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Preface

Modal logic is a theoretical field that is important not only in philosophy, where
logic in general is commonly studied, but in mathematics, linguistics, and com-
puter and information sciences as well. This book will be useful for students,
researchers, and professionals in all of these and related disciplines. The only
requirement is some familiarity with first-order logic and elementary set-theory.
The main outline of this book is a development of the logical syntax and se-
mantics of modal logic in three stages of increasing logical complexity. The
first stage is a comprehensive development of sentential modal logic, which is
followed by a similarly comprehensive development of first-order modal pred-
icate logic. The final stage is a development of second-order modal predicate
logic. These stages are introduced gradually, with increasing difficulty at each
stage. Most of the important results in modal logic are described and proved in
each of their respective stages.

This book is based on a series of lectures given over a number of years at
Indiana University by the first author. A draft of the book has also been used by
the second author in Costa Rica and Mexico. The book is organized as follows.
We begin in chapter 1 with concatenation theory and the logistic method. By
means of this theory and method we describe the construction of expressions,
formal languages, and formal systems or calculi. Different modal calculi are then
constructed in chapter 2. These cover all of the well-known systems, S1–S5, of
Lewis and Langford’s 1932 classic Symbolic Logic. As already indicated, these
systems are constructed first on the level of sentential (or propositional) logic
and then later in chapter 7 on the level of first-order predicate logic, where
we distinguish the quantified modal logic of actualism from that of possibilism.
The systems are then extended yet again to the level of second-order modal
predicate logic in chapter 9, where the notion of existence that is central to the
actualism-possibilism distinction is given a deeper and finer-grained analysis in
terms of existence-entailing concepts, as opposed to concepts that do not entail
existence.

Our distinction between actualism and possibilism in quantified modal logic
is similar to what is sometimes described as variable-domain versus fixed-domain
semantics. But possibilism on our version goes beyond a fixed-domain semantics
by including actualism (and hence a variable-domain semantics) as a proper
subsystem. In addition, our development of second-order actualist and possibilist
modal logic are subjects that are not covered in other textbooks on modal
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logic. Yet the fuller version of possibilism and the second-order modal logics
described here are important subjects that students and others in philosophy,
mathematics, and computer and information sciences should know about and
be familiar with in some detail.

Logical semantics is also part of the logistic method, as our comment on
variable-domain versus fixed-domain semantics indicates. We do not take up
this subject until chapter 3, however, where on the level of sentential modal logic
we introduce matrix, or many-valued, semantics. The matrix, or many-valued,
semantics we describe in this book is an extension to modal logic of the matrix
semantics that was developed by Jan �Lukasiewicz and Alfred Tarski in 1930 for
modal-free sentential logic. This type of semantics was initially developed for
the study of many-valued logics, i.e., logics for which there can be truth values
other than truth and falsehood. An initial presumption in the early years of
the history of modal logic was that an adequate interpretation of modal notions
such as necessity and possibility could be given in terms of matrices having
more than the standard two truth values, e.g., contingent truth and contingent
falsehood in addition to truth and falsehood. The main conclusion of chapter 3
is that, despite the historical priority of this approach, no finite matrix, and
therefore no finite system of “truth-values,” provides an adequate semantics for
the kinds of normal sentential modal logics described in chapter 2, i.e., no finite
matrix yields a completeness theorem for those systems. Finite matrices can be
used for other purposes, however, such as showing that certain modal principles
are independent of others, or that certain modal calculi are consistent. The
subject and results of matrix semantics are material that is not covered in most
textbooks on modal logic.

Possible-worlds semantics, which was first introduced by Rudolf Carnap in
1946 in terms of his state-description semantics, is initially described for senten-
tial modal logic in chapter 4. Unlike our approach in this book, however, Carnap
was not concerned with different notions of necessity and possibility, but only
with logical necessity and logical possibility. In his account of logical necessity
and logical possibility, Carnap proposed a criterion of adequacy that any for-
mal semantics for these notions must satisfy. We describe Carnap’s criterion in
chapter 4, where we construct both a formal semantics and a modal logic that
satisfies that criterion in terms of the ontology of logical atomism—an ontology
that was implicit in Carnap’s state-description semantics.

The semantics we construct for logical necessity in chapter 4 is given in terms
of the notion of a logical space that contains “all logically possible worlds.”
This semantics validates all of the theorems of S5, which is usually thought
to represent logical necessity, but it validates more as well. In fact, the logic
it characterizes, which we call Lat, amounts to a nonclassical extension of S5.
We show in chapter 4 that Lat is both complete and decidable, and, moreover,
we prove the thesis that possible worlds that are indiscernible in Lat in their
atomic facts are indiscernible in all of their facts, including modal facts as well,
which is as it should be in logical atomism. It is noteworthy, however, that
when the notion of “all of the possible worlds” of a logical space is applied to
first-order modal predicate logic (in terms of standard model theory), it turns
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out not to be complete. In fact, as we show in chapter 8, at that level the
modal logic for logical necessity is essentially incomplete (and equivalent to a
fragment of standard modal-free second-order predicate logic), which explains
why Carnap was unable to prove the completeness of his modal predicate logic
in 1946. On the other hand, when restricted to monadic modal predicate logic,
the logic is not only complete but decidable as well.

It is significant that the modal logic S5 can be shown to be complete on both
the sentential and quantified levels only by allowing the notion of “all possible
worlds” of a logical space to have a secondary meaning in which the possible
worlds of that space might be “cut down” to a proper subset of those worlds.
We refer to this difference regarding the notion of “all possible worlds” as one
between a primary and a secondary semantics for modal logic. In a secondary
semantics, possible worlds are not individuated in terms of their nonmodal facts,
but depend on their modal facts as well. In chapter 5 we show how a complete-
ness theorem for S5 can be proved by means of such a “cut down” or secondary
semantics.

In chapter 6 we develop a semantics for sentential modal logic in terms of
relational world systems, i.e., systems of possible worlds that stand in various
kinds of relations of accessibility to one another. The minimal modal logic known
as Kr is shown to be complete with respect to the class of all world systems
(i.e., where accessibility is the universal relation between worlds). Other modal
logics are then shown to be complete with respect to certain restricted types
of accessibility relations, e.g., reflexive, symmetric, transitive, etc., between the
different worlds in relational world systems.

In chapter 7 we describe the syntax of first-order modal predicate logic and
then develop the first-order extensions of the different sentential modal logics
constructed in chapter 2. We distinguish in this chapter between actualism,
which is based on free logic, i.e., logic that is free of existential presuppositions
for singular terms, and possibilism, which is based on standard logic. Various
theses, such as the Carnap-Barcan formula, are provable in possibilism that are
not provable in actualism.

In chapter 8 we develop a semantics for first-order modal predicate logic in
terms of standard model theory, the models of which we take to be set-theoretic
counterparts of possible worlds. A primary semantics for logical necessity as
based on the notion of “all possible worlds” of a logical space is also described
and, as noted above, shown to be essentially incomplete. The modal thesis
of anti-essentialism—that is, the thesis that concepts that apply necessarily
to some objects necessarily apply to all objects— is valid in this semantics,
however, which is as it should be for logical necessity. Logical necessity, in other
words, does not discriminate between objects and the concepts they fall under.

We also show on the basis of the anti-essentialist thesis that every de re
formula (where one or more quantifiers reach into a modal context) is logically
equivalent (in the primary semantics) to a de dicto formula (where no quan-
tifier reaches into a modal context), which is also as it should be for logical
necessity. The question whether or not all de re modalities are reducible to de
dicto modalities has been an issue of major concern and debate throughout the
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history of logic and philosophy. We now have a definitive answer in this debate,
at least for the case of logical necessity.

As noted above, we show in chapter 8 that the same semantics that applies to
logical necessity but based on a secondary interpretation of “all possible worlds”
is complete for S5 as a first-order modal predicate logic. Actualist and possibilist
semantics in terms of relational world structures with different accessibility re-
lations between possible worlds (models) are also described in this chapter for
other modal logics as well. Again, as on the sentential level, completeness the-
orems are shown to hold for different actualist and possibilist modal predicate
logics.

Finally, in chapters 9 and 10 we describe the syntax and semantics of differ-
ent second-order modal logics that are extensions of the systems described in
the earlier chapters. Concepts, or in realist terms properties and (intensional)
relations, are represented by functions from possible worlds (models) to appro-
priate extensions. Actualism and possibilism are distinguished more finely in
second-order modal logic in terms of existence-entailing concepts (i.e., functions
from possible worlds to extensions drawn only from the objects that exist in
those worlds) and concepts that do not entail the existence of their instances
(i.e., functions from possible worlds to extensions drawn from the wider do-
main of possible objects). To exist (as a concrete physical object) can then be
analyzed as falling under an existence-entailing concept. Existence is itself an
existence-entailing concept, of course, but because it is defined in terms of a
totality to which it belongs, it is an impredicative concept and therefore is very
much unlike most other existence-entailing concepts in that respect. Complete-
ness theorems for both actualist and possibilist second-order modal logics are
proved, but now not only with respect to a “cut down” on the notion of “all
possible worlds” but to a “cut down” on the notion of “all concepts” as well, as
in the manner of Henkin general models.

We want to emphasize that our account and use of concatenation theory and
the logistic method throughout this book is a feature that is not commonly used
in texts on modal logic. It is important for students to become familiar with
this method and in particular with concatenation theory and how expressions,
formal languages, and different formal systems can be constructed from simple
elements in a very precise way, and then with how different formal semantics
can be given for the languages and systems constructed. It is also important for
students to see how standard model theory can be extended and developed so
as to apply to modal as well as to standard (modal-free) logic.
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Chapter 1

Introduction

Modal logic is a systematic development of the logic of the various notions that
are expressed in natural language by modal words and phrases. In this text we
will limit our study to the logic of necessity and possibility, which we take to be
logically dual to one another and therefore definable in terms of one another.
These notions are represented in natural language by sentential adverbs—that
is, adverbs, such as ‘necessarily’ and ‘possibly’, or ‘it is necessary that’ and ‘it is
possible that’. These adverbs modify whole sentences or sentential clauses with
the result being a sentence or sentential clause. We do not assume that there is
but one notion of necessity (or, dually, of possibility). In fact, we maintain that
there are potentially infinitely many different notions of necessity and possibility,
each of which can be expressed in natural language, and each of which has its
own logic—though some may have a logic equipollent to one another. We shall
attempt to explain this claim by formally developing the logic of a variety of
modal notions.

1.1 The Metalanguage

In the formal development of any logic, including modal logic, we distinguish
the language of the logic we are developing from the language in which such
a development takes place. As an object of study, the first is called an object-
language, and the second is called a metalanguage. It is in the metalanguage
that we formally characterize the object-language, including its logic, and prove
that it has certain syntactical and semantical properties. In this regard, the
metalanguage must be a secure foundational framework within which both the
logical syntax and the logical semantics of the object-language, and generally of a
host of object-languages, can be formulated and relative to which various proofs
can be given. The metalanguage that we shall adopt and utilize, at least in an
informal way, is von Neumann-Bernays-Gödel set theory, NBG, with urelements
(i.e., objects that are not themselves sets or ultimate classes). We assume an
elementary understanding of NBG, and of the distinction therein between sets

1



2 CHAPTER 1. INTRODUCTION

and ultimate (proper) classes. In general, the definitions and proofs that we
give in NBG will be presented informally, but in all cases it is understood that
our informal presentations could have been given in a strictly formal manner.
We avoid a formal description of such presentations here primarily for ease
of comprehension on the reader’s part. As usual, we take ‘∈’ to represent the
membership relation (of our metalanguage) and read ‘x ∈ y’ as ‘x belongs to y’
as well as ‘x is a member of y’. By using braces, a finite set all of whose members
are, for example, a0 , ..., an can be specified as {a0 , ..., an }. Also, we take {x: ...
x ...} to be the class of those objects x such that ... x ...., where ‘... x ...’ stands
for a sentential clause (of the metalanguage) in which ‘x’ occurs free. Similarly,
we take {x ∈ A : ... x ...} to be {x : x ∈ A and ... x ...} and understand other
set-theoretic notation, such as A ⊆ B, A ∪ B, A ∩ B,

⋃
A, and

⋂
A, to be

defined in the usual way. These specifications can be summarized and indicated
as follows.

• x ∈ y : x is a member of y.

• {a0, ..., an} : the set all the members of which are a0, ..., an.

• {x : ... x...} : the class of those x such that ... x ....

• {x ∈ A : ... x...} =df {x : x ∈ A and ... x...}.

• {f(x) : ...x...} =df {y : for some x, (y = f(x) and ...x...)}.

• A ⊆ B =df every member of A is a member of B.

• A ∪ B =df {x : x ∈ A or x ∈ B}.

• A ∩ B =df {x : x ∈ A and x ∈ B}.

• ⋃
A =df {x : for some B ∈ A, x ∈ B}.

• ⋂
A =df {x : for all B ∈ A, x ∈ B}.

• ⋃
x∈A f(x) =df {y : for x ∈ A, y ∈ f(x)}.

We also take ω to be the set of natural numbers; that is,

• ω =df {n : n is a natural number},

and, accordingly, we read ‘x ∈ ω’ as ‘x is a natural number’.
We will hereafter specify notation, whether introduced by definition or by

convention, in this manner. We shall also indicate special assumptions in this
way as well.

Convention: We will use ‘i’, ‘j’, ‘k’, ‘m’, ‘n’ (with or without primes or numer-
ical subscripts) as metalinguistic variables having natural numbers as their
values. We will also generally use ‘iff’ to abbreviate the English phrase ‘if
and only if’.
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Assumption: For each n ∈ ω, n = {m : m < n} (i.e., each natural number
consists of all of the natural numbers less than it).

Note: A consequence of this assumption is that 0 = the empty set.
By a relation-in-extension, or what, for brevity, we shall simply call a re-

lation, we understand a class of ordered pairs. Ordered pairs are themselves
defined as follows:

• (x, y) =df {x, {x, y}}.

The following Principle of Individuation for Ordered Pairs:

• If (x, y) = (z, w), then x = z and y = w,

follows immediately within NBG as a consequence of this definition. The do-
main, range, field, and converse of a relation, as well as the relative product of
two relations, are defined as follows:

Definition 1 If A and B are relations, then:
(1) DA =df {x : for some y, (x, y) ∈ A},
(2) RA =df {y : for some x, (x, y) ∈ A},
(3) FA =df DA ∪RA,

(4) Ă =df {(y, x) : (x, y) ∈ A}, and
(5) A/B =df {(x, z) : for some y, (x, y) ∈ A and (y, z) ∈ B}.

By a function we understand a many-one relation—i.e., a class of ordered
pairs each of whose first terms has a unique second term corresponding to it.

Definition 2 f is a function iff f is a relation such that for all x, y, z, if
(x, y), (x, z) ∈ f, then y = z.

Convention: If f is a function and x ∈ Df , then:
(1) f(x) = fx = the unique y such that (x, y) ∈ f ; and
(2) f“A =df {y : for some x ∈ A, y = f(x)}.

The adequacy of this definition of functionality is demonstrated in the fact
that the principle of individuation for functions—namely, that functions are
identical when, and only when, they have the same domain and correlate the
same value to each object in that domain—is now provable.

The Principle of Individuation for Functions: If f , g are functions, then
f = g iff Df = Dg and for each x ∈ Df , f(x) = g(x).

The class of all functions with B as domain and whose ranges are included
in A is specified as follows:

• AB =df {f : Df = B and Rf ⊆ A}.
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Definition 3 If n ∈ ω, then A is an n-place sequence (or n-tuple) iff A is
a function with n as domain.

Definition 4 If A is an n-place sequence, then the length of A = DA = n.

Definition 5 A is a finite sequence iff for some n ∈ ω, A is an n-place
sequence.

Note: By definition, 0 = the null (0-place) sequence.

Convention: If A is an n-place sequence, we set A = 〈A0, ..., An−1〉.

The weak and the strong principles of induction on natural numbers are
understood to be as follows:

Principle of weak induction on ω: If 0 ∈ A and for all n ∈ ω, n ∈ A only
if n + 1 ∈ A, then ω ⊆ A.

Principle of strong induction on ω: If, for all n ∈ ω, n ⊆ A only if n ∈ A,
then ω ⊆ A.

1.2 Logical Syntax

1.2.1 Symbols and Expressions

The development of any logic involves the specification of a formal language,
which in turn involves some basic notions of logical syntax. We take as basic
to logical syntax the notion of a symbol (without concerning ourselves with
whether it is taken as primitive or defined). This is indicated in the following
assumption, which we add to our metalanguage NBG.

Assumption 1: The phrase ‘... is a symbol ’ is a meaningful 1-place predicate
of our metalanguage. We also assume that no symbol is a sequence of
symbols.

By an expression we understand any finite sequence of symbols.

Definition 6 ζ is an expression of length n iff ζ is an n-place sequence
such that for each i < n, ζi is a symbol.

Definition 7 ζ is an expression iff for some n ∈ ω, ζ is an expression of
length n.

Convention: We shall use lowercase letters of the Greek alphabet as meta-
language variables having expressions as their values, and capital Greek
letters to refer to classes of such expressions.
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1.2.2 Concatenation

Expressions are combined to form new expressions by the operation of concate-
nation. Because expressions are sequences, the operation of concatenation of
expressions is but a restricted form of the concatenation of sequences to make
new sequences. The concatenation of sequences is defined as follows:

Definition 8 If A is an m-place sequence and B is an n-place sequence, then
A�B =df {(i, x) : i < m + n and either (i < m and x = Ai) or (m ≤ i and
x = Bi−m)}.
Two immediate consequences of this definition are the following theorems re-
garding the concatenation of sequences.

Theorem 9 If A is an m-place sequence and B is an n-place sequence, then

A�B = 〈A0, ..., Am−1〉�〈B0, ..., Bn−1〉 = 〈A0, ..., Am−1, B0, ..., Bn−1〉.
Theorem 10 If A is a finite sequence, then A = 0�A�0 = 0�A = A�0.

The notion of one expression occurring in (or being part of) another expres-
sion is definable in terms of concatenation as follows:

Definition 11 σ occurs in τ (in symbols, σ ∈ OC(τ)) iff there are expressions
ζ, ξ such that τ = ζ�σ�ξ.

Note: Because ξ = 0�ξ�0, it follows that every expression occurs within itself,
i.e., the relation of occurring-in is reflexive. It is also transitive, as the following
lemma indicates:

Lemma 12 If σ ∈ OC(τ) and τ ∈ OC(ξ), then σ ∈ OC(ξ).

The notion of replacing an occurrence of one expression by an occurrence of
another expression is also definable in terms of concatenation.

Definition 13 τ ′ is obtained from τ by replacing an occurrence of σ by
an occurrence of σ′ (in symbols, Rep(τ, τ ′, σ, σ′)) iff there are expressions ζ,
η such that τ = ζ�σ�η and τ ′ = ζ�σ′�η.

In addition to the definition of concatenation as an operation on sequences as
defined in the rich foundational framework of NBG, there are at least two other
approaches that can be taken toward the theory of concatenation. The first is the
well-known technique of the arithmetization of expressions and of the operations
on expressions that Kurt Gödel used in his proof of the incompleteness theorem
for systems rich enough to contain elementary arithmetic.1 The second is the
axiomatic approach in which concatenation is taken as a primitive notion subject
to certain axioms. Such an axiomatic treatment is given by Alfred Tarski in §2
of his paper, “The Concept of Truth in Formalized Languages”.2 An axiomatic
treatment of the elementary (first-order) theory of concatenation is also given
by W.V.O. Quine in “Concatenation as a Basis for Arithmetic”.3

1Gödel 1931.
2Tarski 1931.
3Quine 1946.
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1.2.3 Formal Languages and Systems

The development of the logic of any notion requires, as we have said, an object-
language in which such a notion is to be formally represented. Such an object-
language, as a formal object of study, can be characterized in terms of (1) the
different categories of the basic expressions that make up that language, (2) the
structural operations that can be performed on the basic expressions to generate
(3) the proper expressions of the language (upon which those same operations
can in turn be performed), (4) the algebraic structure that is generated in this
way, (5) the syntactical rules that determine the categories to which the struc-
tural operations can be applied and the categories of the expressions that result
from such operations, and, finally, (6) specification of the fundamental category
of declarative sentences of the language. As Richard Montague has shown in
his paper on universal grammar, each of these components can be specified in a
precise way in the construction of different formal (disambiguated) languages.4

For our purposes, however, we shall avoid such a detailed specification, be-
cause the kinds of formal languages we shall study will all be of a relatively
simple form. In particular, we shall hereafter assume that the well-formed ex-
pressions of a formal language correspond to the two semantic categories of
naming (i.e., of singular terms) and asserting (i.e., of having the form of an
assertion). Thus, a formal language can be specified in terms of (1) a set of
symbols from which the expressions of the language are formed, (2) a set of
expressions that constitute the (singular) terms of the language, and (3) a set
of expressions that constitute the formulas, or sentence forms, of the language.
We also require that the question of membership in each of these sets can be
answered in an recipe-like, algorithmic manner in a finite number of steps, i.e.,
that each of these sets is recursive.

Definition 14 L is a formal language iff there are recursive sets S, T , F
such that L = 〈S, T, F 〉, and
(1) S is a set of symbols (each of which is called a primitive symbol of L),
(2) T is a set of expressions of L (i.e., expressions drawn from S, each of which
is called a term of L), and
(3) F is a nonempty set of expressions of L (each of which is called a formula
of L).

Definition 15 If L is a formal language, then:
FM(L) =df the set of formulas of L, and
TM(L) =df the set of terms of L.

A formal language is not all that is involved in characterizing the logic of
a notion such as necessity. In addition to considerations of logical grammar,
we also need to specify the syntactical transformations that characterize the
inference rules that are assumed to be sound in such a language. The following
definition of an inference rule is more general than we need to consider here, but

4See Montague 1974.
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it is convenient to state the notion in this general way now and then consider
how we want to further restrict it. One particular restriction is that we shall
deal with only finitistic inference rules.

Definition 16 If L is a formal language, then:
(1) f is an inference rule in L iff f is a function from and into the set of all
subsets of FM(L), i.e., Df = {A : A ⊆ FM(L)} and, for A ⊆ FM(L), f(A) ⊆
FM(L);
(2) if Γ∪{ϕ) ⊆ FM(L), then ϕ is an f-consequence of Γ iff f is an inference
rule in L and ϕ ∈ f(Γ); and
(3) f is a finitistic inference rule in L iff f is an inference rule in L, and
for all ϕ, Γ such that Γ ∪ {ϕ} ⊆ FM(L), ϕ is an f-consequence of Γ iff there
is a finite set K such that K ⊆ Γ and ϕ is an f-consequence of K.

In this text we adopt the axiomatic method in developing the logic of any
notion, including even logical notions themselves. In applying this method we
require, in addition to the notions of a formal language and of an inference rule
in such a language, the notion of a formal system or calculus. We assume in what
follows that a calculus, or formal system, must be based on finitistic inference
rules, and that the axioms form a recursive set, i.e., that it is decidable whether
or not any given formula is an axiom of the system.

Definition 17 Σ is a formal system (calculus) iff there are a formal lan-
guage L and recursive sets A and I such that:
(1) Σ = 〈L, A, I〉,
(2) A ⊆ FM(L) (where A is called the axiom set of Σ), and
(3) I is a set of finitistic inference rules in L.

Provability and derivability are the two most important notions of this part
of logical syntax. By a derivation within a formal system of a formula ϕ from a
set Γ of formulas (premises) we understand a finite sequence that terminates in
ϕ and every constituent of which is either an axiom, a premise (i.e., a member
of Γ), or a consequence of preceding constituents by an inference rule of the
system. Proofs are just derivations from the empty set of premises. Derivability
and provability (or theoremhood) are then definable in terms of derivations and
proofs.

Definition 18 If Σ is a formal system and Σ = 〈L, A, I〉, then:
(1) ∆ is a derivation of ϕ from Γ within Σ iff Γ ∪ {ϕ} ⊆ FM(L), and for
some n ∈ ω, ∆ is an n-place sequence such that ϕ = ∆n−1 and for each k < n
either (a) ∆k ∈ A (i.e., ∆k is an axiom of Σ), (b) ∆k ∈ Γ, or (c) for some
inference rule f in I, ∆k is an f-consequence of {∆j : j < k};
(2) ∆ is a proof of ϕ within Σ iff ∆ is a derivation of ϕ from 0 (the empty
set) within Σ;
(3) ϕ is derivable from Γ within Σ, or, equivalently, Γ yields ϕ in Σ, in
symbols Γ �Σ ϕ, iff there is a derivation ∆ of ϕ from Γ within Σ; and
(4) ϕ is a theorem of (or provable in) Σ (in symbols �Σ ϕ) iff 0 �Σ ϕ.
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For convenience and brevity of expression, we adopt the following convention.

Convention: If Σ is a formal system, then:
FM(Σ) =df the set of formulas of the language of Σ;
TM(Σ) =df the set of terms of the language of Σ;
Ax(Σ) =df the set of axioms of Σ;
�Σ=df the relation of derivability within Σ; and
�Σ=df the relation of not being derivable within Σ.

An immediate consequence of the above definition is the following lemma:

Lemma 19 If Σ is a formal system and K ∪ Γ ∪ {ϕ} ⊆ FM(Σ), then:
(1) if ϕ ∈ K, then K �Σ ϕ,
(2) if ϕ ∈ Ax(Σ), then �Σ ϕ,
(3) if K ⊆ Γ and K �Σ ϕ, then Γ �Σ ϕ, and
(4) if K �Σ ϕ, then there is a finite K ′ ⊆ K such that K ′ �Σ ϕ.

Exercise 1.2.1 Prove the above lemma 19.

Prior to the introduction of the symbol for negation, the only notion of
consistency available is that of absolute consistency. On this notion, a formal
system is consistent if, and only if, not everything is provable in it, i.e., iff not
every formula of the system is provable in it.

Definition 20 If Σ is a formal system, then:
(1) Σ is absolutely consistent iff for some ϕ ∈ FM(Σ), �Σ ϕ; and
(2) Γ is absolutely consistent in Σ iff Γ ⊆ FM(Σ) and for some ϕ ∈ FM(Σ),
Γ �Σ ϕ.

Different formal systems stand in various relations to one another. One of
particular interest is that of one formal system being an extension of another
(or of the latter being a subsystem of the first). This notion is defined as follows:

Definition 21 If Σ1 and Σ2 are formal systems, then:
(1) Σ1 is an extension of Σ2 (or Σ2 is a subsystem of Σ1) iff FM(Σ2) ⊆
FM(Σ1), and for all ϕ ∈ FM(Σ2), if �Σ2 ϕ, then �Σ1 ϕ ; and
(2) Σ1 is a proper extension of Σ2 (or Σ2 is a proper subsystem of Σ1)
iff Σ1 is an extension of Σ2 but Σ2 is not an extension of Σ1.

1.2.4 The Logistic Method

One special form of the formal axiomatic method is the logistic method. This
method consists in (1) distinguishing among the symbols of a formal language
those that are logical constants from those that are not; (2) distinguishing among
the axioms of a formal system those that are logical axioms from those that are
not; and (3) allowing as inference rules only those that preserve truth under the
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intended interpretation of the logical constants, i.e., we require that the deriv-
ability relation lead only to logical consequences. Logistic systems are formal
systems that are described in accordance with the logistic method.

All of the formal systems that we shall consider in this text are logistic
systems satisfying certain assumptions. Three of those assumptions are indicated
below. They stipulate that we have at least a logical constant for (classical)
negation, which we call the negation sign, and a logical constant for the (mate-
rial, truth-functional) conditional, which we call the conditional sign. These two
signs, as is well known, allow for a complete representation of truth-functional,
sentential logic. We shall assume that these are the only two logical constants
of truth-functional, sentential logic that occur as primitive signs of the logistic
systems considered in this text. It is for that reason that we refer to the classical,
truth-functional, sentential logic that is based upon these signs as conditional-
negation logic, or, for brevity, CN-logic.

Assumption 2: c and n are distinct logical symbols. They are described as
follows:

• c = the conditional sign,
• n = the negation sign.

We shall use other logical constants, such as those for conjunction, disjunction,
and the material biconditional, as abbreviatory devices of the metalanguage.
These constants will enable us to represent a variety of logical forms more suc-
cinctly than otherwise can be given in terms of the negation and conditional
signs alone. We give graphic contextual representations of all of these constants
in the following (set-theoretic) definition.

Definition 22 If ϕ and ψ are expressions, then:

• (ϕ → ψ) =df 〈c〉�ϕ�ψ

• ¬ϕ =df 〈n〉�ϕ

• (ϕ ∧ ψ) =df ¬(ϕ → ¬ψ)

• (ϕ ∨ ψ) =df (¬ϕ → ψ)

• (ϕ ↔ ψ) =df [(ϕ → ψ) ∧ (ψ → ϕ)].

We should note here that, as defined above, →, ¬, ∧, ∨, and ↔ are not sym-
bols but metalanguage operations (functions) that take expressions (or pairs of
expressions) as arguments and yield expressions as values, regardless of what,
if any, formal language those expressions may be part of. We adopt the usual
conventions here about sometimes deleting or dropping the parentheses associ-
ated with the application of these (set-theoretic) operations. In particular, we
assume that ∧ and ∨ are applied before → and ↔, so that, e.g., [ϕ∧ψ → ϕ∨ψ]
is [(ϕ ∧ ψ) → (ϕ ∨ ψ)]. As the following definition indicates, we can use the
operation ↔ to say what it means for the rule of interchange of equivalents,
(IE), to be valid in a logistic system.
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Definition 23 If Σ is a logistic system, then the rule of interchange of
equivalents (IE) is valid in Σ iff for all ϕ, ϕ′, ψ, ψ′ ∈ FM(Σ), if Rep(ψ,ψ′,
ϕ, ϕ′) and �Σ (ϕ ↔ ϕ′), then �Σ (ψ ↔ ψ′).

The first of the next two assumptions amounts to stipulating that every
formula of a logistic system that is provable on the basis of classical CN-logic
is a theorem of that system. (It is well known that conditions (1)–(4) of As-
sumption 3 suffice as a complete axiom set for classical sentential logic.) The
fourth assumption listed below amounts to restricting all of the logistic systems
considered in this text to those for which the deduction theorem 24 below holds.
It should be noted that because we restrict ourselves to classical CN-logic, we
will use ‘logistic system’ hereafter to mean ‘classical logistic system’, i.e., one in
which the laws of classical CN-logic are valid.

Assumption 3: If Σ is a logistic system, then for all ϕ, ψ, χ ∈ FM(Σ) :
(1) �Σ ϕ → (ψ → ϕ),
(2) �Σ [ϕ → (ψ → χ)] → [(ϕ → ψ) → (ϕ → χ)],
(3) �Σ (¬ϕ → ¬ψ) → (ψ → ϕ), and
(4) if �Σ ϕ and �Σ (ϕ → ψ), then �Σ ψ.

Assumption 4: If Σ is a logistic system and K ∪{ϕ} ⊆ FM(Σ), then K �Σ ϕ
iff there are an n ∈ ω and ψ0, ..., ψn−1 ∈ K such that �Σ (ψ0∧ ...∧ψn−1 →
ϕ).

(Note: If n = 0, then we take the conditional indicated in Assumption 4 to be
just ϕ itself.)

Theorem 24 (Deduction Theorem): If Σ is a logistic system, K∪{ϕ,ψ} ⊆
FM(Σ) and K ∪ {ϕ} �Σ ψ, then K �Σ (ϕ → ψ).

Proof. Assume the hypothesis of the theorem. Then, by Assumption 4, there
are an n ∈ ω and χ0, ..., χn−1 ∈ K ∪ {ϕ} such that �Σ (χ0 ∧ ... ∧ χn−1 → ψ).
By assumption 3, we can assume that for i 
= j, χi 
= χj .

Case 1: χi = ϕ, for some i < n. Then, by Assumption 3, �Σ [χ0 ∧ ...χi−1 ∧
χi+1 ∧ ... ∧ χn−1 → (ϕ → ψ)]. But because χj ∈ K, for all j < n such that
j 
= i, then, by lemma 19, K �Σ χj ; and therefore, by Assumption 3, K �Σ

(χ0 ∧ ...χi−1 ∧χi+1 ∧ ...∧χn−1). Therefore, again by Assumption 3 (part 4) and
the fact that K contains the empty set, K �Σ (ϕ → ψ).

Case 2: χi 
= ϕ, for all i < n. Then χ0, ..., χn−1 ∈ K. But because, by
Assumption 3 (part 1), �Σ ψ → (ϕ → ψ), then, by parts 2 and 4 of Assumption
3, �Σ [χ0∧...χn−1 → (ϕ → ψ)]; and therefore, by Assumption 4, K �Σ (ϕ → ψ).

In addition to absolute consistency as previously defined in definition 20 of
§1.2.3, we can also define consistency for logistic systems in terms of negation.

Definition 25 If Σ is a logistic system and K ⊆ FM(Σ), then K is Σ-
consistent iff there is no ϕ ∈ FM(Σ) such that K �Σ ϕ and K �Σ ¬ϕ.
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Definition 26 If Σ is a logistic system, then Σ is consistent iff Ax(Σ) is
Σ-consistent.

Lemma 27 If Σ is a logistic system and K ⊆ FM(Σ), then the following
conditions are equivalent:
(1) K is Σ-consistent;
(2) for some ϕ ∈ FM(Σ), K �Σ ϕ (i.e., K is absolutely consistent in Σ); and
(3) for no ϕ ∈ FM(Σ), K �Σ ¬(ϕ → ϕ).

Exercise 1.2.2 Prove the above lemma 27.

In addition to the notion of the consistency of a set of formulas of a logistic
system, there is also the notion of maximal consistency (with respect to that
system), which corresponds to the idea of giving as full a description (relative
to the language of the system) of a possible world as can be consistently given
in that system. In other words, each maximally consistent set of formulas of
such a system can be taken as syntactical representation of a possible world
(relative to the language and the system in question). On the level of sentential
logic with which we are presently concerned, this notion of maximal consistency
(or of a syntactically described possible world) can be defined as follows. The
lemma that follows indicates the kind of fullness that is in question at this level
of logical analysis.

Definition 28 If Σ is a logistic system and K ⊆ FM(Σ), then K is maxi-
mally Σ-consistent (in symbols, K ∈ MCΣ) iff K is Σ-consistent and for all
ϕ ∈ FM(Σ), either ϕ ∈ K or K ∪ {ϕ} is not Σ-consistent.

Lemma 29 If Σ is a logistic system, K ∪{ϕ} ⊆ FM(Σ) and K ∈ MCΣ, then:
(1) ϕ ∈ K iff K �Σ ϕ;
(2) ϕ ∈ K iff ¬ϕ /∈ K;
(3) (ϕ → ψ) ∈ K iff either ϕ /∈ K or ψ ∈ K; and
(4) if �Σ ϕ, then ϕ ∈ K.

Exercise 1.2.3 Prove the above lemma 29.

It is a natural presumption that every consistent set of formulas of a logistic
system is part of a maximally consistent set of such formulas. The following
lemma indicates that this presumption is provable. The proof was first given by
A. Lindenbaum. The result, which we shall refer to as Lindenbaum’s lemma,
leads to another way of determining when a formula is derivable from a set of
formulas within a logistic system, and therefore of when a formula is a theorem
of such a system. These results are stated and proved in what follows.

Theorem 30 (Lindenbaum’s lemma): If Σ is a logistic system, K ⊆
FM(Σ) and K is Σ-consistent, then there is a set Γ ⊆ FM(Σ) such that K ⊆ Γ
and Γ ∈ MCΣ.
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Proof. Assume the hypothesis of the lemma, and let ϕ1, ..., ϕn, ... (n ∈ ω) be an
enumeration of FM(Σ). (That such an enumeration exists follows from the fact
that, by definition of a formal language, FM(Σ) is recursive.) We recursively
define the function Γ as follows:

1. Γ0 = K,

2. Γn+1 =
{

Γn if Γn �Σ ¬ϕn+1

Γn ∪ {ϕn+1} otherwise .

We show first that for all n ∈ ω, Γn is Σ-consistent. Toward doing so, let
A = {n ∈ ω : Γn is Σ-consistent}. It suffices to show by the principle of weak
induction that ω ⊆ A. By hypothesis, and because Γ0 = K, 0 ∈ A. Assume,
accordingly, that n ∈ A and, by reductio, that n + 1 /∈ A. Then, Γn 
= Γn+1,
which, by the above recursive definition, means that Γn �Σ ¬ϕn+1 and that
Γn+1 = Γn ∪ {ϕn+1}. Now, by lemma 27 (part 3), Γn+1 �Σ ¬(χ → χ), for
some χ ∈ FM(Σ), and therefore, by the deduction theorem, Γn �Σ [ϕn+1 →
¬(χ → χ)]. But then, by Assumption 4, Γn �Σ ¬ϕn+1, which, because n ∈ A,
is impossible.

We observe that for all m, n ∈ ω, if m < n, then, by the above recursive
definition, Γm ⊆ Γn. We now let Γ∗ =

⋃
n∈ω Γn and show that Γ∗ is Σ-consistent.

Assume, by reductio, that Γ∗ is not Σ-consistent. Then, by lemma 27, Γ∗ �Σ

¬(χ → χ), for some χ ∈ FMΣ, and, therefore, by Assumption 4 for logistic
systems, �Σ [ψ0 ∧ ... ∧ ψn−1 → ¬(χ → χ)], for some ψ0, ..., ψn−1 ∈ Γ∗. This
means that there are Γj0 , ...,Γjn−1 such that for each i < n, ψi ∈ Γji

. Let k =
the maximum of {j0, ..., jn−1}. Then, by the above observation, ψ0, ..., ψn−1 ∈
Γk, and therefore, by lemma 19 and Assumption 4 for logistic systems, Γk �Σ

(ψ0∧ ...∧ψn−1). But then, by Assumption 4, Γk �Σ ¬(χ → χ), which, by lemma
27, means that Γk is not Σ-consistent. But this is impossible by our earlier result
that each Γn is Σ-consistent. By reductio, we conclude that Γ∗ is Σ-consistent
after all.

Now because K = Γ0 ⊆ Γ∗, it suffices to show finally that Γ∗ ∈ MCΣ.
Assume, accordingly, that ψ ∈ FMΣ but that ψ /∈ Γ∗. But ψ = ϕj , for some
j > 0, and therefore ϕj /∈ Γj ⊆ Γ∗. Then, by definition, Γj−1 �Σ ¬ϕj , and
therefore, by lemma 19, Γ∗ �Σ ¬ϕj , from which it follows that Γ∗ ∪ {ϕj} is not
Σ-consistent.

The next theorem provides a syntactic version of the idea that a formula ϕ
of a logistic system Σ is a logical consequence (with respect to Σ) of a set of
formulas K of Σ (taken as premises) if, and only if, ϕ holds in every syntactically
described possible world (with respect to the language of Σ) in which all of the
members K hold (i.e., iff ϕ is a member of every maximally Σ-consistent set
that contains K).

Theorem 31 If Σ is a logistic system and K ∪ {ϕ} ⊆ FM(Σ), then K �Σ ϕ
iff for all Γ ∈ MCΣ, if K ⊆ Γ, then ϕ ∈ Γ.

Proof. Assume the hypothesis. We assume first that K �Σ ϕ, Γ ∈ MCΣ, and
that K ⊆ Γ, and show that ϕ ∈ Γ. We note that, by the lemma 19 (part 3),
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Γ �Σ ϕ; and, therefore, because Γ is (maximally) Σ-consistent, by definition
Γ �Σ ¬ϕ. Now, by lemma 29 (part 1), ¬ϕ ∈ Γ if ϕ /∈ Γ; but if ¬ϕ ∈ Γ, then, by
the lemma 19 (part 1), Γ �Σ ¬ϕ, which would mean that Γ is not Σ-consistent
after all, which, by assumption, is impossible. From this it follows that ¬ϕ /∈ Γ,
and therefore that ϕ ∈ Γ, which was to be shown.

We assume now instead that for all Γ ∈ MCΣ, if K ⊆ Γ, then ϕ ∈ Γ, and
show that K �Σ ϕ. Assume, by reductio, that K �Σ ϕ. Then K ∪ {¬ϕ} is Σ-
consistent, and therefore, by Lindenbaum’s lemma, there is a Γ1 ∈ MCΣ such
that K ∪ {¬ϕ} ⊆ Γ1. But then K ⊆ Γ1, and therefore, by assumption, ϕ ∈ Γ1.
But we also have ¬ϕ ∈ Γ1, which means that both Γ1 �Σ ϕ and Γ1 �Σ ¬ϕ, i.e.,
that Γ1 is not Σ-consistent, which is impossible because, by assumption, Γ1 is
(maximally) Σ-consistent.

The corollary of this theorem is that a formula ϕ of a logistic system Σ is
(syntactically) valid in Σ if, and only if, ϕ holds in every possible world described
by Σ, i.e., iff ϕ is a member of every maximally Σ-consistent set formulas of Σ.

Corollary 32 If Σ is a logistic system and ϕ ∈ FM(Σ), then �Σ ϕ iff for all
Γ ∈ MCΣ, ϕ ∈ Γ.

1.3 Tautologous Implication

An alternative, but more explicit, semantic explication of validity and logical
consequence for CN-logic is available in terms of the notions of a tautology
and tautological implication. We briefly turn to the (set-theoretic) definitions of
these notions in what follows and show that logistic systems, as we understand
them here in terms of the assumptions made so far, are semantically complete
with respect to their CN-logic; that is, that all tautologous implications, and
therefore all tautologous formulas as well, are derivable in such systems.

The conditional and negation signs will not be the only logical constants
of the logistic systems we will describe in subsequent chapters, it should be
noted, nor, of course, do we assume that the systems we will deal with in those
chapters are extensional. Nevertheless, regardless of whatever other logical con-
stants (such as the signs for necessity or possibility) are introduced, formulas
constructed on the basis of the conditional and negation signs suffice to charac-
terize the notions of a tautology and of tautologous implication. In other words,
regardless of whatever other symbols occur in the formulas ϕ and ψ, the formu-
las ¬ϕ and (ϕ → ψ) are molecular formulas truth-functionally based on ϕ and
ψ as components. In general, the notions of a tautology and of a tautologous
implication regarding formulas constructed in terms of the conditional and the
negation signs are not affected by whatever other constants may occur in the
component formulas making up such a tautology or tautologous implication. It
is for that reason that the logic of truth-functional connectives considered here
is referred to as CN-logic.

Definition 33 If Σ is a logistic system and K ∪ {ϕ} ⊆ FM(Σ), then ϕ is
a molecular formula (truth-functionally) based on K (in symbols ϕ ∈
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Mol(K)) iff ϕ belongs to every set Γ ⊆ FM(Σ) such that K ⊆ Γ, and for all
ψ, χ ∈ Γ, ¬ψ, (ψ → χ) ∈ Γ.

Note: By definition, Mol(K) = ∩{Γ ⊆ FM(Σ) : K ⊆ Γ and for all ψ, χ ∈ Γ,
¬ψ, (ψ → χ) ∈ Γ}. If ϕ ∈ Mol(K), then we call the members of K that occur
in ϕ the prime components of ϕ with respect to K. In what follows, we take
1 as our metalinguistic way of representing the truth value truth, and 0 as our
metalinguistic way of representing the truth value falsehood.

Definition 34 If Σ is a logistic system and K ⊆ FM(Σ), then f is a truth-
functional valuation on K iff
(1) f ∈ 2K , i.e., f is a function with K as domain and {0, 1} as range,
(2) for all ϕ,ψ ∈ K, (ϕ → ψ) ∈ K, then f(ϕ → ψ) = 1 iff either f(ϕ) = 0 or
f(ψ) = 1, and
(3) for all ϕ ∈ K, if ¬ϕ ∈ K, then f(¬ϕ) = 1 iff f(ϕ) = 0.

Definition 35 If Σ is a logistic system and K ∪ {ϕ} ⊆ FM(Σ), then:
(1) ϕ is a tautology on K iff ϕ ∈ Mol(K) and for all truth-functional valua-
tions f on Mol(K), f(ϕ) = 1;
(2) ϕ is tautologous in Σ iff ϕ is a tautology on FM(Σ); and
(3) K tautologously implies ϕ in Σ iff for all truth-functional valuations f
on FM(Σ), if f(ψ) = 1, for all ψ ∈ K, then f(ϕ) = 1.

Theorem 36 (Completeness Theorem for CN-logic): If Σ is a logistic
system and Γ ∪ {ϕ} ⊆ FM(Σ), then:
(1) K tautologously implies ϕ in Σ only if K �Σ ϕ; and
(2) ϕ is tautologous in Σ only if �Σ ϕ.

Proof. Assume the hypothesis of the theorem, and for (1), assume that K
tautologously implies ϕ. To show that K �Σ ϕ, it suffices, by theorem 31, to
show that for every Γ ∈ MCΣ, if K ⊆ Γ, then ϕ ∈ Γ. Assume, accordingly,
that Γ ∈ MCΣ and that K ⊆ Γ. Let f be that function with Mol(FM(Σ)) as
domain and such that for all ψ ∈ FM(Σ),

f(ψ) =
{

1 if ψ ∈ Γ
0 otherwise .

Then, by definition of f , for all ψ, χ ∈ FM(Σ), f(ψ → χ) = 1 iff (ψ → χ) ∈ Γ,
and therefore, by lemma 19, f(ψ → χ) = 1 iff f(ψ) = 0 or f(χ) = 1. Similarly,
f(¬ψ) = 1 iff ¬ψ ∈ Γ, and, therefore, f(¬ψ) = 1 iff ψ /∈ Γ, i.e., iff f(ψ) = 0.
It follows, by definition, accordingly, that f is a truth-functional valuation on
FM(Σ). But K ⊆ Γ and, for all ψ ∈ Γ, f(ψ) = 1. Therefore, by hypothesis and
the definition of tautologous implication, f(ϕ) = 1, from which, by definition
of f , it follows that ϕ ∈ Γ. We observe that the proof for part (2) is entirely
similar.

We shall hereafter, on the basis of the above completeness theorem, justify
particular tautological implications by referring to CN-logic. That is, inferences
that are tautologous will be said to follow by CN-logic.



Chapter 2

The Syntax of Modal
Sentential Calculi

There is not just one notion of necessity or possibility, we have said, but a po-
tential infinity of different notions, each with its own logic. The formalization of
each of these different logics requires the specification of both a formal language
and a formal system or calculus. We assume in what follows that all of the sen-
tential modal logics to be considered are based on the same formal language,
which we construct and describe below in §2.1.

In addition to being based on the same formal language, every sentential
modal logic that we will consider will also be closed under tautologous trans-
formations. We assume in this regard that every such system is a logistic sys-
tem in the sense of chapter 1. In §2.2 of this chapter, we call these systems
modal CN-calculi and classify them in terms of an order of increasing specificity
as (quasi-)classical, (quasi-)regular, and (quasi-)normal modal CN-calculi. The
best known sentential modal logics—the systems Kr, M , Br, S4, S4.2, S4.3,
and S5—are all normal modal systems and are described in §2.3 of this chapter.

2.1 Sentential Modal Logic

As with formal languages in general, we describe the formal language of senten-
tial modal logic by first specifying the set of symbols that are to be taken as
primitive symbols of the language. Because we will deal only with logistic sys-
tems, we assume that the negation and conditional signs are elements of such a
set. Thus, the language will satisfy Assumption 2 of §1.2.4.

There are other primitive symbols as well. In particular, we assume there is
a primitive symbol that we will call the necessity sign. In addition, we assume
that there is a denumerably infinite set of symbols that we will call sentence
letters (or sentential variables):

15
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Assumption 5: l is a logical symbol, called the necessity sign, and l is different
from both c, the conditional sign, and n, the negation sign.

Assumption 6: P is a function with ω as domain and such that for all n ∈ ω,
Pn is a 1-place sequence whose only constituent is a symbol different from
n, c and l. Also, for m,n ∈ ω, if m 
= n, then Pn 
= Pm. (We call Pn the
nth sentence letter or sentential variable.)

Note: For n ∈ ω, Pn is not a symbol but a 1-place sequence whose only con-
stituent is a symbol. This means that Pn is an expression (as defined in § 1.2.1)
that can be concatenated with other expressions.

The necessity sign is the symbol of our object language that stands for
necessity, regardless of how the latter is understood. We use ‘�’ as an expression
of the metalanguage to represent the operation that concatenates the necessity
sign with any other expression. The contextual definition of � is given as follows.

Definition 37 If ϕ is an expression, then �ϕ =df 〈l〉�ϕ.

The dual of necessity is possibility. The syntactical operation that represents
possibility is defined as follows:

Definition 38 �ϕ =df ¬�¬ϕ.

2.1.1 Modal CN-Formulas

Having specified the set of primitive symbols of our formal language, we now turn
to a recursive definition of the set of formulas (sentence forms) of the language of
sentential modal logic. Because this set is closed under the conditional, negation,
and necessity operations, we call the members of the set modal CN-formulas.

Definition 39 ϕ is a modal CN-formula (in symbols, ϕ ∈ FM) iff ϕ belongs
to every set K such that (1) for all n ∈ ω, Pn ∈ K, and (2) �ψ, ¬ψ, (ψ →
χ) ∈ K, whenever ψ, χ ∈ K.

Note: By definition, FM =
⋂
{K : for all n ∈ ω, Pn ∈ K, and for all ψ, χ ∈ K,

�ψ, ¬ψ, (ψ → χ) ∈ K}.

Convention: We will use ‘ϕ’, ‘ψ’, ‘χ’ to refer to modal CN-formulas and ‘K’,
‘Γ’ to refer to sets of modal CN-formulas.

The following induction principle for modal CN-formulas is an immediate con-
sequence of the above definition.

Induction Principle for FM :
If (1) for all n ∈ ω, Pn ∈ K,
(2) for all ϕ ∈ K, ¬ϕ ∈ K,
(3) for all ϕ,ψ ∈ K, (ϕ → ψ) ∈ K, and
(4) for all ϕ ∈ K, �ϕ ∈ K,
then FM ⊆ K.
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2.1.2 Modal-Free and Modally-Closed Formulas

Among the modal CN-formulas there will be those in which the necessity sign
does not occur at all. Such formulas are said to be modal free. Formulas in
which the necessity sign does occur include those in which sentence letters may
occur both within and outside the scope of the necessity sign. A formula is
said to be modally closed if every occurrence of a sentence letter within it is
an occurrence within the scope of the necessity sign. We formally define these
syntactical notions as follows:

Definition 40 ϕ is modal free iff 〈l〉 /∈ OC(ϕ).

Definition 41 ϕ is modally closed iff for all n ∈ ω and all expressions η, γ,
if ϕ = γ�P�

n η, then there are expressions η1, η2, γ1, γ2 and a modal CN-formula
ψ such that γ = γ�

1 γ2, η = η�
1 η2, and �ψ = γ�

2 P�
n η1.

As indicated in the following lemma, the set of modally closed formulas is closed
under the negation and conditional operations.

Lemma 42 ϕ is modally closed iff ¬ϕ is modally closed; and (ϕ → ψ) is
modally closed iff both ϕ and ψ are modally closed.

Exercise 2.1.1 Prove the above lemma 42. Also, state a similar lemma for
modal-free formulas and prove it as well.

Convention: We shall refer to any formula that is a tautology on FM simply
as tautologous.

Hereafter, whenever we prefix a formula with a finite sequence of occurrences
of the necessity operator, we shall say that the resulting expression is a modal
generalization of the formula:

Definition 43 ϕ is a modal generalization of ψ iff for some n ∈ ω and
some n-tuple x, ϕ = 〈x0, ..., xn−1〉�ψ, and for all i < n, xi = l.

Note: Because the null sequence is a finite sequence, every formula is a modal
generalization of itself. By definition, each of the following expressions is a modal
generalization of (Pn → Pm):

(Pn → Pm),
�(Pn → Pm),
��(Pn → Pm),
���(Pn → Pm),
����(Pn → Pm), etc.

Another syntactical notion that is needed in subsequent sections is that of
the uniform substitution of a formula for a sentence letter occurring in a formula.
We recursively define this notion over modal CN-formulas as follows:

Definition 44 (Uniform Substitution):
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1. Pm[Pn/ψ] =df

{
ψ if n = m
Pm otherwise ,

2. (¬ϕ)[Pn/ψ] =df ¬(ϕ[Pn/ψ]),

3. (�ϕ)[Pn/ψ] =df �(ϕ[Pn/ψ]),

4. (ϕ → χ)[Pn/ψ] =df (ϕ[Pn/ψ] → χ[Pn/ψ]).

2.2 Modal CN-Calculi

In addition to a formal language, a formal system or calculus involves the spec-
ification of a recursive axiom set and a set of finitistic inference rules. Because
we take the language to be the same, different sentential modal logics will differ
in either their axiom sets or their inference rules. We assume that a sentential
modal calculus is a logistic system in which all of the formulas are modal CN-
formulas. This means, as is usual for sentential logics in general, that a sentential
modal calculus has no singular terms.

By restricting modal CN-calculi to logistic systems, we assume, in accordance
with the results of chapter 1, that all tautologous formulas are theorems of
modal CN-calculi and that the deduction theorem holds for each such system.
This assumption is built into the definition of a modal CN-calculus.

Definition 45 Σ is a modal CN-calculus iff (1) Σ is a formal system satis-
fying Assumptions 2–4 for logistic systems described in §1.2.4, (2) for all x, x is
a symbol of Σ iff x is l, c, or n, or, for some n ∈ ω, 〈x〉 = Pn, (3) TM(Σ) = 0,
and (4) FM(Σ) = FM .

Lemma 46 If Σ is a modal CN-calculus and K ∪ {ϕ,ψ} ⊆ FM , then:
(1) the MP rule is valid in Σ, i.e., if �Σ (ϕ → ψ) and �Σ ϕ, then �Σ ψ;
(2) if K tautologously implies ϕ in Σ, then K �Σ ϕ;
(3) if ϕ is tautologous, then �Σ ϕ; and
(4) K �Σ ϕ iff there are n ∈ ω and ψ0, ..., ψn−1 ∈ K such that �Σ (ψ0 ∧ ... ∧
ψn−1 → ϕ).

Proof. Assume the hypothesis. Then, by definition, Σ is a logistic system, and
therefore by Assumptions 3 and 4 for logistic systems (§1.2.4) both the MP
rule is valid in Σ and condition (4) above holds. Conditions (2) and (3) follow
by the completeness theorem 36 for logistic systems (§1.3 of chapter 1).

There are many different kinds of modal CN-calculi, but we shall consider
only those in which the rule IE of interchange of equivalents (as described in
§1.2.4) is valid. For convenience, we shall hereafter refer to this rule simply as
the IE rule. This rule, as is indicated in the theorem below, is equivalent in
modal CN-calculi to another rule, which we call the replacement of equivalents
rule, or, more simply, the RE rule. We define validity with respect to the RE
rule, and also validity with respect to the rule of uniform substitution, which
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we shall call simply the US rule, and the rule of modal necessitation, which we
shall call the RN rule, as follows:

Definition 47 The RE rule is valid in a modal CN-calculus Σ iff for all
ϕ,ψ ∈ FM , if �Σ (ϕ ↔ ψ), then �Σ (�ϕ ↔ �ψ).

Definition 48 The US rule is valid in a modal CN-calculus Σ iff for all
ϕ,ψ ∈ FM and n ∈ ω, if �Σ ϕ, then �Σ ϕ[Pn/ψ].

Definition 49 The RN rule is valid in a modal CN-calculus Σ iff for all
ϕ ∈ FM , if �Σ ϕ, then �Σ �ϕ .

Theorem 50 If Σ is a modal CN-calculus, then the IE rule is valid in Σ iff
the RE rule is valid in Σ.

Proof. Assume the hypothesis of the theorem, and, for the left-to-right direc-
tion, assume that the IE rule is valid in Σ. Now, by definition Rep(�ϕ,�ψ,
ϕ, ψ), and because Σ is a logistic system, �Σ (�ϕ ↔ �ϕ). Therefore, by the IE
rule, if �Σ (ϕ ↔ ψ), then �Σ (�ϕ ↔ �ψ); i.e., the RE rule is valid in Σ.

Assume now that the RE rule is valid in Σ, and let Γ = {ψ ∈ FM : for
all ϕ, ϕ′, ψ′ ∈ FM , if Rep(ψ,ψ′, ϕ, ϕ′) and �Σ (ϕ ↔ ϕ′), then �Σ (ψ ↔ ψ′)}.
It suffices to show that FM ⊆ Γ, which we proceed to do by the induction
principle for modal CN-formulas.

Assume n ∈ ω and show that Pn ∈ Γ. Suppose that ϕ,ϕ′, ψ′ ∈ FM ,
Rep(Pn, ψ′, ϕ, ϕ′) and �Σ (ϕ ↔ ϕ′). By assumption and definition, there are
expressions δ, η such that Pn = δ�ϕ�η and ψ = δ�ϕ′�η, which means that
δ = 0 = η, Pn = ϕ, and ψ′ = ϕ′. Therefore, by assumption, �Σ (Pn ↔ ψ′), and,
accordingly, Pn ∈ Γ.

Assume ψ ∈ Γ and show that ¬ψ ∈ Γ. Suppose that ϕ,ϕ′, ψ′ ∈ FM ,
Rep(¬ψ,ψ′, ϕ, ϕ′) and �Σ (ϕ ↔ ϕ′). Now, by definition, for some ψ′′, ψ′ = ¬ψ′′

and Rep(ψ,ψ′′, ϕ, ϕ′), which implies, by assumption, that �Σ (ψ ↔ ψ′′). There-
fore, by CN-logic, �Σ (¬ψ ↔ ¬ψ′′), and hence �Σ (¬ψ ↔ ψ′), from which it
follows that ¬ψ ∈ Γ.

Assume ψ ∈ Γ, and show that �ψ ∈ Γ. Suppose ϕ,ϕ′, ψ′ ∈ FM ,
Rep(�ψ,ψ′, ϕ, ϕ′), and �Σ (ϕ ↔ ϕ′). Now, by definition, for some ψ′′, ψ′ = �ψ′′

and Rep(ψ,ψ′′, ϕ, ϕ′), which, by the inductive hypothesis, implies �Σ (ψ ↔ ψ′′).
Therefore, by supposition, �Σ (�ψ ↔ �ψ′′), which means that �Σ (�ψ ↔ ψ′),
and hence that �ψ ∈ Γ.

Assume ϕ,ψ ∈ Γ and show that (ϕ → ψ) ∈ Γ. (We leave this part as an
exercise.

Exercise 2.2.1 Assume ϕ,ψ ∈ Γ (as defined in above proof), and show that
(ϕ → ψ) ∈ Γ.

2.2.1 Classical Modal Calculi

The first, and most general, kind of modal CN-calculus that we will consider
are those in which the interchange rule IE—and therefore, by theorem 50, the
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RE rule as well—is valid. We call these systems quasi-classical, preserving the
description of classical for those modal CN-calculi in which the uniform sub-
stitution rule, i.e., the US rule, is valid as well. The distinction is important
because, as we will see later, the sentential modal logic of logical atomism is
quasi-classical but not classical—and in fact it will also be quasi-normal but not
normal in the sense of (quasi-)normalcy defined in §2.2.2 below. In the ontology
of logical atomism, there are only atomic situations, which are represented by
the (atomic) sentence letters, and no complex situations as would purportedly
be represented by compound, molecular formulas, which means that the uniform
substitution of compound, molecular formulas for (atomic) sentence letters will
not in general preserve validity, and hence that the US rule is not valid in the
sentential modal logic of logical atomism.

Definition 51 Σ is a quasi-classical modal CN-calculus iff Σ is a modal
CN-calculus in which the interchange rule IE rule is valid.

Definition 52 Σ is a classical modal CN-calculus iff Σ is a modal CN-
calculus in which both the IE rule and the US rule are valid.

The following theorem indicates that the duality of necessity and possibility
is a feature of all quasi-classical modal CN-calculi.

Theorem 53 If Σ is a quasi-classical modal CN-calculus, then:

1. �Σ �ϕ ↔ ¬�¬ϕ,

2. �Σ ¬�ϕ ↔ �¬ϕ,

3. �Σ �ϕ ↔ ¬�¬ϕ, and

4. �Σ ¬�ϕ ↔ �¬ϕ.

Exercise 2.2.2 Prove the above theorem 53.

2.2.2 Regular and Normal Modal Calculi

Quasi-regular and regular systems are quasi-classical and classical systems sat-
isfying conditions (1) and (2) of definition 54 below. Quasi-normal and normal
systems are then quasi-regular and regular systems, respectively, for which the
rule RN of necessitation is valid. A number of modal theses are provable in
quasi-regular systems even without the rule RN , i.e., even without the systems
being (quasi-)normal. Some of the more interesting of these are indicated in the
theorem following the definitions of (quasi-)regular and (quasi-)normal systems.

Definition 54 Σ is a quasi-regular modal CN-calculus iff Σ is a quasi-
classical modal CN-calculus and for all ϕ,ψ ∈ FM :

1. �Σ �(ϕ → ψ) → (�ϕ → �ψ), and
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2. if �Σ (ϕ → ψ), then �Σ (�ϕ → �ψ).

Definition 55 Σ is a regular modal CN-calculus iff Σ is a classical modal
CN-calculus in which (1) and (2) above hold.

Definition 56 Σ is a quasi-normal modal CN-calculus iff Σ is a quasi-
regular modal CN-calculus, and for all ϕ, ψ ∈ FM , if �Σ ϕ, then �Σ �ϕ (i.e.,
the RN-rule is valid in Σ).

Definition 57 Σ is a normal modal CN-calculus iff Σ is a regular modal
CN-calculus in which the RN rule is valid.

A number of useful theses can be proved in quasi-regular modal CN-calculi
without the use of either the US rule or the RN rule, and hence without assum-
ing that a calculus is quasi-normal. Some of these are indicated in the following
theorem.

Theorem 58 If Σ is a quasi-regular modal CN-calculus, then:

1. if �Σ �(ϕ → ψ), then � (�ϕ → �ψ),

2. if �Σ (ϕ → ψ), then �Σ (�ϕ → �ψ),

3. if �Σ (ϕ ↔ ψ), then �Σ (�ϕ ↔ �ψ).

4. if �Σ (ϕ ↔ ψ), then �Σ (�ϕ ↔ �ψ),

5. �Σ �(ϕ ∧ ψ) ↔ �ϕ ∧ �ψ,

6. �Σ �(ϕ ∨ ψ) ↔ �ϕ ∨ �ψ,

7. �Σ �(ϕ → ψ) → (�ϕ → �ψ),

8. �Σ �(ϕ ↔ ψ) → (�ϕ ↔ �ψ),

9. �Σ �(ϕ ↔ ψ) → (�ϕ ↔ �ψ),

10. �Σ ¬�ϕ → �(ϕ → ψ),

11. �Σ �ψ → �(ϕ → ψ),

12. �Σ ¬�ϕ ↔ �(ϕ → ψ) ∧ �(ϕ → ¬ψ),

13. �Σ �ϕ ∨ �ψ → �(ϕ ∨ ψ),

14. �Σ �(ϕ ∧ ψ) → �ϕ ∧ �ψ,

15. �Σ (�ϕ → �ψ) → �(ϕ → ψ),

16. �Σ �ϕ ∧ �ψ → �(ϕ ∧ ψ), and

17. �Σ �(ϕ → ψ) ↔ (�ϕ → �ψ).
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Proof. We will prove thesis (5) here and leave the remainder as an exercise.
Assume the hypothesis, accordingly, and note that by lemma 46 all tautologous
formulas are provable in Σ. Then:

1. �Σ (ϕ ∧ ψ) → ϕ tautology

2. �Σ �(ϕ ∧ ψ) → �ϕ by 1, definition 54

3. �Σ �(ϕ ∧ ψ) → �ψ similar to 1, 2

4. �Σ �(ϕ ∧ ψ) → �ϕ ∧ �ψ by 2, 3 and CN-logic

5. �Σ ϕ → (ψ → [ϕ ∧ ψ]) tautology

6. �Σ �ϕ → �(ψ → [ϕ ∧ ψ]) by 5, definition 54

7. �Σ �(ψ → [ϕ ∧ ψ]) → (�ψ → �[ϕ ∧ ψ]) by 6, definition 54

8. �Σ �ϕ ∧ �ψ → �(ϕ ∧ ψ) by 6, 7, and CN-logic

9. �Σ �(ϕ ∧ ψ) ↔ �ϕ ∧ �ψ by 4, 8 and CN-logic.

Exercise 2.2.3 Prove (1)–(4) and (6)–(16) of the above theorem 58.

2.2.3 The MP Rule

The only inference rule that we will take as a primitive rule of all of the modal
CN-calculi that we will consider here is modus ponens, the corresponding relation
of which we formally define as follows:

Definition 59 If Γ ⊆ FM , then ϕ is a modus ponens consequence of Γ
(in symbols, ϕ ∈ MP (Γ)) iff there are an n ∈ ω and an n-place sequence ∆ such
that (1) ϕ = ∆n−1, and (2) for all i < n, either ∆i ∈ Γ or, for some j, k < i,
∆k = (∆j → ∆i).

The following lemmas are immediate consequences of this definition:

Lemma 60 If Γ ∪ {ϕ} ⊆ FM and ϕ ∈ Γ, then ϕ ∈ MP (Γ).

Lemma 61 If Γ ∪ {ϕ} ⊆ FM and ϕ ∈ MP (Γ) and (ϕ → ψ) ∈ MP (Γ), then
ψ ∈ MP (Γ).

Lemma 62 If K, Γ ⊆ FM and K ⊆ MP (Γ), then MP (K) ⊆ MP (Γ).

Exercise 2.2.4 Prove lemmas 60–62.

The following theorem is an analogue of the Deduction Theorem 24 of §1.2.4.

Theorem 63 If every tautologous formula is in MP (Γ) and ϕ ∈ MP (Γ∪{ψ}),
then (ψ → ϕ) ∈ MP (Γ).
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Proof. Assume the hypothesis of the theorem. Then, by definition, there are
an n ∈ ω and an n-place sequence ∆ such that ϕ = ∆n−1, and for all i < n,
either ∆i ∈ Γ ∪ {ψ}, or for some j, k < i, ∆k = (∆j → ∆i). It suffices to
show, accordingly, that for all n ∈ ω, if i < n, then (ψ → ∆i) ∈ MP (Γ). Let
A = {i ∈ ω : if i < n, then (ψ → ∆i) ∈ MP (Γ)}, and show by strong induction
on ω that ω ⊆ A. Assume, accordingly, that i ∈ ω, i < n and i ⊆ A, and show
i ∈ A, i.e., that (ψ → ∆i) ∈ MP (Γ). There are two cases to consider.

Case 1 : ∆i ∈ Γ ∪ {ψ}. Then either ∆i ∈ Γ or ψ = ∆i. If ∆i ∈ Γ, then by
lemma 60, ∆i ∈ MP (Γ). But, by hypothesis, ∆i → (ψ → ∆i) ∈ MP (Γ), and
therefore, by lemma 61, (ψ → ∆i) ∈ MP (Γ). On the other hand, if ∆i = ψ,
then (ψ → ∆i) ∈ MP (Γ), since by hypothesis, (ψ → ψ) ∈ MP (Γ).

Case 2 : for some j, k < i, ∆k = (∆j → ∆i). Now, by the induc-
tive hypothesis, (ψ → ∆j) ∈ MP (Γ) and (ψ → ∆k) ∈ MP (Γ); that is,
ψ → (∆j → ∆i) ∈ MP (Γ). But, by hypothesis of the theorem, (ψ → [∆j →
∆i] → ([ψ → ∆j ] → [ψ → ∆i]) ∈ MP (Γ); and therefore, by lemma 61 (twice),
(ψ → ∆i) ∈ MP (Γ).

Theorem 64 If every tautologous formula is in MP (Γ), then ϕ ∈ MP (Γ∪K)
iff for some n ∈ ω and some ψ0, ..., ψn−1 ∈ K, (ψ0 ∧ ...∧ψn−1 → ϕ) ∈ MP (Γ).

Proof. Assume the hypothesis, and for the right-to-left direction that for some
n ∈ ω and some ψ0, ..., ψn−1 ∈ K, (ψ0 ∧ ... ∧ ψn−1 → ϕ) ∈ MP (Γ). Then,
by hypothesis, (ψ0 → (ψ1 → ... → (ψn−1 → ϕ) ∈ MP (Γ), and therefore,
by lemmas 60 and 61 (n times) ϕ ∈ MP (Γ ∪ K). For the converse direction,
assume ϕ ∈ MP (Γ ∪ K). Then for some m ∈ ω and some m-place sequence ∆,
ϕ = ∆m−1 and for i < m, either ∆i ∈ Γ ∪ K or there are j, k < i such that
∆k = (∆j → ∆i). Let ψ0, ..., ψn−1 be all of the constituents of ∆ that are in
K. Then, by assumption and definition 59, ϕ ∈ MP (Γ ∪ {ψ0, ..., ψn−1}), and
therefore, by hypothesis, lemma 62, and theorem 63 (n times), (ψ0 → (ψ1 →
... → (ψn−1 → ϕ) ∈ MP (Γ), and therefore, by hypothesis, (ψ0 ∧ ... ∧ ψn−1 →
ϕ) ∈ MP (Γ).

Corollary 65 If every tautologous formula is in MP (K), then ϕ ∈ MP (K) iff
for some n ∈ ω and some ψ0, ..., ψn−1 ∈ K, (ψ0 ∧ ... ∧ ψn−1 → ϕ) ∈ MP (K).

2.2.4 The Systems ΣK

Strictly speaking, the notion of a modus ponens consequence defined above is
not itself an inference rule in the sense of definition 16. This is because an
inference rule, as defined, is a function from and into the set of all subsets of the
set of formulas of the system in question, which in our present context is the set
FM . Such a function is easily defined in terms of the notion of modus ponens
consequence—namely, as the function f that assigns to each set Γ of modal
CN-formulas the set of modus ponens consequences of Γ. It is this function that
we shall refer to hereafter as the MP rule.

We observe that the MP rule is finitistic, because, by definition, whenever
ϕ ∈ MP (Γ), there is an n-place sequence ∆ that also establishes that ϕ is a
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modus ponens consequence of the finitely many members of Γ that are con-
stituents of ∆.

With the MP-rule as the only primitive inference rule, the following definition
enables us to specify a sentential modal logic relative to any given recursive set
K of modal CN-formulas taken as an axiom set. We refer to such a system
simply as ΣK .

Definition 66 If K ⊆ FM , K is recursive, then

ΣK =df 〈L,K,{f}〉, where

(1) L = 〈S, 0, FM〉,
(2) S = {c, n, l} ∪ {x : for some n ∈ ω, 〈x〉 = Pn}, and
(3) f is that function with {Γ : Γ ⊆ FM} as domain and such that for all
Γ ⊆ FM , f(Γ) = MP (Γ).

Lemma 67 If K is a recursive set of modal CN-formulas and Γ∪{ϕ,ψ} ⊆ FM ,
then:
(1) ΣK is a formal system,
(2) Γ �ΣK

ϕ iff ϕ ∈ MP (K ∪ Γ),
(3) �ΣK

ϕ iff ϕ ∈ MP (K), and
(4) the MP rule is valid in ΣK , i.e., if �ΣK

ϕ and �ΣK
(ϕ → ψ), then �ΣK

ψ.

Proof. Assume the hypothesis. Then (1) follows by definition 17 (of chapter 1)
and definition 66. For (2), assume Γ �ΣK

ϕ. Then, by definition 66, for some
n ∈ ω, there is an n-place sequence ∆ such that ϕ = ∆n−1, and for all i < n,
either (a) ∆i ∈ K, (b) ∆i ∈ Γ, or (c) ϕ ∈ MP ({∆j : j < i}). Let A = {i ∈ ω : if
i < n, then ∆i ∈ MP (K ∪Γ)}. It suffices to show by strong induction that ω ⊆
A. Assume, accordingly, that i ∈ ω, i < n, and i ⊆ A. There are then three cases
to consider. Case (a): if ∆i ∈ K ⊆ K ∪Γ, then, by lemma 60, ∆i ∈ MP (K ∪Γ).
Case (b) is similar to case (a). Case (c): Suppose ∆i ∈ MP ({∆j : j < i}).
Then, by the inductive hypothesis, {∆j : j < i} ⊆ MP (K ∪ Γ), and therefore,
by lemma 62, MP ({∆j : j < i}) ⊆ MP (K ∪ Γ), and hence ∆i ∈ MP (K ∪ Γ).
For the converse direction, assume ϕ ∈ MP (K ∪ Γ). Then, by definition, for
some m ∈ ω, there is an m-place sequence ∆′ such that ϕ = ∆′

n−1 and for all
i < n, either ∆′

i ∈ K ∪ Γ, or for some j, k < i, ∆′
k = (∆′

j → ∆′
i). Then, by

definition, ϕ ∈ MP ({∆′
j ,∆

′
k}), and hence ϕ ∈ MP ({∆′

p : p < i}), from which
it follows that Γ �ΣK

ϕ, which completes our proof of (2). Finally, where Γ = 0,
(3) is an immediate consequence of (2), and (4) follows by (3) and lemma 61.

Convention: Where K is a set of modal CN-formulas satisfying the hypothesis
of the above theorem, we set �K= �ΣK

and refer to the system ΣK simply
as K.

Not every system ΣK is a modal CN-calculus, it should be noted. A sufficient
condition for ΣK to be a modal CN-calculus is that every tautologous modal
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CN-formula is a modus ponens consequence of K. This means, given such a
set K, that the modus ponens consequence relation suffices as the derivability
relation for ΣK and that the modus ponens rule is valid in ΣK .

Theorem 68 If K is a recursive set of modal CN-formulas, and every tautol-
ogous formula is in MP (K), then
(1) for all Γ ∪ {ϕ} ⊆ FM, Γ �K ϕ iff ϕ ∈ MP (K ∪ Γ), and
(2) for all ϕ ∈ FM, �K ϕ iff ϕ ∈ MP (K).

Proof. For (1) note that by definition of ΣK , Γ �K ϕ iff for some n ∈ ω, there
is an n-place sequence ∆ such that for i < n, either (a) ∆i ∈ K, (b) ∆i ∈ Γ, or
(c) ∆i is an f -consequence of {∆j : j < i}; i.e., ∆i ∈ MP ({∆j : j < i}). Let
A = {i ∈ ω : if i < n, then ∆i ∈ MP (K ∪ Γ)}. It suffices to show by strong
induction that A ⊆ ω. Assume, accordingly, that i ∈ ω, i < n, i ⊆ A, and show
that i ∈ A. Case (a): If ∆i ∈ K, then ∆i ∈ K ∪ Γ, and therefore, by lemma
60, ∆i ∈ MP (K ∪Γ). Case (b) is entirely similar to case (a). Case (c): Suppose
∆i ∈ MP ({∆j : j < i}). Then, because i ⊆ A, {∆j : j < i} ⊆ MP (K ∪ Γ),
and therefore, by lemma 62, MP ({∆j : j < i}) ⊆ MP (K ∪ Γ), i.e., then
∆i ∈ MP (K ∪ Γ), which completes our inductive argument for (1).

Where Γ = 0, (2) is an immediate consequence of (1).

Theorem 69 If K is a recursive set of modal CN-formulas, and every tautol-
ogous formula is in MP (K), then ΣK is a modal CN-calculus.

Proof. By the lemma 67 (part 1), ΣK is a formal system, and by hypothesis,
ΣK satisfies parts (1)–(3) of Assumption 3 for logistic systems. Part (4) of
Assumption 3 is in effect the MP rule which is valid in ΣK by lemma 67 (part
4). That ΣK satisfies Assumption 4 for logistic systems follows from part 2 of
theorem 68 and corollary 65.

We will sometimes join different axiom sets for modal CN-calculi. The fol-
lowing lemma indicates that doing so will result in a modal CN-calculus.

Lemma 70 If K and K ′ are recursive subsets of FM , and ΣK and ΣK′ are
modal CN-calculi, then ΣK∪K′ is also a modal CN-calculus and ΣK∪K′ is an
extension of both ΣK and ΣK′ ; i.e., for all ϕ ∈ FM, if either �K ϕ or �K′ ϕ,
then �K∪K′ ϕ.

Proof. Assume the hypothesis. Then K ∪ K ′ is also recursive, and by lemma
46 (part 3), if ϕ is tautologous, then �K ϕ and �K′ ϕ, and therefore, by lemma
67 (part 3), ϕ ∈ MP (K) ∩ MP (K ′) ⊆ MP (K ∪ K ′), from which, by theorem
69, it follows that ΣK∪K′ is a modal CN-calculus. Suppose now that �K ϕ or
�K′ ϕ, then, by lemma 67 (part 3), either ϕ ∈ MP (K) ⊆ MP (K ∪ K ′) or
ϕ ∈ MP (K ′) ⊆ MP (K ∪ K ′), and in either case, by lemma 67, �K∪K′ ϕ.

Some of the results that we will establish in later sections depend on the
system in question being closed under the US rule or the RN rule. Lemma
71 describes a sufficient condition for validity of the US rule, and lemma 72
describes a sufficient condition for validity of the RN rule.
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Lemma 71 If Γ is a recursive subset of FM such that (1) every tautologous
formula is in MP (Γ), and (2) Γ is closed under substitution (i.e., for all n ∈ ω,
all ϕ,ψ ∈ FM, if ϕ ∈ Γ, then ϕ[Pn/ψ] ∈ Γ), then the US rule is valid in ΣΓ.

Proof. Assume the hypothesis of the lemma. Suppose �Γ ϕ and show, for n ∈ ω,
ψ ∈ FM , �Γ ϕ[Pn/ψ]. By theorem 68 (part 2), ϕ ∈ MP (Γ), which means that
for some m ∈ ω there is an m-place sequence ∆ such that ϕ = ∆m−1, and for
all i < m either ∆i ∈ Γ or for some j, k < i, ∆k = (∆j → ∆i). Let A = {i ∈ ω :
if i < m, then �Γ ∆i[Pn/ψ]}. It suffices to show by strong induction on ω that
ω ⊆ A. Assume, accordingly, that i ∈ ω, and, i ⊆ A and show that i ∈ A. We
consider two cases on the supposition that i < m.

Case 1 : ∆i ∈ Γ. Then, by hypothesis (2), ∆i[Pn/ψ] ∈ Γ, and therefore, by
lemmas 60 and 67 (part 3), �Γ ∆i[Pn/ψ].

Case 2 : For some j, k < i, ∆k = (∆j → ∆i). Therefore, by the inductive
hypothesis, �Γ ∆k[Pn/ψ], i.e., �Γ (∆j → ∆i)[Pn/ψ], and �Γ ∆j [Pn/ψ]. But
then, by definition of uniform substitution, �Γ (∆j [Pn/ψ] → ∆i[Pn/ψ]), and
therefore, by the MP rule (lemma 67, part 4), �Γ ∆i[Pn/ψ].

Lemma 72 If K is a recursive subset of FM such that
(1) every tautologous formula is in MP (K),
(2) for all ϕ, ψ ∈ FM , �K �(ϕ → ψ) → (�ϕ → �ψ), and
(3) K is closed under modal generalization,
then the RN rule is valid in ΣK .

Exercise 2.2.5 Prove the above lemma 72.

Lemma 72 indicates that if K is a recursive subset of FM that is closed under
modal generalization, then ΣK is (quasi-)regular only if it is (quasi-)normal. We
state this as theorem 73.

Theorem 73 If K is a recursive subset of FM closed under modal generaliza-
tion, and ΣK is (quasi-)regular, then ΣK is (quasi-)normal.

Exercise 2.2.6 Prove theorem 73.

Theorem 74 describes sufficient conditions for ΣK∪K′ to be a normal or
quasi-normal modal CN-calculus, respectively. We indicate this double result
by placing ‘quasi-’ in parentheses in the statements of the theorem.

Theorem 74 If K, K ′ are recursive subsets of FM such that ΣK and ΣK′ are
both (quasi-)regular modal CN-calculi, and both are closed under modal gener-
alization, then ΣK∪K′ is a (quasi-)normal modal CN-calculus.

Proof. Assume the hypothesis. Then, K ∪ K ′ is also recursive, and, by lemma
70, ΣK∪K′ is a modal CN-calculus. We now show that ΣK∪K′ is quasi-classical
as well, i.e., that the IE rule is valid in it. By theorem 50, it suffices to show
that the RE rule is valid in ΣK∪K′ . Assume, accordingly, that �K∪K′ (ϕ ↔ ψ)
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and show that �K∪K′ (�ϕ ↔ �ψ). Then, by lemma 67 (part 3), (ϕ ↔ ψ) ∈
MP (K ∪ K ′), and therefore, by theorem 64, (χ0 ∧ ... ∧ χn−1) → (ϕ ↔ ψ) ∈
MP (K), for some n ∈ ω and some χ0, ..., χn−1 ∈ K ′, and hence, by lemma
67, �K (χ0 ∧ ... ∧ χn−1) → (ϕ ↔ ψ). But K is (quasi-)regular, and hence,
�K �(χ0∧ ...∧χn−1) → �(ϕ ↔ ψ). Therefore, by lemma 70, �K∪K′ �(χ0∧ ...∧
χn−1) → �(ϕ ↔ ψ). But because χi ∈ K ′, �K′ χi, for all i < n, and therefore,
because K ′ is closed under modal generalization, �K′ �χi. Hence, by tautol-
ogous transformations, theorem 58 (part 5), and the fact that K ′ is (quasi-)
regular, �K′ �(χ0 ∧ ... ∧ χn−1). Therefore, by theorem 68, �(χ0 ∧ ... ∧ χn−1) ∈
MP (K ′) ⊆ MP (K ∪K ′), and, by theorem 68 again, �K∪K′ �(χ0 ∧ ...∧ χn−1),
from which it follows by the MP rule (lemma 67, part 4) that �K∪K′ �(ϕ ↔ ψ).
But by theorem 58 (part 8) and the fact that K is quasi-regular, �K �(ϕ ↔
ψ) → (�ϕ ↔ �ψ), and therefore, by lemma 70, �K∪K′ �(ϕ ↔ ψ) → (�ϕ ↔
�ψ), from which, by the MP rule, it follows that �K∪K′ (�ϕ ↔ �ψ). The RE
rule is valid in ΣK∪K′ , accordingly, and therefore so is the IE rule, which means
that ΣK∪K′ is quasi-classical.

By an entirely similar argument, using → in place of ↔, it can be shown that
if �K∪K′ (ϕ → ψ), then �K∪K′ (�ϕ → �ψ), and therefore that ΣK∪K′ satisfies
condition (2) in definition 54 for quasi-regularity. To show that ΣK∪K′ also
satisfies condition (1), note that because ΣK is (quasi-)regular, for all ϕ,ψ ∈
FM, �K �(ϕ ↔ ψ) → (�ϕ ↔ �ψ), and therefore, because, by lemma 70,
ΣK∪K′ is an extension of ΣK , it follows that �K∪K′ �(ϕ → ψ) → (�ϕ → �ψ),
and that therefore ΣK∪K′ is quasi-regular. Now because both K and K ′ are
closed under modal generalization, then so is K∪K ′, and therefore, by theorem
73, ΣK∪K′ is quasi-normal.

Finally, we need to show that if ΣK and ΣK′ are regular, and not just
quasi-regular, then so is ΣK∪K′ , i.e., that the US rule is valid in ΣK∪K′ , and
therefore that ΣK∪K′ is normal. Assume, accordingly, that �K∪K′ ϕ and show
that �K∪K′ ϕ[Pn/ψ]. By theorem 68 (part 2), ϕ ∈ MP (K ∪K ′), and therefore,
by theorem 64, (χ0 ∧ ... ∧ χn−1) → ϕ ∈ MP (K), for some χ0, ..., χn−1 ∈ K ′.
But then, by theorem 68, �K (χ0 ∧ ... ∧ χn−1) → ϕ, and therefore, because ΣK

is regular, �K [(χ0∧ ...∧χn−1) → ϕ][Pn/ψ], which, by definition of substitution
means that �K (χ0[Pn/ψ]∧ ...∧χn−1[Pn/ψ]) → ϕ[Pn/ψ], and hence, by lemma
70, �K∪K′ (χ0[Pn/ψ] ∧ ... ∧ χn−1[Pn/ψ]) → ϕ[Pn/ψ]. But note that because
χi ∈ K ′, �K′ χi, and therefore, because ΣK′ is itself classical, �K′ χi[Pn/ψ],
for all i < n, and hence, by tautologous transformations, �K′ χ0[Pn/ψ] ∧ ... ∧
χn−1[Pn/ψ], and therefore, by lemma 70 �K∪K′ χ0[Pn/ψ] ∧ ... ∧ χn−1[Pn/ψ].
But then, by the MP rule, �K∪K′ ϕ[Pn/ψ]. We conclude, accordingly, that
ΣK∪K′ is a normal modal CN-calculus if ΣK and ΣK′ are regular.

2.3 Some Standard Normal Modal CN-Calculi

The most specific kinds of modal CN-calculi described in the preceding section
are the normal systems. In what follows we describe in some detail some of the
better known members of this group. These are the systems Kr, M , Br, S4,
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S4.2, S4.3, and S5.
The system Kr is named after Saul Kripke, who succeeded in achieving

some of the first completeness theorems in modal logic (but who did not deal
with the system Kr itself, which was first described by E.J. Lemmon and Dana
Scott1). The system Br is named after the intuitionist mathematician L.E.J.
Brouwer (who did not himself deal with modal logic). Br was formulated by Kurt
Gödel who was the first to propose2 that the syntactical notion of provability,
especially as understood by Brouwer, could be represented by the modal notion
of necessity.

The system M was first described by R. Feys.3 Feys did not call it M but
referred to it instead as T . The system was later developed independently by
Georg H. von Wright,4 who was the first to refer to it as M .

The systems S4 and S5 were first described (in a somewhat different way)
by C.I. Lewis and C.H. Langford.5 Gödel (1933) was the first to give the kind of
formulation we describe here for S4, and Rudolf Carnap was the first to describe
the version of S5 given here.6 The systems S4.2 and S4.3 were developed by
M.A. Dummett and E.J. Lemmon.7

Each of these systems, as described here, will have only the MP rule as a
primitive inference rule. We can in this way specify each of these systems in
terms of its axiom set. For convenience, sometimes we shall refer to each of the
systems by the name given to its axiom set.

These systems are not independent of one another, but rather, for the most
part, form a chain of inclusion, i.e., a chain of which the members are subsystems
of succeeding members. In particular, where Σ1 and Σ2 are sentential modal
systems, and ‘Σ1 � Σ2’, or, equivalently, ‘Σ2 � Σ1’, represents the statement
that Σ1 is a subsystem of Σ2, we can represent the relation of being a subsystem
between these modal calculi as follows:

Kr � M � S4 � S4.2 � S4.3 � S5,

Kr � M � Br � S5.

2.3.1 The Modal System Kr

The simplest and most plausible principle regarding necessity is that if a con-
ditional is necessary, then its antecedent is necessary only if its consequent is
as well. It is this principle that characterizes the system ΣKr, which, by the
convention adopted earlier, we will refer to simply as Kr, the name of its ax-
iom set. Of course, because Kr is to be a logistic system, we include among its
axioms all (modal generalizations of) instances of the axioms already listed for
CN-logic in §1.2.4 of chapter 1 (in Assumption 3).

1Lemmon & Scott 1977.
2Gödel 1933.
3Feys 1937.
4von Wright 1951.
5Lewis & Langford 1959.
6See Carnap 1946.
7Dummett & Lemmon 1959.
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Definition 75 Kr =df {ξ ∈ FM : for some ϕ, ψ, χ, ξ is a modal generalization
either of
(1) ϕ → (ψ → ϕ),
(2) [ϕ → (ψ → χ)] → [(ϕ → ψ) → (ϕ → χ)],
(3) (¬ϕ → ¬ψ) → (ψ → ϕ), or
(4) �(ϕ → ψ) → (�ϕ → �ψ)}.

By definition, membership in the set Kr is decidable; i.e., the axiom set
of Kr is a recursive subset of FM. Also, by clauses (1)–(3) and the fact that
MP is a rule of ΣKr, Kr satisfies Assumption 3 of chapter 1. Therefore, by the
completeness theorem 36 for CN-logic, every tautologous formula is a theorem
of ΣKr, which, by convention, we more simply refer to as Kr (a practice we
will follow hereafter). Therefore, by lemma 67 (part 3) and theorem 69, Kr is a
modal CN-calculus. This is lemma 76 below. Kr is also a classical modal CN-
calculus, which is the content of theorem 79 below. In theorem 81, we observe
that Kr is a regular modal CN-calculus, and in theorem 82 that it is also a
normal modal CN-calculus. In fact, as theorem 83 indicates, any extension of
Kr in which the rules of necessitation and uniform substitution are valid is a
normal modal CN-calculus.

Lemma 76 Kr is a modal CN-calculus.

Lemma 77 If �Kr ϕ, then �Kr �ϕ.

Proof. By lemma 72 and definition of Kr.

Lemma 78 If �Kr ϕ, then �Kr ϕ[Pn/ψ].

Proof. We observe that, by definition of Kr, every uniform substitution instance
of a member of Kr is also a member of Kr, from which, by lemma 71, it follows
that the US rule is valid in Kr.

Theorem 79 Kr is a classical modal CN-calculus.

Proof. By lemma 76, Kr is a modal CN-calculus, and, by lemma 78, Kr is closed
under the US rule. To show that the IE rule is valid in Kr, it suffices, by theorem
50, to show that the RE rule is valid in Kr, i.e., that if �Kr (ϕ ↔ ψ), then
�Kr (�ϕ ↔ �ψ), for all ϕ,ψ ∈ FM . Suppose, accordingly, that �Kr (ϕ ↔ ψ).
Then, by CN-logic, �Kr (ϕ → ψ) and �Kr (ψ → ϕ), from which, by lemma
77, it follows that �Kr �(ϕ → ψ) and �Kr �(ψ → ϕ). Now, by definition of
Kr, �Kr �(ψ → ϕ) → (�ψ → �ϕ) and �Kr �(ϕ → ψ) → (�ϕ → �ψ).
Therefore, by the MP rule, �Kr (�ψ → �ϕ) and �Kr (�ϕ → �ψ), from which
we conclude, again by CN-logic, that �Kr (�ψ ↔ �ϕ).

Corollary 80 For all ϕ, ϕ′, ψ, ψ′ ∈ FM , if Rep(ψ,ψ′, ϕ, ϕ′) and �Kr (ϕ ↔
ϕ′), then �Kr (ψ ↔ ψ′) (i.e., the IE rule is valid in Kr).
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Exercise 2.3.1 Prove the corollary.

Theorem 81 Kr is a regular modal CN-calculus.

Proof. By theorem 79, Kr is classical. By definition 55, it remains to show
that Kr satisfies conditions (1) and (2) for regular systems. By definition of
Kr, �Kr �(ϕ → ψ) → (�ϕ → �ψ), and therefore Kr satisfies condition (1). In
regard to (2), suppose �Kr (ϕ → ψ). Then, by lemma 77, �Kr �(ϕ → ψ). But,
by definition of Kr, �Kr �(ϕ → ψ) → (�ϕ → �ψ) and therefore, by the MP
rule, �Kr (�ϕ → �ψ), which concludes the argument for (2).

Theorem 82 Kr is a normal CN-calculus.

Proof. By Theorem 81, lemma 77, and definition 57.

Theorem 83 If Σ is a modal CN-calculus, Kr � Σ (i.e., Kr is a subsystem
of Σ), the RN rule is valid in Σ, and the US rule is valid in Σ, then Σ is a
normal CN-calculus.

Exercise 2.3.2 Prove theorem 83.

Theorem 84 If Σ is a normal modal CN-calculus, then Kr � Σ, i.e., Kr is a
subsystem of Σ.

Exercise 2.3.3 Prove theorem 84.

2.3.2 The Modal System M

Another obvious principle regarding necessity is the thesis that what is necessar-
ily the case simply is the case (i.e., what must be the case is the case): �ϕ → ϕ.
By adding this principle to Kr, we obtain the system M . Given the duality of
necessity and possibility, note that the principle is equivalent to the thesis that
what is the case is possibly the case, i.e., ϕ → �ϕ.

Definition 85 M =df Kr∪{ψ ∈ FM : for some ϕ, ψ is a modal generalization
of (�ϕ → ϕ)}.

It is clear that, by definition, membership in M is decidable, i.e., M is a
recursive subset of FM , and that M is an extension of Kr. The same arguments
as were given for Kr also show that the RN rule and the US rule are valid in
M , from which, by theorem 83, it follows that M is a normal CN-calculus.

Lemma 86 M is an extension of Kr in which the RN rule and the US rule are
valid, i.e., M � Kr, and if �M ϕ, then �M �ϕ, and if �M ϕ, then �M ϕ[Pn/ψ].

Proof. Because Kr ⊆ M , then, by definition, MP (Kr) ⊆ MP (M), and there-
fore, by theorem 68, if �Kr ϕ, then �M ϕ. Therefore, M is an extension of Kr.
Also, by lemmas 71 and 72, M is closed under the US and RN rules.
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Lemma 87 M is a modal CN-calculus.

Theorem 88 M is a normal CN-calculus.

Proof. By lemma 86 and theorem 83.
The following are some of the more noteworthy theorems of M that are not

theorems of Kr.

Theorem 89:
(1) �M ϕ → �ϕ

(2) �M �ϕ → �ϕ

(3) �M (�ϕ → �ψ) → �(ϕ → ψ)
(4) �M (�ϕ → �ψ) → �(ϕ → ψ)
(5) �M �ϕ → ��ϕ

(6) �M �(ϕ → �ϕ).

Proof. We prove thesis 5 (using thesis 1) and leave proof of the others as an
exercise.

1. �M (ϕ → �ϕ) (by thesis 1 of the theorem)
2. �M (�ϕ → ��ϕ) (from 1, by regularity of M).

Exercise 2.3.4 Prove 1–4 and 6 of theorem 89. (You may use theses earlier in
the list to prove later ones.)

2.3.3 The Modal System Br

The principal thesis of M , we have noted, is equivalent to the thesis that what
is the case is possibly the case, or, in formal terms, (ϕ → �ϕ). A related claim
is that what is the case is not only possibly the case but necessarily so, i.e., the
thesis (ϕ → ��ϕ). Adding this thesis to M results in the system Br, which,
we have said, is connected with Brouwer’s intuitionistic sentential logic.8

The important point in this connection is that the negation sign in intuition-
istic logic does not have the same meaning that it has in classical CN-logic. In
particular, whereas the tautologous formula (ϕ → ¬¬ϕ) is valid in intuitionistic
logic, the converse tautologous formula (¬¬ϕ → ϕ) is not. This does not mean
that we should replace classical negation with intuitionist negation. Rather,
the more significant alternative is to interpret intuitionist negation in terms of
classical logic, extended to include one or another version of modal logic.

One such way to interpret intuitionistic negation is to analyze and define
it in terms of classical negation and necessity. In particular, retaining ‘¬’ for
classical negation and using ‘¬i’ for intuitionistic negation, the suggestion is
that the following contextual definition,

¬iϕ =df �¬ϕ,

8A formulation of Brouwer’s intuitionistic sentential logic can be found in Heyting 1930.
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suffices to translate intuitionistic sentential logic into a classical sentential modal
logic—specifically, the system Br described below. This explains why the for-
mula (¬¬ϕ → ϕ) is not valid in intuitionistic logic, because, upon translation, it
becomes (�¬�¬ϕ → ϕ), which by definition of �, is (��ϕ → ϕ). This formula
does not represent a plausible thesis of modal logic, and, in fact, in the system
S5, it has the counter-intuitive result that possibility is the same as actuality—
i.e., adding the thesis to S5 would then lead to (�ϕ ↔ ϕ) being provable for all
ϕ ∈ FM .

The formula (ϕ → ¬¬ϕ), which, as noted, is valid in intuitionistic logic, is
interpreted on this analysis as the converse modal thesis (ϕ → ��ϕ). It is by
taking all formulas of this form as axioms, and in particular by adding them
to the set M , that we obtain the modal system Br. It is this classical senten-
tial modal logic that is then taken to contain a representation of intuitionistic
sentential logic.

Definition 90 Br =df M ∪{ψ ∈ FM : for some ϕ, ψ is a modal generalization
of (ϕ → ��ϕ)}.

Lemma 91 Br is a modal CN-calculus.

Lemma 92 Br is an extension of M and (therefore) of Kr in which the RN
and US rules are valid, i.e., Br � M � Kr, and if �Br ϕ, then �Br �ϕ, and if
�Br ϕ, then �Br ϕ[Pn/ψ].

Theorem 93 Br is a normal modal CN-calculus.

Some of the more important and noteworthy theorems of Br that are not
provable in M are stated in the next theorem.

Theorem 94:
(1) �Br (���ϕ ↔ �ϕ),

(2) �Br (���ϕ ↔ �ϕ), and

(3) �Br (��ϕ → ��ϕ).

Proof. We prove (1) and leave (2) and (3) as an exercise.
1. �Br ¬ϕ → ��¬ϕ axiom of Br

2. �Br ¬��¬ϕ → ϕ by 1 and CN-logic
3. �Br �¬�¬ϕ → ϕ by 2, the IE rule, and theorem 53 (part 2)
4. �Br ��ϕ → ϕ by 3, the IE rule, and theorem 53 (part 3)
5. �Br ���ϕ → �ϕ by 4 and the regularity of M

6. �Br �ϕ → ���ϕ axiom of Br

7. �Br �ϕ ↔ ���ϕ by 5, 6 and CN-logic).

Exercise 2.3.5 Prove (2) and (3) of theorem 94.
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2.3.4 The Modal System S4

Another thesis that might be taken as a principle of modal logic is the claim
that what is necessary is not contingently necessary but necessarily necessary;
i.e., formally, the modal thesis (�ϕ → ��ϕ). Adding this thesis to M results
in the system S4.

Definition 95 S4 =df M ∪{ψ ∈ FM : for some ϕ, ψ is a modal generalization
of (�ϕ → ��ϕ)}.

Lemma 96 S4 is a modal CN-calculus.

Lemma 97 S4 is an extension of M and (therefore) of Kr in which the RN
and US rules are valid, i.e., S4 � M � Kr, and if �S4 ϕ, then �S4 �ϕ, and if
�S4 ϕ, then �S4 ϕ[Pn/ψ].

Theorem 98 S4 is a normal modal CN-calculus.

Some of the more noteworthy and important theorems of S4 that are not
provable in M are the following:

Theorem 99:
(1) �S4 ��ϕ ↔ �ϕ.

(2) �S4 ��ϕ ↔ �ϕ.

(3) �S4 �ϕ → ���ϕ.

(4) �S4 ���ϕ → �ϕ.

(5) �S4 �(ϕ → ψ) → �(�ϕ → �ψ).

(6) �S4 ��ϕ ↔ ����ϕ.

(7) �S4 ��ϕ ↔ ����ϕ.

Exercise 2.3.6 Prove (1)–(7) of theorem 99.

An alternative way of characterizing S4 is given by the axiom set we shall
call S4′. It is defined as follows:

Definition 100 S4′ =df {ξ ∈ FM : ξ is either a modal generalization of a
tautologous formula, or, for some ϕ, ψ, ξ is a modal generalization of (�[ψ →
ϕ] → �[�ψ → �ϕ]) or (�ϕ → ϕ)}.

Exercise 2.3.7 Show that S4′ is a normal modal CN-calculus equivalent to S4
(i.e., that for all ϕ ∈ FM , �S4 ϕ iff �S4′ ϕ).
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2.3.5 The Modal System S4.2

A modal thesis that is not provable in S4 is the thesis that what is possibly
necessary is necessarily possible. Adding this thesis to S4 results in the system
S4.2.

Definition 101 S4.2 =df S4 ∪ {ψ ∈ FM : for some ϕ, ψ is a modal general-
ization of (��ϕ → ��ϕ)}.

Lemma 102 S4.2 is a modal CN-calculus.

Lemma 103 S4.2 is an extension of S4 and (therefore) of M and Kr in which
the RN and US rules are valid, i.e., S4.2 � S4 � M � Kr, and if �S4.2 ϕ, then
�S4.2 �ϕ, and if �S4.2 ϕ, then �S4.2 ϕ[Pn/ψ].

Theorem 104 S4.2 is a normal modal CN-calculus.

Two theorems of S4.2 that are not provable in S4 are indicated as follows:

Theorem 105:
(1) �S4.2 ��ϕ ↔ ���ϕ, and
(2) �S4.2 ���ϕ ↔ ��ϕ.

Exercise 2.3.8 Prove (1) and (2) of theorem 105.

Two alternative axiom sets for S4.2 can be specified as follows:

Definition 106 S4.2′ =df S4 ∪ {ψ ∈ FM : for some ϕ, ψ is a modal general-
ization of (��ϕ → ���ϕ)}.

Definition 107 S4.2′′ =df S4 ∪ {ψ ∈ FM : for some ϕ, ψ is a modal general-
ization of (���ϕ → ��ϕ).

Exercise 2.3.9 Show that S4.2′ and S4.2′′ are normal CN-calculi equivalent to
S4.2 (and, therefore, to each other).

2.3.6 The Modal System S4.3

One of the earliest characterizations of possibility was given by the Megarian
logician, Diodorus, who argued that what is possible is what either is or will be
the case. What is necessary, then, assuming the duality between necessity and
possibility, is what is and henceforth always will be the case. Using F as the
future tense operator—i.e., read as ‘it will be the case that’—Diodorus’s claim,
regardless of the validity of his argument, can be formulated as a definition,
specifically as:

�ϕ =df ϕ ∨ Fϕ,

where ϕ is read as being in the simple present tense. Assuming the duality of
necessity and possibility, necessity can then be defined as:

�ϕ =df ϕ ∧ ¬F¬ϕ,
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where ¬F¬ϕ can be read as ‘it will always be the case that ϕ’. Relative to a
given local time where the temporal relation of precedence is connected, i.e.,
relative to which

Fϕ ∧ Fψ → F(ϕ ∧ ψ) ∨ F(ϕ ∧ Fψ) ∨ F(ψ ∧ Fϕ)

is valid, this interpretation validates a modal thesis that is not provable in S4.2,
namely, that it is a (present) possibility of two (present) possibilities that one
is possible relative to the other; that is,

�ϕ ∧ �ψ → �[(ϕ ∧ �ψ) ∨ (ψ ∧ �ϕ)].

Adding this thesis to S4 results in the system S4.3.

Definition 108 S4.3 =df S4 ∪ {ψ ∈ FM : for some ϕ, ψ is a modal general-
ization of (�ϕ ∧ �ψ → �[(ϕ ∧ �ψ) ∨ (ψ ∧ �ϕ)])}.

Lemma 109 S4.3 is a modal CN-calculus.

Lemma 110 S4.3 is an extension of S4 and (therefore) of M and Kr in which
the RN and US rules are valid, i.e., S4.3 � S4 � M � Kr, and if �S4.3 ϕ, then
�S4.3 �ϕ, and if �S4.3 ϕ, then �S4.3 ϕ[Pn/ψ].

Theorem 111 S4.3 is a normal modal CN-calculus.

Theorem 112:
(1) �S4.3 �ϕ ∧ �ψ → [�(ϕ ∧ ψ) ∨ �(ϕ ∧ �ψ) ∨ �(ψ ∧ �ϕ)],
(2) �S4.3 ��ϕ → ��ϕ,

(3) �S4.3 �(�ϕ → �ψ) ∨ �(�ψ → �ϕ), and
(4) �S4.3 �(�ϕ → ψ) ∨ �(�ψ → ϕ).

Exercise 2.3.10 Prove (1)–(4) of theorem 112.

As thesis 2 of the above theorem indicates, S4.3 is an extension of S4.2.

Lemma 113 S4.3 is an extension of S4.2, i.e., S4.3 � S4.2.

The following three axiom sets constitute alternative ways of axiomatizing
S4.3. We leave the proof of this claim as an exercise.

Definition 114 S4.3′ =df S4 ∪ {ξ ∈ FM : for some ϕ, ψ, ξ is a modal gener-
alization of �ϕ ∧ �ψ → �(ϕ ∧ ψ) ∨ �(ϕ ∧ �ψ) ∨ �(ψ ∧ �ϕ)}.

Definition 115 S4.3′′ =df S4∪ {ξ ∈ FM : for some ϕ, ψ, ξ is a modal gener-
alization of �(�ϕ → �ψ) ∨ �(�ψ → �ϕ)}.

Definition 116 S4.3′′′ =df S4 ∪ {ξ ∈ FM : for some ϕ, ψ, ξ is a modal
generalization of �(�ϕ → ψ) ∨ �(�ψ → ϕ)}.

Exercise 2.3.11 Show that S4.3′, S4.3′′, and S4.3′′′ are normal modal CN-
calculi equivalent to S4.3.
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2.3.7 The Modal System S5

The thesis that what is possible is not just possible but necessarily possible is
not provable in any of the systems considered so far. Adding this thesis to M
results in the system S5. It is significant that each of the principal theses of the
systems Br, S4, S4.2, and S4.3 are all provable on the basis of this addition to
M , and hence that S5 is an extension of each of these systems, a fact that is
the content of theorem 122 below:

Definition 117 S5 =df M∪{ψ ∈ FM : for some ϕ, ψ is a modal generalization
of (�ϕ → ��ϕ)}.

Lemma 118 S5 is a modal CN-calculus.

Lemma 119 S5 is an extension of M and (therefore) of Kr in which the RN
and US rules are valid, i.e., S5 � M � Kr, and if �S5 ϕ, then �S5 �ϕ, and if
�S5 ϕ, then �S5 ϕ[Pn/ψ].

Theorem 120 S5 is a normal modal CN-calculus.

Theorem 121:
(1) �S5 ��ϕ → �ϕ.
(2) �S5 ¬�ϕ → �¬�ϕ.
(3) �S5 �ϕ → ��ϕ.
(4) �S5 ϕ → ��ϕ.
(5) �S5 �ϕ ∧ �ψ → �[(ϕ ∧ �ψ) ∨ (ψ ∧ �ϕ)].
(6) If ϕ is modally closed, then �S5 ϕ ↔ �ϕ.
(7) If ϕ is modally closed, then �S5 �(ϕ → ψ) → (ϕ → �ψ).
(8) If ϕ is modally closed, then �S5 �ϕ ∨ �¬ϕ.

Proof. We prove thesis 1 and leave the remainder as an exercise.
1. �S5 �¬ϕ → ��¬ϕ axiom of S5
2. �S5 ¬��¬ϕ → ¬�¬ϕ by 1 and CN-logic
3. �S5 �¬�¬ϕ → ¬�¬ϕ by 2, the IE rule, and theorem 53
4. �S5 ��ϕ → �ϕ by 2, the IE rule and theorem 53.

Exercise 2.3.12 Prove (2)–(8) of theorem 121.

Theorem 122 S5 is an extension of Kr, Br, S4, S4.2, and S4.3.

The following theorem indicates that S5 can be specified as the union of S4
and Br. Another way of determining the same set of theorems is indicated in
the exercise below:

Definition 123 S5# = S4 ∪ Br.

Theorem 124 S5 is equivalent to S5# (i.e., for all ϕ, �S5 ϕ iff �S5# ϕ).
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Exercise 2.3.13 Prove theorem 124.

Definition 125 S5′ =df M ∪ {ξ ∈ FM :for some ϕ,ψ ∈ FM, ϕ is modally
closed and ξ is a modal generalization of �(ϕ → ψ) → (ϕ → �ψ)}.

Exercise 2.3.14 Show that S5 and S5′are equivalent, that is, show for all ϕ,
�S5 ϕ iff �S5′ ϕ.

We conclude this section with the observation that all of the normal modal
CN-calculi described in this section are consistent. Indeed, as the following the-
orem states, any subsystem (proper or otherwise) of S5 is consistent. The proof
for this is the trivial one of replacing all occurrences of the necessity sign, l,
in modal CN-formulas by two occurrences of the negation sign, n; that is, by
translating �ϕ, for ϕ ∈ FM , into ¬¬ϕ (or, equivalently, by simply deleting all
occurrences of l). It is then easily seen that every such translation of an axiom
of S5 is tautologous and that therefore, because the MP rule (which is the only
inference rule of S5) preserves tautologousness, every translation of a theorem
of S5 is also tautologous. Therefore, S5, and each of its subsystems is consistent.

Theorem 126 If Σ is a subsystem (proper or otherwise) of S5, then Σ is con-
sistent.

2.4 The Systems S1, S2, and S3

The historical roots of modal logic can be traced back not only to the Megarian
logician, Diodorus, but to Aristotle as well. A theory of modal statements was
developed, for example, in Aristotle’s De Interpretatione (chapters 12 and 13),
and a theory of modal syllogisms was developed in his Prior Analytics (i. 8–22).
Modal logic was also widely discussed by medieval logicians.9

Contemporary modal logic began with C.I. Lewis, who objected to Bertrand
Russell’s characterization of the truth-functional conditional as “implication.”
(Russell called the truth-functional conditional material implication.) In collab-
oration with C.H. Langford, Lewis developed the first formal systems of modal
logic. Along with the sentential modal logics S4 and S5, Lewis and Langford
also described certain sentential modal systems that they called S1, S2, and
S3. We briefly describe these systems below, but not in Lewis’s and Langford’s
way. The version we give here was first given by E.J. Lemmon in 1957.

Definition 127 S3=df {ξ ∈ FM : either (1) ξ is tautologous, or (2) for some
tautologous ϕ, ξ = �ϕ, or, for some ϕ,ψ, either
(3) ξ = (�ϕ → ϕ), or
(4) ξ = �(ϕ → ψ) → �(�ϕ → �ψ), or
(5) ξ = �(�ϕ → ϕ), or
(6) ξ = �[�(ϕ → ψ) → �(�ϕ → �ψ)]}.

9For details, see Bochenski 1956 and Kneal 1962.
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We note that, by definition, S3 is closed under uniform substitution, and
therefore, by theorem 69 and lemma 71, the US rule is valid in the system ΣS3,
which by convention we also refer to as S3.

Lemma 128 S3, i.e., ΣS3, is a modal CN-calculus in which the US rule is
valid.

S3 is not closed under modal generalization, it should be noted, because, e.g.,
whereas (�ϕ → ϕ) and �(�ϕ → ϕ) ∈ S3, we do not also have ��(�ϕ → ϕ) are
members of S3, which indicates that the RN rule is not valid in S3 without
qualification. Thus, even though the characteristic axioms of both M and Kr
are theorems of S3, it is not the case that S3 is an extension of either M or Kr.
But S3 is a subsystem of S4, which we note in lemma 131 below:

Lemma 129 If ϕ is tautologous, then �S3 ϕ and �S3 �ϕ.

Lemma 130:
(1) �S3 �ϕ → ϕ,

(2) �S3 �(�ϕ → ϕ),
(3) �S3 �(ϕ → ψ) → �(�ϕ → �ψ),
(4) �S3 �(ϕ → ψ) → (�ϕ → �ψ), and
(5) �S3 �[�(ϕ → ψ) → �(�ϕ → �ψ)].

Lemma 131 S3 is a subsystem of S4, i.e., S3 � S4.

Proof. If ϕ ∈ S3, then, by definitions of S3 and S4 and theorem 99 (part 5),
�S4 ϕ, and therefore, by lemma 67, ϕ ∈ MP (S4); i.e., S3 ⊆ MP (S4). Then,
by lemma 62, MP (S3) ⊆ MP (S4), and therefore, by lemma 67, if �S3 ϕ, then
�S4 ϕ.

We cannot characterize either of the systems S1 or S2 the way we did S3
above, i.e., as a system ΣK (as defined in §2.2.4), for some recursive subset K
of FM . This is because both S1 and S2 have another primitive inference rule in
addition to modus ponens (and the US rule in the case of S1). We need to build
these inference rules into the definitions of S1 and S2 as modal CN-calculi, and
in particular we need to build them into the notions of an S1- and S2-proof,
rather than the notion of a derivation in these systems, because they are not to
apply to contingent premises but only to provable formulas.

Definition 132 AxS2 =df {ε ∈ FM : either (1) ξ is tautologous, or (2) ξ =
�ϕ, for some tautologous ϕ, or, for some ϕ,ψ, either
(3) ξ = (�ϕ → ϕ), or
(4) ξ = �(ϕ → ψ) → (�ϕ → �ψ), or
(5) ξ = �(�ϕ → ϕ), or
(6) ξ = �[�(ϕ → ψ) → (�ϕ → �ψ)]}.
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Definition 133 ∆ is an S2-proof of ϕ iff for some n ∈ ω, ∆ is an n-place
sequence, ϕ = ∆n−1, and for i < n, either (1) ∆i ∈ AxS2, (2) for some j, k < i,
∆k = (∆j → ∆i), or (3) for some j < i, and ψ, χ ∈ FM, ∆j = �(ψ → χ) and
∆i = �(�ψ → �χ).

Definition 134 If L = 〈S, 0, FM〉, and S = {c, n, l} ∪ {x : 〈x〉 = Pn, for some
n ∈ ω}, then S2 =df 〈L, AxS2, {f1, f2}〉, where
(1) f1 is that function with the set of all subsets of FM as domain and such
that for Γ ⊆ FM , f1(Γ) = MP (Γ), and
(2) f2 is that function with the set of all subsets of FM as domain and such
that for Γ ⊆ FM , f2(Γ) = {ϕ ∈ FM : for some ∆, ∆ is an S2-proof of ϕ and
for i ∈ D∆ − 1, ∆i ∈ Γ}.

We note that by definition of S2-proof and of a derivation in S2, any formula
for which there is an S2-proof is derivable from the empty set and therefore is
a theorem of S2. Also, by definition, the MP rule is valid in S2, and, by an
inductive argument on derivations from the empty set, so is the US rule. The S2
rule that if �(ϕ → ψ) is provable in S2, then so is �(�ϕ → �ψ) is also valid in
S2. We also note that S2 satisfies assumptions 1, 2, and 3, for logistic systems,
and, by lemma 138 below, assumption 4 as well. Therefore, by definition 45, S2
is a modal CN-calculus.

Lemma 135 If there is an S2-proof of ϕ, then �S2 ϕ.

Lemma 136 The MP and the US rules are valid in S2, as well as the S2 rule
that if �S2 �(ϕ → ψ), then �S2 �(�ϕ → �ψ).

Proof. The MP rule and the S2 rule are built directly into the notion of an
S2-proof and therefore are valid in S2. The proof that the US rule is valid in
S2 is the same as that for lemma 71 except for the added note that uniform
substitution is preserved under the S2 rule as well as under the MP rule.

Lemma 137:
(1) If ϕ is tautologous, �S2 �ϕ,

(2) �S2 �ϕ → ϕ,

(3) �S2 �(�ϕ → ϕ),
(4) �S2 �(ϕ → ψ) → (�ϕ → �ψ),
(5) �S2 �[�(ϕ → ψ) → (�ϕ → �ψ)],
(6) �S2 �ϕ ∧ �ψ ↔ �(ϕ ∧ ψ),
(7) �S2 �[�ϕ ∧ �ψ → �(ϕ ∧ ψ)] ∧ �[�(ϕ ∧ ψ) → �ϕ ∧ �ψ],
(8) �S2 �[�ϕ ∧ �ψ ↔ �(ϕ ∧ ψ)],
(9) �S2 �(ϕ → ψ) ∧ �(ψ → χ) → �(ϕ → χ).

Lemma 138 If Γ∪{ϕ} ⊆ FM , then Γ �S2 ϕ iff for some k ∈ ω, ψ1, ..., ψk−1 ∈
Γ, �S2 (ψ1 ∧ ... ∧ ψk−1 → ϕ).
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Exercise 2.4.1 Prove lemma 138.

Theorem 139 S2 is a modal CN-calculus.

Theorem 140 S2 is a subsystem of S3, and therefore of S4, i.e., S2 � S3 �
S4.

Proof. Assume �S2 ϕ, and show �S3 ϕ. Then, for some n ∈ ω, and some n-
place sequence ∆, ∆ is a proof of ϕ within S2. Let A = {i ∈ ω : if i < n, then
�S3 ∆i}. Assume i ∈ ω, i < n, and that i ⊆ A. Then it suffices to show by
strong induction that ω ⊆ A. Case 1: if ∆i ∈ AxS2, then, by lemma 130 and the
MP rule, �S3 ∆i. Case 2: ∆i ∈ MP ({∆j : j < i}), which means that for some
j, k < i, ∆k = (∆j → ∆i). But then, by the inductive hypothesis, �S3 ∆j and
�S3 (∆j → ∆i), from which, by the MP rule, it follows that �S3 ∆i. Case 3: for
some j < i, and some ψ, χ ∈ FM, ∆j = �(ψ → χ) and ∆i = �(�ψ → �χ). By
the inductive hypothesis, �S3 �(ψ → χ), and therefore, by lemma 130 and the
MP rule, �S3 �(�ψ → �χ), i.e., then �S3 ∆i, which completes our inductive
argument.

The following lemma, which corresponds to a primitive inference rule of S1
(defined below), is useful in proving that S1 is a subsystem of S2, i.e., that
S1 � S2, and therefore of S3 and S4 as well. Because of thesis 6 of lemma 137,
the lemma can be stated more briefly as: if Rep(χ, χ′, ϕ, ψ) and �S2 �(ϕ ↔ ψ),
then �S2 �(χ ↔ χ′). We give the longer version because thesis 6 of lemma 137
is not provable in S1.

Lemma 141 If Rep(χ, χ′, ϕ, ψ) and �S2 �(ϕ → ψ) ∧ �(ψ → ϕ), then
�S2 �(χ → χ′) ∧ �(χ′ → χ).

Proof. Let Γ = {χ ∈ FM : for all ϕ,ψ, χ′ ∈ FM, if Rep(χ, χ′, ϕ, ψ) and
�S2 �(ϕ → ψ) ∧ �(ψ → ϕ), then �S2 �(χ → χ′) ∧ �(χ′ → χ)}. It suffices to
show by induction on FM that Γ ⊆ FM. Case 1: Assume n ∈ ω and show that
if χ = Pn, then χ ∈ Γ. Assume χ = Pn, ϕ, ψ, χ′ ∈ FM, Rep(Pn, χ′, ϕ, ψ) and
�S2 �(ϕ → ψ) ∧ �(ψ → ϕ). Then, by definition 13 (of Rep), χ = Pn = ϕ and
χ′ = ψ, and therefore, by hypothesis, χ ∈ Γ. Case 2: Assume χ ∈ Γ, and show
¬χ ∈ Γ. Suppose Rep(¬χ, χ′, ϕ, ψ) and �S2 �(ϕ → ψ) ∧ �(ψ → ϕ). If ¬χ = ϕ,
then χ′ = ψ, in which case, by hypothesis, ¬χ ∈ Γ. If ¬χ 
= ϕ, then χ′ = ¬χ′′,
for some χ′′ ∈ FM, and Rep(χ, χ′′, ϕ, ψ), and therefore, by the inductive hy-
pothesis, �S2 �(χ → χ′′) ∧ �(χ′′ → χ). Accordingly, by lemma 137 (thesis 6),
�S2 �[(χ → χ′′)∧(χ′′ → χ)], and therefore, by tautologous transformations and
lemma 137 (theses 1 and 4 ), �S2 �[(¬χ → ¬χ′′) ∧ (¬χ′′ → ¬χ)], from which,
again by lemma 137 (thesis 6), �S2 �(¬χ → ¬χ′′) ∧ �(¬χ′′ → ¬χ), and there-
fore ¬χ ∈ Γ. Case 3: If χ, ξ ∈ Γ, then, by the inductive hypothesis, (χ → ξ) ∈ Γ.
We leave the proof of this case as an exercise. Case 4: Assume χ ∈ Γ and show
that �χ ∈ Γ. Suppose Rep(�χ, χ′, ϕ, ψ) and �S2 �(ϕ → ψ) ∧ �(ψ → ϕ). If
�χ = ϕ, then χ′ = ψ, in which case, by hypothesis, �χ ∈ Γ. If �χ 
= ϕ,
then χ′ = �χ′′, for some χ′′ ∈ FM, and Rep(χ, χ′′, ϕ, ψ). Then, by the induc-
tive hypothesis, �S2 �(χ → χ′′) ∧ �(χ′′ → χ), and therefore, by lemma 136,
�S2 �(�χ → �χ′′) ∧ �(�χ′′ → �χ), from which it follows that �χ ∈ Γ.
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Exercise 2.4.2 Prove case 3 of the above lemma 141, i.e., show that (χ → ξ) ∈
Γ if χ, ξ ∈ Γ.

Lemma 142 �S2 �[�(ϕ → ψ) ∧ �(ψ → χ) → �(ϕ → χ)].

Proof. By axiom 2 of S2,
1. �S2 �[(ϕ → ψ) ∧ (ψ → χ) → (ϕ → χ)],
2. �S2 � (�[(ϕ → ψ) ∧ (ψ → χ)] → �[ϕ → χ]), by 1, and S2 rule (lemma 136),
3. �S2 � (�[(ϕ → ψ) ∧ (ψ → χ)] → �(ϕ → ψ) ∧ �(ψ → ϕ)) , by lemma 137,
4. �S2 � (�(ϕ → ψ) ∧ �(ψ → ϕ) → �[(ϕ → ψ) ∧ (ψ → χ)]) , by lemma 137,
5. �S2 �[�(ϕ → ψ)∧�(ψ → χ) → �(ϕ → χ)], by 2, 3, 4, tautologous transfor-
mations, and lemma 141.

Definition 143 AxS1 =df {ξ ∈ FM : either (1) ξ is tautologous, (2) ξ = �ϕ,
for some tautologous ϕ; or for some ϕ, ψ, χ, either
(3) ξ = �ϕ → ϕ, or
(4) ξ = �(�ϕ → ϕ), or
(5) ξ = �(ϕ → ψ) ∧ �(ψ → χ) → �(ϕ → χ), or
(6) ξ = �[�(ϕ → ψ) ∧ �(ψ → χ) → �(ϕ → χ)]}.

The system S1 utilizes a restricted form of an interchange rule as a primitive
inference rule, which, because the US rule is to be valid in S1, requires us to
introduce uniform substitution as a primitive rule as well. We incorporate these
rules in what will be called an S1-proof, defined as follows: An S1-proof amounts
in effect to a subsequence of a proof in S1, i.e., of a derivation from the empty
set.

Definition 144 ∆ is an S1-proof of ϕ iff for some n ∈ ω, ∆ is an n-place
sequence, ϕ = ∆n−1, and for i < n, either (1) ∆i ∈ AxS2, or (2) for some j < i,
m ∈ ω, ψ ∈ FM, ∆i = ∆j [Pm/ψ], or (3) for some j, k < i, ∆k = (∆j → ∆i), or
(4) for some j < i, ψ, ψ′, χ, χ′, Rep(χ, χ′, ψ, ψ′), ∆j = �(ψ → ψ′)∧�(ψ′ → ψ),
and ∆i = �(χ → χ′) ∧ �(χ′ → χ).

Definition 145 If L = 〈S, 0, FM〉, and S = {c, n, l} ∪ {x : 〈x〉 = Pn, for some
n ∈ ω}, then S1 =df 〈L, AxS1, {f1, f3}〉, where
(1) f1 is that function with the set of all subsets of FM as domain and such
that for Γ ⊆ FM , f1(Γ) = MP (Γ), and
(2) f3 is that function with the set of all subsets of FM as domain and such
that for Γ ⊆ FM , f2(Γ) = {ϕ ∈ FM : for some ∆, ∆ is an S1-proof of ϕ and
for i ∈ D∆ − 1, ∆i ∈ Γ}.

Lemma 146 If there is an S1-proof of ϕ, then �S1 ϕ.

Lemma 147 The MP and the US rules are valid in S1.
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Lemma 148 If Rep(χ, χ′, ϕ, ψ) and �S1 �(ϕ → ψ) ∧ �(ψ → ϕ), then
�S1 �(χ → χ′) ∧ �(χ′ → χ).

Lemma 149 If Γ∪{ϕ} ⊆ FM , then Γ �S1 ϕ iff for some k ∈ ω, ψ1, ..., ψk−1 ∈
Γ, �S1 ψ1 ∧ ... ∧ ψk−1 → ϕ.

Theorem 150 S1 is a modal CN-calculus.

Theorem 151 S1 is a subsystem of S2, and therefore of S3 and S4, i.e., S1 �
S2 � S3 � S4.

Exercise 2.4.3 Prove theorem 151, i.e., show that if �S1 ϕ, then �S2 ϕ.

2.5 Modalities

By a modality we mean here any finite sequence of the modal operators � and
�, which, because the latter is defined as ¬�¬, amounts to a finite sequence of
the negation sign and the necessity operator. We also include the null sequence,
which, before a formula ϕ, can be read as ‘it is the case that ϕ’. We define this
notion and the equivalence of any two modalities in a modal CN-calculus Σ. We
also define the condition for one modality to be reducible to another in Σ.

Definition 152 µ is a modality iff for some n ∈ ω, µ is an n-place sequence
and for all i < n, either µi = l or µi = n.

Definition 153 If Σ is a modal CN-calculus and µ, µ′ are modalities, then:
(1) µ is equivalent to µ′ in Σ iff for every ϕ ∈ FM , �Σ µ�ϕ ↔ µ′�ϕ,

(2) µ and µ′ are distinct modalities in Σ iff they are not equivalent in Σ,
and
(3) µ is reducible to µ′ in Σ iff µ is equivalent to µ′ in Σ and the length of
µ′ <the length of µ.

Example 154 Because �S4 ���ϕ ↔ �ϕ, the modality 〈l, l, l〉 is reducible in
S4 to 〈l〉.

Whenever every modality is equivalent or reducible in Σ to a class of cardi-
nality k of distinct modalities, and to no class of smaller cardinality, we will say
that Σ has k distinct modalities. By way of an example, we show that S5 has
at most six distinct modalities.

Lemma 155 S5 has at most six distinct modalities. As applied to a formula ϕ,
these are (1) ϕ, (2) ¬ϕ, (3) �ϕ, (4) �¬ϕ, (5) ¬�ϕ, and (6) ¬�¬ϕ.

Proof. Let #ModS5 = {i ∈ ω : for every modality µ of length i, µ is equiv-
alent or reducible in S5 either to (1) 0 (the empty sequence), (2) 〈n〉, (3) 〈l〉,
(4) 〈l, n〉, (5) 〈n, l〉, or (6) 〈n, l, n〉}. It suffices to show by weak induction that
ω ⊆ #ModS5. By definition, the empty sequence is a modality (of length 0),
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and therefore 0 ∈ #ModS5. Suppose n ∈ #ModS5. We show that (n + 1) ∈
#ModS5, that is, that every modality of length (n+1) is equivalent or reducible
to one of the modalities (1)–(6) above. Let µ be a modality of length n+1, that
is, µ = 〈µ0, ..., µn〉, and for every i < n+1, µi is either n or l, and let µ′ be that
modality of length n such that for every i < n, µ′

i = µi+1, i.e., µ′ = 〈µ1, ..., µn〉.
Then, by the inductive hypothesis, µ′ is equivalent or reducible to one of the
modalities (1)–(6), i.e., either

1. �S5 µ′�ϕ ↔ ϕ,
2. �S5 µ′�ϕ ↔ ¬ϕ,
3. �S5 µ′�ϕ ↔ �ϕ,
4. �S5 µ′�ϕ ↔ �¬ϕ,
5. �S5 µ′�ϕ ↔ ¬�ϕ, or
6. �S5 µ′�ϕ ↔ ¬�¬ϕ.

Note that by the RE rule, which is valid in S5, and 1–6 above, either
1′. �S5 �µ′�ϕ ↔ �ϕ,
2′. �S5 �µ′�ϕ ↔ �¬ϕ,
3′. �S5 �µ′�ϕ ↔ ��ϕ, and hence �S5 �µ′�ϕ ↔ �ϕ,
4′. �S5 �µ′�ϕ ↔ ��¬ϕ, and hence �S5 �µ′�ϕ ↔ �¬ϕ,
5′. �S5 �µ′�ϕ ↔ �¬�ϕ, and hence �S5 �µ′�ϕ ↔ ¬�ϕ, or
6′. �S5 �µ′�ϕ ↔ �¬�¬ϕ, and hence �S5 �µ′�ϕ ↔ ¬�¬ϕ.

Similarly, by CN-logic, and 1–6 above, either
1′′. �S5 ¬µ′�ϕ ↔ ¬ϕ,
2′′. �S5 ¬µ′�ϕ ↔ ¬¬ϕ, and hence �S5 ¬µ′�ϕ ↔ ϕ,
3′′. �S5 ¬µ′�ϕ ↔ ¬�ϕ,
4′′. �S5 ¬µ′�ϕ ↔ ¬�¬ϕ,
5′′. �S5 ¬µ′�ϕ ↔ ¬¬�ϕ, and hence �S5 ¬µ′�ϕ ↔�ϕ, or
6′′. �S5 ¬µ′�ϕ ↔ ¬¬�¬ϕ, and hence �S5 ¬µ′�ϕ ↔ �¬ϕ.

But, by definition, either µ = 〈l, µ1, ..., µn〉, or µ = 〈n, µ1, ..., µn〉; and if µ =
〈l, µ1, ..., µn〉, then, by 1′− 6′ above, n+1 ∈ #ModS5, and if µ = 〈n, µ1, ..., µn〉,
then, by 1′′ − 6′′ above, (n + 1) ∈ #ModS5.

Exercise 2.5.1 Show S4 has at most 14 distinct modalities, and that S4.2 has
at most 10 distinct modalities.
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Chapter 3

Matrix Semantics

The logical analysis of an informal notion of natural language (such as necessity
or possibility) involves, we have said, the construction of a formal system, i.e., a
formal language and calculus, that is intended to represent in a precise way the
intended content of that notion. The judgment that the intended content has
been captured should be based not only on our intuitions but on more rigorous
criteria as well. One way in which this can be done is through the construction
of a formal semantics for the language that in an appropriate sense provides a
model of the notion in question and, in particular, a model in terms of which the
valid formulas of the language can be distinguished from the invalid formulas.
The precise criterion by which to judge whether or not the system or calculus
based upon that language has captured the intended content then amounts
to determining whether or not all and only the theorems of the calculus are
valid formulas of the model. Such a result indicates that the system completely
captures the intended content, and for that reason it is called a completeness
theorem for the system. (We include here the notion of soundness—namely,
that every theorem is valid—as part of what we mean by completeness, which
sometimes, as in §1.3 of chapter 1, is taken to mean only that every valid formula
is a theorem.)

There is not one but several ways in which a formal semantics for senten-
tial modal logic can be constructed. The approach we take in this chapter was
the first actually taken in the history of this subject. It is an extension of the
matrix semantics that was developed for sentential logic prior to the addition
of modal operators, i.e., the matrix semantics of the sentential logic of modal
free CN-formulas. This type of semantics is particularly important in so-called
many-valued logics, i.e., logics in which it assumed that there can be truth val-
ues other than truth and falsehood. An initial presumption was that modal
logic could be given an adequate interpretation in terms of matrices having
more than the standard two truth values, truth and falsehood. The main con-
clusion of this chapter is that, despite the historical priority of this approach, no
finite matrix (and therefore no finite system of “truth-values”) provides an ad-
equate semantics for the kinds of normal modal systems described in chapter 2,
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i.e., no finite matrix yields a completeness theorem for those systems. Finite
matrices can be used for other purposes, however, such as showing that certain
modal principles are independent of others, or that certain modal calculi are
consistent.

3.1 CN-Matrices

Because matrix semantics was first developed for the logic of modal free CN-
formulas, we begin with a review of the original form of this approach before
turning to its extension and application to modal formulas. By a CN-formula
simpliciter we mean a modal-free CN-formula, i.e., a modal CN-formula in which
the necessity sign does not occur. The set of CN-formulas can be inductively
specified as follows:

Definition 156 ϕ is a CN-formula (in symbols, ϕ ∈ FMCN ) iff ϕ belongs
to every set K such that (1) for all n ∈ ω, Pn ∈ K, and (2) for all ψ, χ ∈ K,
¬ψ, (ψ → χ) ∈ K.

Note: By definition, FMCN =
⋂{K : (1) for all n ∈ ω, Pn ∈ K, and (2)

¬ψ, (ψ → χ) ∈ K for all ψ, χ ∈ K}. This means that we can utilize the induction
principle that if clauses (1) and (2) hold for any set K, then FMCN ⊆ K.

We call the language all the formulas of which are CN-formulas the CN -
language. A formal system whose language is the CN-language is called a CN -
calculus. A CN-calculus, as so defined, need not be a logistic calculus in the
sense of satisfying Assumption 3 for logistic systems (see §1.2.4); in particular,
it need not have all and only tautologous formulas among its theorems. In this
regard we leave the interpretation of the negation and conditional signs open or
undetermined. Fixing an interpretation is then the job of the semantics, which
in our present context is the formal semantics of CN-matrices.

CN-matrices were first described by Jan �Lukasiewicz and A. Tarski in
their classic 1930 paper, “Investigations into the Sentential Calculus,” which
is reprinted as chapter four in Tarski 1956. The approach we take here is essen-
tially that described in that paper.

Intuitively, the kind of model of CN-formulas that is specified by a CN-matrix
is determined by three factors: (1) a nonempty domain of entities that CN-
formulas are taken to represent—e.g., truth-values, states of affairs, propositions,
etc.; (2) a subdomain of “designated” entities—e.g., the truth value truth, or
existing (as opposed to nonexisting or nonobtaining) states of affairs, or true (as
opposed to false) propositions, etc.; and (3) an interpretation of the conditional
and negation signs with respect to the full domain of entities—in particular, an
interpretation that amounts to assigning to the conditional and negation signs
a binary and a unary operation, respectively, on and into that domain.

Definition 157 A is a CN-matrix iff there are sets A, B, f , g such that
A = 〈A,B, f, g〉, where
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(1) A 
= 0,

(2) B ⊆ A,

(3) f ∈ AA2
(i.e., f is a function with the set of all 2-tuples of members of A

as domain and whose range is included in A), and

(4) g ∈ AA (i.e., g is a function with A as domain and whose range is included
in A).

Note: Where A is as above, A is the domain of the matrix and B is the set of
designated entities of the domain. The functions f and g are the interpretations
assigned by the matrix to the conditional and negation signs, respectively.

CN-formulas contain not only the conditional and negations signs but sen-
tence letters (or variables) as well. An interpretation of CN-formulas in a CN-
matrix must assign entities in the domain of the matrix to the sentence letters
in order to interpret the formulas containing those letters. In the definition that
follows we take such an assignment to assign values not only to sentence letters
but to compound CN-formulas as well. The interpretation a CN-formula has in
the matrix relative to such an assignment is then understood to be the value
that formula has with respect to the assignment.

Definition 158 If A = 〈A,B, f, g〉 and A is a CN-matrix, then a is a value
assignment in A iff

(1) a is a function,

(2) Da = FMCN (i.e., the domain of a is the set of CN-formulas),

(3) Ra ⊆ A (i.e., the range of a is included in A), and

(4) for all ϕ, ψ ∈ FMCN ,

(a) a(ϕ → ψ) = f(a(ϕ), a(ψ)), and

(b) a(¬ϕ) = g(a(ϕ)).

Validity with respect to a CN-matrix can now be defined in terms of the
notion of a value assignment. The idea is that an argument consisting of a set
Γ of CN-formulas as premises and a CN-formula ϕ as conclusion is valid in a
CN-matrix A if, and only if, whenever all of the members of Γ (i.e., all of the
premises) have a designated value in A (e.g., are “true”), then so does (the
conclusion) ϕ (i.e., then ϕ is “true” as well). The validity of a CN-formula is
then understood to be the validity of the argument with zero premises having
that formula as its conclusion.

Definition 159 If A = 〈A,B, f, g〉, A is a CN-matrix, and Γ ∪ {ϕ} ⊆ FMCN ,
then:

(1) the argument with Γ as its set of premises and ϕ as its conclusion is valid
in A (in symbols, Γ |=A ϕ) iff for each value assignment a in A, if a(ψ) ∈ B,
for all ψ ∈ Γ, then a(ϕ) ∈ B; and

(2) ϕ is valid in A (in symbols, |=A ϕ) iff 0 |=A ϕ.
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Our general concern, we have said, is to establish a connection between the
semantic notion of validity and the syntactic notion of derivability (or provabil-
ity). We refer to the problem of establishing this connection as the completeness
problem. There are at least four different approaches that can be taken regard-
ing this problem. The first begins with a set of CN-formulas. The problem is
then to find a CN-matrix in which all and only the members of that set are
valid.

Approach I : Given a set Γ of CN-formulas, find a CN-matrix A such that
for all CN-formulas ϕ, ϕ ∈ Γ iff |=A ϕ.

Example 160 Suppose Σ is a CN-calculus and that Γ = {ϕ : �Σ ϕ}. Then
the problem is to find a CN-matrix A such that for all ϕ ∈ FMCN , �Σ ϕ iff
|=A ϕ. This sort of result is called a weak completeness theorem for Σ with
respect to A. A strong completeness theorem for Σ (relative to A) is when for
all K ∪ {ϕ} ⊆ FMCN , K �Σ ϕ iff K |=A ϕ.

On the second approach, the goal is to find not just one CN-matrix but a
significant or interesting class (e.g., the largest class) of CN-matrices in which
all and only the formulas of the given set are valid.

Approach II : Given a set Γ of CN-formulas, find an interesting class (or find
the largest class) F of CN-matrices such that for all CN-formulas ϕ, ϕ ∈ Γ iff ϕ
is valid in every member of F.

Example 161 Where Σ is a CN-calculus, find the largest class F of CN-
matrices such that for all K∪{ϕ} ⊆ FMCN , K �Σ ϕ iff for all A ∈ F, K |=A ϕ.

Instead of beginning with a set of CN-formulas, one can begin with a CN-
matrix (or, more generally, with a class of CN-matrices), and then try to find
a CN-calculus the set of theorems of which coincides with the set of formulas
valid in that matrix (or valid in every matrix belonging to the class). These are
the other two approaches to the completeness problem that can be taken.

Approach III : Given a CN-matrix A, describe the set of CN-formulas that
are valid with respect to A.

Approach IV : Given a class F of CN-matrices, describe the set of CN-
formulas ϕ such that for all A ∈ F, |=A ϕ.

Example 162 (a) Find an axiom set Γ (i.e., a CN-calculus Σ with Γ as its
axiom set) such that for each CN-formula ϕ, |=A ϕ iff ϕ ∈ MP (Γ).
(b) Given a class F of CN-matrices, construct a CN-calculus Σ such that for all
K ∪ {ϕ} ⊆ FMCN , K �Σ ϕ iff for all A ∈ F, K |=A ϕ.

3.2 The Standard Two-Valued CN-Matrix

Although there are many different CN-matrices with various domains and des-
ignated entities, there is one that we take to be the standard matrix for classical
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CN-logic. The domain of this matrix consists of the two truth-values, truth and
falsehood, with truth understood as the designated truth-value. As in chapter 1
(§1.3) in the definition of a truth-functional valuation, truth and falsehood can
be formally represented by the numbers 1 (for the unity of truth) and 0 (for the
nullity of falsehood). The domain of the standard matrix, accordingly, is {0, 1},
with {1} as the subdomain of designated values. The two truth-functions over
this domain that are taken to represent the conditional and negation signs are
defined below. The adequacy of the definition is indicated in lemma 165 below.
We will refer to the matrix in question as the standard two-valued CN -matrix,
or simply as A*. A* will serve as an illustration of the different approaches to
the completeness problem.

Definition 163 A∗ =df 〈A∗, B∗, f∗, g∗〉, where
(1) A∗ =df {1, 0},
(2) B∗ =df {1},
(3) f∗ =df the function f such that Df = (A∗)2, and for all x, y ∈ A∗, f(x, y) =
min[1, 1 − x + y], and
(4) g∗ =df the function g such that Dg = A∗, and for all x ∈ A∗, g(x) = 1 − x.

We can also describe the functions f∗ and g∗ tabularly as follows.

f∗ 0 1
0 1 1
1 0 1

g∗

0 1
1 0

Lemma 164 A∗ is a CN-matrix.

Exercise 3.2.1 Prove the above lemma 164.

The following lemma, as noted above, indicates that the definitions of f∗ and
g∗ do in fact provide the classical understanding of the negation and material
conditional signs (given that 1 represents truth and 0 falsehood). That is, any as-
signment in A∗ will assign the appropriate “truth-values” to CN-formulas based
upon the classical interpretation of the negation and the material conditional
signs.

Lemma 165 a is a value assignment in A∗ iff a ∈ A∗(FMCN ) (i.e., a is a
function from FMCN into A∗), and for all CN-formulas ϕ,ψ,

(1) a(ϕ → ψ) = 1 iff either a(ϕ) = 0 or a(ψ) = 1, and
(2) a(¬ϕ) = 1 iff a(ϕ) = 0.

Proof. Assume, for the left-to-right direction, that a is a value assignment in
A∗, i.e., a ∈ A∗(FMCN ), and show clauses 1 and 2. Clause 1: If a(ϕ → ψ) = 1,
then, by definition of assignment, f∗(a(ϕ), a(ψ)) = min[1, 1− a(ϕ) + a(ψ)] = 1,
from which it follows that either a(ϕ) = 0 or a(ψ) = 1. Conversely, if a(ϕ) = 0,
then min[1, 1 − a(ϕ) + a(ψ)] = 1 = a(ϕ → ψ); and, if a(ψ) = 1, then min[1, 1 −
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a(ϕ) + a(ψ)] = 1 = a(ϕ → ψ). Clause 2 : a(¬ϕ) = g∗(a(ϕ)) = 1 − a(ϕ) = 1 iff
a(ϕ) = 0.

Assume now that a is a function from FMCN into A∗ such that clauses (1)
and (2) of the lemma hold. It suffices to show that a satisfies conditions (4a)
and (4b) of the definition of a value assignment. For (4b), we need to show that
for all ϕ ∈ FMCN , a(¬ϕ) = g∗(a(ϕ)). We consider two cases, depending on
whether a(ϕ) is 1 or 0. First, if a(ϕ) = 1, then, by clause (2) of the assumption,
a(¬ϕ) = 0; and therefore, a(¬ϕ) = 1 − a(ϕ) = g∗(a(ϕ)). On the other hand,
if a(ϕ) = 0, then, by clause (2) of the assumption, a(¬ϕ) = 1; and therefore,
a(¬ϕ) = 1 − a(ϕ) = g∗(a(ϕ)). Hence, in either case, a(¬ϕ) = g∗(a(ϕ)), which
shows that clause (4b) holds. For clause (4a), it suffices to show that for all ϕ,
ψ ∈ FMCN , a(ϕ → ψ) = f∗(a(ϕ), a(ψ)). We consider the four possible cases:

Case 1: a(ϕ) = 1 and a(ψ) = 1. Then, by clause (1) of the assumption,
a(ϕ → ψ) = 1; and therefore, a(ϕ → ψ) = 1 = min[1, 1−a(ϕ)+a(ψ)] = f∗(a(ϕ),
a(ψ)).

Case 2: a(ϕ) = 1 and a(ψ) = 0. Then, by clause (1) of the assumption,
a(ϕ → ψ) = 0; and therefore, a(ϕ → ψ) = min[1, 1 − a(ϕ) + a(ψ)] = f∗(a(ϕ),
a(ψ)).

Case 3 : a(ϕ) = 0 and a(ψ) = 1.
Case 4 : a(ϕ) = 0 and a(ψ) = 0.

We leave the argument for cases 3 and 4 as an exercise.

Exercise 3.2.2 Complete the proof of lemma 165.

In regard to the first approach to the completeness problem, we consider
a classical CN-calculus whose axiom set is specified in the following definition
and the only inference rule of which is the MP rule of chapter 2 restricted to
CN-formulas.

Definition 166 AXCN =df {ξ ∈ FMCN : for some ϕ, ψ, χ either
(1) ξ = ϕ → (ψ → ϕ),
(2) ξ = ϕ → (ψ → χ) → ([ϕ → ψ] → [ϕ → χ]), or
(3) ξ = (¬ϕ → ¬ψ) → (ψ → ϕ)}.

As stated by the next lemmas, every formula in AXCN , and every modus
ponens consequence of AXCN , is valid in the standard two-valued matrix A∗.

Lemma 167 For all ϕ ∈ AXCN , |=A∗ ϕ; and for all ϕ,ψ ∈ FM, if |=A∗ ϕ,
and |=A∗ (ϕ → ψ), then |=A∗ ψ.

Exercise 3.2.3 Prove the above lemma 167.

Lemma 168 For all ϕ ∈ FMCN , ϕ is a tautology on FMCN iff |=A∗ ϕ.

Proof. By lemma 165 and the definition 34 (of §1.3) of a truth-functional
valuation on Mol(FMCN ) (which, by definition, is just FMCN ), it is read-
ily seen that for all a, a is a truth-functional valuation on Mol(FMCN ) iff a is



3.2. THE STANDARD TWO-VALUED CN-MATRIX 51

an assignment in A∗. Accordingly, if ϕ ∈ FMCN , then a(ϕ) = 1, for every
truth-functional valuation a on Mol(FMCN ) iff a(ϕ) = 1, for every assignment
a in A∗; and, therefore, by definition, ϕ is a tautology on FMCN iff |=A∗ ϕ.

By ΣCN let us understand the CN-calculus that has AXCN as its axiom set
and the MP rule as its only inference rule. The following (strong) completeness
theorem shows that the syntactical notion of derivability in ΣCN coincides with
the semantical notion of validity in the standard two-valued matrix A∗. The
corollary (which we call weak completeness) shows that the notion of validity
as applied to formulas simpliciter is equivalent to the notion of provability (i.e.,
theoremhood) in ΣCN .

Theorem 169 (Strong completeness of ΣCN relative to A∗): For all Γ∪
{ϕ} ⊆ FMCN , ϕ ∈ MP (AXCN ∪ Γ) iff Γ |=A∗ ϕ.

Proof. Assume Γ ∪ {ϕ} ⊆ FMCN and that ϕ ∈ MP (AXCN ∪ Γ). To show
Γ |=A∗ ϕ, assume that a is an assignment in A∗ such that a(ψ) = 1, for all
ψ ∈ Γ. It suffices to show that a(ϕ) = 1. Now by assumption, there is an n ∈ ω
and an n-place sequence ∆ such that ∆n−1 = ϕ, and for all i < n, either
∆i ∈ AXCN ∪ Γ or for some j, k, ∆k = (∆j → ∆i). Let A = {i ∈ ω : if i < n,
then a(∆i) = 1}. We show by strong induction that ω ⊆ A. Suppose then that
i ∈ ω, i ⊆ A, and i < n. To show i ∈ A, note that if ∆i ∈ AXCN ∪ Γ, then,
by lemma 167 and assumption, a(∆i) = 1, and therefore i ∈ A. If, on the other
hand, there are j, k < i such that ∆k = (∆j → ∆i), then, by the inductive
hypothesis, a(∆j) = 1 and a(∆j → ∆i) = 1 = min[1, 1 − a(∆j) + a(∆i)]; and
therefore, a(∆i) = 1, from which it follows that i ∈ A.

For the converse direction, assume Γ |=A∗ ϕ. To show ϕ ∈ MP (AXCN ∪Γ),
note that ΣCN is a logistic system such that Γ �CN ϕ iff ϕ ∈ MP (AXCN ∪ Γ).
Therefore, by theorem 31 (of §1.2.4), ϕ ∈ MP (AXCN ∪ Γ) iff for all maximally
ΣCN -consistent sets K ⊆ FMCN , if Γ ⊆ K, then ϕ ∈ K. Assume, accordingly,
that K ∈ MCΣCN

and that Γ ⊆ K. Let a be that function such that Da =
FMCN and for all ψ ∈ FMCN ,

a(ψ) =
{

1 if ψ ∈ K
0 otherwise .

It follows, by definition, that a is a value assignment in A∗, the proof of which
we leave as an exercise, and hence that a(ψ) = 1, for all ψ ∈ Γ; and therefore,
by assumption, a(ϕ) = 1, from which we conclude that ϕ ∈ K.

Exercise 3.2.4 Show that a, as defined above, is a value assignment in A∗.
(E.g., use lemma 29 of §1.2.4 and lemma 165 above.)

Corollary 170 (Weak completeness of ΣCN with respect to A∗): For all
ϕ ∈ FMCN , ϕ ∈ MP (AXCN ) iff |=A∗ ϕ.
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3.3 Modal CN-Matrices

In the preceding sections we focused on the CN-language and developed its
matrix semantics, including in particular the standard matrix semantics for CN-
logic. We now extend that semantics so as to apply to modal CN-formulas and
sentential modal logic as well. Matrices will be called modal CN -matrices in this
extension, and they will have all the features that CN-matrices have—namely,
a domain of entities (such as truth-values, states of affairs, propositions, etc.)
that formulas (sentence forms) can be taken to represent or otherwise stand
for, a subdomain of designated entities, and two operations that provide an
interpretation of the conditional and negation signs. In addition, a modal CN-
matrix will also contain an operation for necessity.

Definition 171 A is a modal CN-matrix iff there are sets A, B, f , g, h
such that A = 〈A,B, f, g, h〉, where (1) A 
= 0, (2) B ⊆ A, (3) f ∈ AA2 , (4)
g ∈ AA, and (5) h ∈ AA.

An interpretation of modal CN-formulas in a modal CN-matrix A is just
like an interpretation of CN-formulas in CN-matrices, except that it will assign
entities from the domain of the matrix to modal formulas as well. We extend
the earlier definition, accordingly, to include a clause for formulas of the form
�ϕ.

Definition 172 If A = 〈A,B, f, g, h〉 and A is a modal CN-matrix, then b is
a value assignment in A iff (1) b ∈ AFM , and (2) for all ϕ, ψ ∈ FM, (a)
b(ϕ → ψ) = f(b(ϕ), b(ψ)), (b) b(¬ϕ) = g(b(ϕ), and (c) b(�ϕ) = h(b(ϕ)).

The notions of a valid argument and of a valid formula with respect to a
modal CN-matrix are defined in a manner completely analogous to the ear-
lier definitions—namely, that conclusions of arguments have designated values
whenever all of the premises do.

Definition 173 If A = 〈A,B, f, g, h〉, A is a modal CN-matrix, and Γ∪ {ϕ} ⊆
FM , then:
(1) Γ |=A ϕ iff for all value assignments a in A, if a(ψ) ∈ B, for all ψ ∈ Γ, then
a(ϕ) ∈ B; and
(2) |=A ϕ (i.e., ϕ is valid in A) iff 0 |=A ϕ (i.e., iff for every value assignment
a in A, a(ϕ) ∈ B).

In the following definition, we introduce several notions that relate the se-
mantic concept of validity of an argument or a formula in a modal CN-matrix
with the syntactic notions of derivability and provability in a modal CN-calculus.

Definition 174 If Σ is a modal CN-calculus and A is a modal CN-matrix, then:
(1) A satisfies Σ iff for all ϕ, if �Σ ϕ, then |=A ϕ;
(2) A is characteristic of Σ iff for all ϕ, �Σ ϕ iff |=A ϕ; and
(3) A is strongly characteristic of Σ iff for all Γ ∪ {ϕ} ⊆ FM, Γ �Σ ϕ iff
Γ |=A ϕ.
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In addition to the four approaches to the completeness problem for modal-
free CN-formulas and CN-calculi, we also have four approaches to the complete-
ness problem for modal CN-formulas and modal CN-calculi.

Approach I: Given a modal CN-calculus Σ, find a modal CN-matrix A

(strongly) characteristic of Σ.

Approach II : Given a modal CN-calculus Σ, find a reasonable class (or find
the largest class) of modal CN-matrices every member of which is (strongly)
characteristic of Σ.

Approach III : Given a modal CN-matrix A, find a modal CN-calculus Σ such
that A is (strongly) characteristic of Σ.

Approach IV : Given a class K of modal CN-matrices, find a modal CN-
calculus Σ such that every A ∈ K is (strongly) characteristic for Σ.

Aside from the different approaches to the completeness problem, modal CN-
matrices can be utilized to prove the independence of certain modal principles
from others. By a modal principle (at this level of analysis) we understand
a modal CN-formula ϕ together with all the modal CN-formulas that can be
obtained from ϕ by uniform substitution. Such a principle is also called a schema.
Our descriptions of the different axiom sets of each of the particular modal CN-
calculi described in chapter 2 were really descriptions in terms of axiom schemas.
An axiom schema ϕ of a modal CN-calculus Σ is independent of the other axiom
schemas of Σ, accordingly, if, and only if, not all of the instances of ϕ are MP -
consequences of the set of the instances of the remaining axiom schemas of Σ.

To show that a schema ϕ is independent of the remaining axiom schemas of
a modal CN-calculus Σ, it suffices to show the existence of a modal CN-matrix
A such that (1) every axiom of Σ other than an instance of ϕ is valid in A, (2)
the MP rule preserves validity in A (i.e., whenever ψ and (ψ → χ) are valid in
A, then so is χ), and (3) not every instance of ϕ is valid in A. If such a matrix
exists, then, because all of the MP -consequences of the axiom schemas of Σ
other than all of the instances of ϕ are valid in it, it follows that not all of the
instances of ϕ are MP -consequences of those other axiom schemas, i.e., that ϕ
is independent of those other axiom schemas.

The following are some examples of modal CN-matrices that illustrate how
independence results can be established, as well as how a modal CN-calculus
can be shown to be consistent. Other examples can be found in the appendix of
C. I. Lewis and C. H. Langford’s Symbolic Logic.

Definition 175 Where f , g, h, h′, h∗, and h+ are defined tabularly as follows,

f 1 2 3 4
1 1 2 3 4
2 1 1 3 3
3 1 2 1 2
4 1 1 1 1

g
1 4
2 3
3 2
4 1

h
1 1
2 4
3 3
4 4

h′

1 1
2 4
3 4
4 4

h∗

1 1
2 3
3 3
4 3

h+

1 1
2 2
3 1
4 2

we specify the following modal CN-matrices:
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1. A1 =df 〈{1, 2, 3, 4}, {1}, f, g, h〉,

2. A2 =df 〈{1, 2, 3, 4}, {1}, f, g, h′〉,

3. A3 =df 〈{1, 2, 3, 4}, {1}, f, g, h∗〉,

4. A4 =df 〈{1, 2, 3, 4}, {1}, f, g, h+〉.

Note: A possible informal way of reading these values is to think of 1 as rep-
resenting necessary truth, 2 as contingent truth, 3 as contingent falsehood, and
4 as necessary falsehood. (This seems to work for h′, but is dubious for h+, be-
cause, where ϕ is contingently false, �ϕ is then also contingently false, whereas
perhaps it should be necessarily false instead—and dubious for h∗ and h+ as
well.

By definition, A1, A2, A3, and A4 are all modal CN-matrices. In addition
they all validate the rules of necessitation and modus ponens (lemma 176). In
lemma 177 below, we note that one of the systems, A1, satisfies Kr, M , S4,
S4.2, and S4.3, but, as this same lemma indicates, it does not satisfy Br, nor
therefore S5. The modal principles peculiar to Br and S5 are not valid in A1,
which shows that those principles are independent of the axiom schemas of all
of the normal systems described in chapter 2, §2.3, up to and including S4.3.

Lemma 176 For i = 1, 2, 3, 4, (a) if |=Ai
ϕ, then |=Ai

�ϕ; and (b) if |=Ai

(ϕ → ψ) and |=Ai
ϕ, then |=A1 ψ.

Lemma 177 A1 satisfies Kr, M , S4, S4.2, and S4.3, but it does not satisfy
either Br or S5.

Lemma 178 (Pn → ��Pn) and (�¬Pn → ��¬Pn) are not theorems of
either Kr, M , S4, S4.2, or S4.3.

Exercise 3.3.1 Prove lemmas 176, 177, and 178.

The matrix A3 is interesting because, whereas it satisfies Kr—and even
validates the S4 modal principle (�ϕ → ��ϕ)—it fails to validate the modal
principle (�ϕ → ϕ) of the system M . This shows that the formula (�Pn → Pn)
is not provable in Kr (because the uniform substitution rule is valid in Kr) and
that therefore the modal thesis (�ϕ → ϕ) is independent of the distribution law
of � over →, which is the principal modal thesis of Kr. (It is important to note
that even though (�Pn → Pn) is not provable in Kr, there are instances of this
formula—and therefore of the modal principle (�ϕ → ϕ)—that are provable in
Kr; e.g., �[Pn → Pn] → [Pn → Pn] is tautologous, and therefore provable in
Kr on the basis of CN-logic.)

Lemma 179 A3 satisfies Kr but does not satisfy M .

Finally, because no assignment in A2 can assign 1 to both a formula ϕ and
its negation, ¬ϕ, it follows that there can be no formula ϕ such that both ϕ and
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¬ϕ are valid in A2. But A2, as the following lemma indicates, satisfies S5,
and therefore, by the definition of satisfaction, it follows that S5 (and each of
its subsystems) must be consistent. This is a result we already established in
chapter 2, but by a different method. Here, in matrix semantics, we have a
more general method by which to show that a particular modal CN-calculus
is consistent—namely, by constructing a modal CN-matrix that satisfies the
calculus, regardless whether or not it also is characteristic of the calculus, i.e.,
whether or not it yields a completeness theorem as well.

Lemma 180 A2 satisfies S5 (and therefore S5 and each of its subsystems is
consistent).

Exercise 3.3.2 Show by means of A4 that (�ϕ → ϕ) is independent of the
remaining axiom schemas of S5 even though �(�ϕ → ϕ) is valid in A4, i.e.,
even though |=A4 �(�ϕ → ϕ).

Exercise 3.3.3 Show by means of A3 that �ϕ is not provable in Kr (i.e., that
�Kr �ϕ), for all ϕ ∈ FM.

3.4 Henle Modal CN-Matrices

Although the matrix A2 satisfies S5, it is not characteristic of S5, and, similarly,
although the matrix A1 satisfies Kr, M , S4, S4.2, and S4.3, it is not charac-
teristic of any of these systems. Indeed, it was shown in Dugundji 1940 that no
finite modal CN-matrix is characteristic of any of these systems. We establish
this result in what follows by considering a certain type of matrix known as a
Henle matrix.

Each natural number n, it will be remembered, is identified in our metalan-
guage with the set of natural numbers less than n, i.e., n = {i ∈ ω : i < n}.
The set of all subsets of n, {A : A ⊆ n}, then has 2n many members, one of
which is n itself. In what follows, we will take the set of all subsets of n and
{n}, respectively, as the domain and subdomain of designated values of a modal
CN-matrix that we will associate with n.

Informally, we can think of n as the set of all possible worlds, with each
subset of n then being a particular set of possible worlds. We assume, in this
context, that two modal CN-formulas express the same proposition if, and only
if, they are true (false) in all the same possible worlds, and therefore that the
proposition expressed by a formula can be represented by (or identified with)
the set of possible worlds in which that formula is true (or, equivalently, with
the characteristic function of such a set, i.e., the function that assigns 1, for
truth, to every member of the set and 0, for falsity, otherwise).

A proposition, in other words, can be represented by a set of possible worlds
(or the characteristic function of such), which in this case is a subset of n.
Similarly, it will be understood that a formula of the form �ϕ will be true (in
such a matrix) if, and only if, ϕ is true in every possible world, i.e., iff the
proposition expressed by ϕ is n itself, which is the set of all possible worlds (of
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the matrix). Thus, in the matrix that we will associate with n the different
subsets of n (the totality of which make up the domain of the matrix) can be
viewed as all the different propositions of the matrix, with n itself being the
necessary proposition. As noted above, the domain of such a matrix will be
constituted of exactly 2n many propositions.

Definition 181 If n ∈ ω, then:
(1) fn =df the function f ∈ {A : A ⊆ n}{A:A⊆n}2

(i.e., f is a function from
the set of two-tuples of subsets of n into the set of subsets of n) such that for
all subsets A,B of n, f(A,B) = (n − A) ∪ B (i.e., f(A,B) = {z ∈ n : either
z /∈ A or z ∈ B});
(2) gn =df the function g with the set of subsets of n as domain and such that
for all subsets A of n, g(A) = n − A (i.e., g(A) = {z ∈ n : z /∈ A});
(3) hn =df the function h with the set of subsets of n as domain and such that
for all subsets A of n,

h(A) =
{

n if A = n
0 otherwise ; and

(4) Hn =df 〈{A : A ⊆ n}, {n}, fn, gn, hn〉.

By definition, every Henle matrix, Hn, is a modal CN-matrix. In addition,
in accordance with our informal understanding of the domain of such a matrix
as all of the different sets of possible worlds that can be taken to represent the
different “propositions” that might be expressed by modal CN-formulas, it is
natural to expect that the proposition expressed by a disjunction or conjunction
of formulas should be represented by the union or intersection, respectively, of
the propositions expressed by those formulas. Similarly, that two formulas ϕ
and ψ express the same, or different, propositions will then be expressed by the
necessity of their biconditional, i.e., by �(ϕ ↔ ψ). This informal understanding
is justified in the following lemma:

Lemma 182 If n ∈ ω and a is an assignment in Hn, then
(1) a(ϕ ∨ ψ) = a(ϕ) ∪ a(ψ) and a(ϕ ∧ ψ) = a(ϕ) ∩ a(ψ);
(2) if a(ϕ) = a(ψ), then a(�(ϕ ↔ ψ)) = n; and
(3) if a(ϕ) 
= a(ψ), then a(�(ϕ ↔ ψ)) = 0.

Every Henle matrix, as the following lemmas indicate, satisfies S5 and, there-
fore, each of its subsystems as well.

Lemma 183 For all n ∈ ω, (1) if ϕ is an axiom of S5, then �Hn
ϕ; and (2) if

�Hn
ϕ and �Hn

(ϕ → ψ), then �Hn
ψ.

Lemma 184 For all n ∈ ω, Hn satisfies S5.

Exercise 3.4.1 Prove lemmas 182, 183, and 184.
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In the next several lemmas we need a compact way of expressing the idea
that there are at most n propositions. Using the first n sentence letters, we can
express this by a disjunction stating that either the propositions expressed by
P0 and P1 are identical, i.e., �(P0 ↔ P1), or those expressed by P0 and P2

are identical, i.e., �(P0 ↔ P2), and so on up to a disjunct stating that the
propositions expressed by P0 and Pn are identical, i.e., �(P0 ↔ Pn), and then
continuing the disjunction in a similar way for P1, and then for P2, and so on
up to Pn−1. Note that if there are more than n many propositions in a matrix,
then such a disjunction would not be valid in that matrix because then distinct
propositions can be assigned to the n + 1 many sentence letters P0, ...,Pn. The
following definition introduces notation for this purpose:

Definition 185 (There are at most n “propositions”):∨
i<k≤n �(Pi ↔ Pk) =df �(P0 ↔ P1) ∨ ... ∨ �(P0 ↔ Pn) ∨ �(P1 ↔ P2) ∨ ...

∨�(P1 ↔ Pn) ∨ ... ∨ �(Pn−2↔ Pn−1) ∨ �(Pn−2 ↔ Pn) ∨ �(Pn−1 ↔ Pn).

The following lemma indicates certain conditions that are sufficient for es-
tablishing the validity of the formula asserting that there are at most n “propo-
sitions” (in a given matrix).

Lemma 186 If A = 〈A,B, f, g, h〉, A is a finite modal CN-matrix, m is the
number of elements in A (i.e., A has m “propositions”), and for all ϕ, ψ, and
all assignments a in A,
(1) a(ϕ → (ϕ ∨ ψ)) ∈ B,

(2) a(ψ → (ϕ ∨ ψ)) ∈ B,

(3) if a(ϕ) and a(ϕ → ψ) ∈ B, then a(ψ) ∈ B,

(4) if a(ϕ) = a(ψ), then a(�(ϕ ↔ ψ)) ∈ B,

then for all natural numbers n ≥ m, |=A

∨
i<k≤n �(Pi ↔ Pk).

Proof. Assume the hypothesis of the lemma and suppose that a is an assignment
in A. Then, because m ≤ n, there must be i, j ≤ n such that i 
= j, a(Pi) =
a(Pj). It follows by condition 4 that a(�(Pi ↔ Pj)) ∈ B, and therefore, by
conditions (1)–(3), that a(

∨
i<k≤n �(Pi ↔ Pk)) ∈ B.

Because the domain of the Henle matrix Hn has 2n members, it follows
that, where n ∈ ω − {0}, the formula that asserts that there are at most n
“propositions” cannot be valid in Hn.

Lemma 187 If 0 < n, then �Hn

∨
i<k≤n �(Pi ↔ Pk).

Proof. Suppose 0 < n. Then, because the number of “propositions” in the
domain of Hn is 2n, we can assign a different value in Hn to each of the n
sentence letters P0, ...,Pn−1. If a is such an assignment in Hn, then, by part
(3) of lemma 182, for all i, k < n such that i 
= k, a(�(Pi ↔ Pk)) = 0.
Consequently, by part (1) of lemma 182, a(

∨
i<k≤n �(Pi ↔ Pk)) = 0; and

therefore, �Hn

∨
i<k≤n �(Pi ↔ Pk).
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One consequence of the above lemma is that no modal CN-calculus satisfied
by a Henle matrix can prove a formula asserting the existence of at most n
“propositions”for any positive number n.

Lemma 188 If 0 < n and Σ is a modal CN-calculus satisfied by Hn, then
�Σ

∨
i<k≤n �(Pi ↔ Pk), i.e.,

∨
i<k≤n �(Pi ↔ Pk) is not provable in Σ.

The next group of theorems indicate that no finite matrices can be char-
acteristic of certain sorts of modal systems, including in particular the normal
systems Kr, M , Br, S4, S4.2, S4.3, and S5.

Theorem 189 If Σ is a modal CN-calculus that is satisfied by every Henle
matrix Hn, for n > 0, then there exists no finite modal CN-matrix A satisfying
conditions (1)–(4) of lemma 186 that is (strongly) characteristic of Σ.

Proof. Assume the hypothesis of the theorem, and, by reductio, that A is a finite
modal CN-matrix characteristic of Σ for which conditions (1)–(4) of lemma 186
hold. Then, for all n > m, where m is the number of members in the domain
of A, we have it that, by lemma 186, |=A

∨
i<k≤n �(Pi ↔ Pk); and therefore,

because, by reductio, A is (strongly) characteristic of Σ, �Σ

∨
i<k≤n �(Pi ↔

Pk), which is impossible by hypothesis and lemma 188.

Theorem 190 If Σ is a modal CN-calculus that is satisfied by every Henle
matrix Hn, for n > 0, and, for all ϕ, �Σ �(ϕ ↔ ϕ), then there is no finite
modal CN-matrix that is strongly characteristic of Σ.

Proof. Assume the hypothesis of the theorem and, by reductio, that there is
a finite modal CN-matrix A that is strongly characteristic of Σ. By definition
(of modal CN-calculus), Σ is a logistic calculus, and therefore, by Assumption
3 (of §1.2.4 of chapter 1), �Σ (ϕ → ϕ ∨ ψ) and �Σ (ψ → ϕ ∨ ψ). Suppose
that a is an assignment in A. Then, because, by reductio, A is characteristic of
Σ, |=A (ϕ → ϕ ∨ ψ) and |=A (ψ → ϕ ∨ ψ), and therefore a(ϕ → ϕ ∨ ψ) and
a(ψ → ϕ∨ψ) are both designated values of A, which means that conditions (1)
and (2) of lemma 186 hold. To show that condition (3) holds as well, note that
because Σ is a logistic system, {ϕ, ϕ → ψ} �Σ ψ, and therefore, given that A is
strongly characteristic of Σ, if a(ϕ) and a(ϕ → ψ) are both designated values in
A, so is a(ψ). Finally, to show that condition (4) of lemma 186 holds, note that
by hypothesis �Σ �(ϕ ↔ ϕ), and therefore that a(�(ϕ ↔ ϕ)) is designated in
A. But, by definition of ↔, a(�(ϕ ↔ ϕ)) = a(�¬([ϕ → ϕ] → ¬[ϕ → ϕ])), and
hence

a(�(ϕ ↔ ϕ)) = h(g[f(f [a(ϕ), a(ϕ)], g[f(a(ϕ), a(ϕ)])]).

Therefore, if a(ϕ) = a(ψ), then a(�(ϕ ↔ ψ)) is designated in A as well.
Accordingly, by lemma 186, |=

∨
i<k≤n �(Pi ↔ Pk), and consequently �Σ∨

i<k≤n �(Pi ↔ Pk), which is impossible by lemma 188.
By lemma 184, every Henle matrix Hn satisfies S5, and therefore Hn satisfies

every subsystem of S5. Combined with theorem 190 and the fact that �(ϕ ↔ ϕ)
is provable in all of these systems, including S1–S3, it follows that there can be
no finite matrix that is (strongly) characteristic of any of these systems.
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Theorem 191 There exists no finite modal CN-matrix that is strongly charac-
teristic of Kr, M , Br, S1, S2, S3, S4, S4.2., S4.3, or S5.

Theorems 190 and 191 can be stated with ‘characteristic’ in place of ‘strongly
characteristic’ so long as we restrict our considerations to those matrices in which
modus ponens preserves designated values, i.e., those matrices A such that for
all assignments a in A and for all ϕ, ψ, if a(ϕ) and a(ϕ → ψ) are designated in
A, then so is a(ψ).

Theorem 192 If Σ is a modal CN-calculus that is satisfied by every Hn, for
n > 0, and, for all ϕ, �Σ �(ϕ ↔ ϕ), then there is no finite modal CN-matrix
in which modus ponens preserves designated values that is characteristic of Σ.

Theorem 193 There exists no finite modal CN-matrix in which modus ponens
preserves designated values that is characteristic of Kr, M , Br, S1, S2, S3,
S4, S4.2, S4.3, or S5.

Exercise 3.4.2 Prove the above theorems 192 and 193.

It should be noted that theorems 190 and 192 can be formulated in a
somewhat stronger form. In particular, the assumption that Σ is a modal CN-
calculus—i.e., a sentential modal system having all tautologous formulas among
its theorems—can be weakened to the joint assumption that modus ponens be
a (derived or primitive) rule of Σ and that, for all ϕ, ψ, �Σ (ϕ → ϕ ∨ ψ) and
�Σ (ψ → ϕ ∨ ψ).

Finally, although we will not go into infinite matrices here, we should note
that J. �Los and R. Suszko have shown that a characteristic infinite matrix is
available for almost any sentential logic for which uniform substitution is valid.1

1See �Los and Suszko 1958 for this result.
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Chapter 4

Semantics for Logical
Necessity

The fact, established in chapter 3, that no finite matrix is characteristic of modal
logic—or at least not of any of the normal systems described in chapter 2—has
been taken to show that modal logic has no philosophical significance. Gustav
Bergmann, for example, suggested that one might make sense of modal logic in
terms of a four-valued matrix in which the four values are taken as necessary
truth, contingent truth, contingent falsehood, and necessary falsehood, respec-
tively.1 In this way, Bergmann claimed, “one might ... conceivably arrive at an
adequate explication, very much in the style of truth tables, of what could be
meant by calling logical truths necessary.”2 But because no finite matrix is char-
acteristic of any of the normal modal systems (or, rather, of any of the systems
satisfied by every Henle matrix), such an explication cannot succeed. What this
shows, according to Bergmann, is that modal logic has no philosophical signifi-
cance.

This conclusion is wrong, we maintain, and wrongly based as well. It is
wrongly based because the fact that the result in question applies to systems
satisfied by every Henle matrix means (as indicated in lemma 187 of the pre-
ceding section) that it applies to systems that do not validate, for any positive
integer n, the statement that there are at most n “propositions”—where by a
“proposition” we mean the kind of entity that can be associated with a set of
possible worlds (or the characteristic function of such a set). That is, the result
applies to systems for which it is not assumed (nor rejected for that matter)
that there are only a finite number of possible worlds. This, we maintain, is
as it should be—or, at least, it certainly is as it should be in the case of logi-
cal necessity, which is the only notion of necessity indicated as even plausible
by Bergmann. In this regard, the result is not about the number of truth val-
ues that a proposition might have—which still is just two, namely, truth and

1See Bergmann 1960.
2Ibid., p. 483.

61
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falsity—but about the number of possible worlds in which a proposition might
be true or false.

Bergmann’s conclusion is also wrong, moreover, because the so-called “truth-
values” of necessary truth, contingent truth, necessary falsehood, and contingent
falsehood cannot, as Bergmann would have it, stand on their own, but presup-
pose instead an analysis in terms of logical necessity (or the necessity of logical
truth). Necessary truth, to be sure, can be associated with ‘�’, and necessary
falsehood with ‘�¬’ (or, equivalently, with ‘¬�’); but contingent truths are not
merely possible truths but possible falsehoods as well. That is, the contingency
of a formula ϕ is represented by (�ϕ∧�¬ϕ), and not by just �ϕ. Logical truths,
for example, are necessary, and not contingent, truths; and yet logical truths are
not only logically necessary but logically possible as well. That is, in the case
of logical necessity, both (�ϕ → ϕ) and (ϕ → �ϕ) are valid (and, in fact, are
contrapositive theses), and therefore so is (�ϕ → �ϕ).

Logical truths are possible truths but not contingent truths. Similarly, logical
falsehoods are possible falsehoods but not contingent falsehoods. It is because
the notions of contingent truth and contingent falsity presuppose the notion
of logical possibility—or, given the analysis of possibility in terms of necessity,
the notion of logical necessity—that they cannot be used as “truth values” in
the semantic clauses of modal logic independently of a prior logical analysis
of logical necessity and possibility. That is why we maintain that the so-called
“truth-values” of necessary truth, contingent truth, necessary falsehood, and
contingent falsehood cannot stand on their own, but presuppose an analysis in
terms of logical necessity (or the necessity of logical truth).

The question now of course is how is logical necessity to be explicated—given
that it is not to be explicated in terms of a finite modal CN-matrix. Our view,
as indicated at the beginning of chapter 3, is that such an explication begins
with a formal language and a formal system based upon that language, which,
on our present level of analysis, means that we begin with a modal CN-calculus.
The adequacy of such a calculus for such an explication is then to be evaluated,
we have said, in terms of a formal semantics that provides an intuitive model of
the notion of necessity in question, which in our present case is logical necessity.
In particular, such a calculus will be adequate if, and only if, it can be shown
to be complete with respect to such an intuitively associated formal semantics.

4.1 The Problem of a Semantics for
Logical Necessity

There is, in fact, a natural, intuitive formal semantics that can be given for logi-
cal necessity that is not unrelated to the natural and intuitive semantics we gave
for CN-logic in terms of the standard two-valued CN-matrix A∗. This semantics
can be based upon the ontological framework of logical atomism and the idea
that a logically possible world is completely determined by the atomic states of
affairs that obtain in that world. Each sentence letter (or atomic sentence) can



4.1. THE PROBLEM OF A SEMANTICS FOR LOGICAL NECESSITY 63

be taken to represent such an atomic state of affairs, and a possible world can
be represented by a distribution of truth values to all of the sentence letters,
i.e., by an assignment in A∗ restricted to sentence letters. For convenience, we
will call such a restricted assignment a truth-value assignment.

Definition 194 t is a truth-value assignment (in symbols, t ∈ V ) iff t ∈
{0, 1}{Pn:n∈ω} (i.e., iff t is a function from the set of sentential variables into
{0, 1}).

Truth in a logically possible world (according to logical atomism) can now
be inductively defined as truth with respect to a truth-value assignment (i.e.,
a distribution of truth values to the atomic sentences). For modal-free CN-
formulas, the definition is given as follows, where ‘|=t’ is taken as an abbreviation
for ‘is true in (or with respect to) t’ and ‘�t’ as ‘is not true in t’:

Definition 195 If t ∈ V , then:
(1) |=tPn iff t(Pn) = 1,

(2) |=t ¬ϕ iff �t ϕ , and
(3) |=t (ϕ → ψ) iff either �t ϕ or |=t ψ.

As applied to modal-free CN-formulas, truth in a logically possible world,
i.e., truth in a truth-value assignment, coincides, as lemma 196 below indicates,
with truth with respect to a truth-functional valuation (as defined in chapter 1,
§1.3). Lemma 197 indicates that being a tautology on FMCN coincides with
truth in all logically possible worlds (as represented by truth-value assignments).

Lemma 196 If t ∈ V , f is a truth-functional valuation on FMCN , and for all
n ∈ ω, f(Pn) = 1 iff t(Pn) = 1, then for all ϕ ∈ FMCN , f(ϕ) = 1 iff |=t ϕ.

Proof. Assume the hypothesis of the lemma. Let Γ = {ϕ ∈ FMCN : f(ϕ) = 1
iff |=t ϕ}. We show by induction that FMCN ⊆ Γ. We note first that if n ∈ ω,
then, by hypothesis, Pn ∈ Γ. Suppose now that ϕ ∈ Γ and show ¬ϕ ∈ Γ.
By assumption, f(ϕ) = 1 iff |=t ϕ, and therefore f(ϕ) = 0 iff �t ϕ, from
which we conclude, by definition, that f(¬ϕ) = 1 iff |=t ¬ϕ, and hence that
¬ϕ ∈ Γ. Suppose ϕ,ψ ∈ Γ and show (ϕ → ψ) ∈ Γ. By the inductive hypothesis,
f(ϕ) = 1 iff |=t ϕ, and f(ψ) = 1 iff |=t ψ. Then f(ϕ) = 0 iff �t ϕ. By definition,
f(ϕ → ψ) = 1 iff f(ϕ) = 0 or f(ψ) = 1; and therefore f(ϕ → ψ) = 1 iff �t ϕ or
|=t ψ, i.e., iff |=t (ϕ → ψ), from which we conclude that (ϕ → ψ) ∈ Γ.

Lemma 197 If ϕ ∈ FMCN , then ϕ is a tautology on FMCN iff for all t ∈ V ,
|=t ϕ.

Proof. Assume the hypothesis of the lemma. Suppose first that ϕ is a tautology
on FMCN and that t ∈ V . Let f be that function with FMCN as domain and
such that for all ψ ∈ FMCN ,

f(ψ) =
{

1 if �t ψ
0 otherwise .
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By definition 195, it is easily seen that f is a truth-functional valuation
on FMCN . Therefore, by definition of tautology on FMCN , f(ϕ) = 1, from
which we conclude by the definition of f that |=t ϕ. For the converse direction,
suppose now that for all t ∈ V , |=t ϕ, and that f is a truth-functional valuation
on FMCN . It suffices to show that f(ϕ) = 1. Accordingly, let t be that function
with {Pn : n ∈ ω} as domain and such that for all n ∈ ω,

t(Pn) =
{

1 if f(Pn) = 1
0 otherwise .

By definition, t ∈ V , and therefore, by assumption, |=t ϕ, from which we
conclude, by lemma 196 that f(ϕ) = 1.

Intuitively, by logical truth we mean truth in every logically possible world—
assuming, that is, that we have a clear and precise notion of a logically possible
world. The problem is to provide and explicate a clear and precise notion of
a logically possible world. In logical atomism, as we have said, this problem is
resolved by representing each logically possible world by a distribution of truth
values to all of the atomic sentences, i.e., by a truth-value assignment. Accord-
ingly, with this ontological background in mind, we can define logical truth—
which we will call simply L-truth—as truth in every truth-value assignment.
Theorem 199 below indicates that the logical truth of a modal-free CN-formula
coincides exactly with validity in the standard 2-valued CN-matrix A∗.

Definition 198 If ϕ ∈ FMCN , then ϕ is L-true iff for all t ∈ V , |=t ϕ.

Theorem 199 If ϕ ∈ FMCN , then ϕ is valid in the standard 2-valued CN-
matrix A∗ (i.e., |=A∗ ϕ) iff for all t ∈ V , |=t ϕ, i.e., iff ϕ is L-true.

Proof. Theorem 199 is an immediate consequence of lemma 197 above and
lemma 168 of §3.2 in chapter 3.

4.2 Carnap’s Adequacy Criterion

The question now is how are we to extend the definition of truth in a logically
possible world (as represented by a truth-value assignment) so as to apply it to
modal formulas as well. Rudolf Carnap, in his book Meaning and Necessity,3

proposed the following informal convention as a criterion of adequacy for any
truth clause for logical necessity:

for any sentence ϕ, �ϕ is true iff ϕ is L-true.

As restricted to a modal-free formula ϕ, this criterion for �ϕ amounts ex-
actly to ϕ being tautologous—i.e., by the above results, to ϕ being a logical
truth—which is the interpretation of necessity that Bergmann had in mind in
his criticism of modal logic. The problem Bergmann apparently had in mind

3Carnap 1947.
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here (or so we may assume) is not with the truth-conditions of �ϕ when ϕ is
modal free, but with �ϕ when ϕ already contains occurrences of the necessity
sign—because then the notion of L-truth, as it occurs in the above criterion of
adequacy, presupposes that we already know what it means for a modal formula
to be true in a possible world.

Relative to the framework of logical atomism, where (on the present level of
logical analysis) logically possible worlds are represented by truth-value assign-
ments, what Carnap’s criterion of adequacy amounts to for CN-formulas, when
truth is relativized to truth in a possible world, is the following:

for all ϕ ∈ FMCN and all t ∈ V, �ϕ is true in t iff for all t ∈ V, ϕ is true in t.

In this form, Carnap’s criterion is an explicit truth condition for �ϕ when
ϕ is modal free. By now generalizing and applying this same truth condition to
modal CN-formulas in general, we obtain an intuitively natural and acceptable
truth condition for �ϕ even when ϕ is not modal free (at least when � is
interpreted as logical necessity in the framework of logical atomism). The above
clause, but where FMCN is replaced by FM , can be directly added to the
inductive definition of truth in a truth-value assignment, accordingly, thereby
giving us an inductive definition of truth in a possible world that is applicable
to modal formulas as well. That is, in the inductive definition 195 of ‘|=t’ given
in the previous section §4.1, we can add the following new clause:

(4) |=t �ϕ iff for all t′ ∈ V, |=t′ ϕ.

The definition of logical truth given in §4.1—i.e., of logical truth as truth in
all logically possible worlds—is now extended to all formulas in FM , and not
just those in FMCN .

Definition 200 If ϕ ∈ FM , then ϕ is L-true iff for all t ∈ V , |=t ϕ.

In regard to the completeness problem as to which modal CN-calculus has all
and only the logical truths as its theorems, we observe first that such a system
must contain at least S5.

Lemma 201 If �S5 ϕ, then ϕ is L-true.

Exercise 4.2.1 Prove lemma 201 by showing that every axiom of S5 is L-true
and that the MP rule, the only inference rule of S5, preserves L-truth.

The question now is does the converse of lemma 201 also hold? The answer,
as the next two lemmas indicate, is negative, i.e., not every logical truth as
defined above is a theorem of S5.

Lemma 202 If ϕ is modal free and not tautologous, then ¬�ϕ is L-true.

Exercise 4.2.2 Prove lemma 202.
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Lemma 203 (1) ¬�Pn is not a theorem of S5, i.e., �S5 ¬�Pn; and (there-
fore) (2) not every L-true formula is a theorem of S5.

Proof. By lemma 180 (of §3.3 of chapter 3), the modal CN-matrix A2 satis-
fies S5, i.e., iff �S5 ϕ, then |=A2 ϕ, for all ϕ ∈ FM . But, by definition of A2,
�A2 ¬�Pn; and therefore �S5 ¬�Pn , i.e., ¬�Pn is not a theorem of S5, which
completes the proof for (1). For (2), note that Pn is modal free and not tautolo-
gous, and therefore, by lemma 202, ¬�Pn is L-true, which completes the proof
for (2).

Another way of seeing the difference between S5 and logical truth as defined
above is by noting that whereas uniform substitution preserves theoremhood in
S5 (i.e., the US rule is valid in S5), logical truth is not preserved under uniform
substitution. In particular, we observe that whereas ¬�Pn is L-true, the result
of substituting (Pn ∨ ¬Pn) for Pn in ¬�Pn, namely, ¬�(Pn ∨ ¬Pn), is not
L-true—and, in fact, it is L-false. Uniform substitution can take us not only
from logical truths to nonlogical truths but to logical falsehoods as well.

4.3 Logical Atomism and Modal Logic

There is a sentential modal CN-calculus that does yield a completeness theorem
for logical necessity as explicated above. Because this calculus can be taken to
represent logical atomism (on the sentential level of analysis), we will refer to it
as Lat.

Definition 204 Lat =df Kr ∪ {ψ ∈ FM : ψ is a modal generalization of ¬�ϕ,
for some ϕ such that ϕ is modal free and not tautologous}.

Modal-free formulas that are not tautologous are none other than the CN-
formulas that are not tautologous, and the latter, it is well-known, are ef-
fectively decidable. That is, the modal free formulas that are not tautolo-
gous form a recursive class, and therefore so do formulas of the form ¬�ϕ,
where ϕ is modal-free and not tautologous. It follows, accordingly, that because
Kr is recursive, then so is Lat. Also, because every tautologous formula is in
MP (Kr) ⊆ MP (Lat), it follows (by theorems 68 and 69 of §2.2.4 in chapter 2)
that ΣLat

, i.e., Lat, is a modal CN-calculus, and, in addition, that Lat is an
extension of Kr. Also, although it is clear by the observation made at the
end of the last section that the rule of substitution is not valid in Lat—i.e.,
that Lat is a nonclassical modal CN-calculus—nevertheless, by definition, Lat

is closed under modal generalization, which means (by lemma 72 of §2.2.4 of
chapter 2) that the rule RN is valid in Lat. Accordingly, if �Lat

(ϕ ↔ ψ), then,
by RN , �Lat

�(ϕ ↔ ψ), and therefore, because Lat is an extension of Kr,
�Lat

(�ϕ ↔ �ψ), which means that the RE rule is valid in Lat, and therefore
(by theorem 50 of §2.2 of chapter 2) so is the rule IE of interchange. Although
Lat is not a classical modal CN-calculus, in other words, it is quasi-classical,
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quasi-regular, and quasi-normal.4 We list these observations in the following
lemma.

Lemma 205 (1) Lat is a nonclassical modal CN-calculus; (2) Lat is an ex-
tension of Kr; (3) the RN rule is valid in Lat; (4) the RE and IE rules are
valid in Lat; but (5) the US rule is not valid in Lat; and (6) (therefore) Lat is
quasi-classical, quasi-regular, and quasi-normal.

In lemma 201 of the preceding section §4.2, we noted that every theorem
of S5 is L-true. By lemma 202 and an inductive argument on derivations in
Lat, the same observation applies to Lat, i.e., every theorem of Lat is L-true,
and therefore, because no formula can be both true and false in the same truth
value-assignment, Lat must be consistent.

Lemma 206 If �Lat
ϕ, then ϕ is L-true.

Lemma 207 Lat is consistent.

Exercise 4.3.1 Prove lemmas 206 and 207.

The next lemma indicates that in logical atomism no new (modal) facts
of the world are described by means of modal formulas over and above those
that are described by modal-free formulas—because, according to that lemma,
whatever can be described by means of a modal formula can also be described
by a provably equivalent modal-free formula. This is as it should be in logical
atomism, where all facts, or states of affairs that obtain, are ultimately reducible
to (or analyzable in terms of) atomic facts.

Lemma 208 For all ϕ ∈ FM , there is a modal free formula ψ such that
�Lat

(ϕ ↔ ψ).

Proof. Let Γ = {ϕ ∈ FM : for some modal-free ψ ∈ FMCN , �Lat (ϕ ↔ ψ)}.
It suffices to show by induction on FM that FM ⊆ Γ. Suppose first that n ∈ ω.
Then, because �Lat

(Pn ↔ Pn), Pn ∈ Γ. Suppose now that ϕ ∈ Γ and show
¬ϕ ∈ Γ. By assumption, for some ψ ∈ FMCN , �Lat (ϕ ↔ ψ), and therefore, by
CN-logic, �Lat (¬ϕ ↔ ¬ψ). But ¬ψ ∈ FMCN , and therefore ¬ϕ ∈ Γ. Suppose
ϕ, χ ∈ Γ and show (ϕ → ψ) ∈ Γ. By assumption, �Lat (ϕ ↔ ψ), for some
ψ ∈ FMCN , and �Lat (χ ↔ ψ′), for some ψ′ ∈ FMCN ; and therefore, by
CN-logic, �Lat (ϕ → χ) ↔ (ψ → ψ′). But (ψ → ψ′) ∈ FMCN , so therefore
(ϕ → ψ) ∈ Γ. Finally, suppose ϕ ∈ Γ and show �ϕ ∈ Γ. By assumption,
�Lat (ϕ ↔ ψ), for some ψ ∈ FMCN ; therefore, by the RE rule (lemma 205,
part 4), �Lat

(�ϕ ↔ �ψ). We consider two subcases depending on whether
or not ψ, which is modal-free, is tautologous or not. Suppose, first, that ψ
is tautologous. Then, �Lat

ψ, which means, by RN (lemma 205, part 3), that
�Lat

�ψ, and therefore, by CN-logic, �Lat
�ϕ. Consequently, again by CN-logic,

�Lat
(�ϕ ↔ [Pn ∨¬Pn]); from which it follows, because (Pn ∨¬Pn) ∈ FMCN ,

4See definitions 51, 54, and 56 in chapter 2.
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that �ϕ ∈ Γ. Suppose now that ψ is not tautologous. Then, by definition, ¬�ψ
is an axiom of Lat, and therefore �Lat ¬�ψ, from which, by CN-logic, it follows
that �Lat

¬�ϕ. Consequently, by CN-logic, �Lat
(�ϕ ↔ ¬[Pn ∨ ¬Pn]), where

[Pn ∨ ¬Pn] ∈ FMCN ; and so, in this case as well, �ϕ ∈ Γ. That is, whether ψ
is tautologous or not, �ϕ ∈ Γ.

The next lemma is both useful for what follows and appropriate in regard
to logical necessity. It says, in effect, that if a formula ϕ is not provable, then
the logical possibility of its being false is provable, i.e., then �¬ϕ is provable.

Lemma 209 For all ϕ ∈ FM , either �Lat ϕ or �Lat ¬�ϕ.

Proof. By lemma 208, for some modal-free ψ ∈ FMCN , �Lat
(ϕ ↔ ψ), and

therefore, by the RE rule, �Lat
(�ϕ ↔ �ψ), from which, by CN-logic, it follows

that �Lat (¬�ϕ ↔ ¬�ψ). If ψ is tautologous, then �Lat
ψ, and therefore, by

CN-logic, �Lat
ϕ. On the other hand, if ψ is not tautologous, then �Lat ¬�ψ,

and therefore, by CN-logic, �Lat
¬�ϕ. Therefore, either �Lat

¬�ϕ or �Lat
ϕ.

Lemma 210 (1) �Lat
�ϕ → ϕ; and (2) �Lat

�ϕ → ��ϕ.

Proof. For (1), we have, by lemma 209, either �Lat
ϕ or �Lat

¬�ϕ. But, by
CN logic, �Lat

ϕ → (�ϕ → ϕ) and �Lat
¬�ϕ → (�ϕ → ϕ), and therefore, in

either case, by the MP rule, �Lat
�ϕ → ϕ.

For (2), we also have, by lemma 209, either �Lat ¬ϕ or �Lat ¬�¬ϕ; and
therefore, by the RN rule (lemma 205 above) and the definition of �, either
�Lat

�¬ϕ or �Lat
�ϕ, i.e., either �Lat

¬�ϕ or �Lat
�ϕ, and therefore, again

by RN , either �Lat
¬�ϕ or �Lat

��ϕ. But, by CN logic, �Lat
¬�ϕ → (�ϕ →

��ϕ) and �Lat
��ϕ → (�ϕ → ��ϕ); and so in either case �Lat

�ϕ → ��ϕ,
which completes the proof of (2).

Lemma 211 Lat is a nonclassical extension of S5.

Exercise 4.3.2 Prove lemma 211.

If the necessity sign really does represent logical necessity, then it would
seem that any modally closed formula should be either L-true or L-false (i.e.,
its negation should then be L-true). Accordingly, if Lat does yield a complete
representation of logical necessity (as understood in logical atomism), then every
modally closed formula should be either provable or refutable in Lat. This in
fact is the case, as is indicated in the following lemma.

Lemma 212 If ϕ is modally closed, then either �Lat ϕ or �Lat ¬ϕ.

Proof. Assume the hypothesis. Suppose ϕ is not provable in Lat; i.e., suppose
�Lat

ϕ. Then, by lemma 209 above, �Lat ¬�ϕ. But, by assumption ϕ is modally
closed and by theorem 121 (part 6) of §2.3.7 of chapter 2, �S5 (ϕ ↔ �ϕ), and
therefore, by lemma 211, �Lat

(ϕ ↔ �ϕ). Therefore, by CN logic, �Lat
¬ϕ.
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In general, if Σ is a modal CN-calculus and K is a maximally Σ-consistent
set of formulas, i.e., K ∈ MCΣ, then there is exactly one truth value assignment
t ∈ V such that for all n ∈ ω, t(Pn) = 1 iff Pn ∈ K. We shall use ‘tK ’ to repre-
sent this unique truth value assignment. In Lat, as lemma 214 below indicates,
membership in a maximally Lat-consistent set K amounts—for all formulas,
and not just sentence letters—to truth in the possible world represented by tK .

Definition 213 If Σ is a modal CN-calculus and K ∈ MCΣ, then tK =df the
t ∈ V such that for all n ∈ ω, t(Pn) = 1 iff Pn ∈ K.

Lemma 214 If K ∈ MCLat
, then ϕ ∈ K iff |=tK

ϕ.

Proof. Assume the hypothesis and let Γ = {ϕ ∈ FM : ϕ ∈ K iff |=tK
ϕ}.

It suffices to show by induction on FM that FM ⊆ Γ. There are four cases
to consider. We leave cases (1)–(3) as an exercise and prove case (4). Case 4 :
Suppose ϕ ∈ Γ and show �ϕ ∈ Γ. By lemma 212, �Lat

�ϕ or �Lat
¬�ϕ.

Suppose first that �Lat
�ϕ. Then, because K ∈ MCLat

, �ϕ ∈ K (by lemma
29, part 3, of §1.2.4 of chapter 1). Also, by lemma 206 above, �ϕ is L-true,
which means, by definition, that for all t ∈ V , |=t �ϕ; hence, because tK ∈ V ,
|=tK

�ϕ. It follows, accordingly, that �ϕ ∈ K iff |=tK
�ϕ. Suppose now that

�Lat
¬�ϕ. Then, because K ∈ MCLat

, ¬�ϕ ∈ K; and therefore (by lemma 29,
part 1, of §1.2.4) �ϕ /∈ K. Also, by lemma 206 above, ¬�ϕ is L-true; hence, by
definition, for all t ∈ V, |=t ¬�ϕ. But tK ∈ V , and so |=tK

¬�ϕ, and therefore
�tK

�ϕ. Accordingly, �ϕ /∈ K iff �tK
�ϕ; and therefore, �ϕ ∈ K iff |=tK

�ϕ.
In case either �Lat

�ϕ or �Lat
¬�ϕ, accordingly, �ϕ ∈ Γ.

Exercise 4.3.3 Prove cases 1–3 of the above proof for lemma 214.

Logically possible worlds, in logical atomism, are completely determined by
the atomic states of affairs that obtain in those worlds. This means in particular
that no new facts are represented by conditional formulas or the negations of
formulas other than sentence letters. It also means, as noted above, that there are
no modal facts, i.e., facts represented by modal formulas that are not reducible
to the atomic facts represented by sentence letters. That is, in logical atomism,
worlds that are indiscernible in their atomic facts are indiscernible in their modal
facts as well.

Any calculus Σ that purports to represent logical atomism, accordingly, must
be such that maximally Σ-consistent sets of formulas must be identical if, and
only if, they coincide on the atomic sentences in those sets, i.e., iff they determine
the same truth-value assignment (as a semantic representation of a logically
possible world). In terms of this criterion of adequacy, we justify our claim in
the following lemma that Lat is an adequate representation of logical atomism.

Lemma 215 If K, K ′ ∈ MCLat
and tK = tK′ , then K = K ′.

Exercise 4.3.4 Prove lemma 215.
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We are now ready to prove the completeness theorem for Lat. In doing so we
first introduce the notion of logical implication, or, for brevity, L-implication,
that corresponds to L-truth as defined above. Intuitively, the idea is that a set
of premises logically implies a conclusion ϕ if, and only if, ϕ is true in every
logically possible world in which all of the premises are true. In theorem 217, we
show that logical implication (as explicated here) coincides with derivability in
Lat, which is our strong completeness theorem. An immediate corollary is that
logical truth (as explicated here) coincides with provability in Lat.

Definition 216 If Γ ∪ {ϕ} ⊆ FM , then Γ L-implies ϕ iff for all t ∈ V ,
if |=t ψ, for all ψ ∈ Γ, then |=t ϕ.

Theorem 217 (Strong Completeness): Γ �Lat
ϕ iff Γ L-implies ϕ.

Proof. Suppose first that Γ �Lat
ϕ and show that Γ L-implies ϕ. By hypothesis

and Assumption 4 for logistic systems (as described in §1.2.4 of chapter 1),
�Lat

(ψ0 ∧ ... ∧ ψn−1 → ϕ), for some ψ0, ..., ψn−1 ∈ Γ; and therefore, by lemma
206 above, (ψ0 ∧ ...∧ψn−1 → ϕ) is L-true. Suppose now that t ∈ V and that for
all ψ ∈ Γ, |=t ψ. Then, by assumption, |=t (ψ0 ∧ ...∧ψn−1) and, by definition of
L-truth, |=t (ψ0 ∧ ... ∧ ψn−1 → ϕ), from which it follows that |=t ϕ; and hence
that Γ L-implies ϕ.

For the converse direction, suppose now that Γ L-implies ϕ and show Γ �Lat

ϕ. Then, by theorem 31 of §1.2.4 of chapter 1, it is sufficient to show that for
all K ∈ MCLat

, if Γ ⊆ K, then ϕ ∈ K. Suppose, accordingly, that K ∈ MCLat

and that Γ ⊆ K. By lemma 214, for all ψ, ψ ∈ K iff |=tK
ψ. Therefore, for all

ψ ∈ Γ, |=tK
ψ; hence, by assumption, |=tK

ϕ, from which it follows that ϕ ∈ K.

Corollary 218 (Weak Completeness): �Lat
ϕ iff ϕ is L-true.

In addition to the syntactical notion of Lat-consistency, we also have a se-
mantical notion. Semantically, a set of formulas is consistent if, and only if,
there is some logically possible world in which every formula in the set is true.
Theorem 220 below, which indicates that the syntactic and semantic notions
of consistency coincide, amounts to another version of the strong completeness
theorem for Lat.

Definition 219 Γ is semantically consistent iff for some t ∈ V , |=t ψ, for
all ψ ∈ Γ.

Theorem 220 Γ is semantically consistent iff Γ is Lat-consistent.

Exercise 4.3.5 Prove theorems 218 and 220.

Addenda: For a fuller discussion of the semantics of logical necessity in the
metaphysical background of logical atomism, see chapter 6, “Logical Atomism
and Modal Logic”, of Cocchiarella 1987. The system S13 described in that book
as representative of logical atomism is equivalent to the system Lat described
above—even though Lat, as an axiom set, is properly contained in the axiom
set for S13. The simpler axiom set was noted in Carroll 1978.



Chapter 5

Semantics for S5

Our reformulation of Carnap’s criterion of adequacy for logical necessity as a
truth-condition for formulas of the form �ϕ construes necessity as a metalinguis-
tic universal quantifier over all logically possible worlds—where each logically
possible world is represented by a truth-value assignment, i.e., by a specification
of all of the atomic states of affairs that obtain in that world. On this interpre-
tation, as we saw in the previous chapter, there are more logical truths than
there are theorems of S5.

5.1 All Possible Worlds “Cut Down”

It is possible to give a restricted, or secondary, interpretation of the notion of all
possible worlds, however, under which the logical truths (in a secondary sense)
are none other than the theorems of S5—i.e., an interpretation with respect
to which we can obtain a completeness theorem for S5. (The restricted, or
secondary, interpretation for necessity is similar to the restricted interpretation
for quantification over arbitrary properties, or classes, in second-order logic,
where the latter involves structures called “nonstandard” models.) The idea of
this interpretation is to begin not with the whole of logical space, i.e., with all
logically possible worlds (as explicated in logical atomism), but with arbitrary
regions of logical space, by which we mean arbitrary nonempty classes of possible
worlds. The interpretation of necessity now is not as a quantifier over all logically
possible worlds but as a quantifier over all the possible worlds (truth-value
assignments) in a given region of logical space, i.e., in a given class of possible
worlds. For this reason, the notion of truth (or falsity) is no longer simply truth
(or falsity) in a given logically possible world, but truth (or falsity) in a possible
world relative to a given class of possible worlds (or region of logical space).

Definition 221 If T ⊆ V and t ∈ T , then:

(1) |=T
t Pn iff t(Pn) = 1;

(2) |=T
t ¬ϕ iff �

T
t ϕ);

71
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(3) |=T
t (ϕ → ψ) iff either �

T
t ϕ or |=T

t ψ ; and
(4) |=T

t �ϕ iff for all t′ ∈ T , |=T
t′ ϕ.

Note: We read ‘|=T
t ϕ’ as ‘ϕ is true in (region) T at t’.

One invariance condition we can now define is truth at all worlds of a region
of logical space, i.e., at all worlds in the class of worlds making up that region.
If T ⊆ V , then invariant truth at all of the worlds in T will be called T -validity.

Definition 222 If T ⊆ V , then ϕ is T -valid iff for all t ∈ T , |=T
t ϕ.

Logical truth in the primary sense, i.e., truth in all logically possible worlds
of logical space, is the most general invariance condition for truth that can be
considered. The next most general notion is T -validity for all regions T of logical
space, i.e., truth at every world in every region of logical space. This is what we
mean by logical truth in the secondary sense, or L-truth2. Logical implication
in this secondary sense is then understood as similarly qualified.

Definition 223 If K ∪ {ϕ} ⊆ FM , then:
(1) ϕ is L-true2 iff for all T ⊆ V , ϕ is T -valid; and
(2) K L-implies2 ϕ iff for all T ⊆ V and all t ∈ T , if |=T

t ψ, for all ψ ∈ K,
then |=T

t ϕ.

As the following lemma and theorem indicate, conclusions derivable from
premises within S5 are L-implied2 by those premises; that is, S5 is sound with
respect to this interpretation of logical implication. Because logical truth2 is
equivalent to L-implication2 from the empty set of premises, we have the obvious
corollary to theorem 217.

Lemma 224 (1) ϕ is L-true2 iff 0 (the empty set) L-implies2 ϕ;
(2) If ϕ is an axiom of S5, then ϕ is L-true2; and
(3) if ϕ is L-true2 and (ϕ → ψ) is L-true2, then ψ is L-true2.

Exercise 5.1.1 Prove lemma 224.

Theorem 225 If Γ �S5 ϕ, then Γ L-implies2 ϕ.

Corollary 226 If �S5 ϕ, then ϕ is L-true2.

Exercise 5.1.2 Prove theorem 225 and its corollary 226. (Hint: Prove the the-
orem by an inductive argument over the MP-derivation of ϕ from Γ in S5.)

We saw in regard to the primary notion of L-truth that if K, K ′ ∈ MCLat

and tK = tK′ , then K = K ′. By associating each possible world of logical
atomism with the maximally Lat-consistent class of formulas that represent
the facts or states of affairs that obtain in that world, this result indicates
that worlds indiscernible in their atomic (nonmodal) facts are indiscernible in
their modal facts as well. This, it is important to note, is a consequence of the
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semantical clause for necessity that interprets it as a quantifier over all logically
possible worlds (as explicated in logical atomism).

No such similar result holds in our present secondary semantics for necessity,
i.e., the semantics with respect to which S5 will be shown to be complete. In
particular, on the syntactical side, there are K, K ′ ∈ MCS5 such that tK = tK′ ,
and yet K 
= K ′. That is, in the worlds represented by S5 (or the maximally S5-
consistent sets of formulas), there are modal facts over and above the nonmodal
facts that obtain in those worlds. Semantically, the reason for this difference is
none other than the fact that necessity is now being interpreted as a restricted
quantifier, i.e., as a quantifier not over all logically possible worlds, but only
over all possible worlds in a region of logical space, i.e., all possible worlds in a
given nonempty class of possible worlds.

We are dealing now not with maximally Lat-consistent sets of formulas as
complete descriptions of possible worlds, but with maximally S5-consistent sets
instead. The question we are now concerned with, accordingly, is what condi-
tions on complete (i.e., maximally S5-consistent) descriptions of possible worlds
suffice for the indiscernibility of those worlds? We answer this question in the
following two lemmas. In particular, as the second lemma indicates, the possible
worlds represented by maximally S5-consistent sets of formulas are indiscernible
if they contain the same atomic facts and the same necessary facts (and therefore
the same possible facts as well).

Lemma 227 If Γ ∈ MCS5, Θ = {K ∈ MCS5 : for all ϕ, if �ϕ ∈ Γ, then
ϕ ∈ K} and T = {tK : K ∈ Θ}, then for all K ∈ Θ :
(1) �ϕ ∈ Γ iff �ϕ ∈ K;
(2) if ϕ ∈ K and ¬�ϕ ∈ K, then there is a K ′ ∈ Θ such that ¬ϕ ∈ K ′; and
(3) ϕ ∈ K iff |=T

tK
ϕ.

Proof. Assume the hypothesis of lemma 227 and that K ∈ Θ. For (1), suppose
that �ϕ ∈ Γ; then, because �S5 (�ϕ → ��ϕ), ��ϕ ∈ Γ (by lemma 29, part
3, of §1.2.4 of chapter 1); and therefore, because K ∈ Θ, �ϕ ∈ K. Suppose,
conversely, that �ϕ ∈ K but that �ϕ /∈ Γ. Then, because Γ ∈ MCS5, ¬�ϕ ∈ Γ
(by lemma 29, part 1). But �S5 (¬�ϕ → �¬�ϕ), and therefore �¬�ϕ ∈ Γ,
from which it follows by definition of Θ that ¬�ϕ ∈ K. That is, K is then
inconsistent, which is impossible because K ∈ MCS5. Therefore, �ϕ ∈ Γ iff
�ϕ ∈ K.

For (2), suppose that ϕ ∈ K and ¬�ϕ ∈ K. Let Ξ = {�ψ : �ψ ∈ K} and
show first that Ξ ∪ {¬ϕ} is S5-consistent. By reductio, assume that Ξ ∪ {¬ϕ}
is not S5-consistent, i.e., that Ξ ∪ {¬ϕ} �S5 ¬(χ → χ), for some χ. Then, by
CN-logic and the Deduction Theorem (of chapter 1, §1.2.4), �S5 �ψ0 ∧ ... ∧
�ψn−1 → ϕ, for some �ψ0, ...,�ψn−1 ∈ Ξ ⊆ K. Accordingly, by CN-logic and
the regularity of S5, �S5 ��ψ0 ∧ ... ∧ ��ψn−1 → �ϕ; and therefore, because
�S5 (�ψi ↔ ��ψi), �S5 �ψ0 ∧ ... ∧ �ψn−1 → �ϕ; that is, Ξ �S5 �ϕ. But
then, because Ξ ⊆ K, K �S5 �ϕ, which is impossible because ¬�ϕ ∈ K
and K ∈ MCS5. We conclude, then, that Ξ ∪ {¬ϕ} is S5-consistent after all.
Accordingly, by Lindenbaum’s lemma (of §1.2.4 of chapter 1), there is a set
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K ′ ∈ MCS5 such that Ξ ∪ {¬ϕ} ⊆ K ′. But, for all χ, if �χ ∈ Γ, then, by
(1), because K ∈ Θ, �χ ∈ K, and therefore, by definition, �χ ∈ Ξ ⊆ K ′. But
�S5 �χ → χ, and therefore, χ ∈ K ′, from which it follows that K ′ ∈ Θ.

For (3), let ∆ = {ϕ ∈ FM : for all K ∈ Θ, ϕ ∈ K iff |=T
tK

ϕ}. It suffices to
show by induction that FM ⊆ ∆. There are then four cases to consider.

Suppose n ∈ ω and show Pn ∈ ∆. By definition of tK , where K ∈ Θ,
Pn ∈ ∆.

Suppose now ϕ ∈ ∆ and show ¬ϕ ∈ ∆. But for K ∈ Θ, by the inductive
hypothesis, ϕ ∈ K iff |=T

tK
ϕ; and therefore ϕ /∈ K iff 
|=T

tK
ϕ, from which (by

lemma 29, part 1, of §1.2.4 of chapter 1) it follows that ¬ϕ ∈ K iff |=T
tK

¬ϕ.
That is, ¬ϕ ∈ ∆.

Suppose ϕ, ψ ∈ ∆ and show that (ϕ → ψ) ∈ ∆. Then, where K ∈ Θ, by the
inductive hypothesis, we have both (ϕ ∈ K iff |=T

tK
ϕ) and (ψ ∈ K iff |=T

tK
ψ);

and therefore by the truth-clause for (ϕ → ψ) and lemma 29, part 2, of §1.2.4 ,
(ϕ → ψ) ∈ K iff |=T

tK
(ϕ → ψ), from which it follows that (ϕ → ψ) ∈ ∆.

Finally, suppose ϕ ∈ ∆ and show �ϕ ∈ ∆. Assume, accordingly, that K ∈ Θ
and that �ϕ ∈ K. Then, by (1) above, �ϕ ∈ Γ. Suppose now that t ∈ T , i.e.,
that t = tK′ , for some K ′ ∈ Θ, and show |=T

t ϕ. Then, again by (1) above,
�ϕ ∈ K ′; and therefore, because �S5 (�ϕ → ϕ), ϕ ∈ K ′. Then, by the inductive
assumption, |=T

t
K

′ ϕ, i.e., |=T
t ϕ; from which we conclude, by the truth clause

for �ϕ, that |=T
tK

�ϕ. Hence, if �ϕ ∈ K, then |=T
tK

�ϕ.
For the converse direction, assume that |=T

tK
�ϕ and show that �ϕ ∈ K.

Note that, by the truth clause for �ϕ, |=T
t ϕ, for all t ∈ T , and hence, in

particular, |=T
tK

ϕ; therefore, by the inductive hypothesis, ϕ ∈ K. To show
�ϕ ∈ K, suppose, by reductio, �ϕ /∈ K. Then, because K ∈ MCS5, ¬�ϕ ∈ K;
and therefore, by (2) above, there is a K ′ ∈ Θ such that ¬ϕ ∈ K ′. But then
ϕ /∈ K ′, and, by the inductive hypothesis, 
|=T

t
K

′ ϕ, which is impossible, because
|=T

t ϕ, for all t ∈ T , and tK′ ∈ T .

Lemma 228 If K, K ′ ∈ MCS5, tK = tK′ , and for all ϕ, �ϕ ∈ K iff �ϕ ∈ K ′,
then K = K ′.

Proof. Assume the hypothesis and let ∆ = {Γ ∈ MCS5 : for all ϕ, if �ϕ ∈ K,
then ϕ ∈ Γ} and T = {tΓ : Γ ∈ ∆}. Then K, K ′ ∈ ∆, and therefore by condition
(3) of lemma 227, we have both (ϕ ∈ K iff |=T

tK
ϕ) and (ϕ ∈ K ′ iff |=T

t
K

′ ϕ); and
hence, because tK = tK′ , ϕ ∈ K iff ϕ ∈ K ′, from which it follows that K = K ′.

Theorem 229 If Γ L-implies2 ϕ, then Γ �S5 ϕ.

Proof. Assume the hypothesis. By theorem 31 of §1.2.4 of chapter 1, it suffices
to show that for all K ∈ MCS5, if Γ ⊆ K, then ϕ ∈ K. Assume, accordingly,
that K ∈ MCS5 and that Γ ⊆ K. Let ∆ = {K ′ ∈ MCS5 : for all ψ, if
�ψ ∈ K, then ψ ∈ K ′} and T = {tK : K ∈ ∆}. Then K ∈ ∆, and by
condition (3) of lemma 227 above, for all ψ, ψ ∈ K iff |=T

tK
ψ. But Γ ⊆ K;
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therefore, |=T
tK

ψ, for all ψ ∈ Γ. By the hypothesis, then, it follows that |=T
tK

ϕ;
and therefore ϕ ∈ K.

By theorems 225 and 229 together, we have our strong completeness theorem,
from which the weak completeness follows as a corollary.

Theorem 230 (Strong Completeness): K L-implies2 ϕ iff K �S5 ϕ.

Corollary 231 (Weak Completeness): ϕ is L-true2 iff �S5 ϕ.

Just as there is a secondary notion of L-truth2 corresponding to the primary
notion of L-truth, and a secondary notion of L-implication2, so too we have a
secondary notion of semantic consistency with respect to which another version
of the strong completeness theorem for S5 is provable.

Definition 232 Γ is semantically consistent2 iff for some T ⊆ V and for
some t ∈ T , for all ϕ ∈ Γ, |=T

t ϕ .

Theorem 233 Γ is semantically consistent2 iff Γ is S5-consistent.

Exercise 5.1.3 Prove theorem 233.

The semantical system of this section is conceptually defective in at least one
respect—namely, that no explanation or rationale is provided for the restricted
interpretation of ‘all possible worlds’ in the semantical clause for necessity. Such
a restricted interpretation of the notion of all possible worlds does provide the
basis for a secondary notion of L-truth2, and in particular a notion that is the
basis of a completeness theorem for S5. But such a result cannot alone be the
grounds for accepting a secondary notion of all possible worlds. What is needed
is an independent semantical principle that provides a conceptual ground for
each such “cut-down” of the meaning of ‘all’.

Exercise 5.1.4 Show that if K, K ′ ∈ MCS5, tK = tK′ , and for all ϕ, �ϕ ∈ K
iff �ϕ ∈ K ′, then K = K ′.

Exercise 5.1.5 Show that there are K, K ′ ∈ MCS5 such that tK = tK′ and
yet K 
= K ′.

5.2 Matrix Semantics for S5

The above completeness theorem for S5 suggests that another completeness the-
orem for S5 can be proved in terms of the Henle matrices of §3.4 (of chapter 3).
This in fact can be done by generalizing the notion of a Henle matrix. In partic-
ular, we will now define the notion so as to apply not only to natural numbers
but to arbitrary sets as well. In this way we can think of the domain of a Henle
matrix as not restricted to finite classes (of possible worlds).
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Definition 234 HA =df 〈{B : B ⊆ A}, {A}, fA, gA, hA〉, where
(1) fA =df the function whose domain in the set of 2-tuples of subsets of A and
such that for all B, C ⊆ A, fA(B, C) = (A − B) ∪ C;
(2) gA =df the function whose domain is the set of subsets of A and such that
for all B ⊆ A, gA(B) = A − B; and
(3) hA =df the function whose domain is the set of subsets of A and such that
for all B ⊆ A,

hA(B) =
{

A if B = A
0 otherwise .

We note that lemma 184 of §3.4 (of chapter 3), namely, that Hn satisfies S5,
for all n ∈ ω, is readily generalized as follows so as to apply all Henle matrices,
finite or otherwise.

Lemma 235 If �S5 ϕ, then for all sets A, |=HA
ϕ.

Exercise 5.2.1 Prove the above lemma 235.

In regard to finite Henle matrices, the present generalization is in effect
no generalization at all—because any finite Henle matrix in our wider sense is
isomorphic to a Henle matrix in the sense originally defined in §3.4. The notion
of an isomorphism in this context is defined below.

Definition 236 If A = 〈A,B, f, g, h〉, B = 〈A′, B′, f ′, g′, h′〉, and A, B are
modal CN-matrices, then A is isomorphic to B under I (in symbols, A �I B)
iff I is a one-to-one function such that (1) DI = A and (2) RI = A′, and (3)
for all x, y ∈ A:
(a) x ∈ B iff I(x) ∈ B′;
(b) I(f(x, y)) = f ′(I(x), I(y));
(c) I(g(x) = g′(I(x)); and
(d) I(h(x)) = h′(I(x)).

Definition 237 If A = 〈A,B, f, g, h〉, B = 〈A′, B′, f ′, g′, h′〉, and A, B are
modal CN-matrices, then A is isomorphic to B (in symbols, A � B) iff for
some I, A �I B.

Lemma 238 If A and B are modal CN-matrices and A � B, then |=A ϕ iff
|=B ϕ.

Exercise 5.2.2 Prove lemma 238. (Hint: If A is isomorphic to B under I,
note that where a is a value assignment in A, the relative product a/I is a
value assignment in B, and where b is a value assignment in B, b/Ĭ is a value
assignment in A. Where B is the designated set of A, and B′ the designated
set of B, show by an inductive argument that FM ⊆ {ϕ ∈ FM : for all value
assignments a in A and b in B, a(ϕ) ∈ B iff (a/I)(ϕ) ∈ B′, and b(ϕ) ∈ B′ iff
(b/Ĭ)(ϕ) ∈ B}, and hence that |=A ϕ iff |=B ϕ.)
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Lemma 239 If A has n members, then HA is isomorphic to Hn.

Exercise 5.2.3 Prove lemma 239. (Hint: where f is a 1–1 correspondence be-
tween A and n, let I be the function with {B : B ⊆ A} as domain and such
that for B ⊆ A, I(B) = f“B = {i < n : for some x ∈ B, f(x) = i}. Show HA

�I Hn.)

Lemma 240 If A ⊆ B and |=HB
ϕ, then |=HA

ϕ.

Exercise 5.2.4 Prove lemma 240. (Hint: let a be any value assignment in HA,
and let b be that value assignment in HB such that for ψ ∈ FM , b(ψ) = a(ψ)∩A.
Show that b(ϕ) = B and therefore that a(ϕ) = A.)

Corollary 241 If |=Hn
ϕ, then for all m ≤ n, |=Hm

ϕ.

Lemma 242 If T ⊆ V and |=HT
ϕ, then ϕ is T -valid (i.e., then for all t ∈ T ,

|=T
t ϕ).

Exercise 5.2.5 Prove lemma 242. (Hint: let a be that value assignment in HT

defined inductively as follows:
(1) a(Pn) =df {t ∈ T : t(Pn) = 1},
(2) a(¬ψ) =df T − a(ψ),
(3) a(ψ → χ) =df [T − a(ψ)] ∪ a(χ), and

(4) a(�ψ) =df

{
T if a(ψ) = T
0 otherwise .

Finally, let Γ = {ψ ∈ FM : for all t ∈ T , |=T
t ψ iff t ∈ a(ψ)}.

Show by an inductive argument that FM ⊆ Γ, and therefore, because a(ϕ) = T ,
that ϕ is T -valid.)

The weak completeness theorem for S5 relative to this generalized Henle
matrix semantics is stated in theorem 244 below, which is an immediate conse-
quence of theorem 243.

Theorem 243 ϕ is L-true2 iff for all A, |=HA
ϕ.

Proof. If ϕ is L-true2, then, by the weak completeness theorem for L-truth2

of the preceding section (i.e., corollary 231 of §5.1), �S5 ϕ; and therefore, by
lemma 235 above, for all A, |=HA

ϕ. On the other hand, if for all A, |=HA
ϕ,

then, for all T ⊆ V , |=HT
ϕ; and therefore, by lemma 242 above, for all T ⊆ V ,

ϕ is T -valid, from which, by definition, it follows that ϕ is L-true2.

Theorem 244 �S5 ϕ iff for all A, |=HA
ϕ.

It is easily verified that {Pn} �S5 �Pn, i.e., that �Pn is not derivable
from {Pn} in S5, and yet {Pn} |=HA

�Pn, for all A. Thus the strong form of
theorem 244 does not hold, i.e., the strong completeness result for this semantics
fails.
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5.3 Decidability of Lat and S5

The completeness theorems we proved for Lat and S5 in §4.3 of chapter 4 and
§5.1 of this chapter can be used to show that it is effectively decidable whether
or not a formula is provable in either of these systems. This can done by noting
that each formula in FM contains only a finite number of sentence letters and
that as far as the semantic evaluation (with respect to a given possible world) of
that formula is concerned it is irrelevant what the sentence letters not occurring
in that formula are assigned (with respect to that world). Suppose, for example,
that ϕ is a modal CN-formula in which the only sentence letters that occur are
P0, ...,Pn−1 . Then, even though a truth-value assignment assigns a truth-value
to every sentence letter, including those that do not occur in ϕ, the semantical
analysis of ϕ is completely determined by whatever truth values are assigned to
P0, ...,Pn−1. This can be seen by assuming that we are dealing with a formal
language exactly like the present one except that P0, ...,Pn−1 are its only sen-
tence letters. The definition of truth in a possible world given in §4.1–§4.2 (or
in §5.1) will be unaffected when applied to the formulas of this narrower lan-
guage, one of which is ϕ, as when given for the formulas of the wider language.
Our semantical analyses will yield the same result for these formulas, in other
words, whether they are considered as formulas of the narrower language or of
the wider language.

Relative to the set of sentence letters consisting of P0, ...,Pn−1, accordingly,
we may consider truth-value assignments to be “indiscernible” if they assign the
same values to P0, ...,Pn−1—even though they might not otherwise be identical
in what they assign to other sentence letters. Then, from among indiscernible
(relative to P0, ...,Pn−1) truth-value assignments, we can pick out a particular
assignment as the representative of the group. The assignment that we pick out
below to represent the group is that assignment that assigns 0 to every sentence
letter other than P0, ...,Pn−1, i.e., other than the sentence letters occurring in
ϕ.

We generalize this idea so as to apply it to arbitrary sets of sentence letters.
Where K is such a set, we will use ‘≈K ’ to designate the relation between
truth-value assignments that are indiscernible relative to K, and we take VK

to be the set of truth-value assignments that, relative to K, can be taken as
representatives of their indiscernibility group.

Definition 245 If K is a set of sentence letters, then (1) for all t, t′ ∈ V, t ≈K

t′ iff for all n ∈ ω, if Pn ∈ K, then t(Pn) = t′(Pn); and (2) VK =df {t ∈ V :
for all n ∈ ω, if Pn /∈ K, then t(Pn) = 0}.

We observe that because there are only two truth values, namely, 1 (for truth)
and 0 (for falsity), the number of truth-value assignments that are discernible
relative to n sentence letters, say, P0, ...,Pn−1, is 2n. That is, relative to the
set {P0, ...,Pn−1}, there are 2n many different groups of discernible truth-value
assignments, and therefore the number of representatives of such groups is also
2n. Also, for each truth-value assignment t there is a truth-value assignment t′
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that agrees on all the values assigned by t to the sentence letters P0, ...,Pn−1,
i.e., for which t ≈K t′, and that otherwise assigns 0 to all of the remaining
sentence letters, i.e., which is such that t′ ∈ VK . We state these observations in
the following lemma.

Lemma 246 If K is a set consisting of n sentential variables, then (1) VK has
2n members, and (2) for all t ∈ V , there is a t′ ∈ VK such that t ≈K t′.

The semantical analysis of a formula ϕ in the sense of §4.1–§4.2 of chapter 4
is reducible, we have said, to the semantical analysis of ϕ with respect to all
of the truth-functional assignments in VK , where K is (or contains) the set
of sentence letters that occur in ϕ. This observation is precisely stated in the
following lemma.

Lemma 247 If K is a finite set of sentence letters and every sentence letter
occurring in ϕ is in K, then for all t ∈ V , there is a t′ ∈ VK such that t ≈K t′,
and |=t ϕ iff |=t′ ϕ.

Exercise 5.3.1 Prove lemma 247. (Hint: For t ∈ V , by lemma 246, part 2,
t ≈K t′, for some t′ ∈ VK . Show by induction that for all ψ ∈ FM , if Pn ∈
OC(ψ) only if Pn ∈ OC(ϕ), for all n ∈ ω, then |=t ψ iff |=t′ ψ.)

By means of lemma 247, we can now show that the L-truth of a formula ϕ
is reducible to the VK-validity of ϕ, where K has as members all of the sentence
letters occurring in ϕ. This means, by the (weak) completeness theorem for Lat

with respect L-truth (i.e., theorem 218 of §4.3) that �Lat
ϕ iff ϕ is VK-valid.

But, because K is finite, VK is finite, and therefore by checking each of the
finitely many members of VK we can determine whether or not ϕ is VK- valid.
Accordingly, we can effectively decide whether or not ϕ is L-true, and therefore
whether or not ϕ is a theorem of Lat.

Theorem 248 If K is a finite set of sentence letters and every sentence letter
occurring in ϕ is in K, then:
(1) ϕ is L-true iff ϕ is VK-valid;
(2) �Lat

ϕ iff ϕ is VK-valid; and (therefore)
(3) it is effectively decidable whether or not ϕ is provable in Lat.

The observations that apply to the semantical analysis of a formula ϕ under
the primary semantics of §4.1–§4.2 also apply to the semantical analysis of ϕ
under the secondary semantics of §5.1. This means, first, that corresponding to
lemma 247 above we have a similar lemma for truth in a possible world relative
to a region of logical space. This lemma is stated below.

Lemma 249 If K is a finite set of sentence letters and every sentence letter
occurring in ϕ is in K, then for all T ⊆ V , if T ′ = {t′ ∈ VK : t ≈K t′, for some
t ∈ T}, then for all t ∈ T , there is a t′ ∈ T ′ such that t ≈K t′, and |=T

t ϕ iff
|=T

′

t′
ϕ.
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Exercise 5.3.2 Prove lemma 249. (Hint: for T ⊆ V , let T ′ = {t′ ∈ VK : t ≈K

t′, for some t ∈ T} and let Γ = {ψ ∈ FM : if Pn ∈ OC(ψ) only if Pn ∈ OC(ϕ),
for all n ∈ ω, then for all t ∈ T , t′ ∈ T ′, if t ≈K t′, then |=T

t ψ iff |=T ′

t′
ψ}.

Show by an inductive argument that FM ⊆ Γ.)

By lemma 249, it now follows that a formula is L-true2 iff ϕ is T -valid, for
all T ⊆ VK , where K is the set of sentence letters occurring in ϕ; and therefore,
by the (weak) completeness theorem for S5 with respect L-truth2 (i.e., by the
corollary 231 of theorem 229 of §5.1), �S5 ϕ iff for all T ⊆ VK , ϕ is T -valid.
But, as in our earlier observation for L-truth, because K is finite, so too is VK ,
and therefore so too are the subsets T of VK . Accordingly, because there are
only finitely many subsets of any finite set, and therefore only finitely many
T ⊆ VK , as well as only finitely many members of any T ⊆ VK , it follows that
there are only finitely many cases to consider in deciding whether or not any
given formula is a theorem of S5. In other words, we now have a solution for
the decision problem for S5.

Theorem 250 If K is a finite set of sentential variables such that every sen-
tential variable occurring in ϕ is in K, then:
(1) ϕ is L-true2 iff for all T ⊆ VK , ϕ is T -valid;
(2) �S5 ϕ iff for all T ⊆ VK , ϕ is T -valid; and (therefore)
(3) it is effectively decidable whether or not ϕ is provable in S5.

Exercise 5.3.3 Prove theorem 250.



Chapter 6

Relational World Systems

The notion of a possible world is basic to the semantics we gave in the last chap-
ter for logical truth and implication in both a primary and secondary sense—i.e.,
for both L-truth and L-truth2 (and L-implication and L-implication2). The se-
mantic systems we shall describe in the present chapter make use of the same
notion, but based on two new factors. One new factor is the idea of the class of
possible worlds being indexed—e.g., by different “possible” contexts of use of
language or by the points of a “possible” reference frame—so that in principle
the same possible world could be indexed by two or more different indices, the
way, e.g., the same cosmic state of affairs might obtain at different times of an
Eigenzeit or local time of special relativity. The other factor is the inclusion of
a relation between some or all of the indices of an indexed system of worlds.1

Different structural properties on such a relation—such as reflexivity, transitiv-
ity, and symmetry—will validate different modal theses. In this way different
modal logics will characterize (in the sense of a completeness theorem) different
classes of relational world systems.2

6.1 Relational World Systems Defined

In the present section, we introduce the essential set-theoretical elements of
the relational structures that make up the semantics of this chapter. As noted
above, one such element introduced by the new semantic system is the notion of
a function indexing sets of possible worlds. What it is to be an indexing function
is stated in the next definition.

Definition 251 f is an I-indexed set iff f is a function and Df = I.

Convention: If f is an I-indexed set, then 〈fi〉i∈I = f.

1See Cocchiarella 1984, §15, for a semantics where the reference points are the different
moments of time of causally connected systems of local times.

2Three of the papers that initiated this sort of semantics are Hintikka 1963, Kripke 1963a,
and Kripke 1963b.

81
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Remark: In the case of natural numbers, n-indexed sets are simply n-place
sequences (i.e., n-tuples).

Relations, as noted in chapter 1, are represented in set theory by classes of
ordered pairs. Such a class, strictly speaking, represents only a binary relation
in extension. Relation extensions in general, e.g., n-ary relations in extension,
for n ≥ 2 can be represented by classes of n-tuples. We will continue to speak
of relations in this chapter as classes of ordered pairs, so that if R is a relation
that obtains between x and y, then we normally represent this in set theory
by ‘(x, y) ∈ R’. For convenience, however, we will also write ‘xRy’, instead of
‘(x, y) ∈ R’, in what follows, the way ‘x < y’ is used instead of ‘(x, y) ∈ <’.

Definition 252 R is a relation on A iff R ⊆ A × A.

Definition 253 A is an R-related world system iff there are t and I such
that:
(1) t is an I-indexed set of truth-value assignments (i.e., ti ∈ V , for all i ∈ I),
(2) R is a relation on I (i.e., R ⊆ I × I), and
(3) A = 〈R, 〈ti〉i∈I〉.

Note: A standard convention of set theory is to write ‘〈R, 〈ti〉i∈I〉’ sometimes
also as ‘〈R, ti〉i∈I ’. We adopt this convention here as well.

Definition 254 A is a relational world system iff there is a relation R such
that A is an R-related world system.

Convention: If A = 〈R, ti〉i∈I and A is a relational world system, we shall
refer to R as the accessibility relation within A, and sometimes refer to A

simply as a world system. If i ∈ I, then we shall say that i is an index (or
reference point) of A and if iRj, we shall say that j is accessible from
i within A.

We recursively define the concept of a formula being true in a relational world
structure at an index or reference point of that structure as follows.

Definition 255 If A = 〈R, ti〉i∈I , A is a relational world system and i ∈ I,
then:

(1) |=i
A

Pn iff ti(Pn) = 1,
(2) |=i

A
¬ϕ iff 
|=i

A
ϕ,

(3) |=i
A

(ϕ → ψ) iff either 
|=i
A

ϕ or |=i
A

ψ, and
(4) |=i

A
�ϕ iff for all j ∈ I, if iRj, then |=j

A
ϕ.

We read ‘|=i
A

ϕ’ in general as ‘ϕ is true in A at i’. Note that according to
semantical clause 4, �ϕ is understood to be true at an index i of a relation
world system A just in case ϕ is true in A at every index that is accessible in A

from i.
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Definition 256 If A is a relational world system, then <A =df the relation R
such that for some t, I, A = 〈R, ti〉i∈I .

Exercise 6.1.1 Show that if A is a relational world system and i is an index
of A, then |=i

A
�ϕ iff for some index j of A, i <A j and |=j

A
ϕ.

Definition 257 If A is a relational world system and Γ∪ {ϕ} ⊆ FM, then (1)
Γ entails ϕ in A (in symbols, Γ |=A ϕ) iff for all reference points i of A, if
|=i

A
ψ, for all ψ ∈ Γ, then |=i

A
ϕ; and (2) ϕ is valid in A (in symbols, |=A ϕ)

iff 0 |=A ϕ.

Lemma 258 If A is a relational world system, then |=A ϕ and |=A (ϕ → ψ)
only if |=A ψ.

Exercise 6.1.2 Prove the above lemma.

In regard to the relationship of the semantic concepts defined above and
those of deducibility and theoremhood, we introduce two additional semantical
concepts relative to which we state two approaches to the completeness problem.

Definition 259 If Σ is a modal CN-calculus and A is a class of relational world
systems, then:
(1) Σ strongly characterizes A iff for all Γ, ϕ such that Γ ∪ {ϕ} ⊆ FM :
Γ �Σ ϕ iff for all A ∈ A, Γ |=A ϕ; and
(2) Σ characterizes A iff for all ϕ: �Σ ϕ iff for all A ∈ A, |=A ϕ.

As noted above, we describe two approaches to the completeness problem in
terms of the above semantical notions.

Approach I : Given a modal CN-calculus Σ, find a class of relational world
systems that is (strongly) characterized by Σ.

Approach II : Given a class A of relational world systems, find a modal CN-
calculus that (strongly) characterizes A.

It should be noted here that many of the classes of relational world systems
involved on either approach might well be ultimate (or proper) classes—i.e.,
classes that are not sets—which is why we have adopted von Neumann-Bernays-
Gödel set theory, NBG, as our metalanguage instead of ZF, Zermelo-Fränkel set
theory. The class of all world systems, for example, which we will turn to in
the following section, §6.2, is as large as the class of all sets, and a similar
observation applies to some of the classes involved in subsequent sections as
well.

We now consider formulas preceded by a sequence of occurrences of the
necessity sign and also formulas preceded by a sequence of the possibility sign.
Corresponding to such sequences, relative to a relational world system, there will
be sequences of indices related by the accessibility relation. We can represent
the kind of relation in question here between such indices by considering the
product of a relation with itself and iterating that product any finite number of
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times. We obtain in this way what is called the ancestral of that relation—so-
called because of its similarity to the way one person is an ancestor of another
by being a parent of a parent of the other, for some finite number of generations.

Definition 260 (1) �0ϕ =df ϕ; and (2) �n+1ϕ =df ��nϕ.

Definition 261 (1) �0ϕ =df ϕ; and (2) �n+1ϕ =df ��nϕ.

Definition 262 (1) R(0) =df {(x, x) : x ∈ FR}; and (2) R(n+1) =df {(x, y) :
for some z, xRz and zR(n)y}.

Exercise 6.1.3 Show by weak induction over ω that for all n ∈ ω and for all
x, y if xR(n+1)y, then for some z, xR(n)z and zRy.

Convention: For convenience, we will hereafter use ‘xRny’ instead of ‘xR(n)y’,
even though, as already defined, ‘Rn’ stands for the set of functions from
n into R, which is not the same as the ancestral of R, i.e., the relation of
an entity x being, for some n ∈ ω, an R-ancestor of y, n times removed.
(The context will make it clear which is meant.)

In particular, where A is a relational world system and i, j are indices of A

such that, for some n ∈ ω, j is accessible from i in n steps of the accessibility
relation <A, then we represent this fact by ‘i <n

A
j’. The following lemma

indicates how these concepts are related.

Lemma 263 If A is a relational world system and i is a reference point of A,
then:
(1) |=i

A
�nϕ iff for all indices j of A, if i <n

A
j, then |=j

A
ϕ ; and

(2) |=i
A

�nϕ iff for some index j of A, i <n
A

j and |=j
A

ϕ.

Proof. Assume the hypothesis of the lemma. For (1), let A = {n ∈ ω : for all
indices i of A, |=i

A
�nϕ iff for all indices j of A, if i <n

A
j, then |=j

A
ϕ}, and show

by weak induction that ω ⊆ A. By definition, |=i
A

�0ϕ iff |=i
A

ϕ, and therefore,
because i <0

A
j iff i = j, then |=i

A
�0ϕ iff for all indices j of A, if i <0

A
j, then

|=j
A

ϕ; and hence 0 ∈ A. Now assume n ∈ A and show n + 1 ∈ A. By definition,
|=i

A
�n+1ϕ iff |=i

A
��nϕ, i.e., iff for all indices j of A, if i <A j, then |=j

A
�nϕ

, and therefore, by the inductive hypothesis, iff for all indices j of A, if i <A j,
then for all indices k of A, if j <n

A
k, then |=k

A
ϕ, and therefore, by definition,

|=i
A

�n+1ϕ iff for all indices j of A, if i <n+1
A

j, then |=j
A

ϕ; and hence n+1 ∈ A,
from which we conclude by induction that ω ⊆ A. We leave the proof of (2) as
an exercise.

Exercise 6.1.4 Prove part (2) of the above lemma. E.g., let B = {n ∈ ω : for
all indices i, |=i

A
�nϕ iff for some index j of A, i <n

A
j and |=j

A
ϕ}, and show

that ω ⊆ B.
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We have already noted in §1.2.4 of chapter 1 that the maximally consistent
sets of formulas of a logistic system can be considered as syntactical represen-
tations of the possible worlds characterized by that system. Given a modal CN-
calculus, accordingly, we can, in our present context, consider the maximally
Σ-consistent sets of formulas of a modal CN-calculus as the indexed possible
worlds represented by that system, and in particular as the indices themselves.
Also, because truth at such an index can be syntactically represented as mem-
bership in the maximally Σ-consistent set taken as that index, we can syntacti-
cally represent the accessibility relation determined by the system—namely, as
that relation between maximally Σ-consistent sets K and K ′ such that K ′ is
accessible from K if, and only if, whatever is necessary in K is true in K ′, i.e.,
iff for all formulas ϕ, if �ϕ ∈ K, then ϕ ∈ K ′.3 The definition of this relation
is given formally below. The lemmas following the definition, especially lemma
266, indicate that the definition succeeds in representing the appropriate syn-
tactical notion of the accessibility relation between maximally Σ-consistent sets
as syntactical representations of the possible worlds described by Σ (at least
when Σ is quasi-regular).

Definition 264 If Σ is a quasi-classical modal CN-calculus and K,K ′ ∈ MCΣ,
then K ′ is accessible from K within Σ (in symbols, K AccΣ K ′) iff for all
ϕ ∈ FM , if �ϕ ∈ K, then ϕ ∈ K ′.

Lemma 265 If Σ is a quasi-classical modal CN-calculus, then for all K, K ′ ∈
MCΣ, K AccΣ K ′ iff for all ϕ ∈ FM, if ϕ ∈ K ′, then �ϕ ∈ K.

Proof. Assume the hypothesis of the lemma and that K, K ′ ∈ MCΣ. First
suppose K AccΣ K ′ and that ϕ ∈ K ′. To show that �ϕ ∈ K, assume, by
reductio, that �ϕ /∈ K. Then, by lemma 29 of §1.2.4, ¬�ϕ ∈ K, and therefore,
by definition, ¬¬�¬ϕ ∈ K. But then, because K ∈ MCΣ, �¬ϕ ∈ K, and
therefore, because K AccΣ K ′, ¬ϕ ∈ K ′, which is impossible because ϕ ∈ K ′

and K ′ ∈ MCΣ.
Suppose now that for all ϕ, if ϕ ∈ K ′, then �ϕ ∈ K. Assume also that

�ϕ ∈ K. By reductio we show ϕ ∈ K ′. Accordingly, suppose ϕ /∈ K ′. Then,
¬ϕ ∈ K ′ and, consequently, by assumption, �¬ϕ ∈ K. It follows, by definition
and the IE rule (of quasi-classical systems), that ¬�ϕ ∈ K, which is impossible
by the Σ-consistency of K.

Lemma 266 If Σ is a quasi-regular modal CN-calculus, then for all K ∈ MCΣ,
�ϕ ∈ K iff for all K ′ ∈ MCΣ, if K AccΣ K ′, then ϕ ∈ K ′.

Proof. Assume the hypothesis of the lemma and that K ∈ MCΣ. Suppose first
that �ϕ ∈ K. Then, by definition of AccΣ, if K ′ ∈ MCΣ and K AccΣ K ′, then
ϕ ∈ K ′. Suppose now that for all K ′ ∈ MCΣ, if K AccΣ K ′, then ϕ ∈ K ′,
and let Γ = {ψ : �ψ ∈ K}. We show first that for all K ′′ ∈ MCΣ, if Γ ⊆ K ′′,
then ϕ ∈ K ′′. Assume K ′′ ∈ MCΣ and that Γ ⊆ K ′′. Then, by definition of Γ,

3The idea of using maximally Σ-consistent sets as indices and defining the accessibility
relation in the way indicated was first suggested by E.J. Lemmon and D.S. Scott in 1977.
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K AccΣ K ′′, and therefore, by assumption, ϕ ∈ K ′′. Accordingly, by theorem
31 of §1.2.4, Γ �Σ ϕ, from which it follows that there are ψ0, ..., ψn−1 ∈ Γ
such that �Σ (ψ0 ∧ ... ∧ ψn−1 → ϕ). But then, because Σ is quasi-regular,
�Σ �(ψ0 ∧ ... ∧ ψn−1) → �ϕ, and therefore, by theorem 58 (part 5) of §2.2.2,
�Σ (�ψ0 ∧ ... ∧ �ψn−1 → �ϕ). But �ψi ∈ K, for i < n, and therefore K �Σ

�ψ0 ∧ ...∧�ψn−1, from which it follows that K �Σ �ϕ, and therefore, because
K ∈ MCΣ, �ϕ ∈ K.

Exercise 6.1.5 Show that if Σ is a quasi-regular modal CN-calculus, then for
all K ∈ MCΣ, �ϕ ∈ K iff for some K ′ ∈ MCΣ, K AccΣ K ′ and ϕ ∈ K ′.

Relative to a modal CN-calculus Σ, we can construct the relational world
system AΣ whose accessibility relation is the one determined by Σ, where the
maximally Σ-consistent sets of formulas are the indices (or possible worlds) of
AΣ and the accessibility relation of AΣ is AccΣ.

Definition 267 If Σ is a modal CN-calculus, then
AΣ =df 〈AccΣ, tK〉K∈MCΣ ,
where tK is the truth-value assignment determined by K (as defined in definition
213 of §4.3).

Lemma 268 If Σ is a modal CN-calculus, then AΣ is a relational world system.

Proof. By definition of AΣ.
We point out that in regard to the notion of a relational world system, it is

not required that the accessibility relation or the index set of such a system be
non-empty. The following lemma indicates why it is relevant to allow the special
case where both are empty.

Lemma 269 If Σ is a modal CN-calculus, then Σ is inconsistent iff AΣ = 〈0, 0〉.

Exercise 6.1.6 Prove the above lemma 269.

It turns out, as the next lemma shows, that truth at an index of the relational
world system determined by a (quasi-regular) modal CN-calculus Σ coincides
with membership in the maximally Σ-consistent set identified with that index,
and therefore that validity in such a structure coincides with membership in
every maximally Σ-consistent set. It then follows, by theorem 31 and its corollary
(of §1.2.4), that derivability in Σ (from a set Γ) coincides with membership in
every maximally Σ-consistent set (containing Γ).

Lemma 270 If Σ is a quasi-regular modal CN-calculus, then for all K ∈ MCΣ,
ϕ ∈ K iff |=K

AΣ
ϕ.

Proof. Assume the hypothesis, and let M = {ϕ : for all K ∈ MCΣ, ϕ ∈ K
iff |=K

AΣ
ϕ}. We show by induction on FM that FM ⊆ M . Suppose n ∈ ω.

Then, by definition, for all K ∈ MCΣ, Pn ∈ K iff tK(Pn) = 1, and hence
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Pn ∈ K iff |=K
AΣ

Pn, from which it follows that Pn ∈ M . Assume ϕ ∈ M and
show ¬ϕ ∈ M . We will leave this as an exercise. Assume ϕ, ψ ∈ M and show
(ϕ → ψ) ∈ M . We leave this as an exercise as well. Finally, assume ϕ ∈ M
and show �ϕ ∈ M . Suppose K ∈ MCΣ. By definition, |=K

AΣ
�ϕ iff for all

K ′ ∈ MCΣ, if K AccΣ K ′, then ϕ ∈ K ′, and therefore, by lemma 266, |=K
AΣ

�ϕ
iff �ϕ ∈ K, from which it follows that �ϕ ∈ M .

Exercise 6.1.7 Prove that if ϕ ∈ M , as defined above, then ¬ϕ ∈ M ; and also
prove that if ϕ,ψ ∈ M , then (ϕ → ψ) ∈ M .

Corollary 271 If Σ is a quasi-regular modal CN-calculus, then |=AΣ ϕ iff for
all K ∈ MCΣ, ϕ ∈ K.

If Σ is a quasi-regular modal CN-calculus, then theorem 272 below provides
both a semantical criterion for being provable in Σ and a syntactical criterion
for being valid in AΣ, and therefore also a completeness theorem for each quasi-
regular modal CN-calculus. It should be noted, incidentally, that the systems
Kr, M , Br, and S4–S5 are all regular modal CN-calculi, and therefore, by
definition, quasi-regular, which means that theorem 272 and the completeness
theorem 274 apply to each of these systems.

Theorem 272 If Σ is a quasi-regular modal CN-calculus, then Γ �Σ ϕ iff
Γ |=AΣ ϕ.

Proof. Assume the hypothesis. By theorem 31 of §1.2.4, Γ �Σ ϕ iff for all
K ∈ MCΣ, if Γ ⊆ K, then ϕ ∈ K. Therefore, by lemma 270, Γ �Σ ϕ iff for all
K ∈ MCΣ, if for all ψ ∈ Γ, |=K

AΣ
ψ, then |=K

AΣ
ϕ; and hence, by definition 257

of entailment, Γ �Σ ϕ iff Γ |=AΣ ϕ.

Corollary 273 If Σ is a quasi-regular modal CN-calculus, then �Σ ϕ iff |=AΣ ϕ.

It follows of course, by theorem 272 and its corollary, that a quasi-regular
modal CN-calculus Σ strongly characterizes the syntactical relational world sys-
tem AΣ.

Theorem 274 If Σ is a quasi-regular modal CN-calculus, then Σ strongly char-
acterizes {AΣ}.

Corollary 275 If Σ is a quasi-regular modal CN-calculus, then Σ characterizes
{AΣ}.

Exercise 6.1.8 Prove theorem 274 and its corollary 275.

Remark 1: It should be noted that Σ might (strongly) characterize much larger
and more interesting classes of relational world systems. Kr, for example,
(strongly) characterizes not only {AKr}, but also, as we will see in the
next section, §6.2, the totality of all relational world systems, as well as
other classes between these two extremes.
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As we saw in chapter 5, once we allow for a secondary interpretation of �,
i.e., a “cut-down” on the notion of all possible worlds, possible worlds may dif-
fer in their modal facts even though they contain the same non-modal facts.
In particular, as described by the maximally Σ-consistent sets of a modal CN-
calculus, possible worlds may differ in the modal formulas that are true in them
(i.e., are members of them), even though they determine the same truth-value
assignments (distribution of truth values to the atomic or basic sentences) and
therefore contain the same modal-free formulas. Modal facts, in other words,
have an individuating role in the determination of a possible world once � is
given a secondary interpretation. In our present semantics, it should be noted,
the individuating role of modal facts is now determined not only by the modal
formulas in maximally Σ-consistent sets, but by the accessibility relation, AccΣ,
between those sets as well. The relevant principle of individuation for possi-
ble worlds, as represented by maximally Σ-consistent sets and the accessibility
relation AccΣ, is given in the following lemma.

Lemma 276 If Σ is a quasi-regular modal CN-calculus, K,K ′ ∈ MCΣ, tK =
tK′ and for all Γ, K AccΣ Γ iff K ′ AccΣ Γ, then K = K ′.

Exercise 6.1.9 Prove the above lemma 276. (Hint: let M = {ϕ ∈ FM : ϕ ∈ K
iff ϕ ∈ K ′}, and show by induction on FM that FM ⊆ M .)

Before concluding this section, let us note that one important relation that
can hold between relational world systems is that of one such system being a
subsystem of another, which we define as follows.

Definition 277 If A = 〈R, ti〉i∈I , A′ = 〈R′, t′i〉i∈I′ , and A and A′ are relational
world systems, then A′ is a relational subsystem of A iff I ′ ⊆ I, R′ ⊆ R
and for each i ∈ I ′, t′i = ti.

Note that in the following lemma the proof of the semantical clauses for
negation and the conditional do not go beyond consideration of the index or
reference point in question, and that the semantical clause for necessity concerns,
in addition to the index in question, only those indices that are accessible from
it.

Lemma 278 If A, A′ are relational world systems, A′ is a relational subsystem
of A and for all i, j, if i is an index of A′ and i <A j, then i <A′ j, then for all
indices k of A′, |=k

A′ ϕ iff |=k
A

ϕ.

Proof. Assume the hypothesis. Accordingly, let A = 〈R, ti〉i∈I and A′ =
〈R′, t′i〉i∈I′ , where I ′ ⊆ I, R′ ⊆ R and for all i ∈ I ′, t′i = ti. Let Γ = {ϕ ∈ FM :
for all indices k of A′, |=k

A
′ ϕ iff |=k

A
ϕ}, and show by induction on FM that

FM ⊆ Γ. Suppose n ∈ ω. Then, by the semantical clause for Pn, |=k
A

′ Pn iff
t′k(Pn) = 1, and therefore, by assumption, |=k

A
′ Pn iff tk(Pn) = 1; and hence

|=k
A

′ Pn iff |=k
A

Pn, from which we conclude that Pn ∈ Γ. Assume now that
ϕ ∈ Γ and show ¬ϕ ∈ Γ. We leave this as an exercise. Assume ϕ, ψ ∈ Γ
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and show (ϕ → ψ) ∈ Γ. We leave this as an exercise as well. Finally, assume
ϕ ∈ Γ and show �ϕ ∈ Γ. Suppose first that |=k

A
′ �ϕ and that k <A j. Then,

by hypothesis, k <
A

′ j and so, by assumption, |=k
A

′ ϕ, and therefore, by the
inductive hypothesis, |=k

A
ϕ, from which we conclude that |=k

A
�ϕ. Suppose now

that |=k
A

�ϕ and that k <
A

′ j. Then, by the hypothesis, k <A j, and therefore,
by the semantical clause for �ϕ, |=j

A
ϕ; and hence, by the inductive hypothesis,

|=j

A
′ ϕ, from which we conclude that |=k

A
′ �ϕ. It follows that �ϕ ∈ Γ.

Exercise 6.1.10 Complete the proof of the above lemma 278; that is, prove that
if ϕ ∈ Γ, then ¬ϕ ∈ Γ, and that if ϕ,ψ ∈ Γ, then (ϕ → ψ) ∈ Γ.

6.2 The Class of All Relational World Systems

Although the system Kr does not possess the modal principle (�ϕ → ϕ), for
all ϕ, nevertheless Kr is of interest to us here in that, as we show below, it
strongly characterizes the totality of relational world systems. This means that
with respect to the present semantics, Kr is a minimal modal system. That is,
characterizing classes of world systems other than the total class means adding
modal theses to Kr.

Note that where � is given an interpretation other than that of necessity,
failure of the modal principle (�ϕ → ϕ) might well be in order. For example, in
deontic logic, � can be interpreted as ‘it ought to be the case that’, and, under
that interpretation, the modal thesis, (�ϕ → ϕ), stands for the intuitively
invalid ethical claim that whatever ought to be the case is in fact the case.
Similarly, where � is interpreted in tense logic as ‘it has always been the case
that’, then the modal thesis results in the invalid claim that whatever has always
been the case is now the case. Thus, as a formal system, Kr will be of somewhat
more interest when interpreted for such modalities as these. Meanwhile, the
minimality of Kr with respect to the question of how many or which kinds of
relational world systems are excluded from the class characterized by a modal
calculus indicates the primary interest we have in it here.

Lemma 279 If ϕ ∈ AxKr, then ϕ is valid in every relational world system.

Exercise 6.2.1 Prove lemma 279.

Theorem 280 If Γ �Kr ϕ, then for every relational world system A, Γ |=A ϕ.

Exercise 6.2.2 Prove theorem 280. (Hint: suppose the n-place sequence ∆ is
a derivation of ϕ from Γ within Kr, let A = {i ∈ ω : if i < n, then Γ |=A ∆i},
and show that ω ⊆ A.)

Corollary 281 If �Kr ϕ, then ϕ is valid in every relational world system.

Theorem 282 If Γ entails ϕ in every relational world system, then Γ �Kr ϕ.
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Proof. Assume the hypothesis. Then, Γ |=AKr
ϕ, and therefore, by theorem

272, Γ �Kr ϕ.

Theorem 283 Kr strongly characterizes the class of all relational world sys-
tems.

Proof. By theorems 280 and 282.

Corollary 284 �Kr ϕ iff ϕ is valid in every relational world system.

It is noteworthy that the formula �(Pn∧¬Pn) is Kr-consistent. This follows
from lemma 179, i.e., the fact that the modal CN-matrix A3 of §3.3 (of chapter
3) satisfies Kr even though ¬�(Pn ∧ ¬Pn) is not valid in A3. Consequently,
by Lindenbaum’s lemma there exists a K ∈ MCKr to which �(Pn ∧ ¬Pn)
belongs. Of course, there cannot be a K ′ ∈ MCKr that is Kr-accessible from
K, because otherwise (Pn ∧ ¬Pn) would then belong to such a K ′, which is
impossible. What this means, accordingly, is that there are reference points, or
indices, in AKr from which no other reference point, or index, is accessible. In
tense logic, e.g., if � is interpreted as ‘it will always be the case that’, or as ‘it
always was the case that’, then such a reference point would be a last, or first,
moment of time, respectively.

Although there is no K ′ ∈ MCKr that is Kr-accessible from the particular
K considered above, nevertheless, it should be noted, every index of AKr is
Kr-accessible from some index of AKr, i.e., for all K ∈ MCKr, there is a
K ′ ∈ MCKr such that K is Kr-accessible from K ′. The following lemma, which
is of some interest in its own right—especially in the way it compares with the
fact that (�ϕ → ϕ) is not a theorem of Kr—is useful for showing this.

Lemma 285 If �Kr �ϕ, then �Kr ϕ.

Proof. Assume the hypothesis, and show, by reductio, that �Kr ϕ. Accordingly,
suppose �Kr ϕ. Then, by the corollary to theorem 283, there is a relational world
system A = 〈R, ti〉i∈I such that �A ϕ. Accordingly, for some i ∈ I, |=i

A
¬ϕ. Let

j /∈ I (e.g., let j = I). Also, let I ′ = I ∪ {j}, R′ = R ∪ {(j, k) : k ∈ I},
t′ = t ∪ {(j, ti) : i ∈ I} and A′ = 〈R′, t′k〉k∈I′ . Then A′ is a relational world
system, and, by definition, A is a subsystem of A′. Note that for all k, k′, if k is
an index of A, (i.e., k ∈ I) and k <A′ k′, then k <A k′. Then, by lemma 278 of
§6.1, for all k ∈ I, |=k

A
ϕ iff |=k

A′ ϕ, and therefore |=i
A′ ¬ϕ. But, by assumption,

�Kr �ϕ, and hence, by corollary 285, |=j
A′ �ϕ. But j <A′ i, and therefore,

|=i
A′ ϕ, which is impossible.

Lemma 286 For all K ∈ MCKr, there is a K ′ ∈ MCKr such that K is
accessible from K ′ within Kr, i.e., K ′ AccKr K.

Proof. Assume K ∈ MCKr. Let M = {�ϕ : ϕ ∈ K}. By reductio, we
show M is Kr-consistent. Accordingly, suppose M is not Kr-consistent, i.e.,
for some formula ϕ, M �Kr ¬(ϕ → ϕ). Then, for some ψ0, ..., ψn ∈ K, �Kr
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(�ψ0 ∧ ... ∧ �ψn) → ¬(ϕ → ϕ), and therefore �Kr ¬(�ψ0 ∧ ... ∧ �ψn). It fol-
lows, by CN-logic and definition of �, that �Kr (�¬ψ0 ∨ ... ∨ �¬ψn) and so,
by normalcy (and therefore quasi-regularity) of Kr and theorem 58 (part 13) of
§2.2.2, �Kr �(¬ψ0 ∨ ...∨¬ψn). But then, by lemma 285, �Kr (¬ψ0 ∨ ...∨¬ψn),
and therefore ¬ψ0 ∨ ... ∨ ¬ψn ∈ K, which, by CN-logic, is impossible because
ψ0, ..., ψn ∈ K. We conclude then that M is Kr-consistent. It follows, accord-
ingly, by Lindenbaum’s lemma, that there is a K ′ ∈ MCKr such that M ⊆ K ′.
But then, for all ϕ ∈ K, �ϕ ∈ K ′, and therefore, by lemma 265 of §6.1,
K ′ AccKr K.

We can generalize the results of this last lemma by considering the idea of
a relational world system being indexically closed, i.e., being such that every
index of the system is either accessible from an index or has an index accessible
from it.

Definition 287 If A = 〈R, ti〉i∈I and A is a relational world system, then A

is indexically closed iff I = FR (i.e., iff every index of A is either accessible
within A from some index of A or has some index accessible from it).

We observe that by lemma 286, AKr is indexically closed, and therefore by
theorem 280, Kr strongly characterizes the class of indexically closed relational
world systems.

Theorem 288 Kr strongly characterizes the class of indexically closed rela-
tional systems.

Proof. Assume Γ ∪ {ϕ} ⊆ FM , and show Γ �Kr ϕ iff for all indexically closed
relational world systems A, Γ |=A ϕ. If Γ �Kr ϕ, then, by theorem 283, Γ |=A ϕ,
for all world systems A, and therefore for all indexically closed world systems A.
Conversely, if Γ |=A ϕ, for all indexically closed world systems A, then, because,
by lemma 286, AKr is indexically closed, Γ |=AKr

ϕ, and therefore, by theorem
272, Γ �Kr ϕ.

In our characterization of a relational world system we left it open as to
whether any such system was indexically closed or not. A world system that is
not indexically closed is one in which there is at least one reference point that is
neither accessible from a reference point, nor has some reference point accessible
from it. Such a reference point is “isolated” within the relational world system
in question.

Definition 289 If A = 〈R, ti〉i∈I and A is a relational world system, then i is
isolated in A iff i ∈ I but i /∈ FR (i.e., i is neither accessible from, nor has
accessible from it, any reference point of A).

Note that although Kr must allow for terminal reference points, theorem
288 indicates that it need not allow for isolated reference points. There are,
however, other modal CN-calculi that must allow for isolated reference points.
We explicate the conceptual issue in question here in terms of the world system
AΣ because a modal CN-calculus Σ must allow what AΣ allows.



92 CHAPTER 6. RELATIONAL WORLD SYSTEMS

Definition 290 If Σ is a modal CN-calculus, then Σ must allow for isolated
reference points iff AΣ is not indexically closed.

Definition 291 If Σ is a modal CN-calculus, then Σ must allow for termi-
nal reference points iff for some K ∈ MCΣ, there is no K ′ ∈ MCΣ such that
K AccΣ K ′.

Exercise 6.2.3 Show that if �Kr (�ϕ0 ∨ ... ∨ �ϕn), then, for some i ≤ n,
�Kr ϕi. (Hint: assume �Kr (�ϕ0 ∨ ... ∨ �ϕn) but, by reductio, that �Kr ϕi,
for all i ≤ n. Then there are K0, ...,Kn ∈ MCKr such that for each i ≤ n,
¬ϕi ∈ Ki. Then construct a world system A that extends AKr such that at a
certain index j of A, |=j

A
�¬ϕ0∧ ...∧�¬ϕn, i.e., |=j

A
¬(�ϕ0∨ ...∨�ϕn), which

is impossible.)

Exercise 6.2.4 Show that if Σ is a quasi-regular modal CN-calculus, n ∈ ω,
and for all ϕ0, ..., ϕn ∈ FM , if �Σ (�ϕ0 ∨ ... ∨ �ϕn) only if for some i ≤ n,
�Σ ϕi, then for all K0,...,Kn ∈ MCΣ, there is a K ′ ∈ MCΣ such that for all
i ≤ n, K ′ AccΣ Ki. (Hint: assume the hypothesis and that K0, ...,Kn ∈ MCΣ,
and let Γ = {�ϕ : ϕ ∈ K0 ∪ ... ∪ Kn}. Show that Γ is Σ-consistent and hence,
for some K ′ ∈ MCΣ, Γ ⊆ K ′, K ′ AccΣ Ki, for i ≤ n.)

Exercise 6.2.5 Show that if Σ is a quasi-regular modal CN-calculus, and for
all ϕ ∈ FM , if �Σ �ϕ only if �Σ ϕ, then Σ need not allow for isolated reference
points, i.e., then AΣ is indexically closed. (Hint: see proof of lemma 286.)

6.3 Reflexivity and Accessibility

The accessibility relation of a relational world system might be reflexive, but,
perhaps because it has isolated reference points, not totally reflexive; that is,
every index in the field of that system’s accessibility relation may be accessible
from itself, even though not every index of the system is in the field of that
relation. We must, accordingly, distinguish between a system’s being reflexive
from its being totally reflexive. Of course, by definition, every totally reflexive
relational world system is both reflexive and indexically closed.

Definition 292 If A = 〈R, ti〉i∈I is a relational world system, then:
(1) A is reflexive iff for all i ∈ FR, iRi; and
(2) A is totally reflexive iff for all i ∈ I, iRi.

Lemma 293 If Σ is a normal extension of M , then AΣ is totally reflexive.

Proof. Assume the hypothesis. Then, because (�ϕ → ϕ) ∈ K, for all K ∈
MCΣ, and hence K AccΣ K, by definition of AccΣ, and therefore AΣ is totally
reflexive.

Theorem 294 If Γ �M ϕ, then for every totally reflexive relational world sys-
tem A, Γ entails ϕ in A.
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Exercise 6.3.1 Prove the above theorem 294. (Hint: suppose A is totally re-
flexive, and the n-place sequence ∆ is a derivation of ϕ from Γ within M . Let
A = {i ∈ ω : if i < n, then Γ |=A ∆i}, and show that ω ⊆ A.)

Theorem 295 If Γ entails ϕ in every totally reflexive relational world system,
then Γ �M ϕ.

Proof. Assume the hypothesis of the theorem. By theorem 272 of §6.1, Γ �M ϕ
iff Γ �AM

ϕ, and, by lemma 293, AM is totally reflexive. Therefore, by assump-
tion Γ �M ϕ.

Theorem 296 M strongly characterizes the class of totally reflexive relational
world systems.

Proof. By Theorems 294 and 295.

Corollary 297 �M ϕ iff ϕ is valid in every totally reflexive relational world
system.

In addition to reflexivity and total reflexivity, there are two related, but
weaker notions of reflexivity, each of which can be characterized by a modal
principle, and which together amount to reflexivity. These are the notions of a
relation being reflexive in its domain and being reflexive in its range.

Definition 298 If A is a relational world system, then A is reflexive in its
domain (d-reflexive) iff for all i, if there is a j such that i <A j, then i <A i.

Definition 299 If A is a relational world system, then A is reflexive in its
range (r-reflexive) iff for all i, if there is a j such that j <A i, then i <A i.

Lemma 300 If Σ is a normal extension of Kr, and for all ϕ, �Σ �ϕ → (�ϕ →
ϕ), then AccΣ is d-reflexive, i.e., reflexive in its domain.

Exercise 6.3.2 Prove lemma 300.

Lemma 301 If Σ is a normal extension of Kr, and for all ϕ, �Σ �(�ϕ → ϕ),
then AccΣ is r-reflexive, i.e., reflexive in its range.

Exercise 6.3.3 Prove lemma 301.

With respect to the modal principles of the above lemmas, we can specify
new axiom sets M∗ and M∗ whose corresponding modal systems characterize,
respectively, the class of d-reflexive and the class of r-reflexive world systems.
(It is noteworthy, incidentally, that when � is interpreted as ‘it ought to be
the case that’, the modal thesis, �(�ϕ → ϕ), represents the plausible deontic
principle that it ought to be that what ought to be the case is in fact the case.)

Definition 302 M∗ =df Kr ∪ {ψ : for some ϕ, ψ is a modal generalization of
�ϕ → (�ϕ → ϕ)}.
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Definition 303 M∗ =df Kr ∪ {ψ : for some ϕ,ψ is a modal generalization of
�(�ϕ → ϕ)}.

Lemma 304 M∗ and M∗ are normal extensions of Kr.

Exercise 6.3.4 Prove the above lemma 304.

Theorem 305 If Γ �M∗ ϕ, then for every relational world system A that is
d-reflexive, Γ entails ϕ in A.

Exercise 6.3.5 Prove the above theorem 305. (Hint: suppose A is d-reflexive,
and the n-place sequence ∆ is a derivation of ϕ from Γ within M∗. Then let
A = {i ∈ ω : if i < n, then Γ |=A ∆i}, and show that ω ⊆ A.)

Theorem 306 If Γ entails ϕ in every d-reflexive relational world system, then
Γ �M∗ ϕ.

Proof. Assume the hypothesis of the theorem. By lemma 300, AM∗ is d-reflexive,
and therefore, by assumption, Γ |=AM∗ ϕ. It follows, by theorem 272 of §6.1,
that Γ �M∗ ϕ.

Theorem 307 M∗ strongly characterizes the class of d-reflexive relational
world systems.

Proof. By theorems 305 and 306.

Theorem 308 If Γ �M∗ ϕ, then for every relational world system A that is
r-reflexive, Γ entails ϕ in A.

Theorem 309 If Γ entails ϕ in every r-reflexive relational world system, then
Γ �M∗ ϕ.

Theorem 310 M∗ strongly characterizes the class of r-reflexive relational
world systems.

Exercise 6.3.6 Prove theorems 308–310.

It is clear that a relation is reflexive iff it is d-reflexive and r-reflexive. Ac-
cordingly, the system M∗ ∪ M∗ is then easily seen to characterize the class of
reflexive relational world systems.

Definition 311 M∗
∗ =df M∗ ∪ M∗.

Lemma 312 M∗
∗ is a normal extension of Kr.

Lemma 313 If Σ is a normal extension of M∗
∗ , then AccΣ is reflexive.

Exercise 6.3.7 Prove lemma 313.
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In showing that M∗
∗ strongly characterizes the class of reflexive relational

world systems, we will use a lemma that will also be useful in subsequent sections
as well where different extensions of Kr are defined as the union of two other
extensions of Kr.

Lemma 314 If (1) A,B are classes of relational world systems,
(2) K,K ′ are recursive subsets of FM that are closed under modal generaliza-
tion,
(3) ΣK , ΣK′ are quasi-normal modal CN-calculi that strongly characterize A
and B, respectively, and
(4) AΣK∪K′ ∈ A ∩ B,
then ΣK∪K′ is a quasi-normal modal CN-calculus that strongly characterizes
A ∩ B.

Proof. Assume the hypothesis of the lemma. By theorem 74 of §2.2.4, ΣK∪K′ is
a quasi-normal modal CN-calculus. Assume Γ∪ {ϕ} ⊆ FM , and show Γ |=A ϕ,
for all A ∈ A∩B, iff Γ �ΣK∪K′ ϕ. Suppose first that Γ |=A ϕ, for all A ∈ A∩B.
Then, by hypothesis, Γ |=AΣ

K∪K′ ϕ, and therefore, by theorem 272, Γ �ΣK∪K′ ϕ.
For the converse direction, assume Γ �ΣK∪K′ ϕ, that A ∈ A ∩ B, and show
Γ |=A ϕ. Then, for some n ∈ ω, there is an n-place sequence ∆ such that
ϕ = ∆n−1, and for i < n, either ∆i ∈ AxΣ

K∪K
′ , or ∆i ∈ Γ, or for some j, k < i,

∆k = (∆j → ∆i). Let C = {i ∈ ω : if i < n, then Γ |=A ∆i}, and show by
strong induction that ω ⊆ C. Case 1: assume ∆i ∈ AxΣ

K∪K
′ . Then, either

∆i ∈ K or ∆i ∈ K ′, and therefore either �ΣK
∆i or �Σ

K
′ ∆i. But in either

case, by hypothesis and the assumption that A ∈ A ∩ B, |=A ∆i, and therefore
Γ |=A ∆i, from which it follows that i ∈ C. Case 2: assume ∆i ∈ Γ. Then,
by definition, Γ |=A ∆i, and hence i ∈ C. Finally, suppose there are j, k < i
such that ∆k = (∆j → ∆i). Then, by the inductive hypothesis, Γ |=A ∆j and
Γ |=A ∆k, and therefore Γ |=A ∆i, from again it follows that i ∈ C. We conclude,
by strong induction, then that ω ⊆ C, and therefore that Γ |=A ϕ.

Theorem 315 M∗
∗ strongly characterizes the class of reflexive relational world

systems.

Proof. Let A be the class of d-reflexive relational world systems and B the
class of r-reflexive relational world systems. Then, A∩B is the class of reflexive
relational world systems. By theorems 307 and 310, M∗ strongly characterizes
A and M∗ strongly characterizes B, and, by lemma 313, AM∗∪M∗ ∈ A ∩ B.
Therefore, by lemma 314, M∗ ∪ M∗ strongly characterizes A ∩ B.

If M∗
∗ were to also characterize the class of indexically closed reflexive re-

lational world systems, then—because a relational world system is indexically
closed and reflexive iff it is totally reflexive—by theorem 296, M∗

∗ would be
equivalent to M . But as M∗

∗ is not equivalent to M—see exercise 6.3.10 below—
it follows that M∗

∗ does not characterize the class of indexically closed reflexive
relational world systems. Indeed, as exercise 6.3.13 below shows, both M∗

∗ and
M∗ must allow for isolated reference points. However, as exercise 6.3.9 shows,
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M∗ does characterize the class of indexically closed relational world systems
that are reflexive in their domains, and therefore M∗ need not allow for isolated
reference points—although it must allow for terminal points as exercise 6.3.12
below indicates.

Exercise 6.3.8 Show that if Σ is either M or M∗ and �Σ (�ϕ0 ∨ ... ∨ �ϕn),
then for some i ≤ n, �Σ ϕi. (Hint: see proof of exercise 6.2.3 and add feature
for d-reflexivity.)

Exercise 6.3.9 Show that M∗ strongly characterizes the class of indexically
closed relational world systems that are d-reflexive. (Hint: note that AM∗ is
indexically closed and d-reflexive.)

Exercise 6.3.10 Where A4 is the modal CN-matrix defined in §3.3 (of
chapter 3), show that A4 satisfies M∗, M∗ and M∗

∗ but not M .

Exercise 6.3.11 Show that if Σ is either M∗, M∗ or M∗
∗ , then for all ϕ, �Σ �ϕ.

(Hint: note that �A4 �ϕ and use exercise 6.3.10.)

Exercise 6.3.12 Show that M∗, M∗, and M∗
∗ must allow for terminal reference

points although M need not do so. (Hint: use exercise 6.3.10 and note that
�A4 ¬�(Pn∧¬Pn) to show that �(Pn∧¬Pn) is M∗-, M∗-, and M∗

∗ -consistent.
Then use Lindenbaum’s lemma.)

Exercise 6.3.13 Show that M∗ and M∗
∗ must allow for isolated reference

points although M∗ need not do so. (Hint: use exercise 6.3.10 and note that
�A4 ¬�(Pn ∧ ¬Pn), from which it follows that �(Pn ∧ ¬Pn) is in some
K ∈ MCM∗ ∩ MCM∗

∗ . Then show that K is isolated.)

Exercise 6.3.14 Show that if Σ is either M∗ or M∗
∗ , then for some ϕ, �Σ �ϕ

and yet �Σ ϕ. (Hint: consider the formula ��(Pn ∨ ¬Pn).)

6.4 Transitive World Systems

We now turn to the characterization of transitive relational world systems—that
is, world systems in which the accessibility relation is transitive. As we note
below, it is the validity of the modal thesis (�ϕ → ��ϕ) that characterizes the
transitivity of a world system.

Definition 316 If A is relational world system, then A is transitive iff <A is
transitive.

Lemma 317 If Σ is a normal extension of Kr, and for all ϕ, �Σ �ϕ → ��ϕ,
then AccΣ is transitive.
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Proof. Assume the hypothesis, and that K,K ′,K ′′ ∈ MCΣ. Assume also that
K AccΣ K ′ and K ′ AccΣ K ′′, and show that K AccΣ K ′′. Suppose, accordingly,
that �ϕ ∈ K and show ϕ ∈ K ′′. Then, by hypothesis, ��ϕ ∈ K, from which it
follows, by definition of AccΣ that �ϕ ∈ K ′, and therefore that ϕ ∈ K ′′.

Because Kr characterizes the class of all relational world systems, and in
that sense is a minimal system with respect to the present semantics, we can
characterize the transitive relational world systems by simply adding to Kr all
modal generalizations of the modal thesis (�ϕ → ��ϕ). We call the result
Kr.1.

Definition 318 Kr.1 =df Kr ∪ {ψ : for some ϕ, ψ is a modal generalization
of �ϕ → ��ϕ}.

Theorem 319 If Γ �Kr.1 ϕ , then for very transitive relational world system
A, Γ |=A ϕ.

Exercise 6.4.1 Prove theorem 319. (Hint: suppose A is transitive, and the n-
place sequence ∆ is a derivation of ϕ from Γ within Kr.1. Let A = {i ∈ ω : if
i < n, then Γ |=A ∆i}, and show that ω ⊆ A.)

Theorem 320 If, for every transitive relational world system A, Γ |=A ϕ, then
Γ �Kr.1 ϕ.

Exercise 6.4.2 Prove theorem 320. (Hint: note that AKr.1 is transitive, and
then use theorem 272.)

Theorem 321 Kr.1 strongly characterizes the class of transitive relational
world systems.

Proof. By theorems 319 and 320.

Corollary 322 �Kr.1 ϕ iff ϕ is valid in every transitive relational world system.

As noted earlier in §6.2 with Kr and lemma 286, a consequence of the
following lemma is that AKr.1 is indexically closed, and therefore by theorem
272 of §6.1, Kr.1 strongly characterizes the class of indexically closed transitive
relational world systems.

Lemma 323 If �Kr.1 �ϕ, then �Kr.1 ϕ.

Exercise 6.4.3 Prove lemma 323. (Hint: see the proof of lemma 285.)

Theorem 324 Kr.1 strongly characterizes the class of indexically closed, tran-
sitive relational world systems.

Exercise 6.4.4 Prove theorem 324. (Hint: see the proof of theorem 288.)

Exercise 6.4.5 Show that if �Kr.1 (�ϕ0 ∨ ... ∨ �ϕn) , then for some i ≤ n,
�Kr.1 ϕi. (Hint: see proof of exercise 6.2.3.)
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Exercise 6.4.6 Where A4 is the modal CN-matrix of §3.3, show that A4 satis-
fies Kr.1.

Exercise 6.4.7 Show that for all ϕ, �Kr.1 �ϕ. (Hint: use preceding exercise
and note that �A4 �ϕ.)

Exercise 6.4.8 Show that Kr.1 need not allow for isolated reference points
although it must allow for terminal points. (Hint: note that �A4 ¬�(Pn ∧¬Pn),
and therefore that �(Pn ∧ ¬Pn) is Kr.1-consistent.)

6.5 Quasi-Ordered World Systems

We now put together our earlier results on reflexive and transitive relational
world systems and deal with the class of relational world systems that are both
transitive and reflexive, or transitive and totally reflexive. A relational world
system is said to be quasi -ordered if it is transitive and reflexive, and totally
quasi -ordered if it is transitive and totally reflexive. Of course, it is clear that
every totally quasi-ordered relational world system is also simply quasi-ordered
as well as indexically closed.

Definition 325 If A is a relational world system, then:
(1) A is quasi-ordered iff <A is transitive and reflexive; and
(2) A is totally quasi-ordered iff <A is transitive and totally reflexive.

Lemma 326 If Σ is a normal extension of S4, then AΣ is totally quasi-ordered.

Exercise 6.5.1 Prove lemma 326. (Hint: use lemmas 293 and 317 and the fact
that if Σ is a normal extension of S4, then �Σ �ϕ → ϕ and �Σ �ϕ → ��ϕ.)

Theorem 327 S4 strongly characterizes the class of totally quasi-ordered rela-
tional world systems.

Proof. Let A be the class of transitive relational world systems and B the
class of totally reflexive relational world systems. Then, A ∩ B is the class of
totally quasi-ordered relational world systems. We note that, by definition, S4 =
Kr.1∪M , and therefore that AS4 = AKr.1∪M , and, by lemmas 293 and 317, that
AKr.1∪M ∈ A∩B. But, by theorems 321 and 296, Kr.1 strongly characterizes A
and M strongly characterizes B, and therefore, by lemma 314, Kr.1 ∪ M ; i.e.,
S4, strongly characterizes A ∩ B.

Corollary 328 �S4 ϕ iff ϕ is valid in every totally quasi-ordered relational
world system.

Because AS4 is totally reflexive, S4 need not allow for either isolated or ter-
minal reference points. Of course, we can consider a system S4∗ (= M∗ ∪Kr.1)
that is related to S4 the way M∗ is related to M and that, accordingly, must al-
low for terminal reference points and, moreover, that strongly characterizes the
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class of transitive relational world systems that are reflexive in their domains.
Similarly, we can consider a system S4∗ (= M∗ ∪ Kr.1) that is related to S4
the way M∗ is related to M and that, accordingly, must allow for isolated ref-
erence points, and that strongly characterizes the class of transitive relational
world systems that are reflexive in their ranges. Obviously, the system S4∗∗
(= S4∗ ∪ S4∗ = M∗

∗ ∪ Kr.1), which is related to S4 the way M∗
∗ is related to

M , must also allow for isolated reference points and strongly characterizes the
class of quasi-ordered relational world systems.

Definition 329 S4∗ =df M∗ ∪ Kr.1.

Theorem 330 S4∗ strongly characterizes the class of d-reflexive, transitive re-
lational world systems.

Proof. By theorems 307 and 321 and lemma 314.

Definition 331 S4∗ =df M∗ ∪ Kr.1.

Theorem 332 S4∗ strongly characterizes the class of r-reflexive, transitive re-
lational world systems.

Proof. By theorems 310 and 321 and lemma 314.

Definition 333 S4∗∗ =df M∗
∗ ∪ Kr.1.

Theorem 334 S4∗∗ strongly characterizes the class of quasi-ordered relational
world systems.

Proof. By theorems 315 and 321 and lemma 314.

Exercise 6.5.2 Show that if Σ is either S4 or S4∗ and �Σ (�ϕ0 ∨ ... ∨ �ϕn),
then for some i ≤ n, �Σ ϕi. (Hint: see proof of exercise 6.2.3 and add (j, j) to
<A for reflexivity.)

Exercise 6.5.3 Show that S4∗ strongly characterizes the class of indexically
closed, transitive, and d-reflexive relational world systems. (Hint: note that AS4∗

is indexically closed, transitive, and d-reflexive.)

Exercise 6.5.4 Where A4 is the modal CN-matrix of §3.3, show that A4 satis-
fies Kr.1, S4, S4∗, and S4∗∗.

Exercise 6.5.5 Show that if Σ is either Kr.1, S4, S4∗, or S4∗∗, then for all ϕ,
�Σ �ϕ. (Hint: note that �A4 �ϕ.)

Exercise 6.5.6 Show that if Σ is S4∗ or S4∗∗, then for some ϕ, �Σ �ϕ and yet
�Σ ϕ. (Hint: consider the formula ��(Pn ∨ ¬Pn).)

Exercise 6.5.7 Show that S4∗ must allow for terminal reference points al-
though it need not allow for isolated reference points. (Hint: note that AS4∗ is
indexically closed and, by exercise 6.5.4, �(Pn ∧ ¬Pn) is S4∗-consistent. Then
use Lindenbaum’s lemma.)

Exercise 6.5.8 Show that S4∗ and S4∗∗ must allow for isolated reference points.
(Hint: note that by exercise 6.5.4, �(Pn ∧ ¬Pn) is S4∗- and S4∗∗-consistent.
Then use Lindenbaum’s lemma.)
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6.6 Symmetric World Systems

We now turn to the characterization of symmetric relational world systems.
The modal thesis whose validity in a world system characterizes that system
as symmetric is the Br thesis (ϕ → ��ϕ), which we can add to our minimal
system Kr to obtain the system Kr.2.

Definition 335 If A is a relational world system, then A is symmetric iff <A

is symmetric (i.e., iff for all indices i, j of A, if i <A j, then j <A i).

Lemma 336 If Σ is a normal extension of Kr, and for all ϕ, �Σ (ϕ → ��ϕ),
then AccΣ is symmetric.

Proof. Assume the hypothesis of the lemma. Suppose K AccΣ K ′. We have to
show K ′ AccΣ K. Accordingly, suppose �ϕ ∈ K ′ and ϕ /∈ K. Then, because
K ∈ MCΣ, ¬ϕ ∈ K. But �Σ (¬ϕ → ��¬ϕ), and therefore ��¬ϕ ∈ K.
Consequently, by definition of AccΣ, �¬ϕ ∈ K ′, which is impossible.

Definition 337 Kr.2 =df Kr ∪ {ψ : for some ϕ, ψ is a modal generalization
of (ϕ → ��ϕ)}.
Theorem 338 If Γ �Kr.2 ϕ, then for every symmetric relational world system
A, Γ |=A ϕ.

Exercise 6.6.1 Prove the above theorem 338. (Hint: suppose A is a symmetric
world system, and the n-place sequence ∆ is a derivation of ϕ from Γ within
M . Let A = {i ∈ ω : if i < n, then Γ |=A ∆i}, and show that ω ⊆ A.)

Theorem 339 If for every symmetric relational world system A, Γ |=A ϕ, then
Γ �Kr.2 ϕ.

Proof. Assume the hypothesis, and note that by lemma 336, AKr.2 is symmetric.
Therefore, by theorem 272 of §6.1, Γ �Kr.2 ϕ.

Theorem 340 Kr.2 strongly characterizes the class of symmetric relational
world systems.

Proof. By theorems 338 and 339.

Corollary 341 �Kr.2 ϕ iff ϕ is valid in every symmetric relational world sys-
tem.

Exercise 6.6.2 Where A4 is the modal CN-matrix of §3.3, show that A4 satis-
fies Kr.2.

Exercise 6.6.3 Show that for all ϕ, �Kr.2 �ϕ. (Hint: �A4 �ϕ.)

Exercise 6.6.4 Show that for some ϕ, �Kr.2 �ϕ and yet �Kr.2 ϕ. (Hint: con-
sider the formula ��(Pn ∨ ¬Pn).)

Exercise 6.6.5 Show that Kr.2 must allow for isolated reference points. (Hint:
note that �(Pn∧¬Pn) is Kr.2-consistent, and therefore, for some K ∈ MCKr.2,
�(Pn ∧ ¬Pn) ∈ K.)
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6.7 Reflexive and Symmetric World Systems

The system Br contains both the principle (�ϕ → ϕ) and (ϕ → ��ϕ); and, as
already noted, the first characterizes the totally reflexive world systems and the
second characterizes the symmetric world systems. We note, moreover, that by
definition of Br and Kr.2, Br = M ∪ Kr.2.

Lemma 342 If Σ is a normal extension of Br, then AΣ is totally reflexive and
symmetric.

Exercise 6.7.1 Prove the above lemma 342. (Hint: note that if Σ is a normal
extension of Br, then �Σ (�ϕ → ϕ) and �Σ (ϕ → ��ϕ).)

Theorem 343 Br strongly characterizes the class of totally reflexive and sym-
metric relational world systems.

Proof. Let A be the class of totally reflexive world systems and B the class of
symmetric relational worlds systems. Note that, by the completeness theorem
296 of §6.3, M strongly characterizes A and, by the completeness theorem 340
of §6.6, Kr.2 characterizes B, and that, by lemma 342, AM∪Kr.2 ∈ A ∩ B.
Therefore, by lemma 314 of §6.3, M ∪Kr.2 = Br strongly characterizes A∩B.

Corollary 344 �Br ϕ iff ϕ is valid in every totally reflexive and symmetric
relational world systems.

Because ABr is totally reflexive, Br need not allow for either isolated or
terminal reference points. But, as in the case of S4, we can consider a system
Br∗ (= M∗ ∪ Kr.2) that is related to Br the way M∗ is related to M , and
S4∗ is related to S4, and that must allow for isolated reference points, and
that, moreover, strongly characterizes the class of symmetric relational world
systems that are reflexive in their domains. Similarly, we can consider a system
Br∗ (= M∗ ∪ Kr.2) that must allow for isolated reference points, and that
strongly characterizes the class of symmetric relational world systems that are
reflexive in their ranges. Of course, the system Br∗∗ (= M∗

∗ ∪Kr.2) then strongly
characterizes the class of symmetric and reflexive relational world systems.

Definition 345 Br∗ =df M∗ ∪ Kr.2.

Theorem 346 Br∗ strongly characterizes the class of symmetric, d-reflexive
relational world systems.

Proof. By theorems 307 and 340 and lemma 314.

Definition 347 (a) Br∗ =df M∗ ∪ Kr.2; and (b) Br∗∗ =df Br∗ ∪ Br∗.

Theorem 348 Br∗ strongly characterizes the class of symmetric, r-reflexive
relational world systems.
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Proof. By theorems 310 and 340 and lemma 314.

Exercise 6.7.2 Where A4 is the modal CN-matrix of §3.3, show that A4 satis-
fies Br∗, Br∗, and Br∗∗.

Exercise 6.7.3 Show that if Σ is either Br∗, Br∗, or Br∗∗, then for all ϕ,
�Σ �ϕ. (Hint: note that �A4 �ϕ.)

Exercise 6.7.4 Show that if Σ is either Br∗, Br∗, or Br∗∗, then for some ϕ,
�Σ �ϕ and yet �Σ �ϕ. (Hint: consider the formula ��(Pn ∨ ¬Pn).)

Exercise 6.7.5 Show that Br∗, Br∗, or Br∗∗ must allow for isolated reference
points. (Hint: note that, by exercise 6.7.3, �(Pn ∧ ¬Pn) is consistent in each
of these systems, and therefore, �(Pn ∧¬Pn) ∈ K, for some K ∈ MCΣ, where
Σ is any one of these systems. Show that K must be isolated in AΣ.)

6.8 Transitive and Symmetric World Systems

We again can put together the separate results for transitive and symmetric
world systems and consider the class of world systems that are both transitive
and symmetric. Adding to our minimal system Kr the modal theses for tran-
sitivity and symmetry, namely, (�ϕ → ��ϕ) and (ϕ → ��ϕ), results in the
calculus we call Kr.3. We note that by definition Kr.3 = Kr.1 ∪ Kr.2.

Definition 349 Kr.3 =df Kr.1 ∪ Kr.2.

Lemma 350 If Σ is a normal extension of Kr.3, then AccΣ is transitive and
symmetric.

Proof. By lemmas 317 and 336.

Theorem 351 Kr.3 strongly characterizes the class of transitive and symmet-
ric relational world systems.

Proof. By theorems 321 and 340 and lemma 314.

Corollary 352 �Kr.3 ϕ iff ϕ is valid in every transitive and symmetric rela-
tional world systems.

Exercise 6.8.1 Where A4 is the modal CN-matrix of §3.3, show that A4 satis-
fies Kr.3.

Exercise 6.8.2 Show that for all ϕ, �Kr.3 �ϕ. (Hint: note that �A4 �ϕ.)

Exercise 6.8.3 Show that for some ϕ, �Kr.3 �ϕ and yet �Kr.3 �ϕ.

Exercise 6.8.4 Show that Kr.3 must allow for isolated reference points. (Hint:
see proof of exercise 6.7.5.)

Exercise 6.8.5 Show that �Kr.3 (�ϕ → ��ϕ), �Kr.3 �(�ϕ → ϕ) and �Kr.3

�ϕ → (�ϕ → ϕ), and that therefore M∗
∗ is a subsystem of Kr.3.
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6.9 Partitioned World Systems

A transitive and symmetric relation is also reflexive, and the three conditions
together constitute an equivalence relation. Thus, by theorem 351 above, the
calculus Kr.3 strongly characterizes the class of relational world systems in
which accessibility is an equivalence relation.

Definition 353 R is an equivalence relation iff (1) for all x ∈ FR, xRx,
(2) for all x, y, z, if xRy and yRz, then xRz, and (3) for all x, y, if xRy, then
yRx.

Theorem 354 Kr.3 strongly characterizes the class of relational world systems
in which the accessibility relation between reference points is an equivalence re-
lation.

An equivalence relation R generates equivalence classes, or cells, where every
member of such a class (cell) stands in the relation R to itself as well as to every
other member of the class; and, in addition, any two such equivalence classes
(cells) generated by R will be disjoint. In this sense, an equivalence relation
partitions the field of the relation (into disjoint cells). But the field of an ac-
cessibility relation of a world system need not consist of all of the indices of
the world system if some of those indices are isolated. Thus, in particular, be-
cause Kr.3 must allow for isolated reference points (as noted in exercise 6.8.4),
AccKr.3 does not partition MCKr.3 into disjoint equivalence classes or cells. The
distinction in question can be clarified by distinguishing between an equivalence
relation on a set A, which partitions the set A into disjoint equivalence cells,
from an equivalence relation simpliciter, which partitions its field, where the
field might be a proper subset of A. Thus, although AccKr.3 is an equivalence
relation, it is not an equivalence relation on MCKr.3, and therefore does not
partition MCKr.3 into disjoint equivalence classes. We note, however, that the
accessibility relation AccΣ of any normal extension Σ of S5 must be an equiva-
lence relation on MCΣ, because, as an extension of S5, �Σ �ϕ → ϕ, and hence
AccΣ must be totally reflexive.

Definition 355 R is an equivalence relation on A iff R is an equivalence
relation and FR = A.

Lemma 356 If Σ is a normal extension of S5, then AccΣ is an equivalence
relation on MCΣ.

Exercise 6.9.1 Prove the above lemma 356. (Hint: note that �S5 �ϕ → ϕ,
�S5 ϕ → ��ϕ and �S5 �ϕ → ��ϕ, and that therefore AccΣ must be totally
reflexive, symmetric, and transitive.)

We will say that a relational world system A is partitioned if the accessibility
relation of A is an equivalence relation on its set of indices of A, i.e., if <A

partitions all of the indices of A into disjoint, nonempty equivalence classes or
cells. Note that by definition 325 of §6.5 a partitioned relational world system
is totally quasi-ordered and symmetric.
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Definition 357 A is a partitioned relational world system iff A is a re-
lational world system and <A is an equivalence relation on the set of indices of
A (i.e., iff A is transitive, symmetric, and totally reflexive).

Theorem 358 S5 strongly characterizes the class of partitioned relational
world systems.

Proof. Let A be the class of totally quasi-ordered relational world systems
and B the class of totally reflexive and symmetric relational worlds systems.
Then A∩B is the class of partitioned relational world systems. By theorem 327
of §6.5, S4 strongly characterizes A, and by theorem 343 of §6.7, Br strongly
characterizes class B, and, moreover, AS4∪Br ∈ A ∩ B. It follows, by lemma
314 of §6.3, that S4 ∪ Br strongly characterizes A ∩ B. But S5 is equivalent to
S4 ∪ Br, by theorem 124 of §2.3.7, and therefore S5 strongly characterizes the
class of partitioned relational world systems.

Corollary 359 �S5 ϕ iff ϕ is valid in every partitioned relational world system.

If reference points, or possible worlds, belonging to the same accessibility-
cell of a partitioned relational world system are indiscernible in their non-modal
facts, then, as we see below, they will be indiscernible in their modal facts as
well—i.e., they will then be indiscernible simpliciter—at least insofar as the
modal facts in question can be represented in terms of the present syntax and
semantics.

Lemma 360 If A = 〈R, ti〉i∈I is a partitioned relational world system, i, j are
reference points of A belonging to the same accessibility-cell, i.e., i <A j, and
ti = tj, then for all ϕ, |=i

A
ϕ iff |=j

A
ϕ.

Exercise 6.9.2 Prove the above lemma 360. (Hint: assume the hypothesis and
let Γ = {ϕ ∈ FM : �i

A
ϕ iff |=j

A
ϕ}, and show by induction that FM ⊆ Γ.)

Although a partitioned relational world system may consist of any number
of accessibility-cells, i.e., pairwise disjoint sets of indices such that no member
of one is accessible from any member of another, those in which there is but
one such accessibility-cell are also of interest. Accessibility in such a single-
celled partitioned relational world system amounts then to each index having
every index accessible from it, i.e., accessibility is then a universal relation. The
following definitions and lemmas show that S5 also characterizes this special
class of partitioned relational world systems.

Definition 361 If A = 〈R, ti〉i∈I , then A[k] =df 〈R′, ti〉i∈I′ , where I ′ = {i ∈ I :
i = k or k <A i} and R′ = R ∩ (I ′ × I ′).

Lemma 362 If A is a transitive relational world system and k is a reference
point of A, then for all indices j of A[k], |=j

A
ϕ iff |=j

A[k]
ϕ.
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Proof. Assume the hypothesis. Then, by definition, A[k] is a subsystem of A.
By lemma 278 of §6.1, it suffices to show for all i, j that if i is an index of
A[k] and i <A j, then i <A[k] j. Assume then that i is an index of A[k] and
i <A j. By assumption, either i = k or k <A i. If i = k, then, by Leibniz’s law,
k <A j, and therefore j is an index of A[k], from which it follows, by definition,
that k <A[k] j, and therefore, by Leibniz’s law, i <A[k] j. If, on the other hand,
k <A i, then, by transitivity of <A, k <A j, and therefore j is an index of
A[k]; but then, by assumption and definition of <A[k] , i <A[k] j. We conclude,
accordingly, by lemma 278, for all indices j of A[k] and for all ϕ, |=j

A
ϕ iff

|=j
A[k]

ϕ.

Lemma 363 If A is a partitioned relational world system and k is a refer-
ence point of A, then A[k] is a partitioned relational world system with but one
accessibility-cell, i.e., <A[k] is an equivalence relation on the set of indices of
A[k] and for all indices i, j of A[k], i <A[k] j.

Exercise 6.9.3 Prove the above lemma 363.

Lemma 364 Γ entails ϕ in every partitioned relational world system iff Γ
entails ϕ in every partitioned relational world system with but one accessibility
cell.

Proof. By lemmas 362 and 363.

Theorem 365 S5 strongly characterizes the class of partitioned relational
world systems with but one accessibility-cell.

Proof. By theorem 358 and lemma 364.

Because all of the indices of an equivalence class, or cell, of a partitioned
world system are accessible from one another, the accessibility relation of a
partitioned world system with but one accessibility cell then turns out to be a
universal relation, i.e., a relation in which every index stands to itself and to
every other index of such a system.

Definition 366 A is a universally related world system iff A is a rela-
tional world system such that for all indices i, j of A , i <A j.

Lemma 367 A is a universally related world system iff A is a partitioned
relational world system with but one accessibility cell.

Exercise 6.9.4 Prove the above lemma 367.

Theorem 368 S5 strongly characterizes the class of universally related world
systems.
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Proof. By theorem 365 and lemma 367.

Theorem 368, it should be noted, is but another version of theorem 230
of §5.1. This is because for each T ⊆ V , where V is the set of truth-value
assignments, there is a universally related world system A = 〈R, ti〉i∈I such
that T = {ti : i ∈ I}, and therefore a formula ϕ is T -valid iff ϕ is valid in A.

We conclude this section with some exercises regarding the systems S5∗, S5∗,
and S5∗∗, where S5∗, S5∗ are obtained from S5 by replacing the principle �ϕ →
ϕ by �ϕ → (�ϕ → ϕ) and �(�ϕ → ϕ), respectively, and S5∗∗ = S5∗ ∪ S5∗.

Definition 369 S5∗ =df M∗ ∪ {ψ ∈ FM : for some ϕ, ψ is a modal general-
ization of (�ϕ → ��ϕ)}.

Definition 370 S5∗ =df M∗ ∪ {ψ ∈ FM : for some ϕ, ψ is a modal general-
ization of (�ϕ → ��ϕ)}.

Definition 371 S5∗∗ =df S5∗ ∪ S5∗.

Exercise 6.9.5 Show that S5 must allow for partitioned relational world sys-
tems with more than one accessibility-cell, i.e., show that there are K, K ′ ∈
MCS5 such that neither K AccS5 K ′ nor K ′ AccS5 K. (Hint: by lemma
180 of §3.3, the modal CN-matrix A2 satisfies S5, and yet �A2 �Pn and
�A2 ¬�Pn, i.e., both �Pn and ¬�Pn are S5-consistent, and hence �Pn ∈ K
and ¬�Pn ∈ K ′, for some K,K ′ ∈ MCS5. Show that neither K AccS5 K ′ nor
K ′ AccS5 K.)

Exercise 6.9.6 Show that there are ϕ, ψ such that �S5 (�ϕ ∨ �ψ) and yet
�S5 ϕ and �S5 ψ. (Hint: consider the formula ��Pn ∨ �¬�Pn.)

Exercise 6.9.7 Show that A4 satisfies S5∗, S5∗, and S5∗∗.

Exercise 6.9.8 Show that if Σ is either S5∗, S5∗, or S5∗∗, then for all ϕ, �Σ

�ϕ. (Hint: note that �A4 �ϕ.)

Exercise 6.9.9 Show that �S5∗ �(�ϕ → ϕ) and �S5∗ ϕ → ��ϕ.

Exercise 6.9.10 Show that S5∗ is equivalent to S5∗∗, which in turn is equivalent
to Kr.3.

Exercise 6.9.11 Show that S5∗ and S5∗∗ strongly characterize the class of re-
lational world systems A in which <A is an equivalence relation—though not
necessarily an equivalence relation on the index set of A.

Exercise 6.9.12 Show that S5∗ is equivalent to the system resulting from S5
by the deletion of all modal generalizations of axioms of the form �ϕ → ϕ.

Exercise 6.9.13 Show that �S5∗ �(�ϕ → ��ϕ) and �S5∗ �(ϕ → ��ϕ), and
therefore that AccS5∗ is an equivalence relation on its range, i.e., that AccS5∗

is r-reflexive, transitive in its range (r-transitive), and symmetric in its range
(r-symmetric).
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Exercise 6.9.14 Show that S5∗ strongly characterizes the class of relational
world systems A in which <A is an equivalence relation on its range (i.e., in
which <A is r-reflexive, r-transitive, and r-symmetric).

Exercise 6.9.15 Show that S5∗ and S5∗∗ are proper normal extensions of S5∗.
(Hint: show by means of the previous exercise that �S5∗ �ϕ → ��ϕ, or that
�S5∗ ϕ → ��ϕ.)

6.10 Connexity and Accessibility

In the following definitions we define various senses in which the accessibility
relation may be said to be connected. We distinguish first between a relation
being connected in its range (r-connected) and a relation being quasi-connected
in its range (quasi-r-connected).

Definition 372 R is connected in its range (r-connected) iff for all y, z in
the range of R, either y = z, or yRz or zRy.

Definition 373 R is quasi-connected in its range (quasi-r-connected)
iff R is a relation such that for all x, y, z, if xRy and xRz, then either y = z,
or yRz or zRy.

A relation that is r-connected is quasi-r-connected, but not every relation that
is quasi-r-connected is r-connected. An example of a quasi-r-connected relation
is the signal relation of special relativity theory; that is, if a signal can be sent
from a space-time point x to space-time points y and z, and y 
= z, then either
a signal can be sent from y to z or from z to y. Yet, the signal relation of special
relativity theory is not r-connected; i.e., there can be distinct space-time points
y and z (in the range of the signal relation) such that no signal can be sent
from y to z, nor from z to y. A similar distinction applies to relations that are
connected in their domains.

Definition 374 R is strongly quasi-connected in its range (strongly
quasi-r-connected) iff R is a relation such that for all x, y, z, if xRy and
xRz, then either yRz or zRy.

Definition 375 R is quasi-connected in its domain (quasi-d-connected)
iff R is a relation such that for all x, y, z, if yRx and zRx, then either y = z,
yRz or zRy.

Definition 376 R is strongly quasi-connected in its domain (strongly
quasi-d-connected) iff R is a relation such that for all x, y, z, if yRx and zRx,
then either yRz or zRy.

Definition 377 R is quasi-connected iff R is quasi-r-connected and quasi-
d-connected.
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Definition 378 R is strongly quasi-connected iff R is strongly quasi-r-
connected and strongly quasi-d-connected.

Definition 379 R is connected iff R is a relation such that for all x, y ∈ FR,
either x = y, xRy, or yRx.

Definition 380 R is strongly connected iff R is a relation such that for all
x, y ∈ FR, either xRy or yRx.

Remark 2: If R is (strongly) connected, then R is (strongly) quasi-connected—
but the converse does not hold in general.

We note that just as every relation that is strongly connected is reflexive,
so too every relation that is strongly quasi-connected in its range, or domain,
respectively, is thereby also reflexive in its range, or domain, respectively, and,
therefore, every strongly quasi-connected relation is also reflexive. Naturally,
every strongly connected relation is reflexive.

As an example of a quasi-connected relation that is not connected, suppose
that God’s time is acosmic— i.e., where God’s time is distinct from the time of
any local reference frame—and in particular that no moment of God’s time is
a moment of a local reference frame, and conversely. Nevertheless, God’s time,
let us suppose, is like that of a local reference frame in that it is a temporal
series; that is, both are symmetric, transitive, and connected temporal relations.
Consider the relation T whose field is the set of moments of both God’s time
and of a local reference frame, i.e., whose field is the union of these disjoint sets,
and such that xTy iff x is before y in either God’s time or in the local reference
frame. Then T is quasi-connected though not connected. That the accessibility
relation of a world system is quasi-r-connected, as the next lemma indicates,
can be represented by the modal thesis peculiar to S4.3.

Lemma 381 If Σ is a normal extension of Kr and for all ϕ,ψ, �Σ �ϕ∧�ψ →
�[(ϕ∧�ψ)∨ (ψ ∧�ϕ)], then AccΣ is strongly quasi-r-connected (and therefore
r-reflexive).

Exercise 6.10.1 Prove lemma 381.

Definition 382 Kr.4 =df Kr∪{χ : for some ϕ, ψ, χ is a modal generalization
of �ϕ ∧ �ψ → �[(ϕ ∧ �ψ) ∨ (ψ ∧ �ϕ)]}.

Remark 3: We will hereafter refer to relational world systems being them-
selves r-connected, quasi-r-connected, etc., if their accessibility relations are r-
connected, quasi-r-connected, etc.

Lemma 383 If ϕ is an axiom of Kr.4, then ϕ is valid in every strongly quasi-
r-connected relational world system.

Exercise 6.10.2 Prove lemma 383.
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Theorem 384 If Γ �Kr.4 ϕ, then for every strongly quasi-r-connected rela-
tional world system A, Γ |=A ϕ.

Exercise 6.10.3 Prove theorem 384. (Hint: Suppose A is a strongly quasi-r-
connected world system, and that the n-place sequence ∆ is a derivation of ϕ
from Γ within Kr.4. Let A = {i ∈ ω : if i < n, then Γ |=A ∆i}, and show by
induction that ω ⊆ A.)

Theorem 385 Kr.4 strongly characterizes the class of strongly quasi-r-
connected relational world systems.

Proof. By theorem 384, lemma 381, and lemma 272.
Note that S4.3 = S4 ∪ Kr.4, and therefore the separate completeness theo-

rems for S4 and Kr.4 can be combined as a completeness theorem for S4.3.

Theorem 386 S4.3 strongly characterizes the class of totally quasi-ordered and
strongly quasi-r-connected relational world systems.

Proof. Let A be the class of totally quasi-order world systems and B the class
of strongly quasi-r-connected world systems. We note that by lemma 326 of §6.5
and lemma 381, AS4∪Kr.4 ∈ A ∩ B. Then, by theorem 327 of §6.5, theorem 385
above, and lemmas 314 of §6.3, S4 ∪ Kr.4 strongly characterizes A ∩ B. But
S4.3 = S4 ∪ Kr.4, and therefore S4.3 strongly characterizes A ∩ B.

Because of the following lemma, the condition of strong quasi-r-connexity in
theorem 386 can be replaced by either strong quasi-connexity or strong connex-
ity. This lemma holds with and without any, all, or several of the parenthetical
qualifications as part of its statement. Thus, since there are three types of paren-
thetical qualification, lemma 387 really is a condensed version of eight different
lemmas.

Lemma 387 Γ entails ϕ in every (totally) quasi-ordered and (strongly) quasi-r-
connected relational world system iff Γ entails ϕ in every (totally) quasi-ordered
and (strongly) (quasi-) connected relational world system.

Proof. We note that if A is a (totally) quasi-ordered and (strongly) (quasi-)
connected world system, then A is a (totally) quasi-ordered and (strongly) quasi-
r-connected world system, and hence the left-to-right direction of lemma 387
is immediate. Assume then that for all (totally) quasi-ordered and (strongly)
(quasi-) connected world systems A, Γ |=A ϕ, and that A = 〈R, ti〉i∈I is a
(totally) quasi-ordered and (strongly) quasi-r-connected world system, and show
Γ |=A ϕ. Suppose that i ∈ I and that for all ψ ∈ Γ, |=i

A
ψ. It suffices then to

show that |=i
A

ϕ. By definition 361, A[i] is a subsystem of A, and by assumption
and lemma 362, for all ψ ∈ Γ, |=i

A[i]
ψ; and also that |=i

A[i]
ϕ iff |=i

A
ϕ. It suffices

then, by assumption, to show that A[i] is a (totally) quasi-ordered and (strongly)
(quasi-) connected world system. First, to show that A[i] is transitive, assume
k <A[i] k′ <A[i] k′′ and show k <A[i] k′′. But, by assumption, A is transitive,
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and therefore k <A k′′, and therefore k <A[i] k′′, by definition of A[i]. Similarly,
because A is (totally) reflexive, A[i] is (totally) reflexive as well, and therefore, by
definition, A[i] is (totally) quasi-ordered. Finally, we show that A[i] is (strongly)
connected, and therefore (strongly) quasi-connected. Assume, accordingly, that
j, k are in the field of <A[i] , and show that either j = k or j <A[i] k or that
k <A[i] j. By assumption, because j, k are indices of A[i], either j = i or i <A j,
and also either k = i or i <A k. Now if i is not in the field of <A, then <A[i] is
easily seen to be (strongly) connected. So suppose i is in the field of <A. Then,
because A is (totally) reflexive, i <A i, and therefore if j = i or k = i, then
j <A[i] k or k <A[i] j. Suppose then that i 
= j and that i 
= k. Then either i <A j
and i <A k, and therefore, because A is quasi-r-connected, j <A k or k <A j,
and hence, by definition of A[i], either j <A[i] k or k <A[i] j. Therefore, A[i]

is (strongly) connected, and hence (strongly) quasi-connected. That is, putting
the different conclusions together, A[i] is (totally) quasi-ordered and (strongly)
(quasi-) connected, and therefore, because |=i

A[i]
ψ, for all ψ ∈ Γ, then |=i

A[i]
ϕ,

and hence, as already noted, by lemma 362, |=i
A

ϕ.

Theorem 388 S4.3 strongly characterizes the class of totally quasi-ordered and
strongly quasi-connected relational world systems.

Proof. By theorem 386 and lemma 387.

Theorem 389 S4.3 strongly characterizes the class of totally quasi-ordered and
strongly connected relational world systems.

Proof. By theorem 386 and lemma 387.
We now show that even the conditions of strong quasi-connexity and con-

nexity in theorems 388 and 389, respectively, can be replaced by simple quasi-
connexity and connexity.

Lemma 390 If Σ is a normal extension of Kr and for all ϕ, ψ, �Σ �ϕ∧�ψ →
�(ϕ ∧ ψ) ∨ �(ϕ ∧ �ψ) ∨ �(ψ ∧ �ϕ)), then AccΣ is quasi-r-connected.

Definition 391 Kr.5 =df Kr ∪ {ψ : for some ϕ, ψ is a modal generalization
of �ϕ ∧ �ψ → �(ϕ ∧ ψ) ∨ �(ϕ ∧ �ψ) ∨ �(ψ ∧ �ϕ)}.

Theorem 392 Kr.5 strongly characterizes the class of quasi-r-connected rela-
tional world systems.

Exercise 6.10.4 Prove theorem 392.

Clearly, Kr.4 is a normal extension of Kr.5. But Kr.5, on the other hand,
is not a normal extension of Kr.4; that is, the two systems are not equivalent.
For example, because every strongly quasi-r-connected relational world system
is reflexive in its range, �(�ϕ → ϕ) is valid in every such world system, and
therefore, by theorem 385, �Kr.4 �(�ϕ → ϕ). But, because not every simply
quasi-r-connected relational world system is reflexive in its range, �(�ϕ → ϕ)



6.10. CONNEXITY AND ACCESSIBILITY 111

is falsifiable, for some ϕ, at some reference point of some such world system,
and therefore �Kr.5 �(�ϕ → ϕ). In other words, the difference between Kr.4
and Kr.5 corresponds to the difference between a world system being simply
quasi-r-connected and being strongly quasi-r-connected.

Regardless of the distinction between Kr.4 and Kr.5, however, there is no
difference between simple quasi-r-connexity and strong quasi-r-connexity when
a relational world system is reflexive. That is, every quasi-r-connected relational
world system that is reflexive is strongly quasi-r-connected. This observation
yields another completeness theorem for S4.3.

Theorem 393 S4.3 strongly characterizes the class of totally quasi-ordered and
quasi-r-connected relational world systems.

Proof. As already noted, S4.3 = S4 ∪ Kr.4. But, as noted in exercise 2.3.8
(of §2.3.6 of chapter 2), S4.3 is equivalent to S4.3′ (as defined in definition
114), and S4.3′ = S4 ∪ Kr.5. Therefore, by theorem 327 of §6.5, theorem
392, and lemma 314, S4.3′ = S4 ∪ Kr.5 strongly characterizes the class of to-
tally quasi-ordered and quasi-r-connected world systems, and therefore so does
S4.3.

Because the parenthetical “strongly” of lemma 387 can be dropped, the
condition of quasi-r-connexity in theorem 393 can be replaced by either that of
connexity or quasi-connexity.

Theorem 394 S4.3 strongly characterizes the class of totally quasi-ordered and
connected relational world systems.

Proof. By theorem 393 and lemma 387.

Before concluding this section, we briefly consider an extension of Kr.5 that
characterizes the class of transitive and connected relational world systems.
This system is of some interest in examples where the accessibility relation is
interpreted as the earlier-than relation between moments of a local time. Note
that although the earlier-than relation of a local time is both transitive and
connected, it is not also reflexive because no moment of a local time is earlier
than itself. In this context we may read ‘�ϕ’ and ‘�ϕ’ as ‘it will be the case
that ϕ’ (or as ‘it was the case that ϕ’) and ‘it always will be the case that ϕ’
(or as ‘it always was the case that ϕ’), respectively. It is not to be expected
that asymmetry, also a natural structural property for this interpretation of
accessibility, should have a modal analogue since what is the case at one time
may very well also be the case at earlier or later times.

Definition 395 Kr.6 =df Kr.1 ∪ Kr.5.

Lemma 396 If Σ is a normal extension of Kr.6, then AccΣ is transitive and
quasi-r-connected.

Exercise 6.10.5 Prove the above lemma 396.
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Theorem 397 Kr.6 strongly characterizes the class of transitive and quasi-r-
connected relational world systems.

Proof. By the completeness theorems 321 of §6.4 for Kr.1 and 392 for Kr.5,
and lemma 314.

Note that the (total) reflexivity condition of lemma 387 is required only so
long as the parenthetical “strongly” is in force. If the latter is dropped, (total)
reflexivity is then no longer needed.

Lemma 398 Γ entails ϕ in every transitive and quasi-r-connected relational
world system iff Γ entails ϕ in every transitive and (quasi-) connected relational
world system.

Exercise 6.10.6 Prove lemma 398. (Hint: see the proof for lemma 387.)

Theorem 399 Kr.6 strongly characterizes the class of transitive and quasi-
connected relational world systems.

Proof. As already noted, Kr.6 = Kr.1 ∪ Kr.5. Therefore, by the completeness
theorems 321 for Kr.1, 392 for Kr.5, lemma 314 for Kr.1 ∪ Kr.5, and lemma
398 (for dropping ‘r’), Kr.6 strongly characterizes the class of transitive and
quasi-connected world systems.

Theorem 400 Kr.6 strongly characterizes the class of transitive and connected
relational world systems.

Proof. By theorem 399 and lemma 398.

The world system AS4.3, like AS4, is totally reflexive, and therefore, S4.3,
like S4, need not allow for isolated or terminal reference points. But, again,
we can consider systems S4.3∗, S4.3∗, and S4.3∗∗ that must allow for isolated
reference points.

Definition 401 S4.3∗ =df S4∗ ∪ Kr.4.

Definition 402 S4.3∗ =df S4∗ ∪ Kr.4.

Definition 403 S4.3∗∗ =df S4.3∗ ∪ S4.3∗.

Exercise 6.10.7 Show that S4.3∗ is equivalent to S4.3∗∗. (Hint: note that AS4.3∗

is r-reflexive, and therefore, by theorem 309, if �M∗ ϕ, then |=AS4.3∗ ϕ.)

Exercise 6.10.8 Show that S4.3∗ is equivalent to Kr.1∪Kr.4. (Hint: note that
AKr.1∪Kr.4 is r-reflexive.)

Exercise 6.10.9 Show that S4.3∗ strongly characterizes the class of indexically
closed, transitive, and quasi-r-connected relational world systems. (Hint: use
previous exercise, theorems 324 and 385 and lemma 314.)
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Exercise 6.10.10 Show that S4.3∗ is not equivalent to S4.3∗∗. (Hint: use pre-
vious exercise to show that �S4.3∗ �ϕ → (�ϕ → ϕ).)

Exercise 6.10.11 Show that S4.3∗ and S4.3∗∗ strongly characterize (1) the class
of quasi-ordered and (strongly) quasi-r-connected relational world systems, (2)
the class of quasi-ordered and (strongly) quasi-connected relational world sys-
tems, and (3) the class of quasi-ordered and (strongly) connected relational world
systems).

Exercise 6.10.12 Show (a) that S4.3∗ and S4.3∗∗ are equivalent to the modal
system M∗

∗ ∪Kr.6, but that (b) M∗∪Kr.6 is not equivalent to S4.3∗∗. (Hint: for
(b), show that M∗ ∪ Kr.6 strongly characterizes the class of d-reflexive, transi-
tive, and quasi-r-connected (but not strongly quasi-r-connected) world systems.
Construct a simple such world system in which, e.g., �(�Pn → Pn) is not
valid.)

Exercise 6.10.13 Show that if Σ is either Kr.4, Kr.5, Kr.6, S4.3∗, S4.3∗ or
S4.3∗∗, then for all ϕ, �Σ �ϕ. (Hint: note that the modal CN-matrix A4 of §3.3
satisfies Σ, but that �A4 �ϕ.)

Exercise 6.10.14 Show that Kr.4 is a proper normal extension of Kr.5. In
particular, show that �Kr.5 �(�ϕ → ϕ) and that Kr.4 is equivalent to M∗∪Kr.5.

Exercise 6.10.15 Show that Kr.3 (= Kr.1 ∪ Kr.2) is a proper normal exten-
sion of both Kr.4 and Kr.4 ∪ Kr.1.

Exercise 6.10.16 Show that if Σ is either Kr.4, S4.3∗, S4.3∗, or S4.3∗∗, then
for some ϕ, �Σ �ϕ and yet �Σ ϕ. (Hint: consider the formula �(�ϕ → ϕ).)

Exercise 6.10.17 Show that �Kr.4 ��ϕ → ��ϕ.

Exercise 6.10.18 Show that Kr.4, S4.3∗, S4.3∗, and S4.3∗∗ must allow for
isolated reference points.

Exercise 6.10.19 Show that if Σ is either Kr.5 or Kr.6, then �Σ �ϕ only if
�Σ ϕ, and that therefore neither Kr.5 nor Kr.6 need allow for isolated reference
points.

Exercise 6.10.20 Show that if Σ is either Kr.5 or Kr.6, then, for some ϕ,ψ
�Σ �ϕ ∨ �ψ and yet �Σ ϕ and �Σ ψ.

6.11 Connectable Accessibility

We now consider a type of connectedness that is weaker than the standard forms
of connexity considered in the preceding section. We first distinguish between
a relation being connectable in its range, or r-connectable, and its being r-
connectable for points in its range that have a point in common standing to
them in that relation.
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Definition 404 R is r-connectable iff R is a relation such that for all x, y ∈
FR there is a z such that xRz and yRz.

Definition 405 R is r-connectable in its range iff R is a relation such that
for all x, y, w, if wRx and wRy, then there is a z such that xRz and yRz.

An example of the difference in question here is the signal relation of special
relativity theory, which is r-connectable in its range, but not r-connectable
simpliciter. It is not true in special relativity theory, in other words, that for
any two space-time points x and y there is a space-time point z to which both
x and y can send a (causal, e.g., light) signal. But it is true that if a signal can
be sent to both x and y from a space-time point w; i.e., if x and y are in the
posterior cone of w, then there is a space-time point z in the overlap region of
the posterior cones of x and y; i.e., both x and y can send a signal to z. As
indicated in the following lemma, the validity of the modal thesis ��ϕ → ��ϕ
in a relational world system means that the accessibility relation of that system
is r-connectable in its range. Adding such a thesis to Kr results in the calculus
Kr.7, which strongly characterizes the class of relational world systems that are
r-connectable in their ranges.

Lemma 406 If Σ is a normal extension of Kr, and for all ϕ, �Σ ��ϕ → ��ϕ,
then AccΣ is r-connectable in its range.

Exercise 6.11.1 Prove the above lemma 406. (Hint: assume the hypothesis,
and that for K,K ′ ∈ MCΣ, there is a Γ ∈ MCΣ such that Γ AccΣ K and
Γ AccΣ K ′, and show that there is a K ′′ ∈ MCΣ such that K AccΣ K ′′ and
K ′ AccΣ K ′′. Let ∆ = {ϕ : �ϕ ∈ K ∪ K ′}, show that ∆ is Σ-consistent, and
then use Lindenbaum’s lemma.)

Definition 407 Kr.7 =df Kr ∪ {ψ : for some ϕ, ψ is a modal generalization
of ��ϕ → ��ϕ}.

Remark 4: We will say that a relational world system is itself r-connectable
in its range, r-connectable, etc., if its accessibility relation is r-connectable in
its range, r-connectable, etc.

Lemma 408 If ϕ ∈ AxKr.7, then ϕ is valid in every relational world system
that is r-connectable in its range.

Theorem 409 Kr.7 strongly characterizes the class of relational world systems
that are r-connectable in their ranges.

Exercise 6.11.2 Prove the above theorem 409. (Hint: use lemma 406 and the-
orem 272 to show that if Γ |=A ϕ, for every A that is r-connectable in its range,
then Γ �Kr.7 ϕ. For the converse direction, suppose ∆ is an n-place sequence
that is a derivation of ϕ from Γ, and that A is r-connectable in its range. Then
let A = {i ∈ ω : if i < n, then Γ |=A ∆i}, and show by strong induction that
ω ⊆ A.)
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The modal thesis ��ϕ → ��ϕ is the main thesis of the calculus S4.2,
i.e., the thesis that distinguishes S4.2 from S4 and S4.3. It is this thesis, in
particular, that when added to S4 results in S4.2, i.e., S4.2 = S4 ∪ Kr.7.
Accordingly, putting the completeness theorem for Kr.7 together with that for
S4 yields, by lemma 314, a completeness theorem for S4.2.

Theorem 410 S4.2 strongly characterizes the class of totally quasi-ordered re-
lational world systems that are r-connectable in their ranges.

Proof. Let A be the class of totally quasi-ordered world systems and B the class
of world systems that are r-connectable in their ranges. Then, by lemmas 406
and 326, AS4∪Kr.7 ∈ A ∩ B. Therefore, by the above completeness theorem for
Kr.7, the completeness theorem 327 for S4, and lemma 314, S4∪Kr.7 strongly
characterizes A∩B. But S4.2 = S4∪Kr.7, and hence S4.2 strongly characterizes
A ∩ B.

The validity of the modal thesis ��ϕ → ��ϕ in a world system means, we
have said, that the accessibility relation of that system is r-connectable in its
range. But an accessibility relation that is r-connectable simpliciter is then also
r-connectable in its range, and the validity of the modal thesis ��ϕ → ��ϕ
does not preclude an accessibility relation from being r-connectable simpliciter.
Indeed, as the following lemma indicates, validity in the one kind of world system
is equivalent to validity in the other—at least when the systems in question are
quasi-ordered, i.e., (totally) reflexive and transitive. In other words, the modal
thesis ��ϕ → ��ϕ does not allow us to distinguish an accessibility relation
that is r-connectable in its range from one that is r-connectable simpliciter.

Lemma 411 If Γ ∪ {ϕ} ⊆ FM , then Γ entails ϕ in every (totally) quasi-
ordered relational world system that is r-connectable in its range iff Γ entails
ϕ in every (totally) quasi-ordered r-connectable relational world system.

Proof. Because a relation is r-connectable only if it is r-connectable in its
range, then the left-to-right direction of the lemma follows immediately. Suppose
then that Γ entails ϕ in every (totally) quasi-ordered world system that is r-
connectable, and that A is a (totally) quasi-ordered world system that is r-
connectable in its range. To show Γ |=A ϕ, assume i is an index of A and that
for all ψ ∈ Γ, |=i

A
ψ, and show |=i

A
ϕ. By assumption and lemma 362, A[i] is

a subsystem of A and for all ψ ∈ Γ, |=i
A[i]

ψ; and, moreover, |=i
A

ϕ iff |=i
A[i]

ϕ.
It suffices then to show that |=i

A[i]
ϕ, which, by assumption, is true if A[i] is a

(totally) quasi-ordered r-connectable world system; and hence it suffices to show
that A[i] is (totally) quasi-ordered and r-connectable. We note first that A[i] is
(totally) quasi-ordered and r-connectable in its range because A is (totally)
quasi-ordered and r-connectable in its range, and A[i] is a subsystem of A. It
remains to show that <A[i] is r-connectable. Suppose, accordingly, that j, k are
in the field of <A[i] , and show there is an index w of A[i] such that j <A[i] w
and k <A[i] w. By definition of A[i], either i = j or i <A[i] j, and either i = k or
i <A[i] k. Then, by the reflexivity of <A[i] , i <A[i] j and i <A[i] k, and therefore,
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because A is r-connectable in its range, there is an index w of A[i] such that
j <A[i] w and k <A[i] w. It follows, accordingly, that A[i] is r-connectable, and
therefore that |=i

A[i]
ϕ, and hence, by lemma 362, |=i

A
ϕ.

Theorem 412 S4.2 strongly characterizes the class of totally quasi-ordered r-
connectable relational world systems.

Proof. By theorem 410 and lemma 411.

We can define notions of connectability in the domain of a relation that are
similar to those above for connectablity in the range of a relation. Where ac-
cessibility is the signal relation of either classical mechanics or special relativity
theory, then the space-time points that are d-connectable from a point x are in
the prior cone of x, whereas those that are r-connectable are in the posterior
cone of x. Of course, whereas in special relativity, the signal relation is only d-
connectable in its domain and r-connectable in its range, in classical mechanics
the signal relation is both r-connectable and d-connectable simpliciter. Never-
theless, as lemma 416 below indicates, taking the prior cones into consideration
when � is interpreted in terms of the signal relation (where the points accessi-
ble from a given point are in the latter’s posterior cone) involves no new modal
distinctions—unless, of course, a new modal operator were to be introduced
based on the converse of the signal relation—and hence we are able to replace
even r-connectability in theorem 410 above by connectability simpliciter.

Definition 413 R is connectable in its domain (d-connectable) iff R is
a relation such that for all x, y ∈ FR, there is a z such that zRx and zRy.

Definition 414 R is d-connectable in its domain iff R is a relation such
that for all x, y, w, if xRw and yRw, then there is a z such that zRx and zRy.

Definition 415 R is connectable iff R is r- and d-connectable.

Lemma 416 If Γ ∪ {ϕ} ⊆ FM , then Γ entails ϕ in every (totally) quasi-
ordered relational world system that is r-connectable in its range iff Γ entails ϕ
in every (totally) quasi-ordered connectable relational world system.

Exercise 6.11.3 Prove the above theorem. (Hint: see the proof of lemma 411
above, and note that the d-connectability of A[i] follows from the way that A[i]

is defined.)

Theorem 417 S4.2 strongly characterizes the class of totally quasi-ordered
connectable relational world systems.

Proof. By theorem 412 and lemma 416.

Finally, we define the calculi S4.2∗, S4.2∗, and S4.2∗∗ in the usual way. We
leave as exercises some of the results regarding these systems.

Definition 418 S4.2∗ =df S4∗ ∪ Kr.7.
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Definition 419 S4.2∗ =df S4∗ ∪ Kr.7.

Definition 420 S4.2∗∗ =df S4.2∗ ∪ S4.2∗.

Theorem 421 S4.2∗ strongly characterizes the class of d-reflexive, transitive
relational world systems that are r-connectable in their ranges.

Proof. By completeness theorems 330 for S4∗, 409 for Kr.7, and lemma 314.

Theorem 422 S4.2∗ strongly characterizes the class of r-reflexive, transitive
relational world systems that are r-connectable in their ranges.

Proof. By theorems 332 and 409 and lemma 314.

Theorem 423 S4.2∗∗ strongly characterizes the class of quasi-ordered relational
world systems that are r-connectable in their ranges.

Proof. By theorems 334 and 409 and lemma 314.

Exercise 6.11.4 Show that S4.2∗ is equivalent to S4.2∗∗. (Hint: show �S4.2∗

�(�ϕ → ϕ). Note that if a world system is d-reflexive and r-connectable in its
range, then it is r-reflexive as well.)

Exercise 6.11.5 Show that S4.2∗ is not equivalent to S4.2∗∗.

Exercise 6.11.6 Show that S4.2∗ and S4.2∗∗ strongly characterize both the class
of quasi-ordered r-connectable world systems and the class of quasi-ordered con-
nectable relational world systems. (Hint: use lemmas 411 and 416.)

Exercise 6.11.7 If Σ is either Kr.7 , S4.2∗, S4.2∗, or S4.2∗∗, show that (a)
the modal CN-matrix A4 satisfies Σ; (b) for all ϕ, �Σ �ϕ; (c) for some ϕ,
�Σ �ϕ and yet �Σ ϕ; and (d) that Σ must allow for isolated reference points.
(Hint: (b) follows from (a), and for (c) show that �Σ ��(ϕ → ϕ), and then
use (b). For (d), show that �(Pn ∧ ¬Pn) is Σ-consistent, and that therefore,
for some K ∈ MCΣ, �(Pn ∧ ¬Pn) ∈ K. Then show that K is isolated in AΣ.)
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Chapter 7

Quantified Modal Logic

Many of the philosophical arguments that have been given against modal logic
turn on issues involving the occurrence quantifiers and modal operators within
the scope of one another. A modal operator within the scope of a (nonvacu-
ous) quantifier, for example, represents a de re modality, and a de re modality,
according to one argument against quantified modal logic, commits us to essen-
tialism. Apparently, or so it is assumed by those who argue against quantified
modal logic in this way, essentialism is a position that is to be avoided at all
costs.

We do not make such an assumption here ourselves; that is, we do not assume
that essentialism is a position that is to be avoided at all costs. In this regard,
the connection between quantified modal logic and essentialism does not serve
as an argument against the former but rather indicates its importance as a way
to formulate one or another version of essentialism. One of the more important
applications of modal logic, in other words, is its use in the formulation of
essentialism. On the other hand, we also reject the claim that quantified modal
logic must be committed to essentialism. Indeed, we will later show that when
the philosophical framework of logical atomism is formulated as a quantified
modal logic, not only is there no commitment to essentialism but in fact the
modal thesis of anti-essentialism is actually validated, a result that was first
shown by Rudolf Carnap in 1946.

Possibilism in the sense of an ontological commitment to possibilia, i.e., pos-
sible objects that might not in fact exist, is also a position that is objected
to by some philosophers. A quantifier that occurs within the scope of a modal
operator and that can validly be commuted with that operator will commit us
to possibilia, it is argued, and, consequently, either we ought to reject quantified
modal logic altogether or we ought at least reject what, in effect, amounts to an
inference from a de dicto modality to a de re modality—i.e., from an occurrence
of a quantifier within the scope of a modal operator to an occurrence outside the
scope of that operator. Once again, the issue seems to turn on the significance
of allowing quantifiers to reach into modal contexts, an operation without which
there is little or no point to a quantified modal logic.

119
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As with essentialism, we do not assume here that possibilism is a false philo-
sophical position that is to be avoided at all costs. What is important about
quantified modal logic in this regard is that it enables us to formulate and char-
acterize possibilism as a philosophical position. In fact, instead of committing
us to possibilism, quantified modal logic allows us to formulate an actualist al-
ternative. Quantified modal logic will not commit us to possibilism, in other
words, unless we explicitly assume as laws of logic certain theses regarding the
interaction of quantifiers and modal operators.

None of the arguments about essentialism or possibilism against quantified
modal logic are true quite as they stand, and in the development of quantified
modal logic that we will give in this and subsequent chapters we will explain why
this is so. The claims themselves, it should be noted, depend upon the adoption
of an ontological position, and in particular one in which neither essentialism
nor possibilism is to be permitted. Such a position cannot be sustained, however,
except as part of a more comprehensive ontological framework. For it is only
relative to such a framework that we can properly say what is meant by necessity
and possibility, and how quantification, both into and within modal contexts, is
to be interpreted. It is only relative to an ontological, or semantico-philosophical,
framework that we can give a proper evaluation of the claims that have been
made against quantified modal logic. In some of the frameworks that we will
describe in this text, these claims cannot in fact be sustained.

7.1 Logical Syntax

We have so far assumed that our primitive logical constants consist of the nega-
tion sign, the (material) conditional sign, and the necessity sign. These signs, we
have seen, suffice for the development of modal sentential logic. For quantified
modal logic with identity, however, we need to introduce at least two further
logical constants, one to represent identity and the other to represent either uni-
versal quantification or existential quantification. For convenience, we shall take
the universal quantifier sign as primitive and define all uses of the existential
quantifier in terms of it and the negation sign.

We actually introduce two universal quantifier signs, one for quantification
over existing objects, and the other for quantification over possible objects as
well. We call the sign for quantification over existing objects the universal e-
quantifier sign, and the other, for quantification over possible objects, existent
or otherwise, we call simply the universal quantifier sign. The logic of these two
kinds of quantifiers differs depending upon the assumptions we make, or reject,
regarding the difference between the being of an object and its existence.

Assumption 6: q, u, and i are logical constants that are distinct from one
another and from the negation sign, the conditional sign, and the necessity
sign. They are described as follows:
(1) q = the universal quantifier,
(2) u = the universal e-quantifier,
(3) i = the identity sign.
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In addition to the quantifier signs, we also need a denumerably (or at least
potentially) infinite set of individual variables, which in this chapter we shall
refer to simply as variables. We observe that because our considerations are
strictly metalinguistic, we do not need to specify the linguistic form or sign
design of each individual variable. In this regard, it is convenient to assume
that each such variable is a 1-place sequence, the single constituent of which is
a symbol other than a logical constant. We also assume that the set of all of
the variables can be well-ordered, and hence that it makes sense to speak (by
means of such a well-ordering) of the first variable, the second variable, etc.

Assumption 7: V R is a denumerably infinite well-ordered set, the members
of which are called individual variables; and for each x ∈ V R, x = 〈α〉,
for some symbol α that is not a logical constant.

Although no variable is itself a logical constant—i.e., no variable has a logical
constant as its single constituent—neither is any variable a nonlogical constant.
The implicit purport of a variable is that its value is not fixed or constant but
may vary over some given domain of objects. There are nonlogical constants,
however, which we shall assume to be either individual constants (the formal
counterparts of proper names) or predicate constants. Together with the indi-
vidual variables, individual constants make up the (singular) terms of a formal
language. As with individual variables, it is convenient to assume that each
individual constant is a 1-place sequence whose only constituent is a symbol
other than a logical constant, and that no individual constant is an individual
variable.

Although we will refer to predicate constants in general, we note that each
predicate constant has a degree (sometimes called an arity, or an adicity) that
is necessarily associated with it and that determines the number of terms the
predicate constant takes to generate an atomic formula. As with variables and
individual constants, we assume that each predicate constant (of whatever de-
gree) is a 1-place sequence whose only constituent is a symbol other than a
logical constant. We also assume that no predicate constant is a variable or an
individual constant.

Convention: We will use ‘x’, ‘y’, and ‘z’, with or without numerical subscripts,
to refer (in the metalanguage) to individual variables. We will also use
‘a’ and ‘b’, with or without numerical subscripts, to refer (in the meta-
language) to terms in general, i.e., to individual constants and variables
collectively. We will also use ‘Fn’, ‘Gn’, ‘Hn’, with or without numerical
subscripts to refer (in the metalanguage) to n-place predicate constants.
We shall usually drop the superscript when a context makes clear the
degree of a predicate constant.

Assumption 8: Where ‘n’ ranges over the natural numbers, we assume that
the phrases ‘is an n-place predicate constant’ and ‘is an individual
constant’ are meaningful 1-place predicates of the metalanguage.



122 CHAPTER 7. QUANTIFIED MODAL LOGIC

Assumption 9: For each individual constant a, a /∈ V R (i.e., a is not a vari-
able) and, for some symbol ζ other than a logical constant, a = 〈ζ〉.

Assumption 10: For each n ∈ ω and each n-place predicate constant F, (a)
F = 〈π〉 for some symbol π other than a logical constant, but (b) F is not
a variable, i.e., F /∈ V R, and (c) F is also not an individual constant.

Definition 424 If ϕ and ψ are expressions, x ∈ V R, n ∈ ω, F is an n-place
predicate constant, and a0, ..., an−1 are either individual constants or variables,
then:
(1) (ϕ = ψ) =df 〈i〉�ϕ�ψ,

(2) ∀xϕ =df 〈q〉�x�ϕ,

(3) ∀exϕ =df 〈u〉�α�ϕ,

(4) ∃xϕ =df ¬∀x¬ϕ,

(5) ∃exϕ =df ¬∀ex¬ϕ,

(6) F (a0, ..., an−1) =df F�a�
0 ...�an−1.

7.2 First-Order Languages

A formal language, we have said in chapter 1, §1.2.3, is determined by three
factors: (1) a recursive set of symbols, (2) a recursive set of terms, and (3) a
recursive set of formulas, where the terms and formulas are expressions all the
constituents of which are drawn from the symbols of the language. In this chap-
ter we shall restrict our considerations to a certain class of formal languages
known as first-order languages. These languages all have the same logical con-
stants in common—which, at this stage, consist of the negation sign, the con-
ditional sign, the necessity sign, the identity sign, the universal quantifier, and
the universal e-quantifier—and all of the symbols that make up the individual
variables (i.e., the symbols that are the single constituents of the variables). The
only other symbols of a first-order language will be those that make up either
a predicate or an individual constant.1 In this regard, the set of symbols of a
first-order language will differ from that of any other first-order language only
with respect to the symbols that make up the predicate and individual constants
of those languages.

This fact is important because all of the terms and formulas of first-order
languages are built up in the same way in logical syntax, which means that
a first-order language can be fully individuated in terms of the predicate and
individual constants that occur in its terms and formulas. We refer to the sen-
tence forms of such a language, L, as the formulas of L, and we use ‘FML’ to
refer to the set of formulas of L. We use ‘ATL’ to refer to the atomic formulas

1Functors, i.e., expressions for functions from objects to objects, are sometimes also in-
cluded as part of a first-order language. We do not include them here, partly for convenience,
and partly because functions can be identified with many-one relations, which are represented
by predicate constants.



7.2. FIRST-ORDER LANGUAGES 123

of L, i.e., the identity formulas of L and the formulas that result from affixing
an n-place predicate constant of L to n terms of L. We also distinguish the
standard formulas of L, namely, those in which the e-quantifier does not occur,
from the E-formulas of L, which are those in which the standard quantifier does
not occur. We use ‘SFML’ to refer to the set of standard formulas of L and
‘FMe

L’ to refer the set of E-formulas of L.

Definition 425 If L is a recursive set of predicate and individual constants,
then:
(1) TML =df {a : either a ∈ V R or a is an individual constant in L},
(2) ATL =df {(a = b) : a, b ∈ TML} ∪ {F (a0, ..., an−1) : n ∈ ω, F is an n-place
predicate constant in L , and a ∈ TMn

L},
(3) FML =df

⋂{K : ATL ⊆ K and for all ϕ,ψ ∈ K, all x ∈ V R, ¬ϕ, (ϕ → ψ),
�ϕ, ∀exϕ, ∀xϕ ∈ K},
(4) SFML =df {ϕ ∈ FML : 〈u〉 /∈ OC(ϕ)}, and
(5) FMe

L =df {ϕ ∈ FML : 〈q〉 /∈ OC(ϕ)}.

Lemma 426 If L is a recursive set of predicate and individual constants and
S = {ζ : ζ is a symbol and 〈ζ〉 ∈ OC(ϕ), for some ϕ ∈ FML}, then
〈S, TML, FML〉 is a formal language.

Exercise 7.2.1 Prove lemma 426.

Definition 427 L is a first-order language iff L is a formal language and
for some recursive set L′ of predicate and individual constants,
(1) TM(L) = TML′ , and
(2) FM(L) = FML′ .

Note: The empty set, on this definition, also determines a first-order language—
namely, the first-order language every atomic formula of which is an identity
formula both terms of which are variables, i.e., the first-order language built up,
by means of variables and the logical constants, only on the basis of the identity
sign.

Lemma 428 (Principle of Individuation for first-order languages): If
L1 and L2 are first-order languages, then L1 = L2 iff (1) TM(L1) = TM(L2),
and (2) FM(L1) = FM(L2).

Convention: We shall hereafter represent first-order languages by the sets of
predicate and individual constants that determine those languages.

Theorem 429 (Induction Principle for the formulas of first-order
languages): If L is a first-order language such that
(1) ATL ⊆ K, and
(2) for all ϕ, ψ ∈ K, ¬ϕ, (ϕ → ψ), �ϕ ∈ K, and
(3) for all ϕ ∈ K and all x ∈ V R, ∀xϕ, ∀exϕ ∈ K,

then FML ⊆ K.
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Proof. By definition of FML.

Note: When referring to formulas and terms in the remainder of this chapter,
we will always mean only the formulas and terms of a first-order language—just
as when referring to variables in this chapter we mean only individual variables.

Definition 430:
(1) ϕ is a formula iff for some language L, ϕ ∈ FML.
(2) ϕ is an E-formula iff for some language L, ϕ ∈ FMe

L.
(3) ζ is a term iff for some language L, ζ ∈ TML.

Theorem 431 (Induction Principle for E-Formulas): If L is a first-order
language such that

(1) ATL ⊆ K, and

(2) for all ϕ, ψ ∈ K, ¬ϕ, (ϕ → ψ), �ϕ ∈ K, and

(3) for all ϕ ∈ K and all x ∈ V R, ∀exϕ ∈ K,

then every E-formula of L is in K, i.e., then FMe
L ⊆ K.

By a modal-free formula, we mean a formula in which the necessity sign does
not occur. Corresponding to theorem 429, we also have an induction principle
for the modal-free formulas of a language.

Definition 432 If L is a first-order language, then ϕ is a modal-free for-
mula of L iff ϕ ∈ FML and 〈l〉 /∈ OC(ϕ).

Theorem 433 (Induction Principle for modal-free formulas): If L is a
first-order language such that
(1) ATL ⊆ K, and

(2) for all ϕ, ψ ∈ K, ¬ϕ, (ϕ → ψ) ∈ K, and

(3) for all ϕ ∈ K and all x ∈ V R, ∀xϕ, ∀exϕ ∈ K,

then every modal-free formula of L is in K.

7.3 Proper Substitution

An occurrence of a variable is said to be bound in a formula when it occurs as
part of a subformula of that formula that begins with a quantifier affixed to that
variable; otherwise, such an occurrence of a variable is said to be free. Given our
abstract approach to syntax, we can replace all talk of occurrences of a variable
in an expression by talk of the variable itself (or rather of its single constituent)
occupying certain places in that expression. Expressions, it will be remembered,
are sequences of symbols, and sequences are functions having natural numbers
as their domains. That is why we can refer to the length of an expression χ as
the domain of χ, i.e., D(χ).
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Definition 434 If x is a variable, ϕ is a formula of length m, and n < m,
then:
(1) x occurs bound at the nth place in ϕ (in symbols, OB(x, n, ϕ)) iff 〈ϕn〉 =
x, and there are expressions χ, θ and a formula ψ such that ϕ is either χ�∀xψ�θ
or χ�∀exψ�θ, and D(χ) < n < D(χ) + D(∀xψ); and
(2) x occurs free at the nth place in ϕ (in symbols, OF (x, n, ϕ)) iff 〈ϕn〉 = x
and it is not the case that OB(x, n, ϕ).

Note: The bound variables of a formula are the variables that occur bound at
some place in the formula, and the free variables of that formula are those that
occur free at some place in the formula. The same variable, it should be noted,
could be both a bound and a free variable of a formula, even though no single
occurrence of that variable can be both bound and free.

Definition 435 If ϕ is a formula, then:
(1) BD(ϕ) =df {x : x ∈ V R and for some n < D(ϕ), OB(x, n, ϕ)}, and
(2) FV (ϕ) =df {x : x ∈ V R and for some n < D(ϕ), OF (x, n, ϕ)}.

By the sentences of a first-order language L we mean the formulas of that
language in which no variable has a free occurrence, i.e., those ϕ ∈ FML such
that FV (ϕ) = 0. We take StL to be the set of sentences of L .

Definition 436 If L is a first-order language, then StL =df {ϕ ∈ FML :
FV (ϕ) = 0}.

A variety of notions of central importance to quantifier logic, such as uni-
versal instantiation and existential generalization, depend upon the proper sub-
stitution in a formula of a term for a variable. We need therefore to define what
is meant by the proper substitution of a term b for a variable x in a formula
ϕ, which, in symbols, we will represent by ϕ(b/x). We do so by first defining
the substitution, proper or otherwise, of b for x in ϕ, which we represent by
ϕ[b/x]. The seven clauses of the definition that follows constitute a recursive
definition based upon the way the formulas of any first-order language are built
up by means of the logical constants from the atomic formulas of that language.
(That is, the definition is based upon the inductive definition of the formulas
of an arbitrary first-order language L.) We note that if b cannot be properly
substituted for x in ϕ, then, by definition, ϕ(b/x) is just ϕ itself. (It should also
be noted that the identity sign that occurs in the definiens of clause (1) as an
expression of the metalanguage should not be confused with the identity sign
that occurs in the definiendum of that clause as part of an identity formula of
a first-order object-language.)

Definition 437 (Substitution of b for all free occurrences of a variable
x):

(1) (a1 = a2)[b/x] =df (a′
1 = a′

2), where a′
1 =

{
b if a1 = x
a1 if a1 
= x

, and
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a′
2 =

{
b if a2 = x
a2 if a2 
= x

;

(2) F (a0, ..., an−1)[b/x] =df F (a′
0, ..., a

′
n−1), where for i < n, a′

i ={
b if ai = x
ai if ai 
= x

;

(3) ¬ϕ[b/x] =df ¬(ϕ[b/x]);
(4) �ϕ[b/x] =df �(ϕ[b/x]);
(5) (ϕ → ψ)[b/x] =df (ϕ[b/x] → ψ[b/x]);

(6) ∀yϕ[b/x] =df

{
∀yϕ if x = y
∀y(ϕ[b/x]) if x 
= y

;

(7) ∀eyϕ[b/x] =df

{
∀eyϕ if x = y
∀ey(ϕ[b/x]) if x 
= y

.

The following lemma is an obvious consequence of this last definition.

Lemma 438 (a) If x /∈ FV (ϕ), then ϕ[b/x] is just ϕ itself; and (b) if x ∈
FV (ϕ) and x /∈ OC(b), then x /∈ FV (ϕ[b/x]).

Definition 439 (Proper substitution of a term b for a variable x): If ϕ
is a formula, b is a term, and x ∈ V R, then:
(1) b can be properly substituted for x in ϕ iff either (i) b is an individual
constant or (ii) b ∈ V R and there is no formula ψ such that ∀bψ or ∀ebψ occurs
in ϕ and x ∈ FV (∀bψ); and

(2) ϕ(b/x) =df

{
ϕ[b/x] if b can be properly substituted for x in ϕ
ϕ otherwise .

In some cases it is not the proper substitution of all free occurrences of a
variable that is of interest, but only the proper substitution for one or more
such free occurrences. In addition, the substitution could be for an individual
constant as well as for a variable.

Definition 440 (Replacing one free occurrence of a term): If ϕ, ψ are
formulas and a, b are terms, then ψ is obtained from ϕ by replacing one free
occurrence of a by a free occurrence of b (in symbols, Free-Rep(ϕ,ψ, a, b))
iff for some m, n ∈ ω,
(1) m = the length of ϕ,
(2) n < m, ϕ = 〈ϕ0, ..., ϕn−1〉�a�〈ϕn+1, ..., ϕm−1〉 and
ψ = 〈ϕ0, ..., ϕn−1〉�b�〈ϕn+1, ..., ϕm−1〉, and
(3) either (i) both a and b are individual constants, (ii) a, b ∈ V R, OF (a, n, ϕ)
and OF (b, n, ψ), (iii) a ∈ V R, b is an individual constant and OF (a, n, ϕ), or
(iv) a is an individual constant, b ∈ V R and OF (b, n, ψ).

Definition 441 (Interchanging one or more free occurrences of a term
by a term): If ϕ, ψ are formulas and a, b are terms, then ψ is obtained from
ϕ by replacing one or more free occurrences of a by free occurrences
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of b (in symbols, Free-Int(ϕ,ψ, a, b)) iff for some n ≥ 1 and some n-place
sequence χ of formulas (1) ϕ = χ0, (2) ψ = χn−1, and (3) for all i < n,
Free-Rep(χi, χi+1, a, b).

Lemma 442 If Free-Int(ϕ,ψ, a, b), Free-Int(ϕ′, ψ′, a, b), and x /∈ OC(a) ∪
OC(b), then:
(a) Free-Int(¬ϕ,¬ψ, a, b),
(b) Free-Int(�ϕ,�ψ, a, b),
(c) Free-Int((ϕ → ϕ′), (ψ → ψ′), a, b),
(d) Free-Int(∀xϕ,∀xψ, a, b), and
(e) Free-Int(∀exϕ,∀exψ, a, b).

Exercise 7.3.1 Prove the above lemma 442 by induction on FML, for any
first-order language L.

Lemma 443 If a can be properly substituted for x in ϕ and x /∈ OC(a), then
Free-Int(ϕ,ϕ(a/x), x, a) and x /∈ FV (ϕ(a/x)).

Exercise 7.3.2 Prove the above lemma 443. (Hint: note that where L is the set
of predicate and individual constants in OC(ϕ) ∪ OC(a) and K = {ψ ∈ FML :
if a can be properly substituted for x in ψ, then Free-Int(ψ,ψ(a/x), x, a) and
x /∈ FV (ψ(a/x))}, it suffices to show by induction on the formulas of L that
FML ⊆ K.)

We include one final definition in this section regarding the notion of rewrit-
ing all of the bound occurrences of a variable in a formula to bound occurrences
of a variable new to that formula. We then close this section with two lemmas
regarding this notion.

Definition 444 ψ is a rewrite of ϕ with respect to x iff the length of ψ
is the length of ϕ, i.e., D(ψ) = D(ϕ), and for some y ∈ V R, y /∈ OC(ϕ) and
for all n < D(ϕ), if OB(x, n, ϕ), then y = 〈ψn〉, but if it is not the case that
OB(x, n, ϕ), then ψn = ϕn.

Definition 445 ψ is a rewrite of ϕ iff ψ is a rewrite of ϕ with respect to
some variable x.

Lemma 446 For each formula ϕ and variable x, there is a formula ψ that is
a rewrite of ϕ with respect to x.

Lemma 447 If ϕ,ψ are formulas and x ∈ V R, then:
(1) if χ is a rewrite of ¬ϕ with respect to x, then there is a formula ϕ′ such that
χ = ¬ϕ′, and ϕ′ is a rewrite of ϕ with respect to x;
(2) if χ is a rewrite of �ϕ with respect to x, then there is a formula ϕ′ such
that χ = �ϕ′, and ϕ′ is a rewrite of ϕ with respect to x;
(3) if χ is a rewrite of (ϕ → ψ) with respect to x, then there are formulas ϕ′,
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ψ′ such that χ = (ϕ′ → ψ′), and ϕ′, ψ′ are rewrites, respectively, of ϕ and ψ
with respect to x;
(4) if χ is a rewrite of ∀yϕ (or of ∀eyϕ) with respect to x and x 
= y, then there
is a formula ϕ′ such that χ = ∀yϕ′ (or χ = ∀eyϕ′), and ϕ′ is a rewrite of ϕ
with respect to x; and
(5) if χ is a rewrite of ∀xϕ (or of ∀exϕ) with respect to x, then for some y ∈ V R,
y /∈ OC(∀xϕ) and χ = ∀yϕ(y/x) (or χ = ∀eyϕ(y/x)).

Exercise 7.3.3 Prove the above lemma 447.

7.4 Quantified Modal CN-Calculi

All of the quantified modal logics that we shall consider in this text will based
on classical sentential logic, which means that a quantified modal calculus will
be based on the classical (conditional-negation) CN-logic described in chapter 1.
The formulas and terms of such a logic are assumed to be either the formulas
and terms of some first-order language or, as in the case of a logic that is free
of existential presuppositions for singular terms, the E-formulas and terms of
such a language. If we ignore restriction to E-formulas, the general notion of a
first-order quantified modal CN-calculus is defined as follows.

Definition 448 Σ is a quantified (first-order) modal CN-calculus iff (1)
Σ is a formal system satisfying all of the assumptions for logistic systems listed
in chapter 1, and (2) for some language L, FM(Σ) = FML, and TM(Σ) =
TML.

There are two general types of quantified modal logic that we will consider
in this chapter, depending on whether formulas containing both the universal
quantifier and the universal e-quantifier are involved or only formulas containing
the latter. If both types of quantifiers are involved, then the type of quantified
modal logic in question is said to be possibilist, and, as applied to all of the
formulas of a language, the framework is said to be based on a logic of actual
and possible objects. The axioms of such a possibilist logic are referred to below
as Q-axioms. If the logic is restricted to E-formulas, then the quantified modal
logic is said to be actualist, and, as restricted to E-formulas, it said to based
on just the logic of actual objects. The axioms of the logic of actual objects
are referred to below as Qe-axioms. The logic of actualism is understood to be
“free of existential presuppositions regarding singular terms” in the sense that
not every singular term a is assumed to denote an actual or existing object as a
value of the bound variables—which means that ∃ex(a = x), where x /∈ OC(a),
is not a valid thesis of the logic. In the logic of actual and possible objects, on
the other hand, it is assumed that every singular term a denotes, if not an actual
object, at least a possible object—a thesis that we represent as the validity of
∃x(a = x), where x /∈ OC(a). Thus, in possibilism, even if ∃ex(a = x) is not
true—i.e., even if a does not denote an actual or existing object—nevertheless,
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because of the validity of ∃x(a = x), a still denotes “something.”2 That is, in
possibilism every object is “something,”and in that sense has being, even it does
not exist, i.e., even if it is not actual.3 For this reason, we sometimes speak of ∀
and ∃ as possibilist quantifiers, and ∀e and ∃e as actualist quantifiers.

Another thesis that distinguishes possibilism from actualism is the Carnap-
Barcan formula, i.e., the thesis that the universal (possibilist) quantifier com-
mutes with the necessity sign as follows: (∀x�ϕ → �∀xϕ). Rudolf Carnap was
the first to argue for the logical truth of this principle, which he validated in
terms of the substitution interpretation of quantifiers in his state-description
semantics.4 Ruth Barcan assumed the formula as an axiom, but she did not
argue for, or defend, that assumption, nor did she give any semantics for her
system.5

We include the Carnap-Barcan formula in our definition below of a Q-axiom,
accordingly, because it is assumed to be a basic law of the universal (possibilist)
quantifier. Depending on what modal axioms are assumed in addition to the
Q-axioms, however, the Carnap-Barcan formula is redundant in certain modal
logics, i.e., it is provable on the basis of the additional axioms and those modal
logics; and hence, it need not be taken as a primitive Q-axiom in those systems.
(See exercise 7.5.5 in §7.5.) The converse direction of the Carnap-Barcan formula
will also hold, incidentally, in all of the systems that we shall consider here. We
note, however, that the Carnap-Barcan formula is not valid for the universal e-
quantifier, and hence it is not valid in actualism, which is based on the actualist
e-quantifier.

Finally, it should be emphasized that quantification is understood here to
refer to objects, and not, e.g., to individual concepts. We take it as a fundamental
logical truth that an object cannot but be the object that it is, nor can one object
be (identical to) another. This means that if an object x can be (identical to)
an object y, then it could not be otherwise, i.e., then x must be (identical to)
y. It is for this reason that we take �(x = y) → �(x = y) as both a Q-
axiom and a Qe-axiom—or, rather, as a tautological consequence of such an
axiom (namely, Q-axiom (11) below). The other component of the axiom in
question stipulates that if an object x is (identical with) an object y, then x
must be (identical with) y, i.e., x = y → �(x = y).6 We include such an obvious

2This condition might be dropped in a logic with definite descriptions as singular terms,
or in a second-order logic with nominalized predicates as abstract singular terms—because,
in such a logic we might have a definite description or an abstract singular term that, as a
matter of logic alone, must fail to denote. In that case, even the logic of “possibilia” must be
“free of existential presuppositions.”

3It is natural to think of actual objects as existing “concrete” objects, i.e., objects that
exist in nature and, as such, stand in causal relations. The logic of actual objects can be
used as a logic of “existence” in other contexts as well, however, which is why we speak of
e-quantifiers and E-formulas, etc.

The logics of actualism and possibilism developed here were first described in Cocchiarella
1966, which was slightly expanded in Cocchiarella 1991.

4See Carnap 1946, p. 37, and Carnap 1947, Section 40.
5Barcan 1946.
6Although, strictly, identity formulas require a pair of parentheses, as in (a = b), we will,

for convenience, often drop the parentheses.
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law here because even though the modal thesis that what is can be will be
assumed in almost all of the modal logics considered here, we do want to allow
for the special case of the system Kr where such a modal thesis is not valid.
Once the modal thesis (ϕ → �ϕ)—or really the equivalent thesis, (�ϕ → ϕ)—is
assumed, then the logical truth that identical objects must be identical becomes
redundant.

Definition 449 θ is a Q-axiom iff there are formulas ϕ, ψ, χ, terms a, b,
and variables x, y such that θ is either
(1) ϕ → (ψ → ϕ),
(2) [ϕ → (ψ → χ)] → [(ϕ → ψ) → (ϕ → χ)],
(3) (¬ϕ → ¬ψ) → (ψ → ϕ),
(4) ∀x(ϕ → ψ) → (∀xϕ → ∀xψ),
(5) ∀ex(ϕ → ψ) → (∀exϕ → ∀exψ),
(6) (ϕ → ∀xϕ), if x /∈ FV (ϕ),
(7) (∀xϕ → ∀exϕ),
(8) (∀x�ϕ → �∀xϕ),
(9) ∃x(a = x), if x /∈ OC(a),
(10) ∀ex∃ey(x = y),
(11) (x = y) ∨ �(x = y) → �(x = y), or
(12) (a = b) → (ϕ → ψ), if ϕ, ψ are atomic formulas and Rep(ϕ,ψ, b, a).

Note: In referring to a Q-axiom of a specific form, we will use the numbering
system in the definition of a Q-axiom to identify the specific form in question.
We will also refer to Q-axioms (4) and (5) as ∀-distribution and ∀e-distribution,
Q-axiom (6) as ∀-vacuous, and Q-axiom (8) as the Carnap-Barcan formula. Note
also that an identity formula, (a = a) is not a Q-axiom, although, as can be seen
in clause (3) of the following definition, it is a Qe-axiom. This is because (a = a)
is provable in possibilism, but it is not provable in actualism unless it is taken
as an axiom. We assume (a = a) is valid in actualism as well as in possibilism,
in other words, even if a is an individual constant that fails to denote an actual,
existing object.

Definition 450 θ is a Qe-axiom iff θ is an E-formula and either
(1) θ is a Q-axiom (i.e., given that θ is an E-formula, a Q-axiom of the form
(1)–(3), (5), or (10)–(12)), or
(2) for some formula ϕ and variable x /∈ FV (ϕ), θ is (ϕ → ∀exϕ), or
(3) for some term a, θ is (a = a).

Convention: By a Q/Qe-axiom we mean a formula that is either a Q-axiom
or a Qe-axiom.

In regard to the inference rules of the quantified modal logics that we will
consider here, we assume, in addition to the rule of modus ponens (MP ), that
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the rules of universal generalization (UG) for both the possibilist and the actu-
alist quantifiers are valid. These rules are schematically indicated as follows for
all quantified modal CN-calculi:

If �Σ ϕ, then �Σ ∀xϕ, (UG)

If �Σ ϕ, then �Σ ∀exϕ. (UGe)

We note that in the logic of possible and actual objects, the rule (UGe)
is redundant by the Q-axioms of the form (7). (That is why we do not use
in the definition of a Q-proof given below.) We also assume that the rule of
necessitation, (RN), schematically indicated as follows,

If �Σ ϕ, then �Σ �ϕ, (RN)

is valid in all of the quantified modal CN-calculi considered here.
An additional rule regarding an application of (UGe) within the scope of a

modal operator is needed for actualist systems. This rule, (�UGe), is derivable
in possibilist systems (in which a rather minimal assumption about � holds),
and therefore need not be assumed to be a primitive rule of those systems. For
actualist systems, the rule is schematically indicated as follows for arbitrary
quantified modal CN-calculi:

If �Σ ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...),
and x /∈ FV (ψ0 ∧ ... ∧ ψn−1), then
�Σ ψ0 → �(ψ1 → ... → �(ψn−1 → �∀exϕ)...).

(�UGe)

Definition 451 If Σ is a quantified modal CN-calculus, then:
(1) (MP ) (the rule of modus ponens) is valid in Σ iff for all ϕ, ψ ∈
FM(Σ), if �Σ (ϕ → ψ) and �Σ ϕ, then �Σ ψ;
(2) (UG) (the rule of universal generalization) is valid in Σ iff for all
ϕ ∈ FM(Σ), and all x ∈ V R, if �Σ ϕ, then �Σ ∀xϕ;
(3) (UGe) (the rule of e-universal generalization) is valid in Σ iff for all
ϕ ∈ FM(Σ), and all x ∈ V R, if �Σ ϕ, then �Σ ∀exϕ;
(4) (RN) (the rule of necessitation) is valid in Σ iff for all ϕ ∈ FM(Σ),
if �Σ ϕ, then �Σ �ϕ;
(5) (�UGe) is valid in Σ iff for all n ∈ ω, all ϕ, ψ0, ..., ψn−1 ∈ FM(Σ), and
all x ∈ V R, if x /∈ FV (ψ0 ∧ ...∧ ψn−1) and �Σ ψ0 → �(ψ1 → ... → �(ψn−1 →
�ϕ)...), then �Σ ψ0 → �(ψ1 → ... → �(ψn−1 → �∀exϕ)...).

Note: When n = 0, we take ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...) to be
just �ϕ. We also assume clauses (1) and (3)–(5) to apply to the more restricted
actualist quantified modal logics that have yet to be defined.

There is a problem in taking these rules as inference rules in the sense of
chapter 1. In particular, we do not want to apply any of these rules other than
(MP ) to arbitrary sets of formulas as premises—except when those premises
are to be taken as axioms of a quantified modal logic. Thus, for example, we
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do not want to apply (UG), (UGe), or (MG) to a set containing F (x) to obtain
∀xF (x), ∀exF (x), or �F (x), respectively, if we do not consider F (x) to be an
axiom of the quantified modal logic in question, especially if we do not consider
F (x) as valid. We avoid this problem by defining first the notions of a Q-proof
and Qe-proof that are based upon the Q-axioms and Qe-axioms, respectively,
together with some set of (E-)formulas the members of which are considered
to be the special, differentiating axioms—e.g., the specific modal theses—of
a particular quantified modal logic. The above rules, in other words, are built
directly into our definition of a Q-proof and Qe-proof, which allows us to restrict
their application in the way intended.

Definition 452 If L is a first-order language and A∪{ϕ} ⊆ FML , then ∆ is
a QA-proof of ϕ in L iff for some n ∈ ω, ∆ is an n-place sequence of formulas
of L such that:
(1) ϕ = ∆n−1, and
(2) for all i < n, either
(a) ∆i is a Q-axiom,
(b) ∆i ∈ A,

(c) there are j, k < i such that ∆k = (∆j → ∆i),
(d) for some j < i and x ∈ V R, ∆i = ∀x∆j, or
(e) for some j < i, ∆i = �∆j .

Lemma 453 If L is a language, A ∪ {ϕ, χ, ψ0, ..., ψn−1} ⊆ FML , then:
(a) if ϕ ∈ A or ϕ is a Q-axiom, then there is a QA-proof of ϕ in L;
(b) if there are a QA-proof of ϕ in L and a QA-proof of (ϕ → χ) in L , then
there is also a QA-proof of χ in L;
(c) if there is a QA-proof of ϕ in L , then so is there of ∀xϕ, for all x ∈ V R;
(d) if there is a QA-proof of ϕ in L , then so is there of �ϕ; and
(e) there is a QA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...)) in L iff there is
a QA-proof of (ψ0 ∧ ... ∧ ψn−1 → ϕ) in L.

Exercise 7.4.1 Prove lemma 453.

Definition 454 If L is a first-order language and A ∪ {ϕ} ⊆ FMe
L, then ∆

is a QeA-proof of ϕ in L iff for some n ∈ ω, ∆ is an n-place sequence of
E-formulas of L such that:
(1) ϕ = ∆n−1, and
(2) for all i < n, either
(a) ∆i is a Qe-axiom,
(b) ∆i ∈ A,

(c) there are j, k < i such that ∆k = (∆j → ∆i),
(d) for some j < i and x ∈ V R, ∆i = ∀ex∆j ,
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(e) for some j < i, ∆i = �∆j, or

(f) for some j < i, x ∈ V R, k ∈ ω, and ψ0, ..., ψk−1,ξ ∈ FMe
L,

(i) ∆j = (ψ0 → �(ψ1 → ... → �(ψk−1 → �ξ)...)),

(ii) x /∈ FV (ψ0 ∧ ...∧ ψk−1), and

(iii) ∆i = (ψ0 → �(ψ1 → ... → �(ψk−1 → �∀exξ)...)).

Lemma 455 If L is a language, A ∪ {ϕ, χ, ψ0, ..., ψn−1} ⊆ FMe
L, then:

(a) if ϕ ∈ A or ϕ is a Qe-axiom, then there is a QeA-proof of ϕ in L;

(b) if there are a QeA-proof of ϕ in L and a QeA-proof of (ϕ → χ) in L , then
there is also a QeA-proof of χ in L;

(c) if there is a QeA-proof of ϕ in L, then so is there one of ∀exϕ, for all
x ∈ V R;

(d) if there is a QeA-proof of ϕ in L, then so is there one of �ϕ;

(e) if there is a QeA-proof of (ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...)) in L,
and x /∈ FV (ψ0 ∧ ... ∧ ψn−1), then there is also a QeA-proof of (ψ0 → �(ψ1 →
... → �(ψn−1 → �∀exϕ)...)) in L; and

(f) there is a QeA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...)) in L iff there is
a QeA-proof of (ψ0 ∧ ... ∧ ψn−1 → ϕ) in L.

Convention: By a QA/QeA-proof we mean a sequence that is either a QA-
proof or a QeA-proof, and by a QA/QeA-provable formula we mean a
formula that is either QA-provable or QeA-provable.

Derivations from arbitrary sets of premises are now defined in terms of QA-
proofs and QeA-proofs, respectively, where A is some assumed special axiom set
for a quantified modal logic, and in particular a set of modal theses such as Kr,
M, S4, etc. That is, a formula will be derivable from a set of (E-)formulas Γ of
such a system if for some ψ0, ..., ψn−1 ∈ Γ, there is a QA-proof (or QeA-proof) of
the conditional (ψ0 ∧ ...∧ψn−1 → ϕ). In this way, as indicated in chapter 1, the
deduction theorem is built into each of the quantified modal logics considered
here. We show this by first proving (lemmas 457 and 459 below) that derivability
from the empty set—that is, theoremhood in a quantified modal logic—coincides
with QA/QeA-provability.

Definition 456 If L is a language and A is a recursive set of formulas of L,
then

ΣA,L =df 〈L, A, {f}〉, where

f is that function from the set of subsets of FML such that for all Γ ⊆ FML,
f(Γ) = {ϕ ∈ FML : for some n ∈ ω, ψ0, ..., ψn−1 ∈ Γ and some ∆, ∆ is a
QA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...)) in L}.

Lemma 457 If L is a language, A is a recursive set of formulas of L, and
ϕ ∈ FML, then �ΣA,L ϕ if and only if there is a QA-proof of ϕ in L.
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Proof. Assume the hypothesis, and suppose �ΣA,L ϕ. Then, as defined in §1.2.3
(of chapter 1), there is a derivation ∆ of ϕ within ΣA,L from the empty set.
Where n = the length of ∆, ϕ = ∆n−1, and therefore it suffices to show by
induction that for all i ∈ ω, if i < n, then there is a QA-proof of ∆i in L.
There are only two cases to consider. In case (1), ∆i ∈ A, i.e., ∆i is an axiom
of ΣA,L. In that case, the 1-place sequence 〈∆i〉 is a QA-proof of ∆i in L. In
case (2), ∆i is an f -consequence of {∆j : j < i}, where f is the single inference
rule of ΣA,L. That is, for some k ∈ ω, ψ0, ..., ψk−1 ∈ {∆j : j < i}, and some
∆′, ∆′ is a QA-proof of (ψ0 → (ψ1 → ... → (ψk−1 → ∆i)...)). But then, by the
inductive hypothesis, there is a QA-proof of ψj , for j < k, and therefore, by k
many applications of lemma 453 (part b), there is a QA-proof of ∆i.

For the converse direction, suppose there is a QA-proof of ϕ in L. By de-
finition, where m = 0, (ψ0 → (ψ1 → ... → (ψm−1 → ϕ)...)) is just ϕ itself.
Therefore, by assumption, for some m ∈ ω, some ψ0, ..., ψm−1 belonging to the
empty set, there is a QA-proof of (ψ0 → (ψ1 → ... → (ψm−1 → ϕ)...)) in L,
from which it follows by definition that the 1-place sequence 〈ϕ〉 is a derivation
of ϕ within ΣA,L from the empty set.

Definition 458 If L is a language and A is a recursive set of E-formulas of
L, then
Σe

A,L =df 〈L, A, {f}〉, where
f is that function from the set of subsets of FMe

L such that for all Γ ⊆ FMe
L,

f(Γ) = {ϕ ∈ FMe
L : for some n ∈ ω, ψ0, ..., ψn−1 ∈ Γ and some ∆, ∆ is a

QeA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...) in L}.

Lemma 459 If L is a language, A is a recursive set of E-formulas of L , and
ϕ ∈ FMe

L , then �Σe
A,L

ϕ if and only if there is a QeA-proof of ϕ in L.

Exercise 7.4.2 Prove lemma 459.

The quantified modal calculi representing possibilism will be those based
upon the logic of actual and possible objects as specified by systems of the
form ΣA,L. We will take QML to be the class of such quantified modal calculi.
Similarly, the quantified modal calculi representing actualism will be those based
upon the free logic of actual objects as specified by systems of the form Σe

A,L.
We take QeML to be the class of such restricted quantified modal calculi.

Definition 460 Σ is a quantified modal CN-calculus based upon the
logic of actual and possible objects (in symbols, Σ ∈ QML) iff there are a
language L and a recursive set A of formulas of L such that Σ = ΣA,L.

Definition 461 Σ is a free quantified modal CN-calculus (in symbols,
Σ ∈ QeML) iff there are a language L and a recursive set A of E-formulas of
L such that Σ = Σe

A,L.

Note: We shall also refer to the members of QML as possibilist modal logics
and the members of QeML as actualist modal logics.
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The following lemmas are obvious consequences of lemmas 453–459 and the
definitions of possibilist and actualist modal logics given above. (Note that
(UGe) is derivable from (UG) and Q-axiom (7).)

Lemma 462 If Σ ∈ QML, then the rules (MP ), (UG), (UGe), and (RN) are
valid in Σ, and for all ϕ, if ϕ is a Q-axiom, then �Σ ϕ.

Lemma 463 If Σ ∈ QeML, then the rules (MP ), (UGe), (RN), and (�UGe)
are valid in Σ, and for all ϕ, if ϕ is a Qe-axiom, then �Σ ϕ.

Exercise 7.4.3 Prove lemmas 462 and 463. (Hint: We do part of this exercise
in showing that if Σ belongs to QML or QeML, then (MP ) is valid in Σ.
Assume, accordingly, that �Σ (ϕ → ψ) and �Σ ϕ and show �Σ ψ. Then, by
definition of �Σ in §1.3 (of chapter 1), there are derivations of ϕ and (ϕ → ψ),
respectively, within Σ from the empty set, and therefore, by lemmas 457 and
459, there are QA/QeA-proofs of ϕ and (ϕ → ψ), respectively. But then, by
lemmas 453(b) and 455(b) above, there is a Q/QeA-proof of ψ, and therefore,
by lemmas 457 and 459, �Σ ψ.)

The following lemma indicates that the quantified modal calculi for both
possibilism and actualism are logistic systems in the sense of chapter 1.

Lemma 464 If Σ belongs to QML or QeML and Γ ∪ {ϕ} ⊆ FM(Σ), then
(a) Γ �Σ ϕ iff for some n ∈ ω, ψ0, ..., ψn−1 ∈ Γ, �Σ (ψ0 ∧ ... ∧ ψn−1 → ϕ);
(b) if Γ tautologously implies ϕ, then Γ �Σ ϕ; and
(c) if ϕ is a tautologous in FM(Σ), then �Σ ϕ.

Proof. Assume the hypothesis and note that if part (a) holds, then, by the
Q/Qe-axioms (1)–(3), Σ satisfies the assumptions for a logistic system given in
chapter 1, from which parts (b) and (c) of lemma 464 follow by the completeness
theorem for CN-logic (§1.1.3 of chapter 1). It suffices, accordingly, to show part
(a). Suppose first that Γ �Σ ϕ. Then, by definition, there is a derivation ∆
of ϕ from Γ within Σ. Where k = the length of ∆, let ψ0, ..., ψm−1 be all the
distinct members of Γ ∩ {∆i : i < k}, and let B = {i ∈ ω : if i < k, then
�Σ (ψ0 ∧ ... ∧ ψm−1 → ∆i)}. Now, because ϕ = ∆k−1, it suffices to show by
strong induction that ω ⊆ B. Assume i < k, and note that if ∆i is either an
axiom of Σ or in Γ, then, by the lemma 19 of §1.2.3 (of chapter 1), Γ �Σ ∆i

and therefore by Q/Qe-axiom (1) and lemma 457, �Σ (ψ0 ∧ ... ∧ ψm−1 → ∆i),
from which it follows that i ∈ B. Suppose then that ∆i is an f -consequence
of {∆j : j < i}, where f is the single inference rule of Σ. By definition of
f , there are p ∈ ω, χ0, ..., χp−1 ∈ {∆j : j < i} and a QA/QeA-proof ∆′ of
(χ0 → (χ1 → ... → (χp−1 → ∆i)...)) in L , where A = Ax(Σ); and therefore,
by lemmas 457 and 459, �Σ (χ0 → (χ1 → ... → (χp−1 → ∆i)...)). But, by the
inductive hypothesis, �Σ (ψ0 ∧ ... ∧ ψm−1 → χj), for each j < p, and therefore,
by repeated application of (MP ) (lemmas 462–63), �Σ (ψ0 ∧ ... ∧ ψm−1 → ∆i),
from which it follows that i ∈ B, and therefore, by strong induction, that ω ⊆ B.
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For the converse direction, assume that for some n ∈ ω, ψ0, ..., ψn−1 ∈ Γ,
�Σ (ψ0 ∧ ...∧ψn−1 → ϕ), and show that �Σ ϕ. By lemmas 457, 459, 453(f), and
455(e), each ψi can be exported so that we also have �Σ (ψ0 → (ψ1 → ... →
(ψn−1 → ϕ)...)). But, by the lemma 19 of §1.2.3 (of chapter 1), Γ �Σ ψi, for
each i < n, and therefore, by repeated application of (MP ) (lemmas 462–63),
Γ �Σ ϕ.

That identity is reflexive, symmetric, and transitive in both actualism and
possibilism is indicated in the following lemma.

Lemma 465 If Σ belongs to QML or QeML, and a, b, c ∈ TM(Σ), then:

(1) �Σ (a = a),

(2) �Σ (a = b) → (b = a),

(3) �Σ (a = b) → [(b = c) → (a = c)].

Proof. For (1), note that if Σ ∈ QeML, then (a = a) is a Qe-axiom, in which
case (1) holds by lemma 462(b). If Σ ∈ QML, then:

�Σ (a = x) → [(a = x) → (a = a)], by Q-axiom (12),
�Σ (a 
= a) → (a 
= x), by tautologous transformations,
�Σ ∀x(a 
= a) → ∀x(a 
= x), by (UG), Q-axiom (4), and (MP ).

Note, however, that where x is the first variable not in OC(a),
�Σ (a 
= a) → ∀x(a 
= a), by Q-axiom (6), and therefore
�Σ (a 
= a) → ∀x(a 
= x), by tautologous transformations;
�Σ ∃x(a = x) → (a = a), by tautologous transformations,
�Σ (a = a), by Q-axiom (8) and (MP ).

For (2), note that
�Σ (a = b) → [(b = b) → (b = a)], by Q-axiom (12),
�Σ (b = b) → [(a = b) → (b = a)], by tautologous transformations,
�Σ (a = b) → (b = a), by part (1) and (MP ).

For (3), note that
�Σ (a = b) → [(b = c) → (a = c)], by Q-axiom (12).

Leibniz’s law, as an unrestricted law about the interchange of terms a and b
for which (a = b) is true, is provable at this stage only for modal-free formulas—
at least in the case where either a or b is an individual constant and not a
variable. The extension of the law to modal contexts as well depends upon the
addition of certain modal theses regarding � and whether or not individual
constants are “rigid designators”—in particular, on whether or not (a = b) →
�(a = b) is assumed to be a valid thesis. In the case of variables, we do have
(x = y) → �(x = y) as a valid thesis (by Q/Qe-axiom (11)), and if (�ϕ → �ψ)
is provable whenever (ϕ → ψ) is provable, then, in this special case, Leibniz’s
law is derivable. We shall return to this special case in the next section of this
chapter, where, because the systems considered there are all extensions of the
quantified versions of Kr, we do have (�ϕ → �ψ) as provable whenever (ϕ → ψ)
is provable.
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Lemma 466 (Leibniz’s Law for modal-free formulas): If Σ ∈ QML or
QeML, a, b ∈ TM(Σ), ϕ,ψ ∈ FM(Σ), ϕ is modal free, and Free-Int(ϕ,ψ, a, b),
i.e., ψ is obtained from ϕ by replacing one or more free occurrences of a by free
occurrences of b, then �Σ (a = b) → (ϕ ↔ ψ).

Proof. Assume Σ ∈ QML ∪ QeML, and let K = {ϕ ∈ FM(Σ) : for all
a, b ∈ TM(Σ), all ψ ∈ FM(Σ), if Free-Rep(ϕ,ψ, a, b), then �Σ (a = b) → (ϕ ↔
ψ)}. We observe that although Free-Rep(ϕ,ψ, a, b), unlike Free-Int(ϕ,ψ, a, b),
involves replacing only one free occurrence of a in ϕ by a free occurrence of b,
nevertheless, if we can show that every modal-free formula of Σ is in K, then,
by repeated application of that result we will have shown lemma 466. It suffices,
accordingly, to show by the induction principle for modal-free formulas (theorem
433 of §7.2) that every modal-free formula of Σ is in K. We do this in (1)-(4)
below.

(1) Assume ϕ ∈ ATL, where L is the language of Σ, and that Free-
Rep(ϕ,ψ, a, b), for arbitrary a, b ∈ TM(Σ). Then,

�Σ (a = b) → (ϕ → ψ), by Q/Qe-axiom (12),
�Σ (b = a) → (ψ → ϕ), by Q/Qe-axiom (12),
�Σ (a = b) → (ϕ ↔ ψ), by lemma 465 (part 2), lemma 464(c), and tautol-

ogous transformations.
(2) Assume ϕ ∈ K and show that ¬ϕ ∈ K. If Free-Rep(¬ϕ,ψ, a, b), for a, b ∈

TM(Σ), then, for some ϕ′ ∈ FM(Σ), ψ is ¬ϕ′, where Free-Rep(ϕ,ϕ′, a, b). But
then, by the inductive hypothesis, �Σ (a = b) → (ϕ ↔ ϕ′), from which it follows
by tautologous transformations that �Σ (a = b) → (¬ϕ ↔ ¬ϕ′), and hence that
¬ϕ ∈ K.

(3) Assume ϕ, χ ∈ K and show that (ϕ → χ) ∈ K. If Free-Rep((ϕ →
χ), ψ, a, b), for a, b ∈ TM(Σ), then for some ϕ′, χ′ ∈ FM(Σ), ψ is (ϕ′ → χ′),
and Free-Rep(ϕ,ϕ′, a, b) and Free-Rep(χ, χ′, a, b). But then, by the inductive
hypothesis, �Σ (a = b) → (ϕ ↔ ϕ′) and �Σ (a = b) → (χ ↔ χ′), and therefore,
by tautologous transformations, �Σ (a = b) → ([ϕ → χ] ↔ [ϕ′ ↔ χ′]), from
which it follows that (ϕ → χ) ∈ K.

(4) Assume ϕ ∈ K, x ∈ V R and show that ∀xϕ,∀exϕ ∈ K. If Free-
Rep(∀xϕ, ψ, a, b) or Free-Rep(∀exϕ, ψ, a, b), for a, b ∈ TM(Σ), then for some
ϕ′ ∈ FM(Σ), ψ is ∀xϕ′, and Free-Rep(ϕ,ϕ′, a, b). Therefore, by the inductive
hypothesis, �Σ (a = b) → (ϕ ↔ ϕ′), from which by (UG), (UGe), Q/Qe-
axioms (4) and (5), and tautologous transformations, �Σ ∀x(a = b) → (∀xϕ ↔
∀xϕ′) and �Σ ∀ex(a = b) → (∀exϕ ↔ ∀exϕ′). But by definition of Free-
Rep(∀xϕ, ψ, a, b) and Free-Rep(∀exϕ, ψ, a, b), x /∈ FV (a = b), and therefore,
by Q-axiom (6) or its Qe-axiom counterpart, and tautologous transformations,
�Σ (a = b) → (∀xϕ ↔ ∀xϕ′) and �Σ (a = b) → (∀exϕ ↔ ∀exϕ′), from which
follows that ∀xϕ, ∀exϕ ∈ K.

The issue of whether or not Leibniz’s law applies to modal contexts is log-
ically connected to the question of whether or not universal instantiation—or,
dually, existential generalization—applies to quantifiers that reach into modal
contexts. As can be seen in the proofs of the following lemmas, the fact that
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Leibniz’s law applies to all modal-free formulas shows that universal instanti-
ation does too—at least relative to the difference between possibilism and ac-
tualism. Here in the laws of instantiation for possibilist and actualist universal
quantifiers we find one of the most important differences between possibilism
and actualism. (The same difference occurs in the related equivalent laws of
existential generalization for possibilist and actualist quantifiers.)

Lemma 467 (Universal instantiation in possibilism of quantifiers in
modal-free formulas): If Σ ∈ QML, ϕ is a modal-free formula of Σ, a ∈
TM(Σ), x /∈ OC(a), and a can be properly substituted for x in ϕ, then:
(a) �Σ ∀xϕ → ϕ(a/x), and
(b) �Σ ∃ex(a = x) → [∀exϕ → ϕ(a/x)].

Proof. Assume the hypothesis and note that by lemma 443 of §7.3 Free-
Int(ϕ,ϕ(a/x), x, a) and x /∈ FV (ϕ(a/x)). Then, by lemma 466, �Σ (a = x) →
[ϕ ↔ ϕ(a/x)], and therefore by tautologous transformations, (UG), (UGe), and
Q-axioms (4) and (5) (∀/∀e-distribution), �Σ ∀x¬ϕ(a/x) → [∀xϕ → ∀x(a 
= x)],
and �Σ ∀ex¬ϕ(a/x) → [∀exϕ → ∀ex(a 
= x)]. But x /∈ FV (¬ϕ(a/x)), and
therefore, by Q-axioms (6) and (7), �Σ ¬ϕ(a/x) → [∀xϕ → ∀x(a 
= x)],
�Σ ¬ϕ(a/x) → [∀exϕ → ∀ex(a 
= x)], from which it follows by tautologous
transformations that �Σ ∃x(a = x) → [∀xϕ → ϕ(a/x)], �Σ ∃ex(a = x) →
[∀exϕ → ϕ(a/x)]. But, by Q-axiom (9), �Σ ∃x(a = x), and therefore, by (MP ),
�Σ ∀xϕ → ϕ(a/x).

Lemma 468 (Universal instantiation in actualism of quantifiers in
modal-free formulas): If Σ ∈ QeML, ϕ is a modal-free formula of Σ, a ∈
TM(Σ), x /∈ OC(a), and a can be properly substituted for x in ϕ, then �Σ

∃ex(a = x) → [∀exϕ → ϕ(a/x)].

Proof. Similar to the proof for lemma 467.

The following lemma shows that the actualist rule (�UGe) is valid in every
possibilist system in which (�ϕ → �ψ) is provable whenever (ϕ → ψ) is prov-
able, for all formulas of the system.

Lemma 469 If Σ ∈ QML, and for all ϕ,ψ ∈ FM(Σ), �Σ (ϕ → ψ) only if
�Σ (�ϕ → �ψ), then (�UGe) is valid in Σ.

Proof. Assume the hypothesis. To show that (�UGe) is valid in Σ, we first
show by induction on ω that if x /∈ FV (ψ0 ∧ ... ∧ ψn−1), then

�Σ ∀x [ψn−1 → �(ψn−2 → ... → �(ψ0 → �ϕ)...)] →
[ψn−1 → �(ψn−2 → ... → �(ψ0 → �∀xϕ)...)] .

For n = 0, this result is �Σ (∀x�ϕ → �∀xϕ), which is just the Q-axiom (8).
Assume the lemma hold for n and show that it then holds for n + 1. Suppose,
accordingly, that x /∈ FV (ψ0 ∧ ... ∧ ψ(n+1)−1). Then x /∈ FV (ψ0 ∧ ... ∧ ψn−1),
and therefore, by the inductive hypothesis,
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�Σ ∀x [ψn−1 → �(ψn−2 → ... → �(ψ0 → �ϕ)...)]

→ [ψn−1 → �(ψn−2 → ... → �(ψ0 → �∀xϕ)...)] ,

and hence by the hypothesis of the lemma,

�Σ �∀x [ψn−1 → �(ψn−2 → ... → �(ψ0 → �ϕ)...)] →
� [ψn−1 → �(ψn−2 → ... → �(ψ0 → �∀xϕ)...)].

Now, by (UG), ∀-distribution, ∀-vacuous (because, by assumption, x /∈
FV (ψ(n+1)−1)), the Carnap-Barcan formula, and tautologous transformations,

�Σ ∀x
[
ψ(n+1)−1 → �(ψn−1 → ... → �(ψ0 → �ϕ)...)

]
→[

ψ(n+1)−1 → �∀x(ψn−1 → ... → �(ψ0 → �ϕ)...)
]
,

and therefore by the above inductive hypothesis and tautologous transforma-
tions,

�Σ ∀x
[
ψ(n+1)−1 → �(ψn−1 → ... → �(ψ0 → �ϕ)...)

]
→[

ψ(n+1)−1 → �(ψn−1 → ... → �(ψ0 → �∀xϕ)...)
]

which concludes the inductive argument on ω, and which latter formula we will
call thesis (A). Now by a similar inductive argument on ω (using Q-axiom (7)
as well), it is easily seen that if x /∈ FV (ψ0 ∧ ... ∧ ψn−1), then

�Σ [ψn−1 → �(ψn−2 → ... → �(ψ0 → �∀xϕ)...)] →
[ψn−1 → �(ψn−2 → ... → �(ψ0 → �∀exϕ)...)] ,

which we will call thesis (B).
Finally, to show that (�UGe) is valid in Σ, assume x /∈ FV (ψ0 ∧ ... ∧

ψn−1) and that �Σ [ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...)]. Then, by (UG),
a permutation on the indices of ψ0, ..., ψn−1, and the thesis (A) above,

�Σ [ψ0 → �(ψ1 → ... → �(ψn−1 → �∀xϕ)...)] .

Similarly, by the thesis (B) above and (MP ),

�Σ [ψ0 → �(ψ1 → ... → �(ψn−1 → �∀exϕ)...)].

As noted in theorem 50 of §2.2 (of chapter 2), the rule (IE) of interchange
is valid in a sentential modal CN-calculus Σ if, and only if, �Σ (�ϕ ↔ �ψ)
whenever �Σ (ϕ ↔ ψ), for ϕ, ψ ∈ FM(Σ). Essentially the same proof of that
theorem shows that it can be extended to quantified modal logic, both possibilist
and actualist.
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Theorem 470 If Σ belongs to QML or QeML, then the rule (IE) of inter-
change of equivalents is valid in Σ iff for all ϕ,ψ ∈ FM(Σ), if �Σ (ϕ ↔ ψ),
then �Σ (�ϕ ↔ �ψ).

Exercise 7.4.4 Prove theorem 470.

Because quantifiers are understood to refer to objects (and not, e.g., to
individual concepts), we have assumed as a basic law of quantifier logic—i.e.,
as a Q/Qe-axiom—that an object cannot but be the object that it is—i.e.,
�(x = y) → �(x = y). A related thesis is that objects that can be different
must be different—i.e., �(x 
= y) → �(x 
= y). This thesis, as the following
lemma indicates, is provable in every possibilist or actualist quantified modal
logic in which the rule (IE) is valid. Because we will be concerned here almost
exclusively with such logics, we have not assumed this thesis as a basic law, but
take it to be a derived law based on (IE).

Lemma 471 If Σ is in QML or QeML, and the rule (IE) is valid in Σ, then
�Σ �(x 
= y) → �(x 
= y).

Exercise 7.4.5 Prove lemma 471.

We conclude this section by noting that every possibilist modal logic in which
(�ϕ → �ψ) is provable whenever (ϕ → ψ) is provable has an actualist modal
logic as a proper subsystem.

Definition 472 If L is a language, A ⊆ FML , then Ae =df {ϕ ∈ A : ϕ ∈
FMe

L}.

Theorem 473 If L is a language, A is a recursive set of formulas of L , Σ =
ΣA,L, Σ′ = Σe

Ae,L, and for all ϕ,ψ ∈ FML, �Σ (ϕ → ψ) only if �Σ (�ϕ →
�ψ), then:
(a) Σ ∈ QML and Σ′ ∈ QeML,

(b) for all ϕ ∈ FMe
L , if �Σ′ ϕ , then �Σ ϕ, and

(c) Σ′ is a proper subsystem of Σ.

Exercise 7.4.6 Prove theorem 473. (Hint: note that part (a) is an immediate
consequence of the definitions of Ae, ΣA,L, and Σe

AeL, and, because FMe
L ⊆

FML, part (c) is a consequence of (b). It suffices then to show (b). E.g., where
∆ is a derivation of ϕ in Σ′ and B = {n ∈ ω : if n < D(∆), then �Σ ∆n}, show
by strong induction that ω ⊆ B.)

7.5 Quantified Extensions of Kr

We turn now to some particular types of quantified modal logics correspond-
ing to the more important sentential modal logics described in chapter 2. We
speak of “types” of quantified modal logics here because, strictly speaking, each
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quantified modal calculus is but one member of a (proper) class of quantified
modal calculi, where the calculi in such a class differ only in what each takes
as its (primitive) predicate and individual constants—i.e., they differ only in
the language (the predicate and individual constants) in terms of which their
terms and formulas are defined and otherwise contain the same quantified modal
logic. Relative to such a language, we define the different possibilist and actualist
axiom sets as follows:

Definition 474 If L is a language, then:
(1) KrL =df {χ ∈ FML : χ is [�(ψ → ϕ) → (�ϕ → �ψ)], for some ϕ, ψ};
(2) Kre

L =df KrL ∩ FMe
L;

(3) ML =df KrL ∪ {χ ∈ FML : χ is (�ϕ → ϕ), for some ϕ};
(4) Me

L =df ML ∩ FMe
L;

(5) BrL =df KrL ∪ {χ ∈ FML : χ is (ϕ → ��ϕ), for some ϕ};
(6) Bre

L =df BrL ∩ FMe
L;

(7) S4L =df ML ∪ {χ ∈ FML : χ is (�ϕ → ��ϕ), for some ϕ};
(8) S4e

L =df S4L ∩ FMe
L;

(9) S4.2L =df S4L ∪ {χ ∈ FML : χ is (��ϕ → ��ϕ), for some ϕ};
(10) S4.2e

L =df S4.2L ∩ FMe
L;

(11) S4.3L =df S4L ∪ {χ ∈ FML : χ is (�ϕ ∧ �ψ → �[(ϕ ∧ �ψ) ∨ (ψ ∧ �ϕ)]),
for some ϕ, ψ};
(12) S4.3e

L =df S4.3L ∩ FMe
L;

(13) S5L =df ML ∪ {χ ∈ FML : χ is (�ϕ → ��ϕ), for some ϕ}; and
(14) S5e

L =df S5L ∩ FMe
L.

The different types or (proper) classes of quantified modal calculi are now
defined as follows.

Definition 475:
(1) QKr=df {ΣA,L : L is a language and A = KrL};
(2) QeKr=df {Σe

A,L : L is a language and A = Kre
L};

(3) QM=df {ΣA,L : L is a language and A = ML};
(4) QeM=df {Σe

A,L : L is a language and A = Me
L};

(5) QBr=df {ΣA,L : L is a language and A = BrL};
(6) QeBr=df {Σe

A,L : L is a language and A = Bre
L};

(7) QS4=df {ΣA,L : L is a language and A = S4L};
(8) QeS4=df {Σe

A,L : L is a language and A = S4e
L};

(9) QS4.2=df {ΣA,L : L is a language and A = S4.2L};
(10) QeS4.2=df {Σe

A,L : L is a language and A = S4.2e
L};

(11) QS4.3=df {ΣA,L : L is a language and A = S4.3L};
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(12) QeS4.3=df {Σe
A,L : L is a language and A = S4.3e

L};
(13) QS5=df {ΣA,L : L is a language and A = S5L}; and
(14) QeS5=df {Σe

A,L : L is a language and A = S5e
L}.

We observe that by definition all of the possibilist-quantified modal CN-
calculi specified above are possibilist quantified modal logics as defined in defin-
ition 460 of the previous section, §7.4, and, by definition 461, all of the actualist-
quantifier modal CN-calculi specified above are actualist quantified modal log-
ics. Accordingly, by lemma 464 of §7.4, all of the quantified modal logics defined
above are logistic systems in the sense of chapter 1. In addition, by theorem
473, each of the actualist systems is a proper subsystem of the corresponding
possibilist system.

Lemma 476:
(a) QKr, QBr, QS4, QS4.2, QS4.3, QS5 ⊆ QML;
(b) QeKr, QeBr, QeS4, QeS4.2, QeS4.3, QeS5 ⊆ QeML; and
(c) QeKr, QeBr, QeS4, QeS4.2, QeS4.3, QeS5 are proper subsystems, respec-
tively, of QKr, QBr, QS4, QS4.2, QS4.3, QS5.

For convenience we shall refer to the S4–S5 quantified modal logics as S-
quantified modal logics, defined as follows:

Definition 477:
(a) S-QML =df QS4 ∪ QS4.2 ∪ QS4.3 ∪ QS5;
(b) S-QeML =df QeS4 ∪ QeS4.2 ∪ QeS4.3 ∪ QeS5.

Lemma 478:
(a) If Σ ∈ QKr ∪ QBr ∪ S-QML, then Σ is a logistic system in the sense of
chapter 1 (i.e., the deduction theorem holds for Σ and Σ is closed under tau-
tologous transformations) and the rules (MP ), (UG), (UGe), (RN), (�UGe),
and (IE) are all valid in Σ; and
(b) if Σ ∈ QeKr ∪QeBr ∪ S-QeML, then Σ is a logistic system in the sense of
chapter 1 and the rules (MP ), (UGe), (RN), (�UGe), and (IE) are all valid
in Σ.

Proof. For part (a), note that the validity in Σ of all of the rules except
for (�UGe) and (IE) is an immediate consequence of lemma 476 above and
lemma 462 of §7.4. For the rules (�UGe) and (IE), note that because Σ
is (by definition) an extension of QKr, then, by the modal axiom of QKr,
�Σ �(ϕ → ψ) → (�ϕ → �ψ). Therefore, if �Σ (ϕ → ψ), then, by (RN)
and (MP ), �Σ (�ϕ → �ψ), from which it follows by lemma 469 of §7.4 that
(�UGe) is valid in Σ. Note also that if �Σ (ϕ → ψ) and �Σ (ψ → ϕ), then
�Σ (�ϕ → �ψ) and �Σ (�ψ → �ϕ), and therefore, by (MP ) and tautologous
transformations, if �Σ (ϕ ↔ ψ), then �Σ (�ϕ ↔ �ψ). Accordingly, by theorem
470 of §7.4, the rule (IE) is valid in Σ. The proof for part (b) is similar.
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In order to take advantage of the theorems already proved in the sentential
modal calculi corresponding to each of the above quantified modal logics, we
define the notion of an instance of a formula of sentential modal logic, where
the instance is a formula of a first-order language. We do this in terms of the
following recursively defined notion of a translation of modal CN-formulas into
formulas of quantified modal logic.

Definition 479 If L is a language and g is a function from ω into FML , then:
(1) g-trs(Pn) =df g(n), for each sentence letter Pn, where n ∈ ω,

(2) g-trs(¬ϕ) =df ¬(g-trs(ϕ)),
(3) g-trs(ϕ → ψ) =df (g-trs(ϕ) → g-trs(ψ)),
(4) g-trs(�ϕ) =df �(g-trs(ϕ)).

Definition 480 If L is a language, ϕ ∈ FML , and ψ is a modal CN-formula,
then:
(a) ϕ is an instance of ψ in L iff there is a function g from ω into FML
such that ϕ = g-trs(ψ); and
(b) ϕ is an E-instance of ψ in L iff ϕ is an instance of ψ in L and ϕ ∈ FMe

L.

Note: We will refer occasionally simply to instances of (sentential) modal CN-
formulas, by which we mean instances in some language of some modal CN-
calculus.

Theorem 481 If ΣK is a modal CN-calculus, where K is a recursive (axiom)
set of modal CN-formulas, Σ′ is in QML or QeML, and all instances of the
members of K that are in FM(Σ′) are theorems of Σ′, then for all ϕ ∈ FM(Σ′),
and all ψ ∈ FM(ΣK), if ϕ is an instance of ψ and �ΣK

ψ, then �Σ′ ϕ.

Exercise 7.5.1 Prove theorem 481. (Hint: assume the hypothesis and that ϕ =
g-trs(ψ), for some function g from ω into FM(Σ′). Where ∆ is a derivation
of ψ in ΣK and B = {i ∈ ω : if i < D∆, then �Σ′ g-trs(∆i)}, show by strong
induction that ω ⊆ B.)

The following theorem follows from theorem 481 and the fact that (MP ) and
(MG) are valid in every possibilist or actualist quantified modal CN-calculus.

Theorem 482 If Σ ∈ QML∪QeML, ϕ ∈ FM(Σ), ψ is a modal CN-formula,
and ϕ is an instance of ψ, then:
(a) if �Kr ψ and Σ is an extension of a member of QKr or of QeKr, then
�Σ ϕ;
(b) if �Br ψ and Σ is an extension of a member of QBr or of QeBr, then �Σ ϕ;
(c) if �S4 ψ and Σ is an extension of a member of QS4 or of QeS4, then �Σ ϕ;
(d) if �S4.2 ψ and Σ is an extension of a member of QS4.2 or of QeS4.2, then
�Σ ϕ;
(e) if �S4.3 ψ and Σ is an extension of a member of QS4.3 or of QeS4.3, then
�Σ ϕ; and
(f) if �S5 ψ and Σ is an extension of a member of QS5 or of QeS5, then �Σ ϕ.
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Convention: In referring to the theorems of a quantified modal CN-calculus
that are instances of a theorem of a sentential modal CN-calculus, we will
hereafter refer simply to the theorem of the sentential modal CN-calculus
in question (as described in chapter 2).

We turn now to a qualified version of Leibniz’s Law that is provable in all of
the extensions of Q/QeKr, i.e., in the systems now being considered, and which
is unqualified in the case of variables. The qualification in effect amounts to
the thesis that identity is necessary even in the case of individual constants, i.e.,
that (a = b) → �(a = b) is valid in general, and not just for variables. Of course,
when a, b ∈ V R, then the antecedent condition that �Σ (a = b) → �(a = b)
can be dropped because it is already assumed in the axioms. An unqualified law
of universal instantiation of variables is then derivable on the basis of Leibniz’s
Law, and, moreover, if the necessity of identity is a thesis, then an unqualified
law of universal instantiation for terms in general is provable as well. We turn
first to Leibniz’s Law for terms whose identity is necessary.

Lemma 483 (Leibniz’s Law with necessary identity): If Σ ∈ QML ∪
QeML, Σ is an extension of QKr or QeKr, ϕ,ψ ∈ FM(Σ), a, b ∈ TM(Σ),
Free-Int(ϕ,ψ, a, b), and �Σ (a = b) → �(a = b), then �Σ (a = b) → (ϕ ↔ ψ).

Proof. Assume the hypothesis and let K = {ϕ ∈ FM(Σ) : for all ψ ∈ FM(Σ), if
Free-Rep(ϕ,ψ, a, b), then �Σ (a = b) → (ϕ ↔ ψ)}, and show that FM(Σ) ⊆ K.
We can repeat, but will avoid doing so here, the proof given for lemma 466
of §7.4, which shows that every atomic formula of Σ is in K and that K is
closed under negations, conditionals, and the quantifiers. The only case not
considered in that proof is for modal formulas. Assume, then, that ϕ ∈ K
and show that �ϕ ∈ K. Now, if Free-Rep(ϕ,ψ, a, b), then, for some ϕ′, ψ is
�ϕ′, where Free-Rep(ϕ,ϕ′, a, b), and therefore, by the inductive hypothesis,
�Σ (a = b) → (ϕ ↔ ϕ′). Therefore, by (RN), the �-distribution axiom of Kr,
(MP ), and tautologous transformations, �Σ �(a = b) → (�ϕ ↔ �ϕ′). But, by
assumption (which, in the case of variables, amounts to Q/Qe-axiom (11)), �Σ

(a = b) → �(x = y), and therefore, by (MP ) and tautologous transformations,
�Σ (a = b) → (�ϕ ↔ �ϕ′), from which it follows that �ϕ ∈ K.

Lemma 484 (Unrestricted Universal Instantiation for Variables and
for terms in general if the necessity of identity is a thesis):
If Σ ∈ QML ∪ QeML, ϕ ∈ FM(Σ), then:
(1) if x, y are distinct variables, and y can be properly substituted for x in ϕ,
then:
(a) �Σ ∀xϕ → ϕ(y/x) if Σ is an extension of a member of QKr; and
(b) if Σ is an extension of a member of QeKr, then
(i) �Σ ∃ex(y = x) → [∀exϕ → ϕ(y/x)]; and
(ii) �Σ ∀ey[∀exϕ → ϕ(y/x)]; and, moreover,
(2) if a, b ∈ TM(Σ), �Σ (a = b) → �(a = b), x /∈ OC(a), and a can be properly
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substituted for x in ϕ, then:

(c) �Σ ∀xϕ → ϕ(a/x) if Σ is an extension of a member of QKr,

(d) �Σ ∃ex(a = x) → [∀exϕ → ϕ(a/x)] if Σ is an extension of a member of
QeKr, and

(e) �Σ (a 
= b) → �(a 
= b) if Σ is an extension of a member of QM .

Proof. Except for (d) and part (ii) of (b), the proof of lemma 484 is the same as
that for lemma 467 of §7.4, except for using lemma 483 above instead of lemma
466 of §7.4. Part (ii) of (b) follows from part (i) of (b) by (UGe), ∀e-distribution,
and the fact that ∀ey∃ex(y = x) is a Qe-axiom. Part (2e) follows from (2a) and
lemma 471.

Lemma 485 (Law of Rewrite of Bound Variables): If Σ ∈ QML∪QeML,
ϕ ∈ FM(Σ), x, y are distinct variables, y can be properly substituted for x in ϕ,
and y /∈ FV (ϕ), then:

(a) if Σ is an extension of QKr, then �Σ ∀xϕ ↔ ∀yϕ(y/x); and

(b) if Σ is an extension of QeKr, then �Σ ∀exϕ ↔ ∀eyϕ(y/x).

Proof. Assume the hypothesis of lemma 485 and that Σ is an extension of
Q/QeKr. Then, by lemma 484(a), �Σ ∀xϕ → ϕ(y/x), and therefore, by (UG),
∀-distribution, vacuous-∀, and (MP ), �Σ ∀xϕ → ∀yϕ(y/x). Similarly, because
∀ey∃ex(y = x) is a Qe-axiom, �Σ ∀exϕ → ∀eyϕ(y/x). By a similar argument,
�Σ ∀yϕ(y/x) → ∀xϕ and �Σ ∀eyϕ(y/x) → ∀exϕ, and therefore, by tautologous
transformations, �Σ ∀xϕ ↔ ∀yϕ(y/x) and �Σ ∀exϕ ↔ ∀eyϕ(y/x).

Lemma 486 If Σ ∈ QML ∪ QeML, ϕ ∈ FM(Σ), then:

(a) if Σ is an extension of a member of QKr, then �Σ ∀xϕ → ϕ; and

(b) if Σ is an extension of a member of QeKr and x, y are distinct variables,
then:

(i) �Σ ∃ey(x = y) → (∀exϕ → ϕ); and

(ii) �Σ ∀ex(∀exϕ → ϕ).

Proof. By lemma 485, �Σ ∀xϕ → ∀yϕ(y/x), and by lemma 484, �Σ ∀yϕ(y/x) →
ϕ. Therefore, by (MP ), �Σ ∀xϕ → ϕ. The proof for part (b) is similar, except
for using Qe-axiom (10) and (MP ) as well.

The following lemma indicates some of the consequences of the unrestricted
universal instantiation laws for variables. In particular, the converse of the
Carnap-Barcan formula is now derivable.

Lemma 487 If Σ ∈ QML and Σ is an extension of a member of QKr, then:

(a) �Σ �∀xϕ → ∀x�ϕ; and

(b) �Σ ∃x�ϕ → �∃xϕ.
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Exercise 7.5.2 Prove lemma 487. (Hint: For (a) and (b), use lemma 486(a),
(RN), �-distribution, (UG), ∀-distribution, ∀-vacuous, and tautologous trans-
formations.)

Neither part of lemma 487 holds for the actualist quantifier ∀e. Both parts
would hold if every existing object necessarily existed, i.e., if ∀ex�∃ey(x = y);
but that seems to be a false ontological thesis. Of course, from the point of
view of possibilism, every existing object necessarily is the object that it is, i.e.,
∀ex�∃y(x = y), even in possible worlds in which that object does not exist.
But that is because, from the point of view of possibilism, every possible object
necessarily is the object that it is, i.e., ∀x�∃y(x = y).

Lemma 488 If Σ ∈ QML and Σ is an extension of a member of QKr, then
�Σ ∀x�∃y(x = y).

Exercise 7.5.3 Prove lemma 488. (Hint: Use ∀y¬�(x = y) → ¬�(x = y)
as a special case of lemma 486(a), and then use tautologous transformations,
Q-axiom (11), (UG), ∀-distribution, and ∀-vacuous.)

Exercise 7.5.4 Show that if Σ ∈ QeML and Σ is an extension of a member of
QeKr, then:
(a) �Σ ∀ex�∃ey(x = y) → (�∀exϕ → ∀ex�ϕ), and
(b) �Σ ∀ex�∃ey(x = y) → (∃ex�ϕ → �∃exϕ).

(Hint: Compare the proof of lemma 487, except use lemma 486(b) instead of
486(a).)

Exercise 7.5.5 Show that the Carnap-Barcan formula, Q-axiom (8), is prov-
able in QS5 on the basis of the modal axioms of QS5 and the Q-axioms other
than the Carnap-Barcan formula itself; that is, show that the Carnap-Barcan
formula is not independent of the other Q-axioms in QS5.

Finally, we conclude with the observation that all of the quantified modal
logics described in this section—and all of their subsystems—are consistent. The
proof amounts to associating each theorem of these systems with a modal-free
theorem of CN-logic, which is easily seen to be absolutely consistent (as defined
in chapter 1).

Theorem 489 (The Consistency of QKr, QM , QBr, and the systems
from QS4 to QS5): If Σ ∈ QML ∪ QeML and Σ is a subsystem (proper or
otherwise) of a member of QS5, then Σ is consistent.

Proof. Assume the hypothesis, and let L be the language of Σ. Because the
predicate constants in L form a recursive set, they can be enumerated by some
(or all) of the natural numbers. Let h be that function that assigns P0 to the
first predicate constant so enumerated, P1 to the next predicate constant so
enumerated, etc. In terms of h and an induction on the formulas of L, we define
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a translation of those formulas into quantifier-free and modal-free formulas of
CN-logic as follows:

1. trans(F (a0, ..., an−1)) =df h(F ), where n ∈ ω, F is an n-place predicate
constant of L, and a0, ..., an−1 ∈ TML;

2. trans(a = b) =df (P0 → P0), where a, b ∈ TML;
3. trans(¬ϕ) =df ¬(trans(ϕ));
4. trans(ϕ → ψ) =df (trans(ϕ) → trans(ψ)),
5. trans(∀xϕ) =df trans(ϕ),
6. trans(∀exϕ) =df trans(ϕ),
7. trans(�ϕ) =df trans(ϕ).

Note first, (A), that as defined above the translation of every Q-axiom, every
Qe-axiom, and every member of S5L is a tautology. Note next, (B), that the
rules (MP ), (RN), (UG), (UGe), and (�UGe) all preserve tautologies under the
above translation. Finally, (C), note that if �Σ ϕ, then trans(ϕ) is a tautology;
because, where ∆ is a derivation of ϕ within Σ from the empty set, then, by
using (A) and (B) in an inductive argument on the length of ∆, it can be
seen that for i < D∆, trans(∆i) is a tautology, from which it follows that
trans(ϕ) is a tautology. But if Σ were inconsistent, then �Σ ϕ and �Σ ¬ϕ, for
some ϕ ∈ FM(Σ), and therefore, by (C), trans(ϕ) and trans(¬ϕ), which, by
definition, is ¬(trans(ϕ)), would both be tautologies, which is impossible.

7.6 Omega-Completeness in Modal Logic

The syntactic notion of maximal consistency, as defined in §1.2.4 (of chapter 1),
showed itself to be very useful in chapter 6 for proving the completeness of
various sentential modal calculi, as well as for providing a syntactical coun-
terpart of the notion of a possible world. This notion continues to be useful
in quantified modal logic, except that now we also need to consider the no-
tion of ω-completeness as well. Because we distinguish between possibilist and
actualist quantifiers, we distinguish here between ω/∃-completeness and ω/�∃e-
completeness.

Definition 490 If L is a language and K ⊆ FML, then:

(a) K is ω/∃-complete in L iff for all x ∈ V R, all ϕ ∈ FML, if ∃xϕ ∈ K,
then there is a variable y other than x that can be properly substituted for x in
ϕ such that ϕ(y/x) ∈ K;

(b) K is ω/∃e-complete in L iff for all x ∈ V R, all ϕ ∈ FML, if ∃exϕ ∈ K,
then there is a variable y other than x that can be properly substituted for x in
ϕ such that [∃ex(y = x) ∧ ϕ(y/x)] ∈ K; and

(c) K is ω/�∃e-complete in L iff for all n ∈ ω, all ψ0, ..., ψn−1, ϕ ∈ FML, if
�[ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧ �∃exϕ)...)] ∈ K, then there is a variable y other
than x that can be properly substituted for x in ϕ such that �[ψ0 ∧ �(ψ1 ∧ ... ∧
�(ψn−1 ∧ �[ϕ(y/x) ∧ ∃ex(y = x)])...)] ∈ K.
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Note: For n = 0, we take �[ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧ �∃exϕ)...)] to be just
�∃exϕ.

As the following theorem indicates, Lindenbaum’s lemma (theorem 30 of
§1.2.4), as applied to maximally consistent sets of formulas, can be extended in
our present context to maximally consistent sets that are ω-complete in each of
the senses defined above. The only qualification is that there be infinitely many
variables available by which to generate such an ω-complete set.

Theorem 491 If Σ ∈ QML ∪ QeML and Σ is an extension of a member of
QKr or QeKr, K ⊆ FM(Σ), K is Σ-consistent, and there are infinitely many
variables not occurring in any of the formulas in K, then there is a maximally
Σ-consistent set Γ of formulas of Σ (i.e., Γ ⊆ FM(Σ) and Γ ∈ MCΣ) such
that K ⊆ Γ and Γ is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete in the
language of Σ.

Proof. Assume the hypothesis, and let ξ0, ..., ξm, ... (m ∈ ω) be an ordering of
the formulas of Σ of the form ∃xϕ, ∃exϕ or �(ψ0∧�(ψ1∧�(ψn−1∧�∃exϕ)...)),
for x ∈ V R and ψ0, ..., ψn−1, ϕ ∈ FM(Σ). (Note: If Σ ∈ QeML, then there are
no formulas of Σ of the form ∃xϕ, in which case K is vacuously ω/∃-complete,
and all considerations of formulas of this form in what follows can be ignored.)
We recursively define a chain Γ of sets of formulas of Σ as follows:

1. Γ0 =df K;
2. if ξm+1 is ∃xϕ, for some x ∈ V R and ϕ ∈ FM(Σ), then

Γm+1 =df Γm ∪ {∃xϕ → ϕ(y/x)}, where y is the first variable not occurring in
any formula in Γm ∪ {ξm+1};

3. if ξm+1 is ∃exϕ, for some x ∈ V R and ϕ ∈ FM(Σ), then
Γm+1 =df Γm ∪ {∃exϕ → [∃ex(y = x) ∧ ϕ(y/x)]}, where y is the first variable
not occurring in any formula in Γm ∪ {ξm+1};

4. if ξm+1 is �(ψ0 ∧�(ψ1 ∧ ...∧�(ψn−1 ∧�∃exϕ)...)), for some x ∈ V R and
ψ0, ..., ψn−1, ϕ ∈ FM(Σ), then Γm+1 =df Γm ∪ {[�(ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧
�∃exϕ)...)) → �(ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧ �[ϕ(y/x) ∧ ∃ex(y = x)])...))]},
where y is the first variable not occurring in any formula in Γm ∪ {ξm+1}.

We show first by weak induction that for all m ∈ ω, Γm is Σ-consistent,
and that therefore

⋃
m∈ω Γm is Σ-consistent. By definition and hypothesis, Γ0

is Σ-consistent. Assume, accordingly, the inductive hypothesis that Γm is Σ-
consistent and, by a reductio argument, that Γm+1 is not Σ-consistent. Then,
by lemma 27 of §1.2.4 (of chapter 1), there is a χ ∈ FM(Σ) such that Γm+1 �Σ

¬(χ → χ). We consider three cases depending on the form of ξm+1.

Case 1: ξm+1 is ∃xϕ, for some x ∈ V R and ϕ ∈ FM(Σ). We note that by
lemma 464 of §7.4 Σ is a logistic system, and therefore, by the deduction theorem
24 of §1.2.4 (of chapter 1), there is a conjunction θ of members of Γm such that
�Σ θ → ∃xϕ ∧ ¬ϕ(y/x), where y does not occur in θ or ∃xϕ. Therefore, by
(UG), ∀-distribution, ∀-vacuous, the law of rewrite of bound variables (lemma
485 above of §7.5), and tautologous transformations, �Σ θ → ∃xϕ ∧ ∀x¬ϕ,
i.e., by definition of ∃, �Σ θ → ¬∀x¬ϕ ∧ ∀x¬ϕ, from which it follows that, in
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contradiction with the inductive hypothesis, Γm is not Σ-consistent after all.
Therefore, the reductio assumption that Γm+1 is not Σ-consistent is false in this
case.

Case 2: ξm+1 is ∃exϕ, for some x ∈ V R and ϕ ∈ FM(Σ). As in case (1),
there is a conjunction θ of members of Γm such that �Σ θ → ∃exϕ ∧ [∃ex(y =
x) → ¬ϕ(y/x)]. Therefore, as in case 1, �Σ θ → ∃exϕ ∧ [∀ey∃ex(y = x) →
∀ey¬ϕ(y/x)]. But then, by Q/Qe-axiom (10), (MP ), the law of rewrite of bound
variables, and tautologous transformations, �Σ θ → ∃exϕ ∧ ¬∃exϕ, from which
it follows that Γm is not Σ-consistent, which by the inductive hypothesis is
impossible.

Case 3: ξm+1 is �(ψ0 ∧�(ψ1 ∧ ...∧�(ψn−1 ∧�∃exϕ)...)), for some x ∈ V R
and ψ0, ..., ψn−1, ϕ ∈ FM(Σ). Then, as in case (1), there is a conjunction θ of
members of Γm such that
�Σ θ → �(ψ0∧�(ψ1∧ ...∧�(ψn−1∧�∃exϕ)...))∧¬�(ψ0∧�(ψ1∧ ...∧�(ψn−1∧
�[ϕ(y/x) ∧ ∃ex(y = x)])...))]. Therefore, by tautologous transformations and
the rule (IE), �Σ θ → �(ψ0 → �(ψ1 → ... → �(ψn−1 → �[∃ex(y = x) →
¬ϕ(y/x)])...)), and, accordingly, by the rule (�UGe), �Σ θ → �(ψ0 → �(ψ1 →
... → �(ψn−1 → �∀ey[∃ex(y = x) → ¬ϕ(y/x)])...)). But, by Q/Qe-axiom (10)
and lemmas 484(b) and 485(b) of §7.5, �Σ ∀ey[∃ex(y = x) → ¬ϕ(y/x)] ↔
∀ex¬ϕ, and therefore �Σ θ → �(ψ0 → �(ψ1 → ... → �(ψn−1 → �∀ex¬ϕ)...)),
from which, by (IE), it follows that �Σ θ → ¬�(ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧
�∃exϕ)...)). But, as already noted, �Σ θ → �(ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧
�∃exϕ)...)), which means that θ yields a contradiction in Σ, i.e., that Γm is not
Σ-consistent, contrary to the inductive hypothesis, which is impossible.

We conclude, accordingly, by cases (1) and (2), that Γm is Σ-consistent,
for all m ∈ ω, and therefore so is

⋃
m∈ω Γm, because otherwise a contradiction

would be derivable from finitely many members of
⋃

m∈ω Γm, and therefore from
some Γm. But then, by Lindenbaum’s lemma 30 of §1.2.4 (of chapter 1), there
is a maximally Σ-consistent set Γ′ of formulas of Σ such that

⋃
m∈ω Γm ⊆ Γ′.

By the clauses (1)–(4) in the definition of the sets Γm, it follows that K ⊆ Γ′

and that Γ′ is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete.

Theorem 492 If Σ belongs to QML and is an extension of a member of QKr
or Σ belongs to QeML and is an extension of a member of QeKr, K ∪ {ϕ} ⊆
FM(Σ), and there are infinitely many variables not occurring in the formulas
in K ∪{ϕ}, then K �Σ ϕ iff for all Γ ∈ MCΣ, if K ⊆ Γ and Γ is ω/∃-complete,
ω/∃e-complete, ω/�∃e-complete, then ϕ ∈ Γ.

Proof. Assume the hypothesis of theorem 492. Suppose first that K �Σ ϕ.
Then, by theorem 31 of §1.2.4 (of chapter 1), for all Γ ∈ MCΣ, if K ⊆ Γ, then
ϕ ∈ Γ, from which the right-hand side of the biconditional to be shown follows.
Suppose now, for the converse direction, that for all Γ ∈ MCΣ, if K ⊆ Γ and Γ
is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete, then ϕ ∈ Γ. By reductio,
assume also that K �Σ ϕ. Then, K ∪ {¬ϕ} is Σ-consistent, and by hypothesis
and theorem 491 there is an ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete
set Γ ∈ MCΣ such that K ∪ {¬ϕ} ⊆ Γ. But then K ⊆ Γ, and therefore by the
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supposition for this direction, ϕ ∈ Γ. That is, both ϕ and ¬ϕ belong to Γ, from
which it follows that Γ �Σ ϕ and Γ �Σ ¬ϕ, which is impossible.

Because any single formula contains only finitely many symbols there are
infinitely many variables not occurring in that formula. It is for that reason
that the corollary to theorem 492 can be stated in the following simpler form:

Corollary 493 If Σ belongs to QML and is an extension of QKr or Σ belongs
to QeML and is an extension of QeKr, and ϕ ∈ FM(Σ), then �Σ ϕ iff for
all Γ ∈ MCΣ, if Γ is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete, then
ϕ ∈ Γ.

The assumption that infinitely many variables do not occur in the formulas
of K ∪ {ϕ} in theorems 491 and 492 can be bypassed, it turns out, at least
for the purposes of the completeness theorems that we will take up in the next
chapter. This is because there are (at least potentially) infinitely many variables
in V R, which means that V R can be mapped one-to-one into a proper subset
of itself, leaving infinitely many variables not in the range of such a mapping.
For example, because V R can be well-ordered, we can assume a correlation g
of the natural numbers with the variables, so that if n ∈ ω, then g(n) ∈ V R,
and we can take g(n) to be the nth variable. Then, where h is a correlation of
the natural numbers with the even numbers, i.e., for n ∈ ω, h(n) = 2n, then
g(h(n)) will be the 2nth variable. Now, for x ∈ V R, ğ(x) is the number, say, n,
correlated with x, and g(h(ğ(x)) is then the variable correlated with 2n.

For the purposes of the following definition, let x′ =df g(h(ğ(x))), for x ∈
V R, and let f be a correlation of each formula ϕ with another formula ψ exactly
like ϕ, except that, for n ∈ ω, each occurrence of the nth variable in ϕ, whether
bound or free, is replaced by the 2nth variable. We can define f recursively as
follows for the formulas of any language L.

Definition 494 If L is a first-order language, then:
(1) f(F (a0, ..., an−1)) =df F (b0, ..., bn−1), where, n ∈ ω, F is an n-place predi-

cate constant in L, and for i < n, bi =
{

a′
i if ai ∈ V R

ai otherwise
;

(2) f(¬ϕ) =df ¬f(ϕ), where ϕ ∈ FML;
(3) f(ϕ → ψ) =df (f(ϕ) → f(ψ)), where ϕ,ψ ∈ FML;
(4) f(∀xϕ) =df ∀x′f(ϕ), where x ∈ V R and ϕ ∈ FML;
(5) f(∀exϕ) =df ∀ex′f(ϕ), where x ∈ V R and ϕ ∈ FML; and
(6) f(�ϕ) =df �f(ϕ), where ϕ ∈ FML.

Exercise 7.6.1 Show for all n ∈ ω, f(ψ0 ∧ ...∧ψn−1) = [f(ψ0)∧ ...∧f(ψn−1)].
(Hint: let A = {n ∈ ω : f(ψ0 ∧ ...∧ψn−1) = f(ψ0)∧ ...∧ f(ψn−1)}, and show by
strong induction on ω that ω ⊆ A.)

We now observe that if ϕ is an axiom of a quantified modal logic, Σ, then so
is f(ϕ), and that if ϕ is a theorem of Σ, then so is f(ϕ). From this last result,
it follows that if K ⊆ FM(Σ), then K is Σ-consistent if, and only if, f“K, i.e.,
{f(ϕ) : ϕ ∈ K}, is Σ-consistent.
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Lemma 495 If Σ ∈ QML ∪ QeML and ϕ ∈ Ax(Σ), then f(ϕ) ∈ Ax(Σ).

Exercise 7.6.2 Prove the above lemma 495.

Lemma 496 If Σ ∈ QML ∪ QeML and ϕ ∈ FM(Σ), then �Σ ϕ iff �Σ f(ϕ).

Proof. Assume the hypothesis, and for the left-to-right direction that �Σ ϕ.
Then, by lemmas 457 and 459, there is a QAx(Σ)-proof or a QeAx(Σ)-proof
of ϕ in the language of Σ. Where n ∈ ω, ∆ is an n-place sequence that is
such a proof of ϕ, and A = {i ∈ ω : if i < n, then �Σ f(∆i)}, it suffices to
show by strong induction that ω ⊆ A. Assume, accordingly, that i ∈ ω, i ⊆ A,
and show that i ∈ A; i.e., assume i < n, and show that �Σ f(∆i). Case 1:
∆i ∈ Ax(Σ). Then f(∆i) ∈ Ax(Σ), and therefore �Σ f(∆i). Case 2: Suppose,
for some j, k < i that ∆k = (∆j → ∆i). Then, by the inductive hypothesis,
�Σ f(∆j) and �Σ f(∆j → ∆i), i.e., by definition of f , �Σ f(∆j) → f(∆i), and
hence, by the (MP ) rule, which is valid in Σ by lemmas 462 and 463, it follows
that �Σ f(∆i). We leave the cases for (UG), (UGe), (RN), and (�UGe) as an
exercise.

Exercise 7.6.3 Complete the above proof for lemma 496; that is, do the cases
(UG), (UGe), (RN), and (�UGe).

Lemma 497 If Σ ∈ QML ∪ QeML and K ⊆ FM(Σ), then K is Σ-consistent
iff f“K is Σ-consistent.

Proof. Assume the hypothesis, and for the left-to-right direction that K is
Σ-consistent, but, by reductio, that f“K is not. Then, for some ϕ ∈ FM(Σ),
f“K �Σ ¬(ϕ → ϕ), and therefore, for some n ∈ ω, ψ0, ..., ψn−1 ∈ K, �Σ

f(ψ0) ∧ ... ∧ f(ψn−1) → ¬(ϕ → ϕ), and hence, by CN-logic, that �Σ ¬[f(ψ0) ∧
... ∧ f(ψn−1)]. Now, by the definition of f and the above exercise, ¬[f(ψ0) ∧
... ∧ f(ψn−1)] = f(¬[ψ0 ∧ ... ∧ ψn−1]); and, therefore, by lemma 496, it follows
that �Σ ¬[ψ0 ∧ ... ∧ ψn−1]. But ψ0, ..., ψn−1 ∈ K, from which it follows that
K �Σ ψ0 ∧ ... ∧ ψn−1, which is impossible because K would then not be Σ-
consistent after all. The converse direction of the lemma follows by an entirely
similar argument.
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Chapter 8

The Semantics of
Quantified Modal Logic

We turn now to some formulations of the semantics of quantified modal logic.
We begin, as we did in chapter 4, with a semantics for logical necessity within
the ontological framework of logical atomism. It is this framework, we have
noted, that provides the most intuitive and natural semantics for logical neces-
sity as a modality—regardless whether or not logical atomism is acceptable as
an ontological framework. One justification for this claim, as we will show in
this chapter, is that the modal thesis of anti-essentialism is logically true in this
framework, which is exactly as it should be for logical necessity, as well as for
logical atomism.

The results that we obtain for the ontological framework of logical atomism
on the quantificational level are somewhat mixed, however. We can, as we will
see in the next chapter, extend the results already described in chapter 4 for this
framework on the sentential level to the level of monadic modal predicate logic.
That is, we will show that monadic modal predicate logic for logical necessity
in logical atomism is both complete and decidable. But once we go beyond
monadic predicate logic and allow even just one relational predicate (by which
an axiom of infinity might be formulated), then the logic is not only undecidable
but essentially incomplete.

The incompleteness of the primary semantics can be avoided by allowing
the quantificational interpretation of necessity in the metalanguage to refer not
to all the possible worlds of a logical space but only to those in a given non-
empty set of such worlds. We will refer to the semantics based on this idea
as a secondary semantics, and we will show that it can be recursively axioma-
tized by QS5 systems. The secondary semantics does not validate the thesis of
anti-essentialism, however, and, unlike the situation in the primary semantics,
monadic predicate logic is not decidable in this secondary semantics.

We will also extend the secondary semantics so as to include an accessibility
relation between possible worlds the way we did in chapter 6. That is, we will
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not only allow for a proper subset of all possible worlds of a given logical space
in the semantic clause for the necessity operator, but, in addition, we will also
restrict those worlds in the subset to those that are possible alternatives to a
given world in the sense of being accessible from that world. This addition to the
secondary semantics of necessity will allow us to prove completeness theorems
for the different quantified modal logics characterized in the previous chapter
by imposing structural conditions on the accessibility relation.

8.1 Semantics of Standard Modal-Free Formulas

We begin with the semantics of the modal-free formulas of standard first-order
logic with identity, which, on our formulation in the previous chapter, we have
called the logic of possibilism. Where L is a first-order language, i.e., a set of
predicate and individual constants, the modal-free standard formulas of L are
the modal-free members of SFML, i.e., the modal-free formulas of L in which
the universal e-quantifier for concrete existence does not occur. A set-theoretic
interpretation of L is called a model indexed by L.

A set-theoretic model indexed by L, we should note, interprets the predicate
and individual constants of L only in the sense of assigning an extension to
them, and not an intension in any stronger sense of interpretation. An n-place
predicate constant in L, for example, is interpreted in a model by being assigned
an extension, i.e., a set of n-tuples, drawn from the universe of the model, and an
individual constant is similarly interpreted by being assigned a member of that
universe. Because models involve the specification of a universe of discourse
and an assignment of extensions drawn from that universe to predicate and
individual constants, they are said to be set-theoretic counterparts to possible
worlds. We define the notion of a model (indexed by L) as follows:

Definition 498 If L is a first-order language, then A is a model indexed by
L iff there are a nonempty set D, called the universe of A, and an L-indexed
set R, i.e., a function with L as domain, such that A = 〈D,R〉, and (1) for all
n ∈ ω and all n-place predicate constants F ∈ L, R(F ) ⊆ Dn, and (2) for each
individual constant a ∈ L, R(a) ∈ D.

Convention: Where L is a first-order language, we will refer to the models
indexed by L as L-models. If A = 〈D,R〉 and A is an L-model, then we
set UA =df D, the universe of A, and we set LA =df L.

One of the most important tasks—perhaps the principal task—to be achieved
by a formal semantics is the precise characterization of truth and falsehood as
semantic properties of the sentences of the object languages in question. In
our model-theoretic approach, we relativize this notion to truth, or falsehood,
in a model. It should be noted, however, that we do not make the unrealistic
assumption that our formal languages contain a name for every object in the
universe of a model, and, for that reason, we need first to resort to a semanti-
cal counterpart of truth that applies to open formulas, i.e., formulas with free
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variables, as well as to sentences. This is because the recursion clauses for the
truth of a sentence will devolve upon the semantics of the subformulas of that
sentence, and those subformulas will not in general be sentences. We call this
semantic notion satisfaction—or, more precisely, satisfaction in a model by an
assignment of values drawn from the universe to these variables. We define the
notion of an assignment as follows, as well as the variation of such an assignment
with respect to a given argument.

Definition 499 If D is a nonempty set, then a is an assignment (of values)
in D (to the variables) iff a ∈ DV R, i.e., iff a is a function from V R into D.

Definition 500 If f is a function, then f(d/x) =df (f −{(x, f(x))})∪{(x, d)}.

Convention: If A is a model, then we will say that a is an assignment in A if
a is an assignment in UA.

Definition 501 If L is a language, A is an L-model, A = 〈D,R〉, a is an
assignment in A, and ξ is a predicate or individual constant in L or a variable,
i.e., ξ ∈ L ∪ V R, then (the extension of ξ in A relative to a):

extA,a(ξ) =df

{
R(ξ) if ξ ∈ L
a(ξ) if ξ ∈ V R

.

Exercise 8.1.1 Show that if A is a model, ξ ∈ LA, i.e., ξ is a predicate or indi-
vidual constant in A, and a, b are assignments in A, then extA,a(ξ) = extA,b(ξ).

As noted above, we will first describe the satisfaction clauses for the modal-
free standard formulas of an arbitrary first-order language L. We then extend the
definition for the standard modal formulas of L, where the extended definition is
intended to capture the intuitive content of logical necessity (in the ontological
framework of logical atomism).

Definition 502 (Satisfaction in A by a): If L is a language, A is an L-
model, and a is an assignment in A, then we recursively define the satisfaction
in A by a of a modal-free standard formula ϕ ∈ SFML, in symbols, A, a |= ϕ,
as follows:
(1) if ϕ is (a = b), for some a, b ∈ TML, then A, a |= ϕ iff extA,a(a) = extA,a(b);
(2) if ϕ is F (a0, ..., an−1), for some n ∈ ω, an n-place predicate constant F ∈
L, and a0, ..., an−1 ∈ TML, then A, a |= ϕ iff 〈extA,a(a0), ...extA,a(an−1)〉 ∈
extA,a(F );
(3) if ϕ is ¬ψ, for some modal-free standard formula ψ of L, then A, a |= ϕ iff
A, a � ψ;
(4) if ϕ is (ψ → χ), for some modal-free standard formulas ψ and χ of L, then
A, a |= ϕ iff either A, a � ψ or A, a |= χ;
(5) if ϕ is ∀xψ, for some x ∈ V R and modal-free standard formula ψ of L, then
A, a |= ϕ iff for all d ∈ UA, A, a(d/x) |= ψ.

On the basis of the above definition, we can now define truth and validity
for modal-free standard formulas.
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Definition 503 If L is a language, A is an L-model, and ϕ is a modal-free
standard formula of L, then ϕ is classically true in A, in symbols, A |= ϕ,
iff for every assignment a in A, A, a |= ϕ.

Definition 504 If L is a language and Γ ∪ {ϕ} is a set of modal-free standard
formulas of L, then:
(1) Γ classically implies ϕ (in symbols, Γ |= ϕ) iff for every L-model A and
assignment a in A, if A, a |= ψ, for all ψ ∈ Γ, then A, a |= ϕ;
(2) ϕ is classically valid, in symbols, |= ϕ, iff the empty set classically implies
ϕ.

The different quantified modal CN-calculi defined in the last chapter contain
all classically valid formulas in the sense that each such formula can be shown
to be a theorem in every one of those calculi. Moreover, modal-free standard
formulas classically implied by a set of modal-free standard formulas can be
proved to be derivable from the same set within any of those formal systems.
These results we express in the following theorems, which are preceded by two
lemmas necessary for their proof.

Lemma 505 If L is a language, B an L-model, ϕ is a modal-free standard for-
mula of L, and y can be properly substituted for x in ϕ, then a(a(y)/x) satisfies
ϕ in B if and only if a satisfies ϕ(y/x) in B.

Lemma 506 If L is a language, B an L-model, ϕ a modal-free standard for-
mula of L, and ψ is a rewrite of ϕ, then a satisfies ϕ in B if and only if a

satisfies ψ in B.

Exercise 8.1.2 Prove the above lemmas 505 and 506.

Theorem 507 If Σ ∈ QML, Σ is an extension of a member of QKr, L is the
language of Σ, and K is a set of modal-free standard formulas of L, then K is
consistent in Σ only if there are an L-model A and an assignment a in A, such
that A, a |= ϕ, for all ϕ ∈ K.

Proof. Assume the hypothesis. By the observations immediately following corol-
lary 493, we can assume that there are infinitely many variables not occurring in
the formulas of K. Therefore, by theorem 491, there is a maximally Σ-consistent
set Γ of formulas of Σ (i.e., Γ ⊆ FM(Σ) and Γ ∈ MCΣ) such that K ⊆ Γ
and Γ is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete in the language
of Σ.

Let us now define � to be the relation among the terms t, t′ ∈ TML such
that t � t′ iff t = t′ ∈ Γ. By lemma 465, � is an equivalence relation, i.e., it is
transitive, reflexive and symmetric. Now, let [t] be the equivalence class under
the relation � determined by the term t and let D = {[t] : t ∈ TML}. Finally,
let AΓ be the model 〈D,RΓ〉, where RΓ is a function with L as domain and
such that (1) for all n ∈ ω and all n-place predicate constants F ∈ L, RΓ(F ) =
{〈[t0], ..., [tn−1]〉 : F (t0...tn−1) ∈ Γ}, and (2) for each individual constant a ∈ L,
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RΓ(a) = [a]. Let a be the function with V R as domain such that for every
x ∈ V R, a(x) = [x]. By induction on modal-free standard formulas of L, we
show that for every ψ, AΓ, a |= ϕ if and only if ϕ ∈ Γ. We note first that for
every t ∈ TML, there is a variable x such that [t] = [x]. This is because for
every term t ∈ TML, ∃x(t = x) ∈ Γ (by Q-Axiom 9, since Σ ∈ QML) and Γ is
ω/∃-complete in the language of Σ.

For the atomic case, suppose first that ϕ is of the form ζ = η. Then, AΓ, a |=
ϕ if and only if extAΓ,a(ζ) = extAΓ,a(η) iff [ζ] = [η] if and only if ζ = η ∈ Γ.
Now suppose that ϕ is of the form F (ζ0, ..., ζn−1). Then, by the corresponding
definitions, AΓ, a |= ϕ if and only if 〈extAΓ,a(ζ0), ..., extAΓ,a(ζn−1)〉 ∈ extAΓ,a(F )
if and only if 〈[ζ0], ..., [ζn−1]〉 ∈ RΓ(F ) if and only if F (ζ0, ..., ζn−1) ∈ Γ. The
cases where ϕ is either of the form ¬ψ or of the form ψ → χ follow by the
inductive hypothesis. We leave these cases to the reader as an exercise.

We now show the case where ψ is ∀xδ for some modal-free standard for-
mula δ of L. By the semantic clause for ∀xψ, AΓ, a |= ϕ iff for all d ∈ UAΓ ,
AΣ, a(d/x) |= ψ, and hence if and only if (by definition of UAΓ) for every
t ∈ TML, AΓ, a([t]/x) |= ψ, i.e., if and only if (by the above observation) for
every y ∈ V R, AΓ, a([y]/x) |= ψ, and therefore if and only if (by above lemma
506) for every y ∈ V R and formula χ that is a rewrite of ψ with respect to
y, AΓ, a([y]/x) |= χ, and hence if and only if (by above lemma 505) for every
y ∈ V R and formula χ, which is a rewrite of ψ with respect to y, AΓ, a |=
χ(y/x), i.e., if and only if (by the inductive hypothesis) for every y ∈ V R and
formula χ, which is a rewrite of ψ with respect to y, χ(y/x) ∈ Γ, and therefore
if and only if (by the ω-∃/completeness of Σ, lemmas 484 and 485) ∀xψ ∈ Γ.
Accordingly, we have shown that for every formula ϕ of L , AΓ, a |= ϕ if and
only if ϕ ∈ Γ. Therefore, because K ⊆ Γ, it follows that, for every ϕ ∈ K,
AΓ, a |= ϕ.

Exercise 8.1.3 Complete the above proof for theorem 507 by showing the cases
for when ϕ is ¬ψ and for when ϕ is (ψ → χ).

Theorem 508 If Σ ∈ QML, Σ an extension of a member of QKr, L is the
language of Σ, and Γ ∪ {ϕ} is a set of modal-free standard formulas of L, then
Γ classically implies ϕ only if Γ �Σ ϕ.

Exercise 8.1.4 Prove the above theorem 508.

It is noteworthy that even though the set of modal-free standard formulas of
a language L are recursively axiomatizable, the set of classically valid modal-free
standard formulas is not decidable. Moreover, this result can be strengthened
by restricting it to languages containing a 2-place predicate constant. We will
assume but not prove these well-known results here.1

Theorem 509 If Γ = {ϕ : for some language L, ϕ is a modal-free standard
formula of L, and ϕ is classically valid in all L-models}, then Γ is not decidable.

1For proofs of these theorems see Enderton 2001, chapter III.
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Theorem 510 If L is a language containing a 2-place predicate constant, then
{ϕ : ϕ is a modal-free standard formula of L and ϕ is classically valid in all
L-models} is not decidable.

8.2 The Semantics of Logical Necessity

We shall now proceed to what we take to be the primary semantics for logical
necessity. This semantics, which applies now to all formulas, modal-free or other-
wise, is a natural and intuitive extension of the standard semantics for standard
modal-free formulas described in the previous section. In giving this semantics
we need only retain and then extend to all standard formulas, modal-free or not,
the semantic clauses already given for the satisfaction of standard modal-free
formulas. The new clause that is needed then is the satisfaction clause for the
necessity operator. In stating this clause we will first consider the role of logical
necessity in the ontological framework of logical atomism.

In accordance with this ontological framework, a model 〈D,R〉 for a language
L represents a possible world of a logical space based upon (1) D as the universe
of objects of that space and (2) L as the set of predicate constants characterizing
the atomic states of affairs of that space. Such a model represents a possible
world of the logical space in that it specifies the states of affairs, as represented
by the predicates of L, that obtain in that world and those that do not obtain
in that world. Other possible worlds of the same logical space are based on the
same universe of objects and, as represented by the predicates of L, the same
states of affairs; but they differ from 〈D,R〉 in the states of affairs that obtain
as opposed to those that do not. Accordingly, given a language L and a universe
D, the totality of possible worlds of the logical space based on L and D, in
symbols W (L, D), can be defined as follows:

Definition 511 If L is a language and D is a nonempty set, then W (L, D) =df

{A : A is an L-model, UA = D}.

Note that if A,B ∈ W (L, D), then UA = UB, and therefore any assignment
in A is an assignment in B. Accordingly, given a logical space W (L, D), and
a possible world (L-model) A ∈ W (L, D), the natural satisfaction clause (by
an assignment a in A) for a (standard) modal formula �ψ ∈ SFML—at least
for logical necessity—is that ψ is satisfied (by a) in every possible world of that
logical space. Thus, apart from extending definition 502 of satisfaction in A by
a to all standard formulas of L, modal-free or not, we are to add the following
clause in the case where ϕ is of the form �ψ.

(6) if ϕ is �ψ, for some ψ ∈ SFML, then A, a |= ϕ iff for all B ∈ W (L, D),
B, a |= ψ.

Truth in an L-model A is now defined as satisfaction in A by every assignment
in A. As before, we define logical truth (L-truth) in terms of logical implication.
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If Γ ∪ {ϕ} ⊆ SFML, then we say that Γ L-implies ϕ iff for every L-model A

and assignment a in A, a satisfies every member of Γ in A only if a satisfies ϕ
in A. A standard formula ϕ is then understood to be L-true if the empty set
logically implies it, or, equivalently, if ϕ is true in every L-model.

Definition 512 If L is a language, A is an L-model, and ϕ ∈ SFML, then ϕ
is true in A, in symbols, A |= ϕ, iff for every assignment a in A, A, a |= ϕ.

Definition 513 If L is a language and Γ ∪ {ϕ} ⊆ SFML, then:
(1) Γ logically implies ϕ, in symbols, Γ |= ϕ, iff for every L-model A and
assignment a in A, if A, a |= ψ, for all ψ ∈ Γ, then A, a |= ϕ; and
(2) ϕ is logically true (L-true), in symbols, |= ϕ, iff the empty set L-implies
ϕ.

The following lemmas indicate that the satisfaction of a formula in a model
by an assignment depends only on what that assignment assigns to the variables
occurring free in the formula, and hence that one assignment will satisfy a
sentence in a model, i.e., a formula with no free variables, if, and only if, any
assignment satisfies that sentence in the model.

Lemma 514 If L is a language, A is an L-model, a, b are assignments in A,
ϕ ∈ SFML, and FV (ϕ) = {x0, ..., xn−1}, and a(xi) = b(xi), for all i < n, then,
A, a |= ϕ iff A, b |= ϕ.

Exercise 8.2.1 Prove the above lemma 514. (Hint: let Γ = {ϕ ∈ SFML : for
all L-models A, assignments a, b in UA, n ∈ ω, x0, ..., xn−1 ∈ V R, if FV (ϕ) =
{x0, ..., xn−1}, and a(xi) = b(xi), for all i < n, then A, a |= ϕ iff A, b |= ϕ}.
Show by induction that SFML ⊆ Γ. )

Lemma 515 If L is a language, A is an L-model, a is an assignment in A, and
ϕ is a standard sentence of L, i.e., ϕ ∈ SFML ∩ STL, then a satisfies ϕ in A

iff ϕ is true in A, i.e., A, a |= ϕ iff A |= ϕ.

Exercise 8.2.2 Prove the above lemma 515. (Hint: let Γ = {ϕ ∈ SFML : for
all L-models A and assignments a in A, if ϕ ∈ STL, then A, a |= ϕ iff A |= ϕ}.
Show by induction that SFML ⊆ Γ.

8.3 The Thesis of Anti-Essentialism

Logical atomism is the paradigmatic ontological framework for the validity of
the thesis of anti-essentialism, that is, the thesis that if a predicate expression
or open formula ϕ can be true of some individuals in a given universe (satisfying
given identity-difference conditions with respect to the variables free in ϕ), then
ϕ can be true of any individuals in that universe (satisfying the same identity-
difference conditions). Or equivalently, if ϕ must be true of some individuals
in a given universe (satisfying given identity-difference conditions with respect
to the variables free in ϕ), then ϕ must be true of any individuals in that
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universe (satisfying the same identity-difference conditions). In other words, no
conditions are essential to some objects that are not essential to all, which is as it
should be if necessity means logical necessity. What this shows is that quantified
modal logic does not in itself commit us to any nontrivial form of essentialism,
and in fact anti-essentialism is validated in the case of logical necessity. It was
Rudolf Carnap who in 1946 first formulated this thesis.2 It was formulated again
much later in 1969 by Terence Parsons.3 However, whereas Carnap showed that
the thesis is logically true (in his state-description semantics), Parsons showed
only that the thesis is consistent (in a “cut down” semantics).

We can characterize the thesis of anti-essentialism in a precise way. We do
this by first defining what we mean by specific identity-difference conditions for
distinct individual variables.

Definition 516 If x1, ..., xn are distinct variables, then an identity-difference
condition for x1..., xn is a conjunction ϕ of one each but not both of the formulas
(xi = xj) or (xi 
= xj), for all i, j such that 1 ≤ i < j ≤ n, and, in addition, for
i, j, k ≤ n, if (xi = xj) and (xi = xk) are conjuncts of ϕ, then (xj 
= xk) is not
a conjunct of ϕ.

Note: Because there are only a finite number of non-equivalent identity-
difference conditions for x1, ..., xn, we can assume an ordering ID1(x1, ..., xn), ...,
IDj(x1, ..., xn) of all of the non-equivalent conditions.

The modal thesis of anti-essentialism may now be represented by every
formula of the form

∃x1...∃xn[IDj(x1, ..., xn) ∧ �ϕ] → ∀x1...∀xn[IDj(x1, ..., xn) → �ϕ],

or, equivalently, of the form

∃x1...∃xn[IDj(x1, ..., xn) ∧ �ϕ] → ∀x1...∀xn(IDj(x1, ..., xn) → �ϕ),

where x1, ..., xn are all the distinct individual variables occurring free in ϕ.
As indicated by our informal remarks, it can be shown (as a consequence of
the following lemma and definition) that any of such formulas is L-true in the
primary semantics, which shows that this semantics is an appropriate framework
to formally represent logical atomism.

Definition 517 If L is a language, A and B are L-models, then h is an iso-
morphism of A with B, in symbols, A �h B, iff
(1) UA ≈h UB (i.e., h is a one-to-one function from UA onto UB);
(2) for all individual constants b ∈ L, extB,a(b) = h(extA,a(b)), and
(3) for n ∈ ω, all n-place predicate constants F ∈ L, and all d1, ..., dn ∈ UA,
extB,a(F ) = {〈h(d1), ..., h(dn)〉 : 〈d1, ..., dn〉 ∈ extA,a(F )}.

Lemma 518 If L is a language, A,B are L-models, and A �h B, then for all
standard formulas ϕ of L and all assignments a in A, A, a |= ϕ iff B, h ◦ a |= ϕ.

2See Carnap 1946, T10-3.c, p. 56.
3See Parsons 1969.
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Proof. Assume L to be a language and let Γ = {ϕ ∈ SFML : for all L-models
A,B, if A �h B, then for all standard formulas ϕ of L and all assignments
a in A, A, a |= ϕ iff B, h ◦ a |= ϕ}. By induction on formulas, we proceed to
show that SFML ⊆ Γ. But first we should remark that for all models A,B, if
A �h B, then for all terms ξ ∈ TML, and all assignments a in A, h(ext(ξ,A, a) =
ext(ξ,B, h ◦ a). The latter can be shown by induction on terms; we leave this
to the reader.

Suppose a, b ∈ TML. Then, A, a |= a = b iff (by the corresponding seman-
tic clause) extA,a(a) = extA,a(b) iff h(extA,a(a)) = h(extA,a(b)) iff (by above
remark) extB,h◦a(a) = extB,h◦a(b) iff (by the corresponding semantic clause)
B, h◦a |= a = b. Assume now F to be an n-place predicate of L, a0, ..., an ∈ TML
and show F (a0, ..., an−1) ∈ Γ. But A, a |= F (a0, ..., an−1) iff (by the semantic
clause for atomic formulas) 〈extA,a(a0), ..., extA,a(an)〉 ∈ extA,a(F ) iff (because
A �h B), 〈h(extA,a(a0)), ..., h(extA,a(an))〉 ∈ extB,a(F ) iff (by above remark)
〈extB,h◦a(a0)), ..., extB,h◦a(an)〉 ∈ extB,h◦a(F ) iff (by the corresponding seman-
tic clause) B, h ◦ a |= F (a0, ..., an−1). The cases where ϕ is either of the form
¬ψ or of the form ψ → δ can be shown using the inductive hypothesis and are
left to the reader as an exercise.

Assume that ψ ∈ Γ, x ∈ V R and show that ∀xψ ∈ Γ. Then A, a |= ∀xψ iff
(by the corresponding semantic clause) for all d ∈ UA,A, a(d/x) |= ψ iff (by the
inductive hypothesis) for all d ∈ UA,B, h ◦ a(d/x) |= ψ iff (since h ◦ a(d/x) =
h ◦ a(h(d)/x)) for all d ∈ UA, B, h ◦ a(h(d)/x) |= ψ iff (since h is one-to-one) for
all d ∈ UB, B, h ◦ a(h(d)/x) |= ψ iff (by semantic clause) B, h ◦ a |= ∀xψ.

Assume that ψ ∈ Γ, i.e., that A, a |= ψ iff B, h ◦ a |= ψ, and show that
�ψ ∈ Γ. For the left-to right direction, assume that A, a |= �ψ. Then (by the
semantic clause) for all L-models C, C, a |= ψ, if UA = UC. We now show that
B, h◦a |= �ψ. Assume that C is an L-model and that UB = UC. It then suffices
to show that C, h ◦ a |= ψ. First note that UA ≈h UB = UC, since A �h B.
Let R be that function with L as domain and such that for each individual
constant a ∈ L, R(a) = h̆(extC,a(a)), and for all n ∈ ω, n-place predicate
constants F ∈ L, R(F ) = {〈h̆(a0), ..., h̆(an−1)〉 : 〈a0, ..., an−1〉 ∈ extC,a(F )}. Let
D =〈UA, R〉. Then, by construction, D is an L-model, UA = UD, and D �h C. So,
by assumption, D, a |= ψ and therefore, by the inductive hypothesis, C, h◦a |= ψ.
As an exercise, we leave the proof of the opposite direction, i.e., of A, a |= �ψ,
if ψ ∈ Γ.

Exercise 8.3.1 Complete the proof of the above lemma 518.

Exercise 8.3.2 Show in terms of the lemma 518 that the primary semantics is
committed to the thesis of anti-essentialism, i.e., that the thesis is L-true with
respect to the primary semantics.

One of the important consequences of the modal thesis of anti-essentialism in
the present semantics is the reduction of all de re formulas to de dicto formulas.
A de re formula, it will be remembered, is one in which some individual variable
has a free occurrence in at least one of its subformulas of the form �ψ. A de
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dicto formula is a formula that is not de re. The fact that every de re formula
is logically equivalent to a de dicto formula is another indication of the cor-
rectness of our association of the present semantics with the ontology of logical
atomism.

Theorem 519 If L is a language, then for each de re standard formula ϕ of
L, there is a de dicto standard formula ψ of L such that ϕ ↔ ψ is L-true.4

Exercise 8.3.3 Prove the above theorem. (Hint: where x1, ..., xn are all
the distinct individual variables occurring free in ϕ and ID1(x1, ..., xn), ...,
IDk(x1, ..., xn) are all the nonequivalent identity-difference conditions for
x1, ..., xn, then the equivalence in question can be shown if ψ is obtained from ϕ
by replacing each subformula �χ of ϕ by:

[ID1(x1, ...xn) ∧ �∀x1...∀xn(ID1(x1, ..., xn) → χ)] ∨ ...∨
[IDk(x1, ..., xn) ∧ �∀x1...∀xn(IDk(x1, ..., xn) → χ)].)

It should be noted that the incorporation of identity-difference conditions
in the modal thesis of anti-essentialism disassociates those conditions from the
question of essentialism. This is certainly as it should be in logical atomism,
because in that framework, as F.P. Ramsey was the first to note, “numerical
identity and differences are necessary relations.”5

Another observation made by Ramsey in his adoption of the framework
of logical atomism was that the number of objects in the world is part of its
logical scaffolding.6 That is, for each positive integer n, it is either necessary or
impossible that there are exactly n individuals in the world; and if the number
of objects is infinite, then, for each positive integer n, it is necessary that there
are at least n objects in the world.7 This is so in logical atomism because every
possible world consists of the same totality of objects that are the constituents
of the atomic states of affairs constituting the actual world. In logical atomism,
in other words, an object’s existence is not itself an atomic state of affairs but
consists in that object’s being a constituent of atomic states of affairs.

8.4 Incompleteness of the Primary Semantics

It is noteworthy that every standard formula that is an axiom of a system in
QS5 is L-true and every inference rule of the system preserves L-truth.8 In
other words, as we indicate in theorem 522 below, a set of standard formulas Γ
logically implies a standard formula ϕ if it yields ϕ in a QS5 system, i.e., if ϕ is
derivable from Γ in a system in QS5, and therefore in particular every theorem
of a QS5 system is L-true.

4A proof of this theorem was first given in McKay 1975.
5Ramsey 1960, p. 155.
6Op. cit.
7Cf. Cocchiarella, 1987, chapter 7, section 5.
8Reminder: the systems in QS5 differ from one another only in what predicate or individual

constants they contain. The axioms and inference rules are otherwise the same.



8.4. INCOMPLETENESS OF THE PRIMARY SEMANTICS 163

Lemma 520 If Σ ∈ QS5, L is the language of Σ, ϕ ∈ SFML, and ϕ is an
axiom of Σ, then ϕ is L-true, i.e., |= ϕ.

Exercise 8.4.1 Prove the above lemma 520.

Lemma 521 Logical truth is preserved under the rules (MP ), (UG), and
(RN), i.e.,
(1) if |= (ϕ → ψ) and |= ϕ, then |= ψ;
(2) if |= ϕ, then |= ∀xϕ, for all x ∈ V R; and
(3) if |= ϕ, then |= �ϕ.

Exercise 8.4.2 Prove the above lemma 521.

Theorem 522 If Σ ∈ QS5, L is the language of Σ, Γ∪{ϕ} is a set of standard
formulas of L, and Γ �Σ ϕ, then Γ |= ϕ.

Exercise 8.4.3 Prove the above theorem 522. (Hint: where L is a language
such that Γ ∪ {ϕ} ⊆ SFML, A is an L-model, a is an assignment in A such
that A, a |= ψ, for all ψ ∈ Γ, it suffices to show that A, a |= ϕ. To show this let
∆ be a derivation of ϕ from Γ in QS5, and let A = {i ∈ ω : if i < D∆, then
A, a |= ∆i}. Show by strong induction that ω ⊆ A.)

Corollary 523 If Σ ∈ QS5, L is the language of Σ, and ϕ ∈ SFML, then �Σ ϕ
only if |= ϕ.

A natural question at this point is whether or not the converse of theorem
522 above also holds, i.e., where Σ ∈ QS5 and Γ ∪ {ϕ} ⊆ SFML ∩ FM(Σ),
then Γ |= ϕ only if Γ �Σ ϕ. Such a result would be a completeness theorem for
the primary semantics of logical truth and implication. The following theorem
and corollary show that the answer is negative and, in fact, no extension of a
QS5 system consisting of a recursive axiom set can shown to be complete for
the primary semantics.

Theorem 524 If ϕ,ψ are standard modal-free sentences in which the identity
sign does not occur, and ψ is satisfied in an infinite, but not in a finite model,
then ϕ is not L-true iff (ψ →¬�ϕ) is L-true.

Proof. Assume the antecedent and for the right-to-left direction that (ψ →
¬�ϕ) is logically true. We note that if ϕ were logically true, then it would be
true in every L-model for any language L of which ϕ is a formula; but then ϕ
would be true in an infinite L-model A in which ψ is satisfiable, in which case,
by assumption, ¬�ϕ would be true in A as well; but that is impossible because
ϕ would then be false in some L-model when by assumption ϕ is logically true,
and therefore true in every L-model. For the left-to-right direction, suppose ϕ
is not logically true. Let A be an arbitrary L-model for any language L of which
ϕ and ψ are formulas. It suffices to show that (ψ → ¬�ϕ) is true in A. If ψ
is not satisfiable in A, then (ψ → ¬�ϕ) is vacuously true in A. Suppose then
that ψ is satisfiable in A. Then, by hypothesis, D, the domain of A, is infinite.
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Now because ϕ is modal and identity free and not logically true, then, by the
Löwenheim-Skolem theorem, ϕ must be false in some L-model B having D as
its domain, and hence ϕ must be false in some B ∈ W (L, D). But then, by the
semantic clause for �, ¬�ϕ is true in A, and therefore so is (ψ → ¬�ϕ).

We note that there are modal-free sentences that are true in an infinite model
but false in any finite model. For example, where F is a two-place predicate
constant, then the following modal-free sentence,

∀x∃yF (x, y) ∧ ∀x¬F (x, x) ∧ ∀x∀y∀z[F (x, y) ∧ F (y, z) → F (x, z)],

amounts to an axiom of infinity. Suppose L is a language with such a sen-
tence. Then, because first-order logic is not decidable, it follows that the set
of standard modal-free non-logical truths of L in which the identity sign does
not occur is not recursively enumerable. Accordingly, by the above theorem, the
set of standard formulas of L, modal free or not, that are logically true is not
recursively enumerable and, therefore, there can be no recursive axiom set of
formulas that generates the logically true standard formulas of L, modal-free or
not. In particular, the set of logical truths of a language containing at least one
relational predicate is essentially incomplete.

Corollary 525 If L is a language containing at least one relational predicate,
then the set of formulas of L that are logically true is not recursively enumerable.

Exercise 8.4.4 Describe a standard modal-free formula ϕ such that
(1) the only non-logical constants that occur in ϕ are one-place predicate con-
stants
(2) ϕ is not logically true, and
(3) ¬�ϕ is not logically true.

Exercise 8.4.5 Where ϕ is a standard formula, x ∈ R, F is a one-place predi-
cate constant, and a is an individual constant, show that the following formulas
are logically true:
∀x�ϕ ↔ �∀xϕ,
∃x�ϕ ↔ �∃xϕ,
∃x�ϕ → �∃xϕ,
∀z∀x((x = z) → �(x = z)),
∃x�(x = a) → (∀x�Fx → �Fa).

8.5 Secondary Semantics for Necessity

We shall now consider a secondary interpretation of necessity analogous to that
described in chapter 5, §5.1, for modal propositional logic. In effect, rather
than consider the semantical satisfaction clause for necessity as quantifying over
all models (indexed by the language in question) having the same domain of
discourse as the model in question, we will allow for arbitrary restrictions or
‘cut-downs’ in this use of ‘all’.
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Definition 526 If L is a language, A is a class of L-models such that for all
B,C ∈ A, UC = UB, A ∈ A, a is an assignment in A, and ϕ ∈ SFML, then:
(1) if ϕ is an identity formula ζ = η, where ζ, η ∈ TML, then a satisfies ϕ in
A at A iff extA,a(ζ) = extA,a(η),
(2) if ϕ is F (ζ0, ..., ζn−1), where F is an n-place predicate constant in L and
ζ ∈ TMn

L , then a satisfies ϕ in A at A iff 〈extA,a(ζ0), ..., extA,a(ζn−1)〉 ∈
extA,a(F );
(3) if ϕ is ¬ψ, where ψ is a standard formulas of L, a satisfies ϕ in A at A

iff a does not satisfy ψ in A at A;
(4) if ϕ is (χ → ψ), where χ, ψ are standard formulas of L, then a satisfies ϕ
in A at A iff either a does not satisfy χ in A at A or a satisfies ψ in A at A;
(5) if ϕ is ∀xψ, where ψ is a standard formula of L and x ∈ V R, then a

satisfies ϕ in A at A iff for all d ∈ UA, a(d/x) satisfies ψ in A at A;
(6) if ϕ is �ψ, where ψ is a standard formula of L, then a satisfies ϕ in A
at A iff for all B ∈ A, a satisfies ψ in A at B.

Convention: Where L is a language and A is a class of L-models such that
for all A,B ∈ A, UA = UB, we will say that A is a class of worlds indexed
by L.

Before proceeding to define truth and entailment on the basis of the above
characterization of satisfaction, we will make a further assumption concerning
the class of models relative to which a formula will be evaluated. This assump-
tion corresponds to the idea that proper names are rigid designators, an idea
which we already introduced in the previous chapter. Accordingly, we shall stip-
ulate that all of the models that are members of a class of models indexed by
L agree on their interpretations of the individual constants of L.

Assumption: Let A be a class of worlds indexed by L. If B,A ∈ A and a is
an individual constant of L, then extA,a(a) = extB,a(a).

This is an assumption that we could have stipulated from the start for the
primary semantics, because in the framework of logical atomism the meaning of a
name is the object it denotes. Within this philosophical theory, different identity
criteria have no bearing on the simple objects of the ontology. But aside from
logical atomism, there are other philosophical frameworks that also take proper
names to be rigid designators and that could offer a ground of justification for
the above assumption concerning the secondary semantics. This in fact is the
case in the framework defended by Saul Kripke in his 1972 book Naming and
Necessity, where according to Kripke the function of a proper name is only
to denote, and not to describe the object denoted. This applies even when the
denotatum of a proper name is fixed by means of a definite description, because,
according to Kripke, the relation between a proper name and a description used
to fix the denotatum of that name is not that of synonymy.

Definition 527 If L is a language, ϕ ∈ SFML, A is a class of worlds indexed
by L and A ∈ A, then:
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(1) ϕ is true in A at A iff every assignment in A satisfies ϕ in A at A;
(2) ϕ is valid in A iff for all B ∈ A, ϕ is true in A at B.

Definition 528 If L is a language, Γ ∪ {ϕ} ⊆ SFML, then:
(1) Γ entails2 ϕ, in symbols, Γ |=2 ϕ, iff for every class A of worlds indexed
by L, for all A ∈ A, and for all assignments a in A, if a satisfies every member
of Γ in A at A, then a satisfies ϕ in A at A;
(2) ϕ is universally valid2, in symbols, |=2 ϕ, iff ϕ is valid in every class of
worlds indexed by L.

We now stipulate that because of the above assumption the necessity of
identity thesis will count as an axiom in any of the quantified modal calculi
characterized in definition 475 of §7.5. We will also assume that the thesis of the
necessity of non-identicals is an axiom of all of the calculi in QKr. Because of
lemma 484 of §7.5, however, this latter assumption is not needed for extensions
of members of QM such as the QS5 systems.

Assumption: If Σ ∈ QML, Σ ∈ QKr and L is the language of Σ and is not
an extension of a member QM , then {χ ∈ FML : χ is (a = b −→ �a = b)
or (a 
= b −→ �a 
= b), where a and b are any individual constants in
L} ⊆ Ax(Σ).

Assumption: If Σ ∈ QML, Σ is an extension of a member of QM and L is
the language of Σ, then {χ ∈ FML : χ is (a = b −→ �a = b), where a
and b are individual constants in L} ⊆ Ax(Σ).

As with the primary semantics, QS5 systems are strongly sound with respect
to secondary logical truth and secondary entailment; that is, a set of standard
formulas Γ entails2 a standard formula ϕ, if ϕ is derivable from Γ in a QS5
system.

Theorem 529 If Σ ∈ QS5, L is the language of Σ, and Γ ∪ {ϕ} ⊆ SFML,
then Γ �Σ ϕ only if Γ |=2 ϕ.

Exercise 8.5.1 Prove the above theorem 529.

In contrast with the primary semantics of logical necessity, the secondary
semantics of necessity is recursively axiomatizable by the QS5 systems, as we
indicate in the next theorems. But first we will formulate two lemmas instru-
mental in the proofs of these theorems.

Lemma 530 Let L be a language, A a class of worlds indexed by L, and B ∈ A.
If ϕ ∈ SFML and y can be properly substituted for x in ϕ, then a(x/a(y))
satisfies ϕ in A at B if and only if a satisfies ϕ(y/x) in A at B.

Lemma 531 Let L be a language, A a class of worlds indexed by L, B ∈ A
and ϕ ∈ SFML. If ψ is a rewrite of ϕ, then a satisfies ϕ in A at B if and only
if a satisfies ψ in A at B.
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Exercise 8.5.2 Prove above lemmas 530 and 531.

Theorem 532 Let Σ ∈ QS5, L the language of Σ, and K ⊆ SFML. If K is
consistent in Σ, then there is a class A of worlds indexed by L, a model A ∈ A,
and an assignment a in A such that a satisfies every member of K in A at A.

Proof. Assume the hypothesis. By the remark immediately following corollary
493, we can assume that there are infinitely many variables not occurring in the
formulas of K. Therefore, by theorem 491, there is a maximally Σ-consistent
set ∆∗ of formulas of SFML (i.e., ∆∗ ⊆ SFML and ∆∗ ∈ MCΣ) such that
K ⊆ ∆∗and ∆∗ is ω/∃-complete in the language of Σ.

We define � to be the relation among individual terms t, t́ ∈ TML such that
t � t́ iff t = t́ ∈ ∆∗. By lemma 465, � is an equivalence relation. Let [t] be
the equivalence class under the relation � determined by the individual term
t and set D∗ = {[t] : t ∈ TML}. Also, let A∆∗ be the model 〈D∗,R∗〉, where
R∗ is a function with L as domain, such that (1) for all n ∈ ω and all n-place
predicate constants F ∈ L, R∗(F ) = {〈[t1], ..., [t1]〉 : Ft1...t1 ∈ ∆∗}, and (2) for
each individual constant a ∈ L, R∗(a) = [a]. Because ∆∗ is ω/∃-complete in the
language of Σ and for every term t ∈ TML, ∃x(t = x) ∈ ∆∗ (given that Σ ∈
QML ), if t ∈ TML, then there is a variable x such that [t] = [x].

Let W be the set of maximally Σ-consistent sets Γ of standard formulas of
L such that (1) Γ is ω/∃-complete, (2) �ψ ∈ Γ, if �ψ ∈ ∆∗, and (3) a = b ∈ Γ
if and only if a = b ∈ ∆∗. For every Γ ∈ W, let BΓ be the model 〈DΓ,RΓ〉,
where DΓ = D∗ and RΓ is a function with L as domain such that (1) for all
n ∈ ω and all n-place predicate constants F ∈ L, RΓ(F ) = {〈[t0], ..., [ tn−1]〉 :
F (t0, ..., tn−1) ∈ Γ}, and (2) for each individual constant a ∈ L, RΓ(a) = [a].

Now let W ∗ be the set of all models BΓ, for Γ ∈ W. By construction, ∆∗ ∈ W

and so W ∗ 
= 0. Obviously, for all BΓ ∈ W ∗, UA = UB and so W ∗ is a class of
worlds indexed by L. Let a be the function with V R as domain such that for
every x ∈ V R, a(x) = [x]. Clearly, for every model BΓ in W ∗, a is an assignment
in BΓ. By induction on standard formulas of L, we shall now show that for all
Γ ∈ W and standard formula ψ of L, a satisfies ψ in W ∗ at BΓ if and only if
ψ ∈ Γ.

Suppose first that ψ is of the form (ζ = η). Then, a satisfies ψ in W ∗ at BΓ if
and only if extBΓ,a(ζ) = extBΓ,a(η) iff [ζ] = [η] if and only if ζ = η ∈ ∆∗ if and
only if (by definition of W) (ζ = η) ∈ Γ. Now, if ψ is of the form F (ζ0, ..., ζn−1),
then a satisfies ψ in W ∗ at BΓ if and only if 〈extBΓ,a(ζ0), ..., extBΓ,a(ζn−1)〉 ∈
extBΓ,a(F ) if and only if 〈[ζ0], ..., [ζn−1]〉 ∈ RΓ(F ) if and only if F (ζ0, ..., ζn−1) ∈
Γ. The cases where ψ is either of the form ¬ϕ or of the form ϕ → δ can be shown
using the inductive hypothesis, and they are left to the reader as an exercise.
So, only those cases where ψ is either ∀xδ or �δ, for some standard formula δ
remain to be shown.

Let ψ be ∀xϕ. Then, a satisfies ∀xϕ in W ∗ at BΓ iff (by the semantic clause)
for all d ∈ UBΓ , a(d/x) satisfies ϕ in W ∗ at BΓ, i.e., if and only if (by definition
of UBΓ) for every t ∈ TML, a([t]/x) satisfies ϕ in W ∗ at BΓ if and only if (by
above remark concerning the terms of L) for every y ∈ V R, a([y]/x) satisfies ϕ
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in W ∗ at BΓ if and only if (by lemma 531) for every y ∈ V R and formula ψ
that is a rewrite of ϕ with respect to y, a([y]/x) satisfies ψ in W ∗ at BΓ if and
only if (by lemma 530) for every y ∈ V R and formula ψ which is a rewrite of ϕ
with respect to y, a satisfies ψ(y/x) in W ∗ at BΓ if and only if (by the inductive
hypothesis) for every y ∈ V R and formula ψ that is a rewrite of ϕ with respect
to y, ψ(y/x) ∈ Γ if and only if (by the ω-∃/completeness of Γ, lemmas 484 and
485) ∀xϕ ∈ Γ.

We now proceed to show the case where ψ is �χ. Clearly, by definition, a

satisfies �χ in W ∗ at BΓ if and only if for all C ∈ W ∗, a satisfies χ in W ∗ at C,
i.e., if and only if for all Θ ∈ W, a satisfies χ in W ∗ at CΘ. Now, if �χ ∈ Γ,
then (by definition of W and an axiom of S5 systems), ��χ ∈ ∆∗ and so, by
theorem 121 for QS5 systems, �χ ∈ ∆∗, from which it follows that χ ∈ Θ, for
all Θ ∈ W. Therefore, by the inductive hypothesis, a satisfies χ in W ∗ at CΘ,
for all Θ ∈ W.

Suppose now that �χ /∈ Γ. It suffices to show that there is a B ∈ W ∗

such that a∗ satisfies ¬χ in W ∗ at B. Assume an ordering δ1, ..., δn... (n ∈ ω) of
standard formulas of L of the form ∃yϕ. First note that if γ0, ..., γn are standard
formulas of L, then (by CN-logic, the ∀-distribution and ∀-vacuous axioms,
lemma 485, the RN rule, axiom of distribution of the necessity operator and
definitions) if �(γ0 ∧ ... ∧ γn ∧ ∃yϕ) ∈ Γ and z is a variable new to γ0, ..., γn,
∃yϕ, then �∃z(γ0 ∧ ... ∧ γn ∧ ϕ(z/y)) ∈ Γ. Consequently, by Q-axiom (8) and
the MP rule, ∃z�(γ0 ∧ ... ∧ γn ∧ ϕ(z/y)) ∈ Γ. Since Γ is ω/∃-complete and z
is new to γ0, ..., γn, ∃yϕ, there is a individual variable x other than z which is
free for z in ϕ(z/y) such that �(γ0 ∧ ... ∧ γn ∧ ϕ(x/y)) ∈ Γ.

Now, recursively define a sequence of formulas ψ0, ..., ψn...(n ∈ ω). as follows.
i) ψ0 = ¬χ,
ii) If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn+1 = ψn,
iii) If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ and δn+1 is of the form ∃yϕ, then ψn+1 =

ϕ(x/y), where x is the first variable other than y that is free for y in ϕ such
that �(ψ0 ∧ ... ∧ ψn ∧ ϕ(x/y)) ∈ Γ.

On the basis of the above recursion, we will first show by induction that for
all n ∈ ω, �(ψ0 ∧ ... ∧ ψn) ∈ Γ and therefore that for all n ∈ ω, {ψ0, ..., ψn}
is consistent. Clearly, it follows that it holds for n = 0, because if �ψ0 /∈ Γ,
then given that Γ ∈ MCΣ, �χ ∈ Γ, which is impossible by the consistency of
Γ, since by assumption �χ /∈ Γ. Assume now the hypothesis of weak induction,
that is, �(ψ0 ∧ ... ∧ ψn) ∈ Γ. If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn = ψn+1

and so �(ψ0 ∧ ...∧ψn+1) ∈ Γ. On the other hand, if �(ψ0 ∧ ...∧ψn ∧ δn+1) ∈ Γ,
then �(ψ0 ∧ ... ∧ ψn+1) ∈ Γ. It follows that {ψn : n ∈ ω} is Σ-consistent, since
otherwise �Σ ¬(ψ0 ∧ ...∧ ψn), for some positive integer n, and therefore by RN
and the fact that Γ ∈ MCΣ, ¬�(ψ0 ∧ ...∧ ψn) ∈ Γ, which is impossible because
�(ψ0 ∧ ... ∧ ψn) ∈ Γ.

Now let Θ = {ϕ : for some χ, ϕ = �χ ∈ Γ} ∪ {ψn : n ∈ ω}. By reduc-
tio ad absurdum, we will show that Θ is Σ-consistent. So suppose Θ is not Σ-
consistent. Then there are n, m ∈ ω , such that {�ϕ0, ....,� ϕm, ψ0, ..., ψn} ⊆ Θ
and �Σ ¬(�ϕ0∧ ....∧�ϕm∧ψ0∧ ...∧ψn). So, by the RN rule and definitions, �Σ

¬�(�ϕ0 ∧ ....∧ �ϕm ∧ψ0 ∧ ...∧ψn); but Γ ∈ MCΣ, and hence ¬�(�ϕ0 ∧ ....∧
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�ϕm ∧ ψ0 ∧ ... ∧ ψn) ∈ Γ. On the other hand, since {�ϕ0, ...,�ϕm} ⊆
Γ, Γ ∈ MCΣ, Σ ∈ QS5, then by theorem 121 (part 3) and CN-logic,
{��ϕ0, ...,��ϕm} ⊆ Γ and so (given that �(ψ0 ∧ ... ∧ ψn) ∈ Γ), by theo-
rem 58 (part 16), �(�ϕ0∧ ....∧�ϕm∧ψ0∧ ...∧ ψn) ∈ Γ, which is impossible by
the Σ-consistency of Γ. Therefore, Θ is Σ-consistent. By Lindenbaum’s method,
extend Θ to a maximally Σ-consistent set Θ∗.

Now, by construction of Θ∗and definition of W , {�ϕ : �ϕ ∈ ∆∗} ⊆ Θ∗ and
Θ∗ is ω/∃-complete. Also, by the axiom of the necessity of identicals and lemma
483, a = b ∈ Θ∗ if and only if a = b ∈ ∆∗. Therefore, Θ∗ ∈ W and consequently
AΘ∗ ∈ W . By the inductive hypothesis, a satisfies χ in W ∗ at AΘ∗ if and only
if χ ∈ Θ∗, and so a satisfies ¬χ in W ∗ at AΘ∗ if and only if ¬χ ∈ Θ∗. But by
construction, ¬χ ∈ Θ∗, and so a satisfies ¬χ in W ∗at AΘ∗ . Therefore, if �γ /∈ Γ,
there is a B ∈ W ∗ such that a satisfies ¬χ in W ∗ at B∗.

We have shown above that for every standard formula ψ of L, Γ ∈ W, a

satisfies ψ in W ∗ at BΓ if and only if ψ ∈ Γ, and so, in particular, that for every
standard formula ψ of L, a in A∆∗ , a satisfies ψ in W ∗ at A∆∗ if and only if
ψ ∈ ∆∗, given that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for
every ψ ∈ K, a satisfies ψ in W ∗ at A∆∗ , which proves the theorem.

Exercise 8.5.3 Complete the proof of theorem 532.

Exercise 8.5.4 Show the converse of theorem 529, i.e., show that if Σ ∈ QS5,
L is the language of Σ, and Γ ∪ {ϕ} ⊆ SFML, then Γ |=2 ϕ only if Γ �Σ ϕ.

Note that despite the significance of the above completeness theorem, the
secondary semantics might be open to philosophical criticism because it does
not validate the thesis of anti-essentialism. This is so because necessity no longer
represents an invariance through all the possible worlds of a given logical space
but only through those in arbitrary nonempty sets of such worlds, in which case
the meaning of necessity is not that of logical necessity.

Exercise 8.5.5 Show that the secondary semantics does not validate the thesis
of anti-essentialism.

8.6 Actualist-Possibilist Secondary Semantics

As represented by a model (indexed by a given language), the notion of a possible
world involves a single comprehensive domain or universe of discourse. Relative
to such a domain, our primary satisfaction clause for necessity construed ne-
cessity as a kind of quantifier over all the possible worlds (i.e., models indexed
by the language in question) having the same universe of discourse. This is in
accord with logical atomism, an ontology in which every possible world consists
of the same totality of objects that are the constituents of the atomic states
of affairs constituting the actual world. In logical atomism, it should be noted,
an object’s existence is not itself an atomic state of affairs but consists in that
object being a constituent of atomic states of affairs.
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One consequence of the fact that every possible world (of a given logical
space) consists of the same totality of objects is the logical truth in the primary
semantics of the Carnap-Barcan formula and its converse. As already noted in
§7.4, Rudolf Carnap was the first to argue for the logical truth of this principle
(in Carnap 1946 and 1947), as opposed to merely assuming it as an axiom.
Carnap’s view of the objects in this fixed domain or universe of discourse was
that they are all existent, concrete objects. What exists in one possible world
on this view also exists in any other possible world.

Such a view is appropriate for an ontology such as logical atomism in which
there are no modal facts (as explained in chapter 4, §4.3), but it is not appro-
priate in a more robust ontology in which there are modal facts such as that
what exists might possibly not have existed and that there might possibly have
existed objects that do not in fact exist.

Using only standard formulas, we might understand the formal analysis of
“what exists might not have existed” to be:

∀x�¬∃y(x = y).

This analysis in effect construes existence as analyzable through an object-
language version of Quine’s dictum to be is to be the value of a bound variable.
That is, reading ‘E!’ as ‘exists’ we may abbreviate the present syntactical ex-
pression of existence as follows:

E!(x) =df ∃y(x = y),

where x and y are different variables. On this analysis of existence, however,
not only is the statement that everything exists universally valid, but so is the
statement that everything necessarily exists. That is, both ∀x∃y(x = y) and
∀x�∃y(x = y) are universally valid. The above purported analysis of “what
exists might not have existed” is not universally valid, in other words.

Now perhaps it might be thought that Russell’s theory of descriptions could
be used in the present semantics to say of an object that is the denotatum
(in a given world) of a definite description that that object might not have
existed; or formally, using ι as the symbol for Russell’s definite description
operator, E!ιxF (x)∧�¬E!ιxF (x), which, expanded according to Russell’s the-
ory, is:

∃x∀y(Fy ↔ y = x) ∧ �¬∃x∀y(Fy ↔ y = x).

In the present semantics, however, the object that is the denotatum of the
definite description in a given world does not itself fail to exist in an alternative
possible world, but rather only that it is not in that world the denotatum of the
same description, because, e.g., the description picks out a different object, or is
improper, in that world. Moreover, even if we were to reconstrue possible non-
existence in the above manner, this interpretation still fails to provide for an
analysis of the generality of the thesis that what exists might not have existed.

In regard to a formal analysis of the sentence, ‘there might possibly have
existed objects that do not in fact exist’, one might consider this as having
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an elliptical reference to some property (e.g., being-a-unicorn), which though
vacuous—i.e., not possessed by any object in the given world—is nonvacuous in
an alternative possible world. Such an interpretation can be appropriately ana-
lyzed in a second-order version of the present semantics. An alternative analysis,
however, would find the notion of possible existence as having ontological signif-
icance. On this alternative, what possibly exists is what actually exists in some
possible world, which means that it is the possibilia that are the same from one
world to another, and not the objects that exist in each world. In this way we
have a natural ontological interpretation for having a single fixed domain that
is common to all the worlds (within a given class of worlds). That is, the single
fixed domain of discourse common to all the worlds within a class of worlds
is, on this interpretation, not the set of objects that actually exist in each of
the worlds but rather the set of objects that only possibly exist in those worlds.
Accordingly, on this interpretation the standard universal quantifier ranges over
not only the existing objects in a given world but over all of the possibilia, i.e.,
the objects that exist in some world or other. To quantify over just the existing
objects of a given world we can bring back the universal e-quantifier and redefine
the predicate for existence E! as follows:

E!(x) =df ∃ey(x = y).

Of course, on this approach, we are not to have either ∀x∃ey(x = y) or
∀x�∃ey(x = y) as universally valid. That is, where “everything” is construed
as a quantifier over possibilia, neither the statement that everything exists nor
the statement that everything necessarily exists is to be universally valid. In
addition, the formal counterpart in this notation of “what exists might not have
existed,” namely, ∀ex�¬∃ey(x = y), is not to be universally invalid.

We will adopt this approach to the analysis of existence. We do so, moreover,
with the acknowledgment that much of the philosophical acceptability of this
analysis turns upon the acceptability of the notion of a class of worlds with its
arbitrary (and yet to be explained) restrictions or “cut-downs” on the meaning
of ‘all’ in the semantic clause for necessity, as well as the criteria (which also have
yet to be explained) for identifying the “same” individual through the different
worlds of a class of worlds.

Convention: Hereafter, we shall understand by a class of worlds an ordered
pair 〈A, e〉, where A is a class of worlds in the original sense and e is a
function with A as domain and such that for all A ∈ A, e(A) ⊆ UA.

We will understand e(A) to be the set of objects actually existing in the
model (possible world) A and continue to take UA to be the domain or universe
of discourse of A, except that now that domain is understood ontologically to be
the set of possibilia of A. In addition, we will retain the satisfaction clauses of
definition 526 above except for replacing A by 〈A, e〉 throughout and applying
each of the clauses to all of the formulas and not just the standard formulas of
the language in question.

Let us now add the following satisfaction clause for the universal e-quantifier
to the six clauses of definition 526 as so revised.
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(7) if ϕ is a formula of L, then a satisfies ∀exϕ in 〈A, e〉 at A iff for all
d ∈ e(A), a(d/x) satisfies ϕ in 〈A, e〉 at A.

Truth and validity in a class of worlds 〈A, e〉 is to be understood as com-
pletely analogous to the notions of truth and validity in A as defined above in
§8.5. Logical truth2 and entailment2 are revised accordingly, as follows:

Definition 533 If L is a language, Γ ∪ {ϕ} ⊆ FML, then:
(1) Γ e-entails2 ϕ (in symbols, Γ |=e

2 ϕ) iff for every class 〈A, e〉 of worlds
indexed by L, for all A ∈ A and for all assignments a in A, if a satisfies every
member of Γ in A at A, then a satisfies ϕ in A at A; and
(2) ϕ is a secondary e-logical truth (in symbols, |=e

2 ϕ) iff ϕ is valid in every
class of worlds indexed by L.

The above semantical analysis for existence and possible existence has not
been entirely faithful to our informal remarks, it should be noted. Informally,
we have interpreted possible existence in a given world of a class of worlds as
existence in some possible world of that class of worlds. This suggests that where
〈A, e〉 is a class of worlds and A ∈ A, then {d : for some B ∈ A, d ∈ e(B)}
should be identical with UA. In fact, however, we are allowing that there are
possibilia in A (and hence in every B ∈ A) that do not actually exist in any
possible world in A. The reason for this is that even though UA must be non-
empty, we want to allow that there need be no actually existing (concrete) object
in any given world B ∈ A. This may be a dubious metaphysical allowance
but we will allow it anyway. We can easily rectify the situation whenever we
wish by simply restricting all consideration to the classes of worlds in which
∀x�∃ey(x = y) is valid.

Exercise 8.6.1 Show that all of the following formulas are secondary e-logical
truths:
∀x�ϕ ↔ �∀xϕ
∃x�ϕ ↔ �∃xϕ
∃x�ϕ → �∃xϕ
∀x∃y�(x = y)
∀xϕ → ∀exϕ
∃x∃ey(x = y) ↔ ∃ex∃ey(x = y).

As with the previous secondary semantics, QS5 systems are sound with
respect to the new notion of entailment.

Theorem 534 If Σ ∈ QS5, L is the language of Σ, and Γ∪ {ϕ} ⊆ FML, then
Γ �Σ ϕ only if Γ |=e

2 ϕ.

Exercise 8.6.2 Prove the above theorem 534.

Let us note also that QS5 systems are complete with respect to the new
semantics. That is, for any language L, any formula ϕ entailed by a set of
formulas Γ of L can be derived from a QS5 system having L as its language.
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Lemma 535 Let L be a language, 〈A, e〉 a class of worlds indexed by L, and
B ∈ A. If ϕ ∈ FML and y can be properly substituted for x in ϕ, then a(x/a(y))
satisfies ϕ in 〈A, e〉 at B if and only if a satisfies ϕ(y/x) in 〈A, e〉 at B.

Lemma 536 Let L be a language, 〈A, e〉 a class of worlds indexed by L, B ∈ A
and ϕ ∈ FML. If ψ is a rewrite of ϕ, then a satisfies ϕ in 〈A, e〉 at B if and
only if a satisfies ψ in 〈A, e〉 at B.

Exercise 8.6.3 Prove the above lemmas 535 and 536.

Theorem 537 Let Σ ∈ QS5, L the language of Σ and K ⊆ FML. If K is
consistent in Σ, then there is a class 〈A, e〉 of worlds indexed by L, a model
A ∈ A and an assignment a in A such that a satisfies every member of K in
〈A, e〉 at A.

Proof. Assume the hypothesis. By the remark immediately following corollary
493, we can assume that there are infinitely many variables not occurring in the
formulas of K. Therefore, by theorem 491, there is a maximally Σ-consistent
set ∆∗ of formulas of FML, i.e., ∆∗ ⊆ FM(QS5) and ∆∗ ∈ MCQS5, such that
K ⊆ ∆∗and ∆∗ is ω/∃-complete, ω/∃e-complete and ω/�∃e-complete in the
language of Σ.

Now let � to be the relation among individual terms t, t́ ∈ TML such that
t � t́ iff t = t́ ∈ ∆∗. Clearly, by lemma 465 � is an equivalence relation.
Accordingly, let [t] be the equivalence class under the relation � determined
by the individual term t, and set D∗ = {[t] : t ∈ TML}. Let A∆∗ be the
model 〈D∗,R∗〉, where R∗ is a function with L as domain, such that (1) for
all n ∈ ω and all n-place predicate constants F ∈ L, R∗(F ) = {〈[t0], ..., [tn−1]〉 :
F (t0, ..., tn−1) ∈ ∆∗}, and (2) for each individual constant a ∈ L, R∗(a) = [a].
Now, given that ∆∗ is ω/∃-complete) in the language of Σ and for every term
t ∈ TML, ∃x(t = x) ∈ ∆∗, then for every t ∈ TML, there is a variable x such
that [t] = [x].

Let W be the set of maximally Σ-consistent sets Γ of formulas of L such
that (1) Γ is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete; (2) �ψ ∈ Γ,
if �ψ ∈ ∆∗; and (3) (a = b) ∈ Γ if and only if (a = b) ∈ ∆∗. For every Γ ∈ W,
let BΓ be the model 〈DΓ,RΓ〉, where DΓ = D∗ and RΓ is a function with L as
domain such that (1) for all n ∈ ω and all n-place predicate constants F ∈ L,
RΓ(F ) = {〈[t0], ..., [tn−1]〉 : F (t0, ..., tn−1) ∈ Γ}, and (2) for each individual
constant a ∈ L, RΓ(a) = [a].

Let W ∗ be the set of all models BΓ, for Γ ∈ W. By construction of ∆∗,
∆∗ ∈ W and so W ∗ 
= 0. Obviously, for all B ∈ W ∗, UA = UB. Now let e∗ be
that function with W ∗ as domain such that for every Γ ∈ W, e∗(BΓ) = {[t] ∈
D∗ : t ∈ TML and ∃ex(x = t) ∈ Γ, provided x /∈ OC(t)}. Clearly, 〈W ∗, e∗〉 is a
class of worlds indexed by L. Now, we note that because of the definition of W,
for every t ∈ TML and Γ ∈ W, if ∃ez(z = t) ∈ Γ, there is a variable x such that
∃ez(z = x) ∈ Γ and [t] = [x].

Let a be the function with V R as domain such that for every x ∈ V R,
a(x) = [x]. Clearly, for every model B in W ∗, a is an assignment in B. By
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induction on formulas of L, we show that for all Γ ∈ W and each formula ψ of
L, a satisfies ψ in 〈W ∗, e∗〉 at BΓ if and only if ψ ∈ Γ. Suppose first that ψ is of
the form (ζ = η). Then, a satisfies ψ in 〈W ∗, e∗〉 at BΓ if and only if extBΓ,a(ζ) =
extBΓ,a(η) iff [ζ] = [η] if and only if (ζ = η) ∈ ∆∗ if and only if (by definition
of W) (ζ = η) ∈ Γ. Now, if ψ is of the form F (ζ0, ..., ζn−1), then a satisfies ψ
in 〈W ∗, e∗〉 at BΓ if and only if 〈extBΓ,a(ζ0), ..., extBΓ,a(ζn−1)〉 ∈ extBΓ,a(F ) if
and only if 〈[ζ0], ..., [ζn−1]〉 ∈ RΓ(F ) if and only if F (ζ0, ..., ζn−1) ∈ Γ. The cases
where ψ is either of the form ¬ϕ or ϕ → δ can be shown using the inductive
hypothesis, and they are left to the reader as an exercise. We also leave as an
exercise the case where ψ is ∀xδ, being similar to the previous completeness
proof of theorem 532. We proceed then to show the cases where ψ is ∀exδ or
�δ, for some formula δ.

Let ψ be ∀exϕ. Then, a satisfies ∀exϕ in 〈W ∗, e∗〉 at BΓ iff for all d ∈
e∗(UBΓ), a(d/x) satisfies ϕ in 〈W ∗, e∗〉 at BΓ if and only if (by definition of
e∗(UBΓ)) for every ζ ∈ TML, if ∃ez(z = ζ) ∈ Γ, a([ζ]/x) satisfies ϕ in 〈W ∗, e∗〉
at BΓ if and only if (by above remark) for every y ∈ V R, if ∃ez(z = y) ∈ Γ,
a([y]/x) satisfies ϕ in 〈W ∗, e∗〉 at BΓ if and only if (by lemma 536) for every
y ∈ V R and formula χ that is a rewrite of ϕ with respect to y, if ∃ez(z = y) ∈ Γ,
then a([y]/x) satisfies χ in 〈W ∗, e∗〉 at BΓ if and only if (by lemma 535) for every
for every y ∈ V R and formula χ, which is a rewrite of ϕ with respect to y, if
∃ez(z = y) ∈ Γ, a satisfies χ(y/x) in 〈W ∗, e∗〉 at BΓ if and only if (by the
inductive hypothesis) for every y ∈ V R and formula χ, which is a rewrite of ϕ
with respect to y, if ∃ez(z = y) ∈ Γ, χ(y/x) ∈ Γ if and only if (by the ω/∃e-
completeness of Γ, lemma 484 concerning the law of universal instantiation and
lemma 485 concerning the law of rewrite of bound variables) ∀exϕ ∈ Γ.

Let ψ be �χ, for some formula χ. Clearly, by definition, a satisfies �χ in
〈W ∗, e∗〉 at BΓ if and only if for all C ∈ W ∗, a satisfies χ in 〈W ∗, e∗〉 at C if
and only if for all Θ ∈ W, a satisfies χ in 〈W ∗, e∗〉 at CΘ. Now, if �χ ∈ Γ, then
(by definition of W), ��χ ∈ ∆∗ and so, by theorem 121 for QS5, �χ ∈ ∆∗,
from which it follows that χ ∈ Θ, for all Θ ∈ W. Therefore, by the inductive
hypothesis, a satisfies χ in 〈W ∗, e∗〉 at CΘ, for all Θ ∈ W.

Now for the converse direction suppose that �χ /∈ Γ. It suffices to show
that there is a B ∈ W ∗ such that a∗ satisfies ¬χ in 〈W ∗, e∗〉 at B. Assume
an ordering δ1, ..., δn.., (n ∈ ω) of the formulas of L of the form ∃yϕ, ∃eyϕ or
�(α1 ∧ �(α2 ∧ ... ∧ �(αm ∧ �∃eyϕ)...). If γ0, ..., γn are formulas of L, then:

(a) By the same reasons as in the previous completeness proof of theorem
532, if �(γ0 ∧ ... ∧ γn ∧ ∃yϕ) ∈ Γ, there is a individual variable x other than z
which is free for z in ϕ such that �(γ0 ∧ ... ∧ γn ∧ ϕ(z/y)) ∈ Γ.

(b) If �(γ1 ∧ ... ∧ γn ∧ ∃eyϕ) ∈ Γ and z is a variable new to γ1, ..., γn, ∃eyϕ,
then by UGe, CN-logic, the ∀e-distribution, lemma 485, Q-axioms 6 and 7, RN ,
axiom of distribution of the necessity operator and definitions, �∃ez(γ1 ∧ ... ∧
γn∧ϕ(z/y)) ∈ Γ. But then, because Γ is ω/�∃e-complete, there is an individual
variable x that is free for y in ϕ such that �(γ1∧...∧γn∧ϕ(x/y)∧∃ey(y = x)) ∈ Γ.

(c) If �(α1∧�(α2∧...∧�(αm∧�∃eyϕ)...)) ∈ Γ, then by ω/�∃e-completeness
there is a variable y other than x that can be properly substituted for x in ϕ
such that �(α1 ∧ ... ∧ �(αm ∧ �(ϕ(y/x) ∧ ∃ex(y = x)))...) ∈ Γ.
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Now, recursively define a sequence of formulas ψ0, ..., ψn... (n ∈ ω) as follows:
i) ψ0 = ¬χ,
ii) If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ , then ψn+1 = ψn,
iii) If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then

iiia) if δn+1 is of the form ∃yϕ, ψn+1 = ϕ(x/y), where x is the first variable
other than y which is free for y in ϕ such that �(ψ0 ∧ ... ∧ ψn ∧ ϕ(x/y)) ∈ Γ;

iiib) if δn+1 is of the form ∃eyϕ, ψn+1 = ϕ(x/y), where x is the first variable
other than y which is free for y in ϕ such that �(ψ0∧ ...∧ψn∧ϕ(x/y)∧∃ey(y =
x)) ∈ Γ; and

iiic) if δn+1 is of the form �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �∃eyϕ)...), ψn+1 =
�(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ ϕ(x/y) ∧ ∃ey(y = x)), where x is the first variable
other than y which is free for y in ϕ such that �(ψ0 ∧ ... ∧ ψn ∧�(α1 ∧�(α2 ∧
... ∧ �(αn ∧ ϕ(x/y) ∧ ∃ey(y = x)...)) ∈ Γ.

We now show by induction that for all n ∈ ω, �(ψ0 ∧ ... ∧ ψn) ∈ Γ. Clearly,
this holds for n = 0, since if �ψ0 /∈ Γ, then because Γ ∈ MCΣ, then ¬�ψ0 ∈ Γ,
i.e., ¬�¬χ ∈ Γ, and therefore �χ ∈ Γ, which is impossible by the consistency of
Γ. Assume now the hypothesis of weak induction, that is, �(ψ0 ∧ ... ∧ ψn) ∈ Γ.
If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn = ψn+1 and so �(ψ0 ∧ ... ∧ ψn+1) ∈ Γ.
On the other hand, if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then �(ψ0 ∧ ... ∧ ψn+1) ∈ Γ.

From the above, it follows that {ψn : n ∈ ω} is Σ-consistent. As an exer-
cise, we leave this to the reader. Now, let Θ = {ϕ : for some χ, ϕ = �χ ∈
Γ} ∪ {ψn : n ∈ ω}. By reductio ad absurdum, we will show that Θ is Σ-
consistent. So suppose Θ is not Σ-consistent. Then there are n, m ∈ ω , such that
{�ϕ0, ....,�ϕm, ψ0, ..., ψn} ⊆ Θ and �Σ ¬(�ϕ0∧....∧ �ϕm∧ψ0∧...∧ψn). So, by
the RN rule and definitions, �Σ ¬�(�ϕ0∧....∧ �ϕm∧ψ0∧...∧ψn); but because
Γ ∈ MCΣ, then ¬�(�ϕ0 ∧ .... ∧ �ϕm ∧ ψ0 ∧ ... ∧ ψn) ∈ Γ. On the other hand,
since {�ϕ0, ...,�ϕm} ⊆ Γ, Γ ∈ MCΣ, Σ ∈ QS5, then by theorem 121(part 3)
and CN-logic, {��ϕ0, ...,��ϕm} ⊆ Γ and so (given that �(ψ0 ∧ ...∧ψn) ∈ Γ),
by theorem 58 (part 16), �(�ϕ0∧ ....∧�ϕm∧ψ0∧ ...∧ψn) ∈ Γ, which is impos-
sible by the Σ-consistency of Γ. Therefore, Θ is Σ-consistent. By Lindenbaum’s
lemma, extend Θ to a maximally Σ-consistent set Θ∗.

Now, by construction, {�ϕ : �ϕ ∈ ∆∗} ⊆ Θ∗ and Θ∗ is ω/∃-complete,
ω/∃e-complete and ω/�∃e-complete such that Θ ⊆ Θ∗. Also, by construction of
Θ∗, {ϕ : �ϕ ∈ Γ} ⊆ Θ∗; but since �ϕ → ��ϕ is a theorem of QS5, then by the
assumption that Γ ∈ W, {�ϕ : �ϕ ∈ ∆∗} ⊆ Γ. Therefore, {ϕ : �ϕ ∈ ∆∗} ⊆ Θ∗.
But then, by the necessity of identity axiom, a = b ∈ Θ∗ if a = b ∈ ∆∗. Also, by
the theorem of QS5 of the necessity of nonidentity, a = b ∈ ∆∗ if a = b ∈ Θ∗ and
consequently Θ∗ ∈ W. Clearly then AΘ∗ ∈ W ∗. By the inductive hypothesis,
a satisfies χ in 〈W ∗, e∗〉 at AΘ∗ if and only if χ ∈ Θ∗, and so a satisfies ¬χ in
〈W ∗, e∗〉 at AΘ∗ if and only if ¬χ ∈ Θ∗. But by construction, ¬χ ∈ Θ∗ and so
a satisfies ¬χ in 〈W ∗, e∗〉 at AΘ∗ . Therefore, if �γ /∈ Γ, then there is a B ∈ W ∗

such that a satisfies ¬χ in 〈W ∗, e∗〉 at B∗.
We have shown above that for every formula ψ of L, if Γ ∈ W, then a satisfies

ψ in 〈W ∗, e∗〉 at BΓ if and only if ψ ∈ Γ; in particular, for every formula ψ of
L, a in A∆∗ , a satisfies ψ in 〈W ∗, e∗〉 at A∆∗ if and only if ψ ∈ ∆∗, given
that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for every ψ ∈ K, a
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satisfies ψ in 〈W ∗, e∗〉 at A∆∗ , which proves the theorem.

Exercise 8.6.4 Complete the proof of theorem 537.

As we already pointed out, a consequence of the above theorem is the strong
completeness of QS5 systems with respect to secondary entailment.

Theorem 538 Let Σ ∈ QS5, L the language of Σ and Γ ∪ {ϕ} ⊆ FML. If
Γ |=e

2 ϕ, then Γ �Σ ϕ.

Corollary 539 If Σ ∈ QS5, L is the language of Σ, and ϕ ∈ FML, then �Σ ϕ
iff |=e

2 ϕ.

Exercise 8.6.5 Prove the above theorem 538.

If we restrict secondary entailment to the e-formulas of a language L, then
the actualist modal logic QeS5 yields a completeness theorem similar to theorem
537 above but with respect to this restriction to secondary entailment between
e-formulas.

Theorem 540 Let Σ ∈ QeS5, L the language of Σ and Γ ∪ {ϕ} ⊆ FMe
L. If

Γ �Σ ϕ, then Γ |=e
2 ϕ.

Proof. Suppose Σ ∈ QeS5, Γ∪{ϕ} ⊆ FMe
L and Γ �Σ ϕ. By lemma 476 of §7.5,

Σ is a subsystem of some system Σ′ ∈ QS5, and therefore Γ �Σ′ ϕ. But then,
by above corollary 539, Γ |=e

2 ϕ.

Theorem 541 Let Σ ∈ QeS5, L the language of Σ and K ⊆ FMe
L. If K is

consistent in Σ, then there is a class 〈A, e〉 of worlds indexed by L, a model
A ∈ A, and an assignment a in A such that a satisfies every member of K in
〈A, e〉 at A.

Proof. Assume the hypothesis. By the remark immediately following corollary
493, we can assume that there are infinitely many variables not occurring in
the formulas of K. Therefore, by theorem 491 of §7.6, there is a maximally Σ-
consistent set ∆∗ of e-formulas of FMe

L, i.e., ∆∗ ⊆ FMe
L and ∆∗ ∈ MCQS5e ,

such that K ⊆ ∆∗and ∆∗ is ω/∃e-complete and ω/�∃e-complete in the language
of Σ.

Let us define � to be the relation among individual terms t, t′ ∈ TML such
that t � t′ iff t = t′ ∈ ∆∗. By lemma 465, � is an equivalence relation. Let
[t] be the equivalence class under the relation � determined by the individual
term t and set D∗ = {[t] : t ∈ TML}. Let A∆∗ be the model 〈D∗,R∗〉, where
R∗ is a function with L as domain, such that (1) for all n ∈ ω and all n-place
predicate constants F ∈ L, R∗(F ) = {〈[t0], ..., [tn−1]〉 : F (t0, ..., tn−1) ∈ ∆∗},
and (2) for each individual constant a ∈ L, R∗(a) = [a].

Let W be the set of maximally QS5e-consistent sets Γ of e-formulas of L
such that (1) Γ is ω/∃e-complete and ω/�∃e-complete; (2) ψ ∈ Γ, if �ψ ∈ ∆∗;
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and (3) a = b ∈ Γ if and only if a = b ∈ ∆∗. For every Γ ∈ W, let BΓ be
the model 〈DΓ,RΓ〉, where DΓ = D∗ and RΓ is a function with L as domain
such that (1) for all n ∈ ω and all n-place predicate constants F ∈ L, RΓ(F ) =
{〈[t0], ..., [tn−1]〉 : F (t0, ..., tn−1) ∈ Γ}, and (2) for each individual constant
a ∈ L, RΓ(a) = [a].

Now let W ∗ be the set of all models BΓ for Γ ∈ W. Because �ψ → ψ is an
axiom of Σ, then (by construction of ∆∗) ∆∗ ∈ W and so W ∗ 
= 0. Obviously,
for all B ∈ W ∗, UA = UB. Let e∗ be that function that has W ∗ as domain such
that for every Γ ∈ W, e∗(BΓ) = {[t] ∈ D∗ : t ∈ TML and ∃ex(x = t) ∈ Γ
provided x /∈ OC(t)}. Clearly, 〈W ∗, e∗〉 is a class of worlds indexed by L. Let
a be the function with V R as domain such that for every x ∈ V R, a(x) = [x].
Clearly, for every model B in W ∗, a is an assignment in B.

Along lines similar to those of the two previous completeness proofs, it can
be shown by induction on e-formulas of L that for all Γ ∈ W and e-formula
ψ of L, a satisfies ψ in 〈W ∗, e∗〉 at BΓ if and only if ψ ∈ Γ. We leave this to
reader as an exercise. Then, it follows that for every e-formula ψ of L , Γ ∈ W,
and assignment a in BΓ, a satisfies ψ in 〈W ∗, e∗〉 at BΓ if and only if ψ ∈ Γ,
and so, in particular, that for every e-formula ψ of L, a in A∆∗ , a satisfies ψ
in 〈W ∗, e∗〉 at A∆∗ if and only if ψ ∈ ∆∗, given that ∆∗ ∈ W. By construction
K ⊆ ∆∗, and consequently, for every ψ ∈ K, a satisfies ψ in 〈W ∗, e∗〉 at A∆∗ ,
which concludes the proof of theorem 541.

Exercise 8.6.6 Complete the proof of theorem 541.

Theorem 542 Let Σ ∈ QeS5, L the language of Σ and Γ ∪ {ϕ} ⊆ FMe
L. If

Γ |=e
2 ϕ, then Γ �Σ ϕ.

Exercise 8.6.7 Prove the above theorem 542.

8.7 Relational Model Structures

We will now introduce another restriction on the semantics of necessity. In
particular we now further restrict the truth conditions of necessity with respect
to a model, or possible world, A not only to all of the worlds in a subclass of all of
the possible worlds of a logical space based upon the universe UA and a language
L (as the set of predicate constants characterizing the atomic states of affairs
of that space) but also to those worlds B that are accessible from, or possible
alternatives to, A. We will in this way be able to prove completeness theorems, as
we did in chapter 6, for a number of modal logics by imposing certain structural
conditions on the relation of accessibility (or alternative possibility) between
possible worlds in a logical space.

Definition 543 If L is a language, A is a class of L-models such that for all
A,B ∈ A, UA = UB, e is a function with A as domain and such that for all
A ∈ A, e(A) ⊆ UA and R ⊆ A×A, then a relational model structure based
on A, e and L is an ordered pair 〈〈A, e〉, R〉.
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Convention: Where L is a language, A is a class of L-models such that for
all A,B ∈ A, UA = UB and R ⊆ A × A, we say that 〈〈A, e〉, R 〉 is a
relational L-model structure.

Definition 544 If 〈〈A, e〉, R 〉 is a relational L-model structure, A ∈ A and a

is an assignment in A, then:

(1) if ζ, η ∈ TML, then a satisfies (ζ = η) in 〈〈A, e〉, R〉 at A iff extA,a(ζ) =
extA,a(η);

(2) if F is an n-place predicate constant in L and ζ ∈ TML, then a sat-
isfies F (ζ0, ..., ζn−1) in 〈〈A, e〉, R〉 at A iff 〈extA,a(ζ0), ..., extA,a(ζn−1)〉 ∈
extA,a(F );

(3) if ϕ is a formula of L, then a satisfies ¬ϕ in 〈〈A, e〉, R〉 at A iff a does
not satisfy ϕ in 〈〈A, e〉, R〉 at A;

(4) if ϕ and ψ are formulas of L, then a satisfies (ϕ → ψ) in 〈〈A, e〉, R〉 at A

iff either a does not satisfy ϕ in 〈〈A, e〉, R〉 at A or a satisfies ψ in 〈〈A, e〉, R〉
at A;

(5) if ϕ is a formula of L and x ∈ V R, then a satisfies ∀xϕ in 〈〈A, e〉, R〉
at A iff for all d ∈ UA, a(d/x) satisfies ϕ in 〈〈A, e〉, R〉 at A;

(6) if ϕ is a formula of L and x ∈ V R, then a satisfies ∀exϕ in 〈〈A, e〉, R〉
at A iff for all d ∈ e(UA), a(d/x) satisfies ϕ in 〈〈A, e〉, R〉; and

(7) if ϕ is a formula of L, then a satisfies �ϕ in 〈〈A, e〉, R〉 at A iff for all
B ∈ A ,if ARB, then a satisfies ϕ in 〈〈A, e〉, R〉 at B.

Definition 545 If 〈〈A, e〉, R〉 is a relational model structure based on A, e and
L, A ∈ A, and ϕ ∈ FML, then:

(1) ϕ is true in 〈〈A, e〉, R〉 at A iff every assignment in A satisfies ϕ in
〈〈A, e〉, R〉 at A; and

(2) ϕ is valid in 〈〈A, e〉, R〉 iff for all B ∈ A, ϕ is true in 〈〈A, e〉, R 〉 at B.

We now show that each of the different possibilist quantified modal CN-
calculi characterized in definition 475 of chapter 7, §7.5, is sound and complete
with respect to some class of relational model structures. This class is deter-
mined by a certain structural conditions that the accessibility relations of the
model structures of the class satisfy. These conditions are stated in the following
definition.

Definition 546 If 〈〈A, e〉, R〉 is a relational L-model structure, then:

(1) 〈〈A, e〉, R〉 is symmetric iff R is symmetric;

(2) 〈〈A, e〉, R〉 is transitive iff R is transitive;

(3) 〈〈A, e〉, R〉 is totally reflexive iff R is totally reflexive;

(4) 〈〈A, e〉, R〉 is totally quasi-ordered iff R is totally quasi-ordered; and

(5) 〈〈A, e〉, R〉 is strongly quasi-ordered iff R is strongly quasi-ordered.
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We state first the soundness theorems for the different quantified modal
CN-calculi characterized in definition 475. We leave their proofs to the reader.

Theorem 547 Let Σ ∈ QKr, L the language of Σ and Γ ∪ {ϕ} ⊆ FML. If
Γ �Σ ϕ, then for every relational L-model structure 〈〈A, e〉, R〉, for all A ∈ A
and for all assignments a in A, if a satisfies every member of Γ in 〈〈A, e〉, R〉
at A, then a satisfies ϕ in 〈〈A, e〉, R〉 at A.

Theorem 548 Let Σ ∈ QS4, L the language of Σ and Γ∪{ϕ} ⊆ FML. If Γ �Σ

ϕ, then for every totally quasi-ordered relational L-model structure 〈〈A, e〉, R〉,
for all A ∈ A and for all assignments a in A, if a satisfies every member of Γ
in 〈〈A, e〉, R〉 at A, then a satisfies ϕ in 〈〈A, e〉, R〉 at A.

Theorem 549 Let Σ ∈ QS4.2, L the language of Σ and Γ ∪ {ϕ} ⊆ FML.
If Γ �Σ ϕ, then for every totally quasi-ordered and r-connectable relational L-
model structure 〈〈A, e〉, R〉, for all A ∈ A and for all assignments a in A, if a

satisfies every member of Γ in 〈〈A, e〉, R〉 at A, then a satisfies ϕ in 〈〈A, e〉, R〉
at A.

Theorem 550 Let Σ ∈ QS4.3, L the language of Σ and Γ ∪ {ϕ} ⊆ FML.
If Γ �Σ ϕ, then for every totally quasi-ordered and strongly quasi-connected
relational L-model structure 〈〈A, e〉, R〉, for all A ∈ A and for all assignments
a in A, if a satisfies every member of Γ in 〈〈A, e〉, R〉 at A, then a satisfies ϕ in
〈〈A, e〉, R〉 at A.

Theorem 551 Let Σ ∈ QBr, L the language of Σ and Γ∪{ϕ} ⊆ FML. If Γ �Σ

ϕ, then for every totally reflexive and symmetric relational L-model structure
〈〈A, e〉, R〉, for all A ∈ A and for all assignments a in A, if a satisfies every
member of Γ in 〈〈A, e〉, R〉 at A, then a satisfies ϕ in 〈〈A, e〉, R〉 at A.

Theorem 552 Let Σ ∈ QM , L the language of Σ and Γ ∪ {ϕ} ⊆ FML. If
Γ �Σ ϕ, then for every totally reflexive relational L-model structure 〈〈A, e〉, R〉,
for all A ∈ A and for all assignments a in A, if a satisfies every member of Γ
in 〈〈A, e〉, R〉 at A, then a satisfies ϕ in 〈〈A, e〉, R〉 at A.

Theorem 553 Let Σ ∈ QS5, L the language of Σ and Γ ∪ {ϕ} ⊆ FML. If
Γ �Σ ϕ, then for every transitive, totally reflexive, and symmetric relational
L-model structure 〈〈A, e〉, R〉, for all A ∈ A and for all assignments a in A, if a

satisfies every member of Γ in 〈〈A, e〉, R〉 at A, then a satisfies ϕ in 〈〈A, e〉, R〉
at A.

Exercise 8.7.1 Prove the above theorems 547–553.

Completeness theorems for the above mentioned quantified modal CN-calculi
follow. We shall prove only the completeness theorem for QKr systems. The rest
is left as an exercise.
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Theorem 554 Let Σ ∈ QKr, L the language of Σ and K ⊆ FML. If K is
consistent in Σ, then there is a relational L-model structure 〈〈A, e〉, R〉, a model
A ∈ A and assignment a in A such that a satisfies every member of K in
〈〈A, e〉, R〉 at A.

Proof. Assume the hypothesis of theorem 554. By the remark immediately
following the corollary to theorem 492, we can assume that there are infinitely
many variables not occurring in the formulas of K. Therefore, by theorem 491,
there is a maximally QKr-consistent set ∆∗ of formulas of FML, i.e., ∆∗ ⊆
FM(QKr) and ∆∗ ∈ MCQKr, such that K ⊆ ∆∗and ∆∗ is ω/∃-complete,
ω/∃e-complete, and ω/�∃e-complete in the language of Σ.

Let � be the relation among individual terms t, t′ ∈ TML such that t � t′

iff t = t′ ∈ ∆∗. Then by lemma 465, � is an equivalence relation, i.e., it is
transitive, reflexive, and symmetric. Now, let [t] be the equivalence class under
the relation � determined by the term t and set D∗ = {[t] : t ∈ TML}. Let A∆∗

be the model 〈D∗,I∗〉, where I∗ is a function with L as domain, such that (1) for
all n ∈ ω and all n-place predicate constants F ∈ L, I∗(F ) = {〈[t0], ..., [tn−1]〉 :
F (t0, ..., tn−1) ∈ ∆∗}, and (2) for each individual constant a ∈ L, I∗(a) = [a].
Clearly, because ∆∗ is ω/∃-complete in the language of Σ and Σ ∈ QML, then
for every t ∈ TML there is a variable x such that [t] = [x].

Let W be the set of maximally QKr-consistent sets Γ such that (1) Γ is
ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete, and (2) (a = b) ∈ Γ if and
only if (a = b) ∈ ∆∗. For Γ ∈ W, let BΓ be the model 〈DΓ,IΓ〉, where DΓ = D∗

and IΓ is a function with L as domain such that (1) for all n ∈ ω and all n-place
predicate constants F ∈ L, IΓ(F ) = {〈[t0], ..., [tn−1]〉 : F (t0, ..., tn−1) ∈ Γ}, and
(2) for each individual constant a ∈ L, IΓ(a) = [a].

Now let W ∗ be the set of all models BΓ for Γ ∈ W. Clearly, W ∗ 
= 0 since
∆∗ ∈ W. Obviously, for all B ∈ W ∗, UA = UB, and therefore W ∗ is a class of
worlds indexed by L. Now let e∗ be that function from W ∗ such that for every
Γ ∈ W, e∗(CΓ) = {[a] ∈ D∗ : (∃ex)(x = a) ∈ Γ, provided x /∈ OC(a)}. Set
R∗ = {〈BΓ,AΘ〉 ∈ W∗ × W∗ : if �ψ ∈ Γ, then ψ ∈ Θ}. Then, 〈〈W ∗, e∗〉, R∗〉 is
a relational L-model structure.

Let a be a function with V R as domain such that for every x ∈ V R, a(x) =
[x]. Clearly, for every model B in W ∗, a is an assignment in B. By induction
on formulas of L, we now show that for all Γ ∈ W and formula ψ of L, a

satisfies ψ in 〈〈W ∗, e∗〉, R∗〉 at BΓ if and only if ψ ∈ Γ. Suppose first that ψ
is of the form (ζ = η). Then, a satisfies ψ in 〈〈W ∗, e∗〉, R∗〉 at BΓ if and only
if extBΓ,a(ζ) = extBΓ,a(η) iff [ζ] = [η] if and only if (ζ = η) ∈ ∆∗ if and
only if (by definition of W) (ζ = η) ∈ Γ. The cases where ψ is either ¬ϕ or
ϕ → δ can be shown using the inductive hypothesis, and cases where ψ is either
F (ζ0, ..., ζn−1), ∀xδ or ∀exδ by arguments similar to those ones of the previous
completeness proofs.

Finally, let ψ be �χ for some formula χ. Clearly, by definitions, a satisfies
�χ in 〈〈W ∗, e∗〉, R∗〉 at BΓ if and only if for all C ∈ W ∗, if BΓRC, then a

satisfies χ in 〈〈W ∗, e∗〉, R∗〉 at C. Now, if �χ ∈ Γ, CΘ ∈ W ∗ and BΓRCΘ, then
(by the definition of R∗) χ ∈ Θ, and so, by the inductive hypothesis, a satisfies
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χ in 〈〈W ∗, e∗〉, R∗〉 at CΘ. Now suppose that �χ /∈ Γ. We show that there is a
C ∈ W ∗ such that BΓRC and a∗ satisfies ¬χ in 〈〈W ∗, e∗〉, R∗〉 at C.

Assume an ordering δ1...δn... (n ∈ ω) of the formulas of L of the form ∃yϕ,
∃eyϕ or �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �∃eyϕ)...)). If γ0, ..., γn are formulas of L,
then by the same reasons as in the previous completeness proofs:

a) if �(γ0 ∧ ... ∧ γn ∧ ∃yϕ) ∈ Γ, then there is an individual variable x other
than y which is free for y in ϕ such that �(γ0 ∧ ... ∧ γn ∧ ϕ(x/y)) ∈ Γ.

b) if �(γ1 ∧ ... ∧ γn ∧ ∃eyϕ) ∈ Γ, then there is a variable x new to γ1, ..., γn,
∃eyϕ that is free for y in ϕ such that �(γ1 ∧ ...∧ γn ∧ϕ(x/y)∧∃ey(y = x)) ∈ Γ.

c) if �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �∃eyϕ)...)) ∈ Γ, then there is a variable
x other than y that can be properly substituted for y in ϕ such that �(α1 ∧
�(α2 ∧ ... ∧ �(αn ∧ �(ϕ(x/y) ∧ ∃ex(y = x)))...)] ∈ Γ.

Now, recursively define a sequence of wffs ψ0, ..., ψn... (n ∈ ω) as follows.
i) ψ0 = ¬χ.
ii) If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn+1 = ψn.
iii) If �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then:
iiia) if δn+1 is of the form ∃yϕ, then ψn+1 = ϕ(x/y), where x is the first

variable other than y that is free for y in ϕ such that �(ψ0∧...∧ψn∧ϕ(x/y)) ∈ Γ;
and

iiib) if δn+1 is of the form ∃eyϕ, then ψn+1 = ϕ(x/y), where x is the first
variable other than y which is free for y in ϕ such that �(ψ0∧ ...∧ψn∧ϕ(x/y)∧
∃ey(y = x)) ∈ Γ; and

iiic) if δn+1 is of the form �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �∃eyϕ)...)), then
ψn+1 = �(α1 ∧�(α2 ∧ ...∧�(αn ∧ϕ(x/y)∧∃ey(y = x))...)), where x is the first
variable other than y that is free for y in ϕ such that �(ψ0 ∧ ... ∧ ψn ∧ �(α1 ∧
�(α2 ∧ ... ∧ �(αn ∧ ϕ(x/y) ∧ ∃ey(y = x))...)) ∈ Γ.

Given the previous completeness proofs, it should be clear that, on the basis
of the above recursion, it can be shown by induction that for all n ∈ ω, �(ψ0∧...∧
ψn) ∈ Γ and therefore that {ψn : n ∈ ω} is Σ-consistent. Now, let Θ = {ϕ : �ϕ ∈
Γ}∪{ψn : n ∈ ω}. By reductio ad absurdum, we will show that Θ is Σ-consistent.
Suppose, accordingly, that Θ is not Σ-consistent. Then there are n, m ∈ ω, such
that {ϕ0, ..., ϕm, ψ0, ..., ψn} ⊆ Θ and �Σ ¬(ϕ0∧....∧ϕm∧ψ0∧...∧ψn). Therefore,
by the RN rule and definitions, �Σ ¬�(ϕ0∧ ....∧ϕm∧ψ0∧ ...∧ψn); but because
Γ ∈ MCΣ, then ¬�(ϕ0 ∧ ....∧ ϕm ∧ψ0 ∧ ...∧ψn) ∈ Γ. On the other hand, since
{�ϕ0, ...,�ϕm} ⊆ Γ and �(ψ0 ∧ ... ∧ ψn) ∈ Γ), then by theorem 58 (part 16)
applied m times, �(ϕ0 ∧ ... ∧ ϕm ∧ ψ0 ∧ ... ∧ ψn) ∈ Γ, which is impossible by
the Σ-consistency of Γ. Therefore, Θ is Σ-consistent. By Lindenbaum’s method,
extend Θ to a maximally Σ-consistent set Θ∗.

By construction, Θ is ω/∃-complete, ω/∃e-complete, and ω/�∃e-complete.
Also, since Γ ∈ W, by the principles of necessity of identity and necessity of
non-identity (a = b) ∈ ∆∗ if and only (a = b) ∈ Θ∗. Therefore, Θ∗ ∈ W and
hence AΘ∗ ∈ W ∗. On the other hand, by construction, {ϕ : �ϕ ∈ Γ} ⊆ Θ∗ and
so BΓRAΘ∗ . By the inductive hypothesis, a satisfies χ in 〈〈W ∗, e∗〉, R∗〉 at AΘ∗

if and only if χ ∈ Θ∗; and therefore a satisfies ¬χ in 〈〈W ∗, e∗〉, R∗〉 at AΘ∗ if
and only if ¬χ ∈ Θ∗. But also by construction, ¬χ ∈ Θ∗ and so a satisfies ¬χ
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in 〈〈W ∗, e∗〉, R∗〉 at AΘ∗ . Therefore, if �γ /∈ Γ, there is a C ∈ W ∗ such that
BΓRC and a satisfies ¬χ in 〈〈W ∗, e∗〉, R∗〉 at C.

We have shown then that for every formula ψ of L , Γ ∈ W, a satisfies ψ
in 〈〈W ∗, e∗〉, R∗〉 at BΓ if and only if ψ ∈ Γ, and in particular that for every
formula ψ of L, a satisfies ψ in 〈〈W ∗, e∗〉, R∗〉 at A∆∗ if and only if ψ ∈ ∆∗, given
that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for every ψ ∈ K, a

satisfies ψ in 〈〈W ∗, e∗〉, R∗〉 at A∆∗ , which concludes the proof of theorem 554.

Theorem 555 Let Σ ∈ QS4, L the language of Σ and K ⊆ FML. If K is
consistent in Σ, then there is a totally quasi-ordered relational L-model structure
〈〈A, e〉, R〉, a model A ∈ A and an assignment a in A such that a satisfies every
member of K in 〈〈A, e〉, R〉 at A.

Theorem 556 Let Σ ∈ QS4.2, L the language of Σ and K ⊆ FML. If K is
consistent in Σ, then there is a totally quasi-ordered and r-connectable relational
L-model structure 〈〈A, e〉, R〉, a model A ∈ A and an assignment a in A such
that a satisfies every member of K in 〈〈A, e〉, R〉 at A.

Theorem 557 Let Σ ∈ QS4.3, L the language of Σ and K ⊆ FML. If K is
consistent in Σ, then there is a totally quasi-ordered and strongly quasi-connected
relational L-model structure 〈〈A, e〉, R〉, a model A ∈ A, and an assignment a

in A such that a satisfies every member of K in 〈〈A, e〉, R〉 at A.

Theorem 558 Let Σ ∈ QBr, L the language of Σ, and K ⊆ FML. If K is
consistent in Σ, then there is a totally reflexive and symmetric relational L-
model structure 〈〈A, e〉, R〉, a model A ∈ A, and an assignment a in A such
that a satisfies every member of K in 〈〈A, e〉, R〉 at A.

Theorem 559 Let Σ ∈ QM , L the language of Σ, and K ⊆ FML. If K is
consistent in Σ, then there is a totally reflexive relational L-model structure
〈〈A, e〉, R〉, a model A ∈ A, and an assignment a in A such that a satisfies
every member of K in 〈〈A, e〉, R〉 at A.

Theorem 560 Let Σ ∈ QS5, L the language of Σ and K ⊆ FML. If K is con-
sistent in Σ, then there is a transitive, totally reflexive and symmetric relational
L-model structure 〈〈A, e〉, R〉, a model A ∈ A, and an assignment a in A such
that a satisfies every member of K in 〈〈A, e〉, R〉 at A.

Exercise 8.7.2 Prove the theorems 555–560.

Exercise 8.7.3 Restrict the above semantics to e-formulas, and then formulate
soundness and completeness theorems for QKre, QMe, QBre, QS4e, QS4.2e,
QS4.3e, QS5esystems. Finally, prove the resulting theorems.



Chapter 9

Second-Order Modal Logic

In the two previous chapters, we formally presented the distinction between
possibilism and actualism in terms of two first-order quantified modal logics
containing two different types of (universal) quantifiers, one that ranges over
possible and actual objects, and the other that ranges over only actual objects.

We will now extend the application of these two quantifiers to predicate vari-
ables and formally represent the distinction between possibilism and actualism
in terms of a more significant distinction between those concepts that entail
existence, which we will call e-concepts, and those concepts that do not entail
existence. By existence in this context we mean actual, or concrete, existence in
the sense of being part of the material, causal order.

Objects cannot fall under concepts such as being red, being round, being hard,
being an animal, being a plant, etc., unless they actually exist, i.e., exist as part
of the causal order. In contrast, concepts such as being an ancestor of everyone
now existing, being remembered by someone now existing, etc., may have objects
falling under them at a time when those objects do not exist. In possibilism,
but not in actualism, there are concepts such as possibly being a physical object
that moves faster than the speed of light, or possibly being a star larger than any
actual star in the universe, etc., that might have objects falling under them that
do not exist in the actual world. Unlike e-concepts, these concepts do not entail
(concrete) existence.

As we understand it here the two main theses of actualism are:
(1) quantificational reference to objects can be only to objects that actually

exist, and
(2) quantificational reference to (n-ary) concepts can be only to those that

“entail” existence in the above sense, i.e., those that only actually existing ob-
jects can fall under.

What this means is that in actualism the quantifiers ∀e and ∃e must be
taken as primitive symbols when applied to object or predicate variables. The
following, where Q is an n-place predicate variable, would then be a basic thesis
of actualism:

(∀eQ)[Q(x1, ..., xn) → E!(x1) ∧ ... ∧ E!(xn)].

183
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In regard to the concept of existence, note that the statement that every
object exists, i.e., (∀ex)E!(x), is a valid thesis of actualism, whereas in possibil-
ism the same statement in English, which would be formalized as (∀x)E!(x), is
false. Moreover, if possibilism were to assume that there are abstract intensional
objects none of which could ever exist as actual, concrete objects, then it would
be logically false in possibilism that every object exists; that is, ¬(∀x)E!(x)
would then be a valid thesis of possibilism. What is true in both possibilism
and actualism, on the other hand, is the thesis that to exist is to possess, or fall
under, an existence-entailing concept ; that is,

E!(x) ↔ (∃eQ)Q(x)

is valid in both actualism and possibilism.
Accordingly, corresponding to our distinction between quantifying over pos-

sible objects (among which are the actual objects) and quantifying over just
actual objects, we now also distinguish quantifying over (n-ary) concepts in
general (among which are the e-concepts) as opposed to quantifying over (n-
ary) e-concepts, i.e., concepts that entail (concrete) existence. We will do this by
applying to (n-place) predicate variables the same (universal) quantifiers that
we have applied to individual variables. We will then develop possibilism and
actualism as two second-order modal logics.1

9.1 Second-Order Logical Syntax

What we need first in our development of the second-order modal logics of
actualism and possibilism is the addition of denumerably many n-place predicate
variables, for n ∈ ω. We will then allow each of the two quantifier signs to be
affixed to, or concatenated with, these variables. But, as in the case of the
individual variables, a specification of the linguistic form or sign design of the
predicate variables is not needed. Rather, we need only assume that each of
these variables is a one-place sequence, the single constituent of which is a
symbol other than a logical constant, and, moreover, that none of these predicate
variables is an individual variable or a predicate or individual constant. Of
course, for all n ∈ ω, we assume that the set of n-place predicate variables can
be well-ordered.

Assumption: (1) Where n ∈ ω, V Rn is a countably infinite well-ordered set
the members of which are called n-place predicate variables; and for each
Q ∈ V Rn, Q = 〈π〉, for some symbol π that is not a logical constant; and
(2) For each n ∈ ω and each n-place predicate variable Qn, (a) Qn is not
an individual variable, i.e., Qn /∈ V R, and (b) Qn is not an individual or
predicate constant.

Convention: We will use ‘Fn’, ‘Qn’, ‘Rn’, and ‘Sn’ with or without numerical
subscripts to refer in the metalanguage to n-place predicate variables. We

1This actualist-possibilist approach to second-order modal logic was first given in Coc-
chiarella 1969a.
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will usually drop the superscript when a context makes clear the degree
of a predicate variable.

In some of the forthcoming definitions and theorems, we will make use of the
concept of a variable, individual or otherwise. With this in mind, we introduce
the following definition.

Definition 561 V = V R ∪
⋃

n∈ω V Rn.

Convention: We shall hereafter use v and k with or without numerical sub-
scripts to refer (in the metalanguage) to an individual or n-place predicate
variables.

Because we will also need to refer to both predicate constants and variables,
we state the following convention regarding reference to them.

Convention: We shall use P with or without numerical subscripts to refer (in
the metalanguage) to n-place predicate constants or variables. We will call
a predicate constant or variable “a predicate expression.”

Definition 562 If φ and ψ are expressions, Q is an n-place predicate variable,
then:
(1) ∀Qϕ =df 〈q〉�Q�ϕ,

(2) ∀eQϕ =df 〈u〉�Q�ϕ,

(3) ∃Qϕ =df ¬∀Q¬ϕ,

(4) ∃eQϕ =df ¬∀eQ¬ϕ.

9.2 Second-Order Languages

Where L is a language, we will refer to the sentence forms of L considered
hereafter as second-order formulas of L, and we will use FM2L to represent
this set. The expression AT2L will designate the set of second-order atomic
formulas of L, i.e., the identity formulas of L and the formulas that result from
affixing an n-place predicate expression of L to n terms of L. We distinguish
the standard second-order formulas of L, namely, those in which the e-quantifier
does not occur, from the E-formulas of L, i.e., those second-order formulas in
which the standard quantifier does not occur. We will use ‘SFM2L’ to refer to
the former set and ‘FM2e

L’ to the latter.

Definition 563 If L is a recursive set of predicate and individual constants,
then:
(1) TM2L =df {a : either a ∈ V R or a is an individual constant in L},
(2) AT2L =df {(a = b) : a, b ∈ TM2L} ∪ {P (a0, ..., an−1) : n ∈ ω, P is an
n-place predicate expression in L, and a0, ..., an−1 ∈ TM2L},
(3) FM2L =df

⋂{K : AT2L ⊆ K and for all ϕ,ψ ∈ K, and all v ∈ V, ¬ϕ,
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(ϕ → ψ), �ϕ, ∀evϕ, ∀vϕ ∈ K},
(4) SFM2L =df {ϕ ∈ FM2L : 〈u〉 /∈ OC(ϕ)}, and

(5) FM2e
L =df {ϕ ∈ FM2L : 〈q〉 /∈ OC(ϕ)}.

Lemma 564 If L is a recursive set of predicate and individual constants and
S = {ζ : ζ is a symbol and 〈ζ〉 ∈ OC(ϕ), for some ϕ ∈ FM2L}, then
〈S, TM2L, FM2L〉 is a formal language.

Exercise 9.2.1 Prove above lemma 564.

Definition 565 L is a second-order language iff L is a formal language
and for some recursive set L′ of predicate and individual constants,

(1) TM(L) = TM2L′ , and

(2) FM(L) = FM2L′ .

Note: The empty set, on this definition, determines the second-order language
built up by means only of predicate and individual variables as well as logical
constants.

Lemma 566 (Principle of Individuation for second-order languages)
If L1 and L2 are second-order languages, then L1 = L2 iff there is exactly one
set L′ of predicate and individual constants such that

(1) TM(L1) = TM(L2) = TM2L′ , and

(2) FM(L1) = FM(L2) = FM2L′ .

Clearly, by the above definition, terms and formulas of one second-order lan-
guage is built up in the same way in logical syntax as those of any other second-
order language. Thus, like first-order languages, second-order languages differ
from one another only with respect to the predicate and individual constants in
those languages. Because of this, we introduce the following convention.

Convention: We shall hereafter represent second-order languages by the sets
of predicate and individual constants that determine those languages.

Theorem 567 (Induction principle for the formulas of second-order
languages) If L is a second-order language such that

(1) AT2L ⊆ K, and

(2) for all ϕ,ψ ∈ K, ¬ϕ, (ϕ → ψ),�ϕ ∈ K,

(3) for all ϕ ∈ K and all x ∈ V R, ∀xϕ, ∀exϕ ∈ K, and

(4) for all n ∈ ω and all Fn ∈ V Rn, ∀Fnϕ, ∀eFnϕ ∈ K,

then FM2L ⊆ K.

Proof. By definition of FM2L.
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Definition 568:
(1) ϕ is a second-order formula iff for some language L, ϕ ∈ FM2L.
(2) ϕ is a second-order E-formula iff for some language L, ϕ ∈ FM2e

L.
(3) ζ is a term of a second-order language iff for some language L, ζ ∈
TM2L.

Clearly, a term of a second-order language is a term of a first-order language.
So the difference between first-order and second-order languages is to be found
in their formulas.

Theorem 569 (Induction principle for second-order E-formulas): If L
is a second-order language such that
(1) AT2L ⊆ K, and
(2) for all ϕ, ψ ∈ K, ¬ϕ, (ϕ → ψ), �ϕ ∈ K,
(3) for all ϕ ∈ K and all x ∈ V R, ∀exϕ ∈ K

(4) for every n ∈ ω and all Fn ∈ V Rn, ∀eFnϕ ∈ K

then every second-order E-formula of L is in K, i.e., then FM2e
L ⊆ K.

By a modal-free formula we mean, as in previous chapters, a formula in which
the necessity sign does not occur. An induction principle for these formulas can
be clearly stated.

Definition 570 If L is a second-order language, then ϕ is a modal-free for-
mula of L iff ϕ ∈ FM2L and 〈l〉 /∈ OC(ϕ).

Theorem 571 (Induction principle for second-order modal-free for-
mulas): If L is a second-order language such that
(1) AT2L ⊆ K, and
(2) for all ϕ, ψ ∈ K, ¬ϕ, (ϕ → ψ) ∈ K, and
(3) for all ϕ ∈ K and all x ∈ V R, ∀xϕ, ∀exϕ ∈ K,

(4) for every n ∈ ω and all Fn ∈ V Rn, ∀Fnϕ, ∀eFnϕ ∈ K

then every modal-free formula of L is in K.

Note: Hereafter, when referring to formulas and terms we will always mean
only the formulas and terms of a second-order language.

It will be convenient in what follows to abbreviate formulas expressing nec-
essary equivalence between predicates as an “identity” formula between those
predicates. We adopt this notation only for convenience of expression. In par-
ticular, we are not claiming here, nor denying, that concepts are identical when
they are necessarily equivalent. We will also use an identity formula qualified by
a subscript e when the necessary equivalence is restricted to actualist quantifiers.

Definition 572 If P1 and P2 are n-place predicate expressions, then:
(1) (P1 = P2) =df �∀x0...∀xn−1[P1(x0, ..., xn−1) ↔ P2(x0, ..., xn−1)]; and
(2) (P1 =e P2) =df �∀ex0�...�∀exn−1�[P1(x0, ..., xn−1) ↔ P2(x0, ..., xn−1)].
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Because of what we will later call a comprehension principle in second-
order modal logic, complex formulas are also assumed to represent predicable
concepts. For convenience we will use the λ-operator, as in [λx0...xn−1ϕ], to
say that a formula ϕ represents a complex predicate expression with respect
to individual variables x0, ..., xn−1. We will then also use the identity sign to
abbreviate a necessary equivalence between a simple predicate expression P
and a complex predicate expression [λx0...xn−1ϕ] with respect to the variables
x0, ..., xn−1. The use of both the λ-operator and the identity sign in this context
is only for convenience as an abbreviatory device and is not intended to express
the view that concepts are identical when they are necessarily equivalent.

Definition 573 If P is an n-place predicate expression, ϕ is a formula, and
x0, ..., xn−1 are pairwise individual variables, then:
(1) (P = [λx0, ..., xn−1ϕ]) =df �∀x0...∀xn−1[P (x0, ..., xn−1) ↔ ϕ]; and
(2) (P =e [λx0, ..., xn−1ϕ]) =df �∀ex0�...�∀exn−1�[P (x0, ..., xn−1) ↔ ϕ].

9.3 Proper Substitution

The notions of substitution and proper substitution for individual variables will
be extended now so as to apply to the new types of variables as well. Before
characterizing these extended versions, we first extend the definitions (of the
previous chapters) of a free and a bound variable to second-order formulas. The
reader should recall that we can replace all talk of occurrences of a variable in
an expression by talk of the variable itself (or rather of its single constituent)
occupying certain places in that expression.

Definition 574 If v ∈ V , ϕ is a formula of length m, and n < m, then:
(1) v occurs bound at the nth place in ϕ (in symbols, OB2(v, n, ϕ)) iff
〈ϕn〉 = v, and there are expressions χ, θ and a formula ψ such that ϕ is either
χ�∀vψ�θ or χ�∀evψ�θ, and D(χ) < n < D(χ) + D(∀vψ); and
(2) v occurs free at the nth place in ϕ (in symbols, OF2(v, n, ϕ)) iff 〈ϕn〉 = v
and it is not the case that OB2(v, n, ϕ).

Definition 575 If ϕ is a formula, then:
(1) BD2(ϕ) =df {v : v ∈ V and for some n < D(ϕ), OB2(v, n, ϕ)}, and
(2) FV 2(ϕ) =df {v : v ∈ V and for some n < D(ϕ), OF2(v, n, ϕ)}.

By the sentences of a second-order language L we mean the formulas of that
language in which no variable has a free occurrence, i.e., those ϕ ∈ FM2L such
that FV 2(ϕ) = 0. We take St2L to be the set of second-order sentences of L.

Definition 576 If L is a second-order language, then St2L =df {ϕ ∈
FM2L : FV 2(ϕ) = 0}.

We modify the definitions of (proper and improper) substitution for individ-
ual variables so as to apply them to second-order formulas as well.



9.3. PROPER SUBSTITUTION 189

Definition 577 (Substitution of b for all free occurrences of a variable
x):

(1a) (a0 = a1)[b/x] =df (a′
0 = a′

1), where, for i ≤ 1, a′
i =

{
b if ai = x
ai if ai 
= x

;

(1b) F (a0, ..., an−1)[b/x] =df F (a′
0, ..., a

′
n−1), where for i < n, a′

i ={
b if ai = x
ai if ai 
= x

;

(2) ¬ϕ[b/x] =df ¬(ϕ[b/x]);
(3) �ϕ[b/x] =df �(ϕ[b/x]);
(4) (ϕ → ψ)[b/x] =df (ϕ[b/x] → ψ[b/x]);
(5) ∀Qϕ[b/x] =df ∀Q(ϕ[b/x]);
(6) ∀eQϕ[b/x] =df ∀eQ(ϕ[b/x]);

(7) ∀yϕ[b/x] =df

{
∀yϕ if x = y
∀y(ϕ[b/x]) if x 
= y

;

(8) ∀eyϕ[b/x] =df

{
∀eyϕ if x = y
∀ey(ϕ[b/x]) if x 
= y

.

Lemma 578 (a) If x /∈ FV 2(ϕ), then ϕ[b/x] is just ϕ itself; and (b) if x ∈
FV 2(ϕ) and x /∈ OC(b), then x /∈ FV 2(ϕ[b/x]).

Definition 579 (Proper substitution of a term for an individual vari-
able x in second-order formulas): If ϕ is a formula, a is a term, and
x ∈ V R, then:
(1) a can be properly substituted for x in ϕ iff either (i) a is an individual
constant or (ii) a ∈ V R and there is no formula ψ such that ∀aψ or ∀eaψ occurs
in ϕ and x ∈ FV 2(∀aψ); and

(2) ϕ(a/x) =df

{
ϕ[a/x] if a can be properly substituted for x in ϕ
ϕ otherwise .

Substitution for predicate variables in second-order formulas is more com-
plex than substitution for individual variables. This is because this type of
substitution might involve formulas in addition to predicate expressions as pos-
sible substituends for predicate variables. We shall introduce particular defin-
itions and notations for this sort of substitution. We will use the expression
ϕ[ζ/Q(x0, ..., xn−1)] to represent the substitution, proper or improper, of a for-
mula or predicate expression ζ for a predicate variable Q. When ζ cannot be
properly substituted for Q in ϕ, then we set ϕ[ζ/Q(x0, ..., xn−1)] to be just ϕ it-
self. The expression ϕ(ζ/Q(x0, ..., xn−1)), with parentheses in place of brackets,
will then represent proper substitution.

Definition 580 (Substitution of a second-order expression for a
predicate variable): If L is a language, x0, ..., xn−1 are pairwise individual
variables, Q ∈ V Rn, and ζ is an n-place predicate expression of L or a
second-order formula of L such that x0, ..., xn−1 ∈ FV 2(ζ), then:
(1a) (a = b)[ζ/Q(x0, ..., xn−1)] =df (a = b);
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(1b) F (a0, ..., an−1)[ζ/Q(x0, ..., xn−1)] =df

{
F (a0, ..., an−1), if F 
= Q

ζ(a0/x0, ..., an−1/xn−1), otherwise ;

(2) ¬ϕ[ζ/Q(x0, ..., xn−1)] =df ¬(ϕ[ζ/Q(x0, ..., xn−1)]);
(3) �ϕ[ζ/Q(x0, ..., xn−1)] =df �(ϕ[ζ/Q(x0, ..., xn−1)]);
(4) (ϕ → ψ)[ζ/Q(x0, ..., xn−1)] =df (ϕ[ζ/Q(x0, ..., xn−1)] →
ψ[ζ/Q(x0, ..., xn−1)]);
(5) ∀xϕ[ζ/Q(x0, ..., xn−1)] =df ∀x(ϕ[ζ/Q(x0, ..., xn−1)]);
(6) ∀exϕ[ζ/Q(x0, ..., xn−1)] =df ∀ex(ϕ[ζ/Q(x0, ..., xn−1)]);

(7) ∀Rϕ[ζ/Q(x0, ..., xn−1)] =df

{
∀Rϕ if R = Q
∀R(ϕ[ζ/Q(x0, ..., xn−1)]) if R 
= Q,

;

(8) ∀eRϕ[ζ/Q(x0, ..., xn−1)] =df

{
∀eRϕ if R = Q
∀eR(ϕ[ζ/Q(x0, ..., xn−1)] ) if R 
= Q

.

The following lemma is an obvious consequence of this last definition.

Lemma 581:
(a) If Q /∈ FV 2(ϕ), then ϕ[ζ/Q(x0, ..., xn−1)] is just ϕ itself; and
(b) if Q ∈ FV 2(ϕ) and Q /∈ OC(ζ), then Q /∈ FV 2(ϕ[ζ/Q(x0, ..., xn−1)]).

We now define proper substitution of an expression for a predicate variable.

Definition 582 If L is a second-order language, ϕ ∈ FM2L, Q ∈ V Rn,
x0, ..., xn−1 are pairwise distinct individual variables, and ζ is a predicate ex-
pression or formula of L, then:
(1) ζ can be properly substituted for Q in ϕ iff ζ is an expression such that
both (a) there is no formula ψ such that ∀vψ or ∀evψ occurs in ϕ, where v is
a predicate variable or an individual variable different from x0, ..., xn−1, Q ∈
FV 2(∀vψ) ∪ FV 2(∀evψ) and v ∈ FV 2(ζ); and (b) for all individual variables
y0, ..., yn−1, if there is a formula δ ∈ OC(ϕ) such that Q(y0, ..., yn−1) ∈ OC(δ )
and Q ∈ FV 2(δ), then for every i such that 0 ≤ i ≤ n − 1, there is no formula
ψ such that ∀yiψ or ∀eyiψ occurs in ζ; and
(2) ϕ(ζ/Q(x0, ..., xn−1)) =df{

ϕ[ζ/Q(x0, ..., xn−1)] if ζcan be properly substituted for Q in ϕ
ϕ otherwise .

Convention: Where P is a predicate expression of the same number of places as
Q, we shall understand ϕ(Q/R) to be ϕ(Q(x0, ..., xn−1)/P (x0, ..., xn−1)).

We now extend to second-order modal formulas the notion introduced in
chapter 7 of replacing one or more free occurrences of a term.

Definition 583 If ϕ, ψ are second-order formulas and a, b are terms, then ψ
is obtained from ϕ by replacing one free occurrence of a by a free
occurrence of b (in symbols, Free-2Rep(ϕ,ψ, a, b)) iff for some m,n ∈ ω,
(1) m = the length of ϕ,
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(2) n < m, ϕ = 〈ϕ0, ..., ϕn−1〉�a�〈ϕn+1, ..., ϕm−1〉 and
ψ = 〈ϕ0, ..., ϕn−1〉�b�〈ϕn+1, ..., ϕm−1〉, and
(3) either (i) both a and b are individual constants, (ii) a, b ∈ V R, OF2(a, n, ϕ)
and OF2(b, n, ψ), (iii) a ∈ V R, b is an individual constant and OF2(a, n, ϕ),
or (iv) a is an individual constant, b ∈ V R and OF2(b, n, ψ).

Definition 584 If ϕ, ψ are second-order formulas and a, b are terms, then
ψ is obtained from ϕ by replacing one or more free occurrences of
a by free occurrences of b (in symbols, Free-2Int(ϕ,ψ, a, b)) iff for some
n ≥ 1 and some n-place sequence χ of second-order formulas (1) ϕ = χ0, (2)
ψ = χn−1, and (3) for all i < n, Free-Rep(χi, χi+1, a, b).

Lemma 585 If Free-2Int(ϕ,ψ, a, b), Free-2Int(ϕ′, ψ′, a, b), and v /∈ OC(a)∪
OC(b), then:
(a) Free-2Int(¬ϕ,¬ψ, a, b),
(b) Free-2Int(�ϕ,�ψ, a, b),
(c) Free-2Int((ϕ → ϕ′), (ψ → ψ′), a, b),
(d) Free-2Int(∀vϕ,∀vψ, a, b), and
(e) Free-2Int(∀evϕ,∀evψ, a, b).

Exercise 9.3.1 Prove the above lemma 585 by induction on FM2L, for any
second-order language L.

Lemma 586 If a can be properly substituted for x in ϕ and x /∈ OC(a), then
Free-2Int(ϕ,ϕ(a/x), x, a) and x /∈ FV 2(ϕ(a/x)).

Exercise 9.3.2 Prove the above lemma 586.

In chapter 7 we defined the notion of rewriting all of the bound occurrences
of an individual variable in a first-order modal formula to bound occurrences of a
variable new to that formula. We now extend this notion to include second-order
formulas and predicate variables.

Definition 587 ψ is a second-order rewrite of ϕ with respect to v (2-
rewrite of ϕ with respect to v) iff the length of ψ is the length of ϕ, i.e., D(ψ) =
D(ϕ), and either:
(1) v ∈ V R and for some y ∈ V R, y /∈ OC(ϕ) and for all n < D(ϕ), if
OB2(v, n, ϕ), then y = 〈ψn〉, but if it is not the case that OB2(v, n, ϕ), then
ψn = ϕn; or
(2) v ∈ V Rn and for some Q ∈ V Rn, Q /∈ OC(ϕ) and for all n < D(ϕ), if
OB2(v, n, ϕ), then Q = 〈ψn〉, but if it is not the case that OB2(v, n, ϕ), then
ψn = ϕn.

Definition 588 ψ is a second-order rewrite of ϕ (2-rewrite of ϕ) iff ψ is
a 2-rewrite of ϕ with respect to some variable v.
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Lemma 589 For each formula ϕ and variable v, there is a formula ψ that is a
2-rewrite of ϕ with respect to v.

Lemma 590 If ϕ,ψ are formulas and v ∈ V , then:
(1) if χ is a 2-rewrite of ¬ϕ with respect to v, then there is a formula ϕ′ such
that χ = ¬ϕ′, and ϕ′ is a 2-rewrite of ϕ with respect to v;
(2) if χ is a 2-rewrite of �ϕ with respect to v, then there is a formula ϕ′ such
that χ = �ϕ′, and ϕ′ is a 2-rewrite of ϕ with respect to v;
(3) if χ is a 2-rewrite of (ϕ → ψ) with respect to v, then there are formulas ϕ′,
ψ′ such that χ = (ϕ′ → ψ′), and ϕ′, ψ′ are 2-rewrites, respectively, of ϕ and ψ
with respect to v;
(4) if χ is a 2-rewrite of ∀kϕ (or of ∀ekϕ) with respect to v and v 
= k, then
there is a formula ϕ′ such that χ = ∀kϕ′ (or χ = ∀ekϕ′), and ϕ′ is a 2-rewrite
of ϕ with respect to v; and
(5) if χ is a 2-rewrite of ∀vϕ (or of ∀evϕ) with respect to v, then for some
k ∈ V , k /∈ OC(∀vϕ) and χ = ∀kϕ(k/v) (or χ = ∀ekϕ(k/v)).

Exercise 9.3.3 Prove the above lemmas 589 and 590.

9.4 Second-Order CN-Modal Calculi

We will be concerned here only with second-order quantified modal logics that
are based on classical sentential logic, and which for us therefore are CN-logics.
The class of these types of calculi is characterized in the following definition.

Definition 591 Σ is a second-order quantified modal CN-calculus iff
(1) Σ is a formal system satisfying all of the assumptions for logistic systems
listed in chapter 1, and (2) for some language L, FM2L(Σ) = FM2L, and
TM(Σ) = TML.

We turn now to a development of our two types of second-order modal logic,
one for possibilism and one for actualism. Their difference will depend only on
whether or not both the possibilist and the actualist (universal) quantifiers oc-
cur in the formulas of these logics, or whether only the actualist (universal)
quantifier occurs in those formulas. We will refer to the first type as possibilist
second-order modal calculi, and the second type as actualist second-order modal
calculi. The axioms we list below are redundant, it should be noted, in that some
of the actualist axioms can be derived from the possibilist axioms when addi-
tional modal theses are added. We allow this redundancy here for convenience
and clarity of presentation. Which axioms are redundant once modal axioms
are added will be left as exercises. We turn first to the axioms of the possibilist
second-order calculi.

Definition 592 θ is a second-order Q-axiom iff there are second-order for-
mulas ϕ,ψ, χ, terms a, b, t0, ..., tn−1, and an individual or predicate variable v
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such that θ is either
(I) sentential logic:
(1) ϕ → (ψ → ϕ),
(2) [ϕ → (ψ → χ)] → [(ϕ → ψ) → (ϕ → χ)],
(3) (¬ϕ → ¬ψ) → (ψ → ϕ),
(II) quantifier logic:
(4) ∀v(ϕ → ψ) → (∀vϕ → ∀vψ),
(5) ∀ev(ϕ → ψ) → (∀evϕ → ∀evψ),
(6) (ϕ → ∀vϕ), if v /∈ FV 2(ϕ),
(7) ∃x(x = a), where x /∈ OC(a),
(8) ∀ex∃ey(x = y),
(9) x = y ∨ �(x = y) → �(x = y),
(10) a = b → (ϕ → ψ), if ϕ,ψ are atomic formulas and Free-2Rep(ϕ,ψ, b, a),
(11) (R = [λx0...xnψ]) → (ϕ ↔ ϕ(ψ/R(x0, ..., xn))), provided ψ is modal-free
and x0, ..., xn are distinct individual variables occurring free in ψ,
(III) possibilist and actualist comprehension principles:
(12) ∃Q(Q = [λx0...xn−1ϕ]), provided Q is an n-place predicate variable
and Q /∈ OC(ϕ),
(13) ∀eQ∃eR(R = [λx0...xn−1Q(y0, ..., yn−1) ∧ ϕ(y0, ..., yn−1)]), provided
{x0, ..., xn−1} ⊆ {y0, ..., yn−1}, R and Q are distinct variables such that R, Q /∈
OC(ϕ),
(14) ∀eQ∃eR(R =e [λx0...xn−1Q(y0, ..., yn−1) ∧ ϕ(y0, ..., yn−1)]), provided
{x0, ..., xn−1} ⊆ {y0, ..., yn−1}, R and Q are distinct variables such that R, Q /∈
OC(ϕ),
(15) ∃eQ(Q = [λx0...xn−1∃eQQ(x0, ..., xn−1)]),
(16) ∃eQ(Q =e [λx0...xn−1∃eQQ(x0, ..., xn−1)]),
(IV) Carnap-Barcan theses:
(17) (∀x�ϕ → �∀xϕ),
(18) ∀Qϕ → ∀eQϕ,
(19) (∀Q�ϕ → �∀Qϕ),
(20) (∀eQ�ϕ ↔ �∀eQϕ),
(V) second-order identity:
(21) (G = Q) ∨ �(G = Q) → �(G = Q), where G and Q are distinct n-place
predicate expressions;
(22) (G =e Q)∨�(G =e Q) → �(G =e Q), where G and Q are distinct n-place
predicate expressions;
(VI) universal instantiation for e-concepts:
(23) ∃eQ(Q =e [λx0...xn−1ψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn))),
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(VII) existence and e-concept connections:
(24) ∀ex0...∀exn−1ϕ ↔ ∀x0...∀xn−1(∃eQQ(x0, ..., xn−1) → ϕ),
(25) ∀eQ(Q(t0, ..., tn−1) → ∃ey(y = t0)∧ ...∧∃ey(y = tn−1)), where y is distinct
from each ti for i < n.

Note: In referring to a second-order Q-axiom of a specific form, we will use the
numbering system in definition 592 to identify the specific axiom in question.
Whenever v is a predicate variable, we will refer to second-order Q-axioms (4)
and (5) as 2∀-distribution and 2∀e-distribution, (6) as 2∀-vacuous. If v is an in-
dividual variable, we will refer to such axioms as ∀-distribution, ∀e-distribution
and ∀-vacuous, respectively. In the case of axiom schemata (12)–(14), we will
refer to them as the possibilist comprehension principle for concepts in general,
(�CP ), the possibilist e-comprehension principle for e-concepts, (�CPP e), and
the actualist e-comprehension principle, (�CP e), for e-concepts, respectively.
We take axiom (24) as a “definitional” axiom in possibilism connecting quan-
tification over actual objects with quantification of possible (and actual) objects.
Axiom schema (23) will be referred to as the universal instantiation principle
for e-concepts, (�UIe

2).
The possibilist e-comprehension principle, i.e., axiom (14), suffices only in

possibilism as a comprehension principle for e-concepts. It does not suffice in
actualism because it is not an E-formula. This is because the quantifiers implicit
in the abbreviatory identity notation are possibilist and not actualist quanti-
fiers. The corresponding actualist e-comprehension principle axiom (15) is
redundant in possibilism (given the modal theses for M) but essential to actu-
alism. The restriction of the above axioms to E-formulas results in the axioms
for second-order actualism.

Definition 593 θ is a second-order Qe-axiom iff θ is an E-formula and
either
(1) θ is a second-order Q-axiom (i.e., given that θ is an E-formula and a second-
order Q-axiom of the form (1)-(3), (8)-(10), or (14), (16), (20), (22), (23), or
(25)), or
(2) θ is (a = a), for some term a,
(3) for some formula ϕ and variable v /∈ FV 2(ϕ), θ is (ϕ → ∀evϕ).

Convention: By a second-order Q/Qe-axiom we mean a formula that is either
a second-order Q-axiom or a second-order Qe-axiom.

We shall now define a general notion of proof for possibilist second-order
quantified modal CN-calculi, and then another for actualist second-order modal
CN-calculi. We note that, apart from the MP , RN , UG, UGe rules when ex-
tended to second-order formulas, we will also have rules for universal generaliza-
tion for both the possibilist and the actualist quantifiers for predicate variables.
These rules are indicated as follows:

If �Σ ϕ, then �Σ ∀Qϕ, (UG2)
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If �Σ ϕ, then �Σ ∀eQϕ. (UGe
2)

Only the rule for second-order universal generalization, (UG2), is needed
as a primitive rule in possibilist calculi, because, by the second-order Q-axiom
schema (18), the rule (UGe

2) is redundant in possibilism. The extension of the
(UGe) rule of first-order modal logic to second-order modal formulas is also
derivable in those calculi. However, in actualist second-order calculi both (UGe)
and (UGe

2) will be needed and therefore taken as primitive rules of actualism.
As in first-order modal logic, an additional rule regarding an application

of (UGe) within the scope of a modal operator is also needed for actualist
systems. This rule, (�UGe), was assumed in chapter 7 for first-order actualism,
but we restate it below. As already noted in chapter 7 (�UGe) is redundant in
possibilism but not in actualism.

If �Σ ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...),
and x /∈ FV (ψ0 ∧ ... ∧ ψn−1), then
�Σ ψ0 → �(ψ1 → ... → �(ψn−1 → �∀exϕ)...)

(�UGe)

The primitive inference rules that we will need in second-order possibilism
and second-order actualism are described in the following definition. The second-
order analogue of (�UGe) is not needed even in actualism, it might be noted,
because, axiom (20), the Carnap-Barcan formula holds for e-concepts as well as
for possibilia and concepts in general. It fails to be valid, in other words, only
for quantification over actual, existing objects.

Definition 594 If Σ is a second-order quantified modal CN-calculus, then:
(1) (MP ) (the rule of modus ponens) is valid in Σ iff for all ϕ,ψ ∈
FM2(Σ), if �Σ (ϕ → ψ) and �Σ ϕ, then �Σ ψ;
(2) (UG) (the rule of universal generalization) is valid in Σ iff for all
ϕ ∈ FM2(Σ), and all x ∈ V R, if �Σ ϕ, then �Σ ∀xϕ;
(3) (UGe) (the rule of e-universal generalization) is valid in Σ iff for all
ϕ ∈ FM2(Σ), and all x ∈ V R, if �Σ ϕ, then �Σ ∀exϕ;
(4) (RN) (the rule of necessitation) is valid in Σ iff for all ϕ ∈ FM2(Σ),
if �Σ ϕ, then �Σ �ϕ;
(5) (UG2) (the rule of universal generalization for concepts) is valid
in Σ iff for all ϕ ∈ FM2(Σ), and all Q ∈ V Rn, if �Σ ϕ, then �Σ ∀Qϕ;
(6) (UGe

2) (the rule of universal generalization for e-concepts) is valid
in Σ iff for all ϕ ∈ FM2(Σ), and all Q ∈ V Rn, if �Σ ϕ, then �Σ ∀eQϕ; and
(7) (�UGe) is valid in Σ iff for all n ∈ ω, all ϕ, ψ0, ..., ψn−1 ∈ FM(Σ), and
all x ∈ V R, if x /∈ FV (ψ0 ∧ ...∧ ψn−1) and �Σ ψ0 → �(ψ1 → ... → �(ψn−1 →
�ϕ)...), then �Σ ψ0 → �(ψ1 → ... → �(ψn−1 → �∀exϕ)...).

Definition 595 If L is a second-order language and A∪{ϕ} ⊆ FM2L, then ∆
is a second-order QA-proof of ϕ in L iff for some n ∈ ω, ∆ is an n-place
sequence of formulas of L such that:
(1) ϕ = ∆n−1, and
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(2) for all i < n, either

(a) ∆i is a second-order Q-axiom,

(b) ∆i ∈ A,

(c) there are j, k < i such that ∆k = (∆j → ∆i),

(d) for some j < i and x ∈ V R, ∆i = ∀x∆j,

(e) for some j < i and Q ∈ V Rn, ∆i = ∀Q∆j, or

(f) for some j < i, ∆i = �∆j.

Lemma 596 If L is a second-order language, A∪{ϕ, χ, ψ0, ..., ψn−1} ⊆ FM2L,
then:

(a) if ϕ ∈ A or ϕ is a second-order Q-axiom, then there is a second-order QA-
proof of ϕ in L;

(b) if there are a second-order QA-proof of ϕ in L and a second-order QA-proof
of (ϕ → χ) in L, then there is also a second-order QA-proof of χ in L;

(c) if there is a second-order QA-proof of ϕ in L, then so is there of ∀xϕ, for
all x ∈ V R;
(d) if there is a second-order QA-proof of ϕ in L, then so is there of ∀Qϕ, for
all Q ∈ V Rn;

(e) if there is a second-order QA-proof of ϕ in L, then so is there of �ϕ;

(f) there is a second-order QA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...)) in
L iff there is a second-order QA-proof of (ψ0 ∧ ... ∧ ψn−1 → ϕ) in L; and

(g) If there is a second-order QA-proof of ϕ in L, then so is there of ∀exϕ, for
all x ∈ V R.

Definition 597 If L is a second-order language and A∪{ϕ} ⊆ FM2e
L, then ∆

is a second-order QeA-proof of ϕ in L iff for some n ∈ ω, ∆ is an n-place
sequence of E-formulas of L such that:

(1) ϕ = ∆n−1, and

(2) for all i < n, either

(a) ∆i is a second-order Qe-axiom,

(b) ∆i ∈ A,

(c) there are j, k < i such that ∆k = (∆j → ∆i),

(d) for some j < i and x ∈ V R, ∆i = ∀ex∆j,

(e) for some j < i and Q ∈ V Rn, ∆i = ∀eQ∆j,

(f) for some j < i, ∆i = �∆j, or

(g) for some j < i, x ∈ V R, k ∈ ω, and ψ0, ..., ψk−1,ξ ∈ FM2e
L,

(i) ∆j = (ψ0 → �(ψ1 → ... → �(ψk−1 → �ξ)...)),

(ii) x /∈ FV (ψ0 ∧ ...∧ ψk−1), and

(iii) ∆i = (ψ0 → �(ψ1 → ... → �(ψk−1 → �∀exξ)...)).
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Lemma 598 If L is a second-order language, A∪{ϕ, χ, ψ0, ..., ψn−1} ⊆ FM2e
L,

then:
(a) if ϕ ∈ A or ϕ is a second-order Qe-axiom, then there is a second-order
QeA-proof of ϕ in L;
(b) if there are a second-order QeA-proof of ϕ in L and a second-order QeA-
proof of (ϕ → χ) in L, then there is also a second-order QeA-proof of χ in L;
(c) if there is a second-order QeA-proof of ϕ in L, then so is there one of ∀exϕ,
for all x ∈ V R;
(d) if there is a second-order QeA-proof of ϕ in L, then so is there one of ∀eQϕ,
for all Q ∈ V Rn;
(e) if there is a second-order QeA-proof of ϕ in L, then so is there one of �ϕ;
(f) there is a second-order QeA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...)) in
L iff there is a second-order QeA-proof of (ψ0 ∧ ... ∧ ψn−1 → ϕ) in L;
(g) if there is a QeA-proof of (ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...)) in L,
and x /∈ FV (ψ0 ∧ ... ∧ ψn−1), then there is also a QeA-proof of (ψ0 → �(ψ1 →
... → �(ψn−1 → �∀exϕ)...)) in L; and
(h) if there is a QeA-proof of (ψ0 → �(ψ1 → ... → �(ψn−1 → �ϕ)...)) in L,
and Q /∈ FV (ψ0 ∧ ...∧ ψn−1), then there is also a QeA-proof of (ψ0 → �(ψ1 →
... → �(ψn−1 → �∀eQϕ)...)) in L.

Convention: By a second-order QA/QeA-proof we mean a sequence that is
either a second-order QA-proof or a second-order QeA-proof, and by a
second-order QA/QeA-provable formula we mean a formula that is either
second-order QA-provable or second-order QeA-provable.

Derivations from arbitrary sets of premises within a second-order possibilist
or actualist calculus can now be defined in terms of second-order QA-proofs and
second-order QeA-proofs, respectively, where A is some assumed special axiom
set for a second-order quantified modal logic. A formula φ will be derivable
from a set of (E-)formulas Γ of such a system if for some ψ0, ..., ψn−1 ∈ Γ,
there is a second-order QA-proof (or second-order QeA-proof) of the conditional
(ψ0∧ ...∧ψn−1 → ϕ). As in first-order modal calculi of chapter 7, the deduction
theorem is in this way built into each of the second-order quantified modal logics
considered here.

Definition 599 If L is a second-order language and A is a recursive set of
formulas of L, then:
2-ΣA,L =df 〈L, A, {g}〉,
where g is that function from the set of subsets of FM2L such that for all
Γ ⊆ FM2L, g(Γ) = {ϕ ∈ FM2L : for some n ∈ ω, ψ0, ..., ψn−1 ∈ Γ and some
∆, ∆ is a second-order QA-proof of (ψ0 → (ψ1 → ... → (ψn−1 → ϕ)...)) in L}.

Lemma 600 If L is a language, A is a recursive set of formulas of L, and
ϕ ∈ FM2L, then �ΣA,L ϕ if and only if there is a second-order QA-proof of ϕ
in L.
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Proof. Assume the hypothesis, and suppose �ΣA,L ϕ. Then, as defined in §1.2.4
(of chapter 1), there is a derivation ∆ of ϕ within 2-ΣA,L from the empty set.
Where n = the length of ∆, ϕ = ∆n−1, it suffices to show by induction that for
all i ∈ ω, if i < n, then there is a second-order QA-proof of ∆i in L. There are
only two cases to consider. In case (1), ∆i ∈ A, or ∆i is a second-order Q axiom.
In that case, by lemma 596 (part a) there is a second-order QA-proof of ∆i in L.
In case (2), ∆i is a g-consequence of {∆j : j < i}, where g is the single inference
rule of 2-ΣA,L. That is, for some k ∈ ω, ψ0, ..., ψk−1 ∈ {∆j : j < i}, and some
∆′, ∆′ is a second-order QA-proof of (ψ0 → (ψ1 → ... → (ψk−1 → ∆i)...)). But
then, by the inductive hypothesis, there is a second-order QA-proof of ψj , for
j < k, and therefore, by k many applications of lemma 596 (part b), there is a
second-order QA-proof of ∆i. We leave as an exercise the proof of the converse
direction.

Exercise 9.4.1 Complete the proof for lemma 600.

Definition 601 If L is a second-order language and A is a recursive set of E-
formulas of L, then
2-Σe

A,L =df 〈L, A, {g}〉, where g is that function from the set of subsets of
FM2e

L such that for all Γ ⊆ FM2e
L, g(Γ) = {ϕ ∈ FM2e

L: for some n ∈ ω,
ψ0, ..., ψn−1 ∈ Γ and some ∆, ∆ is a second-order QeA-proof of (ψ0 → (ψ1 →
... → (ψn−1 → ϕ)...)) in L}.

Lemma 602 If L is a language, A is a recursive set of E-formulas of L, and
ϕ ∈ FM2e

L, then �Σe
A,L

ϕ if and only if there is a second-order QeA-proof of ϕ
in L.

Exercise 9.4.2 Prove lemma 602.

Second-order quantified modal calculi that represent possibilism will be those
based upon the logic of actual and possible objects, e-concepts, and concepts in
general as specified by systems of the form 2-ΣA,L. We will take 2-QML to be
the class of these second-order calculi. On the other hand, 2-QeML will be the
class of the calculi based upon the free logic of e-concepts and actual objects
as specified by systems of the form 2-Σe

A,L. We will refer to the members of
2-QML as second-order possibilist calculi and those of 2-QeML as second-order
actualist calculi.

Definition 603 Σ is a second-order quantified modal CN-calculus
based upon the logic of second-order possibilism (in symbols, Σ ∈ 2-
QML) iff there are a language L and a recursive set A of formulas of L such
that Σ = 2-ΣA,L.

Definition 604 Σ is a second-order quantified modal CN-calculus
based upon the free logic of second-order actualism (in symbols, Σ ∈ 2-
QeML) iff there is a language L and a recursive set A of E-formulas of L such
that Σ = 2-Σe

A,L.
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The following lemmas are obvious consequences of previous lemmas and the
definitions of second-order possibilist and actualist modal logics given above.

Lemma 605 If Σ ∈ 2-QML, then the rules UG2, UG, UGe, UGe
2, (MP ), and

(RN) are valid in Σ, and for all ϕ, if ϕ is a second-order Q-axiom, then �Σ ϕ.

Lemma 606 If Σ ∈ 2-QeML, then the rules UGe, UGe
2, (MP ), (RN),

(�UGe), and (�UGe
2) are valid in Σ, and for all ϕ, if ϕ is a second-order

Qe-axiom, then �Σ ϕ.

Exercise 9.4.3 Prove the above lemmas 605 and 606.

As the following lemma indicates, quantified modal calculi for both second-
order possibilism and actualism are logistic systems in the sense of chapter 1.

Lemma 607 If Σ belongs to 2-QML or 2-QeML and Γ∪{ϕ} ⊆ FM(Σ), then
(a) Γ �Σ ϕ iff for some n ∈ ω, ψ0, ..., ψn−1 ∈ Γ, �Σ (ψ0 ∧ ... ∧ ψn−1 → ϕ);
(b) if Γ tautologously implies ϕ, then Γ �Σ ϕ; and
(c) if ϕ is a tautologous in FM(Σ), then �Σ ϕ.

Proof. Assume the hypothesis and note that if part (a) holds, then, by the
second-order Q/Qe-axioms (1)–(3), Σ satisfies the assumptions for a logistic
system given in chapter 1, from which parts (b) and (c) of the lemma follow by
the completeness theorem for CN-logic (§1.3 of chapter 1). It suffices, accord-
ingly, to show part (a). Suppose first that Γ �Σ ϕ. Then, by definition, there is a
derivation ∆ of ϕ from Γ within Σ. Where k = the length of ∆, let ψ0, ..., ψm−1

be all the distinct members of Γ ∩ {∆i : i < k}, and let B = {i ∈ ω : if i < k,
then �Σ (ψ0 ∧ ... ∧ ψm−1 → ∆i)}. Now, because ϕ = ∆k−1, it suffices to show
by strong induction that ω ⊆ B. Assume i < k, and note that if ∆i is either
an axiom of Σ or in Γ, then by lemma 19 of §1.2.3 (of chapter 1), Γ �Σ ∆i,
and therefore by second-order Q/Qe-axiom (1), lemma 596 (parts a and b),
lemma 600, lemma 598 (parts a and b), lemma 602 �Σ (ψ0 ∧ ... ∧ ψm−1 → ∆i),
from which it follows that i ∈ B. Suppose then that ∆i is an g-consequence
of {∆j : j < i}, where g is the single inference rule of Σ. By definition of
g, there are p ∈ ω, χ0, ..., χp−1 ∈ {∆j : j < i} and a QA/QeA-proof ∆′ of
(χ0 → (χ1 → ... → (χp−1 → ∆i)...)) in L, where A = Ax(Σ); and therefore,
by lemmas 600 and 602, �Σ (χ0 → (χ1 → ... → (χp−1 → ∆i)...)). But, by the
inductive hypothesis, �Σ (ψ0 ∧ ... ∧ ψm−1 → χj), for each j < p, and therefore,
by repeated application of MP (lemmas 605 and 606) �Σ (ψ0∧...∧ψm−1 → ∆i),
from which it follows that i ∈ B, and therefore, by strong induction, that ω ⊆ B.
We leave as an exercise the proof of the converse direction.

Exercise 9.4.4 Complete the proof of lemma 607.

Lemma 608 If Σ belongs to 2-QML, Γ ∪ {ϕ} ⊆ FM2(Σ), and v /∈ FV 2(ϕ),
then �Σ (ϕ → ∀evϕ).
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Exercise 9.4.5 Prove the above lemma 608. (Hint: where v ∈ V R, the proof of
the lemma involves axiom (24).)

Lemma 609 (Leibniz’s Law for modal-free formulas): If Σ ∈ 2-QML
or 2-QeML, a, b ∈ TM(Σ), ϕ,ψ ∈ FM(Σ), ϕ is modal-free, and Free-
2Int(ϕ,ψ, a, b), i.e., ψ is obtained from ϕ by replacing one or more free oc-
currences of a by free occurrences of b, then �Σ (a = b) → (ϕ ↔ ψ).

Proof. Assume Σ ∈ QML∪QeML, and let K = {ϕ ∈ FM2L(Σ) : for all a, b ∈
TM(Σ), all ψ ∈ FM(Σ), if Free-2Rep(ϕ,ψ, a, b), then �Σ (a = b) → (ϕ ↔ ψ)}.
We observe that although Free-2Rep(ϕ,ψ, a, b), unlike Free-2Int(ϕ,ψ, a, b),
involves replacing only one free occurrence of a in ϕ by a free occurrence of
b, nevertheless, if we can show that every modal-free formula of Σ is in K,
then, by repeated application of that result we will have shown the lemma. It
suffices, accordingly, to show by the induction principle for second-order modal-
free formulas that every modal-free formula of Σ is in K. As an exercise, we
leave to the reader the proof for the cases ¬ϕ, (ϕ → χ), ∀xϕ, and ∀exϕ, and we
show it only for atomic formulas and second-order quantifications.

Assume ϕ ∈ ATL, where L is the language of Σ, and Free-2Rep(ϕ,ψ, a, b),
for arbitrary a, b ∈ TM(Σ). Then, �Σ (a = b) → (ϕ → ψ), by the second-order
Q/Qe-axiom (10), and also �Σ (a = b) → (ψ → ϕ) by Q/Qe-axiom (10), and
therefore �Σ (a = b) → (ϕ ↔ ψ) by above lemma 607(c) and MP applied twice.

Assume now that ϕ ∈ K, Q ∈ V Rn and show that ∀Qϕ,∀eQϕ ∈ K. If
Free-2Rep(∀Qϕ,ψ, a, b) or Free-2Rep(∀eQϕ,ψ, a, b), for a, b ∈ TM(Σ), then
for some ϕ′ ∈ FM(Σ), ψ is ∀Qϕ′, and Free-2Rep(ϕ,ϕ′, a, b). Therefore, by
the inductive hypothesis, �Σ (a = b) → (ϕ ↔ ϕ′), from which by (UG2),
(UGe

2), 2∀e-distribution, 2∀-distribution, and tautologous transformations, �Σ

∀Q(a = b) → (∀Qϕ ↔ ∀Qϕ′) and �Σ ∀eQ(a = b) → (∀eQϕ ↔ ∀eQϕ′). But
Q /∈ FV 2(a = b), and therefore, by 2∀e-vacuous, 2∀-vacuous, and tautologous
transformations, �Σ (a = b) → (∀Qϕ ↔ ∀Qϕ′) and �Σ (a = b) → (∀eQϕ ↔
∀eQϕ′), from which follows that ∀Qϕ, ∀eQϕ ∈ K.

Exercise 9.4.6 Complete the proof for lemma 609.

The reflexivity, symmetry, and transitivity of identity are easily proved as
in chapter 7.

Lemma 610 If Σ belongs to 2-QML or 2-QeML, and a, b, c ∈ TM(Σ), then:

(1) �Σ (a = a),

(2) �Σ (a = b) → (b = a),

(3) �Σ (a = b) → [(b = c) → (a = c)].

Universal instantiation principles regarding modal-free formulas for both
possibilist and actualist individual variable quantifiers can be proved on the
basis of lemma 609. The proof is similar to the similar lemma in chapter 7.
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Lemma 611 (First-order Universal Instantiation for modal-free for-
mulas in second-order possibilism): If Σ ∈ 2-QML, ϕ is a modal-free
formula of Σ, a ∈ TM(Σ), x /∈ OC(a), and a can be properly substituted for x
in ϕ, then:
(a) �Σ ∀xϕ → ϕ(a/x), and
(b) �Σ ∃ex(a = x) → [∀exϕ → ϕ(a/x)].

Because all actual objects are possible objects, it follows that whatever holds
of possible objects within second-order possibilist modal logic must hold also of
actual objects. We state this formally in the following lemma.

Lemma 612 If Σ ∈ 2-QML, �Σ (∀xϕ → ∀exϕ).

Exercise 9.4.7 Prove lemma 612. (Hint: use axiom (24).)

Lemma 613 (First-order Universal Instantiation for modal-free for-
mulas in second-order actualism): If Σ ∈ QeML, ϕ is a modal-free formula
of Σ, a ∈ TM(Σ), x /∈ OC(a), and a can be properly substituted for x in ϕ,
then �Σ ∃ex(a = x) → [∀exϕ → ϕ(a/x)].

Exercise 9.4.8 Prove the above lemma 613. (Hint: see proof of lemma 467 in
§7.4.)

Certain theorems and lemmas regarding the (IE) and the RE rules, which
are valid in first-order modal logic, are also valid in second-order modal logic.

Theorem 614 If Σ belongs to 2-QML or 2-QeML, then the rule (IE) of inter-
change of equivalents is valid in Σ iff for all ϕ,ψ ∈ FM2L(Σ), if �Σ (ϕ ↔ ψ),
then �Σ (�ϕ ↔ �ψ).

Exercise 9.4.9 Prove the above theorem 614.

Lemma 615 If Σ is in 2-QML or 2-QeML, and the rule (IE) is valid in Σ,
then:
(I) if Σ is in 2-QML, then:
(a) �Σ �(x 
= y) → �(x 
= y);
(b) �Σ (S = Q) → �(S = Q);
(c) �Σ �(S 
= Q) → �(S 
= Q);
(d) �Σ (S 
= Q) → �(S 
= Q);
(e) �Σ ¬∃eQ(S = Q) → �¬∃eQ(S = Q);
(f) �Σ �∃eQ(S = Q) → ∃eQ(S = Q), and
(II) if Σ is an extension of a member of 2-QeML

(g) �Σ �(x 
= y) → �(x 
= y);
(h) �Σ (S =e Q) → �(S =e Q);
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(i) �Σ �(S 
=e Q) → �(S 
=e Q);
(j) �Σ (S 
=e Q) → �(S 
=e Q);
(k) �Σ ¬∃eQ(S =e Q) → �¬∃eQ(S = Q); and
(l) �Σ �∃eQ(S =e Q) → ∃eQ(S =e Q).

Exercise 9.4.10 Prove the above lemma 615.

Definition 616 If L is a language and A ⊆ FM2L, then Ae =df {ϕ ∈ A : ϕ ∈
FM2e

L}.

Theorem 617 If L is a language, A is a recursive set of formulas of L, Σ = 2-
ΣA,L, Σ′ = 2-Σe

Ae,L, and the (RE) rule is valid in both Σ and Σ′, then:
(a) Σ ∈ 2-QML and Σ′ ∈ 2-QeML,
(b) for all ϕ ∈ FM2e

L, if �Σ′ ϕ, then �Σ ϕ, and
(c) Σ′ is a proper subsystem of Σ.

Exercise 9.4.11 Prove the above theorem 617. (Hint: to show that (�UGe) is
valid in Σ, see the proof of lemma 469 in §7.4.)

What theorem 617 tells us is that second-order actualist modal calculi are
proper subsystems of second-order possibilist modal calculi if in these calculi
the RE rule is valid.

9.5 Second-Order Extensions of Kr

Similarly to first-order quantified modal logic, we can consider classes of possi-
bilist and actualist second-order calculi based on the most important sentential
modal logics characterized in chapter 2. Each calculus in any of these classes will
differ from the other calculi in the same class only with respect to its language.
Given any one of these languages, the different possibilist and actualist axiom
sets are specified as follows.

Definition 618 If L is a language, then:
(1) 2KrL =df {χ ∈ FM2L : χ is [�(ψ → ϕ) → (�ϕ → �ψ)], for some ϕ,ψ};
(2) 2Kre

L =df 2KrL ∩ FM2e
L;

(3) 2ML =df 2KrL ∪ {χ ∈ FM2L : χ is (�ϕ → ϕ), for some ϕ};
(4) 2Me

L =df 2ML ∩ FM2e
L;

(5) 2BrL =df 2KrL ∪ {χ ∈ FM2L : χ is (ϕ → ��ϕ), for some ϕ};
(6) 2Bre

L =df 2BrL ∩ FM2e
L;

(7) 2S4L =df 2ML ∪ {χ ∈ FM2L : χ is (�ϕ → ��ϕ), for some ϕ};
(8) 2S4e

L =df 2S4L ∩ FM2e
L;

(9) 2S4.2L =df 2S4L ∪ {χ ∈ FM2L : χ is (��ϕ → ��ϕ), for some ϕ};
(10) 2S4.2e

L =df 2S4.2L ∩ FMe
L;
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(11) 2S4.3L =df 2S4L∪{χ ∈ FM2L : χ is (�ϕ∧�ψ → �[(ϕ∧�ψ)∨(ψ∧�ϕ)]),
for some ϕ, ψ};
(12) 2S4.3e

L =df 2S4.3L ∩ FM2e
L;

(13) 2S5L =df 2ML ∪ {χ ∈ FM2L : χ is (�ϕ → ��ϕ), for some ϕ}; and
(14) 2S5e

L =df 2S5L ∩ FM2e
L.

On the basis of the above, we characterize the different classes of second-
order possibilist and actualist calculi.

Definition 619 (1) 2-QKr =df {2-ΣA,L : L is a language and A = 2KrL};
(2) 2-QeKr =df {2-Σe

A,L : L is a language and A = 2Kre
L};

(3) 2-QM =df {2-ΣA,L : L is a language and A = 2ML};
(4) 2-QeM =df {2-Σe

A,L : L is a language and A = 2Me
L};

(5) 2-QBr =df {2-ΣA,L : L is a language and A = 2BrL};
(6) 2-QeBr =df {2-Σe

A,L : L is a language and A = 2Bre
L};

(7) 2-QS4 =df {2-ΣA,L : L is a language and A = 2S4L};
(8) 2-QeS4 =df {2-Σe

A,L : L is a language and A = 2S4e
L};

(9) 2-QS4.2 =df {2-ΣA,L : L is a language and A = 2S4.2L};
(10) 2QeS4.2 =df {2-Σe

A,L : L is a language and A = 2S4.2e
L};

(11) 2-QS4.3 =df {2-ΣA,L : L is a language and A = 2S4.3L};
(12) 2-QeS4.3 =df {2-Σe

A,L : L is a language and A = 2S4.3e
L};

(13) 2-QS5 =df {2-ΣA,L : L is a language and A = 2S5L}; and
(14) 2-QeS5 =df {2-Σe

A,L : L is a language and A = 2S5e
L}.

Lemma 620:
(a) 2-QKr,2-QBr, 2-QS4, 2-QS4.2, 2-QS4.3, 2-QS5 ⊆ 2-QML;
(b) 2-QeKr, 2-QeBr, 2-QeS4, 2-QeS4.2, 2-QeS4.3, 2-QeS5 ⊆ 2-QeML; and
(c) 2-QeKr, 2-QeBr, 2-QeS4, 2-QeS4.2, 2-QeS4.3, 2-QeS5 are proper subsys-
tems, respectively, of 2-QKr, 2-QBr, 2-QS4, 2-QS4.2, 2-QS4.3, 2-QS5.

For convenience we shall refer to 2-S4–2-S5 second-order quantified modal
logics as second-order S-quantified modal logics.

Definition 621:
(a) 2S-QML =df 2-QS4 ∪ 2-QS4.2 ∪ 2-QS4.3 ∪ 2-QS5;
(b) 2S-QeML =df 2-QeS4 ∪ 2-QeS4.2 ∪ 2-QeS4.3 ∪ 2-QeS5.

Lemma 622:
(a) If Σ ∈ 2-QKr ∪ 2-QBr ∪ 2S-QML, then Σ is a logistic system in the
sense of chapter 1 (i.e., the deduction theorem holds for Σ and Σ is closed
under tautologous transformations) and the rules (MP ), (UG), (UGe), (UG2),
(UGe

2), (RN), (�UGe), and (IE) are all valid in Σ; and
(b) if Σ ∈ 2-QeKr ∪ 2-QeBr ∪ 2S-QeML, then Σ is also a logistic system in
the sense of chapter 1 and the rules (MP ), (UGe), (UGe

2),(RN), (�UGe), and
(IE) are all valid in Σ.
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Proof. For part (a), note that the validity in Σ of all of the rules except for
(IE) is an immediate consequence of lemma 620 and lemma 605. For (IE),
note that because Σ is (by definition) an extension of QKr, then, by the modal
axiom of QKr, �Σ �(ϕ → ψ) → (�ϕ → �ψ) and �Σ �(ψ → ϕ) → (�ψ → �ϕ).
Therefore, if �Σ (ϕ → ψ) and �Σ (ψ → ϕ), then by RN and MP �Σ (�ϕ → �ψ)
and �Σ (�ψ → �ϕ), and so, by (MP ) and tautologous transformations, if
�Σ (ϕ ↔ ψ), then �Σ (�ϕ ↔ �ψ). Accordingly, by theorem 614, the rule (IE)
is valid in Σ. The proof for part (b) is similar.

We now recursively define the notion of a second-order instance of a for-
mula of sentential modal logic so that we can apply theorems proved for modal
sentential calculi.

Definition 623 If L is a language and g is a function from ω into FM2L,
then:
(1) g-trs(Pn) =df g(n), for each sentence letter Pn, where n ∈ ω,
(2) g-trs(¬ϕ) =df ¬(g-trs(ϕ)),
(3) g-trs(ϕ → ψ) =df (g-trs(ϕ) → g-trs(ψ)), and
(4) g-trs(�ϕ) =df �(g-trs(ϕ)).

Definition 624 If L is a language, ϕ ∈ FM2L, and ψ is a modal CN-formula,
then:
(a) ϕ is a second-order instance of ψ in L iff there is a function g from ω
into FM2L such that ϕ = g-trs(ψ); and
(b) ϕ is a second-order E-instance of ψ in L iff ϕ is a second-order instance
of ψ in L and ϕ ∈ FM2e

L.

Note: We will refer occasionally simply to second-order instances of (sentential)
modal CN-formulas, by which we mean instances in some second-order language
of some modal CN-formula.

Theorem 625 If ΣK is a modal CN-calculus, where K is a recursive (axiom)
set of modal CN-formulas, Σ′ is in 2-QML ∪ 2-QeML, and all second-order
instances of the members of K that are in FM(Σ′) are theorems of Σ′, then
for all ϕ ∈ FM(Σ′), ψ ∈ FM(ΣK), if ϕ is an instance of ψ and �ΣK

ψ, then
�Σ′ ϕ.

Exercise 9.5.1 Prove above theorem 625.

The following theorem follows from the previous theorem and the fact that
(MP ) and (RN) are valid in every possibilist or actualist second-order quantified
modal CN-calculus.

Theorem 626 If Σ ∈ 2-QML ∪ 2-QeML, ϕ ∈ FM(Σ), ψ is a modal CN-
formula, and ϕ is a second-order instance of ψ, then:
(a) if �Kr ψ and Σ is an extension of a member of 2-QKr or of 2-QeKr, then
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�Σ ϕ;

(b) if �Br ψ and Σ is an extension of a member of 2-QBr or of 2-QeBr, then
�Σ ϕ;

(c) if �S4 ψ and Σ is an extension of a member of 2-QS4 or of 2-QeS4, then
�Σ ϕ;

(d) if �S4.2 ψ and Σ is an extension of a member of 2-QS4.2 or of 2-QeS4.2,
then �Σ ϕ;

(e) if �S4.3 ψ and Σ is an extension of a member of 2-QS4.3 or of 2-QeS4.3,
then �Σ ϕ; and

(f) if �S5 ψ and Σ is an extension of a member of 2-QS5 or of 2-QeS5, then
�Σ ϕ.

Exercise 9.5.2 Prove the above theorem 626.

Convention: In referring to a theorem of a second-order quantified modal CN-
calculus that is an instance of a theorem of a sentential modal CN-calculus,
we will hereafter refer simply to the theorem of the sentential modal CN-
calculus in question (as described in chapter 2).

The unqualified version of Leibniz’s law for individual variables is provable
in extensions of second-order Q/QeKr.

Lemma 627 (Unrestricted Leibniz’s Law for individual variables): If Σ ∈ 2-
QML∪ 2-QeML, Σ is an extension of a member of 2-QKr or 2-QeKr, ϕ,ψ ∈
FM(Σ), a, b ∈ TM(Σ), Free-2Int(ϕ, ψ, x, y), then �Σ (x = y) → (ϕ ↔ ψ).

By lemma 627, universal instantiation laws for individual variables are then
provable in extensions of second-order Q/QeKr.

Lemma 628 (First-order Unrestricted Universal Instantiation for individual
variables): If Σ ∈ 2-QML ∪ 2-QeML, ϕ ∈ FM(Σ), x, y are distinct individual
variables, and y can be properly substituted for x in ϕ, then:

(a) �Σ ∀xϕ → ϕ(y/x) if Σ is an extension of a member of 2-QKr; and

(b) if Σ is an extension of a member of 2-QeKr, then

(i) �Σ ∃ex(y = x) → [∀exϕ → ϕ(y/x)], and

(ii) �Σ ∀ey[∀exϕ → ϕ(y/x)].

Exercise 9.5.3 Prove the above lemma 628.

Lemma 629 If Σ ∈ 2-QML, Σ is an extension of a member of 2-QKr , ϕ,ψ ∈
FM(Σ), and x, y are distinct individual variables, then:

(1) �Σ ∃eQQ(y) ↔ ∃ex(x = y), and

(2) �Σ ∃eyϕ ↔ ∃y(∃eQQ(y) ∧ ϕ).
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Proof. Assume hypothesis. For (1) note that by axiom (24) �Σ ∀ey∃x(x =
y) ↔ [∃eQQ(y) → ∃ex(x = y)], and therefore by axiom (8) and MP , �Σ

∃eQQ(y) → ∃ex(x = y). For part (2) �Σ ∀eyϕ ↔ ∀y[∃eQQ(y) → ¬ϕ] is also
an instance of axiom (24), and therefore by tautologous transformations, �Σ

∃eyϕ ↔ ∃y(∃eQQ(y) ∧ ϕ).

Restricted universal instantiation laws for terms in general, rewrite laws for
individual variable quantifiers, and further instantiation laws are stated in the
following lemmas. Their proof is left to the reader.

Lemma 630 (First-order Restricted Universal Instantiation for terms in gen-
eral): If Σ ∈ 2-QML∪ 2-QeML, ϕ ∈ FM(Σ), a ∈ TM2(Σ), x /∈ OC(a), and a
can be properly substituted for x in ϕ, then:

(1) �Σ ∃x�(a = x) → (∀xϕ → ϕ(a/x)) if Σ is an extension of a member of
2-QKr, and

(2) �Σ ∃ex�(a = x) → (∀exϕ → ϕ(a/x)) if Σ is an extension of a member of
2-QeKr.

Lemma 631 (Law of Rewrite of Bound Individual Variables): If Σ ∈ 2-QML∪
2-QeML, ϕ ∈ FM(Σ), x, y are distinct variables, y can be properly substituted
for x in ϕ, and y /∈ FV 2(ϕ), then:

(a) if Σ is an extension of a member of 2-QKr, then �Σ ∀xϕ ↔ ∀yϕ(y/x); and

(b) if Σ is an extension of a member of 2-QeKr, then �Σ ∀exϕ ↔ ∀eyϕ(y/x).

Lemma 632 If Σ ∈ 2-QML ∪ 2-QeML, ϕ ∈ FM(Σ), then:

(1) if Σ is an extension of a member of 2-QKr, then �Σ ∀xϕ → ϕ; and

(2) if Σ is an extension of a member of 2-QeKr and x, y are distinct variables,
then:

(a) �Σ ∃ey(x = y) → (∀exϕ → ϕ); and

(b) �Σ ∀ex(∀exϕ → ϕ).

Lemma 633 If Σ ∈ 2-QML and Σ is an extension of a member of 2-QKr,
then:
(1) �Σ �∀xϕ → ∀x�ϕ;
(2) �Σ ∃x�ϕ → �∃xϕ; and
(3) �Σ ∃x(x = y) → �∃x(x = y), provided x /∈ OC(y).

Lemma 634 If Σ ∈ 2-QML and Σ is an extension of a member of 2-QM , then
�Σ ∃y�(y = x), provided x and y are distinct variables.

Exercise 9.5.4 Prove the above lemmas 630–634.

Instantiation principles for predicate variables are proved in the following
lemmas for extensions of members of 2-QML.
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Lemma 635 If Σ ∈ 2-QML, P is a predicate expression of the same number
of places as Q, and P can be properly substituted for Q in ϕ, then:
(1) �Σ ∀Qϕ → ϕ(P/Q), and
(2) �Σ ∃eQ(Q = P ) → (∀eQϕ → ϕ(P/Q)).

Proof. Assume the hypothesis and note that Q /∈ 2FV (¬ϕ(P/Q)). By second-
order Q-axiom (11), �Σ (Q = R) → (ϕ ↔ ϕ(P/Q)), and therefore by
tautologous transformations, (UG2), (UGe

2), 2∀-distribution, 2∀e-distribution),
�Σ ∀Q¬ϕ(P/Q) → [∀Qϕ → ∀Q(Q 
= P )], and �Σ ∀eQ¬ϕ(P/Q) → [∀eQϕ →
∀eQ(Q 
= P )]. But Q /∈ 2FV (¬ϕ(P/Q)), and therefore, by second-order Q-
axiom (6) and lemma 608, �Σ ¬ϕ(P/Q) → [∀Qϕ → ∀Q(Q 
= P )], and
�Σ ¬ϕ(P/Q) → [∀eQϕ → ∀eQ(Q 
= P )], from which it follows by tautol-
ogous transformations and definitions of the existential quantifiers that �Σ

∃Q(Q = P ) → (∀Qϕ → ϕ(P/Q)), and �Σ ∃eQ(Q = P ) → (∀eQϕ → ϕ(P/Q)).
But, by second-order Q-axiom (12), �Σ ∃Q(Q = P ), and therefore, by (MP ),
�Σ ∀Qϕ → ϕ(P/Q).

Lemma 636 If Σ ∈ 2-QML, ψ is a modal-free formula of Σ, ϕ ∈ FM(Σ),
Q, R ∈ V Rn, R /∈ OC(ψ), R /∈ OC(∀Qϕ), and x0, ..., xn are distinct individual
variables occurring free in ψ, then:
(1) �Σ ∀Qϕ → ϕ(ψ/Q(x0, ..., xn)), and
(2) �Σ ∃eR(R = [λx0...xnψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn))).

Proof. Assume the hypothesis. By the previous lemma, �Σ ∀Qϕ → ϕ(R/Q)
and �Σ ∃eQ(Q = R) → (∀eQϕ → ϕ(R/Q)). Then, by axiom 11, �Σ R =
[λx0...xnψ] → (∀Qϕ → ϕ(ψ/Q(x0, ..., xn))) and �Σ R = [λx0...xnψ]) →
(∃eQ(Q = [λx0...xnψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn)))). Then, by tautolo-
gous transformations, (UG2), (UGe

2), 2∀-distribution, 2∀e-distribution, axioms
12, 6, and lemma 608, �Σ ∀Qϕ → ϕ(ψ/Q(x0, ..., xn)), and �Σ ∃eR(R =
[λx0...xnψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn))).

Lemma 637 (Law of Rewrite of Bound Predicate Variables): If Σ ∈ 2-QML∪
2-QeML, ϕ ∈ FM(Σ), Q, R are distinct predicate variables, Q can be properly
substituted for R in ϕ, and Q /∈ FV 2(ϕ), then:
(a) if Σ is an extension of 2-QKr, then �Σ ∀Rϕ ↔ ∀Qϕ(Q/R); and
(b) if Σ is an extension of 2-QeKr, then �Σ ∀eRϕ ↔ ∀eQϕ(Q/R).

Exercise 9.5.5 Prove the above lemma 637.

The following are important consequences from the second-order quantifica-
tion instantiation laws.

Lemma 638 If Σ ∈ 2-QML ∪ 2-QeML, then:
(I) if Σ ∈ 2-QML and Σ is an extension of a member of 2-QKr, then:
(a) �Σ �∀Qϕ → ∀Q�ϕ,
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(b) �Σ ∃Q�ϕ → �∃Qϕ,
(c) �Σ ∃eQ(Q = R) → �∃eQ(Q = R),
(d) �Σ �∃eQ(S = Q) → �∃eQ(Q = R).
(II) if Σ ∈ 2-QeML, then �Σ ∃eQ(Q =e R) → �∃eQ(Q =e R).

Lemma 639 If R does not occur in ϕ, x0, ..., xn−1are all the distinct individual
variables free in ϕ, then:
(1) if Σ ∈ 2-QML and y is distinct from each xi, for 0 ≤ i < n, then
�Σ ∃eQ(Q = [λx0...xn−1(ϕ(x0, ..., xn−1)) → ∀x0...∀xn−1(ϕ → ∃ey(y = xk)), for
every k < n; and
(2) if Σ ∈ 2-QeML, t0, ..., tn−1 are terms of the language of Σ such that ti, for
i < n, is free for xi in ϕ, and y is distinct from each ti, then
�Σ ∃eQ(Q =e [λx0...xn−1(ϕ(x0, ..., xn−1)) → (ϕ(t0/x0...tn−1/xn−1) → ∃ey(y =
ti)), for all i < n.

Lemma 640 If Q is an n-place predicate variable and Q /∈ OC(ϕ), then:
(1) if Σ ∈ 2-QML, then
�Σ ∃eQ(Q = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))]); and
(2) if Σ ∈ QeML, then
�Σ ∃eQ(Q =e [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))]).

Exercise 9.5.6 Prove the above lemmas 638–640.

Exercise 9.5.7 Show that if Σ ∈ 2-QML and Σ is an extension of a member
of 2-QS4, then instances of axiom (11) in the language of Σ can be proved from
the other axioms.

Exercise 9.5.8 Prove that axioms (17), (19), (21), and (22) are redundant in
2-QS5 systems.

We now show that the different second-order quantified modal calculi charac-
terized in the present section are consistent. For the proof it will be necessary to
define a translation function that associates each theorem of these systems with
a modal-free theorem of standard (impredicative) second-order logic. Standard
(impredicative) second-order is consistent, as shown in Church 1956.

Theorem 641 (The Consistency of 2-QKr, 2-QBr systems and the systems
from 2-QS4 to 2-QS5): If Σ ∈ 2-QML∪2-QeML and Σ is a subsystem (proper
or otherwise) of QS5, then Σ is consistent.

Proof. Assume the hypothesis, and let L be the language of Σ. Let trans be
the function from the formulas of L into the set of standard modal-free formulas
of L that satisfies the following clauses:

1. trans((a = b)) = ∀Q1(Q1(a) → Q1(b))), where a, b ∈ TML;
2. trans(F (a0, ..., an−1)) =df F (a0, ..., an−1), where n ∈ ω, F is an n-place

predicate expression of L, and a0, ..., an−1 ∈ TML;
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3. trans(¬ϕ) =df ¬(trans(ϕ));
4. trans(ϕ → ψ) =df (trans(ϕ) → trans(ψ));
5. trans(∀xϕ) =df ∀xϕ(trans(ϕ));
6. trans(∀exϕ) =df ∀x(trans(ϕ));
7. trans(∀Qϕ) =df ∀Qϕ(trans(ϕ));
8. trans(∀eQϕ) =df ∀Q(trans(ϕ));
9. trans(�ϕ) =df trans(ϕ).
Note first (A) that as defined above the translation of every second-order Q-

axiom and every second-order Qe-axiom is an axiom of the logic of modal-free
standard formulas. Also note (B) that the rules (MP ), (RN), (UG), (UGe),
(UG2), (�UGe), and (UGe

2) all preserve theoremhood in standard impredica-
tive second-order logic under the above translation. Finally, (C), note that if
�Σ ϕ, then trans(ϕ) is a theorem of standard impredicative second-order logic;
because, where ∆ is a derivation of ϕ within Σ from the empty set, then, by
using (A) and (B) in an inductive argument on the length of ∆, it can be seen
that for i < D∆, trans(∆i) is a theorem of standard impredicative second-order
logic, from which it follows that trans(ϕ) is a theorem of standard impredica-
tive second-order logic. But if Σ were inconsistent, then �Σ ϕ and �Σ ¬ϕ,
for some ϕ ∈ FM(Σ), and therefore, by (C), trans(ϕ) and trans(¬ϕ), which,
by definition, is ¬(trans(ϕ)), would both be theorems of standard (impredica-
tive) second-order logic, which is impossible because standard (impredicative)
second-order logic is consistent.

9.6 Second-Order Omega-Completeness

In chapter 7, §7.6, we introduced the notion of ω-completeness for possibilist
and actualist quantifiers. We now modify this notion in two ways. The first
is to consider formulas in which quantifiers are applied to predicate variables
as well as to individual variables. The second is to consider those formulas in
which first-order quantifiers can have second-order formulas as well as first-order
formulas within their scope.

Definition 642 If L is a language and K ⊆ FM2L, then:
(a) K is 2-ω/∃-complete in L iff both (1) for all x ∈ V R, all ϕ ∈ FM2L,
if ∃xϕ ∈ K, then there is an individual variable y other than x that can be
properly substituted for x in ϕ such that ϕ(y/x)] ∈ K, and (2) for all n ∈ ω, all
Q ∈ V Rn and all ϕ ∈ FM2L, if ∃Qϕ ∈ K, then there is a n-place predicate
variable R other than Q that can be properly substituted for Q in ϕ such that
ϕ(R/Q) ∈ K;
(b) K is 2-ω/∃e-complete in L iff for all n ∈ ω, all Q ∈ V Rn and all
ϕ ∈ FM2L, if ∃eQϕ ∈ K, then there is a n-place predicate variable R other than
Q that can be properly substituted for Q in ϕ such that [∃eQ(Q = R)∧ϕ(R/Q)] ∈
K; and
(c) K is 2-ω/ =e-complete in L iff (1) for all n ∈ ω, all Q ∈ V Rn and
all ϕ ∈ FM2L, if ∃eQϕ ∈ K, then there is a n-place predicate variable R
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other than Q that can be properly substituted for Q in ϕ such that [∃eQ(Q =e

R) ∧ ϕ(R/Q)] ∈ K; (2) if ∃exϕ ∈ K, then there is a variable y other than x
that can be properly substituted for x in ϕ such that [∃ex(y = x) ∧ ϕ(y/x)] ∈
K; and (3) for all n ∈ ω, all ψ0, ..., ψn−1, ϕ ∈ FM2L, if �[ψ0 ∧ �(ψ1 ∧ ... ∧
�(ψn−1∧�∃exϕ)...)] ∈ K, then there is a variable y other than x not occurring
free in ψ0, ..., ψn−1 and ϕ that can be properly substituted for x in ϕ such that
�[ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧ �[ϕ(y/x) ∧ ∃ex(y = x)])...)] ∈ K.

As the following theorem indicates, Lindenbaum’s lemma can be proved
for maximally consistent sets that are ω-complete in the extended sense defined
above.

Theorem 643 If Σ ∈ 2-QML ∪ 2-QeML, Σ is an extension of 2-QKr or 2-
QeKr, K ⊆ FM(Σ), K is Σ-consistent, there are infinitely many individual
variables not occurring in the formulas in K and for every n ∈ ω, there are
infinitely many n-place predicate variables not occurring in the formulas in K,
then there is a maximally Σ-consistent set Γ of formulas of Σ, i.e., Γ ⊆ FM(Σ)
and Γ ∈ MCΣ, such that K ⊆ Γ and (a) if Σ ∈ 2-QML, then Γ is 2-ω/∃-
complete and 2-ω/∃e-complete in the language of Σ; and (b) if Σ ∈ 2-QeML,
then Γ is 2-ω/ =ecomplete in the language of Σ.

Proof. Assume the hypothesis, and let ξ1, ..., ξm, ... be an ordering of the for-
mulas of Σ of the form ∃vϕ (for some v ∈ V ) or ∃eQϕ (for some n ∈ ω and
Q ∈ V Rn). (Note: If Σ ∈ 2-QeML, then the ordering to be considered will be
of formulas of Σ of the form ∃exϕ or ∃eQϕ, for Q ∈ V Rn , for some n ∈ ω.) We
recursively define a chain Γ of sets of formulas of Σ as follows:

(1) Γ0 =df K;
(2) if ξm+1 is ∃xϕ, for some x ∈ V R and ϕ ∈ FM(Σ), then Γm+1 =df

Γm∪{∃xϕ → ϕ(y/x)}, where y is the first variable not occurring in any formula
in Γn ∪ {ξm+1};

(3) if ξm+1 is ∃Qϕ, for some Q ∈ V Rn and ϕ ∈ FM(Σ), then Γm+1 =df

Γm∪{∃Qϕ → ϕ(R/Q)}, where R ∈ V Rn and R is the first variable not occurring
in any formula in Γn ∪ {ξm+1};

(4) if ξm+1 is ∃eQϕ, for some Q ∈ V Rn and ϕ ∈ FM(Σ), then Γm+1 =df

Γm ∪ {∃eQϕ → [∃eQ(Q = R) ∧ ϕ(R/Q)]}, where R ∈ V Rn and R is the first
variable not occurring in any formula in Γn ∪ {ξm+1}.

(Note: if Σ ∈ 2 − QeML, then instead of clauses (2)–(4) we must introduce
the following clauses:

(2´) if ξm+1 is ∃eQϕ, for some Q ∈ V Rn and ϕ ∈ FM(Σ), then Γm+1 =df

Γm ∪ {∃eQϕ → [(∃eQ(Q =e R) ∧ ϕ(R/Q)]}, where R ∈ V Rn and R is the first
variable not occurring in any formula in Γn ∪ {ξm+1}.)

(3´) if ξm+1 is ∃exϕ, for some x ∈ V R and ϕ ∈ FM(Σ), then
Γm+1 =df Γm ∪ {∃exϕ → [∃ex(y = x) ∧ ϕ(y/x)]}, where y is the first variable
not occurring in any formula in Γn ∪ {ξm+1};

(4´) if ξm+1 is �(ψ0∧�(ψ1∧...∧�(ψn−1∧�∃exϕ)...)), for some x ∈ V R and
ψ0, ..., ψn−1, ϕ ∈ FM(Σ), then Γm+1 =df Γm ∪ {[�(ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧
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�∃exϕ)...)) → �(ψ0 ∧ �(ψ1 ∧ ... ∧ �(ψn−1 ∧ �[ϕ(y/x) ∧ ∃ex(y = x)])...))]},
where y is the first variable not occurring in any formula in Γn ∪ {ξm+1}.

We show first by weak induction that for all m ∈ ω, Γm is Σ-consistent,
and that therefore

⋃
m∈ω Γm is Σ-consistent. By definition and hypothesis, Γ0

is Σ-consistent. Assume, accordingly, the inductive hypothesis that Γm is Σ-
consistent, and by a reductio argument that Γm+1 is not Σ-consistent. Then, by
lemma 27 of §1.2.4 (of chapter 1), there is a χ ∈ FM(Σ) such that Γm+1 �Σ

¬(χ → χ). We consider three cases depending on the form of ξm+1. As an
exercise, we leave to the reader the case where ξm+1 is ∃xϕ, for ϕ ∈ FM2(Σ).

Case 1: ξm+1 is ∃Qϕ, for some n ∈ ω and Q ∈ V Rn and ϕ ∈ FM(Σ).
We note that by lemma 607 and theorem 24 of §1.2.4 of chapter 1, there is a
conjunction θ of members of Γm such that �Σ θ → ∃Qϕ ∧ ¬ϕ(R/Q), where R
does not occur in θ or ∃Qϕ. Therefore, by (UG2), 2∀-distribution, 2∀-vacuous,
the law of rewrite of bound predicate variables, and tautologous transformations,
�Σ θ → ∃Qϕ ∧ ∀Q¬ϕ, i.e., by the definitions of ∃, �Σ θ → ¬∀Q¬ϕ ∧ ∀Q¬ϕ. It
follows then that, Γm is not Σ-consistent, which is impossible by the inductive
hypothesis.

Case 2: ξm+1 is ∃eQϕ, for some n ∈ ω and Q ∈ V Rn, and ϕ ∈ FM(Σ). As
in case (1), there is a conjunction θ of members of Γm such that �Σ θ → ∃eQϕ∧
[∃eQ(R = Q) → ¬ϕ(R/Q)], where R does not occur in θ or ∃Qϕ. Therefore, by
(UGe

2), 2∀e-distribution, lemma 608, tautologous transformation, and definition,
�Σ θ → ∃eQϕ ∧ [∀eR∃eQ(R = Q) → ∀eR¬ϕ(R/Q)]. But then, by second-
order Q-axiom (13), (MP ), the law of rewrite of bound predicate variables, and
tautologous transformations, �Σ θ → ∃eQϕ ∧ ¬∃eQϕ and, therefore, Γm is not
Σ-consistent. This is impossible by the inductive hypothesis.

(Note: if Σ ∈ 2-QeML, then we have to consider cases (2´)–(4´). As an
exercise, we leave cases (3´) and (4´) to the reader and prove case (2´). So,
suppose ξm+1 is ∃eQϕ, for some Q ∈ V R and ϕ ∈ FM(Σ). Then, there is
a conjunction θ of members of Γm such that �Σ θ → ∃eQϕ ∧ [(∃eQ(Q =e

R) → ¬ϕ(R/Q)], where R does not occur in θ or ∃Qϕ. Therefore, by (UGe
2),

2∀e-distribution, second-order Qe-axiom (14), tautologous transformation and
definition, �Σ θ → ∃eQϕ ∧ [∀eR∃eQ(Q =e R) → ∀eR¬ϕ(R/Q)], and so, by
second-order Qe-axiom, (MP ), the law of rewrite of bound predicate variables,
and tautologous transformations, �Σ θ → ∃eQϕ∧¬∃eQϕ and, consequently, Γm

is not Σ-consistent, which is impossible by the inductive hypothesis.)
We conclude, accordingly, that Γm is Σ-consistent, for all m ∈ ω, and there-

fore so is
⋃

m∈ω Γm, because otherwise a contradiction would be derivable from
finitely many members of

⋃
m∈ω Γm, and therefore from some Γm. But then,

by Lindenbaum’s lemma 30 of §1.2.4 (of chapter 1), there is a maximally Σ-
consistent set Γ′ of formulas of Σ such that

⋃
m∈ω Γm ⊆ Γ′. By the clauses

(1)–(4) in the definition of the sets Γm, it follows that K ⊆ Γ′ and that Γ′ is
2-ω/∃-complete and 2-ω/∃e-complete if Σ ∈ 2-QML, and 2-ω/ =e-complete if
Σ ∈ 2-QeML.

Exercise 9.6.1 Complete the proof of theorem 643.
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Theorem 644 If Σ belongs to 2-QML and is an extension of 2-QKr, or Σ
belongs to 2-QeML and is an extension of 2-QeKr, K ∪ {ϕ} ⊆ FM(Σ), there
are infinitely many individual variables not occurring in the formulas in K∪{ϕ},
and for every n ∈ ω, there are infinitely many n-place predicate variables not
occurring in any of the formulas in K ∪{ϕ}, then K �Σ ϕ iff for all Γ ∈ MCΣ,
if K ⊆ Γ and Γ is 2-ω/∃-complete and 2-ω/∃e-complete, or 2-ω/ =e-complete
if Σ ∈ 2-QeML, then ϕ ∈ Γ.

Corollary 645 If Σ belongs to 2-QML and is an extension of 2-QKr, or Σ
belongs to 2-QeML and is an extension of 2-QeKr, and ϕ ∈ FM2L(Σ), then
�Σ ϕ iff for all Γ ∈ MCΣ, if Γ is 2-ω/∃-complete and 2-ω/∃e-complete, or
2-ω/ =e-complete if Σ ∈ 2-QeML, then ϕ ∈ Γ.

Exercise 9.6.2 Prove the above theorem 644 and its corollary 645.

In the above two theorems and for reasons similar to those for theorems 491
and 492 in chapter 7, §7.6, the assumptions that there are infinitely many indi-
vidual variables and, for every n ∈ ω, infinitely many n-place predicate variables
not occurring in the formulas of K∪{ϕ} can be bypassed for the purposes of the
completeness theorems that we will prove in the next chapter. From chapter 7,
§7.6, the reader is already familiar with a function which substitutes variables
in first-order formulas by variables correlated by another function. We can de-
fine a similar function for second-order formulas. For this, recall first that for
every n ∈ ω, V Rn can be well-ordered. Assume then a correlation gn of the
natural numbers with the n-place predicate variables so that if m ∈ ω, then
gn(m) ∈ V Rn. For individual variables, we also assume a correlation i of the
natural numbers with the individual variables. Now, V is clearly enumerable.
Assume l to be a function enumerating V . For every v ∈ V, l(v) is the number
assigned to v. Let h be a correlation of the natural numbers with the even num-
bers. Then gn(h(m)) will be the 2mth n-place predicate variable and i(h(m))
the 2mth individual variable. Therefore, for every n ∈ ω, if Q is a n-place predi-
cate variable correlated to m by l, then gn(h(l(Qn)) is a 2mth n-place predicate
variable correlated with Q and for every individual variable x correlated to m
by l, i(h(l(x))) is the 2mth individual correlated with x. We define as follows a
function whose domain is V such that for v ∈ V ,

v′ =
{

i(h(l(v)), if v is an individual variable
gn(h(l(v)), if v is a n-place predicate variable .

Clearly, the above function maps, for n ∈ ω, V Rn into a countably infinite
proper subset of V Rn leaving infinitely many variables not in the range of such
a mapping. This applies also to V R.

Definition 646 If L is a second-order language, then:

(1) f((a0 = a1)) = (b0 = b1) and for i ≤ 1, bi =
{

a′
i if ai ∈ V R

ai otherwise
(2) f(P (a0, ..., an−1)) =df G(b0, ..., bn−1), where n ∈ ω,
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G =
{

Ṕ , if P is a n-place predicate variable
P, otherwise

and for i < n, bi =
{

a′
i if ai ∈ V R

ai otherwise
(3) f(¬ϕ) =df ¬f(ϕ), where ϕ ∈ FM2L;
(4) f(ϕ → ψ) =df (f(ϕ) → f(ψ)), where ϕ,ψ ∈ FM2L;
(5) f(∀xϕ) =df ∀x′f(ϕ), where x ∈ V R and ϕ ∈ FM2L;
(6) f(∀exϕ) =df ∀ex′f(ϕ), where x ∈ V R and ϕ ∈ FM2L;
(7) f(∀Qϕ) =df ∀Q′f(ϕ), where Q ∈ V Rn and ϕ ∈ FM2L;
(8) f(∀eQϕ) =df ∀eQ′f(ϕ), where Q ∈ V Rn and ϕ ∈ FM2L; and
(9) f(�ϕ) =df �f(ϕ), where ϕ ∈ FM2L.

Exercise 9.6.3 Show for all n ∈ ω, f(ψ0∧ ...∧ψn−1) = [f(ψ0)∧ ...∧ f(ψn−1)].
(Hint: let A = {n ∈ ω : f(ψ0 ∧ ... ∧ ψn−1) = f(ψ0) ∧ ... ∧ f(ψn−1)}, and show
by strong induction on ω that ω ⊆ A.)

As stated by the following lemmas, if ϕ is an axiom or a theorem of a
second-order quantified modal logic Σ, then so is f(ϕ). From this last result, it
follows that if K ⊆ FM(Σ), then K is Σ-consistent if, and only if, f“K, i.e.,
{f(ϕ) : ϕ ∈ K}, is Σ-consistent.

Lemma 647 If Σ ∈ 2-QML ∪ 2-QeML and ϕ ∈ Ax(Σ), then f(ϕ) ∈ Ax(Σ).

Lemma 648 If Σ ∈ 2-QML ∪ 2-QeML and ϕ ∈ FM(Σ), then �Σ ϕ iff �Σ

f(ϕ).

Lemma 649 If Σ ∈ 2-QML ∪ 2-QeML and K ⊆ FM(Σ), then K is Σ-
consistent iff f“K is Σ-consistent.

Exercise 9.6.4 Prove the above lemmas 647–649.



This page intentionally left blank 



Chapter 10

Semantics of Second-Order
Modal Logic

We will now characterize three different semantic frameworks for second-order
quantified modal logic. These semantic frameworks are secondary in the sense of
Henkin’s general models, by which we mean that n-place predicate quantifiers,
for n ∈ ω, are allowed to range over a proper subset of the set of all subsets of
n-tuples drawn from a universe of discourse. In other words, a “cut-down” on
the semantic values of the n-place predicate variables is allowed in the secondary
semantics for predicate quantifiers, whereas no such “cut-down” is allowed in
the primary semantics.

The first semantic framework we present will focus on standard second-order
languages, that is, on second-order languages whose logical syntax does not in-
volve e-quantifiers. In this semantics, we will prove a completeness theorem for
second-order quantified modal S5 systems. The other semantic frameworks will
take into account both possibilist and actualist quantifiers, and their main differ-
ence will be in the interpretation of the necessity operator. As in the first-order
semantics of chapter 8, one of these frameworks will involve an accessibility rela-
tion between possible worlds, whereas the other will not. Necessity in a possible
world in the one semantical framework, in other words, will be restricted to the
worlds accessible from that world, whereas in the other framework, necessity
will refer to all possible worlds—in which case we can then just as well view the
accessibility relation as universal. Clearly, the second-order relational seman-
tics of accessibility allows for a more comprehensive approach to the different
second-order modal logics described in chapter 9.

A completeness theorem for second-order quantified Kr formal systems will
be proved. Completeness proofs for the other formal systems are left to the
reader, but they can be easily obtained by considering the structural conditions
that each of the proper axioms of such systems impose on the accessibility
relation. We assume that the reader is familiar with how this proceeds on the
basis of the previous chapters. We will, however, give a completeness proof
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for actualist and possibilist second-order quantified S5 systems relative to the
non-relational semantic framework.

10.1 Semantics of Modal-Free
Second-Order Formulas

As in the semantics for first-order modal logic, we begin with the semantics of
the modal-free standard formulas of second-order logic. The reader will recall
that the second-order modal-free standard formulas of a second-order language
L are all and only the modal-free second-order formulas of L in which the uni-
versal e-quantifier does not occur. Now, in contrast to first-order modal logic,
two sorts of models are possible, depending on the way the second-order predi-
cate quantifiers are interpreted. They are known respectively as “standard” and
“general” models. We will characterize them in the present section.

In a standard model, as we have noted, n-place predicate quantifiers, for n ∈
ω, have a primary, or principal, interpretation under which they are understood
to range over all the sets of n-tuples drawn from a universe of discourse. In a
general model, on the other hand, n-place predicate quantifiers have a secondary
interpretation under which they are allowed to range over a “cut-down” of the
totality of the sets of n-tuples drawn from a universe of discourse.

In what follows, we will prove the essential incompleteness of the logics based
on the standard models and then the completeness of these logics as based on
general models. We will also show in this section the decidability of monadic
first-order modal logic under its primary interpretation.

Where L is a second-order language, a second-order standard model of L
consists of a universe of discourse and an interpretation function assigning an
extension to the predicate and individual constants of L. Clearly, a standard
model of L is also a model for a first-order language having the same predicate
and individual constants as L, and vice versa.

Definition 650 If L is a second-order language, then A is a standard
second-order model indexed by L iff there are a nonempty set D, called the
universe of A, and an L-indexed set R, i.e., a function with L as domain, such
that (1) for all n ∈ ω and all n-place predicate constants F ∈ L, R(F ) ⊆ Dn,
and (2) for each individual constant a ∈ L, R(a) ∈ D, and A = 〈D,R〉.

Convention: Where L is a second-order language, we will refer to the standard
second-order models indexed by L as L-standard models. If A = 〈D,R〉
and A is an L-standard model, then we set UA =df D, the universe of A,
and LA =df L; also, if ς ∈ L, then A(ξ) = R(ξ).

As in first-order semantics, the notions of truth and falsehood are relativized
to a model and will depend on the semantic notion of satisfaction in a model by
an assignment of values to the predicate and individual variables. Accordingly,
we first define the notion of an assignment, as well as the variation of such an
assignment with respect to a given argument.
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Definition 651 If D is a nonempty set and P(Dn) is the powerset of Dn, for
n ∈ ω, then a is a second-order assignment (of values) in D∪⋃

n∈ω P(Dn)
to the variables iff (1) a ∈ (D ∪ ⋃

n∈ω P(Dn))V , i.e., a is a function from V
into D ∪

⋃
n∈ω P(Dn); (2) if v ∈ V R, then a(v) ∈ D; and (3) if v ∈ V Rn, then

a(v) ∈ P(Dn).

In some of the forthcoming definitions, we shall make use of the notion of a
variation of an assignment with respect to a given argument. For this reason,
we repeat definition 500.

Definition 652 If f is a function, then f(d/v) =df (f −{(v, f(v))})∪{(v, d)}.

Convention: If A is a second-order standard model, then we will say that a

is a second-order assignment in A if a is a second-order assignment in
UA ∪ ⋃

n∈ω P(Un
A
).

Definition 653 If L is a second-order language, A is an L-standard model, A =
〈D,R〉, a is a second-order assignment in A, and ξ is a predicate or individual
constant in L or a variable, i.e., ξ ∈ L ∪ V , then the extension of ξ in A

relative to a is defined as follows:

extA,a(ξ) =df

{
R(ξ) if ξ ∈ L
a(ξ) if ξ ∈ V

.

Exercise 10.1.1 Show that if A is a second-order standard model, ξ ∈ LA,
i.e., ξ is a predicate or individual constant in A, and a, b are second-order
assignments in A, then extA,a(ξ) = extA,b(ξ).

We now characterize the satisfaction clauses for the modal-free standard
second-order formulas of an arbitrary second-order language L.

Definition 654 If L is a second-order language, A is an L-standard model, and
a is a second-order assignment in A, then we recursively define the satisfaction
in A by a of a modal-free standard second-order formula ϕ of L, in symbols,
A, a |=st ϕ, as follows:
(1) if ϕ is (ζ = ξ), where ζ, ξ ∈ TM2L, then A, a |=st ϕ iff extA,a(ζ) = extA,a(ξ);
(2) if ϕ is P (a0, ..., an−1), for some n ∈ ω, and an n-place predi-
cate expression P of L, and a0, ..., an−1 ∈ TM2L, then A, a |=st ϕ iff
〈extA,a(a0), ..., extA,a(an−1)〉 ∈ extA,a(P );
(3) if ϕ is ¬ψ, for some modal-free standard second-order formula ψ of L, then
A, a |=st ϕ iff A, a �st ψ;
(4) if ϕ is (ψ → χ), for some modal-free standard second-order formulas ψ and
χ of L, then A, a |=st ϕ iff either A, a �st ψ or A, a |=st χ;
(5) if ϕ is ∀xψ, for some x ∈ V R and modal-free standard second-order formula
ψ of L, then A, a |=st ϕ iff for all d ∈ UA, A, a(d/x) |=st ψ;
(6) if ϕ is ∀Qψ, for some Q ∈ V Rn and modal-free standard second-order for-
mula ψ of L, then A, a |=st ϕ iff for all d ∈ P((UA)n), A, a(d/Q) |=st ψ.
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On the basis of the above definition, we define truth and validity for modal-
free standard second-order formulas.

Definition 655 If L is a second-order language, A is an L-standard model, and
ϕ is a modal-free standard second-order formula of L, then ϕ is true in A, in
symbols, A |=st ϕ, iff for every second-order assignment a in A, A, a |=st ϕ.

Definition 656 If L is a second-order language and Γ∪ {ϕ} is a set of modal-
free standard second-order formulas of L, then:

(1) ϕ is a standard second-order consequence of Γ (in symbols, Γ |=st ϕ)
iff for very L-standard model A and second-order assignment a in A, if A, a |=st

ψ, for all ψ ∈ Γ, then A, a |=st ϕ;

(2) ϕ is a standard second-order logical truth, in symbols, |=st ϕ, iff the
empty set classically implies ϕ.

Under the present semantics, the expressive power of modal-free, standard
second-order languages implies the incompleteness of standard second-order
logic. The proof of this result involves Peano arithmetic. It is well known that
the inductive axiom of Peano arithmetic can only be stated in first-order arith-
metic as a schema, but in a second-order language of arithmetic the axiom can
be stated as a formula; this makes possible the expression of the standard ax-
ioms of Peano arithmetic as a finite conjunction. Let us refer to this possible
conjunction as P. It has been shown that P is second-order categorical, that is,
every second-order standard model of the second-order language of arithmetic
in which P is true is isomorphic to the intended second-order standard model
of arithmetic.

Another important well-known result regarding arithmetic is the so-called
Tarski theorem of the indefinability of truth in first-order arithmetic. According
to this result, there is no formula in the first-order language of arithmetic that
can express truth in the intended model of this language. We shall here assume
this as well as the above result in the following theorem. In order to express
Tarski’s result, we will presuppose the arithmetization of syntax via so-called
Gödel numbering, that is, the codification of formulas of the language by natural
numbers. This procedure implies that, for each formula of the language, there
is a unique natural number corresponding to it, namely, its Gödel number.1

Theorem 657 Let LA be the language of arithmetic, ALA
the intended second-

order standard model for LA and B a standard model indexed by LA. Then:
(a) there is no ϕ ∈ FMLA

with exactly one free variable x such that, for every
σ ∈ StLA

(i.e., every first-order sentence of the language of arithmetic), ALA
|=st

σ if and only if ALA
|=st ϕ(σ#/x), where σ# is the Gödel number of σ; and

(b) if B |=st P, then ALA
and B are isomorphic.

1For details concerning the proof of both results and the arithmetization of syntax, see,
for example, Boolos, Burgess and Jeffrey 2003, chapters 15, 17 and 22, and Enderton 2001,
chapter 3.
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Note: This theorem entails that the set of second-order logical truths is not
recursively axiomatizable.2

Theorem 658 Let LA be the language of arithmetic. The set of modal-free
standard second-order logical truth of LA is not recursively axiomatizable.

Proof. By reductio, assume that the set of modal-free standard second-order
logical truths of LA is recursively axiomatizable. Now, since P is categorical,
then for every modal-free first-order sentence ϕ of LA, either |=st P → ϕ or
|=st P → ¬ϕ. By assumption, the set of modal-free standard second-order
logical truths of LA is recursively axiomatizable, from which it follows that
its theorems are recursively enumerable. Given a recursively enumerated list of
the theorems, then sooner or later, (P → ϕ) or (P → ¬ϕ) will appear in the
list. This would mean that the set of modal-free first-order sentences true in
arithmetic is recursively enumerable, which is impossible by Tarski’s theorem of
the undefinability of truth in first-order arithmetic, given that every recursively
enumerable set is definable in first-order arithmetic.3

Corollary 659 If Γ = {ϕ : for some language L, ϕ is a modal-free standard
second-order formula of L, and ϕ is true in all L-standard models}, then Γ is
not decidable.

Exercise 10.1.2 Prove the above corollary 659.

In contrast with corollary 659, it has been shown that modal-free standard
second-order monadic logic is decidable. In other words, the set of modal-free
formulas of second-order languages containing only monadic predicate constants
and monadic predicate variables is decidable. We shall not prove this result here
but rather assume it in order to show the further result that monadic first-order
quantified modal logic is also decidable.4

Theorem 660 If Γ = {ϕ : for some language L, ϕ is a modal-free standard
monadic second-order formula of L, and ϕ is true in all L-standard models},
then Γ is decidable.

We first define a function transforming all first-order modal formulas into
modal-free standard second-order formulas. For this notice first that we are
assuming that the set of constants of any second-order language L is recursive
and so effectively enumerable. Let f be a 1-1 function enumerating L, i.e.,
f assigns distinct natural numbers to distinct members of L. Now, for every
n ∈ ω, let gn be a function enumerating the n-place predicate variables so that
if m ∈ ω, then gn(m) ∈ V Rn. Then for every n-place predicate constant P,

2For the construction of a particular sentence of pure second-order logic that is logically
true, i.e., true in all standard models, but not provable in second-order logic, see Robbins
1969, §54.3, p. 163.

3See for example Enderton 2001, chapter 3, section 5.
4This latter result was first shown in Cocchiarella 1975, §5.
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gn(f(P )) will be the mth n-place predicate variable, where m = f(P ). Let g∗

be a function from the set of predicate expression of L into V such that, for
every n ∈ ω, if P is a n-place predicate constant, g∗(P ) = gn(f(P )).

Definition 661 If L is a set of predicate and individual constants, then let t
be the following function whose domain is FML and range is a subset of the
modal-free standard second-order formulas of L:
(1) t((a = b)) =df (a = b), for every a, b ∈ TML,
(2) t(P (a0, ..., an−1)) =df P (a0, ..., an−1),
(3) t(¬ϕ) =df ¬t(ϕ),
(4) t(ϕ → ψ) =df (t(ϕ) → t(ψ))
(5) t(∀xϕ) =df ∀xt(ϕ), and
(6) t(�ϕ) =df ∀g∗(P1)...∀g∗(Pn)t(ϕ), where P1...Pn are all the predicate con-
stants occurring in ϕ.

Lemma 662 If L is a first-order language, ϕ ∈ FML, Ĺ is the set of predicate
constants occurring in ϕ, A = 〈D,R〉 is an Ĺ-model, a is an assignment (of
values) in D (to the individual variables), and b is the second-order assignment
in A such that:
(1) for every x ∈ V R, b(x) = a(x); and
(2) for every Q ∈ V Rn, b(Q) = R(P ) if Q = g∗(P ), for some n-place predicate
constant P ∈ L, and b(Q) = 0, otherwise,
then A, a |= ϕ if and only if A, b |=st t(ϕ).

Proof. By induction on the formulas of L. We consider only the case where
ϕ is of the form �χ, for some χ ∈ FML and leave the other cases to the
reader. So, if ϕ is of the form �χ, for some χ ∈ FML , then t(ϕ) =df

∀g∗(P0)...∀g∗(Pn−1)t(χ), where P1, ..., Pn are all the predicates constants oc-
curring in χ. Then, for some f ∈ ωn and each i < n, g∗(Pi) is a f(i)-place
predicate variable. Now, let R(X0/P0...Xn−1/Pn−1) be the function which is
just like R except and at most for what it assigns to the predicate constants
of P0, ..., Pn−1 which are respectively X0, ..., Xn−1. We note that by definition,
A, b |=st ∀g∗(P0)...∀g∗(Pn−1)t(χ) if and only if for all X0, ..., Xn−1 such that for
i < n, Xi ⊆ Df(i), A, b(X0/g∗(P0)...Xn−1/g∗(Pn−1)) |=st t(χ) and therefore,
by the inductive hypothesis, if and only if 〈D,R(X0/P0...Xn−1/Pn−1)〉, a |= χ.
Accordingly, since by the primary semantics for the necessity operator, if
A, a |= �χ, then 〈D,R(X0/P0...Xn−1/Pn−1)〉, a |= χ, for all Xi ⊆ Df(i), then
A, a |= �χ only if A, b |=st t(�χ).

For the converse direction suppose that A, b |=st t(�χ) but that, by reductio,
A, a � �χ. Then for some L-model B = 〈D,S〉, B, a � χ and therefore, by the
inductive hypothesis, B, c � χ, where c is the second-order assignment in B

such that (1) for every x ∈ V R, c(x) = a(x); and (2) for every Q ∈ V Rn, c(Q) =
R(P ) if Q = g∗(P ), for some n-place predicate constant P ∈ L, and c(Q) =
0, otherwise. But by supposition B, c(S(P0)/g∗(P0)...S(Pn−1)/g∗(Pn−1)) |=st
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t(χ), in which case, since what S assigns to predicates constants not occurring in
t(χ) is irrelevant to its satisfaction, B, c(X0/g∗(P0)...Xn−1/g∗(Pn−1) |=st t(χ),
which is impossible, and which therefore concludes our reductio argument.

Exercise 10.1.3 Complete the proof of lemma 662.

A consequence of the above lemma is the following theorem, which together
with theorem 660 implies that first-order monadic quantified modal logic is
decidable.

Theorem 663 If L is a first-order language, ϕ ∈ FML, then ϕ is a logical
truth (L-truth) if and only if t(ϕ) is a standard second-order logical truth.

Theorem 664 If Γ = {ϕ : for some first-order language L, ϕ is a monadic
first-order formula of L, and ϕ is true in all L-standard models}, then Γ is
decidable.

Exercise 10.1.4 Prove the above theorems 663–664.

10.2 General Models

The incompleteness of modal-free standard second-order logic can be avoided
if we allow the range of the n-place predicate quantifiers to be over a subset
(proper or otherwise) of the power set of n-tuples of the domain of the model.
That is, quantification might now be only over some and not all sets of n-tuples
of objects of the domain of the model. This idea is expressed in the notion
of a general model for a second-order language L together with a definition
of satisfaction in which the clause for second-order quantifiers is accordingly
modified.

Definition 665 If L is a second-order language and 〈D,R〉 is an L-standard
model, then A is a general model indexed by L iff there is a function G with
ω as domain such that for every n ∈ ω, G(n) ⊆ P(Dn), and A = 〈〈D,R〉, G〉.

Convention: Where L is a second-order language, we will refer to the general
models indexed by L as L-general models. If A = 〈〈D,R〉, G〉 and A is
an L-general model, then we set UA =df D (the universe of A), RA =df G
(the ranges for the second-order quantifiers) LA =df L and A(ξ) =R(ξ).

Convention: If A is a general model, then we will say that a is a second-order
assignment in A if a is a second-order assignment in UA ∪

⋃
n∈ω P(Un

A
).

Definition 666 If L is a language, A is an L-general model, A = 〈〈D,R〉, G〉,
a is a second-order assignment in A, and ξ is a predicate or individual constant
in L or a variable, i.e., ξ ∈ L ∪ V , then the extension of ξ in A relative to
a is defined as follows:

extA,a(ξ) =df

{
A(ξ) if ξ ∈ L
a(ξ) if ξ ∈ V

.
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Definition 667 If L is a second-order language, A is an L-general model, and
a is a second-order assignment in A, then we recursively define the satisfaction
in A by a of a modal-free standard second-order formula ϕ of L, in symbols,
A, a |=gen ϕ, as follows:
(1) if ϕ is (ζ = ξ), where ζ, ξ ∈ TM2L, then A, a |=gen ϕ iff extA,a(ζ) =
extA,a(ξ);

(2) if ϕ is P (a0, ..., an−1), for some n ∈ ω, an n-place predicate expression P of
L, and a0, ..., an−1 ∈ TM2L, then A, a |=gen ϕ iff 〈extA,a(a0), ...extA,a(an−1)〉 ∈
extA,a(P );

(3) if ϕ is ¬ψ, for some modal-free standard second-order formula ψ of L, then
A, a |=gen ϕ iff A, a �gen ψ;

(4) if ϕ is (ψ → χ), for some modal-free standard second-order formulas ψ and
χ of L, then A, a |=gen ϕ iff either A, a �gen ψ or A, a |=gen χ;

(5) if ϕ is ∀xψ, for some x ∈ V R and modal-free standard second-order formula
ψ of L, then A, a |=gen ϕ iff for all d ∈ UA, A, a(d/x) |=gen ψ; and

(6) if ϕ is ∀Qψ, for some Q ∈ V Rn and modal-free standard second-order
formula ψ of L, then A, a |=gen ϕ iff for all d ∈ RA(n), A, a(d/Q) |=gen ψ.

We now define truth and consequence relative to general models.

Definition 668 If L is a second-order language, A is an L-general model, and
ϕ is a modal-free standard second-order formula of L, then ϕ is true in A, in
symbols, A |=gen ϕ, iff for every second-order assignment a in A, A, a |=gen ϕ.

Definition 669 If L is a language and Γ ∪ {ϕ} is a set of modal-free standard
second-order formulas of L, then:
(1) ϕ is a general second-order consequence of Γ, in symbols, Γ |=gen ϕ, iff
for every L-general model A and second-order assignment a in A, if A, a |=gen ψ,
for all ψ ∈ Γ, then A, a |=gen ϕ; and

(2) ϕ is a general second-order logical truth, in symbols, |=gen ϕ, iff ϕ is
a general second-order consequence of the empty set.

The set of modal-free standard second-order formulas logically valid in gen-
eral models is recursively axiomatizable. In what follows, we prove this result
within the context of the second-order modal CN-calculi characterized in the
previous chapter. More clearly, we shall prove that modal-free standard formu-
las that are general second-order consequences of a set of standard modal-free
formulas can be proved to be derivable from the same set within any of the
different possibilist second-order modal CN-calculi defined in the last chapter.
The proof requires the following three lemmas.

Lemma 670 If L is a language, A is an L-general model, a is a second-order
assignment in A, ϕ is a modal-free standard formula of L, and y can be properly
substituted for x in ϕ, then A, a(a(y)/x) |=gen ϕ if and only if A, a |=gen ϕ(y/x).
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Lemma 671 If L is a language, A is an L-general model, a is a second-order
assignment in A, ϕ is a modal-free standard formula of L, Q, S ∈ V Rn, and Q
can be properly substituted for S in ϕ, then A, a(a(Q)/S) |=gen ϕ if and only if
A, a |=gen ϕ(Q/S).

Lemma 672 If L is a language, A is an L-general model, ϕ is a modal-free
standard formula of L, and ψ is a rewrite of ϕ, then A, a |=gen ϕ if and only if
A, a |=gen ψ.

Exercise 10.2.1 Prove the above lemmas 670–672.

Theorem 673 If Σ ∈ 2-QML, Σ is an extension of a 2-QKr system, L is the
language of Σ, and K is a set of modal-free standard formulas of L, then K is
consistent in Σ only if there are an L-general model A and an assignment a in
A, such that A, a |=gen ϕ, for all ϕ ∈ K.

Proof. Assume the hypothesis. As note in chapter 9, §9.6, in the remarks
following corollary 645, we can assume that there are infinitely many indi-
vidual variables x0, ..., xn, ... and, for every n ∈ ω, infinitely many n-place
predicate variables Qn

0 , ..., Qn
k , ... not occurring in the formulas of K. Therefore,

by theorem 643, there is a maximally Σ-consistent set Γ of formulas of Σ (i.e.,
Γ ⊆ FM(Σ) and Γ ∈ MCΣ) such that K ⊆ Γ and Γ is 2-ω/∃-complete in the
language of Σ.

Let us now define � to be the relation among the terms t, t′ ∈ TM2L such
that t � t′ iff t = t′ ∈ Γ. By lemma 610, � is an equivalence relation, i.e., it is
transitive, reflexive, and symmetric. Let [t] be the equivalence class under the
relation � determined by the term t, D = {[t] : t ∈ TM2L}, and for every
predicate expression P of L, AP = {〈[t0], ..., [tn−1]〉 : P (t0, ..., tn−1) ∈ Γ}.

Let now AΓ be the ordered pair 〈〈D,RΓ〉, GΓ〉 where RΓ is the function
with L as domain such that (1) for all n ∈ ω and all n-place predicate constants
F ∈ L, RΓ(F ) = {〈[t0], ..., [tn−1]〉 : F (t0...tn−1) ∈ Γ}, and (2) for each individual
constant a ∈ L, RΓ(a) = [a]; and GΓ is the function with ω as domain such
that for every n ∈ ω, G(n) = {AP ∈ P(Dn) : P is a predicate expression
of L}. Clearly, AΓ is L-general model. Now let a be the function with V as
domain such that (1) for every x ∈ V R, a(x) = [x], and (2) for every Q ∈ V Rn,
a(Q) = {〈[t0], ..., [tn−1] : Q(t0, ..., tn−1) ∈ Γ. By induction on the modal-free
standard second-order formulas of L, we show that for every ϕ, AΓ, a |=gen ϕ if
and only if ϕ ∈ Γ.

We note first that for every t ∈ TM2L, there is an i ∈ ω such that [t] = [xi],
since Γ is 2-ω/∃-complete in the language of Σ and for every term t ∈ TM2L,
∃x(t = x) ∈ Γ (by Q-axiom (7) and the fact that Σ ∈ 2-QML). Also, by
CN-logic, lemma 635, and the fact that Γ ∈ MCΣ, for every n-place predicate
expression P, ∃R(R(x0, ..., xn−1) ↔ P (x0, ..., xn−1)) ∈ Γ; and so, by the 2-ω/∃-
completeness of Γ, there is an i ∈ ω such that such AP = AQn

i
.

Suppose now that ψ is of the form (ζ = η). Then, AΓ, a |=gen ψ if and
only if extAΓ,a(ζ) = extAΓ,a(η) iff [ζ] = [η] if and only if (by definition and
lemma 610(a), Q-axiom (10)) (ζ = η) ∈ Γ. Suppose now that ϕ is of the form
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P (ζ0 , ..., ζn−1). Then, by the corresponding definitions, AΓ, a |=gen ϕ if and
only if 〈extAΓ,a(ζ0), ..., extAΓ,a(ζn−1)〉 ∈ extAΓ,a(P ), i.e., if and only if either
〈[ζ0 ], ..., [ζn−1]〉 ∈ RΓ(P ) or 〈[ζ0 ], ..., [ζn−1]〉 ∈ a(P ), and hence if and only if
P (ζ0 , ..., ζn−1) ∈ Γ. The cases where ϕ is either of the form ¬ψ or of the form
ψ → χ follow by the inductive hypothesis. We leave these cases to the reader
as an exercise. We also leave to the reader the case where ϕ is ∀xψ for some
modal-free standard formula ψ of L.

We proceed now to show the case for ϕ being ∀Sψ, for some modal-free
standard formula ψ of L and n-place predicate variable S. Now, by the semantic
clause for ∀Sψ, AΓ, a |=gen ϕ iff for all d ∈ GΓ(n), AΓ, a(d/S) |=gen ψ, and
hence if and only if (by definition of GΓ) for every n-place predicate expression
P of L, AΓ, a(AP /S) |=gen ψ, i.e., if and only if (by above remark) for every
R ∈ V Rn, AΓ, a(AR/S) |=gen ψ, and hence (by lemmas 671 and 672) if and
only if for every for every R ∈ V Rn and formula χ which is a rewrite of ψ with
respect to R, AΓ, a |=gen χ[R/S], i.e., if and only if (by the inductive hypothesis)
for every R ∈ V Rn and formula χ which is a rewrite of ψ with respect to R,
χ[R/S] ∈ Γ, and therefore if and only if (by the 2-ω/∃−completeness of Σ,
lemmas 635 and 637) ∀Sψ ∈ Γ.

We have shown above that for every second-order formula ϕ of L , AΓ, a |=gen

ϕ if and only if ϕ ∈ Γ. Therefore, because K ⊆ Γ, it follows that, for every
ϕ ∈ K, AΓ, a |=gen ϕ.

Exercise 10.2.2 Complete the proof of 673.

Theorem 674 If Σ ∈ 2-QML, Σ is an extension of a member of 2-QKr, L is
the language of Σ, and Γ ∪ {ϕ} is a set of modal-free standard formulas of L,
then Γ |=gen ϕ only if Γ �Σ ϕ.

Exercise 10.2.3 Prove the above theorem 674.

10.3 Semantics of Standard Second-Order
Modal Languages

On the basis of the previous semantical notions, we will now formulate a se-
mantics for standard modal formulas. Semantic interpretations will be referred
to here as second-order world systems, and they will clearly involve possible
worlds. Accordingly, n-ary (relational) concepts are represented in this model
as functions from possible worlds into the power set of the set of n-tuples of the
domain. And similarly to the semantics based on general models, the semantics
based on second-order world systems will allow the range of n-place predicate
variable quantifiers to be only over a subset of the set of n-ary concepts.

The interpretation of the necessity operator will also be secondary, in a way
analogous to second-order quantification. Notwithstanding that possible worlds
are here represented by second-order standard models, only a subset of them are
taken into account in a second-order world system and, relative to this system,
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a formula preceded by the necessity operator is evaluated on the basis of that
subset. As the reader will recall, we followed this approach in previous chapters
to avoid incompleteness.

Definition 675 If L is a second-order language and 〈Ai〉i∈I is an indexed fam-
ily of L-standard models, then 〈Ai〉i∈I is a second-order world system for
L iff, UAi

= UAj
for every i, j ∈ I.

Definition 676 If L is a second-order language and 〈Ai〉i∈I is a second-order
world system for L, then X is an n-ary concept in 〈Ai〉i∈I iff X is a function
with I as domain such that for every j ∈ I, X(j) ⊆ (UAj

)n.

Definition 677 If L is a second-order language and 〈Ai〉i∈I is a second-order
world system for L, we set Atrn

〈Ai〉i∈I
= {X : X is a n-ary concept in 〈Ai〉i∈I}.

Definition 678 If L is a second-order language and 〈Ai〉i∈I is a second-order
world system for L, then 〈〈Ai〉i∈I , G〉 is a secondary world system for L iff
G is a function with ω as domain such that for all n ∈ ω, G(n) ⊆ Atrn

〈Ai〉i∈I
.

In view of the presence of possible worlds in this semantic framework, we
must redefine the assignment and extension functions appropriately.

Definition 679 If L is a second-order language and B = 〈〈Ai〉i∈I , G〉 is a
secondary world system for L, then a is a second-order assignment (of
values) in B (to the variables) iff a is a function with V as domain such that
(1) if v ∈ V R, then a(v) ∈ UAi

, for some i ∈ I, and (2) if v ∈ V Rn, a(v) ∈ G(n).

Definition 680 If L is a language, B = 〈〈Ai〉i∈I , G〉 is a secondary world
system for L, a is a second-order assignment in B, j ∈ I, and ξ is a predicate
or individual constant in L or a variable, i.e., ξ ∈ L∪ V , then (the extension
of ξ in B at j and relative to a):

ext(B,j,a)(ξ) =df




Aj(ξ) if ξ ∈ L and ξ is an individual constant
Aj(ξ)(j) if ξ ∈ L and ξ is a predicate constant
a(ξ) if ξ ∈ V R
a(ξ)(j) if ξ ∈ V Rn

.

Exercise 10.3.1 Show that if B = 〈〈Ai〉i∈I , G〉 is a secondary world system
for L, ξ ∈ LA, i.e., ξ is a predicate or individual constant in the language of A,
and a, b are assignments in B, then ext(Bj ,a)(ξ) = ext(Bj ,b)(ξ), for j ∈ I.

We now recursively define the satisfaction of a standard second-order
(modal) formula by a second-order assignment in a secondary world system.
This definition incorporates the semantical approach to second-order quanti-
fiers and the necessity operators mentioned at the beginning of this section. We
shall follow our previous practice of defining truth and validity on the basis of
satisfaction and an assignment to the variables.



226 CHAPTER 10. SEMANTICS OF SECOND-ORDER MODAL LOGIC

Definition 681 If L is a second-order language, B = 〈〈Ai〉i∈I , G〉 is a sec-
ondary world system for L, j ∈ I, a is a second-order assignment in B and
ϕ ∈ SFM2L, then we recursively define the satisfaction in B at Aj by a of a
standard second-order formula ϕ of L, in symbols, B,Aj , a |=sw ϕ, as follows:
(1) if ϕ is (ζ = ξ), where ζ, ξ ∈ TM2L, then B,Aj , a |=sw ϕ iff ext(B,j,a)(ζ) =
ext(B,j,a)(ξ);
(2) if ϕ is P (ζ0, ..., ζn−1), where P is an n-place predicate expression of L
and ζ ∈ TM2n

L, then B,Aj , a |=sw ϕ iff 〈ext(B, j,a)(ζ0), ..., ext(B, j,a)(ζn−1)〉 ∈
ext(B,j,a)(P );
(3) if ϕ is ¬ψ, where ψ is a standard second-order formula of L, B,Aj , a |=sw ϕ
iff B,Aj , a �sw ψ;
(4) if ϕ is (χ → ψ), where χ, ψ are standard second-order formulas of L, then
B,Aj , a |=sw ϕ iff either B,Aj , a �sw χ or B,Aj , a |=sw ψ;
(5) if ϕ is ∀xψ, where ψ is a standard second-order formula of L and x ∈ V R,
then B,Aj , a |=sw ϕ iff for all d ∈ UAj

, B,Aj , a(d/x) |=sw ψ;
(6) if ϕ is ∀Qψ, where ψ is a standard second-order formula of L and Q ∈ V Rn,
then B,Aj , a |=sw ϕ iff for all d ∈ G(n), B,Aj , a(d/Q) |=sw ψ; and
(7) if ϕ is �ψ, where ψ is a standard second-order formula of L, then
B,Aj , a |=sw ϕ iff for all i ∈ I,B,Ai, a |=sw ψ.

Before proceeding to define truth and entailment on the basis of the above
characterization of satisfaction, we will make the assumption that proper names
are rigid designators in a second-order world system. Accordingly, we shall stip-
ulate that the members of any second-order world system for L will agree on
their interpretations of the individual constants of L.

Assumption: Let 〈Ai〉i∈I be a second-order world system for L. If a is an
individual constant of L, i, j ∈ I, and Ai = 〈D,Ri〉 and Aj = 〈D,Rj〉,
then Ri(a) = Rj(a).

In accordance with this assumption of the rigidity of terms, we make the
following assumption for 2-QKr and 2-QeKr systems.

Assumption: If Σ ∈ 2-QKr ∪ 2-QeKr and L is the language of Σ, then
{χ ∈ FM2L : χ is [(a = b) −→ �(a = b)] or [(a 
= b) −→ �(a 
= b)], where
a, b ∈ TM2L} ⊆ Ax(Σ).

Definition 682 If L is a language, ϕ ∈ SFM2L, B = 〈〈Ai〉i∈I , G〉 is a sec-
ondary world system for L and j ∈ I, then:
(1) ϕ is true in B at Aj iff every second-order assignment in B satisfies ϕ in
B at Aj; and
(2) ϕ is valid in B iff for all k ∈ I, ϕ is true in B at Ak.

Regarding the notions of logical consequence and logical truth, we shall here
restrict them to secondary world systems in which the comprehension schema
is valid, that is, Q-axiom (12) for 2-QML systems. We will refer to this sort of
secondary world system as normal.
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Definition 683 If B = 〈〈Ai〉i∈I , G〉 is a secondary world system, then B is
normal if and only if for every ϕ ∈ SFM2L, ∃Qn(Qn = [λx0...xn−1ϕ]) is valid
in B.

Definition 684 If L is a language, Γ ∪ {ϕ} ⊆ SFM2L, then:
(1) Γ entails ϕ in normal secondary world systems, in symbols, Γ |=sw ϕ,
iff for every normal secondary world system B = 〈〈Ai〉i∈I , G〉 for L, for all
j ∈ I, and for all second-order assignments a in B, if a satisfies every member
of Γ in Bat Aj, then a satisfies ϕ in B at Aj; and
(2) ϕ is universally valid in normal secondary world systems, in symbols,
|=sw ϕ, iff the empty set entails ϕ in normal secondary world system for L.

Second-order QS5 systems turn out to be strongly sound and complete with
respect to entailment in normal secondary world systems. As in the previous
section, the completeness theorem is preceded by three lemmas required in the
proof of the theorem.

Theorem 685 If Σ ∈ 2-QS5, L is the language of Σ, and Γ ∪ {ϕ} ⊆ SFM2L,
then Γ �Σ ϕ only if Γ |=sw ϕ.

Exercise 10.3.2 Prove the above theorem 685.

Lemma 686 Let L be a language, B = 〈〈Ai〉i∈I , G〉 a secondary world system
for L, j ∈ I and a a second-order assignment in B. If ϕ ∈ SFM2L and y can
be properly substituted for x in ϕ, then B,Aj , a(a(y)/x) |=sw ϕ if and only if
B,Aj , a |=sw ϕ(y/x).

Lemma 687 Let L be a language, B = 〈〈Ai〉i∈I ,G〉 a secondary world system
for L, j ∈ I and a a second-order assignment in B. If ϕ ∈ SFM2L and Q can
be properly substituted for R in ϕ, then B, Aj , a(a(Q)/R) |=sw ϕ if and only if
B,Aj , a |=sw ϕ(Q/R).

Lemma 688 Let L be a language, B = 〈〈Ai〉i∈I ,G〉 a secondary world system
for L, j ∈ I and a a second-order assignment in B and ϕ ∈ SFM2L. If ψ is a
rewrite of ϕ, then B,Aj , a |=sw ϕ if and only if B,Aj , a |=sw ψ.

Exercise 10.3.3 Prove above lemmas 686–688.

Theorem 689 Let Σ ∈ 2-QS5, L the language of Σ, and K ⊆ SFM2L. If K
is consistent in Σ, then there are a normal secondary world system 〈〈Ai〉i∈I ,G〉
for L, j ∈ I and a second-order assignment a in 〈〈Ai〉i∈I ,G〉 such that a satisfies
every member of K in 〈〈Ai〉i∈I ,G〉 at Aj.

Proof. Assume the hypothesis. By the remark immediately following corollary
645 of chapter 9, §9.6, there are infinitely many individual variables x0, ..., xn, ...
and, for every n ∈ ω, infinitely many n-place predicate variables Qn

0 , ..., Qn
k , ...

not occurring in the formulas of K. Therefore, by theorem 643, there is a
maximally Σ-consistent set ∆∗ of standard second-order formulas of L, i.e.,
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∆∗ ⊆ SFM2L and ∆∗ ∈ MCΣ, such that K ⊆ ∆∗and ∆∗ is 2-ω/∃-complete in
the language of Σ.

Let W be the set of maximally Σ-consistent sets Γ of standard second-order
formulas of L such that (1) ∀yϕ ∈ Γ if and only if for every i ∈ ω, ϕ(xi/y) ∈ Γ,
(2) ∀Rnϕ ∈ Γ if and only if for every i ∈ ω, ϕ[Qn

i /Rn] ∈ Γ; and (3) �ψ ∈ Γ, if
�ψ ∈ ∆∗.

In regard to W, we show that (A) for all standard second-order formulas ϕ of
L and all Γ ∈ W, if �ϕ ∈ Γ, then for all Θ ∈ W, �ϕ ∈ Θ. So suppose Γ, Θ ∈ W

and by reductio that though �ϕ ∈ Γ, �ϕ /∈ Θ. Then, by clause 3 above of W,
�ϕ /∈ ∆∗, from which it follows, by an axiom of 2-QS5L, that �¬�ϕ ∈ ∆∗.
But then by clause 3 of W, �¬�ϕ ∈ Γ, from which it follows by an axiom of
2-QS5L that ¬�ϕ ∈ Γ, which is impossible since Γ ∈ MCΣ.

For every Γ ∈ W and t ∈ TM2L, let [t]Γ = {xi : i ∈ ω and (xi = t) ∈ Γ}. We
note that because of second-order Q-axiom (7) and the way W was constructed,
if t is a term of L and Γ ∈ W, then [t]Γ is not empty. In addition, if y is an
individual variable and Γ,Θ ∈ W, then [y]Γ = [y]Θ. For if xi ∈ [y]Γ, then xi =
y ∈ Γ, and so by second-order Q-axiom (9) and CN-logic, �(xi = y) ∈ Γ. Then
by (A) above, �(xi = y) ∈ Θ, and so, by an axiom of 2-QS5L, (xi = y) ∈ Θ, and
hence xi ∈ [y]Θ. Similarly, if xi ∈ [y]Θ, then xi ∈ [y]Γ, and therefore, [y]Γ = [y]Θ.

Set D∗
Γ = {[xi]Γ : i ∈ ω}. Also, let AΓ = 〈D∗

Γ,R∗
Γ〉, where R∗

Γ is a function
with L as domain, such that (1) for all n ∈ ω and all n-place predicate constants
F ∈ L, R∗

Γ(F ) = {〈[t1]Γ, ..., [t1]Γ〉 : F (t1, ..., t1) ∈ Γ}, and (2) for each individual
constant a ∈ L, R∗

Γ(a) = [a]Γ. Clearly, for every Γ ∈ W, A� is an L-model.
Now, if Γ,Θ ∈ W and a is an individual constant of L, by (A) above and the
axioms of the rigidity of terms, R∗

Γ(a) = R∗
Θ(a). On the other hand, if Γ, Θ ∈ W,

UA�
= UA�

. For if d ∈ UA�
, then for some i ∈ ω, d = [xi]Γ; but d = [xi]Γ = [xi]Θ,

and so d ∈ UA�
. The converse argument is similar. Consequently, 〈BΓ〉Γ∈W is a

second-order world system for L. Clearly, by construction of ∆∗, ∆∗ ∈ W and
so 〈BΓ〉Γ∈W 
= 0.

For every n, i ∈ ω, let XQn
i

be the function with W as domain such that,
for every Γ ∈ W, XQn

i
(Γ) = {〈[t1]Γ, ..., [tn]Γ〉 : Qn

i (t1, ..., tn) ∈ Γ}. Note that,
by the definition of W, second-order Q-axiom (12), CN-logic, for every n-place
predicate expression P of L there is an i ∈ ω such that for every Γ ∈ W,
(P = Qn

i ) ∈ Γ. Now let G∗ be the function with ω as domain and such that
G∗(n) = {XQn

i
: i ∈ ω}. Clearly, B∗ = 〈〈BΓ〉Γ∈W,G∗〉 is a secondary world

system for L. Let a be the function whose domain is V and such that (1) for
every x ∈ V R, a(x) = [x]∆∗ , and (2) for every S ∈ V Rn, a(S) = XQn

i
, where

i is the least i ∈ ω such that for every Γ ∈ W, (S = Qn
i ) ∈ Γ. Then, a is a

second-order assignment in B∗. Note that, by second-order Q-axiom (11), for
every i, n ∈ ω, a(Qn

i ) = XQn
i
.

By induction on the standard second-order formulas of L, we show that for all
Γ ∈ W and standard second-order formula ψ of L, B∗,BΓ, a |=sw ψ if and only
if ψ ∈ Γ. We first note that for all Γ ∈ W and t ∈ TM2L, ext(B∗,Γ,a)(t) = [t]Γ.
For if y is an individual variable, then ext(B∗,Γ,a)(y) = a(y) = [y]∆∗ = [y]Γ, and
if a is an individual constant, ext(B∗,Γ,a)(a) = R∗

Γ(a) = [a]Γ.
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So suppose first that ψ is of the form (ζ = η). Then, B∗,BΓ, a |=sw ψ
if and only if ext(B∗,Γ, a)(ζ) = ext(B∗,Γ, a)(ζ)(η) iff [ζ]Γ = [η]Γ if and
only if (by lemma 610, definitions, Q-axiom (10)) (ζ = η) ∈ Γ. If ψ is of
the form P (ζ0, ..., ζn−1), then B∗,BΓ, a |=sw P (ζ0, ..., ζn−1) if and only if
〈ext(B∗,Γ,a)(ζ0), ..., ext(B∗,Γ,a)(ζn−1)〉 ∈ ext(B∗Γ,a)(P ) iff 〈[ζ0]Γ, ..., [ζn−1]Γ〉 ∈
RΓ(P )(Γ), or 〈[ζ0]Γ, ..., [ζn−1]Γ〉 ∈ a(P )(Γ) if and only if (by definition of RΓ, and
the fact that there is an i ∈ ω, such that (P = Qn

i ) ∈ Γ and a(P ) = XQn
i
, and

by second-order Q-axiom (11), if P is a predicate variable) P (ζ0, ..., ζn−1) ∈ Γ.
The cases where ψ is either of the form ¬ϕ or of the form ϕ → δ can be
shown using the inductive hypothesis, and they are left to the reader as an
exercise.

Let ψ be ∀xϕ. Then B∗,BΓ, a |=sw ∀xϕ iff (by the semantic clause) for
all d ∈ UBΓ , B∗,BΓ, a(d/x) |=sw ϕ iff (by definition of UBΓ) for every i ∈ ω,
B∗,BΓ, a([xi]Γ/y) |=sw ϕ if and only if (by above lemma 688) for every i ∈ ω
and formula ψ that is a rewrite of ϕ with respect to bound occurrences of
xi, B∗,BΓ, a([xi]Γ/y) |=sw ψ if and only if (by lemma 686) for every i ∈ ω
and formula ψ which is a rewrite of ϕ with respect to bound occurrences of xi,
B,BΓ, a |=sw ψ(xi/y) if and only if (by the inductive hypothesis) for every i ∈ ω
and formula ψ which is a rewrite of ϕ with respect to bound occurrences of xi,
ψ(xi/y) ∈ Γ if and only if (by condition 1 of W, lemmas 628 and 631) ∀yϕ ∈ Γ.

We show now the case where ψ is ∀Sϕ. By the corresponding semantic clause,
B∗,BΓ, a |=sw ∀Sϕ iff for all d ∈ G∗(n), B∗,BΓ, a(d/S) |=sw ϕ, and hence if
and only if (by definition of G∗) for every i ∈ ω, B∗,BΓ, a(AQn

i
/S) |=sw ϕ and so

(by lemmas 687 and 688) if and only if for every i ∈ ω and formula χ which is a
rewrite of ϕ with respect to bound occurrences of Qn

i , B∗,BΓ, a |=sw χ(Qn
i /S),

i.e., if and only if (by the inductive hypothesis) for every i ∈ ω and formula χ
which is a rewrite of ϕ with respect to bound occurrences of Qn

i , χ(Qn
i /S) ∈ Γ,

and therefore if and only if (by condition 2 of W, lemmas 635 and 637) ∀Sϕ ∈ Γ.
We now proceed to show the case where ψ is �χ. Clearly, by definitions,

B∗,BΓ, a |=sw �χ if and only if for all Θ ∈ W∗, B∗,BΘ, a |=sw χ. Now if
�χ ∈ Γ, then (by definition of W and axiom of 2S5L ) ��χ ∈ ∆∗ and so, by
an axiom of 2-QS5L, �χ ∈ ∆∗, from which it follows (by the construction of W

and an axiom of 2-QS5L) that χ ∈ Θ, for all Θ ∈ W. Therefore, by the inductive
hypothesis, B∗,BΘ, a |=sw χ, for all Θ ∈ W. Now suppose that �χ /∈ Γ. We
will show that there is a Θ ∈ W∗ such that B∗,BΘ, a |=sw ¬χ.

Assume an ordering δ1, ..., δn, ... of standard second-order formulas of L of
the form either ∃yϕ or ∃Sϕ. First note that if γ is a standard second-order
formula of L, then:

(α) If �(γ ∧ ∃yϕ) ∈ Γ and z is a variable new to γ and ∃yϕ, then by UG,
CN-logic, the ∀-distribution and ∀-vacuous axioms, lemma 631, RN , axiom of
distribution of the necessity operator, and definitions, �∃z(γ ∧ ϕ(z/y)) ∈ Γ.
Consequently, by second-order Q-axiom (17) and MP , ∃z�(γ ∧ ϕ(z/y)) ∈ Γ.
Since Γ ∈ W, there is an i ∈ ω such that �(γ ∧ ϕ(xi/y)) ∈ Γ.

(β) if �(γ ∧ ∃Sϕ) ∈ Γ and R is a variable new to γ and ∃Sϕ, then by CN-
logic, UG2, the 2∀-distribution and 2∀-vacuous axioms, lemma 637, RN , axiom
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of distribution of the necessity operator, and definitions, �∃R(γ∧ϕ(R/S)) ∈ Γ.
Then, by Q-axiom (19) of 2-QML systems, ∃R�(γ∧ϕ(R/S)) ∈ Γ. Since Γ ∈ W,
there is a i ∈ ω such that �(γ ∧ ϕ(Qi/S)) ∈ Γ.

Now, recursively define a sequence of wffs ψ0, ..., ψn... as follows:
i) ψ0 = ¬χ;
ii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn+1 = ψn;
iii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then:
iiia) if δn+1 is of the form ∃yϕ, ψn+1 = ϕ(xi/y), where i is the first natural

number such that xi is new to ψ0, ..., ψn,∃yϕ and �(ψ0 ∧ ...∧ψn ∧ϕ(xi/y)) ∈ Γ
(by α above); and

iiib) if δn+1 is of the form ∃Sϕ, then ψn+1 = ϕ(Qi /S), where i is the first
natural number such that Qi is new to ψ0, ..., ψn, ∃Sϕ and �(ψ0 ∧ ... ∧ ψn ∧
(Qi/S)) ∈ Γ (by β above).

On the basis of the above recursion, we will first show by induction that for
all n ∈ ω, �(ψ0 ∧ ... ∧ ψn) ∈ Γ, and then that for all n ∈ ω, (ψ0 ∧ ... ∧ ψn) is
consistent. Clearly, it follows that it holds for n = 0, since if �ψ0 /∈ Γ, then since
Γ ∈ MCΣ and definitions, �χ ∈ Γ, which is impossible by the consistency of Γ.
Assume now the hypothesis of weak induction, that is, �(ψ0 ∧ ... ∧ ψn) ∈ Γ. If
�(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn = ψn+1 and so �(ψ0 ∧ ... ∧ ψn+1) ∈ Γ. On
the other hand, if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then �(ψ0 ∧ ... ∧ ψn+1) ∈ Γ. It
follows that {ψn : n ∈ ω} is Σ-consistent, since otherwise �Σ ¬(ψ0 ∧ ... ∧ ψn),
for some positive integer n, and therefore by RN and the fact that Γ ∈ MCΣ,
¬�(ψ0 ∧ ... ∧ ψn) ∈ Γ, which is impossible by above.

Now let Θ = {ϕ ∈ Γ : for some χ, ϕ = �χ} ∪ {ψn : n ∈ ω}. By reductio, we
will show that Θ is Σ-consistent. So suppose Θ is not Σ-consistent. Then there
are n, m ∈ ω such that {�ϕ0, ...,�ϕm, ψ0, ..., ψn} ⊆ Θ and �Σ ¬(�ϕ0 ∧ .... ∧
�ϕm ∧ ψ0 ∧ ... ∧ ψn). So, by the RN rule and definitions, �Σ ¬�(�ϕ0 ∧ .... ∧
�ϕm∧ψ0∧ ...∧ψn); but Γ ∈ MCΣ, then ¬�(�ϕ0∧ ....∧�ϕm∧ψ0∧ ...∧ψn) ∈ Γ.
On the other hand, since {�ϕ0∧ ...∧�ϕm} ⊆ Γ, Γ ∈ MCΣ, Σ ∈ 2-QS5, then by
theorem 121 (part 3) and CN-logic, {��ϕ0∧....∧��ϕm} ⊆ Γ and so (given that
�(ψ0∧...∧ψn) ∈ Γ), by theorem 58 (part 16), �(�ϕ0∧....∧�ϕm∧ψ0∧...∧ψn) ∈
Γ, which is impossible by the Σ-consistency of Γ. Therefore, Θ is Σ-consistent.
By Lindenbaum’s method, extend Θ to a maximally Σ-consistent set Θ∗.

By construction and lemmas 628 and 636, Θ∗ satisfies the left-to-right di-
rections of clauses 1–2 for W. Suppose ∀yϕ /∈ Θ∗ even though for all i ∈ ω,
ϕ(xi/y) ∈ Θ∗. Then, for some k ∈ ω, δk is ∃y¬ϕ ∈ Θ∗. We note that
�(ψ0 ∧ ... ∧ ψn ∧ δk) ∈ Γ since if not, then �(ψ0 ∧ ... ∧ ψn → ¬δk) ∈ Γ and
therefore, by construction of Θ∗ and the fact that Σ ∈ 2-QS5, (ψ0 ∧ ... ∧ ψn →
¬δk) ∈ Θ∗, but as ψ0, ..., ψn ∈ Θ∗, then ¬δk ∈ Θ∗, i.e., ∀yϕ ∈ Θ∗, which,
by assumption, is impossible. Thus, by definition of ψk, ψk = ¬ϕ(xi/y) and
�(ψ0 ∧ ... ∧ ψn ∧ ¬ϕ(xi/y)) ∈ Γ and so ψk = ¬ϕ(xi/y) ∈ Θ∗ for some i ∈ ω.
But by assumption ϕ(xi/y) ∈ Θ∗, which is impossible since Θ∗ is Σ-consistent.
Thus Θ∗ satisfies clause (1) for W∗. The argument that Θ∗ satisfies clause (2)
is similar, and we leave it to the reader as an exercise.

By the assumption that Γ ∈ W, {ϕ ∈ ∆∗ : for some χ, ϕ = �χ} ⊆ Γ.
But {ϕ ∈ Γ : for some χ, ϕ = �χ} ⊆ Θ∗, hence {ϕ ∈ ∆∗ : for some χ,
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ϕ = �χ} ⊆ Θ∗. So Θ∗ satisfies clause 3 for W. Therefore, Θ∗ ∈ W and conse-
quently by the inductive hypothesis, B∗,BΘ, a |=sw χ if and only if χ ∈ Θ∗and
so B∗,BΘ, a |=sw ¬χ if and only if ¬χ ∈ Θ∗. But by construction, ¬χ ∈ Θ∗ and
so B∗,BΘ, a |=sw ¬χ. Therefore, if �χ /∈ Γ, there there is a Θ ∈ W∗ such that
B∗,BΘ, a |=sw ¬χ.

We have shown above that for every standard formula ψ of L, Γ ∈ W,
B∗,BΓ, a |=sw ψ if and only if ψ ∈ Γ and so, in particular, that for every
standard second-order formula ψ of L, B∗,B∆∗ , a |=sw ψ if and only if ψ ∈ ∆∗,
given that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for every
ψ ∈ K, B∗,B∆∗ , a |=sw ψ.It remains then only to show that B∗ is normal.
But for each ϕ ∈ FM2L, by second-order Q-axiom (12) and the fact that for
every Γ ∈ W, Γ ∈ MCΣ, the universal closures of ∃Q(Q = [λx0...xn−1ϕ]) are
in every member of W and thus, by above and the fact that these are closed
second-order formulas of L, then for all Γ ∈ W they are true in B∗at every BΓ.
But then, by lemmas 628 and 636, any generalization of ∃Q(Q = [λx0...xn−1ϕ])
is valid in B∗. Consequently, B∗ is normal.

Exercise 10.3.4 Complete the proof for theorem 689.

Theorem 690 Let Σ ∈ 2-QS5, L the language of Σ and Γ∪ {ϕ} ⊆ FM2L. If
Γ |=sw ϕ, then Γ �Σ ϕ.

Corollary 691 If Σ ∈ 2-QS5, L is the language of Σ, and ϕ ∈ FM2L, then
�Σ ϕ iff |=sw ϕ.

Exercise 10.3.5 Prove the above theorem 690 and its corollary 691.

10.4 Actualist-Possibilist Second-Order
Semantics

In the above second-order semantics, no distinction was made between actual
and (merely) possible objects, e-concepts, and concepts in general. We make
this distinction in the semantics of the present section, and with this we clearly
obtain the elements required for the semantic interpretation of all the formulas
of a second-order language.

Definition 692 If L is a second-order language and 〈Ai〉i∈I is a second-order
world system for L, then 〈〈Ai〉i∈I , e〉 is an e-second-order world system for
L iff e is a function with I as domain such that for every j ∈ I, e(j) ⊆ UAj

.

We distinguish e-concepts from concepts in general by requiring the exten-
sion of an e-concept in any given possible world to be drawn exclusively from
the domain of objects that exist in that world. Concepts in general can have
extensions that are drawn from the universe of possible objects that all of the
worlds in a given second-order world system have in common. As defined in the
previous section, the set of concepts in general with respect to a second-order
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world system 〈Ai〉i∈I is represented by Atrn
〈Ai〉i∈I

. The e-concepts of the related
e-second-order world system 〈〈Ai〉i∈I , e〉 will then be represented by e-Atrn

〈Ai〉i∈I
.

Definition 693 If L is a second-order language and 〈〈Ai〉i∈I , e〉 is an e-second-
order world system for L, then Y is an n-ary e-concept in 〈〈Ai〉i∈I , e〉 iff Y
is a function with I as domain such that for every j ∈ I, Y (j) ⊆ e(j)n.

Definition 694 If L is a second-order language and 〈〈Ai〉i∈I , e〉 is an e-second-
order world system for L, we set e-Atrn

〈Ai〉i∈I
= {X : X is an n-ary e-concept

in 〈〈Ai〉i∈I , e〉}.

Definition 695 If L is a second-order language and 〈〈Ai〉i∈I , e〉 is an e-second-
order world system for L, then 〈〈〈Ai〉i∈I , e〉, G,E〉 is an e-secondary world
system for L iff (1) G is a function with ω as domain such that for every n ∈ ω,
G(n) ⊆ Atrn

〈Ai〉i∈I
, (2) E is a function with ω as domain such that for every

n ∈ ω, E(n) ⊆ e-Atrn
〈Ai〉i∈I

; and (3) for every n ∈ ω,E(n) ⊆ G(n).

We adapt to e-secondary world systems our previous definitions of the
second-order assignment and extension functions.

Definition 696 If L is a second-order language and B = 〈〈〈Ai〉i∈I , e〉, G, E〉 is
an e-secondary world system for L, then a is a second-order assignment (of
values) in B (to the variables) iff a is a function with V as domain such that
(1) if v ∈ V R, then a(v) ∈ UAi

for some i ∈ I, and (2) if v ∈ V Rn, a(v) ∈ G(n).

Definition 697 If L is a language, B = 〈〈〈Ai〉i∈I , e〉, G, E〉 is an e-secondary
world system for L, a is a second-order assignment in B, j ∈ I, and ξ is a
predicate or individual constant in L or a variable, i.e., ξ ∈ L ∪ V , then (the
extension of ξ in B relative to j and a):

ext((B, j,a))(ξ) =df




Aj(ξ) if ξ ∈ L and ξ is an individual constant
Aj(ξ)(j) if ξ ∈ L and ξ is a predicate constant
a(ξ) if ξ ∈ V R
a(ξ)(j) if ξ ∈ V Rn

.

Concerning the definition of satisfaction in the present context, we adapt
to e-secondary world systems the clauses of the definition of satisfaction of
the previous section and supplement it with two clauses for the e-quantifiers.
Definitions of truth, validity, and entailment follow. As in the case of secondary
world systems, entailment in e-secondary systems is restricted to those systems
in which the comprehension schema is valid. But in addition we further restrict
this class by requiring the validity of the possibilist comprehension principle for
e-concepts, (�CP e), i.e., the axiom schema

∃eQn(Qn = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))]

and the universal instantiation principle for e-concepts, (�UIe
2), i.e.,

∃eQ(Q =e [λx0...xn−1ψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn))).
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Definition 698 If L is a second-order language, B = 〈〈〈Ai〉i∈I , e〉, G, E〉 is an
e-secondary world system for L, j ∈ I, a is a second-order assignment in B,
then the satisfaction in B at Aj by a of a second-order formula ϕ ∈ FM2L,
in symbols, B,Aj , a |=esw ϕ is recursively defined as follows:
(1) if ϕ is (ζ = ξ), where ζ, ξ ∈ TM2L, then B,Aj , a |=esw ϕ iff ext(B,j,a)(ζ) =
ext(B,j,a)(ξ);
(2) if ϕ is P (ζ0, ..., ζn−1), where P is an n-place predicate expression of
L and ζ0, ..., ζn−1 ∈ TM2L, then B,Aj , a |=esw ϕ iff 〈ext(B,j,a)(ζ0), ...,
ext(B,j,a)(ζn−1)〉 ∈ ext(B, j,a)(F );
(3) if ϕ is ¬ψ, where ψ is a second-order formula of L, then B,Aj , a |=esw ϕ iff
B,Aj , a �esw ψ;
(4) if ϕ is (χ → ψ), where χ and ψ are second-order formulas of L, then
B,Aj , a |=esw ϕ iff either B,Ak, a �esw χ or B,Ak, a |=esw ψ;
(5) if ϕ is ∀xψ, where ψ is a second-order formula of L and x ∈ V R, then
B,Aj , a |=esw ϕ iff for all d ∈ UAj

, B,Aj , a(d/x) |=esw ψj;
(6) if ϕ is ∀Qψ, where ψ is a second-order formula of L and Q ∈ V Rn, then
B,Aj , a |=esw ϕ iff for all d ∈ G(n), B,Aj , a(d/Q) |=esw ψ;
(7) if ϕ is ∀exψ, where ψ is a second-order formula of L and x ∈ V R, then
B,Aj , a |=esw ϕ iff for all d ∈ e(j), B,Aj , a(d/x) |=esw ψ;
(8) if ϕ is ∀eQψ, where ψ is a second-order formula of L and Q ∈ V Rn, then
B,Aj , a |=esw ϕ iff for all d ∈ E(n), B,Aj , a(d/Q) |=esw ψ;
(9) if ϕ is �ψ, where ψ a second-order formula of L, then B,Aj , a |=esw ϕ iff
for all k ∈ I, B,Ak, a |=esw ψ.

Definition 699 If L is a language, ϕ ∈ FM2L, B = 〈〈〈Ai〉i∈I , e〉, G, E〉 is an
e-secondary world system for L and j ∈ I, then:
(1) ϕ is true in B at Aj iff every assignment in B satisfies ϕ in B at Aj; and
(2) ϕ is valid in B iff for all k ∈ I, ϕ is true in B at Ak.

Definition 700 If B = 〈〈〈Ai〉i∈I , e〉, G,E〉 is an e-secondary world system for
L and R and Q are distinct variables such that R, Q /∈ OC(ϕ), then B is
normal if and only if for every ϕ ∈ FM2L,
(a) ∃Q(Q = [λx0...xn−1ϕ]),
(b) ∃eQn(Qn = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))]), and
(c) ∃eQ(Q =e [λx0...xn−1ψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn)))
are valid in B.

Definition 701 If L is a language, Γ ∪ {ϕ} ⊆ FM2L, then:
(1) Γ entails ϕ in normal e-secondary world systems, in symbols, Γ |=esw

ϕ, iff for every normal e-secondary world system B = 〈〈〈Ai〉i∈I , e〉, G, E〉 for L,
for all j ∈ I, and for all assignments a in B, if a satisfies every member of Γ
in B at Aj, then a satisfies ϕ in B at Aj; and
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(2) ϕ is universally valid in normal e-secondary world systems, in sym-
bols, |=esw ϕ, iff the empty set entails ϕ in normal e-secondary world systems
for L.

Similarly to the first-order semantics, we have construed possible existence
(in a given world of a sequence of worlds) as existence in some possible world
of the sequence. With this we allow the possibility of a secondary world system
continuing a sequence of possible worlds whose domains contain objects not
actually existing in any of the members of the sequence. The reason for this is
the same as in the first-order case, namely, allowing for the ontological thesis
that there need be no actually existing (concrete) object in any given world (of
a class of worlds). The reader already knows from the first-order semantics that
the situation can be easily rectified by restricting all consideration to the classes
of worlds in which ∀x�∃ey(x = y) is valid.

We now consider soundness and completeness theorems for the above notion
of entailment. Second-order 2-QS5 systems are adequate systems for this notion.

Theorem 702 If Σ ∈ 2-QS5, L is the language of Σ, and Γ ∪ {ϕ} ⊆ FM2L,
then Γ �Σ ϕ only if Γ |=esw ϕ.

Exercise 10.4.1 Prove the above theorem 702.

Lemma 703 Let L be a language, B = 〈〈〈Ai〉i∈I , e〉, G, E〉 an e-secondary
world system for L, and j ∈ I and a a second-order assignment in B. If ϕ ∈
FM2L and y can be properly substituted for x in ϕ, then B,Aj , a(a(y)/x) |=esw

ϕ if and only if B,Aj , a |=esw ϕ(y/x).

Lemma 704 Let L be a language, B = 〈〈〈Ai〉i∈I , e〉, G, E〉 an e-secondary
world system for L, and j ∈ I and a a second-order assignment in
B. If ϕ ∈ FM2L and Q can be properly substituted for R in ϕ, then
B,Aj , a(a(Q)/R) |=esw ϕ if and only if B,Aj , a |=esw ϕ(Q/R).

Lemma 705 Let L be a language, B = 〈〈〈Ai〉i∈I , e〉, G, E〉 an e-secondary
world system for L and j ∈ I, a a second-order assignment in B and ϕ ∈ FM2L.
If ψ is a rewrite of ϕ, then B,Aj , a |=esw ϕ if and only if B,Aj , a |=esw ψ.

Exercise 10.4.2 Prove above lemmas 703–705.

Theorem 706 Let Σ ∈ 2-QS5, L the language of Σ and K ⊆ FM2L.
If K is consistent in Σ, then there is a normal e-secondary world system
B = 〈〈〈Ai〉i∈I , e〉, G,E〉 for L, an i ∈ I and a second-order assignment a in
B, such that a satisfies every member of K in B at Ai.

Proof. Assume the hypothesis. By the remark immediately following corol-
lary 645 of chapter 9, §9.6, there are infinitely many individual variables
x0, ..., xn, ... and, for every n ∈ ω, infinitely many n-place predicate variables
Qn

0 , ..., Qn
k ... not occurring in the formulas of K. Therefore, by theorem 643,

there is a maximally Σ-consistent set ∆∗ of second-order formulas of L, i.e.,
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∆∗ ⊆ FM2L and ∆∗ ∈ MCΣ, such that K ⊆ ∆∗and ∆∗ is 2-ω/∃-complete,
2-ω/∃e-complete, and 2-ω/�∃e-complete in the language of Σ.

Let W be the set of maximally Σ-consistent sets Γ of standard second-order
formulas of L such that:

(1) ∀yϕ ∈ Γ if and only if for every i ∈ ω, if ∃y(y = xi) ∈ Γ, ϕ(xi/y) ∈ Γ;
(2) ∀eyϕ ∈ Γ if and only if for every i ∈ ω, if ∃ey(y = xi) ∈ Γ, then

ϕ(xi/y) ∈ Γ;
(3) ∀Rnϕ ∈ Γ if and only if for every i ∈ ω, ϕ(Qn

i /Rn) ∈ Γ;
(4) ∀eRnϕ ∈ Γ if and only if for every i ∈ ω, if ∃eRn(Rn = Qn

i ) ∈
Γ, ϕ(Qn

i /Rn) ∈ Γ; and
(5) �ψ ∈ Γ, if �ψ ∈ ∆∗.
We note that for reasons similar to the previous completeness proof we have

(A) that for all second-order formulas ϕ of L and all Γ ∈ W, if �ϕ ∈ Γ, then
for all Θ ∈ W, �ϕ ∈ Θ.

Now, for every Γ ∈ W, and t ∈ TM2L, let [t]Γ = {xi : i ∈ ω, and both
(xi = t) ∈ Γ}. Again, for reasons similar to the previous completeness proof,
if t is a term of L and Γ ∈ W, then [t]Γ is not empty and if y is an individual
variable and Γ,Θ ∈ W, then [y]Γ = [y]Θ. Now for every Γ ∈ W, let D∗

Γ =
{[xi]Γ : i ∈ ω }. Also, let AΓ = 〈D∗

Γ,R∗
Γ〉, where R∗

Γ is a function with L as
domain, such that (1) for all n ∈ ω and all n-place predicate constants F ∈ L,
R∗

Γ(F ) = {〈[t1]Γ, ..., [t1]Γ〉 : Ft1...t1 ∈ Γ}, and (2) for each individual constant
a ∈ L, R∗

Γ(a) = [a]Γ. Clearly, for every Γ ∈ W, AΓ is a standard L-model.
Also, if Γ,Θ ∈ W and a is an individual constant of L, then by (A) above and
the axioms of the rigidity of terms, R∗

Γ(a) = R∗
Θ(a). On the other hand, for

every Γ,Θ ∈ W, UAΓ = UAΘ . For if d ∈ UA�
, then for some i ∈ ω, d = [xi]Γ; but

d = [xi]Γ = [xi]Θ, and so d ∈ UA�
. The converse argument is similar.

By construction of ∆∗, ∆∗ ∈ W and so 〈BΓ〉Γ∈W 
= 0. Let e∗ be the func-
tion with W as domain such that e∗(Γ) = {[t]Γ ∈ D∗

Γ : ∃ex(x = t) ∈ Γ}.
Then, 〈〈BΓ〉Γ∈W, e〉 is an e-second-order world system for L.

For every n, i ∈ ω, let XQn
i

be the function with W as domain such that,
for every Γ ∈ W, XQn

i
(Γ) = {〈[t1]Γ, ..., [t1]Γ〉 : Qn

i (t1...t1) ∈ Γ}. Note that,
by the definition of W, (A) above, second-order Q-axiom (12), and CN-logic,
for every n-place predicate expression P of L there is an i ∈ ω such that for
every Γ ∈ W, (P = Qn

i ) ∈ Γ. Now let G∗ and E∗ be the functions with
ω as domain and such that G∗(n) = {XQn

i
: i ∈ ω} and E∗(n) = {XQn

i
:

i ∈ ω, and ∃eR(Qn
i = R) ∈ ∆∗, where R and Qn

i are different variables}. If
XQn

i
∈ E∗(n), then XQn

i
is an n-ary concept in 〈〈BΓ〉Γ∈W, e〉. For if Γ ∈ W

and ∃eR(Qn
i = R) ∈ ∆∗, by lemma 638 (part c), (A) above and an axiom of

2-QS5, ∃eR(Qn
i = R) ∈ Γ. Consequently, if 〈[a1]Γ, ..., [an]Γ〉 ∈ XQn

i
(Γ), then

by definition Qn
i (a1, ..., an) ∈ Γ and so by lemmas 611, 629, and 639, for every

k ∈ ω such that 1 ≤ k ≤ n, ∃ex(x = ak) ∈ Γ. Therefore, for every k ∈ ω such
that 1 ≤ k ≤ n, [ak]Γ ∈ e(Γ).

Clearly, by above B∗ = 〈〈〈BΓ〉Γ∈W, e〉, G∗, E∗〉 is an e-secondary world sys-
tem for L. Let a be the function with V as domain and such that (1) for every
x ∈ V R, a(x) = [x]∆∗ , and (2) for every S ∈ V Rn, a(S) = XQn

i
, where i is the

least i ∈ ω such that for all Γ ∈ W, (S = Qn
i ) ∈ Γ. Then, a is a second-order
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assignment in B∗. Note that, by second-order Q-axiom (11), for every i, n ∈ ω,
a(Qn

i ) = XQn
i
.

By induction on the second-order formulas of L, we show that for all Γ ∈ W

and second-order formula ψ of L, B∗,BΓ, a |=esw ψ if and only if ψ ∈ Γ. The
cases where ψ is atomic or of the form ¬ϕ, ϕ → δ,∀xδ, and ∀Sδ are left to
the reader as an exercise. We show then the cases where ψ is ∀exχ, ∀eSχ, or
�χ, for some second-order formula χ of L. For the atomic case, the reader will
note that, for all Γ ∈ W and t ∈ TM2L, ext(B∗,BΓ,a)(t) = [t]Γ. For if y is an
individual variable, then ext(B∗,BΓ,a)(y) = a(y) = [y]∆∗ = [y]Γ; and if a is an
individual constant, ext(B∗,BΓ,a)(a) = R∗

Γ(a) = [a]Γ.
Let ψ be ∀exϕ. Then, by definition, B∗,BΓ, a |=esw ∀exϕ iff for all d ∈ e(Γ),

B∗,BΓ, a(d/x) |=esw ϕ if, and only if, for every i ∈ ω, if ∃ez(z = xi) ∈ Γ,
B∗,BΓ, a([xi]/y) |=esw ϕ if and only if (by lemma 705) for every i ∈ ω and
formula ψ which is a rewrite of ϕ with respect to bound occurrences of xi,
if ∃ez(z = xi) ∈ Γ, B∗,BΓ, a([xi]/y) |=esw ψ if and only if (by lemma 703)
for every i ∈ ω and formula ψ that is a rewrite of ϕ with respect to bound
occurrences of xi, if ∃ez(z = xi) ∈ Γ, B,BΓ, a |=esw ψ(xi/y) if and only if (by
the inductive hypothesis) for every i ∈ ω and formula ψ that is a rewrite of ϕ
with respect to bound occurrences of xi, if ∃ez(z = xi) ∈ Γ, ψ(xi/y) ∈ Γ if and
only if (by condition 2 of W, lemmas 628 and 631) ∀eyϕ ∈ Γ.

By the corresponding semantic clause, B∗,BΓ, a |=esw ∀eSϕ iff for all d ∈
E∗(n), B∗,BΓ, a(d/S) |=esw ϕ, and hence if and only if (by definition of E∗)
for every i ∈ ω, if ∃eS(S = Qn

i ) ∈ ∆∗ and S is a n-place predicate variable
different from Qn

i , B∗,BΓ, a(AQn
i
/S) |=esw ϕ, and hence (by lemmas 704 and

705) if and only if for every i ∈ ω and formula χ that is a rewrite of ϕ with
respect to bound occurrences of Qn

i , if ∃eS(S = Qn
i ) ∈ ∆∗ and S is a n-place

predicate variable different from Qn
i , B∗,BΓ, a |=esw ϕ(Qn

i /S), i.e., if and only
if (by the inductive hypothesis) for every i ∈ ω and formula χ that is a rewrite
of ϕ with respect to bound occurrences of Qn

i , if ∃eS(S = Qn
i ) ∈ ∆∗ and S is

a n-place predicate variable different from Qn
i , χ(Qn

i /S) ∈ Γ. Now, by lemma
638 (part c), (A) above, and an axiom of 2-QS5, ∃eS(S = Qn

i ) ∈ ∆∗ if and
only if ∃eS(S = Qn

i ) ∈ Γ. Therefore, for every i ∈ ω and formula χ which is a
rewrite of ϕ with respect to bound occurrences of Qn

i , if ∃eS(S = Qn
i ) ∈ ∆∗ and

S is a n-place predicate variable different from Qn
i , χ(Qn

i /S) ∈ Γ if and only
if for every i ∈ ω and formula χ that is a rewrite of ϕ with respect to bound
occurrences of Qn

i , if ∃eS(S = Qn
i ) ∈ Γ and S is a n-place predicate variable

different from Qn
i , χ(Qn

i /S) ∈ Γ, and therefore if and only if (by condition 4 of
W, lemmas 635 and 637) ∀eSϕ ∈ Γ.

We now proceed to show the case where ψ is �χ. Clearly, by definitions,
B∗,BΓ, a |=esw �χ if and only if for all Θ ∈ W∗, B∗,BΘ, a |=esw χ . Now, if
�χ ∈ Γ, then (by definition of W and axiom of 2-QS5), ��χ ∈ ∆∗ and so, by
an axiom of 2-QS5, �χ ∈ ∆∗, from which it follows by an axiom of 2-QS5L that
χ ∈ Θ, for all Θ ∈ W. Therefore, by the inductive hypothesis, B∗,BΘ, a |=esw χ
, for all Θ ∈ W. Now suppose that �χ /∈ Γ. We will show that there is a Θ ∈ W∗

such that B∗,BΘ, a |=esw ¬χ.
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Assume an ordering δ1, ..., δn... of second-order formulas of L of the form
either ∃vϕ or ∃eSϕ, for v ∈ V . First note that if γ is a second-order formula of
L, then:

(α) if �(γ ∧∃eSϕ) ∈ Γ and R is a variable new to γ and ∃Sϕ, then by UGe
2,

CN-logic, the 2∀e-distribution, lemmas 608 and 637, RN , axiom of distribution
of the necessity operator and definitions, �∃R(γ ∧ ϕ(R/S)) ∈ Γ. Then, by Q-
axiom (20) of 2-QML systems, ∃R�(γ ∧ ϕ(R/S)) ∈ Γ. Since Γ ∈ W, there is
an i ∈ ω such that �(γ ∧ ϕ(Qi/S)) ∧ ∃eS(Qi = S)) ∈ Γ and, consequently, by
lemma 638 (part c), �(γ∧ϕ(Qi/S))∧�∃eS(Qi = S) ∈ Γ. But then, by theorem
58 (part 16), �(γ ∧ ϕ(Qi/S) ∧ ∃eS(Qi = S)) ∈ Γ.

Also, by the same reasons as in the previous completeness proof:
(β) If �(γ ∧ ∃yϕ) ∈ Γ, there is an i ∈ ω such that xi is new to γ and ∃yϕ

and �(γ ∧ ϕ(xi/y)) ∈ Γ.
(γ) if �(γ ∧ ∃Sϕ) ∈ Γ, there is an an i ∈ ω such that Qi is new to γ and

∃Sϕ and �(γ ∧ ϕ(Qi/S)) ∈ Γ.
Now, recursively define a sequence of formulas ψ0, ..., ψn... as follows:
i) ψ0 = ¬χ,
ii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn+1 = ψn;
iii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then:
iiia) if δn+1 is of the form ∃yϕ, then ψn+1 = ϕ(xi/y), where i is the first

natural number such that xi is new to ψ0, ..., ψn,∃yϕ and �(ψ0 ∧ ... ∧ ψn ∧
ϕ(xi/y)) ∈ Γ (by β above);

iiib) if δn+1 is of the form ∃Sϕ, then ψn+1 = ϕ(Qi/S) (where i is the first
natural number such that Qi is new to ψ0, ..., ψn,∃Sϕ and �(ψ0 ∧ ... ∧ ψn ∧
ϕ(Qi/S)) ∈ Γ (by γ above); and

iiic) if δn+1 is of the form ∃eSϕ, then ψn+1 = ϕ(Qi/S) (where i is the first
natural number such that Qi is new to ψ0, ..., ψn, and ∃eSϕ and �(ψ0 ∧ ... ∧
ψn ∧ ϕ(Qi/S) ∧ ∃eS(Qi = S)) ∈ Γ (by α above).

On the basis of the above recursion, it can be shown by induction that for
all n ∈ ω, �(ψ0 ∧ ... ∧ ψn) ∈ Γ. As an exercise, we leave this to the reader as
well as the proof that {ψn : n ∈ ω} is Σ-consistent. Now let Θ = {ϕ ∈ Γ :
for some χ, ϕ = �χ} ∪ {ψn : n ∈ ω}. By reductio, we will show that Θ is
Σ-consistent. So suppose Θ is not Σ-consistent. Then there are n, m ∈ ω , such
that {�ϕ0, ....,�ϕm, ψ0, ..., ψn} ⊆ Θ and �Σ ¬(�ϕ0∧ ....∧ �ϕm ∧ψ0∧ ...∧ψn).
So, by the RN rule and definitions, �Σ ¬�(�ϕ0 ∧ ....∧�ϕm ∧ψ0 ∧ ...∧ψn); but
Γ ∈ MCΣ, then ¬�(�ϕ0 ∧ .... ∧ �ϕm ∧ ψ0 ∧ ... ∧ ψn) ∈ Γ. On the other hand,
since {�ϕ0, ...,�ϕm} ⊆ Γ, Γ ∈ MCΣ, Σ ∈ 2-QS5, then by theorem 121 (part
3) and CN-logic, {��ϕ0, ...,��ϕm} ⊆ Γ, and so (given that �(ψ0 ∧ ...∧ ψn) ∈
Γ), then by theorem 58 (part 16), �(�ϕ0 ∧ .... ∧ �ϕm ∧ ψ0 ∧ ... ∧ ψn) ∈ Γ,
which is impossible by the Σ-consistency of Γ. Therefore, Θ is Σ-consistent. By
Lindenbaum’s method, extend Θ to a maximally Σ-consistent set Θ∗.

By construction and lemmas 628 and 635, Θ∗ satisfies the left-to-right di-
rections of clauses 1–4 for W. Suppose ∀yϕ /∈ Θ∗ even though for all i ∈ ω,
ϕ(xi/y) ∈ Θ∗. Then, for some k ∈ ω, δk = ∃y¬ϕ ∈ Θ∗. We note that
�(ψ0 ∧ ... ∧ ψn ∧ δk) ∈ Γ since if not, then �(ψ0 ∧ ... ∧ ψn → ¬δk) ∈ Γ, and
therefore, by construction of Θ∗ and the fact that Σ ∈ 2-QS5, (ψ0 ∧ ... ∧ ψn →
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¬δk) ∈ Θ∗, but as ψ0, ..., ψn ∈ Θ∗, then ¬δk ∈ Θ∗, i.e., ∀yϕ ∈ Θ∗, which
by assumption is impossible. Thus, by definition of ψk, ψk = ¬ϕ(xi/y) and
�(ψ0 ∧ ... ∧ ψn ∧ ¬ϕ(xi/y)) ∈ Γ and so ψk = ¬ϕ(xi/y) ∈ Θ∗. But by as-
sumption ϕ(xi/y) ∈ Θ∗, which is impossible since Θ∗ is Σ-consistent. Thus Θ∗

satisfies clause (1) for W∗. Since by lemma 629 (part b), ∃ey¬ϕ is equivalent
to ∃y(∃eRRy ∧ ¬ϕ), Θ∗ also satisfies clause 2. The argument that Θ∗ satisfies
clauses (3) and (4) is similar to that for (1), and we leave it to the reader as an
exercise.

By the assumption that Γ ∈ W, {ϕ ∈ ∆∗ : for some χ, ϕ = �χ} ⊆ Γ and
by construction of Θ∗ {ϕ ∈ Γ : for some χ, ϕ = �χ} ⊆ Θ∗. Then, {ϕ ∈ ∆∗ :
for some χ,ϕ = �χ} ⊆ Θ∗. So Θ∗ satisfies clause 5 for W. Therefore, Θ∗ ∈ W

and consequently by the inductive hypothesis, B∗,BΘ, a |=esw χ if and only if
χ ∈ Θ∗and so B∗,BΘ, a |=esw ¬χ if and only if ¬χ ∈ Θ∗. But by construction,
¬χ ∈ Θ∗ and so B∗,BΘ, a |=esw ¬χ. Therefore, if �χ /∈ Γ, there is a Θ ∈ W∗

such that B∗,BΘ, a |=esw ¬χ.
We have shown above that for every second-order formula ψ of L, Γ ∈ W,

B∗,BΓ, a |=esw ψ if and only if ψ ∈ Γ and so, in particular, that for every
second-order formula ψ of L, B∗,B∆∗ , a |=esw ψ if and only if ψ ∈ ∆∗, given
that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for every ψ ∈ K,
B∗,B∆∗ , a |=esw ψ. It remains then only to show that B∗ is normal. But
for each ϕ ∈ FM2L, by Q-axioms (12), (14), and (16) and lemma 640 of
2-QML systems and the fact that for every Γ ∈ W, Γ ∈ MCΣ, the univer-
sal closures of �CP , ∃eQ(Q =e [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1)]
and ∃eQ(Q = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1)] are in every
member of W and thus, by above and the fact that these are closed second-
order formulas of L, then for all Γ ∈ W they are true in B∗at every BΓ.
But then, by lemmas 628 and 636, any generalization of (�CP ), (�UIe

2),
∃eQ(Q = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1)], and ∃eQ(Q =e

[λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1)] is valid in B∗. Therefore, B∗ is
normal.

Exercise 10.4.3 Complete the proof of theorem 706.

Theorem 707 Let Σ ∈ 2-QS5, L the language of Σ and Γ∪ {ϕ} ⊆ FM2L. If
Γ |=esw ϕ, then Γ �Σ ϕ.

Corollary 708 If Σ ∈ 2-QS5, L is the language of Σ, and ϕ ∈ FM2L, then
�Σ ϕ iff |=esw ϕ.

Exercise 10.4.4 Prove the above theorem 707 and its corollary 708.

For actualism, the only mode of being that individuals can have in any pos-
sible world is that of (concrete) existence. In particular, according to actualism
there can be no abstract individuals, because in such an ontology, only what
can actually exist (as a concrete object) can be. A semantics for second-order
actualism will capture this feature by requiring the domains of the models of an
e-secondary world system for a given language to consist of only those individ-
uals that actually exist in one possible world or another.
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Definition 709 If B = 〈〈〈Ai〉i∈I , e〉, G,E〉 is an e-secondary world system for
L, and R and Q are distinct variables such that R, Q /∈ OC(ϕ), then B is e-
normal if and only if
(a) UAi

= ∪i∈Ie(i), for all i ∈ I, and
(b) for all ϕ ∈ FMe2L,
∃eQn(Qn =e [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1)])
is valid in B.

In accordance with the above definition, we introduce the following axioms
to second-order actualist systems.

Assumption: If Σ ∈ 2-QeKr and L is the language of Σ, then {χ ∈ FM2e
L : χ

is �∃ex(x = a), where a is term of L and x /∈ OC(a)} ⊆ Ax(Σ).

For future reference, we shall refer to the axioms of the above assumption as
�∃e− axioms. Now, on the basis of the above definition, a corresponding notion
of entailment can be defined.

Definition 710 If L is a language, Γ ∪ {ϕ} ⊆ FM2e
L, then:

(1) Γ entails ϕ in e-normal e-secondary world systems, in sym-
bols, Γ |=eesw ϕ, iff for every e-normal e-secondary world system B =
〈〈〈Ai〉i∈I , e〉, G,E〉 for L, for all j ∈ I, and for all assignments a in B, if a

satisfies every member of Γ in B at Aj, then a satisfies ϕ in B at Aj ; and
(2) ϕ is universally valid in e-normal e-secondary world systems, in
symbols, |=eesw ϕ, iff the empty set entails ϕ in normal e-secondary world sys-
tems for L.

Corresponding to the above notion of entailment, a completeness theorem
for 2-QeS5 can now be proved.

Theorem 711 Let Σ ∈ 2-QeS5, L the language of Σ and Γ∪ {ϕ} ⊆ FM2e
L. If

Γ �Σ ϕ, then Γ |=eesw ϕ.

Exercise 10.4.5 Prove the above theorem 711.

Theorem 712 Let Σ ∈ 2-QeS5, L the language of Σ and K ⊆ FM2e
L. If K

is consistent in Σ, then there is an e-normal e-secondary world system B =
〈〈〈Ai〉i∈I , e〉,G,E〉 for L, an i ∈ I, and a second-order assignment a in B, such
that a satisfies every member of K in B at Ai.

Proof. Assume the hypothesis. By the remark immediately following corollary
645 of chapter 9, §9.6, there are infinitely many individual variables x0, ..., xn, ...
and, for every n ∈ ω, infinitely many n-place predicate variables Qn

0 , ..., Qn
k ... not

occurring in the formulas of K. Therefore, by theorem 643, there is a maximally
Σ-consistent set ∆∗ of second-order E-formulas of L, i.e., ∆∗ ⊆ FM2e

L and
∆∗ ∈ MCΣ, such that K ⊆ ∆∗and ∆∗ is 2-ω/ =ecomplete in the language of
Σ.
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Let W be the set of maximally Σ-consistent sets Γ of second-order E-formulas
of L such that:

(1) ∀eyϕ ∈ Γ if and only if for every i ∈ ω, if ∃ey(y = xi) ∈ Γ, then
ϕ(xi/y) ∈ Γ;

(2) ∀eRnϕ ∈ Γ if and only if for every i ∈ ω, if ∃eR(R =e Qn
i ) ∈ Γ, then

ϕ(Qn
i /Rn) ∈ Γ;

(3) �(ψ1 → ... → �(ψn−1 → �∀exϕ) ∈ Γ if and only if for every i ∈ ω,
�(ψ1 → ... → �(ψn−1 → �(∃ey(y = xi) → ϕ(xi/y))) ∈ Γ; provided xi does not
occur free in ψ1, ..., ψn−1,∀exϕ; and

(4) �ψ ∈ Γ, if �ψ ∈ ∆∗.
We note that, for reasons similar to the previous completeness proof, we

have (A) that for all second-order E-formulas ϕ of L and all Γ ∈ W, if �ϕ ∈ Γ,
then for all Θ ∈ W, �ϕ ∈ Θ. We show now that (B) for all Γ ∈ W, if �χ ∈ Γ,
then there is a Θ ∈ W such that χ ∈ Θ.

Assume an ordering δ1, ..., δn... of second-order E-formulas of L of the form
either ∃exϕ, ∃eSϕ or �(ψ0∧�(ψ1∧�(ψn−1∧�∃exϕ)...)), for x ∈ V R, S ∈ V Rn

(for some n ∈ ω) and ψ0, ..., ψn−1, ϕ ∈ FM(Σ). First note that if γ is a second-
order E-formula of L, then:

(a) if �(γ∧∃eSϕ) ∈ Γ and R is a variable new to γ and ∃eSϕ, then by UGe
2,

CN-logic, the 2∀e-distribution, lemmas (�UIe
2), (�CP e), axiom of distribution

of the necessity operator and definitions, �∃eR(γ ∧ ϕ(R/S)) ∈ Γ. Then, by Q-
axiom (20) of 2-QeML systems, ∃eR�(γ∧ϕ(R/S)) ∈ Γ. Since Γ ∈ W, 2-ω/ =e-
complete, and so there is an i ∈ ω such that �(γ∧ϕ(Qn

i /S))∧∃eR(Qn
i =e R) ∈ Γ

and, consequently, by lemma 638 (part II), �(γ∧ϕ(Qi/S))∧�∃eR(Qn
i =e R) ∈

Γ. But then, by theorem 58 (part 16), �((γ ∧ ϕ(Qi/S) ∧ ∃eR(Qn
i =e R)) ∈ Γ.

(b) if �(γ ∧ ∃eyϕ) ∈ Γ and z is a variable new to γ and ∃eyϕ, then by
UGe, CN-logic, the ∀e-distribution, lemma 628, Q-axiom (8), RN , axiom of
distribution of the necessity operator and definitions, �∃ez(γ ∧ ϕ(z/y)) ∈ Γ.
Since Γ ∈ W, � is 2-ω/ =e-complete, and so there is an individual variable x
that is free for y in ϕ such that �(γ ∧ ϕ(x/y) ∧ ∃ey(y = x)) ∈ Γ.

(c) if �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �∃eyϕ)...)) ∈ Γ, then by 2-ω/ =e-
completeness of Γ there is a variable y other than x that can be properly sub-
stituted for x in ϕ and new to �(α1 ∧�(α2 ∧ ... ∧�(αn ∧�∃eyϕ)...) such that
�(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �(ϕ(y/x) ∧ ∃ex(y = x)))...)) ∈ Γ.

Now, recursively define a sequence of second-order E-formulas ψ0, ..., ψn...
as follows:

i) ψ0 = χ,
ii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ , then ψn+1 = ψn,
iii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then:
iiia) if δn+1 is of the form ∃eyϕ, ψn+1 = (∃ey(y = xi) ∧ ϕ(xi/y)), where i

is the first natural number such that xi is new to ψ0, ..., ψn, δn+1 and such that
�(ψ0 ∧ ... ∧ ψn ∧ ϕ(xi/y) ∧ ∃ey(y = xi)) ∈ Γ.

iiib) if δn+1 is of the form �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �∃eyϕ)...)), ψn+1 =
�(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �(ϕ(xi/y) ∧ ∃ey(y = xi)))...)), where i is the first
natural number such that xi is new to ψ0, ..., ψn, δn+1 and such that �(ψ0∧ ...∧
ψn ∧ �(α1 ∧ �(α2 ∧ ... ∧ �(αn ∧ �(ϕ(xi/y) ∧ ∃ey(y = xi))...)) ∈ Γ.
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iiic) if δn+1 is of the form ∃eSϕ, then ψn+1 = ϕ(Qi/S), where i is the first
natural number such that Qi is new to ψ0, ..., ψn, δn+1 and �(ψ0 ∧ ... ∧ ψn ∧
ϕ(Qi/S) ∧ ∃eR(Qn

i =e R)) ∈ Γ.
On the basis of the above recursion, it can be shown by induction that for

all n ∈ ω, �(ψ0 ∧ ... ∧ ψn) ∈ Γ. As an exercise, we leave this to the reader as
well as the proof that {ψn : n ∈ ω} is Σ-consistent. Now let Θ = {ϕ ∈ Γ :
for some χ, ϕ = �χ} ∪ {ψn : n ∈ ω}. By reductio, we will show that Θ is
Σ-consistent. So suppose Θ is not Σ-consistent. Then there are n, m ∈ ω , such
that {�ϕ0, ...,�ϕm, ψ0, ..., ψn} ⊆ Θ and �Σ ¬(�ϕ0 ∧ ....∧�ϕm ∧ψ0 ∧ ...∧ψn).
So, by the RN rule and definitions, �Σ ¬�(�ϕ0 ∧ ....∧�ϕm ∧ψ0 ∧ ...∧ψn); but
Γ ∈ MCΣ, then ¬�(�ϕ0∧....∧�ϕm∧ψ0∧...∧ψn) ∈ Γ. On the other hand, since
{�ϕ0, ...,�ϕm} ⊆ Γ, Γ ∈ MCΣ, Σ ∈ 2-QeS5, then by theorem 121 (part 3) and
CN-logic, {��ϕ0, ...,��ϕm} ⊆ Γ, and so (given that �(ψ0 ∧ ... ∧ ψn) ∈ Γ), by
theorem 58 (part 16), �(�ϕ0∧....∧�ϕm∧ψ0∧...∧ψn) ∈ Γ, which is impossible by
the Σ-consistency of Γ. Therefore, Θ is Σ-consistent. By Lindenbaum’s method,
extend Θ to a maximally Σ-consistent set Θ∗.

By construction, lemma 628, (�UIe
2), CN-logic and (in the case of clause

3, in addition) proper rules and theorems of 2-QeS5, Θ∗ satisfies the left-to-
right directions of clauses 1–3 for W. We prove the right-to-left direction of
clause 1. Suppose ∀eyϕ /∈ Θ∗ even though for all i ∈ ω, if ∃ey(y = xi) ∈ Θ∗,
then ϕ(xi/y) ∈ Θ∗. Then, for some k ∈ ω, δk = ∃ey¬ϕ ∈ Θ∗. We note that
�(ψ0∧...∧ψn∧δk) ∈ Γ since if not, then �(ψ0∧...∧ψn → ¬δk) ∈ Γ, and therefore,
by construction of Θ∗ and the fact that Σ ∈ 2-QeS5, (ψ0∧ ...∧ψn → ¬δk) ∈ Θ∗,
but as ψ0, ..., ψn ∈ Θ∗, then ¬δk ∈ Θ∗, i.e., ∀eyϕ ∈ Θ∗, which by assumption
is impossible. Thus, by definition of ψk, ψk = (∃ey(y = xi) ∧ ¬ϕ(xi/y)) and
�(ψ0 ∧ ... ∧ ψn ∧ (∃ey(y = xi) ∧ ¬ϕ(xi/y))...) ∈ Γ, and so ψk = (∃ey(y = xi) ∧
¬ϕ(xi/y)) ∈ Θ∗. But then by assumption, ϕ(xi/y) ∈ Θ∗, which is impossible
since Θ∗ is Σ-consistent. Thus Θ∗ satisfies clause (1) for W∗. The argument that
Θ∗ satisfies clauses (2) and (3) is similar to that for (1), and we leave it to the
reader as an exercise.

By the assumption that Γ ∈ W, {ϕ ∈ ∆∗ : for some χ, ϕ = �χ} ⊆ Γ and
by construction of Θ∗ {ϕ ∈ Γ : for some χ, ϕ = �χ} ⊆ Θ∗. Then, {ϕ ∈ ∆∗ : for
some χ,ϕ = �χ} ⊆ Θ∗. So Θ∗ satisfies clause 4 for W. Therefore, Θ∗ ∈ W. But
by construction, χ ∈ Θ∗ and therefore, if �χ ∈ Γ, there is a Θ ∈ W∗ such that
χ ∈ Θ.

Now, for t ∈ TM2L, let [t] = {t́ ∈ TM2L : t́ = t ∈ ∆∗}. By lemma
610, [t] is an equivalence class and [t] is not empty. Now, let e∗ be a function
with W as domain such that for every Γ ∈ W, e∗(Γ) = {[t] : t ∈ TM2L
and ∃ex(x = t) ∈ Γ}. Let D∗ = ∪Γ∈We∗(Γ). Note that by the �∃e-axioms of
actualism, for every t ∈ TM2L, �∃ey(y = t) ∈ ∆∗, and so by (B) above, there is
a Θ ∈ W such that ∃ey(y = t) ∈ Θ; from which follows that for every t ∈ TM2L,
[t] ∈ D∗.

Let AΓ = 〈D∗,R∗
Γ〉, where R∗

Γ is a function with L as domain and such
that (1) for all n ∈ ω and all n-place predicate constants F ∈ L, R∗

Γ(F ) =
{〈[t1], ..., [t1]〉 : F (t1, ..., t1) ∈ Γ}, and (2) for each individual constant a ∈ L,
R∗

Γ(a) = [a]. Clearly, for every Γ ∈ W, A� is a standard L-model. Also, if
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Γ,Θ ∈ W and a is an individual constant of L, R∗
Γ(a) = R∗

Θ(a) and for every
Γ,Θ ∈ W, UA�

= UA�
.

By construction of ∆∗, ∆∗ ∈ W and so 〈BΓ〉Γ∈W 
= 0. Then, 〈〈BΓ〉Γ∈W, e〉
is an e-second-order world system for L.

For every n ∈ ω and n-place predicate expression, let XP be the func-
tion with W as domain such that, for every Γ ∈ W, XP (Γ) = {〈[t1], ..., [t1]〉 :
Pn(t1, ..., t1) ∈ Γ}. Now let G∗ and E∗ be the functions with ω as domain and
such that G∗(n) = {XP : P ∈ V Rn or P is a n-place predicate constant}
and E∗(n) = {XP ∈ G∗(n) : ∃eQ(P =e R) ∈ ∆∗, where R /∈ OC(P )}. If
XP ∈ E∗(n), then XP is an n-ary concept in 〈〈BΓ〉Γ∈W, e〉. For if Γ ∈ W

and ∃eQ(P =e Q) ∈ ∆∗, by lemma 638, (A) above and axiom of 2-QS5e
L,

∃eQ(P =e Q) ∈ Γ. Consequently, if 〈[a1], ..., [an]〉 ∈ Xp(Γ), then by definition
P (a1, ..., an) ∈ Γ and so lemma 639, for every k ∈ ω such that 1 ≤ k ≤ n,
∃ex(x = ak) ∈ Γ. Therefore, for every k ∈ ω such that 1 ≤ k ≤ n, [ak] ∈ e(Γ).

Clearly, by above B∗ = 〈〈〈BΓ〉Γ∈W, e〉, G∗, E∗〉 is an e-secondary world sys-
tem for L. Let a be the function which domain is V and such that (1) for every
x ∈ V R, a(x) = [x] and (2) for every S ∈ V Rn, a(S) = XS . Then, a is a
second-order assignment in B∗.

By induction on the second-order E-formulas of L, we show that for all
Γ ∈ W and second-order E-formula ψ of L, B∗,BΓ, a |=esw ψ if and only if
ψ ∈ Γ. The cases where ψ of the form ¬ϕ, ϕ → δ are left to the reader as an
exercise. We show then the cases where ψ is atomic, ∀exχ, ∀eSχ, or �χ, for
some second-order E-formula χ of L.

So suppose first that ψ is of the form (ζ = η). Then, B∗,BΓ, a |=esw ψ if
and only if ext(B∗,BΓ, a)(ζ) = ext(B∗,BΓ, a)(ζ)(η) iff [ζ] = [η] if and only if
(ζ = η) ∈ ∆∗ if and only if (by definition of W, axioms of the rigidity of terms
and (A) above) (ζ = η) ∈ Γ. Suppose now that ψ is of the form P (ζ0, ..., ζn−1),
then B∗,BΓ, a |=esw P (ζ0, ..., ζn−1) iff 〈ext(B∗,Γ,a)(ζ0), ..., ext(B∗,Γ,a)(ζn−1)〉 ∈
ext(B∗Γ,a)(P ) if and only if 〈[ζ0], ..., [ζn−1]〉 ∈ RΓ(P )(Γ) or 〈[ζ0], ..., [ζn−1]〉 ∈
a(P )(Γ) if and only if P (ζ0, ..., ζn−1) ∈ Γ.

Let ψ be ∀exϕ. Then, by definition, B∗,BΓ, a |=esw ∀xϕ iff for all d ∈ e(Γ),
B∗,BΓ, a(d/x) |=esw ϕ if and only if, for every t ∈ TM2L, if ∃ez(z = t) ∈ Γ,
B∗,BΓ, a([t]/y) |=esw ϕ if and only if (by 2-ω/ =e-completeness, axioms of
rigidity of terms) for every i ∈ ω, if ∃ez(z = xi) ∈ Γ, B∗,BΓ, a([xi]/y) |=esw ϕ
if and only if (by lemma 705) for every i ∈ ω and formula ψ which is a
rewrite of ϕ with respect to bound occurrences of xi, if ∃ez(z = xi) ∈ Γ,
B∗,BΓ, a([xi]/y) |=esw ψ if and only if (by lemma 703) for every i ∈ ω and
formula ψ that is a rewrite of ϕ with respect to bound occurrences of xi, if
∃ez(z = xi) ∈ Γ, B,BΓ, a |=esw ψ(xi/y) if and only if (by the inductive hypoth-
esis) for every i ∈ ω and formula ψ which is a rewrite of ϕ with respect to bound
occurrences of xi, if ∃ez(z = xi) ∈ Γ, ψ(xi/y) ∈ Γ if and only if (by condition 2
of W, lemma 628, rewrite law of bound individual variables) ∀eyϕ ∈ Γ.

By the corresponding semantic clause, B∗,BΓ, a |=esw ∀eSϕ iff for all d ∈
E∗(n), B∗,BΓ, a(d/S) |=esw ϕ, and hence if and only if (by definition of E∗) for
every n-place predicate expression P , if ∃eR(P =e R) ∈ ∆∗ and R /∈ OC(P ),
B∗,BΓ, a(AP /S) |=esw ϕ if and only if (by 2-ω/ =e-completeness, lemma 638,
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lemma 639, (�UIe), proper axioms of 2-QS5e
L, condition 4 of W), for every

i ∈ ω, if ∃eR(Qn
i =e R) ∈ ∆∗ and Qn

i /∈ OC(P ), B∗,BΓ, a(AQn
i
/S) |=esw ϕ,

and hence (by lemma 705) if and only if for every i ∈ ω and formula χ that is
a rewrite of ϕ with respect to bound occurrences of Qn

i , if ∃eR(Qn
i =e R) ∈ ∆∗

and Qn
i /∈ OC(P ), B∗,BΓ, a |=esw ϕ(Qn

i /S), i.e., if and only if (by the inductive
hypothesis) for every i ∈ ω and formula χ that is a rewrite of ϕ with respect to
bound occurrences of Qn

i , if ∃eR(Qn
i =e R) ∈ ∆∗ and Qn

i /∈ OC(P ), χ(Qn
i /S) ∈

Γ if and only if (by lemma 638, (A) above and axiom of 2-S5e
L) if and only

if for every i ∈ ω and formula χ that is a rewrite of ϕ with respect to bound
occurrences of Qn

i , if ∃eR(Qn
i =e R) ∈ Γ and Qn

i /∈ OC(P ), χ(Qn
i /S) ∈ Γ, and

therefore if and only if (by condition 2 of W, (�UIe
2) and the rewrite law of

bound predicate variables) ∀eSϕ ∈ Γ.
We now proceed to show the case where ψ is �χ. Clearly, by definitions,

B∗,BΓ, a |=esw �χ if and only if for all Θ ∈ W∗, B∗,BΘ, a |=esw χ. Now,
if �χ ∈ Γ, then (by definition of W and axiom of 2-QS5e

L), ��χ ∈ ∆∗, and
so, by an axiom of 2-QS5e

L, �χ ∈ ∆∗, from which it follows by an axiom of
2-QS5e

L that χ ∈ Θ, for all Θ ∈ W∗. Therefore, by the inductive hypothesis,
B∗,BΘ, a |=esw χ, for all Θ ∈ W∗. Now suppose that �χ /∈ Γ. We will show
that there is a Θ ∈ W∗ such that B∗,BΘ, a |=esw ¬χ.

So suppose �χ /∈ Γ, then by (B) above there is Θ ∈ W∗ such that ¬χ ∈ Θ
. By the inductive hypothesis, B∗,BΘ, a |=esw χ if and only if χ ∈ Θ∗and so
B∗,BΘ, a |=esw ¬χ if and only if ¬χ ∈ Θ∗. But ¬χ ∈ Θ∗, and so B∗,BΘ, a |=esw

¬χ. Therefore, if �γ /∈ Γ, there is a Θ ∈ W∗ such that B∗,BΘ, a |=esw χ.
We have shown above that for every second-order E-formula ψ of L, Γ ∈ W,

B∗,BΓ, a |=esw ψ if and only if ψ ∈ Γ, and so in particular that for every
second-order E-formula ψ of L, B∗,B∆∗ , a |=esw ψ if and only if ψ ∈ ∆∗,
given that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for every
ψ ∈ K, B∗,B∆∗ , a |=esw ψ. It remains then only to show that B∗ is nor-
mal. But clearly, by the construction of B∗, both (�CP e), and ∃eQ(Q =e

[λx0...xn(ϕ(x0, ..., xn−1)∧∃eRR(x0, ..., xn−1)] are valid in B∗. Therefore, B∗ is
e-normal.

Exercise 10.4.6 Complete the proof of the above theorem 712.

Theorem 713 Let Σ ∈ 2-QeS5, L the language of Σ, and Γ ∪ {ϕ} ⊆ FM2e
L.

If Γ |=eesw ϕ, then Γ �Σ ϕ.

Exercise 10.4.7 Prove the above theorem 713.

10.5 Second-Order Relational World Systems

We will now add an accessibility relation between possible worlds to e-secondary
world systems. This will allow for a semantics for each of the second-order
quantified modal calculi characterized in chapter 9. Our treatment will be sim-
ilar to that given for the relational model structures we described in chapter
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8 for first-order quantified modal logics. In other words, by simply imposing dif-
ferent structural conditions on the relation of accessibility in world systems we
can obtain completeness and soundness theorems for the different second-order
calculi. In accordance with this new semantic feature, we will need to redefine
the assignment and extension functions of the previous section as well as the
notion of satisfaction.

Definition 714 If L is a language, 〈〈〈Ai〉i∈I , e〉, G, E〉 is an e-secondary world
system for L, and R ⊆ I × I, then 〈〈〈Ai〉i∈I , e〉, G, E, R〉 is an e-secondary
relational world system based on 〈〈〈Ai〉i∈I , e〉, G,E〉, R, and L.

When 〈〈〈Ai〉i∈I , e〉, G,E,R〉 is an e-secondary relational world system based
on 〈〈〈Ai〉i∈I , e〉, G,E〉, R, and L, we will say that 〈〈〈Ai〉i∈I , e〉, G, E, R〉 is an
e-secondary relational world system for L.

Definition 715 If L is a second-order language and B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉
is an e-secondary relational world system for L, then a is a second-order
assignment (of values) in B (to the variables) iff a is a function with V as
domain such that (1) if v ∈ V R, then a(v) ∈ UAi

for some i ∈ I, and (2) if
v ∈ V Rn, a(v) ∈ G(n).

Definition 716 If L is a language, B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 is an e-
secondary relational world system for L, a is a second-order assignment in B,
j ∈ I, and ξ is a predicate or individual constant in L or a variable, i.e.,
ξ ∈ L ∪ V , then (the extension of ξ in B relative to j and a):

ext(B,j,a)(ξ) =df




Aj(ξ) if ξ ∈ L and ξ is an individual constant
Aj(ξ)(j) if ξ ∈ L and ξ is a predicate constant
a(ξ) if ξ ∈ V R
a(ξ)(j) if ξ ∈ V Rn

.

Definition 717 If B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 is an e-secondary relational
world system for L, j ∈ I and a is a second-order assignment in B, then the
satisfaction in B at Aj by a of a second-order formula ϕ ∈ FM2L, in sym-
bols, B,Aj , a |=rsw ϕ is recursively defined as follows:
(1) if ϕ is (ζ = ξ), where ζ, ξ ∈ TM2L, then B,Aj , a |=rsw ϕ iff ext(B,j,a)(ζ) =
ext(B,j,a)(ξ);
(2) if ϕ is P (ζ0, ..., ζn−1), where P is an n-place predicate expression of L and
ζ ∈ TM2n

L, then B,Aj , a |=rsw ϕ iff 〈ext(B,,j,a)(ζ0), ..., ext(B,,j,a)(ζn−1)〉 ∈
ext(B,,j,a)(P );
(3) if ϕ is ¬ψ, where ψ is a second-order formula of L, then B,Aj , a |=rsw ϕ iff
B,Aj , a �rsw ψ;
(4) if ϕ is (χ → ψ), where χ and ψ are second-order formulas of L, then
B,Aj , a |=rsw ϕ iff either B,Ak, a �rsw χ or B,Ak, a |=rsw ψ;
(5) if ϕ is ∀xψ, where ψ is a second-order formula of L and x ∈ V R, then
B,Aj , a |=rsw ϕ iff for all d ∈ UAj

, B,Aj , a(d/x) |=rsw ψj;
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(6) if ϕ is ∀Qψ, where ψ is a second-order formula of L and Q ∈ V Rn, then
B,Aj , a |=rsw ϕ iff for all d ∈ G(n), B,Aj , a(d/Q) |=rsw ψ;
(7) if ϕ is ∀exψ, where ψ is a second-order formula of L and x ∈ V R, then
B,Aj , a |=rsw ϕ iff for all d ∈ e(j), B,Aj , a(d/x) |=rsw ψ;
(8) if ϕ is ∀eQψ, where ψ is a second-order formula of L and Q ∈ V Rn, then
B,Aj , a |=rsw ϕ iff for all d ∈ E(n), B,Aj , a(d/Q) |=rsw ψ; and
(9) if ϕ is �ψ, where ψa second-order formula of L, then B,Aj , a |=rsw ϕ iff
for all k ∈ I ,if jRk, then a satisfies ϕ in B,Ak, a |=rsw ψ.

Definition 718 If B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 is an e-secondary relational
world system for L, j ∈ I and ϕ ∈ FM2L, then:
(1) ϕ is true in B at Aj iff every assignment in B satisfies ϕ in B at Aj; and
(2) ϕ is valid in B iff for all k ∈ I, ϕ is true in B at Ak.

We will now restrict our attention to e-secondary relational world systems
that not only validate (�CP e), the possibilist comprehension schemas for e-
concepts, and (�UIe

2), the universal instantiation principle for e-concepts, but
also to those systems in which concepts that are necessarily co-extensive at a
given world i are then necessarily co-extensive in every possible world that is
n accessibility steps away from i, i.e., possible worlds k for which there are
worlds j0, ..., jn−1 such that iRj0, ..., jn−2Rjn−1, and jn−1Rk, where R is the
accessibility relation between worlds.

Definition 719 If B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 is an e-secondary relational
world system, then B is normal if and only if for every ϕ ∈ FM2L, and
distinct variables R and Q such that R, Q /∈ OC(ϕ),
(1) ∃Q(Q = [λx0...xn−1ϕ]),
(2) ∃eQ(Q = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))]),
(3) (G = Q) ∨ �(G = Q) → �(G = Q),
(4) Gn = Qn → ∀x1...∀xn(Gn(x1...xn) ↔ Qn(x1...xn)),
(5) ∃eQ(Q =e [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))]),
(6) (G =e Q) ∨ �(G =e Q) → �(G =e Q), and

(7) ∃eQ(Q =e [λx0...xn−1ψ]) → (∀eQϕ → ϕ(ψ/Q(x0, ..., xn)))
are valid in B.

We show that any one of the different possibilist quantified second-order
modal logics characterized in definition 619 of chapter 9 is sound and complete
with respect to a class of e-secondary relational world systems whose accessibility
relations satisfy certain structural conditions. The different conditions that we
shall here take into account are stated in the following definition:

Definition 720 If B = 〈〈〈Ai〉i∈I , e〉, G,E,R 〉 is an e-secondary relational
world system for L, then:
(1) B is symmetric iff R is symmetric;
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(2) B is transitive iff R is transitive;

(3) B is totally reflexive iff R is totally reflexive;

(4) B is totally quasi-ordered iff R is totally quasi-ordered; and

(5) B is strongly quasi-ordered iff R is strongly quasi-ordered.

We state first the soundness theorems for the different modal CN-calculi
characterized in the definition 619, of chapter 9. We leave their proofs to the
reader.

Theorem 721 Let Σ ∈ 2-QKr, L the language of Σ and Γ ∪ {ϕ} ⊆ FM2L.
If Γ �Σ ϕ, then for every normal e-secondary relational world system B =
〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, for all j ∈ I and for all second-order assignments
a in B, if a satisfies every member of Γ in B at Aj, then a satisfies ϕ in B at
Aj.

Theorem 722 Let Σ ∈ 2-QS4, L the language of Σ and Γ ∪ {ϕ} ⊆ FM2L. If
Γ �Σ ϕ, then for every normal totally quasi-ordered e-secondary relational world
system B =〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, for all j ∈ I and for all second-order
assignments a in B, if a satisfies every member of Γ in B at Aj, then a satisfies
ϕ in B at Aj.

Theorem 723 Let Σ ∈ 2-QS4.2, L the language of Σ and Γ ∪ {ϕ} ⊆ FM2L.
If Γ �Σ ϕ, then for every normal totally quasi-ordered and r-connectable e-
secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 for L, for all j ∈ I
and for all second-order assignments a in B, if a satisfies every member of Γ in
B at Aj, then a satisfies ϕ in B at Aj.

Theorem 724 Let Σ ∈ 2-QS4.3, L the language of Σ and Γ∪{ϕ} ⊆ FM2L. If
Γ �Σ ϕ, then for every normal totally quasi-ordered and strongly quasi-connected
e-secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 for L, for all
j ∈ I and for all second-order assignments a in B, if a satisfies every member
of Γ in B at Aj, then a satisfies ϕ in B at Aj.

Theorem 725 Let Σ ∈ 2-QBr, L the language of Σ and Γ ∪ {ϕ} ⊆ FM2L.
If Γ �Σ ϕ, then for every normal totally reflexive and symmetric e-secondary
relational world system B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, for all j ∈ I and for
all second-order assignments a in B, if a satisfies every member of Γ in B at
Aj, then a satisfies ϕ in B at Aj.

Theorem 726 Let Σ ∈ 2-QM, L the language of Σ and Γ ∪ {ϕ} ⊆ FM2L.
If Γ �Σ ϕ, then for every normal totally reflexive e-secondary relational world
system B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, for all j ∈ I and for all second-order
assignments a in B, if a satisfies every member of Γ in B at Aj, then a satisfies
ϕ in B at Aj.
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Theorem 727 Let Σ ∈ 2-QS5, L the language of Σ and Γ ∪ {ϕ} ⊆ FM2L.
If Γ �Σ ϕ, then for every normal transitive, totally reflexive and symmetric e-
secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 for L, for all j ∈ I
and for all second-order assignments a in B, if a satisfies every member of Γ in
B at Aj, then a satisfies ϕ in B at Aj.

Exercise 10.5.1 Prove the above theorems 721–727.

Lemma 728 Let L be a language, B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 a normal e-
secondary relational world system for L, and j ∈ I and a a second-order assign-
ment in 〈〈〈Ai〉i∈I , e〉, G,E〉. If ϕ ∈ FM2L and y can be properly substituted for
x in ϕ, then B,Aj , a(a(y)/x) |=esw ϕ if and only if B,Aj , a |=esw ϕ(y/x).

Lemma 729 Let L be a language, B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 a normal e-
secondary relational world system for L, and j ∈ I and a a second-order assign-
ment in 〈〈〈Ai〉i∈I , e〉, G,E〉. If ϕ ∈ FM2L and Q can be properly substituted for
R in ϕ, then B,Aj , a(a(Q)/R) |=esw ϕ if and only if B,Aj , a |=esw ϕ(Q/R).

Lemma 730 If L is a language, B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 a normal e-
secondary relational world system for L, j ∈ I, a is a second-order assignment
in B, ϕ ∈ FM2L, and ψ is a rewrite of ϕ, then B,Aj , a |=esw ϕ if and only if
B,Aj , a |=esw ψ.

Exercise 10.5.2 Prove the above lemmas 728–730.

Completeness theorems for the above mentioned second-order modal CN-
calculi follow. We will prove only the completeness theorem for 2-QKr systems.
The rest is left as an exercise.

Theorem 731 Let Σ ∈ 2-QKr, L the language of Σ and K ⊆ FM2L. If K is
consistent in Σ, then there is a normal e-secondary relational world system B =
〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, j ∈ I, and an assignment a in B such that a

satisfies every member of K in B at Aj.

Proof. Assume the hypothesis. By the remark immediately following corollary
645 in chapter 9, §9.6, there are infinitely many individual variables x0, ..., xn...
and, for every n ∈ ω, infinitely many n-place predicate variables Qn

0 , ..., Qn
k ... not

occurring in the formulas of K. Therefore, by theorem 643, there is a maximally
Σ-consistent set ∆∗ of second-order formulas of L, i.e., ∆∗ ⊆ FM2L and ∆∗ ∈
MCΣ, such that K ⊆ ∆∗and ∆∗ is 2-ω/∃-complete and 2-ω/∃e-complete in the
language of Σ.

Let W be the set of maximally Σ-consistent sets Γ of standard second-order
formulas of L such that:

(1) ∀yϕ ∈ Γ if and only if for every i ∈ ω, ϕ(xi/y) ∈ Γ;
(2) ∀eyϕ ∈ Γ if and only if for every i ∈ ω, if ∃ey(y = xi) ∈ Γ, then

ϕ(xi/y) ∈ Γ;
(3) ∀Rnϕ ∈ Γ if and only if for every i ∈ ω, ϕ(Qn

i /Rn) ∈ Γ;
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(4) ∀eRnϕ ∈ Γ if and only if for every i ∈ ω, if ∃eRn(Rn = Qn
i ) ∈ Γ, then

ϕ(Qn
i /Rn) ∈ Γ;

(5) ∃eR(R = G) ∈ Γ if and only if ∃eR(R = G) ∈ ∆∗; and

(6) for every i, n ∈ ω, if R ∈ V Rn and R = Qn
i ∈ ∆∗, then R = Qn

i ∈ Γ.

Clearly, ∆∗ ∈ W.
For every Γ ∈ W, and t ∈ TM2L, let [t] = {xi : i ∈ ω and (xi = t) ∈ ∆∗}.

By lemma 610, [t] is an equivalence class. We note that because of second-order
Q-axiom (7) and the way ∆∗ was constructed, for every term t of L, [t] is not
empty and there is an i ∈ ω such that [t] = [xi]. Set D∗ = {[xi] : i ∈ ω}
and, for every Γ ∈ W, let AΓ = 〈D∗,R∗

Γ〉, where R∗
Γ is a function with L as

domain, such that (1) for all n ∈ ω and all n-place predicate constants F ∈ L,
R∗

Γ(F ) = {〈[t1], ..., [t1]〉 : F (t1, ..., t1) ∈ Γ}, and (2) for each individual constant
a ∈ L, R∗

Γ(a) = [a]. Let e∗ be the function with W as domain such that e∗(Γ) =
{[t] : ∃ex(x = t) ∈ Γ}. Clearly, for every Γ ∈ W, AΓ is a standard L-model, and
for every Γ,Θ ∈ W, if a is an individual constant of L, R∗

Γ(a) = R∗
Θ(a). Also,

for Γ,Θ ∈ W, UAΓ = UAΘ . Therefore, 〈〈BΓ〉Γ∈W, e〉 is an e-second-order world
system for L.

For every i ∈ ω, let XQn
i

be the function with W as domain such that,
for every Γ ∈ W, XQn

i
(Γ) = {〈[t1], ..., [t1]〉 : Qn

i (t1...t1) ∈ Γ}. Note that, by
the definition of W, second-order Q-axiom (12), CN-logic, for every n-place
predicate variable there is an i ∈ ω such that for every Γ ∈ W, (R = Qn

i ) ∈ Γ.
Let now G∗ and E∗ be functions with ω as domain and such that G∗(n) =
{XQn

i
: i ∈ ω} and E∗(n) = {XQn

i
: i ∈ ω and ∃eR(Qn

i = R) ∈ ∆∗, where R and
Qn

i are different variables}. We note that if Γ ∈ W and ∃eR(Qn
i = R) ∈ ∆∗, then

by the construction of W, ∃eR(Qn
i = R) ∈ Γ. Consequently, if XQn

i
∈ E∗(n) and

〈[a1], ..., [an]〉 ∈ XQn
i
(Γ), then, by lemmas 611, 629, and 639, Qn

i (a1, ..., an) ∈ Γ
and for every k ∈ ω such that 1 ≤ k ≤ n, ∃ex(x = ak) ∈ Γ. Therefore, for every
k ∈ ω such that 1 ≤ k ≤ n, [ak] ∈ e(Γ).

Now, let R∗ = {〈Γ,Θ〉 ∈ W×W : for all ϕ ∈ FM(Σ), if �ϕ ∈ Γ, then ϕ ∈ Θ}.
Then, by above B∗ = 〈〈〈BΓ〉Γ∈W, e〉, G∗, E∗, R∗〉 is an e-secondary relational
world system for L. Let a be the function which domain is V and such that (1)
for every y ∈ V R, a(y) = [y] and (2) for every S ∈ V Rn, a(S) = XQn

i
, where i is

the least j ∈ ω such that for all Γ ∈ W, (S = Qn
i ) ∈ Γ. Then, a is a second-order

assignment in B∗. Note that, by second-order Q-axiom (11), for every i, n ∈ ω,
a(Qn

i ) = XQn
i
.

By induction on the second-order formulas of L, we show that for all Γ ∈ W

and second-order formula ψ of L, B∗,BΓ, a |=rsw ψ if and only if ψ ∈ Γ.
Suppose first that ψ is of the form (ζ = η). Then, B∗,BΓ, a |=rsw ψ if and
only if ext(B∗,Γ, a)(ζ) = ext(B∗,Γ, a)(ζ)(η) iff [ζ] = [η] if and only if (ζ =
η) ∈ ∆∗ if and only if (by definition of W, axioms of the rigidity of terms and
(A) above) (ζ = η) ∈ Γ. Suppose now that ψ is of the form P (ζ0, ..., ζn−1),
then B∗,BΓ, a |=rsw P (ζ0, ..., ζn−1) iff 〈ext(B∗,Γ,a)(ζ0), ..., ext(B∗,Γ,a)(ζn−1)〉 ∈
ext(B∗,Γ,a)(P ) if and only if 〈[ζ0], ..., [ζn−1]〉 ∈ R∗

Γ(P )(Γ) or 〈[ζ0], ..., [ζn−1]〉 ∈
a(P )(Γ) if and only if (by definition of R∗

Γ, P (ζ0, ..., ζn−1) ∈ Γ, if P is a predicate
constant; and if P is a predicate variable, then by the fact that there is an i ∈ ω,
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such that (P = Qn
i ) ∈ Γ and a(P ) = XQn

i
, ), P (ζ0, ..., ζn−1) ∈ Γ. The cases where

ψ is either of the form ¬ϕ, ϕ → δ are left to the reader as an exercise.
Let ψ be ∀yδ. Then B∗,BΓ, a |=sw ∀yδ if and only if (by the semantic

clause) for all d ∈ UBΓ , B∗,BΓ, a(d/y) |=sw δ iff (by definition of UBΓ) for
every i ∈ ω, B∗,BΓ, a([xi]/y) |=rsw ϕ if and only if (by lemma 728) for every
i ∈ ω and formula ψ which is a rewrite of ϕ with respect to bound occurrences
of xi, B∗,BΓ, a([xi]/y) |=rsw ψ if and only if (by lemma 728) for every i ∈ ω
and formula ψ which is a rewrite of ϕ with respect to bound occurrences of xi,
B,BΓ, a |=rsw ψ(xi/y) if and only if (by the inductive hypothesis) for every
i ∈ ω and formula ψ which is a rewrite of ϕ with respect to bound occurrences
of xi, ψ(xi/y) ∈ Γ if and only if (by condition 1 of W, lemmas 628 and 631)
∀yϕ ∈ Γ.

Let ψ be ∀eyϕ. Then, by definition, B∗,BΓ, a |=rsw ∀eyϕ iff for all d ∈ e(Γ),
B∗,BΓ, a(d/y) |=rsw ϕ if and only if for every i ∈ ω, if ∃ez(z = xi) ∈ Γ,
B∗,BΓ, a([xi]/y) |=rsw ϕ if and only if (by lemma 730) for every i ∈ ω and
formula ψ which is a rewrite of ϕ with respect to xi, if ∃ez(z = xi) ∈ Γ,
B∗,BΓ, a([xi]/y) |=rsw ψ if and only if (by lemma 728) for every i ∈ ω and
formula ψ which is a rewrite of ϕ with respect to bound occurrences of xi,
if ∃ez(z = xi) ∈ Γ, B∗,BΓ, a |=rsw ψ(xi/y) if and only if (by the inductive
hypothesis) for every i ∈ ω and formula ψ which is a rewrite of ϕ with respect
to bound occurrences of xi, if ∃ez(z = xi) ∈ Γ, ψ(xi/y) ∈ Γ if and only if (by
condition 2 of W, lemmas 628 and 631) ∀eyϕ ∈ Γ.

We show now the case where ψ is ∀Sϕ. By the corresponding semantic clause,
B∗,BΓ, a |=sw ∀Sϕ if and only if for all d ∈ G∗(n), B∗,BΓ, a(d/S) |=rsw ϕ,
and hence if and only if for every i ∈ ω, B∗,BΓ, a(XQn

i
/S) |=rsw ϕ and hence

(by lemmas 730 and 729) if and only if for every i ∈ ω and formula χ which is a
rewrite of ψ with respect to bound occurrences of Qn

i , B∗,BΓ, a |=rsw ϕ(Qn
i /S),

i.e., if and only if (by the inductive hypothesis) for every i ∈ ω and formula χ
which is a rewrite of ϕ with respect to bound occurrences of Qn

i , χ(Qn
i /S) ∈

Γ, and therefore if and only if (by condition 3 of W, lemmas 635 and 637)
∀Sϕ ∈ Γ.

By the corresponding semantic clause, B∗,BΓ, a |=rsw ∀eSϕ iff for all d ∈
E∗(n), B∗,BΓ, a(d/S) |=rsw ϕ, and hence if and only if (by definition of E∗) for
every i ∈ ω, if ∃eS(S = Qn

i ) ∈ ∆∗ and S is a n-place predicate variable different
from Qn

i , B∗,BΓ, a(S/AQn
i
) |=rsw ϕ, and hence (by lemmas 730 and 729) if and

only if for every i ∈ ω and formula χ which is a rewrite of ψ with respect to
Qn

i , if ∃eS(S = Qn
i ) ∈ ∆∗ and S is an n-place predicate variable different from

Qn
i , B∗,BΓ, a |=rsw ϕ(Qn

i /S), i.e., if and only if (by the inductive hypothesis)
for every i ∈ ω and formula χ which is a rewrite of ϕ with respect to Qn

i , if
∃eS(S = Qn

i ) ∈ ∆∗ (where S is an n-place predicate variable different from
Qn

i ), χ(Qn
i /S) ∈ Γ if and only if (by condition 5 of W) for every i ∈ ω and

formula χ which is a rewrite of ϕ with respect to bound occurrences of Qn
i , if

∃eS(S = Qn
i ) ∈ Γ (where S is a n-place predicate variable different from Qn

i ),
χ(Qn

i /S) ∈ Γ and therefore if and only if (by condition 4 of W, lemmas 635 and
637) ∀eSϕ ∈ Γ.



250 CHAPTER 10. SEMANTICS OF SECOND-ORDER MODAL LOGIC

We now proceed to show the case where ψ is �χ. Clearly, by definitions,
B∗,BΓ, a |=rsw �χ if and only if for all Θ ∈ W∗, if ΓR∗Θ, B∗,BΘ, a |=rsw χ .
Now, if �χ ∈ Γ, then (by definition of R∗) χ ∈ Θ, for all Θ ∈ W and hence, by
the inductive hypothesis, B∗,BΘ, a |=rsw χ, for all Θ ∈ W. Now suppose that
�χ /∈ Γ. We will show that there is a Θ ∈ W∗ such that B∗,BΘ, a |=rsw ¬χ.

Assume an ordering δ1, ..., δn, ... of second-order formulas of L of the form
either ∃vϕ or ∃eSϕ, for v ∈ V. First note that by reasons similar to those of the
previous completeness proof, if γ is a standard second-order formula of L, then:

(α) if �(γ ∧ ∃eSϕ) ∈ Γ, there is an an i ∈ ω such that Qi is new to γ and
∃Sϕ and �(γ ∧ ϕ(Qi/S)) ∧ ∃eS(Qi = S) ∈ Γ.

(β) If �(γ ∧ ∃yϕ) ∈ Γ, there is an i ∈ ω such that xi is new to γ and ∃yϕ
and �(γ ∧ ϕ(xi/y)) ∈ Γ.

(γ) if �(γ ∧ ∃Sϕ) ∈ Γ, there is an i ∈ ω such that Qi is new to γ and ∃Sϕ
and �(γ ∧ ϕ(Qi/S)) ∈ Γ.

Now, recursively define a sequence of wffs ψ0, ..., ψn, ... as follows.
i) ψ0 = ¬χ,
ii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) /∈ Γ, then ψn+1 = ψn,
iii) if �(ψ0 ∧ ... ∧ ψn ∧ δn+1) ∈ Γ, then:
iiia) if δn+1 is of the form ∃yϕ, then ψn+1 = ϕ(xi/y), where i is the first

natural number such that xi is new to ψ0, ..., ψn,∃yϕ and �(ψ0 ∧ ... ∧ ψn ∧
ϕ(xi/y)) ∈ Γ (by β above),

iiib) if δn+1 is of the form ∃Sϕ, then ψn+1 = ϕ(Qi/S) (where i is the first
natural number such that Qi is new to ψ0, ..., ψn,∃Sϕ and �(ψ0 ∧ ... ∧ ψn ∧
ϕ(Qi/S)) ∈ Γ (by γ above),

iiic) if δn+1 is of the form ∃eSϕ, then ψn+1 = ϕ(Qi/S) (where i is the first
natural number such that Qi is new to ψ0, ..., ψn,∃eSϕ and �(ψ0 ∧ ... ∧ ψn ∧
(Qi/S) ∧ ∃eS(Qi = S)) ∈ Γ (by α above).

It can be shown by induction that for all n ∈ ω, �(ψ0 ∧ ...∧ ψn) ∈ Γ and so
that {ψn : n ∈ ω} is Σ-consistent. As an exercise, we leave the proof of this to
the reader.

Now let Θ = {ϕ : �ϕ ∈ Γ} ∪ {ψn : n ∈ ω}. By reductio, we will show that Θ
is Σ-consistent. So suppose Θ is not Σ-consistent. Then there are n, m ∈ ω, such
that {ϕ0, ...., ϕm, ψ0, ..., ψn} ⊆ Θ and �Σ ¬(ϕ0 ∧ ....∧ϕm ∧ψ0 ∧ ...∧ψn). So, by
the RN rule and definitions, �Σ ¬�(ϕ0 ∧ .... ∧ ϕm ∧ ψ0 ∧ ... ∧ ψn); but because
Γ ∈ MCΣ, then ¬�(ϕ0 ∧ ....∧ϕm ∧ψ0 ∧ ...∧ψn) ∈ Γ. On the other hand, since
{�ϕ0, ...,�ϕm} ⊆ Γ, Γ ∈ MCΣ, Σ ∈ 2-QKr, and �(ψ0 ∧ ...∧ψn) ∈ Γ), then by
theorem 58 (part 16), �(ϕ0∧ ....∧ϕm∧ψ0∧ ...∧ψn) ∈ Γ, which is impossible by
the Σ-consistency of Γ. Therefore, Θ is Σ-consistent. By Lindenbaum’s method,
extend Θ to a maximally Σ-consistent set Θ∗.

By construction and lemmas 628 and 635, Θ∗ satisfies the left-to-right di-
rections of clauses 1–4 for W. Suppose ∀yϕ /∈ Θ∗ even though for all i ∈ ω,
ϕ(xi/y) ∈ Θ∗. Now, for some k ∈ ω, δk = ∃y¬ϕ ∈ Θ∗. We note that
�(ψ0 ∧ ... ∧ ψn ∧ δk) ∈ Γ since if not, �(ψ0 ∧ ... ∧ ψn → ¬δk) ∈ Γ, and so
by construction of Θ∗, (ψ0 ∧ ... ∧ ψn → ¬δk) ∈ Θ∗. But as ψ0, ..., ψn ∈ Θ∗,
then ¬δk ∈ Θ∗, i.e., ∀yϕ ∈ Θ∗, which, by assumption, is impossible. Thus, by
definition of ψk, ψk = ¬ϕ(xi/y) and �(ψ0 ∧ ... ∧ ψn ∧ ¬ϕ(xi/y) ∈ Γ and so
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by construction of Θ∗, ψk = ¬ϕ(xi/y) ∈ Θ∗, which is impossible because Θ∗

is Σ-consistent. Thus Θ∗ satisfies clause (1) for W∗. Since by lemma 629 (part
b), ∃eyϕ is equivalent to ∃y(∃eRR(y) ∧ ¬ϕ), Θ∗ also satisfies clause (2). The
argument that Θ∗ satisfies clause (3) is similar to that for clause (1), and we
leave it to the reader as an exercise. Suppose now that ∀eSϕ /∈ Θ∗ even though
for all i ∈ ω, if ∃eS(Qi = S) ∈ Θ∗, then (Qi/S) ∈ Θ∗. Clearly, for some k ∈ ω,
δk = ∃eS¬ϕ ∈ Θ∗ and �(ψ0 ∧ ...∧ψn ∧ δk) ∈ Γ. For if �(ψ0 ∧ ...∧ψn ∧ δk) /∈ Γ,
then by construction of Θ∗, (ψ0∧...∧ψn → ¬δk) ∈ Θ∗ and since ψ0, ..., ψn ∈ Θ∗,
¬δk ∈ Θ∗, which, by assumption, is impossible. Therefore, by definition of
ψk, �(ψ0 ∧ ... ∧ ψn ∧ ∃eS(Qi = S) ∧ ¬ϕ(Qi/S)) ∈ Γ and so by construction
of Θ∗, ψk = ¬ϕ(Qi/S) ∈ Θ∗. On the other hand, by lemma 58 (part 14),
�∃eS(Qi = S) ∈ Γ and so by lemma 638 (part d), �∃eS(Qi = S) ∈ Γ, which
means that, by construction of Θ∗, ∃eS(Qi = S) ∈ Θ∗. Therefore, for some
i ∈ ω, ∃eS(Qi = S) ∈ Θ∗ and ¬ϕ(Qi/S) ∈ Θ∗, which is impossible by assump-
tion. Thus Θ∗ satisfies clause (4) for W∗.

Suppose now that i, n ∈ ω, R ∈ V Rn and R = Qn
i ∈ ∆∗. Then, by definition

of W, R = Qn
i ∈ Γ and so by lemma 615 (part b) �(R = Qn

i ) ∈ Γ, which
means that, by construction of Θ∗, R = Qn

i ∈ Θ∗, and so Θ∗ satisfies clause
(6). Also, Θ∗ satisfies clause (5). For, given that Γ ∈ W, by clause (5) of W and
construction of Θ∗, lemma 615 (part e), lemma 638 (part c), ∃eR(R = G) ∈ Θ∗

if and only if ∃eR(R = G) ∈ ∆∗. Therefore, Θ∗ ∈ W and, consequently, by
the inductive hypothesis, B∗,BΘ, a |=rsw χ if and only if χ ∈ Θ∗, and so
B∗,BΘ, a |=rsw ¬χ if and only if ¬χ ∈ Θ∗. But by construction, ¬χ ∈ Θ∗

and so B∗,BΘ, a |=rsw ¬χ. Also, by construction, {ϕ : �ϕ ∈ Γ} ⊆ Θ∗, and
so ΓR∗Θ∗. Therefore, if �χ /∈ Γ, there is a Θ ∈ W∗ such that ΓR∗Θ∗ and
B∗,BΘ, a |=rsw ¬χ.

We have shown above that for every second-order formula ψ of L, Γ ∈ W,
B∗,BΓ, a |=rsw ψ if and only if ψ ∈ Γ and so, in particular, that for every
second-order formula ψ of L, B∗,B∆∗ , a |=rsw ψ if and only if ψ ∈ ∆∗, given
that ∆∗ ∈ W. By construction K ⊆ ∆∗, and consequently, for every ψ ∈ K,
B∗,B∆∗ , a |=rsw ψ. It remains then only to show that B∗ is normal. But for
each ϕ ∈ FM2L, by Q-axioms (12), (11), (�UIe

2), (16), (21), (22), and (23) of
2-QML systems and lemma 640 and the fact that for every Γ ∈ W, Γ ∈ MCΣ,
the universal closures of (�CP ), (�UIe

2), ∃eQ(Q = [λx0...xn(ϕ(x0, ..., xn−1) ∧
∃eRR(x0, ..., xn−1)], (G = Q) ∨ �(G = Q) → �(G = Q), Gn = Qn →
∀x1...∀xn(Gn(x1...xn) ↔ Qn(x1...xn)), ∃eQ(Q =e [λx0...xn(ϕ(x0, ..., xn−1) ∧
∃eRR(x0, ..., xn−1)], and (G =e Q) ∨ �(G =e Q) → �(G =e Q) are in every
member of W and thus, by above and the fact that these are closed second-
order formulas of L, for all Γ ∈ W they are true in B∗at every BΓ. But then,
by lemmas 628 and 636, any generalization of (�CP ), (�UIe

2),
∃eQ(Q = [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1))],
(G = Q) ∨ �(G = Q) → �(G = Q),
Gn = Qn → ∀x1...∀xn(Gn(x1...xn) ↔ Qn(x1...xn)),
∃eQ(Q =e [λx0...xn(ϕ(x0, ..., xn−1) ∧ ∃eRR(x0, ..., xn−1)], and
(G =e Q) ∨ �(G =e Q) → �(G =e Q),

is valid in B∗. Therefore, B is normal.
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Exercise 10.5.3 Complete the proof of theorem 731.

Theorem 732 Let Σ ∈ 2-QS4, L the language of Σ and K ⊆ FM2L. If K
is consistent in Σ, then there are a normal totally quasi-ordered e-secondary
relational world system B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, a j ∈ I, and a second-
order assignment a in B such that a satisfies every member of K in B at Aj.

Theorem 733 Let Σ ∈ 2-QS4.2, L the language of Σ and K ⊆ FM2L. If K is
consistent in Σ, then there are a normal totally quasi-ordered and r-connectable
e-secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 for L, a j ∈ I,
and a second-order assignment a in B such that a satisfies every member of K
in B at Aj.

Theorem 734 Let Σ ∈ 2-QS4.3, L the language of Σ and K ⊆ FM2L. If K
is consistent in Σ, then there are a normal totally quasi-ordered and strongly
quasi-connected e-secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉
for L, a j ∈ I, and a second-order assignment a in B such that a satisfies every
member of K in B at Aj.

Theorem 735 Let Σ ∈ 2-QBr, L the language of Σ and K ⊆ FM2L. If K
is consistent in Σ, then there are a normal totally reflexive and symmetric e-
secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 for L, a j ∈ I,
and a second-order assignment a in B such that a satisfies every member of K
in B at Aj.

Theorem 736 Let Σ ∈ 2-QM, L the language of Σ and K ⊆ FM2L. If K is
consistent in Σ, then there are a normal totally reflexive e-secondary relational
world system B = 〈〈〈Ai〉i∈I , e〉, G,E,R〉 for L, a j ∈ I, and a second-order
assignment a in B such that a satisfies every member of K in B at Aj.

Theorem 737 Let Σ ∈ 2-QBr, L the language of Σ and K ⊆ FM2L. If K
is consistent in Σ, then there are a normal transitive, totally reflexive, and
symmetric e-secondary relational world system B = 〈〈〈Ai〉i∈I , e〉, G, E, R〉 for
L, a j ∈ I, and a second-order assignment a in B such that a satisfies every
member of K in B at Aj.

Exercise 10.5.4 Prove theorems 732–737.

Exercise 10.5.5 Restrict the above semantics to e-formulas, and then for-
mulate a corresponding notion of entailment for actualism. Also, formulate
soundness and completeness theorems for 2-QKre, 2-QMe, 2-QBre, 2-QS4e,
2-QS4.2e, 2-QS4.3e, 2-QS5esystems. Finally, prove the resulting theorems.



Afterword

Modal logic is a field of research that has continued to develop with new results
and new areas of application. It is difficult if not impossible to cover in one book
all of the different results and applications in this field. We have focused in this
book on those parts of the subject that will enable students and researchers to
proceed directly to the different lines of current research. With this in mind, we
will briefly indicate some of these lines of development. We will restrict ourselves
to the level of sentential logic, but the reader should bear in mind that these
fields have been extended to second-order as well as first-order modal logics.

(1) Deontic logic: As noted in section 6.2, instead of reading �ϕ, �ϕ, and
¬�ϕ as ‘It is necessary that ϕ’, ‘It is possible that ϕ’ and ‘It is impossible that
ϕ’, we can read these formulas as ‘It is obligatory that ϕ’, ‘It is permitted that ϕ’
and ‘It is forbidden that ϕ’, respectively. Considered in this way we can view a
modal logic as a deontic logic in which we can investigate various theses of moral
or legal obligation, and similarly of moral or legal permission and prohibition.
In fact, the use of deontic logic in legal contexts is an active area of research
in the construction of expert systems for law in computer science and artificial
intelligence.

If one interprets possible worlds as permissible alternatives to a given world,
then the semantics of relational world systems developed in this book for modal
logic can be applied to deontic formal systems as well. For convenience, let us
write �ϕ and �ϕ as Oϕ and Pϕ, respectively, for ‘it ought to be that ϕ’ and
‘it is permitted that ϕ’. The system Kr under this new reading is then itself
a philosophically acceptable system of deontic logic. We can obtain additional
systems by extending Kr in different ways. One way, for example, is to replace
the modal thesis �ϕ → ϕ by the deontic principle Oϕ → Pϕ, i.e., the principle
that whatever ought to be the case is permitted to be the case, or, in action
terminology, we are permitted to do what we ought to do. This replacement
is necessary, of course, because the thesis Oϕ → ϕ is not itself philosophically
acceptable, and would be true only in an ideal world where, e.g., only the things
that ought to be the case are in fact the case.

On the other hand, adding the related thesis O(Oϕ → ϕ) to Kr, which
results in the system M∗ described in §6.3, might well be acceptable. This is
the thesis that it ought to be the case that what ought to be is in fact the case,
which might be construed as saying that an ideal world ought to be the case.
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Another possible deontic principle that can be added to Kr is the S4 thesis,
Oϕ → OOϕ, which in deontic logic says that something ought to be only if it
ought to be that it ought to be. This is the system Kr.1 described in §6.4. Note
that these last two theses taken together with Kr amount to the system S4∗
described in §6.5.

Another plausible principle for deontic logic is the thesis Pϕ → OPϕ, i.e.,
the thesis that only what ought to be permitted is in fact permitted. Adding
this thesis to M∗ results in the system S5∗ described in §6.9. The related thesis
POϕ → OPϕ, i.e., the thesis that whatever is permitted to be obligatory ought
to be permitted, also seems acceptable. Adding this thesis to Kr is the system
Kr.7 described in §6.11, and adding it to S4∗ results in the system S4.2∗ also
described in §6.11.

There are also many obligations (moral or otherwise) that are conditional;
that is, they are obligations of the form ‘if ϕ, then it ought to be the case that
ψ’. We can extend our list of primitive logical constants so that we can formally
represent such a dyadic operator. In fact, logistic systems and semantics for
these operators have been formulated.

The semantics of relational world systems can also be used to validate prin-
ciples that exclude possible conflicts of obligations and the possibility of self-
contradictory obligations. These semantical systems are also committed to the
classical interpretation of the conditional, of course, which might conflict with
the view of legal rules as defeasible. This kind of problem has been a reason
for developing alternative logistic systems, such as defeasible deontic logics or
paraconsistent deontic logics.1

(2) Temporal logic: As briefly noted in §6.2, we can also read �ϕ and �ϕ
as ‘It will always be the case that ϕ’ and ‘It will be the case that ϕ’, or as
‘It was always the case that ϕ’ and ‘It was the case that ϕ’, respectively. For
convenience, when �ϕ and �ϕ are given a future tense reading, we will use Gϕ
and Fϕ instead; and similarly we will use Hϕ and Pϕ when �ϕ and �ϕ are
given a past tense reading.

We can easily modify the semantics of relational world systems so as to
provide a semantics for formal systems containing both the past and future
tense operators. Possible worlds, as momentary states of the universe, can then
be indexed by the moments, or space-time points, of a local time (Eigenzeit), in
which case the accessibility relation would represent the “earlier-than” relation
of that local time. As might be expected, the temporal versions of Kr are
validated by such a semantics, whereas the main thesis of M , namely �ϕ → ϕ,
which becomes Gϕ → ϕ, or Hϕ → ϕ, is not temporally valid, because what will
always be the case in the future, or has always been the case in the past, need
not be the case in the present. The main thesis of S4, namely, GGϕ → Gϕ or
Hϕ → HHϕ, however, would be valid under either temporal interpretation, of
course, and so would the main thesis of S4.3, which expresses the connectedness
of the earlier-than relation of a local time.

1See, e.g., Aqvist 2002, Carmo and Jones 2002, Hilpinen 1971, 1993, Nute 1997, and
Lomuscio and Nute 2004.
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We do not have to interpret accessibility only with respect to the earlier-than
relation of a local time, however. We can, e.g., take the accessibility relation to
be the light-signal relation of a causally connected system of local times (world
lines), as in special relativity theory, in which case the relation will not be
connected and will instead be a partial ordering. The main thesis of S4.3 will
not be valid under that interpretation, but the resulting logic would contain at
least all of the theses of S4. Will it contain more? Well, if we also assume, as is
usual in special relativity, that the causal future (posterior cone of Minkowski
space-time) of any two moments t, t′ of two world lines, or local times, of a
causally connected system eventually intersect, i.e., that there is a moment w
of a local time such that both t and t′ can send a signal to w, then the thesis
FHϕ → HFϕ will also be validated, and the result would be the modal system
S4.2, i.e., the system S4 plus the thesis ��ϕ → ��ϕ described in §2.3.5 and
§6.11.2 These are not different conceptions of time, we should note, but just
different interpretations of the accessibility relation between space-time points.

Apart from the future and past tense operators, we can study many others
such as the ‘now’, ‘until’, ‘then’ and ‘since’ operators. Semantic and logistic
systems have been developed for them as well. These and the above semantics
together with the resulting logics have received wide attention from researchers
in computer science.3

(3) Epistemic and doxastic logic: The necessity operator � can also be used
to represent the epistemic and doxastic expressions ‘It is known that ϕ’ and ‘It
is believed that ϕ.’ Indeed, construction of a philosophically acceptable logistic
system for such an epistemic or doxastic interpretation of � has been the focus
of extensive research for a number of years, motivated in part by its possible
applications in computer science and artificial intelligence, as well as in episte-
mology as a philosophical discipline. The semantics of relational world systems
was one of the first approaches to be explored in this area; but possible worlds
are then understood as epistemic alternatives to a given world or state of af-
fairs. Within this approach, the formal systems S4, S4.2, and S5 have each been
considered as different ways to represent certain views in epistemology. These
systems are not adequate in the case of belief, however, because they contain
the axiom �ϕ → ϕ, i.e., the thesis that what is believed to be the case is in
fact the case. But, by omitting this axiom, we may still obtain a useful doxastic
logic.

One of the problems of the semantics of relational world systems is that
it validates logical omniscience. This is because knowledge and belief in such
a semantics are closed under logical consequence. Several alternative semantic
systems have been developed in the attempt to overcome this problem. One
approach, for example, is the introduction of an impossible world as one of the
alternatives in a relational world system.

Epistemic operators can be indexed by epistemic agents, as in ‘x knows
that ϕ’ and ‘x believes that ϕ’. Standard and nonstandard relational world

2See §15 of Cocchiarella 1984 for a discussion and formalization of these alternatives.
3See, e.g., Burgess 2002, Cocchiarella 1984, Finger et al. 2002, Gabbay et al. 2000, 1994.



256 AFTERWORD

systems have been formulated for these sorts of operators, so that for each
agent there is an associated accessibility relation. In the usual semantics of this
sort, however, the agents are inactive in the sense that they do not play any
role apart from being indices. The purpose of recent research is to have such
agents play a more active role. In this way we can make epistemic logic more
pertinent to epistemology, computer science, artificial intelligence, and cognitive
psychology. The idea is that some account of agents playing an active role in
knowledge acquisition and validation should be taken in such a logic.

One interesting branch of epistemic logic, incidentally, is provability logic.
If we interpret the necessity operator as ‘ϕ is provable in S’, where S is a
formal system of mathematics (such as Peano arithmetic), then we are able
to express many metamathematical statements. This sort of application could
help to illuminate many of the proof-theoretical limitations and capabilities of
mathematical formal systems.4

(4) Many-dimensional modal logic: In the case of temporal logic, we have
combined two sorts of temporal operators: the future tenses G and F opera-
tors with the past tense operators H and P . This procedure can be generalized
to other dimensions. We can combine deontic or epistemic dimensions with
temporal dimensions, for example, or epistemic dimensions with deontic dimen-
sions. Languages with these specific combinations are those CN-languages whose
propositional operators include O, G and H, or K, G and H, or both O and K.

If we add to the semantics of relational world systems an accessibility re-
lation for each dimension, we obtain semantic structures that are adequate for
many-dimensional languages. The different accessibility relations in these many-
dimensional structures are relations whose fields are subsets of one and the same
set of possible worlds. This sort of semantics can also be used for logics with
intensional operators that do not interact. When the possibility of interaction
is contemplated, an alternative semantics allowing for accessibility relations de-
fined on different sets of indices will be employed. So, for example, a logic with
tense and modal sentential operators and with principles in which such opera-
tors interact would require both a set of time points and a set of possible worlds,
and hence different accessibility relations for each one of these sets.5

We have described four of the most important fields of research in modal
logic. Some of the journals in which one can get a wider view of all of these
fields are the Journal of Philosophical Logic, Studia Logica, Logique et Analyse,
Nordic Journal of Philosophical Logic, and the Journal of Symbolic Logic.

4Some recent work in epistemic logic can be found in Boolos 1995, Gochet and Gribomont
2003, Hendricks et al. 2003, Hintikka 1988, Meyer 2002, Meyer et al. 2004, and Rescher 2005.

5See, e.g., Gabbay et al. 2003, Marx and Venema 1996, Thomason 1984.
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