associated 
with phone usage. The permission column indicates if the user has to confirm an Android 
system permission to the app. Weather is given in parentheses because it can only be col-
lected if the location is available, so it is bound to the location permission. Music is given 
in parentheses as well because most major music player apps or music streaming apps 
automatically broadcast metadata about music that the user is currently listening to. The 
broadcast events can be received by any app that subscribes as a listener. However, for 
Spotify, such broadcasting has to be activated manually. The context data sources given 
in Table 20.1 can be collected in studies conducted in daily life. Additional data can be 
gathered from mobile phones, (e.g., touch patterns or touch intensity; Carneiro, Pinheiro, 
& Novais, 2017). However, data points are only available when the developed app itself 
is in the foreground, not whenever any other app is being used. Such data sources can 
be used in more controlled lab studies that are specifically designed around a particular 
device and application (e.g., studying touch intensity).

Various other efforts have been made to categorize the data collected by mobile 
sensing (e.g., Harari et al., 2016; Laport-López et al., 2020), all of which provide their 
own unique insights into the nature of contextual sensor data. For example, one catego-
rization framework discusses several types of smartphone sensing data along with their 
functions, features, and the behaviors they capture (Harari et al., 2016). According to 
this framework, smartphone data may capture three classes of behaviors including social 
interactions (e.g., microphone sensor, call log), daily activities (e.g., accelerometer sensor, 
proximity sensor), and mobility patterns (e.g., GPS scans, Wi-Fi scans).

Mobile Sensing and Personality Traits

The most prominent area of mobile sensing in personality research refers to personality 
assessment. Interesting research questions examined in past research include: Can indi-
vidual differences in relatively stable patterns of behaviors and experiences be captured 
by mobile sensing? What are the sensing correlates of personality traits and other indi-
vidual differences variables? Can personality traits predict the smartphone usage and the 
pattern of sensing? Previous work in this area can be discussed along two major lines. 
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The first line refers to participatory sensing and focuses on an active collection, and 
users’ sharing, of data obtained by the sensors (Burke et al., 2006; Laport-López et al., 
2020). Here, the user is actively involved in the sensing process and deliberately decides 
which information can be gathered and how to share it. The second major line of research 
is opportunistic sensing and refers to passive sensing with minimal user involvement 
(Lane et al., 2010; Laport-López et al., 2020). The user is not involved in the decision 
process because the sensing system itself decides when to gather and share information. 
Daily life smartphone studies typically fall in the category of opportunistic sensing, as 
the smartphone data correlated with psychological aspects about the user are sensed pas-
sively in the background.

The scientific exercise of translating mobile sensing data into personality profiles 
requires multiple steps. First, contextual data collected via smartphones has to be turned 
into features (a.k.a. predictors) that translate the raw input data (e.g., longitude and lati-
tude coordinates from GPS) into more meaningful variables (e.g., distance traveled). This 
process can entail simple calculations of distribution parameters (e.g., number of times 
social networking apps were opened during weekends or average estimated sleep dura-
tion), as well as more complex metrics such as routine patterns or usage over time (e.g., 
the extent to which a user is switching between different apps).

In addition to these contextual data, researchers also need “labels”—or ground 
truth data—which indicate personality traits and other individual differences. Such data 
are usually assessed via the existing toolbox of personality researchers, most frequently 
with established self-reports or observer reports. A typical study, for example, would ask 
participants to respond to a battery of personality tests and then ask for permission to 
either retrospectively or prospectively collect their associated smartphone sensor data. 
Once the two data sources have been collected, researchers can start investigating the 
relationships between the features obtained by mobile sensing and the label obtained by 
self-reports or observer reports.

In the following section, we provide an overview of existing studies examining the 
links between mobile sensing data and personality traits as well as other trait-like char-
acteristics (e.g., depressive tendencies; see Table 20.2). We focus our overview on studies 
that dealt with relatively stable individual differences in thoughts, feelings, and behav-
iors (Baumert et al., 2017). Note that the first two studies were conducted with feature 
phones, before the advent of smartphones (Chittaranjan, Blom, & Gatica-Perez, 2011, 
2013). There are some additional studies correlating personality traits and phone usage 
that did not collect data from feature or smartphones but relied on self-reports of users 
(Butt & Phillips, 2008).

The data sources given in the table differ in the extent to which they are based on 
raw sensor data or have been preprocessed into more meaningful latent features. For 
example, accelerometer data are low-level sensor data, while the current activity (e.g., 
walking, in car) or a daily step count is higher-level sensor data that utilize accelerom-
eter data. The available data sources depend on the mobile operating systems and on the 
available libraries and software development kits (SDKs). In the table, we list the sources 
mentioned in the cited papers. Predicting user’s personality often requires that research-
ers turn lower-level sensor data into more meaningful higher-level features, such as esti-
mating the user’s sleep pattern from low-level sensor data like phone lock/unlock events. 
For overviews related to determining higher-level features from lower-level sensor data, 
see, for example, Harari and colleagues (2016); Harari, Müller, Aung, and Rentfrow 
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(2017); Mohr, Zhang, and Schueller (2017). While some of the studies are only interested 
in specific data types, others track a wider range of data sources.

As the comment column in Table 20.2 shows, the research focus of the studies often 
varies. Even comparing those studies that seek to predict personality from smartphone 
sensing data is not as straightforward as one might think. A variety of different statistical 
and machine learning-based approaches is used, along with different evaluation met-
rics. For example, sometimes the prediction is made into a binary classification problem 
(low/high values of each trait), sometimes into a three-class problem (low/medium/high). 
Another approach is to use regression to predict the score for each trait. In addition, small 
sample sizes, potentially biased datasets, and use of different data sources make it hard to 
draw overall conclusions. The studies often vary greatly in their reported accuracies for 
prediction personality from sensing data. While some report modest prediction success 
for multiple personality traits, including extraversion, openness, conscientiousness, and 
some facets of emotional stability (Stachl, Au, et al., 2020), others only report accuracies 
better than baseline for the trait of extraversion (Mønsted, Mollgaard, & Mathiesen, 
2018).

Moving beyond mere predictive accuracies to studying the relationships between 
individual sensing features and personality traits, we see that research has highlighted 
the links between extraversion and social behaviors, including increased smartphone 
usage, receiving more calls (Chittaranjan et al., 2013), and daily screen wakeups (Beierle, 
Probst, et al., 2020), as well as a higher number of calls and higher use of photography 
apps (Stachl et al., 2017). Conscientiousness was found to be associated with higher 
usage of work email, but with lower usage of YouTube, fewer voice calls (Chittaranjan et 
al., 2013), as well as low usage of gaming apps (Stachl et al., 2017) and a shorter mean 
session duration of general smartphone usage (Beierle, Probst, et al., 2020). Individuals 
who score high on agreeableness tended to have more calls in general, while individuals 
with high emotional stability had a higher number of incoming SMS (Chittaranjan et 
al., 2013) but a lower number of screen wakeups. Women with high scores on openness 
demonstrated greater usage of video/audio/music (Chittaranjan et al., 2013).

We want to highlight one of the most recent studies in the context of predicting 
personality traits from smartphone sensing, which combined a relatively large sample 
(N = 624) with a broad variety of data sources and features (see Stachl, Au, et al., 2019, 
2020). The study found the highest predictability for extraversion (r median = .37), no 
predictability for agreeableness, and moderate levels of accuracy for the other traits. The 
features that were most predominantly related to extraversion are related to communica-
tion behavior (based on call, message, and communication app usage logs), supporting 
the social nature of the trait; for openness it was a diverse mix of indicators based on app 
usage, music listening, and communication behavior, potentially highlighting the fact 
that openness by definition is associated with a preference for variety. Conscientiousness 
was related to indicators of daily routine and app usage, which is well aligned with the 
tendency of conscientious people to favor order over spontaneity. Only some facets of 
emotional stability (converse of neuroticism/negative emotionality) could be predicted, 
for example, by indicators related to communication, and among others, usage of email 
and gaming apps.

In summary, extraversion is the personality trait that has repeatedly been shown to 
have the strongest correlation with smartphone data. Considering the social nature of 
the extraversion trait, as well as the fact that many smartphone features were specifically 

�	 Mobile Sensing in Personality Science	 485



TA
BL

E 2
0.

2.
 O

ve
rv

ie
w

 o
f D

at
a S

ou
rc

es
 a

nd
 P

er
so

na
lit

y T
ra

its
/T

ra
it-

Li
ke

 C
ha

ra
ct

er
is

tic
s (

Us
er

 In
fo

rm
at

io
n)

 Th
at

 W
er

e C
or

re
la

te
d 

in
 R

el
at

ed
 S

tu
di

es

D
at

a 
so

ur
ce

U
se

r 
in

fo
rm

at
io

n
R

ef
er

en
ce

b
Sa

m
pl

e 
si

ze
C

om
m

en
t

A
pp

lic
at

io
n 

us
ag

e 
(p

re
-s

m
ar

tp
ho

ne
),

 
B

lu
et

oo
th

, c
al

li
ng

 p
ro

fi
le

s,
 c

al
ls

, S
M

S
Pe

rs
on

al
it

y 
tr

ai
ts

C
hi

tt
ar

an
ja

n 
et

 a
l. 

(2
01

1)
   

8
3

Pr
ed

ic
ti

ng
 p

er
so

na
lit

y 
tr

ai
ts

 b
as

ed
 o

n 
sm

ar
tp

ho
ne

 d
at

a 
vi

a 
SV

M
; 

hi
gh

es
t 

cl
as

si
fi

ca
ti

on
 a

cc
ur

ac
y 

fo
r 

ex
tr

av
er

si
on

 (
75

.9
%

)

A
pp

lic
at

io
n 

us
ag

e 
(p

re
-s

m
ar

tp
ho

ne
),

 
B

lu
et

oo
th

, c
al

li
ng

 p
ro

fi
le

s,
 c

al
ls

, S
M

S
Pe

rs
on

al
it

y 
tr

ai
ts

C
hi

tt
ar

an
ja

n 
et

 a
l. 

(2
01

3)
  

11
7

Fe
at

ur
e 

ag
gr

eg
at

io
n 

fo
r 

pe
rs

on
al

it
y 

pr
ed

ic
ti

on
; g

en
de

r-
sp

ec
if

ic
 

cl
as

si
fi

ca
ti

on
 m

od
el

s

C
al

ls
, l

oc
at

io
n,

 S
M

S
Pe

rs
on

al
it

y 
tr

ai
ts

de
 M

on
tj

oy
e,

 Q
uo

id
ba

ch
, 

R
ob

ic
, &

 P
en

tl
an

d 
(2

01
3)

   
6

9
Pr

ed
ic

ti
ng

 p
er

so
na

lit
y 

tr
ai

ts
 b

as
ed

 o
n 

C
D

R
s 

(c
al

l d
at

a 
re

co
rd

; 
da

ta
 m

ob
ile

 c
ar

ri
er

s 
ha

ve
 a

bo
ut

 t
he

ir
 c

us
to

m
er

s)

C
al

ls
, S

M
S

Pe
rs

on
al

it
y 

tr
ai

ts
M

on
ta

g 
et

 a
l. 

(2
01

4)
   

4
9

C
al

li
ng

 a
nd

 S
M

S 
us

ag
e;

 e
xt

ra
ve

rs
io

n 
w

as
 p

os
it

iv
el

y 
co

rr
el

at
ed

W
ha

ts
A

pp
 u

sa
ge

A
ge

, g
en

de
r,

 
ed

uc
at

io
n,

 
pe

rs
on

al
it

y 
tr

ai
ts

M
on

ta
g 

et
 a

l. 
(2

01
5)

2
,4

18
W

ha
ts

A
pp

 a
cc

ou
nt

s 
fo

r 
al

m
os

t 
20

%
 o

f 
sm

ar
tp

ho
ne

 u
se

; 
ex

tr
av

er
si

on
 p

os
it

iv
el

y 
as

so
ci

at
ed

 w
it

h 
da

ily
 W

ha
ts

A
pp

 u
se

; 
co

ns
ci

en
ti

ou
sn

es
s 

in
ve

rs
e 

co
rr

el
at

io
n

L
oc

at
io

n
Pe

rs
on

al
it

y 
tr

ai
ts

C
ho

rl
ey

, W
hi

ta
ke

r,
 a

nd
 

A
lle

n 
(2

01
5)

  
17

4
Si

gn
if

ic
an

t 
co

rr
el

at
io

ns
 f

or
 c

on
sc

ie
nt

io
us

ne
ss

, o
pe

nn
es

s,
 a

nd
 

ne
ur

ot
ic

is
m

 a
nd

 f
ou

rs
qu

ar
e 

lo
ca

ti
on

 v
en

ue
 c

he
ck

-i
n

D
is

pl
ay

 s
ta

te
, l

oc
at

io
n

D
ep

re
ss

io
n

Sa
eb

 e
t 

al
. (

20
15

)
   

2
8

Pr
ed

ic
ti

ng
 d

ep
re

ss
iv

e 
sy

m
pt

om
s 

(P
H

Q
-9

) 
in

 b
in

ar
y 

cl
as

si
fi

ca
ti

on
 

w
it

h 
ac

cu
ra

cy
 o

f 
86

.5
%

; r
eg

re
ss

io
n 

m
od

el
 h

as
 a

n 
av

er
ag

e 
er

ro
r 

of
 2

3.
5%

In
st

al
le

d 
ap

ps
Pe

rs
on

al
it

y 
tr

ai
ts

X
u,

 F
re

y,
 F

le
is

ch
, a

nd
 I

lic
 

(2
01

6)
2

,0
43

Pr
ed

ic
ti

ng
 p

er
so

na
lit

y 
tr

ai
ts

 b
as

ed
 o

n 
in

st
al

le
d 

ap
ps

 w
it

h 
65

%
 

hi
gh

er
 p

re
ci

si
on

 t
ha

n 
ra

nd
om

 g
ue

ss

L
oc

at
io

n
So

ci
al

 a
nx

ie
ty

H
ua

ng
 e

t 
al

. (
20

16
)

   
1

8
D

ev
el

op
m

en
t 

of
 t

ra
ck

in
g 

fr
am

ew
or

k;
 s

ig
ni

fi
ca

nt
 c

or
re

la
ti

on
 

be
tw

ee
n 

so
ci

al
 a

nx
ie

ty
 le

ve
ls

 a
nd

 p
la

ce
s 

st
ud

en
ts

 v
is

it
ed

 a
nd

 
lo

ca
ti

on
 t

ra
ns

it
io

ns

A
pp

 u
sa

ge
, B

lu
et

oo
th

, c
al

ls
, l

oc
at

io
n

So
ci

ab
ili

ty
E

sk
es

, S
pr

ui
t,

 
B

ri
nk

ke
m

pe
r,

 V
or

st
m

an
, 

an
d 

K
as

 (2
01

6)

   
1

0
D

ev
el

op
m

en
t 

of
 a

 f
ra

m
ew

or
k 

fo
r 

cr
ea

ti
ng

 m
ea

su
re

m
en

ts
 o

f 
so

ci
ab

il
it

y 
ba

se
d 

on
 m

ob
ile

 s
en

si
ng

 d
at

a

C
al

ls
, l

oc
at

io
n,

 S
M

S
C

oo
pe

ra
ti

on
 

at
ti

tu
de

Si
ng

h 
an

d 
A

ga
rw

al
 

(2
01

6)
   

5
4

M
ob

ile
 s

en
si

ng
 d

at
a 

si
gn

if
ic

an
tl

y 
as

so
ci

at
ed

 w
it

h 
us

er
’s

 
co

op
er

at
io

n 
at

ti
tu

de
s;

 m
ob

ile
 s

en
si

ng
 p

re
di

ct
iv

e 
m

od
el

 p
er

fo
rm

s 
si

gn
if

ic
an

tl
y 

be
tt

er
 t

ha
n 

de
m

og
ra

ph
y-

ba
se

d 
m

od
el

A
pp

 u
sa

ge
, n

ot
if

ic
at

io
n 

m
et

ad
at

a
D

ep
re

ss
io

n
M

eh
ro

tr
a,

 H
en

dl
ey

, a
nd

 
M

us
ol

es
i (

20
16

)
   

2
5

U
si

ng
 m

ob
ile

 s
en

si
ng

 t
o 

im
pr

ov
e 

de
pr

es
si

ve
 s

ym
pt

om
 p

re
di

ct
io

n

T
ec

hn
ol

og
y 

us
ag

e 
ti

m
es

Pe
rs

on
al

it
y 

tr
ai

ts
G

ro
ve

r 
an

d 
M

ar
k 

(2
01

7)
   

6
2

T
em

po
ra

l p
at

te
rn

s 
of

 s
m

ar
tp

ho
ne

 a
nd

 P
C

 u
se

; s
om

e 
fe

at
ur

es
 

hi
gh

ly
 c

or
re

la
te

d 
w

it
h 

pe
rs

on
al

it
y 

tr
ai

ts
; m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

 
cl

as
si

fi
es

 e
xt

ra
ve

rs
io

n,
 o

pe
nn

es
s,

 a
gr

ee
ab

le
ne

ss
, a

nd
 n

eu
ro

ti
ci

sm

	 486	



A
pp

 u
sa

ge
Pe

rs
on

al
it

y 
tr

ai
ts

St
ac

hl
 e

t 
al

. (
20

17
)

  
13

7
Pe

rs
on

al
it

y 
tr

ai
ts

 p
re

di
ct

 s
m

ar
tp

ho
ne

 u
se

 in
 s

pe
ci

fi
c 

ap
p 

ca
te

go
ri

es
; e

xt
ra

ve
rs

io
n,

 c
on

sc
ie

nt
io

us
ne

ss
, a

nd
 a

gr
ee

ab
le

ne
ss

 a
re

 
be

tt
er

 p
re

di
ct

or
s 

th
an

 b
as

ic
 d

em
og

ra
ph

ic
 v

ar
ia

bl
es

C
al

ls
, S

M
S

So
ci

al
 c

ap
it

al
Si

ng
h 

an
d 

G
ho

sh
 (2

01
7)

   
5

5
H

ig
hl

y 
ac

cu
ra

te
 in

fe
rr

in
g 

of
 u

se
r’

s 
br

id
gi

ng
, b

on
di

ng
, a

nd
 o

ve
ra

ll 
so

ci
al

 c
ap

it
al

 s
co

re
s

C
al

ls
, l

oc
at

io
n,

 S
M

S
So

ci
al

 a
nx

ie
ty

B
ou

kh
ec

hb
a 

et
 a

l. 
(2

01
7)

   
5

4
A

ss
es

s 
an

d 
pr

ed
ic

t 
so

ci
al

 a
nx

ie
ty

 o
f 

co
lle

ge
 s

tu
de

nt
s 

ba
se

d 
on

 
m

ob
il

it
y 

an
d 

co
m

m
un

ic
at

io
n 

pa
tt

er
ns

; p
re

di
ct

io
n 

of
 s

oc
ia

l 
an

xi
et

y 
le

ve
l w

it
h 

an
 a

cc
ur

ac
y 

of
 u

p 
to

 8
5%

L
oc

at
io

n
Pe

rs
on

al
it

y 
tr

ai
ts

K
im

, K
oo

, a
nd

 S
on

g 
(2

01
8)

   
2

0
Pr

ef
er

en
ce

 f
or

 a
 h

om
e 

lo
ca

ti
on

 is
 p

os
it

iv
el

y 
re

la
te

d 
w

it
h 

ex
tr

av
er

si
on

, a
nd

 n
eg

at
iv

el
y 

re
la

te
d 

to
 c

on
sc

ie
nt

io
us

ne
ss

; 
pr

ef
er

en
ce

 f
or

 h
om

e 
lo

ca
ti

on
 is

 n
eg

at
iv

e 
at

 n
ig

ht
 a

nd
 p

os
it

iv
e 

du
ri

ng
 t

he
 d

ay
ti

m
e 

fo
r 

ne
ur

ot
ic

is
m

B
lu

et
oo

th
, c

al
ls

, l
oc

at
io

n,
 S

M
S

Pe
rs

on
al

it
y 

tr
ai

ts
M

øn
st

ed
 e

t 
al

. (
20

18
)

  
63

6
O

nl
y 

ex
tr

av
er

si
on

 is
 p

re
di

ct
ed

 s
ig

ni
fi

ca
nt

ly
 b

et
te

r 
(2

5.
6%

) 
th

an
 

by
 a

 n
ul

l m
od

el
, b

as
ed

 o
n 

cl
as

si
fi

ca
ti

on
 in

 t
hr

ee
 c

la
ss

es
 (

lo
w

, 
m

ed
iu

m
, h

ig
h)

L
oc

at
io

n,
 m

ic
ro

ph
on

e 
(a

m
bi

en
t 

so
un

d,
 a

m
bi

en
t 

vo
ic

e)
, p

ho
ne

 u
sa

ge
, 

ph
ys

ic
al

 a
ct

iv
it

y

Pe
rs

on
al

it
y 

tr
ai

ts
W

an
g 

et
 a

l. 
(2

01
8)

  
15

9
Pr

ed
ic

ti
ng

 s
el

f-
re

po
rt

ed
 p

er
so

na
lit

y 
tr

ai
ts

 w
it

h 
w

it
hi

n-
pe

rs
on

 
va

ri
ab

il
it

y 
in

 b
eh

av
io

ra
l p

at
te

rn
s 

ba
se

d 
on

 p
as

si
ve

 m
ob

ile
 s

en
si

ng
 

da
ta

A
pp

 u
sa

ge
, c

al
ls

, l
oc

at
io

n
Se

ns
at

io
n 

se
ek

in
g

Sc
ho

ed
el

 e
t 

al
. (

20
18

)
  

26
0

Pr
ed

ic
ti

ng
 s

en
sa

ti
on

 s
ee

ki
ng

 b
as

ed
 o

n 
m

ob
ile

 s
en

si
ng

 d
at

a;
 

li
m

it
ed

 p
re

di
ct

io
n 

ac
cu

ra
ci

es

A
pp

 u
sa

ge
, b

at
te

ry
 s

ta
tu

s,
 B

lu
et

oo
th

, 
ca

lls
, d

is
pl

ay
 s

ta
te

, l
oc

at
io

n,
 p

ho
to

 
m

et
ad

at
a,

 S
M

S,
 W

i-
Fi

Pe
rs

on
al

it
y 

tr
ai

ts
St

ac
hl

, A
u,

 e
t 

al
., 

(2
01

9;
 

20
20

)
  

62
4

Pr
ed

ic
ti

ng
 p

er
so

na
lit

y 
tr

ai
ts

 a
nd

 f
ac

et
s 

ba
se

d 
on

 m
ob

ile
 

se
ns

in
g 

da
ta

; u
si

ng
 s

ix
 c

at
eg

or
ie

s 
of

 b
eh

av
io

ra
l i

nf
or

m
at

io
n 

(c
om

m
un

ic
at

io
n

/s
oc

ia
l, 

m
us

ic
, a

pp
 u

sa
ge

, m
ob

il
it

y,
 p

ho
ne

 
ac

ti
vi

ty
, d

ay
- 

an
d 

ni
gh

tt
im

e 
ac

ti
vi

ty
)

C
al

ls
Pe

rs
on

al
it

y 
tr

ai
ts

M
on

ta
g 

et
 a

l. 
(2

01
9)

  
10

6
Pr

es
en

ti
ng

 a
n 

ap
p 

fo
r 

m
ob

ile
 s

en
si

ng
 a

nd
 p

er
so

na
lit

y 
sc

ie
nc

e;
 

va
lid

at
io

n 
st

ud
y 

w
it

h 
ca

lls
 a

nd
 p

er
so

na
lit

y;
 p

os
it

iv
e 

as
so

ci
at

io
n 

of
 e

xt
ra

ve
rs

io
n 

an
d 

ca
lls

; n
eg

at
iv

e 
as

so
ci

at
io

n 
be

tw
ee

n 
ne

ur
ot

ic
is

m
 a

nd
 in

co
m

in
g 

ca
lls

C
al

ls
, m

ed
ia

 a
pp

 u
sa

ge
, m

es
sa

gi
ng

 
ap

p 
us

ag
e,

 S
M

S
So

ci
ab

ili
ty

H
ar

ar
i e

t 
al

. (
20

20
)

   
9

26
a

M
ap

pi
ng

 m
ea

su
re

d 
so

ci
ab

il
it

y 
to

 s
el

f-
re

po
rt

s

Ph
on

e 
us

ag
e

Pe
rs

on
al

it
y 

tr
ai

ts
B

ei
er

le
, P

ro
bs

t,
 e

t 
al

. 
(2

02
0)

  
52

6
C

on
sc

ie
nt

io
us

ne
ss

 n
eg

at
iv

el
y 

as
so

ci
at

ed
 w

it
h 

m
ea

n 
sm

ar
tp

ho
ne

 
us

ag
e 

se
ss

io
n 

du
ra

ti
on

; e
xt

ra
ve

rs
io

n 
an

d 
ne

ur
ot

ic
is

m
 p

os
it

iv
el

y 
as

so
ci

at
ed

 w
it

h 
fr

eq
ue

nc
y 

of
 s

m
ar

tp
ho

ne
 u

se

A
pp

 u
sa

ge
Pe

rs
on

al
it

y 
tr

ai
ts

Pe
lt

on
en

 e
t 

al
. (

20
20

)
  

73
9

C
at

eg
or

y-
le

ve
l a

gg
re

ga
te

d 
ap

p 
us

ag
e 

pr
ed

ic
ts

 p
er

so
na

lit
y 

tr
ai

ts
 

w
it

h 
up

 t
o 

86
–9

6%
 p

re
di

ct
io

n 
fi

t
a C

om
bi

ne
d 

da
ta

se
t 

fr
om

 f
ou

r 
st

ud
ie

s.
 

b T
he

 r
ef

er
en

ce
s 

w
er

e 
so

rt
ed

 c
hr

on
ol

og
ic

al
ly

.

	 487	



designed to facilitate social interactions, this result aligns well with personality theory. 
The limited predictability of personality traits from smartphone sensing data might be 
attributed to individual differences in how personality traits are expressed in relation to 
what the smartphone can capture. Furthermore, smartphones, their sensors, and apps are 
constantly evolving, which might also explain different results in different studies.

Mobile Sensing and Personality States and Dynamics

While most of the research to date has focused on the prediction of personality traits, 
mobile sensing also is likely to become more prominent in the study of personality pro-
cesses and states. Indeed, the fact that smartphones can collect data continuously over 
time and often capture context that might hold information about the individual’s cur-
rent mindset, make them the ideal candidate for assessing psychological states. Leverag-
ing this technology for momentary assessments of personality experiences opens the door 
for a whole range of novel research questions: Can mobile sensing be used to reliably and 
validly capture an individual’s momentary behaviors, thoughts, and feelings on a within-
person level? Are mobile sensing indicators predictive for variability in personality states? 
Can information about a person’s context provide information about their current psy-
chological state as theorized in the personality triad model developed by Funder (2006)? 
In contrast to personality traits, personality states are not assessed as a one-time measure 
but are continuously tracked over short periods of time (e.g., a week) to study fluctuations 
of personality expressions within individuals.

From a data perspective, this means that in order to predict personality states from 
sensing data, researchers first need to collect repeatedly labeled data, which make it pos-
sible to relate certain activities through mobile sensing to the self-reported subjective 
experience of that individual in a given moment. For example, imagine a personality 
dynamics questionnaire that, every evening, lets users reflect on their feelings and experi-
ences from that day or other measures of states with multiple assessments per day (e.g., 
Finnigan & Vazire, 2018; Horstmann & Ziegler, 2020; Matz & Harari, 2020; Zimmer-
mann et al., 2019). Once these data have been collected, the features extracted from the 
mobile sensing data for that particular day—or features comparing today’s data to those 
of previous days—can subsequently be used to predict how that individual feels in that 
moment. For example, do individuals exhibit extraverted behavior when they have spent 
more or less time in coffee shops? Do they feel more or less agreeable after having chatted 
with their friends and family? Or do they feel more neurotic on days on which they have 
spent a large amount of time on online social networks?

Table 20.3 lists currently available studies that investigated the relationships between 
mobile sensing data and dynamic psychological aspects about the user that change or vary 
over time. Such change can be over rather short time frames (e.g., momentary thoughts, 
feelings, and behaviors) to hours, daily changes, or 14-day intervals (some of depression-
related studies; e.g., Farhan et al., 2016). With respect to the collection of data, this 
means that users have to spend more effort on responding to multiple short surveys over 
time (which effectively is the manual annotation (“labeling”) of the collected smart-
phone context data). Given the extra burden on participants and the additional costs 
to researchers, it is not surprising that the sample sizes for longitudinal within-person 
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studies of psychological states are lower than those for between-person studies of per-
sonality traits. The majority of existing studies in the context of predicting psychological 
states has focused on mental health and well-being-related constructs such as mood, 
depression, or stress.

Some of the studies listed in Table 20.3 find strong correlations between smartphone 
sensing data, and mental health or well-being-related constructs, whereas others find only 
limited correlations or predictability. The use of different sensor data sources and often 
modest sample sizes could be two reasons for these differing results. A common theme of 
interest to several of the listed papers is (improving) the user’s automatic recognition of 
mental states. To the best of our knowledge, only one study so far has explored the links 
between smartphone sensing indicators and usage logs and within-person variability in 
state manifestations or expressions of the Big Five traits (Rüegger et al., 2020). A set of 
behavioral and situational indicators was first compiled based on existing literature. This 
set of sensing indicators was then applied to an ambulatory assessment dataset (N = 316 
Android users) consisting of self-reported personality states that were assessed randomly 
four times per day across one week. The results of machine learning analyses investigat-
ing the predictability of personality states from the set of indicators have shown that only 
for extraversion, smartphone data—specifically ambient noise levels—were informative 
beyond what could be predicted based on time and day of the week alone (Rüegger et al., 
2020).

To summarize, while quite a few studies combine mobile sensing and self-reported 
levels of depression, stress, mood, and the like, only initial work has been done on the 
smartphone data and the expression of personality states specifically.

The TYDR Application for Mobile Sensing: A Case Study

In this section, we illustrate how this all works using one specific mobile sensing applica-
tion. The Track Your Daily Routine (TYDR) app combines mobile sensing and personal-
ity assessment (Beierle, Tran, et al., 2018b; 2020). From a user perspective, TYDR’s core 
ideas are to provide descriptive statistics about the sensing data that are collected via the 
app and to visualize the results of personality traits and states questionnaires. TYDR is 
available on Google Play for Android smartphones.1 The focus on Android devices is a 
result of the more generous permissions for data collection compared to iOS. However, 
given that there are only marginal differences in personality between Android and iOS 
users (Götz, Stieger, & Reips, 2017), the general tendencies and relationships reported 
for Android users are likely to generalize to iOS users. Researchers should keep in mind, 
however, that the data volume needed to train robust predictive models for individuals or 
groups of individuals might be harder to achieve for iOS users.

Several important aspects should be considered when developing a mobile sensing 
app like TYDR. The more individuals can be attracted to use an application and the 
more data these individuals generate on a continuous basis, the more reliable the results 
about the relationship between smartphone data and the user’s personality will be. Con-
sequently, the app should have an appealing interface and provide value for the users, not 
just the researchers. This can often happen in the form of feedback that allows users to 
make sense of the data they generate and to better understand themselves and their daily 
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experiences. When developing for a mobile device, it is important to consider the restric-
tions these devices pose, including battery capacity and space limitations. In the follow-
ing, we detail how TYDR makes the data tracking its core feature by processing and 
visualizing resulting insights for the user. The three main components of TYDR’s user 
interface are the main screen, the questionnaires the users can fill out and their results, 
and the permanent notification.

The first main component of TYDR is its main screen. Figure 20.1a shows the main 
screen after TYDR is started for the first time. The tile-based design gives the user an 
immediate overview of the data for the current day. The gray overlay with the “Grant 
Permission” buttons indicates missing permissions that the user has to give in order to 
see more statistics, giving the user full control in deciding which data they are willing 
to share in return for additional insights. Each tile can be touched to slide open a bigger 
tile with a more detailed view of the data. Figure 20.1b shows more detailed informa-
tion on location data after touching the corresponding tile. The visited locations are 
visualized on a map. The stay points (i.e., staying more than 20 minutes at one place) are 
indicated by a marker. Pressing the “Full Map” button shows the full-screen view of the 
day’s location history and related data such as weather (see Figure 20.1c). Figure 20.1d 
shows the usage times for the past week. This tile is shown after the small “Usage” tile 
on the main screen is touched. Similarly, Figure 20.1e shows the number of photos taken, 
distinguished by front and back camera screens. Figure 20.1f shows how persons using 
the calendar function can access data from previous days (the top-right icon of the main 
screen). Not shown in these screenshots are additional tiles related to call statistics, music 
statistics, steps taken, the most used apps, apps with most traffic, and the number of 
notifications per app. The related statistics are visualized in a similar way as the shown 
examples.

The second main component of TYDR is the personality assessment. Via the self-
report questionnaire, the collected context data are labeled with personality information 
given by the user. TYDR can be used to study both personality traits and personality 
dynamics as the state expression of personality traits. TYDR contains three self-report 
questionnaires. The first one is a demographic questionnaire asking for age, gender, level 
of education, and so on. The second one assesses personality traits. For this question-
naire, the Big Five Inventory 2 (BFI-2) questionnaire (Soto & John, 2017) is used, consist-
ing of 60 items. Each of the five traits is assessed with 12 items based on a 5-point Likert 
scale, ranging from 1 (strongly disagree) to 5 (strongly agree). For researching personal-
ity dynamics, TYDR integrates a personality states questionnaire. TYDR utilizes the 
PDD (Personality Dynamics Diary) questionnaire, which captures the user’s experience 
of daily situations and behaviors (Zimmermann et al., 2019). The PDD questionnaire can 
be regarded as an example for conducting personality dynamics studies. PDD could be 
replaced with any other state-related questionnaire assessing personality states (Finnigan 
& Vazire, 2018; Horstmann & Ziegler, 2020) and other state-like aspects about the user 
or the context (Matz & Harari, 2020).

TYDR displays only one question at a time, which avoids scrolling. Users can switch 
between apps or turn off the screen and continue where they left off when resuming 
TYDR. A progress bar indicates how much of the current questionnaire is already filled 
out. The incentive for the user to fill out the personality questionnaires is to see their 
results in the related tile. Figure 20.2a shows the questionnaire interface. Figure 20.2b 
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(a) Main screen after first start. (b) Location data. (c) Location and weather data
 in full-screen view.

(d) Usage times. (e) Photo statistics. (f) Calendar to choose what
 data to see.

  FIGURE 20.1.    TYDR main screen and sensor and usage statistics. (a) Main screen after first start; 
(b) location data; (c) location and weather data in full-screen view; (d) usage times; (e) photo sta-
tistics; (f) calendar to choose what data to see.
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shows the extended tile shown after completing the questionnaire and touching the “Per-
sonality Traits” tile. Tapping on the “More Details” button opens a full-screen view with 
more details about the user’s personality; see Figure 20.2c.

The third main component of TYDR is the customizable permanent notification. In 
order to collect some of the context data, TYDR has to be running in the background 
permanently. This can be a nontrivial challenge from a software development perspec-
tive, especially due to fragmentation, which refers to the multitude of different Android 
devices with different software and hardware specifications. One way to help ensure that 
an app is not being terminated is to implement a permanent notification that means a 
TYDR notification will permanently be displayed to the user in the notification area. To 
make it appealing, TYDR follows the same approach as that for the main screen: show-
ing the user meaningful and informative figures based on processed context data. The 
notification is designed to be adaptive to the user’s interests by offering the possibility of 
configuring what information is displayed (see Figure 20.3). The Preview section in the 
figure shows what the notification will look like.

A similar app for the combination of mobile sensing and psychological research is 
Insights.2 Similar to TYDR, Insights tracks a variety of data sources (contact list, calls, 
SMS, display state, battery state, installed apps, app usage, location, and data traffic; 
Montag et al., 2019). In addition, researchers have developed software frameworks or 
libraries that aid other researchers in implementing apps for conducting studies related to 
the collection of mobile context data. Sensus (Xiong, Huang, Barnes, & Gerber, 2016), 
LiveLabs (Jayarajah, Balan, Radhakrishnan, Misra, & Lee, 2016), and AWARE (Ferreira, 
Kostakos, & Dey, 2015) are some examples.

  FIGURE 20.2.    TYDR questionnaire interface and results.

(a) Questionnaire interface. (c) Personality traits 
 questionnaire results—
 detailed view.

(b) Personality traits 
 questionnaire results—
 extended tile.
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Lessons Learned and Future Directions

Based on the research with TYDR, we discuss challenges researchers will likely face 
when running mobile sensing studies. The first challenge concerns the extent to which 
researchers can assure sufficient levels of privacy in mobile-sensing-related apps. The 
second concerns the development and maintenance of mobile sensing apps. The third 
concerns user retention, that is, to what extent researchers can engage users to continu-
ously participate in studies. The fourth deals with the limits of personality predictability.

Safeguarding Participants’ Privacy

The collection and use of mobile sensing data raise important ethical questions with regard 
to privacy (Harari, 2020). This is true for companies that use sensing data to improve the 
functionality of their services, but it is also true for researchers who aim to gain insights 
into the human psyche by tracking human behavior. Privacy concerns need to be at the 
core of any consideration, whether this means developing one’s own application or using 
an existing application for research purposes. Merriam-Webster defines privacy as “the 
state of being apart from company or observation” and ”freedom from unauthorized 
intrusion.”3 This can seem quite fuzzy when applied in the context of mobile data collec-
tion. Regional data protection regulations such as the GDPR (General Data Protection 
Regulation) try to make privacy measures more concrete. However, uncertainties remain 
regarding the specifics on how to comply to those regulations (Filippo, 2018). About two-
thirds of the papers reviewed above give only partial information about how privacy was 
considered when conducting the research presented. A recent review of mobile sensing 

  FIGURE 20.3.    The user can configure the notification. The preview section shows what the notifi-
cation will look like.
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systems found that only 13% of the studies included had implemented privacy measures 
(Laport-López et al., 2020).

Recently, we proposed the privacy model for mobile data collection applications 
(PM-MoDaC; Beierle, Tran, et al., 2018a, 2020). PM-MoDaC comprises nine concrete 
privacy measures (PMs) that can be implemented in the context of mobile sensing studies 
(including informed consent, anonymization of data, and usage of metadata). After col-
lecting data with TYDR, we analyzed how users interacted with our privacy model and 
what data the users were willing to share (Beierle, 2021; Beierle, Tran, et al., 2020). Over-
all, we found that 95% of the users that, according to Google, installed the app, accepted 
the terms and conditions and the privacy policy. For some of the users (778), we could 
access their app usage statistics and see that they only spend 10 seconds (median) reading 
the terms and policies before accepting them. Convenience seems to trump privacy con-
cerns. Regarding the data users are willing to share, we found that overall, female users 
and younger users were less likely to give all system permissions, confirming findings 
made by López, Marín, and Calderón (2017).

Development of Mobile Sensing Apps

When planning to conduct a mobile sensing study with a smartphone app, several options 
are possible. A new app could be built from the ground up, or a new app could be built 
on the basis of an existing software framework. A third option is to seek collaboration 
with an existing application that can conduct additional studies. The option to choose 
depends on the goals and scope of the project. Developing or even simply maintaining 
a mobile sensing app for personality research is a challenging endeavor. With its 4,000 
installations, we already identified more than 600 different devices using TYDR. Opti-
mizing an app for all these devices is no trivial matter, and additionally, the underlying 
operating system keeps evolving and changing. Likely driven by public discussions about 
privacy, the provided programming interfaces of the relevant mobile operating systems 
tend to become more restrictive over time. This means that it will get harder to retrieve 
and track the same amount of smartphone sensing data. Not only from a technical side, 
also from a regulatory side, mobile sensing apps might become more difficult to develop 
and maintain. We expect the regulations regarding mobile apps to increase. Germany, for 
example, introduced a regulation that makes it possible to register an app as a medical 
product. Institutional review boards might require compliance to this regulation, which 
is associated with large efforts (Vogel, Pryss, Schobel, Schlee, & Beierle, 2021).

User Retention

TYDR includes the daily PDD questionnaire. While about 20% of all users who installed 
the app filled out the BFI-2 questionnaire, there were many fewer users who consistently 
filled out PDD. Only about 7% filled out PDD once, and only 2% filled it out for 21 
days. This issue of users dropping out of using a mobile sensing app is commonly referred 
to as a lack of user retention or adherence. This is a common issue for apps in general. 
What makes it so relevant for personality science is that in order to analyze relationships 
between different personality states and sensing data, many users would have to be will-
ing to install and consistently use the app. Only then can a diverse set of situations and 
experiences be recorded. For example, specific emotions might only be experienced in 
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specific situations and might show high predictability from sensing data. However, if the 
user retention is too low and each user only answers a few self-reports, such situations 
might not be recorded at all. Future work will be to create the right incentives while at 
the same time recognizing the biases that these incentives will create. Typical approaches 
to increase user retention are individualized feedback or gamification (Onnela, 2021).

Prediction Ceiling

Another point that future work will show is where the “ceiling” of personality predict-
ability lies. Hypothetically, given all the data from the best sensors recorded at the high-
est frequencies, and given unlimited computing power for machine learning, predicting 
personality traits or states might still only be possible to some extent. Different people 
might express the same personality trait/state in different ways with respect to what the 
smartphone’s sensors can capture.

Conclusion

In this chapter, we explored the potential of mobile sensing technology in the context of 
personality science. The ability to passively collect granular behavioral data in vivo and 
connect these data with self-reported personality trait and state assessments makes it pos-
sible to better understand how personality gets expressed in everyday life. As psycholo-
gists, we are concerned with one of the most fascinating questions there is: Why do people 
do what they do? Yet, we rarely study natural human behavior as it unfolds in daily life, 
but instead we rely on retrospective reports of behavior or observe behavioral responses 
in highly controlled laboratory settings. As the personality psychologist David Funder 
noted: “the cumulative result is an uneven and unrepresentative map of the behavioral 
terrain” (2009, p. 340). Mobile technology offers a promising way to change this.

Importantly, just like any other methodology in the psychological toolkit, mobile 
sensing is not without serious challenges that pertain to data quality, analytical skills, 
and user privacy. We encourage researchers who are interested in using mobile sensing in 
their own research to familiarize themselves with the underlying technology and to get a 
good understanding of how to avoid potential pitfalls that could undermine the promise 
of such technological advances. Collectively, we have an opportunity to use mobile sens-
ing as a means to dive deeper into people’s everyday psychology and to ask questions that 
to date were impossible to answer. But we should all be compelled to ensure that this 
noble endeavor does not infringe on the rights of our participants.

The use of mobile sensing in the social sciences is still in its infancy. While the 
research to date has predominantly focused on smartphone devices, the possibilities are 
almost endless. Wearable devices and connected smart homes are already collecting vast 
amounts of behavioral data today, and the future is likely to see an even stronger inte-
gration of people’s everyday lives with technology. We might soon have micro devices 
embedded in our bodies that continuously monitor changes in our health and report back 
our blood sugar, cholesterol, heart rate, and potential anomalies in real time. Companies 
are already working on contact lenses that capture everything that is happening in our 
environment and feedback information directly to our retina. While these sensing tech-
nologies come with tremendous ethical challenges, they can also provide us with an even 
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deeper understanding of who we are. Scholars in computer science and engineering are at 
the forefront of this technological development. As psychologists, we should be ready to 
have a seat at the table and make sure that the human element of mobile technologies is 
not overlooked and becomes the center piece of inquiry.

Notes
1.	 https://www.tydr.de.

2.	 Android app; more info at https://www.insightsapp.org

3.	 https://www.merriam-webster.com/dictionary/privacy
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C H A P T E R  O V E R V I E W

How often do people download or use a religious app on their smartphone? How fiercely 
do people try to signal to others in social media, say Facebook, that they donated to a 
charitable cause? Are men or women more likely to secretly check their partner’s social 
media activities and chats? Questions like these are morally laden but were not in antiq-
uity. Philosophers have relentlessly argued over the concept of “right” and “wrong” for 
thousands of years, but Aristotle and Plato never discussed the morality underlying shar-
ing a “nude pic” or going over the logs of someone else’s chat. New phenomena require 
new tools in order to be explained adequately, and the science of morality requires new 
methods, beyond hypothetical moral dilemmas and self- report questionnaires, to address 
morally relevant questions in the 21st century. Indeed, that is not to say that principles 
of moral cognition are not applicable in novel contexts such as social media, but that our 
theoretical views and methodological apparatuses should be adapted to the environment 
in which new inquiries are made.

Since the birth of moral psychology as an empirical science, psychological foun-
dations of morality have been studied via survey- based methods such as self- reported 
questionnaires or laboratory experiments such as the trolley problem (Ellemers, van der 
Toorn, Paunov, & van Leeuwen, 2019). More recently, however, researchers have incor-
porated ambulatory assessment methods (e.g., daily diary methods, experience sampling, 
and ecological momentary assessment) to study moral judgments and moral concerns 
as they naturally unfold in the context of daily life (e.g., Bollich et al., 2016; Newman, 
Schwarz, Graham, & Stone, 2019). In addition to these developments, a parallel line of 
research has advanced computational methods to capture moral concerns from natural 
language data (Iliev, Dehghani, & Sagi, 2015; Kennedy et al., 2021; Sagi & Dehghani, 
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2014). In this chapter, we review these recent methodological developments in moral 
psychology, with an emphasis on ambulatory assessment and language analysis methods. 
Then, we focus on the applications, promises, and pitfalls of mobile sensing methods 
(MSMs; Harari et al., 2016; Lane et al., 2010) in moral psychology.

Morality: What Is It and Who Cares?

Not all scientists and philosophers agree upon a unified definition of “morality.” How-
ever, questions concerning what is the “right” and “wrong” way to behave and what 
characters are “virtuous” or “vicious” have occupied philosophers since classical antiq-
uity. Morality describes the way people think about themselves, interact with others, live 
and work together in groups, and relate to other groups in society. More recently, the 
interdisciplinary science of morality has become a popular area of study (Graham, 2014). 
Social scientific approaches to moral psychology bring experimental methods to bear on 
topics such as moral emotions, moral motivations, moral character development, and 
evolution of moral capacities.

In a broad sense, moral psychology focuses on the set of interconnected values, prac-
tices, institutions, and evolved psychological mechanisms that make social life possible 
(Haidt, 2008). To emphasize the importance of everyday morality in humans’ social life, 
Gintis, Henrich, Bowles, Boyd, and Fehr (2008) argued that ethical behavior was, in 
evolutionary terms, fitness-enhancing in the years marking the emergence of Homo sapi-
ens. The root of this argument is that groups with many altruists functioned better than 
groups with many selfish individuals, and the fitness losses sustained by altruists were 
more than compensated by the better performance of the groups they belonged to.

In the last few decades, different areas of psychological science have relied on their 
area-specific set of tools to examine different aspects of morality. Social psychologists, for 
example, have weighed in on intra- and intergroup processes (e.g., Day, Fiske, Downing, 
& Trail, 2014; Kouchaki, 2011) as well as social structures as important factors in shap-
ing moral cognition. Developmental psychologists, on the other hand, have uncovered 
developmental processes in moral capacities such as how infants represent fairness and 
how they forgive transgressions (e.g., Amir, Ahl, Parsons, & McAuliffe, 2021; Sloane, 
Baillargeon, & Premack, 2012). Cultural psychologists have examined culture-specific 
and culturally universal aspects of morality (e.g., Haidt & Joseph, 2004; Saucier, 2018). 
Evolutionary psychologists and anthropologists have examined evolutionary and ecologi-
cal origins of morality as well as cross-cultural differences in moral values (e.g., Krasnow, 
2017; Purzycki et al., 2018). Neuroscientists have explored the neural circuits underlying 
moral decision making (e.g., Crockett, Siegel, Kurth-Nelson, Dayan, & Dolan, 2017; 
Hackel & Amodio, 2018). These insightful lines of inquiry have provided an unprec-
edented amount of evidence about how the human mind generates and navigates notions 
of right and wrong which may collectively be called the field of moral psychology.

Recently, Ellemers and colleagues (2019) analyzed empirical studies in moral psy-
chology published from 1940 through 2017, and categorized research questions in moral 
psychology into five principal research themes: (1) moral reasoning, (2) moral judg-
ments, (3) moral behavior, (4) moral emotions, and (5) moral self-views. Moral reasoning 
research explores people’s choices in hypothetical dilemmas, their positions on specific 
issues (e.g., gay adoption, abortion, animal rights), and which values (e.g., loyalty) they 
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endorse as most important in their life as a moral person. Studies of moral judgments 
consider the ways in which we assign moral traits (e.g., humble, honest, trustworthy) to 
other individuals or groups. Moral behaviors are implicated in questions studying self-
reported past behavior or behavioral intentions, as well as reports of cooperative behav-
ior in real life (e.g., volunteering, donating money, forgiving). Moral emotions research 
consists of probing emotional responses people experience in relation to morally relevant 
issues or situations (e.g., guilt, shame, disgust). Finally, moral self-views research focuses 
on the ways in which different aspects of people’s self-views relate to each other (e.g., 
personality characteristics with self-stated inclinations to display moral behavior), as well 
as the way experimentally induced situations relate to people’s self-views.

Ellemers and colleagues (2019) suggest that while there is a large body of work about 
moral reasoning and judgment, much less is known about moral behavior. This asymme-
try in empirical morality research is due partly to the questionable assumption that moral 
reasoning and judgments of others are seen to inform the choices people make in their 
own moral behaviors (Bostyn, Sevenhant, & Roets, 2018). In addition, the measures in 
moral psychology largely rely on subjective self-reports of general dispositions (or overall 
preferences) and intentions (or laboratory experiments). These methods aim to approxi-
mate real-world, morally relevant phenomena, but we need objective data to understand 
and interpret subjective experience, and widespread reliance on these methods has raised 
concerns regarding the external validity of morality research (Graham, Meindl, & Beall, 
2012; Kahane, Everett, Earp, Farias, & Savulescu, 2015). In addition, most empirical 
research in morality has been conducted with undergraduates in decontextualized labo-
ratory settings, which do not adequately address (1) the diversity of moral values across 
populations and (2) the dynamic aspects of morality in everyday life.

Recent methodological advances in the social and behavioral sciences have given 
moral psychologists the opportunity to address some of the ecological-validity concerns in 
the field. In particular, ambulatory assessment methods and language analysis tools pro-
vide a new horizon for researchers to explore morality “in the wild” (Hoover, Dehghani, 
Johnson, Iliev, & Graham, 2018). Of note, other methodological developments in moral 
psychology (e.g., social network analysis, agent-based modeling) can be used to answer a 
host of important questions about daily manifestations of morality, but they are outside 
the scope of this chapter. In what follows, we briefly review the emerging lines of work 
answering real-world questions about moral concerns using these methodological tools.

Ambulatory Assessment in Moral Psychology

The term ambulatory assessment encompasses a wide range of methods used to study 
people in their natural environment, including experience sampling methods (ESMs), 
ecological momentary assessment (EMA), observational (e.g., audio recording such as 
electronically activated recorder [EAR]), and physiological (e.g., cardiac and respira-
tory activity assessed using physiological sensors worn by participants; Trull & Ebner-
Priemer, 2014). Note that ESMs and EMA are often used interchangeably, although 
their historical antecedents and original aims differ (Shiffman, Stone, & Hufford, 2008). 
Ambulatory assessment may be considered the broad term encompassing all the methods 
mentioned above. ESMs and EMA overlap considerably, but specifically, ESMs empha-
size random sampling schemes and often use paper-and-pencil diaries and beepers, while 
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EMA is often used to collect momentary self-report using electronic diaries. In that sense, 
these methods are “active” in their assessment. On the other hand, EAR uses a “passive” 
mode of assessment by intermittently recording snippets of ambient sounds while partici-
pants go about their lives (Mehl, 2017). Below, we briefly review recent applications of 
ESMs and EAR in morality research.

Experience Sampling Methods

Experience sampling methods have provided insightful results regarding daily manifesta-
tions of moral concerns. In addition to providing a way of assessing cross-situational con-
sistency, this form of assessment provides a way of overcoming the limitations of labora-
tory studies and standard assessments (Bolger & Laurenceau, 2013). In an application of 
ESM in probing the temporal dynamics of (im)moral acts, Hofmann, Wisneski, Brandt, 
and Skitka (2014) asked participants five times daily on their smartphone whether they 
committed, were the target of, witnessed, or learned about a moral or immoral act. They 
demonstrated that 28.9% of daily experiences for American and Canadian participants 
are morally relevant, suggesting that moral experiences are relatively frequent in daily 
life, at least in these two countries.

Next, Hofmann and colleagues (2014) probed the content of daily moral experi-
ences. They built upon an influential, descriptive taxonomy of moral dimensions, moral 
foundations theory (MFT; Graham et al., 2013), to account for descriptive content and 
to examine whether everyday moral experiences highlight understudied dimensions of 
morality. According to MFT, the moral domain can be mapped to the following five 
moral foundations: care (basic concerns for the suffering of others, including caring and 
compassion); fairness (concerns about unfair treatment, inequality, and more abstract 
notions of justice); loyalty (concerns related to obligations of group membership, such 
as loyalty, self-sacrifice, and vigilance against betrayal); authority (concerns related to 
social order and the obligations of hierarchical relationships such as obedience, respect, 
and proper role fulfillment); and purity (concerns about physical and spiritual contagion, 
including virtues of chastity, wholesomeness, and control of desires). Hofmann and col-
leagues also added the concern for liberty, a newly added moral foundation (Iyer, Koleva, 
Graham, Ditto, & Haidt, 2012), and two additional categories of “honesty” and “self-
discipline” derived from their own data. The results revealed that for moral acts, 70% 
of responses were about care, 10% about fairness and honesty, and less than 5% about 
loyalty, authority, purity, liberty, and self-discipline.

The descriptive findings of Hofmann and colleagues (2014) also showed that liber-
als mentioned events related to fairness, liberty, and honesty more frequently than their 
conservative counterparts, whereas conservatives mentioned daily events related to loy-
alty, authority, and purity more frequently than did liberals. Hence, liberal–conservative 
differences in this everyday-life framework largely corroborate the idea that political ide-
ology relates to different moral foundations (Graham, Haidt, & Nosek, 2009). Finally, 
these authors found evidence for both “moral contagion,” a phenomenon where becom-
ing the target of a moral act increases the likelihood of committing a moral act later, 
and “moral licensing,” where committing a moral act earlier in the day may increase the 
possibility of a subsequent immoral act.

In a similar vein, ESMs can be used to investigate moral emotions as experienced 
in daily life. For instance, Nakamura (2013) asked 518 American parents to complete 
a questionnaire addressing participants’ work and family life (e.g., work benefits and 
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household division of labor) and to describe their feelings when signaled. In this ESM 
study, participants carried response forms and a paging device programmed to signal sev-
eral times a day. When signaled, they were instructed to report what they were thinking 
and doing, where they were, whom they were with, and how they were feeling. Research-
ers investigated pride as a moral emotion, aiming to explore to what extent daily experi-
ences of pride are associated with achievement, as compared to prosocial behavior and 
praise. Results suggested that being with one’s children and working with clients are 
more closely related to the momentary experience of pride in family and work contexts, 
respectively.

In another study, the relationship between self-reported empathy and actual social 
interactions was examined using ESMs (Grühn, Rebucal, Diehl, Lumley, & Labouvie-
Vief, 2008). Participants were instructed to carry the handheld computer device for a 
week and to respond to questions when prompted. Each time participants received a 
beep, they were instructed to report on their social interactions since the last beep. Posi-
tive and negative interactions were assessed by asking participants two questions: “Did 
you have a positive interaction with another person since the last beep?” and “Did you 
have a negative interaction with another person since the last beep?” The results demon-
strated that individuals with high self-reported empathy display behaviors that make it 
easier for others to relate to them. For example, others may perceive empathic individuals 
as more understanding, more caring, and more concerned about how they feel and what 
they may think.

ESMs have also been employed to examine eudaimonia and compassion as impor-
tant moral virtues. Eudaimonia is well-being analyzed in terms of life purpose, meaning, 
a sense of personal growth, and contribution to the lives of others. Runyan and colleagues 
(2019) found that compassion predicts eudaimonia. Moreover, while not impervious to 
situational factors such as relationship status and stress levels, considerable consistency 
was observed in the relationship between compassion and eudaimonia. Moreover, com-
passion, along with eudaimonia, predicted donating behavior, which standard assess-
ments did not.

To discover patterns between trait morality and the manifestation of moral behav-
iors, researchers studied individual differences in moral behavior and determined whether 
those differences were consistent over time, using an experience sampling questionnaire 
which was designed to assess the extent to which actions and thoughts in the past 3 hours 
were in line with the four virtues of honesty, compassion, fairness, and moral courage 
(Meindl, Jayawickreme, Furr, & Fleeson, 2015). Results showed that moral behavior is 
consistent in many different ways, suggesting that individual differences in moral values 
substantially drive moral behavior. Multiple analyses revealed that individual differences 
in moral behavior appear to be robustly consistent; that is, people who are relatively 
moral on one occasion (or across one set of occasions) tend to be relatively moral on other 
occasions (or across another set of occasions), across a 9-day period.

Finally, ambulatory assessment methods offer a unique opportunity to investigate 
the relationship between daily religious involvement, spirituality, and moral emotions. 
Hardy, Zhang, Skalski, Melling, and Brinton (2014) sent participants a daily survey to 
measure self-reported levels of religious activity, spiritual experience, and moral emotions 
(empathy, gratitude, and forgiveness) for up to 50 days. Researchers found that on days 
that people engaged in more religious activity, they also had more spiritual experiences, 
and on days when they had more spiritual experiences, they also reported feeling more 
empathy, gratitude, and forgiveness.
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Electronically Activated Recorder

From a methodological perspective, momentary and standard self-reports both derive 
their data from participants’ reports of their introspections and perceptions; therefore, 
some of the limitations of traditional self-report methods such as impression management 
and self-deceptive enhancement also apply to momentary self-reports (Paulhus, 1986; 
Schwarz, 1999). Thus, to enrich the researcher’s methodological toolkit, it would be ben-
eficial to complement momentary self-report data with momentary observational data. 
The main distinction between ESMs and momentary observational methods is that they 
adopt different assessment perspectives: active measure for ESMs and passive assessment 
for momentary observational methods.

In earlier EAR studies, participants would attach an EAR device to their belts or 
carry it in a purse-like bag while going about their daily lives (Mehl, Pennebaker, Crow, 
Dabbs, & Price, 2001). Although the function of the EAR—to acoustically sample social 
environments—has remained consistent since 2001, the technology used to make the 
recordings has evolved exponentially. The EAR has progressed from digital tape record-
ers to the current “iEAR” app that can be conveniently downloaded and effortlessly used 
on participants’ smartphones (Mehl, 2017).

EAR has been incorporated in a number of areas in psychology, ranging from the 
assessment of subclinical depression (Mehl, 2006) to narcissism (Holtzman, Vazire, & 
Mehl, 2010). In the realm of morality, Bollich and colleagues (2016) examined the stabil-
ity of everyday moral behaviors using EAR and provided evidence that there are stable 
individual differences in moral behaviors. In their study, 19,063 EAR files containing 
audible speech were coded for everyday moral behaviors (e.g., showing sympathy, grati-
tude) and morally neutral comparison language behaviors (e.g., use of prepositions, arti-
cles) and transcribed by trained research assistants. Then, EAR transcripts were analyzed 
using the Linguistic Inquiry and Word Count (LIWC; Pennebaker, Booth, & Francis, 
2007) text analysis program. They selected word categories that (1) were evaluatively 
neutral (i.e., they had no or minimal positive or negative connotation) and (2) had rela-
tively similar base rates to moral behaviors. Results indicated that stable individual dif-
ferences in moral behavior can be systematically observed in daily life. The implication 
of this research is that individual differences in moral behavior are as stable as individual 
differences in neutral language behaviors. Indeed, these authors argued that analyzing 
neutral language can be recognized as a high benchmark for gauging the stability of 
moral behaviors.

In a recent study, Atari and colleagues (2023) coded tens of thousands of EAR 
recordings based on the typology of moral concerns by MFT, that is, care, fairness, loy-
alty, authority, and purity. These authors examined (1) what percentage of daily language 
behaviors is essentially moral and (2) what moral categories are most talked about in 
daily life. This study was therefore a conceptual replication of Hofmann and colleagues 
(2014) except that it used a passive EAR framework, as opposed to an active ESM frame-
work. Interestingly, and in contrast to Hofmann and associates, only 1.2 to 6.1% of 
daily interactions consisted of some sort of moral content across four different samples. 
Breaking down these percentages based on moral categories, care and purity values were 
consistently and robustly more prevalent in daily interactions, compared with the other 
three moral foundations. The much smaller percentage of moral content in everyday 
interactions found in this study, in contrast to that of Hofmann and colleagues, may be 
attributed to its passive methodology. Indeed, consistent with the general principle that 
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“questions shape the answers” (Schwarz, 1999), the questions in ESM studies remind 
participants of moral phenomena, and hence, participants might overestimate the signifi-
cance of moral content in their answers. Passive assessment of morality based on natural 
language, on the other hand, takes an observational standpoint and is more robust to 
self-report biases. Hence, statistics based on this method might be closer to an objective 
frequency of moral transactions in everyday life.

Language Analysis in Moral Psychology

While much of psychology research has historically focused on understanding moral cog-
nition using survey-based and experimental methods, the explosion of naturally occur-
ring communication data available to researchers through digital media (e.g., blogs, 
email, text messaging, and social media posts) has led to renewed interest in assessing 
text for capturing social dynamics and moral concerns (Hoover et al., 2018). Language 
analysis allows psychologists to link features of what people say and subtleties in their 
linguistic styles to personality traits, temporal and situational fluctuations, and attitu-
dinal preferences (Boyd & Schwartz, 2020; Pennebaker, Mehl, & Niederhoffer, 2003).

People across cultures—especially politicians—tend to frame their positions as fun-
damental moral beliefs about right and wrong. This use of moral rhetoric via language 
is evident in a broad range of social issues. For example, in the United States, both oppo-
nents and proponents of government aid frame their case in terms of some moral issue, for 
example, by focusing on deservingness (i.e., “judgment of who is deserving, as opposed to 
what is most effective”). The efficacy and rise of the use of moral rhetoric may perhaps be 
traced back to the idea that “morality does the work of politics” (Clifford & Jerit, 2013). 
In support of this idea, language analysis of party manifestos has revealed that moral 
rhetoric mobilizes copartisan voters by activating positive emotions about their partisan 
preference (Jung, 2020). These developments have rendered language analysis a fruitful 
and dynamic methodological tool in moral psychology (Sagi & Dehghani, 2014; Weber 
et al., 2018). Recent computational studies in morality research have used a diverse set of 
methodologies, but broadly, language analysis in moral psychology could be divided into 
three categories: (1) dictionary-based assessment, (2) distributed-representation assess-
ment, and (3) human-annotation-based assessment (Atari & Dehghani, 2022).

Dictionary‑Based Assessment of Moral Language

The first modern empirical attempt to provide moral psychological language analysis was 
the Moral Foundations Dictionary (MFD) by Graham and colleagues (2009) as a part 
of their work on MFT (Graham et al., 2013). The MFD consists of 295 words and word 
stems related to each of the virtues and vices of moral foundations, originally designed 
to work with the Linguistic Inquiry and Word Count (LIWC) program. Graham and 
colleagues used MFD to analyze sermons delivered in conservative and liberal churches. 
Consistent with their previous experiments in which they used the Moral Foundations 
Questionnaire (MFQ; Graham et al., 2011), they demonstrated that sermons given at 
liberal churches tend to focus more on issues related to care and fairness compared to 
conservative churches, which tend to focus more on issues related to authority and purity.

Kennedy and colleagues (2021), whose research combined people’s social media 
posts and their self-reported moral values measured through MFQ, investigated the 
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relationship between people’s moral values and their Facebook status updates. These 
authors used MFD and LIWC dictionaries in addition to machine learning methods to 
quantify the associations each moral foundation had with everyday concerns observed 
in social media language. A reliable, but small, relationship was established between 
individual differences in endorsement of moral foundations and everyday language. In 
other words, people’s responses to the MFQ could be predicted using their Facebook 
status updates. This link was found to be robust using a battery of methods, including 
the MFD, LIWC dictionaries, and machine learning methods, although the magnitude 
of the effect varied substantially across the methodologies. They also found that moral 
concerns are not necessarily “everyday concerns,” manifested in the usage of moral lan-
guage in everyday contexts. This was in fact the case for care and purity, as individuals 
with higher scores on the MFQ used both care- and purity-based language with much 
higher frequency, but interestingly, in the case of fairness, loyalty, and authority, this was 
not found.

Recent work using MFD and other dictionary-based methods have demonstrated 
that morally laden messages play an instrumental role in fomenting moral outrage online 
(Brady & Crockett, 2019) and that moral framing can exacerbate political polarization 
(Brady, Wills, Jost, Tucker, & Van Bavel, 2017). Indeed, moral words have a unique 
influence on emotional and cognitive processing. Day and colleagues (2014) suggested 
that framing issues using moral foundations may change political attitudes in at least two 
ways: (1) entrenching: Relevant moral foundations strengthen existing political attitudes 
when framing pro-attitudinal social issues (e.g., conservatives exposed to a free-market 
economic stance) and (2) persuasion: The mere presence of relevant moral foundations 
may alter political attitudes in counter-attitudinal directions in the context of social 
issues (e.g., conservatives exposed to an economic regulation stance).

Distributed‑Representation Assessment of Moral Language

Dictionaries are (1) unlikely to include all of the words that may be relevant to a given 
category, especially when word usage is context-dependent; (2) unlikely to capture tem-
porally dynamic semantic structures as the meaning of words change in time (e.g., the 
word gay has changed meaning from “cheerful” to “homosexual”); and (3) unlikely to 
capture sociolects across races, ethnicities, gender identities, and social classes (e.g., 
English spoken by African Americans may include words, moral in nature, that are not 
recognized in other types of English usage; Sap, Card, Gabriel, Choi, & Smith, 2019). 
One possible answer is to consider the semantic similarity (referencing the underlying 
meaning of words) rather than the morphological similarity (referencing the surface-level 
differences among words), as in dictionary-based methods (Bhatia, Richie, & Zou, 2019; 
Garten et al., 2018).

Using a distributed-representation technique to quantify moral language, Dehghani 
and colleagues (2016) investigated which types of moral similarities (based on moral 
foundations) influence tie formations in social networks. These authors investigated the 
idea that moral homophily (love of the same) plays a crucial role in the formation of social 
networks, hypothesizing that the distance between two people in a social network could 
be predicted by the differences in their moral purity. Indeed, these authors found that 
the distance between two individuals in a social network can be predicted based on their 
similarity in purity language (e.g., language related to religiosity and sanctity).
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Mokhberian, Abeliuk, Cummings, and Lerman (2020) proposed a framework to 
quantify the moral framing of news stories based on distributed representations. This 
framework leverages a large corpus of tweets annotated with regard to moral sentiment 
based on the MFT typology (Hoover et al., 2020). These authors used distributed rep-
resentations (embeddings) of text as features to train a classifier to predict the scores of 
text corresponding to the moral frames. This work shows that moral frames significantly 
improve the prediction of the partisanship of news based on the headlines and showcases 
the feasibility of automatically classifying the moral framing and political partisanship of 
news sources on social media platforms.

Human‑Annotation‑Based Assessment of Moral Language

Other than dictionary-based assessment of moral language (e.g., MFD) and contextual-
ized assessment of moral language using distributed representations, a new methodology 
is being widely adopted by psychologists: manual annotation of moral language as ground 
truth for training machine learning algorithms. In this method, researchers agree on a 
theoretical framework with which they code signals for moral rhetoric. Then, a number 
of trained annotators code textual data for the presence of morally relevant information 
based on an a priori, theoretically justified typology (e.g., MFT). An implicit presuppo-
sition of this approach is that moral language is complex and context-dependent, thus, 
human judges can best capture the nuances and complexities of moral rhetoric in lan-
guage data.

Mooijman, Hoover, Lin, Ji, and Dehghani (2018) conducted an observational study 
of the relationship between online moral rhetoric and real-world indicators of violent 
protest during the 2015 Baltimore protests that erupted following the death of Freddie 
Gray at the hands of the police, and they manually labeled about 5,000 tweets on the 
protests. The embeddings of these tweets and their moral labels were then passed on to 
a long short-term memory algorithm (LSTM; Hochreiter & Schmidhuber, 1997). This 
model was used to predict binary “moral” or “nonmoral” labels for 18 million tweets 
that were posted during the civic disturbance in cities where a protest responding to the 
death of Freddie Gray took place. Using these predicted labels, the researchers showed 
that days with violent protests have higher counts of moral tweets. Not only did the 
degree of moral rhetoric used on social media increase on days with violent protests, but 
also the hourly frequency of morally laden tweets predicted the future counts of arrests 
during violent protests, indicating a dynamic association between moralization and pro-
test violence. These authors argued that the combination of moral outrage (see Salerno 
& Peter-Hagene, 2013) and perceived moral homogeneity contribute to violent protests.

As another example, Atari and colleagues (2022) recently investigated how morally 
homogeneous environments in two social networks (a social media site called Gab and a 
sub-Reddit called Incels) are conducive to hateful rhetoric. These authors relied on MFT 
and handcoded a large subset of posts from these two platforms, one of which is known 
to be highly popular among alt-right individuals (Gab) and the other which is a banned 
sub-Reddit known for disseminating misogynist content (Incels). These authors followed 
the human-annotation-based assessment framework to annotate moral rhetoric in these 
radicalized social networks. By relying on MFT, annotating more than 8,000 posts from 
these platforms, training neural-network models, automatically labeling millions of Gab 
and Incels posts, and performing cluster analysis based on network characteristics, these 
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authors found that users who were more fused to their cluster in terms of moral language 
were more likely to disseminate more hateful, outgroup-derogatory language.

In an attempt to provide a resource for studying moral norms in language, Forbes, 
Hwang, Shwartz, Sap, and Choi (2020) lay out a conceptual formalism for studying 
people’s everyday social norms and moral judgments over a rich spectrum of real-life 
situations as described in natural language. In doing so, they recorded participants’ judg-
ments, including social judgments of good and bad, moral foundations, expected cultural 
pressure, and assumed legality, based on “social rules of thumb.” By relaying on the 
provided data on ethical assessments, these authors trained a computational language 
model, which can reason about social norms in new situations.

More accurate predictions of moral concerns in language are expected as the natural 
language processing models for text representation evolve and become publicly acces-
sible. However, the fairness, transparency, and accountability concerns of such models 
shed doubt on their ethical application for assessing moral language. Issues concerning 
data selection, language annotation, and model training processes can lead to biased 
models with disproportionate capabilities in understanding specific language, generated 
by or directed to particular social groups (Mehrabi, Morstatter, Saxena, Lerman, & 
Galstyan, 2019). Particularly for evaluating moral language, researchers should consider 
the subjectivity of annotators in coding moral concerns as a critical barrier to achieve 
unbiased predictions for controversial or unconventional textual data.

Opportunities for Application of Mobile Sensing 
in Moral Psychology

MSMs capitalize on embedded sensors in digital media devices to capture an individual’s 
experiences as well as their environments. MSMs offer a new opportunity to record and 
track behavior on repetitive occasions at the same time, such as tracking calls and social 
network activities (Ganti, Ye, & Lei, 2011; Gosling & Mason, 2015; Miller, 2012). These 
methods use sensor-rich devices, such as smartphones, wearables (e.g., smartwatches), 
and household appliances (e.g., smart thermostats) that are interconnected (Allemand & 
Mehl, 2017). The microphone, accelerometer, global positioning system (GPS), Bluetooth 
radio, Wi-Fi scans, ambient light sensor, gyroscope, and thermometer are the most com-
mon mobile sensors (Miller, 2012). Other types of data such as visual data (e.g., photos 
taken by camera), device use logs (e.g., battery status), and app use logs (e.g., text mes-
sages, calls, calendar entries) could be entered into a multimodal data processing pipeline 
to capture information about a broad range of features that characterize human behavior 
and the surrounding environment.

One recent study examined the extent to which individuals’ personality traits can be 
predicted on the basis of six different classes of behavioral information collected via sen-
sor and log data harvested from smartphones. Using a machine learning method, Stachl 
and colleagues (2020) successfully predicted facet-level personality traits (some of which 
were morally laden, such as sense of duty and discipline) based on behavioral data col-
lected from 624 volunteers over 30 consecutive days (25,347,089 logging events). These 
findings revealed that specific patterns in behaviors in the domains of (1) communication 
and social behavior, (2) music consumption, (3) app usage, (4) mobility, (5) overall phone 
activity, and (6) day- and nighttime activity are distinctively predictive of personality 
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traits. According to Stachl and colleagues, the accuracy of these machine learning models 
is similar to that found for predictions based on digital footprints from social media plat-
forms and demonstrates the possibility of obtaining information about individuals’ traits 
from behavioral patterns passively collected from their smartphones. All in all, this study 
points to both the benefits (e.g., in research settings) and dangers (e.g., privacy implica-
tions) presented by the widespread collection and modeling of behavioral data obtained 
from smartphones.

MSMs can assist morality research in novel and creative ways. By facilitating a hybrid 
methodology in which all aspects of morality could be examined simultaneously, instead 
of studying them in isolation, MSMs offer high ecological validity. In particular, since 
there is relatively little insight into how moral behavior, emotions, and self-views turn out 
in everyday life, MSMs are able to capture reliable measurement of morality by automat-
ing through use of smartphone apps, text messages, or emails. Language data collected 
by mobile sensors (e.g., spoken conversations) and device logs (e.g., text messages) could 
then reveal moral behavior, emotions, and judgments using the methods we outlined.

At the time of writing, MSMs have not been widely adopted by moral psychologists. 
In one early study, Youyou, Kosinski, and Stillwell (2015) examined the relationship 
between Facebook “likes” and basic human values (Schwartz, 1992; Schwartz & Bilsky, 
1987). Schwartz’s model of basic values includes achievement (personal success through 
demonstrating competence according to social standards), benevolence (preserving and 
enhancing the welfare of those with whom one is in frequent personal contact), con-
formity (restraint of actions, inclinations, and impulses likely to upset or harm others 
and violate social expectations or norms), hedonism (pleasure and sensuous gratification 
for oneself), power (social status and prestige, control or dominance over people and 
resources), security (safety, harmony, and stability of society, relationships, and self), self-
direction (independent thought and action; choosing, creating, exploring), stimulation 
(excitement, novelty, and challenge in life), tradition (respect, commitment, and accep-
tance of the customs and ideas that traditional culture or religion provide the self), and 
universalism (understanding, appreciation, tolerance, and protection for the welfare of 
all people and for nature). Youyou and colleagues found that basic values can be linked 
to Facebook likes but did not provide much information about the interpretation of this 
finding.

In an exceptional effort to explore the link between digital behavioral records 
and moral values, Kalimeri, Beiró, Delfino, Raleigh, and Cattuto (2019) collected self-
reported moral values through questionnaires from more than 7,600 individuals in the 
United States and combined these scores with multimodal digital data from participants’ 
Web browsing behavior and smartphone usage, hence bridging the offline and online 
worlds in the moral domain. Upon acceptance of the study’s privacy policy, all partici-
pants were asked to complete several questionnaires and were allowed access to either 
their basic mobile or desktop traffic data for a period of 1 month. For the participants 
who permitted the logging of their desktop Web-browsing data, the following informa-
tion was recorded: the domain names, the time spent online, and the number of visits 
per day for each domain. Participants who allowed access to their mobile data were 
asked to download an application that logged their Web-browsing activity and app usage. 
The digital behaviors were then used to predict participants’ demographic characteristics 
and moral values obtained via self-report. Results suggested that the Web domains from 
Desktop browsing were more informative than mobile data in predicting moral values. 
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Specifically, the top five websites emerging as the best predictors of moral foundations 
were google.com, foxnews.com, dailykos.com, yelp.com, and imdb.com. Using apps such 
as FOX News and Bible were also predictive of participants’ self-reported moral val-
ues. Visiting websites and apps such as Snapchat, Bible, FOX News, Fantasy Sports, 
WhatsApp, Spotify, and YouTube were predictive of basic values (Schwartz, 1992). Over-
all, the prediction of Schwartz’s basic values proved to be a more difficult classification 
problem than that of moral foundations. In other words, the five moral foundations 
were more robustly related to digital behavioral fingerprints, compared with the 10 basic 
values. The average classification metrics (wherein 50% indicates chance and 100% indi-
cates perfect classification) for moral foundations and Schwartz’s basic values were about 
63% and 58%, respectively. According to Kalimeri and colleagues (2019), the results 
obtained for moral foundations and Schwartz values indicate that online behaviors are 
somewhat informative of people’s moral values, but the poor-to-medium prediction accu-
racies may be related to the complexity of the moral values that are often expressed in 
subtle ways in everyday life, and only occasionally in a more intense, explicit manner in 
the digital world. Much like the link between social media language and moral founda-
tions examined by Kennedy and colleagues (2021), the connection between digital behav-
iors and morality is characterized by complex dynamics, and these may not have been 
accessible to the authors in this study.

In a different domain, namely, health and fitness, moral values have also been linked 
to digital behaviors. Mejova and Kalimeri (2019) collected a demographically representa-
tive sample of over 15,000 U.S. participants and combined technology usage logs with 
surveys on moral foundations, Schwartz’s basic values, as well as emotional contagion 
(i.e., the tendency to feel emotions, such as happiness, or sadness, triggered by the feelings 
expressed by the people with whom one interacts). Combining digital behaviors and self-
reports similar to those of Kalimeri and colleagues (2019) showed that users who score 
higher on purity but lower on values of conformity, hedonism, and security are more 
likely to use health and fitness mobile applications.

Many smartphone data sources (e.g., accelerometer, GPS, light sensors) have not 
been fully used thus far in the moral psychology literature. However, MSMs do offer 
a unique opportunity for psychological research on morality. The value of MSMs for 
research on moral behavior is derived from their ability to assess actual daily behav-
ior unobtrusively and continuously. One of the clearest opportunities is the prospect of 
obtaining a descriptive understanding of how moral values manifest in daily lives of peo-
ple (see Atari & Colleagues, 2023; Hofmann et al., 2014). Indeed, a large number of open 
questions in moral psychology are best answered using new methodological advances 
such as MSMs. In particular, we argue that MSMs are well suited to address two open 
questions, among others, in contemporary science of morality: (1) everyday relevance: 
how relevant are moral values in everyday life and what kinds of moral behavior are most 
prevalent? and (2) social influence: how are moral attitudes, beliefs, or behavior modified 
by the presence or action of others?

Everyday Relevance

MSMs hold much promise as assessment tools for measuring moral behavior in daily 
life. Specifically, MSMs address the limitations of surveys and lab experiments for quan-
tifying behavior by allowing the naturalistic observation of daily behaviors without the 
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experimenter’s interference (e.g., social interactions, chatting with friends, online dona-
tions). Hofmann and colleagues (2014) and Atari and colleagues (2023) both tackled 
the topic of “morality in everyday life” and got somewhat different results with regard 
to the primacy of morality in everyday life. These discrepancies could perhaps be due 
to their different methodologies, ESMs versus EAR. MSMs could further inform our 
understanding of the relevance of morality in everyday life, an ancient yet open question.

MSMs are promising for moral psychology as they can be used to obtain objec-
tive and automated measures of behavior. In addition, they permit researchers to col-
lect data from traditionally hard-to-reach populations around the world. MSMs could 
expand our understanding of the moral domain in different cultures by permitting easier 
recruitment of individuals from different societies into research studies. Today, people 
around the world use a variety of sensing technologies, and the adoption rates will con-
tinue to increase as the technology becomes more affordable. The widespread usage of 
sensing technologies permits researchers to recruit participants from around the world, 
for instance, by having them download sensing software to their own personal devices, 
which can then be used to conduct theoretically informed psychological studies.

Using these methods can shed light on how morality shapes (and is shaped by) every-
day interactions. For example, today it remains unclear what specific classes of digital 
behavior (e.g., app usage, music consumption, communication, mobility behavior, overall 
phone activity) are differentially informative about moral values. Other open questions in 
the domain of morality include: What do smartphones reveal about people’s moral intu-
itions? To what extent do digital behaviors capture patterns of stability and variability 
in people’s everyday thoughts, feelings, and behaviors in the moral domain? What can 
digital behaviors inform us about with regard to the extent to which people differ from 
one another and from themselves over and across time? These questions not only clarify 
past questions in moral psychology, but also help us better develop and refine theories 
(see Harari et al., 2020; Muthukrishna & Henrich, 2019).

Social Influence

Due to a high level of abstraction in moral cognition, moral values may be better captured 
by verbal rather than nonverbal behaviors. This further emphasizes the role of language 
analysis in moral psychology, but that is not to say that nonverbal behaviors do not have 
meaningful associations with morality (e.g., Stachl et al., 2020). MSMs hold a great deal 
of promise in exploring the much-studied link between social interactions and morality 
(see Rai & Fiske, 2011), which can be broken into two categories of face-to-face encoun-
ters and computer-mediated communication (Harari, Müller, Aung, & Rentfrow, 2017).

Face-to-face encounters refer to social interactions carried out in person without a 
mediating technology (Harari et al., 2017). Face-to-face encounters are typically cap-
tured by using microphone sensors and Bluetooth data. Microphones assess whether a 
person is engaged in conversation, the frequency of conversations, their duration, the 
content of conversations, and turn-taking in conversations (e.g., Miluzzo et al., 2008). 
Moreover, microphones provide information about features of speech during in-person 
conversations such as a speaker’s voice pitch, voice frequencies, and speaking rates (Lu et 
al., 2012). Such social encounters may be analyzed, translating raw data across modali-
ties and partners into structured data, by applying machine learning algorithms to micro-
phone data, for example determining when a face-to-face conversation takes place or 
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transcribing audio into written speech (Timmons et al., 2017). Secondary algorithms 
can be used to extract meaning from language data in these conversations as described 
in the language analysis section in this chapter. Bluetooth data may also be used to infer 
whether someone is physically isolated, the number of other co-present people, and the 
number of unique and repeated interaction partners (Chen et al., 2014). In addition, 
Wi-Fi data have been used to identify the size of co-present groups and the duration of 
such encounters (Vanderhulst, Mashhadi, Dashti, & Kawsar, 2015).

Computer-mediated communication refers to social interactions carried out through 
an electronic device (Harari et al., 2017). Computer-mediated communications are often 
quantified using data from smartphone application-use logs. App use logs can assess 
the frequency and duration of incoming and outgoing calls, the frequency and content 
of text messages, and the number of unique and repeated interaction partners a person 
communicates with (Boase & Ling, 2013; Kobayashi, Boase, Suzuki, & Suzuki, 2015). 
Furthermore, app use logs assess the frequency of using email and other communication 
applications (e.g., Facebook, Twitter) to interact with others (e.g., Mehrotra et al., 2017). 
Such communication measures have been used to understand people’s social, family, and 
work networks (Min, Wiese, Hong, & Zimmerman, 2013) and predict personality traits 
(Chittaranjan, Blom, & Gatica-Perez, 2013), stress levels (Ferdous, Osmani, & Mayora, 
2015), and sleeping patterns (Murnane, Abdullah, Matthews, Choudhury, & Gay, 2015).

These developments further highlight how MSMs can be helpful in answering an 
important psychological question: Can social context and conformity influence morality? 
Despite the ubiquity and gravity of moral judgment in our everyday lives, scant research 
exists on the role of conformity in moral judgment outside strictly experimental settings. 
In a classic study, Crutchfield (1955) tested the impact of majority opinion on judgments 
in a variety of different domains, including agreement with morally relevant statements 
and found that only 19% of participants agreed with such statements when alone, but 
58% agreed when confronted with a unanimous group who endorsed the statements. 
Aramovich, Lytle, and Skitka (2012) assessed prior beliefs concerning the acceptability 
of torture, along with their prior moral commitments and sociopolitical attitudes. Then, 
participants took part in an allegedly group discussion concerning the use of torture via 
a computer-simulated chat room; the participants believed they were discussing the topic 
with fellow students. During the simulated group discussion, 80% of the participants 
reported less opposition to torture than they had reported at pretest, but strength of 
moral conviction about torture was negatively associated with degree of pro-torture atti-
tude change. These results suggest that moral judgments in everyday life are susceptible 
to conformity pressures (Kundu & Cummins, 2013). MSMs offer great opportunity to 
test and expand these ideas beyond the lab in face-to-face encounters and computer-
mediated communication.

Pitfalls and Future Directions of Mobile Sensing 
in Moral Psychology

Although MSMs offer a unique opportunity to explore different aspects of human mor
ality, challenges in employing such methods persist. The rest of this chapter will focus 
on describing these drawbacks and explaining how researchers can potentially address 
them.
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Interdisciplinary Issues

While MSMs offer many methodological benefits for psychological research, relatively 
few studies use such methods. This is potentially because researchers interested in using 
MSMs have to assemble a multidisciplinary team. The creation or modification of sens-
ing software requires skills in computer programming and familiarity with setting up 
physical or cloud-based servers. Also, the continuous and fine-grained nature of sensor 
data collection results in massive datasets that can easily reach several gigabytes per par-
ticipant, depending on the types of data collected. These datasets require skills in data-
base management and advanced analytic techniques. Hence, mobile sensing is essentially 
a “team science” effort.

A group that is composed of only psychologists (or other social scientists) may not 
fully utilize the potential of MSMs due to technical barriers. On the other hand, a group 
of researchers without knowledge of the subject matter will fail to understand a socio-
psychological phenomenon, no matter how advanced their methodological apparatus is. 
Thus, conducting a mobile sensing study requires engaging interdisciplinary collabora-
tions ranging from psychologists and computational social scientists to computer scien-
tists. As we have discussed, this promising methodology may be worth the effort since it 
can address questions that are otherwise impossible to answer. On the one hand, efforts 
to capture moral judgments, emotions, and behaviors with technical sophistication per 
se can fail to consider the nuances of moral cognition and its long history in philosophy 
and social sciences. On the other hand, highly theory-driven efforts may not fully actual-
ize the state-of-the-art technologies that outperform traditional methods. In that sense, 
theory and methods coevolve best in team efforts by integrating the theoretical insights 
of moral psychology and the methodological advances of MSMs.

WEIRD Issues

Although people across the globe have much in common, research demonstrates that 
many aspects of psychology, including basic perceptual and cognitive functioning, differ 
depending on social and cultural context. However, samples in studies of moral psychol-
ogy have been drawn mainly from Western, educated, industrialized, rich, and demo-
cratic (WEIRD; Henrich, Heine, & Norenzayan, 2010) societies since the 1940s to the 
present day (Ellemers et al., 2019). An unusual 5% of the world’s population cannot con-
tinue to stand in for all of humanity if psychologists wish to have an ethical, empirically 
sound science that is useful to increasingly polyethnic societies and a globally connected 
world. For the years 2014–2018, the proportional representation of authors and samples 
from the United States decreased and that of other English-speaking and Western Euro-
pean countries increased, thereby improving the internationalization of psychology to 
an extent. However, the participation of the majority of countries has not meaningfully 
increased (Thalmayer, Toscanelli, & Arnett, 2020). To our knowledge, most existing 
work using MSMs (as well as ambulatory and language analysis) focus on WEIRD popu-
lations, neglecting a large slice of human diversity. First, we argue how morality research 
can benefit from studying a non-WEIRD society according to one recent study. Second, 
we discuss how WEIRD issues can impact applications of MSMs in moral psychology.

Morality can be described as a culturally transmitted set of normative values and 
rules that enable people to live together (more or less) in harmony. As such, moral 
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concerns might be known to researchers only by their WEIRD manifestations if their 
sample is largely drawn from WEIRD cultures such as the United States. However, as 
one of the few existing examples of studying morality in a non-WEIRD society, Atari, 
Graham, and Dehghani (2020) evaluated the utility of MFT in Iran, a non-Western, 
Muslim-majority, understudied cultural setting. Across five qualitative and quantitative 
studies, these authors reported that although MFT is a useful framework, it may not fully 
reflect the foundations of morality (possibly, a new “moral foundation”; see Graham et 
al., 2013) in Iran. Specifically, qualitative studies uncovered a new dimension of moral-
ity in the Farsi language, “Qeirat,” which comprises the guarding and protectiveness of 
female kin, romantic partners, broader family, and country. These studies clearly show 
that moral psychological research should investigate, as well as be informed by, cultural 
and linguistic diversity.

As a new technique for capturing psychological phenomena in the wild, MSMs 
depend on widespread use of smartphones. MSMs could help with the WEIRDness of 
moral psychology by permitting easier recruitment of individuals from non-WEIRD soci-
eties into research studies. These days, people across cultures use a variety of sensing 
technologies, and smartphones are very widespread, and the adoption rates are expected 
to continue to increase as the technology becomes more affordable and equitable. The 
widespread usage of sensing technologies permits researchers to recruit participants from 
previously neglected populations, which in turn can be used to develop more inclusive 
theories of human morality. It is thus imperative to promote and conduct cross-cultural 
studies using MSMs. International collaboration and technology transfer (e.g., sharing 
needed technical skills to set up the sensing software and data processing tools) may 
immensely improve such investigation.

Ethical Issues

Article 12 of the United Nations Universal Declaration of Human Rights recognizes the 
protection of privacy as a central human right. Specifically, within the psychological 
research community, the protection of personal data has already been considered as a 
top priority. In this sense, MSMs raise more privacy concerns regarding the collection, 
transfer, processing, storage, potential release, or final deletion of data. The term psy-
chological targeting has been coined to describe the practice of influencing the behavior 
of large groups of people through interventions that are psychologically tailored. This 
kind of targeting is defined by two components that carry their unique challenges when 
it comes to privacy issues: (1) psychological profiling refers to the automated assessment 
of psychological characteristics from digital footprints and (2) psychologically informed 
interventions describe the attempt to influence people’s attitudes and behaviors based on 
their psychological motivations (Matz, Appel, & Kosinski, 2020).

The concept of psychological targeting gained global infamy during the U.S. presi-
dential election of 2016, after a company named Cambridge Analytica inappropriately 
collected data from approximately 87 million Facebook users to target them with psycho-
logically tailored advertising, allegedly aimed to influence people’s voting preferences in 
the 2016 U.S. presidential election. Scandals such as Cambridge Analytica often result in 
calls for stronger regulation and governmental oversight, even though individuals might 
consider themselves immune to psychologically tailored ads (Hinds, Williams, & Joinson, 
2020). The European Union’s General Data Protection Regulation (GDPR) is among the 

518	 Applications in Psychological Science 	



strictest data protection regulations around the globe and the first to mention the concept 
of profiling and its use in automated decision making (Matz et al., 2020). GDPR’s basic 
principle of transparency mandates that companies have to disclose—in clear and simple 
terms—not only what type of data is collected, but also for which purposes and whether 
it will be shared with third parties. Privacy issues are particularly important in moral psy-
chology studies, as morality is closely related to political attitudes (Voelkel, Mernyk, & 
Willer, 2023), and these political attitudes are often the target of psychological profiling.

Privacy behaviors are culture- and context-dependent, which makes the dilemma of 
what to share and what to keep private, across societies and over time, a perplexing issue. 
The task of navigating contextual nuances and the consequences of mismanaging them 
have grown increasingly complicated in the information age, to the point that natural 
human instincts do not seem to be nearly adequate (Acquisti, Brandimarte, & Loewen-
stein, 2015). In short, transparency and accountability are needed in terms of describing 
how sensing software is sampled (e.g., what and how often sensors will activate) and also, 
assuring individuals that any data collected, stored, and shared are handled using secure 
practices. These protocols include using industry-standard techniques for data transfer 
and use of password-protected platforms for secure data storage and sharing. These ethi-
cal issues are even more pronounced in moral psychology research as the very subject of 
study is about people’s judgment of right and wrong.

Conclusion

Human morality is an ancient area of inquiry in philosophy and, more recently, in psy-
chology. As humans’ social lives evolve into complicated forms intertwined with technol-
ogy use, it is important to understand how human morality interacts with technology 
use as well as, conversely, how technology use can affect moral concerns. Mobile sensing 
methods offer a collection of methodological advancements that can help understand 
morality. However, few studies have used such methods to collect objective measures 
of moral behavior as they transpire in daily life, out in the real world. In this chapter, 
we provided a review of recent studies focused on ambulatory assessment and language 
analysis in moral psychology, and then we reviewed the opportunities for applying MSMs 
in moral psychology research by integrating these lines of research. We argue that moral 
psychology in the domain of everyday relevance and social influence can particularly 
benefit from these new methods. Finally, we draw attention to the issues and barriers in 
the field, namely, the issues of interdisciplinarity and overreliance on Western samples in 
MSM research, and ethical pitfalls in collecting, saving, and sharing digital fingerprints.
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C H A P T E R  O V E R V I E W

Mobile sensing technologies provide a unique opportunity for investigating relational 
processes. In this chapter, first, generic views on what constitutes social relationships are 
introduced that help to organize the richness of data resulting from sensing social interac-
tions. This is followed by a short introduction to existing frameworks when dealing with 
interdependent data streams of dyads (like a romantic couple or two friends). We then 
present a relevant selection of relational constructs and their corresponding sensor mea-
sures in the literature. Two innovative studies— the Couple Mobile Sensing Project and 
the Co-Sense Study—are then discussed in more detail as examples of sensing studies in 
the field of couple research. The chapter concludes with a discussion of the opportunities 
and remaining challenges of relationship sensing research.

Why Use Mobile Sensing in Relationship Research?

Mobile sensing technologies afford several unique opportunities for enhancing research 
on couples and families. First, couples and families who are in a laboratory setting are 
more likely to censor or change their behavior than those who are in their home environ-
ments. Thus, the intensity of arguments or other negative behaviors, such as blaming or 
criticizing, may be blunted as participants attempt to limit undesirable behaviors while 
being viewed by strangers. Second, data collected in laboratory settings often require 
researchers to put arbitrary limitations on the length of the interactions, and thus, criti-
cal information regarding the time scale of relationship phenomena is lost. In the case 
of conflict, for example, lab-based paradigms cannot typically determine how long a 
conflict would have lasted had it not been stopped and cannot determine how frequently 
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such conflicts would occur. Third, mobile sensing methods allow researchers to model 
how contextual factors and events may impact relationship processes. External factors 
such as everyday stressors (e.g., a bad day at work, a broken dishwasher, a sick child) can 
affect how couples and families relate to one another, possibly triggering conflict or other 
maladaptive interactional patterns if stress enters the family system and impacts indi-
vidual family members’ mood (e.g., Repetti, Wang, & Saxbe, 2009). Finally, constructs 
and theories central to relationship research—such as conflict escalation, co-regulation, 
and attachment—require modeling of multimodal (e.g., physiology, language, tone), 
cross-person (e.g., parent-to-parent or parent-to-child), time-lagged response contingen-
cies. Mobile sensing technologies (i.e., smartphones and wearable sensors), combined 
with statistical techniques such as multilevel modeling, dynamical systems modeling, and 
machine learning, may be especially well suited for modeling relationship processes (e.g., 
Ferrer & Helm, 2013).

In this chapter, we provide a short introduction to the conceptual foundations of 
close relationships and their characteristics. We then proceed to give examples of mobile 
sensing solutions, assessing these constructs in romantic relationships. Finally, we finish 
with an outlook and critical reflection on the opportunities and pitfalls of mobile sensing 
in relationship research.

Models of Relationships: A Short Introduction

Humans, as Aristotle says in his Politeia, are social animals who are characterized by 
their need to belong (Baumeister & Leary, 1995). Accordingly, lack of social connection 
and loneliness have become public health issues, as they are associated with physical (Val-
torta, Kanaan, Gilbody, Ronzi, & Hanratty, 2016) and mental health problems (Beutel 
et al., 2017) and even predict mortality (Holt-Lunstad, Smith, & Layton, 2010). In adult-
hood, the quality of the romantic relationships plays a prominent role in adult health and 
well-being (Robles, Slatcher, Trombello, & McGinn, 2014), coping with disease (Horn, 
Boettcher, et al., 2019), and healthy aging (Horn & Röcke, 2020).

Given the importance of relational processes, one might wonder why an interper-
sonal perspective has been underrepresented in psychological investigations. Investigating 
interactive relationship processes is challenging. It requires methods that provide frame-
works for dyadic data analysis, that is, considering both interaction partners in the data 
analysis to tap truly interactive processes. More importantly, data on social interactions 
need to be collected on the time scale at which they naturally unfold and in the context 
in which they occur. As an example, conflict has been of interest in couple research for 
a long time. However, it has mostly been studied in instructed lab situations with all its 
limitations regarding ecological validity. Mobile sensing is particularly promising in this 
regard, for it offers an economic way to passively and in a “just-in-time” manner assess 
relational variables around how couples and families interact in a synchronized way.

For a framework to interpret relational variables with mobile sensing, it is recom-
mended that earlier theories attempting to provide generic frameworks of conceptual-
izing dyadic relationships be acknowledged. A dyad consists of two interacting individu-
als that can represent different types of relationships—for example, mother and child, 
two strangers, acquaintances, romantic partners, and sports buddies. However, within 
these types of dyads, great differences in terms of their psychological characteristics can 
be found (Berscheid, 1994); as an example, labeling a relationship with “friendship” 
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can represent different things to different people. As one solution, generic views on the 
qualities of close relationships have been introduced suggesting that relationships can be 
characterized by the level of interdependence of two individuals’ actions, thoughts, and 
feelings (Berscheid, 1994; Neyer & Lang, 2003; Neyer, Wruz, Wagner, & Lang., 2011; 
Reis, Collins, & Berscheid, 2000) and the interconnection of cognitive representations 
of the self and the partner (Aron et al., 2004). Blending the resources of both partners 
opens up compensatory and uniquely relational resources when coping with adversities 
(Bodenmann, 1997; Fergus, 2015) such as diseases (Rohrbaugh, Mehl, Shoham, Reilly, 
& Ewy, 2008) and different forms of stress and trauma (Maercker & Horn, 2013). The 
establishment of psychological representations of the properties of this interdependence, 
or psychological intimacy, is a core feature defining the quality, rather than the type, 
of a given relationship (Reis & Shaver, 1988). From a developmental perspective, a 
highly influential model on the function of relationships is the attachment model, which 
assumes that early caregiver–infant interactions represent a formative experience of co-
regulation of needs and affect (Bowlby, 1996). Recent models of adult psychological reg-
ulation suggest that co-regulation remains in default over the life span and underlines the 
importance of social proximity as a cue for a predictable, safe environment for human 
functioning (Coan & Sbarra, 2015).

These conceptual foundations of close relationships informed the development of 
methodological frameworks that were fundamental to the development in the area. The 
assumption that relationships are constituted by the interdependence of both interac-
tion partners’ behaviors leads to statistical frameworks empirically quantifying and con-
trolling for these interdependencies and calling for the reliance on dyadic data when 
investigating relationships. The actor–partner interdependence model (APIM) controls 
for interdependencies and quantifies mutual influences within and across partners of a 
dyad (Kenny, Kashy, & Cook, 2006). The APIM framework has been highly influen-
tial in recent research on relationships. As an example, it allowed the investigation of 
interpersonal emotion regulation, that is, how the behavior of one partner shows effects 
on the other with respect to the unfolding of the momentary affect of both partners—
considering the interdependencies and the effects of one’s own regulatory behavior on 
their affect (Debrot, Schoebi, Perrez, & Horn, 2013; Horn, Samson, Debrot, & Perrez, 
2019). Furthermore, it allows addressing the predictors and outcomes of conflict situ-
ations in couples and families within and across partners (Saxbe, Ramos, Timmons, 
Rodriguez, & Margolin, 2014).

In contrast, the common fate model (Ledermann & Kenny, 2012) and the recent 
dyadic score model (Iida, Seidman, & Shrout, 2018) focus on quantifying the effects of 
overlapping genuinely dyadic features on other variables in the dyad. Here the dyad is the 
analytical unit. For the common fate model, one latent variable is derived, for example, 
from the perspectives of both interaction partners in one communication episode. The 
dyadic parameters derived from the dyadic score model are the difference and mean of 
the two perspectives of a shared process (e.g., expressions of affection in a support epi-
sode). By considering both dyadic parameters simultaneously in the model, level differ-
ences are accounted for when looking at the role of the asymmetric reporting of dyadic 
processes. The most intuitive, straightforward way of quantifying interdependencies is 
to assess synchronization of behaviors (Butler & Randall, 2012; Coutinho et al., 2019; 
Ireland et al., 2011; Tschacher, Ramseyer, & Koole, 2018) and physiology (Saxbe & 
Repetti, 2010; Thorson, West, & Mendes, 2018; Timmons, Margolin, & Saxbe, 2015). A 
dynamic framework considering dampening and escalating over time within an episode 
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in dyads provides the temporal interpersonal systems framework on emotions (Butler, 
2017; Butler et al., 2017). An example for an escalating dynamic pattern would be the 
cyclical buildup of negative affect over time in both interaction partners during a conflict.

With regard to investigating close relationship processes with mobile sensing, these 
frameworks are useful for structuring and interpreting the data streams at hand. As 
depicted in Figure 22.1, first, interactive behavior and shared contexts can be gathered, 
as, for example, the number of phone calls, encounters, or conflicts or the couple’s time 
spent together per day. This information represents dyad-level information in a multilevel 
framework; in other words, interactive behavior and shared contexts are always identical 
for both interaction partners. This genuinely dyadic information is often assessed, for 
example, via separate logfiles of both partners’ mobile phones and thus is combined from 
two nonidentical data sources with distinct measurement errors. Furthermore, individual 
perceptions regarding the same event might differ; for example, one partner might assess 
an encounter as a conflict and the other not. Second, synchronously sensed individual 
behavior and physiology allow investigation of relationship processes by analyzing inter-
dependencies (like synchronization) and mutual influences.

Sensing Measures in Relationship Research:  
Mobile Sensing Research on Couples

In this section, we provide an overview of parameters based on sensing information used 
in relationship research. In adulthood, the closest and most relevant relationship tends to 
be the romantic one (Reis et al., 2000). We focus on relevant examples of parameters in 
the research of romantic relationships. However, as described above, a generic view on 

Dyad-level data
Sensed frequencies of interactions

Time spent together
Social proximity

Geolocation: Real / virtual
meeting place

Smartphone logs/audio sensing:
Medium of communication (e.g.,

face to face, phone, social media… )
Self-reported/context defined
Type of dyadic relationship

(romantic, peer, friendship,
acquaintance, family members, etc.) 

Partner 1
Individual level
Sensed behaviors

and physiology
Movement, activity,
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Language use
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Individual

experiences (affect,
cognitions, … )

Dyadic processes: co-regulation
Interdependencies and actor and partner effects 

Partner 2
Individual level
Sensed behaviors

and physiology
Movement, activity,
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Language use
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Individual

experiences (affect,
cognitions, … ) 

  FIGURE 22.1.    Sensing dyadic interactions and processes in close relationships: A conceptual frame-
work.
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relationship closeness bridges conceptually to other kinds of dyadic relationships; most 
of the parameters described in the following are not limited to romantic relationships. 
Therefore, the presented examples could inform research in other types of relationships, 
for example, acquaintances or friendships.

Sensing Social Proximity: Time Spent Together 
and Spatial Synchronization

Social proximity, time spent together, and interaction frequencies are relevant context 
factors in psychological research of close and romantic relationships that had been 
assessed mainly by self- and partner-report (Milek, Butler, & Bodenmann, 2015; Rau-
ers, Blanke, & Riediger, 2013). Mobile sensing offers an unobtrusive way of assessing 
these constructs. Most research in this young area relies on two mobile phone sensors: 
GPS or Bluetooth. From logs of Bluetooth enter/exit signals and the corresponding IDs, 
relational variables can be derived (Matusik et al., 2019). Furthermore, synchronously 
assessed accelerometer data can be used to assess shared physical mobility in dyads, often 
in combination with Bluetooth information of the activity partner’s presence (Dlugonski, 
Wood, DuBose, Rider, & Schoemann, 2019; Kuzik & Carson, 2018).

Another variant of Bluetooth sensor information—Bluetooth low-energy beacons— 
are commonly used in commercial contexts. Besides beacons found in places of interest 
like homes, mobile phones can be used as a virtual beacon that allows study of the prox-
imity of different smartphones as a proxy for social proximity; algorithms have been 
developed to extract more precise distance measures from the information (Girolami, 
Mavilia, & Delmastro, 2020; see also Co-Sense Study). Moreover, dyadic location iden-
tification by GPS signals from both partners of a dyad allows detecting corresponding 
mobility patterns, distance between couples, and more or less correspondence regarding 
spatial patterns (Timmons, Chaspari, et al., 2017).The Co-Sense study is presented later 
in this chapter as a further example of the reliance of relationship research on sensing.

GPS- or beacon-sensor information of location can be used as a situational cue of 
proximity for initiating ecological momentary assessments (EMAs; Boateng, Santhanam, 
Lüscher, Scholz, & Kowatsch, 2019; Timmons, Chaspari, et al., 2017) or digital ecologi-
cal momentary interventions (EMIs; Heron & Smyth, 2010). As an example, a recent 
study (Durbin, Debrot, Karremans, & van der Wal, 2020) implemented a couples inter-
vention in the form of text messages to the romantic partners which called them to show 
physical affection. These text message interventions were triggered by the sensed pres-
ence of the romantic partner. Sensing-based assessment and intervention of social behav-
ior is also a promising tool in management of physical disease. As an example, DyMand, 
a mobile, wearable system, has been developed to monitor and possibly intervene in com-
mon dyadic coping and support processes in couples facing a chronic disease (Boateng 
et al., 2019). The system combines dyadic assessment of mobile sensing with EMA and 
EMI triggered by the proximity of the couples (based on Bluetooth sensor information).

GPS sensing can also be used as an automatic indicator of the location of the roman-
tic partner for long-distance couples, as studied with the application CoupleVibe (Bales, 
Li, & Griwsold, 2011). Couples can choose locations (e.g., home, work/school, fitness 
studio), and as soon as the partner arrives there they will receive a distinct vibration sig-
nal on the mobile phone. The authors report that the participating couples in the study 
interpreted the signals as a proxy for the partner’s availability and also as a safety signal 
(he arrived home safely). Sharing sensor information of their romantic partners’ mobile 
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phones, including GPS-based estimates of distance from home, have been interpreted as 
computer-assisted augmentation of the couple communication and fostering closeness 
in this field (Griggio, Nouwens, McGrenere, & Mackay, 2019). As introduced above, 
couple relationships are constituted by interdependence and shared construal of the self, 
the “we” and the world. However, a balance between needs for autonomy and inter-
dependence is a dilemma that requires constant recalibration of romantic relationships 
(Willi, 1985). Automatic sharing of mobile sensing data illustrates possible caveats of 
sensor-informed intervention programs. As an example, the interest of increasing close-
ness and interdependence in the couple by “spying” via sensing information what the 
other is doing 24/7 might be in conflict with the interest of the partner’s autonomy and 
privacy. It requires a very sensitive process of establishing informed and shared consent 
in both interaction partners involved.

Sensing Digital Communication

Mobile devices can provide detailed information about how couples communicate digi-
tally. Using phones, one can track a variety of metrics, including the number of com-
munications or length of communications sent between partners, via either emails, text 
messages, or social media posts. It is also possible to analyze the content and quality 
of these communications through linguistic analysis (e.g., the frequency of words in 
specific language categories using programs such as the Linguistic Inquiry and Word 
Count [LIWC]; Pennebaker, Boyd, Jordan, & Blackburn, 2015) or through extraction 
of measures of vocal quality or tone (e.g., fundamental frequency; Weusthoff, Baucom, 
& Hahlweg, 2013). These data provide basic information about connectivity between 
people in relationships in real life and how the quality of these communications relates to 
or impacts relationship functioning. In one study by Slatcher and Pennebaker (2006), for 
example, researchers examined the content of instant messages sent between dating cou-
ples. Results showed that pronoun and emotion word use in instant messages predicted 
greater relationship satisfaction and stability. More studies followed in this area inves-
tigating social behavior by linguistic analyses of digital communication (Underwood, 
Ehrenreich, More, Solis, & Brinkley, 2015; Underwood, Rosen, More, Ehrenreich, & 
Gentsch, 2012), opening the door for this promising area of sensing research.

Additionally, these kinds of methods can provide information about how digital 
communication might help or harm relationships. Although digital communication 
affords opportunities to connect and stay in touch, it might also impede connection and 
closeness if such communications take the place of in-person interaction (Sbarra, Briskin, 
& Slatcher, 2019). Digital communication lacks aspects of interaction that are central 
components of bonding in relationships, such as physical touch, which may therefore 
limit its positive impact relative to in-person interactions. Furthermore, the impact of 
digital communications on relationship functioning likely depends on how the com-
munications are used, for example, whether digital messages are used to express affec-
tion or to criticize and express discontent (e.g., Luo & Tuney, 2015; Schade, Sandberg, 
Bean, Busby, & Coyne, 2013). The challenges of sensing digital communication include 
privacy issues and informed consent of communicating individuals. Thus, many studies 
rely on romantic couples, with both partners participating in the research project and 
giving consent. Another strategy to avoid privacy and data security issues is to include a 
language analysis algorithm into the app that logs the communication; this only allows 
downloading and analyzing quantified parameters (e.g., percentage of certain word 
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categories as assessed by the LIWC) without relying on personal information possibly 
without consent.

Sensing Daily Conversations of Couples

The sensing of acoustic signals via ambient audio recording has been established in psy-
chological research through the electronically activated recorder (EAR), even before the 
smartphones were invented (for a review, see Mehl, 2017). In the meantime, its potential 
for research on relationship processes has been shown in several dyadic studies using the 
EAR method (e.g., Karan, Wright, & Robbins, 2017; Robbins, Karan, López, & Weihs, 
2018; Robbins, López, Weihs, & Mehl, 2014; Robbins, Mehl, Smith, & Weihs, 2012). In 
these studies, the EAR is applied in parallel to both partners of a dyad, with most studies 
investigating the daily life of couples coping with cancer. After the presence of the partner 
is identified in the recording, couple conversations can be analyzed through ratings and 
analyses of language use. This increases ecological validity as compared to the prevailing 
analog couple conversation paradigms (Gottman, Markman, & Notarius, 1977), where 
couples are video-recorded in the lab talking about a topic of conflict or support. There 
has long been a call in couple research for more ecologically valid assessment of couple 
conversation. Gottman introduced the dinnertime conversation (back then, still in the 
lab) and provided a coding scheme to rate naturalistic couple conversations (Driver & 
Gottman, 2004).

Although the EAR method overcomes ethical and privacy concerns by sampling 
only short sound bites of daily conversations, it is not suitable for capturing an entire 
conversational sequence. If couples or families are at home and are not meeting bystand-
ers, all can give consent to a “day in the life” paradigm that assesses continuous audio 
or even video recordings during a whole day or even longer. This methodology has been 
employed and extended by several groups of researchers, including the UCLA Center on 
the Everyday Lives of Families, which has employed detailed, ethnographic methods to 
capture the home lives of families (Campos, Graesch, Repetti, Bradbury, & Ochs, 2009) 
and couples coping with cancer diagnoses (e.g., Reblin et al., 2018, 2020; Reblin, Sutton, 
Vadaparampil, Heyman, & Ellington, 2019). Recently, the use of anger words of audio 
sensings of naturalistic couple conversations and EMA reported annoyance revealed 
insight into the role of family-of-origin aggression in daily conflict (Han et al., 2020).

Audio recordings allow further automatic analyses of the voice; so far, it has been 
used mostly for detecting emotional responses in (high-quality) lab recordings of cou-
ple conversations addressing conflict and support topics (e.g., Boateng, Sels, Kuppens, 
Hilpert, & Kowatsch, 2020). In spite of these promising developments, thorough psycho-
metrical investigations continue to reveal the questionable validity of the automatically 
extracted emotional features in daily life (Weidman et al., 2020).

One primary challenge related to collecting audio conversations in daily life relates 
to privacy and ethical concerns. Researchers must take care to avoid collecting data on 
unconsented persons and to establish procedures for reviewing and responding to risk 
incidents that might be captured by audio recordings. Challenges also relate to process-
ing the large amount of audio that is collected; researchers typically obtain many files 
that do not contain speech (e.g., TV). They must therefore spend significant time locating 
meaningful interactions and then transcribing or coding them. Furthermore, it is difficult 
to control the quality of recordings obtained in daily life, sometimes leading to uncodable 
files and limiting the accuracy of vocal measures extracted from them.
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Sensing Conflict and Aggression in Dyadic Interactions

Mobile sensing might also provide valuable information regarding couple and family 
conflict and aggression escalation. Conflicts in close relationships often start quickly and 
inexplicably with little warning, resulting from subtle triggers that initiate well-ingrained 
feedback loops and behavioral response contingencies (e.g., Patterson, 1982). In these 
response loops, one person’s negative affect and tone are met with increased negative 
affect and tone in the other person, which can escalate over time into full-blown aggres-
sive episodes (Gottman, Coan, Carrere, & Swanson, 1998). Unlike lab-based conflict 
tasks, mobile sensing provides a unique opportunity to capture naturalistic triggers of 
conflict episodes, to measure how long conflict lasts, and to identify factors related to the 
eventual deescalation of the conflict. Furthermore, researchers can obtain information 
about how frequently the conflict occurred and how the intensity and frequency of real-
life conflicts relate more generally to relationship satisfaction and relationship function-
ing. Through these methods, it is also possible to study how naturalistically occurring 
external events might contribute to conflict and aggression within family systems. For 
example, does conflict occur at a certain time of day or day of the week? What is the 
optimal level of conflict for maximizing relationship satisfaction? Is conflict more likely 
to occur when family members are under stress (e.g., a child misbehaves or the car breaks 
down)?

A number of studies to date have used mobile sensing methodologies to better under-
stand conflict processes in close relationships. In some of the earliest studies examining 
conflict in naturalistic settings, researchers used daily diary data to measure conflict on 
an hourly or daily basis and to test how various occupational stressors or other types of 
stress impact marital and family functioning (e.g., Almeida, Wethington, & Chandler, 
1999; Bolger, DeLongis, Kessler, & Wethington, 1989; Story & Repetti, 2006; Timmons, 
Arbel, & Margolin, 2017; Timmons & Margolin, 2015). The results of these studies gen-
erally show that families exhibiting high levels of aggression showed increased levels of 
spillover, a process whereby negative moods and daily stressors increase the likelihood of 
family conflicts occurring on the same day or even the next day.

Beyond daily diary EMA data, new technologies and sensing systems are being 
increasingly incorporated to study conflict processes in real life. For example, in one 
study conducted by our research team, we captured levels of electrodermal activity using 
wearable sensors during naturally occurring periods of relationship distress. Women 
with higher levels of family-of-origin aggression and a history of dating aggression per-
petration showed greater physiological reactivity in daily life when feeling annoyed at 
their romantic partners. Moreover, heightened physiological reactivity in daily life medi-
ated the association between family-of-origin aggression and dating aggression among 
women (Timmons et al., 2019). Another study conducted by our team examined how 
language use changes during periods of naturally occurring conflict in couples with high 
versus low levels of aggression. Results showed that couples with high levels of aggression 
switched to using more symmetrical “you” speech (where both partners simultaneously 
used second-person singular pronouns) when feeling annoyed at each other, suggesting 
increased blaming and focus toward the other person’s actions and behaviors (Timmons 
et al., 2021).

A challenge when conducting research aimed at capturing conflict processes is 
ensuring conflict episodes are captured by the recordings and then having procedures for 
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locating them in the large number of audio recordings obtained. Researchers conducting 
this work must ensure that they sample frequently enough to capture conflicts that do 
occur and to sample for a long enough duration that they obtain enough instances of con-
flict to meaningfully model the processes of interest. Additionally, it is critical to develop 
strategies for finding conflicts in the files: Listening to all audio recordings obtained to 
locate conflicts can be highly time intensive. Some strategies include using EMA surveys 
or exit interviews to identify likely instances of conflict to reduce the number of files that 
must be reviewed.

Synchronized Bodies: Sensing Physiological Linkage and Physical Health

One interesting application in mobile sensing research includes capturing synchroniza-
tion in physiological arousal across people in daily life. To date, a small but growing body 
of research has shown that people in close relationships, including family members and 
romantic partners, demonstrate covariation in their levels of physiological arousal over 
time. This covariation, also known as co-regulation, has been linked to a variety of indi-
ces of relationship functioning, such as relationship satisfaction, attachment style, and 
conflict (Butler & Randall, 2012; Saxbe & Repetti, 2010; Sbarra & Hazan, 2008; Tim-
mons, Margolin, & Saxbe, 2015). However, specific results have varied depending on 
the context in which linkage occurs and on the physiological response system measured. 
Importantly, mobile sensing methods provide several unique opportunities to study phys-
iological linkage. Of note is the ability to study linkage over time frames longer than a 
standard lab visit, which is typically limited to several hours. Moreover, these methods 
allow researchers to model how physiological linkage varies across contexts and how 
naturally occurring events or stressors might amplify or dampen these processes.

A related promising application for mobile sensing research includes studying how 
relationship processes impact physical health. Individuals exposed to high levels of inter-
personal aggression exhibit increased stress responding, resulting in repeated activation 
of the fight-or-flight response that triggers inflammatory responses, which causes wear 
and tear on the body over time (Repetti, Robles, & Reynolds, 2011; Wilson, Bailey, 
Malarkey, & Kiecolt-Glaser, 2021). This repeated and cumulative wear and tear may 
then put individuals at risk for a variety of negative health outcomes over the life course 
(Burman, & Margolin, 1992). Although much research focuses on the impact of large-
scale stressors and events, it has been theorized that small, quotidian interactions between 
people in close relationships can have insidious impacts on regulatory response systems 
(Repetti, Wang, & Saxbe, 2011). Mobile sensing methods provide a unique methodology 
to test how small-scale behaviors in close relationships impact later health outcomes. For 
example, in one paper examining heart rate in couples in daily life, results showed that 
women’s feelings of annoyance toward their dating partners were linked to heightened 
heart rate in their male romantic partners while sleeping that same night. Conversely, 
women’s feelings of closeness were associated with lower overnight heart rate in their 
male partners (Schacter et al., 2020). Given that sleep is a restorative process, heart rate 
when sleeping might serve as a critical surrogate endpoint for determining how short-
term relationship dynamics relate to short-term health processes and thereby influence 
long-term health.

Although capturing fine-grained physiological data in daily life can provide impor-
tant insights into couple processes and health, data collected in daily life can lack 
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experimental control. Various external factors (e.g., exercise, watching a scary movie, 
going outside into the heat) can impact physiological signals and contribute to high levels 
of noise and artifacts in the signal obtained. Care must be taken to collect detailed mea-
sures of contextual activities (e.g., using EMAs or automated sensors to track exercise) 
and to statistically adjust for confounding variables. Participants must also agree and be 
comfortable with wearing sensors for an extended time. Participants may forget to wear 
devices or take them off for a variety of reasons (e.g., discomfort, attending a party), 
potentially leading to nonrandom missingness that could bias analyses.

Two Examples of Psychological Research on Couples  
Using Mobile Sensing

The Couple Mobile Sensing Project: 24 Hours of 109 Couples

The Couple Mobile Sensing Project provides one example of how mobile sensing can be 
incorporated into relationship research (Timmons, Chaspari, et al., 2017). In this project, 
our team used mobile phones and wearable devices to track ongoing relationship func-
tioning in real time and real life. As part of the project, dating couples visited the labora-
tory at 10:00 A.M. and were outfitted with a chest monitor, electrodermal activity (EDA) 
sensor, heart rate monitor, and smartphones. The phones took surveys, tracked GPS, 
and also took 3-minute audio recordings every 6 minutes. Couples carried the phones 
for a 24-hour period and responded to hourly surveys regarding their moods, the quality 
of their interactions, and other factors, such as whether they interacted, exercised, used 
drugs, and so on. After 24 hours, couples returned to the lab where they completed an 
exit interview to record their activities for each hour of the day and to complete a ques-
tionnaire reporting the extent to which they changed their behavior as a result of the 
study procedures.

Once the data were collected, we created a file linking all data streams obtained over 
the 24-hour study period. Measures captured from the mobile devices include hourly 
survey reports, electrodermal activity, movement, body temperature, heart rate, GPS, 
and audio files. Research assistants (1) manually transcribed all audio files to obtain 
measures of linguistic content and (2) coded the files to obtain metrics of communication 
quality and tone (e.g., criticism, validation). We further processed audio files by extract-
ing fundamental frequency to determine couples’ vocal pitch when speaking to each other 
(e.g., Weusthoff et al., 2013). Using these data, we have been able to examine covariation 
across different data stream modalities (e.g., hourly self-reports of couple conflict linked 
to physiological activity, communication patterns, language use, and vocal tone). Fur-
thermore, we have been able to test (1) linkages in responding across dating partners over 
a variety of time scales (ranging from seconds to minutes), (2) how concurrent contextual 
events (e.g., events occurring in that same hour) impact linkages across people and across 
data modalities, and (3) how global factors (e.g., dating aggression or relationship satis-
faction) impact these processes.

In one example paper resulting from this project, we tested whether romantic part-
ners showed covariation in their levels of electrodermal activity over the course of one day 
(Timmons, Chaspari, et al., 2017). Results showed that romantic partners evidence simi-
larity in their levels of physiological arousal over time, but only when they are physically 
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together. Moreover, linkage in levels of physiological arousal was greater in people with 
anxious and avoidant attachment, suggesting increased interpersonal reactivity among 
those individuals with insecure attachment styles. In another example paper, our team 
used the multimodal data streams as input features in machine learning algorithms aim-
ing to detect conflict in couples (Timmons, Arbel, et al., 2017). Results showed that using 
data such as vocal content and physiological arousal, we could detect when couples were 
having relationship conflicts within a 1-hour time frame with 79% accuracy.

In total, this project demonstrates how mobile methods can be utilized on multiple 
time scales, multiple levels of analysis, across people, across time, and across modalities 
to obtain rich and time-sensitive data. However, several challenges related to collecting 
such data should be considered. First, recruiting research participants willing to provide 
such detailed data about their daily lives can be difficult and potentially lead to sampling 
biases. Second, collecting and processing such data can require a significant time invest-
ment. Researchers must write scripts and programs for processing, cleaning, and extract-
ing the vast amounts of physiological and audio signals obtained. Transcribing and cod-
ing audio files is also highly time intensive. In our study, which included 24 hours of 
data, our team spent 4 years transcribing audio files and 5 years coding them. Automated 
transcription software has evolved significantly in recent years and can now assist in such 
efforts; however, such software can still output significant numbers of errors that require 
human inspection and revision. Care must also be taken to combine data streams that 
are obtained from multiple sources (e.g., sensors, phones) and on different time scales 
(e.g., physiological data, EMAs) prior to conducting analyses. Although mobile sensing 
research is intensive, requiring significant effort to collect, clean, process, and assemble 
the data streams, it also provides high precision and flexibility for capturing dynamic 
features of real-life relationship functioning.

The Co‑Sense Study: Co‑Regulation in Younger and Older Couples

The Co-Sense study is another example of psychological relationship research incor-
porating sensing measures. The goal of the Co-Sense study is to investigate interper-
sonal emotion-regulation strategies in daily life as an important pathway between rela-
tional processes and individual well-being and health (Horn, Holzgang, & Rosenberger, 
2021). Social proximity is seen as constituting relational resources for regulating affec-
tive responses (Coan & Sbarra, 2015). So far, most studies in this context have been 
conducted in the lab, with handholding as a proxy for social proximity. Even less is 
known about the role of daily social regulational resources over the lifespan: Do older 
couples benefit more or less from time spent together given the known tendency to pri-
oritize pleasant social experiences as confronted with a limited time horizon (Carstensen, 
Isaacowitz, & Charles, 1999)? Are individuals with higher depression risk benefiting less 
from social proximity given the interpersonal patterns that have been linked with depres-
sion risk (Joiner & Coyne, 1999)?

To get insight into the role of social proximity in daily life, mobile sensing of the 
physical presence of the partner (or, to be precise, the partner’s smartphone) by beacon-
based low-energy Bluetooth sensing offers exciting new possibilities in this research area. 
It builds upon existing EMA studies, underlining the regulatory function of self-reported 
perceptions of psychological closeness in couples’ daily lives (Debrot et al., 2013; Horn, 
Samson, et al., 2019; Laurenceau, Barrett, & Pietromonaco, 1998).
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Furthermore, audio sensing of couple conversations allowed the assessment of real-
life communication in the couple. To investigate sequences of conversations in their 
entirety, couples initiated the sensing when they were alone and anticipated time together 
talking. As mentioned earlier, a way of assessing we-ness (Karan, Rosenthal, & Robbins, 
2019) and relational dynamics in couples’ language indicators has been established in 
relationship research (for an overview, see Horn & Meier, 2022). This opens the door for 
investigating relational processes in verbal couple communications at scale.

The core of the Co-Sense study was a dyadic 3-week mobile sensing and EMA (three 
times a day) period relying on the Movisens app (Movisens, 2018). To assess individual 
moderators of these daily interactions, couples were invited into the lab to test their cog-
nitive functioning (via cognitive testing), mental health history, and current adjustment 
challenges (via clinical interview). Furthermore, individual and relational characteristics 
were assessed by an online questionnaire prior to and 3 months after the mobile sensing 
period. In total, N = 116 German-speaking Swiss opposite-sex couples participated in the 
study aged between 18 and 33 and 60 and 83 years. For analyzing the data, daily “time 
spent together” corresponding to the three EMA reports (morning, midday, end of the 
day) was derived from the logged “enter”/“exit” signals of Bluetooth connections of both 
partners, which required artifact cleaning. EMA self-reports of time spent together were 
helpful to clean contradictory information from the partner’s sensing logs. In our study, 
the raw data of both partners showed inconsistencies and rapid fluctuation (possibly due 
to technical conditions like low battery, etc.). In general, the advantage of dyadic sensing, 
that is, relying on cell phone sensor information of both partners is that both sources 
of information can be used and aggregated, and thus possible nonsystematic measure-
ment errors can be reduced. We additionally used information reported in the EMA (e.g., 
whether partners report to have had any contact with the partner) to identify artifacts.

Audio-recorded conversations were transcribed manually and analyzed using the 
validated German version of LIWC (Meier et al., 2019). First analyses reveal a robust 
coupling of fluctuations of sensed physical closeness and perceived psychological close-
ness for all couples, regardless of whether they are old or young or at risk of depression 
(Horn, Meier, & Huber, 2021). Furthermore, daily conversations about mundane topics 
reveal differences in language use between older and younger couples: Younger couples’ 
language indicates more focus on the individuals in the relationship (as indicated by 
“you” and “I” pronoun usage), while older couples showed more communal orientation 
(as indicated by more “we” pronouns) and words indicating less high-arousal emotion 
(Meier et al., 2021). Furthermore, it was possible to extract topics raised in daily com-
munication indicating more complex and abstract social references in older couples’ con-
versations and more concrete mundane topics in younger couples.

Future Directions in Couple Mobile Sensing Research

Methods in mobile sensing research are advancing quickly, in line with innovations in 
industry and health care that seek to utilize novel technologies as a way to respond to 
societal challenges and to promote mental and physical health. One exciting applica-
tion on the horizon includes the integration of machine learning methods for passive 
and automatic measurement of relationship processes using mobile sensors in daily life. 
Given the identified individual and societal costs of dysfunctional relationships and lack 
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of social integration taking advantage of the potential of personalized interpersonal 
EMIs (Heron & Smyth, 2010) based on mobile sensing seems particularly relevant. Pas-
sive and automatic sensing may be particularly beneficial in the context of couple and 
parent–child interaction therapies. For example, systems such as these could be used to 
predict conflict or shifts in emotions and to send interventions in moments of critical 
need. Adaptive and remote sensing that is dynamically responsive to shifting contexts 
could be used to augment therapy gains and to increase the reach and impact of mental 
health care. Relatedly, such interpersonal intervention systems could be personalized for 
increased therapeutic efficacy. Specific groups of people (e.g., people with high aggression 
or specific attachment styles) may evidence particular patterns (e.g., increased conflict 
during stress) of relationship functioning. Through machine learning, it may be possible 
to learn couple- or family-specific patterns and to learn which interventions work for 
which couples and families. Moreover, sensing solutions promise to reduce the burden of 
the assessment of relevant variables dramatically; this could allow access to populations 
that are hard to reach and for various reasons are not able to comply with demanding 
study designs. Often, these difficult to reach groups are already facing adversities, includ-
ing disease, stressful life events, or trauma, which in turn affect not only the individual 
but also close relationships. Sensing solutions might open the door to the necessary sci-
entific groundwork for developing supporting interventions for these challenged social 
systems. Research in this domain will require careful consideration of ethical and privacy 
practices; nonetheless, applying mobile sensing technologies to the development of new 
personalized care and precision medicine models holds immense potential for intervening 
upon maladaptive relationship processes and for improving health care applications for 
couples and families generally.
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C H A P T E R  O V E R V I E W

The world that surrounds us affects our health, well-being, interactions, and perfor-
mance in myriad ways. Modern- day sensing technologies are now able to help quantify, 
monitor, and quickly analyze multiple environmental aspects that affect our lives, and the 
data provided allow for the design and implementation of countermeasures to issues that 
degrade the performance and capability of individuals. In the future, designing work-
place environments that can automatically assess and respond to human comfort needs, 
to optimize environments for both physical health and emotional well-being, will be the 
next step in enhancing the productivity and safety of workers. This chapter reviews some 
of the most salient and novel work in this area and appraises how new technologies, sen-
sors, and human– environment interactions can inform each other. We provide an over-
view of data derived from wearable sensors that have been used in workplace settings to 
assess the impacts of various built environment attributes on stress and health behaviors. 
In this context, we review how environmental features such as the physical layout of the 
workplace, light, sound, temperature/humidity, and indoor air quality (IAQ), including 
carbon dioxide (CO2) and volatile organic compounds (VOCs), may be measured, moni-
tored, and modified to optimize both physical and emotional health. Finally, we review 
evidence for the impact of such data- driven design for health and the likely high return 
on investment for both the organization and worker.

Introduction

Our surroundings impact all aspects of health, including physical health, emotional well-
being, health- related behaviors, and psychosocial interactions. Sensing technologies are 
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now available to objectively measure and assess the impact of many aspects of the envi-
ronment on many aspects of health. Figure 23.1 presents a conceptual layering of the 
elements of the environment, both built and natural, which impact health and well-being. 
Measurable variables at each of these layers, such as air quality, airflow, temperature and 
humidity, light, sound, and elements of natural environments, impact aspects of health at 
all levels, including social, behavioral, psychological, physiological, and molecular.

The proliferation of noninvasive wearable and stationary technologies measuring 
both health and environmental factors in real or near-real time has brought environmen-
tal psychology to a turning point, in which objective and quantifiable information can 
inform the rich interplay between individuals and their surroundings. Data analytics has 
advanced to the point that these complex interactions can be teased apart to elucidate 
which elements of the environment, alone or in combination, affect which elements of 
health and well-being. In turn, these data can be used to design and operate environments 
to optimize health, well-being, and performance.

This chapter reviews some of the most salient and novel work that relates human 
health, well-being, and performance to variables in the built environment, and how new 
technologies, sensors, and human– environment interactions can inform each other. It 
provides an overview of data derived from wearable sensors that have been used in work-
place settings to assess the impacts of various built environment attributes on stress and 
health behaviors, such as physical activity and sleep. In this context, this chapter reviews 
how environmental features such as the physical layout of the workplace, light, sound, 
temperature and humidity, and IAQ, including CO2, and VOCs, may be measured, moni-
tored, and modified to optimize both physical and emotional health. We also review evi-
dence for the impact of such data- driven design for health on a high return on investment 
for both the organization and the worker. In the future, designing workplace environ-
ments that can automatically assess and respond to human comfort needs, to optimize 
environments for both physical health and emotional well-being, will be the next step in 
enhancing the productivity and safety of workers.

 FIGURE 23.1.  Environmental attributes affecting health. From Engineer et al. (2021). Reprinted 
with permission from Elsevier.

Wearable Technologies in the Workplace 543



Impacts of Elements of the Built Environment  
on Stress and Relaxation Responses

Many elements of the built environment can induce stress, while others can ameliorate 
it. Lighting, glare, noise, temperature and humidity extremes, and noxious odors are 
all elements of the environment that can stimulate stress responses and alter thinking, 
performance, and subjective and objective well-being. As an example, military personnel 
working on airplane tarmacs may be tasked with rapidly servicing, fueling, and loading 
payload onto an attack aircraft, all while floating on an aircraft carrier. This type of work 
requires precision, dexterity, split-second timing, rapid reaction time, and complex rou-
tines spread across multiple people, with deadly consequences for errors. Often, person-
nel performing these types of tasks on an aircraft carrier are inundated with high winds, 
cold and humid air, high levels of sun exposure, and noxious fumes, and they are dealing 
with equipment that is explosive, biologically deadly, and expensive. This combination of 
job tasks can be made challenging by both built and natural environment elements and, 
while extreme examples, reflect typical stressors that all workers face in less extreme 
occupational settings. Conversely, aspects of the environment that can alleviate the stress 
response include diffuse light, which follows the tempo of the sun, nature sounds and 
soft music, temperature and humidity within a comfortable range, and access to windows 
with views of natural environments. Hospitals have recently begun incorporating nature 
scenes, variable lighting, and access to natural environments (e.g., atriums, courtyards) 
within their facilities to enhance healing and positive mood during hospitalization.

In occupational environments, environmental attributes such as noise, lighting, and 
ventilation have been linked to job satisfaction (Veitch, Charles, Farley, & Newsham, 
2007), and productivity has been shown to be linked with well-being, degree of auton-
omy, and quality of coworker interaction (Adams, 2019). While such subjective data are 
informative of individuals’ perceptions of their experience, it may not accurately reflect 
aspects of the environment that contribute to different aspects of health and well-being. 
Quantitative objective measurement of health outcomes is therefore important to pro-
vide accurate and actionable insights into aspects of the built environment that impact 
health and to inform design and operations of the built environment to optimize occu-
pant health. Such quantitative data can provide design professionals, employers, occupa-
tional therapists, and human factors engineers with granular information regarding the 
design and operation of built environments to optimize physical health and emotional 
well-being. The recent proliferation of wearable devices for monitoring many aspects of 
health, combined with recent technologies allowing continuous monitoring of environ-
mental attributes, such as workplace noise, lighting, temperature, humidity, and ventila-
tion, have allowed for objective evaluation of the complex interactions between these 
many variables.

Rationale for Using Wearable Devices to Measure Impacts  
of the Built Environment on Health in the Workplace

Estimates indicate that people spend 90% of their time indoors (U.S. Environmental 
Protection Agency, 1989) and, pre-SARS-CoV-2, about one-third of their waking hours 
at their workplace (Conrad, 1988). Maximizing the health, well-being, and performance 
of workers is essential to both the individual and organization. Most occupational health 
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monitoring has typically focused on exposures to various work hazards such as chemi-
cals, gasses, and environmental conditions, which are monitored to reduce such hazards 
and mitigate safety risks. Wearable health devices, however, do not monitor such expo-
sures. Most currently available wearable health devices measure physical activity, pos-
ture, and heart rate, from which measures of the stress and relaxation responses and sleep 
quality can be derived (see the section “Heart Rate Variability”). Such health outcome 
measures provide a different kind of insight into the impacts of the built environment on 
health, beyond the impacts of environmental hazards that cause disease, and shed light 
on the role of elements of the built environment in enhancing both physical health and 
emotional well-being.

Need for Objective Measures of Health in the Workplace

To begin to objectively and noninvasively measure objective worker performance and 
well-being in the industrial and occupational environment, a combination of measure-
ment techniques that gather data at various resolutions would be preferable to subjec-
tive surveys and behaviorally anchored rating scales. Self-report and similar tools rely 
on subjectivity for ratings, thus creating multiple shortfalls in accurate collection of 
real-time data of worker health and well-being. While self-report can be an extremely 
useful tool for uncovering emotions and preferences, it has shortcomings in some cir-
cumstances, particularly where affect and emotion concealment are strong motivators 
in certain occupations. Military service members and law enforcement officers are two 
such groups, with multiple reasons to conceal reports of health and well-being in occu-
pational environments where they are compelled to remain mission capable, to evade the 
perceived stigma of mental health dysfunction, and to maintain the stoic persona typi-
cal in this population (Hoge et al., 2004). While these are two examples of specific and 
often extreme work environments, in general work settings, objective measures using 
wearable devices can help to add a layered understanding to augment the shortcomings 
of self-report. In occupational settings, accurate, quantifiable data derived from wear-
able devices can provide both the worker and the employer valuable information regard-
ing readiness for task performance and need for appropriate health interventions should 
work readiness be suboptimal.

Health and Environmental Monitoring Devices in the Workplace

Wearable Devices: Physiological Responses

A review of the latest state-of-the-art wearable health-sensing devices reveals several 
innovative technologies that are both available in the marketplace and in development. 
Wearable sensor-based health monitoring systems include sensors that can be integrated 
into textile fibers in clothing, elastic bands that attach to the body, or sensors that can be 
directly placed on the body and/or skin through deformable sensors. These sensors can 
measure physiological health metrics such as electrocardiogram (ECG), electromyogra-
phy (EMG), heart rate (HR), body temperature, electrodermal activity (EDA), arterial 
oxygen saturation (SpO2), blood pressure (BP), and respiration rate (RR), all of which can 
be monitored and transmitted in real time (Majumder, Mondal, & Deen, 2017).
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Heart Rate Variability

Most wearable health devices measure a combination of heart rate (either ECG or pulse-
based), heart rate variability (based on beat-to-beat intervals), physical activity (actigra-
phy), and posture. From this raw data, several physiological measures can be derived. 
Heart rate variability (HRV), based on the variability of time intervals between beats, 
gives an indication of the status of the autonomic nervous system response—the balance 
between the sympathetic stress response and parasympathetic relaxation response. HRV 
can be analyzed in the time or frequency domains, and measures that are derived include 
SDNN (standard deviation of normal-to-normal RR intervals) and RMSSD (root mean 
square of successive differences between normal heartbeats) (Thayer & Sternberg, 2006). 
The former is generally thought to reflect the sympathetic adrenergic response and the 
latter reflects a combination of the sympathetic and parasympathetic responses. Since 
these two modes of analysis reflect different aspects of the autonomic nervous system 
response, they may not concordantly change in response to different stressors (Williams 
et al., 2019). Generally, a decrease in HRV indicates an increased stress response, while 
an increase is associated with an enhanced relaxation response (Thayer & Sternberg, 
2006). Combinations of these measures have been derived further to reflect other aspects 
of health (e.g., sleep quality). Thus, algorithms combining physical activity, HRV, and 
posture, have been developed to derive information regarding sleep quality from some 
wearable sensors, including sleep latency (time to fall asleep), sleep duration, postures 
during sleep, light sleep, deep sleep, and even rapid eye movement (REM). These algo-
rithms have been compared to gold-standard sleep quality data collected in the sleep lab 
(Lee et al., 2018).

Wearable Devices: Social Interactions

Other aspects of health that can be measured in the workplace include psychosocial 
interactions, based on collections of snippets of ambient sounds and human speech using 
devices such as the electronically activated recorder app (EAR; Mehl, 2017) and socio-
metric badges (Kim, McFee, Olguin, Waber, & Pentland, 2012). In the latter, employ-
ees wear sociometric badges like identification badges; these badges measure fine-scale 
speech patterns known to correlate with social behavior (e.g., speaking time, speed, and 
energy). These badges also use an accelerometer to measure body movement to analyze 
social dynamics between badge wearers (e.g., gestures, posture, mimicry of others’ body 
movements). Because these devices collect data over longer periods of time (hours or 
days), they are capable of more accurately reflecting social interactions and emotional 
responses during those interactions.

Experience sampling (covered in greater detail in Chapter 13, this volume) is 
another approach to collecting such data as well as data related to perceived stress and 
mood. Experience sampling can be carried out in three ways: time-contingent, in which 
questions are sent to a participant’s smartphone/device several times per day, event-
contingent, which relies on the individual taking the initiative to report a salient event, 
and location-contingent, which relies on the participant reporting a salient event in given 
locations (Mehl & Conner, 2012). All these methods rely on prompts: in the case of 
time-contingent, they ping to the smartphone; in the case of event-contingent, the event 
itself; and in the case of location-contingent, a prompt, usually visual, is provided as the 
participant enters the location that is being evaluated. In all these cases, the subjective 

546	 Applications in Psychological Science 	



survey data can be linked through time or location stamps to the other data streams 
being collected (e.g., HRV or physical activity).

Wearable Devices: Environmental Monitoring Devices

Numerous environmental monitoring devices are available to measure air quality, VOCs, 
CO2, airflow and turbulence, light of varying wavelengths and intensities, glare, sound at 
levels ranging from low (<30 decibels) to high (>90 decibels), and temperature and relative 
humidity (Al-Mamun & Yuce, 2019). Most environmental monitoring devices are sta-
tionary, wall-mounted, movable, placed on desks or furniture, or handheld. A few wear-
able environmental monitoring devices have been developed for selected environmental 
attributes. The most well-established devices measure light intensity and/or circadian 
light (e.g., Philips Actiwatch) and a combination of light and activity measured by the 
Dimesimeter, which is a light and activity sensor (Rea, Figueiro, Bierman, & Bullough, 
2010). Some wearable environmental monitors have been developed for research pur-
poses to measure a limited number of attributes, including sound, temperature, CO2, 
and light (Ghahramani et al., 2018). Others detect speech and nonspeech-related sounds 
(EAR).

Environmental monitoring technology is expanding to include self-powered wear-
able monitoring devices. These devices harvest energy from body heat and body motion 
to power monitoring. By leveraging nanotechnology to build flexible, self-powered, mul-
timodal wearable sensing devices, personal health and environmental exposure can now 
be monitored with maximum comfort and a longer system life (Misra et al., 2015). This 
sensing technology uses nanowires for environmental monitoring such attributes as toxic 
gas exposure. There is a strong association of exposure to toxic gasses such as ozone in 
the environment with health responses such as wheezing and EKG (Misra et al., 2015). 
Other new technology uses capacitive micromachined ultrasonic transducers (CMUTs) 
to monitor VOCs. The mechanism for sensing VOCs is through the CMUT. When the 
device is exposed to VOCs, the additional mass of the absorbed analyte on the resonate 
structure causes a shift in the resonant frequency (Misra et al., 2015). This technology 
can be expanded to include several environmental VOCs to detect levels that can impact 
health negatively.

Depending on the environmental attribute being measured, wearable environmental 
monitoring devices pose challenges that may impact data validity when worn by working 
populations in the field, rather than in closely monitored lab settings. These are intuitive, 
but unless carefully instructed and monitored, study participants may neglect to follow 
optimal practice. Thus, light monitors, whether worn on the wrist, pendant, or forehead, 
must be worn over clothing, so as not to obscure the light. CO2 monitors, if worn close to 
the mouth or within the CO2 bubble (see the section “Air Quality”) may give falsely high 
readings regarding ambient room air, while accurately measuring CO2 levels in the per-
son’s immediate breathing zone. Similarly, wearable temperature monitors may measure 
skin and body temperature rather than ambient air temperature.

Combining Health and Environmental Monitoring Devices

The health impacts of built environments may be measured holistically—that is, by 
examining the impact of a total environment on various health outcomes, or individually, 
in which single or several environmental attributes may be monitored and linked alone 
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or in combination to selected health outcomes. Two classic examples of holistic measures 
are the landmark study by Roger Ulrich (1984), in which health outcomes were compared 
in hospital patients recovering from gall bladder surgery. Those patients whose windows 
had a view of a grove of trees needed less pain medication, had better mood, and left the 
hospital a day sooner than those with a view of a brick wall. Similarly, Kuo and Sullivan 
(2001) showed that persons in an inner-city Chicago housing project who were randomly 
assigned to apartments with a view of trees had better moods and less aggressive behav-
iors than those with a view of a blacktop. While these studies were carried out prior to 
the era of sophisticated health and environmental monitoring, they indicate that the built 
environment, and at least a view of nature, does impact physical health and emotional 
well-being. With the advent of technologies to measure health, and specifically stress out-
comes more quantitatively, it has become possible to carry out similar studies measuring 
the holistic impact of a built office environment on stress measures.

Thayer, Verkuil, and colleagues (2010) took advantage of a retrofit of a U.S. federal 
building to monitor the stress response of personnel at a hormonal and neuronal scale. 
Salivary cortisol and heart rate variability were measured for 3 days over the course 
of 17 months in 60 U.S. federal government office workers while they occupied legacy 
space and after they moved into the same space that had been retrofitted. The legacy 
office space had dim lighting, high-wall cubicles, higher mechanical noise, and poorer 
ventilation compared to the remodeled space with better ventilation, brighter and more 
natural lighting, lower mechanical noise, and open office design with greater visibility 
and better views. Results showed that workers in the new space had both lower neu-
ronal stress response (as measured by HRV) and lower hormonal stress response, with 
lower morning cortisol rises compared to those working in the legacy office space. The 
HRV changes carried over as well through the night, during sleep. Importantly, subjec-
tive questionnaires did not reveal any significant differences in participants’ perceptions 
of their stress levels, indicating that subjective questionnaires alone, while informative of 
the individual’s experience, may miss the physiologically important stress impacts of the 
built environment.

While these studies confirm that the built environment does impact at least one 
aspect of health—the physiological stress response—and, in the older studies, that the 
built environment also impacts mental health and clinical health outcomes, they do not 
address which elements of the built environment impact which aspects of health, either 
alone or in combination. More sophisticated studies are required to address that ques-
tion, monitoring multiple environmental attributes simultaneously and in real time, and 
linking them through Big Data analytics to multiple physical and emotional health out-
comes.

Monitoring the Impact of Multiple Environmental Attributes 
on Health Outcomes

The U.S. General Services Administration’s Wellbuilt for Wellbeing study (WB2), car-
ried out with the University of Arizona, Baylor College of Medicine, and Aclima, Inc. 
(Lindberg et al., 2018), provides a template for linking multiple environmental attributes 
with multiple health outcomes. In this study, 231 office workers in four federal build-
ings were fitted with a wearable chest-worn sensor EcgMove 3 (Movisens, Karlsruhe, 
Germany) that tracked HRV, posture, and physical activity. Time-contingent experience 
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sampling was also carried out, with questions regarding mood and stress sent to the 
participants’ smartphones randomly every hour and at least 30 minutes apart. At the 
same time, wall nodes (Aclima, Inc.) were used to continuously measure up to 11 envi-
ronmental attributes, including light, sound, temperature, relative humidity, CO2, and 
VOCs. Participants also wore a chest-worn environmental monitor that tracked a subset 
of environmental attributes continuously and in real time, including light, temperature, 
relative humidity, and CO2. Timestamped data from the environmental and health moni-
tors and experience sampling data streamed together with HRV data via the Movisens 
monitors allowed for coordination of health events with environmental variations during 
subsequent data analytics. Finally, office design and spatial characteristics were mea-
sured and linked to health outcomes, including stress responses (HRV), physical activity, 
sleep quality, and fatigue.

An essential component of such studies is the application of complex data analytics 
to statistically isolate the impact of each environmental attribute on multiple health out-
comes. In addition to linking environmental attributes to these basic health outcomes—
stress response, physical activity, posture, and subjective experience—further analyses 
were carried out to derive sleep quality from the raw Movisens HRV, posture, and physi-
cal activity data. These data were compared to data collected from individuals in a fully 
equipped sleep lab to validate the wearable Movisens device data for sleep quality (Lee 
et al., 2018).

Two approaches can be taken to analyzing such data, collected in real-world set-
tings: discovery-driven and hypothesis-driven, or a combination of the two. A first-pass 
discovery approach, where data are analyzed without a hypothesis, can provide insights 
into relationships that can then be explored in more detail using a hypothesis-driven 
approach, or in controlled settings where individual environmental attributes are experi-
mentally modified to discover their impacts on selected health outcomes.

Using this combined and sequential approach, the WB2 data revealed several novel 
findings. The findings showed that workers in open office-designed settings, with bench 
seating and many choices for larger and smaller meeting areas, were 32% more active 
than workers in private offices and 20% more active than those in cubicles (Lindberg et 
al., 2018). Additionally, those who were more active during the day had 14% lower stress 
levels as measured by HRV (SDNN) in after-work hours. Further analysis revealed that 
the more active workers in open office settings had better sleep quality than those in 
cubicles or private offices (Lee et al., 2018). Finally, those workers with better sleep qual-
ity reported less daytime fatigue (Goel et al., 2021).

Temperature and humidity evaluation revealed that relative humidity had an impact 
on health outcomes, while temperature alone did not. Specifically, in this cross-sectional, 
exploratory study, Razjouyan and colleagues (2019) found that individuals who spent 
more than 50% of their time outside the 30–60% relative humidity (RH) conditions 
exhibited a 25% higher stress response, as measured by HRV (SDNN). The optimal 
RH for reduced stress response was closer to 45 +/– 5%. Further analysis also revealed 
an indirect effect of RH on objectively measured sleep quality. This evidence supports 
the 30–60% RH range included in the earlier version of the U.S. standard for indoor air 
quality, the ASHRAE 55-1989 thermal comfort standard. In a recent study, Altomonte 
and colleagues (2020) also emphasized that temperature variability in the workplace 
influences cognitive performance and may cause a loss in concentration and an increase 
in drowsiness. Of particular importance during pandemic conditions, low RH in the 
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precise range that is associated with higher stress levels, that is, less than 30%, is asso-
ciated with higher rates of viral infections in hospital settings (Taylor & Hugentobler, 
2016). This may be because drier conditions may favor the survival of common viruses 
and pathogens such as the influenza virus on surfaces leading to greater likelihood of 
transmission. In addition, drier conditions also predispose those exposed to the virus to 
greater susceptibility to becoming sick due to the drying of mucus membranes.

Risks, Drawbacks, and Considerations in Selecting Different Methods 
and Devices

Critical to the validity of the conclusions derived from wearable and noninvasive health 
device studies are the sensitivity and accuracy of the devices being used. While tech-
nologies have advanced considerably, many commercially available health monitoring 
devices still have not been validated against gold-standard measures. Technologies are 
being upgraded continuously; therefore, before selecting a health monitoring device for 
research purposes, it is essential to ensure that the devices selected are research grade and 
have been validated for the outcomes of interest. Finally, another issue for research-grade 
health monitoring devices is the format of the data collected. Many commercially avail-
able devices do not collect data continuously throughout the day but collect only a short 
period at programmed intervals. To accurately measure the impact of built environment 
attributes throughout the day and night, devices must be used in which raw data can be 
collected continuously and downloaded in formats appropriate for data analysis at vari-
ous scales of resolution.

Impacts of Individual Environmental Attributes 
on Health Outcomes

Air Quality

Recent studies highlight the role of indoor air quality (IAQ) and air temperature on 
human performance, health, and productivity. One important and prevalent pollutant 
within industrial and occupational areas is CO2, which is a common gas that makes up 
0.04% of atmospheric air and is exhaled as we breathe. Various types of industrial envi-
ronments may expose individuals to dangerously high levels of CO2 (i.e., firefighters, oil 
and gas drillers, diesel engine operators; Hawley, Cox-Ganser, & Cummings, 2017). But 
CO2 also builds up to levels that impair cognitive performance even in normal office set-
tings, if ventilation and fresh air exchange are too low (Ghahramani et al., 2019). In gen-
eral, the greater the number of people in an enclosed space, the longer they occupy that 
space, and the poorer the ventilation, the higher the CO2 levels will be in that space. The 
negative impacts of slightly elevated levels of CO2 on cognitive performance have only 
recently been identified, with cognitive performance declining approximately 15% at 
945 parts per million (ppm) of CO2 and 50% at 1,400 ppm (Allen et al., 2016). Previous 
recommendations by the Occupational Safety and Health Administration (OSHA; 2012) 
and the American Conference of Government Industrial Hygienists previously allowed 
much higher CO2 levels, with threshold limit values for CO2 concentrations over an 8-hr 
workday being 5,000 ppm. Current OSHA regulations list the ceiling exposure limit of 
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CO2 at 30,000 ppm for up to 10 minutes with 40,000 ppm being “immediately danger-
ous to life and health” (Satish et al., 2012).

In typical work environments, the employees occupying office or industrial spaces 
are the primary sources of CO2 buildup. Ghahramani and colleagues (2019) identified 
a personal “CO2 bubble” (Figure 23.2), which accumulates around the mouth and the 
face as people breathe, especially in stagnant air conditions. Levels of CO2 were as high 
as 2,200 ppm, with a mean of approximately 1,200 ppm, in the range of levels known 
to impair cognitive performance by over 50% in occupational settings (Ghahramani et 
al., 2019; Pantelic et al., 2020). Body posture, the anatomical configuration of a person’s 
nose and mouth, airflow, spatial motions, and furniture placement also can influence the 
shape and concentration of this bubble of gas. As seen in Figure 23.3, CO2 measurements 
in the inhalation zone revealed that the use of even a small-sized portable desk fan to dis-
turb the air around the face significantly reduced the CO2 concentration in participants’ 
personal spaces.

Current IAQ monitors track a combination of all or any of several IAQ indicators, 
including but not limited to temperature, humidity, VOCs, particulate matter (PM), CO2, 
ozone, and other gasses that impact human health. In addition to these features, some 
may be able to mechanically filter air automatically in response to its sensors’ readings, 
or on a schedule with a fan or other type of appliance to mitigate a pollutant or stag-
nant air. Advanced IAQ sensing technologies can be used to analyze the influence of 
airflow design related to spatial layout and its influence on health and well-being. As 
discussed in the “Health and Environmental Monitoring Devices in the Workplace” sec-
tion, this information can be combined with that collected by sensors which monitor 
different physiological aspects of workers such as heart activity, physical movement, and 
sleep activity. These objective environmental and physiological data can then be further 
combined with subjective data in the form of daily survey responses. These types of 
disparate data streams give researchers rich information to analyze and discover how 
IAQ in different environments can affect the physical and mental health and well-being 
of occupants. Office workers are vulnerable to illnesses because of sedentary behavior 
and the design of their immediate work environments. IAQ research and its findings can 

 FIGURE 23.2.  Respiratory CO2 concentration in the breathing zone (a: during exhalation, b: dur-
ing inhalation) forming a bubble. From Ghahramani et al. (2019). Reprinted with permission from 
Elsevier.
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positively influence worker performance by reducing workplace absenteeism, illnesses, 
and stress, and improving sleep quality, all of which are directly associated with the work 
environment.

Light

Daylight influences health, mood, sleep, and circadian rhythms. Heerwagen (1990) found 
increased satisfaction in office workers who had good visual access to daylight via inte-
rior glazing even if the daylight was not in their immediate space. Merely seeing daylight 
somewhere in their environment also had positive effects. Sunlight in indoor environ-
ments is also associated with perceived cheerfulness of the environment and higher levels 
of positive affect for occupants. Seasonal affective disorder (SAD), a form of depressive 
disorder related to long periods of low light, which leads to lowered energy and moods 
during winter months, is also benefited by sunlight exposure (Heerwagen, 1990). Indeed, 
full spectrum light boxes that mimic sunlight can be almost as effective in treating SAD as 
antidepressants. Figueiro (2013) found that older adults are more likely to experience cir-
cadian disorders in the form of sleep disturbances, possibly due to a combination of many 
factors, including a less sensitive circadian clock and age-dependent reduced retinal light 
exposure. Light sources delivering higher circadian stimulation during daytime hours 
improved sleep quality in older adults and Alzheimer’s disease patients, and daylight-
ing the interior environment was found to be highly beneficial to the well-being of this 
group. Figueiro and colleagues (2017) found similar results in office workers. Increased 
daylight exposure, especially bright light from 8:00 A.M. to noon, regulated circadian 
rhythms and improved mood and sleep quality in office workers. The U.S. General Ser-
vices Administration, with its academic partners, has extensively studied circadian light-
ing in its offices, which include dynamic lighting solutions using short-wavelength electric 

  FIGURE 23.3.    The CO2 concentration in the inhalation zone above the room background for the 
combined effect of breathing, talking, breathing while looking down, and free activity. From Pan-
telic (2020). Reprinted with permission from Springer.
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light in the morning that changes to longer-wavelength light in the afternoon to test the 
relationship of this lighting to daytime alertness (Figueiro et al., 2019). This study found 
greater alertness in office workers via circadian entrainment provided by a new type of 
light fixture which regulated and delivered appropriate circadian wavelength and inten-
sity of light exposure throughout the day.

Light measurements in our surrounding environment can reveal valuable informa-
tion, particularly if they are collected over a longer period of time. As discussed in the 
previous section, this information can be correlated with measures of physical activity, 
stress, and sleep to understand how light exposure may impact these human health fac-
tors. Environmental light sensors such as luxmeters can measure light levels in most 
indoor and outdoor environments, measuring illuminance in lux (lx) or footcandles (fc). 
Most commercially available meters can measure high natural lighting levels, which may 
reach levels up to 100,000 lx or more, or electric lighting levels in workspaces that tend to 
be around 500–1,000 lx on average. Computer simulations in different types of available 
software are also able to show the distribution of illuminance or luminance measurements 
throughout a room in specific daylight conditions, such as overcast, partially cloudy, or 
sunny. These computer renderings look similar to a heat map displaying their light mea-
surements in lux above the clusters of different light intensities (Velux, n.d.). Information 
collected from physical light measurements and simulations can be compared to design 
recommendations for best practices derived from scientific literature, which in turn can 
ultimately lead to new lighting modifications or strategies for healthy outcomes.

Wearable devices can also be worn around the wrist and measure an individual’s 
light exposure, sleep, and activity levels. In these cases, sensors provide photometric light 
measures, which measures the light in a way that is experienced by the human eye in the 
real world. It also records the blue, green, and red-light spectrums separately through 
three different sensors. This information is particularly useful since certain light spectra 
can impact circadian cycles differently (Rea & Figueiro, 2018). These kinds of sensors 
also allow for comparison of various light exposures to sleep quality, physical activity, 
alertness, changes in mood, and satisfaction.

Sound

The acoustic environment of a place or space is the combination of sounds from all 
sources that a human can hear (Brown, Gjestland, & Dubois, 2016). These sounds can 
have positive effects on overall health and well-being or affect individuals negatively by 
contributing to illness and disease. Noise is described as sound that can cause annoyance 
and stress that trigger the autonomic nervous system sympathetic stress response and 
physiological changes contributing to hearing impairment, difficulties in task and cog-
nitive performance, as well as cardiovascular disturbances, including increased systolic 
blood pressure and heart rate (Goines & Hagler, 2007). Ongoing exposure to stress-
ful noise can lead to a chronic imbalance in the homeostasis of the endocrine system, 
which directly impacts the cardiovascular system. This chronic imbalance raises the risk 
of cardiovascular disturbances such as increased blood pressure, blood lipid concentra-
tions, blood viscosity, and blood glucose concentrations. Epidemiological studies have 
confirmed an increase in the prevalence and incidence of cardiovascular disease (e.g., 
ischemic heart disease, hypertension) and strokes in highly noise-exposed groups (Basner 
et al., 2014).
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The best described impact of noise exposure on health is hearing impairment. Both 
intermittent and continuous noise exposure at moderate levels can impact hearing loss. 
The disruption can cause a temporary shift in the hearing threshold caused by reversible 
damage to the stereocilia of hair cells in the ear anatomy (Rosati & Jamesdaniel, 2020). 
The level and characteristics of hearing loss can vary depending on continuous versus 
intermittent exposure. In addition to hearing loss, noise exposure has also been linked 
to other hearing disorders, including tinnitus, recruitment, and hyperacusis (Rosati & 
Jamesdaniel, 2020). These hearing disturbances induced by noise exposure can also 
impact cognitive functions and lead to mood disorders including anxiety and depression 
(Bhatt, Bhattacharyya, & Lin, 2017).

Performance can also be affected by an impairment of information processing due to 
levels of noise exposure and its impact on attention. According to Jafari, Khosrowabadi, 
Khodakarim, and Mohammadian (2019), noise exposure can reduce cognitive function-
ing, including performance accuracy, reaction time, attention, memory, intelligence, and 
concentration.

Tracking and measurement of acoustics in the built environment facilitate data col-
lection that can improve the quality of spaces we occupy. One of the most common 
acoustical sensing methods is through a smartphone that leverages embedded microphone 
technology. A mobile sensor called BumpAlert uses acoustical sensing to help improve 
risk for collision with indoor objects, thus alleviating risks of falls. BumpAlert builds 
a sonar-like system for detecting nearby obstacles by utilizing a smartphone’s built-in 
microphones and speakers. It further improves detection accuracy since the microphones 
and speakers are omni directional and are also able to integrate the inertial sensors and 
camera (Tung, 2018).

Another smartphone technology utilizing acoustical sensing is Echotag. This sens-
ing application uses context-aware computing. Leveraging the microphone on the smart-
phone, it stores sounds in specific indoor locations by actively rendering acoustic sig-
natures using the phone speakers to transmit sound and phone microphones to sense 
its reflections (Tung, 2018). This type of acoustical sensing allows for automatic sound 
muting of the smartphone in specific locations.

Finally, mobile acoustical sensing can be used in mapping indoor spaces through 
a program known as BatMapper, which measures environment geometries from sound 
reflection signals and combines it with calibrated user traces to construct maps in a few 
minutes (Zhou, 2019). Using this acoustical sensing technology designed to map indoor 
space quickly and accurately also allows for the creation of optimal space usage within 
the indoor setting.

Return on Investment

The business case for healthy buildings has been extensively reviewed in Allen and 
Macomber (2020) and will not be covered here. However, the new mobile sensing tools 
and techniques to measure the impact of the built environment on health, well-being, and 
performance described in this chapter can be used to obtain quantitative objective data 
that add power to the business case for return on investment (ROI) of such interventions 
and enhancements for physical and emotional health. To be effective, ROI planning and 
budgetary models should provide optimal as well as over-and-above building standards’ 
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ranges for ventilation, air quality, thermal health, moisture, dust and pests, safety and 
security, water quality, noise, and lighting and views. ROI planning should also include 
continuous sensing and monitoring technologies for building systems that would enable 
them to display and record measures of these environmental attributes in real time, as 
well as communicate safety warnings. These mobile sensing technologies at the human 
and built environment interface would not only lead to minimizing risk, but also improve 
employee performance, and potentially reduce disease transmission, which in turn would 
positively impact ROI.

It is difficult to keep track of the rapidly changing field of mobile sensing; however, 
such technological innovations are essential to help employers prepare for the future. One 
key ROI strategy may be to appoint a point person such as a facilities manager, assisted 
by a task force to keep track of rapidly developing innovative health and safety solutions 
and implement them effectively. The ultimate goal of such interdisciplinary teams is to 
make workplace environments suitable for employees to thrive and not just survive.

Smart, Adaptive, and Responsive Workplaces

Combining Sensors and Automatic Countermeasures in the Workplace

Mobile sensing at the interface of humans and the built environment has exciting pos-
sibilities for the development of smart, responsive environments that respond to human 
needs for health and well-being. Once any number of disparate sensors can create a 
stream of real-time data, a countermeasure to offset the detrimental aspects of a particu-
lar issue may be automatically deployed by a built environment. As an example, if a CO2 
sensor were to detect a rising level of CO2 in a worker’s office, local ventilation could 
automatically be turned on to turn over the air and decrease the volume of CO2.

If a noise sensor picks up sound over a certain decibel or identifies an intermit-
tent noise that is out of the ordinary, sound dampening or noise cancellation via speak-
ers could be deployed within these types of environments. Aside from understanding 
the level of noise in the environment and its impact on health, it is important to utilize 
acoustical sensing data for the development of safer and health-supporting workplaces. 
Acoustical sensing data collection can be used to eliminate risk of injury and accidents, 
provide automatic sound levels based on learned sound signatures, and quickly provide 
indoor mapping to facilitate better and more optimally designed workspaces. Utilizing 
these aspects of sound sensing will help facilitate a built environment that can support 
optimal health and well-being of personnel.

Lighting in windowless factories or in small, confined spaces like submarines could 
be altered to utilize light and lighting schedules that increase alertness at appropriate 
times and gradually transition lighting levels to assist in the work to rest transition. The 
data collected from environmental light sensors can inform the development of both nat-
ural and artificial lighting strategies that are optimal for regulating circadian rhythms, 
and other physiological and psychological benefits. These lighting systems could respond, 
change, and adapt in real time or could work according to a preset optimized schedule 
for workers.

Temperature and humidity comfort levels are particularly idiosyncratic, suggesting 
the value of technologies to create personalized temperature and humidity-controlled 
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environments. A new method is even being developed to accomplish these environments 
using bioresponsive materials that can be applied to building systems and technologies 
(Aviv et al., 2020).

A common theme among these automated responsive systems is their local deploy-
ment to create individualized comfort zones. Such local solutions will both improve 
health outcomes on an individual basis and save energy, as one size in environmental 
comfort does not fit all.

Evidence‑Based Design

A good example of smart and responsive design can be seen in newer passenger aircraft. 
Boeing launched the 787 “Dreamliner” in 2007 and incorporated various research find-
ings on built environments into this aircraft. A carbon fiber composite was used to build 
parts of the airframe, therefore reducing weight, and allowing for a higher cabin pressur-
ization that led to greater oxygen concentration in the blood of passengers. Additionally, 
cabin humidity level was increased to reduce dehydration, and ceiling lighting was altered 
to reflect the destination time zone and decrease the perception of jetlag (Hinninghofen 
& Enck, 2006).

Going forward, to move evidence-based workplace design forward, creating test-
beds, termed living labs, of different scales and typologies provides a way to develop and 
test smart responsive environments (Hasan et al., 2018). Interdisciplinary research teams 
could identify specific typologies and locations for these testbeds. Human responses to 
different environmental conditions in carefully controlled workspaces, which include 
building materials, acoustics, temperature, humidity, daylight, layout, and furniture, 
would be measured. The health, behavioral, and performance data would then automati-
cally inform environments at a local level (personal space, desk, chair, room) and trigger 
adaptive responses of local environments to optimize individual health, performance, 
and well-being. This could be accomplished by developing state-of-the-art materials, 
technologies, and systems to test human interactions and performance outcomes and by 
connecting them to the Internet of Things (IoT) continuously and in real time.

Outlook and Conclusion

Many of the technologies outlined in this chapter can be used to optimize built environ-
ment design and operations in a post-SARS-CoV-2 world. Most important for preven-
tion of viral spread are ventilation systems powerful enough to provide frequent hourly 
fresh air turnover. However, all the features of the built environment described here that 
enhance both physical health and emotional well-being are important in helping passively 
reduce stress of building occupants, thereby helping them to remain resilient to more 
severe viral infections. Healthy sleep is particularly important in optimizing resilience, as 
are features that reduce stress, such as green spaces, views to nature, and places to medi-
tate and contemplate. Individually responsive environments would also help optimize 
individual health.

Responsive built environments could soon comprise flexible environments that inte-
grate multiple kinds of sensors and data streams that enhance human performance by 
collecting and tracking individual physiological, behavioral, and social responses and 
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interactions in real time and combine these with environmental monitoring to create 
responsive systems within the workplace. Key indicators of human health, well-being, 
and performance, including stress responses, physical activity, cognitive performance, 
and sleep quality, can all be monitored and modified through evidence-based design of 
these types of spaces. Detection of subnormal health responses could then automatically 
signal building systems to adjust in real time to optimize health, including lowering stress 
responses and optimizing cognitive performance and comfort. Privacy issues will be a 
substantial hurdle that will need to be continually addressed for such automated systems 
to be put in place. Investing in the design and monitoring of health and subsequently 
creating more responsive occupational environments that enhance worker performance, 
increase safety and productivity, enhance worker satisfaction, and produce positive finan-
cial returns is of benefit to both organizations and their employees.
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C H A P T E R  O V E R V I E W

In this chapter, we examine the benefits, opportunities, and challenges of already exist-
ing applications that use mobile sensing to monitor emotions. We describe how mobile 
sensing enables a novel, unobtrusive method of studying people’s emotions in situ that 
was previously not possible. Because of the multimodal nature of mobile sensing stud-
ies, there is a rich array of measurement options that relates to emotions. Illustrated by 
examples, we conclude that using mobile sensing to track moment- to- moment and daily 
average levels of emotions shows a lot of promise, but this promise has yet to be fulfilled. 
Moreover, because each study takes a different approach, there is currently no established 
corpus of literature on which to depend to reliably and validly measure emotions in daily 
life using mobile sensing. Even though obstacles remain, mobile sensing is a promising 
method that has the potential to play a valuable role in understanding and predicting 
emotions in the future.

Emotions play a large role in coloring people’s lives and in determining their well-
being. Measuring how people feel is therefore of great importance for improving our 
understanding of both healthy and unhealthy emotional functioning. Emotions can 
change quickly, however; a person can go from tears to smiling in mere seconds. This 
means that proper measurement of emotion cannot take the form of a global assessment 
of a person (like other more stable person characteristics such as personality or values), 
but rather should take place repeatedly over time. Mobile sensing, with its continuous 
and unobtrusive collection of data in daily life, holds considerable promise in this regard, 
yet the question is whether it can deliver on this promise.

In this chapter, we review the nascent field of research in which mobile sensing is 
used and evaluated as an indication of people’s emotional states and/or functioning (both 
in health and abnormality). First, we start by briefly explaining a number of key concepts 
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from the field of emotion research. Second, we give a short overview of existing methods 
with which emotions and their temporal dynamics have been studied in daily life in past 
research, along with their advantages and disadvantages. Next, we turn to how mobile 
sensing can be used to track people’s emotions and emotional functioning. We will review 
research that has examined how and which sensors are related to various characteristics 
of people’s emotional lives and summarize some of the key findings. Finally, this chapter 
concludes by discussing possible limitations, improvements, and opportunities in the field 
of mobile sensing when applied to the study of emotion.

Introduction

The study of emotions is as old as the study of psychology itself, as they assume a central 
place in people’s experience and co-determine people’s behavior, perception, decision, and 
ultimately, well-being. Emotions are generally considered to alert individuals of person-
ally relevant environmental challenges and opportunities, and to motivate them to cope 
with the events. Emotions are therefore not stable characteristics of an individual, but 
they change over time (Frijda, 2007; Kuppens, Oravecz, & Tuerlinckx, 2010; Kuppens 
& Verduyn, 2015, 2017; Larsen, 2000). They are also multicomponential, consisting 
of experiential (how a person feels), physiological (changes on bodily reactions), and 
behavioral components (how one behaves). There is tremendous variation in the quality 
of emotional experience, and various theories exist to explain this variation. It is beyond 
the scope of this chapter to extensively review the different theoretical accounts of emo-
tion causation and composition. For the present purpose, the most important element is 
probably how different views organize emotions into an overarching system.

Categorical approaches primarily divide the emotional universe into a number of 
(basic) emotions; an example is the often-used categorization by Ekman and colleagues 
(1987): anger, disgust, fear, happiness, surprise, and sadness. One can also combine sev-
eral basic components to form new categorizations, for instance, compound emotions 
(Plutchik, 1980). Second, dimensional approaches primarily characterize emotions in 
terms of underlying dimensions such as valence and arousal in the circumplex model of 
affect (Russell, 2003) or positive and negative affect (Crawford & Henry, 2004; Watson, 
Clark, & Tellegen, 1988). Rather than forming separate categories, specific emotions are 
then considered to be positioned in specific regions of the space defined by the dimen-
sions. Both approaches are used in emotion research, including when investigating emo-
tions in daily life.

Studying Emotions in Daily Life

Aside from experimental studies examining emotions in the lab context, emotion research 
has made extensive use of in situ sampling involving collecting data in the wild, that is, 
in the context of people’s normal daily lives. While this does not afford experimental 
control over one’s circumstances, it has the large benefits that it is ecologically valid and 
that findings are representative of real life.

For decades, the primary method for tracking people’s emotional experiences has 
been through the use of (daily) diaries or repeated reporting using pen-and-paper, tablet 
computers, and eventually smartphones. This method has been labeled the experience 
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sampling method (ESM) or ecological momentary assessment (EMA) (Kahneman, 
Krueger, Schkade, Schwarz, & Stone, 2004). In a typical ESM study, people are prompted 
with a short questionnaire a few times per day to ask how they feel. Because participants 
evaluate their feelings in the moment instead of later in the day (as is the case in a diary 
study), recall bias is limited, which leads to higher ecological validity and more reli-
able data (Vachon, Rintala, Viechtbauer, & Myin-Germeys, 2018; Vachon, Viechtbauer, 
Rintala, & Myin-Germeys, 2019). Another advantage of ESM is that it captures a per-
son’s emotions multiple times a day and so allows researchers to look at moment-to-
moment emotion fluctuations (Trull & Ebner-Priemer, 2020). These improvements over 
traditional methods have made ESM the gold standard for studying the behavior of emo-
tions in daily life.

Despite its many advantages, ESM also has serious drawbacks. First and foremost, 
ESM is a large burden to participants, depending on the number of items in the sur-
vey, the number of prompts per day, and the length of the study (Rintala, Wampers, 
Myin-Germeys, & Viechtbauer, 2019). Prompting participants more times per day or 
having a longer study duration to get more fine-grained data quickly becomes infeasible 
because of reduced data quality, lower compliance, and participant dropout (De Vuyst, 
Dejonckheere, Van der Gucht, & Kuppens, 2019; Eisele et al., 2022). This also poses a 
problem for practical use outside a research setting. Because of this great burden, it is not 
easy to motivate people to use ESM by themselves without being in a study.

In addition to ESM being obtrusive, participants may also demonstrate reactivity 
to the method where taking part in such a study and repeatedly reporting on their emo-
tions may alter their emotional experience to begin with (although research suggests that 
the extent to which this is the case is limited; De Vuyst et al., 2019). Also, participants 
may adapt their daily routine to make sure they do not miss any measurement occasions, 
thereby effectively interfering with their normal daily activities (Barta, Tennen, & Litt, 
2012).

Yet another issue in using ESM for tracking emotions has to do with the nature of 
emotions themselves. Because emotions are inherently dynamic, it is essential to sam-
ple them on an appropriately fine-grained time scale. However, to do this with ESM is 
impractical because a very high-frequency sampling scheme even further increases bur-
den and obtrusiveness. An additional concern is that we do not know what the “right” 
frequency is to gather data when it comes to studying emotional responses. In short, if a 
method is available that can provide information on people’s emotions in daily life in a 
continuous, automatic, and unobtrusive way, this would mean a huge leap forward, for 
both research and potential applications.

An obvious way forward could be through the use of (passive) mobile sensing, 
employing smartphone sensors to capture (contextual) information on participants such 
as keyboard data; app usage; or phone calls, texts, and emails. The key question that 
arises, however, is to what extent do these sensors convey reliable and valid data about 
people’s emotional state and functioning? In the field of mobile sensing and affective 
computing, most researchers have tried to infer several characteristics related to emo-
tions, such as a person’s diagnosis of or global risk for disorders related to emotions 
such as bipolar disorder (e.g., Palmius et al., 2017) or related constructs such as anxiety 
(e.g., Place et al., 2017), daily average of emotions (e.g., Sandstrom, Lathia, Mascolo, & 
Rentfrow, 2017), or sleep (e.g., Saeb, Cybulski, Kording, & Mohr, 2017), among oth-
ers. Relatively fewer studies have focused on capturing and understanding moment-to-
moment fluctuations in people’s emotion-related experience, behavior, and physiology.
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State of the Literature

The foundation of the mobile sensing research of emotion lies most likely with the work 
of Picard (1995), who defined the field of affective computing as follows: “Computing 
that relates to, arises from, or influences emotions” (p. 1). However, fewer means were 
available in 1995 than today to track participants’ emotions ecologically and unobtru-
sively; hence the field made relatively little progress until about 2010 when smartphones 
became increasingly pervasive, allowing for both ESM and automatic data capture (i.e., 
mobile sensing).

Since then, contemporary mobile sensing has advanced to be an interdisciplinary field 
and is mainly undertaken from three disciplines: (1) psychology, (2) medicine/psychiatry, 
and (3) engineering and computer science. These disciplines have different approaches. 
In psychology and medicine, for example, research focuses primarily on understanding 
the underlying processes and takes a more theoretically driven approach (i.e., specify-
ing how sensors should be a readout of emotionally relevant behavior) but often lacks 
statistical sophistication. In engineering or computer science, the focus lies on building 
optimal and sophisticated predictive models but less on advancing theoretical knowledge 
about emotion or its underlying mechanisms. Important to note is that in most research, 
self-report data on the experiential component of emotion obtained through ESM is used 
as the criterion or label to evaluate or compare mobile sensing data too. Such validation 
is typically done by bringing passive data on the same time scale as the ESM data and 
then using these self-reports as dependent variables to compare against. Alternatively, 
other passive data reflecting physiology or behavior (e.g., from wearables) may be used 
as ground truth, especially in sleep (Z. Chen et al., 2013; Cuttone et al., 2017) and stress 
(Lu et al., 2012) research.

In the rest of this chapter, we will provide an overview of the current literature 
studying emotion using mobile sensing. The goal here is not to provide an exhaustive list 
through a systematic literature review, but rather to detail some key findings which, in 
our view, characterize the field and give a good impression of current advancements. We 
will first discuss the specific relevance that a number of smartphone sensors could hold 
for detecting emotion, foremost in terms of predicting experiential emotional experience 
(though we also touch on research aimed primarily at detecting emotion-related physiol-
ogy and behavior). Next, we will scrutinize a number of seminal studies that have made a 
significant contribution to the field of emotion research. Finally, we conclude this chapter 
by discussing future research and challenges and summarizing the most important points 
to take away from our overview.

Emotion‑Relevant Smartphone‑Sensed Context 
and Behavior Variables

In the following section, we describe a number of variables that are potentially relevant 
for emotion detection and are therefore often used in mobile sensing research on emo-
tion. For clarity, we distinguish between behavior and context variables. Behavior-related 
variables concern everything that a participant does, either actively or passively, while 
context-related variables are about their surroundings, that is, either where they are or 
what is happening around them. Note that some sensors may be used for multiple vari-
ables; for example, GPS can be used for both location and physical activity.
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Behavior

Physical Activity

It is well known that physical activity strongly impacts emotion (Kanning & Schlicht, 
2010; Peluso & Andrade, 2005). For example, maintaining regular physical activity lev-
els is known to decrease emotional instability (Bowen, Balbuena, Baetz, & Schwartz, 
2013), and people who perform regular physical activity in nature (in woods or forest) 
have a lower risk of poor mental health (Mitchell, 2013). For this reason, physical activity 
is often included in mobile sensing studies since it could potentially be a strong predictor 
for changes in emotional state (see also Giurgiu & Bussman, Chapter 5, this volume, on 
physical activity).

Indeed, various studies which included some form of physical activity to predict 
emotions or well-being found a significant relationship between physical exercise and 
well-being (Asselbergs et al., 2016; LiKamWa, 2012; Zanna, King, Neal, & Canavan, 
2019; X. Zhang, Li, Chen, & Lu, 2018). For instance, Zhu, Satizabal, Blanke, Perez-
Uribe, and Troster (2016) (93 days, N = 18) extracted both physical activity and location 
to predict discrete within-person emotions. By modeling the circumplex model of affect 
(Russell, 2003) as a circle with one discrete emotion at every 45-degree angle (i.e., using 
the number of radians between emotions instead of distinct categories as outcome), they 
achieved an absolute error of 0.76 radians and a sensitivity of 41% when predicting 
emotions on a scale of 1–8, 61% on a scale of 1–4, and 88% when choosing between a 
positive and negative feeling. However, their method only barely outperformed a model 
that merely consisted of the participant’s average emotional level. A similar result was 
obtained by Soleimaninejadian, Zhang, Liu, and Ma (2018) (25 days, N = 6), who used 
various activity features to achieve an accuracy of 77.97% with personalized C4.5 mod-
els (a decision-tree algorithm) when predicting binary arousal (feeling either high or low) 
and 84.58% when predicting binary valence (feeling either good or bad).

In two larger-scale studies, Morshed and colleagues (2019) (65 days, N = 805) used 
overall physical activity duration, indoor and outdoor mobility, conversation duration 
(inferred from audio fragments using a hidden Markov model), and sleep duration to pre-
dict within-person emotional instability scores. They found that indoor mobility correlated 
positively while the others related negatively to emotional instability. Additionally, Lathia, 
Sandstrom, Mascolo, and Rentfrow (2017) provided a substantial contribution (2017) (51 
days, N = 12,838), Their study showed that physical activity and happiness are related 
within persons: lower happiness relates to less physical activity; on average, emotions seem 
to be more positive at social locations versus at home and when being at home versus at 
work, and personality may moderate the relationship between emotions and location.

Sleep

While sleep is not a directly measurable component of mobile sensing, it can be approxi-
mated through various sensors (for more details, see Giurgiu & Bussman, Chapter 5, this 
volume). Sleep plays an important role in people’s emotions and risk of ill health, like 
depression, and it is an important factor for well-being. For example, subjective sleep 
quality has been linked to positive affect (Bower, Bylsma, Morris, & Rottenberg, 2010; 
Steptoe, O’Donnell, Marmot, & Wardle, 2008), negative affect (Minkel et al., 2012; 
Sonnentag & Binnewies, 2013), and depression (Riemann, Berger, & Voderholzer, 2001; 
Steiger & Kimura, 2010; Tsuno, Besset, & Ritchie, 2005).
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While research on sleep monitoring “in the wild” through smartphones (excluding 
wearables) only has provided some positive findings, it still leaves potential for progress. 
Bai, Xu, Ma, Sun, and Zhao (2012) (30 days, N = 15), for example, made an initial 
attempt to measure within-person subjective sleep quality by utilizing location (GPS), 
physical activity (accelerometer), text and call logs, and contextual data via sound and 
light. Plugging this information into a factor graph model yielded an accuracy of 78%. 
However, a recent paper, based on a sensitivity analysis, showed that it is difficult to pre-
dict subjective sleep quality, negative affect, or depression from nightly data (R2 of 0.35, 
0.10, and 0.03, respectively) to achieve given various choices (e.g., preprocessing choices, 
various statistical models, different features; Niemeijer, Mestdagh, & Kuppens, 2022). 
Furthermore, Chen, He, Benesty, Khotilovich, and Tang (2015) (7 days, N = 8) devel-
oped a smartphone application that offers improved user experience and less perceived 
intrusiveness than wearables. Subsequently, Wang and colleagues (2014; 70 days, N = 48) 
found an important negative between-person correlation between sleep, depression, and 
stress. Despite this finding, Bhat and colleagues (2015; 6 days, N = 20) have not identified 
any significant connection between more objective sleep monitoring via polysomnogra-
phy and a smartphone device. For the sake of emotion monitoring, it is essential to bring 
smartphone sensing accuracy to the same degree as wearable accuracy since wearables 
are not yet ubiquitous; therefore, smartphones are the least obtrusive option at present.

Device Activity

Except for sensors collecting data in the background without the involvement of the 
participant, there may also be a great deal of information in the way one uses their 
phone (also see Chapters 7, 8, and 9, this volume). This component of mobile sensing 
thus hypothesizes that the way a person uses their phone says something about their 
emotional state. Concretely, the most often-used subcomponents are communication (i.e., 
calls and short messaging services [SMS] texts), screen activity (i.e., screen on or off), and 
app usage. These activities make up for most of what a person can do with their phone. 
We will now go over each of these subcomponents and discuss how they are used in the 
context of emotions.

First, seemingly, the most often-used form of device activity is information about 
participants’ calls and SMS texts (e.g., Bhat et al., 2015; Lathia et al., 2017; Morshed et 
al., 2019; Zanna et al., 2019; X. Zhang et al., 2018). This functionality was (naturally) 
the first to be added to mobile phones—even before they became “smart”—and is there-
fore relatively straightforward to collect. Features extracted from SMS text and call logs 
are the quantity, duration, and sometimes even the sender or recipient of the SMS text or 
call (Asselbergs et al., 2016; LiKamWa, 2012). Despite its ease of use, call or SMS text 
information is usually weak or even insignificant (Cai et al., 2018) predictor for emo-
tions. Note that content (both what is typed and how it is typed) of the messages falls 
under keyboard sensing.

Second, screen changes reflect when the phone’s screen gets turned on or off. From 
this we can also extract screen time, a variable that—when high—is known to be related 
to a higher risk of depression and anxiety (Feng, Zhang, Du, Ye, & He, 2014; Maras 
et al., 2015), poorer sleep quality (Feng et al., 2014; Hale & Guan, 2015), and lower 
well-being (Twenge, Martin, & Campbell, 2018). While mobile sensing has successfully 
used screen changes to predict all of these emotion disorders (Saeb et al., 2017; Sano et 
al., 2018; Xu et al., 2019), it has not yet linked screen changes to daily or momentary 
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emotions. Such an effort has been made by X. Zhang and colleagues (2018) (29 days, N = 
30) who, in their compound emotion (Plutchik, 1980) model, found that screen changes 
were one of the weakest predictors in their general (i.e., person-nonspecific) random 
forest model. However, when building participant-specific (i.e., within-person) models, 
screen changes were among the top six features (out of 110) for 9 out of 30 participants, 
possibly indicating that there are major differences between participants’ device usage.

Finally, app usage refers to the frequency, duration, and type of apps that one uses 
on their phone throughout the day. There already exists a multitude of apps that allows 
an individual to track their app usage, demonstrating that the technology for collecting 
this information is readily available. One reason why app usage is of interest to emotions 
is that increased social media usage has been linked to the greater odds of having depres-
sion and anxiety (Kross et al., 2013; Maras et al., 2015; Woods & Scott, 2016), although 
this has also been disputed (Verduyn, Gugushvili, & Kross, 2021). When it comes to 
predicting the daily average level of emotions, app duration was the third most chosen 
predictor after Wi-Fi (indoor location) and the number of social contacts (X. Zhang et 
al., 2018), indicating that who people contact, where people have been, and which apps 
people use regularly have a significant effect on their emotional state.

Speech and Text

Keyboard Dynamics

Keyboard dynamics is a very promising subfield of mobile sensing (Müller et al., Chapter 
7, this volume). This area of research involves analyzing typing dynamics, for example, 
how fast a person types or a person’s regularity in keystrokes. For emotion research, 
keyboard dynamics is interesting since the way a person types has already been linked 
to their emotional state (Epp, Lippold, & Mandryk, 2011)—for example, that keystroke 
duration and latency is related to arousal (Lee, Tsui, & Hsiao, 2015) or that typing speed 
and keystroke latency are significantly correlated with perceived stress (Lim, Ayesh, & 
Stacey, 2015).

A pioneering keyboard dynamics study on emotion was conducted by Zualkernan, 
Aloul, Shapsough, Hesham, and El-Khorzaty (2017), who asked three participants to 
use a custom keyboard that tracked their typing behavior for 30 days. Every time a par-
ticipant started typing, a logging session was initiated spanning 5 seconds during which 
the number of letters, number of backspaces, and acceleration were logged. At the start 
of each session, a bar appeared on top of the keyboard where a user could select one of 
four emotion categories: happy, angry, sad, and neutral. These responses were used as 
labels for the person-specific models. By combining keyboard dynamics features with an 
accelerometer, they achieved a 90% within-person accuracy in distinguishing between 
one of the four emotional states. Furthermore, they found that it was easier to distinguish 
between especially angry and sad, while happy and neutral states were more difficult to 
detect.

Natural Language Processing

The field of natural language processing—a field that has received a lot of attention in 
the past decade—complements keyboard dynamics since it analyzes natural text from 
keyboards. That is, not only the form but also the content of what has been typed are 
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of interest in emotion research because this may be a potent source that conveys a more 
nuanced emotional state of being. Especially when considering the dynamic nature of 
emotion, it is easy to imagine how a person can “type” their heart out when they are 
in an extreme (e.g., very happy or very angry) state. The discovery of affective states 
from naturally typed text is also the primary interest of sentiment analysis (Bao et al., 
2012; Cambria, 2016; Yadollahi, Shahraki, & Zaiane, 2017), a subfield of natural lan-
guage processing. For example, sentiment analysis on Facebook posts have been able to 
detect emotions with high accuracy on a within-person level, which has also been used 
for e-learning to improve adaptive personalized learning models (Ortigosa, Martín, & 
Carro, 2014).

Recorded Audio

Another way to acquire natural language data using mobile sensing is to record audio 
and then transcribe these recordings. The electronically activated recorder (EAR) is such 
a device that regularly captures audio fragments for post-hoc transcription and analysis 
(Mehl, Pennebaker, Crow, Dabbs, & Price, 2001). From this work, several studies have 
been published on how audio content (i.e., what is said) relates to emotions; for exam-
ple, within-person positive affect is associated with more positive words (Cohen, Minor, 
Baillie, & Dahir, 2008) and within-person negative affect with more negative emotion 
and sadness-related words (Kahn, Tobin, Massey, & Anderson, 2007). More recent stud-
ies, however, found no or only weak correlations between typical emotion-associated 
words and positive or negative emotions (Carlier et al., 2022), though a higher total word 
count seems to be associated with more positive within- and between-person emotions 
(Sun, Schwartz, Son, Kern, & Vazire, 2020). We refer to Hebbar and colleagues, Chapter 
10, this volume, for a global overview of using audio data in mobile sensing.

Physiology

Not only smartphones but also other wearable devices (e.g., smartwatches or activity 
trackers) have benefited from technological developments in hardware and software 
development as well as visual design. As a result, commercial wearables have become 
relatively commonplace, with 21% of American adults owning a smartwatch or fitness 
tracker, a trend that is likely to rise in the future (Pew Research Center, 2020). In terms of 
capabilities, photoplethysmography (PPG) and accelerometer-based movements are now 
used in even the most basic wearables, while higher-end wearables also incorporate elec-
trocardiography (ECG), galvanic skin response (GSR), or skin temperature sensors. The 
growing adoption rate of these wearables has significantly reduced the barrier to scien-
tific data collection—in terms not just of availability, but also user acceptance—allowing 
for large-scale monitoring of physiological and mobility factors in daily life.

Indeed, wearable technology has already been shown to be a valuable addition to the 
field of passive sensing. In comparison to smartphone sensors, accelerometer data gener-
ated from body-worn sensors gives considerably more accurate information on physical 
movements. Additional information regarding the intensity of the participant’s physical 
activity can be obtained using the accelerometer or physiological indicators such as heart 
rate and breathing patterns (Treuth et al., 2004). A growing body of research is look-
ing at the idea of employing passive sensing characteristics to predict distinct experience 
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states, such as emotion. For example, physiological and mobility data acquired via wear-
able devices have been used to anticipate the occurrence of acute stress (Healey & Picard, 
2005; Hovsepian et al., 2015; Sano & Picard, 2013; Smets et al., 2018). Although these 
machine learning models have yet to perform sufficiently in practice, they may in the 
future provide opportunities to estimate experience states without the participant’s active 
participation, especially when combined with mobile sensing. For instance, Wang and 
colleagues (2018) used wearables to measure heart rate as an indicator of fatigue. When 
combined with mobile sensing data, their models could accurately track changing depres-
sion levels within students. We refer to Bettis, Burke, Nesi, and Liu (2021) for further 
discussion of how to use physiology (and other sensors) for tracking emotions and emo-
tion regulation and to Chapter 6 (this volume) for physiology in general.

Context

Location

A widely used measure for emotion tracking is participants’ physical location (also 
described in more details by Lautenbach et al., Chapter 4, this volume). It is used in 
research on emotion because it is considered that a person’s location could reveal some-
thing about their emotional state. For example, a participant may feel more relaxed at 
home and tenser at work or, conversely, might be in a more positive mood in a social 
situation than at home or work (Sandstrom et al., 2017). Indeed, because physical loca-
tion is known to relate to the daily average level of emotion and even moment-to-moment 
emotions, it is often incorporated in mobile sensing studies.

In a study by Cai and colleagues (2018), participants (N = 220) were asked for 
14 days to rate both their positive and negative affect on a 100-point gliding scale six 
times per day. Among several sensors (physical activity, call and text log, location, time 
of day), only location and day of the week were significantly correlated with negative 
affect on a within-person level. Furthermore, being at a food place such as a restaurant 
led to a significantly lower average negative affect than when at home, as much as a 
10-point drop in average momentary negative affect. This result mirrors previous results; 
for example, LiKamWa (2012) (60 days, N = 32) found that location features correlate 
with high pleasure. Also, in recreational areas, participants showed less negative affect 
than, for example, at a university campus. Cai and colleagues also noticed that there are 
individual differences; while some participants rated more negative affect at a university 
campus, this was not true for all participants in the study. This nonhomogeneous relation 
indicates that the participants’ personal routines and preferences influence the spatial 
distribution of negatives.

Surroundings

Information about surroundings is not directly related to the participant but it helps place 
the other variables into context. In other words, the surroundings consist of directly 
measurable surrounding variables such as ambient noise, the amount of light captured by 
the phone, or the use of Bluetooth to detect how many people are in the vicinity of the 
participant (further described by Hebbar et al., Chapter 10, this volume). This informa-
tion is important for emotions and emotion disorders. For example, more sunlight (and 
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thus also vitamin D) has been found to have a positive between-person effect on depres-
sion (Benedetti, Colombo, Barbini, Campori, & Smeraldi, 2001; Berk et al., 2007), and 
people experience more positive emotions in social settings. Emotion predictions could 
therefore benefit from having this information. While various studies have been con-
ducted that use environment sensors, no studies—to the best of our knowledge—have 
reported exact effects that tell us to what extent they relate to emotion. Only X. Zhang 
and colleagues (2018) reported that light intensity and ambient noise were the fourth and 
fifth most frequently selected sensor, respectively.

Another interesting possibility for mobile sensing to contribute to the context of sur-
roundings is by capturing ambient noise. That is, audio recordings (or features thereof) 
could be predictive of emotion (Scherer, 1986). Distinguishing between distinct emotions 
can be accomplished to some extent solely through acoustic features (such as pitch, loud-
ness, and tone; Laukka, Neiberg, & Elfenbein, 2014). However, neither multilevel nor 
machine learning models using acoustic features extracted from audio recordings—nor 
human coders—could determine the intensity of corresponding momentary emotions (N 
= 20,197) on a within-person level (Weidman et al., 2020). Determining emotion inten-
sity from raw audio fragments directly may be possible when predicting abstract emotion 
dimensions like valence and arousal and more complex methods such as deep learning 
(Tang, Kuppens, Geurts, & van Waterschoot, 2021).

Examples of Emotion Research Using Mobile Sensing

In this section, we highlight three recent examples of research that use a combination of 
mobile sensors to study emotion. Our examples aim to shed insight into how such stud-
ies are conducted, which features are included, how many participants are involved, and 
their degree of success. Our goal is to analyze the kinds of specific issues that can be dealt 
with by measuring emotions intensively over time and by developing the technological 
strategy required to focus on the temporal aspect of these results.

MoodExplorer

A unique take on assessing emotions is the one proposed by X. Zhang and colleagues 
(2018), who posited that studying compound emotions—a mixture of basic emotions 
(Ekman et al., 1987; Plutchik, 1980)—could be a more effective way of detecting emo-
tions. Their dataset revealed that in approximately 60% of recorded cases, participants 
selected two or more basic emotions, indicating that these are, in fact, composite (multi-
dimensional) emotions.

X. Zhang and colleagues (2018) developed an Android app they called Mood
Explorer. Every 5 minutes, the app collected the location from GPS, checked whether 
the screen was on or off, and noted the Wi-Fi status. Additionally, at every measure-
ment moment, the accelerometer, compass, light sensor, microphone, and gyroscope were 
sampled for 15 seconds. MoodExplorer also registered app usage and sent and received 
SMS messages and phone calls. After developing the app, a study was launched involving 
42 participants for a total period of 29 days. Participants were administered three beeps 
per day. After the data collection phase, only 30 participants were retained because of the 
requirement that they had to have more than 50 responses.
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After extracting some second-order features, the six best features per person were 
selected and subsequently plugged into a personalized factor graph that accounted for the 
correlation between distinct categories of emotions. Overall, the most important features 
were related to social (call duration or SMS text frequency of a specific contact), (indoor) 
location (time spent using a particular Wi-Fi network), and smartphone behavior (spe-
cific app usage duration). When comparing this to other methods (i.e., a decision tree, 
support vector machine, and logistic regression), the personalized factor graph models 
performed decisively better at a 76% “exact match” versus around 72% for the other 
methods. Thus, X. Zhang and colleagues (2018) show that moment-to-moment emo-
tions can be predicted reasonably well when using a sophisticated data-analytic strategy. 
Nevertheless, they admit that tracking emotion on a fine-grained level is hard, given that 
mobile sensing often produces coarse-grained data.

MoodCast

Besides trying to directly assess emotions by looking at participants’ behavior, another 
approach is to look at indirect emotional relationships. More specifically, the notion that 
emotions are inherently connected to that of people in one’s social network could be 
of great use. Such “emotional contagion” (Easterlin, 2003; Wilson, Meyers, & Gilbert, 
2003) means that emotions can, to some degree, be transferred from one person to another 
and that other people can “catch” emotional states by observation after days or even 
weeks (Bolger, 2005; Larson & Richards, 1994; Scollon, Kim-Prieto, & Scollon, 2003). 
For example, Fowler and Christakis (2008) found that happiness can spread within social 
networks, such as to a co-resident spouse, a next-door neighbor, or a friend who lives 
within a mile. Hence, Y. Zhang, Tang, Sun, Chen, and Rao (2010) capitalized on this 
idea by including emotions of social connections as a factor in their model alongside sev-
eral mobile sensing features. Their method, called MoodCast, comprised three aspects:

1.	 Temporal, that is, the relationship between emotion and its previous self.

2.	 Social, that is, the relationship between emotion and other people’s emotion sta-
tus in the same social network.

3.	 Attribute, that is, mobile sensing attributes that describe the environment (loca-
tion, call log, SMS text) and physical activities.

These three aspects were then integrated into a dynamic, continuous factor graph 
model to predict one of three discrete emotional states (positive, negative, or neutral) that 
users assigned to a post. The MoodCast method was compared to two support vector 
machines and two naïve Bayes models, both one with and one without social and tempo-
ral information. All models were tested on a real-world dataset and a virtual Web-based 
network (LiveJournal).

MoodCast performed, on average, 8% better than the other models in terms of F1 
score, ranging from 49.77% to 75.44% when predicting negative and neutral emotions, 
respectively, on a within-person level. Moreover, adding social network information clearly 
improved the models, more so with the Web-based network than with the real-life dataset. 
This is possibly because in the real-life dataset, participants only had 3.2 connections versus 
49.6 connections in the Web-based dataset, showcasing the need for taking participants’ 
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social networks into account. While this is an early study, it shows the interesting notion of 
making a distinction between temporal, social, and participant-specific information and 
how including social network dynamics can add to the understanding of emotion.

EmotionSense

Finally, one of the largest mobile sensing studies carried out to date is the one from the 
University of Cambridge with an app called EmotionSense. Because the app was free to 
download in the Google Play store, the team was able to collect data from approximately 
18,000 participants who had completed at least one self-report survey in a period of 
more than 3 years. Participants received two ESM notifications per day that measured 
valence and arousal, positive and negative affect, and happiness (Satisfaction with Life 
Scale; Diener, Emmons, Larsen, & Griffin, 1985). In the background, the app collected 
the location, physical activity as measured by the accelerometer, and ambient sound using 
the microphone. For each study, a slightly different subset of the data was used based on 
the research question.

From this massive dataset, Lathia and colleagues (2017) found that physical activ-
ity and happiness are positively related: Lower happiness relates to less physical activity. 
Related to this finding is that the momentary emotional state seems to be more positive 
at social locations versus when at home, and yet this emotional state is also more posi-
tive when being at home than when at work. Moreover, personality may moderate the 
relationship between emotion and location (Sandstrom et al., 2017).

When it comes to using EmotionSense data to predict emotion on a daily level, 
Servia-Rodríguez and colleagues (2017) used deep neural networks—a method that is 
feasible to use thanks to the large size of the dataset—to achieve an accuracy of 68% 
when predicting the valence of users who completed surveys on weekends and 65% on 
weekdays. For arousal, the predictive accuracy was lower, namely, 56% on weekends and 
around 60% on weekdays. The general noise level, location, physical activity, and socia-
bility could also be related to the demographics of a person. For example, females tend to 
be less physically active than males but send and receive more text messages per day. In 
general, Servia-Rodríguez and colleagues found that people with similar demographics 
have similar usage patterns.

Tagging on to these deep-learning techniques, Spathis, Servia-Rodriguez, Farrahi, 
Mascolo, and Rentfrow (2019), using the same data, attempted to classify whether par-
ticipants could be described as being more relaxed (i.e., being lower in arousal) only by 
looking at one-off questionnaires describing personality traits and mobile sensing data. 
A participant is considered to be relaxed/nonrelaxed based on the results of k-means clus-
tering to find the groups. Through an extensive method for selecting both the best feature 
and model combination, they achieved an area under the curve of 0.749, with a logistic 
regression using both sensor and questionnaire information. The sensors on a daily level 
(instead of weekly) did not improve the results (Spathis et al., 2019).

These studies make clear a strong need for reliable longitudinal data from a large 
group of participants, although these samples sizes are usually not pervasive in mobile 
sensing studies. However, as stated at the beginning of this chapter, one of the challenges 
involved in tracking emotions is that they have a highly dynamic nature. It is therefore 
essential not only to track many participants for a longer amount of time, but also to do 
so at a high sample frequency.
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Challenges

While every study has different strengths and weaknesses, there are some overlapping 
factors that hold back the field as a whole. A general challenge is to collect data such that 
they are (1) least invasive (in terms of privacy and battery drain), (2) both reliable and 
valid, and (3) gathered over a longer duration of time and of high frequency while still 
retaining an acceptable compliance rate. Especially for tracking emotions, high-frequency 
data are needed to capture these moment-to-moment events. While many other issues are 
keeping back the field, here we focus on three of the most necessary.

First, the number of participants in the studies is often quite low. Of course, this can-
not be seen independently of the short existence of the field; that is, because most works 
are aimed toward discovering the best method to predict their target variable, they are of 
an explorative nature. Once a state-of-the-art method has been developed, sample sizes 
can be increased to strengthen the statistical power of the analyses. Growing the number 
of participants further benefits the creation of person-specific models through which, for 
example, emotions can be measured when communicating through personality.

Such a state-of-the-art method is hindered by a second limitation, namely, that tech-
nical difficulties are generally abundant and that it is therefore challenging to perform 
reliable measurements (Bähr et al., 2022; Niemeijer, Mestdagh, and Kuppens, 2023). 
Currently, most researchers build their own mobile applications to collect data, even 
though alternatives already exist. These alternatives are not used because they (1) are not 
open source or too expensive, (2) do not collect the right information, or (3) lack docu-
mentation to use them. This is why collaborative efforts need to be made and a common 
ground and strategy decided.

Finally, studies often lack rigor in their descriptions of their methods, to the point 
that they are hard to reproduce without inquiring into the research about their specific 
implementation (De Angel et al., 2022; Langener, Stulp, Kas, & Bringmann, 2023). 
Coincidentally, since the results of similar studies greatly vary, this often complicates 
pinpointing what makes some studies more successful than others. These and other chal-
lenges are based on the fact that there is currently no consensus on a method, model, or 
tool for detecting daily averaged or momentary emotion levels from mobile sensing data. 
The sector should see enormous success, and its influence should function to transform it 
into a widely agreed standard procedure.

Future Directions

Although mobile sensing has not yet lived up to its promise, the field has much to look 
forward to. Overall, mobile sensing is getting more important for society as high-quality 
mobile telephones are becoming more widespread. Furthermore, the increasing efficiency 
of the sensors and the mobile phones themselves will further boost both data and predic-
tive quality. However, the greatest improvement could be achieved by a state-of-the-art 
method—specifically designed to track emotions—that has been verified and tested on a 
large population.

In terms of sensors, location and physical activity are two often used sensors, both 
because they are relatively easy to collect and because they have historically been known 
to have a strong relationship with emotion. Unsurprisingly, this promise holds up in 
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mobile sensing studies. We therefore recommend including these sensors in a mobile sens-
ing study for tracking emotions.

There are also opportunities with categories of sensors that—in contrast to location 
or physical activity—are not often used to predict emotion but that could be insightful. 
For example, natural typed text or spoken language is known to contain a wide spec-
trum of emotions (as showcased by the field of sentiment analysis; e.g., Bao et al., 2012; 
Cambria, 2016; Tang et al., 2021; Yadollahi et al., 2017), and yet it is frequently left out 
in mobile sensing studies for either privacy reasons or its technical complexity to collect 
and analyze. There are also novel information sources that have only started to be used 
recently in other contexts, such as image analysis (Darvariu, Convertino, Mehrotra, & 
Musolesi, 2020) and music choice analysis (Sarda, Halasawade, Padmawar, & Aghav, 
2019).
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C H A P T E R  O V E R V I E W

Advances in pervasive mobile technology have created new opportunities for high- 
precision measurement of cognitive function in situ. Mobile approaches can provide 
ecologically sensitive tools for exploring cognitive processes as they unfold in the con-
text of time. This chapter focuses on the opportunities and challenges facing researchers 
who would use mobile technology for scientific research on human cognition. First, we 
describe unique advantages provided by mobile approaches to measuring cognitive func-
tion. Second, we provide a selective review of research that demonstrates the feasibility, 
validity, and utility of mobile cognitive testing. We conclude this chapter with a discus-
sion of some challenges and potential solutions for researchers planning to use mobile 
devices to study human cognition.

Introduction

Cognitive abilities are vital to performing nearly every activity of daily life successfully 
and safely. Some cognitive failures, such as misplacing car keys or forgetting a recent 
acquaintance’s name, can be frustrating or embarrassing. Others, such as attentional 
lapses while driving or forgetting to take a medication can have serious, even life- 
threatening, consequences. Despite the centrality of cognitive function for everyday life, 
researchers have primarily studied cognition in controlled laboratory or clinical settings. 
This approach places people in social situations and physical settings that are fundamen-
tally dissimilar to their natural environment. Moreover, the financial and logistic costs 
imposed by requiring participants to visit a centralized testing location limits the size and 
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diversity of research samples, as well constrains the frequency of repeated assessments 
necessary to track changes in cognitive function over time.

Advances in pervasive mobile technology have and will continue to change the way 
that researchers study cognitive function. Devices such as smartphones now possess suf-
ficient computing power, high-resolution displays, and input sensors (e.g., touch screens, 
gyroscopes) that support deployment of an expansive array of digital tools for assessing 
cognition in naturalistic settings. Mobile cognitive assessment offers unique opportuni-
ties to overcome the limitations of conventional in-person cognitive assessment, but it also 
presents significant challenges to researchers. This chapter focuses on the opportunities 
and challenges facing researchers who adopt mobile technology for scientific research on 
human cognition. First, we describe some of the unique advantages provided by mobile 
approaches to measuring cognitive function. Second, we provide a selective review of 
research that demonstrates the feasibility, validity, and utility of mobile cognitive test-
ing. And we conclude with a discussion of some challenges and potential solutions for 
researchers planning to use mobile devices to administer cognitive tests.

Rationale for Mobile Cognitive Assessment

Several reasons have motivated researchers to use pervasive mobile technology to study 
human cognition. First, by mitigating time, geographic, space, and personnel constraints 
imposed by in-person testing, mobile assessments provide new opportunities to conduct 
cognitive research at scale by obtaining large and geographically diverse samples that can 
enhance statistical power and inferential strength (Germine, Strong, Singh, & Sliwinski, 
2021). Second, by allowing assessments to take place in the context of people’s everyday 
lives, mobile approaches make it possible to explore temporal (e.g., diurnal rhythms) 
or social-contextual (e.g., recent activities) influences on cognitive functioning as peo-
ple interact with the real-world environment (Moore, Swendsen, & Depp, 2017). And 
third, mobile cognitive assessments make possible frequent repeated assessments without 
imposing excessive participant burden and at minimal cost. Increasing the assessment 
frequency offers the dual benefit of providing more stable estimates of cognitive function 
than “single-shot” measurements as well as improved accuracy for detecting trends and 
relationships across time.

Scalability

In this context, “scalability” refers to the capability of research approaches to measure 
cognition at the scale necessary for population-based research and large cohort-based 
longitudinal studies. Logistical constraints faced by many studies of human cognition 
impose limits on the size of their samples. These limitations include limited numbers of 
testing rooms in a lab or clinic, limited personnel available to administer and oversee 
testing, and the cost in both time and money required for participants’ travel to a central 
testing location. The result is an overreliance on small and homogeneous samples that 
may not generalize to the population of interest. This limitation is especially problem-
atic for some research questions (e.g., examination of genome-wide associations) that 
require sample sizes well into the hundreds, thousands, or even tens of thousands to 
achieve adequate statistical power. More broadly, small and biased samples contribute 
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to measurement error, which perpetuates the so-called replication crises in psychological 
and biomedical science (Loken & Gelman, 2017).

Shifting to remote cognitive testing that relies on mobile technology affords the 
opportunity to increase the size and diversity of samples, as well as to reach specialized 
study populations. Access to mobile technology is becoming increasingly pervasive. As of 
April 2021, the share of U.S. adults who owned smartphones was 85%, up from 35% in 
2011 (Pew Research Center, 2021). Worldwide, current estimates (June 2021) are that 3.8 
billion people (approximately 48% of the world’s population) own a smartphone. One 
example of “scaling-up” comes from a study that used a commercial mobile application 
for the iPad to measure cognitive performance on more than 15,000 individuals (Lee 
et al., 2012) ranging in age from early childhood (<9 years) throughout adulthood (age 
60+). Other examples of using mobile technology to measure cognition at scale involve 
targeting patient populations for longitudinal assessment. The mPower study of Parkin-
son’s disease (PD) used a smartphone app to evaluate the feasibility of remotely collecting 
information about daily changes in symptoms and cognitive function (short-term visual 
working memory) in people with PD (Bot et al., 2016). Using completely remote “hands-
off” recruitment and onboarding, the mPower study enrolled 6,805 participants, 1,087 
of whom self-identified as having a diagnosis of PD. In another patient study (Pratap et 
al., 2020), investigators used a mobile app (elevateMS) to monitor symptoms, including 
cognitive performance on a voice-based variant of the Digit Symbol Substitution Test 
(DSST) and finger-tapping test, in 495 patients with multiple sclerosis (MS). These and 
other studies have demonstrated the feasibility of using mobile technology to measure 
cognitive performance in large numbers of people in lifespan studies, as well as in tar-
geted patient groups. Their results also provide favorable evidence of measurement qual-
ity, replicating age gradients in cognitive performance typically observed in the literature 
(Lee et al., 2012), as well as showing expected relationships of cognitive performance 
with severity of neurological disease (Pratap et al., 2020).

Cognition in Context and Ecological Validity

In broad terms, ecological validity describes whether findings from a study are generaliz-
able to real-life situations. Cognitive assessments have ecological validity to the extent 
that they accurately characterize how people function cognitively in real-world, natural-
istic settings. To this end, neuropsychologists have mostly emphasized verisimilitude and 
veridicality, which refer to the face validity of task demands (e.g., stimuli and responses) 
and the predictive relationships between assessments and activities of daily living, respec-
tively (Spooner & Pachana, 2006). Much less attention has been paid to the ecological 
validity of the assessment setting, which is especially important for examining the effects 
of contextual influences (e.g., mood, social setting) on cognitive function (Timmers 
et al., 2014). Performance in laboratory settings may be either elevated through social 
facilitation (Strauss, 2002) or hampered by unintended evaluative and stereotype threat 
(Schmader, Johns, & Forbes, 2008) in ways that obscure the broader contextual effects 
of people’s social environment and mental health on their cognitive function. Regardless 
of the specific differences, the settings in which researchers typically measure cogni-
tive abilities are very unlike the situations in which people typically use those abilities. 
Although in-person testing allows for good experimental control, this control provides 
no assurance that the performance observed in the lab reflects how people would perform 
in their natural settings.
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Ecological momentary assessment (EMA) is a technique that involves frequent sam-
pling of a person’s thoughts, experiences, and behaviors in real time and in natural envi-
ronments. Embedding brief cognitive tests into EMA can increase ecological validity and 
permit the study of microprocesses that reflect the co-influences among cognitive func-
tion, behaviors, and psychological or somatic states in real-world contexts (Shiffman, 
Stone, & Hufford, 2008). To the extent that EMA involves representative sampling of 
occasions, it can be used to characterize a person’s average (or typical) cognitive per-
formance over a wide variety of contexts in their daily lives. This approach to cognitive 
assessment differs from traditional assessment approaches that seek to create optimized 
environments in order to obtain an individual’s maximum rather than their average per-
formance. Attempting to measure an individual performance under optimal conditions 
might be ideal for certain purposes, such as aptitude testing. However, for other purposes, 
such as detecting the influence of social context or physical symptoms on cognitive func-
tion, a person’s average or typical cognitive performance might be a better choice than 
their performance under optimized conditions (Moore et al., 2017; Sliwinski et al., 2018).

Temporal Precision

Traditional single-shot approaches to measuring cognition seek to obtain a person’s best 
performance while being assessed under controlled and optimal conditions. However, 
imposing procedural control over testing cannot correct for a person having a bad night’s 
sleep the evening before testing, nor can it correct for them feeling fatigued or stressed. 
Indeed, any single time-point estimate of cognitive performance is influenced by the pecu-
liarities of a person’s immediate physical environment, psychosocial context, and biologi-
cal state. Therefore, results on any particular measurement occasion are influenced by 
both random and systematic within-person variability (good days/moments vs. bad days/
moments). This is not a trivial issue; the amount of moment-to-moment and day-to-
day within-person cognitive variability is substantial, and there is evidence of short-term 
variation in cognitive performance associated with recent stress (Sliwinski, Smyth, Hofer, 
& Stawski, 2006), positive and negative affect (Brose, Lövdén, & Schmiedek, 2014), 
recent social activities (Bielak, Mogle, & Sliwinski, 2019), and current motivational state 
(Brose, Schmiedek, Lövdén, & Lindenberger, 2012).

Ignoring short-term variability results in temporal sampling error, which refers to 
variability in measurement that reflects time-of-testing effects that can differ substan-
tially from a person’s average (Germine et al., 2021). That is, measuring cognition only 
once produces a point estimate that reflects a person’s environment (e.g., noisy, distract-
ing) and their psychological (e.g., stress) and somatic (e.g., fatigue) states at the time of 
testing. Temporal sampling error is highly relevant for longitudinal designs that rely on 
single-shot assessments separated by lengthy intervals. Figure 25.1 illustrates how testing 
an individual on a “bad” day (e.g., high stress, high fatigue) at baseline and a “good” day 
(e.g., low stress, low fatigue) at follow-up may suggest improvement that masks true long-
term declines in average level of functioning. Thus, temporal sampling error can signifi-
cantly impede longitudinal studies that must extract a very subtle signal (e.g., cognitive 
change in preclinical Alzheimer’s disease) from the background of variations in perfor-
mance associated with other variables (e.g., fatigue, stress) operating at a faster cadence. 
Temporal sampling error may be even more problematic for single-shot mobile assess-
ments because they take place in naturalistic settings and thus are vulnerable to extrinsic 
(e.g., noise levels) as well as to intrinsic (e.g., fatigue, stress) sources of variability.
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Embedding mobile cognitive assessments into intensive measurements designs, such 
as EMA or measurement bursts (Sliwinski, 2008), affords novel opportunities for the 
study of both short-term and long-term change. First, by aggregating across closely spaced 
repeated measurements, the effects of both random and systematic within-person vari-
ability can be “averaged out,” improving the precision and reliability of cognitive scores 
(Hassenstab et al., 2020; Sliwinski et al., 2018). Second, variability in performance may 
not just be noise but can also be viewed as signal, a view consistent with recent concep-
tualizations of dynamic phenotypes, a term originally coined to refer to time-dependent 
observable characteristics of single cells (Bounab et al., 2020). Explicitly measuring and 
modeling short-term cognitive variability (i.e., performance changes observable across 
moments, hours, and days) may elucidate important processes and produce novel perfor-
mance indicators that have prognostic value for predicting cognitive decline over the long 
term (Lövdén, Li, Shing, & Lindenberger, 2007).

Research in Mobile Cognitive Assessment

The incredible pace of scientific and technological advances in digital cognitive health 
will render any review of the literature hopelessly dated in short order. Therefore, we will 
provide a selective review of several key studies illustrating the validity and potential uses 
of mobile cognitive testing.

Supervised versus Unsupervised Cognitive Assessment

A key issue for mobile cognitive assessment is the degree to which unsupervised assess-
ments can generate high-quality and valid cognitive performance data. Although rela-
tively few studies directly compare supervised and unsupervised assessment using mobile 
devices, relevant evidence can be drawn from studies using unsupervised Web-based 
assessments administered via personal computers. Loss of control of stimuli presenta-
tion and of testing environment, as well as participant distraction and cheating, are key 

  FIGURE 25.1.    Temporal sampling error.
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factors that have the potential to confound performance estimates and reduce data qual-
ity obtained in unsupervised cognitive assessments. A series of studies (Germine et al., 
2012) examined this issue using a battery of cognitive tests that were likely to be particu-
larly vulnerable to such confounding factors and comparing performance across unsu-
pervised and traditional in-lab settings. They found no systematic difference in mean per-
formance, reliability, or variance when comparing data from a self-selected Web-based 
sample that completed the tests unsupervised to data from samples tested in supervised 
lab settings.

Several additional studies using within-subject crossover designs also report no sys-
tematic within-person differences in mean performance, reliability, or variability for data 
obtained from most cognitive tests that were completed supervised in-lab and unsuper-
vised (Cromer et al., 2015; Cyr, Romero, & Galin-Corini, 2021). The only exception was 
one study that reported slower reaction times during the unsupervised Web-based assess-
ment, which they attributed to variations in computer hardware (Backx, Skirrow, Dente, 
Barnett, & Cormack, 2020). Taken together, these studies indicate that unsupervised 
administration of cognitive tests in uncontrolled environments can produce high-quality 
data that are comparable to that obtained in traditional supervised in-lab settings.

A further issue is the feasibility of conducting unsupervised cognitive assessments 
with populations who may have difficulty completing the assessment independently 
or who may be less familiar with the technology required to complete the assessment, 
such as older adults or clinical populations. Notably, two large studies (N = 6,463 and 
1,594) that administered the Cogstate Brief Battery in an unsupervised online format to 
adults aged over 55 years demonstrated age associations with cognitive performance in 
the expected direction (slower reaction time, lower accuracy on learning and working 
memory), suggesting the validity of data collected within this context (Mackin et al., 
2018; Perin et al., 2020).

Psychometrics and Validity

Due to the relative novelty of using mobile devices to study cognitive performance, much 
of the research in this area has focused on evaluating feasibility, validity, and psycho-
metrics. In this section we review three illustrative studies that demonstrate the ways 
in which validation has been approached in three separate populations: healthy adults, 
school-age children, and patients with PD. Each of these studies took a different approach 
to validation, which highlights a range of approaches to demonstrating the validity of a 
mobile cognitive measure.

The approach to validation in an adult sample taken by Sliwinski and colleagues 
(2018) focuses on evaluating construct validity by examining patterns of between-person 
correlations among the mobile measures and “gold-standard” cognitive tests adminis-
tered in the lab. In this study a probability sample of 219 racially diverse adults (25–65 
years, 66% female) completed a battery of traditional neuropsychological tests in-lab 
at the start of the study, followed by a 14-day measurement burst with five assessments 
per day completed on a study-provided smartphone. Each of the assessments during the 
measurement burst included a brief survey and three cognitive assessments that measured 
perceptual speed and working memory. Confirmatory factor analysis (CFA) supported 
a two-factor model (perceptual speed and working memory), with the mobile cognitive 
assessments loading on the appropriate factor with in-lab cognitive assessments of the 
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same construct. Furthermore, the results were robust to practice effects across the study 
and invariant across age. Between-person reliability for the mobile cognitive assessments 
averaged across the 14 days was ≥.97.

Dirk and Schmiedek (2016) focus instead on within-person convergent validity in 
their study of working memory processes in school age children. Female grade 3 and 4 
students (N =110, ages 8 to 11 years) completed assessments on study-provided smart-
phones three times per day for 31 consecutive days. The mobile cognitive assessments 
included two working memory updating tasks that had been adapted from tasks that had 
previously been used with school-age children. One task included numerical content and 
the other spatial content, and both tasks included two memory load conditions. Within-
person convergent validity was assessed with correlation between daily aggregate scores 
for the four task conditions. Moderate within-person positive correlations (r’s ranged 
from .33 to .58) were observed for the daily accuracy scores of the four task conditions. 
This provided evidence for convergent validity of the mobile cognitive assessments as 
measuring the same construct, as well as for the working memory fluctuations observed 
in the study.

Weizenbaum and colleagues (2021) also consider convergent validity, but focus on 
convergence with performance on traditional neuropsychological tests and subjective 
reports of cognitive dysfunction in a patient population. The study included 27 indi-
viduals (mean age 63.2 years, 48% female) with mild to moderate PD who did not meet 
criteria for dementia. Participants completed mobile assessments five times per day for 
10 days, which included one measure of working memory and one measure of executive 
function. Prior to commencing the mobile assessments, participants underwent in-lab 
neuropsychological assessment that included a cognitive screening measure (the Mon-
treal Cognitive Assessment), a measure of working memory (backward spatial span), 
and a measure of executive function (accuracy on Trailmaking Form B). Participants 
also completed a subjective questionnaire of executive dysfunction. Only performance 
on the working memory mobile cognitive assessment was significantly predicted by per-
formance on each of the three traditional neuropsychological assessments. The subjective 
measure was not a significant predictor of performance on either of the mobile cognitive 
assessments. The authors note that there was limited variability in scores on the executive 
function mobile cognitive assessment and that performance on this measure was more 
closely related to measures of motor and tremor symptoms. This suggests that the mea-
sure had low validity for assessing executive function and instead was capturing variabil-
ity related to psychomotor function. Furthermore, these results highlight the importance 
of careful test design when developing cognitive assessments for mobile devices, an issue 
we discuss further later in this chapter.

Two of the three studies reviewed above evaluated validity by correlating scores from 
mobile cognitive assessments with scores obtained from in-lab cognitive testing. This 
approach is common practice in neuropsychology for validation and useful for interpret-
ing scores from new cognitive tests. However, it is also problematic because we expect 
mobile assessment to differ from in-person cognitive testing not only in ways that could 
negatively impact validity (e.g., distractions) but also in ways that could be beneficial 
(e.g., improved ecological validity, sensitivity to context). There is much interest in using 
mobile approaches to cognitive measurement as “digital biomarkers” that can be used to 
discriminate among clinical phenotypes, predict risk, and monitor progression of disease 
(Baker, Belachew, Gossens, & Lindemann, 2019; Ferrar et al., 2021; Lancaster et al., 
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2020). For these clinical purposes, moderate or even low correlations with conventional 
in-person neuropsychological testing could indicate potential added value of mobile cog-
nitive assessments, rather than their lack of validity. Given the growing evidence that 
remote and unsupervised cognitive testing can produce high-quality data, we suggest that 
mobile cognitive tests that have been developed based on established paradigms should 
enjoy some degree of presumptive construct validity. In such cases, simple manipulation 
checks, such as demonstrating reliable interference effects in a Stroop paradigm or set 
size effects in a working memory paradigm, should be sufficient.

Relationships between Contextual Factors and Cognition

A unique advantage of mobile cognitive assessments is that they can be embedded in 
intensive longitudinal designs, such as EMA, to explore microprocesses that reflect co-
influences of cognition and contextual factors (e.g., affect, daily activities). By collecting 
frequent measurements across short periods of time, it is possible to model short-term 
within-person trends and fluctuations in cognitive performance, and to assess temporal 
sequences among theoretically connected variables. In this section, we review illustra-
tive studies that have used mobile cognitive assessments to examine contextual factors, 
to explore interactions between psychological and physiological processes in real time, 
and to evaluate whether a person’s current cognitive performance might predict future 
psychological states and behaviors.

Contextual Influences on Within‑Person Variations in Cognitive Performance

Prior work has demonstrated that between-person differences in social contact are asso-
ciated with cognitive decline and risk of dementia (Lara et al., 2019). However, from 
these studies it cannot be inferred how fluctuations in social interaction influence cogni-
tive performance within an individual. An EMA study by Zhaoyang, Scott, Martire, and 
Sliwinski (2021) examined this question of within-person influences of social interaction 
on cognitive performance in a sample of 312 older adults (mean age 76.97 [4.85] years, 
67% female). Participants completed five assessments per day for 16 days that included 
surveys on social interactions and cognitive assessments of processing speed, working 
memory, and memory binding. They demonstrated the frequency of social interactions 
on a given day, especially pleasant interactions or interactions with close friends or fam-
ily, which were associated with better cognitive performance on the same day and across 
the following 2 days. Furthermore, they found that older adults who tended to have less 
frequent social interactions on average benefited the most in terms of improvement in 
cognitive performance on days where they had an increase above their usual amount of 
social interaction.

Daily experiences of stress have also been linked to within-person reductions in 
response time on tests of attention and working memory on the same day (Sliwinski et al., 
2006). A recent study (Hyun, Sliwinski, & Smyth, 2019) used mobile cognitive testing to 
explore the temporal dynamics of the stress–cognition relationship in an EMA study that 
incorporated measures of anticipatory stress. Participants (N = 240, ages 25–65 years, 
66% female) completed 2 weeks of EMA that included a morning assessment completed 
upon waking and five prompted assessments dispersed randomly across the day. Each 
prompted assessment included a measure of momentary stress and a spatial working 
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memory task. An assessment completed upon waking each morning included a measure 
of anticipatory stress (“Overall, how stressful do you think today/tomorrow will be?”). 
Results demonstrated that stress anticipation upon waking was associated with poorer 
working memory performance later the same day and that this relationship was indepen-
dent of whether stress was experienced later in the day.

In addition to being able to examine temporal dynamics and within-person pro-
cesses of psychological and cognitive phenomena, mobile cognitive assessments can also 
be coupled with ambulatory measures of physiological function. Riediger and colleagues 
(2014) examined the temporal relationship between cognitive performance and physi-
ological and psychological arousal across 24 hours. Participants (N = 92, mean age 42.4 
[19.0] years, 55% female) wore an ambulatory biomonitoring system that recorded car-
diac and physical activity, as well as completed seven momentary ambulatory assessments 
of tense arousal (feeling nervous), energetic arousal (feeling wide awake), and two trials of 
a working memory task. All participants had previously practiced the working memory 
task extensively and were familiar with the task requirements prior to the 24-hour study 
period. They found that tense arousal was associated with increased momentary heart 
rate, and that there was an age-moderated relationship between tense arousal and work-
ing memory performance such that middle-aged and older adults performed worse when 
feeling more nervous. They also found a similar age-moderated relationship between 
increased heart rate (physiological arousal) and working memory performance. Addition-
ally, the relationship between tense arousal and working memory was no longer signifi-
cant after controlling for physiological arousal. However, the relationship between physi-
ological arousal and working memory persisted after controlling for tense arousal. This 
finding suggested that physiological arousal was the driving mechanism behind reduced 
working memory performance assessed in naturalistic settings.

Momentary Cognition as a Predictor of Symptoms and Behaviors

Using EMA designs with embedded mobile cognitive assessments can be used not only 
to identify contextual influences on cognitive performance, but also to evaluate whether 
short-term variations in cognitive performance predict health behaviors or other psy-
chological states. For example, one study used a modified Stroop task embedded into 
an EMA protocol to measure attentional bias prior to and during temptation episodes 
(Waters, Marhe, & Franken, 2012) in heroin-dependent patients (N = 68, mean age 40.87 
[7.72] years, 14.7% female). This study found that attentional bias to drug cues was 
elevated during assessments where the participant was experiencing temptation and that 
this elevation was evident one hour prior to the temptation episode. Another study exam-
ining the reciprocal relationships between pain and cognitive function in fibromyalgia 
(Whibley, Williams, Clauw, Sliwinski, & Kratz, 2021) found that a reduction in working 
memory performance preceded an increase in pain intensity. Over 7 days, participants 
(50 with fibromyalgia and 50 controls, mean age 45.1[13.9] years, 88% female) com-
pleted five assessments per day that included a survey of pain intensity and self-reported 
cognitive function, as well as cognitive assessments of processing speed and working 
memory. Pain intensity and working memory performance were unrelated at concurrent 
assessments, but errors on the working memory task predicted a subsequent increase 
in pain intensity 3–4.5 hours later for the fibromyalgia group. Thus, in both of these 
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studies a change in cognitive performance functioned as a signal prior to a self-reported 
elevation in clinically relevant symptoms. Studies such as these may identify potential 
mechanisms (increased attentional bias, decreased working memory) as targets for “just-
in-time” interventions (Nahum-Shani et al., 2017) designed to reduce the probability or 
severity of later symptoms (temptation episode, pain flare).

Challenges and Solutions

Several challenges face researchers who use mobile devices to study human cognition. The 
process of translating cognitive assessment paradigms designed for administration on 
large displays or paper forms for use on smartphones is not as straightforward as decreas-
ing stimuli size and changing response style. Whether designing a brand-new “digital” 
cognitive assessment or adapting a conventional clinic-based neuropsychological test to a 
smartphone, the design process starts with consideration of the intended target audience 
(e.g., those with mild cognitive impairment [MCI]), device type (e.g., smartphone vs. 
tablet), and administration modality (e.g., with or without supervision; study-provided 
vs. participant-owned devices). Some of these challenges pertain to the design of tests and 
paradigms, which may require adapting testing procedures intended for administration 
on large displays to a smaller form factor. Others are associated with test administra-
tion, such as how to handle interruptions and specification of pause–resume rules that 
preserve test validity. In addition, some nontrivial technical considerations are associated 
with inter- and intra-device variability in hardware (e.g., touch screen sensitivity, screen 
resolution, and refresh rates) and operating system (e.g., iOS vs. Android). In this sec-
tion, we outline several principles to consider when developing or adapting cognitive tests 
and paradigms for administration on mobile devices: (1) using cognitive tests that have 
intuitive task demands, (2) prioritizing brief administration times, and (3) designing tests 
with minimal technical requirements. We also describe recent work in “passive cognitive 
sensing” that does not require any explicit involvement or responses from participants 
(i.e., they do not “perform” a cognitive task), but rather relies on smartphone sensors to 
gather meaningful data in the background.

Intuitive Task Demands

In laboratory settings, a research technician is usually available to provide task instruc-
tions, monitor performance, and guide participants through complex cognitive paradigms 
by providing feedback and answering questions about task demands. Because mobile test 
administration is unsupervised, task demands should be intuitive so that participants 
clearly understand the requirements to perform for each step of the test, even if they have 
undergone in-person onboarding and instruction. This is important to ensure proper 
engagement with the task (i.e., participants are performing the task as intended) and its 
accessibility to individuals who vary in sociodemographic factors, health status, technol-
ogy fluency, and sensorimotor function.

Certain types of paradigms are relatively simple and require a single type of opera-
tion from the participant (e.g., comparing two stimuli), whereas others are more complex, 
consisting of multiple stages. Figure 25.2 displays screen shots from a simple multiphase 
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mobile cognitive test that were designed to follow the principle of intuitive task demands 
(Sliwinski et al., 2018). The Symbol Match task (Figure 25.2A), which taps perceptual 
comparison speed, begins with an instruction screen encouraging participants to respond 
as quickly and accurately as they can, and each trial consists of a forced- choice response. 
A more complex task that measures spatial working memory is the Dot Memory task 
(Figure 25.2B), which consists of a study phase, a distractor phase, and a retrieval phase. 
Even though Dot Memory has three task phases (Figure 25.2B), requirements for each 
phase are clearly communicated by the interface design and a single- line instruction. We 
have found that single- line instructions accompanied by appropriate example images, 
demonstrations, and practice trials are more effective than lengthy, detailed instructions 
for mobile test administration. In addition, they are less likely to be confounded by fac-
tors related to age, education, cognitive status, and language abilities.

Brief Administration Times

Because mobile cognitive assessments take place in naturalistic settings, interruptions 
while performing a cognitive test can compromise the validity of test scores. For in- 
person assessments completed in the lab or clinic, efforts are made to reduce noise lev-
els and overall distractibility of the environment. Mobile testing protocols can attempt 
to simulate these more controlled testing environments by providing instructions that 
encourage participants to proceed at a time and in a place that minimize distractibil-
ity. This approach, however, cannot eliminate the effect of frequent interruptions that 
are intrinsic to using a modern mobile device. These interruptions come in the form of 
app or operating system notifications (e.g., prompting software updates), text messages, 
and incoming phone calls. Tests that require several minutes of continuous performance 
to complete require specification of pause– resume rules and can create frustration in 
participants who are required to restart a test due to an interruption. Moreover, to the 
extent that mobile cognitive tests are embedded in experience sampling protocols, asking 

 FIGURE 25.2.  Examples of mobile cognitive tests.
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individuals to seek out optimal environments for testing could compromise estimation of 
the effects of momentary states, social contexts, and very recent events on performance.

We recommend a two-prong strategy for addressing interruptions during cogni-
tive assessments taking place in naturalistic settings. The first is to keep administration 
times brief to reduce the likelihood that an interruption occurs during performance—
experience sampling studies have used mobile cognitive tests that take a minute or less to 
complete (Hyun, Slwinski, & Smyth, 2019; Whibley et al., 2021). Second, we recommend 
collecting ancillary information by self-report and passive monitoring from smartphone 
sensors (e.g., ambient sound/light) to measure and statistically control for variations in 
the social and physical environment during each assessment.

Technical Requirements and Device “Robust” Tests

Although the computing power of modern mobile devices far exceeds the needs of 
most cognitive paradigms, mobile platforms impose inherent technical and proce-
dural constraints. Some studies have given participants smartphones in order to pro-
vide a standardized hardware and software environment for testing. Because relying on 
investigator-provided mobile devices is expensive and inconvenient for participants who 
may be required to carry two mobile devices, studies are increasingly adopting a “bring-
your-own-device” (BYOD) approach. Cognitive paradigms that require tight control over 
visual angle (stimulus size), auditory stimulus presentation, and open-ended input via 
voice responses are all susceptible to hardware and operating system differences inherent 
to BYOD studies. Small effects (e.g., Stroop or Flanker effects) or subtle differences in 
very fast response times may be overwhelmed by variability between devices (e.g., older 
vs. new smartphone models) and within devices (e.g., operating system updates, instal-
lation of other apps) over time. Thus, we recommend avoiding cognitive paradigms that 
rely highly on precise timing for stimulus presentation and speeded responses that exceed 
typical screen refresh and touch-sampling rates.

Variability across devices may not only introduce noise but may also be a source of 
bias if device preference, availability, and affordability systematically vary with people’s 
characteristics (e.g., personality, geographic location, socioeconomic status) that are 
related to cognitive performance. Thus, an important technical challenge is to manage 
the influence of inter-device and intra-device variability with respect to screen refresh 
rate, tap registration latency, and usage of device RAM during a graphic-intensive mobile 
cognitive assessment. In general, most Web-based frameworks for delivering online 
experiments have “reasonable accuracy and precision for display duration and manual 
response time” (Anwyl-Irvine, Dalmaijer, Hodges, & Evershed, 2020, p. 1407), though 
less is known about app-based assessment approaches. When exploring individual dif-
ferences, one strategy supported by the literature to mitigate potential biases in measure-
ment due to technical variability involves juxtaposing participant performance across 
multiple conditions or manipulations (Pronk, Wiers, Molenkamp, & Murre, 2020). This 
approach to designing “device robust” tests rests on the reasonable assumption that any 
systematic differences across devices should be equivalent across task manipulations (e.g., 
varying the number of display items, distractor load, or response options). Thus, includ-
ing “control” condition in mobile cognitive paradigms could be an effective strategy to 
correct for hardware and software variations in timings associated with response regis-
tration and stimulus presentation.
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On the Horizon: Passive Cognitive Sensing

The technical simplification of collecting various sensor streams over the last decade, 
including development and validation of ready-to-use frameworks (Torous, Kiang, 
Lorme, & Onnela, 2016), has opened the door to novel work leveraging digital mobile 
tools in order to passively measure cognition and optimize the design of studies. Onboard 
most modern smartphones are a suite of sensors that are able to passively collect location 
(lifespace) measures via GPS sensors (Liddle et al., 2014; Parrish et al., 2020), gait and 
general activity patterns (via accelerometer and gyroscopes), as well as markers of social 
interaction (e.g., number of text messages received). As highlighted in a recent review, 
while the utilization of these rich data streams is on the rise, there remains extensive 
heterogeneity with respect to how they are leveraged, processed, and analyzed, (Piau, 
Rumeau, Nourhashemi, & Martin, 2019). In this section, we review a set of proof-of-
concept studies that lay the foundation for the future of digital cognitive biomarkers in 
predicting cognitive state, status, neuropsychological function, and real-world outcomes 
(e.g., driving).

Predicting Cognitive State

One advancement made possible with ambulatory technologies is detecting cognitive 
states, such as alertness, from user-completed self-reported assessments and objective 
cognitive assessments. In a study by Abdullah and colleagues (2016), leveraging an eco-
logical momentary assessment protocol, they asked participants to complete a psychomo-
tor vigilance task (PVT), while passively collecting smartphone usage measures. Models 
predicting alertness from PVT performance, participant demographics, and usage pat-
terns demonstrated high accuracy—highlighting the promise of this low-cost, passive-
prediction approach.

Predicting Cognitive Status

An exploratory study of digital health assessment applied this passive sensing approach 
to predict cognitive status. For the 12-week study period, researchers offered participants 
(82 healthy controls and 31 individuals previously diagnosed with MCI or mild Alzheim-
er’s disease [AD]) a set of mobile devices (i.e., iPhone and iPad) and wearables (i.e., Apple 
Watch) to use as their primary devices (Chen et al., 2019). By applying machine learning 
techniques to data collected from these devices, it was possible to predict cognitive status 
(controls vs. MCI vs. mild AD) with reasonable accuracy (area under the curve = 0.80).

Digital Biomarkers of Neuropsychological Outcomes/Function

Passive measures have also been demonstrated to be useful in predicting neuropsycho-
logical test scores. In a study by Dagum (2018), a stream of digital biomarkers from 
a smartphone application (e.g., keystroke and event patterns) were collected over the 
course of 7 days following a neuropsychological exam. In this study, passively collected 
digital biomarkers significantly predicted scores on neuropsychological assessments of 
working memory, language, dexterity, and memory, with correlations ranging from .62 
to .83 (p’s < 10–4).
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With respect to the assessment of memory using passive methods, several studies 
have employed the use of acoustic analysis and natural language processing (NLP; Haas 
et al., 2022; Polsinelli, Moseley, Grilli, Glisky, & Mehl, 2020; Wank et al., 2020) to 
better understand the relationship between typical assessments of memory function and 
biomarkers from everyday life. In a sample of 91 adults (53 younger adults, ages 19–32; 
38 older adults, ages 60–81), Haas and colleagues investigated the relationship between 
three approaches to memory assessments: (1) a prospective memory task, administered by 
an experimenter, (2) a daily diary approach following up on intentionally set plans, and 
(3) unobtrusively sampled audio recordings of spontaneous speech production (electroni-
cally activated recorder [EAR]). Results demonstrated that age deficits were not apparent 
in experimenter-driven tasks, but older adults completed more self-assigned intentions 
(in daily diaries) compared with younger adults. Wank and colleagues (2020) also lever-
aged the EAR for assessment of autobiographical memory in older adults. Interestingly, 
this study replicated typical age effects on autobiographical memory that are expected 
on laboratory tasks (less details with increased age), with passively assessed indicators 
of cognition from spontaneous voice samples. Of note, the passively assessed indicators 
of autobiographical memory did not correlate with data from traditional list learning 
paradigms. This showed that passively assessed indicators do not always behave in the 
same ways we would expect constructs to behave in the lab (e.g., we would expect a cor-
relation between in-lab memory tasks). Evaluating how the semantics of natural language 
using the EAR relate to executive functioning, Polsinelli and colleagues (2020) charac-
terized the recordings of participants with respect to analytic language, emotional tone, 
and other constructs (e.g., health, home). This study demonstrated that higher executive 
functioning was related to increased use of analytical language. Altogether, digital bio-
markers of speech samples (i.e., the decomposition into acoustic, semantic, and higher-
level cognitive properties, e.g., minutes spent in analytical language) are a promising way 
forward in the study of cognition in daily life and may even challenge our understanding 
of cognition from decades of laboratory work.

Digital Biomarkers of Functional Activities of Daily Living

In addition to predicting cognitive state, status, and neuropsychological outcomes, recent 
work has paved the way with respect to monitoring functional activities, such as driv-
ing. In a proof-of-concept study, Seelye and colleagues (2017) unobtrusively monitored 
the driving activities of older adults (n = 21, with intact cognition; n = 7 with MCI) for 
6 months. In addition to participants’ general acceptance of this technology, Seelye and 
colleagues (2017) provided evidence of feasibility, noting that this technology allowed 
for the discovery of patterning that is associated with MCI (e.g., fewer miles driven, less 
highway driving, less day-to-day fluctuation in habits). The novelty of this approach is 
the ability to monitor subtle variations in driving behavior (e.g., hard breaks), the time 
of use (e.g., night driving), and situations (e.g., highway driving), all with a single sensor 
stream (i.e., a sensor that plugs into the OBD-2 port on most modern vehicles).

Integrating Active and Passive Assessments

Regardless of which sensor (or collection of features) is used, with this approach comes 
the perspective that we might be able to leverage the signal in the features of various 
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sensor streams (e.g., acoustic features of voice samples, daily aggregates of activity moni-
toring via GPS and accelerometer, patterns of touchscreen typing), in order to predict 
who might be experiencing atypical cognitive functioning (Ntracha et al., 2020). From a 
public health perspective, capitalizing on passively sensed behaviors that correlate with 
clinical phenotypes and outcomes could be immensely valuable due to its scalability 
and minimal respondent burden. However, there is no guarantee that passively sensed 
behaviors, even if they are strongly correlated with cognitive outcomes such as demen-
tia, would prove useful for monitoring changes in risk status, disease progression, or 
intervention effects. That is, some passively measured cognitive behaviors may capture 
relatively stable, nonmalleable individual differences that convey lifelong risk and thus 
may be less sensitive to subtle changes in specific cognitive processes. An important and 
exciting area of new research involves developing approaches that can integrate and co-
validate passive and active approaches to cognitive sensing to improve not only predic-
tion of important outcomes but our ability to measure cognitive functioning in everyday 
life.

Concluding Remarks and Future Directions

Although researchers have only recently begun to explore the potential uses of mobile 
cognitive assessments, a rapidly growing body of evidence points to their added value as 
a complementary tool to traditional in-person assessment methods. For example, mobile 
methods provide a scalable solution to cognitive assessment that can enhance ecological 
validity and improve measurement precision, particularly in the context of longitudinal 
designs. Studies to date have also provided strong evidence that mobile testing can pro-
duce measurements that are reliable, valid, and appropriate for use with individuals from 
across a wide age range, including clinical populations. And mobile testing allows for 
rapid and repeatable assessments, which researchers can leverage to explore antecedents 
(e.g., stress, social activity) and consequents (e.g., pain, cravings) of variations in cogni-
tive function as they unfold in real time and in naturalistic settings. In the near future, 
mobile cognitive assessments could be used to monitor disease progression, rapidly iden-
tify acute adverse reactions (or benefits) to therapeutics, and assist patients and clinicians 
in self-management and in providing patient-centered care. Indeed, using mobile technol-
ogy to assess cognition “anytime, anyplace” holds tremendous potential to transform 
biomedical and behavioral research that depends on the sensitive detection and accurate 
monitoring of cognitive variability and change.

A C K N O W L E D G M E N T S

This work was supported in part by the National Institute on Aging under Grant Nos. 
P01AG003949 and U2CAG060408.

REFERENCES

Abdullah, S., Murnane, E. L., Matthews, M., 
Kay, M., Kientz, J. A., Gay, G., et al. (2016). 

Cognitive rhythms: unobtrusive and continu-
ous sensing of alertness using a mobile phone. 

594	 Applications in Psychological Science 	



Proceedings of the 2016 ACM International 
Joint Conference on Pervasive and Ubiqui-
tous Computing, pp. 178–189.

Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, 
N., & Evershed, J. K. (2020). Realistic preci-
sion and accuracy of online experiment plat-
forms, Web browsers, and devices. Behavior 
Research Methods, 53(4), 1407–1425.

Backx, R., Skirrow, C., Dente, P., Barnett, J. H., 
& Cormack, F. K. (2020). Comparing Web-
based and lab-based cognitive assessment 
using the Cambridge Neuropsychological Test 
Automated Battery: A within-subjects coun-
terbalanced study. Journal of Medical Inter-
net Research, 22(8), e16792.

Baker, M., Belachew, M., Gossens, C., & Linde-
mann, M. (2019). Digital biomarkers for cog-
nition and movement diseases or disorders. 
Patent No. US 2019/0200915 A1.

Bielak, A. A. M., Mogle, J., & Sliwinski, M. J. 
(2019). What did you do today?: Variability in 
daily activities is related to variability in daily 
cognitive performance. Journals of Geron-
tology. Series B, Psychological Sciences and 
Social Sciences, 74(5), 764–771.

Bot, B. M., Suver, C., Neto, E. C., Kellen, M., 
Klein, A., Bare, C., et al. (2016). The mPower 
study, Parkinson disease mobile data collected 
using ResearchKit. Scientific Data, 3, 160011.

Bounab, Y., Eyer, K., Dixneuf, S., Rybczynska, 
M., Chauvel, C., Mistretta, M., et al. (2020). 
Dynamic single-cell phenotyping of immune 
cells using the microfluidic platform Drop-
Map. Nature Protocols, 15(9), 2920–2955.

Brose, A., Lövdén, M., & Schmiedek, F. (2014). 
Daily fluctuations in positive affect positively 
co-vary with working memory performance. 
Emotion, 14(1), 1–6.

Brose, A., Schmiedek, F., Lövdén, M., & Linden-
berger, U. (2012). Daily variability in working 
memory is coupled with negative affect: The 
role of attention and motivation. Emotion, 
12(3), 605–617.

Chen, R., Jankovic, F., Marinsek, N., Foschini, 
L., Kourtis, L., Signorini, A., et al. (2019). 
Developing measures of cognitive impairment 
in the real world from consumer-grade mul-
timodal sensor streams. Proceedings of the 
25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Min-
ing, pp. 2145–2155.

Cromer, J. A., Harel, B. T., Yu, K., Valadka, J. 
S., Brunwin, J. W., Crawford, C. D., et al. 

(2015). Comparison of cognitive performance 
on the Cogstate Brief Battery when taken in-
clinic, in-group, and unsupervised. The Clini-
cal Neuropsychologist, 29(4), 542–558.

Cyr, A.-A., Romero, K., & Galin-Corini, L. 
(2021). Web-based cognitive testing of older 
adults in person versus at home: Within-
subjects comparison study. JMIR Aging, 4(1), 
e23384.

Dagum, P. (2018). Digital biomarkers of cogni-
tive function. npj Digital Med, 1, 10.

Dirk, J., & Schmiedek, F. (2016). Fluctuations in 
elementary school children’s working memory 
performance in the school context. Journal of 
Educational Psychology, 108(5), 722–739.

Ferrar, J., Griffith, G. J., Skirrow, C., Cashdol-
lar, N., Taptiklis, N., Dobson, J., et al. (2021). 
Developing digital tools for remote clinical 
research: How to evaluate the validity and 
practicality of active assessments in field set-
tings. Journal of Medical Internet Research, 
23(6), e26004.

Germine, L., Nakayama, K., Duchaine, B. C., 
Chabris, C. F., Chatterjee, G., & Wilmer, 
J. B. (2012). Is the Web as good as the lab?: 
Comparable performance from Web and lab 
in cognitive/perceptual experiments. Psycho-
nomic Bulletin and Review, 19(5), 847–857.

Germine, L., Strong, R. W., Singh, S., & Sliwin-
ski, M. J. (2021). Toward dynamic pheno-
types and the scalable measurement of human 
behavior. Neuropsychopharmacology, 46(1), 
209–216.

Haas, M., Mehl, M., Ballhausen, N., Zuber, Z., 
Kliegel, M., & Hering, A. (2022). The sounds 
of memory: Extending the age-prospective 
memory paradox to everyday behavior and 
conversations. Journals of Gerontology Series 
B: Psychological Sciences and Social Sciences, 
77(44), 695–703.

Hassenstab, J., Aschenbrenner, A. J., Balota, 
D. A., McDade, E., Lim, Y. Y., Fagan, A. 
M., et al. (2020). Remote cognitive assess-
ment approaches in the Dominantly Inherited 
Alzheimer Network (DIAN). Alzheimer’s and 
Dementia, 16(S6), e038144.

Hyun, J., Sliwinski, M. J., & Smyth, J. M. (2019). 
Waking up on the wrong side of the bed: The 
effects of stress anticipation on working mem-
ory in daily life. Journals of Gerontology: 
Series B, 74(1), 38–46.

Lancaster, C., Koychev, I., Blane, J., Chinner, A., 
Wolters, L., & Hinds, C. (2020). Evaluating 

�	 Cognition on the Go	 595



the feasibility of frequent cognitive assessment 
using the Mezurio smartphone app: Obser-
vational and interview study in adults with 
elevated dementia risk. JMIR MHealth and 
UHealth, 8(4), e16142.

Lara, E., Martín-María, N., De la Torre-Luque, 
A., Koyanagi, A., Vancampfort, D., Izquierdo, 
A., et al. (2019). Does loneliness contribute to 
mild cognitive impairment and dementia?: A 
systematic review and meta-analysis of lon-
gitudinal studies. Ageing Research Reviews, 
52, 7–16.

Lee, H., Baniqued, P. L., Cosman, J., Mullen, 
S., McAuley, E., Severson, J., et al. (2012). 
Examining cognitive function across the lifes-
pan using a mobile application. Computers in 
Human Behavior, 28(5), 1934–1946.

Liddle, J., Ireland, D., McBride, S. J., Brauer, S. 
G., Hall, L. M., Ding, H., et al. (2014). Mea-
suring the lifespace of people with Parkinson’s 
disease using smartphones: Proof of principle. 
JMIR mHealth and uHealth, 2(1), e13.

Loken, E., & Gelman, A. (2017). Measure-
ment error and the replication crisis. Science, 
355(6325), 584–585.

Lövdén, M., Li, S.-C., Shing, Y. L., & Linden-
berger, U. (2007). Within-person trial-to-trial 
variability precedes and predicts cognitive 
decline in old and very old age: Longitudinal 
data from the Berlin Aging Study. Neuropsy-
chologia, 45(12), 2827–2838.

Mackin, R. S., Insel, P. S., Truran, D., Finley, 
S., Flenniken, D., Nosheny, R., et al. (2018). 
Unsupervised online neuropsychological test 
performance for individuals with mild cogni-
tive impairment and dementia: Results from 
the Brain Health Registry. Alzheimer’s and 
Dementia: Diagnosis, Assessment and Dis-
ease Monitoring, 10, 573–582.

Moore, R. C., Swendsen, J., & Depp, C. A. 
(2017). Applications for self-administered 
mobile cognitive assessments in clinical 
research: A systematic review. International 
Journal of Methods in Psychiatric Research, 
26(4), e1562.

Nahum-Shani, I., Smith, S. N., Spring, B. J., 
Collins, L. M., Witkiewitz, K., Tewari, A., 
et al. (2017). Just-in-time adaptive interven-
tions (JITAIs) in mobile health: Key compo-
nents and design principles for ongoing health 
behavior support. Annals of Behavioral Medi-
cine, 52(6), 446–462.

Ntracha, A., Iakovakis, D., Hadjidimitriou, S., 

Charisis, V. S., Tsolaki, M., & Hadjileontia-
dis, L. J. (2020). Detection of mild cognitive 
impairment through natural language and 
touchscreen typing processing. Frontiers in 
Digital Health, 2.

Parrish, E. M., Kamarsu, S., Harvey, P. D., 
Pinkham, A., Depp, C. A., & Moore, R. C. 
(2020). Remote ecological momentary testing 
of learning and memory in adults with serious 
mental illness. Schizophrenia Bulletin, 224, 
67–73.

Perin, S., Buckley, R. F., Pase, M. P., Yassi, 
N., Lavale, A., Wilson, P. H., et al. (2020). 
Unsupervised assessment of cognition in the 
Healthy Brain Project: Implications for Web-
based registries of individuals at risk for 
Alzheimer’s disease. Alzheimer’s and Demen-
tia: Translational Research and Clinical 
Interventions, 6(1), e12043.

Pew Research Center. (2021). Demographics of 
mobile device ownership and adoption in the 
United States. www.pewresearch.org/inter-
net/fact-sheet/mobile

Piau, A., Rumeau, P., Nourhashemi, F., & Mar-
tin, M. S. (2019). Information and communi-
cation technologies, a promising way to sup-
port pharmacotherapy for the behavioral and 
psychological symptoms of dementia. Fron-
tiers in Pharmacology, 10, 1122.

Polsinelli, A. J., Moseley, S. A., Grilli, M. D., 
Glisky, E. L., & Mehl, M. R. (2020). Natural, 
everyday language use provides a window into 
the integrity of older adults’ executive func-
tioning. Journals of Gerontology. Series B, 
Psychological Sciences and Social Sciences, 
75(9), e215–e220.

Pratap, A., Grant, D., Vegesna, A., Tummal-
acherla, M., Cohan, S., Deshpande, C., et al. 
(2020). Evaluating the utility of smartphone-
based sensor assessments in persons with 
multiple sclerosis in the real-world using an 
app (elevateMS): Observational, prospective 
pilot digital health study. JMIR mHealth and 
uHealth, 8(10), e22108.

Pronk, T., Wiers, R. W., Molenkamp, B., & 
Murre, J. (2020). Mental chronometry in the 
pocket?: Timing accuracy of Web applications 
on touchscreen and keyboard devices. Behav-
ior Research Methods, 52(3), 1371–1382.

Riediger, M., Wrzus, C., Klipker, K., Müller, 
V., Schmiedek, F., & Wagner, G. G. (2014). 
Outside of the laboratory: Associations of 
working-memory performance with psycho-

596	 Applications in Psychological Science 	



logical and physiological arousal vary with 
age. Psychology and Aging, 29(1), 103–114.

Schmader, T., Johns, M., & Forbes, C. (2008). 
An integrated process model of stereotype 
threat effects on performance. Psychological 
Review, 115(2), 336–356.

Seelye, A., Mattek, N., Sharma, N., Witter, P., 
Brenner, A., Wild, K., et al. (2017). Passive 
assessment of routine driving with unobtru-
sive sensors: A new approach for identifying 
and monitoring functional level in normal 
aging and mild cognitive impairment. Journal 
of Alzheimer’s Disease, 59(4), 1427–1437.

Shiffman, S., Stone, A. A., & Hufford, M. R. 
(2008). Ecological momentary assessment. 
Annual Review of Clinical Psychology, 4(1), 
1–32.

Sliwinski, M. J. (2008). Measurement-burst 
designs for social health research. Social and 
Personality Psychology Compass, 2(1), 245–
261.

Sliwinski, M. J., Mogle, J. A., Hyun, J., Munoz, 
E., Smyth, J. M., & Lipton, R. B. (2018). Reli-
ability and validity of ambulatory cognitive 
assessments. Assessment, 25(1), 14–30.

Sliwinski, M. J., Smyth, J. M., Hofer, S. M., & 
Stawski, R. S. (2006). Intraindividual cou-
pling of daily stress and cognition. Psychology 
and Aging, 21(3), 545–557.

Spooner, D., & Pachana, N. (2006). Ecological 
validity in neuropsychological assessment: A 
case for greater consideration in research with 
neurologically intact populations. Archives of 
Clinical Neuropsychology, 21(4), 327–337.

Strauss, B. (2002). Social facilitation in motor 
tasks: A review of research and theory. Psy-
chology of Sport and Exercise, 3(3), 237–256.

Timmers, C., Maeghs, A., Vestjens, M., 
Bonnemayer, C., Hamers, H., & Blokland, A. 

(2014). Ambulant cognitive assessment using 
a smartphone. Applied Neuropsychology: 
Adult, 21, 136–142.

Torous, J., Kiang, M. V., Lorme, J., & Onnela, 
J.-P. (2016). New tools for new research in 
psychiatry: A scalable and customizable plat-
form to empower data driven smartphone 
research. JMIR Mental Health, 3(2), e16.

Wank, A. A., Mehl, M. R., Andrews-Hanna, 
J. R., Polsinelli, A. J., Moseley, S., Glisky, E. 
L., et al. (2020). Eavesdropping on autobio-
graphical memory: A naturalistic observation 
study of older adults’ memory sharing in daily 
conversations. Frontiers in Human Neurosci-
ence, 14, 238.

Waters, A. J., Marhe, R., & Franken, I. H. A. 
(2012). Attentional bias to drug cues is ele-
vated before and during temptations to use 
heroin and cocaine. Psychopharmacology, 
219(3), 909–921.

Weizenbaum, E. L., Fulford, D., Torous, J., 
Pinsky, E., Kolachalama, V. B., & Cronin-
Golomb, A. (2022). Smartphone-based neu-
ropsychological assessment in Parkinson’s 
disease: Feasibility, validity, and contextually 
driven variability in cognition. Journal of the 
International Neuropsychological Society, 
28(4), 401–413.

Whibley, D., Williams, D. A., Clauw, D. J., Sli-
winski, M., & Kratz, A. L. (2021). Within-
day rhythms of pain and cognitive function 
in people with and without fibromyalgia: 
Synchronous or syncopated? Pain, 163(3), 
474–482.

Zhaoyang, R., Scott, S. B., Martire, L. M., Sli-
winski, M. J. (2021). Daily social interactions 
related to daily performance on mobile cog-
nitive tests among older adults. PLOS One, 
16(8), e0256583.

�	 Cognition on the Go	 597



C H A P T E R  O V E R V I E W

Wearable sensors that travel with learners— whether young or old—can provide unique 
access to the rich experiences available to shape their development. The increasing avail-
ability of devices and algorithms for activity recognition is a boon for researchers inter-
ested in understanding the everyday processes of development. At the same time, the 
varied opportunities provided by these tools can be overwhelming, opening a floodgate of 
unconstrained practical decisions. In this chapter, we share practicalities and principles to 
guide researchers as they pursue “the next right thing” in their research program: (1) less 
is more, (2) more is more, and (3) harness tradeoffs. We highlight how each of these strate-
gies are well suited to yield advances for developmentalists and sensing innovators alike.

Sampling the Rich Structure of Everyday Experiences

Everyday experiences drive developmental change (e.g., Aslin, 2017; Hensch, 2005; Scott, 
Pascalis, & Nelson, 2007; Werker & Hensch, 2015). However, theories of development 
are traditionally based on sampling learners’ activity in researcher- structured paradigms. 
Free- flowing, unscripted interactions taking place in children’s everyday home environ-
ments are rich with unique features that shape children’s experiences. For example, in 
everyday interactions, children’s activity occurs in the context of a particular home, with 
a particular set of objects, people, and musical tastes. There are mealtimes, bedtimes, and 
diaper changes. There are often multiple caregivers or social partners present, each with 
their own needs and responsibilities, including care of other siblings or leisure activities. 
More broadly, the extended space and time scales of home environments have implica-
tions for both children’s and caregivers’ activity: creating distinct possibilities for lulls in 
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conversation, moments of distance as well as closeness, or the accumulation of stressors 
across the many hours of the day (see review by de Barbaro & Fausey, 2022). Recent 
advances in computing and hardware, including miniaturizing sensors, batteries, and 
storage, mean that these devices can provide researchers access to the rich everyday expe-
riences available to shape learners’ development. Additionally, by capturing changes in 
learners’ adaptive functioning as they vocalize, do, and move in everyday settings, sen-
sors can capture the changing tasks of development.

The use of sensors to study child development in context began over a decade ago, 
with the first publications of infant-worn video and audio recorders capturing what’s in 
view (and earshot) of learners (Fausey, Jayaraman, & Smith, 2016; Zimmerman et al., 
2009), and Deb Roy outfitting his entire house with video recorders to capture the first 3 
years of his child’s life (Roy, Frank, DeCamp, Miller, & Roy, 2015). This now burgeon-
ing literature is gaining widespread traction with recent publications providing theoreti-
cal motivations for, and technical, ethical, and logistical possibilities of, incorporating 
sensors into developmental science research (Cychosz et al., 2020; de Barbaro, 2019; 
Levin et al., 2021). A recently published review (de Barbaro & Fausey, 2022) summa-
rizes the last decade of research using sensors to capture infants’ everyday experiences, 
highlighting both the variability and structure of infants’ everyday experience and what 
it means for the next generation of theories about development.

Two features of sensors make them ideally suited to characterize the processes of 
developmental change. First, sensors can capture everyday multimodal activity in context 
(see Table 26.1). Common wearable devices with video, audio, motion, and physiological 
sensors can capture features of individual behavior and experiences, including everyday 
sights and sounds, postures, and affect. They can capture features of social interactions, 
including patterns of proximity, physical contact, or caregiver sensitivity. Sensors can 
also capture features of the broader ecological contexts, including household chaos, air 
quality, and access to nearby resources. Next, with batteries that can last from hours to 
weeks and protocols that make it possible for participants to recharge or replace sensors 
without additional researcher contact, these devices can capture the real-time dynamics 
of everyday activities for hours, days, or even weeks and months at a time. This means 
that researchers can examine rising and falling quantities across multiple modalities as 
they cohere into recognizable, everyday activities, such as playing, mealtimes, or bed-
times, as well as changes in those quantities over repeated instances on both short and 
longitudinal time scales.

By capturing infants’ activity in their natural home settings, sensing research centers 
on everyday tasks as a driver of learning. By capturing features of infants’ environments, 
including first-person sensory access or activity of their social partners, sensing research 
provides access to input for learning and potential sources of systematic individual dif-
ferences. And insofar as researchers can use sensors to access multimodal data streams 
across nested time scales, they can gain access to the processes of change by which learn-
ers develop and individual trajectories of learning take shape (de Barbaro, 2019).

Practical Considerations

A developmental scientist who takes to heart the desiderata to sample multimodal behav-
iors densely and continuously over extended periods of everyday life might abort their 
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mission in the face of seemingly unconstrained practical decisions. For many research 
questions, there is no gold-standard agreed-upon approach, in part because there is so 
much we do not yet know. We encourage researchers to adopt a mindset in which they 
pursue “the next right thing” on the route to chipping away at unknown answers to their 
primary research question. We suggest three lenses to consider as you articulate your 
rationale for which options you implement: (1) less is more, (2) more is more, and (3) har-
ness tradeoffs. Astute readers will note that some of the advice across these lenses is in 
conflict; this is, of course, by design. Optimizing for one set of outcomes often causes 
tension with another—equally valid—set of outcomes. As such, our lenses represent dif-
ferent approaches to sensing that researchers may usefully consider.

Lens 1: Less Is More

No single developmental mobile sensing study can or needs to quantify every modality 
and time scale. Here, we emphasize the priority of your primary research question and 
known realities, as well as discuss feasibility considerations like reducing participant 
burden, shortening timelines to initial discoveries, and satisficing with existing expertise 
and tools.

TABLE 26.1.  Examples of Everyday Activities Captured by Sensors

Level of analysis
Dimensions of everyday 
activity Sensors used Example citations

Individual

Internal 
physiology

Physiological stress and 
regulation1,2,3; vagal 
activity3

Electrodermal 
sensors1,2; heart 
rate3

Goodwin et al. (2019)1; Han et 
al. (2021)2; Madden-Rusnak et 
al. (2022)3

Sensory inputs 
and experiences

Prevalence of faces, 
hands, or objects in 
view1; presence of TV 
noise2; daily tasks3

Wearable cameras1 
and audio 
recorders2,3

Fausey et al. (2016)1; 
Zimmerman et al. (2009)2; 
Soderstrom & Wittebolle 
(2013)3

Embodied activity 
and affect

Sleep1; physical activity2; 
posture3; infant distress4

Motion sensors1,2,3; 
video or audio 
recorders4

Sadeh et al. (1995)1; Buss 
(1981)2; Franchak et al. (2021)3; 
Micheletti et al. (2022)4

Cognition and 
internal states

Parent-reported child 
activity1,2; caregiver 
activity2; stress, mental 
health symptoms4

Ecological 
momentary 
assessments1,2,3,4

Franchak (2019)1; Do et al. 
(2020)2; de Barbaro et al. 
(2022b)3

Social or 
interpersonal

Proximity1,2; holding3; 
caregiver sensitivity4; 
conflict5; annoyance with 
partner6

Radio frequency1; 
Bluetooth2; motion 
sensors3; audio 
recorders4,5,6

Messinger et al. (2019)1; Salo et 
al. (2021)2; Yao et al (2019)3; de 
Barbaro et al. (2022a)4; Han et 
al. (2021)5

Ecological Household “chaos”1; 
air quality2; access to 
greenspace3 or other 
resources4 by location

Audio recorders1; 
particle detection2; 
GPS3,4

Khante et al. (2022)1; Schultz 
et al. (2020)2; Ward, Duncan, 
Jarden, & Stewart (2016)3; 
Dunton et al. (2014)4

Note. Sensed activity is organized according to individual, interpersonal, and ecological levels of the developmen-
tal system. Superscript numerals link example citations in each row to the dimensions of activity they capture and 
the sensors used to do so.
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Selecting Modalities of Interest

Know Thy Question

Although everyday experiences are multimodal, theorists need not always sample all 
modalities in all studies. Theorists can often build on prior evidence to strategically 
select which modality to sample in order to answer their primary research question. For 
example, if you are interested in understanding the nature of play or joint attention across 
development, then you are faced with decisions about sampling everyday experiences by 
using video and/or audio, capturing overhead and/or egocentric (caregiver and/or child) 
views, eye gaze and/or hands and/or heads, and more. If your primary question is about 
dynamics within play episodes, then prior research motivates using video rather than 
audio because of known dynamics in gaze and manual activity (Deak, Krasno, Triesch, 
Lewis, & Sepeta, 2014; Yu & Smith, 2013). Prior research also informs how you might 
choose how many and which kinds of cameras to use. For example, because we know 
that caregivers’ gaze alternates between the child and manipulated objects, you might not 
need to capture the caregivers’ point of view per se with a dedicated camera and instead 
infer their gaze locations over time from another camera. Similarly, because eye gaze is 
centered within head direction (Smith, Yu, Yoshida, & Fausey, 2015) and eyes and hands 
are coordinated (Yu & Smith, 2013), cameras optimized to detect hands-on-objects will 
yield informative dynamics. In some cases, a well-placed overhead camera could be suf-
ficient to infer gaze directions, given these existing findings. If your primary question 
about play is about how opportunities for play change across development, then detecting 
everyday instances of play throughout a day could be optimized by using longform audio 
recordings (e.g., Soderstrom & Wittebolle, 2013).

Single‑Modality Insights

Often, a productive route to new discoveries is as straightforward as adding one sensor 
to sample a previously unsampled modality of everyday activities. If you are interested in 
attachment, then a sensor capturing proximity or physical contact could provide insight 
into patterns of caregiver and child co-regulation (e.g., Salo et al., 2021; Yao, Johnson, 
Ploetz, & de Barbaro, 2019). If you are interested in sleep, then a sensor capturing daily 
fluctuations in light or in experienced chaos could provide relevant predictors for chil-
dren’s sleep outcomes (e.g., Khante, Thomaz, & de Barbaro et al., 2023; Lungarella, 
Pegors, Bulwinkle, & Sporns, 2005). Given the broad relevance of attachment and 
sleep to many developmental trajectories (e.g., attention, executive function, emotion 
regulation, and more; for reviews, see Mason, Lokhandwala, Riggins, & Spencer, 2021; 
Ranson & Urichuk, 2008), these single-modality sensors could open the floodgates of 
insights into within- and between-individual variation that is meaningful for multiple 
routes of developmental change.

Reduce Participant and Researcher Burden

Practically speaking, fewer sensors eases burdens for both participants and researchers. 
Each additional sensor means another device that needs charging and upkeep on its own 
timeline, with its own instructions and its own manual for what can go wrong. Additional 
sensors also necessitate increasingly complex synchronization protocols (see de Barbaro, 
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2019, for considerations). Reducing participant burdens benefits recruitment and reten-
tion, and simpler protocols mean less training and effort for research staff. These issues 
can be nontrivial when sampling everyday experiences in hard-to-reach populations and/
or repeatedly over longitudinal time.

Lower Fidelity Sensors Get the Job Done

Researchers must motivate how many and what fidelity sensors to use when sampling 
everyday experiences. For many research questions, high-fidelity data such as video and 
audio that preserve rich, human-interpretable records of experiences are required. Lower 
fidelity sensors, however, can often get the job done for many questions. For example, 
motion sensors can detect sleep and activity (Bussman & Ebner-Priemer, 2012; see also 
Giurgiu & Bussman, Chapter 5, this volume) that can provide insight into individual 
differences in motor activity, temperament, or cognition (Buss, 1981; Franchak, Scott, 
& Luo., 2021; Mason et al., 2021; Worobey, 2014). Physiological sensors that capture 
changes in heart rate or electrodermal activity can detect momentary arousal changes 
related, for example, to instances of an infant crying (Madden-Rusnak, Micheletti, & 
de Barbaro, 2023) or the presence of a supportive partner (Han et al., 2021), or they 
can predict upcoming aggressive episodes (Goodwin, Mazefsky, Ioannidis, Erdogmus, & 
Siegel, 2019). Daily surveys known as ecological momentary assessments can also quan-
tify caregiver experience and behaviors, such as maternal support of fruit and vegetable 
consumption (Do et al., 2020) and caregiver-reported child behaviors such as posture 
and manual activity over the course of days and weeks (e.g., Franchak, 2019) in order 
to test hypotheses about developmentally changing rates and coordination among these 
variables.

Low-fidelity sensing has many benefits. For one thing, low-fidelity sensors are often 
more comfortable for participants, such as heart rate sensors worn on the wrist rather 
than higher-resolution chest-worn or electrode-based sensors. By virtue of being less 
interpretable, families are generally more comfortable using low-fidelity sensors to record 
home activity. Recruiting more, and more diverse, families is therefore facilitated (Levin 
et al., 2021). Datafiles from low-fidelity sensors are also typically smaller, making storage 
capacity less likely to limit the length of sensing and making weak or unstable access to 
Wi-Fi less likely to be a barrier to participation. Inclusive, representative mobile sensing is 
similarly well served by low-fidelity sensors because such sensors are often less expensive 
than high-fidelity sensors. Cost effectiveness means any single study can use more sen-
sors across more families and for longer sampling periods in which families use multiple 
sensors over time.

Determining How Much to Sample

Everything Is a Sample, and Short Recordings Reveal More Than No Recordings

In principle, one could sample three continuous years of everyday experiences (e.g., Roy 
et al., 2015). Three years is “a lot” relative to typical developmental study durations but 
“a little” relative to typical lifespans. We suggest that it is productive to consider one’s 
sample relative to what is and is not known, rather than any atheoretical impression of “a 
lot.” Currently, very little is known about most everyday experiences in human infancy, 
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and so even relatively short samples can yield important insights. For example, play in 
laboratory settings is typically sampled for 5 to 15 minutes. A similar duration sampled 
from everyday life will yield new insights, including potential similarities between labora-
tory and home contexts. Extending sampling durations even a few-fold beyond current 
knowledge also yields theory-relevant insights, such as rhythms of interleaved speech 
and silence when recording for 45 minutes (Tamis-LeMonda, Kuchirko, Luo, Escobar, 
& Bornstein, 2017). Furthermore, cross-sectional approaches in which shorter samples 
across many families yield large corpora of previously unobserved everyday experiences 
often generate guideposts for subsequent longitudinal studies in which longer durations 
are sampled per individual (e.g., Fausey et al., 2016; Long, Kachergis, Agrawal, & Frank, 
2020). Finally, sample durations are often constrained by available technologies that will 
also evolve over time. For example, longform audio recordings (e.g., using LENA; Ford, 
Baer, Xu, Yapanel, & Gray, 2008) are sometimes lauded for their “day-long” extent, yet 
their 16-hour capacity is driven by battery life and might reasonably be recast as “day-
short.” There is unlikely to be one optimal sampling route to discovery, and we encour-
age theorists to push whatever the frontiers may be at each moment in the long game of 
science (see Mendoza & Fausey, 2021a, for discussion).

Know Thy Base Rates

Extant literature often provides anchors to guide sample duration, including hourly, 
daily, or weekly regularities about your target phenomenon. For example, caregiver 
surveys had long indicated that children encounter music daily, and so audio sampling 
one waking day was likely to—and indeed, did—capture everyday instances of music 
(Mendoza & Fausey, 2021b). Many everyday activities have a diurnal rhythm, including 
infant crying and adult speech (Johnson, Andres, Micheletti, Yao, & de Barbaro, 2020). 
Others have weekly rhythms, including affect and sleep (Larsen & Kasimatis, 1990; 
Szymczak, Jasińska, Pawlak, & Zwierzykowska, 1993). Accounting for these known 
rhythms can make it possible to detect hypothesized relationships between the everyday 
phenomena that you sample. For example, only after accounting for time-of-day effects 
in adult speech rhythms did an effect of mood on speech become apparent (Johnson et al., 
2020). Thus, we encourage theorists to ground sampling and analytic decisions in exist-
ing knowledge about the base rates of everyday phenomena where possible and to publish 
these values as they are discovered.

Sample Short Bursts Repeatedly

For everyday behaviors that happen often, continuous sampling may not be necessary to 
capture many, and varied, instances of these behaviors. For example, many short samples 
can reveal the nature of tasks such as walking, object play, and interpersonal interactions 
in everyday life. Short bursts can be scheduled, such as capturing 1.5 hours of video twice 
per week (e.g., Sullivan, Mei, Perfors, Wojcik, & Frank, 2022) or 10 activity queries per 
day, 4 days per week (e.g., Kadooka, Caufield, Fausey, & Franchak, 2021). Practically, 
short bursts minimize burdens of longitudinal protocols given the battery and storage 
limitations of some sensors. Collecting short bursts can be facilitated by inviting care-
givers into the empirical endeavor by requesting that they sample particular activities 
of interest or even everyday challenges such as bedtime routines or walking up stairs. 
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Such repeated short samples may yield important insights about the nature of pervasive 
behaviors.

Downsample

Even when a sampling window is long, it is not always necessary to sample everyday 
behaviors continuously within the window. Some sensors allow researchers to down
sample at the point of data collection, including options for both sound (e.g., 30–90 sec-
onds per hour; Mehl, 2017) and sights (e.g., one photo per 30 seconds; Casillas, Brown, 
& Levinson, 2020) data. Researchers can also record everyday experiences continuously 
and then downsample the captured streams before annotating and analyzing them (e.g., 
Fausey et al., 2016).

Recent analyses have begun to shed light on downsampling schemes that yield 
enough data to reliably estimate rates of everyday behaviors. For example, downsam-
pling randomly for short durations of time approximates a population mean distribu-
tion for everyday behaviors with medium or high base rates of occurrence (Micheletti et 
al., 2020). If every participant in a study exceeds a minimum base rate of activity, such 
downsampling can also be used to reliably assess individual differences among partici-
pants (Micheletti et al., 2020). Similarly, sampling 1.5 hours’ worth of audio distributed 
randomly in 30-second audio clips throughout a day yields stable estimates of the propor-
tion of everyday speech that is adult-directed, child-directed, and in each of two available 
languages (Cychosz, Villanueva, & Weisleder, 2021). Behaviors that happen rarely will 
likely be missed by downsampling, and thus, other strategies may be required to identify 
them. For example, Khante and colleagues (2023) used existing models trained to detect 
everyday sound classes, including car horns, dishes clanking, and dogs barking, to detect 
segments that have a high likelihood of containing highly chaotic sounds. Annotating 
these selected segments reduced coding time necessary to detect positive samples of high 
chaos by a factor of nine. Event-based downsampling, that is, annotating segments iden-
tified to be interesting by automated algorithms, can also yield theory-relevant insights 
about everyday behaviors. For example, Romeo and colleagues (2018) annotated word 
counts in the hour detected to have the greatest number of conversational turns in a day 
of sampled audio and found that annotated word counts correlated with individual dif-
ferences in verbal skill. And new insights about everyday experiences have been discov-
ered by characterizing the nature of episodes like mealtimes (e.g., Clerkin, Hart, Rehg, 
Yu, & Smith, 2017) or pre-sleep (e.g., Teti, Kim, Mayer, & Countermine, 2010) from 
within longer recordings.

Detecting and Annotating Data

Identifying developmentally relevant units within data streams captured using mobile 
sensors can sometimes be accomplished using existing automatic algorithms; more often, 
manual annotation of rich everyday behaviors is the most straightforward approach.

Off‑the‑Shelf Algorithms

For some everyday behaviors, existing algorithms can provide robust and reliable annota-
tions of raw data using commercial devices and tools. For audio data captured using digital 

604	 Applications in Psychological Science 	



language processors by LENA, software can automatically segment captured sounds into 
adult and child voices, TV, silence, and more (Ford et al., 2008). From speech-like seg-
ments, this software also estimates the number of adult words, child vocalizations, and 
conversational turns at centisecond resolution. From wrist-worn motion and physiology 
sensors, the detection of sleep–wake cycles is also robust and can be reliably measured 
with children (e.g., Bélanger, Bernier, Paquet, Simard, & Carrier, 2013; Sadeh, Acebo, 
Seifer, Aytur, & Carskadon, 1995). Thus, developmental theorists can take advantage 
of these easy-to-use tools to speed data processing and, therefore, discoveries when 
their research questions center on these constructs. Note that any algorithm, as well 
as industry-standard thresholds of reliability, can (and should) change over time (e.g., 
Cristia et al., 2020; Ferjan Ramírez, Hippe, & Kuhl, 2021), so researchers will benefit 
from mindful use of these tools in the context of their main research questions.

Manual Annotation

Rigorous, reliable manual annotation of rich everyday data has been the workhorse of 
developmental psychology for decades (Adolph, 2020; Bakeman & Gottman, 1997), and 
this long history has yielded sophisticated protocols for researchers. Because automatic 
algorithms are not yet up to the challenge of reliably annotating most kinds of everyday 
data, leaning into this hard-won manual annotation expertise is often more cost-effective 
in time and money than attempting to build bespoke new algorithms de novo (though see 
below for one contrasting “more is more” lens). Recent discoveries about everyday lan-
guage (e.g., Bergelson & Aslin, 2017; Weisleder & Fernald, 2013), music (e.g., Mendoza 
& Fausey, 2021b), and visual objects (e.g., Fausey et al., 2016; Sugden, Mohamed-Ali, & 
Moulson, 2014) have all been achieved by manually annotating data captured from sen-
sors worn by young infants in everyday life. Several open-source tools facilitate system-
atic manual annotation, including Datavyu (https://datavyu.org) and ELAN (Wittenburg, 
Brugman, Russel, Klassmann, & Sloetjes, 2006). These tools have large user bases and 
therefore community support in training research team members. Detailed schemes for 
manually annotating everyday data are increasingly published as protocol papers and/or 
shared as coding manuals on Open Science Framework (https://osf.io; e.g., Mendoza & 
Fausey, 2020; Soderstrom et al., 2021; see Mendoza & Fausey, 2021a, for general prin-
ciples), making road-tested scalable schemes easy to find and use. One ongoing endeavor 
even brings together experts across many domains of development to craft and share 
manual annotation protocols for structure in everyday play (Adolph, Gilmore, & Soska, 
2019). Manual annotation is also a productive way to make the most of existing raw 
data that primary researchers have shared in repositories such as HomeBank (VanDam 
et al., 2016), CHILDES (MacWhinney, 2000), and Databrary (databrary.org; Gilmore, 
Kennedy, & Adolph, 2018).

Analyzing Everyday Data

Atemporal Everyday Statistics

Statistical summaries like frequency distributions quantify the availability and variability 
of what young learners sample as they build knowledge over time. Foundational ques-
tions such as how many minutes of music per day are available to constrain early musical 
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enculturation (Mendoza & Fausey, 2021b), how many and how diverse are the everyday 
faces that help to develop infants’ early perception (Jayaraman, Fausey, & Smith, 2015; 
Sugden et al., 2014), and how many and how repetitive are everyday objects that are 
early identified (Clerkin et al., 2017), are answerable by quantifying encountered fre-
quency distributions. These distributions serve to constrain computational theories of 
developmental change by providing ecologically valid parameters for dimensions such as 
frequency, similarity, and diversity that are relevant for nearly every model of learning 
and memory. Summaries of such daily behaviors can also be considered over longitudi-
nal time to provide insight into learning inputs across development. For example, the 
persistence of faces-in-view declines over the first year of infancy (Jayaraman & Smith, 
2018). They can also be included as inputs in common correlation or regression analy-
ses to examine how individual differences in daily experiences relate to developmental 
achievements. For example, quantities of child-directed speech matter for speech process-
ing speed and subsequent vocabulary (e.g., Weisleder & Fernald, 2013) and maternal 
emotional availability at bedtime is associated with higher infant sleep quality (Teti et 
al., 2010). Straightforward analytic techniques can thus provide relevant, valuable insight 
into the structure of everyday experiences (see also Adolph, 2019).

Lens 2: More Is More

 “More is more” is a lens best suited for goals of building capacity in the long game of 
advancing developmental theory. Taking on expansive everyday data collection, annota-
tion, and/or analyses demands considerable resources initially, but the rewards extend 
far beyond a single project. Large up-front investments are sometimes the only way to 
get started on a truly new path of discovery, since by definition no evidence provides a 
rationale for any particular sensor, sampling scheme, or analytic approach. “The next 
right thing” may be to disrupt “looking only where the light is” disciplinary habits and 
to shine a light elsewhere.

Capturing, Annotating, and Detecting Data

Capture More Than Your Target Behavior

In order to characterize everyday behaviors that may be infrequent, unpredictable, and/
or of varying durations, it is worthwhile to sample continuously for extended periods of 
time. For example, sampling a whole day allows theorists to later detect toddler tantrum 
episodes, their full duration, as well as insight into what triggered them and how they 
get resolved. A sparser record of everyday behaviors would likely miss these quantita-
tive insights. One reward of capturing dense, continuous everyday behaviors is the very 
high likelihood for data reuse and further insights (Adolph, 2020; Nastase, Goldstein, & 
Hasson, 2020).

Manually Annotate Your Captured Data

Manually annotating everyday recordings requires massive amounts of person-hours. 
For example, transcribing language is estimated to require 8 hours for every hour of 
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speech captured (MacWhinney, 2000). Recent discoveries about everyday music based 
on 35 day-long audio recordings required approximately 6,400 person-hours of manual 
annotation (Mendoza & Fausey, 2021b). Automated algorithms currently fall short of 
the rigor required to advance developmental theory, and so manual annotation is often 
key to discovery. The payoff, however, is enormous when researchers share their pains-
taking manual annotation efforts (see above). Other researchers can analyze the anno-
tations in new ways and/or combine them with new annotations of the same shared 
data. Carefully developed annotation schemes and associated documentation facilitate 
aggregation that makes it possible to quantify the structure of everyday experiences 
more representatively and robustly sampled across the world’s individuals (e.g., Adolph 
et al., 2019; Soderstrom et al., 2021). Finally, annotated data can also serve as training 
and evaluation sets in the process of developing automated algorithms (e.g., Räsänen et 
al., 2019).

Build Bespoke Detection Models

Eventually, someone will develop automated algorithms to parse everyday data, and that 
someone could be you. Intrepid researchers who make the most of collaborations with 
engineers and computer scientists provide real value to multiple areas of inquiry relevant 
for advancing developmental theory. The process of building bespoke activity recognition 
models has been described elsewhere (de Barbaro, 2019; Lara & Labrador, 2013) and can 
be applied to any raw sensing data, including audio, video, and physical motion. Devel-
oping these models goes hand-in-hand with manual annotation and indeed may require 
more, and finer-grained, annotation than would otherwise be required to answer your 
primary research question.

It is essential to train models with annotated everyday datasets that are representative 
of the contexts, time scales, individuals, and populations to which the model will eventu-
ally be applied. A common source of poor model performance is having been trained on 
“sanitized” laboratory behaviors rather than richer everyday behaviors that also vary a 
lot across families (Alameda-Pineda, Ricci, & Sebe, 2019; Cristia, Ganesh, Casillas, & 
Ganapathy, 2018; Yao, Micheletti, Johnson, Thomaz, & de Barbaro, 2022). Interdisci-
plinary teams with technical and theoretical expertise have produced algorithms specifi-
cally developed and validated with the goal of providing large-scale uptake by the devel-
opmental science community. These algorithms include detection of crying, holding, and 
proximity, as well as speaker diarization (Messinger et al., 2019; Räsänen et al., 2021; 
Salo et al., 2021; Yao et al., 2019, 2022), with promising ongoing efforts for face and 
object detection as well (Long et al., 2020; Tsutsui, Zhi, Reza, Crandall, & Yu, 2019).

Expansive Possibilities for Analyzing Everyday Data

Longform high-density data provide an abundance of riches in terms of modalities and 
time scales. Sometimes your primary research question may center on a particular modal-
ity or time scale, but your recordings make it possible to annotate and analyze others. 
Other times, your primary research question is itself about multimodal and/or multisca-
lar structure. Here, we discuss some options for analyses that go beyond commonly used 
descriptive summaries.
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Leverage Descriptive Summaries

Descriptive summaries can be analyzed with more complex statistical analyses to derive 
important insights. For example, rather than just considering population means, person- 
or population-specific approaches can be used to understand subgroups of individuals 
within a population whose behaviors may differ qualitatively from others (Molenaar & 
Campbell, 2009). For example, descriptive analyses of individual adolescents’ cell phone 
use revealed unique patterns of interaction on daily, weekly, and moment-by-moment 
time scales (Ram et al., 2020). In developmental domains, related analyses have been 
used with laboratory data and could easily transfer to data collected in everyday settings. 
For example, patterns of synchronous locomotion in mother–infant dyads revealed two 
clusters in a free-flowing lab play session: one cluster of dyads in which mothers tended 
to track infants, and another in which lead–follow relations were more varied (Hoch, 
Ossmy, Cole, Hasan, & Adolph, 2021). In the case of longitudinally sampled everyday 
behaviors, descriptive summaries can be incorporated into models that consider change 
over time. For example, vector autoregressive (VAR) models that consider mutual influ-
ences between interacting partners over time have revealed dynamics like how moth-
ers’ responses to boys’ versus girls’ everyday motor achievements differ and matter for 
motor development (Eason, Carver, Kelty-Stephen, & Fausto-Sterling, 2020, written as 
an introductory tutorial to VAR).

Embrace Variability

Environments and learners are not static, and there is much to discover about patterns of 
variability in everyday data from hour-to-hour, day-to-day, month-to-month, and more 
(e.g., Anderson & Fausey, 2019; d’Apice, Latham, & von Stumm, 2019; de Barbaro, 
Madden-Rusnak, & Momin, 2022). Collecting multiple samples, or splitting data into 
multiple samples, allows theorists to assess the stability versus dynamic shifting of sam-
pled behaviors using measures such as intraclass correlations (aka test–retest reliability; 
Bolger & Laurenceau, 2013), multistage coefficient of variation (e.g., Abney, Kello, & 
Balasubramaniam, 2017), and others. Within-person variability may be a critical mea-
sure in its own right. For example, sleep variability is a key predictor of symptom severity 
in children with autism (Bangerter et al., 2020). High-density sensor data can also be 
used to model predictors of within-person variability over time, key to accessing devel-
opmental processes at the individual level (Hamaker & Wichers, 2017; Ram, Brose, & 
Molenaar, 2013; for an introduction, see Bolger & Laurenceau, 2013). For example, mul-
tilevel models have been used to characterize how within-person variability in maternal 
mental health is predicted by changes in day-by-day and hour-by-hour exposure to infant 
crying (de Barbaro, Micheletti, et al., 2023).

Embrace Real‑Time Dynamics

Time series created from sensor data streams can be used to characterize the temporal 
structure of uni- or multimodal everyday data. For example, in everyday language, cer-
tain sequences of infant and adult vocalizations relate to vocabulary development (Lopez, 
Walle, Pretzer, & Warlaumont, 2020). And dynamic properties of infants’ motor and ver-
bal behavior as quantified by recurrence quantification analysis or the Allan factor relate 
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to developmental milestones (Abney, Warlaumont, Haussman, Ross, & Wallot, 2014). 
Time-series analyses have been employed in laboratory settings to characterize moment-
by-moment influences between and within individuals (e.g. Cohn & Tronick, 1988). 
In everyday settings, extended recording allows for windowing approaches or change-
point analyses that can identify state-changes and nonlinearities in the data (Behrens, 
Moulder, Boker, & Kret, 2020; Olthof et al., 2020) such as changes in children’s heart 
rate variability over the course of an episode of distress (Buhler-Wassman & Hibel, 2021; 
Madden-Rusnak, Micheletti, & de Barbaro, 2023). Tutorials and analysis code for these 
techniques are increasingly available (e.g., Xu, de Barbaro, Abney, & Cox, 2020).

Model Dynamic Systems

Dynamic systems analyses by definition require multiple modalities and multiple time 
scales of data. To pursue these analyses, theorists must identify an observable activ-
ity (e.g., breastfeeding) that involves the coordination of different dimensions of the 
system. They must capture that activity—with all relevant dimensions—multiple times, 
over shorter time scales as well as over longitudinal time (e.g., multiple times per day 
or week, over weeks to months). Visualizations and analyses that characterize the real-
time multimodal temporal dynamics of these events reveal variation in the emergent 
configurations over short and longitudinal time scales. We point interested readers to 
previously published work focused on such analyses (e.g., de Barbaro, Johnson, Forster, 
& Deak, 2013; Granic, Hollenstein, & Lichtwarck-Aschoff, 2016; Spencer, Perone, & 
Buss, 2011; Thelen & Smith, 1994). Modeling dynamic systems is a counterpoint to a 
“less is more” single modality, lower fidelity sensor, downsampled empirical approach. 
Dynamic systems analyses often reveal how very small differences in timing can change 
the qualitative or emergent nature of activity. The importance of such differences in 
timing is highlighted by constructs such as synchrony or contingency and can be the 
difference between a successful or unsuccessful step, reach, or wink. As such, everyday 
mobile sensing that can capture multimodal activity at the resolution of milliseconds 
over extended periods of time will be required to answer many questions of interest to 
developmental scientists.

Lens 3: Harness Tradeoffs

The “less is more” and “more is more” lenses pull in opposing directions. We suggest that 
theorists can productively lean into the complexities of sampling everyday life by strategi-
cally harnessing tradeoffs between these lenses. For example, if your rationale demands 
“more is more” for one part of your research, then opting for “less is more” in other parts 
may dramatically increase the chances of reaching meaningful insights in doable time 
frames. Harnessing tradeoffs is familiar territory for any empiricist; here, we provide 
some examples of such decision making in the context of everyday mobile sensing.

High Volume versus High Burden

If your focus is on getting high volumes of data, whether for continuous recordings or 
repeated samples over longitudinal time, then it may benefit you to prioritize easing bur-
dens on participants. This could mean selecting a more comfortable but lower-resolution 
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sensor (see above). By contrast, if you need high-fidelity or multimodal data from which 
many dimensions of activity can be derived, you will likely need to sacrifice some data 
volume in order to make it feasible for your participants.

Exhaustive Modalities versus Exhaustive Contexts

When your question demands high-density, multimodal, repeated samples of everyday 
data, limiting recording to a restricted physical space where specific interactions are likely 
to occur will ease burdens on families. For example, an overhead camera placed over a 
playmat can capture caregiver–child play episodes. Similarly, an audio recorder can be 
positioned to capture dinner interactions in which speech as well as caregiver–child con-
flict are likely to occur. Caregivers can also be involved in sampling particular activities 
or even everyday challenges, such as walking up the stairs. As such, context-specific 
sampling can facilitate rich microdynamic analyses that would be otherwise difficult to 
capture in home settings. Alternatively, if you need a more exhaustive set of contexts to 
answer your research question, then you might consider using fewer and/or lower fidelity 
sensors.

Video versus Audio

 If your research question does not require sampling a particular modality per se (e.g., 
everyday interaction dynamics when much is not yet known), then you must decide 
whether to use video and/or audio sensors. Video data provide unmatched multimodal 
access into complex behavior, making it the modality of choice for many developmental-
ists (e.g., Adolph, 2020). However, audio records have many benefits for home recordings. 
Many audio sensors are omnidirectional, capturing events occurring in all directions 
rather than only what is captured by a video lens itself. On average, parents report feel-
ing more comfortable sharing audio rather than video data of their family interactions, 
but differences in comfort are relatively small and not significant (Levin et al., 2021). 
However, in many jurisdictions, audio records are not considered to be identifiable data 
(unless the person is famous), whereas video data are. Finally, at full frame rates neces-
sary to capture contingency and synchrony, most commercially available wearable video 
sensors achieve only 1 to 2 hours of data, while similarly sized audio sensors achieve 24 to 
72 hours of continuous data without need to charge batteries. Thus, when an unobtrusive 
setup or high-fidelity data for long periods of time is important, audio may be advanta-
geous. For other research priorities, video may permit richer discoveries.

Go It Alone versus Collaborate

The technical and computational skills required to work with high-density data can pose 
challenges to traditionally trained psychologists. One way to minimize such challenges is 
to use methods that do not demand entirely new skill sets (see “Less Is More”). Another 
option is to collaborate with colleagues who have skills that you do not (e.g., computer 
scientists and engineers, among many others). Because cross-disciplinary teams can get 
tangled in webs of competing priorities, we suggest starting with light touch collabora-
tions that evolve over time. For example, engineers often prioritize projects that push the 
bounds of computation and development of new algorithmic structures or techniques, 
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while applied social scientists often prioritize tried-and-true techniques that can provide 
known results (e.g., Abowd, 2019). In the worst case, competing priorities will stall prog-
ress in all directions and sink a project. In the best case, each team will compromise to 
identify projects that are technically appealing and advance developmental theory. Mind-
ful construction of research teams, including students conducting time-limited projects, 
can cohere into these best cases.

Rapid versus Delayed Theoretical Gratification

All theorists want to discover meaningful answers to important questions. Using every-
day mobile sensing, rich insights about developmental tasks and trajectories are now 
achievable with enormous time and effort, including collecting many hours of continuous 
recordings plus multimodal manual annotations modeled as dynamic systems. Embark-
ing on a multiyear endeavor with many unknowns, however, could be an untenable com-
mitment of resources, and so satisficing calls for more constrained implementation. Such 
implementation can still advance theory as long as any limitations are acknowledged. For 
example, while few automated algorithms can currently robustly detect everyday activi-
ties, many “proof-of-concept” algorithms are available. These algorithms have typically 
been built using data from a few individuals in few situations, and so their accuracy suf-
fers when used at scale in everyday settings. However, leveraging an imperfect solution 
may still shift a theoretical needle forward. This is particularly true in cases where very 
little is known about a phenomenon. We suggest that theorists carefully assess and clearly 
state any limitations of imperfect implementations, while highlighting the potential ben-
efits even given those limitations (see also Cristia et al., 2020). Alternatively, if you and 
your team are well positioned to do so, capacity-building projects will be an investment 
yielding manyfold returns.

Next‑Generation Developmental Theory and Mobile Sensing

Theories of developmental change demand models of both learners and their learn-
ing environments (e.g., Smith & Slone, 2017). Models grounded in evidence from the 
tasks and trajectories of everyday learners are likeliest to account for real developmental 
change. Mobile sensing, in which theorists sample rather than script experiences, can 
now serve as an essential tool in developmentalists’ toolkit en route to understanding 
the multimodal and multiscalar structure of everyday experiences as learners and their 
environments change over time.

We see three opportunities for real breakthroughs in a future of continued synergy 
between developmental theorists and mobile sensing: (1) expanding our understanding 
of the experiences of learners the world over, making theories of developmental pro-
cess more honestly parameterized across variation in languages, resources, sociopolitical 
ecosystems, and more; (2) accelerating automated measurement protocols that success-
fully detect and quantify important features of everyday experiences, with applications 
deployed in real life, including adaptive tutoring, strengths-based parenting supports, 
just-in-time risk mitigation, and more; and (3) tuning models of adaptive intelligences to 
detailed individual experiences, with an emphasis on the multiple pathways, complexi-
ties, and flexibilities of development.

�	 Mobile Sensing in Developmental Science	 611



REFERENCES

Abney, D., Kello, C., & Balasubramaniam, R. 
(2017). Introduction and application of the 
multiscale coefficient of variation analysis. 
Behavior Research Methods, 49(5), 1571–
1581.

Abney, D. H., Warlaumont, A. S., Haussman, A., 
Ross, J. M., & Wallot, S. (2014). Using non-
linear methods to quantify changes in infant 
limb movements and vocalizations. Frontiers 
in Psychology, 5, 771.

Abowd, G. (2019, January). Confessions of an 
applied computer scientist. Georgia Tech 
GVU Center Brown Bag Seminar. https://gvu.
gatech.edu/event/brown-bag-archive/gregory-
abowd-confessions-applied-computer-
scientist

Adolph, K. E. (2019). An ecological approach 
to learning in (not and) development. Human 
Development, 63, 180–201.

Adolph, K. E. (2020). Oh, behave! Presidential 
address. Infancy, 25, 347–392.

Adolph, K. E., Gilmore, R. O. & Soska, K. 
(2019). Play and Learning Across a Year 
(PLAY) Project—Protocols and documenta-
tion. Databrary.

Alameda-Pineda, X., Ricci, E., & Sebe, N. 
(2019). Multimodal behavior analysis in the 
wild: An introduction. In X. Alameda-Pineda, 
E. Ricci, & N. Sebe (Eds.), Multimodal behav-
ior analysis in the wild (pp.  1–8). Academic 
Press.

Anderson, H., & Fausey, C. M. (2019). Modeling 
non-uniformities in infants’ everyday speech 
environments. Paper presented at the 2019 
biennial meeting of the Society for Research 
in Child Development.

Aslin, R. N. (2017). Statistical learning: a pow-
erful mechanism that operates by mere expo-
sure. Wiley Interdisciplinary Reviews: Cogni-
tive Science, 8(1–2), e1373.

Bakeman, R., & Gottman, J. (1997). Observ-
ing interaction: An introduction to sequential 
analysis. Cambridge University Press.

Bangerter, A., Chatterjee, M., Manyakov, N. V., 
Ness, S., Lewin, D., Skalkin, A., et al. (2020). 
Relationship between sleep and behavior 
in autism spectrum disorder: Exploring the 
impact of sleep variability. Frontiers in Neu-
roscience, 14, 211.

Behrens, F., Moulder, R. G., Boker, S. M., & 
Kret, M. (2020). Quantifying physiological 

synchrony through windowed cross-
correlation analysis: Statistical and 
theoretical considerations. www.biorxiv.org/
content/biorxiv/early/2020/08/28/2020.08. 
27.269746.full.pdf

Bélanger, M. È., Bernier, A., Paquet, J., Simard, 
V., & Carrier, J. (2013). Validating actigraphy 
as a measure of sleep for preschool children. 
Journal of Clinical Sleep Medicine, 9(7), 701–
706.

Bergelson, E., & Aslin, R. N. (2017). Nature and 
origins of the lexicon in 6-mo-olds. Proceed-
ings of the National Academy of Sciences, 
114(49), 12916–12921.

Bolger, N., & Laurenceau, J. P. (2013). Inten-
sive longitudinal methods: An introduction 
to diary and experience sampling research. 
Guilford Press.

Buhler-Wassmann, A. C., & Hibel, L. C. (2021). 
Studying caregiver-infant co-regulation in 
dynamic, diverse cultural contexts: A call to 
action. Infant Behavior and Development, 
64, 101586

Buss, D. M. (1981). Predicting parent–child 
interactions from children’s activity level. 
Developmental Psychology, 17(1), 59.

Bussmann, J., & Ebner-Priemer, U. (2012). 
Ambulatory assessment of movement behav-
ior: Methodology, measurement, and applica-
tion. In M. R. Mehl & T. S. Conner (Eds.), 
Handbook of research methods for studying 
daily life (pp. 235–250). Guilford Press.

Casillas, M., Brown, P., & Levinson, S. C. 
(2020). Early language experience in a Tsel-
tal Mayan village. Child Development, 91(5), 
1819–1835.

Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & 
Smith, L. B. (2017). Real-world visual statistics 
and infants’ first-learned object names. Philo-
sophical Transactions of the Royal Society B: 
Biological Sciences, 372(1711), 20160055.

Cohn, J. F., & Tronick, E. Z. (1988). Mother–
infant face-to-face interaction: Influence is 
bidirectional and unrelated to periodic cycles 
in either partner’s behavior. Developmental 
Psychology, 24(3), 386.

Cristia, A., Ganesh, S., Casillas, M., & Ganapa-
thy, S. (2018, October). Talker diarization in 
the wild: The case of child-centered daylong 
audio-recordings. Proceedings of Interspeech 
2018, pp. 2583–2587.

612	 Applications in Psychological Science 	



Cristia, A., Lavechin, M., Scaff, C., Soderstrom, 
M., Rowland, C., Räsänen, O., et al. (2020). 
A thorough evaluation of the Language Envi-
ronment Analysis (LENA) system. Behavior 
Research Methods, 53(2), 467–486.

Cychosz, M., Romeo, R., Soderstrom, M., Scaff, 
C., Ganek, H., Cristia, A., et al. (2020). Long-
form recordings of everyday life: Ethics for 
best practices. Behavior Research Methods, 
52, 1951–1969.

Cychosz, M., Villanueva, A., & Weisleder, A. 
(2021). Efficient estimation of children’s lan-
guage exposure in two bilingual communities. 
Journal of Speech, Language, and Hearing 
Research, 64(10), 3843–3866.

d’Apice, K., Latham, R. M., & von Stumm, S. 
(2019). A naturalistic home observational 
approach to children’s language, cognition, 
and behavior. Developmental Psychology, 
55(7), 1414–1427.

Deak, G. O., Krasno, A. M., Triesch, J., Lewis, 
J., & Sepeta, L. (2014). Watch the hands: 
Infants can learn to follow gaze by seeing 
adults manipulate objects. Developmental 
Science, 17(2), 270–281.

de Barbaro, K. (2019). Automated sensing of 
daily activity: A new lens into development. 
Developmental Psychobiology, 61(3), 444–
464.

de Barbaro, K., & Fausey, C. M. (2022). Ten 
lessons about infants’ everyday experiences. 
Current Directions in Psychological Science, 
31(1), 28–33.

de Barbaro, K., Johnson, C. M., Forster, D., & 
Deak, G. O. (2013). Methodological consider-
ations for investigating the micro-dynamics of 
social interaction development. IEEE Trans-
actions on Autonomous Mental Develop-
ment, 5(3), 258–270.

de Barbaro, K., Madden-Rusnak, A., & Momin, 
N. (2022, July). Maternal sensitivity “in the 
wild” is highly variable and systematically 
varies across contexts. Paper presented at the 
International Conference on Infant Studies, 
Ottawa, Canada.

de Barbaro, K., Micheletti, M., Yao, X., Khante, 
P., Johnson, M., & Goodman, S. (2023) 
Infant crying predicts real-time fluctuations 
in maternal mental health in ecologically valid 
home settings. Developmental Psychology, 
59(4), 733–744.

Do, B., Yang, C. H., Lopez, N. V., Mason, T. B., 
Margolin, G., & Dunton, G. F. (2020). Inves-

tigating the momentary association between 
maternal support and children’s fruit and veg-
etable consumption using ecological momen-
tary assessment. Appetite, 150, 104667.

Dunton, G. F., Dzubur, E., Kawabata, K., Yanez, 
B., Bo, B., & Intille, S. (2014). Development 
of a smartphone application to measure physi-
cal activity using sensor-assisted self-report. 
Frontiers in Public Health, 2, 12.

Eason, E. G., Carver, N. S., Kelty-Stephen, D. 
G., & Fausto-Sterling, A. (2020). Using vec-
tor autoregression modeling to reveal bidi-
rectional relationships in gender/sex-related 
interactions in mother–infant dyads. Fron-
tiers in Psychology, 11, 1507.

Fausey, C. M., Jayaraman, S., & Smith, L. B. 
(2016). From faces to hands: Changing visual 
input in the first two years. Cognition, 152, 
101–107.

Ferjan Ramírez, N., Hippe, D. S., & Kuhl, P. 
K. (2021). Comparing automatic and manual 
measures of parent–infant conversational 
turns: A word of caution. Child Develop-
ment, 92(2), 672–681.

Ford, M., Baer, C. T., Xu, D., Yapanel, 
U., & Gray, S. (2008). The LENATM 
language environment analysis system: 
Audio specifications of the DLP-0121. 
www.lenafoundation.org/wp-content/
uploads/2014/10/LTR- 03–2_Audio_
Specifications.pdf

Franchak, J. M. (2019). Changing opportunities 
for learning in everyday life: Infant body posi-
tion over the first year. Infancy, 24(2),187–
209.

Franchak, J. M., Scott, V., & Luo, C. (2021). A 
contactless method for measuring full-day, 
naturalistic motor behavior using wearable 
inertial sensors. Frontiers in Psychology, 12, 
4632.

Gilmore, R. O., Kennedy, J. L., & Adolph, K. 
E. (2018). Practical solutions for sharing data 
and materials from psychological research. 
Advances in Methods and Practices in Psy-
chological Science, 1(1), 121–130.

Goodwin, M. S., Mazefsky, C. A., Ioannidis, S., 
Erdogmus, D., & Siegel, M. (2019). Predict-
ing aggression to others in youth with autism 
using a wearable biosensor. Autism Research, 
12(8), 1286–1296.

Granic, I., Hollenstein, T., & Lichtwarck-
Aschoff, A. (2016). A survey of dynamic sys-
tems methods for developmental psychopa-

�	 Mobile Sensing in Developmental Science	 613



thology. In D. Cicchetti (Ed.), Developmental 
psychopathology. Wiley.

Hamaker, E. L., & Wichers, M. (2017). No 
time like the present: Discovering the hid-
den dynamics in intensive longitudinal data. 
Current Directions in Psychological Science, 
26(1), 10–15.

Han, S. C., Schacter, H. L., Timmons, A. C., 
Kim, Y., Sichko, S., Pettit, C., et al. (2021). 
Romantic partner presence and physiologi-
cal responses in daily life: Attachment style 
as a moderator. Biological Psychology, 161, 
108082.

Hensch, T. K. (2005). Critical period plastic-
ity in local cortical circuits. Nature Reviews 
Neuroscience, 6(11), 877–888.

Hoch, J., Ossmy, O., Cole, W. G., Hasan, S., & 
Adolph, K. E. (2021). “Dancing” together: 
Infant-mother locomotor synchrony. Child 
Development, 92(4), 1337–1353.

Jayaraman, S., Fausey, C. M., & Smith, L. B. 
(2015). The faces in infant-perspective scenes 
change over the first year of life. PLoS One, 
10(5), e0123780.

Jayaraman, S., & Smith, L. B. (2018). Faces in 
early visual environments are persistent not 
just frequent. Vision Research, 157, 213–221.

Johnson, M. L., Andres, L., Micheletti, M., Yao, 
X., & de Barbaro, K. (2020, July). Who talks 
to babies? Multimodal ambulatory assess-
ments predict hour-by-hour fluctuations 
in caregiver speech. Paper presented at the 
International Conference on Infant Studies, 
Glasgow, Scotland.

Kadooka, K., Caufield, M., Fausey, C. M., 
& Franchak, J. (2021). Visuomotor learn-
ing opportunities are nested within infants’ 
everyday activities. Paper presented at the 
Society for Research in Child Development.

Khante, P., Thomaz, E., & de Barbaro, K. 
(2023). Detecting auditory household chaos 
in child-worn real-world audio. Manuscript 
under review.

Lara, O. D., & Labrador, M. A. (2013). A survey 
on human activity recognition using wearable 
sensors. IEEE Communications Surveys and 
Tutorials, 15(3), 1192–1209.

Larsen, R. J., & Kasimatis, M. (1990). Individ-
ual differences in entrainment of mood to the 
weekly calendar. Journal of Personality and 
Social Psychology, 58(1), 164–171.

Levin, H. I., Egger, D., Andres, L., Johnson, 

M., Bearman, S. K., & de Barbaro, K. (2021). 
Sensing everyday activity: Parent perceptions 
and feasibility. Infant Behavior and Develop-
ment, 62, 101511.

Long, B., Kachergis, G., Agrawal, K., & Frank, 
M. C. (2020). Detecting social information 
in a dense dataset of infants’ natural visual 
experience. https://psyarxiv.com/z7tdg

Lopez, L. D., Walle, E. A., Pretzer, G. M., & 
Warlaumont, A. S. (2020). Adult responses to 
infant prelinguistic vocalizations are associ-
ated with infant vocabulary: A home observa-
tion study. PloS One, 15(11), e0242232.

Lungarella, M., Pegors, T., Bulwinkle, D., & 
Sporns, O. (2005). Methods for quantifying 
the informational structure of sensory and 
motor data. Neuroinformatics, 3(3), 243–
262.

MacWhinney, B. (2000). The CHILDES Project: 
Tools for analyzing talk (3rd ed.). Erlbaum.

Madden-Rusnak, A., Micheletti, M., & de Bar-
baro, K. (2023). Spontaneous infant crying 
modulates vagal activity in real time. Manu-
script under review.

Mason, G. M., Lokhandwala, S., Riggins, T., & 
Spencer, R. M. (2021). Sleep and human cog-
nitive development. Sleep Medicine Reviews, 
57, 101472.

Mehl, M. R. (2017). The electronically activated 
recorder (EAR): A method for the naturalistic 
observation of daily social behavior. Current 
Directions in Psychological Science, 26(2), 
184–190.

Messinger, D. S., Prince, E. B., Zheng, M., 
Martin, K., Mitsven, S. G., Huang, S., et al. 
(2019). Continuous measurement of dynamic 
classroom social interactions. International 
Journal of Behavioral Development, 43(3), 
263–270.

Mendoza, J. K., & Fausey, C. M. (2020). Every-
day music in infancy. Open Science Frame-
work, 24(6), e13122.

Mendoza, J. K., & Fausey, C. M. (2021a). Quan-
tifying everyday ecologies: Principles for man-
ual annotation of many hours of infants’ lives. 
Frontiers in Developmental Psychology, 12, 
710636.

Mendoza, J. K., & Fausey, C. M. (2021b). Every-
day music in infancy. Developmental Science, 
24(6), e13122.

Micheletti, M., de Barbaro, K., Fellows, M. D., 
Hixon, J. G., Slatcher, R. B., & Pennebaker, 

614	 Applications in Psychological Science 	



J. W. (2020). Optimal sampling strategies 
for characterizing behavior and affect from 
ambulatory audio recordings. Journal of Fam-
ily Psychology, 34(8), 980–990.

Molenaar, P. C., & Campbell, C. G. (2009). The 
new person-specific paradigm in psychology. 
Current Directions in Psychological Science, 
18(2), 112–117.

Nastase, S. A., Goldstein, A., & Hasson, U. 
(2020). Keep it Real: Rethinking the primacy 
of experimental control in cognitive neurosci-
ence. NeuroImage, 222, 117254.

Olthof, M., Hasselman, F., Strunk, G., van Rooij, 
M., Aas, B., Helmich, M. A., et al. (2020). 
Critical fluctuations as an early-warning sig-
nal for sudden gains and losses in patients 
receiving psychotherapy for mood disorders. 
Clinical Psychological Science, 8(1), 25–35.

Ram, N., Brose, A., & Molenaar, P. C. (2013). 
Dynamic factor analysis: Modeling person-
specific process. In The Oxford handbook of 
quantitative methods (Vol. 2, pp. 441–457). 
Oxford University Press.

Ram, N., Yang, X., Cho, M. J., Brinberg, M., 
Muirhead, F., Reeves, B., et al. (2020). Scree-
nomics: A new approach for observing and 
studying individuals’ digital lives. Journal of 
Adolescent Research, 35(1), 16–50.

Ranson, K. E., & Urichuk, L. J. (2008). The 
effect of parent–child attachment relation-
ships on child biopsychosocial outcomes: A 
review. Early Child Development and Care, 
178(2), 129–152.

Räsänen, O., Seshadri, S., Karadayi, J., Riebling, 
E., Bunce, J., Cristia, A., et al. (2019). Auto-
matic word count estimation from daylong 
child-centered recordings in various language 
environments using language-independent 
syllabification of speech. Speech Communica-
tion, 113, 63–80.

Räsänen O., Seshadri S., Lavechin M., Cristia 
A., & Casillas M. (2021). ALICE: An open-
source tool for automatic measurement of 
phoneme, syllable, and word counts from 
child-centered daylong recordings. Behavior 
Research Methods, 53(2), 818–835.

Romeo, R. R., Leonard, J. A., Robinson, S. T., 
West, M. R., Mackey, A. P., Rowe, M. L., et 
al. (2018). Beyond the 30-million-word gap: 
Children’s conversational exposure is associ-
ated with language-related brain function. 
Psychological science, 29(5), 700–710.

Roy, B. C., Frank, M. C., DeCamp, P., Miller, 
M., & Roy, D. (2015). Predicting the birth of 
a spoken word. Proceedings of the National 
Academy of Sciences, 112(41), 12663–12668.

Sadeh, A., Acebo, C., Seifer, R., Aytur, S., & 
Carskadon, M. A. (1995). Activity-based 
assessment of sleep–wake patterns during the 
1st year of life. Infant Behavior and Develop-
ment, 18, 329–337

Salo, V. C., Pannuto, P., Hedgecock, W., Biri, 
A., Russo, D. A., Piersiak, H. A., et al. (2021). 
Measuring naturalistic proximity as a win-
dow into caregiver-child interaction patterns. 
Behavior Research Methods, 1–15.

Scott, L. S., Pascalis, O., & Nelson, C. A. 
(2007). A domain-general theory of the devel-
opment of perceptual discrimination. Current 
Directions in Psychological Science, 16(4), 
197–201.

Schultz, A. A., Malecki, K., Olson, M. M., Sel-
man, S. B., Olaiya, O. I., Spicer, A., et al. 
(2020). Investigating cumulative exposures 
among 3-to 4-year-old children using wear-
able ultrafine particle sensors and language 
environment devices: A pilot and feasibility 
study. International Journal of Environmen-
tal Research and Public Health, 17(14), 5259.

Smith, L. B., & Slone, L. K. (2017). A develop-
mental approach to machine learning? Fron-
tiers in Psychology, 8, 2124.

Smith, L. B., Yu, C., Yoshida, H., & Fausey, C. 
M. (2015). Contributions of head-mounted 
cameras to studying the visual environments 
of infants and young children. Journal of 
Cognition and Development, 16(3), 407–419.

Soderstrom, M., Casillas, M., Bergelson, E., 
Rosemberg, C. R., Alam, F., Warlaumont, A. 
S., et al. (2021). Developing a cross-cultural 
annotation system and metacorpus for study-
ing infants’ real world language experience. 
Collabra: Psychology, 7(1), 23445.

Soderstrom, M., & Wittebolle, K. (2013). When 
do caregivers talk?: The influences of activity 
and time of day on caregiver speech and child 
vocalizations in two childcare environments. 
PloS One, 8, e80646.

Spencer, J. P., Perone, S., & Buss, A. T. (2011). 
Twenty years and going strong: A dynamic 
systems revolution in motor and cognitive 
development. Child Development Perspec-
tives, 5(4), 260–266.

Sugden, N. A., Mohamed-Ali, M. I., & Moulson, 

�	 Mobile Sensing in Developmental Science	 615



M. C. (2014). I spy with my little eye: Typical, 
daily exposure to faces documented from a 
first-person infant perspective. Developmen-
tal Psychobiology, 56(2), 249–261.

Sullivan, J., Mei, M., Perfors, A., Wojcik, E. H., 
& Frank, M. C. (2022). SAYCam: A large, lon-
gitudinal audiovisual dataset recorded from 
the infant’s perspective. Open Mind, 5, 20–29.

Szymczak, J. T., Jasińska, M., Pawlak, E., & 
Zwierzykowska, M. (1993). Annual and 
weekly changes in the sleep-wake rhythm of 
school children. Sleep, 16(5), 433–435.

Tamis-LeMonda, C. S., Kuchirko, Y., Luo, R., 
Escobar, K., & Bornstein, M. H. (2017). 
Power in methods: Language to infants in 
structured and naturalistic contexts. Devel-
opmental Science, 20(6), e12456.

Teti, D., Kim, B.-R., Mayer, G., & Countermine, 
M. (2010). Maternal emotional availability at 
bedtime predicts infant sleep quality. Journal 
of Family Psychology, 24(3), 307–315.

Thelen, E., & Smith, L. B. (1994). A dynamic 
systems approach to the development of cog-
nition and action. MIT Press.

Tsutsui, S., Zhi, D., Reza, M. A., Crandall, D., 
& Yu, C. (2019). Active object manipulation 
facilitates visual object learning: an egocen-
tric vision study. arXiv Preprint.

VanDam, M., Warlaumont, A. S., Bergelson, E., 
Cristia, A., Soderstrom, M., De Palma, P., et 
al. (2016). HomeBank: An online repository 
of daylong child-centered audio recordings. 
Seminars in Speech and Language, 37(2), 
128–142.

Ward, J. S., Duncan, J. S., Jarden, A., & Stew-
art, T. (2016). The impact of children’s expo-
sure to greenspace on physical activity, cog-
nitive development, emotional wellbeing, and 
ability to appraise risk. Health and Place, 40, 
44–50.

Weisleder, A. & Fernald, A. (2013). Talking to 

children matters: Early language experience 
strengthens processing and builds vocabulary. 
Psychological Science, 24(11), 2143–2152.

Werker, J. F., & Hensch, T. K. (2015). Critical 
periods in speech perception: New directions. 
Annual Review of Psychology, 66, 173–196.

Wittenburg, P., Brugman, H., Russel, A., Klass-
mann, A., & Sloetjes, H. (2006). ELAN: A 
professional framework for multimodality 
research. 5th International Conference on 
Language Resources and Evaluation (LREC 
2006), pp. 1556–1559.

Worobey, J. (2014). Physical activity in infancy: 
developmental aspects, measurement, and 
importance. American Journal of Clinical 
Nutrition, 99(3), 729–733.

Xu, T. L., de Barbaro, K., Abney, D. H., & Cox, 
R. F. (2020). Finding structure in time: visu-
alizing and analyzing behavioral time series. 
Frontiers in Psychology, 11, 1457.

Yao, X., Johnson, M., Ploetz, T., & de Barbaro, 
K. (2019). Automated detection of infant 
holding using wearable sensing: Implica-
tions for developmental science and interven-
tion. Proceedings of the ACM on Interactive, 
Mobile, Wearable and Ubiquitous Technolo-
gies, 3(2), 64.

Yao, X., Micheletti, M., Johnson, M., Thomaz, 
E., & de Barbaro, K. (2022). Infant crying 
detection in real-world environments. https://
arxiv.org/abs/2005.07036.

Yu, C., & Smith, L. B. (2013). Joint attention 
without gaze following: Human infants and 
their parents coordinate visual attention to 
objects through eye-hand coordination. PLoS 
One, 8(11), e79659.

Zimmerman, F. J., Gilkerson, J., Richards, J. 
A., Christakis, D. A., Xu, D., Gray, S., et al. 
(2009). Teaching by listening: The impor-
tance of adult-child conversations to language 
development. Pediatrics, 124(1), 342–349.

616	 Applications in Psychological Science 	



C H A P T E R  O V E R V I E W

Mobile sensing provides unique opportunities to examine functional ability as a key 
indicator of healthy aging. Functional ability includes mobility as well as physical, social, 
and cognitive activities that older adults exhibit in their daily life environments. Sens-
ing approaches facilitate the inclusion of older adults with varying levels and profiles of 
health, including those who are no longer able to actively report on their behavior. In 
addition, novel sensing tools such as smartphones, GPS trackers, accelerometers, and 
audio recorders can provide information on a diverse set of contexts that interact with 
person- level variables to shape individual functional ability trajectories. Research has 
provided promising results on late-life mobility, physical activity, and sleep derived from 
GPS and accelerometry in relation to well-being and cognition, as well as social and 
cognitive activity derived from naturally occurring speech and smartphone applications. 
The chapter closes with an outlook on design considerations and future directions for 
successful sensing in older adults.

Mobile Sensing in Aging: The Why and the What

It is expected that by 2050, the proportion of people over 60 years of age worldwide will 
have doubled from 2020 to approximately 20% (World Health Organization [WHO], 
2020), life expectancy will increase, and chronic multimorbidity will be increasingly 
prevalent. In essence, one can anticipate that an increasing proportion of longer- living 
individuals will contract multiple chronic diseases who, at the same time, will be able 
to maintain high levels of functioning. Therefore, the WHO (2015) has now redefined 
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healthy aging not as the absence of disease but as “the process of developing and main-
taining the functional ability that enables well-being in older age” (p. 13). In this context, 
functional ability is understood as an individual’s ability to be and do what they have 
reason to value. Thus, an individual’s social, cognitive, or physical activities are defining 
features of the healthy aging concept. In fact, they represent the interactions of individual 
characteristics with society and environment, including building and maintaining social 
relationships, learning, being mobile, and being an active member of society. In line with 
this view, reliable ways of assessing, contextualizing, analyzing, and interpreting daily 
life activities are needed to improve our understanding of healthy aging.

Novel ways to collect data in the context of individuals’ daily lives provide impor-
tant improvements to healthy aging research in at least three ways. First, they go beyond 
cross-sectional, laboratory-based, and long-term longitudinal designs by capturing 
microlongitudinal and ecologically valid developmental trajectory data. These are ame-
nable to the study of processes related to development and aging, including functional 
ability in essential life domains. Second, when used to collect introspective data, those 
methods reduce retrospective memory biases affecting traditional questionnaire meth-
ods. This use of ambulatory assessment (AA) approaches to aging research has predomi-
nantly included active mobile assessment methods such as electronically based experience 
sampling (for review, see Brose & Ebner-Priemer, 2015; Hoppmann & Riediger, 2009; 
Ebner-Priemer & Santangelo Chapter 13, this volume). As outlined in these reviews, AA-
based experience sampling approaches have provided knowledge that enables research-
ers to understand age-related differences in a variety of everyday competencies. This 
includes emotional-motivational processes, both independently and in relation to social 
interactions, daily events and stress, as well as first insights into health and physiological 
processes and activities. Third, the measurement of high-density activity data contributes 
a new type of information for healthy aging research. Note that some activities related 
to healthy aging occur on time scales of milliseconds or seconds (e.g., affective responses 
or the unfolding of social interactions). These patterns are not predicted by stable per-
son or environment characteristics, as they represent behavioral choices or adaptations 
across situations and contexts. Objectively capturing essential activity patterns and their 
interpretation-relevant situational contexts can provide the evidence needed to justify 
situation- and context-aware interventions. Furthermore, these patterns are often not 
accessible to self-report despite their relation to healthy aging (e.g., see the complexity 
of physical activity states; Paraschiv-Ionescu, Perruchoud, Buchser, & Aminian, 2012). 
Accordingly, this chapter, in line with the overall theme of this book, focuses on passive 
mobile sensing approaches, for we believe these approaches deserve increasing attention 
in aging research to help address important open issues. To complement this focus, we 
add a short section on AA of cognitive, social, and emotional activities at the end of this 
chapter.

Understanding Aging Inclusively and in Context:  
The Role of Mobile Sensing

Research on the context of healthy aging has mostly been conducted using self-report 
questionnaires. For example, social networks and interactions, representing an impor-
tant context for development and aging, can be investigated by using questionnaires such 
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as the convoy model (Antonucci, 1986; Antonucci, Ajrouch, & Birditt, 2014) and the 
Rochester Interaction Record (Reis & Wheeler, 1991). Questionnaire approaches also 
exist to assess the characteristics of a person’s built neighborhood (i.e., neighborhood 
walkability; Saelens, Sallis, Black, & Chen, 2003). Mobility, as a behavioral reflection 
of one’s exposure to and use of the built environment, can be measured with map-based 
questionnaires such as VERITAS (Chaix et al., 2012) or the Life Space Questionnaire 
(Fillekes, Röcke, Katana, & Weibel, 2019). However, due to the retrospective nature 
of these questionnaires as well as the cognitive abilities required to complete them, this 
type of data collection can be subject to reporting and population biases. Passive mobile 
sensing information combined with traditional experience sampling methods offer one 
way to overcome this limitation. Lin and Moudan (2010) pointed out that objective 
measures of the built environment provided higher associations with physical activity 
(i.e., walking) than self-reports. Therefore, utilizing mobile sensing methods will enable 
researchers to include older adults of a wide age range and with a variety of functional 
capabilities. In addition, being able to objectively and passively capture a proportion of 
participants’ daily lives allows researchers to investigate some of the contextual factors 
that provide insights into environmental opportunities that represent daily life contexts 
in which aging and functional ability unfold, such as physical, social, and cognitively 
relevant context characteristics (e.g., Wolf, Seifert, Martin, & Oswald, 2021). Table 27.1 
provides ideas on which patterns of context variables can be extracted from mobile sens-
ing data.

This chapter reviews key examples of how mobile sensing technologies are imple-
mented in aging research. It also suggests ways in which mobile sensing methods might 
be used in the future to further advance research methods and suggests some practi-
cal implications of monitoring older adults’ functional ability in their day-to-day lives. 
Finally, this chapter will highlight issues that should be considered when using mobile 
sensing technologies with older adults. The most commonly used passive mobile sensing 
technologies to investigate aging-related phenomena are accelerometry and GPS tracking, 
the collection of audio samples to obtain natural speech data, and the passive sensing 
features in smartphones. (These methods are explained in more detail in the chapters in 
Part II of this volume.)

Studying Older Adults’ Functional Ability  
in Their Daily Life Contexts

The WHO regards healthy aging as the functional ability “to be and to do what older 
individuals have reason to value” (WHO, 2015, p. 13). Thus, while the likelihood of 
having to adapt to changes due to disease and disability (both mental and physical) 
increases with age, this does not necessarily result in impaired functional ability that 
lasts for the remainder of an individual’s life nor does it impact all aspects of a person’s 
life. Even with degenerative diseases, decline can be domain-specific and progress at 
varying speeds. In addition, even when individuals receive (major) support, there are 
often ways in which they can maintain their functional ability. This is possible, for 
instance, when individuals find meaningful ways of engagement in selected areas of 
their lives, as indicated by relatively high and well-maintained levels of well-being and 
satisfaction with life until old age (Kunzmann, Richter, & Schmukle, 2013; Röcke & 
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Lachman, 2008; Wettstein, Schilling, Reidick, & Wahl, 2015). Thus, while participants 
might not be able to complete “traditional” pen-and-paper questionnaires or physical 
tasks and are, therefore, excluded from experiments or surveys, they might maintain 
their functional ability by “doing what they have reason to value” and engaging in a 
variety of activities in accordance with their abilities, as agents of their own develop-
ment (Freund, 2008). Mobile sensing technology can facilitate the investigation of older 
adults’ everyday activities and functional ability in passive ways, requiring little to no 
active effort from participants. This creates opportunities to study the heterogeneity 
of aging by being able to include the full range of aging and expand researchers’ and 
society’s view of life at advanced age. With increasing smartphone use in the older adult 
population, particularly the so-called young–old, a new opportunity for useful research 
implementations using mobile sensing of a wide range of activities (e.g., physical, social, 
cognitive) also in later life (Seifert, 2021) has arisen.

In the following, we briefly review selected studies that have used (passive) mobile 
sensing technologies to gain a new understanding of the heterogeneity of aging. We cover 
three major daily life domains that can be inferred from mobile sensing devices: spa-
tial context, including mobility and physical activity; sensor-based assessments of social 
activities; and more active ways of investigating older adults’ cognitive performance or 
cognitive activities and their correlates in daily life.

TABLE 27.1.  Examples of Variability in Context and Time Scale That Can Be Used for Between-Person 
and Within-Person Predictor Models

Context 
types

Examples of person-
level characteristics and 
assessment (cross-sectional)

Examples of day-level 
patterns (within-person 
daily)

Examples of situation-level 
patterns (within-person 
momentary)

Physical 
context

Type of housing (apartment, 
house)

Type of area (urban vs. 
rural)

Neighborhood walkability

Distance to closest park/
green recreational area

Distance to closest blue area 
(e.g., river, lake)

Proportion of time spent in 
blue and green versus other 
built environmental spaces

Number of places visited

Daily lifespace

Variety of place types 
visited

Daily time spent out of 
home

Daily time spent in blue/
green spaces

Type of place in current 
situation (public vs. private, 
outdoor vs. indoor, green 
vs. blue vs. neither)

Place classification

Place of interest

Location of current social 
interaction

Social 
context

Marital status

Number of children

Living with someone

Number of persons 
interacted with

Variety of social partners 
interacted with

Presence of others

Type of others present

Number of others present

Cognitive 
demands 
as context

Number of novel places 
visited on average

Spatial orientation demands 
inferred from typical 
mobility behavior

Number of novel places 
visited daily

Number of new routes taken 
(that are not part of usual 
mobility routines) daily

Type of interaction 
partner (e.g., familiar vs. 
unfamiliar)

Type of current activity 
(e.g., cognitively complex vs. 
passive leisure)

620	 Applications in Psychological Science 	



Spatial Context, Mobility, and Physical Activity

An early utilization of mobile sensing methods in research of age-related physical and 
spatial activity was to investigate frailty and predict falls using accelerometers (devices 
that record acceleration and orientation). Accelerometers can be used as devices by them-
selves, or they can be embedded in smartphones (Harari, Müller, Aung, Rentfrow, 2017). 
As falls are the leading cause of accidental death and injuries in older adults (Rubenstein, 
2006), they constitute a major threat to functional ability maintenance, with significant 
physical and psychological consequences. A study by Klenk and colleagues (2015), for 
example, predicted falls from physical activity in the context of the Activity and Function 
in the Elderly in Ulm (ActiFE Ulm) study and found that participants with low physical 
activity and slow walking speed at baseline experienced the most falls per 100 hours 
walked over the next year. This might also be indicative of prior mobility issues and 
health problems associated with a higher risk of experiencing falls. Nevertheless, a recent 
review (Gillain et al., 2018) concluded that the literature on accelerometer-based fall 
detection is encouraging, but further studies are needed to highlight the cross-sectional 
and, more importantly, longitudinal relationships between gait parameters and falls in 
older adults. In addition to falls, accelerometers can also be used to investigate sleep in 
older adults to determine frailty and individuals’ risk for becoming frail in the future 
(Ensrud et al., 2009, 2012). Researchers determined that a higher number of sleep disrup-
tions was predictive of both current frailty status (Ensrud et al., 2009) and frailty status 
in male samples at follow-up 3 to 4 years later (Ensrud et al., 2012). Combining sleep 
assessment with physical activity assessment, Razjouyan and colleagues (2020) were able 
to predict not only physical frailty status but also cognitive frailty status in a sample of 
older adults over the age of 60 from their sleep patterns (sleeping position, time spent 
in bed, sleep onset latency, and total sleep time), as well as physical activity (time spent 
in sedentary activities, standing, walking, or doing moderate-to-vigorous exercise, as 
well as step counts). Using accelerometer data in this way might not only facilitate valid, 
inclusive research on older adults’ cognitive and physical status, but might also enable 
clinicians to monitor patients and predict, to a certain extent, their prospective physical 
and cognitive trajectories.

In addition to the investigation of falls in relation to cognitive and physical decline, 
smartphones offer an additional relevant sensor, namely, GPS (satellite connections that 
track individuals’ position in geographical space). GPS can be used in addition to and 
in combination with accelerometer sensors to examine facilitating conditions and envi-
ronmental contexts related to older adults’ activities. Determining conditions that facili-
tate functional ability in older adults include investigating individuals’ spatial contexts, 
that is, their neighborhoods and places they visit, as well as their daily mobility, i.e., 
whether and how they move between destinations, including the level of physical activity 
they engage in (Harari, Green, Zelber-Sagi, 2015). Using multiples of these data sources 
jointly increases the predictive power of machine learning approaches to support analysis 
of activity data from young and older adults (e.g., Allahbakhshi, Röcke, & Weibel, 2021).

Neighborhood characteristics can influence the independence of older adults in a 
multitude of ways, including recovery from illness, physical activity, as well as the ability 
to perform activities of daily living (Beard et al., 2016; Cannuscio, Block, & Kawachi, 
2003; Mendes de Leon et al., 2009; Wen & Christakis, 2005). However, lifespace, which 
“refers to the area within which a person moved over a specific period of time” (Fillekes, 
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Giannouli, Kim, Zijlstra, & Weibel, 2019, p. 3) is typically defined by “residential buf-
fers” (the space immediately surrounding individuals’ place of residence), and spaces 
older adults move in that fall outside of their immediate environment can be missed. 
Using data from the “Walk the Talk” study, researchers investigated different ways to 
characterize lifespace in older adults in Vancouver (Hirsch, Winters, Ashe, Clarke, & 
McKay, 2016; Hirsch, Winters, Clarke, & McKay, 2014). They found that lifespace was 
better defined by GPS data than by residential buffers. Specifically, older adults’ lifespace 
was defined by key destinations they might visit regularly, such as supermarkets or post 
offices. In addition, a larger number of destinations on participants’ routine walking 
or cycling routes was associated with higher physical activity. The same was found in a 
study of older Belgian adults: Those who lived in neighborhoods that included a larger 
number of destinations in a walkable distance showed higher levels of physical activity 
as indicated by accelerometer data (Van Holle et al., 2014). This suggests that living 
close to spaces that combine a number of facilities that need to be visited regularly might 
facilitate walking or cycling instead of using the car. Similarly, older adults in New York 
City also regularly moved outside of their immediate environment (York Cornwell & 
Cagney, 2017), with 25% of participants spending more than 50% of their time out-
side of their immediate residential area. Interestingly, use of public transport has also 
been found to be associated with increased physical activity in older adults (Mikolaizak, 
Klenk, Rothenbacher, Denkinger, & Rapp, 2019; Voss et al., 2016). This means access to 
public transport may contribute to older adults’ prolonged functional ability in two ways: 
Having access to public transport in walking distance facilitates physical activity, as does 
continued engagement in activities that can be accessed by public transport.

In contrast to older adults living in urban environments who have access to public 
transport, older adults in rural areas often tend to be highly reliant on their cars. Hanson 
and Hildebrand (2011) found that nonaccess to a vehicle was associated with reduced 
activities—older adults indicated that they would not take trips for which they did not 
have access to a car or friends or family to assist them. This challenge likely differs by 
global region, with rural public transport infrastructure being much higher in Switzer-
land versus the United States, for example. The urban–rural comparison, however, high-
lights, how rural and urban environments typically represent life contexts that provide 
different opportunities and obstacles for older adults, and it suggests a need for specific, 
older-adult-focused solutions to allow nondriving individuals in particular to continue to 
live an active life.

GPS-derived lifespace has been found to be associated with cognitive abilities in 
older adults. Increasing levels of cognitive impairment are typically associated with grow-
ing difficulties orienting, navigating, and completing different activities outside of the 
home (Petersen et al., 2001; Petersen & Morris, 2003). These difficulties might signifi-
cantly reduce the number of activities older adults with beginning cognitive impairments 
feel confident they can engage in, thereby reducing their independence.

Wettstein, Wahl, Shoval, Oswald, and colleagues (2015) assessed out-of-home activ-
ities using combined GPS and questionnaire data and classified it at different levels of 
complexity (i.e., analyzing out-of-home walking distance, duration, and speed; global 
indicators of out-of-home mobility; duration and number of locations visited; and specific 
out-of-home activities, e.g., number and frequency of physically and cognitively demand-
ing activities). Aiming to investigate whether cognitive status (cognitively healthy [CH] 
versus mild cognitive impairment [MCI] versus early-stage Alzheimer’s-type dementia 
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[AD]) could be predicted from these activities, they found that the AD group could be dis-
tinguished from CH and MCI when considering activities at a medium complexity level 
(total amount of time spent outside individuals’ homes). Significant differences between 
all three groups could only be detected when the total number of cognitively demanding 
activities outside of home during the study period was considered, that is, when GPS data 
was enriched with meaningful questionnaire data.

In support of the idea that mobility is an important predictor of well-being in 
older adults, the same group also found that older adults with more severe cognitive 
(Alzheimer’s-type dementia) or physical difficulties showed reduced mobility compared 
to healthier older adults (Wettstein, Wahl, Shoval, Auslander, et al., 2015). However, it is 
important to note here that sociodemographic and physical health indicators were more 
predictive of mobility in this group of older adults than cognitive status. Alzheimer’s 
dementia has also been associated with smaller lifespace in older adults, which in turn, 
is related to reduced physical function and increased apathy and depression (Tung et al., 
2014).

From a within-person perspective, mobile assessment can provide a major improve-
ment in the type of studies examining population trends for cross-context mobility mea-
sures. As an example, despite the significant difference in orientation ability between 
persons diagnosed with cognitive impairment versus nonimpaired, Schaat, Koldrack, 
Yordanova, Kirste, and Teipel (2020), using high-density movement data, showed that 
individuals with cognitive impairment behaved in an oriented manner in up to 99% of all 
observed real-life situations. Thus, investing in the development and testing of individual 
and contextualized predictor models to detect instances of orientation or other func-
tional ability-defining activities seems a highly useful approach. In fact, there is increas-
ing interest in finding reliable and valid ways of assessing physical activity and mobility 
“in the wild” in addition to controlled clinical settings, and to understanding the relation 
between the two types of assessments, particularly in the movement sciences (see, e.g., 
Allahbakhshi et al., 2021; Soltani, Dejnabadi, Savary, & Aminian, 2020; Warmerdam 
et al., 2020).

In addition to the association between mobility and cognitive status, longitudinal 
studies assessing self-reported physical activity also showed that reduced mobility might 
be a risk factor for cognitive decline and dementia (Abbott et al., 2004; Buchman et al., 
2012; Weuve et al., 2004). On the other hand, more time spent outside or in physical 
activities was associated not only with better physical functioning but also with more 
positive affective outcomes (Kerr et al., 2012; Mollenkopf et al., 2004; Mollenkopf, 
Marcellini, Ruoppilla, Széman, & Tacken, 2005). Interestingly, the benefits of physical 
activity for mood vary across the week: Weekend activities have a greater effect than mid-
week activities (Kaspar, Oswald, Wahl, Voss, & Wettstein, 2015). This highlights how 
continuous data collection can uncover such within-person variations.

Physical activity has also been shown to be related to social aspects of older adults’ 
lives. Social support and social network size were found to be important facilitating 
factors for physical activity in older adults, suggesting that interventions to encourage 
older adults to engage in physical activity might benefit from a social component, such 
as when they join a walking group (Beenackers, Kamphuis, Mackenbach, Burdorf, & 
van Lenthe, 2013; Carlson et al., 2012). Furthermore, Herbolsheimer, Mosler, and Peter 
(2017) combined accelerometer data with self-reported social isolation and activity dia-
ries and showed that low levels of indoor physical activity were associated with isolation 
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from kin networks, while low levels of outdoor activity were associated with isolation 
from nonkin networks. Similarly, it has been shown that spending time with a greater 
number of loose social ties was associated with higher overall physical activity (Finger-
man, Huo, Charles, & Umberson, 2020); explaining findings by studies showing the 
physical benefits of older adults moving within a diverse social network (Baker, Cahalin, 
Gerst, & Burr, 2005; Litwin & Shiovitz-Ezra, 2006). In contrast, Mikolaizak and col-
leagues (2019) found that social contacts increased time spent out-of-home but decreased 
physical activity. However, this finding might be due to participants’ engaging in seden-
tary activities with their social contacts.

These diverse findings illustrate how social networks are intertwined with physi-
cal activity, suggesting one mechanism in which social context might influence older 
adults’ physical health. The pattern of different relations also illustrates the benefits of 
combining continuous mobile sensing data with self-report data. This will facilitate a full 
understanding of the implications and functional correlation and consequences, and thus 
provide meaningful insights into factors that might facilitate functional health.

GPS and accelerometry are thus valuable ways to assess older adults’ physical living 
conditions, which are related to a number of functional health aspects such as cogni-
tion, mental health, and physical activity. These mobile sensing methods have enabled 
researchers to accurately track older adults’ movements to determine environmental char-
acteristics that facilitate mobility and physical activity. Furthermore, associations have 
been drawn suggesting that cognitive decline is a limiting factor for mobility, possibly 
due to growing disorientation and resulting insecurities in navigating the environment. 
Sensor-based activity and mobility data can be quantified beyond mean levels to identify 
more in-depth time-based activity and mobility patterns (e.g., indicators of complexity of 
the behavior; see Zhang et al., 2018). In addition, physical activity has also been found 
to be related to mood. In the future, researchers might be able to suggest measures that 
alleviate these issues and help older adults maintain their independence for longer periods 
of time, which, in turn, might positively influence older adults’ cognitive performance. 
The successful use of GPS and accelerometer data to assess lifespaces in older adults with 
reduced cognitive capacity shows its potential to assess activities and functional capabili-
ties in a variety of individuals, including the “oldest-old.” This population is currently 
underresearched, partly because of the incidence of cognitive and physical limitations.

Social Context and Activities:  
Speech‑Based Analysis of Healthy Aging

Given the importance of social connectedness and activities for health and concerns of 
growing loneliness particularly in later life, mobile sensing has also been used to exam-
ine various characteristics of social interactions in older adults’ daily lives (for a review, 
see Fingerman, Birditt, & Umberson, 2020). In the past, this study was mainly done by 
using active sensing via smartphone-assessed self-reports. However, smartphones also 
include a wide range of embedded sensors that provide a wide array of passive assess-
ments of social activities, such as the use of microphone, phone, and social network-
ing and communication apps to infer interpersonal activities (Harari et al., 2017). With 
increasing smartphone use by the older segments of the population (Anderson & Perrin, 
2017; Seifert, 2020; Seifert & Schelling, 2015), these approaches yield new ways to gain 
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insights into older adults’ social activities. In addition, ambient sound recordings can 
also inform about (social) environments such as participants’ location or activities, for 
example, whether participants are at home or out of home and whether they are work-
ing, watching TV, or doing housework (Mehl & Robbins, 2012). Thus, employing such a 
technique has the potential to inform researchers about aspects of older adults’ daily lives 
independently of their functional ability and enables them to infer a multitude of aspects 
such as social connectedness, formal or informal help. Nevertheless, most of the research 
employing this method focuses on specific aspects of social interactions, such as content 
and style of interaction (e.g., what the interactions are about and whether they contain 
specific emotion words or temporal aspects), often in relation to emotional expressions, 
as well as aspects of general language use within interactions (Brianza & Demiray, 2019; 
Demiray, Mehl, & Martin, 2018; Herbette & Rimé, 2004; Polsinelli, Moseley, Grilli, 
Glisky, & Mehl, 2020; Wank et al., 2020).

A recent study, however, utilized the EAR (electronically activated recorder; Mehl, 
2017) method to investigate the frequency of older adults’ daily interaction frequency 
and mood and to compare married to divorced and widowed individuals (Ng, Huo, Han, 
Birditt, & Fingerman, 2021). The researchers found that while married older adults had 
the highest number of daily conversations, divorced participants had more conversations 
through contact with friends than married participants. Higher interaction frequency 
was associated with improved mood across groups, but this effect was stronger in wid-
owed than in married participants.

Studies in younger populations reveal promising strategies to analyze affective 
expressions with or without an interaction partner: In a study on chronic pain, Herbette 
and Rimé (2004) found that patients’ psychological adjustment hinged not only on their 
physical well-being but also on how well they could communicate their health problems 
to others: Psychological adjustment correlated negatively with patients’ belief that talk-
ing about their health problem would strain others and with the perception of others’ 
disbelief toward their health problem. Although this study did not employ passive sensing 
methods, the results underline the relevance of investigating social contextual factors to 
improve coping with the increasing number of health issues as individuals age. In a simi-
lar fashion to the investigation of expressions of age-related difficulties, ambient sound 
recordings could be used to examine positive expressions such as laughter to gain further 
insights into the contexts that enhance older adults’ mood, activity, and health. Recently, 
Sun, Schwartz, Son, Kern, and Vazire (2020) suggested a novel method to analyze EAR 
data that allows inferences about daily fluctuations in emotions. They rely not only on 
language markers suggested in linguistic programs but also on exploration of other lan-
guage variables derived from open-vocabulary approaches (clusters of data-driven seman-
tically related words). Sentiment analysis is yet another approach to extracting informa-
tion on emotion semantics from naturally occurring texts (even in combination with 
georeference information about spatial locations), such as those in social media use (e.g., 
Shaughnessy et al., 2018; Sykora, Jackson, O’Brien, & Elayan, 2013). These novel ways 
to analyze EAR and nonspeech text data are paving the way for a more in-depth investi-
gation of affective processes in older adults’ lives.

In addition to specific aspects of affective expressions and experience, the EAR-
derived general quality of social interactions (small talk vs. substantive conversations) 
is also associated with life satisfaction and happiness (Milek et al., 2018; Sun, Harris, 
& Vazire, 2020). Especially when facing age-related losses, older adults can be at risk of 
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social isolation and loneliness. Therefore, employing passive sensing to investigate the 
quantity and quality of older adults’ daily interactions without relying on potentially 
biased self-reports will be a valuable focus of future research.

Thus, passive sensing of ambient sounds is a promising tool in the study of aging, 
as it allows researchers to investigate psychologically interesting aspects of functional 
ability in older adults’ daily lives, such as affect, as well as aspects of social interactions 
and networks. Furthermore, it can add to GPS- and accelerometer-derived location and 
activity data or as a method to link daily activity data and contexts to social activities. 
Alternatively, it can be used to infer cognitive functions from daily interactions, as high-
lighted in the following section.

Sensing of Daily Life Cognitive Activities and Performance

Cognitive functioning outside of the lab has been examined using ambulatory cogni-
tive tasks developed on the basis of their psychometric laboratory-based versions and by 
passive sensing methods utilizing smartphones or ambient sound recordings. Sliwinski 
and colleagues (2018) have introduced a battery of AA cognitive tests administered on 
smartphones for use in daily life research, measuring perceptual speed, executive func-
tioning, and working memory. A subset of these has been used, for example, to investi-
gate the association between EMA-derived social interactions and cognitive performance 
in older adults (Zhaoyang, Scott Martire, & Sliwinski, 2021). The authors examined 
different features of older adults’ daily social interactions (i.e., frequency, quality, and 
partner types) in relation to fluctuations in cognitive performance throughout the day. 
Their results indicated that more frequent, particularly pleasant, social interactions were 
related to same-day cognitive performance; this relation also held for performance over 
the following 2 days. This association was most pronounced for older adults with overall 
lower mean levels of social interactions. No evidence was found for the opposite direction 
of cognitive performance predicting social interaction fluctuations.

Using a combination of the same ambulatory cognition tasks, combined with sleep 
measures derived from actigraphy, Derby, Zhaoyang, Jiao, Sliwinski, and Buxton (2020) 
showed that poorer sleep quality (e.g., waking after onset of sleep) was related to worse 
performance in working memory, memory binding, and processing speed, on both the 
between-person and within-person level. Sleep duration, however, showed no such asso-
ciations with daily life cognition. Other researchers used another smartphone-based 
ambulatory working memory task (i.e., numerical or visual updating) in samples of chil-
dren as well as young and older adults (e.g., Galeano Weber, Dirk, & Schmiedek, 2018; 
Riediger et al., 2014; Röcke et al., 2023) to examine associations between daily fluctua-
tions in cognition, affect, and sleep. Traditional laboratory-based cognitive tests have 
thus successfully been implemented in novel mobile versions and applications.

In addition to these ambulatory cognitive tasks that mimic their laboratory counter-
parts, an alternative passive data source for daily cognitive sensing is naturally occurring 
speech data obtained with the EAR. It can be used to analyze language markers as indica-
tors of cognitive activity. Polsinelli and colleagues (2020) utilized the Linguistic Inquiry 
and Word Count (LIWC; Pennebaker, Francis, & Booth, 2001) to analyze individuals’ 
language use and found that executive function was positively associated with higher lev-
els of analytic language use, the use of more complex words (words of more than six let-
ters) and numbers. In addition, better executive function was also related to a less positive 
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verbal tone and to the use of more swear and sexual words. Working memory capacity 
mainly drove those effects, and participants with higher working memory capacity also 
showed less verbal present focus in the content of their speech.

The focus on past, present, or future in older adults’ everyday language use was 
examined in other studies employing the EAR method (Brianza & Demiray, 2019; 
Demiray et al., 2018; Demiray, Mischler, & Martin, 2019). Demiray and colleagues 
(2018) found that young and older adults did not differ in their “conversational time 
travel”—the extent to which they talked about the past or the future—with past-oriented 
utterances being significantly more frequent than future-oriented utterances in both age 
groups. To further investigate temporal referencing in older adults’ utterances, Demiray 
and colleagues (2019) focused on older adults’ reminiscence, the recall of meaningful 
past experiences, in social interactions. They found variability in the frequency of remi-
niscing in older adults ranging from 0 to 29% of utterances. Depending on the interlocu-
tor, reminiscing served different functions, mostly for conversational purposes, but also 
to give advice to others (especially when talking to their children) or for identity affirma-
tion (when talking with their partner or children). Reminiscing for these three purposes 
was generally positively related to life satisfaction.

Recently, Wank and colleagues (2020) investigated older adults’ sharing of autobio-
graphical memories compared to a younger group of adults. They found that older adults 
generally shared fewer episodic and semantic autobiographical memories. In contrast, 
they found less robust effects for the sharing of future thoughts, although the sharing 
of semantic future thoughts was also negatively associated with age. These examples 
highlight that cognitive activities cannot only be assessed by means of active momentary 
assessment methods using established test batteries, but that passive sensing can provide 
information about cognition on a situational level.

Complementing mobile cognitive test applications and speech and language mark-
ers of cognition, a third and very recent development in sensing research focuses on 
smartphone-derived data on human–computer interactions (e.g., swipes, taps, and key-
stroke events). These interactions have been proposed as digital biomarkers (i.e., passive 
sensing) of cognitive functioning in a small sample of young adults, with reliable asso-
ciations to standard psychometric tests of a range of cognitive abilities, including work-
ing memory, memory, executive functioning, and verbal fluency (Dagum, 2018). This 
approach could provide a promising avenue for research on cognitive aging as well. In a 
similar vein, machine learning has been used increasingly to analyze the intensive longitu-
dinal data streams obtained from sensing to predict cognitive abilities from a wide range 
of data. This includes at-home mobility tracking applied to predicting broader cognitive 
functioning in older adults with and without cognitive impairments (Botros et al., 2022); 
naturally occurring speech to predict social reminiscence behavior (Ferrario, Demiray, 
Yordanova, Luo, & Martin, 2020); and machine learning used to identify real-world situ-
ations of adequate spatial orientation or disorientation in later life (Schaat et al., 2020).

Design Considerations and Future Directions  
for Successful Mobile Sensing in Older Adult Samples

One central advantage of using mobile sensing technologies in psychological research, 
especially in aging research, is that these technologies enable researchers to collect data 
relatively unobtrusively, without the need for much active involvement of individuals. 
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This paves the way to involve individuals who are not yet routinely included in aging 
research, for example, those who would no longer be able to complete pen-and-paper 
questionnaires due to reduced cognitive or physical abilities. Nevertheless, mobile sens-
ing requires more technical knowledge from both the researcher and the participant 
(Seifert, Hofer, & Allemand, 2018). Therefore, additional resources and training regimes 
to familiarize participants (or caretakers) with the use and operation of the sensors are 
needed to support participants during data collection, for example, reminding them to 
charge the device if necessary or to wear the device throughout the day. It is therefore 
recommended that research assistants be on call for participants to support them with 
potentially malfunctioning hard- or software. Most of the data that have been used dur-
ing the studies reviewed here could be collected on participants’ own smartphones, which 
reduces the strain on participants somewhat if they routinely carry a phone on them. 
However, data quality might be reduced if participants carry their phone in their pockets 
rather than (openly) on their waist. In addition, some of the individuals who are rou-
tinely excluded from scientific studies (as outlined above) might not own a smartphone or 
may not remember to charge it regularly and to carry it on their person due to physical 
or cognitive impairments (Dagum, 2018). However, the situation is likely to change in 
future generations of older adults for whom smartphone usage and possession are likely 
to be much more common. It is also important to employ and develop sensors that can 
easily and reliably capture a variety of functional ability domains to avoid the need to use 
multiple sensors (e.g., a state-of-the-art accelerometer and state-of-the-art GPS tracker in 
addition to a smartphone) which could be especially taxing for older adults. One attempt 
to develop such a sensor and obtain multidomain real-life activity and context data was 
recently made in the Mobility, Activity, and Social Interaction Study (MOASIS; Röcke 
et al., 2023). In this study, a custom-built sensor assessed continuous GPS data, con-
tinuous accelerometer data, and audio recordings in a predefined schedule for 90-second 
windows every 18 minutes over 30 days (following EAR recommendations by Mehl & 
Robbins, 2012). A mute button was provided for moments that participants wanted to 
keep out of the study. These sensing data were complemented by experience sampling and 
mobile cognitive tests carried out on a smartphone multiple times a day over the first 2 
weeks of the month-long study period.

Similarly, combining mobile sensing methodology with information obtained 
through traditional questionnaires can supply researchers with important additional 
insights. One study identified highly active older adults from their self-reported and 
accelerometer data to investigate factors that older adults themselves saw as facilitating 
for physical activity. This revealed both internal (e.g., self-control) and external aspects 
of their living context. The living context corresponded to some of the GPS studies: 
social connections and a facilitating environment (shops, the post office in walking dis-
tance; available green spaces) were seen as important determinants of activity (Franke, 
Tong, Ashe, McKay, & Sims-Gould, 2013). This illustrates the informative value of 
using mobile sensing technologies and shows the added value of combining it with addi-
tional information (see also Shoval et al., 2010; Wettstein, Wahl, Shoval, Oswald et al., 
2015).

Fillekes, Röcke, and colleagues (2019) also showed that both self-report and sensor 
data sources can provide distinct types of information in a direct comparison between self-
reported and sensor-assessed mobility information in community-dwelling older adults 
(those not institutionalized) age 65 and older. Whereas moderate to high within-person 
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correlations between the two data sources were obtained overall, suggesting that both 
roughly capture comparable information if only one source is available, there were some 
indicator-specific distinctions. For example, lifespace self-reports slightly underestimated 
mobility compared to GPS assessments. In contrast, when asked about their active and 
passive modes of transport, that is, getting from A to B via car or public transport versus 
walking or cycling, older adults greatly overestimated their mobility when reporting it 
compared to the sensor-based measures.

Similarly, Bayat and colleagues (2020) developed an algorithm to infer outdoor des-
tinations and activity types directly from GPS data, and they compared it with partici-
pants’ self-report. Although the algorithm was fairly accurate in classifying destinations 
and activities, the authors noted that this might depend on neighborhood characteristics 
such as destination density and walkability (i.e., participants’ ability to walk between des-
tinations vs. dependence on a car). Therefore, algorithm accuracy might differ between 
rural and urban areas, and passively collected mobile sensing data alone might not yet be 
informative without individual subjective classification (as is often the case in psychologi-
cal research).

Thus, although the use of mobile sensing methods has a promising future, the addi-
tion of subjective self-report data, for example, in the form of traditional experience sam-
pling, remains essential to classify and semantically annotate passive mobile sensing data 
and advance research on healthy aging in context, including the oldest-old.

Conclusions

The first important steps in aging research have been undertaken to investigate daily 
life experiences and functioning in later life more closely. A wide range of research has 
been done on socioemotional, cognitive, and self-related processes captured through 
repeated laboratory assessments, diary methods, and paper-based and mobile experi-
ence sampling (e.g., Birditt, Fingerman, & Almeida, 2005; Huo, Fuentecilla, Birditt, & 
Fingerman, 2019; Röcke, Li, & Smith, 2009). These self-report approaches often lack 
a clear focus on incorporating information on functional ability within environmental 
contexts beyond social interactions, and they still require an active response by par-
ticipants (i.e., active sensing). More recently, novel mobile sensing approaches have been 
introduced to aging research. These approaches provide unique opportunities to include 
a wider range of the aging population (i.e., also individuals with greater difficulties in 
providing valid self-reports); to obtain information less intrusively and potentially in a 
more reliable way (i.e., certain time-based estimates about one’s activities have proven 
difficult to make; e.g., Fillekes, Röcke, et al., 2019; Wrzus & Mehl, 2015); and to capture 
a diverse range of functional ability indicators in daily life contexts as important indica-
tors of healthy aging. Despite the fact that as a society we are living to more advanced 
ages than ever before, adults are often seen as one homogeneous group once they reach 
65. This is particularly apparent when it comes to health advice. More often than not, age 
is seen as the defining risk factor for certain diseases. For example, during the COVID-19 
pandemic, individuals older than 65 were warned to strictly socially distance because it 
was assumed that they were universally at risk of more severe outcomes from the virus. 
However, it has also been shown that social distancing bears the risk of increased lone-
liness and negative affect (González-Sanguino et al., 2020; Losada-Baltar et al., 2020; 
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Macdonald & Hülür, 2021; Zacher & Rudolph, 2021). In addition, it is likely that other 
aspects of individuals’ life spaces and activities, and not chronological age by itself, influ-
ence well-being and functional ability (see also the classic writings of Wohlwill, 1970). 
It is, therefore, vital to gain a better understanding of the systematic heterogeneity and 
across-situation variability within this group so that more targeted recommendations 
can be made and personalized and context-sensitive interventions can be developed that 
consider the diversity of individuals and daily life situations (e.g., Nahum-Shani et al., 
2018). Furthermore, the WHO (2015) defined the improvement of aging research and 
monitoring to be more inclusive of diverse global aging populations as a key action for the 
Decade of Healthy Aging 2020–2030. As outlined in this chapter, we believe that mobile 
sensing technologies can be one step on the way toward meeting that goal and in provid-
ing real-life contextualized information on many functional ability domains that cannot 
be directly assessed via active sensing tools.
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C H A P T E R  O V E R V I E W

The use of mHealth to address modifiable health risk factors has increased exponen-
tially in recent years. This chapter focuses on how mHealth has been used to intervene 
in substance use disorders and insomnia, with a specific focus on short messaging ser-
vice (SMS) interventions, smartphone applications, and sensor- based technology. Brief 
descriptions of mHealth interventions for physical activity, medication management, and 
glucose monitoring are also provided. Recommendations for future research are provided 
throughout, and the chapter concludes by emphasizing the need for continued techno-
logical advancement, new conceptual models of behavior change, large-scale randomized 
controlled trials, interdisciplinary collaborations, and innovative funding opportunities.

Introduction

This chapter describes how mobile technologies have been used to intervene in substance 
use disorders (SUDs) and insomnia. Although this chapter focuses primarily on these two 
specific health behaviors, research in these areas can inform treatment for other disorders 
and health behaviors not discussed in this chapter (e.g., cardiovascular disease, anxiety), 
and the potential for generalizability is discussed when applicable. A brief overview of 
mHealth interventions for physical activity, medication management, and glucose moni-
toring is also presented toward the end of the chapter. The chapter concludes with recom-
mendations for future research.

Christine Vinci, Brian Gonzalez, Darla Kendzor, 
Michael Businelle, and Santosh Kumar
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Substance Use Disorders

In 2018, findings from the National Survey on Drug Use and Health indicated that 20.3 
million American adults (6% of the population) met the diagnostic criteria for an SUD 
(Substance Abuse and Mental Health Services Administration, 2019). The abuse of 
tobacco, alcohol, and other illicit substances costs over $740 billion annually due to treat-
ment costs and indirect costs such as crime and decreased work productivity (National 
Institute on Drug Abuse, 2017). Unfortunately, less than 15% of diagnosed individuals 
receive treatment (Grant et al., 2015). mHealth technologies can increase access to SUD 
treatments. This section will focus on the role of SMS interventions, smartphone-based 
interventions (e.g., apps), and sensor-based technology for the treatment of SUDs.

SMS Interventions (Text Messaging Interventions)

According to the Pew Research Center (2021), 97% of U.S. adults overall reported own-
ing a cell phone in 2021. Thus, mobile phone interventions offer a means to overcome 
many barriers to treatment, as well as to reach individuals across settings and situations. 
Broadly speaking, SMS interventions involve sending brief text messages to the user to 
aid in behavior change (Bock et al., 2015). Key benefits of SMS interventions include 
high scalability and reach, as SMS interventions can operate on nearly all cell phones 
(i.e., a smartphone is not required). To date, the majority of SUD-related SMS interven-
tions have been implemented for smoking cessation (Abroms et al., 2017; Christofferson, 
Hertzberg, Beckham, Dennis, & Hamlett-Berry, 2016; Naughton et al., 2017; Spohr et 
al., 2015; Whittaker, McRobbie, Bullen, Rodgers, & Gu, 2016) and have demonstrated 
efficacy (Whittaker et al., 2016). Here, we provide information on the most efficacious 
components of SMS interventions, with a focus on tobacco and alcohol use, which have 
received the most attention. That said, note that SMS interventions for marijuana use 
(Shrier, Rhoads, Burke, Walls, & Blood, 2014) and general drug use (Liang, Han, Du, 
Zhao, & Hser, 2018) have been examined in pilot studies.

Smoking Cessation

A recent meta-analysis of SMS interventions for smoking cessation revealed that inter-
ventions are most effective when they are tailored to the user in the moment and have a 
fixed schedule of message delivery (Spohr et al., 2015). Ideally, when participants respond 
to specific questions (e.g., How many cigarettes have you smoked today?), text messages 
may be immediately tailored to the participant’s response (Haug, Schaub, Venzin, Meyer, 
& John, 2013). Regarding the frequency of intervention messages, various schedules have 
been examined. For instance, a higher frequency of messages may be delivered around 
the quit day and will then decrease in frequency over time (Naughton, Prevost, Gilbert, 
& Sutton, 2012). Other studies have kept a fairly fixed schedule of messages (Haug et al., 
2013), which seems to be the most effective approach (Spohr et al., 2015). SMS interven-
tions may also include on demand components for which the user can text a keyword 
to receive a message. For instance, in one intervention, participants could text CRAVE 
when they experienced a craving, and this triggered a text message offering a craving 
coping strategy. Interacting with the system in this way was associated with an increased 
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likelihood of biochemically confirmed tobacco abstinence (Abroms, Boal, Simmens, 
Mendel, & Windsor, 2014).

Alcohol Use

SMS interventions developed for alcohol have focused on multiple topics, including moti-
vating readiness to change drinking (Mason, Benotsch, Way, Kim, & Snipes, 2014), reduc-
ing/eliminating current alcohol use (Suffoletto et al., 2014, 2015; Thomas, Linderoth, 
Bendtsen, Bendtsen, & Müssener, 2016), relapse prevention (Haug, Lucht, John, 
Meyer, & Schaub, 2015), and alcohol use comorbidities such as depression (Agyapong, 
McLoughlin, & Farren, 2013). Alcohol use tends to vary based on day of the week, holi-
days, special occasions/events, and age (Neighbors et al., 2011; Riordan, Conner, Flett, 
& Scarf, 2015). Thus, SMS interventions have attempted to address these unique aspects 
of alcohol use, including 21st-birthday alcohol consumption (Bernstein et al., 2018), days 
leading into the weekend (Suffoletto et al., 2014, 2015), and college student use (Bock 
et al., 2016; Mason et al., 2014; Riordan, Scarf, & Conner, 2015). Overall, although 
published results have tended to be preliminary with small sample sizes, findings have 
been promising and suggest that the efficacy of text messaging interventions that target 
alcohol use warrant continued investigation.

Smartphone Applications

As of 2021, 85% of U.S. adults overall and 76% of low-income adults reported owning 
a smartphone (Pew Research Center, 2021). However, less than 1% of commercially 
available SUD apps available in the iTunes and Google Play stores used evidence-based 
approaches to reduce use (Tofighi, Chemi, Ruiz-Valcarcel, Hein, & Hu, 2019). (Note: 
This review did not include smoking cessation apps.) When rating apps using the Mobile 
App Rating Scale (MARS), most apps were rated low for engagement, functionality, aes-
thetics, information, and satisfaction (Tofighi et al., 2019). A systematic review of smok-
ing cessation smartphone applications revealed that 4% (N = 2) had scientific support 
(Haskins, Lesperance, Gibbons, & Boudreaux, 2017). Thus, although many individuals 
own smartphones, few empirically validated applications for substance use treatment are 
currently available. Similar to SMS interventions, published research on SUD-focused 
smartphone applications have focused primarily on the treatment of tobacco and alcohol 
use, so we focus on these specific substances below.

Smoking Cessation

Smartphone ownership and use among smokers are similar to that of the general U.S. pop-
ulation, and smokers who are motivated to quit have high rates of smartphone ownership 
(Borrelli, Bartlett, Tooley, Armitage, & Wearden, 2015; Oliver et al., 2018). Nonetheless, 
experience with smoking cessation apps is infrequent (Oliver et al., 2018), suggesting 
that strategies to increase awareness of these types of applications should be investigated. 
Among smokers interested in quitting, appealing smartphone features include: adaptive 
and personalized content, rewards, gaming features (particularly among younger smok-
ers), tracking of progress, and social support (Hartzler, BlueSpruce, Catz, & McClure, 
2016). Among smokers not yet ready to quit, appealing features include security, tracking 
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of behaviors related to smoking (e.g., spending), adaptive content, ability to request social 
support, rewards, and information on quitting smoking and managing withdrawal and 
mood (McClure, Heffner, Hohl, Klasnja, & Catz, 2017). Features that may be reported 
as desirable are not always the most frequently used when made available in smartphone 
applications (Heffner, Vilardaga, Mercer, Kientz, & Bricker, 2015).

The literature on the efficacy of smartphone applications for smoking cessation is 
limited. Although a handful of teams have conducted randomized controlled trials to 
evaluate the efficacy of fully developed apps, most research is in the developmental phase. 
Ortis, Caponnetto, Polosa, Urso, and Battiato (2020) recently published a report that 
described several quit smoking applications based on their ratings in the app stores. The 
reader is directed to that article for a more comprehensive review. Craving to Quit is a 
mindfulness-based smartphone application that was compared to a control group among 
325 individuals interested in quitting smoking (Garrison et al., 2020). Results indicated 
that both groups demonstrated a reduction in smoking and craving from baseline to 6 
months; however, groups did not significantly differ on biochemically confirmed absti-
nence at 6 months. Bricker and colleagues (2014) compared SmartQuit, a smartphone 
application that delivers acceptance and commitment therapy, to QuitGuide, the National 
Cancer Institute’s application for smoking cessation. Results indicated that among 196 
randomized to the two groups, individuals in SmartQuit had a self-reported abstinence 
rate of 13% versus 7% in QuitGuide. A revised version of the app has since been devel-
oped and tested (Bricker et al., 2017).

Businelle and colleagues (2016) have used ecological momentary assessment (EMA) 
data to develop a novel smoking lapse risk estimator that has been integrated into the 
Smart-Treatment app (Smart-T). Early work (Businelle, Ma, Kendzor, Frank, Wetter, et 
al., 2016) showed that six EMA variables predicted 80% of smoking lapses within 4 
hours of the lapse (false-positive rate = 17%). The Smart-T app incorporates on-demand 
features (e.g., tips on coping with stress) and the lapse risk estimator to deliver tailored 
messages based on a person’s momentary risk for smoking lapse. The Smart-T feasibility 
study showed that this intervention was feasible, with 97% reporting that they would like 
to use the app in the future if they were to relapse and 85% indicating that they would 
refer their friends who smoke to use the app (Businelle, Ma, Kendzor, Frank, Vidrine, et 
al., 2016). Analyses of EMA data revealed that urges to smoke were significantly reduced 
when tailored urge messages were delivered by the app, as opposed to instances where 
nontailored messages were delivered (Hébert et al., 2018). A total of 20% of participants 
were biochemically confirmed abstinent at 12 weeks post-quit (Businelle, Ma, Kendzor, 
Frank, Vidrine, et al., 2016). Project Smart-T2, a 12-week pilot randomized controlled 
trial compared smoking cessation rates for those randomized to the Smart-T app, the 
National Cancer Institute (NCI) QuitGuide app, or clinic-based smoking cessation treat-
ment. Participants completed 84% of five daily EMAs (over 5 weeks), and 12 weeks 
post-quit biochemically confirmed that 7-day point prevalence abstinence rates were as 
follows: Smart-T2 = 22.2%, QuitGuide = 14.8%, in-clinic counseling = 14.8% (Hébert 
et al., 2020). These preliminary results suggest that smartphone-based smoking cessation 
interventions may perform as well as traditional in-person interventions. A fully powered 
randomized clinical trial comparing the efficacy of the Smart-T3 app to the NCI Quit-
Guide app is ongoing.

Several other teams are in the process of developing and/or conducting preliminary 
work on other smartphone applications (Baskerville, Struik, & Dash, 2018; Brandon 
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et al., 2021; Hernandez, Wetter, Kumar, Sutton, & Vinci, 2021; Iacoviello et al., 2017; 
Kendzor et al., 2020; Tombor et al., 2019; Vinci, Brandon, Kleinjan, Hernandez, et al., 
2020). Many of these applications are tailored to certain populations, such as Learn to 
Quit for smokers with serious mental illness (Vilardaga et al., 2018), Crush the Crave for 
young adult smokers (Baskerville et al., 2018), and SmokeFreeBaby for pregnant smok-
ers (Tombor et al., 2019). Others are modifying theoretically based approaches that are 
traditionally delivered in the clinic (e.g., cue exposure treatment) by leveraging cutting-
edge technology to enhance real-world application (Brandon et al., 2021; Vilardaga et al., 
2018; Vinci, Brandon, Kleinjan, & Brandon, 2020; Vinci, Brandon, Kleinjan, Hernandez, 
et al., 2020).

Alcohol Use

Similar to smoking cessation apps, the app stores contain hundreds of apps related to 
alcohol use, albeit the majority have no scientific evidence of efficacy (Crane, Garnett, 
Brown, West, & Michie, 2015). A paper examining peer-reviewed publications on alco-
hol use reduction apps found that six apps met review criteria of having published feasi-
bility or efficacy data (Meredith, Alessi, & Petry, 2015). Of those six, two apps demon-
strated efficacy in reducing self-reported alcohol use (A-CHESS and LBMI-A), two did 
not reduce alcohol use (Promillekoll & PartyPlanner), and two required further evalu-
ation (HealthCalls and Chimpshop). We describe A-CHESS and LBMI-A here in more 
detail.

Arguably, the most well-researched and efficacious app for alcohol reduction is 
A-CHESS (Alcohol-Comprehensive Health Enhancement Support System), which is a 
relapse prevention app for individuals recently discharged from residential treatment for 
alcohol dependence (Gustafson et al., 2014; McTavish, Chih, Shah, & Gustafson, 2012). 
In a trial evaluating the effectiveness of the app, participants (N = 349) were randomized 
to either A-CHESS or treatment as usual. A-CHESS utilized a just-in-time adaptive inter-
vention (JITAI) framework to deliver intervention content based on participant behavior. 
For example, if the participant entered a high-risk location (such as a place where alco-
hol use had been consumed frequently in the past), the app would send a message to the 
participant inquiring whether they wanted to be in that location. The app also has static 
educational and relaxation content on the phone that the user can use on-demand, along 
with weekly assessments of alcohol use that could be available to their counselor. Overall, 
A-CHESS participants self-reported significantly fewer risky drinking days through the 
4-month posttreatment follow-up than those in the treatment as usual group.

LBMI-A (Location-Based Monitoring and Intervention for Alcohol Use Disorders) 
utilizes cognitive-behavioral strategies combined with interventions delivered in real 
time when the participant enters a high-risk location (Dulin, Gonzalez, & Campbell, 
2014; Gonzalez & Dulin, 2015). LBMI-A was compared to DCU (Drinker’s Checkup), 
an internet-based brief motivational intervention supplemented with bibliotherapy. 
Although the sample size was small (N = 54), LBMI-A increased the percentage of days 
of self-reported abstinence, whereas DCU did not. Both groups demonstrated reductions 
in self-reported percent heavy drinking days and drinks per week (Gonzalez & Dulin, 
2015).

Many recent apps have focused on addressing problematic alcohol use and/or alco-
hol dependence (Bertholet, Godinho, & Cunningham, 2019; Crane, Garnett, Michie, 
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West, & Brown, 2018; Harder, Musau, Musyimi, Ndetei, & Mutiso, 2020; Mellentin et 
al., 2019; You et al., 2017). For instance, Smart-T Alcohol (an app similar to Smart-T for 
smoking described above) is currently being investigated (Businelle et al., 2020; Walters 
et al., 2021). Other apps have focused on specific populations, such as youth and young 
adults (Gajecki et al., 2017; Hides et al., 2018) and men who have sex with men (Wray, 
Kahler, Simpanen, & Operario, 2019). Although findings from some of these studies are 
promising, additional research is needed with larger sample sizes and active comparison 
conditions to determine efficacy and effectiveness.

Sensor‑Based Technology

The development of wearable wireless sensors and accompanying machine learning algo-
rithms that can detect behavior automatically and unobtrusively and use this informa-
tion to inform novel treatments has led to advancements in health care delivery in recent 
years. Examples include algorithms that can passively detect smoking (Saleheen et al., 
2015), alcohol use (Selvam, Muthukumar, Kamakoti, & Prasad, 2016), visits to tobacco 
outlets and smoking spots (Chatterjee et al., 2020), and stress (Hovsepian et al., 2015). 
Data from these sensors can provide a more nuanced understanding of relationships 
between biopsychosocial mechanisms and behavior (e.g., the role of stress in relapse). 
Such technology lends itself to the development of JITAIs, wherein real-time detection of 
physiologically identified risk factors can trigger adaptation and delivery of intervention 
content developed by the researcher (Nahum-Shani et al., 2014; Spruijt-Metz & Nilsen, 
2014). Since JITAIs may be tailored to the needs of a particular individual and the sur-
rounding context, leveraging data collected via wearable sensors and using that informa-
tion to deploy intervention content is ideal.

Sensor‑Based Detection of Smoking Behavior

Various scientific teams have been developing and testing technology to automatically 
detect smoking behavior (Dar, 2018; Parate, Chiu, Chadowitz, Ganesan, & Kalogerakis, 
2014; Saleheen et al., 2015; Sazonov, Metcalfe, Lopez-Meyer, & Tiffany, 2011; Wu, 
Hsieh, Cheng, Cheng, & Tseng, 2010). A recent report on smoking detection sensors 
describes various technologies in detail (Ortis et al., 2020), a few of which we highlight 
here. puffMarker, a model that uses a machine learning algorithm based on data collected 
from wrist sensor accelerometers and a chest band that tracks respiration to detect smok-
ing episodes, has demonstrated a sensitivity rate of 96.9% and a false-positive rate of 1.1% 
for smoking detection (Saleheen et al., 2015). Other teams have solely used wrist sensors 
that detect the motion of smoking behavior (Chen et al., 2018; Cole, Anshari, Lambert, 
Thrasher, & Valafar, 2017; Senyurek, Imtiaz, Belsare, Tiffany, & Sazonov, 2019). For 
example, RisQ showed a 95.7% accuracy rating in overall gesture recognition for smok-
ing and a 91% precision rate in detecting smoking gestures (Parate et al., 2014). Other 
examples include inconspicuous and noninvasive devices such as a radio-frequency-based 
hand gesture sensor to detect distance between the hand and chest when smoking (Lopez-
Meyer, Patil, Tiffany, & Sazonov, 2013; Sazonov et al., 2011) and visual interaction cues 
(e.g., color, shape) of the cigarette being smoked via video (Wu et al., 2010).

The detection of smoking via wearable sensors has enabled researchers to passively 
identify situations in which smoking occurs (e.g., at a bar, after meals, lunchtime at 
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work) in order to assess risk for imminent smoking (Chatterjee et al., 2020). Thus, future 
interventions may anticipate and intervene when a person is in a risky context, without 
requiring the individual to self-report this elevated risk. In the context of smoking cessa-
tion interventions, this type of passive data collection may ultimately allow treatments 
to more accurately target precipitants of smoking lapse, prevent relapse, and aid in long-
term abstinence. Although several ongoing studies are evaluating the efficacy of provid-
ing smoking cessation interventions based on data collected via sensors, no outcome 
papers have been published yet. Nonetheless, protocol papers describing these studies 
have been published (Chen et al., 2018; Dar, 2018; Hernandez et al., 2021). For example, 
Hernandez and colleagues (2021) are testing whether mindfulness-based strategies, sent 
to the participant’s smartphone when sensors indicate certain levels of negative affect and 
smoking, can increase tobacco abstinence among those making an active quit attempt.

Portable and low-cost breath carbon monoxide (CO) sensors are now widely avail-
able and can assist with the detection of smoking and verification of abstinence outside of 
the laboratory. For example, Kendzor and colleagues (2020) described the development of 
an automated, mobile approach to contingency management for smoking cessation that 
included remote sensor-based smoking status assessment and identity verification. Wong 
and colleagues (2019) compared the Bedfont iCO Smokerlyzer to the piCO+ Smokerlyzer 
and found that expired CO values were highly correlated between the devices and that 
first and second readings were highly correlated for both devices. Other smoking ces-
sation intervention research that utilizes the Smokerlyzer iCO as part of a smartphone-
based intervention strategy is underway (Martinez et al., 2020).

Sensor‑Based Detection of Alcohol Use

Over the past several years, a number of biosensors have been developed to passively 
detect alcohol use in the natural environment (for a recent review, see Piasecki, 2019). For 
instance, biosensors can provide a continuous estimate of blood alcohol concentration 
(BAC) based on the concentration of alcohol in perspiration on the skin (Hawthorne & 
Wojcik, 2006; Leffingwell et al., 2013; Rash, Petry, Alessi, & Barnett, 2019; Swift, 1993, 
2003). The device with the most extensive evaluation is the SCRAM bracelet (Alcohol 
Monitoring Systems, Littleton, CO), which is worn on the ankle. SCRAM has an elec-
trochemical sensor that samples the vapor near the skin every 30 minutes for ethanol and 
stores readings for later retrieval. In a recent study, 93% of self-reported heavy drinking 
episodes of five or more drinks were detected with the SCRAM device (Barnett, Meade, 
& Glynn, 2014). New technologies like the BACtrack Skyn (a winner of the National 
Institute on Alcohol Abuse and Alcoholism wearable alcohol biosensor challenge for a 
novel passive alcohol use detection sensor) have promise, without the stigma that may 
accompany wearing an ankle bracelet. However, lack of rigorous tamper-proofing fea-
tures and high failure rates during the initial testing of this device have tempered excite-
ment for this technology (Fairbairn & Kang, 2019).

Alessi and Petry (2013) and others have used portable alcohol monitors with smart-
phone cameras to verify alcohol use in the real world (Alessi & Petry, 2013; Koffarnus, 
Bickel, & Kablinger, 2018). Typically, these studies involve compensating participants for 
completing prompted alcohol breath tests as part of contingency management interven-
tions. Alessi and Petry (2013) compensated participants for uploading videos of them-
selves blowing into a portable alcohol breathalyzer. Koffarnus and colleagues (2018) 

642	 Applications in Psychological Science 	



compensated participants for completing breath tests using the Soberlink SL2 breatha-
lyzer, which automatically takes and uploads pictures of the participant while they pro-
vide the breath sample. Study findings indicated that these methods are feasible (e.g., 
88–95% of requested samples were submitted on time) and acceptable to participants 
who take part in research studies.

Recently, sensors embedded within standard mobile phones have been used in con-
junction with machine learning to identify drinking events (Bae, Chung, Ferreira, Dey, & 
Suffoletto, 2018; Piasecki, 2019). Bae and colleagues (2018) showed that variables such 
as typing speed, call duration, and movement patterns were useful in correctly classifying 
alcohol use in the individual’s natural environment. Other groups have used smartphones 
to assess gait during prompted walking tasks to estimate levels of alcohol intoxication. 
Much of this technology has only recently been developed and tested, and there is a need 
to further investigate the value of such sensors within alcohol intervention research.

Sensors That Detect Correlates of Substance Use Behaviors

Location

Global Positioning System (GPS) provides a unique opportunity to know when an indi-
vidual enters a “high-risk” location for substance use. For example, prior research has 
indicated that there are neighborhood-level contextual precipitants to smoking lapse, 
including proximity to smoking outlets (Kendzor et al., 2012; Ma, Businelle, Balis, & 
Kendzor, 2015; Reitzel et al., 2012). The detection of location via GPS may support the 
creation of novel interventions that can automatically intervene when an individual enters 
a high-risk situation or environment (Chatterjee et al., 2020; Gustafson et al., 2014; 
Naughton et al., 2016). For example, the A-CHESS application intervened in high-risk 
situations for alcohol use (Gustafson et al., 2014). Businelle and colleagues (2020) are 
currently investigating an intervention for homeless adults with alcohol use disorder that 
combines data collected via GPS, transdermal alcohol sensor, and EMA to provide treat-
ment messages that will address drinking-related risk factors.

The SmokingOpp model was recently developed to detect not only general smok-
ing locations (e.g., bars), but also personal smoking spots (i.e., “micro-locations”) that 
are unique to a given individual such as in one’s home and outside one’s office building 
(Chatterjee et al., 2020). These “micro-locations” are personal smoking places that are 
not easily captured via traditional means (e.g., GPS-indicated bars or convenience stores 
where many people smoke). Micro-locations are identified by occurrence of smoking as 
detected by puffMarker and combining it with self-reported information on smoking 
allowance and cigarette availability. GPS data of these locations are recorded during pre-
quit, which is then used to reidentify any visitation to these spots during the abstinence 
period, by only using the GPS data (i.e., proximity of real-time GPS data to previously 
recorded locations of smoking micro-locations). These micro-locations may actually be 
some of the most important places to target when someone is quitting smoking. Initial 
testing of the SmokingOpp model found that the combination of cigarette availability 
(whether someone has current access to a cigarette) and smoking allowance (whether 
smoking is permitted in that location) predicted future cigarettes smoked (Chatterjee et 
al., 2020). During a smoking quit attempt, this model could be used to send an inter-
vention strategy (e.g., “You are about to enter a location where you commonly smoke! 
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Consider finding another route.”). As noted by the authors, similar models can be devel-
oped to detect “opportunity contexts” for other adverse behaviors, including binge drink-
ing, overeating, and gambling.

Stress

The experience of stress/negative affect is strongly associated with risk for relapse in the 
context of addictive behaviors (Sinha, 2001, 2007). If stress can be detected via wearable 
sensors, scientists may be able to develop ways to intervene during high-stress moments, 
prior to lapse occurring. Several teams have been developing and testing technologies 
to capture stress unobtrusively through various methods (Gimpel, Regal, & Schmidt, 
2015; Gjoreski, Gjoreski, Lusterk, & Gams, 2016; Hovsepian et al., 2015; Kostopoulos, 
Kyritsis, Deriaz, & Konstantas, 2017; Suk & Prabhakaran, 2014; Yoon, Sim, & Cho, 
2016). Importantly, stress detection via wearable sensors may have applicability to other 
mental and physical health outcomes aside from addiction (e.g., anxiety, depression, car-
diovascular disease).

Sensor-based detection of stress has advanced to the point that sensors can passively 
detect physiological responses (e.g., heart rate), behaviors (e.g., social interaction, facial 
recognition), and sounds (e.g., airplanes, traffic, and other high decibel sounds). For 
example, cStress is a machine learning model of stress detection that uses physiological 
stress data collected via a chest band—specifically, electrocardiogram and respiration data 
(Hovsepian et al., 2015; Sarker et al., 2016, 2017). Wrist-worn devices have also been used 
to detect stress via heart rate, galvanic skin response, and accelerometer data (Gjoreski et 
al., 2016). Yoon and colleagues (2016) have developed a flexible stress monitoring patch 
that is about the size of a stamp and worn on the wrist. This patch collects and integrates 
skin temperature, skin conductance, and arterial pulsewave data to monitor stress.

Other teams have been working to detect stress from subtle behaviors, as well as 
sounds in the environment (collected primarily via smartphone). Examples of these tech-
nologies include smartphone-based facial recognition to identify basic emotions (Suk & 
Prabhakaran, 2014); daily smartphone usage (e.g., sleeping patterns, social interactions, 
physical activity) to estimate stress (Kostopoulos et al., 2017); and usage of other smart-
phone sensors and data (e.g., calendar events, notifications, weather, audio frequency/
amplitude) to passively estimate stress levels (Gimpel et al., 2015). Moving forward, 
behavioral scientists could leverage such technologies when designing mHealth interven-
tions in order to more effectively intervene in stress when it occurs and before it contrib-
utes to SUD lapse/relapse.

Insomnia

Insomnia is the most prevalent sleep disorder (American Academy of Sleep Medicine, 
2014) and is associated with over $150 billion in direct and indirect costs in the United 
States (Reynolds & Ebben, 2017). Insomnia may be particularly amenable to mHealth 
interventions, and there is a critical unmet need for delivering such treatments. Numerous 
meta-analyses have indicated that cognitive-behavioral therapy for insomnia (CBT-I) is 
efficacious and safe for the general population (Koffel, Koffel, & Gehrman, 2015) as well 
as specific subgroups (e.g., older adults, cancer survivors; Irwin, Cole, & Nicassio, 2006; 
Johnson et al., 2016; Wu, Appleman, Salazar, & Ong, 2015). Although the American 
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College of Physicians recommends CBT-I as first-line care for insomnia (Qaseem, Kan-
sagara, Forciea, Cooke, & Denberg, 2016), patients are not typically referred for CBT-I 
(Conroy & Ebben, 2015). This is due in part to physicians’ and patients’ lack of under-
standing of the risks and benefits of behavioral treatment as compared to pharmacologi-
cal treatment (Conroy & Ebben, 2015; Koffel, Bramoweth, & Ulmer, 2018; Ulmer et al., 
2017) and to a lack of providers trained to administer CBT-I (Thomas, Grandner, et al., 
2016). Several groups have developed mHealth treatments for insomnia to address this 
unmet need (Zachariae, Lyby, Ritterband, & O’Toole, 2016).

Measuring Sleep and Sleep Quality

Polysomnography (PSG), commonly referred to as a “sleep study,” is considered the “gold 
standard” for assessment of sleep. PSG uses several physiologic parameters (e.g., electro-
encephalogram, pulse oximetry) to collect data on time spent asleep, time spent in vari-
ous stages of sleep, and factors necessary for diagnosing and/or ruling out sleep disorders 
(e.g., obstructive sleep apnea). The high cost, patient burden, and restricted access of 
PSG limit its uptake in research settings. Thus, research has increasingly used wearable 
sensors and patient-reported outcomes to test behavioral interventions for insomnia. A 
large and growing literature supports the validity of assessing sleep using research-grade, 
wrist-worn accelerometers (Smith et al., 2018). These devices use patients’ activity data 
to estimate time spent awake versus asleep. With additional data on bedtime and rising 
time from patient sleep logs, these data can also be used to determine additional data 
elements (e.g., time to sleep onset, number of awakenings). A recent meta-analysis found 
that accelerometers are valid for assessing important outcomes in patients with insom-
nia, such as time to fall asleep and time spent awake after initial sleep onset (Smith et 
al., 2018). One drawback of research-grade accelerometers is that data on these devices 
are typically accessed only after users return them to the clinic or laboratory so that 
their data can be uploaded to a desktop computer. This limits the ability of investigators 
to develop JITAIs that incorporate real-time or recent data to adjust guidance based on 
recent sleep, as is routinely done in CBT-I. However, at least one manufacturer (e.g., Acti-
graph Corp.) markets accelerometers that allow ongoing data collection by sending data 
to a telemetry device that pushes these data onto the manufacturer’s servers. These data 
can then be accessed manually via a Web dashboard or automatically via an application 
programming interface (API).

Consumer-grade wearable sensors may support further development of mHealth 
interventions for insomnia. Devices manufactured by companies such as Fitbit have dem-
onstrated validity for measuring sleep parameters. Because some consumer-grade devices 
include a heart rate sensor, unlike research-grade accelerometers, these devices may be 
able to estimate time spent in various stages of sleep. Typically, these devices send data 
to a smartphone/tablet, which processes the data and/or uploads to the manufacturer’s 
servers for processing. This process makes access to sleep data faster than is typical 
for research-grade accelerometers, facilitating the use of sleep data in mHealth-based 
JITAIs. One important limitation of consumer-grade devices is the opacity of the raw 
data processing steps taken by manufacturers of these devices. Another limitation is that 
whereas some research-grade actigraphs have up to 30 days of battery life, consumer-
grade devices may need to be recharged several times during a 30-day assessment period. 
Despite these limitations, consumer-grade wearables should be considered for measuring 
sleep in mHealth studies.
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mHealth Interventions

There has been a recent increase in the development of mHealth interventions to reduce 
insomnia. This is not only due to the great unmet need for behavioral interventions for 
insomnia, but also because the main components of CBT-I are all amenable to standard-
ization and delivery via an app. Somryst (Ritterband et al., 2017) and Sleepio (Espie et 
al., 2012) are two empirically supported mHealth apps for insomnia that allow users to 
receive intervention components at their convenience. Both have strong empirical support, 
and both include the main components of CBT-I. Interactive educational components 
instruct patients on the etiology of insomnia, stimulus control (i.e., restricting the use of 
the bed for only sleep and sex), cognitive restructuring (i.e., counteracting maladaptive 
thoughts and beliefs regarding sleep), and sleep restriction (i.e., consolidating the sleep 
period by reducing amount of time in bed). Sleep restriction requires that patients be 
provided a “prescription” for when they should get into bed each night and rise from bed 
each morning. This “prescription” relies on factors that are unique to each patient; there-
fore, both apps solicit data from patients such as when they need to arise each morning 
(e.g., for work). Users of Somryst and Sleepio complete sleep diaries to help customize 
this prescription, but Sleepio also allows users to import data from Fitbit devices (Cowie, 
Bower, Gonzalez, & Alfano, 2018). One observational study found that integrating wear-
able data with Sleepio did not affect efficacy or engagement (Luik, Machado, & Espie, 
2018). Somryst is currently available with a prescription (PEAR Therapeutics, 2021), and 
Sleepio is available through agreements with employers (Big Health, n.d.).

Numerous other mHealth apps are available on smartphone app stores that purport 
to treat insomnia; however, a recent review found that few use evidence-based principles 
shown to reduce it (Yu, Kuhn, Miller, & Taylor, 2019). Of the nine unique apps identified 
and tested, most were free to download and use, including CBT-I Coach, and two had a 
fee for download and/or to use certain features. Each app was rated based on its adher-
ence to seven empirically supported principles (e.g., stimulus control, sleep restriction, 
cognitive restructuring) and ease of use on a scale of 0 (not applicable) to 3 (adherent and 
very easy to use). CBT-I Coach demonstrated the greatest adherence to empirically sup-
ported principles and ease of use with an average score of 2.85. The remaining eight apps 
showed large differences in adherence and usability, with apps like Somnology earning 
a score of 2.00 and others earning scores as low as 0.14 (Yu et al., 2019). Thus, there is 
wide variability in the adherence to empirical supported principles for publicly available 
mHealth apps, which creates confusion regarding which apps are evidenced-based for 
insomnia.

Additional Innovative Uses of mHealth for Health Behaviors

Physical Activity Interventions

Recent estimates indicate that only 54.2% (Centers for Disease Control and Prevention, 
2018) of adults are achieving the recommended levels of physical activity. With increas-
ing rates of smartphone (Pew Research Center, 2019) and wearable smartwatch/fitness 
tracker ownership (Vogels, 2020), mHealth interventions have the potential to broadly 
influence physical activity across settings. As such, interest in mobile interventions 
focused on promoting physical activity and decreasing sedentary behavior has increased 
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dramatically, as evidenced by the proliferation of published reviews (Buckingham, 
Williams, Morrissey, Price, & Harrison, 2019; Elavsky, Knapova, Klocek, & Smahel, 
2019; Hardeman, Houghton, Lane, Jones, & Naughton, 2019; Hosseinpour & Terlutter, 
2019; McCallum, Rooksby, & Gray, 2018; Schoeppe et al., 2016) and meta-analyses on 
this topic over the past 5 years (Brickwood, Watson, O’Brien, & Williams, 2019; Direito, 
Carraça, Rawstorn, Whittaker, & Maddison, 2017; Eckerstorfer et al., 2018; Flores 
Mateo, Granado-Font, Ferré-Grau, & Montaña-Carreras, 2015; Hodkinson et al., 2019; 
Romeo et al., 2019; Silva, Simões, Queirós, Rocha, & Rodrigues, 2020; Yerrakalva, 
Yerrakalva, Hajna, & Griffin, 2019).

Recent reviews have indicated that mobile physical activity interventions commonly 
include behavior change techniques such as self-monitoring through manual logging or 
automated physical activity tracking, goal-setting, feedback about activity in relation to 
goals, social comparisons among users, and rewards (Buckingham et al., 2019; Elavsky et 
al., 2019; Hardeman et al., 2019; Hosseinpour & Terlutter, 2019). The inclusion of self-
monitoring, goal-setting, and feedback, in particular, appear to have a significant positive 
impact on physical activity (Eckerstorfer et al., 2018; Hosseinpour & Terlutter, 2019). 
Mobile interventions that have included a wearable physical activity tracker to objectively 
monitor activity have produced greater increases in physical activity than interventions 
that did not include a tracker (Brickwood et al., 2019). Combining wearable activity 
trackers with in-person counseling may have a greater impact on physical activity than 
the trackers alone (Ash et al., 2021; Hodkinson et al., 2019). Overall, meta-analyses have 
concluded that mHealth interventions have a small positive effect on activity, particularly 
daily step count, relative to no treatment or traditional interventions, though the longer-
term effects are less favorable (Direito et al., 2017; Eckerstorfer et al., 2018; Flores Mateo 
et al., 2015; Romeo et al., 2019; Silva et al., 2020; Yerrakalva et al., 2019). However, 
the limited number and quality of studies limits certainty about the efficacy of mHealth 
interventions for physical activity. Large-scale randomized controlled trials are needed 
to investigate the impact of mHealth interventions on physical activity in both the short 
term and long term.

Medication Monitoring Interventions

Patient nonadherence to medication regimens is common (Cheen, Tan, Oh, Wee, & 
Thumboo, 2019), and often leads to poor health outcomes (Walsh et al., 2019). mHealth 
interventions, including smartphone apps and electronic reminder interventions (text 
messages, reminder devices), offer a means to support adherence remotely; recent reviews 
have tentatively concluded that these interventions improve medication adherence (Peng 
et al., 2020; Vervloet et al., 2012; Wong, Siy, Da Silva Lopes, & Georgiou, 2020). Com-
mon mobile intervention features include education, adherence monitoring (personal and 
external), medication reminders/alerts, and the ability to communicate with caregivers 
(Ahmed et al., 2018; Peng et al., 2020; Wong et al. 2020). Smartphone apps that aim to 
increase medication adherence are widely available, though most are not evidence-based 
(Ahmed et al., 2018). Electronic reminder interventions have shown short-term efficacy 
for improving medication adherence across studies (Vervloet et al., 2012). However, a 
more recent large-scale randomized controlled trial evaluated the impact of three types 
of reminder devices: (1) pill bottle strip with toggles (i.e., take-n-slide attaches to the 
pill bottle, and daily switch is pushed to the right after medication is taken each day); 
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(2) digital timer cap (displays time elapsed since medication was last taken); and (3) a 
standard pillbox (plastic box with compartments for each day of the week) on medication 
adherence among nonadherent patients relative to a no-device control group. No benefit 
of the devices was found over the 12-month follow-up period (Choudhry et al., 2017). 
Overall, similar to many other areas of mHealth, the available evidence for mHealth 
interventions focused on medication adherence is limited. Randomized controlled trials 
examining the outcomes of medication adherence interventions are needed, as outcomes 
may vary widely, depending on the specific population, medical condition, and medica-
tion type under study.

Diabetes Management Interventions

In 2018, 34.2 million people were diagnosed with diabetes in the United States, which 
is 10.5% of the population (Centers for Disease Control and Prevention, 2020). Man-
agement of this chronic disease is complex, and poor management can lead to adverse 
health outcomes. Mobile health interventions can simplify diabetes management, and 
they often take the form of mobile apps, text messaging, portable monitoring devices, 
pedometers, or a combination (Wang et al., 2020). Interventions commonly offer self-
monitoring, education, reminders/alerts, feedback, social support, and counseling (Wang 
et al., 2020), typically with a focus on insulin management (i.e., calculating insulin bolus, 
insulin titration), glucose tracking (e.g., via glucose meters), and lifestyle modification 
(e.g., physical activity, diet, sleep; Shan, Sarkar, & Martin, 2019). Shan and colleagues 
(2019) offered a detailed review of specific apps, notably the BlueStar mobile diabetes 
coach (Quinn et al., 2008, 2011), which became the first type 2 diabetes app available by 
prescription. With the BlueStar app, individuals enter their monitored values on a mobile 
phone (e.g., glucose, carbohydrate intake, medications) and receive tailored educational, 
motivational, and behavioral messages based on the data they entered. The BlueStar app 
has demonstrated efficacy for improving glycemic control in randomized controlled trials 
(Quinn et al., 2008, 2011).

Overall, mHealth interventions have shown a positive impact on health indicators, 
primarily glycemic control for individuals diagnosed with either type 1 or type 2 diabetes 
(Greenwood, Gee, Fatkin, & Peeples, 2017; Wang et al., 2019, 2020) even within socio-
economically disadvantaged and vulnerable populations (Mayberry et al., 2019). Addi-
tional studies with rigorous designs are needed to identify effective tailoring strategies 
based on age, sex, type of diabetes, health literacy, and other individual factors.

Future Directions and Conclusions

The development and testing of mHealth interventions for health behaviors is arguably in 
its infancy. Opportunities for research in this area are numerous, and in addition to those 
described earlier in this chapter, we highlight several more here. First, leveraging scalable 
technologies that address multiple health behaviors concurrently would be beneficial. 
For example, continued alcohol use while trying to quit smoking presents an increased 
risk of relapse to smoking (Businelle, Ma, Kendzor, Frank, Wetter, & Vidrine, 2016; 
Kahler, Spillane, & Metrik, 2010; Lam et al., 2014), and interventions that address alco-
hol use during a quit smoking attempt are needed. An intervention could enable location 
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monitoring to allow for the delivery of a JITAI when entering high-risk situations for 
smoking and drinking, as well as integrate wearable wireless sensors to quickly intervene 
if smoking or drinking does occur. Addressing the nuanced relationship between smok-
ing and alcohol use could also be a target for novel treatments. For instance, if alcohol 
use is detected, a notification could be delivered to advise the individual to be mindful 
of their elevated risk for smoking lapse. Another example would be an intervention that 
targets both sleep and stress concurrently. Here, it may be possible for the same device 
(wrist sensor) to detect both sleep and stress, reducing participant burden by requiring 
them to wear a single device. Feedback on improvements in sleep and stress would be 
possible via graphs in a phone app, and intervention content could be pushed and avail-
able on demand.

Second, although JITAIs may allow for the delivery of an intervention at just the 
right moment, we first need to understand exactly when to deliver an intervention, the 
conditions under which delivery makes sense, and what content is best to deliver. As such, 
microrandomized trials (MRTs; Klasnja et al., 2015) that enable the randomization of 
moments in which participants will receive intervention content, or not, are well posi-
tioned to help identify the active ingredients of a multicomponent JITAI. For example, 
although we know that stress is a potent predictor of substance use relapse, we do not 
have good data on exactly when and how stress should be targeted on a daily/weekly 
basis. Thus, an MRT might test whether delivering intervention content via smartphone 
at certain times of the day is more/less beneficial than delivering intervention content at 
other times of the day. For instance, Hernandez and colleagues (2021) are conducting 
an MRT that provides mindfulness strategies at key moments during a quit smoking 
attempt. A better understanding of the nuanced relationships among such variables has 
application not only to treatment development, but also to existing theoretical models of 
behavior change.

Third, our conceptualization of behavior change and intervention delivery may need 
to be modified as technology advances. For instance, as technology allows for inter-
ventions to occur in real time, existing models of behavior change will likely need to 
be updated and/or new models developed. EMAs may improve our understanding of 
complex relationships between the environment, thoughts, feelings, and behaviors. To 
date, most theoretical models have not considered the impact of intervention content on 
proximal and distal health behaviors, likely because prior to recent years, the ability to 
intervene in this manner was not possible (i.e., most interventions have been delivered 
in-person on a once weekly basis).

Fourth, research is needed to determine how to best modify what we already know 
works (e.g., CBT) to fit mHealth technology. For example, do we need to integrate in-
person counseling within mHealth interventions, or can mHealth interventions stand 
alone? One important future direction in the area of mHealth interventions for insomnia 
is to test and disseminate stepped-care interventions. This pragmatic approach currently 
in use for therapist-led CBT-I (Reynolds et al., 1997) is aimed at improving access to 
CBT-I, increasing efficiency in the use of clinic resources, and providing a low-intensity 
intervention that is efficacious in treating insomnia (Cheung, Jarrin, Ballot, Bharwani, 
& Morin, 2019; Wong, Chung, & Au, 2021). One stepped-care model showed that about 
46% of patients experienced a remission of insomnia after the self-administered interven-
tion, and the overall stepped-care model dramatically increased efficiency in use of clinic 
resources (i.e., more patients were treated). Similar models are under examination among 
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subpopulations, such as cancer survivors (Zhou, Michaud, & Recklitis, 2020). However, 
future studies should further examine the benefits of incorporating mHealth interven-
tions into stepped-care approaches for insomnia and other health behaviors.

Fifth, interdisciplinary partnerships are necessary to advance mHealth interven-
tions for health behaviors. Collaboration among computer scientists, engineers, and 
behavioral scientists is needed to fully leverage the potential of evolving technology. For 
example, although there have been great advances in the detection of stress via wearable 
sensors, very little research has been conducted to evaluate the efficacy of these technolo-
gies regarding behavior change. Implementation and dissemination in this area are also 
greatly lacking. The National Institutes of Health (2022) has recently urged the scientific 
community to bridge the science-to-practice gap by conducting studies focused on how 
to best implement and disseminate evidence-based interventions in real-world settings. 
Although many mHealth interventions are designed to be automated, understanding how 
to increase the uptake of such treatments for health behaviors is warranted. Scientific col-
laboration with hospitals, practitioners, and other public health leaders may be required.

Sixth, the costs and timelines for mHealth intervention development and testing 
often differ from what is traditionally offered via funding mechanisms (e.g., 5-year ROI). 
Budgets often involve greater costs that not only include development and testing of the 
mHealth intervention itself, but also increased costs associated with data storage and 
interdisciplinary collaborations. Once funding ends, many mHealth treatments need to 
be maintained, and it is often unclear who should oversee this and how the funding will 
be sustained (e.g., source of funding). The National Institutes of Health does offer Small 
Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) 
grant funding, which can facilitate mHealth interventions. Nonetheless, these mecha-
nisms are not applicable to all mHealth projects. There is a need for federal funding 
mechanisms that support rapid, iterative data collection that may vary from the tradi-
tional funding mechanisms in scope, costs, and time frame. Additionally, funding oppor-
tunities are needed that can expedite the translation of effective interventions into real-
world practice.

In conclusion, the current landscape of mobile interventions for health behaviors is 
vast. Opportunities for research in this area are numerous, including: continued technol-
ogy development, evaluation of technology on specific health behaviors (and on targeting 
health behaviors concurrently), and new conceptualizations of behavior change. Large-
scale randomized controlled trials are needed to rigorously evaluate the efficacy and real-
world effectiveness of health-focused apps. Finally, interdisciplinary collaborations and 
innovative funding opportunities will be a key factor in moving the science of mHealth 
for health behaviors forward.
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C H A P T E R  O V E R V I E W

Sensing technologies offer unique opportunities to address some of the long- standing 
challenges in diagnosing and treating mental illnesses. With a particular focus on severe 
mental illness, this chapter draws attention to behavioral features such as location, phys-
ical activity, social functioning, speech, medication adherence, and sleep that can be 
assessed by sensors to detect and monitor symptoms of mental illness. This chapter also 
provides examples of how these sensors, if applied within a mental health setting, may 
help mental health care providers prevent, intervene, and treat these illnesses as well as 
further understand illness features and trajectory. The chapter concludes with a discus-
sion of the implications of using sensors in mental health care, the ongoing challenges 
within the scope of research, and potential future directions for the continued integration 
of sensors within clinical psychology.

Background

Mental illness affects one in four individuals across a lifetime (Vigo, Thornicroft, & 
Atun, 2016). Psychopathology, ranging from mild to severe, is a leading cause of years 
lost to disability globally and can result in significant symptom burden, high rates of 
medical morbidity, and premature mortality (Eaton, Anthony, Mandel, & Garrison, 
1990; Judd et al., 2003). Effective management of mental illness requires intensive symp-
tom monitoring, face-to-face clinical assessment, and timely clinical intervention. Early 
recognition of symptoms is critical in lessening the impact of long-term psychological dis-
tress and cognitive and social impairment (Elshahawi et al., 2011; Morrison, O’Carroll, 
& McCreadie, 2006). However, the management, treatment, and prognosis of these 
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illnesses are contingent on access to and utilization of treatment, which is not without its 
challenges. Many individuals with mental illness cannot access treatment due to financial 
barriers, societal stigma, limited availability of trained mental health professionals, and 
lack of mental health education and awareness (Mojtabai et al., 2011; Rowan, McAlpine, 
& Blewett, 2013). Furthermore, to diagnose, inform, and shape the treatment of a mental 
illness, providers rely on clinical interviews and self-report information, although these 
forms of information gathering are often subjective and susceptible to recall inaccuracies 
and reporting bias (Ben-Zeev & Young, 2010). As such, there have been increased efforts 
to develop tools for early detection and monitoring of mental health problems.

Sensing technologies offer unique solutions to address the limitations and challenges 
of diagnosis, treatment, and prevention in mental health care. These technologies can be 
leveraged to provide important contextual and behavioral insights. First, sensors are easy 
to access as they are typically embedded in commonly used, portable devices. A recent 
study on mobile device ownership demonstrated that most individuals with serious men-
tal illness (schizophrenia, major depression, and bipolar disorders) own a mobile phone, 
with the majority owning a smartphone (Young et al., 2020). The accessibility and mobil-
ity of sensors offer individuals an alternative to direct, face-to-face, often stigmatized, 
interaction with clinic-based services. Second, sensors can automatically generate in-the-
moment, objective information and reduce social desirability and recall biases that may 
impact clinical case conceptualization and treatment planning. The automatic collection 
of data not only is less intrusive of an individual’s daily activities but also minimizes the 
risk of nonengagement with daily monitoring due to its limited demand on the end user. 
Finally, sensing may provide opportunities for mental health screening that can alert 
individuals to seek out services before or during a mental health crisis and reduce costs to 
health care systems by preventing severe cases from getting worse.

Here, we describe the current state of sensing within the scope of clinical psychology 
research and mental health practice. This chapter aims to provide a detailed description 
of how sensors can be used for monitoring behavioral features that correlate with the 
symptomatology of psychopathology, emphasizing serious mental illnesses. We conclude 
this chapter with a brief description of implications for practice, limitations, challenges, 
and future directions.

Recent Sensing Work and Its Application in Clinical Psychology

Mobile devices such as smartphones can be leveraged as an easy and inexpensive tool to 
continuously and electronically self-monitor subjective information about illness activity 
and objective data such as calls, text messages, and social media activities. In conjunc-
tion with phone use data, remote sensors can collect data passively, including location, 
physical activity, and patterns in speech or sleep. These data can be interpreted to detect 
the presence of anxiety, stress, mood, and psychotic symptoms (Seppälä et al., 2019). At 
the core of psychopathology is a shift in the extant pattern of dysfunctional thoughts 
and feelings. This shift may affect any number of features about a person’s external pre-
sentation, such as location, physical activity, social functioning, communication style, 
medication nonadherence, and sleep. In the following section, we describe how sensing 
technologies can track behavior and psychological states and how they can be uniquely 
applied to the field of clinical psychology.
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Location and Mobility

Individuals with mental illness, particularly those with serious mental illness, often expe-
rience isolation and lack opportunities to engage in meaningful activities in their com-
munities (McCormick, Funderburk, Lee, & Hale-Fought, 2005). This lack of community 
engagement is compounded by the fact that 85% of individuals with serious mental ill-
ness are unemployed and lack educational and leisure activities (Bond, Salyers, Rollins, 
Rapp, & Zipple, 2004). Although research typically focuses on an individual’s func-
tioning as a measure of community engagement, an emerging body of work focuses on 
the role of place and movement within communities as an indication of illness sever-
ity and recovery outcomes (Townley, Kloos, & Wright, 2009). Physical presence in a 
community is operationalized as the cumulative frequency of self-initiated participation 
in community activities and use of community resources (Aubry & Myner, 1996). In 
remote sensing, physical presence (location) and movement within a location (mobility) 
can be tracked continuously and leveraged to identify community engagement. Location 
and mobility information is primarily gathered through cellular networks, Bluetooth and 
Wi-Fi connections, and Global Positioning System (GPS) data. The most common digital 
biomarkers using these sensors are the number of locations visited, entropy (indications 
of regularity or routine), mobility (patterns of movement between locations), and, though 
not typical, activity (shopping or playing sports).

To successfully predict the symptomatology of mental illnesses, researchers have used 
self-report questionnaires to contextualize GPS data. This approach has found strong 
associations between geolocation and various self-report questionnaires. For example, 
higher entropy, or the more locations at which an individual spent time, is correlated with 
a better mood (Rohani, Faurholt-Jepsen, Kessing, & Bardram, 2018). In contrast, indi-
viduals were more likely to score high on a depressed mood scale the more they remained 
at home (Doryab, Min, Wiese, Zimmerman, & Hong, 2014; Saeb, Lattie, Schueller, 
Kording, & Mohr, 2016). In schizophrenia, individuals were less likely to visit new places 
when symptomatic (Wang et al., 2016). Additionally, less GPS mobility is associated with 
greater negative symptom severity and diminished motivation (Depp et al., 2019). Mean-
while, greater GPS mobility has been weakly associated with more community function-
ing (Depp et al., 2019). Among individuals with bipolar disorder, researchers have found 
a positive correlation between mood and the percentage of time spent outdoors (Sabatelli, 
Osmani, Mayora, Gruenerbl, & Lukowicz, 2014). Recent work has utilized passive sens-
ing to predict relapse in individuals with schizophrenia, and preliminary findings have 
suggested that location patterns can identify which individuals are more likely to relapse 
(Ben-Zeev et al., 2017; Wang, Wang, Aung, et al., 2018; Wang, Wang, et al., 2020).

Location and mobility data may also provide context about how individuals with 
mental illness engage with their communities. Identifying the specific baseline patterns 
of an individual’s engagement with locations and their community might offer an alter-
native way to detect prodromal symptoms. For instance, if individuals spend too much 
sedentary time at home, they may be slipping into a depressive state, and mental health 
providers can be activated to respond. Not all individuals with mental illness that experi-
ence the same condition have similar manifestations of symptomatology. For example, 
due to diagnostic criteria for bipolar disorder, one might assume that affective states, 
like mania, where individuals may experience increased social behavior, hypersexuality, 
and euphoria, are associated with increased locations visited and mobility. However, the 
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literature suggests that mobility in manic individuals decreases when they are experienc-
ing a manic state (Beiwinkel et al., 2016). Differences across studies indicate that mod-
eling using location and mobility data may have to be personalized to the individual’s 
locations, activities, and social roles rather than the population.

Physical Activity

Mental health is related to physical health and activity. Individuals with mental illness 
are more likely to be physically inactive and to experience challenges in attainment and 
maintenance of fitness and weight loss due to the impact of symptoms on motivation, 
lack of affordable options for exercise, the metabolic effects of psychoactive medications, 
and poor diet (Bartels et al., 2013). The lack of physical activity in this population, com-
bined with a high prevalence of unhealthy behaviors such as smoking, increases the risk 
of comorbid medical conditions and reduces life expectancy (Colton & Manderscheid, 
2006). In the general population, activity tracking using basic devices like pedometers 
is an effective technique for supporting health promotion efforts (Burke et al., 2015). 
Among individuals with mental illness, outpatients have indicated that they feel comfort-
able using smartphone sensors for characterizing their activity patterns (Ben-Zeev et al., 
2016). Preliminary studies have demonstrated that the use of passive data to encourage 
health promotion efforts in this population is acceptable and feasible (Naslund, Asch-
brenner, & Bartels, 2016). Beyond physical health, the amount by which an individual is 
physically active can indicate deterioration in mental health status. For example, depres-
sion is marked by decreased daytime motor activity compared with improved (euthymic) 
or manic mood states (Wolff, Putnam, & Post, 1985). Sensing can remotely measure 
changes in activity level using accelerometry and gyroscope data to measure different 
types of activity (walking versus running), duration of time spent sedentary, duration of 
physical activity, as well as the intensity of movement.

Several studies have utilized physical activity data to identify the features of mental 
illness (Rohani et al., 2018; Seppälä et al., 2019). Individuals with bipolar and unipo-
lar disorders have been found to have lower levels of acceleration, fitness, and energy 
expenditure (Faurholt-Jepsen et al., 2012). When adjusted for symptom severity, bipolar 
disorder was associated with significantly lower and different daily acceleration patterns 
(e.g., a greater range of activity between 6:00 A.M. and 12:00 P.M.) and expenditure 
compared to unipolar disorders (Faurholt-Jepsen et al., 2012). A similar study found that 
individuals with bipolar disorder, even when asymptomatic, were still significantly more 
sedentary than the general population (Janney et al., 2014). Among individuals with 
schizophrenia, reduced physical activity is also associated with increased symptom sever-
ity (Walther et al., 2015). Step count is positively correlated with positive, disorganized, 
and excited measures on a positive and negative syndrome scale, but not with negative 
and depressed factors (Tron, Resheff, Bazhmin, Peled, & Weinshall, 2017). Efforts have 
also been made to utilize sensing data for interventional purposes, such as evaluating 
the impact of physical activity on mood states. For instance, among depressed alcohol-
dependent individuals, increased activity levels were associated with reductions in anxi-
ety and depression symptoms (Abrantes et al., 2017).

Physical activity can improve the quality of life among individuals with mental 
illness by improving their physical health while also alleviating their psychiatric and 
social disabilities. Regular physical activity has been shown to improve quality of life 
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and emotional well-being even in the absence of objective diagnostic treatment (Faulkner 
& Biddle, 1999). There is a serious need to promote physical activity in this population, 
given their heightened risk for comorbid health conditions, high obesity rates, and the 
gap in mortality. Lifestyle interventions promoting physical activity among individuals 
with mental illness have shown substantial promise for improving cardiovascular health 
and contributing to weight loss (Bartels et al., 2013, 2015). Passively collected physical 
activity data could be integrated into these lifestyle interventions as summary reports or 
feedback to reinforce positive health behaviors. Finally, reinforcement and encourage-
ment to engage in physical activity from passive sensing data could play a role in reduc-
ing social isolation. This aspect of physical activity is still not well understood, although 
some studies suggest that physical activity can engage individuals in mental health ser-
vices and offer safer opportunities for social interaction (Faulkner & Sparkes, 1999).

Social Functioning

Social functioning or the extent to which individuals can occupy functional social roles 
and actively contribute to their community is often impaired in people with mental ill-
ness. Understanding social functioning within this population provides insights into an 
individual’s severity of symptoms and their capacity to live independently. Recovery and 
quality of life outcomes often consider recovery from mental illness as an improvement 
not just of symptoms but also of individuals’ interaction with their respective environ-
ment (Bartels & Pratt, 2009). Even after complete remission of psychopathology, how-
ever, residual impairments tend to remain. Social functioning can be studied using a 
multidimensional approach that evaluates behavioral (network size, time and frequency 
of social activities, and frequency of perceived social support) and affective (loneliness, 
affiliation, perceived social disability) indicators (Santini, Koyanagi, Tyrovolas, Mason, 
& Haro, 2015). These indicators translate to remote sensing activities in a complex way 
and often require referencing a combination of passively collected data such as commu-
nication patterns (number of in/out phone calls, duration of calls, number of in/out text 
messages), smartphone usage (application use such as Facebook, Twitter, Instagram), 
face-to-face conversations (microphone), sleep patterns (accelerometer, ambient light, and 
sound), mobility (accelerometer), physical activities (accelerometer), and semantic loca-
tion (GPS coordinates associated with frequently visited places).

Initial sensing studies have evaluated the connection between communication pat-
terns and illness states. In individuals with bipolar disorder, fewer outgoing text messages 
were associated with increased depressive symptoms, whereas an increase in calls was 
associated with manic symptoms (Beiwinkel et al., 2016). Furthermore, fewer outgo-
ing calls, as well as the duration of incoming and outgoing calls, were correlated with 
depressive symptoms (Faurholt-Jepsen et al., 2015). Among individuals with schizophre-
nia, self-reported positive attributes (e.g., calm, hopeful, sleeping well) were associated 
with fewer phone calls, conversations, and text messages (Wang et al., 2016). On the 
other hand, negative attributes were associated with having fewer conversations but mak-
ing more phone calls and sending more text messages (Wang et al., 2016). Building on 
this body of work, one study found that communication patterns could be used to iden-
tify oncoming relapse among individuals with schizophrenia. Before relapse, individuals 
placed fewer, shorter outgoing phone calls and sent and received fewer text messages 
(Buck et al., 2019). Communication patterns have also been used to identify meaningful 
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relationships in an individual’s network. Longer calls were typically from family and 
friends and were determined by the frequency of text messages during the week (Min, 
Wiese, Hong, & Zimmerman, 2013). Work contacts were characterized by when calls 
were received (during the work week instead of over the weekend) and fewer text mes-
sages (Min et al., 2013).

Social information can also be remotely gathered through social media platforms 
where individuals engage with others and share their activities, thoughts, and photos. A 
large body of literature has demonstrated that specific words that include negative and 
positive emotions can be used to make inferences about affect and mood (Rude, Gortner, 
& Pennebaker, 2004). Several studies have utilized data from Twitter, Facebook, Red-
dit, and other Web forums to detect the presence of depression (Guntuku, Yaden, Kern, 
Ungar, & Eichstaedt, 2017). However, few studies integrate social media data collection 
with structured clinical interviews to determine how they may impact the screening and 
assessment of mental illnesses. Though not directly tied to clinical interviews, online 
language may predict mental illness prior to a formal diagnosis. In a study that examined 
words on Reddit, individuals with depression used terms related to sadness, life prob-
lems, medications, ugliness, and harm, among other topics (Thorstad & Wolff, 2019). 
These findings suggest that it may be valuable to examine the content of remotely col-
lected text messages and social media posts to gain more insight into social functioning 
and mental health symptomatology.

Automated sensing tools provide the capacity to understand patterns, individual 
differences, and community-specific information that may help researchers understand 
varying levels of social functioning. Sensing information specific to the respective com-
munity in which an individual resides would allow interventions to be more personally 
relevant as well as help individuals address community-specific challenges in social func-
tioning. Objective information about social functioning may also provide a clearer under-
standing of mechanisms, skills, and strategies that individuals with higher functioning 
have found useful in their day-to-day lives to benefit those with lower social capacities 
who may continue to struggle with community engagement. Objective sensor-derived 
information about social functioning could also be provided to the end user through 
an intervention to help them develop self-awareness and insight into their successes and 
failures in social interaction. One critical consideration for assessing social functioning in 
individuals with mental illness is multimodal sensing. Often, one or two sensors on their 
own are not enough to gather context-specific information and classify distinct features 
(Wang, Mirjafari, et al., 2020). For example, depressed college students may engage in 
more social activities and programming to meet requirements for school. In contrast, a 
same-aged young adult outside a school setting may appear to be lower in functioning 
because they do not have access to community-organized social events. Researchers must 
incorporate context-specific information about the individual before interpreting these 
data at the individual level and in a sample.

Language and Speech Patterns

Deficits or abnormalities in speech and communication are common among people with 
mental illness. These deficits are chronic, resistant to medications, and associated with 
poor outcomes (Kirkpatrick, Buchanan, Ross, & Carpenter, 2001). Language is consid-
ered a biologically relevant phenotype of mental illnesses (Arevian et al., 2020). Although 
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patterns in speech have been identified as instrumental in understanding the underlying 
pathophysiological processes of the disease, there is limited knowledge about their course 
(Insel et al., 2010). One common barrier to studying speech pathology is its reliance on 
interviewer-based rating scales and observational, face-to-face treatment settings that 
cannot examine these deficits over long periods (Kirkpatrick et al., 2011). With advances 
in technology, researchers can measure voice features such as sound, quality, frequency, 
as well as conversation frequency and duration from a smartphone or wearables’ micro-
phone.

Voice data have been used to classify manic and depressive states as well as suicide 
risk in individuals with bipolar disorder and depression (Cummins et al., 2015; Karam 
et al., 2014). Arevian and colleagues (2020) evaluated the domains of affective words 
as well as complexity and acoustic properties of longitudinal voice data from individu-
als with serious mental illness and found that they were able to predict self-harm and 
depression using self-report measures. In depression, paralinguistic elements of voice 
have been associated with depressive symptoms and response to treatment (Hashim, 
Wilkes, Salomon, Meggs, & France, 2017; Mundt, Vogel, Feltner, & Lenderking, 2012). 
Acoustic pitch variability and changes in pause time between words have also been sig-
nificantly correlated with depression (Mundt, Snyder, Cannizzaro, Chappie, & Geralts, 
2007). More broadly, conversational patterns have been linked to perceived stress—
individuals proximally close to more frequent and longer conversations are less likely to 
feel stressed (Wang et al., 2014). Thus far, no studies have found significant associations 
between relapse and speech duration. However, this may be because speech duration as 
a standalone variable may not have enough variability to significantly relate to relapse 
(Buck et al., 2019).

Speech patterns are an essential secondary measure of social functioning. However, 
the current measurement of speech among individuals with mental illness is limited in 
its capacity to determine how speech deficits vary within and across individuals, as well 
as how they are related to cognitive, pathophysiological, and genetic variables (Insel, 
2017). Advances in our knowledge about how sensors might identify speech pathology 
shifts throughout illness could clarify how speech pathology relates to the severity of 
symptoms and cognitive impairment. For example, in an individual with bipolar disorder 
who experienced pressured speech in a manic phase and slowed, disorganized speech 
when depressed, exploration of their shift in speech pattern may provide insights about 
their illness trajectory. Regarding social functioning, sensors can offer an opportunity to 
evaluate how disorganized speech in the wild affects the ability to attain and maintain 
societal roles.

Medication Adherence

Nonadherence to medications or, the extent to which an individual follows a medica-
tion regime prescribed by a doctor, is a widespread public health issue (Sabaté, 2003). 
Approximately 50% of chronically ill individuals do not adhere to their medications, 
although among individuals with mental illness, nonadherence rates can reach up to 89% 
(Schulze et al., 2019). Nonadherence can be intentional and related to an individual’s 
dissatisfaction with taking psychotropic medications in the long term or unintentionally, 
including forgetting to take the correct dose at the right time, failing to fill or refill a 
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prescription, or discontinuing medication before completion of the recommended dose. 
Regardless of intention, nonadherence can lead to an exacerbation of symptoms, rehos-
pitalization, poor quality of life outcome, and increased risk of suicide (Rana & Ayub, 
2002). Several technological solutions have been studied, such as smartphone interven-
tions that provide reminders and pill containers that record the number of times opened 
(Steinkamp et al., 2019). The challenge posed by these newer technologies is that they do 
not confirm that the individual ingested the medication once obtained. On this occasion, 
an ingestible sensor may make a clinically meaningful difference.

In a preliminary feasibility and safety study of ingestible sensors among individuals 
with schizophrenia and bipolar disorder using a placebo pill, average medication adher-
ence was 74% (Kane et al., 2013). Following this study, in 2017, the U.S. Food and Drug 
Administration (FDA) approved a version of a second-generation antipsychotic embedded 
with a sensor that activates in the stomach, communicates ingestion to a wearable sen-
sor (a patch), and then records adherence on a smartphone application and Web portal. 
In a multicenter, open-label study, the average medication adherence with the ingestible 
sensor was 73.9%, and most individuals expressed satisfaction with the sensor’s associ-
ated technology (Peters-Strickland et al., 2016). An initial challenge that arose was that 
ingestion of the pill could only be detected if the patch was worn, ultimately depending 
on an individual’s ability to regularly replace the patch and pair it with the smartphone 
application. Only 55% of the study’s participants could replace the patch and connect 
it to their smartphone without help. However, this number increased to 81% when par-
ticipants were assisted by a remote human support coach, indicating that minimal assis-
tance may improve usability (Peters-Strickland et al., 2016). A replication study reported 
88.6% medication adherence and found that individuals with schizophrenia needed more 
support with the technology (Kopelowicz et al., 2017).

Despite the availability of interventions designed to address medication nonadherence 
among individuals with mental illness, high rates of nonadherence persist (Steinkamp et 
al., 2019). An ingestible sensor embedded in a psychotropic medication would provide a 
way for providers and end users, for the first time, to get real-time, accurate information 
about adherence to identify and intervene if medication nonadherence begins. A recent 
survey of mental health care experts indicated that they believe a notification about medi-
cation nonadherence after three consecutively missed days would be helpful for interven-
tional purposes (Hatch, Docherty, Carpenter, Ross, & Weiden, 2017). Additionally, this 
type of technology could encourage an individual to develop insight about the relation-
ship between discontinuation of psychiatric medications and symptom exacerbation, as 
well as create an opportunity for an open dialogue between providers, supports, and end 
users about challenges with adherence. For individuals who experience persistent, resid-
ual symptoms between psychiatric episodes, real-time evaluation of adherence could help 
distinguish between partial efficacy of medication due to nonadherence versus lack of 
effectiveness due to nonrespondence of the psychoactive component (Hatch et al., 2017). 
Out of all the behaviors sensors monitor, the least is known about the efficacy of ingest-
ible sensors on improving outcomes. Currently, the FDA has approved only one sensor-
embedded psychotropic medication. The generalizability and relevance of this technology 
to the effective long-term management of mental health conditions are unknown. More 
research is also needed to address whether these sensors can address some of the current 
challenges facing nonadherence and their connection to treatment outcomes.
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Sleep

Abnormalities in sleep behavior are commonly reported in the general population (Single-
ton, Bumpstead, O’Brien, Lee, & Meltzer, 2003). The prevalence of sleep dysfunction is 
substantially higher in people with serious mental illness (Harvey, Murray, Chandler, & 
Soehner, 2011). Changes in sleep behaviors are a primary biological symptom of depres-
sion (Berk, 2009), an indicator of relapse in bipolar disorder (Harvey, 2008), and present 
in approximately 90% of those with psychotic illnesses (Wulff, Dijk, Middleton, Foster, 
& Joyce, 2012). Accordingly, monitoring sleep behaviors can provide information about 
an individual’s clinical status. Four measures of sleep obtained by sensors are key in the 
treatment of mental illnesses: sleep efficiency (quality), total sleep duration (amount of 
time slept), sleep onset latency (bedtime), and wake after sleep onset (rise time). Actig-
raphy and accelerometers have been used as a long-standing measure for sleep duration, 
efficiency, and circadian rhythms in the general population, though only recently have 
they been used to evaluate these measures in mentally ill populations.

Many researchers have aligned sensor data from wearables to self-report measures 
for mental health problems to predict sleep disturbances. In a recent assessment of sleep 
quality among individuals with schizophrenia, accelerometer data were moderately cor-
related with participants; self-reported daily sleep duration (Staples et al., 2017). Objec-
tively measured sleep duration is also significantly associated with the severity of depres-
sive symptoms (Ben-Zeev, Scherer, Wang, Xie, & Campbell, 2015; Wang et al., 2014). 
In other words, individuals who are more depressed tend to sleep more. Among college 
students, sensors indicated that students with depression slept for shorter periods, woke 
up later, and generally had more irregular sleep schedules (Wang, Wang, DaSilva, et al., 
2018).

Beyond comparison to self-report assessments, sleep efficiency, duration, and bed-
time/rise times have been estimated from device activity patterns. Phone usage patterns—
specifically screen lock and unlock patterns—can be used to detect and predict individual 
daily variations indicative of sleep duration, efficiency, and timing of bedtime and rise 
time (Abdullah, Matthews, Murnane, Gay, & Choudhury, 2014). Inferences about sleep 
can also be made through the use of silence/do-not-disturb mode, ambient light, and the 
length of time the phone sits stationary. However, these device activity findings have 
not been replicated among individuals with mental illnesses. Finally, some researchers 
suggest that the standalone feature detection of sleep leads to weak predictions, whereas 
when multiple features are combined, the accuracy of sleep duration and prediction is 
much more robust (Chen et al., 2013). For instance, several features, including sleep 
disturbance, computed from individuals’ environmental audio, as potential correlates of 
anxiety and depression symptomatology, were, in fact, strongly associated with depres-
sion (Di Matteo et al., 2020).

Sleep directly impacts daily functioning. For individuals with mental illnesses, sleep 
disturbances are associated with poor clinical outcomes (Waite, Sheaves, Isham, Reeve, 
& Freeman, 2020); however, the impact of these disturbances remains poorly understood 
(Jagannath, Peirson, & Foster, 2013). Sensors’ ability to measure circadian inputs pro-
vides an opportunity to identify how sleep disturbances impact individuals’ presentation 
of illness differently and advance the knowledge around this symptom. The length of time 
that sensors can monitor sleep behaviors allows researchers to examine sleep comprehen-
sively over a long-term period, which would allow more insight into how sleep evolves 
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throughout a psychiatric episode. Additionally, given the connection between sleep dis-
turbance and psychotic features, remote monitoring may provide an opportunity to bet-
ter understand how psychotic experiences are linked to sleep dysfunction. From a relapse 
prevention perspective, deterioration in functioning can often start with abnormal sleep 
behaviors, so remote monitoring and the ability to characterize sleep continuously may 
encourage a prompter response to psychiatric emergencies. In detecting sleep features, it 
is important to remember the varying differences in a disturbance between the general 
population and individuals with mental illnesses, Thus, when studying this behavioral 
feature, researchers should acknowledge the limits to generalizability if it is purely stud-
ied in a nonclinical sample.

Research Challenges and Future Directions

This chapter discusses currently available health and activity monitoring sensors that 
can measure important behavioral parameters present in mental illnesses. The current 
state of the field demonstrates that sensing technologies, which can remotely monitor 
an individual’s clinical status, are well positioned to improve mental health care as they 
offer a novel way to address many of the current problems in the field. Although these 
technologies are innovative, exciting, and filled with promise, significant research is still 
needed to help advance these tools from research to implementation and dissemination.

Standardization and Replicability

Most existing studies are based on nonrandomized, nonblinded, proof-of-concept studies 
that utilize a limited clinical sample. While a growing number of studies have begun to 
replicate the findings of preliminary studies, there is a widespread tendency to glamorize 
the novelty of these technologies and underestimate the value of reproducibility in real-
world settings where end users may be dealing with the challenges of homelessness, pov-
erty, and cognitive impairment that would make using these tools difficult. Of the studies 
that replicate prior findings regarding the severity of symptoms or behavioral markers, 
there is a lack of standardization and regulation between self-assessment measures and 
sensors, making it difficult to draw comparisons between studies. There are hundreds 
of smartphone versions, wearable devices, and sensors across various operating systems. 
It is challenging to draw confirmatory conclusions on how these tools may be helpful in 
mental health care when the generalizability of these approaches is limited. (For details, 
see Giurgiu & Bussman Chapter 5, this volume, on physical behavior data.) In the same 
fashion, many self-assessment surveys are used to diagnose and assess symptomatology 
that have been used to classify and predict behavioral features, again making it hard to 
compare findings across studies.

Feature Detection

To successfully categorize and identify specific mood, anxiety, and psychotic features, 
one must also consider symptom-specific details such as intensity, frequency, and vari-
ability that can significantly differ between individuals. Existing work on predicting 
mood states using sensors typically focuses on identifying generic behavioral features to 
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predict or map onto a self-assessment scale. Additionally, of the existing studies, many 
use short assessment periods, such as 3 months, to assess relapse and to detect features 
(Ebner-Priemer et al., 2020). It is naïve to believe that these studies accurately detect vari-
ations in illness that typically occur over more extended periods such as 6 to 12 months.

Moving forward, it is critical to shift beyond the detection of generic behavioral fea-
tures to accommodate specificities in the day-to-day lives of those with mental illnesses. 
Although many studies demonstrate a clinically significant association between symp-
tomatology and sensor findings, this link has yet to transition into a clinically meaningful 
prediction parameter. On this note, it is equally important that sensors align or function 
within research models such as the Research Domain Criteria (RDoC), a conceptual 
framework introduced by the National Institute of Mental Health that integrates vari-
ous modalities of information (behavior, physiology, and self-report) to understand and 
treat mental illnesses (Insel et al., 2010). For example, Wang, Wang, DaSilva, and col-
leagues (2018) designed a set of behavioral features to capture the unique characteristics 
of a college student (e.g., going to class, working in study areas, socializing in a campus 
setting), while also monitoring for RDoC depressive symptomatology. Other researchers 
have proposed guidelines for reporting electronic mood data to enhance interpretation, 
reproducibility, and future meta-analyses of these technologies (Faurholt-Jepsen et al., 
2019). Future work should pay particular attention to data collection, feature extraction, 
and any existing guidelines, as well as self-reported questionnaires and surveys used to 
assess the severity of symptoms so that comparison with prior work is possible.

Privacy and Confidentiality

Among the most prominent concerns about utilizing sensors to collect mental health 
care data are privacy and confidentiality. As is true of any technology, users are at risk 
of having their clinical information exposed through data breaches. Concerns also exist 
about this field’s ethical and societal impact due to the implications of collecting 24/7, 
large-scale, mental health-related data. Although sensors offer a new horizon of pos-
sibility for illness monitoring and continuity of care, these same sensors could also be 
used for unethical purposes, such as discrimination by potential employers to reduce 
the risk of insurance payouts. With ingestible sensors specifically, there is some concern 
that private insurers might incentivize their use—for example, by providing discounted 
copayments—but also mandate digital medicine as a requirement for parole or release 
from a psychiatric facility (Belluck, 2017). More efforts are needed to develop and ensure 
data privacy and information security. One viable suggestion would be to anonymize 
health data before their synthesis to ensure confidentiality and compliance with health 
information privacy regulations (El Emam, Rodgers, & Malin, 2015). It may also be 
helpful to include an option for individuals to modify the frequency of monitoring or to 
turn it off entirely. Alternatively, some individuals may appreciate more transparency, 
such as reviewing the tangible metrics of processed raw data on the device before sharing 
it with mental health care professionals.

Continuity of Care and Integration of the Data

Finally, it is unclear how the data from these sensing technologies can be integrated into 
face-to-face clinical services to provide a more comprehensive clinical picture. Given that 
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mental health care is already overwhelmed by clinician burnout and overextended provid-
ers (Morse, Salyers, Rollins, Monroe-DeVita, & Pfahler, 2012), researchers must strive 
to develop visualizations and summaries that transform sensor data into easy-to-read 
summaries and insights. An emerging body of work alongside the proliferation of clinical 
technologies is the addition of human support roles or clinical technologists (Jonathan, 
Pivaral, & Ben-Zeev, 2017; Mohr, Cuijpers, & Lehman, 2011). In essence, individuals 
familiar with the range of digital health resources would fulfill these support roles. They 
could assess end users’ needs and preferences to match them with the tools most likely 
to be relevant, while also assisting with technical support. Finally, it is essential to con-
sider how sensing information might coexist with, corroborate. or inform preexisting 
information about the mental health condition of the end user. Although most research 
presents innovative findings, sensing in real-world settings is rare, and few studies inte-
grate sensing data into clinical settings or intervention tools to measure or report changes 
in clinical outcomes. Existing studies that monitor users’ well-being and various clinical 
states rely heavily on correlation analysis to understand how well-being connects to dif-
ferent sensors and users’ smartphone interactions. More experimental work is needed to 
uncover the causal links between affective states, smartphone interactions, and context 
modalities. Understanding the effectiveness of providing end-user facing feedback from 
the sensors would readily allow integration of these tools into effective behavior interven-
tions and study of their impact on clinical outcomes.

Conclusion

A number of studies have examined the use of multimodal sensors for gathering and 
monitoring objective behavioral patterns, with some promising applications to the assess-
ment and treatment of mental illness. Multimodal sensors can create a rich, context-
specific picture of an individual’s mental health status and thus provide more personal-
ized and clinically relevant care. Although this body of work offers exciting prospects 
for the future of mental health care, a considerable amount of work remains to be done 
before we can understand how sensing can be integrated into the current mental health 
care system, to the greatest benefit of both providers and individuals using these tools.
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C H A P T E R  O V E R V I E W

Advances in mobile and wireless devices hold tremendous potential for adapting interven-
tions to the unique and changing needs of individuals over time. An adaptive intervention 
is an intervention design in which dynamic information about the individual is used to 
recommend whether and how to intervene. A just-in-time adaptive intervention (JITAI) is 
a form of an adaptive intervention that leverages powerful mobile and sensing technolo-
gies to obtain dynamically changing information about the individual’s internal state and 
context, and use this information to recommend whether and how to intervene in real 
time, in the individual’s natural environment. This chapter is intended to provide a brief 
introduction to adaptive interventions and JITAIs in mobile health. Different examples 
of adaptive intervention and JITAIs from various domains of behavior change are used to 
discuss opportunities and challenges for harnessing digital technology to adapt interven-
tions and to highlight directions for future research.

Introduction

Mobile health (mHealth) tools hold tremendous potential for helping people achieve and 
sustain behavior change (e.g., to increase physical activity, adopt a healthier diet, manage 
psychological distress). Intervention components are considered to be mHealth when they 
employ mobile and wireless devices (e.g., tablets, smartphones, wearables) to promote 
people’s health and well-being (Kumar et al., 2013). The widespread use, acceptabil-
ity, and convenience of mobile and wireless devices can help reduce certain societal and 
structural barriers (Amico, 2015) and facilitate scalability across geographic locations 
( Muessig, LeGrand, Horvath, Bauermeister, & Hightow- Weidman, 2017), including 
within resource- limited (Haberer et al., 2017) and hard-to-reach (McInnes et al., 2014) 
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settings. Smartphones and tablet computers can host a wide variety of applications (apps) 
with therapeutic content and engaging features such as social networking and gaming 
that can be harnessed for health promotion purposes (Mohr, Burns, Schueller, Clarke, 
& Klinkman, 2013). Mobile devices can also give round-the-clock, real-time reminders, 
prompts, and feedback. Using these technologies to deliver interventions whenever and 
wherever they are needed can mitigate the logistical challenges associated with tradi-
tional in-person health care, such as scheduling conflicts, travel to treatment facilities, 
and social distancing constraints.

Because mHealth interventions can be disseminated conveniently with potential to 
promote behavior change at low cost, they may have particular utility in the initial phases 
of stepped-care strategies—staged systems comprising a hierarchy of interventions, rang-
ing from the least to the most costly/intensive, matched to the individual’s needs (Sobell 
& Sobell, 2000). In a stepped-care strategy, minimal support (i.e., relatively inexpensive 
and/or low-burden intervention components) is offered initially, and then more resource-
intensive components are offered only to those who need it most (e.g., those showing 
early signs of nonresponse), whereas less resource-intensive components can be offered 
to individuals who show adequate response to minimal support. The goal is to enhance 
resource efficiency by stepping up and down the intensity or cost of interventions based 
on early signs of progress. Such a stepped-care strategy is a form of an adaptive inter-
vention—an intervention delivery framework that leverages ongoing (i.e., time-varying) 
information about the individual’s progress in the course of the intervention (e.g., early 
signs of nonresponse or nonadherence) to decide whether and how to modify the type, 
dosage, intensity, or delivery modality of an intervention.

Adaptive interventions are motivated to address the changing needs of individuals 
over time, while minimizing cost, effort, and burden. This is done by providing the most 
appropriate intervention only to those who need it, and only when they need it, there-
fore minimizing the provision of unnecessary interventions (Collins, Murphy, & Bier-
man, 2004; Murphy, Lynch, Oslin, McKay, & TenHave, 2007). mHealth tools also offer 
novel opportunities for delivering just-in-time adaptive interventions (JITAIs). A JITAI 
is an adaptive intervention that harnesses powerful mobile and sensing technologies 
to obtain dynamically changing information about the individual’s internal state (e.g., 
craving, stress), and context (e.g., physical location) and use this information to recom-
mend whether and how to deliver interventions in real time, in the individual’s natural 
environment. JITAIs are motivated to address the rapidly changing needs of individuals, 
while minimizing participant effort, burden, and habituation (Nahum-Shani, Hekler, & 
Spruijt-Metz, 2015; Nahum-Shani, Smith, et al., 2018).

The present chapter provides a brief introduction to adaptive interventions and JITAIs 
in mHealth. Different examples of adaptive intervention and JITAIs from various domains 
of behavior change are used to discuss opportunities and challenges for leveraging digital 
technology to adapt interventions and to highlight directions for future research.

Adaptive Interventions in mHealth

What Is an Adaptive Intervention?
An adaptive intervention is a protocolized sequence of individualized intervention 
options that use ongoing information about the individual’s progress to decide which 
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intervention option to offer (Collins et al., 2004). An intervention can be considered 
“adaptive” if (1) ongoing (time-varying) information is used to make intervention deci-
sions and (2) there is a clear protocol describing how to make these decisions in practice 
in order to enhance intervention replicability in research and real-world implementation 
(Nahum-Shani & Almirall, 2019).

As an example, consider the following adaptive intervention for promoting weight 
loss among overweight/obese adults (Ghosh, Nahum-Shani, Spring, & Chakraborty, 
2020; Pfammatter et al., 2019). At program entry, a weight loss mobile app is offered 
to all individuals; this app is designed to support the self-monitoring of weight, dietary 
intake, and physical activity. The individual’s response status is assessed at weeks 2, 4, 
and 8 based on the amount of weight-loss measures via a wireless scale. If the individual 
does not lose at least 0.5 pound on average per week, they are classified as a nonre-
sponder; otherwise the individual is classified as a responder. At the first time point 
when an individual is classified as a nonresponder, the mobile app is augmented with 
supportive messaging (delivered via push notifications within the app) and weekly coach-
ing sessions (delivered by trained coaches via 10- to 15-minute phone calls). As long as 
the individual is responsive, they continue with the mobile app alone. This intervention is 
adaptive because (1) it uses ongoing information about the individual’s progress over time 
(i.e., weight loss measured by home Wi-Fi scale) to decide how to intervene (i.e., whether 
to continue with minimal mHealth support or step up with more burdensome/costly com-
ponents) and (2) it is clearly protocolized to guide its implementation in practice.

Adaptive interventions can be protocolized with decision rules. For example, the 
decision rule illustrated in Figure 30.1 protocolizes the weight-loss adaptive intervention 
described above:

The decision rule includes four key components:

1.  Decision points, namely, points in time in which treatment decisions should be 
made. In the weight-loss program, decisions are first made at program entry and then 
every several weeks (i.e., weeks 2, 4, and 8).

2.  Tailoring variables, namely, information about the individual used to decide 
whether and how to modify the intervention. In the weight-loss program, the tailoring 
variable is the participant’s average weekly weight loss, measured based on daily moni-
toring via the wireless scale.

3.  Intervention options, namely, different intervention types, intensities, dosages, 
tactics, or delivery modalities that are under consideration at each decision point. The 

At program entry,
First-stage intervention option = mobile app alone

Then, at weeks 2, 4, and 8,
IF average weekly weight loss < 0.5 pound

THEN, second-stage intervention option = add supportive messaging and coaching
(and stop assessing response status)

ELSE, continue with app alone (and continue assessing response status until week 8)

  FIGURE 30.1.    Example of a decision rule for protocolizing an adaptive intervention.
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weight-loss program offers two intervention options, which represent two alternative tac-
tics: either add supportive messaging and coaching (and stop monitoring response status) 
or continue with the mobile app alone.

4.  Thresholds or levels of the tailoring variable that differentiate between conditions 
in which one intervention option should be delivered versus another. In the weight-loss 
program, the threshold is < 0.5 pound. Specifically, the decision rule specifies that addi-
tional support in the form of messaging and coaching should be offered when average 
weekly weight loss is suboptimal, that is, below 0.5 pound. As long as this threshold is 
not met, additional support is not required.

The adaptation is operationalized via the tailoring variables, their thresholds/levels, 
and the intervention options. Here, adaptation refers to a process in which the individual 
is monitored to obtain information about the tailoring variable(s), thresholds/levels of 
the tailoring variable(s) are used to decide which intervention option to offer, and the 
appropriate intervention options are delivered to the individual. This adaptation process 
is triggered at decision points and is guided by the goal of achieving a prespecified distal 
outcome (e.g., 5% weight loss by month 12) by impacting proximal outcomes. Proximal 
outcomes are the short-term goals of the adaptation, typically reflecting key mechanisms 
of change through which the distal outcome can be achieved (e.g., ongoing weight loss in 
the course of the program, intervention engagement).

Why Are Adaptive Interventions Needed?

Adaptive interventions are intended to increase the number of participants who benefit 
from an intervention while minimizing cost, effort, and burden. To clarify this, consider 
the weight-loss adaptive intervention described above. Coaching is an effective, yet rela-
tively costly and burdensome, weight-loss intervention component (Appel et al., 2011). 
Text messages are a less costly component, yet participant burden and message fatigue 
(leading to disengagement) are potential drawbacks (Griffin et al., 2018). The mobile 
app may be less burdensome, yet low participant engagement with the app can under-
mine efficacy (Dounavi & Tsoumani, 2019). Still, given empirical evidence indicating 
that mobile apps can support weight loss at relatively low cost (Pellegrini, Pfammatter, 
Conroy, & Spring, 2015), a mobile app may be a suitable component to initiate a weight-
loss intervention. However, empirical evidence suggests that not all individuals benefit 
sufficiently from using a mobile app to lose weight; about 50% are unlikely to achieve 
clinically meaningful weight loss in the long term. Importantly, empirical evidence sug-
gests that these individuals can be identified early, based on the extent of weight loss 
achieved during the first few weeks of a mobile intervention (Pfammatter et al., 2019). 
Specifically, existing empirical evidence indicates that those who lose less than 0.5 pound 
on average per week during the first 2 weeks of a mobile intervention are unlikely to lose 
5% of their body weight by month 6. Hence, providing additional support in the form 
of messaging and coaching to those who lose less than 0.5 pound on average during the 
first 2 weeks of a mobile intervention has the potential to increase the rate of individuals 
who achieve a clinically meaningful weight loss by month 6. As long as the individual is 
meeting the 0.5-pound threshold during the first few weeks, they are likely to achieve a 
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clinically meaningful weight loss by month 6. Hence, continuing with the least costly and 
burdensome component (i.e., mobile app alone) would be a resource-efficient decision. 
Overall, this adaptive intervention is motivated to increase the number of individuals 
who benefit ultimately from a mobile-based weight-loss intervention, while efficiently 
allocating scarce resources to those who need it most. The next section provides three 
additional examples of adaptive interventions from different areas of behavior change. 
These examples highlight the various ways in which digital technology can be leveraged 
to deliver adaptive interventions.

Examples of Adaptive Interventions Using Digital Technology

Example 1. An Adaptive Intervention for Youth Cannabis Use

Stanger and colleagues (2019) conducted a study to inform the development of an adap-
tive intervention for reducing drug use among youth with cannabis use disorder attend-
ing intensive outpatient programs. The following describes one of the adaptive interven-
tions considered in this study: First, youth received standard contingency management 
(financial incentives for documented abstinence) with technology-based working memory 
training (a commercially available digital training program to improve working memory 
for youth, involving 25 sessions with eight training tasks per session). Drug use was 
monitored weekly via urinalysis and alcohol breathalyzer tests over 14 weeks. Second, at 
week 4, if the individual tested positive or did not provide drug tests, they were offered 
enhanced (i.e., higher magnitude) incentives; otherwise the individual continued with the 
initial intervention.

Example 2. An Adaptive Adherence Intervention for Youth Living with HIV

Belzer and colleagues (2018) conducted a study to inform the development of an adap-
tive intervention for improving adherence to antiretroviral therapy (ART) in youth living 
with HIV. The following describes one of the adaptive interventions considered in this 
study: First, youth were offered daily personalized but automated text messaging (short 
messaging service [SMS] support). Participants were able to choose the timing and the 
wording of these daily adherence reminders and were asked to respond by texting back 
whether they had taken their ART medications. Second, at month 3, if the individual had 
viral load ≥200 copies/milliliter or was unable to provide documented viral load results, 
they were offered incentivized SMS support (i.e., financial incentives for responding to 
the text messages). Otherwise individuals were offered a tapered intervention whereby 
the frequency of the text messages was reduced to 2 days per week.

Example 3. An Adaptive Prevention Intervention  
for High‑Risk Drinking in College

Patrick and colleagues (2020) conducted a study to inform the development of an adap-
tive preventive intervention to reduce high-risk drinking among first-year college stu-
dents. The following describes one of the adaptive interventions considered in this study. 
First, before the start of the fall semester, students were offered Web-based personalized 
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normative feedback1 combined with bi-weekly technology-supported self-monitoring of 
alcohol use. Second, if students’ self-monitoring indicated (1) two or more occasions of 
consuming 4/5+ drinks for women/men in the past 2 weeks (i.e., binge drinking) or (2) one 
or more occasions of consuming 8/10+ drinks for women/men in the past 2 weeks (i.e., 
high-intensity drinking), then self-monitoring stopped and emails were delivered, provid-
ing information about available online and in-person treatment resources. Otherwise (i.e., 
if the student did not report binge or high-intensity drinking or they did not respond to the 
self-monitoring survey), self-monitoring continued until the end of the semester.

Key Similarities and Differences between Example Adaptive Interventions

In this section, we discuss similarities and differences between the three examples 
described in the previous section as well as the weight-loss adaptive intervention described 
earlier in order to highlight the various ways technology can be integrated in adaptive 
interventions.

Technology Can Be Used in Different Components  
of an Adaptive Intervention

The weight-loss adaptive intervention discussed earlier, as well as the adaptive interven-
tion in Example 3, use digital technology as part of the first- and second-stage interven-
tion options, as well as to assess the tailoring variable. However, in Example 2, technol-
ogy (i.e., text messaging) is used as part of the first- and the second-stage intervention 
options, but not to measure the tailoring variable, and in Example 1 technology is 
used only in the first-stage intervention option (i.e., to deliver working memory train-
ing). Moreover, technology-based components vary in terms of the extent to which they 
involve human support. For example, the first-stage intervention option in Example 3 
(i.e., personalized normative feedback) is entirely technology-based, involving sending 
students a link to a website where they view the feedback (Patrick et al., 2020). However, 
the first-stage intervention option in Example 1 (i.e., technology-based working memory 
training) was completed by youth in the clinic, with staff supervising the training and 
providing feedback and motivational support (Stanger et al., 2019).

Technology and Measuring the Tailoring Variable

Adaptive interventions may or may not use mobile and/or wireless technology to measure 
the tailoring variables. As discussed earlier, while both Example 3 and the weight-loss 
adaptive intervention rely on mobile and/or wireless technology to measure the tailoring 
variable, Examples 1 and 2 use other tools. Specifically, in Example 1 the tailoring vari-
able was measured via once-weekly onsite urine testing and alcohol breath tests (Stanger 
et al., 2019). In Example 2, the tailoring variable (viral load) was obtained from partici-
pants or their care provider, or via blood sample provided by participants for a study-
sponsored viral load assay (Belzer et al., 2018). Moreover, adaptive interventions that 
use technology to assess the tailoring variable may employ different measurement tools. 
For example, the adaptive weight-loss program relies on sensor-based assessments (i.e., 
weight loss measured via a wireless scale) to measure the tailoring variable. Example 3, 
on the other hand, relies on self-reports obtained via technology-based self-monitoring of 
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alcohol use, possibly because mobile sensor-based approaches for detecting alcohol use 
are still in the early stages of development (Piasecki, 2019).

Measuring the Tailoring Variable May Have a Dual Purpose

In many adaptive interventions, the measurement of the tailoring variable is intended to 
not only guide intervention decisions, but also to facilitate behavior change. In Examples 
1 and 2, the tailoring variable is measured primarily to inform intervention decisions, 
that is, for use in deciding whether and how to modify the intervention. However, in 
Example 3 the tailoring variable is measured for two reasons: both to inform intervention 
decisions and to facilitate behavior change by prompting reflection and self-awareness 
(Swendeman et al., 2015). Indeed, systematic reviews indicate that self-monitoring is an 
effective self-regulation strategy and that interventions designed to increase the frequency 
of monitoring are likely to promote behavior change, especially when self-monitoring 
is combined with feedback on performance (Harkin et al., 2016; Michie, Abraham, 
Whittington, McAteer, & Gupta, 2009). Hence, while sensor-based assessments can be 
integrated in adaptive interventions to unobtrusively measure the tailoring variables for 
the purpose of informing intervention decisions, careful consideration should be given 
to whether relying on sensor-based assessments (vs. self-reports) is consistent with the 
therapeutic goals of the intervention.

Frequency of Measuring the Tailoring Variable

Adaptive interventions can vary in terms of how frequently the tailoring variables are 
measured. Practically, this frequency can be similar to or greater than the frequency of 
decision points in the adaptive intervention. In Example 2, the tailoring variable (viral 
load) was measured once and used at a single decision point (month 3). In Example 1, the 
tailoring variable was measured weekly, but this information was summarized and used 
at a single decision point (week 4). In Example 3, the tailoring variable was measured 
every 2 weeks, and this information was used in each of the bi-weekly decision points. 
Note that the weight-loss adaptive intervention discussed above employs daily assess-
ments to measure the tailoring variable. At each of the week 2, 4, and 8 decision points, 
a summary based on this daily information is used to make intervention decisions. Over-
all, in Examples 2 and 3, the frequency of assessing the tailoring variable is similar to 
the frequency of decision points. However, in Example 1 and in the weight-loss adaptive 
intervention, the tailoring variable is assessed more frequently compared to the frequency 
of decision points. In general, the frequency of the decision points should be based pri-
marily on how fast the conditions the intervention is intended to address are likely to 
change over time (see Nahum-Shani, Smith, et al., 2018). For example, in the weight-
loss adaptive intervention, there are decision points at weeks 0, 2, 4, and 8 because this 
intervention is designed to address conditions that likely unfold every several weeks (i.e., 
insufficient weight loss, which indicates early nonresponse to a mobile-based interven-
tion). The frequency of measuring the tailoring variables, on the other hand, should be 
based on several considerations, including the frequency of the decision points (to ensure 
that at each decision point, the information needed to make intervention decisions was 
obtained), the validity and reliability of the measurement (Collins et al., 2004), practical 
feasibility, and participant burden.
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Handling Missing Data on the Tailoring Variable

Adaptive interventions vary in how missing data on the tailoring variable are handled. 
In both Examples 1 and 2, participants who did not provide information on the tailor-
ing variable (i.e., drug tests in Example 1 and viral load results in Example 2) were 
offered additional support. The underlying assumption is that missing data on the tai-
loring variable are informative, capturing early signs of nonresponsiveness to the initial 
intervention. In Example 3 students who did not provide information about the tailoring 
variable (i.e., did not self-monitor) continued with self-monitoring (i.e., the initial stage 
of the adaptive intervention) and were not offered additional support. Here, the underly-
ing assumption is that missing data on the tailoring variable do not necessarily indicate 
nonresponsiveness to the initial intervention. In general, an adaptive intervention should 
include a concrete prespecified plan for how to handle situations when information about 
the tailoring variable is missing, in order to enhance intervention replicability.

JITAIs in mHealth

What Is a JITAI?

A JITAI is a form of an adaptive intervention intended to address the rapidly changing 
needs of individuals. As an example, consider the following simplified description of 
Sense2Stop (Battalio et al., 2021; Spring, 2018), a JITAI designed to provide support 
for smoking cessation. This JITAI is based on evidence suggesting that if smokers who 
are attempting to quit experience stress (a state characterized by high arousal and dis-
pleasure; see Kristensen, 1996; Posner, Russell, & Peterson, 2005), then this experience 
is likely lead to a lapse (an isolated smoking episode), which in turn likely leads to a 
full relapse (Lam et al., 2014). To prevent stress episodes from leading to full relapse, in 
Sense2Stop smokers attempting to quit wear AutoSense (Ertin et al., 2011)—a collection 
of sensors that monitor their physiology continuously. An algorithm on the mobile device 
(Hovsepian et al., 2015) uses this data to determine, for every given minute, whether or 
not the person is experiencing stress. Every minute, if the person is experiencing stress, 
and the person is receptive (i.e., they are not driving a car and did not receive an interven-
tion in the past 60 minutes), the mobile device prompts the individual to engage in a stress 
regulation exercise (recommending one of three apps on the mobile device). Similar to 
adaptive interventions, JITAIs are protocolized with decision rules to enhance replicabil-
ity. For example, the decision rule illustrated in Figure 30.2 protocolizes the simplified 
version of Sense2Stop described above:

Similar to standard adaptive interventions, JITAIs include decision points, tailor-
ing variable(s), intervention options, and thresholds that link the tailoring variable(s) to 

  FIGURE 30.2.    Example of a decision rule for protocolizing a JITAI.

Every minute,
IF Stress = Yes; and minutes since last intervention >60; and driving = No

THEN, intervention option = Deliver a prompt recommending a stress-regulation exercise
ELSE, intervention option = No Prompt
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intervention options. In Sense2Stop, the decisions are made every minute; the tailoring 
variables are stress (determined based on passive sensing of the participant’s physiology), 
minutes since previous intervention prompt, and driving; the intervention options include 
delivering a prompt recommending a stress-regulation exercise or no prompt. The thresh-
olds and levels of the tailoring variables in Sense2Stop specify the conditions in which a 
prompt should be delivered (i.e., when the person experiences stress, did not receive an 
intervention prompt in the past 60 minutes, and is not driving a car), as well as the con-
ditions in which a prompt should not be delivered (i.e., when stress is not experienced, 
or an intervention prompt was delivered in the past 60 minutes, or when the person is 
driving a car).

Compared to standard adaptive interventions, where decision points are set in rela-
tively long intervals (e.g., every several weeks or months), JITAIs utilize rapid decision 
points (e.g., every minute, every several hours, or every day). This is because the adapta-
tion process in JITAIs is intended to address conditions that change rapidly. In the simpli-
fied version of Sense2Stop described above, the adaptation process includes monitoring 
individuals continuously to obtain information about their stress, driving, and minutes 
since last intervention prompt; using the prespecified thresholds/levels of these tailor-
ing variables to decide whether a prompt should be delivered; and triggering (or not) an 
intervention prompt based on this decision. Because this adaptation process is designed 
to address conditions that change rapidly (e.g., every minute the individual may transi-
tion from experiencing no stress to experiencing stress), it is initiated every minute via the 
decision points. This adaptation process is guided by the need to achieve a distal outcome 
(smoking abstinence) by impacting proximal outcomes (e.g., reducing the probability of 
a lapse in the next 2 hours, reducing the probability of experiencing a stress episode in 
the next 2 hours).

Why Are JITAIs Needed?

JITAIs are motivated by the need to address conditions that change rapidly, in the per-
son’s natural environment (Nahum-Shani et al., 2015; Nahum-Shani, Smith, et al., 
2018). These conditions can represent vulnerability (high risk) in terms of the proximal 
outcome, as in the simplified version of Sense2Stop (where the key assumption is that 
stress represents a state of vulnerability for a lapse), or alternatively they may represent 
opportunity in terms of the proximal outcome. For example, a JITAI for promoting step 
count in the next 30 minutes as the proximal outcome in order to promote 5% weight 
loss by month 12 (as the distal outcome) can use information about the person’s location 
to identify when they are close to a park or a recreational facility to trigger a recommen-
dation for the person to take a walk. Here, proximity to a park or a recreational facility 
represents a state of opportunity for promoting the proximal outcome rather than a state 
of vulnerability in terms of the proximal outcome.

Stress episodes are expected to occur rapidly (e.g., every minute a person can transi-
tion from experiencing no-stress to experiencing stress), and in the person’s natural envi-
ronment (e.g., stress can happen at home as a result of family-related demands or at work 
due to job-related demands). Hence, addressing such conditions requires the capabilities 
to continuously monitor the person’s state and context (e.g., in order to identify when 
stress occurs, as soon as it occurs), as well as to deliver interventions outside of standard 
treatment settings. Advances in mobile and wireless devices provide these capabilities. 
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Sense2Stop capitalizes on sensors to monitor the person’s physiology continuously in 
order to identify episodes of stress. This JITAI also uses smartphones to host a collection 
of apps with stress-regulation exercises and deliver a prompt to engage the person in these 
activities as soon as stress is identified, in the person’s natural environment.

Finally, because JITAIs attempt to address conditions that emerge rapidly and “in the 
wild,” where multiple demands compete for the person’s time, effort, and attention, these 
interventions are also motivated to minimize participant effort, burden, and habituation. 
This is done by delivering an intervention only when the person is receptive, namely, able 
and willing to receive, process, and utilize a particular intervention (Nahum-Shani, Smith, 
et al., 2018). In Sense2Stop, a prompt recommending a stress-regulation exercise is deliv-
ered only when the person (1) is experiencing stress, (2) did not receive an intervention in 
the past 60 minutes, and (3) is not driving a car. The first condition (stress) represents a 
state of vulnerability in terms of the proximal outcome, whereas the second (no interven-
tion received in the past 60 minutes) and third (not driving) conditions represent a state of 
receptivity to a prompt recommending a stress-regulation exercise. It is assumed that if the 
person is driving a car, an intervention prompt could be distracting, and the person should 
not engage with the stress-regulation exercises on the phone. Moreover, it is assumed that if 
the person has already received an intervention prompt in the past 60 minutes, their ability 
to attend to the prompt and their willingness to utilize the recommended exercise would 
be undermined due to habituation and burden, respectively. Note that in this simplified 
description of Sense2Stop it is also assumed that individuals are generally receptive to the 
prompt when they experience stress, although it is possible that cognitive interferences dur-
ing stress episodes hinder receptivity to intervention (see Battalio et al., 2021).

While the difference between states of vulnerability to an adverse proximal outcome 
and states of receptivity to just-in-time interventions seems rather straightforward, the 
difference between states of opportunity for positive changes and states of receptivity 
to a just-in-time adaptive intervention is often more challenging to grasp. Consider a 
JITAI that focuses on increasing physical activity in the next 30 minutes (the proximal 
outcome) by delivering a prompt encouraging the individual to walk when they are close 
to a park or a recreational facility. Here, proximity to a park or a recreational facility is 
a state of opportunity in terms of the proximal outcome. However, an individual may 
be close to a park or a recreational facility, but they may not be receptive to the prompt. 
For example, the person may be engaged in a conversation with someone and may not 
pay attention to the prompt. It follows that similar to states of vulnerability, states of 
opportunity are defined in relation to the primary proximal outcome motivating the 
JITAI (e.g., increasing physical activity in the next 30 minutes following a decision point). 
Receptivity to just-in-time intervention, on the other hand, is intervention-specific (i.e., 
it describes a state that relates to a particular just-in-time intervention option, such as a 
prompt encouraging the person to take a walk), and it is defined in relation to a proximal 
pathway/mediator that captures the investment of effort in a specific just-in-time inter-
vention. For example, an individual may be receptive to the prompt under conditions in 
which they can pay attention to the recommendation (e.g., when they are not in the pres-
ence of other people). Here, paying attention to the content delivered via the prompt is 
viewed as a pathway through which this just-in-time intervention option can improve the 
primary proximal outcome (i.e., an increase in physical activity in the next 30 minutes). 
Overall, even when individuals are in a state of vulnerability (to an adverse proximal out-
come such as smoking lapse) or opportunity (to promote a beneficial proximal outcome, 
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such as physical activity), they may not necessarily be receptive to a specific just-in-time 
intervention.

The next section provides three additional examples of JITAIs from different areas 
of behavior change to highlight various characteristics of JITAIs.

Examples of JITAIs

Example 4. JITAIs to Promote Fluid Intake

sipIT is a JITAI to support patients with kidney stones in their efforts to develop a habit 
for regular fluid intake (Conroy, West, Brunke-Reese, Thomaz, & Streeper, 2020). Deci-
sion points were set for every 30 minutes outside of a user-defined do-not-disturb period. 
The tailoring variable was fluid intake since the last decision point, measured by com-
bining manual (e.g., self-monitoring via an app) with automated (e.g., connected water 
bottles, gesture detection) tracking methods. The intervention options included sending 
the patient a notification message (via smartphone) reminding them to drink or not send-
ing a notification. The decision rule specifies that a reminder notification should not 
be delivered if the patient exceeded a prespecified threshold corresponding to drinking 
volume or drinking gesture frequency since the last decision point; otherwise, a reminder 
notification should be delivered.

Example 5. A JITAI to Improve Physical Activity  
in Individuals with Spinal Cord Injury

Hiremeth and colleagues (2019) developed a JITAI to improve physical activity levels 
in individuals with spinal cord injury. Here, decision points were set for every minute. 
The tailoring variable was wheelchair-based physical activity, monitored passively via a 
smartwatch and a wheel rotation monitor. The intervention options included personal-
ized feedback prompts delivered through the smartphone (audio and/or vibration: based 
on participants’ choice) and smartwatch (vibration) or no feedback prompt. The decision 
rule specified that a prompt should be delivered when the participant performed a bout 
(at least 3 continuous minutes) of moderate-intensity (or higher) physical activity; other-
wise no feedback prompt should be delivered.

Example 6. A JITAI for Reducing Sedentary Behavior

B-MOBILE is a JITAI for reducing sedentary behavior (i.e., activities that require very 
low-energy expenditure and occur during waking hours while sitting or lying down) in 
overweight/obese individuals (Thomas & Bond, 2015). Here, we describe one of the deci-
sion rules investigated by Thomas and Bond (2015) for inclusion in B-MOBILE. Decision 
points were set for every minute. The tailoring variable was sedentary behavior measured 
via an Android smartphone and a software app that automatically monitored and cat-
egorized participants’ behavior as either sedentary or not sedentary in one-minute epochs 
using the onboard accelerometer and a validated algorithm. The intervention options 
included sending (via smartphone) a prompt encouraging a 6-minute walking break, or 
not sending a prompt. The decision rule specifies sending a prompt after 60 continuous 
minutes of sedentary behavior; otherwise, a prompt for walking should not be delivered.
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Key Similarities and Differences between the Example JITAIs

The Primary Motivation of the JITAI

JITAIs can be designed primarily to address states of vulnerability or opportunity, or 
both. Compared to Sense2Stop, which was designed mainly to address states of vulner-
ability (in this simplified example), Examples 4 and 6 focus on addressing states that 
represent both vulnerability for an adverse proximal outcome and opportunity for posi-
tive change, whereas Example 5 focuses primarily on addressing states of opportunity. 
Specifically, the JITAI in Example 4 delivers a notification message reminding the patient 
to drink if they did not exceed a prespecified threshold for fluid intake. The assumption 
is that patients with kidney stones who do not meet this prespecified threshold are at risk 
for not achieving standard clinical guidelines for preventing a recurrence of stones; these 
guidelines recommend increasing fluid consumption enough to produce greater than 2.0–
2.5 liters of urine daily (Conroy et al., 2020). Similarly, the JITAI in Example 6 delivered 
a prompt encouraging overweight/obese individuals to take a 6-minute walking break 
if they have been sedentary for 60 or more continuous minutes. The assumption is that 
individuals who exhibit 60 or more continuous minutes of sedentary behavior are at risk 
for prolonged periods of sedentary behavior, which is linked to adverse health outcomes 
(e.g., poor cardiometabolic health) and mortality (see Thomas & Bond, 2015). Hence, a 
message is delivered to interrupt prolonged periods of sedentary behavior. While the pri-
mary motivation for the JITAIs in Examples 4 and 6 is to address states of vulnerability, 
in both cases these states are also viewed as an opportunity for habit formation—to pro-
mote automaticity by strengthening habits for fluid consumption (Conroy et al., 2020)—
or for breaking bouts of sedentary behavior—so that individuals can learn to perform 
these behaviors on their own without the requiring a prompt. The JITAI in Example 5, on 
the other hand, focuses primarily on addressing states of opportunity to increase physi-
cal activity in individuals with spinal cord injury. The assumption is that performing a 
bout of moderate (or higher) intensity physical activity represents a state of opportunity 
to positively reinforce the behavior (by delivering feedback and congratulation messages) 
in order to increase future physical activity (Hiremath et al., 2019).

Measurement of the Tailoring Variable

Given that they involve rapid decision points, JITAIs typically leverage mobile and wire-
less technology to measure the tailoring variables, but different measurement tools may 
be utilized. All three JITAI examples described above, as well as the Sense2Stop JITAI 
discussed earlier, rely on sensor-based assessments to measure the tailoring variable. 
However, Example 4 integrates sensor-based assessments (i.e., a connected water bottle 
and gesture-detection app in a watch) with self-reported assessments via a mobile app. 
Although self-reported assessments involve a data-entry burden on the participant, they 
are highly useful in the absence of valid sensor-based assessments for measuring the 
tailoring variable. Specifically, although passive assessments via contemporary smart-
phones (i.e., mobile phones with computational capacities) or wearable sensors represent 
a less burdensome alternative to self-reported data collection, research using sensors in 
behavioral health sciences is still in its infancy. Moreover, it is unclear whether the types 
of behavioral data collected with sensors could serve as meaningful indicators of vulner-
ability/opportunity and receptivity to just-in-time interventions. More work is needed 
to develop robust and clinically tested algorithms to identify states of vulnerability/

688	 Applications in Psychological Science 	



opportunity and receptivity based on data from smartphone and wearable physiological 
sensors. In the absence of valid unobtrusive methods for measuring the tailoring vari-
ables, relying solely on or integrating self-reported assessments with sensor-based assess-
ment may be a suitable option despite the data-entry burden.

The Inclusion of a No Intervention Option

JITAIs typically include an intervention option that provides no intervention at a decision 
point. This was the case in Examples 4, 5, and 6 described above, as well as in Sense2Stop. 
Because JITAIs are motivated to minimize participant effort, burden, and habituation, 
this intervention option is included to ensure that an intervention prompt is delivered only 
when it is needed: that is, only when the person is vulnerable or is experiencing a window 
of opportunity for positive changes. An intervention option that provides no intervention 
is also useful in addressing conditions that represent unreceptivity to a particular inter-
vention. For example, in Sense2Stop a “no prompt” intervention option is initiated when 
the individual is driving a car or when they received an intervention prompt in the past 60 
minutes. Similarly, in Example 4, a notification was not delivered during a user-defined 
do-not-disturb period.

Tailoring the Intervention Options versus Tailoring  
within an Intervention Option

In addition to tailoring intervention options for the purpose of deciding which interven-
tion option to deliver, JITAIs may involve tailoring within an intervention option for the 
purpose of making the content more relevant and appealing to the individual. The JITAIs 
in Examples 4, 5, and 6, as well as in Sense2Stop used rapidly collected information to 
tailor the intervention options, that is, to decide which intervention option to deliver at a 
particular decision point. However, the JITAI in Example 5 also used this information to 
tailor the content inside one of the intervention options. Specifically, in Example 5 infor-
mation about wheelchair-based physical activity (monitored passively via a smartwatch 
and a wheel rotation monitor) was used to decide whether or not to deliver a personalized 
feedback prompt, meaning that this information was used as a tailoring variable in the 
JITAI decision rule. However, this information was also used to “personalize” the feed-
back prompt. For example, based on the number of physical activity minutes completed, 
the message stated: “Good Job! 5 minutes completed; 30 minutes remaining to complete 
the daily goal.”

Challenges and Directions for Future Research

Adaptive interventions and JITAIs are intervention delivery frameworks that have tre-
mendous potential in leveraging mobile and wearable devices to deliver the right interven-
tion options, at the right time, while minimizing drawbacks such as participant burden 
and cost. However, several challenges warrant additional research to facilitate the devel-
opment of effective and practical technology-based adaptive interventions and JITAIs.

First, the use of technology-based interventions offers tremendous opportunities for 
leveraging intensive longitudinal data from the mobile device (e.g., app usage), ecological 
momentary assessments (EMAs), and sensor-based assessments to construct sophisticated 
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tailoring variables for use in identifying early signs of nonresponsiveness. The decision 
rule in the weight-loss adaptive intervention example uses the same threshold of average 
weekly weight loss (i.e., 0.5 pound) at each decision point (i.e., week 2, 4, and 8) to dif-
ferentiate between those who need more support and those who should continue with the 
minimal mHealth intervention. However, in practice, different thresholds may be needed 
at different points in time. For example, it is possible that while at week 2 losing less 
than 0.5 pound on average per week would be indicative of need for further support (i.e., 
predictive of failure to achieve a clinically meaningful weight loss by month 6; see Pfam-
matter et al., 2019), in later weeks this threshold might be lower as average weekly weight 
loss may decline over time even among individuals who succeed in the long term. More-
over, in this example, only a single kind of measurement (weekly weight loss measured 
via daily monitoring with the wireless scale) was used to differentiate between those who 
should receive more support and those who should continue with the minimal mHealth 
intervention. However, it may be beneficial to combine multiple sources and types of 
intensive longitudinal data (e.g., information about mobile app usage with weekly weight 
loss) to form more powerful tailoring variables.

Existing data-analytic approaches used to empirically inform the inclusion of tailor-
ing variables in adaptive interventions, such as those using logistic regression models with 
receiver operating characteristic (ROC) curve analyses (Czyz, Yap, King, & Nahum-
Shani, 2020; Steidtmann et al., 2013), are not suitable for constructing dynamic tailoring 
variables in which different types of information and/or thresholds are used at each deci-
sion point. Additionally, while black box machine learning models (e.g., neural networks 
and deep learning) have been recently used for prediction with intensive longitudinal 
data (E. Choi, Schuetz, Stewart, & Sun, 2016; Mei & Eisner, 2017), their interpretability 
remains a major challenge to their application in constructing tailoring variables that 
integrate multiple sources and types of intensive longitudinal data. New data-analytic 
methods are needed to leverage the rich, intensive longitudinal data afforded by emerg-
ing technologies to systematically develop dynamic and more comprehensive tailoring 
variables. Importantly, while wearable technologies offer tremendous potential for (near) 
real-time adaptation of interventions in real-world settings, their validity in measuring 
the construct(s) of interest across a variety of activities, settings, and populations remains 
a critical challenge. More research is needed and better algorithms have to be developed 
to use wearable devices in JITAIs with confidence (Puterman, Pauly, Ruissen, Nelson, & 
Faulkner, 2021).2

Second, critical to the development of efficacious JITAIs is evidence concerning what 
constitutes receptivity to specific just-in-time interventions and how fast receptivity is 
expected to change over time. However, receptivity is measured differently in different 
studies. For example, Sarker and colleagues (2014) measured it in terms of time taken to 
respond to an EMA prompt, whereas Kramer and colleagues (2019) measured receptiv-
ity in terms of whether or not the individual responded to a notification from a chatbot-
based mobile health intervention for increasing physical activity and the time between 
notification and response. Chan and colleagues (Chan, Sapkota, Mathews, Zhang, & 
Nanayakkara, 2020) measured three dimensions of receptivity: (1) how prompts from 
a conversational memory coach were handled (e.g., whether the individual ignored the 
prompt and whether they elected to start the training then or later), (2) response time, 
and (3) participant subjective ratings on how appropriate the timings of the prompts 
were. Moreover, various terms are used to describe constructs that are different from, yet 
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related to, receptivity. These terms include interruptibility, which is defined as a person’s 
ability to immediately take action to open and view the content of a real-time notifica-
tion (W. Choi, Park, Kim, Lim, & Lee, 2019), and availability, which refers to conditions 
in which it is feasible and appropriate to deliver a just-in-time intervention at a decision 
point (Klasnja et al., 2015). Defining receptivity in terms of an individual’s ability and 
willingness to receive, process, and utilize a just-in-time intervention (Nahum-Shani, 
Smith, et al., 2018) suggests that an individual may be interruptible and/or available, 
but not necessarily receptive. For example, when an individual is not driving a car, it 
may be appropriate and feasible to deliver a prompt recommending a stress-regulation 
exercise (i.e., the individual is available), and the likelihood that the individual will open 
and view the content may be high (i.e., the individual is interruptible), but due to various 
demands on their time and effort the individual may not be able to cognitively process the 
suggested recommendation (i.e., the individual is not receptive). Future research should 
focus on clearly differentiating between receptivity and other related constructs and on 
developing tools and procedures for measuring receptivity to just-in-time interventions.

Third, while mobile technology holds great potential in terms of intervention adap-
tation, accessibility and scalability, the law of attrition (Eysenbach, 2005)—a phenom-
enon in digital health where users abandon a technology shortly after use—remains a 
major barrier that hinders the effectiveness of digital interventions. For example, in a 
survey of veterans who had attended an appointment relating to a mental health concern 
at a single Department of Veterans Affairs facility, Lipschitz and colleagues (2019) found 
that access and interest in using mobile apps for mental illness outpaced their actual 
use. Specifically, while nearly 80% reported owning smart devices (of those, nearly 90% 
reported that they use apps), and over 70% expressed interest, only 1 in 10 participants 
used apps for mental illness. In a systematic engine search using Google Play to identify 
Android apps with 10,000 installs or more targeting anxiety, depression, or emotional 
well-being, Baumel, Muench, Edan, and Kane (2019) found that despite the high number 
of app installs and daily active minutes of use, only a small portion of users actually used 
the apps for long periods of time. Specifically, the median percentage of daily active users 
was 4%, and the medians of retention rates over 15 and 30 days were 3.9% and 3.3%, 
respectively. Finally, in a systematic review of physical activity mobile apps, Peterson 
and colleagues (Petersen, Prichard, & Kemps, 2019) found that interventions incorpo-
rating physical activity apps alone demonstrated a decline in app engagement over time, 
whereas those integrating physical activity apps with existing Web-based social network-
ing platforms showed increased and sustained engagement. Overall, these findings are 
consistent with conceptual frameworks highlighting the importance of human support 
in prompting engagement in digital interventions by generating accountability—“the 
implicit or explicit expectation that an individual may be called upon to justify his or 
her actions or inactions” (the section “Accountability” in Mohr, Cuijpers, & Lehman, 
2011; Schueller, Tomasino, & Mohr, 2017). It follows that incorporating human support 
in digital interventions involves a tradeoff between benefits to effectiveness (via increased 
engagement) and drawbacks in the form of greater cost and potential burden. More work 
is needed to systematically investigate how to best integrate, sequence, and adapt digital 
interventions and human support so as to maximize effectiveness with minimal cost and 
burden (Nahum-Shani, Dziak, et al., 2022; 2023). Furthermore, while in recent years 
increased research attention has been given to understanding stable and dynamic pre-
dictors of engagement in digital interventions (e.g., Buck, Chander, & Ben-Zeev, 2020; 
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Perski, Watson, Mull, & Bricker, 2021; Psihogios et al., 2021), the absence of agreed upon 
definitions and operationalizations of engagement in mobile health represent critical bar-
riers to advancing the field. Integrating theories and empirical evidence across multiple 
scientific fields, we define engagement as “a state of energy investment involving physi-
cal, affective, and cognitive energies directed toward a focal stimulus or task” (Nahum-
Shani, Shaw, et al., 2022), and we provide a framework that explains how in-the-moment 
engagement unfolds in digital interventions (Nahum-Shani, Shaw, et al., 2022).

Finally, existing empirical evidence and theories lack the temporal specificity needed 
to guide the development of effective adaptive interventions and JITAIs (Nahum-Shani et 
al., 2015, 2018). In many areas of behavior change, little is known about how fast risk and 
protective factors change over time. Even when the dynamic nature of mechanisms such 
as affect and coping is acknowledged, it remains unclear how rapidly these mechanisms 
might change over time in a way that indicates the need for an intervention and what type 
of intervention should be delivered to address this need. Open scientific questions may 
concern how to best intervene at different decision points, how to tailor the intervention 
options, how to measure the tailoring variables, and how often intervention decisions 
should be made. Various types of experimental approaches exist to help investigators 
address different types of scientific questions about the construction of adaptive inter-
ventions and JITAIs. These include the sequential multiple assignment randomized trial 
(SMART; Lavori & Dawson, 2000, 2014; Murphy, 2005; Nahum-Shani et al., 2012); 
the singly randomized trial (Almirall, Nahum-Shani, Wang, & Kasari, 2018); the facto-
rial design (Collins, 2018; Collins, Dziak, & Li, 2009; Dziak, Nahum-Shani, & Collins, 
2012; Nahum-Shani, Dziak, & Collins, 2018); the microrandomized trial (Liao, Klasnja, 
Tewari, & Murphy, 2016; Qian et al., 2022); the hybrid experimental design (Nahum-
Shani, Dziak, et al., 2022, 2023); and the standard randomized controlled trial (Collins, 
2018). Each experimental approach can be used to address different types of scientific 
questions relating to building and evaluating adaptive interventions and JITAIs. How-
ever, some of these designs are relatively new; hence, most researchers are not exposed 
to these methodologies as part of their formal training. New pragmatic frameworks are 
needed to help researchers better understand the connection between these experimen-
tal approaches and decide which experimental tool and data-analytic methods are most 
appropriate given their scientific questions (Nahum-Shani, Dziak, & Wetter, 2022).
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C H A P T E R  O V E R V I E W

Many mobile technologies have been designed to help users change their behaviors. By 
leveraging sensors from mobile devices, it is now possible to unobtrusively infer vari-
ous behavioral patterns, including physical activities, eating, sleep, and social interac-
tions. Similarly, new mobile interventions have emerged that collect and present person-
ally relevant information to help users self- reflect and take appropriate actions. Despite 
the advance of mobile technologies for behavior change, many challenges remain to be 
addressed. In this chapter, we present an overview of existing theories, models, and 
mobile technologies for behavior change, and we discuss some barriers that compromise 
the effectiveness of these technologies. Based on these barriers, we introduce a novel 
closed- loop model to design behavior change technologies, and we present suggestions 
and examples that show how to design technological interventions that are unobtrusive, 
effortless, and adaptive.

Introduction

The topic of behavior change has received significant attention in social psychology and 
health psychology, with numerous papers presenting theories and findings discussing how 
or why people change their behaviors. In parallel, many technologies have been designed 
and deployed for behavior change, including mobile sensing systems that encourage users 
to exercise more (Consolvo et al., 2008), eat healthier foods (Chi, Chen, Chu, & Lo, 
2008), sleep better (Bauer et al., 2012), and keep more sustainable habits (Froehlich et 
al., 2009). These technologies are known by many names, including persuasive technolo-
gies (Fogg, 1998), behavior change support systems (Oinas- Kukkonen, 2013), personal 
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informatics (Li, Dey, & Forlizzi, 2010), ecological momentary interventions (Heron & 
Smyth, 2010), and just-in-time adaptive interventions (Nahum-Shani, Hekler, & Spruijt-
Metz, 2015). But regardless of the name used, the goal is often the same: to provide rel-
evant information to users so that they can change their behaviors to reach specific goals.

Despite the advances mobile technologies have made in behavior change, some chal-
lenges remain. One of the main challenges is that the technologies often lead to just short-
term adoption and changes in behavior (Shih, Han, Poole, Rosson, & Carroll, 2015). In 
a previous study, it was found that more than half of the individuals who own activity 
trackers do not use them anymore, and a third of the users stopped using their trackers 
within 8 months (Ledger & McCaffrey, 2014). People have many reasons to abandon 
these technologies, one of the main reasons being the high level of attention and effort 
required (Lazar, Koehler, Tanenbaum, & Nguyen, 2015).

In this chapter, we present an overview of existing theoretical and technological 
models of behavior change, provide examples of mobile technologies designed to help 
users change their behaviors, and discuss some barriers that compromise the usage and 
effectiveness of behavior change technologies. Based on these barriers, we introduce a 
novel closed-loop model to design technologies for behavior change, and show how this 
model can be used to guide the design of technological interventions that are unobtrusive, 
effortless, and adaptive.

Technologies for Behavior Change

One of the first researchers to propose the design of technologies for behavior change was 
BJ Fogg, who introduced the concept of persuasive technologies. Persuasive technologies 
are defined as systems designed to change people’s attitudes and/or behavior toward an 
issue, object, or action (Fogg, 1998). Many strategies have been used to design persuasive 
technologies, including self-monitoring, conditioning, surveillance, reduction, tunneling, 
tailoring, and suggestion (Fogg, 2002).

Among the strategies used to design persuasive technologies, one of the most popu-
lar is conditioning, which is often achieved by providing positive or negative reinforce-
ment (Klasnja, Consolvo, & Pratt, 2011). For example, the mobile application UbiFit 
rewards users for meeting their physical activity goals by using an aesthetic representa-
tion of physical activities on the background screen (wallpaper) (Consolvo et al., 2008). 
Another popular design strategy is social influence. One example in which this strategy 
has been applied can be found in the mobile sensing application Houston (Consolvo, 
Everitt, Smith, & Landay, 2006), which was designed to encourage physical activity by 
allowing users to share their step count with friends. Finally, another widely used strategy 
is self-monitoring (Klasnja et al., 2011), which allows users to monitor and reflect about 
their behaviors and take actions accordingly. Systems designed with this strategy are 
often called personal informatics systems.

Personal informatics systems are defined as systems that “help people collect person-
ally relevant information for the purpose of self-reflection and gaining self-knowledge” 
(Li et al., 2010, p. 558). With the development of mobile sensing technologies, personal 
informatics tools can be used to monitor a myriad of personal information, including 
physical activities, eating behavior, and sleep. These technologies use different ways of 
providing feedback. The most common approach is to present quantitative information, 
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such as calories burned and hours slept per night, but the feedback can also be provided 
using abstract representations. In the mobile application BeWell (Lane et al., 2011), for 
instance, the wallpaper of the user’s mobile phone changes based on the inferred sleep, 
exercise, and social interactions of the user.

Another class of technologies for behavior change is called just-in-time adaptive 
interventions (JITAIs), which are “interventions that adapt over time to an individual’s 
time-varying status, with the goal to address the individual’s changing needs for support” 
(Nahum-Shani et al., 2015, p. 1209). Systems based on JITAIs have been used for many 
behavioral health issues, including alcohol use, smoking cessation, and mental health 
disorders.

Behavioral Theories and Models

One of the most frequently used theories to guide the design of behavior change tech-
nologies is goal-setting theory. This theory states that both the difficulty and specificity 
of goals influence task performance. If the person commits to a goal, has the ability to 
achieve it, and does not have conflicting goals, then there should be a positive and linear 
relationship between goal difficulty and task performance (Locke & Latham, 2006). 
Examples of technologies that were designed based on this theory include the mobile 
application UbiFit, which allows users to set their own primary and alternate weekly 
physical goals (Consolvo, Klasnja, McDonald, & Landay, 2009), and the app presented 
by Gasser and colleagues (2006), in which users have a daily goal of earning “lifestyle 
points” by doing moderate/vigorous physical activity or by consuming one serving of 
fruit or vegetables.

Another common model used to design behavior change technologies is the trans-
theoretical model (TTM; Prochaska & Velicer, 1997). The model posits that behavior 
change occurs through six temporal stages: precontemplation, contemplation, prepara-
tion, action, maintenance, and termination. One way in which the model is often used is 
by following the TTM stages of change to personalize the interaction with the user. For 
instance, Bickmore, Schulman, and Sidner used the TTM stages to adjust how an auto-
mated health counselor agent promotes physical activity and fruit/vegetable consumption 
(Bickmore et al., 2013).

In addition to guiding the design and implementation of specific features, behavioral 
theories and models can also be used to guide the recruitment of participants for studies. 
For this purpose, the TTM is one of the most often used models. For instance, in the study 
that described the wearable device Pediluma (Lim, Shick, Harrison, & Hudson, 2010), 
a shoe accessory designed to encourage opportunistic physical activity, the researchers 
administered the Sample Physical Activity Questionnaire in the beginning of the study, 
aiming to recruit participants at various stages of the TTM.

Finally, theories and models of behavior are also used to guide the evaluation of the 
technologies. For instance, in the work from Schneider, Moser, Butz, and Alt (2016), the 
authors used the core elements of the theory of planned behavior to evaluate the intention 
of users to work out using the mobile fitness app Freeletics. Similarly, Grimes, Kantroo, 
and Grinter (2010) used the TTM to guide the qualitative evaluation of the mobile game 
OrderUp!, which helps players make healthier meal choices. The authors found that play-
ing OrderUp! helped users engage in four processes of change of the TTM.
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Technological Models

Behavioral theories from psychology help to explain the factors that influence behavior 
and why a behavior occurs, and they can also be used to guide efforts to change behav-
iors. However, these theories are often inadequate for guiding the design of behavior 
change technologies as the interventions become more interactive and adaptive (Klasnja 
et al., 2015; Riley et al., 2011). For this reason, different models have been proposed to 
help researchers design technological interventions for behavior change.

The Fogg behavior model (FBM) is one of the most frequently used models in the 
design of persuasive technologies (Fogg, 2009). According to this model, a person will 
perform a target behavior only if he or she is sufficiently motivated, has the necessary 
abilities to perform the behavior, and receives a “trigger” to perform the behavior. The 
model was proposed to help designers systematically think about the elements of motiva-
tion, simplicity, and the strategies used for triggering behavior.

Other models have been proposed specifically for personal informatics systems. The 
first and most often used model is the stage-based model of personal informatics, which 
consists of five stages: preparation, which concerns people’s motivation to collect per-
sonally relevant information; collection, which refers to people’s collection of informa-
tion about themselves; integration, which concerns the processing and transformation of 
information; reflection, which refers to the user’s reflection of the information obtained; 
and finally action, in which users decide what they will do with the new information 
obtained about themselves (Li et al., 2010). Epstein, Ping, Fogarty, and Munson (2015) 
extended this model and proposed the Lived Informatics Model, which adds more ele-
ments to characterize the challenges that users face when using self-tracking tools, includ-
ing how users lapse and resume their goals, switch between tools, and adjust their track-
ing goals. One emerging design for behavior change technologies is JITAIs, which aim to 
provide the right type of support, at the right time, by adapting to the individual’s state 
(Nahum-Shani et al., 2018). Mobile systems with JITAIs can leverage data collected from 
the individual and the environment and offer personalized interventions that are deliv-
ered when the user needs it most and it is most likely to be receptive (Nahum-Shani et 
al., 2018). Mobile technologies based on this approach have targeted smoking cessation 
(Naughton et al., 2017), alcohol use (Gustafson et al., 2014), physical inactivity (Con-
solvo et al., 2008), and many other behaviors and health conditions.

Barriers of Behavior Change Technologies

Although mobile technologies for behavior change are becoming increasingly available, 
there are many barriers that can compromise their effectiveness. Previous research shows 
that users often abandon these technologies after a short amount of time (Lazar et al., 
2015), and the behavioral changes are also short-lived (Shih et al., 2015). In this section, 
we discuss some of the reasons associated with these barriers.

Reliance on Reflective and Conscious Processes

Many behavior change technologies have been designed based on behavioral models 
such as the theory of planned behavior and the TTM. However, some have argued that 
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existing behavioral models are inadequate even for interventions that do not involve tech-
nology (Riley et al., 2011); studies have shown that these models are not very effective in 
predicting and changing health behavior (Webb & Sheeran, 2006).

One of the main criticisms of existing behavior models such as the TTM is that they 
focus solely on reflective action and conscious processes, and changing a person’s con-
scious cognition is enough to cause significant changes in behavior (Sheeran, Gollwitzer, 
& Bargh, 2013). More recent models explain behavior by considering both conscious and 
automatic processes, often using dual-process theories (Sheeran et al., 2013). However, 
there is still a lack of models to guide the design of behavior change technologies using 
both conscious and automatic processes. For example, in both the stage-based model and 
the lived informatics model of personal informatics, engagement with the technologies 
involves the use of reflection, which requires the conscious engagement of the user.

Behavior Change as a Long‑Term Process

Traditional theories and models of behavior, such as the TTM, focus on behavior change 
as a long-term process, which can take several months or even years to truly “stick” 
(Carver & Scheier, 1982; Prochaska & Velicer, 1997). One reason why behavior change 
is seen as a lengthy process is that the human capacity for self-control is limited, so 
behavior change setbacks can always occur, especially when a person is stressed or under 
high cognitive load (Klasnja et al., 2011). Since designers of behavior change technologies 
often leverage these models to design interventions, the technologies are often designed 
with a long-term focus.

Although it is important to keep the focus on long-term goals, proximal outcomes 
can be mediators to achieve distal outcomes (Nahum-Shani et al., 2015). Thus, success-
fully performing single activities can help individuals to remain on track to achieve their 
long-term goals. Furthermore, in many situations a single performance can have major 
consequences for the individual. For example, a driver who is urged to slow down may 
avoid a car accident, and a person who adjusts his or her behavior during a job interview 
can create a better first impression (Adams, Costa, Jung, & Choudhury, 2015).With a 
major focus on long-term goals, designers can neglect important design considerations 
that would make behavior change technologies more effective in the short term.

Obtrusiveness of Behavior Change Technologies

The effectiveness of behavior change technologies can be compromised by the level of 
engagement required. For example, many personal informatics tools present data that 
enable users to reflect and change their behavior if needed. This approach requires users 
to consciously interact and evaluate the information presented, which may not be feasible 
when users are busy or have low cognitive capacity (e.g., under stress).

In addition to the availability issue, self-reflecting about the current state can also be 
distracting and compromise people’s ability to focus on ongoing activities (Adams et al., 
2015). In particular, when a person starts to perform a task automatically and without 
thinking, such as riding a bike, the conscious thought about the task can be detrimental 
to the performance, which has been known as the “centipede effect” (Colman, 2015). In 
these situations, a different approach needs to be used to help people adjust their behav-
iors in-the-moment.
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So how do we develop behavior change technologies that address the aforemen-
tioned barriers? The core idea of this chapter is that it is possible to mitigate existing 
barriers of behavior change technologies by designing technological interventions that 
are unobtrusive, effortless, and adaptive. For this purpose, in the next section we intro-
duce the closed- loop model and show how this model can be used to guide the design of 
behavior change technologies.

Closed-Loop Model

In this section, we introduce the closed- loop model (CLM), a simple model to design 
closed- loop technologies for behavior change inspired by the feedback loop from Carver 
and Scheier (1982). Figure 31.1 shows a graphical description of the model.

The CLM has the following elements: perception, evaluation, goal/reference, and 
response. The model can be used to consider the user perspective (user- centered) or the 
system perspective (system- centered). For the user, the elements represent how the user 
perceives stimuli (perception), evaluates the information (evaluation), based on a goal or 
reference standard (goal/reference), and initiates a response (response). For the system, 
the elements represent how the system collects or senses data (perception), processes the 
data collected, and evaluates the need to intervene (evaluation), based on user’s goals or 
a certain trigger condition (goal/reference), and finally provides feedback or triggers the 
intervention (response).

The output of the CLM’s response stage leads to a change in the person or the envi-
ronment, which starts a new feedback loop. From the user perspective, the person satis-
fied with the changes based on his or her goals may keep the same strategy as before. If 
not, a different response may be initiated. From the system perspective, the system can 
use a specific measure to identify whether or not the intervention was effective (e.g., step 

 FIGURE 31.1.  The closed- loop model for designing behavior change technologies.
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count). If not, the parameters of the behavioral intervention could change for the next 
feedback loop, or a completely different behavioral strategy could be applied.

Another characteristic of the CLM is that there are two parallel pathways for each 
stage: the effortful path and the effortless path. In the effortful path, the user is con-
sciously aware of the inputs and outputs. For instance, a person who installs a mobile 
health application to lose weight may continuously check the graphs shown in the app to 
monitor their calories burned over time (perception). If this person concludes (evaluation) 
that his or her goal of calories burned (goal/reference) is not being achieved, changes in 
the diet or a plan to do more exercise (response) may be in order.

In the effortless path, the inputs and outputs of the model require little or no atten-
tion and effort from individuals. In this path, events can be triggered automatically 
because of innate programming, learning, or habit (Baumeister & Heatherton, 1996). 
One typical example of automaticity is the driving activity. Experienced drivers perceive 
what happens on the road (perception), automatically evaluate the need to slow down, 
break, or take another action (evaluation) to ensure that they will reach their destination 
safely (goal), and quickly and mindlessly start the actions (action). Such persons are still 
aware that they are driving, but they do not need to be consciously aware of all their 
actions, unless they want to or if a new event happens. For instance, a roadblock may 
force the driver to decide on a new direction to take, which would require the effortful 
path to be engaged.

Behavior change technologies can be designed to leverage the effortful path, the 
effortless path, or both. If the technology acts peripherally and requires little or no effort 
from users, then the technology is leveraging the effortless path. On the other hand, if a 
technology requires manual input, provides feedback for the user to reflect, or requires a 
high level of engagement, then the technology is leveraging the effortful path.

Stages of the CLM

In this section, we describe the elements present in the CLM: perception, evaluation and 
goal/reference, and response. The section also includes examples of design features and 
mobile sensing technologies based on these elements. In the beginning of each subsection, 
we include specific questions to guide the design of relevant strategies centered on the 
system or user of the system.

Perception

System-centered: How will the system collect or sense relevant data from the user?

User-centered: How is the user expected to perceive the information provided by the 
system?

During the behavior change process, we constantly notice cues from our body or the 
environment that can suggest whether or not our behavior is changing. Similarly, systems 
can collect and detect relevant behavior and emotions from users by leveraging sensors in 
mobile or wearable devices (e.g., accelerometer, heart rate monitor). This represents the 
process of perception from the user and system perspective, respectively.
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System‑Centered Perspective

From the system perspective, a mobile system designed for behavior change can collect 
sensor and usage data to detect the target behavior and other relevant activities and 
engagement measures. This unobtrusive data collection can also be combined with self-
report and ecological momentary assessment (EMA), which can provide richer informa-
tion about users’ behaviors, emotions, and attitudes.

Depending on the target behavior that is to change, some sensing capabilities may 
more appropriately be included in a mobile system. For instance, mobile systems designed 
to improve eating behavior can leverage the motion sensors available in smartwatches or 
utensils to detect when and how people eat (Thomaz, Essa, & Abowd, 2015). One exam-
ple is the Sensing Fork and Hungry Panda application, which was designed to encourage 
children to eat balanced meals and concentrate while eating (Kadomura, Li, Tsukada, 
Chu, & Siio, 2014).

In addition to motion sensors, GPS signals and GSM cell tower data can be used to 
detect indoor and outdoor mobility patterns. In the mobile application UbiGreen, for 
instance, it is possible to infer when a participant is traveling by vehicle by collecting 
GSM data, and this information is used to provide visual feedback to encourage green 
transportation habits (Froehlich et al., 2009). It can also be useful to identify location-
based data when users are near a location that may lead to relapse. The A-CHESS appli-
cation, for instance, alerts users with alcohol dependence when they are approaching 
high-risk locations, such as a bar that the patient once visited (Gustafson et al., 2014).

Another sensor that has been used in mobile systems designed for behavior change 
is the microphone. The mobile application BeWell, for instance, uses a privacy-preserving 
method to detect ambient conversations using the smartphone’s microphone (Lane et 
al., 2011); this information is processed to provide visual feedback about people’s social 
interactions. A similar approach is used in the mobile application SociableSense, which 
leverages both microphone and Bluetooth data to capture and provide feedback about 
people’s interaction and co-location patterns (Rachuri, Mascolo, Musolesi, & Rentfrow, 
2011).

User‑Centered Perspective

After mobile systems sense and process data collected from users, they can intervene and 
provide feedback about users’ behavior and progress. The output of the mobile system 
then becomes the input of the user. One way of distinguishing how users can perceive 
the feedback provided by mobile systems is to determine whether they notice it through 
a push or pull mechanism.

Push feedback, such as notifications and alerts, is provided whether the user wants it 
or not, and it is often designed to draw the user’s attention (Cauchard et al., 2019). One 
example is the “Stand Up” reminder provided by some smartwatch applications to pre-
vent sedentary behavior. Although Push feedback can be a useful mechanism to intervene 
at the right time, users may miss the information or decide to ignore it, especially if they 
are physically or cognitively engaged in another task, such as during a meeting at work.

With pull feedback, the information is available for the user to look at whenever the 
user wants (Cauchard et al., 2019). The feedback can be designed to be easily perceived, 
such as by using simple quantitative information (e.g., step count, calories burned), or it 
can be designed to encourage exploration and self-reflection, such as by using charts or 
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abstract representations of user’s behavior (e.g., flowers, sea life). One limitation of pull 
feedback is that users may not perceive it if they do not have the ability or motivation to 
voluntarily look at the information.

Given that users may not notice the information provided by a mobile system, it is 
important to include measures of engagement to identify if users are interacting with the 
mobile system as intended. Examples of measures that can be useful include the follow-
ing: number of times the user opens the app within a certain time period (e.g., 1 day), 
number of times the user notices the feedback provided by the app, and how long users 
interact with the app.

Evaluation and Goal/Reference

System-centered: How will the system process the data and evaluate the need to inter-
vene?

User-centered: How is the user expected to evaluate the information?

Although we are constantly receiving perceptual input from the environment and 
from our bodies, it is ultimately how we evaluate that information that defines how we 
will respond. In many situations, we carefully evaluate the information received (effort-
ful path), but since we have limited capacity to evaluate all the perceptual information 
that we are exposed to, we also rely on heuristics and automatic processes to make quick 
judgments (effortless path). Behavior change technologies can play a role by guiding us 
to evaluate information (effortful path) or by automatically evaluating information for 
us (effortless path), often by using machine learning algorithms to make inferences about 
our current state.

System‑Centered Perspective

Mobile systems can help during the evaluation process by automatically defining or sug-
gesting goals or reference standards for the users and by evaluating the users’ progress 
over time. For instance, the wearable device FitBit can evaluate users’ progress toward 
their health and fitness goals, such as by tracking the number of minutes spent exercising 
and the number of hours slept per night.

Mobile systems can also use algorithms to identify the best way of presenting the 
information to the user or the best time to intervene. For example, the mobile application 
BreakSense encourages workers to do short and playful physical activities, but only when 
the application detects that the users left their work area, thereby reducing the chances 
of work interruptions (Cambo, Avrahami, & Lee, 2017). Another example is the mobile 
library InterruptMe, which uses data collected from smartphone sensors and self-reports, 
such as activity, location, and emotions, to identify the most opportune moments to inter-
vene (Pejovic & Musolesi, 2014).

User‑Centered Perspective

Mobile systems often present information about the evaluation of users’ behaviors to the 
users, so that they can have a better understanding of their progress and how close they 
are from reaching their goals. The way the information is presented can lead users to 
evaluate their behavior in a way that they normally would not without a technology, so 
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it is important that researchers and designers carefully consider how users may evaluate 
the feedback provided.

Even if users notice the information presented by a mobile system, they might not 
know how to make sense of the information. In a previous paper that discussed why 
users abandon smart devices, researchers found that unprocessed data were not consid-
ered useful for users, since users did not know how to analyze the data or if the numbers 
representing their behavior were supposed to be within one range or another (Lazar et 
al., 2015).

Another important consideration is that users may assess the evaluation presented 
by the mobile system in a way that is more harmful than helpful. For instance, previous 
research has found that mobile applications that allow users to self-monitor their emo-
tions can end up increasing negative emotional states (Faurholt-Jepsen et al., 2015). This 
is especially relevant for individuals with mood disorders, since they are more likely to 
interpret ambiguous stimuli negatively (Joorman, Waugh, & Gotlib, 2015).

To identify barriers in the evaluation stage, it is important to obtain self-report infor-
mation from users about their perceived behavior, mood, or cognition. Potential issues 
could be identified by comparing people’s self-perception with quantitative data collected 
automatically from the mobile system. For example, if a person continuously reports 
dissatisfaction with an activity level, but the system detects significant physical activity 
based on mobile sensor data, this could be a sign that the person is not evaluating their 
own behavior accurately.

Response

System-centered: How will the system provide feedback or trigger the intervention?

User-centered: How is the user expected to respond?

The response phase represents the output of the feedback loop. For the user, this 
response can be behavioral (e.g., walking), mental (e.g., reframe a thought), or physiologi-
cal (e.g., increased heart rate; Gross, 2015). For the system, the response is any form of 
intervention or feedback to the user, such as sending notifications, showing data visual-
izations, or triggering haptic or audio cues.

System‑Centered Perspective

Although intervening or presenting feedback to users is not a requirement for many 
mobile sensing technologies, it is a crucial feature of mobile sensing technologies designed 
for behavior change. Two main aspects must be considered when designing how to inter-
vene: (1) the presentation modality and (2) the level of engagement required.

For the presentation modality, a mobile technology can intervene by using visual, 
auditory, or haptic feedback. The visual feedback is the most common modality, and it 
leverages graphical displays present in mobile devices to present visual information, such 
as persuasive messages, pictures, and data visualizations. The use of visual feedback 
often requires users to voluntarily interact with the interfaces, which involves use of 
the effortful path in the closed-loop model. However, technologies can also intervene in 
using the effortless path, such as by triggering subtle and peripheral audio or haptic cues 
to make users perceive their current behavioral (Cauchard et al., 2019) or emotional state 
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(Costa, Guimbretière, Jung, & Choudhury, 2019). One example is the smartwatch appli-
cation ActiVibe, which uses vibrotactile icons to communicate users’ progress toward 
their goals (Cauchard et al., 2019).

In addition to the presentation modality, designers should consider how long users 
are expected to interact with the technology to process all the information. For example, 
a mobile application can present a glanceable display or haptic cue to make users quickly 
aware of their current state (Cauchard et al., 2019; Gouveia, Pereira, Karapanos, Mun-
son, & Hassenzahl, 2016), or it can present graphs with historical activity data, which 
would require a longer time commitment to notice and make sense of the information 
presented.

User‑Centered Perspective

When a person is consciously controlling a response, such as deciding whether to eat a 
very caloric meal, the person may perform an action to reduce discrepancies between 
their perception of the current state and their desired state (Carver & Scheier, 1982). In 
some situations, however, a response may be activated without the person’s conscious 
intention, such as increased heart rate under stress.

In many behavioral models, the output phase of the feedback loop is an “action.” 
In the model presented in this chapter, we intentionally named the output phase as 
“response” to make clear that a response may involve not only an action, but also cog-
nitive and physiological changes. In this way, designers can use cognitive or emotion-
regulation strategies to achieve a behavioral outcome. Although the idea of helping indi-
viduals to change their behaviors by also focusing on their cognition and emotions is not 
novel, and it is in fact well established through cognitive-behavioral therapy, surprisingly 
few technologies for behavior change also incorporate cognitive and emotion-regulation 
strategies (Costa et al., 2019).

Barriers in the response stage can be identified using self-report and passive sensing 
methods to verify if people are changing their behaviors and making progress toward 
their goals. For this purpose, it is important to measure both distal and proximal out-
comes. The distal outcome is the major goal of the behavior change technology (e.g., los-
ing 50 pounds), while proximal outcomes refer to short-term goals that can be mediators 
of the distal outcome (e.g., running 30 minutes per day; Nahum-Shani et al., 2015). In the 
closed-loop model, the end of the response stage leads to a proximal outcome, and many 
iterations of closed loops can lead to a distal outcome.

It is crucial to continuously evaluate the proximal outcomes to verify if people are 
on track to achieve their long-term goals. However, it is also important to measure addi-
tional physical, emotional, and/or cognitive responses that may help to identify existing 
barriers. For example, a person may continuously fail to achieve his or her daily produc-
tivity goal due to stress, so including measures of stress can help to identify this barrier.

Addressing Barriers of Behavior Change Technologies

As discussed previously in this chapter, many barriers may compromise the effectiveness 
of behavior change technologies. To mitigate these barriers, in this section we present 
some guidelines and examples of mobile technologies for behavior change that are unob-
trusive, effortless, and adaptive.
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Unobtrusive and Effortless

There are many examples of methods that will make people’s interaction with behav-
ior change technologies less obtrusive. In this section, we present some guidelines and 
examples for each stage of the CLM.

Perception

One common approach used in behavior change technologies is to use “pull” interfaces 
that users can access whenever they wish (Cauchard et al., 2019). Although this kind of 
feedback is helpful, people need to be available and motivated to engage with the inter-
faces (Nahun-Shani et al., 2015). One way of making users unobtrusively engage with 
“pull” interfaces is to make them visible in a place where users already tend to look quite 
often. For instance, in UbiFit (Consolvo et al., 2008), UbiGreen (Froehlich et al., 2009), 
and Zuki (Murnane et al., 2020), the wallpaper of the smartphone changes depending on 
the user’s physical activities or pro-environmental behaviors. Since many people check 
their phones several times a day, they can see information about their activities without 
having to manually open an application.

“Push” feedback reduces the user’s effort by automatically sending information 
when a trigger condition is met. However, this kind of feedback can be disruptive if the 
information is sent at a time when users are not available or receptive. For example, a 
smartwatch application that sends reminders for users to stand up can be distracting if 
users are busy and unable to follow the prompt, such as during an important meeting.

One way to make push feedback less obtrusive is to use algorithms that infer the 
best moments to send the push information. In this way, if users are busy and unavailable 
to attend to the technology or to follow the prompts, the system can recognize that and 
send the push notification at a more appropriate time later. This is the approach used in 
just-in-time adaptive interventions (Nahum-Shani et al., 2015).

Another approach to make push feedback less obtrusive is to automatically change 
the user’s perception of stimuli, either by making some stimuli more salient or by overrid-
ing the perceptual input. For instance, Novak and Novak (2006) developed a wearable 
device that provides haptic feedback on the soles of the feet in synchrony with the user’s 
steps. They found that this enhanced sensory feedback can make people with Parkinson’s 
disease walk more steadily. Another example is the work from Tajadura-Jimenez and col-
leagues (2015), who developed a shoe-based wearable prototype that provides a modified 
sound feedback as the user walks. The researchers manipulated the feedback to make it 
sound as if it was being produced by a lighter or heavier body, and they found that this 
manipulation changed not only participants’ perception of their body weight, but also 
their gait pattern.

Effortless push features can also be designed to influence a user’s feelings and phys-
iological signals, which in turn can lead to behavioral changes. For example, Costa, 
Adams, Jung, Guimbretière, and Choudhury (2016) presented the wearable device 
EmotionCheck, shown in Figure 31.2, which is a watch-like device that can override a 
user’s perception of their own heart rate by providing subtle haptic feedback that resem-
bles slow heartbeats. The results of a laboratory experiment revealed that participants 
believed that the slow haptic feedback represented their own heart rate, and, as a conse-
quence, they felt calmer during a stressful task. This intervention was used in a follow-
up study in which participants had to take math tests under high pressure (Costa et al., 
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2019); the findings indicate that this intervention can not only make people feel calmer, 
but it can also reduce physiological arousal and improve cognitive performance.

Evaluation and Goal/Reference

In addition to presenting information to users, interfaces can also guide users to evaluate 
their performance. One way of guiding this evaluation unobtrusively is to show simple 
visualizations that allow users to quickly evaluate their progress or to see how close they 
are from reaching their goals. For example, using this approach, Gouveia and colleagues 
(2016) designed prototypes of glanceable displays for smartwatches. The results of an 
in-the-wild study revealed the strong effects of these glanceable displays on individuals’ 
behaviors.

Interventions can also help users evaluate whether or not they are reaching their 
goals by providing subtle sound feedback using mobile technologies. A great example is 
the sonification approach presented by Newbold, Bianchi-Berthouze, Gold, Tajadura-
Jiménez, and Williams (2016). These authors investigated how sound feedback triggered 
by body movements could be used as an implicit mechanism to avoid overdoing motor 
movements, and also to facilitate progress during stretching exercises. They conducted 
a study in which they sonified the target goal of a stretch exercise to encourage either 
the end of a motor movement (using a musically stable sound) or the continuation of the 
exercise (using a musically unstable sound). The results show that the musically stable 
sound feedback led participants to continue the exercise beyond the target goal, while the 
unstable sound feedback led to a smoother stop close to the target point.

Response

One approach that can be used to reduce the effort required by users to perform certain 
actions is designing technologies that directly actuate user movements. A great example 
is the LiftWare device, which is an electronic handle with attachments for utensils (e.g., 
a spoon). The device uses motion sensors and actuators to sense and counteract hand 
tremors while the user is eating. In this way, people with disorders that affect their hand 
movements, such as Parkinson’s disease, can eat more easily. Electrical muscle stimula-
tion (EMS) is another way to intervene in the user’s movements automatically. In one 
example of EMS usage, Lopes, Jonell, and Baudisch (2015) proposed extending the affor-
dance of objects by allowing them to actuate directly on the user’s muscles during the 

  FIGURE 31.2.    The EmotionCheck device, which can make users feel calmer using subtle haptic 
feedback. From Costa et al. (2016). Reprinted with permission from the Association for Comput-
ing Machinery.
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interaction. This approach can make users automatically perform specific movements 
while approaching an object or even avoiding objects that should not be touched, such as 
dangerous materials.

In addition to actuating users’ movements directly, technologies can learn what 
activities are easier for users to do. For instance, the mobile app MyBehavior (shown in 
Figure 31.3) presents personalized and low-effort suggestions of physical activities and 
meals based on the user’s past behavior. The goal of the application is to provide tailored 
health suggestions that users would be more confident in following (Rabbi, Aung, Zhang, 
& Choudhury, 2015). Another example is the mobile application PopTherapy. The appli-
cation repurposes popular applications and websites as stress management interventions 
and provides suggestions using a recommendation system that learns how to match inter-
ventions to individuals over time (Paredes et al., 2014).

Adaptive

A key challenge in the design of behavior change technologies is ensuring that the inter-
ventions continue being effective over time. For this purpose, mobile technologies can 

  FIGURE 31.3.    The MyBehavior app, which provides low-effort suggestions of physical activities 
and meals. From Rabbi et al. (2015). Reprinted with permission from the Association for Comput-
ing Machinery.
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leverage JITAIs to learn users’ context, personal traits, preferences, and behaviors, and 
adapt the interventions accordingly.

Existing frameworks for the design of JITAIs highlight four components that have to 
be taken into account: (1) decision points, which refer to the times when the decisions to 
intervene are made; (2) intervention points, which refer to the possible interventions that 
can be used at a decision point; (3) tailoring variables, which is the information about the 
person used to select the appropriate intervention; and (4) decision rules, which are the 
rules that connect the options of interventions and tailoring variables in a systematic way 
(Nahum-Shani et al., 2018).

One important consideration is how designers should select the possible interven-
tions that can be provided to users. How to write the persuasive message? What actions 
should be suggested? These are some of the questions that designers may need to answer. 
One approach to creating the interventions is to leverage the knowledge of domain 
experts and design the interventions based on existing strategies that demonstrated posi-
tive results in previous studies. Another approach is to leverage applications, websites, 
or other resources that users may have access to and repurpose them as behavioral or 
stress management interventions. In PopTherapy, for instance, users are urged to use 
popular applications and websites to manage their stress. For instance, a notification can 
be shown to the user with the prompt “Find an example on your Facebook timeline that 
showcases one of your strengths” (Paredes et al., 2014).

One approach to determine the best intervention to the user at a given time is to 
use reinforcement learning algorithms, which make a sequence of decisions in a dynamic 
environment by learning through trial and error (Kaelbling, Littman, & Moore, 1996). 
Multi-armed bandit (MAB) is an example of reinforcement learning algorithms with an 
exploration–exploitation trade-off; its goal is to maximize the expected gains by either 
trying new options that might give higher payoffs in the future (exploration) or continu-
ing with the option that gave the highest gains in the past (exploitation; Bubeck & Cesa-
Bianchi, 2012). In the application PopTherapy, for instance, the researchers used MAB to 
maximize stress reduction using different stress management interventions, such as somatic 
relaxation, positive psychology, and cognitive-behavioral therapy (Paredes et al., 2014). In 
the mobile application MyBehavior, MAB was used to maximize the chances of achieving 
calorie loss goals by suggesting a combination of frequent and infrequent healthy behaviors 
(Rabbi et al., 2015). Based on users’ responses, the MAB continuously adapts and picks the 
most useful interventions to users, while discarding the ones that are not useful.

A challenge regarding the formulation of adaptive systems is to optimize for both 
short-term and long-term outcomes. Users who find interventions useful and practice 
them constantly may still stop using them or reduce their usage over time. On the one 
hand, they may grow tired of using the same interventions, even if they are being effec-
tive. On the other hand, they may learn the mechanics from the repeated practice, and 
so they may no longer need support from the system. One possibility to address this 
issue is to provide additional rewards to a learning agent to guide the learning process, a 
tactic known as reward shaping. In this case, the rewards could balance both short-term 
and long-term outcomes, and they could include measures of efficacy, adherence, learn-
ing effects, and health outcomes. Measures of efficacy and adherence can be obtained 
passively using mobile sensors based on users’ behaviors and interactions, and learning 
effects and health outcomes would require the use of psychometrics administered less 
frequently (i.e., weekly or monthly measurements).
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Overall, the implementation of adaptive interventions is a promising area, but many 
challenges remain, and there are still open questions that require further research and 
development. Practitioners and researchers interested in this approach must move away 
from “one-size-fits-all” solutions and commit themselves to launching a system that con-
tinuously learns and adapts over time. In this way, they can take full advantage of the 
learning process provided by the algorithms.

Conclusion

The development of mobile and ubiquitous technologies has increased opportunities to 
help users monitor and change their behaviors. With the advance of sensors and passive 
sensing methods, it is now possible to collect a vast amount of behavioral, cognitive, 
and emotional information unobtrusively. The information collected is often presented 
to the users, prompting them to self-reflect and take appropriate actions. Although this 
approach works well when users are motivated and have high cognitive capacity, it can 
fail when self-control resources are drained by demands in other areas of one’s life, such 
as when a person is stressed or under high cognitive load.

In this chapter, we have discussed how to design mobile technologies for behavior 
change that are unobtrusive, effortless, and adaptive. We presented for the first time a 
closed-loop model that can be used to guide the design of technologies that leverage both 
conscious and effortless processes for behavior change, and we offered some suggestions 
and examples of interventions that are unobtrusive, effortless, and adaptive. Many chal-
lenges still need to be addressed in this area. However, this research direction offers excit-
ing opportunities for designing mobile technologies that can easily blend into people’s 
lives and help them accomplish their goals.
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C H A P T E R  O V E R V I E W

Neuroscientists have found that mental health is associated with connectivity between 
specific brain regions. In this chapter, we investigate whether sensing data from mobile 
phones can predict brain functional connectivity; specifically, connectivity between the 
ventromedial prefrontal cortex (vmPFC) and the amygdala that is known to be associated 
with mental illness, such as anxiety and depression. Here, we report the insights gained 
from our NeuroSense exploratory study of 105 first-year university students across a 
10-week semester using neuroimaging, mobile sensing, and self- reports. Several behav-
ioral features from students’ phones correlate with vmPFC– amygdala connectivity; for 
example, two important features are conversation duration (r = .365, p < .001) and sleep 
onset time (r = .299, p < .001). We train a support vector classifier to predict whether 
students have higher or lower vmPFC– amygdala connectivity purely based on mobile 
sensing data with an F1 score (harmonic mean of sensitivity and precision) of .793. We 
show for the first time that brain functional connectivity can be predicted using passive 
sensing data from phones, potentially offering a continuous and cost- effective alternative 
to functional magnetic resonance imaging (fMRI).

Introduction

Mental illness impacts one in four people worldwide, affecting mood, perception, think-
ing, and behavior (Anxiety and Depression Association of America, https://adaa.org). 
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Two of the most common types of mental illness are (1) the spectrum of depressive 
disorders, which is characterized by persistently depressed mood or loss of interest in 
activities, causing significant impairment in daily life, and (2) anxiety disorder, which 
is characterized by feelings of worry, anxiety, or fear that are strong enough to inter-
fere with one’s daily activities. College-age students are more prone to experience their 
first mental health episode at this time than at any other time in their lives, with their 
brains continuing to develop into their mid-20s (Sowell, Thompson, Tessner, & Toga, 
2001). The transition from home, with its familiar support networks, to college can 
be challenging for teens. Adapting to academic pressures, new environments and liv-
ing conditions, social pressures, erratic sleep habits, and other worries and stressors 
present challenges even for the healthiest and most resilient individuals. Among college 
students, 46% and 39% seek counseling for anxiety and depression, respectively (Reetz, 
Krylowicz, & Mistler, 2014).

Neuroscientists believe that abnormalities in how particular brain circuits function 
are related to mental illness; that is, mental illness relates to brain functioning. Therefore, 
measuring a person’s brain activity is a natural approach to understanding the neural 
correlates of mental health. With the advent of brain-imaging techniques such as fMRI, 
researchers can measure brain activity and functional connectivity in increasing detail. 
Through use of neuroimaging, brain functions associated with various mental illnesses 
have been widely studied (Dickstein et al., 2010; Kaiser, Andrews-Hanna, Wager, & 
Pizzagalli, 2015; Kim et al., 2011). Neuroscientists have found that mental illness is asso-
ciated with brain circuit functioning and connectivity between specific regions of the 
brain resulting in abnormal mood, perception, and behavior. They have used resting-
state functional connectivity (RSFC) as one method to explore the network structure 
of the brain and its association with mental illness through temporal synchronization. 
Resting-state captures the synchrony between brain regions when no explicit task is con-
ducted by the person being scanned.

Additionally, computer scientists working in mobile sensing have found correlates 
and predictors of individual differences associated with sensing data from phones and 
wearables. Mobile sensing, ecological momentary assessment (EMA; Shiffman, Stone, & 
Hufford, 2008), and machine learning allow researchers to infer complex human behav-
ior (e.g., physical activity, sleep state) and context (e.g., social interaction, places visited) 
using passive sensing data from phones and wearables. Recently, Huckins and colleagues 
(2019) published the first findings from a study on brain imaging and mobile sensing in 
the neuroscience literature. The authors found correlations between smartphone usage 
from a group of college students and their fMRI scans. They scanned 257 students at 
Dartmouth College and computed RSFC for the subgenual cingulate cortex (sgCC), a 
brain region related to depression. Motivated by these insights, we performed an explor-
atory study of 105 first-year college students using neuroimaging, mobile sensing, and 
ecological momentary assessment across one semester (Obuchi et al., 2020). In addition 
to correlating distinct mobile sensing features that contribute to functional connectivity, 
we go one important step further and demonstrate for the first time that mobile behav-
ioral features can predict the connectivity between brain regions. In this chapter, we 
describe the outcomes and insights about combining fMRI data with mobile sensing from 
our published NeuroSense study (Obuchi et al., 2020).
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Background on Brain Imaging and Mental Health

In this section, we introduce the neuroscience basics necessary for researchers in the 
mobile sensing community to best understand our work. The human brain is roughly 
1.4 kilograms of tissue containing roughly 86 billion neurons to perform the complex 
processing tasks that humans perform every day (von Bartheld, Bahney, & Herculano-
Houzel, 2016). Interaction among an enormous number of neurons in the brain allows 
us to learn, remember, recognize, and think as humans. Neuroscientists have found some 
localization of brain functions; the role of specific brain regions is well studied. For 
instance, a region called the visual cortex plays a role in processing the information from 
vision. Similar to a node in a neural network that is discussed in the context of computer 
science, a neuron transmits information to another neuron. Communication between 
specific parts of the brain have been observed to be related to individual differences in 
behaviors or mental states.

fMRI is used to measure changes in blood flow related to brain activity (Ogawa et 
al., 1992). Temporal changes in blood oxygenation in different regions of the brain closely 
mirror brain activity. By measuring the change in blood oxygenation after neural activity, 
the brain regions that are actively working during a particular period can be determined. 
In short, fMRI captures the dynamic changes in blood flow as a proxy for neuronal activ-
ity. Researchers frequently use fMRI to study cognitive and affective processes, in both 
healthy subjects and subjects with conditions, such as mental disorders (Kaiser et al., 
2015, 2016; Kim, Gee, Loucks, Davis, & Whalen, 2010; Moran et al., 2013).

A more recent trend is to take a network approach to studying the brain, namely, 
RSFC, which observes the temporal relationship between distinct brain regions over 
time when no explicit task is conducted by the person being scanned. The general idea 
is that these networks have developed over time and depict a lasting history of activat-
ing and deactivating together. RSFC is often done using Pearson’s correlation between 
the fMRI signal of different regions. While general brain organization measured with 
RSFC is similar across thousands of different individuals (Biswal et al., 2010) and is 
stable and robust over both the short term (hourly) and the long term (monthly; She-
hzad et al., 2009), there are small individual differences in connectivity, which can be 
reliably observed across time. Finally, another advantage of resting brain scans is that 
individuals who have difficulty performing certain tasks typically can complete resting-
state fMRI scans.

Moreover, RSFC between the ventromedial prefrontal cortex (vmPFC) and the 
amygdala is shown to be associated with anxiety (Davidson, 2002; Ganella, Barendse, 
Kim, & Whittle, 2017; Gold, Morey, & McCarthy, 2015; Kim et al., 2011; Kim & 
Whalen, 2009) and depression (Connolly et al., 2017). Figure 32.1 shows the locations 
of vmPFC and amygdala in the brain. The vmPFC is reported to be related to decision 
making (Bechara, Damasio, Damasio, & Lee, 1999; Hare, Camerer, & Rangel, 2009), 
reward evaluation (Rushworth, Noonan, Boorman, Walton, & Behrens, 2011), moral-
ity (Greene, Sommerville, Nystrom, Darley, & Cohen, 2001), and emotion regulation 
(Etkin, Egner, & Kalisch, 2011; Hänsel & von Känel, 2008). In contrast, the amygdala 
is a more evolutionarily conserved part of the brain, which responds to fear (LeDoux, 
1998; Öhman, 2005), threat (Fox, Oler, Tromp, Fudge, & Kalin, 2015; Gunduz-Cinar et 
al., 2013), facial expressions (e.g., fearful faces; Morris et al., 1998), and emotional pro-
cessing (Aggleton, 1993; LeDoux, 1998). Researchers have shown that the vmPFC and 
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amygdala play a particularly important role in human anxiety (Davidson, 2002; Ganella 
et al., 2017; Gold et al., 2015; Kim et al., 2010, 2011; Kim & Whalen, 2009). The vmPFC 
inhibits the amygdala’s reaction to fear or threats that make people anxious.

NeuroSense Study

Materials and Methods

In our study, we used the important neurological insight that higher functional connec-
tivity defined by the synchronization of neural activity between the vmPFC and amyg-
dala regions is inversely correlated with anxiety. In other words, stronger connectivity 
relates to lower anxiety and vice versa. Therefore, the goal of our study is threefold: 
(1) to investigate if human behavior inferred from mobile phones is associated with the 
RSFC between the vmPFC and amygdala, which is known to relate to mental health (e.g., 
anxiety); (2) to study various machine learning models to determine if we can coarsely 
predict the brain activity between the vmPFC and amygdala regions (i.e., higher connec-
tivity relates to lower anxiety and vice versa) using mobile phone sensing as a pragmatic 
starting point for this exploratory study; and (3) to stimulate discussion on this new topic 
in the ubiquitous computing and neuroscience communities, potentially opening the way 
for new research at the intersection of neuroimaging and mobile sensing.

Our analysis consists of two parts: an exploratory correlation analysis and a per-
formance evaluation of machine learning models. The exploratory correlation analysis 
allows us to identify sensing features that show a relationship with vmPFC–amygdala 

  FIGURE 32.1.    Location of vmPFC (black) and right amygdala (white). The functional connectivity 
between these regions is known to be associated with various aspects of mental health. The Mon-
treal Neurological Institute coordinates are (8, 36, –18) and (20, –3, –15) for the right vmPFC and 
amygdala, respectively.
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RSFC. In the performance evaluation part of analysis, a predictive model is trained using 
eight different machine learning algorithms to investigate predictability. Research indi-
cates that people with mental health issues (e.g., anxiety) have lower vmPFC–amygdala 
RSFC, as discussed above (Connolly et al., 2017; Kim & Whalen, 2009). As part of our 
preliminary approach to study the relationship between mobile sensing data and func-
tional connectivity between vmPFC–amygdala, we split participants into two groups for 
analysis based on RSFC: a “higher” and a “lower” functional connectivity group. We 
have taken a simple approach in our analysis by treating the problem as a classification 
task that predicts whether a student belongs to the higher or lower RSFC group. For 
additional details about the study, see Obuchi and colleagues (2020).

Cohort Description

We recruit 105 undergraduate students (75 female, 30 male) at the start of the fall semes-
ter as they enter their first year at Dartmouth College, with the goal of investigating 
mental health using mobile sensing and brain imaging. The mean age of participants 
at the beginning of the study is 18.2 years (standard deviation of 0.63). Among the 
participants, the majority are Caucasian (56%), 21% are Asian, 16% are multiracial, 
3% are African, 1% are Hispanic, and the rest 2% answer that they belong to other 
or unknown ethnicity group. After the subjects consent to participate in the study, two 
types of data are collected: brain connectivity using fMRI and mobile sensing data cap-
tured using the students’ own phones. We use a Siemens MAGNETOM Prisma 3-Tesla 
scanner (Siemens, 2019) for brain imaging the participants during the start of the fall 
semester when all subjects are scanned. The study is approved by the study institution’s 
Institutional Review Board, and the students receive monetary compensation for partici-
pating in the study.

Ground Truth: fMRI Data

We use the fMRI data collected from scanning the subjects as ground truth for cor-
relation and predictive analysis using mobile sensing features, which we discuss in the 
“Analysis” section. During scanning, participants view a white fixation cross on a black 
background. The scanner collects both anatomical images of the brain and the fMRI 
signal that represents the proxy of neural activity. Figure 32.2 shows anatomical brain 
images centered at the positions of the vmPFC and right amygdala of a coauthor. With 
our scanner, we can collect the fMRI signal with a 2.4-millimeter × 2.4-millimeter in-
plane resolution. The complete functional brain image is collected roughly every 1.2 
seconds, acquiring a total of 605 volumes for 12 minutes of data acquisition. For more 
details regarding the neuroimaging data collection, please see Huckins and colleagues 
(2019). Functional connectivity between the vmPFC and amygdala is calculated using 
the Pearson’s correlation (r) of the fMRI signal of these two regions over time. Only 
subjects with 5 minutes or more of low-motion data are included in the analysis to 
minimize the influence of motion. Ultimately, in terms of the data quality criteria, of the 
105 students consenting to be part of the study, only 92 opted to be scanned at the start 
of the semester. In addition, only 75 of the 92 scanned subjects met the mobile sensing 
data quality criteria (R. Wang, Harari, Hao, Zhou, & Campbell, 2015) of 18 hours of 
sensing data per day for a minimum of 14 days across the term. As there is no existing 
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literature on splitting RSFC into groups, we decided to use the median after discussions 
with domain experts. Although we applied the RSFC median split before filtering the 
participants, the number of higher RSFC and lower RSFC subjects is well balanced (i.e., 
38 students in the higher RSFC group and 37 in the lower group). Furthermore, we did 
not have any clinical screening procedures to recruit participants, as this study involved 
a nonclinical population (university students). Consequently, identifying correlations 
between RSFC and clinical assessments related to mental health (anxiety, depression, 
etc.) was not possible.

Figure 32.3 represents the distribution of vmPFC–amygdala RSFC of all subjects 
who are scanned. The average value of RSFC is 0.12, with the median of 0.14, and the 
vertical line denotes the median.

Mobile Sensing

System

We use a smartphone application to continuously collect students’ sensing and behavioral 
data from their phones over one semester as predictive variables for the study. The passive 
sensing app records a variety of data from sensors on the students’ phone, subsequently 
transferring them to a secure server for offline analysis. The application works on both 
iOS and Android phones. We use GPS data to estimate a subject’s location on campus, 
which is in a college town where all first-year students live on a compact campus. Thus, 
we compute semantic location data by creating a dictionary table that links campus build-
ings to several different location categories; for example, the libraries are categorized as 
“study area” locations, while cafeterias are categorized as a “food” location. To compute 
their “home” location, we infer the student’s dormitory. The “Greek” location category 

  FIGURE 32.2.    An anatomical brain image of a coauthor. The crosshairs are centered over the right 
vmPFC and amygdala.
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denotes Greek Letter Organization Houses (i.e., fraternities and sororities). Furthermore, 
our application detects sleep (Z. Chen et al., 2013) and speech/conversation data (Lane et 
al., 2011; Rabbi, Ali, Choudhury, & Berke, 2011) by incorporating pretrained classifiers. 
The application does not record raw audio data in order to protect the users’ privacy. We 
cannot be completely sure if the subject is actively involved in the conversation; the infer-
ence of conversation is associated with the subject being around conversation. We use this 
as a proxy for social engagement or isolation.

Features

In our study, we design behavioral features from mobile sensing data inspired by our pre-
vious research on mobile sensing (R. Wang et al., 2014, 2015). Table 32.1 shows the list 

 FIGURE 32.3.  Distribution of vmPFC- amygdala resting- state functional connectivity among par-
ticipants.

TABLE 32.1. Features Generated from Mobile Sensing Data
Sensing type Features

Activity (Wang et al., 2014) • Duration of still, walking, and running

Location (Wang et al., 2014) • Time spent at home (dorm), other dorms, study, 
food, social, Greek, religious, and workout areas

• Number of places visited
• Distance traveled

Phone usage (Wang et al., 2014) • Unlock duration
• Number of unlocks

Microphone (Lane et al., 2011; 
Rabbi et al., 2011)

• Audio amplitude
• Conversation duration
• Number of conversations
• Ratio of voice (speed)

Sleep (Chen et al., 2013) • Sleep start time
• Sleep end time
• Sleep duration
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of features computed in our study. To increase the interpretability of features and to bet-
ter understand students’ behavior, we divided time across the day into three epochs (R. 
Wang et al., 2015). Epoch 0 represents the entire 24-hour day. Epochs 1, 2, and 3 denote 
day (9 A.M.–6 P.M.), evening (6 P.M.–0 A.M.), and night (0 A.M.–9 A.M.), respectively. As 
a basic strategy, we compute the average value (e.g., how many hours a user uses the 
phone) and the count (e.g., how many times a user unlocks the phone) within the epochs 
0–3 for each sensor. Furthermore, we compute the standard deviations to estimate the 
variability of a student’s behavior (R. Wang et al., 2018; W. Wang et al., 2018). This mea-
sure attempts to capture the variability of their week and ultimately across the semester. 
Similarly, we compute the regularity index for each sensing feature using negation of 
approximate entropy (Pincus, 1991). The regularity feature differs from the variability 
since it considers the unpredictability of changes over time-series data.

Analysis

A key goal of our exploratory study is to investigate the relationship between mobile sens-
ing features and vmPFC–amygdala RSFC and predict that connectivity. In what follows, 
we describe our analysis, and then in the next section we review our results. For data 
quality reasons and to prevent distortion of data caused by missing data, we set some cri-
teria based on prior data quality insights associated with mobile phone sensing (R. Wang 
et al., 2018). Specifically, we exclude data with less than 18 hours of data per day and less 
than 14 days of data during the term (R. Wang et al., 2018; W. Wang et al., 2018). As 
described in the “Ground Truth” section, our final cohort size is 75 participants.

Correlation Analysis

We compute Spearman’s correlation to investigate the relationship between each mobile 
sensing feature and vmPFC–amygdala RSFC. Although the correlation coefficient does 
not explain the cause–effect relationship, we can examine the monotonic relationship in 
the observed data. Because the number of comparisons is high (i.e., >100), the result may 
have multiple testing problems: including more false-positive errors. To avoid this issue, 
we use the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995), which regu-
lates the false discovery rate (FDR) in our exploratory analysis. The statsmodels package 
(Seabold & Perktold, 2010) with 165 extracted features was used for the correction pro-
cedure. We report correlation along with FDR-adjusted p-values and standard p-values.

Prediction Analysis

A key aim of our study is to evaluate the performance of various machine learning mod-
els, trained to predict vmPFC–amygdala RSFC from mobile sensing features. We formu-
late this research problem as a simple binary classification problem as a starting point for 
analysis and perform a median split on the RSFC data into higher or lower RSFC groups; 
that is, those subjects with higher and lower resting state functional connectivity between 
the vmPFC–amygdala regions. We then train our model to predict if a person is in the 
higher or lower RSFC group. All sensing features are standardized before training, trans-
forming the data distribution to have a mean of 0 and a standard deviation of 1. We eval-
uate eight machine learning algorithms based on their ability to classify RFSC groups. 
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Each machine learning algorithm has its own hyperparameters, which are variables that 
the user controls to guide the training process. To identify the optimal hyperparameters 
for classification performance, we use a grid search strategy that iterates through all pos-
sible hyperparameters. Descriptions of the machine learning algorithms are beyond the 
scope of this chapter; for specific details, see the resources provided in Table 32.2, which 
shows algorithms evaluated and the hyperparameters selected for tuning. We use a nested 
cross-validation (CV) scheme to prevent overfitting, to build a generalized model, and to 
restrict hyperparameters from being solely adapted to the training data (see Figure 32.4). 
The outer cross-validation for evaluating the performance of the machine learning model 
is tenfold, and the inner CV for hyperparameter tuning is threefold. We do not include 
the same individual’s data on both training and testing set while doing record-wise cross-
validation.

Furthermore, for each algorithm and CV scheme, we evaluate 20 models using dif-
ferent random seeds when training each model and average the score to prevent bias from 
the initial seed selection. We apply the sequential forwarding selection (Jain & Zongker, 
1997) as the feature selection method. For readers interested in additional information 
regarding analysis, we refer to our paper (Obuchi et al., 2020).

Results

Correlation: Mobile Sensing and Neuroimaging

The correlation between each feature generated from mobile sensing data and vmPFC–
amygdala RSFC is shown in Table 32.3. The physical activity of subjects correlates with 
vmPFC–amygdala RSFC. Specifically, we observe four regularity features (i.e., running/
walking during the entire day, running during the daytime, and walking in the evening) 
correlates to vmPFC–amygdala RSFC. All results show the same direction: participants 

TABLE 32.2.  Machine Learning Algorithms and Hyperparameters
Algorithm Hyperparameter Values

KNN (Taunk et al., 2019) n_neighbors 1, 3, 5, 7, 9

Linear SVC (Burges, 1998) C 0.1, 1, 10

SVC (RBF kernel) (Burges, 1998) C
Gamma

0.1, 1, 10
0.01, 0.1, 1, 10

Gaussian naïve Bayes (Rish, 2001) No hyperparameter

Bernoulli naïve Bayes (Rish, 2001) No hyperparameter

Logistic regression (Sperandei, 2014) C
Penalty

0.1, 1, 10
l1, l2

Random forest (Breiman, 2001) max_depth
max_sample_split

3, 5, 7
3, 5

XGBoost (Chen & Guestrin, 2016) max_depth
min_child_weight
Gamma

3, 5, 7
1, 3, 5,
0.01, 0.1, 1, 10

Note. These algorithms were implemented using scikit-learn. For information regard-
ing the specific hyperparameters, see Pedregosa et al. (2011).
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with higher physical activity are more likely to have higher RSFC. Among the five sensor 
types shown in Table 32.1, the microphone demonstrates several significant correlations, 
as shown in Table 32.3. The result suggests that RSFC is higher for subjects who have 
more frequent and longer conversations; this is inferred using the microphone that cap-
tures when a person is “around” conversation. This could be a social encounter or a class 
lecture, we do not know for sure. We consider the inference of conversation frequency 
(i.e., the number of conversations per day) and duration (i.e., the length of each conversa-
tion) as a proxy for social engagement or isolation. The dynamics of these conversational 
features change over the term as students engage in increased workload and exams, and 
so on. Furthermore, the variability of conversation duration shows a significant correla-
tion, as shown in Table 32.3. Considering location features, the time spent at “social” 
places shows a positive correlation (see Table 32.3). Similar to conversational features, 
our results confirm that students who spend more time in social areas, where conversa-
tions are more likely, have a higher RSFC. We do not observe a significant relationship 
with spending time at “religious” places (RSFC: r = .045, p =.703), in contrast to exist-
ing literature (Huang et al., 2016; Saeb, Lattie, Schueller, Kording, & Mohr, 2016) (i.e., 
spending time at “religious” locations negatively correlates with anxiety). The regular-
ity of time spent at other students’ dorms demonstrates the most significant correlation 
among location- based features, as shown in Table 32.3. This result suggests that the 
regular pattern of visiting friends’ dorm rooms is associated with a higher RSFC. We find 
that correlation associated with smartphone usage relates to the unlock duration between 
time epoch of 0 A.M.–9 A.M. During the same epoch, we also observe that the number of 
unlocks positively correlates with RSFC.

Finally, sleep onset time shows the most significant and only correlation among sleep 
features, implying that RSFC is higher for students that go to sleep later at night. On 
academically challenging college campuses, many students have poor sleep habits, going 
to bed late into the night. Surprisingly, we do not find significant correlations for sleep 

 FIGURE 32.4.  Overview of nested cross- validation. We set an inner threefold CV to select the best 
combination of hyperparameters for training a model in the outer fold. The outer 10-fold CV is 
used to evaluate the generalizability of the model.
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TABLE 32.3.  Correlation between Sensing Data and vmPFC–Amygdala RSFC
Sensor Feature Spearman’s rho

Activity Regularity of running (24 hr)   0.231

Regularity of running (9 A.M.–6 P.M.)**   0.362

Regularity of walking (24 hr)   0.229

Regularity of walking (6 P.M.–0 A.M.)   0.285

Microphone Audio amplitude (9 A.M.–6 P.M.) –0.251

Conversation duration (24 hr)**   0.365

Conversation duration (0–9 A.M.)**   0.330

Conversation duration (9 A.M.–6 P.M.)*   0.312

Conversation duration (6 P.M.–0 A.M.)**   0.363

Number of conversations (24 hr)**   0.360

Number of conversations (0–9 A.M.)*   0.314

Number of conversations (9 A.M.–6 P.M.)   0.255

Number of conversations (6 P.M.–0 A.M.)**   0.366

Ratio of voice (24 hr)**   0.365

Ratio of voice (0–9 A.M.)*   0.293

Ratio of voice (9 A.M.–6 P.M.)   0.246

Ratio of voice (6 P.M.–0 A.M.)**   0.348

Variability of conversation duration (24 hr)**   0.368

Variability of conversation duration (0–9 A.M.)*   0.318

Variability of conversation duration (9 A.M.–6 P.M.)**   0.355

Variability of conversation duration (6 P.M.–0 A.M.)   0.281

Variability of number of conversations (24 hr)**   0.358

Variability of number of conversations (0–9 A.M.)**   0.339

Variability of number of conversations (6 P.M.–0 A.M.)   0.243

Variability of number of ratio of voice (24 hr)*   0.318

Variability of number of ratio of voice (0–9 A.M.)   0.278

Regularity of number of conversation (24 hr) –0.261

Location Distance traveled (0–9 A.M.) –0.245

Time spent at “social” location   0.236

Regularity of number of places visited (24 hr)   0.278

Regularity of number of places visited (6 P.M.–0 A.M.)   0.255

Regularity of time spent at “other dorms” location *   0.321

Phone usage Unlock duration (0–9 A.M.)   0.276

Number of unlock (0–9 A.M.)   0.253

Variability of number of unlock (24 hr)   0.260

Sleep Sleep start time*   0.299

Note. Standard p < .05; bold standard p < .01; *FDR-adjusted p < 0.1; **FDR-adjusted p < .05.
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duration (r = –.161, p = .168) and sleep variability features in our study. While there is an 
error of +/– 30 minutes in the sleep classifier used in Z. Chen and colleagues (2013), the 
trends remain accurate.

Classification: Higher and Lower RSFC

In this section, we analyze the ability of the eight machine algorithms to classify students 
in higher or lower RSFC groups. We use the F1 score, a composite metric of the harmonic 
mean between precision and recall (sensitivity), to compare the performance. Among the 
algorithms, the support vector classifier (SVC) with radial basis function (RBF) kernel 
using 23 features achieves the highest F1 score of .793. Generally, RBF kernels can 
capture nonlinear features when dealing with a smaller feature set (23 features in our 
case) to increase performance; we observe the improved performance when compared 
to a linear SVC (see Table 32.4). Although some research finds that tree-based boosting 
and bagging algorithms (i.e., random forest, XGBoost) improve the performance when 
compared to other machine learning algorithms, they are unsuitable for our dataset 
because of its relatively small sample size. Although random forest and XGBoost have 
more hyperparameters to be tuned, requiring more training time than others, the SVC 
using 23 features performed best when classifying students into higher (i.e., stronger) or 
lower RSFC (i.e., weaker) connectivity groups. A model can achieve high precision and 
high recall by reducing the number of false positives and false negatives, respectively. We 
observe that the SVC RBF F1 score strikes an even balance between precision and recall. 
The 23 features are listed in Table 32.5. Note that the accuracy is .791, precision is .798, 
recall is .788, and the area under the receiving operator characteristic (AUROC) is .811. 
Figure 32.5 and Figure 32.6 show the confusion matrix and ROC curve, respectively. 
Regarding the variance of the 20 models of the best SVC, the standard deviation of the 
F1 score is 0.03, and the mean of the standard deviation of 10-fold cross-validation is 
0.17. Readers interested in the machine learning algorithms and implementation can 
refer to Breiman (2001); Burges (1998); T. Chen and Guestrin (2016); Pedregosa and col-
leagues (2011); Rish (2001); Sperandei (2014); and Taunk, De, Verma, and Swetapadma 
(2019).

TABLE 32.4.  F1 Score among Eight Machine Learning 
Algorithms Using Feature Selection
Algorithm F1 score

KNN .756

Linear SVC .644

SVC (RBF kernel) .793

Gaussian naïve Bayes .654

Bernoulli naïve Bayes .736

Logistic regression .672

Random forest .672

XGBoost .641
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TABLE 32.5. The 23 Features Selected by Sequential Forwarding 
Selection for Support Vector Classifier
K Accumulated features F1

 1 Audio amplitude (24 hr) .657

 2 Audio amplitude (6 P.M.–0 A.M.) .655

 3 Variability of time spent at “religious” location .642

 4 Distance traveled (24 hr) .668

 5 Variability of activity “walking” duration (6 P.M.–0 A.M.) .680

 6 Number of places visited (6 P.M.–0 A.M.) .710

 7 Variability of activity “still” duration (6 P.M.–0 A.M.) .775

 8 Variability of number of places visited (24 hr) .698

 9 Variability of audio amplitude (24 hr) .718

10 Number of unlock (0–9 A.M.) .719

11 Regularity of time spent at “religious” location .727

12 Variability of audio amplitude (0–9 A.M.) .719

13 Regularity of activity “running” duration (0–9 A.M.) .746

14 Activity “still” duration (6 P.M.–0 A.M.) .743

15 Time spent at “religious” location .747

16 Variability of conversation duration (24 hr) .762

17 Distance traveled (0–9 A.M.) .789

18 Variability of distance traveled (24 hr) .777

19 Activity “walking” duration (24 hr) .772

20 Regularity of time spent at “Greek” location .759

21 Conversation duration (0–9 A.M.) .766

22 Variability of number of unlocks (6 P.M.–0 A.M.) .764

23 Regularity of number of unlocks (6 P.M.–0 A.M.) .793

Note. K indicates an iteration number in feature selection.

 FIGURE 32.5.  Confusion matrix of support vector classifier using 23 features. F1 score is 0.793.
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Discussion

In summary, our study makes the following contributions: (1) We are the first group to 
use behavioral features from mobile sensing to study the brain functioning of 105 first-
year college students over one semester. Specifically, we propose to use mobile sensing 
to predict functional connectivity between brain regions, (2) We have discovered a set of 
mobile sensing features that relate to brain functional connectivity. Specifically, we find 
that behavioral features from students’ mobile phones correlate with functional connec-
tivity between vmPFC and amygdala shown in Figure 32.1, including the conversation 
duration a student is around (r = .365, p < .001), their sleep onset time (r = .299, p < .001) 
and the number of phone unlocks (r = .299, p = .029) they initiate. (3) We train eight 
different machine learning algorithms to predict whether a student belongs to the higher 
or lower vmPFC– amygdala RSFC group. The higher connectivity group relates to lower 
anxiety and vice versa. After applying a 10-fold nested cross- validation with hyperpa-
rameter tuning, the support vector classifier achieves an F1 score of .793.

Correlated Mobile Sensing Features

Among all different categories of mobile sensing features, the conversational features 
from phones are the most correlated ones with vmPFC– amygdala functional connectiv-
ity. The StudentLife study found that social engagement made students feel more con-
nected, less lonely, and more resilient with better mental well-being, positive emotions, 
and potentially better academic performance (R. Wang et al., 2014, 2015). Additionally, 
our results indicate that people with higher vmPFC– amygdala RSFC tend to be around 
a conversation (i.e., ambient speech was collected using the microphone) or spend more 
time in social or working locations where they typically engage with other students (e.g., 
they spend time at friends’ dorms). Moreover, these results are consistent with previ-
ous studies indicating that people who have substantial social connection tend to have 
better psychological well-being (George, Blazer, Hughes, & Fowler, 1989). Also, our 

 FIGURE 32.6.  ROC curve of support vector classifier using 23 features.
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results show that subjects with higher functional connectivity tend to be more socially 
engaged. As discussed in the “Background” section, several neuroscientists find that 
higher vmPFC–amygdala functional connectivity is correlated with lower depression and 
anxiety (Connolly et al., 2017; Kim et al., 2010). Based on these findings, we can hypoth-
esize that more social engagement and stronger functional connectivity (as found in our 
study) are likely to be related to better mental well-being among students.

Regarding phone usage, vmPFC–amygdala RSFC correlates with the number of 
phone unlocks and unlock duration between 0 A.M. and 9 A.M., but not with the other 
time epochs. We hypothesize that phone usage with social apps (e.g., texting) might be an 
important behavior that positively correlates with RSFC. During the night, we presume 
that most students rely on their phones to interact with their friends instead of face-
to-face interaction. As proof, we would need to understand which specific apps users 
interact with on their phones. Some apps are clearly more socially potent than others. We 
would also need to better understand the context of the conversational interaction: sitting 
through an hour-long lecture (which would likely be inferred as a single conversation of 1 
hour by our sensing platform) is different from a 1-hour conversation with close friends. 
We do not have this contextual information in our study.

In terms of sleep, previous studies (Feng, Becker, Feng, & Zheng, 2018; Yoo, Gujar, 
Hu, Jolesz, & Walker, 2007) found that sleep deprivation is related to weaker vmPFC–
amygdala RSFC. Our analysis indicates that vmPFC–amygdala RSFC is higher (i.e., 
stronger) when students go to sleep later. We do not have any further data on why students 
go to sleep later, but the two most common reasons discussed in the StudentLife study (R. 
Wang et al., 2014) are academic demands such as assignment due dates and exams and 
social events such as hanging out with friends and parties. Without the specific reasons, 
we cannot fully interpret if late sleep is motivated by work or social life, or both (e.g., 
students working together on joint assignments). We could interpret our result along 
several lines. By linking it to behavior at night before sleep; for example, students attend-
ing social events (e.g., party, drinking) at night may result in positive mental well-being. 
In this study, we have used a phone-based sleep algorithm (Z. Chen et al., 2013) that is 
described as a “best effort” estimator for sleep onset and duration. In a future study, we 
would use wearables for sleep stage analysis. Having deeper sleep data and more contex-
tual information about the behavior before sleep would lead to better insights. Also, four 
regularity features correlate with vmPFC–amygdala RSFC in our dataset. Students who 
regularly walk or run are prone to have higher RSFC. It is widely accepted that frequent 
aerobic exercise (i.e., running) plays a vital role in improving mental well-being (Sharma, 
Madaan, & Petty, 2006).

Classification

Although our goal to predict neural activity from mobile sensing is challenging, we con-
sider the model that we trained as robust. In our analysis, we make our best effort to 
prevent overfitting or to bias training data. As a drawback of machine learning, we need 
to sacrifice some interpretability. The SVC with RBF kernel using 23 features has the 
best performance among all the models, but we cannot easily comprehend why the model 
selects those specific features. Note that the sequential forward selection features differ 
from the rankings of feature importance because the sequential forward selection is accu-
mulating a feature that improves a model on the stacked features (i.e., audio amplitude 
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in the first place) over each iteration. Interestingly, the time spent at religious locations is 
selected for all types of feature calculation (i.e., mean, variability, and regularity). We do 
not see a relationship with vmPFC–amygdala RSFC in the correlation analysis; however, 
visits to religious places have been shown to have an association with mental well-being 
(i.e., anxiety) (Huang et al., 2016; Saeb, Lattie, Kording, & Mohr, 2017).

In terms of performance, SVC results in the highest F1 score (.793) using 23 features, 
whereas using the six or seven features results in an F1 score of .710 and .775, respec-
tively. Considering our dataset size, a smaller number of features may be more robust and 
generalizable. We assume that the performance of our machine learning model (i.e., SVC) 
is reliable. Our model exceeds the 50% baseline, which is relevant to random prediction, 
reasoning that mobile sensing contains a signal for predicting brain activity. We believe 
that our classifier performance could be improved by increasing the number of subjects 
in the dataset. We consider we have good power, but increasing the number would be the 
next step as well as studying the replicability of our results at higher scale.

Limitations

Although we succeeded in training a model to predict the functional connectivity using 
mobile sensing data, we recognize some limitations of our work. First, all the subjects 
who participated in our study are first-year undergraduate, mostly female, students at 
Dartmouth College. Therefore, our results cannot be broadly generalized (e.g., age, gen-
der, socioeconomics, nationality). We do not screen for students with mental health con-
ditions. Future work needs to examine a more diverse set of subjects and incorporate 
demographic information to train a generalized machine learning model.

Furthermore, we must be careful when identifying the function at a specific brain 
localization. In other words, we have to be aware that a particular brain region is not 
playing a single role. Based on prior research in neuroscience, we assume that vmPFC–
amygdala RSFC is associated with mental health—anxiety, in the current study. How-
ever, the physiological phenomenon or mechanism that forms anxiety has not yet been 
elucidated. We may need to focus not only on a particular localization of the brain but 
also on the “representation” that the entire network forms.

Conclusion

This chapter discussed an exploratory study to examine how brain imaging and mobile 
sensing from phones are associated. In particular, we studied the brain connectivity 
between the vmPFC and amygdala, which relates to multiple mental health aspects. We 
believe our work opens a new research area by showing a first example of how mobile 
sensing can give in-depth longitudinal human behavioral data that provides further con-
textual information when analyzing costly neuroimaging data. Our experiment assessed 
brain connectivity using fMRI and collected behavioral data using a continuous sensing 
smartphone app over one academic semester at Dartmouth College. We identified a set 
of behaviors that correlate with vmPFC–amygdala connectivity. We also trained and 
evaluated the performance of machine learning models to predict if a student belongs to 
a higher or lower connectivity group using mobile sensing features. The support vector 
classifier produced the best performance (F1 score of .793). We successfully illustrated 
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the feasibility of predicting people’s brain functioning by linking mobile sensing and 
fMRI data.
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C H A P T E R  O V E R V I E W

In this concluding chapter to the Handbook, we highlight central lessons learned from 
the first wave of mobile sensing research in psychology and reflect on current challenges, 
open questions, and future directions. Mobile sensing is an exciting new methodology 
for studying daily life, and, in psychological science, its trajectory is at a critical inflec-
tion point in terms of uptake and potential. At the same time, at this moment, mobile 
sensing is still best thought of as in its infancy with respect to challenges around the 
ease of implementation, the lack of knowledge, consensus, and standardization around 
important procedures and practices, and the realization of sound psychometric measure-
ment, particularly in the context of consequential psychological (e.g., diagnostic) assess-
ment. Because of its ability to capture daily (digital) behavior passively, continuously, 
and comprehensively, mobile sensing offers unique opportunities for studying person– 
environment interactions ecologically and at scale. At the same time, it raises unprec-
edented new questions about participant privacy and data confidentiality, ownership, 
and stewardship. Also, as mobile sensing expands its capabilities and reach, the potential 
synergies and tensions of conducting mobile sensing research in academic and/or corpo-
rate environments must be considered.

Introduction

The idea for this handbook originated in 2018, when four of the editors of this handbook 
met in Berlin, Germany, as part of a working group tasked to provide recommendations 
for best practices when using new technologies for data collection (e.g., pertaining to data 
quality, data management, research ethics, and data protection; RatSWD, 2020). The 
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Zeitgeist at that time was the following: Psychologists had emerged from what the Ameri-
can Psychological Association had labeled as the “Decade of Behavior” (2000–2010; 
cf. Ebner & Kubiak, 2010), humbled by the realization that the field’s overreliance on 
survey and simple lab measures had been stifling progress in actually studying real-world 
behavior (Baumeister, Vohs, & Funder, 2007; Cialdini, 2009; Furr, 2009; Rozin, 2009). 
Many psychologists were fueled with a desire to find novel methods that could help with 
studying actual behavior in the context of people’s daily lives (e.g., Mehl & Conner, 
2012; Reis & Gosling, 2010). Around this time, the field also found itself thrown into a 
profound and painful self-questioning of methodological standards and research prac-
tices as a result of the replicability crisis (Nosek et al., 2022). Among other realizations, 
this questioning resulted in the key insight that efforts must be made to “scale up” to 
achieve sample sizes (and measurement occasions) that would yield replicable and gen-
eralizable findings. Such changes to the field’s methodological standards were in stark 
contrast to what had long been deemed sufficient—and feasible—for conducting research 
about human behavior in psychology (Nelson, Simmons, & Simonsohn, 2018; Shrout & 
Rodgers, 2018; Vazire, Schiavone, & Bottesini, 2022).

Psychologists recognized the need for much larger samples, extended measurements, 
and real-world behavioral measures, and were thus thrilled that it seemed “help was on 
its way” from the neighboring fields of computer science and electrical engineering (e.g., 
Eagle Pentland, & Lazer, 2009; Lane et al., 2010; Macias, Suarez, & Lloret, 2013). And, 
not just help but, rather, provide exactly the solution they were looking for: The develop-
ment of a new set of methods to track behavior directly (i.e., without having to rely on a 
proxy), passively (i.e., without the need for a participant response), objectively (i.e., with-
out a subjective/reflective component), automatically (i.e., without the need for human 
processing), and at-scale (i.e., with the potential to yield “Big Data”) within the natural 
flow of daily life, via mobile sensors and event logs produced by consumer smartphones 
(Harari et al., 2016; Miller, 2012; Schödel & Mehl, in press), wearables (Brown, Blake, 
& Sherman, 2017; Schmid Mast et al., 2015), and smart home devices (Nelson & Allen, 
2018). These methods were initially conceived in the 1990s within the fields of ubiqui-
tous, mobile, and pervasive computing (Krumm, 2018), but they experienced a major 
developmental thrust as smartphones became widespread for their ability to facilitate 
communication and many other activities in daily life (e.g., media consumption, travel, 
shopping). Ultimately, these methods came to be known as “sensing” methods, with the 
vast majority of research using this method to date being conducted with “mobile sens-
ing” devices such as smartphones and wearables.

In this concluding chapter, we highlight and reflect on some central lessons and 
current challenges, open questions, and future directions for mobile sensing research 
in psychological science. First, we consider the key lessons learned from mobile sens-
ing research in psychology so far. Next, we turn to the question of where psychological 
measurement based on mobile sensing currently stands. Finally, we consider the potential 
synergies and tension of mobile sensing research conducted in academic and corporate 
environments.

Lessons Learned from Mobile Sensing Research in Psychology

A couple of key lessons are evident to the editorial team as we conclude this handbook 
project. These lessons are based on the chapter submissions as well as our own experiences 
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and reflections on conducting mobile sensing research. We share them in an effort to 
answer the most pressing question: How can psychologists thrive, conducting research 
on human behavior using mobile sensing methods?

The first, and most important, lesson is that mobile sensing is not a panacea for 
all methodological challenges facing the field of psychology. We hope it is clear by now 
that mobile sensing holds considerable promise for measuring human behavior naturally 
and directly in daily life. However, we also hope it is clear that a lot of work remains 
to be done before this method can be considered an established “standard” tool in the 
psychologist’s methodological toolkit. These are still the early days of mobile sensing, 
particularly with respect to its use in the social (relative to computer) sciences. As such, 
this is a particularly exciting time to be developing, employing, and evaluating these 
methods. One opportunity to come of this lesson is the realization that we need improved 
standards and agreed-upon guidelines for collecting, processing, and analyzing mobile 
sensing data. For example, what is the right sampling rate to use when collecting data 
from mobile sensors or event logs, and how should this be decided? How should one 
go about creating variables (or “features”) from mobile sensing data? When and how 
should top-down or bottom-up approaches be used to reduce complexity in multimodal 
datasets and to make decisions with regard to modeling strategies? How should one go 
about evaluating the reliability and validity of mobile sensing measurements? These are 
just some of the questions that come to the forefront of our minds when we think of what 
remains to be thoroughly investigated and established.

We believe the chapters in this handbook are the first steps toward providing a 
foundation for such guidelines. However, this is ultimately a comprehensive research 
task, akin to the process of evaluating self-reports as a methodology and developing 
best practices for scale construction and validation. Therefore, what has been done so 
far can only be the basic foundation and beginning of the discussion, and we anticipate 
that a great deal of progress will be made to establish important “how-tos” around this 
method in the years to come. In the following section, we discuss some of the advantages 
and limitations that are unique to measurement based on mobile sensing in the context 
of two assessment examples (for personality and clinical psychology) to render some of 
these points more concrete.

The second lesson is that it “takes a village,” and an interdisciplinary one, to con-
duct mobile sensing research in psychology today. We anticipate this will change to some 
extent as the methodology matures, and in particular as more commercial software plat-
forms become available to facilitate both the collection and processing of mobile sensing 
data. However, at the time of writing this chapter and wrapping up this handbook proj-
ect, it seems that mobile sensing research in psychology is still, and will continue to be for 
some time, profoundly an interdisciplinary effort. Most of the research teams working 
on mobile sensing studies include a blend of social scientists working with researchers or 
staff with more technical and computational expertise (e.g., computer scientists, engi-
neers, data scientists).

At present, such interdisciplinary collaborations can be instrumental to ensuring 
that data collection proceeds smoothly (e.g., without running into inexplicable software 
crashes or bugs) and that the data processing and/or analyses are being carried out sys-
tematically and correctly (and ideally in ways that are transparent and reproducible). 
However, as mobile sensing becomes more mainstream, we expect that we will see paral-
lels to how the field of experience sampling has developed over time. There, in the early 
days, experience sampling was done via various researcher-developed software (e.g., the 
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ESP program; Barrett & Barrett, 2001). Today few of those programs exist, and the 
implementation is largely accomplished via commercial app platforms. A parallel grad-
ual move toward providing access to mobile sensing platforms as a (commercial) service 
would, we suspect, reduce the need for interdisciplinary team efforts to conduct mobile 
sensing research in psychology. On the other hand, it could also bring new challenges 
(e.g., increased cost, less flexibility). We discuss some of the issues around academic ver-
sus corporate mobile sensing research in the section “How Will Mobile Sensing Research 
in the Academic versus Corporate Environment Inform Psychological Science?.”

What Are We Actually Measuring with Mobile Sensing?

Mobile sensing offers psychological science (and neighboring disciplines) novel ways 
of measuring in situ behavior directly, and it also holds promise for measuring in situ 
thoughts and feelings indirectly. We want to highlight some advantages of measurement 
based on mobile sensing by considering two examples from personality and clinical 
assessment. We will then discuss some limitations and desiderata for future research.

Personalized Assessment of Personality

In the domain of personality assessment, several studies have demonstrated that Big Five 
personality traits can be predicted from aggregate indicators derived from mobile sens-
ing data with varying levels of accuracy (for an overview, see Peltonen et al., 2020). 
More work is needed before such an assessment approach can become useful in applied 
domains. However, another relatively unexplored area of research for more personalized 
personality assessment lies in identifying behavioral signatures.

In a prominent theory of personality, Mischel and Shoda (1995) characterized per-
sonality signatures as “intra-individually stable, if . . . then, situation behavior relations” 
(i.e., behavioral signatures; p. 248). The if component refers to the situations a person is 
in, and the then component refers to the individual’s responses to the situation. Mobile 
sensing allows researchers to assess the if and the then components in a passive, more 
comprehensive, and ecologically valid way compared to what has been possible so far. 
For example, situations can be assessed in situ in real life, and they can be characterized 
by their temporal-spatial context (e.g., time, location, climate) as well as the social con-
text using complex measurement approaches (e.g., GPS data, videos, pictures, Bluetooth 
measures, self-reports; Harari, Müller, & Gosling, 2020). Moreover, the then compo-
nent could be more comprehensively assessed using multimethod data (e.g., physiological 
responses, activity data, behavior in social networks, self-report). This not only allows 
testing basic assumptions about the situation–behavior link, but it also offers new pos-
sibilities for analyzing the development of personality. From this theoretical perspective, 
the change of the behavior per se (e.g., an individual shows more conscientious behavior 
with increasing age) seems to be less important than analyzing the stability and change of 
the situation–behavior link. If this link does not change over time, but the frequency of 
situations does, an increase of conscientious behavior might not indicate a change in per-
sonality signatures but rather a change in the occurrence of situations encountered over 
time. Such behavior changes would need to transfer to different situations (i.e., new if–
then contingencies developed) for the changes to be considered personality development, 
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and not simply a result of persistent environmental demands (Wrzus & Roberts, 2017). 
By combining sophisticated longitudinal designs with multimethod mobile sensing 
assessments, researchers can analyze hypotheses about the facets and development of 
personality in new ways that were not possible in previous research with more traditional 
assessment strategies.

Personalized Assessment of Psychopathology

In clinical psychology, personalized models of psychopathology are being widely dis-
cussed. According to Wright and Woods (2020), “the personalized approach of psy-
chopathology conceptualizes mental disorders as a complex system of contextualized 
dynamic processes that is non-trivially specific to each individual, and it seeks to develop 
formal idiographic statistical models to represent these individual processes” (p. 49). For 
clinical assessment, the context is also gaining increasing importance for understanding 
individual psychopathological processes, and this requires a different type of clinical 
assessment (e.g., Sewall & Wright, 2021). As is true of the example of personality assess-
ment, mobile sensing can contribute to personalized clinical assessment by providing 
critical information about the relationship between the context of behavior and feelings 
in daily life.

Clinical interventions can also be tailored to contexts by taking the individual mean-
ing of a context for an individual into account, and they can be directly presented and 
evaluated on the smartphone as needed (Nahum-Shani, Chapter 30, this volume; Nahum-
Shani et al., 2018). Advanced statistical modeling methods such as those featured in Part 
III of the Handbook (e.g., machine learning, deep learning, Big Data dimensionality 
reduction methods, dynamic network models, dynamic structural equation models) can 
be applied to analyze this type of data, to develop new models of assessment, and to 
evaluate their psychometric qualities (e.g., Lane et al., 2019).

Challenges of Measurement Based on Mobile Sensing

These two examples from personality and clinical assessment illustrate some advantages 
that mobile sensing methods can provide in psychology (see other chapters of the Hand-
book for additional examples), but they also reveal some important challenges.

Meaning of Measurements

The richness of mobile sensing data and the automated way in which they can be pas-
sively obtained via ubiquitous mobile technology can tempt researchers to preemptively 
ascribe them the status of “objective measurements”—and to equate objectivity with 
validity. However, the many chapters in this handbook have shown that the interpreta-
tion of mobile sensing data is not as simple as it may seem at first glance. For example, if 
one is interested in measuring smartphone behavior (such as application use from event 
logs), then the measurements seem quite valid at face value, and the challenge lies in 
deciding how to categorize or interpret the observations. However, other—and effec-
tively most— forms of mobile sensing data are more complex, such as activity data, 
which require the assessment of additional information such as the context or experience 
to imbue them with psychological meaning. Otherwise, the dormancy of the device may 

�	 Where We Are and Where We Might Go	 741



well be mistaken as inactivity of the owner. Thus, mobile sensing should not substitute 
existing measures in psychology, but it can complement them in meaningful ways—and 
vice versa (Ebner-Priemer & Santangelo, Chapter 13, this volume).

Let’s be more specific, using the prime example in clinical research: predicting 
upcoming episodes in bipolar disorder. Why is this often considered the prime example? 
Simply because symptomatology of interest (activity, social interaction, sleep) is connatu-
ral to smartphone sensing (GPS tracking, tracking of phone calls and social media use, 
tracking alarm clock, acceleration, rest mode) and prediction of new episodes is a major 
treatment goal (Ebner-Priemer & Santangelo, 2020). Although we highlighted in our 
introduction that mobile sensing offers the possibility to measure behavior directly, with-
out relying on proxies, we are ultimately again dependent on proxies, as we are interested 
in activity rather than in mere GPS coordinates. In addition, pure mobile sensing data 
alone is useless for this kind of research, as heightened intraindividual physical activity 
in patients with bipolar disorder might also be caused by new running shoes, the move 
into a more walkable neighborhood, retirement, medical advice, and so on—all issues 
entirely unrelated to an ostensibly oncoming bipolar episode. To train machine learning 
models, we need labeled data (ground truth; e.g., exact information about on what days 
a patient experienced a depressive episode), which calls for integrating classical psycho-
logical daily life research methods such as experience sampling or daily diaries (Mehl 
& Conner, 2012). In other words, for quite a while, mobile sensing will not replace 
traditional ambulatory assessment methods. Rather, traditional ambulatory assessment 
methods will continue to be needed and critical for elevating mobile sensing to higher 
psychometric grounds.

The validity of the (diagnostic) inference is crucial (Eid & Holtmann, Chapter 14, 
this volume; Mohr, Zhang, & Schueller, 2017). Just taking mobile sensing variables as 
“proxies” of established psychological constructs might be too simplistic, and it goes 
against the principles of multimethod measurement and triangulation, as well as against 
the importance of an integrative understanding of the complex phenomena of the social 
and behavioral sciences. The psychological meaning and construct validity of mobile 
sensing measures might be less important in cases where prediction instead of explana-
tion is in the focus of research (Yarkoni & Westfall, 2017). Recent advances in mod-
ern modeling methods such as machine learning might strengthen the tendency to value 
prediction over explanation. However, the intelligent application of machine learning 
methods does not take place in a theoretical vacuum, and it requires a theoretical under-
standing of the phenomenon under investigation (Brandmaier, Chapter 17, this volume). 
Fruitfully integrating mobile sensing into psychological science therefore requires studies 
that not only focus on technological feasibility but also carefully consider the psycho-
metric properties of the derived measures (e.g., construct validity). And such “holistic” 
endeavors need appropriate funding for research programs that do not inherently equate 
mobile sensing with objective measurement but, rather, harness the power of mobile sens-
ing in the spirit of and with an eye on sound psychometric measurement.

Development of New Theories

In psychology, the emergence of new methods is often followed by the development of new 
theories (about behavior and measurement). One reason for this is the fact that method 
effects are rather strong in psychology (e.g., Eid & Diener, 2006). If novel methods fail 
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to converge with established methods, it often points to the new methods, in fact, mea-
suring (at least partially) a different/new construct. Methods effects are not “the serpent 
in psychologist’s Eden” (Cronbach, 1995, p. 145); rather, they often capture meaning-
ful differences in substantive aspects of constructs. For example, the development of 
implicit attitude measures (e.g., Hofmann, Gawronski, Gschwendner, Le, & Schmitt, 
2005) spurred the development of attitude theories and the importance of the distinction 
between implicit and explicit attitudes. It is likely—and desirable—that the full arrival of 
mobile sensing in psychology will spur the refinement of existing theories and develop-
ment of new ones. In this regard, we think mobile sensing has the potential to ultimately 
cause a paradigm shift (Kuhn, 1962) in psychological science. This type of shift requires 
openness to challenge established theories and the courage to leave known methodologi-
cal and theoretical paths behind.

How Will Mobile Sensing Research in the Academic 
versus Corporate Environment Inform Psychological Science?

Mobile sensing research is conducted in both academia and industry, and some collabo-
ration occurs between the two domains. Academics use industry-developed apps, tools, 
and data, and industry builds on academic research and draws hires from university-
based teams, suggesting a largely synergistic coexistence. At the same time, mobile sens-
ing in academia differs from corporate research in at least three aspects: (1) resources, 
(2) regulations, and (3) aims. All three of these differences affect the progress and societal 
implications of mobile sensing research.

Resources

Even with the best funded project and research program, academic mobile sensing 
researchers have by a factor less financial and human resources compared to technol-
ogy companies. And, increasingly so these days, even if an academic project is well-
funded, it encounters difficulties in finding suitable doctoral, postdoctoral, staff, or fac-
ulty researchers because industry is often offering substantially more attractive “package 
deals” (e.g., with respect to pay, benefits, schedules, and the ability to choose where to 
live and work). Financial and personnel resources impact the progress that can be made 
with any given project. While developing an app or analyzing mobile sensing data might 
take months if one developer or doctoral/postdoctoral student works on it alone, large(r) 
industry teams can achieve so much more in a much shorter time. In addition, major 
tech companies accrue immense amounts of mobile sensing data as a natural product 
of their business activity. For example, whereas collecting objective sleep and activity 
(actigraphy) data on a few hundred participants constitutes a multiyear research project 
for an academic team, major technology companies accrue these data naturally and con-
tinuously, day after day, for millions of people. Therefore, answering, for example, the 
question whether physical activity promotes a good night of sleep is, for academic mobile 
sensing researchers, a matter of years, whereas, for corporate researchers, it amounts to 
metaphorically not much more than a press of a button. This might lead to academics 
asking themselves (or, as in our personal experience, being asked by funders) if or how 
they could ever compete with companies doing this type of research.
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Regulations

Academic researchers are well aware of the many regulations they have to adhere to: Ethi-
cal guidelines ensure that scientific studies do not cause harm to the mental or physical 
well-being of participants. This concerns immediate effects, such as too much distress or 
harmful behavior, as well as long-term effects that might arise if private, sensitive infor-
mation becomes public. The protection of personal information as mundane as birth date 
and as sensitive as medical conditions is additionally ruled by laws in many countries, 
most recently with the European General Data Protection Regulation (“Data Protection 
in the EU,” 2022) or the Federal Trade Commission Act and several state-level acts in the 
United States. Still, many countries do not possess such legal regulations (Woodward, 
2021).

Of course, in many countries, corporations are also subject to these kinds of legal 
regulations, and yet countless examples exist where companies fail to adhere to them 
(e.g., Venturini & Rogers, 2019). Similarly, research was carried out by companies, or 
in cooperation with companies, that demonstrates the ethical sensitivities and respon-
sibilities of mobile sensing research. For example, when girls and women have a higher 
probability to develop body image problems after viewing social media content related to 
thinness (WSJ noted, 2021); when consumers buy more goods after viewing personality-
tailored advertisements (Matz, Kosinski, Nave, & Stillwell, 2017); and when algorithms 
detect political or sexual orientation from social media pictures (Kosinski, 2021; Wang 
& Kosinski, 2018). The last named is especially problematic in countries where politi-
cal opposition is suppressed or homosexuality is amerceable, and yet even in democratic 
countries this information might be misused. While ethics boards of academic institu-
tions seek to prevent unethical and harmful research, and perhaps fail in some cases, 
problems are compounded if such studies are carried out with millions of customers.

An additional complication arises from confidentiality agreements that companies 
arrange with employees or academic collaborators. Public information (WSJ noted, 2021) 
and personal communication with researchers reveal that companies can and do restrict 
what is published outside of their company. Presumably, this applies to results that might 
threaten the company’s profit or reputation, whereas favorable results are more likely 
published. Science has taught us for decades that this kind of publication bias impedes 
balanced evaluation of scientific knowledge (e.g., Ferguson & Brannick, 2011). Some 
tension between open-science standards in academia (e.g., Nosek et al., 2015) and the 
protection of company knowledge through confidentiality and patents in industry is com-
prehensible. It will be interesting to see how cooperation between open-science-oriented 
academic researchers and profit-oriented corporations will develop in the future (King & 
Persily, 2018).

Aims

It is not a political statement to proclaim that a company’s central aim is to reap profit. 
This aim is certainly legitimate (up to a certain point), but technology end users have to 
be aware that making money is the driving force behind commercial technology, and 
making consumers’ lives easier via their products, apps, and services is either a nice side 
effect or an “epiphenomenon.” As many articles have highlighted (e.g., Matz et al., 2017; 
Venturini & Rogers, 2019; WSJ noted, 2021), conflicts of interest can arise when people 
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use technology, although it harms their health, relationships, or finances. At the same 
time, it is hard to imagine how companies could sustainably prioritize consumer well-
being over financial benefit.

In contrast, the academic ideal of psychological science is about understanding human 
behavior, thoughts, and feelings. Although money in the form of sufficient funding is rel-
evant, profit is irrelevant to the scientific endeavor. This allows academic researchers to 
follow discoveries without censoring results, depending on how marketable they are. In 
our opinion, this highlights a unique advantage of academia. Still, academia sometimes 
has to defend this important advantage to university administration and funding agencies 
that can (some would say have to) approach academia with more of a business mindset 
(Forschung & Lehre, 2018).

Overall, it would be preferable to be more optimistic about the synergistic coexis-
tence and collaboration of academia and industry. Yet several examples and conversa-
tions with colleagues paint (to us) a somewhat sober picture—at least at this moment 
in time. While resources and regulations seem to disadvantage academic research, free-
dom of research and independence of discovery are the hallmarks of science, and we are 
well advised to uphold and defend them. Undoubtedly, individual researchers might at 
times also operate under bias (e.g., to maximize publication impact or funding); yet the 
scientific community and its debates (ideally) act as checks-and-balances to counteract 
individual researcher bias. For example, the scientific debates surrounding the risks and 
benefits of computer games (e.g., Granic, Lobel, & Engels, 2014) led to a better under-
standing and more nuanced picture than the (lopsided) evaluation by the gaming indus-
try. Unbiased research—or, in more idealistic terms, “unraveling the truth”—is only pos-
sible with sufficient funding and motivated researchers who subscribe to this scientific 
ideal. To the extent that these two conditions are met, there should be no shortage of 
motivated researchers in our scientific community.

Conclusions

The assessment of behavior directly, passively, objectively, and at-scale in the natural 
environment by mobile sensing, together with neuroscientific developments, is one of the 
most important revolutions in psychological assessment. Many of the existing psycholog-
ical assessment methods are ultimately refinements and further developments of methods 
that were already available 100 years ago. These established methods, of course, continue 
to be important. However, mobile sensing offers a completely new and unique access to 
human behavior (as well as thoughts and feelings indirectly), and its technical capabili-
ties are bound to dramatically increase over the next years. Also, statistical methods for 
analyzing these data are bound to co-develop at an accelerated rate in the years to come.

From purely technical perspectives, many of the challenges around and limitations 
of the current generation approaches will gradually, and possibly more rapidly than one 
anticipates, disappear. However, what makes the field of mobile sensing so intriguing for 
researchers in the social and behavioral sciences is not the overcoming of the technical 
limitations but, rather, the solving of the fascinating, broader methodological and theo-
retical issues that this emerging approach highlights. How can the validity of inferences 
drawn on the basis of mobile sensing data be proved? How can the incremental validity 
beyond traditional methods be demonstrated? How can quality standards be established 
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and open-science standards be fulfilled? In which way can results of mobile sensing stud-
ies be explained by current theories, and in what ways do theories need to be adapted? 
How can theories of behavior, feelings, attitudes, physiology, personality, sociality, and 
environments be integrated into our understanding of thoughts, feelings, and behavior 
in daily life? And how can these theories be validly tested with the use of mobile sens-
ing methods? Getting answers to these questions requires large-scale interdisciplinary 
research programs that critically examine this emerging field, drawing on theories and 
methodological concepts from the behavioral and social sciences. We hope that the chap-
ters of this handbook help social and behavioral scientists further their understanding of 
mobile sensing methods and ultimately ignite the spark to see how they can use them to 
enrich their own research programs.
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