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Preface

Characterizing the three-dimensional organization of chromosomes, as well 
as its mechanistic determinants, are central topics in contemporary science. 
Besides the curiosity towards fundamental questions such as how meters of 
DNA are folded inside every cell nucleus in our body, the quest for a compre-
hensive characterization of chromosome structure is animated by the urge to 
better understand gene expression. Indeed, many genes in mammalian genomes 
are controlled by regulatory DNA sequences such as transcriptional enhancers , 
which can be located at very large genomic distances from their target genes. 
Although the exact molecular details of their functional interactions are only 
partially understood, a large body of experimental evidence suggests that enhanc-
ers control transcription by physically contacting their target genes and looping 
out intervening DNA. Thus, it is crucial to understand how chromosomes are 
folded, which molecular mechanisms control their structure, and how chromo-
some architecture evolves in time, especially in large and complex genomes such 
as ours, where the vast majority of DNA sequence does not encode protein-cod-
ing genes. These questions are intrinsically quantitative, and lie at the interface 
between molecular biology and biophysics.

The last two decades have witnessed a revolution in our understanding of chro-
mosome structure, which has been fueled by the development and refinement of 
a class of experimental techniques known as chromosome conformation capture 
(3C) and its derivatives such as 4C, 5C and Hi-C. In 3C and its derivatives, bio-
chemical manipulation of fixed cell populations allows to measure population-
averaged contact probabilities  within chromosomes, which can be plotted in the 
form of two-dimensional matrices describing the contact propensities of the 
chromatin fiber. Several different 3C-based techniques have allowed spectacu-
lar discoveries, such as the existence of complex, highly non-random patterns of 
interactions across mammalian chromosomes that span several orders of mag-
nitude in genomic length and range from ‘ loops’  connecting DNA loci separated 
by few tens of kilobases, all the way up to huge, multi-megabase ‘ compartments’  
reflecting the association of transcribed and repressed parts of the genome, 
themselves subdivided in topologically associating domains (TADs) correspond-
ing to sub-megabase domains of preferential interactions of the chromatin fiber. 
Many of these structures have been validated using independent methods, and 
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notably using single-cell approaches that measure distances between genomic 
locations such as DNA fluorescence in situ hybridization (DNA FISH). However, 
the mechanisms that drive the formation of such a complex patter of interactions 
are still only poorly understood.

A fascinating aspect of chromosomal contact probabilities measured in 
3C-based experiments is that they obey the same power-law scaling rules that 
can be often encountered in statistical physics, and in its application to polymers. 
In fact, even since the advent of 3C, polymer physics has played a key role in inter-
preting the experimental data. Polymer models have been extensively used to test 
hypotheses concerning the mechanisms that give rise to the observed experi-
mental phenomenology, and for solving the inverse problem of determining the 
three-dimensional shape of the chromatin fiber that gives rise to the observed 
contact probabilities. This volume aims at giving an overview of the computa-
tional methods that have been developed to study chromosome structure, and 
have been motivated by the ever-growing amount of experimental data based on 
3C methods as well as single-cell techniques such as DNA FISH.

In Chapter 1, Job Dekker reviews the technical and conceptual bases of 3C 
and its derivative techniques such as 5C and Hi-C, which were developed in his 
laboratory. This ‘ experimental’  chapter is accessible to non-biologists and nicely 
describes how 3C-based methods laid the foundation for the current under-
standing of chromosome architecture, and eventually enabled to build and test 
physical models of chromosome folding.

The remaining chapters in this volume are divided into two groups. Chapters 
2–9 describe models that follow a ‘ bottom-up’  approach, where explicit hypoth-
eses regarding the biophysical mechanisms driving chromosomal interactions 
are made, and model predictions are compared with experiments in order to 
test the validity of the underlying hypotheses. Chapters 10–14 instead describe 
‘ top-down’  modeling approaches, which start from the experimental data to 
derive models describing various properties of chromosome folding. This parti-
tion is convenient, but obviously only partially accurate. The cell nucleus is such 
a complex system that describing chromosome organization and dynamics in 
terms of purely ab initio  models seems totally unrealistic. All current mechanis-
tic, bottom-up chromosome folding models are markedly inspired by available 
experimental data, and Hi-C data in particular. On the other hand, top-down 
modeling strategies contain nontrivial assumptions concerning the interpreta-
tion of 3C-based data in terms of physical distances and/or contact probabilities, 
which in turn depend on more or less implicit hypotheses concerning chromo-
some folding mechanisms.

The first nine chapters on bottom-up approaches emphasize and combine dif-
ferent physical ingredients in order to reproduce the experimental data (namely 
the presence of loops, TADs and compartments in Hi-C data), predict the out-
come of new experiments and learn the basic rules that control chromosomes in 
cell nuclei. In Chapter 2, Cé dric Vaillant and Daniel Jost describe a model based 
on direct interaction between genomic locations, which depend on local chroma-
tin modifications, which is able to accurately predict the outcome of Hi-C experi-
ments in Drosophila  based on the physics of block co-polymers. Mario Nicodemi 
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and coworkers (Chapter 3) focus instead on the role of diffusing molecules that 
mediate interactions between chromosomal loci, mimicking the effect of nuclear 
proteins that might promote direct looping across chromosomes. In Chapter 4, 
Leonid Mirny and colleagues discuss the highly influential loop-extrusion 
model, which incorporates hypotheses on how the DNA-binding proteins CTCF 
and cohesin promote the formation of out-of-equilibrium, ATP-driven interac-
tions across mammalian genomes. A combination of the diffusing-molecule and 
loop-extrusion models (in a version where the loop extruding factors diffuse in 
an ATP-independent manner) is discussed in Chapter 5 by Davide Marenduzzo 
and coworkers.

Irrespective of the mechanisms that drive loops and higher-order structures 
in a site-specific manner, a ubiquitous phenomenon that is likely to impact the 
three-dimensional folding of genomic DNA is torsional stress (known as super-
coiling) generated by active biological processes and notably transcription 
through RNA polymerases. In Chapter 6, Andrzej Stasiak and coworkers show 
that models describing supercoiling can predict the formation of chromosomal 
domains such as TADs, and can also be integrated with loop extrusion.

Chapters 7 and 8 focus on the temporal dynamics of chromosome folding. 
Starting from hypotheses on the physical mechanism controlling the structure of 
chromosomes, Andrea Papale and Angelo Rosa discuss the dynamics of a poly-
mer model subject to topological constraints (Chapter 7). A dynamic polymer 
model controlled by local interactions and physical confinement is described by 
Assaf Amitai and David Holcman in Chapter 8, along with its application to study 
the dynamics of chromosomal loci in budding yeast. Finally, Chapter 9 describes 
a polymer model designed to describe the dynamics of bacterial genomes, and 
how its predictions can be extended to higher organisms.

Chapters in the second part of the book describe ‘ data-driven’  models that 
use different strategies for interpreting experimental 3C-based data in terms 
of physical conformations of the chromatin fiber. Marco Di Stefano and Marc 
Marti-Renom review in Chapter 10 how to derive three-dimensional models of 
chromosomes by implementing spatial restraints derived from Hi-C data. Frank 
Alber and coworkers discuss in Chapter 11 how it is possible to integrate experi-
mental data generated using multiple experimental techniques to build models 
of chromosome structure.

We discuss in Chapter 12 a maximum-entropy approach allowing to extract 
the full equilibrium ensemble of conformations giving rise to 5C or Hi-C data 
at the TAD level, and to make predictions regarding statistical and dynamical 
properties of chromosome conformation, which can be validated experimen-
tally. A similar maximum-entropy approach developed by Peter Wolynes, José  
Onuchic and coworkers is described in Chapter 13, with a focus on the energy 
landscape of the model. Finally, Christian Micheletti and coworkers review in 
Chapter 14 a restraint-based approach allowing to extract the structure of entire 
chromosomes from Hi-C dataset.

The chapters in this volume give a comprehensive overview of the state-of-
the-art of computational research in the area of chromosome conformation and 
nuclear structure, and testify to how theoretical work is instrumental in reaching 
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a mechanistic, quantitative understanding of the basic rules that shape biology at 
the very heart of cellular processes. We are deeply grateful to all the authors who 
have invested their time and thought in making this collection possible.

Tiana Guido
Luca Giorgetti

Note to Readers : For access to figures in full color format, please visit the 
book’ s home page at the publisher’ s website: www.crcpress.com/9781138500792

http://www.crcpress.com/9781138500792
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1
Chromosome Folding: 
Contributions of Chromosome 
Conformation Capture and 
Polymer Physics

JOB DEKKER

1.1  INTRODUCTION

It is now hard to imagine that there was a time when there was a debate about the 
extent to which the genome is organized in any specific way inside the interphase 
cell nucleus or nucleoid. One reason for this debate is that in some experiments 
chromatin can appear highly structured, e.g., forming hierarchies of increasingly 
folded and thicker fibers (1), while in other experiments very little structure is 
detected in what appears to be an ocean of nucleosomes (2). Further, fluorescence 
in situ hybridization experiments to localize specific loci reveals tremendous  
cell-to-cell variability in sub-nuclear position and distance between any pair 
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2 Chromosome Folding 

of loci. However, these experiments also show some clear trends. For instance, 
chromosomes occupy their own territories (3) with some limited intermingling 
at their borders (4). The positions of chromosomes can vary greatly between indi-
vidual cells, but some chromosomes and chromosomal domains tend to be more 
often at the periphery of the nucleus while others are more often near the center 
of the nucleus (5, 6). Further, in general, euchromatic loci have been observed 
to associate with other euchromatic loci, and heterochromatic loci to interact 
with other heterochromatic loci (3, 7). Combined, these and many other find-
ings suggest that nuclear organization is variable and stochastic on the one hand, 
while also guided by some common principles and that this relates to whether 
chromatin is (transcriptionally) active or inactive (8). Further, chromosomes are 
obviously organized in some defined manner during mitosis when the classic 
rod-shaped structures are observed. However, even in that case, how chromatin 
is folded during mitosis (and meiosis) has been debated for many years.

Over the last two decades, there has been enormous progress in our under-
standing and appreciation of the spatial organization of genomes and how it 
mediates or modulates the many functions of chromosomes such as the regula-
tion of gene expression, the repair and replication of DNA, and chromosome con-
densation and transmission to daughter cells. This has been driven by improved 
imaging techniques, including super-resolution and live cell approaches but most 
particularly by two developments that, as outlined in the following, are signifi-
cantly interlinked: First, the development of molecular genomic approaches for 
mapping the structure of chromosomes, mainly based on chromosome confor-
mation capture (3C) technology; and, second, the development and application of 
insights from the field of polymer physics to the problem of chromosome folding.

The debate has now moved to mechanistic interpretations of structural fea-
tures observed with different technologies, their dynamical properties, how vari-
able these structures are between otherwise identical cells, and how chromosome 
architecture instructs or influences any of the genome’s functions. Here I outline 
the conception of 3C, it’s development over the last two decades, and how it has 
stimulated interactions between cell biologists, molecular biologists, (polymer) 
physicists, mathematicians, and computational biologists. This rich interdisci-
plinary interface is now producing remarkable new insights into the chromo-
some folding problem, discussed in this book.

1.2  CHROMOSOME CONFORMATION CAPTURE

The introduction of chromosome conformation capture in 2002 (9) has revolu-
tionized the study of the spatial organization of genomes by allowing mapping 
of three-dimensional chromosome structure at increasingly high resolution 
directly to sequence and at the scale of complete genomes. The key new con-
cept that motivated the subsequent development of 3C was the idea that when 
a matrix of many or all interaction frequencies between and among loci located 
along a chromosome could be measured, the three-dimensional organization of 
that chromosome could be inferred. 3C is used to detect the frequency of interac-
tion of any pair of genomic loci, and when combined with deep DNA sequencing 
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can generate genome-wide all-by-all interaction frequency matrices (Figure 1.1). 
Such matrices have now been shown to indeed allow the derivation of models 
of the spatial organization of chromosomes and even help gain insights into the 
dynamics and mechanisms of their folding.

In 3C cells are fixed with formaldehyde (Figure 1.1). This essentially freezes 
the spatial arrangement of chromosomes in place. The spatial proximity between 
loci is then determined by fragmenting the chromatin with a restriction enzyme, 
while the chromatin remains frozen in place. Spatially proximal DNA ends are 
subsequently re-ligated and DNA is purified. This assay produces a large collec-
tion of unique DNA ligation products that each represents a spatial co-location 
event in one of the cells in the population. Given that DNA molecules are easily 
identified and characterized by PCR or DNA sequencing 3C reduces the difficult 
problem of determining relative spatial positions of loci inside cells to the much 
simpler process of DNA sequence analysis.

3C combines a number of molecular steps that had previously been used 
separately, e.g., proximity ligation had been used for many years to detect pro-
tein-induced bending and looping of DNA in vitro and in vivo (10–12). The inno-
vation of 3C lies in the fact that it was designed to be unbiased and able to detect 
any spatial proximity, even when not mediated by a specific factor, so that it can 
detect all the spatial proximities irrespective of the specific mechanisms that 
brought the loci near each other. The concept on which it is based is also innova-
tive, asserting that dense matrices of interaction frequencies reveal the principles 
of chromosome folding.

Initially, PCR was used to read and quantify specific ligation product forma-
tion events, e.g., to determine whether specific loci would interact with each 
other more frequently than expected. In the original 3C paper, previously known 
specific interactions between yeast centromeres, between telomeres, and between 

Figure 1.1 Schematic outline of the key steps of 3C-based assays. Left: 
Chromatin is crosslinked, and then digested and religated. (adapted from 
(23)). Ligation products are then sequenced. 3C variants such as 4C, 5C, and 
Capture C differ in how ligation products are detected, or include steps to 
label digested ends (Hi-C), or include a step to selectively purify fragments 
bound by specific proteins (ChIA-PET, HiChIP). Right: 3C-based assays are 
used to obtain matrices of interaction frequencies that can be depicted as 
heatmaps. This example shows an interaction matrix for human chromosome 
21 in HeLa S3 cells. The color intensity reflects relative interaction frequencies.
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homologous chromosomes could be detected, thereby validating the approach 
(9). Further, the first (albeit sparse) matrix of interaction frequencies for a com-
plete chromosome was presented and this matrix was used, through polymer 
physics theory and mathematical optimization to infer the population average 
folding of this chromosome. Of note, this very early work already employed poly-
mer models for analysis of 3C data. Polymer theory and model building to inter-
pret matrices of chromatin interaction frequencies has become a field of intense 
study and is now contributing to fundamental new insights into how chromo-
somes fold, as is outlined throughout the chapters in this book.

3C was rapidly adopted and in several landmark publications it helped dem-
onstrate that enhancers could loop to their target genes, e.g., in the beta-globin 
and alpha-globin loci, in a tissue-specific manner and it was found that such 
specific looping interactions depend on specific transcription factors (13–19). 
Although such locus-specific studies to map interactions between and among 
specific elements in loci of interest continue to this day, further innovations in 
3C technology now enable genome-wide and unbiased mapping of chromatin 
interaction matrices.

1.3  3C VARIANTS TO OBTAIN GENOME-SCALE AND 
HIGH-RESOLUTION CHROMATIN INTERACTION 
MATRICES

The size of genomes, and thus the number of possible chromatin interactions, 
makes 3C analysis using PCR impractical. Since the initial development of 3C, 
many experimental adaptations have been introduced that allow the mapping 
of chromatin interactions at a genome-wide scale, with increased resolution, in 
cell populations and in single cells. All these variants follow the basic 3C proto-
col of crosslinking chromatin, DNA fragmentation and relegation of DNA ends 
that are in close spatial proximity. They differ in the method for ligation product 
detection.

The first two 3C variants, 4C (20, 21) and 5C (22) were published in 2006. In 
4C, inverse PCR is used to amplify all loci that interact with a single locus of 
interest. The amplified DNA is then analyzed by deep sequencing. 4C thus allows 
quantifying the genome-wide interaction profile of a specific genomic element, 
e.g., a gene promoter. Even though 4C does not produce a matrix of interaction 
frequencies and is, therefore, less suited for inference of chromosome folding, 
4C profiles can be analyzed, e.g., by polymer models or statistical approaches, to 
determine whether such a promoter interacts significantly more frequently than 
expected with any other specific DNA elements, e.g., distal enhancers.

5C employs large sets of primers, one designed for each end of a restriction 
fragment to detect dense matrices of interaction frequencies between all loci 
throughout chromosomal domains that can be up to several Mb. 5C relies on 
highly multiplexed ligation-mediated amplification (LMA) to detect 3C liga-
tion products. Pairs of 5C primers are designed to anneal immediately adjacent 
to each other across 3C ligation junctions. Annealed 5C primers can then be 
ligated and PCR amplified. Amplified DNA is analyzed by deep sequencing.  



1.3 3C Variants to Obtain Genome-Scale

The advantage of 5C and LMA is that it allows multiplexing with thousands of prim-
ers so that matrices of all pair-wise interactions (up to several million) throughout 
large chromosomal domains can be detected and quantified in one reaction.

4C and 5C do not allow detection of all pair-wise interactions throughout 
genomes. The Hi-C variant solves this limitation by enabling unbiased detection 
of any pair-wise interaction (23). The main adaption in Hi-C is that DNA ends 
formed after chromatin fragmentation are labeled with biotinylated nucleotides 
prior to their relegation. This allows specific purification of DNA ligation junc-
tions using streptavidin-coated beads. DNA is then directly sequenced. Given 
that genome-wide interaction maps are extremely large (1014 possible pairwise 
interactions for the human genome digested in 250 base pair fragments) Hi-C 
requires extremely deep sequencing, and even the most deeply sequenced datas-
ets require binning interaction matrices at 1–10 Kb. Currently, Hi-C interaction 
maps are produced that are based on billions of chromatin interactions (24, 25) and 
these reveal a richness of features such as chromosomal domains and chroma-
tin loops (see section “Insights Obtained From Chromosome Interaction Data” 
below).

Hi-C maps are extraordinarily powerful for obtaining insights into the folding 
of complete genomes. Hi-C data has already led to key discoveries related to the 
principles and mechanisms of chromosome folding, as summarized in the next 
section. However, even extremely deeply sequenced Hi-C datasets still do not 
fully capture the complete quantitative interaction landscape of chromosomes, 
and are also very costly to generate. Therefore, there continues to be a need for 
approaches that detect interactions only for targeted regions or loci, such as 4C 
and 5C. For instance, a complete 5C interaction matrix for a 3 Mb domain can 
reveal detailed patterns of interactions at 2–4 Kb resolution when sequenced at 
a depth of about 50–100 million read pairs. To obtain a similar coverage for the 
same domain by Hi-C one would need many hundreds of billions of read pairs, 
which is currently not attainable for most laboratories.

For this reason, the field has witnessed the further development of targeted 
approaches for chromatin interaction analysis for loci of interest by analyzing 
interactions for only a specific subset of all possible interactions and thereby 
allowing much more extensive sequencing coverage for the selected set of 
genomic loci. First, ChIA-PET (26) and HiChIP (27) rely on selective purification 
of chromatin that is bound by a protein of interest. These methods employ anti-
bodies against proteins of interest, e.g., against RNA polymerase II or modified 
histone tails to purify only those chromatin fragments bound by those proteins, 
either directly after chromatin fragmentation (ChIA-PET) or directly after DNA 
ligation (HiChIP). In this way, one can analyze all genome-wide interactions 
for each of the active promoters or regulatory elements in the genome in a cost-
effective way and at a resolution of single restriction fragments, which is typically 
not attained with Hi-C. A drawback is that ChIA-PET and HiChIP datasets are 
difficult to analyze because they are biased by the level of binding of the factor of 
interest and thus most frequently capture interactions between two sites bound 
by this factor, and estimating expected background levels for such interactions 
is complicated. The appropriate normalizing of this bias has not entirely been 
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achieved, but several methods have been developed to start to address this major 
complication (28, 29).

More recently hybrid capture approaches have been very successfully used to 
selectively purify ligation products of interest using pools of biotinylated oligo’s 
designed to anneal to loci of interest (30, 31). For instance, a pool of primers 
to selectively purify all promoter-containing restriction fragments can be used 
to enrich 3C or Hi-C ligation product libraries for those that are composed of 
a promoter-containing fragment and a second unknown interacting fragment. 
This DNA is then directly sequenced. In effect, this produces 4C-like genome-
wide interaction profiles for each fragment (e.g., all promoters in the genome) for 
which capture oligos are designed. Such “Capture C” approaches have proven to 
be very powerful, allowing very high-resolution interaction mapping (at a single 
fragment level). Importantly, Capture C datasets do not suffer from the protein 
binding biases that affect ChIA-PET and HiChIP data, although these datasets 
also need to be corrected for other biases in interaction detection, like all other 
3C-based methods (32, 33).

Finally, there are now several protocols for single-cell analysis of chromosome 
conformation (34–36). Although interaction matrices derived from single cells 
are rather sparse, they reveal striking variability in patterns of interactions that 
point to both dynamic and stochastic processes driving assembly of chromosome 
structures (8).

There is now a large suite of 3C-based methods available and all have unique 
strengths and weaknesses, and their own specific applications. These methods 
have been extensively, and in much more detail than here, described elsewhere 
(e.g., (37)). The next section discusses some of the key insights into chromosome 
folding obtained with this suite of technologies.

1.4  INSIGHTS OBTAINED FROM CHROMOSOME 
INTERACTION DATA

Chromosome conformation capture is now widely used to probe the spatial 
organization of chromosomes in organisms ranging from bacteria to mammals 
and plants. Most work has been done on mouse and human chromosomes, and 
insights from these studies are summarized here. It is important to emphasize 
that 3C-based data reveals only one aspect of chromosome organization, e.g., it 
does not report on dynamics directly, and orthogonal data, obtained with (live 
cell) imaging, are essential for a full understanding of chromosome folding, for 
interpretation of chromatin interaction data, and for informing model build-
ing (see the section on “Polymer Models for Chromosome Folding”). Imaging 
and 3C-based technologies are complementary and need to be combined for any 
meaningful generation and testing of models of chromosome conformation and 
its dynamics.

Intra-chromosomal interactions tend to be much more frequent than inter-
chromosomal interactions, even for loci separated by hundreds of Mb (23). 
This is consistent with the observation by microscopy that chromosomes each 
occupy their own territory (3). At the periphery of these territories adjacent 
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chromosomes do mingle somewhat (4). Chromosomes themselves are further 
subdivided into two main types of “compartments”: A and B compartments that 
contain active and open or silent and closed chromatin respectively (20, 23).  
A and B domains can be up to several Mb in size and occur in alternating 
fashion along the linear genome. In three-dimensional, space A domains asso-
ciate with other A domains while B domains cluster with B domains to form 
spatial A and B compartments. This spatial separation of active and inactive 
domain corresponds to well-known (electron) microscopy observations of such 
organization.

At a finer scale, chromosomes form topologically associating domains (TADs) 
that tend to be up to several hundred Kb (38, 39). The boundaries of many of 
these domains contain sites bound by the CTCF protein, and these boundaries 
often loop to each other as evidenced by the appearance of elevated chromatin 
interactions between these loci (24). Chromatin interactions are mildly enriched 
within TADs, while interactions between loci located in two adjacent domains 
are reduced. These domains have been implicated in long-range gene regulation 
as they correlate with the target range of enhancers (40, 41). Much research effort 
is now focused on the mechanisms by which these domains form, as also men-
tioned below.

Finally, specific looping interactions have been detected between promoters 
and enhancers, between enhancers and other enhancers, between promoters and 
promoters, and between CTCF-bound sites (30, 31, 42, 43). Interactions between 
CTCF sites are readily detected in Hi-C datasets (24), but interactions involving 
promoters and enhancers tend to be much weaker and are more easily detected 
with any of the targeted 3C-based approaches that allow deeper sequencing of 
the targeted loci.

Although most cell types analyzed by Hi-C display compartments, TADs, and 
loops, these can differ in their genomic location and strength. For instance, the 
locations of A and B compartments is highly cell type–specific, consistent with 
different parts of the genome being in an active or silent state. Many loops, espe-
cially promoter–enhancer interactions, are also cell type–specific while CTCF–
CTCF loops and positions vary less (42). These observations strongly indicate 
that the folding of chromosomes is related and possibly instructive to the regula-
tion of gene expression.

Any of these structural features are dynamic during the cell cycle (Figure 1.2). 
As cells enter mitosis loops, TADs and A and B compartments all rapidly dis-
appear (44, 45). Hi-C interaction matrices for late prometaphase cells, when 
chromosomes are fully compacted and condensed, reveal a locus-independent 
structure: the interaction profile for each locus is very similar to all others and 
displays a general inverse relationship between the genomic distance between 
pairs of loci and their interaction frequency. On top of that, there is an elevated 
interaction frequency for loci separated around 10–12 Mb. Polymer simulations 
and model building (Figure 1.2) has shown that such interaction frequency 
matrix is consistent with the chromosome folding as a series of nested loops 
that rotate around a central helical axis to form the classical rod-shaped mitotic 
chromosome (45).
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Further technological innovations and new mechanistic polymer models will 
undoubtedly reveal additional structural features of chromosomes and their 
dynamics.

1.5  DYNAMICS AND CELL-TO-CELL VARIATION IN 
CHROMATIN INTERACTIONS

Many chromatin interaction analyses determine interaction frequencies in large 
cell populations. The interaction frequency, therefore, can be seen as a proxy for 
the number of cells in which two loci are in close spatial proximity. This has 
important consequences for analyzing and interpreting 3C-based data. First, the 
data typically shows that each locus has many other loci it interacts with, but 
this does not necessarily indicate that all these interactions occur at the same 
time in the same cell. In fact, consistent with direct imaging in single cells, and 
more recent single-cell Hi-C data (34–36), it is clear that chromosome conforma-
tion, and hence the matrix of chromatin interactions, is highly variable between 
cells in the population. For instance, although interaction data from populations 
of cells shows that all A domains have elevated interaction frequencies with all 
other A domains, at the single cell level a given domain will interact with only a 
small set of other domains. Similarly, the frequency of looping interactions, e.g., 
between two sites bound by CTCF, suggest that even those specific contacts occur 
in only a fraction of cells at any given moment in time (46).

Figure 1.2 Chromatin interaction maps for chromosome 21 in HeLa S3 cells 
in interphase (left panel) and nocodazole-arrested mitotic cells (from (44)). 
The interaction maps display plaid patterns that represent A and B compart-
mentalization (23). In mitosis (middle panel), TADs and compartmentaliza-
tion are lost and instead a general inverse relationship between interaction 
frequency and genomic distance is observed, with a slight increase in interac-
tions between loci separated by ~10 Mb (44). Polymer simulations showed 
that chromatin interaction data are consistent with a structure in which the 
mitotic chromosome is organized as a helically arranged series of nested loops 
that emanate from a central spiraling axis. The model (right panel) shows the 
chromatin in gray, the spiraling axis in red, and a few individual loops rotating 
around the axis in different colors of blue and green (45).
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These observations raise many new questions related to the dynamics of loci 
in single cells: Are chromosomes highly dynamic in their folding, so that given 
enough time all interactions detected in the population will at some moment in 
time occur in each single cell (ergodic), or is the genome sufficiently constrained 
so that each cell cannot attain all possible conformations in the lifetime of a cell? 
Knowing the answers to such questions will be critical for a full comprehen-
sion and appropriate interpretation of chromatin interaction matrices. Polymer 
physics and polymer simulations have proven extremely powerful for analysis of 
chromatin interaction matrices.

1.6  POLYMER MODELS FOR CHROMOSOME FOLDING

Chromosomes are long polymers, and ideas and concepts from polymer physics 
have proven crucial for interpreting chromatin interaction data obtained with 
3C-based assays in at least two major ways. First, the theory of polymer physics 
makes predictions about the probabilities of interaction between two loci depen-
dent on their position along the length of a polymer. For instance, whether a 
chromosome is a random coil, or a more orderly packed structure will lead to 
predictable quantitative differences in how interaction frequency between loci 
will depend on the genomic distance between them (47). As a result chromatin 
interaction data will inform on the state of chromatin folding. Further, the pres-
ence of loops between specific sites puts additional constraints on the conforma-
tion of the entire polymeric chromatin fiber that will have predictable effects on 
all chromatin interactions along the fiber, including between sites not directly 
involved in the looping interactions (e.g., (48, 49).

Second, interpretation of 3C-based data through polymer simulations has led to 
major insights into the conformation of chromosomes at different cell cycle stages 
and in single cells. In such simulations, chromosomes are folded according to spe-
cific models, allowed to equilibrate and then a 3C or Hi-C experiment is simu-
lated on an ensemble of such conformations to predict the chromatin interaction 
matrix. Quantitative comparison to experimental chromatin interaction data then 
allows testing whether or not the folding model accurately predicts experimental 
data. Such “bottom-up” modeling requires specific ideas about how a chromosome 
could fold, based on independent data such as observations from imaging or from 
theoretical considerations. Polymer simulations have been successfully used to test 
models for domain and loop formation (46, 50), A and B compartmentalization (51, 
52), and folding of mitotic chromosomes (Figure 1.2) (44, 45, 53).

Other approaches aim to directly use chromatin interaction frequencies to 
infer the folding of chromosomes (“top-down” approaches). In such approaches, 
interaction frequencies can be used to estimate the average distance between 
pairs of loci, but this will depend on assumptions related to the polymer state 
of the chromatin (54, 55). This approach will produce a set of very similar struc-
tures that represent an average conformation, but these do not fully capture the 
range of conformation present throughout the cell population. Other approaches 
build ensembles of conformations that, combined, reproduce the contact fre-
quencies detected by experimental approaches (56). All these approaches add 
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valuable insights into chromosome conformation and its dynamics and have 
become important analyses for interpreting chromatin interaction datasets. 
These approaches are discussed in detail throughout this book.

1.7  MECHANISMS OF CHROMOSOME FOLDING AND 
NUCLEAR ORGANIZATION

During the last several years there has been a major shift from descriptive 
analysis of chromosome conformation to testing mechanistic models for how 
chromosomes fold. Two mechanisms for the formation of different aspects of 
chromosome conformation are now intensely studied. First, it has been pro-
posed that protein complexes such as cohesin and condensin can bind DNA and 
extrude loops to compact chromatin fibers (46, 50, 57–59). When such complexes 
bind specific sites and then extrude a loop this will produce characteristic pat-
terns in chromatin interaction matrices that have been detected, e.g.,  in bacte-
ria (60). A  loop extrusion mechanism has been proposed as a means to form 
dense arrays of loops that define mitotic chromosomes (Figure 1.2) (44, 57, 
61–63). Recent polymer simulations show that dynamic formation of such loops 
indeed reproduces experimental 5C and Hi-C data for mitotic chromosomes. 
Interestingly, a similar loop extrusion mechanism can lead to the formation of 
TADs (46, 50). Again, polymer simulations have shown that dynamic loop extru-
sion, most likely by the cohesin complex, that is blocked at CTCF sites can lead 
to TADs with enriched interactions within them, sharp boundaries at the sites 
bound by CTCF and looping interactions between the TAD boundaries. Thus, 
a single loop extrusion mechanism can lead to mitotic chromosome formation 
as well as interphase TAD and CTCF loops. Many studies are now focused on 
understanding the molecular mechanisms of this process and the factors that 
determine the loading and dissociation of cohesin and condensins.

A second, and distinct mechanism for chromosome folding has been pro-
posed that can explain the formation of A and B compartments, and the general 
association of segments of chromatin depending on their active or inactive state. 
A process of phase separation, whereby loci of similar state attract each other 
through multiple weak interactions, can result in a clustering of chromatin loci 
with similar states (51, 52). This can explain the formation of A and B compart-
ments. Again, polymer simulations show that such attractions can reproduce key 
features of chromatin interaction matrices. The molecular mechanism, and mol-
ecules involved in such attractions are not well understood, but some insights 
have recently been obtained. For instance, the HP1 protein that binds methylated 
histone tails enriched in heterochromatin can mediate clustering of heterochro-
matic domains (64, 65).

Loop extrusion and phase separation appear to be distinct mechanisms that 
act independently and sometimes in opposition: Conditions that disrupt loop 
extrusion and TAD formation do not affect A and B compartmentalization (66). 
Loop extrusion can sometimes counteract phase separation by actively mixing 
A and B-type domains (67). Although these two mechanisms have significant 
explanatory power, it is very likely that there are additional mechanisms at play.
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1.8  FUTURE PERSPECTIVE

The field of chromosome conformation analysis is now experiencing a very 
exciting time of rapid gains in our knowledge of how genomes are organized in 
space and time and how this relates to regulation of genome function. A com-
bination of high-resolution chromatin interaction maps, super-resolution and 
live cell imaging, and polymer simulations to test specific models are now lead-
ing to mechanistic insights into the mechanisms and dynamics of chromosome 
folding. Together, these approaches start to unveil how cell-to-cell variation and 
temporal dynamics in folding is achieved and how this relates to gene regulation, 
DNA replication, and chromosome segregation.

One key aspect of this field is that it requires a highly interdisciplinary 
approach, combining imaging, chromatin interaction mapping, and compu-
tational and biophysical methods for model building and testing. The recently 
established 4D Nucleome Network is an example of a highly coordinated effort 
to bring together scientists from all these disciplines to focus on the chromosome 
folding problem (68).

Major challenges for the coming years are to identify the molecular machines, 
and their modes of action, and to identify mechanisms by which chromosome 
conformation modulates, facilitates, and/or instructs genome regulation including 
gene expression, DNA replication, and chromosome condensation and segregation.
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2.1  INTRODUCTION

Proper 3D organization and dynamics play essential roles in the operation of 
many biological processes and are involved in functions as varied as enzymatic 
activity by well-folded proteins, cell motility generated by architected dynami-
cal cytoskeletons or organ formation by spatially and temporally controlled 
gene expressions. Although acting on various scales ranging from molecules to 
organisms, the regulation of such structural and dynamical properties mainly 
originates from molecular mechanisms. How such microscopic actions are 
coupled to collectively generate large-scale functions is a long-standing, open, 
question.

In this context, understanding how the genome self-organizes inside the cell 
nucleus is one of the major challenges faced in recent years by biology. Thanks 
to the development of new experimental techniques, especially chromosome 
conformation capture (Hi-C) technologies [3], supported by parallel confocal 
and superresolution microscopy studies [4], major progress has been realized 
in our understanding of the hierarchical chromosome organization: from the 
local packaging of DNA into a polymer-like chromatin fiber to the large-scale 
compartmentalization of transcriptionally active or inactive genomic regions 
(Figure  2.1). Briefly (see Chapter 1 of the present book for a detailed review), 
a chromosome is locally partitioned into conserved consecutive 200 nm-sized 
contact domains, the so-called topologically associating domains (TADs), rep-
resenting the partial folding of kilobasepair (kbp) to megabasepair (Mbp) long 
genomic regions [5–7]. TADs are defined as highly self-contacting portions of the 
genome: a sequence inside a TAD has a higher probability to contact sequences 
inside the same TAD than sequences in neighboring TADs at the same linear 
distance along the genome, thereby segmenting chromosomes into 3D domains. 
At the Mbp level, contact maps display a cell-type-specific checkerboard pattern: 
parts of the genome that share the same transcriptional activity tend to colo-
calize forming nuclear compartments [1, 7–9], quantifying the older qualitative 
observations of nuclear organization made by electron microscopy [10]. Inactive 
regions, the so-called heterochromatin, are preferentially localized at the nuclear 
periphery while active regions, the so-called euchromatin, occupy more central 
positions. Reversely, genomic regions that preferentially localize close to the 
nuclear membrane, the so-called lamina-associated domains (LADs), are mainly 
heterochromatic [11–13]. At the nuclear level, Hi-C maps [8] confirm that chro-
mosomes occupy distinct spatial territory and do not mix [14, 15]. While the vast 
majority of Hi-C data is obtained at the population level, very recent single-cell 
Hi-C experiments [16–19], complemented by superresolution microscopy [7, 20, 
21], have highlighted the strong stochasticity of chromosome folding suggesting 
that chromatin is highly dynamical and plastic along the cell cycle and during 
differentiation. However, direct in vivo characterization of chromatin motion is 
still challenging [22]. Only a few studies have successfully tracked fluorescently 
labeled loci during relatively long periods of time up to a few minutes [23–28]. 
They complete the picture of a fluctuating organization whose dynamics is 
strongly dependent on transcriptional activity.
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An increasing amount of experimental evidence suggests that genome 3D 
organization and dynamics adapt to nuclear functions and may play a deci-
sive role in gene regulation and disease [29–31]. Most characterized promoter–
enhancer interactions occur within the same TAD [32, 33], suggesting that 
TADs allow insulation of promoters from enhancers located in neighboring 
TADs. Disruption of a boundary between two consecutive TADs may cause 
gene misregulation leading to malformations or cancers [34, 35]. Current exper-
imental knowledge has suggested several molecular mechanisms involved in 
the local and higher-order organization of the chromosome [36, 37]. Statistical 
positioning inside the nucleus and formation of active/inactive compartments 

Figure 2.1 Chromosome hierarchical folding. (Left) Scheme of the multi-
scale organization of chromosome during interphase. (Right) Hi-C maps for 
GM12878 cell line at different resolutions [1] plotted using Hi-C JuiceBox [2].
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are putatively driven by chromatin-binding proteins that are known to bind at 
specific positions along the genome and that have the capacity to self-interact 
[38–41] or to interact with membrane proteins [42]. TAD formation is partly 
associated with the translocation along the genome of protein complexes [43–45], 
cohesin, or condensin rings, that extrude chromatin loops and stop at spe-
cific, properly oriented sites where a known transcription factor, the insulator  
CTCF, binds [1, 46].

However, investigating experimentally how such molecular mechanisms 
precisely act and cooperate together to control the dynamics and 3D multiscale 
folding of the genome is very challenging and is limited by the experimental dif-
ficulty to capture the dynamical stochastic evolution of chromosomes. In the 
recent years, to partly circumvent such limitations, physical models have been 
instrumental in simulating chromosome folding and in testing different molecu-
lar mechanisms (see [36, 47–50] for reviews and other chapters in the present 
book). In this chapter, we review our current efforts to understand the functional 
coupling between the 3D dynamical organization of chromatin and the 1D seg-
mentation of genome into active and inactive domains using polymer and statis-
tical physics modeling.

2.2  3D CHROMATIN ORGANIZATION AND 
EPIGENOMICS

All the cells of a multi-cellular organism contain the same genetic information 
but may have different shapes, physiologies, metabolisms, or functions depend-
ing on the cell types, tissues, environments, or differentiation stages. These dif-
ferences are mainly due to the context-dependent differential regulation of gene 
expression. Gene expression is regulated at various levels from the binding of 
transcription factors to the post-translational modifications of the synthesized 
proteins. Among these different layers of regulation, the modulation of accessi-
bility and specificity of regulators to their cognate DNA sites plays a central role. 
Locally, the chromatin is characterized by many features like nucleosome posi-
tioning, biochemical modifications of DNA, and histones tails or the insertion of 
histone variants, that contribute significantly to controlling such modulation. In 
the past decades, advances in sequencing technologies have allowed the detailed 
characterization of the genomic profiles of various histone modifications or 
chromatin-binding proteins, shedding light on the association between these so-
called epigenomic marks and gene regulation. In many eukaryotes, from yeast to 
human [51–54], statistical analyses of these patterns along the genome showed 
that chromosomes are linearly partitioned into 1D cell-type-specific epigenomic 
domains that extend from few kilobases to megabases and are characterized by 
the local enrichment of specific epigenomic marks. While based on dozens of 
profiles, these studies have identified only a small number of main chromatin 
types for the epigenomic domains (typically four to ten, depending on the reso-
lution): (1) euchromatic states, containing constitutively expressed or activated 
genes and enhancers; heterochromatic states covering (2) constitutive hetero-
chromatin associated with HP1 proteins and H3K9me3 marks and mainly found 
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in repetitive sequences such as (peri)centromeres, (sub)telomeres, or transpos-
able elements; (3) facultative heterochromatin associated with Polycomb (PcG) 
complexes and H3K27me3 mark tagging developmentally regulated silent genes; 
and (4) a less epigenomically defined repressive state, the so-called black or null 
or quiescent chromatin, that encompasses gene desert, or genes only expressed in 
few tissues. Typically, in higher eukaryotes, ∼20–30% of mappable genomic loci 
(excluding telomeres and centromeres) correspond to active states, ∼5–10% HP1-
like states, ∼10–20% PcG-like states, and ∼40–50% quiescent states, the exact 
repartition depends on organisms and cell types [55].

From the early studies of nuclear organization made by conventional or elec-
tron microscopy [10], it was clear that the active and inactive parts of the genome 
phase-segregate into (micro) compartments, with heterochromatin localizing 
mainly at the nuclear periphery and around nucleoli and euchromatin being 
more internal. Recent developments in Hi-C and superresolution techniques 
have allowed us to quantify the relation between spatial organization and epig-
enomics in more detail [1]. At large-scale, for a given cell-type, statistical analyses 
of specific checkerboard patterns observed in Hi-C maps (Figure 2.1) showed 
that genomic loci can be clustered into two groups, the so-called A and B com-
partments [8, 56]: the contact frequency from sequences of the same group (A vs. 
A or B vs. B) is stronger (∼2 fold) than from sequences in different ones (A vs. B).  
Genomic regions corresponding to A compartment are gene-rich and are associ-
ated with histone marks specific to active genes. In contrast, loci belonging to 
B compartment harbor a weak gene density and contain more repressed his-
tone modifications. These compartments can be subdivided into subgroups that 
exhibit peculiar contact patterns and that correspond to different epigenomic 
states [1]. Reciprocally, epigenomic domains (as defined above) contact domains 
of the same chromatin type more frequently than domains with different states 
[57]. Recent single-cell Hi-C experiments [17–19] and high-resolution imag-
ing of multiple probes on the same chromosome [20, 21] have confirmed that 
loci sharing the same epigenomic content tend to colocalize inside the nucleus. 
Altogether, these observations demonstrate the large-scale clustering of func-
tionally similar genomic loci.

At the sub-Mbp scale, TADs are also significantly correlated with epigenomic 
domains [51, 55, 58] (Figure 2.2). In Drosophila, positioning of TADs along the 
genome displays strong similarity with the locations of epigenomic domains 
[55, 58, 59]: loci within the same TAD tend to have the same chromatin state 
(Figure  2.2, left), boundaries between TADs are rich in active marks, and the 
large-scale checkerboard pattern emerges from long-range interactions between 
TADs of the same chromatin type [56]. Recent superresolution microscopy 
of individual TADs showed that the epigenomic state also impacts the local 
3D chromatin compaction: active TADs being less compact than black/quies-
cent and PcG-associated TADs [7, 21], confirming the observations that more 
Hi-C contacts are observed in inactive domains [60]. All this suggests that, in 
Drosophila, TAD formation is strongly associated with epigenomic domains. In 
mammals, TADs are also significantly associated with the local chromatin state 
[51, 55] even if the correspondence between TAD and epigenomic segmentations 
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is less clear (Figure 2.2 right). TAD boundaries are mainly characterized by the 
binding of insulator proteins like CTCF and do not necessarily reflect the fron-
tiers between different epigenomic domains. Recent experimental and modeling 
works suggest that, in mammals, TADs might emerge from the coupled action of 
CTCF-cohesin-mediated mechanism (see the presentation of the loop extrusion 
model in [43, 44] and in Chapter 4 of the present book) and of epigenomically 
associated mechanism as in Drosophila [61, 62].

Altogether, these results highlight the strong interplay between the 1D seg-
mentation of the genome into epigenomic domains, the so-called epigenome, 
and the 3D compartmentalization of chromosomes into contact domains, the 
so-called “contactome”. This crosstalk is now well documented and has inspired 
numerous statistical works inferring various 3D organization features like TAD 
or compartments from epigenomic data [58, 63, 64] or using the 3D contact infor-
mation to better understand various aspects of gene regulation [65]. However, the 
mechanistic foundations of such coupling are still unclear. In particular, to what 
extent epigenomically associated mechanisms drive chromosome organization? 
What is the role of this non-random 3D organization in the establishment and 
maintenance of stable epigenomic information?

In the next section, we will present and discuss how we addressed the former 
question using polymer physics in the context of chromatin folding in Drosophila 
(Section 2.3) and how we formalized the latter question with theoretical model-
ing (Section 2.4).

Figure 2.2 Coupling between epigenome and contactome. (Left) Hi-C map of 
a 2 Mbp-long genomic region of Drosophila chromosome arm 3R, obtained 
from late embryos [56]. On top, we plot the local epigenomic state (see color 
legend) as obtained by Fillion et al [52] for the embryonic cell line Kc167 (for 
simplicity we merged the two originally defined active states into one single 
active state). (Right) Hi-C map for a 5 Mbp-long genomic region of human 
chromosome 7 obtained for the GM12878 cell line [1]. Epigenomic states were 
taken from Ho et al [51]. For simplicity, we clustered the 16 originally defined 
states into the 4 standard chromatin types.
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2.3  EPIGENOME-DRIVEN PHASE SEPARATION OF 
CHROMATIN

The observed correlations between epigenome and contactome suggest the exis-
tence of epigenomic-specific mechanisms playing major roles in chromatin fold-
ing. Actually, there is an increasing amount of experimental evidences showing 
that chromatin-binding proteins associated with specific epigenomic domains 
possess the molecular capacity to interact or oligomerize, hence promoting 
directly or effectively physical bridging between genomic loci of the same chro-
matin type. Indeed, heterochromatin-associated factors like PcG or HP1 display 
structural domains (respectively, sterile alpha motif (SAM) domains or chro-
modomains (CD)) that may favor multimerization [39, 38]. In particular, very 
recent experiments have shown that human and Drosophila HP-1 can self-inter-
act, leading eventually to a liquid-like phase separation in vitro, in the absence 
of chromatin, and to the formation of in vivo heterochromatic compartments 
[40, 41]. Similarly, mutualization of transcription machinery resources or DNA 
looping mediated by promoter–enhancer interactions may also lead to effective 
attractions between active loci [66–68]. Black/quiescent chromatin is often asso-
ciated with lamins or is enriched in histone H1 that may also promote binding. 
In addition, in vitro experiments have demonstrated that two nucleosomes may 
interact directly and that such interactions are sensitive to biochemical modifica-
tions of histone tails [69, 70].

All this suggests that the heterochromatin/euchromatin phase separation is 
driven by specific short-range interactions mediated by epigenomic markers like 
histone modifications or chromatin-binding proteins.

2.3.1  Block copolymer model

To formalize and test this hypothesis, we developed a general framework by treat-
ing chromatin as a block copolymer (Figure 2.3), where each block corresponds 
to an epigenomic domain and where each monomer interacts preferentially with 
other monomers of the same chromatin type. While being generic, we focused 
our approach on chromatin folding in Drosophila where the coupling between 
epigenome and contactome is very strong. Similar approaches have also been 
applied to mammals by other groups and will be discussed in Section 2.3.6.

More specifically, we modeled chromatin as a semi-flexible, self-avoiding, 
self-interacting polymer [60, 71–73]. A chain corresponding to a given genomic 
region is composed of N monomers, each representing n bp. Each bead m is char-
acterized by its epigenomic state e m( ). We limit our analysis to the four major 
classes of chromatin state described above (active, PcG, HP-1, and black/quies-
cent). A long epigenomic domain will thus be represented by a block of consecu-
tive monomers all sharing the same state. Beads of the same epigenomic state 
may specifically interact via short-range, transient interactions. The full dynam-
ics of the chain is then governed by two contributions: (i) bending rigidity and 
excluded volume describing the “null” model of the chain, and (ii) epigenomics-
mediated attractive interactions.
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By definition, this model belongs to the generic family of block copolymers. In 
the past decades, this wide class of models has been extensively studied in physics 
and chemistry, mainly to characterize the phase diagram of melts of short syn-
thetic chains composed by a few blocks arranged either periodically or randomly 
[74]. However, the properties of such framework applied to long polymers (the 
chromosomes) with many blocks of various sizes (the epigenomic domains) are 
poorly characterized.

2.3.2  Simulation methods

In recent years, we have developed several methods to investigate the behavior 
of the block copolymer model of chromatin. From the self-consistent Gaussian 
approximations allowing efficient access to the steady-state behavior of short 
chains [71, 72] to more detailed numerical simulations of chain dynamics [60, 
73]. In this chapter, we will focus on our most recent results using simulations of 
long chains, recapitulating all our previous findings.

The polymer is modeled as a self-avoiding walk on a Face Centered Cubic 
(FCC) lattice to allow maximal coordination number (= 12). The energy of a given 
configuration is given by

 H U
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Figure 2.3 Block copolymer model. Each monomer represents a given 
genomic locus. One block corresponds to one epigenomic domain. Pairwise 
interactions between monomers depend on the local epigenomic state. 
(Bottom right corner) Snapshot taken from a kinetic Monte-Carlo simulation of 
the block copolymer model of Drosophila chromosome 3R.



 2.3 Epigenome-Driven Phase Separation of Chromatin 29

The first contribution accounts for the local stiffness of the chain with k  the bend-
ing rigidity and qm the angle between bond vectors m and m + 1. The second con-
tribution accounts for epigenomic-driven interactions with d l m, =1 if monomers l 
and m occupy nearest-neighbor (NN) sites on the lattice (d l m, = 0 otherwise), and 
Ue e, ¢  the strength of interaction between a pair of spatially neighboring beads of 
chromatin states e and ¢e . For simplicity, we will assume that interactions occur 
only between monomers of the same chromatin state (Ue e, ¢ = 0  if e e¹ ¢) and that 
the strength of interaction (that we note Ei ) is the same whatever the chromatin 
state (U Ee e i, º  for all e). Confinement and effect of other chains are accounted 
for by using periodic boundary conditions. The dynamics of the chain follow a 
kinetic Monte-Carlo (KMC) scheme with local moves developed by Hugouvieux 
and coworkers [75]. This scheme allows at most two monomers to occupy the same 
lattice site, but only if they are consecutive along the chain. One Monte Carlo step 
(MCS) consists of N trial moves where a monomer is randomly chosen and dis-
placed to a nearest-neighbor site on the lattice. Trial moves are accepted according 
to a Metropolis criterion applied to H and if the chain connectivity is maintained 
and the self-avoidance criterion is not violated. These simple rules allow efficient 
simulations of reptation motion in dense – topologically constrained – systems, 
while still accounting for the main characteristics of polymer dynamics like poly-
mer connectivity, excluded volume, and non-crossability of polymer strands. 
More details on the lattice model and KMC scheme can be found in [60, 73, 75].

As explained in Chapter 7 of the present book, chromosomes are intrinsically 
long, topologically constrained – so-called crumpled polymers. These constraints 
have a strong impact on the dynamics of the chain and lead to peculiar structural 
and dynamical scalings [50, 76, 77] different from classical Rouse or worm-like 
chain models [78]. Recently, we derived a coarse-graining strategy [73] that accounts 
properly for this regime and establishes an intelligible method to fix some model 
parameters (bending rigidity and number of sites in the simulation box) at a desired 
resolution. This strategy allows simulation of long chromatin fragments (N × n ≈ 20 
Mbp) with high numerical efficiency while conserving the structural and dynamical 
properties of the chain emerging from steric entanglement [73]. In the next section, 
we will describe the results obtained at a genomic resolution of n = 10 kbp and a spa-
tial resolution of ~100 nm (the distance between NN sites on the lattice) which are 
both typical resolutions achieved in standard Hi-C and microscopy experiments.

For a given set of parameters, the time-unit in our simulations was deter-
mined by mapping the predicted time-evolution of the mean-squared displace-
ment (MSD) of individual loci to the typical experimental relation: MSD (in mm2)  
~ . .0 01 0 5t  (with time t in seconds), observed in higher eukaryotes [23, 26, 27, 28]. 
For standard parameter values used in the next section, we found that 1 MCS, the 
temporal resolution of the model, corresponds to ~ 0.01–0.05 sec.

2.3.3  Phase diagram of the model: Towards (micro) phase 
separation

To illustrate the behavior of the model, we simulated the dynamical folding of a 
20 Mbp-long region of Drosophila chromosome arm 3R (position 7–27 Mbp) for 
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various values of Ei , the only free parameter of the model. Starting from random, 
compact, unknotted configurations resembling post-mitotic structures of chro-
mosomes [79], we tracked, for thousands of different trajectories, the dynamical 
evolution of polymer conformations during 20 hours of “real” time, the typical 
duration of a cell cycle.

In Figure 2.4A, we plotted the predicted Hi-C maps for a population of unsyn-
chronized cells as in standard Hi-C experiments, i.e., averaged over one cell cycle. 
At very weak interaction strengths, the polymer behaves as a (nearly) homoge-
neous chain driven mainly by steric interactions. It has the full characteristics 
of a crumpled polymer, as explained in detail in Chapter 7 of the present book. 
As Ei  is increased, the heteropolymeric nature of the system becomes appar-
ent at the local and large scales. Locally, the contact probability between mono-
mers of the same block increases (Figure 2.4A) and the spatial size of individual 
epigenomic domains (quantified by the square radius of gyration) decreases 
(Figure 2.4B, squares), leading to the formation of more or less compact TADs, 
depending on the strength of Ei  and the linear size of the block (longer blocks 
being more compact at the same interaction strength, data not shown, see [60, 
80]). Similarly, on a large-scale, long-range contact between TADs of the same 
chromatin type are enhanced and TADs of different types phase segregate, lead-
ing to a typical checkerboard pattern in predicted Hi-C maps. Structurally, as 
the strength of interaction augments, monomers of the same epigenomic state 
aggregate and form larger and more compact distinct 3D domains (Figure 2.4C, D). 
At high Ei  values, this is characteristic of a microphase separation as typically 
observed in short block copolymer melts [74]. Interestingly, the formation of such 
large-scale compartmentalization has a strong impact on the local organization. 
Indeed, the compaction of individual TADs is significantly lower in the presence 
of long-range contacts than in situations where we only authorize the internal 
folding of epigenomic domains (circles in Figure 2.4B): in partial or full (micro)
phase separation, TADs of the same chromatin type dynamically merge into 
big 3D clusters allowing conformations of an individual epigenomic block to be 
more expanded. Such property also explains why, for similar block sizes, the PcG 
domain in Figure 2.4B (blue squares) is more compact than the active (red) and 
the black domains: In Drosophila, large PcG domains are mainly far from each 
other along the genome, hence very close to the isolated case, while active and 
black domains are surrounded by many more domains of the same type.

2.3.4  Comparison to experiments

At each investigated value of Ei , we computed the Pearson correlation between 
the predicted contact map and the corresponding experimental data obtained 
by Sexton et al. [56] on late Drosophila embryos. The correlation was maximal 
(0.86) for E k Ti B= -0 1. . Figure 2.5A illustrates the very good agreement between 
both maps at the TAD and Mbp levels. For the predicted and experimental maps, 
we computed the scores on the first principal component of the normalized con-
tact frequency matrix C  defined as C l m C l m P l mc, , /( ) = ( ) −( ) with C l m,( ) the 
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contact frequency between loci l and m, and P sc ( ) the average contact frequency 
between two loci separated by a genomic distance s. For one profile, loci with 
similar scores tend to belong to the same spatial A/B compartment [8, 57]. Both 
profiles (Figure 2.5A) are strongly correlated (Spearman correlation = 0.74) illus-
trating how well the checkerboard pattern is reproduced (positions and intensi-
ties) by the block copolymer model. Given the simplicity of the model, it is quite 
remarkable, suggesting that epigenomic-driven forces are the main players of the 
chromosome folding in Drosophila.

Figure 2.4 Phase diagram of the block copolymer model. (A) Predicted Hi-C 
maps for a 20 Mbp-long region of Drosophila chromosome 3R for increas-
ing strengths of attraction Ei  (in k TB -unit). (B) Evolution of the square radius 
of gyration (defined as 1 2 2/ ( ) (r r )mN2

1l,m −∑ , an estimator of the average square 
3D size of a domain) as a function of Ei  for 3 large epigenomic domains (red 
squares: 1 active domain of size 280 kbp; blue squares: 1 PcG of size 330 kbp; 
black squares: 1 black/quiescent of size 290 kbp). Data were normalized by the 
corresponding values in the homogeneous case (Ei = 0). Circles correspond to 
situations where we authorized interactions only between monomers of the 
same epigenomic domain (no long-range interaction between TADs of the same 
state). Stars described the case where the specific interaction strength between 
active monomers was set to zero (PcG, HP1 and black monomers can still 
interact with monomers of the same type with Ei = −0 1. ). (C) Probability to find a 
monomer of the same (red circles) or different (black circles) epigenomic state at 
a given distance from a reference monomer (radial distribution), for three differ-
ent values of Ei . Data were normalized by the corresponding probability to find 
a monomer of any state. (D) Typical examples of the volumic density in black 
monomers in a 2D slice of the simulation box, for three different values of Ei .
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Interestingly, experimental data located at an intermediate position in the 
phase diagram (Figure 2.4A) between the homogeneous – crumpled – phase and 
the full microphase separation. Interaction strength is weak, TADs are only par-
tially collapsed (Figure 2.4B) and spatial compartments are dynamic and sto-
chastic structures (see below) of typical size ~200–300 nm (Figure 2.4C,D). The 
model predicted that PcG domains are more compact than black domains, in 
qualitative agreement with recent measurements in flies of the radius of gyra-
tion [7] and of the end-to-end-distances of various epigenomic domains [21]. 
This means that the observed differences in compaction between PcG and black 
domains can be explained in a large part by differences in the linear organization 
of epigenomic blocks along the genome, and not necessarily by differences in 
interaction strength as stated in [7]. However, as it is, the model failed to predict 
that active domains are less compact than heterochromatin domains [7]. This 
discrepancy suggests that interactions between active monomers may be of less 
use or dispensable in describing chromatin folding in Drosophila. Figure 2.5B 
illustrated indeed that setting the interaction strength between active beads to 
zero while keeping Ei = -0 1.  for the others, still allows to globally well describe 
the Hi-C map (Pearson correlation = 0.86, with a weak loss in phase-segregation) 
while improving predictions for the compaction of active domains that are now 
less compact than heterochromatic regions (stars in Figure 2.4B). This suggests 
that in Drosophila, the euchromatin/heterochromatin compartmentalization is 

Figure 2.5 Comparison between experimental and predicted data. 
(A) (Middle) Predicted (E k Ti b= −0 1. , upper triangular part) versus experimental 
(lower triangular part) Hi-C maps for a 10 Mbp region. Experimental data from 
[56]. Same color code as in Figure 2.4A. Experimental data divided by a factor 
2500 to linearly adjust both scales. (Top, Bottom) A/B compartment analysis 
(see text) of the predicted (top) and experimental (bottom) Hi-C maps: loci 
with a negative (resp. positive) scores on the first principal component (PC1) 
belong to the A (resp. B) compartment. (B) Same as (A) but for the case where 
the specific interaction strength between active monomers was set to zero 
(PcG, HP1, and black monomers can still interact with monomers of the same 
type with Ei = −0 1. ).
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mainly driven by the interactions between the dominant black/quiescent – het-
erochromatic – loci. The formation of the A (euchromatic) compartment is just 
a by-product of these direct interactions: small active regions are expelled at the 
periphery of the heterochromatic (micro)compartments leading also to preferen-
tial – effective – interactions between active sites.

Looking carefully at the predicted and experimental Hi-C maps, we observed, 
however, several discrepancies between both maps, suggesting missing ingredients 
in the model. For example, the model predicted spurious or missing TADs or long-
range contacts between TADs. This could be due to an incorrect annotation of the 
local epigenomic state (we use epigenomic data from an embryonic cell line while 
Hi-C data were obtained on whole embryos) or the existence of specific interac-
tions driven by other biological processes not accounted in the model, like pro-
moter–enhancer interactions. Refining the model to account more precisely for the 
local epigenetic content (for example, for the relative levels of histone modifications 
or chromatin-binding proteins) or differences in the interaction strengths between 
different states would certainly lead to a better correspondence. We also observed 
that TADs are more sharply defined in the experiments, particularly in the corners 
of large TADs. This might be the results of pairing between homologous chromo-
somes, a phenomenon commonly found in Diptera [81] and not accounted for by 
the model, or of the presence of extra cis-interacting mechanisms, like the recently 
proposed loop extrusion model in mammals [43, 44] (see Chapter 4 of the present 
book), that enhance the contact frequencies along the genome.

2.3.5  A dynamical, out-of-equilibrium and stochastic 
organization

At an interaction strength compatible with biological data (E k Ti b= -0 1. ), we 
analyzed the time evolution of chromosome organization. As in [76], we observed 
that chromatin folding results from the out-of-equilibrium decondensation of 
the polymeric chain from its initial compact configuration. Figure 2.6A shows 
P sc ( ), the average contact frequency between two loci separated by a genomic 
distance s, at different time points. Local scales, like the TAD level, reach a (quasi) 
steady-state within minutes while it takes longer for long-range contacts, ranging 
from dozens of minutes for Mbp-scale contacts to several hours at the 10 Mbp-
scale. These predictions are consistent with experimental observations made on 
synchronized cells [17, 79] showing that TADs emerge very early in the cell cycle 
and that the large-scale A/B compartmentalization gradually increases along the 
cell cycle. Even after a long time (20 hours or more), the model predicts that the 
system is not at equilibrium, a regime where we should expect that P sc ( ) behaves 
as ~ .s-1 5 [77]. On contrary, due to strong topological constraints, the chains 
remain in a “crumpled”, unknotted, confined state with P s sc ( ) -~ .1 1 for s < 3 Mbp 
(crumpling signature [50, 77, 82]) and P s sc ( ) -~ .0 5  for s > 3Mbp (confinement in 
chromosome territory [79]), also consistent with Hi-C data [1, 8, 56].

Tracking of the relative distances between pairs of loci revealed that chro-
matin organization is very stochastic. Figure 2.6B shows three examples of the 
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time evolution along a one-cell cycle of such distance for the same pair of loci 
separated by 3 Mbp along the genome and having the same epigenomic state. 
We observed a typical two-state behavior with random transitions between a 
bound state where both loci remain in contact due to the merging of the TADs 
they belong to, and an unbound state where both TADs are spatially separated. 
Analysis of these trajectories for various pairs of loci showed that the transition 
rate from the unbound to the bound state is a decreasing function of the genomic 
distance between the two genomic regions, while the transition rate from the 
bound to the unbound state mainly depends on the respective epigenomic type 
of each locus, with pairs sharing the same type interacting last. Interestingly, we 
predicted that a significant proportion (5–15%) of long-range contacts (>1 Mbp) 
are not established within one cell cycle. This suggests that the genomic distance 
between regulatory elements, like promoters and enhancers, should not exceed 
1 Mbp to ensure that a physical contact between these elements, prerequisite to 
an activation or repression event, for example, would happen at least once during 
a one-cell cycle in order to maintain a stable gene expression. It would be inter-
esting to experimentally test such predictions by simultaneously tracking the 
spatial distance between a promoter and its enhancer and monitoring the cur-
rent transcriptional activity [83], for various genomic distances between the two  
elements.

All this suggests that the 3D chromosome organization in higher eukaryotes 
is out-of-equilibrium, dynamical, and stochastic. This emphasizes the necessity 
(1) to properly account for the time evolution of such organization in quantitative 
models of chromosomes, especially for higher eukaryotes where chromosomes 
are strongly topologically constrained; and (2) to initiate the simulations with 

Figure 2.6 Dynamical chromatin folding. (A) Average contact probability 
between two loci as a function of their relative genomic distance along the 
genome predicted by the block copolymer model (E k Ti b= -0 1. ) at different 
time points during one cell cycle. (B) Examples of the time evolution of the 
distance between two loci of the same epigenomic state separated by 3 Mbp 
along the genome.
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proper configurations since the system will keep a partial memory of the large-
scale initial structure for a long period of time.

2.3.6  Relation to other approaches

The prediction of long-range interactions is inherent to copolymer models 
arranged in blocks. Therefore, such models should also be well adapted to describe 
the active/inactive compartmentalization in mammals. Several approaches have 
used similar formalisms to model chromatin folding in human or mouse [61, 
84–94]. In particular, Wolynes and Onuchic [84, 85], Thirumalai and Hyeon [86, 
87], Mirny [88], and Liberman-Aiden [61] have developed block copolymer mod-
els, eventually decorated with loop extrusion mechanisms or specific-pairwise 
interactions between CTCF sites at TAD boundaries. Nicodemi’s [89–91] and 
Marenduzzo’s [92–94] groups developed more detailed models accounting for 
the diffusion and binding of the proteins that mediate epigenomic interactions. 
Most of these approaches lead to very precise descriptions of chromosome orga-
nization and of heterochromatin/euchromatin phase separation in mammals. 
In many cases, their conclusions were very consistent with ours in Drosophila: 
Interaction strengths between genomic loci are weak leading to a mild (micro)
phase separation and to very dynamical and stochastic organization.

This idea that the observed phase separation emerges from heterogeneities in 
the chromatin primary sequences, in analogy to the well-known physical behav-
ior of synthetic block copolymers [74], is quite general and may arise from other 
possible mechanisms like active non-equilibrium processes or differences in 
monomer mobilities [95–97]. At a more phenomenological scale, such compart-
mentalization may also be interpreted as visco-elastic or liquid phase transitions 
[94, 98, 99] by using an effective phase-field formalism considering euchromatin 
and heterochromatin as separated fluids and neglecting the underlying poly-
meric structure.

2.4  ROLE OF 3D ORGANIZATION IN EPIGENOME 
STABILITY

As discussed before, the spatial organization of chromatin results in part from 
the clustering and phase-segregation of epigenomic domains but a still open 
question is whether this peculiar 3D folding is only a by-product of genome 
activity or if it is also participating in the regulation of the epigenome assembly 
and more generally in the regulation of the genome functions.

2.4.1  The “Nano-Reactor” hypothesis

The basic concept behind this structural/functional coupling is the augmenta-
tion of the local concentration of regulatory proteins due to spatial co-local-
ization. In bacteria, this “high concentration” paradigm has been evidenced 
and formalized for many years for the well-known lac operon system [100, 101]: 
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Molecular crowding and spatial confinement increase the binding affinities 
of regulators (activators or repressors) to their DNA cognate sequences. This 
property is enhanced by the presence of a few additional dispersed recruitment 
sequences (operators) and the ability of the lac repressor to oligomerize, lead-
ing to DNA looping. Similarly, in eukaryotes, the nuclear chromatin compart-
ments would correspond to biochemical “nano-reactors” where a small number 
of regulatory biomolecules are colocalized in space favoring their chemical (co-)
activity. At the level of enhancer–promoter genomic modules, the distal action 
of enhancers is conditioned to their physical proximity with promoters [83]. 
The presence of different dispersed modules would increase the probability 
of the first contact between the promoter and one enhancer. The subsequent 
coalescence of the different modules would then provide both structural sta-
bility to the ensemble (i.e., increased duration of gene expression) and robust-
ness and precision through the integration of different signals [102]. Along the 
same line, Polycomb-mediated repression involves the spatial colocalization of 
the silencer sequences (the so-called PREs) of several genes. This is mediated by 
the Polycomb protein complex that forms multi-loop structures, the so-called 
Polycomb bodies [103–105]. Such clustering operates in cis, i.e., within an epig-
enomic domain but also in trans between non-consecutive domains along the 
genome. For example, in Drosophila, strong long-range interactions are observed 
between the 10-Mbp distant, Polycomb-marked antennapedia (ANT-C) and 
bithorax (BX-C) domains [56, 106]. Similarly, in the yeast SIR-mediated hetero-
chromatinization system, silencing of subtelomeric genes is associated with the 
level of SIR-mediated clustering [107]. Such clustering might enhance the local 
concentration of heterochromatin factors (the SIR proteins) at their telomeric 
specific recruiting sites and consequently might promote their spreading over 
the subtelomeric domains.

All this suggests that the spatial confinement of regulatory sequences (enhanc-
ers, silencers) may allow sequestering regulatory proteins in the spatial vicinity 
of the target genomic elements. TADs would correspond to insulated neighbor-
hoods that provide a local, basal level of confinement and of selectivity that is 
then eventually finely tuned at a lower scale (via promoter–enhancer looping for 
example) [32, 46, 108, 109]. Similarly, the formation of A/B compartments would 
reinforce such properties for TADs sharing similar transcriptional activity or an 
epigenomic state.

2.4.2  Epigenomic 1D–3D positive feedback

In the context of epigenomics, the nano-reactor hypothesis naturally intro-
duces a functional coupling between 3D organization and 1D epigenomic states. 
Indeed, locally, chromatin states are characterized by specific histone marks 
that favor the selective binding of regulatory proteins (e.g., PcG for H3K27me3, 
HP-1 of H3K9me3, or transcription factors for active marks) that can self-asso-
ciate. Hence, the presence of these marks indirectly promotes 3D clustering and 
compartmentalization via the mechanisms discussed in 2.3. Moreover, these 
marks are dynamically deposited and removed by specific enzymatic complexes 



 2.4 Role of 3D Organization in Epigenome Stability 37

(e.g.,  PRC2 or Su(Var)3–0) that physically associate either with the mark they 
catalyze (e.g., H3K27me3 or H3K9me3) or with the corresponding regulatory 
proteins (e.g., PRC1 or HP1). This “reader–writer/eraser” property enables the 
mark and thus the chromatin state to spread, once nucleated, at some specific 
genomic loci. The crucial point is that spreading might not operate only in cis, i.e., 
unidimensionnally along the genome, but also in trans to any chromatin frag-
ments in the spatial vicinity. This would introduce a positive feedback between 
the epigenomic state dynamics and the compaction of chromatin: Within a given 
domain the spatial clustering would enhance the “spreading” of the chromatin 
state over the entire domain (the nano-reactor hypothesis) which in return would 
enhance compaction (copolymer model).

The ability of enzymes to act in trans is clearly a working hypothesis that 
relies on the assumption that the mechanisms controlling cis spreading might 
also function in trans. The molecular processes involved in trans (and even in cis) 
spreading of an enzymatic activity to adjacent nucleosomes are still not well 
understood. Experimental studies on the heterochromatinization in fission yeast 
have shown that cis spreading was not due to allosteric changes of the involved 
enzymes but more likely to the favorable/stable spatial and orientational arrange-
ment of the enzyme relative to the histone tails of adjacent nucleosomes [110]. 
Compact chromatin organization induced by architectural proteins such as HP1 
or PRC1 might thus reinforce such cis activity [111]. Whether or not such a pro-
cess is restricted to nucleosome in cis or can also apply to any spatially proxi-
mal nucleosome in trans, is unknown. Propagation of silencing in  trans at the 
nucleosomal array scale has been evidenced in the Polycomb system [112] but a 
precise molecular description of this process remains to be elucidated. In vitro 
experiments similar to [110–112] with more extended engineered arrays of 
nucleosomes will be required for a better understanding of the cis versus trans 
spreading mechanisms. At a more coarse-grained scale, some experiments have 
also pointed out the possible role of trans-acting “long-range” spreading in epig-
enome maintenance as in the heterochromatin domain in yeast [113] or for dos-
age compensation systems where the propagation of a specific epigenomic signal 
was associated with the global compaction of sexual chromosomes [109, 114].

2.4.3  The living chromatin model

While theoretical and experimental works on the epigenome assembly based on 
the “reader-writer/eraser” mechanism have highlighted the role of long-range 
spreading in the stable formation and maintenance of the epigenomic domain 
[113, 115–121], all these approaches neglect the effect of the local chromatin state 
on the spatial folding of the underlying polymer. To formalize and characterize 
the 1D–3D positive feedback described above, we developed a theoretical frame-
work, the “Living Chromatin” (LC) model, that explicitly couples the spreading 
of epigenomic marks to the 3D folding of the fiber (Figure 2.7) [72, 122].

This model is a combination of the epigenome regulation model [117, 123] 
primarily introduced by Dodd et al. [115] and the block copolymer model of 
chromatin [60, 71–73] described in Section 2.3. It belongs to the general class 
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of annealed copolymer models where the physico-chemical state of a monomer 
can vary according to specific reaction rules [124]. The dynamics of the polymer 
chain follows the block copolymer model described in Section 2.3.1 with short-
range contact interactions between monomers having the same state (only for 
active (A) and inactive (I), with no interaction between unmarked (U) mono-
mers). For the dynamics of the local epigenomic state, as in [115, 117], we consid-
ered a simple case where the state of one monomer can fluctuate only between 
three variations: an inactive (I), an active (A), and an intermediate, unmarked 
(U) state. Conversions between A and I states occur via the first step of mark 
removal toward the U state followed by a step of mark deposition (Figure 2.7 
right). Each step can be divided into two contributions: (i) a “noisy” conver-
sion accounting for the leaky activity of modifying enzymes or for nucleosome 
turnover; and (ii) a recruited conversion, formalizing the “reader–writer/eraser” 
mechanism, where spreading/erasing of a mark is not restricted to neighboring 
chromatin elements along the genome but also to any fragments located in the 
spatial neighborhood (Figure 2.7 left). To characterize, in detail, the role of 3D 
organization in this process, we distinguished between cis (only via NN mono-
mers along the chain) and trans (3D vicinity) conversions. Physically speaking, 
the LC model is analogous to a 3-state Ising spin system on a polymer chain with 
local 3D ferromagnetic coupling: The local epigenomic state stands for spin, ran-
dom conversions for the temperature and recruited conversions for the coupling.

Practically, we modeled the polymer on a lattice following a KMC scheme 
slightly different from Section 2.3.2 to account for the dynamics of epigenomic 
states [122]. One MCS consists of (i) N trial monomer state conversions, (ii) N / 2 
trial binding/unbinding transitions, and (iii) N trial monomer moves. In (i) a 
monomer m is randomly picked and a state transition is attempted according to 
the state-dependent rates:

Figure 2.7 The Living chromatin model. The living chromatin model is a com-
bination of the copolymer model where the chromatin organization is driven 
by epigenomic-specific contact interactions (Right), and of the epigenome 
regulation model (Left) where the local epigenomic state of each monomer 
can fluctuate between 3 states: A, U, and I. The inter-conversion (spreading) 
dynamics between these states depends on the spatial neighborhood of each 
monomer while the 3D folding depends on the current – primary – epigenomic 
sequence.
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with e l A U I( )Î{ }, ,  the current epigenomic state of monomer l,eo the contribu-
tion of noisy conversion, ec  (resp. et ) the spreading rate in cis (resp. in trans), 
Qe l X( ) =, 1 if e l X( ) =  (0 otherwise), and d l m, =1 if monomers l and m occupy NN 
sites on the lattice (0 otherwise). For simplicity, we assumed that the rates eo, ec , 
and et  are the same for all the states. In (ii) a monomer m is randomly picked and 
if its state is either A or I, for every monomer l of the same state occupying a NN 
site on the lattice and already bound to m, an unbinding event is attempted with 
a rate ku . Similarly, for unbound pairs a binding event is realized with a rate kb. 
In (iii), a monomer is randomly picked and move to a NN site on the lattice. The 
move is accepted only if the connexions along the chain and between the bound 
monomers are maintained. To simplify, we focused our studies on small chains at 
a steady-state, neglecting crumpling effects described in Section 2.3.

2.4.4  Stability of one epigenomic domain

In a recent study [122], we investigated the behavior of an isolated small chain 
(N = 100) evolving under the LC model as a function of the attraction strength 
k kb u/  and of the relative conversion rates e ec t o, / . Here, we report a similar analy-
sis but for a longer chain (N ≈ 200) in a semi-dilute environment (10% volumic 
density), simulated using periodic boundary condition [60]. Following the anal-
ogy with an Ising model, we characterized the global epigenomic state S of the 
system using an effective magnetization:
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l

N

= −( )( ) ( )
=

∑1

1

Θ Θ, ,  (2.4)

S ~ +1 (resp. –1) implies that the full domain is in a coherent A (resp. I) macro-
state where most of the monomers have an A (resp. I) state. S ~ 0 defines a glob-
ally incoherent epigenomic state with a mixture of A, U, and I monomers.

In the absence of trans spreading (et = 0), the LC model reduces to a simple 
system where the epigenomic dynamics is disconnected from the 3D polymeric 
organization and evolves only under short-range 1D spreading. As expected for 
a 1D system driven only by NN processes, no phase transition is observed in this 
case and the distribution of S remains peaked around 0. The existence of stable 
coherent active (A) or inactive (I) macro-states is unlikely (Figure 2.8I).

In the presence of trans spreading, this simple picture is dramatically 
modified. In Figure 2.8, we plotted the phase diagram of the system as a 
function of k kb u/  and e e/ o  where we assumed that e e ec t= º . At a weak 
attraction strength (k kb u/ .

�
< 0 1), the polymer has a swollen organization. 
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While for e e/ .o
�
< −1 1 5  the system remains monostable with a globally inco-

herent epigenome characterized by short-lived coexisting A and I microdo-
mains (Figure 2.8A,B,E), at high ε the weak trans spreading activity due to 
the presence of (some) random long-range contacts allows the emergence of 
coherent epigenomic domains (Figure 2.8 H,F). Strictly speaking, this tran-
sition from monostability (incoherent state) to bimodality (coherent A and 
I macro-states) does not ref lect a phase transition but rather is a signature 

Figure 2.8 Phase diagram of one epigenomic domain (e e ec t= ≡ , eo = 0.001, 
ku = 0 001. ). The monostable, bistable and bimodal regions are demarcated by 
black lines. The corresponding curves for an isolated shorter chain as inves-
tigated in [122] is reported for comparison (orange lines). (A-H) Examples of 
the time evolution of the local epigenomic state (Left: red for A, blue for I and 
black for U) and of the global epigenomic state S (Right), for various values 
of e e/ o  and k kb u/  (noted as black dots in the phase diagram) predicted by 
the full LC model.(I) Same as (A–H) but when trans spreading was neglected 
(e ec t= =0 2 0. , ).
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of finite size effects. Hence, the stability of a macro-state increases linearly 
with ε [122].

As k kb u/ augments, the polymeric system exhibits a collapse transition where 
the chain passes from a swollen coil to a compact globule [125]. Above this collapse, 
for ε higher than a critical, k kb u/ -dependent recruitment strength, we observed 
a second-order phase transition towards a bistable regime (Figure 2.8C,D,G). In 
this phase, cooperative effects are dominant and lead to the emergence of super-
stable A or I macro-states (stability increases exponentially with ε [122]). This is 
characteristic of the presence of phase transitions in 1D systems with effective 
long-range interactions only if the strength of interactions between two mono-
mers l and m decreases more slowly than 1 2/ | |m l−  [126], i.e., in our case, only 
if epigenomic-driven interactions (via k kb u/ ) are strong enough to partially col-
lapse the polymer so that the contact probability between two monomers scales 
are slower than 1 2/ | |m l− .

As already shown in [115, 117],  these results confirmed that the emergence 
and maintenance of stable coherent macro-states require an efficient trans 
spreading activity. Moreover, accounting explicitly for the polymeric structure 
and for the impact of epigenomic-driven interactions suggested that physical 
bridging may strongly enhance the stability of coherent epigenomic domains by 
creating a more compact 3D neighborhood facilitating trans-mediated recruited 
conversions. Comparison with the phase diagram of an isolated chain (orange 
lines in Figure 2.8) underlines this effect since accounting for an effective con-
finement of the chain (via the control of the volumic fraction) reduced the 
critical value to switch from the monostable, incoherent regime to the bistable/
bimodal, coherent one.

2.4.5  Stability of antagonistic epigenomic domains

In the previous section, we discussed how trans activity coupled with epigenomic-
driven interactions affect the stability of a single epigenomic domain. The next step is 
to understand how such mechanisms impact the epigenomic stability of a genomic 
region containing several adjacent antagonistic chromatin states (A and I). As a 
proof of concept, for parameters leading to bistability, we addressed this issue by 
following the dynamics of a region initially prepared with one (reported in [122]) 
or two (reported here in Figure 2.9) I domains directly adjacent to one or two A 
domains of the same size. In Figure 2.9A–C, we presented some examples for a 
region initialized with four adjacent epigenomic domains (two active A, two inac-
tive I) forming two distinct 3D compartments (one for A, one for I). In particular, 
for various situations, we quantified the stability of the 1D epigenomic organiza-
tion (Figure 2.9E) by measuring the time it takes for the system to switch from 
this mosaic initial state to a typical steady-state (coherent A or I macro-states or 
incoherent state depending on the parameters).

In the absence of trans spreading activity, each subdomain is very unstable (red 
dots in Figure 2.9E) and rapidly converges to an incoherent epigenomic organiza-
tion. Similarly, accounting for trans spreading but neglecting the epigenomic-driven 
interactions leads to a rapid destabilization of the system (blue dots in Figure 2.9E)  
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towards a coherent macro-state. It is only by fully considering the positive feed-
back between epigenome and polymer dynamics that the four subdomains 
remain significantly stable (Figure 2.9A), the stronger the interactions the more 
stable the partition (cyan and orange dots in Figure 2.9E). Indeed, the forma-
tion of two distinct, compact spatial compartments for A and I domains lim-
its the “invasion” in trans of one epigenomic domain by the antagonistic state 
of its neighboring domains. This also leads to strong cooperativity between the 

Figure 2.9 Stability of epigenome compartmentalization ( k kb u/ = 0.28, 
e e ec t o= = =0 01 0 001. , . ). (A–C) Examples of the time evolution of the local 
epigenomic state of the genomic region initialized with four adjacent epig-
enomic domains forming two spatial compartments (Average distance map 
between any pair of monomers shown in (D)). Initially, the state of each sub-
domain is forced. At t > 0, forcing is switched off (except in C where a weak 
loading rate of 0.001 is maintained). (E) Cumulative distribution of the stability 
time τ of the mosaic epigenomic pattern with only cis-recruitment (red dots), 
without epigenomic-driven interactions (blue dots), with weaker interactions 
( k kb u/ .= 0 18, cyan dots), in the absence (orange dots) or the presence (purple 
dots) of 1D barriers, in the presence of 1D barriers and weak nucleation 
(purple circles). Black dots and circles correspond to a system with only 2 epig-
enomic domains, each of size 50 [122].
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subdomains of the same epigenomic state that switch their states always at the 
same time.

A way to enhance the stability of subdomains is to introduce 1D barri-
ers (Figure 2.9B). By maintaining the monomers at the boundary between two 
antagonistic subdomains in a neutral U state, we hinder the propagation in cis 
between NN subdomains. Such barriers are biologically relevant with the bind-
ing of insulator proteins such as CTCF at TAD boundaries [46] that can physi-
cally prevent the action in cis of epigenomic enzymes. External “contamination” 
of one domain by the other can thus only arise from the trans spreading activity 
across the frontier. This leads to a significant stabilization by 2 to 3 fold (purple 
dots in Figure 2.9E) depending on the size of the barrier [122].

Previously, adjacent antagonistic subdomains were forced to be in one epig-
enomic state and, at t > 0, the system was evolving in the absence of forcing. 
Here, we asked, in association with 1D barriers, how maintaining a weak perma-
nent forcing of the initial state inside each subdomain influences their stability 
(Figure 2.9C). This situation mimics the presence of nucleation sites like PREs 
for H3K27me3/PcG domains. We observed a strong increase of the mean sta-
bility time even at low loading rates (purple circles in Figure 2.9E). This is fully 
consistent with recent experimental studies showing that long-term memory 
relies on self-propagation (in our case promoted by spatial condensation) and 
on sequence-specific cis-recruitment mechanisms [127–129]. Our results suggest 
that spatial compaction, by promoting self-propagation in trans, might cooper-
ate with cis-recruitment to achieve strong stability. This means that a weaken-
ing of the recruitment might be compensated by an increase of the compaction. 
Whether these compensatory mechanisms indeed occur in real systems at both 
developmental and evolutionary time scales [130] has to be further investigated. 
Interestingly, compared to the case of a chain with only two adjacent subdomains 
as studied in [122] (black dots and circles in Figure 2.9E), we observed that sta-
bility is enhanced when considering four adjacent domains. This implies that 
forming a large-scale spatial compartment, like the A/B or heterochromatin/
euchromatin compartments, increases the insulation of both antagonistic marks 
and delays the cooperative switching of subdomains towards a global coherent 
macro-state.

2.4.6  Towards a quantitative model

The LC model represents a powerful theoretical and numerical formalism to 
study the dynamical coupling between the 1D epigenomic information along the 
chain and the 3D chromatin organization: 3D acts on 1D via the trans spread-
ing mechanism while the 1D feedbacks the 3D via epigenomically driven con-
tact interactions. This framework is modular and can be easily generalized to 
any number of epigenomic states and any biochemical reactions or interaction 
scheme. We showed that an efficient epigenome stability and compartmentaliza-
tion requires (i) trans spreading mechanisms, (ii) eventually 1D barriers and weak 
permanent nucleation, and (iii) the chain to be collapsed (i.e., around or below 
the collapse transition). This latter regime is exactly the condition consistent with 
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experimental Hi-C data as we showed in our previous works on chromatin fold-
ing for a fixed epigenome (see Section 2.3). However, to be applied to specific 
in vivo situations, the LC model should be extended to consider other biologi-
cally relevant ingredients such as titration effects [118, 120], replication and cell 
cycle duration [115, 123], conversion asymmetries [117], and multicolor epig-
enome [131]. In order to progress toward a quantitative description of this 1D–3D 
coupling, a correct parameter inference would require experiments that can 
record the large-scale dynamics of both the 1D and 3D organization, during the 
establishment and the maintenance stages, in both wild-type and mutant back-
grounds. The corresponding experimental techniques remain to be developed.

Recently, Michieletto et al. have also developed a physical model of such 
1D–3D coupling of chromatin [132]. In their approach, the dynamics of the epig-
enome and of the polymer are governed by an identical Hamiltonian, i.e., the 
spreading of a mark is tightly related to the (pre)existence of chemical bonds 
with the nearest monomers. This is the main difference with the LC model 
where spreading in trans is not directly coupled to the copolymer dynamics but 
rather depends only on the presence of monomers in the spatial neighborhood. 
Compared to their approach, the LC framework is somehow more general since 
we explicitly treat the local epigenomic dynamics as biochemical reactions and 
not as a Hamiltonian dynamics. In addition, we decomposed the spreading into 
two contributions (cis and trans), that, we think, is crucial to understand clearly 
the 1D/3D coupling. Our proposed mechanism leads to second-order phase tran-
sition while Michieletto et al. found a first-order transition within their frame-
work. There is, to date, no experimental evidence for one or the other type of 
transition. More importantly, the main and similar outcome of these two com-
plementary and pioneering studies is that self-attraction and trans spreading 
activity at the local scale can be translated into a macroscopic coupling between 
the epigenome and spatial compartmentalization dynamics. As shown in [122], 
the correlated evolution of the global epigenomic state and of the radius of gyra-
tion of the chain at the collapse transition illustrates nicely how the local 1D–3D 
feedback mechanism induces a large-scale coupling between the epigenome and 
the spatial chain folding: incoherent epigenomic states tend to be associated with 
a partial decondensation of the chain while coherent states correspond to more 
condensed configurations.

2.5  DISCUSSION AND PERSPECTIVES

In this chapter, we discussed how polymer modeling allows us to better under-
stand the coupling between epigenome and 3D chromosome organization.

In a first part, we showed that epigenomically associated mechanisms are 
the main drivers of chromosome folding: A/B or heterochromatin/euchromatin 
compartments in Drosophila emerge naturally from the mild microphase sepa-
ration of different chromatin states that lead to a very dynamical and stochastic 
organization. Our model predicts that active chromatin only weakly interacts 
with itself. This may reflect a distinct local mode of interaction between chro-
matin types: active chromatin rather organizes locally via pairwise short-range 
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bridging between discrete specific genomic sites while heterochromatin may 
interact more continuously via clustering of multiple chromatin loci. This is con-
sistent with more homogeneous internal contact patterns observed for inactive 
domains and more complex profiles of contact for active domains as observed in 
human cell lines [67]. Overall, a finer understanding of these different modes of 
self-association will require a proper inference of the chromatin-state-specific 
interaction strength. Thanks to higher-resolution Hi-C and epigenomic data, we 
expect to gain deeper insights into the complexity of the local epigenomic and 
genomic control of chromatin self-association. Additionally, interactions with 
nuclear landmarks such as membrane and nuclear pores are known to play a 
fundamental role in controlling large-scale nuclear organization [114, 133]. 
Integration of such interactions in our framework would also lead to a more 
detailed description of chromatin folding.

In the second part, we addressed the role of 3D organization into epigenomic 
stability and maintenance. Our working hypothesis is that spatial compart-
mentalization may provide a favorable environment playing a functional role 
of “nano-reactor” by confining the proper regulators close to the target regions. 
TADs might have a role in either preventing (by sequestering) or facilitating the 
long-range communication between distal regulatory genomic elements, thus 
enhancing the efficiency of gene co-activation or co-repression [134, 135]. In our 
copolymer framework, we remarked that experimental observations are compat-
ible with a region of the phase diagram that is sensitive to variations in the inter-
action strength and in the block size. One could hypothesize that by modulating 
the number of bridging molecules (or their bridging efficiency), cells might finely 
tune the local condensation and the long-range contacts between epigenomic 
domains, and thus might regulate gene expression or epigenomics. To test this, 
we developed an extended copolymer model, the Living Chromatin model that 
readily couples the local transition between different chromatin states with the 
spatial organization of the chain. We demonstrated that epigenome plasticity and 
robustness is ensured when the chain is in a sufficiently collapsed state which is 
exactly the physiological condition. Building on the classical Waddington picture 
of epigenomic landscape [136], progression through successive developmental 
or differentiation stages as well as pathologies may now correspond to different 
pathways on the folding-epigenome landscape with the enzymatic activity and 
self-affinity of architectural chromatin-binding proteins as control parameters.

The ultimate goal would be to build a quantitative model that could reproduce 
both the complex linear epigenomic pattern and the spatial chromatin orga-
nization in real systems such as in Drosophila and make testable predictions. 
However, a proper inference of the corresponding parameters would require to 
account properly for dynamics. Indeed, as discussed above, chromosome fold-
ing is out-of-equilibrium, dynamical and stochastic. At the TAD scale (the rel-
evant regulatory scale), the chain rapidly reaches a stationary state. However, at 
larger scales, convergence towards a metastable state may be slow. The cell cycle 
duration then may constitute an additional control parameter: The establishment 
of stable long-range contact might be challenged by cell cycle duration. Efforts 
toward the development of time-predictive models of the spatial and epigenomic 
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organization are required. We already managed to calibrate the copolymer 
model from MSD measurement of chromatin loci such that we can have a reli-
able description of chromosome folding kinetics. However, we still lack a precise 
time-parameterization of the local epigenome dynamics. Furthermore, we do 
not consider the out-of-equilibrium effect of replication which is, of course, an 
important issue to understand epigenetic maintenance. Incorporating all these 
ingredients into a quantitative, predictive model would represent an intriguing 
challenging task for the future on both theoretical and experimental sides.
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3.1  INTRODUCTION

Innovative technologies such as Hi-C (Lieberman-Aiden, 2009) or the more recent 
GAM (Beagrie et al., 2017) have revolutionized the field of chromatin architec-
ture as they allow us to measure the frequency of physical contacts between DNA 
sites genome-wide. The resulting contact maps return a picture of the regulatory 
network of contacts across genomic regions, including for instance the physi-
cal loops between enhancers and promoters established by transcription factors 
(TFs) and other molecules. Such contacts have complex patterns in the cell nuclei 
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of higher organisms, showing that chromatin has a formidable, non-random 3D 
structure (Bickmore and van Steensel, 2013, Tanay and Cavalli, 2013, Dekker and 
Mirny, 2016).

Chromosomes are folded into an arrangement of megabase-sized domains, 
known as Topological Associating Domains (TADs) (Nora et al., 2012, Dixon 
et al., 2012), which are enriched in internal interactions. TADs have, in turn, 
domain-specific, inner patterns (Phillips-Cremins et al., 2013) and, addition-
ally, they interact with each other forming higher-order structures, named 
meta-TADs (Fraser et al., 2015). Meta-TADs encompass the so-called ‘A/B 
compartments’ of open and closed chromatin (Lieberman-Aiden et al., 2009), 
and extend up to chromosomal scales. A number of molecular factors involved 
in chromatin folding have been discovered, such as CTCF/Cohesin (Sanborn  
et al., 2015), active and poised polymerases (Barbieri et al., 2017), PRC1 (Kundu 
et al., 2017), MLL3/4 (Yan Biorxiv, 2017) and many more.

To make sense of the complexity of the experimental contact patterns and to 
understand the molecular mechanisms shaping chromosome architecture, con-
cepts from polymer physics have been introduced (see, e.g., a review in Nicodemi 
and Pombo 2014, other contributions in this volume and original papers such 
as Kreth et al., 2004, Nicodemi and Prisco, 2009, Bohn and Heermann, 2010, 
Barbieri et al., 2012, Brackley et al., 2013, Giorgetti et al., 2014, Jost et al., 2014, 
Sanborn et al., 2015, Brackley et al., 2016, Fudenberg et al., 2016, Chiariello et al., 
2016, Di Stefano et al., 2016, Brackley et al., 2017). In particular, in this review, 
we focus on the Strings and Binders Switch model, which was specifically pro-
posed to explain, in a quantitative, predictive framework, the effects on folding 
of the interactions between chromosomes and their cognate binding molecules 
(Nicodemi and Prisco, 2009, Barbieri et al., 2012).

3.2.  THE BASIC FEATURES OF THE STRINGS AND 
BINDERS SWITCH (SBS) MODEL

3.2.1  The strings and binders switch model

In the string & binders switch (SBS) model (Nicodemi and Prisco, 2009) a chro-
matin filament (a “string”) is described as a self-avoiding walk (SAW) polymer 
chain of beads (Figure 3.1a). The chain includes specific beads that act as binding 
sites for diffusing molecules (the “binders”). The concentration, cm, of the binders 
and the scale of their binding energy, Eint, to the chain are the key parameters of 
the model. The SBS model has been shown to well recapitulate Hi-C, GAM, and 
FISH data across chromosomal scales and cell types, and to explain the 3D struc-
ture of a variety of genomic loci with high accuracy (Barbieri et al., 2012, Fraser 
et al., 2015, Barbieri et al., 2017).

3.2.2  The phase diagram of the SBS homopolymer

As a first simple application, we discuss the thermodynamic phase diagram of the 
SBS homopolymer model, i.e., a chain where all beads are equal and can interact 
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with one type of binders. The thermodynamic state of the SBS homopolymer at 
equilibrium only depends on the interaction energy Eint and concentration cm 
of the binders. Importantly, the scaling properties of polymer physics dictate 
that there is a one-to-one correspondence between the thermodynamic states of 
the system and its conformational folding classes. The phase diagram includes 
three main thermodynamic phases (Figure 3.1b, adapted from (Chiariello et al., 
2016)). The system is in an open, coil state for relatively small values of cm and 
Eint, because the binders form only a few unstable loops. The conformations of 
the system belong to the self-avoiding-walk conformational class, i.e., are those 
corresponding to an open, randomly folded chain. At higher values of cm and Eint, 
the polymer undergoes a coil–globule phase transition and becomes folded in a 
collapsed, disordered lump. The conformations in the globular state are compact, 
and have different critical exponents with respect to the SAW state. Interestingly, 
at even higher values of cms and Eint, the binders attached to the polymer undergo 
an order–disorder transition and an ordered structure is established, albeit the 
binders have no direct interactions with each other apart from hard-core repul-
sion. In the ordered state the polymer is compact, arranged by the binders in a 
crystal-like structure (Chiariello et al., 2016).

3.2.3  A switch-like control of folding

The coil–globule transition is typical of interacting polymers and does not depend 
on the finer details of the system (de Gennes, 1979). Hence, the sharp phase 

Figure 3.1. The Strings & Binders Switch (SBS) model of chromatin. a. Our 
SBS model is a polymer chain with binding sites for diffusing binding mol-
ecules; molecule concentration is cm, and affinity is Eint. Adapted from (Bianco 
et al., 2017). The binders can bridge and loop the polymer, hence changing 
its architecture. b. Stable architectural classes of the system correspond to 
its emergent thermodynamic phases. The toy model of panel a), in particu-
lar, has a coil–globule phase transition, where its conformations switch from 
open, randomly folded states to more compact, globular ones. Adapted from 
(Chiariello et al., 2016). c. Conformational changes (monitored by the values 
of the polymer gyration radius) can be sharply controlled (switch-like) by, e.g., 
gene up/down-regulation (acting on cm) or chemical modifications (acting on 
Eint) with no need of parameter fine-tuning.
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transitions between the open and compact states envisaged within the SBS model 
can also explain how conformational changes in chromatin topology can be regu-
lated in a switch-like way by robust, yet simple biological mechanisms, such as  
up- or down-regulation of the concentration of the polymer-binding molecules 
or by epigenetic modifications affecting the binding sites along the polymer  
(Figure 3.1c). The former mechanism increases or decreases cm, while the latter 
can change Eint, as a way to cross the sharp transition threshold between the dif-
ferent phases, thus providing a switch between chromatin states. These are robust 
mechanisms, requiring no fine-tuning of the binder concentration or affinity. 
Additionally, the order of magnitude of the binder concentration, cm, and energy, 
Eint, where the transitions are predicted, fall well within biological expectations for 
known transcription factors in the cell nucleus (Barbieri et al., 2012).

3.2.4  Critical exponents of the contact probability

The average pairwise contact probability, P(s), of bead pairs at a given contour 
distance, s, characterizes the folding state of the polymer. In the coil phase, P(s) 
has an asymptotic power-law decay with s, P(s) ~ s−α. The exponent, α, is named 
the critical exponent of the contact probability. In the coil state, it is equal to α 
~ 2.1, which belongs to the SAW universality class, which is well known in poly-
mer physics. The exponent is α ~ 1.5 at the coil–globule transition (named the 
polymer Θ-point (de Gennes, 1979)). The behavior of P(s) in the globular state is 
different in the disordered and in the ordered phases. In the latter, for instance, a 
power–law decay with α ~ 1.0 is found (Chiariello et al., 2016).

3.3.  A MODEL OF CHROMATIN FOLDING

3.3.1  The mixture model of chromatin

Since microscopy and Hi-C experiments have shown that DNA is typically orga-
nized in eu- and hetero-chromatic domains, we hypothesized that a single chro-
mosome is likely to be a mixture of differently folded regions (Figure 3.2a). This 
view has been named the mixture model of chromatin organization (Barbieri 
et al., 2012, Chiariello et al., 2016). The conformational states of the different 
regions of a chromosome must belong, at least at a first approximation, to the 
folding classes predicted by polymer physics. As the coil–globule transition is 
universal across interacting polymers, the phase diagram of the SBS homopoly-
mer discussed in the previous section can provide a guideline of the main folding 
classes of the different regions along a chromosome.

The mixture model of chromatin can be tested against experimental data. For 
instance, the average pairwise contact probability, P(s), between loci at a fixed 
genomic distance, s, derived from Hi-C data can be compared against the P(s) 
predicted by the model. In a simple coarse-grained approach, where chroma-
tin at large scales is folded in the states of a homopolymer, the predicted P(s) is 
just a linear combination of the contact probability of the main conformational 
classes described in the SBS phase diagram above, each weighted by the fraction 
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of chromatin in the corresponding class. Considering the simplicity of the model, 
it is interesting that it can explain experimental data about P(s) from the sub Mb 
up to chromosomal scales, over three orders of magnitude in genomic distances, 
as shown in Figure 3.2b (data from (Dixon et al., 2012), figure adapted from 
(Chiariello et al., 2016)). The fit based on the mixture model also gives an insight 
into the mixture compositions of each chromosome. Interestingly, chromosome 
X has the largest fraction of regions in the closed state (above 60%); gene-rich 
chromosomes, such as chromosome 17 or 19, are composed of much more open 
mixtures (>60%), as expected by biological considerations (Chiariello et al., 2016).

Note that, in this view, the exponent derived from a power-law fit of the P(s) 
extracted from experimental data is an effective exponent, depending on the 
mixture composition. The critical exponents are only those corresponding to the 
system pure states described previously.

3.3.2  Pattern formation (TADs) in the SBS block copolymer 
model

The SBS model also gives insights on how patterns, such as TADs or metaTADs, 
can be formed in chromatin architecture (Figure 3.2c). Without entering the 

Figure 3.2. The SBS mixture model of chromatin. a. In the mixture model, 
chromosomes are composed of a mixture of different regions folded into the 
different thermodynamic states predicted by polymer physics. Adapted from 
(Chiariello et al., 2016). b. The model explains well genome-wide average 
contact Hi-C data (IMR90 cells from Dixon et al., 2012) from the sub-Mb to 
chromosomal scales. Adapted from (Chiariello et al., 2016). c. Patterns in the 
contact matrix, such as TADs, can be explained by the presence of different 
combinations of bridging factors along the genomic sequence. Adapted from 
(Barbieri et al., 2012).
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details of polymer physics, consider for instance the toy case of a block copoly-
mer, i.e., a chain with two types of beads (red/green) arranged in two blocks, each 
interacting with a different type of binder (red/green, Figure 3.2c). As the  two 
blocks do not interact with each other, they fold independently in one of the 
states envisaged within the SBS homopolymer model. For instance, in case the 
blocks fold into their globular states, the contact matrix of the block copolymer is 
marked by two distinct domains, visually similar TADs (Figure 3.2c).

3.4  THE SBS MODEL OF THE SOX9 LOCUS IN MESC

A more realistic version of the SBS polymer model, including different types of 
binding sites (represented by different colors in the following figures), can explain 
Hi-C pairwise contact data of real loci with good accuracy. This has been shown 
in a variety of cases, such as the Bmp7, the 7q11.23, or the Xist loci in mouse 
(Chiariello et al., 2016, 2017). For illustration, here we review the case of the Sox9 
locus. This is a fundamental region in tissue development and a number of muta-
tions there, including human structural variants, have been associated with limb 
malformations and congenital diseases. The SBS model of Sox9 in mouse embry-
onic stem cells (mESC) (Figure 3.3) has been shown to reproduce the patterns of 
Hi-C data with 95% accuracy (Chiariello et al., 2016). A 3D snapshot of the locus 
model is shown in Figure 3.3b.

In this model, the binding domains (colors) are the physical determinants 
of chromatin folding patterns. Their position along the sequence is shown in  
Figure 3.3c (Chiariello et al., 2016). The location of the main binding domains 
roughly coincides with the known TADs (Dixon et al., 2012) of the locus  
(Figure 3.3c). However, relevant overlaps exist between the binding domains, 
which originate the complex sub-TAD structures visible in Hi-C data, as well 
as the interactions across TAD borders responsible for the formations of higher-
order chromatin domains, such as metaTADs (Chiariello et al., 2016). As Hi-C 
data can be comparatively well explained by the SBS model, the latter offers a 
view of the mechanisms underlying the regulation of chromosome architecture. 
From the SBS model we can also derive a single-allele picture of how the locus 
is folded in 3D and dynamically breaths. A snapshot of the Sox9 3D conforma-
tion in mESC is shown in Figure 3.3b. From the 3D structure it has also been 
discovered that abundant many-body contacts are present, beyond pair-wise 
interactions, such as triplets and multi-way contacts (Chiariello et al., 2016), as 
experimentally confirmed by technologies such as GAM (Beagrie et al., 2017).

3.4.1  Molecular nature of the binding domains

Insights into the molecular nature of model-predicted binding domains (col-
ors) and their cognate binding factors can be gained by cross-referencing the 
information on their genomic location with available epigenomic datasets (e.g., 
ENCODE, 2012). Figure 3.3c shows the correlations between binding domains 
and chromatin features in the Sox9 region in mESC (Bianco et al., 2017). 
Such analysis shows that each color correlates with a combination of different 
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factors, rather than a single mark. Some domains correlate with active marks 
and Pol-II, others with repressive marks. CTCF also correlates with some of the 
domains, but not with all. This picture is consistent with recent discoveries that 
a number of factors play a role in chromatin folding, ranging from architec-
tural TFs (e.g., CTCF/Cohesin, see Sanborn et al., 2015) as well as PRC1 (Kundu 
et al., 2017), MLL3/4 (Yan Biorxiv, 2017), Active/Poised Pol-II (Barbieri et al., 
2017), and more. These results support the view that a combinatorial code of 
a variety of molecular factors produces the complex architecture visible from 
Hi-C data.

3.5.  PREDICTING THE EFFECTS OF MUTATIONS ON 
GENOME 3D ARCHITECTURE

The SBS polymer model of a specific locus can be employed to make predictions 
on the impact of genomic mutations on the 3D structure of the locus and, hence, 
on the network of contacts between genes and their regulators. Specifically, the 
variant of interest can be implemented into the polymer model of the locus and 
its new 3D conformation derived under only the laws of physics. The resulting 
contact map provides detailed information on the 3D effects of the variant.

This type of approach has been implemented in several loci, including the Xist 
(Chiariello et al., 2016) and the Epha4 locus (Bianco et al., 2018). The successful 
comparison of model predictions against Hi-C data in cells bearing the same 

Figure 3.3. The SBS model of the Sox9 locus in mESC. a. The SBS model can 
explain the folding of the Sox9 locus with good accuracy. Hi-C (Dixon et al., 
2012) v.s. model contact data have a Pearson correlation of r = 0.95. Adapted 
from (Chiariello et al., 2016). b. From the SBS model, single-molecule 3D 
conformations of chromatin can be derived. A 3D snapshot of the Sox9 locus 
model is shown here. The color scheme is given in panel a). Adapted from 
(Chiariello et al., 2016). c. Combinations of factors, also including CTCF, corre-
lating with the model-binding domains (colors) shaping the locus 3D architec-
ture. Adapted from (Chiariello et al., 2016) and (Bianco et al., 2017).
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mutations provides a stringent test of the model, as no free-fitting parameters 
are adjusted. 

3.6  CONCLUSIONS

Important advancements have occurred in recent years in the development of 
polymer models of chromatin. The Fractal Globule model (Lieberman-Aiden  
et al., 2009, Rosa and Everaers, 2008), an early hypothesis on chromosome fold-
ing, has turned out to be only a qualitative, pictorial description of the structure 
of chromosomes as, e.g., its predicted contact matrix have no patterns (neither 
loops, TADs, sub-TADs, metaTADs, A/B compartments, etc.) and hence cannot 
explain the folding of real loci.

The SBS model has proposed a description of chromosome folding based on 
basic concepts of polymer thermodynamics, where chromatin 3D structures are 
physically produced by local micro-phase separation of cognate binding sites 
along the sequence (Nicodemi and Prisco, 2009), as supported by recent experi-
ments (Hnisz et al., 2017). The SBS model has been employed to dissect fold-
ing at several loci, including Xist, Sox9, Bmp7, and the HoxB regions in mESC 
(Scialdone, 2011, Chiariello et al., 2016, Annunziatella, 2016, Barbieri, 2017). SBS 
variants, informed by protein binding site data from Chip-Seq or DHS maps, 
have been also used to explain contact patterns across genomic regions, ranging 
from murine erythroblasts (Brackley et al., 2016), to Drosophila (Jost et al., 2014) 
and budding yeast (Cheng et al., 2015).

The SBS model and its variants focus on the role of thermodynamic states 
of the system. However, additional mechanisms, including off-equilibrium pro-
cesses, could have a role in shaping chromatin 3D architecture. An important 
recent example is the Loop Extrusion (LE) model (Sanborn et al., 2015, Fudenberg 
et al., 2016), described in Chapter 4 in this volume, which describes the case 
where an active motor (possibly the cohesin complex) binds to DNA and actively 
extrudes chromatin loops up to the moment when it halts at oppositely oriented 
CTCF sites. It is still unclear whether an active extrusion mechanism is indeed 
systematically required as a diffusive slip-link loop to form mechanisms that 
could explain the (Brackley et al., 2017). Anyway, the active LE or its passive, 
slip-link version appear to well describe the folding of loci where CTCF is a main 
driving force. However, in a number of cases those models have been unable to 
explain Hi-C contact data. For instance, the 3D structure of the globin loci has 
been shown to be preserved in knockout experiments of CTCF and other single 
TFs (Brackley et al., 2016), while its folding can be described with good accu-
racy by the thermodynamic mechanisms envisaged by the SBS model. Another 
example is a recent study of the murine HoxB locus that illustrated how promoter 
interactions, based on active and poised Poll-II, direct higher-order chromatin 
folding in embryonic stem cells by a mechanism well described by the SBS model 
and not consistent with CTCF-based loop extrusion (Barbieri, 2017).

Interestingly, the basic concepts of polymer physics envisaged by the SBS can 
explain chromatin 3D structures from the sub-Mbp to chromosomal scales, 
across cell types and chromosomes. Approaches have been developed to identify 
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the SBS model best describing the folding of any locus of interest, based only 
on architectural data without requiring previous knowledge of DNA-binding 
proteins (Chiariello et al., 2016, Bianco et al., 2018). That approach is interest-
ing because the determinants of folding and their mechanisms of actions can be 
identified with no a priori assumptions beyond that chromosome conformations 
reflect polymer physics.

The general impression emerging from recent studies is that the folding of 
real chromatin is likely to result from a combination of different polymer physics 
mechanisms, also including thermodynamic processes, as envisaged by the SBS 
model, or off-equilibrium processes, as envisaged by the Loop Extrusion or Slip-
Link models.

Progress in the development of principled approaches to dissect chromosome 
architecture can strongly improve our understanding of the fundamental molec-
ular mechanisms shaping chromatin architecture and their profound influences 
on how genes are regulated in healthy tissues and in diseases. Polymer physics 
can, thus, help identify new diagnostic and treatment tools for diseases linked 
to chromatin mis-folding, such as congenital disorders and cancer (Ong and 
Corces, 2014, Lupiáñez et al., 2015, Valton and Dekker, 2016).
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4
Loop Extrusion: A Universal 
Mechanism of Chromosome 
Organization

LEONID A. MIRNY AND ANTON GOLOBORODKO

4.1  INTRODUCTION

Challenges and goals of biophysical modeling of chromosome organization
One of the main challenges in characterizing chromosome organization is its 

almost paradoxical duality. On the one hand, conformations of the chromatin chain 
are highly variable from cell to cell, and changing in time, thus forming a diverse 
ensemble of structures. On the other, Hi-C data from recent years have revealed sev-
eral distinct and locus-specific patterns of interaction prominent in this ensemble, 
though present in a small fraction of cells (Cattoni et al., 2017; Anon, n.d.). These 
observations are in stark contrast to the structures of proteins where domains are 
either folded into distinct conformations with little or very localized structural 
variation, or remain largely unfolded and disordered (i.e. natively unfolded pro-
teins). Together, these observations suggest that chromosome organization can be 
described by a conformational ensemble of polymers, where sufficiently weak inter-
actions and active processes maintain transient, and likely functional, elements of 
organization (loops, domains, contacts, etc.) within polymers that are disordered 
on other length scales (e.g., within loops and between loops).
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Efforts to reconstruct such ensembles have been recently reviewed and clas-
sified (Imakaev et al., 2015; Marti-Renom & Mirny, 2011). Our team has been 
developing different de novo approaches where we model genome organization 
based on prior assumptions and mechanisms, and then select specific models 
and their parameters based on agreement with experimental Hi-C and micros-
copy data. Such models can include phenomenological physical models (e.g., 
coarse-grained models in Gibcus et al., 2018) or polymer simulations of various 
levels of details (e.g., Fudenberg et al., 2016; Goloborodko et al. 2016; Falk et al., 
2018; Nuebler et al., 2017; Tjong et al., 2012; Rosa & Everaers, 2008; Jerabek & 
Heermann, 2014; Rosa et al., 2010; see details in Section 4.3). These models typi-
cally have three goals: The first goal is to determine the general class of polymer 
architectures that are consistent with experimental observations (e.g., the non-
equilibrium fractal globule (Lieberman-Aiden et al., 2009; Rosa et al., 2010), the 
bottlebrush of consecutive loops (Naumova et al., 2013) or random-walk-like 
organization in budding yeast (Tjong et al., 2012)). The second goal is to charac-
terize these architectures more quantitatively, estimating their specific parame-
ters (e.g., loop sizes (Fudenberg et al., 2016), chromosome geometry (Tjong et al., 
2012), properties of the chromatin fiber (Arbona et al., 2017) or relative strength 
of interactions e.g., (Falk et al., 2018)). The third goal is to reveal mechanisms and 
processes that underlie the formation of such architectures and shape chromo-
some organization (e.g., microphase separation in (Falk et al., 2018), condensa-
tion by “binders-and-switchers” (Barbieri et al., 2012), or loop extrusion with 
barriers in (Fudenberg et al., 2016)).

Models of conformational ensembles allow inference of structural elements not 
otherwise visible in experimental data

These goals are better achieved by modeling approaches that generate ensem-
bles of polymer conformations, either de novo (Tjong et al., 2012) or by infer-
ence from Hi-C data (Serra et al., 2017), rather than by models of individual 
conformations (Lesne et al., 2014; Mercy et al., 2017). Statistical properties of 
ensembles can then be compared to features of experimental data. For exam-
ple, the curves of the contact probability P(s) with genomic distance s can be 
directly compared between models and Hi-C data (Rosa et al., 2010; Lieberman-
Aiden et al., 2009; Fudenberg et al., 2016; Gibcus et al., 2018; Naumova et al., 
2013); distance between genomic elements can be compared between models and 
microscopy data (Therizols et al., 2010; Tjong et al., 2012; Tark-Dame et al., 2014; 
Rosa & Everaers, 2008). Similarly, other macroscopic features such as shapes and 
ordered banding of prophase chromosomes can be compared to simulations as 
well (Zhang & Heermann, 2011; Goloborodko, et al. 2016). Sweeping parameter 
values or other forms of inference (Arbona et al., 2017) helps to find specific val-
ues of sizes, shapes, and characteristics of these structures.

Importantly, modeling allows us to identify the elements of structural organi-
zation and infer their quantitative characteristics that are not otherwise visible in 
Hi-C data or microscopy (e.g., the sizes or arrangements of loops in mitotic chro-
mosomes (Naumova et al., 2013; Gibcus et al., 2018), or the spiraling of bacterial 
chromosomes (Umbarger et al., 2011)). While such structural models provide 
insights about elements of organization, they are not always based on biologically 
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and physically realistic assumptions (e.g., assuming loops are pinned in space or 
unrealistically long-range or position-dependent potentials of interactions) and 
hence do not necessarily provide information about microscopic processes that 
generate such structures or shape conformational ensembles. Achieving the third 
goal of suggesting microscopic molecular mechanisms that shape macroscopic 
chromosome organization is a major challenge for modeling.

From equilibrium to non-equilibrium to active models of chromosomes
Chromatin is a polymer and hence its organization can be described by sta-

tistical polymer physics. The first studies describing conformations of long DNA 
molecules by the model of a freely jointed chain (i.e., a random walk) date back 
to the 1960s and 70s (Cohen and Eisenberg, 1966; Schellman, 1974), while one of 
the first quantitative comparisons of interphase chromosomal organization to 
the random walk polymer model was done in van den Engh et al., (1992). Since 
then, numerous studies have described chromosomes with equilibrium polymer 
models (Dekker et al., 2002; Hahnfeldt, 1993) models with fixed loops (Bohn  
et al., 2007; Sachs et al., 1995; Münkel & Langowski, 1998) or more complicated 
rosettes of loops (Münkel et al., 1999), but were limited by the imaging data 
available for a handful of loci (Mateos-Langerak et al., 2009; Yokota et al., 1995). 
Models of loops used in (Münkel et al., 1999; Bohn et al., 2007) assumed fixed, 
predefined positions of loops, and are drastically different from the dynamically 
extruded loops discussed in Section 4.3. While models with fixed loops can serve 
as adequate structural models, the model of loop extrusion actually provides a 
mechanism for how such loops can be formed.

One of the first non-equilibrium polymer models of chromosomes was con-
sidered in Rosa & Everaers (2008), who argued that topological constraints, i.e., 
the inability of chains to pass through each other, should slow the mixing of 
chromosomes, preventing their equilibration between cell divisions. This study 
further demonstrated that such non-equilibrium polymer organization can 
lead to observed chromosomal territories. Another non-equilibrium model was 
proposed in the first Hi-C study (Lieberman-Aiden et al., 2009) and suggested 
that topologically constrained compact states, conjectured earlier (Yu. Grosberg 
et al., 1988) and known as the crumpled (fractal) globules are consistent with the 
contact probability scaling P(s) observed in Hi-C.

As the resolution of Hi-C data increased, new patterns of chromosome orga-
nization because apparent, most prominently Topologically Associating Domains 
(TADs). Explaining mechanisms of TAD formation using equilibrium or nonequi-
librium models (Barbieri et al., 2012; Jost et al., 2014) was fraught with serious dif-
ficulties: First, TADs form only local enrichments of intra-TAD contacts without 
showing the long-range patterns that emerged in many models (Jost et al., 2014) 
based on preferential interactions. Second, models based on preferential interac-
tions failed to reproduce experiments which showed that neighboring TADs merge 
when a small CTCF-containing boundary element between them has been deleted. 
More recent attempts to adopt such models to reproduce TADs required a model 
with as many as 21 types of monomers (Bianco et al., 2018) interacting with each 
other in different ways. Surprisingly, the authors found that the behavior of the 
models does not change when simulated CTCF boundaries are removed.
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A model that was able to reproduce both TADs (Fudenberg et al., 2016) and 
changes in chromosome organization in various mutants (Fudenberg et al., 2018) 
is based on the concept of loop extrusion with barriers, which was originally pro-
posed to explain mitotic compaction (Nasmyth, 2001; Alipour & Marko, 2012), 
and similar to earlier proposals of loop reeling (Riggs, 1990). Proposed purely 
on theoretical grounds, the mechanism of loop extrusion remained hypothetical 
until recently (Ganji et al., 2018; Fudenberg et al., 2018).

Loop extrusion – a new paradigm of active chromosome folding by motor proteins.
In the process of loop extrusion, a Loop Extruding Factor (LEF) associates 

with the DNA or the chromatin fiber and forms a progressively expanding loop 
(Figure 4.1). This process is driven by energy consumption (active process) and 
hence does work to change chromosome conformation. A LEF can be thought 
of as two connected molecular motors that progressively move along chromatin 
in opposite directions. It is not known whether both motors move (two-sided 
extrusion (Fudenberg et al., 2016; Goloborodko, Imakaev, et al. 2016)), or only 
one moves while the other is anchored (one-sided extrusion (Ganji et al., 2018), 
whether they move at the same speed, or at the same time (see (Fudenberg et al., 
2018) for discussion).

SMC proteins are likely candidates for loop extruding factors. SMC proteins are 
present in all forms of life.

Figure 4.1 The process of loop extrusion (A); rules of interactions between 
LEFs (B) as implemented in (Fudenberg et al., 2016; Fudenberg et al., 2018). 
(C) Two length-scale parameters that determine dynamics of the system (see 
text); (D) Coverage by the loops and two steady-state regimes of compaction 
(Goloborodko, Marko, et al. 2016).
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Emerging experimental evidence (see Section 4.2) point at SMC (Structural 
Maintenance of Chromosomes) complexes as potential LEFs. Strikingly, SMC 
proteins are present in all forms of life, including bacteria, archaea, and eukarya 
(Haering & Gruber, 2016a; Haering & Gruber, 2016b). SMC proteins play several 
key roles in chromosome organization. In well-characterized bacteria with sin-
gle circular chromosomes, loop extrusion by SMCs begins at a specific location 
close to the origin of replication; and extrusion along the two chromosomal arms 
leads to their juxtaposition (Wang et al., 2017; Badrinarayanan et al., 2015). In 
mammals, the canonical role of the SMC protein complex cohesin is to  co-align 
sister chromatids, while the role of SMC complexes of condensin is to compact 
mitotic chromosomes. As discussed here, cohesin also plays a crucial role in 
the formation of chromosomal domains (Fudenberg et al., 2016; Sanborn et al., 
2015; Sofueva et al., 2013). On the contrary, in budding yeast, it is cohesin that 
compacts chromosomal arms during mitosis (Schalbetter et al., 2017), while in 
S.  pombe, cohesin appears to establish interphase domains (Mizuguchi et al., 
2014). In summary, SMCs play crucial roles in mitotic compaction, alignment of 
sister chromatids, meiotic chromosome organization, dosage compensation, and 
in the formation of interphase domains. Loop extrusion can be central for many 
of the functions of SMCs.

In Section 4.2 we review recent theoretical and experimental studies that sug-
gest how loop extrusion can organize and reorganize chromosomes.

4.2  PHYSICS OF LOOP EXTRUSION AND CHROMOSOME 
ORGANIZATION

Extrusion by multiple LEFs can lead to the formation of reinforced loops.
Recent studies (Alipour & Marko, 2012; Goloborodko, Marko, et al. 2016) 

focused on the behavior of a dynamically growing system of loops, while set-
ting aside the effects of these loops on 3D polymer conformation. These studies 
considered dynamics in the system of multiple LEFs that extrude loops and dis-
sociate and associate back to the polymer in a random location, including other 
loops. LEFs, however, cannot pass by each other, i.e., loops cannot cross each 
other, consistent with topological entrapment by SMCs (Figure 4.1). What kind 
of loop structures can emerge in this system: branching tree-like structures or a 
regular array of loops? Does the system reach a steady state with a finite loop size 
or do loops grow till they reach the size of a whole polymer?

Since a LEF can associate within already existing loops, nested loops can be 
formed (Figure 4.1). The emergence of nested loops creates an interesting hierar-
chy of larger “parental” loops, and smaller “child” loops. If the growth of a paren-
tal loop is blocked, a child loop can grow until it reaches the size of the parental 
loop, creating a “reinforced” loop with multiple LEFs at its base. As individual 
LEFs dissociate, surplus LEFs can drop in to replace them, like the planks of 
the ship of Theseus, enabling reinforced loops to remain intact. If several LEFs 
associate within the same parent at about the same time, they can grow until 
they split the parental loop. These processes are central to dynamics in the dense 
regime discussed below.
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Loop extrusion is characterized by two length scales, achieves a steady state, 
and shows two dynamical regimes: a sparse regime and a dense regime.

Simulations and analytical treatment (see (Goloborodko, Marko, et al. 2016) 
and below) shows that the dynamics of the system can be fully described by two 
length scales: (Figure 4.1)

λ – the processivity of a LEF, i.e., the average size of a loop extruded over LEF’s 
residence time on DNA if the extrusion process were unobstructed. If the mean 
residence time is τ and the velocity of the loop extrusion is ʋ, then λ = ʋτ.

d – the average separation between LEFs along the polymer. For N, LEFs asso-
ciate with a polymer of length L, d = L/N.

Two regimes of the system naturally emerge in the two limiting cases: the 
sparse regime when d >> λ, and the dense regime when d << λ. In the sparse 
regime, growing loops are separated by large distances, hence they do not inter-
act often, and the system rapidly reaches steady state with average loop size l = λ. 
Although little linear compaction is achieved by such sparse loops, this regime 
does facilitate interactions between neighboring (cis) regions of the genome and 
may serve as a framework for chromosome organization during interphase (see 
Section 4.2.2).

In the dense regime (d << λ), neighboring loops constantly collide and block 
each other as they expand, and individual loops get reinforced by multiple LEFs. 
The system reaches a steady state because of a balance between two processes: 
loop death (when all LEFs at a base of a loop dissociate) and loop division (when 
a loop gets split into two child loops). This results in a steady state where the aver-
age loop size is defined by λ and d as l ≈ d log(λ/d) < λ, and where each loop is 
reinforced by multiple LEFs (≈ log(λ/d)). No tree-like branching structures are 
formed because LEFs rapidly reach loop bases, causing them to reinforce existing 
loops. Interestingly, this dense steady state is rapidly reached, requiring just a 
few LEF turnover times. This regime also leads to efficient chromosome compac-
tion as 100% of the fiber is extruded into loops and any spontaneously emerging 
gaps are rapidly extruded by nearby LEFs (Goloborodko et al. 2016; Goloborodko  
et al. 2016).

This simple model provides a framework for understanding the effects of loop 
extrusion with the interphase corresponding to the sparse regime (provided 
additional extrusion barriers are established), and the metaphase corresponding 
to the dense regime (accompanied by poor solvent conditions). While several 
biological details may be missing from this physical model, it successfully repro-
duces several vital biological phenomena that could not be explained by other 
processes (see the following sections).

4.2.1  Loop extrusion during mitosis

Loop extrusion in the dense regime (d << λ) can reproduce compaction and segre-
gation of mitotic chromosomes.

Two phenomena are central to chromosome reorganization during cell divi-
sion: (i) compaction of individual chromosomes and (ii) their concomitant seg-
regation from one another.
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Several aspects of these processes are remarkable from the physics point of 
view. First, chromosomes are compacted (~500-fold in length, vertebrates) form-
ing elongated rather than globular structures. This is in striking contrast to com-
paction by a poor solvent or by crosslinking agents (Barbieri et al., 2012) as these 
would necessarily minimize the surface area and hence lead to a spherical col-
lapsed state (Grosberg, 1994). Second, each chromosome in this compacted state 
maintains its linear order, i.e., the order of genomic elements in the elongated 
chromosome resembles their order along the genome. Third, the compaction 
machinery is able to distinguish sister chromatids (identical copies of the same 
chromosome) and compact them separately, i.e., form interactions (crosslinks) 
exclusively within individual chromatids rather than between them. Fourth, 
the process of compaction coincides with the segregation of sister chromatids. 
Fifth, originally intertwined sister chromatids become topologically disentan-
gled, which is surprising given the general tendency of polymers to become more 
intertwined as they are concentrated (Marko, 2011). Finally, and most strik-
ingly, all these processes are accomplished by the collective action of protein 
complexes each being a thousand times smaller than compacted chromosomes. 
These complexes cannot distinguish chromosomes from each other (due to their 
similar DNA sequence) and are unable to communicate with each other (due to 
the screening of long-range interactions in physiological solvents). Chromosome 
reorganization for cell division constitutes a remarkable multiscale self-orga-
nization phenomenon where hundreds of thousands of nanometer-sized mol-
ecules act on meter-long polymers, assembling them into regular and organized 
micron-sized mitotic chromosomes (Figure 4.2).

These remarkable processes take place due to activities of two protein  
enzymes: topoisomerase II and condensin (Hirano & Mitchison, 1994; Wood & 
Earnshaw, 1990; Hirano, 1995), with topoisomerase II playing an essential but 
largely supportive function (Hirano & Mitchison, 1993). Strikingly, 3D simula-
tions of loop extrusion in the dense regime (λ/d > 20) (Goloborodko, Imakaev, 
et al. 2016) show that myriads of LEFs, representing condensins, can accomplish 
all these tasks by producing compacted and elongated chromatids, that maintain 
linear order in the compact state, and that faithfully segregate from each other 
(Figure 4.2). The activity of topoisomerase II was essential for complete segrega-
tion and was modeled by weak topological constraints allowing chains to pass 
through each other. Details of these simulations are presented in Section 4.3.

Loop extrusion can accomplish this because it generates an array of con-
secutive loops without gaps in individual chromosomes, as has been proposed 
in Nasmyth (2001). Classical microscopy studies and recent Hi-C experiments 
show that mitotic chromosomes are indeed formed by arrays of consecutive loops 
(Paulson & Laemmli, 1977; Earnshaw & Laemmli, 1983; Naumova et al., 2013). 
Formation of such arrays naturally results in lengthwise chromosome compac-
tion while maintaining genomic order. Steric repulsion between chromosomes 
shaped as bottlebrushes of loops further leads to segregation of chromosomes 
(Goloborodko, Imakaev, et al. 2016).

Simulations also show that loop extrusion naturally leads to the formation 
of the central condensin-rich scaffold, that has been observed by microscopy in 
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mitotic chromosomes (Saitoh et al., 1994; Maeshima & Laemmli, 2003). As loops 
are extruded, condensins accumulate next to each other, forming a continuous 
condensin scaffold, which is in turn surrounded by extruded loops that run away 
from the scaffold to maximize their conformational entropy. Thus, loop extrusion 
(in the presence of simulated topo II) can compact polymers into structures that 
reproduce several hallmarks of mitotic chromosomes (Goloborodko et al. 2016).

Time-resolved Hi-C data for mitotic compaction allow testing various polymer 
models of loop organization

Most recently, Hi-C for several time points through prophase and prometa-
phase of highly synchronized cells have been produced (Gibcus et al., 2018). These 
data allowed testing models of mitotic chromosome compaction and organiza-
tion. As the first step in this direction, models for individual time-points sampled 
by Hi-C have been developed (Gibcus et al., 2018). While models are consistent 
with the dense arrays of loops organized around the central scaffold, as produced 

Figure 4.2 The dense regime as a model of mitotic chromosomes compac-
tions. (A) Snapshots of simulations from (Goloborodko, Imakaev, et al. 2016) 
illustrating that the loop extrusion leads to the formation of the prophase-
line chromosome that has (i) organized linear structures (reflected by col-
ors); (ii) elongated morphology of prophase chromosome; and (iii) central 
condensin-rich scaffold. The loop diagram shows structures of emerging loops 
with nested and reinforced loops (shown by the number above arches). (B) 
Loop extrusion leads to segregation of two identical chromatids. (C and D) 
Analytically solvable models of mitotic chromosomes with ordered loop arrays 
and they comparison with time-resolved Hi-C from (Gibcus et al., 2018).
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by loop extrusion, they suggest additional features of chromosome organization 
that may not emerge from loop extrusion alone.

While loop extrusion in the dense regime leads to the formation of a bottle-
brush of loops, relative orientations of loops that emanate from the scaffold are 
not specified by this model (Figure 4.2). Cylindrical symmetry of mitotic chro-
mosomes and radial organization of loops in the bottlebrush, however, allowed 
the development of analytically solvable polymer models for which contact  
probability P(s) curves can be computed (Gibcus et al., 2018). In these models 
(Figure 4.2), each loop is assumed to be a Gaussian polymer blob of a particu-
lar height and angular width. Loops are located consecutively along the chro-
mosomal axis (z axis). The individual models differ in the rules governing the 
relative orientations of the loops: random independent orientations, random but 
correlated orientations of neighboring loops (angular random walk), and orienta-
tions that follow a spiral path (modeled by Ornstein-Uhlenbeck angular random 
walk with an angular drift) (Gibcus et al., 2018). For each model, one can analyti-
cally compute the contact probability curve P(s) as a function of parameters of 
the model, such as the linear density of loops, their high and angular width, and 
model-specific parameters (correlations between neighboring loops, pitch of the 
spiral etc). Despite the existence of several free parameters, models yield different 
P(s) curves, some of which don’t agree with the P(s) from Hi-C data, while others 
do. Different time points of mitotic compaction can be reproduced by different 
models. Models found analytically can then be implemented as polymer simula-
tions and investigated further.

Prophase and prometaphase chromosomes are formed by loop arrays with 
nested loops and spiral scaffolds

Polymer models that can reproduce Hi-C reveal two novel aspects of chro-
mosome organization. First, while prophase chromosomes (first 5–10 minutes 
of compaction) are formed by dense arrays of loops where consecutive loops 
are pointing in correlated directions, chromosomes at later stages of compac-
tion (30–60 min) are formed by loops that emanate from the scaffold following a 
spiral path (Figure 4.2). Spiral organization in animal mitotic chromosomes has 
been observed for decades (Jane, 1934; Ohnuki, 1965; Manton, 1950) but these 
observations were largely attributed to artifacts of chromosome isolation. The 
reporting of spirals in Hi-C data suggests that spiral scaffolds may indeed be 
present in native chromosomes. Second, while loop sizes grow from 40 Kb to  
80 Kb in the early stages of compaction, data for later stages suggest that very 
high linear densities of loops can be achieved through nested loops, i.e., larger 
loops that are split into smaller ones.

Although dense arrays of loops emanating from the central scaffold are con-
sistent with the basic loop-extrusion model, novel aspects of chromosome orga-
nization such as nested loops and spiral scaffolds discovered in this study go far 
beyond simple loop extrusion, requiring significant extensions of the model to 
include two types of condensins and interactions between condensins.

Several important biophysical questions about mitotic compaction remain to 
be answered.
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First, the formation of nested loops can in principle be accomplished by two 
types of loop extruders with different processvities and/or timing of action. 
This agrees with two types of condensins, with condensin II that starts ear-
lier in prophase and condensin I that gains access to chromatin later (after the 
nuclear envelope breakdown). The activity of the two types of loop extruders 
however constitutes a new class of models that need to be studied and can have 
rich behaviors.

Second, the formation of co-oriented loops at early stages of compaction 
and spiral formation at later stages need to be explained. One possibility is that 
specific protein–protein interactions between condensins at the bases of neigh-
boring loops lead to their coorientation and to further ordering into a spiral. 
Alternatively, polymer mechanisms can lead to coorientation and spiraling of the 
scaffold as the linear density of loops increases (Maritan et al., 2000).

Third, models of mitotic chromosomes discussed above require compaction 
of extruded loops by some external mechanism, akin to poor solvent conditions. 
A mechanism that leads to a transition from good solvent conditions during 
interphase to poor solvent remains to be found. Poor solvent conditions during 
prophase and prometaphase, however, may lead to sticking of chromosomes and 
chromatids to each other. Preventing such aggregation of chromosomes under 
poor solvent conditions may require some additional surfactant that can coat 
chromosomes in a similar way to the Ki67 (Booth et al., 2016; Cuylen et al., 2016) 
or BAF (Samwer et al., 2017).

Fourth, the recent observation of single-sided loop extrusion (Ganji et al., 
2018) would require revisiting these models, aiming to understand whether sin-
gle-sided extrusion can achieve required levels of compaction and other elements 
of organization. It is possible, however, that the single-sided extrusion that was 
observed for condensin from S.cerevisiae is a specific process for this class of 
organisms where chromosomes are short, requiring little compactions (Lazar-
Stefanita et al., 2017) and where cohesin, rather than condensin, plays a major 
role in mitotic compaction (Schalbetter et al., 2017).

4.2.2  Loop extrusion during interphase

The concept of loop extrusion developed for mitotic compaction have been extended 
to model interphase domains (TADs).

Loop extrusion in the interphase has been recently thoroughly reviewed 
(Dekker & Mirny, 2016; Fudenberg et al., 2018), so here we will summarize the 
main results and challenges. Topologically Associated Domains (TADs) are 
a hallmark of interphase chromosomes (Dixon et al., 2012; Nora et al., 2012). 
Each domain constitutes a consecutive region of the genome enriched in inter-
actions with itself and partially insulated (~2-fold) from neighboring regions. 
Two features of domains are central to their function. First, the insulation of 
domains from their neighbors is established by domain boundaries that con-
stitute DNA sequences occupied by specific proteins (CTCF, YY1, and oth-
ers); when such sequences or proteins are removed, domains merge with their 
neighbors (Sanborn et al., 2015; Nora et al., 2017; Wutz et al., 2017a; Guo et al., 
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2015; Narendra et al., 2015). Second, domains establish regulatory “neighbor-
hoods”, i.e., regulatory DNA sequences (e.g., enhancers) located within a domain 
largely act on genes within the same domain (Lupiáñez et al., 2015; Symmons 
et al., 2014).

These aspects of domain function are remarkable from the physics point of 
view:

How can the binding of ~5 nm-size proteins to DNA provide insulation or 
control interactions between genomic regions located ~1000 nm away along the 
genome and ~100 nm away in space? How can two contacting genomic regions 
(e.g., a regulatory region and a promoter) recognize that they belong to the same 
domain, rather than to two neighboring domains? These examples of action 
across scales are reminiscent of the phenomena of self-organization and segrega-
tion of mitotic chromosomes by much smaller proteins.

Loop extrusion in the sparse regime (λ/d ~ 1) and with extrusion barriers can 
explain the formation and function of interphase domains

To model interphase domains one needs to add extrusion barriers (Figure 4.3), 
which can block propagation of LEFs once they meet the barrier (Alipour & 
Marko, 2012; Fudenberg et al., 2016; Sanborn et al., 2015). Polymer simulations 
of the loop extrusion with barriers can reproduce TADs as seen in Hi-C, both 
qualitatively and quantitatively (Fudenberg et al., 2018; Fudenberg et al., 2016). 
Interestingly, the best agreement with Hi-C data is achieved for the sparse regime 
(d ≥ λ), closer to its upper limit of λ/d ~ 1, when about ~50% of chromatin is 
extruded into loops and hence chromosomes are not compacted. This result from 
simulations agrees with WaplKO experiments where a ~2-fold decrease in d and 
a ~10-fold increase in λ has led to the formation of extended and compacted “ver-
micelli” chromosomes (Wutz et al., 2017b; Tedeschi et al., 2013; Haarhuis et al., 
2017; Gassler et al., 2017), characteristic of the dense regime (likely λ/d ~ 10).

Importantly, loop extrusion explains seemingly paradoxical action across 
scales, allowing small proteins to facilitate and control interactions at much 
larger scales (Dekker & Mirny, 2016): Loop extrusion leads to the formation of 
additional transient contacts at and near active LEFs. By stopping a LEF (likely, 
cohesin) at a domain border a small CTCF protein prevents the formation of 
extruded loops across domain borders. While an extrusion barrier cannot con-
trol spatial contacts that happen across domain borders, as evident from sin-
gle-nucleus Hi-C (Flyamer et al., 2017), it suppresses additional inter-domains 
contact facilitated by loop extrusion.

If such extrusion-mediated interactions are central for gene regulation, loop 
extrusion with barriers at domain borders would also facilitate such interactions 
within domains and suppress them between domains.

This model can also take into account the directionality of CTCF boundaries 
(Vietri Rudan et al., 2015), partial permeability of boundaries due to rapid CTCF 
exchange (Hansen et al., 2017), boundaries of different strength, and other phe-
nomena (see (Fudenberg et al., 2018) for review). A model with semipermeable 
and directional boundaries can reproduce not only the formation of domains, 
but also enrichment of contacts between domain boundaries (“corner peaks”), 
scanning of domain interiors by boundary elements (“flames” first reported in 
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Fudenberg et al., 2016), and the emergence of more complex patterns of contact 
peaks in wild-type and mutant cells.

Loop extrusion forms domains by creating dynamic intra-domain contacts 
rather than by forming stable CTCF-CTCF loops.

It is a common misconception that central to the formation of a domain is the 
establishment of a stable loop between CTCFs at its boundaries. Several studies 
(Doyle et al., 2014; Benedetti et al., 2014; Fudenberg et al., 2016), however, have 
demonstrated that a stable loop between two boundaries can neither lead to the 
enrichment of interactions inside a domain, nor insulate neighboring domains 
from each other. Although CTCF-occupied boundaries show enrichment of con-
tacts between them, according to microscopy such contacts are present in only 
~5–10% of cells (Cattoni et al., 2017).

Loop extrusion with barriers, on the contrary, increases the frequency of 
intra-domain contacts by creating transient contacts at and around extruding 

Figure 4.3 The sparse regime of loop extrusion as a model for interphase 
chromosome organization. (A) Extrusion barriers block propagation of LEFs 
(cohesin) in one direction while allowing progressive loop extrusion at the 
other end of the LEF. (B) A diagram of loop extrusion in the sparse regime 
with barriers. (C) Simulations of 30,000 beads representing 15Mb of chroma-
tin in periodic boundary conditions, with the loop extruding factors (shown 
in yellow). The inset shows three snapshots of a loop extruded by a LEF. (D 
and E) Results of the simulations: (D) The average contact map clearly shows 
insulated domains, with “flames” and “corner peaks” similar to such Hi-C 
features. (E) The scaling of the contact probability P(s) with genomic distance 
s for 50 best models (lines) within (green) and between (magenta) domains, as 
compared to experimental within and between domain P(s) for 300–500 Kb 
domains from Hi-C data (Fudenberg et al., 2016).
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cohesin. Since cohesins are expected to extrude at high speed (~20–40 Kb/min 
(Fudenberg et al., 2018)) and exchange with the nucleoplasm every 5–20  minutes 
(Gerlich et  al., 2006; Wutz et al., 2017b), these induced contacts are highly 
dynamic and variable from cell to cell. However, these dynamic contacts are cen-
tral to establishing domains and can be insulated by loop extrusion barriers.

Models of passive barriers cannot establish reliable insulation.
Other models of domain formation suggested that the unique physical proper-

ties of boundary elements can make them insulate neighboring domains (Dixon 
et al., 2016; Stadler et al., 2017). Dixon et al. suggested that more rigid boundary 
elements can insulate interactions between neighboring domains made by more 
flexible chromatin. Stadler et al suggest that less compacted boundary regions 
can stretch in space, thus increasing the distance between domains and achiev-
ing insulations. Polymer simulations of boundaries formed by long rigid or lon-
ger, less compacted stretches of chromatin, however, show that such types of 
boundary cannot achieve robust insulation ((Fudenberg et al., 2016) Fig S5 there). 
While regions proximal to stiff or extended boundaries are insulated, regions 
further away do not feel the presence of the border and contact across boundar-
ies as frequently as within a domain. From the physics point of view it is clear 
that the conformational ensemble of long and spatially confined polymer cor-
responding to two consecutive domains (e.g., ~200 Kb ~400 persistence lengths) 
cannot be altered by the increased length or rigidity of ~1–5 persistence length 
fragments.

Loop extrusion can interfere with spatial segregation of active and inactive 
chromatin

Recent experiments that targeted the loading of cohesin on DNA (Schwarzer 
et al., 2017) have demonstrated not only that loop extrusion by cohesin is central 
to the formation of domains, but also that another layer of chromatin organiza-
tion, namely A/B compartments are formed by a cohesin-independent mecha-
nism. Spatial segregation of active (eu-) and inactive (hetero-) chromatin in 
metazoan nuclei has been known for decades (Wrinch, 1934; Frolova, 1938), and 
is visible in Hi-C maps as a checkerboard pattern reflecting preferential inter-
actions of active, A compartment regions, with other active regions, and inac-
tive, B compartment regions, with other inactive ones (Lieberman-Aiden et al., 
2009). This segregation is likely driven by interactions between different types of 
chromatin, with inactive–inactive interactions being the strongest (Falk et al., 
2018) and possibly mediated by HP1 or other similar proteins (Strom et al., 2017; 
Larson et al., 2017). Several studies suggested that this interaction-driven segre-
gation constitutes a microphase separation of block copolymers, a well-known 
model in polymer physics (Jost et al., 2014; Nuebler et al., 2017).

Interestingly, the phase separation of active and inactive chromatin is 
diminished by cohesin-mediated loop extrusion. Experiments where chroma-
tin-associated cohesin was significantly depleted revealed stronger and finer 
compartmentalization (Schwarzer et al., 2017). Simulations of the (mirco)phase 
separation of chromatin subject to additional loop extrusion indicate that the 
phase separation can be diminished by the process of active extrusion (Nuebler 
et al., 2017).
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Several sources of evidence support the presence of loop extrusion and pose new 
intriguing questions

Proposed purely on theoretical grounds, to explain compaction and segrega-
tion in mitosis (Nasmyth, 2001; Alipour & Marko, 2012) or domain formation 
(Fudenberg et al., 2016) and cis interactions (Riggs, 1990) during interphase, 
the process of loop extrusion is now supported by three sources of evidence (see 
(Fudenberg et al., 2018) for review).

The first source of evidence constitutes cohesin depletion and enrichment 
experiments, which show not only the loss of domain upon depletion of cohesin, 
but also the loss of local compaction, consistent with the loop extrusion by cohe-
sin. While CTCF depletion also leads to the loss of domains, peaks, and flames, 
it has no effect on local compaction, consistent with its primarily instructive 
function in establishing domain boundaries (Nora et al., 2017). Enrichment of 
cohesin by Wapl deletion leads not only to stronger domains and their associated 
“peaks” and “flames”, but also to overcompaction of chromosomes as evidenced 
in Hi-C and by microscopy (Tedeschi et al., 2013; Wutz et al., 2017b; Gassler  
et al., 2017; Haarhuis et al., 2017), and consistent with the increased loop extru-
sion activity.

The second source of evidence comes from the recovery of chromosomal 
features upon reactivation of loop extrusion in mammalian cells (Rao et al., 
2017; Wutz et al., 2017b) or in bacteria where sites of SMC loading were relo-
cated (Wang et al., 2017; Tran et al., 2017). Time-lapse Hi-C in these bacterial 
studies also provided direct measurements of the SMC speed of extrusion as 
25–50 Kb/min.

The third source of evidence comes from in vitro single-molecule experiments 
on isolated SMCs. These experiments clearly demonstrated that SMCs are ATP-
dependent motors, which can either translocate along DNA at a speed of ~4 Kb/
min (Terakawa et al., 2017) or extrude DNA loops at 40–80 Kb/min (Ganji et al., 
2018), while consuming ~2 ATP molecules per sec (Eeftens et al., 2017). Importantly, 
these and a recent ATP and transcription inhibition study (Vian et al., 2018) show 
that SMCs have ATP-dependent loop extruding activity without requiring the 
assistance of other known DNA motors (e.g., polymerases or helicases).

New questions and challenges for understanding loop extrusion and beyond
The first challenge is the detection of extruded loops and the process of extru-

sion in vivo. These loops are highly dynamic (~5–20 minutes) and vary from cell 
to cell. While they can be captured by single-cell Hi-C or imaging, they are not 
distinct from any other contacts. Since these loops are formed at different places 
in different cells they are not immediately visible or distinct in population Hi-C 
or multiplexed imaging (Anon n.d.) either. Detecting extruded loops would 
require the development of new techniques that can unambiguously establish 
their presence from static or dynamic data.

The second challenge is to understand the roles that loop extrusion can play 
in a variety of processes that involve genomic DNA. The critical role of loop 
extrusion in the formation of interphase domains suggests a role in regulating 
gene expression by modulating enhancer–promoter interactions. Although per-
turbation of cohesin/CTCF system has led to changes in gene expression, these 
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changes were localized and modest. Direct evidence of expression modulation by 
loop extrusion are yet to be found.

The discovery of this novel motor-driven extrusion is similar to the discovery 
of cytoplasmic motor proteins in the 1980s, which, as we now know, play crucial 
roles in a variety of cellular processes from cell and tissue motility and to cell 
division and signaling. Similarly, one may expect loop extrusion to play impor-
tant roles not only in mitosis and regulation of gene expression (Merkenschlager & 
Odom, 2013) but also in meiosis, allele-specific expression (Savova et al., 2013; 
Horta et al., 2018; Guo et al., 2012) and dosage compensation (Bonora et al., 2018; 
Crane et al., 2015), replication, splicing (Kim et al., 2018), DNA repair (Vian  
et al., 2018), switching of differentiation programs, and mutagenesis and recom-
bination (Jain et al., 2018).

The third challenge is to understand the molecular mechanism behind the 
regulation of loop extrusion and its interplay with other cellular processes. 
The models described previously assumed uniform loading and unloading of 
cohesin and condensins, exponential residence times and a constant extrusion 
speed, and a lack of specific interactions with other DNA-bound proteins other 
than occlusion by boundary elements. In reality, certain loci and processes may 
recruit additional cohesins, stop, move, pause or evict them. Boundary elements 
can also be modified, stabilized or evicted by protein or DNA modifications. The 
slowdown of SMC-mediated loop extrusion by transcription, evident in mam-
mals (Wutz et al., 2017b) and bacteria (Tran et al., 2017; Wang et al., 2017), can 
also play an important role. Another complex interplay can arise between loop 
extruding SMCs and cohesins connecting sister chromatids (Stanyte et al., 2018); 
and possibly similar interplay between static and dynamic SMCs can occur in the 
meiotic synaptonemal complex. As discussed above, loop extrusion can interfere 
with other mechanisms of chromosome folding; understanding the interplay of 
extrusion with functional RNAs, polycomb, homolog pairing, and other play-
ers and processes of chromosome organization can bring many new biological 
insights.

Understanding the evolution of the universal process that is present in all 
forms of life, the origin of new SMCs, the origin and evolution of boundary pro-
teins, and parallel evolution innovations in body plan and development in meta-
zoans can shed light on their roles of SMCs and loop extrusion in development.

Loop extrusion also creates new avenues of research in polymer physics. As an 
active process acting on polymers it can maintain the polymer system of chro-
mosomes away from equilibrium, leading to new phenomena of self- organization 
typical for active systems (e.g., Grosberg & Joanny, 2015).

Finally, understanding molecular mechanisms by which ATP hydrolysis is 
translated into the motor activity of loop extrusion is an emerging biophysi-
cal challenge (Eeftens et al., 2017; Kschonsak et al., 2017; Marko et al., 2018). 
Characterizing and understanding the molecular mechanism of force generation 
in cytoplasmic motor proteins took decades and required the concerted efforts 
of cell biologists, biochemists, single-molecule biophysics, and theoreticians. We 
hope that in the following years we will gain an equally deep understanding of 
the universal process of loop extrusion and its role in genome and cell function.
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4.3  ELEMENTS OF POLYMER SIMULATIONS

Setting up in silico simulations.
In coarse-grained polymer simulations of chromosomes, chromatin is mod-

eled as a chain of particles connected by elastic bonds (Figure 4.4). Depending on 
the goal of the simulation and available computational resources, each particle 
may represent as much as a few kb of chromatin (Nuebler et al., 2017; Falk et al., 2018) 
and as little a single nucleosome (~200 bp) (Gibcus et al., 2018). These particles 
are subject to various forces, which model the key aspects of the physics of the 
chromatin fiber and the nuclear environment. Among the typical forces used in 
simulations are:

 1. interparticle repulsion. The most basic and essential force, which is modeled 
on the fact that chromatin is a self-avoiding polymer. Often the repulsion 
energy for completely overlapping particles is capped at an intermediate 
value (~3–5 kT), which enables chain passing and allows the polymer to 
achieve topological equilibration. From the biological standpoint, this trick 
models the action of the nuclear enzyme topoisomerase II, which passes two 
adjacent strands of DNA through each other;

 2. bending stiffness. This force is used to impose the directional persistence 
of DNA and chromatin fiber; importantly, the exact parameters of the 
chromatin stiffness are currently disputed (Maeshima et al., 2010; Arbona 
et al., 2017) and likely vary genome-wide and between the experimental 
conditions;

Figure 4.4 The typical system of force used in polymer simulations of chromo-
somes. Black spheres show particles making up the chromatin fiber, red arrows 
indicate forces.
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 3. particle-to-particle attraction. This force models the “sticky” behavior of 
chromatin fiber, which, under certain conditions, leads to condensation of 
chromatin into a dense phase. Such forces have been successfully used to 
explain compartmentalization of active and inactive chromatin inside the 
nucleus (Nuebler et al., 2017) and formation of inverted nuclei (Falk et al., 
2018);

 4. confinement. This constraint accounts for the fact that chromatin occu-
pies a major fraction of the nuclear volume. Depending on the type of the 
simulated system, different types of confinement are used: in whole genome 
simulations, spherical confinement represents the entire nuclear enve-
lope (Schalbetter et al., 2017; Tjong et al., 2012); in simulations of smaller 
genomic regions, periodic boundary conditions constrain the chromatin 
density while avoiding edge effects (Fudenberg et al., 2016); finally, models 
of vertebrate mitotic chromosomes use cylindrical confinement to impose 
the characteristic geometry of condensed chromosomes during cell division 
(Naumova et al., 2013; Gibcus et al., 2018);

 5. attraction to the lamina of specific genomic loci. This force is used to impose 
peri-nuclear localization of inactive chromatin, or telomeres or centromeres 
in certain types of nuclei (Tjong et al., 2012; Falk et al., 2018);

 6. bridges, i.e., extra bonds connecting non-adjacent loci of the polymer. Such 
forces can be used to model the formation of loops by SMC complexes 
condensins and cohesins, and to represent molecular links between sister 
chromosomes at centromeres (Goloborodko et al., 2016).

In a typical polymer simulation, the dynamics of chromatin is modeled 
using the Langevin equation of motion. This equation represents a modification 
of Newton’s equation of motion, describing the action of forces on individual 
particles, and additionally accounts for the thermal motion of simulated par-
ticles caused by random collisions with the solvent particles. This equation can 
be solved numerically using several existing computational packages, including 
OpenMM (Eastman et al., 2013), LAMMPS (Plimpton, 1995) and HOOMD-blue 
(Anderson et al., 2008).

In most cases, the goal of a polymer simulation is to sample the statistics of 
chromatin conformations in the thermal equilibrium, which can be achieved by 
running the simulation for a sufficiently long time. In equilibrium, the statistics 
of chromatin conformations depends neither on the initial conditions, nor on 
the exact dynamics of the system. This property simplifies equilibrium polymer 
simulations in three major ways. First, the statistics of equilibrium conforma-
tions does not depend on the initial conformation, which is essential for simu-
lations of a real biological system, where most of the time we do not know the 
initial arrangement of the chromatin. Second, the statistics of the equilibrium 
conformations does not depend on the parameters describing the dynamics of 
the system, e.g., the mass of the chromatin, the density, and viscosity of the sol-
vent, the frequency of collisions with solvent particles, etc. This means that devia-
tions of these parameters from their real values, which often are unknown, do 
not affect the result of the simulations. Third, the freedom to choose the dynamic 
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parameters of the system means that we can use “unrealistic” values of these 
parameters to speed up the convergence to the equilibrium by 4 or even 5 orders 
of magnitude.

Simulating loop extrusion.
This simulation framework can be easily extended to simulate the process of 

loop extrusion on chromatin using two-stage simulations. In the first stage, we 
model the motion of loop extruding factors (LEFs) along the chromatin chain, 
ignoring the 3D conformation of chromatin. At this stage, we describe the chro-
matin as a 1-dimensional lattice of sites, with individual LEFs occupying some of 
these sites. We then iteratively update the positions of LEFs over time, account-
ing for their motor-like motion along the chromatin chain, collisions with each 
other and other obstacles (e.g., chromatin-bound proteins) as well as the stochas-
tic unbinding and rebinding of LEFs to chromatin. As a result, we obtain the 
dynamics of LEF positions in time.

In the second stage, we model how the LEF-bridged loops affect chromatin 
conformation. At this stage, we model chromosomes using the polymer simula-
tions, as described above, and additionally impose bridging interactions between 
pairs of loci connected by LEFs, either in a quasi-static or in a dynamic fashion. 
In quasi-static simulations, we pick a single random snapshot of LEF positions, as 
produced in the first stage of the simulations, and generate an equilibrium ensem-
ble of chromatin conformations for these LEF positions. We then repeat such 
simulations for a large number of LEF snapshots and as a result obtain the steady-
state ensemble of conformations of a chromosomal region undergoing active loop 
extrusion. In dynamic simulations, we repeatedly update the positions of LEFs 
within the same polymer simulation to reflect the LEF dynamics, simulated at the 
first stage. As a result, dynamic loop extrusion simulations explicitly model how 
chromatin conformation changes in time due to the active loop extrusion.

The key differences between these two styles of simulations are in the under-
lying assumptions. The quasi-static simulations assume that LEFs extrude loops 
sufficiently slowly so that the chromatin fiber has enough time to equilibrate 
between the consecutive steps of LEFs. The dynamic simulations explicitly model 
the motion of chromatin between consecutive steps of LEFs dynamics, and as 
a result, explicitly depend on the speed of extrusion as well as the dynamics of 
chromatin motion (Fudenberg et al., 2016; Nuebler et al., 2017). Each approach 
has their strengths and weaknesses – the quasi-static approach is robust to the 
variations in the dynamic parameters, while the dynamic approach is more 
generic and thus potentially more accurate. More research on the dynamics of 
chromatin motion and loop extrusion is needed before we can definitively decide 
which of the two approaches is superior.

Open questions and challenges in polymer simulations of chromosomes
Despite significant progress in coarse-grained polymer simulations of chro-

mosomes, there remain a number of open questions and challenges:

 1. The effect of loop extrusion on the global dynamics of chromatin. Until very 
recently, most studies of chromatin dynamics modeled chromosomes as 
passively diffusing polymer fibers. However, the discovery of loop extrusion 
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revealed that at the microscopic level chromosomes are constantly “stirred” 
by motor proteins that actively consume and dissipate energy. How this 
active motion affects the polymer dynamics on different length and time 
scales (Grosberg & Joanny, 2015; Prost et al., 2015; Smrek & Kremer, 2017), 
how it impacts other aspects of chromosome organization (Nuebler et al., 
2017), and whether such systems can still be accurately approximated as 
high-temperature passive systems remains to be studied.

 2. Position-dependent variation of chromatin dynamics. Recent experimental 
studies revealed a number of molecular mechanisms that affect the con-
formation of specific loci, e.g., compartmentalization of active and inactive 
chromatin, attachment of specific loci to the lamina as well as a sophisticated 
extrusion landscape, with some loci serving as extrusion boundaries and oth-
ers possibly serving as loading sites for LEFs. Importantly, all of these mecha-
nisms may affect the dynamics in a locus-specific manner. This has neither 
been explored theoretically, nor taken into account in analyses of the experi-
mental data. Emerging live-cell imaging data (Gu et al., 2018; Germier et al., 
2017; Bronshtein et al., 2016) will provide a source of information for such 
studies.

 3. The effect of the hydrodynamic interactions on the chromatin motion. Extensive 
theoretical and experimental studies of polymer dynamics have shown that 
the correlated motion of solvent particles can increase the polymer mobility 
over a broad range of timescales (Rubinstein & Colby, 2003). The importance 
of such hydrodynamic interactions for chromatin dynamics remains poorly 
understood and not properly captured by current simulation techniques.

 4. Large-scale simulations of genomes. Simulating relatively large genomic sys-
tems (e.g., the entire mammalian genome or even a single chromosome) for 
physiologically relevant time scales (hours to days) currently requires heavy 
coarse-graining of chromosome geometry (by using a large amount of DNA 
per particle) and dynamics (by reducing viscosity many orders of magnitude 
below its true value). The effect of such coarse-graining on the accuracy of 
the simulations remains to be studied. Performing large-scale computa-
tions without such approximations is a major technical challenge that would 
require breakthroughs, both in hardware and in software.

 5. Accurate dynamic chromatin simulations of loop extrusion. Due to the scarcity 
of experimental data on loop extrusion, the first generation of loop extrusion 
simulations had to make a number of assumptions regarding the dynamics 
of polymer motion and LEFs action. As a result, such simulations currently 
have a limited quantitative accuracy in reproducing the experimental contact 
maps. To improve the predictive power of such simulations, we need to fully 
understand the molecular mechanisms of loop extrusion as well as accurately 
measure the basic parameters of this process in vivo, such as the speed of loop 
extrusion and the number of active LEFs. On the theoretical side, accu-
rate prediction of contact maps needs careful investigation of the interplay 
between the diffusive chromatin motion and active extrusion.

 6. The influence of chromatin conformation on LEF dynamics. The recent 
experimental study of loop extrusion by yeast condensins (Ganji et al., 2018) 
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revealed that these LEFs have a low stalling force in vitro and cannot extrude 
loops on DNA under tension. On the experimental side, it remains to be 
shown if this stalling effect occurs in vivo and with other types of LEFs. On 
the theoretical side, it remains completely unknown how stalling affects the 
extrusion dynamics and thus chromosome conformation; moreover, incor-
porating stalling into the standard simulation framework is not straightfor-
ward and may require a novel type of simulations.
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5
Predictive Models for 3D 
Chromosome Organization: 
The Transcription Factor and 
Diffusive Loop Extrusion 
Models

C. A. BRACKLEY, M. C. PEREIRA,  
J. JOHNSON, D. MICHIELETTO, AND D. MARENDUZZO

5.1  HI-C EXPERIMENTS: COMPARTMENTS,  
DOMAINS AND LOOPS

The three-dimensional spatial organization of chromosomes in vivo is currently a 
topic of very intense research in the biological and biophysical communities, among 
both experimentalists and modelers. This is because it is intimately coupled to gene 
regulation and expression (Yu and Ren, 2017). Additionally, chromatin structure 
has been shown to change substantially during development as cells differentiate 
(Dixon et al. 2012), in senescence and aging (Chandra et al. 2015; Criscione et al. 

Predictive Models for 3D Chromosome Organization

5.1 Hi-C Experiments: Compartments, Domains and Loops 97
5.2 The Transcription Factor Model: The Bridging-Induced Attraction, 

Protein Clusters and Nuclear Bodies 99
5.3 The Transcription Factor Model: The Bridging-Induced Attraction 

Drives Chromosome Conformation 103
5.4 The Active and Diffusive Loop Extrusion Models 105
5.5 Some Consequences of the TF and LE Models 108
Acknowledgments 110
References 110



98 Predictive Models for 3D Chromosome Organization 

2016; Zirkel et al. 2017), and in disease (Lupianez et al. 2016). An important experi-
mental technique which has allowed dramatic progress in the field in the last few 
years is “Hi-C” – a high-throughput and genome-wide version of “chromosome 
conformation capture”, which uses restriction enzymes, crosslinking, and ligation 
with biotin-labeling, followed by high-throughput sequencing, to build interaction 
or “contact” maps showing which chromosome loci are spatially proximate in 3D 
(Dixon et al. 2012; Lieberman-Aiden et al. 2009; Rao et al. 2014; Sati and Cavalli, 
2017). These contact maps have revealed a number of key principles underlying 
chromosomal organization. First, at large scales (>1–10 Mbp), transcriptionally 
active regions interact more with other active regions than inactive regions, and 
similarly inactive regions more often interact with other inactive regions. This is 
consistent with microscopy which shows a spatial segregation, or phase separa-
tion, of euchromatin and heterochromatin. Thus, the term “compartments” is used 
to describe the differently interacting regions determined by Hi-C: Active regions 
are referred to as the A compartment, and the inactive regions as the B compart-
ment (Lieberman-Aiden et al. 2009). Higher resolution contact maps showed that 
at shorter length scales, each chromosome is partitioned into distinct “topologi-
cally associating domains” (TADs): There are higher than average levels of inter-
action within TADs, but reduced interaction between TADs. Interestingly TADs 
are present during interphase, but not during mitosis when transcription ceases 
(Naumova et al. 2013). Hi-C data at different resolutions tend to reveal domains 
of different sizes: In the first data sets they had a typical size of 1 Mbp (Dixon et 
al. 2012), whereas more recent higher-resolution studies uncovered smaller TADs 
with sizes in the 100 kbp range (Rao et al. 2014). This domain organization is evo-
lutionarily conserved, as they have been found in budding yeast (Hsieh et al. 2015) 
and Caulobacter crescentus (where they usually are called “chromosomal interac-
tion domains” or CIDs (Le et al. 2013)). Bacterial CIDs were found to be separated 
by strong promoters, and are eliminated by inhibiting transcription.

Within metazoans, some TADs also seem to be determined by chromatin state, 
as active and inactive regions typically form separate domains (Dixon et al. 2012; 
Lieberman-Aiden et al. 2009; Rao et al. 2014; Sexton et al. 2012), with the CCCTC-
binding transcription factor (CTCF) and active transcription units (binding sites 
for RNA polymerase II) being enriched at domain boundaries (Dixon et al. 2012; 
Rao et al. 2014). Many of the interactions identified by Hi-C (and more focused 
methods such as 4C (van de Werken et al. 2012), Capture C (Hughes et al. 2014) or 
capture-Hi-C (Mifsud et al. 2015)) are between enhancers and promoters, consis-
tent with a looping mechanism for enhancer activity where cis-regulatory elements 
come into physical contact. Loops between the binding sites of CTCF are also often 
observed; these have attracted particular attention because of some puzzling fea-
tures they display. As the CTCF binding sequence is non-palindromic, it can be 
assigned a directionality on the genome, and it was found that almost all CTCF-
mediated loops form between pairs of sites which are in a convergent arrangement 
(Rao et al. 2014), and there are far fewer loops between divergent or parallel pairs 
of sites. This bias is surprising because the 3D organization of a chromosome loop 
with divergent or convergent CTCF sites is the same: The observation is difficult 
to explain with conventional polymer physics models. CTCF-mediated loops are 
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widely thought to be associated with the SMC complex cohesin, so named because 
of its role in sister chromatid cohesion. Cohesin is a ring-like complex which binds 
DNA and chromatin by topologically embracing it (Murayama and Uhlmann, 
2015); how it can hold together two distant chromatin loci as a loop is not well 
understood: two possibilities are that it binds as single ring embracing two chro-
matin fibers (Nasmyth, 2001), or as a complex of two rings arranged as a molecular 
“hand-cuff”, where each ring encloses a single DNA or chromatin fiber.

Hi-C data is normally obtained using populations of many cells, but a number 
of recent studies have applied the technique to single cells. Although the resolu-
tion is still limited, and the results are consistent with the domain organization 
at the megabase scale, these experiments show that there is significant cell-to-cell 
variation (Nagano et al. 2013), and TADs and compartments vary in strength 
through the cell cycle (Nagano et al. 2017).

Despite this wealth of new experimental data on the organization of chromo-
somes, we are to some extent still in the dark as to the biophysical and molecular 
mechanisms which drive structure formation microscopically. Two main classes 
of models are currently popular in the field, and these have been studied exten-
sively using computer simulations based on polymer physics principles. The first 
is the “transcription factor” (TF) model, also known as the strings-and-binders 
model (Barbieri et al. 2012; Brackley et al. 2016b, 2013; Chiariello et al. 2016). 
This is based on the idea that multivalent transcription factor complexes (which 
can bind chromatin at more than one point to form molecular bridges) are the 
main genome organizers; this affects a scenario where transcription orches-
trates chromosome organization. The second is the “loop extrusion” (LE) model 
(Fudenberg et al. 2016), which views cohesin and CTCF as the master organiz-
ers of the genome, and postulates that cohesin is a powerful molecular motor 
which can extrude chromatin loops of hundreds of kilo-bases. We have recently 
proposed an alternative “diffusive loop extrusion” variation of the model, which 
dispenses for the need to assume a motor activity for cohesin.

In this chapter we review the basic principles behind the TF and diffusive LE 
models, before discussing their predictions and consequences; we also consider 
whether both mechanisms may, in fact, be at work, playing complementary roles 
in 3D genome organization. We note that these are bottom-up, or mechanistic 
simulation approaches, where the models are based on simple biophysical prin-
ciples. Another common approach is to start from Hi-C data and use sophisti-
cated fitting procedures to generate the most likely structures which reproduce 
the data (Giorgetti et al. 2014; Tiana et al. 2016) – those “inverse modeling” tech-
niques, which we do not discuss here, are reviewed in Serra et al. (2015).

5.2  THE TRANSCRIPTION FACTOR MODEL: THE 
BRIDGING-INDUCED ATTRACTION, PROTEIN 
CLUSTERS AND NUCLEAR BODIES

The simplest version of the TF model is described schematically in Figure 5.1a: 
a chromatin fiber (represented by a flexible bead-and-spring chain) interacts 
non-specifically with multivalent spheres. The latter represents transcription 
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factors or other complexes that can bind to two or more sites on the fiber simul-
taneously, forming “molecular bridges” that stabilize loops. In this version of 
the model, the TFs bind to the chromatin fiber via a non-specific attractive 
interaction. If the interaction strength is large enough, then the bound proteins 
spontaneously form clusters, a phenomenon first discussed in (Brackley et al. 
2013). The general principle underlying this clustering – which occurs even 
in the absence of attractive DNA–DNA or protein–protein interactions – has 
been called “bridging-induced attraction”, as it requires multivalent binding, 
or bridging.

Bridging-induced attraction arises through a simple positive feedback loop, as 
follows (Figure 5.1b). First, proteins bind to the chromatin; as they are multiva-
lent, they can form molecular bridges between different chromatin segments – this 
increases the local chromatin concentration. In turn, this facilitates further bind-
ing of proteins from the soluble pool. The cycle repeats, and a cluster of chromatin-
binding proteins forms. The effect is very general, as it applies to any multivalent 
chromatin-binding proteins, and is appealing as a possible mechanism for the 
formation of structures such as nuclear bodies (Brackley et al. 2017b), which are 

Figure 5.1 Schematic representation of the TF model and bridging-induced 
attraction. (a,b) A chromatin fiber is modeled as a bead-and-spring polymer, 
with spherical monomers (blue beads). Proteins (modeled as spherical red 
beads) bind to the chromatin fiber non-specifically. As proteins are multivalent, 
upon binding they create bridges which increase local chromatin density (b). 
Due to the density increase, more proteins can bind (b), creating a feedback 
loop. This effect has been called ‘bridging-induced attraction’. (c,d) Here 
proteins (red beads) interact with chromatin both non-specifically (low-affinity 
binding, to blue beads) and specifically (high-affinity binding, to pink beads). 
Again, the concentration of binding sites increases upon bridge formation, 
ultimately triggering the formation of clusters of proteins via bridging-induced 
attraction.
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essentially clusters of specialized proteins found in eukaryotic nuclei. Examples 
include polycomb, Cajal and promyelocytic bodies, nucleoli and transcription 
factories (Mao et al. 2011).

For the simple case described in Figures 5.1a and 5.1b, where TFs can bind to 
any point along the chromatin, the bridging-induced attraction generates pro-
tein clusters which only superficially resemble nuclear bodies. In the simulations, 
after the proteins are introduced to the system, they very quickly form clusters; 
these clusters continue to grow in size and merge until ultimately there is only 
one single large cluster in the steady state (Johnson et al. 2015). Nuclear bodies on 
the other hand, only grow up to a finite size. To correctly capture this behavior 
the model must be refined.

An important feature which needs to be added to the model is that, while 
most transcription factors do interact non-specifically with DNA and chroma-
tin (e.g., via electrostatic interactions), they also interact with the genome spe-
cifically, via strong affinity to cognate binding sites with well-defined sequences.  
A more detailed TF model includes stronger specific binding (of, e.g., red proteins 
to pink chromatin beads in Figure 5.1c). With these interaction rules, protein 
clusters still form via the bridging-induced attraction mechanism, but no longer 
grow indefinitely, and reach a self-limiting size – more like nuclear bodies. Why 
is cluster merging, or “coarsening”, arrested in the presence of specific interac-
tion? The answer to this question is that clusters now involve several high-affinity 
sites joined by chromatin loops, and coarsening therefore involves the creation 
of networks of more and more loops (which resemble a rosette). While the num-
ber of chromatin–protein interactions which stabilize these structures increases 
approximately linearly with cluster volume (or the number of high-affinity chro-
matin beads in the cluster), the entropic cost associated with the formation of 
a rosette grows super-linearly with the number of loops. Cluster growth stops 
when the entropic cost outweighs the enthalpic gain from chromatin–protein 
interactions.

A further fundamental aspect of nuclear bodies which is not captured by the 
protein clusters generated by the TF model as described above, is that they are 
highly dynamic. Microscopy experiments show that nuclear bodies recover their 
fluorescence quickly after photobleaching (typically over minutes); this means 
that the constituents of the bodies are rapidly exchanging with proteins in the 
soluble pool. The simulated protein clusters, on the other hand, are static, as their 
formation requires strong chromatin–protein interactions. How can proteins 
bind strongly yet turn over rapidly? Once again, the TF model can be refined to 
explain this (Brackley et al. 2017b). Figure 5.2 shows schematically a model where 
the proteins switch back and forth between an “on” (chromatin-binding) state and 
an “off” (non-binding) state; this mimics, for example, post-translational modi-
fications, such as phosphorylation, which are known to change DNA-binding 
affinities. In simulations with switching proteins clusters still form through the 
bridging-induced attraction, but they are now both stable and dynamic (Figure 
5.2). Importantly, this is only possible because switching drives the system away 
from thermodynamic equilibrium – proteins unbind when they switch off, 
independent of their interactions with the chromatin and the 3D chromatin 
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conformation. Simulated FRAP shows that clusters recover after a time close to 
the inverse of the switching rate, and that they retain the memory of their shape 
for longer time scales, just as nuclear bodies do. This model is also very general in 
that the switching could model different post-translational modifications, active 
protein degradation and de novo replacement, programmed unbinding of RNA 
polymerase at transcription termination, or any other active (free energy gener-
ating) unbinding process.

Figure 5.2 Protein switching and recycling nuclear bodies. (a,b) Schematic of 
a TF model where proteins constantly switch from an “on” state (chromatin-
binding, red beads) to an “off” state (non-binding, grey beads). Switching 
may model, for instance, post-translational protein modification. (c) Snapshots 
taken during an in silico FRAP experiment (only proteins – and not chromatin 
beads – are shown for clarity). These results were reported in Brackley et al. 
(2017b). (i) At the beginning, we consider N = 2000 non-switching proteins, 
half of which are able to bind the chromatin fiber (both specifically and non-
specifically, see Brackley et al. (2017b for details)). The snapshot shown here 
is obtained after clusters have formed, and each of the 5 clusters is shown in 
different colors (unbound proteins are colored grey). (ii) Photo-bleaching is 
simulated by making bound proteins in the highlighted circular areas invisible 
(although they are still included in the simulation). Hereafter, colors are not 
changed, hence they can be used to visualize cluster dynamics. (iii) If proteins 
can switch, new proteins replace their “bleached” counterparts and clusters 
reappear. (iv) If proteins cannot switch, the proteins which make them up do 
not recycle, hence clusters do not recover. Figure adapted from Brackley et al. 
(2017b), with permission.
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5.3  THE TRANSCRIPTION FACTOR MODEL: THE 
BRIDGING-INDUCED ATTRACTION DRIVES 
CHROMOSOME CONFORMATION

In the TF model, clustering is accompanied by the formation of chromatin 
“domains”, in which intra-domain contacts are enriched over inter-domain con-
tacts. These arise because once a cluster forms, any chromatin segment within the 
cluster is highly likely to come into close proximity with other segments within 
the cluster. In order for the model to give specific predictions of real chromosome 
interactions, it can be extended to include the positions of specific TF binding 
sites, based on available data (importantly, this is a truly predictive, fitting-free 
approach which does not require Hi-C data as an input). One could imagine a 
complex simulation with many species of multivalent transcription factors, using 
binding data for each – but actually a much simpler model can capture the com-
partmentalization and TAD formation observed in Hi-C.

In a version of the TF model proposed in (Brackley et al. 2016b), a whole 
chromosome (chromosome 19 in human lymphoblastoid cells) was simulated 
(Figure 5.3), with a resolution where each chromatin bead represented 3 kbp. 
Only two types of factors were considered, modeling generalized “active” and 
“inactive” complexes, associated with transcriptionally active euchromatin, and 
heterochromatin respectively. The simulated chromatin was “patterned” into 
active-binding, inactive-binding, and non-binding regions. Active regions were 
identified based on histone modification data (using “chromatin state” predic-
tions from the hidden Markov model approach of (Ernst et al. 2011)), whereas 
inactive regions were identified simply by looking at GC content (as heterochro-
matin and gene-poor regions broadly correlate with low GC content). In other 
versions of the TF model, different combinations of histone modification, protein 
binding or DNA-accessibility data were used to label regions as active/repressed/
heterochromatic (Brackley et al. 2016a; Johnson et al. 2015).

A natural consequence of the bridging-induced attraction is that multivalent 
factors which bind specifically to different chromatin regions spontaneously seg-
regate into “specialized” clusters (Brackley et al. 2016b). In this way, the active 
and inactive factors (and their cognate binding sites) cluster separately, and the 
model naturally generates the A (active) and B (inactive) compartments seen in 
Hi-C maps. The model is also consistent with microscopy which revealed that 
heterochromatin forms liquid-like phase-separated regions (Larson et al. 2017; 
Strom et al. 2017). As for the case of nuclear bodies, such regions do not coarsen 
indefinitely, so a more accurate term to describe this phenomenon is microphase 
separation – which is used in physics to describe self-assembly of clusters of self-
limiting size. The same effect may be the mechanism underlying the formation of 
“specialized factories”, which are protein clusters rich in either RNA polymerase 
II or III, but which not contain both (Papantonis and Cook, 2013; Xu and Cook, 
2008).

As well as A/B compartmentalization, the TF model also gives a good predic-
tion of the locations of TAD boundaries: for example, in Brackley et al. (2016b), 
85% of the boundaries in chromosome 19 were correctly located to within 100 
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kbp. Also, some inter-domain interactions are correctly captured (as the off-
diagonal blocks in the contact maps in Figure 5.3 match those in Hi-C maps, see 
Brackley et al. 2016b). This level of agreement is remarkable given the fitting-free 
nature of the model, where the only input is the 1D information on the protein 
binding landscape. A similar good agreement was found when considering the 
3D folding of smaller regions at a higher resolution: simulations of the α and β 
globin loci in mouse gave a good prediction of the interaction profiles obtained 
from Capture C experiments (Brackley et al. 2016a), using a TF model where 
DNase hypersensitivity data was used to infer protein binding. Both of these 
studies (Brackley et al. 2016a,b) focused on active regions – predictions of inter-
actions within inactive or repressed regions tend to compare slightly less favor-
ably with Hi-C data, although the TF model still captures the overall interaction 
trends.

Figure 5.3 (a) Schematic of the TF model used in Brackley et al. (2016b) to 
study chromosome folding. Chromatin beads are colored according to the 
hidden Markov model described in Ernst et al. (2011), and to GC content (see 
text, and Brackley et al. (2016b) for more details). Active, euchromatic, factors 
(red spheres) bind strongly (specifically) to pink beads (essentially promoters 
and enhancers (Brackley et al. 2016b)) and weakly (non-specifically) to green 
beads (transcribed regions). Inactive, heterochromatic, factors (black spheres) 
bind weakly to grey beads (low GC content). Blue chromatin beads are non-
binding. (b) Bridging-induced attraction drives the formation of separate red 
and black protein clusters, consistent with the microphase separation of chro-
mosomes into active and inactive regions (see text). (c) Protein clusters lead 
to domains in the contact map. This zoom is from a region of human chromo-
some 19, which compares favorably to Hi-C data (see Brackley et al. 2016b). 
Adapted from Brackley et al. (2016b), with permission.
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It is important to stress that the phenomenology described previously hinges 
critically on the assumption that the chromatin-binding proteins form com-
plexes which are multivalent, so that they can form bridges. There are several 
examples of factors which have this property: an example of a heterochromatin-
associated bridge is HP1α (Kilic et al. 2015), and repressive polycomb-related 
proteins include multimeric PRC1 (Wani et al. 2016); even a simple linker histone 
like H1 can potentially bind the genome in multiple places (Mack et al. 2015). 
Examples of multivalent euchromatin-associated bridges include complexes of 
polymerases and transcription factors, and the mediator complex, both of which 
are thought to be involved in enhancer–promoter looping.

We close this section mentioning another popular model for chromosome 
organization which is of a similar spirit to the TF model, namely the “block-
copolymer” model (which was previously used to study the folding of Drosophila 
chromosomes (Jost et al. 2014)). In that model the chromatin beads interact 
attractively with each other directly, so bridging proteins are implied but not 
explicitly modeled. This approach is equivalent to the TF model if bridging pro-
teins are abundant enough to saturate the binding sites; however, the two models 
differ in the regime where only some of the binding sites are occupied.

5.4  THE ACTIVE AND DIFFUSIVE LOOP  
EXTRUSION MODELS

As mentioned above, another popular model for 3D chromosome organization is 
loop extrusion. The idea that some factors bind to the chromatin at a single point 
and a loop is generated through some kind of tracking along the contour of the 
fiber, was first mooted in Nasmyth (2001) in the context of looping in mitotic 
chromosomes (Alipour and Marko, 2012), but has more recently been applied 
to chromatin organization during interphase (Fudenberg et al. 2016, Sanborn  
et al. 2015). A likely candidate for the extruding factor is the SMC complex cohe-
sin (Uhlmann, 2016), which (as the model is described in Fudenberg et al. 2016 
and Sanborn et al. 2015) uses a motor-like activity to reel in the chromatin and 
grow a loop using ATP; we therefore refer to this as the active LE model (to dis-
tinguish it from an alternative version based on bidirectional diffusion, which is 
discussed below).

Loop extrusion is an appealing model for two main reasons. First, if extru-
sion is halted when cohesin reaches a CTCF protein with its binding site oriented 
against the extrusion direction, then the model elegantly explains the strong bias 
towards convergent over divergent CTCF looping reported in Rao et al. (2014). 
This assumption is reasonable in the view of evidence that cohesin and CTCF 
interact in an orientation-dependent manner (Fudenberg et al. 2016, Xiao et al. 
2011). Second, computer simulations have shown that the model can also give 
good predictions of the TAD patterns observed in Hi-C data (this requires a con-
stant flux of extruders and a careful choice of parameters (Fudenberg et al. 2016)).

While extrusion can seemingly predict many of the interaction patterns 
observed in Hi-C data, the idea remains controversial. One crucial issue is that the 
model requires a fast motor with high processivity to extrude the loop. Although 
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single-molecule experiments showed that the related condensin SMC complex 
is able to move unidirectionally and extrude loops on naked DNA in vitro (see 
below), under similar conditions cohesin has only been observed to move diffu-
sively (Davidson et al. 2016, Kanke et al. 2016, Stigler et al. 2016). Motivated by 
this we recently proposed a diffusive loop extrusion model (Brackley et al. 2017a), 
asking whether extrusion is still a viable mechanism for generating chromatin 
loops if there is no motor activity. We imagine a simple scenario in which a pair 
of cohesin complexes are loaded at adjacent positions on a chromatin fiber in a 
handcuff configuration (see Figure 5.4a; an alternative arrangement in which a 
single cohesin ring embraces two chromatin fibers leads to similar results, and 
is briefly discussed in Brackley et al. (2018)). We then assume that each side of 
the handcuff can diffuse by sliding back and forth along the fiber, so that a loop  
grows and shrinks diffusively – i.e., cohesin works as a molecular slip-link 

Figure 5.4 (a) Schematic description of the diffusive loop extrusion model. 
A cohesin dimer, with the topology of a hand-cuff (or a molecular slip-link), 
is loaded on a chromatin fiber at a rate kon. It subsequently diffuses until it 
detaches, at a rate koff. (b,c) Plots from Brackley et al. (2017a) showing how 
the mean size of the largest loop in a simplified 1D simulation depends on the 
number of cohesin handcuffs for a case with no loaders (b) and for the case 
with a loader in the middle (c). (d) A contact map (close to the diagonal) for a 
simulation with multiple chromatin segments, with CTCF-like proteins at each 
end functioning as barriers for diffusive loop extrusion, and with loaders in 
the middle of each segment. Adapted from Brackley et al. (2018, 2017a), with 
permission.
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(Brackley et al. 2017a). The cohesin is later unloaded from the chromatin fiber 
at a constant rate. If cohesin interacts with CTCF directionally, for instance by 
forming a stable complex only when the CTCF site is oriented towards the dif-
fusing cohesin, then again this is sufficient to explain the bias favoring conver-
gent CTCF loop formation (Brackley et al. 2017a). Importantly, even though the 
motion is diffusive, the system is not in thermodynamic equilibrium: the cohesin 
rings are always loaded at adjacent points along the fiber (the loop length is ini-
tially zero), whereas the loop can be of any size when they detach. As a result, 
the system is not time-reversible (since a loop cannot form with finite size) and 
detailed balance is violated. The absence of thermodynamic equilibrium is both 
necessary to get the results discussed below, and consistent with experiments 
showing that cohesin needs ATP to both bind to and unbind from chromatin 
(Murayama and Uhlmann, 2015; Uhlmann, 2016).

While it might be difficult to design an experiment which can discriminate 
between the active and diffusive LE models in vivo, we can examine what would 
be required for each to generate the kind of loops which are observed in Hi-C. 
The residence time of cohesin on chromatin is about 20 min (Gerlich et al. 2006; 
Hansen et al. 2017; Ladurner et al. 2014), so to generate loops of 100 kbp the active 
LE model would require a motor which moves with speeds of 2–5 kbp/min (loops 
as large as 1 Mbp would require speeds 10-fold larger). Condensin was observed 
to move at ~3.6 kbp/min on DNA in vitro (Terakawa et al. 2017), and was able 
to extrude loops at on average 36 kbp/min (Ganji et al. 2018); whether cohesin 
can achieve similar motion, and indeed if either complex can perform simi-
larly on chromatinized DNA, remains an open question. Another possibility is 
that a different motor protein pushes cohesin to facilitate extrusion; while faster 
motors are known to exist in bacteria, the magnitude of the speed required can 
be put into context by comparing it to that of RNA polymerase, the most proces-
sive motor currently known to be active during interphase, which is ~1 kbp/min. 
Polymerase and bacterial DNA-translocase enzymes move with a tracking motion, 
whereas the motion of condensin appears to proceed in steps – this might give 
an explanation for fast active extrusion if the cohesin can step from nucleosome 
to nucleosome along the chromatin fiber. Then again, this raises the question of 
how the motor can maintain the direction of extrusion to promote loop growth 
but not shrinking – an aspect of the process which is difficult to reconcile with a 
molecular stepping motion.

The diffusive LE model, on the other hand, is only a viable mechanism if the 
diffusive sliding is fast enough to generate loops of 100 kbp or more within the 
~20 min cohesin residence time. Our work presented in (Brackley et al. 2017a) 
(some of whose results are reported in Figure 5.4) suggests that this may well be 
the case. A simple theoretical model puts a lower limit of 10 kbp2/s on the required 
diffusion constant. If chromatin exists as a 30 nm fiber (having a compaction of 
~100 bp/nm) then this equates to D ~0.001 µm2/s as a minimum diffusion con-
stant for viable loop generation. If it exists as a 10 nm fiber (compaction ~20 bp/
nm) then the required diffusion constant becomes D ~0.025 µm2/s. Recent in vitro 
experiments measured D = 0.2525 ± 0.0031μm2/s for acetylated cohesin diffusing 
on chromatin fibers reconstituted in Xenopus egg extract. This value comfortably 
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fulfils the requirements for diffusive LE to be viable, although it should be kept 
in mind that experiments in Kanke et al. (2016) were performed on stretched 
chromatin in a dilute solution, and in the absence of other chromatin-bound 
protein complexes. Other recent single-molecule experiments (Stigler et al. 2016) 
studied (non-acetylated) cohesin on DNA with nucleosome-like obstacles, and 
found that cohesin did not translocate over obstacles larger than 20 nm (pos-
sibly suggesting that acetylation greatly enhances cohesin diffusivity). The issue 
of cohesin having to negotiate obstacles on the chromatin is of course shared by 
the active LE model.

A third possibility is that cohesin might have a motor activity which acts to 
push it a short distance in one direction, before the directionality is lost. Active 
steps, or “kicks”, back and forward would give diffusive motion at long time 
scales, but effectively with an increased diffusion rate. This then rescinds the 
requirement for a processive motor which keeps its direction.

Our work on the diffusive LE model also revealed some intriguing effects 
when multiple cohesin slip-links are present on the same chromatin segment. 
In Brackley et al. (2017a) we considered two scenarios for the binding kinetics of 
cohesin on chromatin: one where cohesin is loaded at random locations and one 
where there are preferred loading sites. The latter option is motivated by existing 
evidence that the cohesin-loading factor (NIPBL in humans, or Scc2 in yeast) 
binds at preferred genomic locations, and that cohesin may be loaded near the 
promoters of active genes (Kagey et al. 2010). The dynamics are very different in 
the two cases (Figures. 5.4b,c). For random loading, slip-links form many con-
secutive loops, which compete with each other for space: as a result, increasing 
the number of slip-links in a given segment leads to a decrease of the maximal 
loop size (Figure 5.4b, and Brackley et al. 2017a). In stark contrast, the presence 
of a loading site favors the formation of structures with nested loops, which cre-
ates a ratchet effect promoting loop growth. That is to say, increasing the number 
of slip-links yields an increase in the maximal loop size (Figure 5.4c). The effect 
can be understood as the presence of a loading site setting up an inhomogeneous 
density of slip-links on the fiber, leading to an osmotic pressure which favors 
loop growth over shrinking. Such a ratchet provides an avenue to boost the effi-
ciency of diffusive loop extrusion even if the effective 1D diffusion coefficient of 
cohesin along the chromatin is small. Other authors reported that a similar effect 
operates in the case of a mixture of cohesin dimers (hand-cuffs) and monomers 
(where the latter are single rings which do not form loops), with the monomers 
creating the osmotic pressure (Yamamoto and Schiessel, 2017).

5.5 SOME CONSEQUENCES OF THE TF AND LE MODELS

As detailed above, the TF model naturally explains genome compartmentaliza-
tion and the formation of protein clusters, and can correctly predict the locations 
of a large proportion of TAD boundaries; it cannot, however, explain the obser-
vations related to CTCF loops. The LE model elegantly explains the bias toward 
convergent CTCF, and gives good predictions of TAD patters; it cannot explain 
compartmentalization. The fact that each model explains different aspects of 
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genome organization suggests that transcription factors and cohesin may both 
play important, and possibly complementary, roles in establishing chromosome 
structure. If this is the case, one would expect that experimentally disrupting 
either transcription factors or cohesin should have different effects. Overall this 
is the case, but such experiments are not at all straightforward, and sometimes 
give conflicting results. Particularly it remains unclear as to whether transcrip-
tion drives chromatin conformation, or vice versa.

An immediate consequence of the TF model is that any change in expression 
(of regulated genes) should be accompanied by changes in chromosome interac-
tions. Indeed, very high-resolution conformation studies of the globin loci using 
Capture C (Brackley et al. 2016a, Hughes et al. 2014) revealed completely differ-
ent conformations in erythroid cells (where the globin genes are highly active) 
and embryonic stem cells (where they are inactive). More recently (Morgan et al. 
2017), a dCas9 system was used where specific chromatin loops can be reversibly 
induced by the addition of the plant phytohormone S-(+)-abscisic acid (ABA). 
The authors of this work were able to increase β-globin expression by bring-
ing the gene’s promoter into physical contact with nearby active enhancers; the 
effect was context specific, as the expression was not altered by loop formation 
in cell lines where the β-globin locus was heterochromatinized. Interestingly, 
using the same system to force a loop between Oct4 and an upstream enhancer 
also induced looping to a downstream enhancer; additionally, when a loop was 
induced for more than 10 hours, it was found to persist even after ABA was 
removed. Together these results imply not only that TF looping can drive tran-
scription, but transcription can also drive chromatin conformation. Experiments 
with the RNA polymerase inhibitor α-amanitin, as in (Hug et al. 2017), are more 
difficult to interpret: treatment with the drug did not have a major effect on the 
formation of TADs during Drosophila embryogenesis. However, the nature of 
the transcriptional inhibition is not clear, since the levels of polymerase II bound 
near promoters are only slightly affected.

The (active and diffusive) LE model predicts that eliminating chromatin-
bound cohesin should lead to dramatic changes in 3D structure. To see this effect 
experimentally is very challenging, because cohesin is essential for proper sis-
ter chromatid cohesion in cycling cells, and eliminating all chromatin-bound 
cohesin in cell cycle–arrested cells is difficult. The most recent data come from 
experiments where deletion of the loader protein NIPBL (Schwarzer et al. 2017) 
or degradation of a cohesin subunit (Rao et al. 2017) was induced in non-dividing 
cells. This did indeed show that CTCF loops and loop-associated TADs disap-
pear on cohesin removal. Earlier results reporting only minor changes may not 
have completely eradicated cohesin from the chromatin. Interestingly, cohesin 
removal was also shown to render A/B compartments more prominent, and to 
promote the formation of superenhancer hubs involving very long-range inter-
actions: this suggests that there is a cross-talk between the two levels of orga-
nization (by TFs and by LE factors). Despite the clear changes in chromosome 
interactions revealed by the Hi-C data from these experiments, the changes in 
gene expression are rather modest; this surprising result leaves the function of 
TADs and CTCF loops as a mystery yet to be solved.
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Looking ahead, an important task will be to clarify the interplay between 
cohesin and TF in directing chromosome organization during interphase, and 
theory and simulations are likely to be a fruitful device in this endeavor. There 
are several questions which can be addressed by a combined model. For instance, 
how is the efficiency of active and diffusive LE affected by clusters of chromatin-
binding proteins assembled via the bridging-induced attraction? Are the two 
“organizers” working antagonistically or cooperatively? Can a combined model 
fully explain Hi-C data, and, if not, what else is missing from the picture? Can 
these models also tell us something more about the elusive transition between 
interphase and mitosis? Questions like these are just beginning to be asked, and 
it will be exciting to see how models and simulations improve our understanding 
of this fascinating branch of molecular biology in the future.
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6
Introducing Supercoiling 
into Models of Chromosome 
Structure

FABRIZIO BENEDETTI, DUSAN RACKO, JULIEN DORIER, 
AND ANDRZEJ STASIAK

6.1  INTRODUCTION

Numerous studies have indicated that portions of DNA in interphase chro-
mosomes are torsionally stressed and this results in supercoiling of implicated 
chromatin fibers (Naughton et al., 2013, Kouzine et al., 2013, Baranello et al., 
2018). Since RNA polymerases are prevented from encircling transcribed DNA 
in the dense nuclear milieu but still need to follow the DNA helix, it is the tran-
scribed DNA that is forced to undergo axial rotation with respect to the relatively 
immobile RNA polymerase (Cook, 1999, Cook, 2009). Therefore, as originally 
proposed by Liu and Wang (1987), negative supercoiling is generated behind 
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transcribing RNA polymerases, whereas ahead of transcribing polymerases it is 
positive supercoiling that is generated. As topoisomerases associated with RNA 
polymerase preferentially relax positive supercoils (Baranello et al., 2016), tran-
scription effectively injects negative supercoiling into chromosomes (Naughton 
et al., 2013). Since negative supercoiling facilitates DNA strand separation, the 
role of negative supercoiling was primarily seen as a facilitator of DNA repli-
cation and transcription as these processes require progressive global or local 
strand separation, respectively (Bates and Maxwell, 2005). Studies showing that 
supercoiling is able to increase the frequency of intra-molecular contacts in DNA 
molecules (Vologodskii and Cozzarelli, 1996, Liu et al., 2001) suggested that this 
contact stimulation may also be an important role of supercoiling in eukaryotic 
chromosomes (Benedetti et al., 2014b). The observation that eukaryotic chro-
mosomes are composed of linearly arranged chromatin blocks with increased 
frequency of internal contacts (Dixon et al., 2012, Nora et al., 2012) suggested 
their similarity to topological domains in bacterial chromosomes, which are 
believed to consist of supercoiled DNA loops (Postow et al., 2004). Therefore, 
chromatin blocks with increased frequency of internal contacts were given the 
name of topologically associated domains TADs (Nora et al., 2012). However, 
the question of whether TADs indeed consist of supercoiled chromatin fibers 
is not answered yet. Experimental approaches that detect supercoiling, such 
as psoralen photobinding are complex and require even more complex control 
experiments. This complexity contributed to a partial inconsistency between the 
results of different groups (Naughton et al., 2013, Kouzine et al., 2013). The exper-
imental methods determining contact maps in chromosomes are currently the 
most advanced methods that provide structural information about interphase 
chromosomes (Grob and Cavalli, 2018). In addition, these methods are highly 
reproducible among different laboratories. However, contact maps do not tell 
directly whether TADs are supercoiled or not. One needs to use various simula-
tion methods (Tiana and Giorgetti, 2017) to be able to interpret contact data and 
evaluate, for example, whether experimental contact maps are recapitulated bet-
ter or worse by modeled chromosome fragments in which chromatin fibers are 
supercoiled or not. To this end, one needs to be able to model supercoiled chro-
matin fibers. This is somewhat difficult though as standard software packages for 
molecular dynamics simulations, that can be used without any modifications to 
model non-supercoiled chromatin fibers, were not foreseen to model the effects 
of supercoiling. We present here how standard modeling software packages such 
as HooMD (Anderson et al., 2008, Glaser et al., 2015) or ESPResSo (Limbach  
et al., 2006) can be modified to simulate supercoiled chromatin fibers. We also 
present our results suggesting that chromatin fibers forming TADs are supercoiled.

6.2  HOW TO INTRODUCE TORSIONAL RIGIDITY  
INTO FREELY SWIVELING STANDARD BEADED 
CHAIN MODELS

A standard beaded chain model is frequently sufficient for a coarse-grained 
approach to model equilibrium behavior of thermally fluctuating, torsionally 
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unstressed polymeric chains subject to confinement (Reith et al., 2012, Dorier and 
Stasiak, 2013, Racko and Cifra, 2013). Usually, the diameter of beads, denoted as 
σ, is assumed to correspond to the mean diameter of modeled polymeric chains. 
In the case of DNA in a physiological solution, this diameter amounts to about  
3 nm and in the case of decondensed chromatin fibers, it amounts to about 10 nm. 
Once it is decided what physical distance corresponds to σ, this sets the length 
scale of the model, which in turn permits various mechanical properties of that 
model to be set accordingly. For example, the bending persistence length (Lp) 
of DNA, which is known to be about 50 nm, is c. 17 larger than the effective 
diameter of DNA at physiological conditions. Therefore, in a beaded chain model 
of DNA, its bending rigidity should be set so that it will result in its persistence 
length being 17 times larger than the diameter of its beads.

The persistence length of chromatin fibers is less well defined than that of pro-
tein-free DNA and it can vary depending on conditions. Chromatin persistence 
length was reported to range from about 30 nm, as measured in vitro by single-mol-
ecule methods (Cui and Bustamante, 2000), to about 200 nm, as estimated using 
live imaging techniques (Bystricky et al., 2004). Following a theoretical approach 
to persistence length of chromatin (Mirny, 2011), we operate with an intermediate 
value of chromatin persistence length corresponding to about 50 nm.

As already mentioned, the effective diameter of modeled polymers is fre-
quently used to set the scale of the model and thus the size of beads in a beaded 
chain model used for simulations. Decondensed chromatin takes the structure of 
10-nm-thick fibers, known as 10 nm fibers (Brackley et al., 2015). These fibers are 
therefore conveniently modeled as beaded chains where individual beads have 10 
nm diameter and each correspond to 400–600 bp (Fudenberg et al., 2016). This 
level of coarse-graining is suitable if one wants to model the behavior of relatively 
short chromatin fibers (up to 0.5 Mb). However, the modeling of larger systems, 
like specific chromosome regions or even entire chromosomes confined within 
a nucleus of a mammalian cell, for example, would require prohibitively long 
computation times, if one would maintain this level of coarse-graining. Efficient 
modeling of larger system requires a coarser coarse-graining. At least in vitro, 10 
nm chromatin fibers can be induced to condense into 30 nm fibers (Thoma et al., 
1979) and the linear density of these fibers is known. Therefore, coarser coarse-
graining approaches used to model chromatin are frequently based on 30 nm 
beads where each bead corresponds to about 4000 bp (Benedetti et al., 2014a) and 
part of the simulations presented here use this coarse-graining.

Standard beaded chain models permit free swiveling, which makes them 
unable to maintain torsional tension and thus not suitable to model the effects 
of supercoiling. More complex models are needed to have chains that are elasti-
cally deformed in response to torsional tension resulting in plectonemic coiling 
(Brackley et al., 2014). Figure 6.1 shows the construction of our model that can 
maintain and react to torsional tension. The crucial elements needed to main-
tain the torsional tension in our model are quintuples of accessory beads that are 
placed between each pair of the main beads of the chain. These accessory beads 
together with the bonds keeping them in place have no excluded volume and thus 
do not affect the bending of the main chain even in configurations where some of 
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these phantom beads clash with each other or with other beads in the chain. The 
accessory beads serve to define dihedral angles that approximate twist angles and 
also specify dihedral potentials that maintain torsional constraint and oppose 
twisting deformation in our model. As dihedral angles are angles between inter-
secting planes, and we want to use them to approximate twist angles, we are 
interested here in the planes that intersect with each other along the line con-
necting the central beads of sequential quintuples, i.e., beads A1 and A2 and 
where one of these planes contains the bond connecting A1 with P11, and where 
the second plane contains then the bond A2P21. When one projects the two 
planes along the line of their intersection, one can perceive the dihedral angle 
directly and appreciate its similarity to the twist angle. The projection on which 
the dihedral angle can be perceived directly is known as Newman-projection and 

Figure 6.1 Inner workings of the beaded chain model of torsionally con-
strained elastic filaments used to simulate chromatin fibers. Beads and bonds 
forming our model are shown in the top-right panel together with their 
indexing that is used to describe various applied potentials. These potentials 
account for the resistance of modeled bonds to deviate from their intrinsic 
length, their rest bending angle or their rest dihedral angle that approximates 
a twist angle, respectively, as well as for the resistance of main chain beads 
to overlap with each other. Beads and bonds colored in yellow relate to those 
listed as first examples (highlighted in yellow) to which a given potential 
applies. The equations of the respective potentials contain values of param-
eters used during our simulations. In order to explain better the dihedral 
potential used to introduce resistance to twisting, a Newman’s projection is 
shown where the angle between two planes defining the dihedral potential is 
seen directly and shows a similarity to the twist angle.
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we show it in the panel of Figure 6.1 that contains the dihedral angle descrip-
tion. The dihedral angle potential Vd in the form Vd(φ) = Kd (φ – φ0)2 ensures that 
sequential quintuples can’t freely rotate, along the chain axis with respect to each 
other. Kd is the force constant that determines the torsional stiffness of the model 
and φ – φ0 is the dihedral angle approximating the twist angle (see Figure 6.1). 
For each two sequential quintuples of accessory beads, two dihedral angles are 
calculated: In one case it involves two intersecting planes that each contain one of 
the periaxial beads with the subscript 1 and in the second case each contains one 
periaxial bead with the subscript 3 (see Figure 6.1). Taking the dihedral angles 
measured with respect to two perpendicularly oriented bonds (the bond P11A1 is 
quasi-perpendicular to the bond P13A1) into account minimizes possible errors 
in the estimation of local torsional stress acting between sequential quintuples of 
accessory beads.

For the calculations of dihedral angles, we only use three beads of each quin-
tuple but all beads in the quintuples are used to emulate rotational hydrody-
namic drag experienced by chromatin fibers. Correctly accounting for rotational 
hydrodynamic drag is especially important when one models out-of-equilibrium 
processes such as the generation of supercoils (Racko et al., 2015). Further discus-
sion of hydrodynamic effects will follow in the sections devoted to simulations of 
dynamic supercoiling.

By placing the quintuples of accessory beads in the middle between hinge 
points of the chain, and not immediately after these hinge points (Brackley  
et al., 2014), we avoided the difficulty with determining dihedral angles in case of 
strong bends in the chain. For example, a placement of quintuples at the start of 
each segment (where segments connect the sequential main beads in the chain) 
in the case of 90° bending between sequential segments of the chain, would make 
it that the plane determined by one of the two sequential quintuples becomes 
coplanar with respect to a straight line connecting the centers of these quintuples. 
In such a case, the dihedral angle is not defined. Another problem with placing 
quintuples at the start of each segment arises when the bend between sequen-
tial segments becomes larger than 90°. If that happens there is a sudden 180° 
jump of dihedral angle and this creates additional difficulties in the evaluation 
of dihedral angles. For quintuples placed in the middle between hinge points, 
the dihedral angle measured along the line connecting the centers of sequential 
quintuples is defined for all bending angles up to 180°, whereas the largest bends 
in a self-avoiding beaded chain can only reach 120°.

6.3  THE CONTROVERSY ABOUT TORSIONAL RIGIDITY 
OF CHROMATIN FIBERS

Magnetic tweezers experiments have shown that the torsional stiffness of chro-
matin fibers depends on whether the fiber is overwound or underwound (Celedon 
et al., 2009, Bancaud et al., 2006). Already, a low level of overwinding is sufficient 
to start the structural phase transition in chromatin fibers (Celedon et al., 2009, 
Bancaud et al., 2006). Before the transition, the incoming and outgoing DNA 
linkers of individual nucleosomes form left-handed crossings, whereas after the 
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transition these crossings are right-handed (Bancaud et al., 2006). Once over-
wound chromatin fibers start this structural transition their resistance to further 
torsional deformations becomes very low, resulting in the torsional persistence 
length of only 5 nm (Bancaud et al., 2006).

A completely different situation applies, though, to negatively supercoiled 
chromatin fibers. Celedon et al. have shown that when one starts to underwind 
chromatin fibers they oppose it with a rapid increase of counteracting torque 
(Celedon et al., 2009). As shown by Celedon et al. in their Figures 6.3 and 6.4, for 
the same number of introduced left-handed rotations and the same stretching 
force of 0.3 pN, the measured torque changes are larger in chromatin fibers than 
in the DNA molecules of the same size (Celedon et al., 2009).

Although Bancaud et al. popularized the notion that the torsional persistence 
length of chromatin is only about 5 nm, their own data show that this applies only 
to chromatin fibers that are overwound and as such are undergoing a nucleo-
some switch transition (see Figure 6.2 in Bancaud et al.). The chromatin fragment 
tested by Bancaud et al. was constructed to contain 38 nucleosomes, therefore, 
knowing that each nucleosome introduces ∆Lk of −1 (Bates and Maxwell, 2005) 
the ∆Lk at which this fragment is expected to be torsionally relaxed is about −38, 
as compared to naked DNA of the same size. Indeed, Figure 6.2 in Bancaud et al. 
shows that as soon as the manipulated chromatin fragment starts to experience 
underwinding, it starts to form plectonemes and thus is not in the regime of high 
torsional plasticity (Bancaud et al., 2006).

Figure 6.2 Starting configuration of the modeled, torsionally stressed chroma-
tin circle and an equilibrated configuration that diminished its elastic energy 
by forming plectonemes. Inset with a detailed view of the inner workings 
shows sequential levels of periaxial beads defining dihedral potential. Colored 
stripes in less-detailed presentations of the simulated chromatin rings permit 
us to follow the twisting of periaxial beads. Torsional stress acting through 
the dihedral potential decreases when twisting of periaxial beads decreases. 
However, when the dihedral circuit is closed the reduction of twisting can be 
only achieved when modeled molecules acquire writhe and form plectonemes. 
Notice that in the plectonemically wound configuration the twisting of peri-
axial beads is much smaller than in the starting configuration.
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In our modeling studies, we start with the assumption that transcription-
induced positive supercoiling is quickly relaxed by DNA topoisomerases 
(Baranello et al., 2016), whereas negative supercoiling is long-lived (Naughton 
et al., 2013). Therefore, we are interested only in modeling the effect of negative 
supercoiling on chromatin fibers and consequently set their torsional persistence 
length similar to that of naked DNA.

In addition to bending and torsional rigidity, there are many other parameters 
that are also important in specifying the model that we use to simulate chroma-
tin fibers. Such Parameters such as bond-length elasticity or excluded volume 
are also important. However, these other parameters are more standard and are 
not specific for models that simulate supercoiling of chromatin fibers. Therefore, 
we do not discuss them separately but just list them in Figure 6.1 together with 
detailed drawings presenting the construction of the beaded chain models used 
by us to model supercoiling of chromatin fibers.

6.4  SETTING THE DESIRED ∆LK

The effect of torsional stress on chromatin fibers depends not only on their tor-
sional rigidity, as expressed by their torsional persistence length, but also on their 
supercoiling density. Since the level of supercoiling density in various portions 
of chromosomes is not well established, one needs to be able to simulate chro-
matin fibers with various supercoiling densities to evaluate which density reca-
pitulates best the experimental data. Figure 6.2 shows how we prepare starting 

Figure 6.3 Starting and equilibrated configurations of the system permitting 
us to model supercoiling in sequential TADs that do not form closed loops. 
The lightly colored halves of circles serve only an accessory role permit-
ting us to close the dihedral circuits and thus to maintain supercoiling in the 
entire circles, including the intensely colored halves. In each circle, we can set 
the desired ∆Lk individually. After equilibration, we continue simulations of 
thermally fluctuating chains to register intra- and inter-TAD contacts needed 
for contact maps and determination of the α-exponent (see Figure 6.4). Only 
intensely colored chains are taken into account in the statistics of contacts.
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Figure 6.4 Comparison between experimental and simulated contact maps as 
well as contact probability profiles. (a) experimentally determined contact map 
within a portion of the X chromosome in male embryonic stem cells of mice. The 
map is of the genomic region shown by Nora et al. in their Figure 6.1c and was 
generated here using the deposited data (Nora et al., 2012). (b) and (c) contact 
maps obtained in simulations of systems composed of two neighboring chroma-
tin loops (see Figure 6.3). In (b) and (c) the set density of supercoiling is ∆Lk = −1 
per 400 kb and ∆Lk = −8 per 400 kb, respectively. (d) and (e) show comparisons 
between the rates of contact decrease with increasing genomic distance that 
were determined experimentally by Nora et al. for the genomic region shown in 
(a) and obtained in simulations presented in (b) and (c) respectively. The experi-
mental results are shown as individual data points, whereas simulated results from 
continuous profiles. The straight dashed line shows the slope, which would cor-
respond to the rate of contact decrease characterized by the α exponent of −0.6. 
One capital letter descriptions indicate to which experimental (D-E) or simulated 
(A, B) TADs the data refer to. Two capital letter descriptions indicate contacts 
between regions located in two different, correspondingly indicated TADs. Red 
and blue colors relate to intra- and inter-TAD contacts, respectively. Notice that 
simulations give the contact probability directly whereas in experimental data we 
only have relative contact probability and on log/log plots the experimental data 
can be all shifted vertically by the same factor during the fitting procedure.



 6.5 Modeling TADs as Portions of Supercoiled Chromatin Rings 123

configurations of modeled chromatin fibers with a given ∆Lk, as measured with 
respect to torsionally relaxed chromatin fibers of the same size. We start with 
a perfectly circular configuration (Figure 6.2a). To introduce ∆Lk of −12, for 
example, we calculate first what twist angle between sequential quintuples of 
accessory beads is needed to effectuate 12 left-handed rotations as one progresses 
through all sequential quintuples along the chain. Subsequently, without yet acti-
vating the dihedral potential, we rotate each sequential quintuple around the axis 
of the chain to match the desired twist angle (see inset in Figure 6.2). Once the 
integer number of rotations is introduced, we switch on the dihedral potential as 
well as all other potentials important for our model and start the equilibration 
of modeled chains. Since the dihedral potential circuit is closed, the decrease of 
all dihedral angles is only possible when the axis of modeled chromatin rings 
acquire writhe. On the other hand, writhing is opposed by the bending potential. 
The elastic resistance to bending and to torsional deformations both grow with 
the square of the deformation angle. Therefore, the starting configurations, in 
which we input large torsional deformations, will initially decrease their overall 
elastic energy by decreasing their torsional deformations while increasing their 
bending deformations but then will reach an equilibrium near the point where 
the further decrease of torsional energy is opposed by an equivalent increase of 
bending and other interaction energies. Figure 6.2b shows a simulation snapshot 
of an equilibrated, thermally fluctuating 80 kb large, circular chromatin fiber 
with ∆Lk = –12. The colored stripes indicate how the introduced ∆Lk is redistrib-
uted. The lower the rate of twisting of the colored stripes the smaller the torsional 
elastic energy of modeled chromatin fibers is. Before equilibration, all ∆Lk is vis-
ible as a twist, whereas after equilibration the rate of twisting is decreased when 
modeled molecules acquire writhe and form plectonemes. However, the bending 
energy is increased compared to the perfectly circular starting configuration.

6.5  MODELING TADs AS PORTIONS OF SUPERCOILED 
CHROMATIN RINGS

Knowing that bacterial chromosomes are organized into supercoiled loops 
(Postow et al., 2004) it is natural to consider the possibility that individual TADs 
are supercoiled chromatin loops, having their borders bound to the chromo-
somal or nuclear matrix. How can supercoiling in portions of chromatin fibers 
delimited by two attachment sites be modeled? One could fix in space the first 
and last quintuple of each loop and this would allow us to set various ∆Lk for 
each chromatin portion between the two attachment sites. However, by doing 
this one would need to arbitrarily set some physical separation distance between 
the attachment sites, whereas in reality these distances may fluctuate. Figure 6.3 
shows our initial approach that allowed us to introduce supercoiling into indi-
vidual TADs (Benedetti et al., 2014a). We used accessory chains that circularized 
individual loops and allowed us to close dihedral circuits for each individual 
loop. To minimize the effects of accessory chains on the interaction frequency 
of main chain beads, the accessory chains were not entered into the statistics of 
contacts presented in simulated contact maps (see Figure 6.4). In addition, we 
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connected neighboring loops with linker chains that corresponded to chroma-
tin portions between border elements of neighboring TADs. In a physical sense, 
the chains entering into statistics corresponded to a continuous chain that can 
extend along the whole chromosome and where individual TADs can form inde-
pendent supercoiled loops, as would be the case if the borders of these loops were 
nuclear matrix attachment sites (Keaton et al., 2011). The genomic position of 
DNA sequences that constitute border elements in individual TADs is defined 
in every chromosome (Rao et al., 2014, Sanborn et al., 2015). However, the physi-
cal distances between matrix regions that bind borders of TADs may differ in 
different cells and may also fluctuate in the same cell. In addition, that physical 
distance may depend on the level of supercoiling as more supercoiled chromatin 
loops being more compact are likely to have their border elements closer to each 
other than chromatin loops with a similar genomic size but with a lower mag-
nitude of supercoiling. To account for the crowding of chromatin within chro-
mosomal territories, we adjusted the size of the simulation box with the periodic 
boundary conditions so that modeled chains with two neighboring TADs occu-
pied 20% of the volume of the simulation box (Benedetti et al., 2014a). Periodic 
boundary conditions make it that the simulated molecules can take the same 
shape as in an unrestricted space but experience the effects of crowding. During 
simulations, all contacts occurring within individual copies were summed up 
whereas inter-copy contacts were not entered into the statistics.

6.6  COMPARISON BETWEEN EXPERIMENTAL AND 
SIMULATED CONTACT MAPS

Figure 6.4a shows an experimental map of contacts occurring within a specific 
region of the X chromosome in male embryonic stem cells of mice. This map cor-
responds to the contact map shown in Figure 6.1c by Nora et al. and was gener-
ated here using the deposited data (Nora et al., 2012).

It is interesting to evaluate to what extent a simple model composed of just two 
neighboring supercoiled chromatin loops, having sizes corresponding to 800 and 
400 kb (as presented in Figure 6.3), is able to recapitulate the experimental data. 
Although several recent papers indicated that negative supercoiling is generated 
by transcription (Naughton et al., 2013, Kouzine et al., 2013, Baranello et al., 2016) 
the level of supercoiling in vivo is not determined yet. Therefore, we proceeded with 
simulations in which we set various levels of supercoiling. Figures 6.4 b and c show 
how the contact probabilities within simulated systems change as the magnitude of 
supercoiling density increases from the ∆Lk = –1 per 400 kb (b) to ∆Lk = –8 per 
400 kb (c). It is visible that as the magnitude of supercoiling increases the ratio 
between intra- and inter-TADs contacts also increases. This is shown more clearly 
in Figures 6.4d and e, which compare simulated contact probabilities (continu-
ous lines) with the experimental data (scatter plots). In the simulated system with 
a low magnitude of supercoiling (∆Lk = –1 per 400 kb) the ratio between intra-
TAD and inter-TAD contact for loci separated by the same genomic distance is only 
about 1.5 (d), whereas in reality this difference is about 3. It was required to increase 
the magnitude of supercoiling density of simulated systems to ∆Lk = –8 per 400 kb 
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to approach the experimentally determined ratio between intra-TAD and inter-
TAD contacts (e).

Interestingly, the same density of supercoiling (∆Lk = –8 per 400 kb) repro-
duced reasonably well the experimentally determined rate with which the con-
tact probability between various pairs of loci located in the same TAD decreases 
with their genomic distance. That rate of the contact decrease with genomic dis-
tance is known as the α exponent. It was shown by Nora et al. that for loci located 
in the same TAD the α exponent is about −0.6 (Nora et al., 2012).

The fact that the same supercoiling density of modeled chromatin loops repro-
duced two different experimentally determined chromatin characteristics, i.e., 
the intra/inter TAD contact ratio as well as the decay rate of intra-TAD contacts 
with the genomic distance suggests that the local, supercoiling-induced compac-
tion of chromatin portions forming TADs in our simulations is likely to be simi-
lar to this occurring in vivo. It should be mentioned though, that although we 
impose in our simulations a certain ∆Lk, i.e., ∆Lk = –8 per 400 kb, its effect on 
the overall chromatin conformation depends on the ratio between bending and 
torsional rigidity of the modeled chromatin fibers. As mentioned earlier, there 
is a substantial uncertainty in these values. If the torsional persistence length of 
chromatin fibers is significantly lower than what we assumed, one would require 
a higher magnitude of ∆Lk to reach the same overall compaction as obtained in 
our models.

Figure 6.5 shows how our simulated TADs look. As already mentioned, simu-
lations of pairs of TADs were performed under conditions mimicking the effect 
of high chromatin crowding within chromosomal territories. For purpose of 
better visualization, one of the periodic copies composed of two neighboring 
TADs that are both supercoiled is shown partially “extracted” from the crowded 
simulated system. It is clear that each of two TADs, shown in blue and red color, 
respectively, are self-compacted by supercoiling. That image is consistent with 
the notion that supercoiling of individual TADs promotes their self-compaction.

6.7  DYNAMIC SUPERCOILING OF CHROMATIN FIBERS

The simulations presented previously were all of “static” systems where mod-
eled chromatin rings, in which we set various ∆Lk, were simply reaching their 
thermal equilibrium. Biologically more relevant and computationally more chal-
lenging are the dynamic situations where at some regions supercoiling is actively 
introduced into chromatin by ongoing transcription and in other regions super-
coiling is dissipated by DNA topoisomerases.

In Figure 6.1, we presented a construction of our beaded chain model where 
sequential periaxial beads serve to define the dihedral angle, which in turn is 
needed to set dihedral potential that introduces torsional rigidity into modeled 
chromatin fibers. The same periaxial beads serve to construct torsional motors. 
Individual periaxial beads can be compared to wrenches attached perpendicu-
larly to the central axis of modeled chromatin fibers. By acting on even one of 
these wrenches with a certain force one induces torque acting on the axis of mod-
eled chromatin fibers. When the dihedral potential is active the torque induced 
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at one point is transmitted along the modeled fiber so that all sequential sets of 
periaxial beads also start to rotate and thus the entire chromatin portion can be 
induced to undergo axial rotation. RNA polymerases are known to be powerful 
torsional motors (Herbert et al., 2008) and since they are prevented from encir-
cling transcribed DNA during transcription in the dense nuclear milieu, it is 
the transcribed DNA that is forced to undergo axial rotation (Cook, 1999, Cook, 
2009). As a result of enforced axial rotation of DNA in the dense nuclear milieu, 
one has the situation where negatively supercoiled regions are generated behind 
transcribing RNA polymerase, whereas positively supercoiled regions accumu-
late ahead of RNA polymerase (Liu and Wang, 1987). Recent studies revealed 
that topoisomerases are associated with RNA polymerases and they preferen-
tially relax positive supercoiling arising ahead of RNA polymerases (Baranello 
et al., 2016). Figure 6.6 shows our simulation of a circular chromatin loop with 
two RNA polymerases converging toward each other. Since we are only inter-
ested here in the topological consequences of transcription, we do not model 
newly synthesized RNA chains but only the effect of the torque introduced by 
each RNA polymerase. RNA polymerases are schematically presented as spin-
ning top-like symbols pointing in the direction of transcription, whereas the 
directions of torque imposed by each RNA polymerase is indicated by circular 

Figure 6.5 Structure of supercoiled TADs. Simulation snapshot of an equili-
brated system with highly crowded, supercoiled TADs. The supercoiling 
density was set to ∆Lk = –8 per 400 kb. For better visibility, one periodic copy, 
representing two neighboring TADs with sizes corresponding to 800 and 400 
kb is presented upon removing copies that obstruct the view. 800 and 400 kb 
TADs are colored in blue and red, respectively. The accessory chains needed 
to close the dihedral circuits are not shown.
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Figure 6.6 TADs modeled as circular chromatin loops progressively acquire 
negative supercoiling when positive supercoiling generated ahead of transcrib-
ing RNA polymerases is dissipated. Spinning top-like symbols indicate the 
positions and directions of the modeled RNA polymerases and more precisely 
the positions of periaxial beads (see Figure 6.1) that serve to introduce torque 
into the modeled chromatin rings. The dihedral potential value was set to 0 just 
ahead of modeled RNA polymerases. This setting accounts for the action of 
DNA topoisomerases that dissipates positive torque and thus positive super-
coiling that would be otherwise produced ahead of RNA polymerase. Since the 
dihedral potential has usual values in the rest of the modeled chains, there is an 
accumulation of negative supercoiling that is generated behind modeled RNA 
polymerases. The circular arrows indicate directions of rotations, which were 
applied only to periaxial beads at positions corresponding to modeled RNA 
polymerases. The colored stripes permit us to trace positions of all periaxial 
beads (see Figure 6.2) and show how the torque is transferred along modeled 
chromatin fibers. (a) Starting configuration before equilibration and before 
application of torque. (b-d) Simulation snapshots obtained after Brownian 
dynamics simulation accounting for the effects of thermal motion in a solution 
was started at the same time as torsional motors. The number of rotation intro-
duced by torsional motors is indicated for the corresponding snapshots. (e) The 
magnitude of writhe, which is a measure of supercoiling, initially grows but later 
is stabilized after torsional motors have introduced about 10 rotations. Torsional 
motors modeled here are constant torque motors that stall when the opposing 
torsional stress approaches 2 pN·nm. Arrowheads indicate when configurations 
shown in panels b–d were generated during the simulation and what was their 
writhe as well as that of the starting configuration (a).
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arrows. The imposed torque values were set to 2 pN·nm, which corresponded to 
c. 50% of RNA polymerase stalling torque (Herbert et al., 2008). The dihedral 
potential defining the torsional rigidity of the modeled chromatin portions was 
acting along the entire chain with the exception of bonds placed between con-
verging RNA polymerases. The freedom of swiveling at this region was to mimic 
the action of DNA topoisomerase that relaxes positive supercoiling arising ahead 
of transcribing RNA polymerases (Baranello et al., 2016). As shown in Figure 6.6, 
once the simulation has started, the torque introduced by modeled RNA poly-
merases progressively supercoiled chromatin ring. The profile of writhe, which 
is a measure of supercoiling, shows that the magnitude of supercoiling initially 
grows and then stabilizes. This stabilization occurs in our simulations when the 
counteracting torque resulting from supercoiling becomes as large as the torque 
of the two torsional motors.

6.8  TADS IN CHROMOSOMES OF FISSION YEAST 
CORRESPOND TO DOMAINS WITH DIVERGENT 
TRANSCRIPTION

In 2014, Mizuguchi et al. reported that chromosomes of fission yeast (S. pombe) 
are organized into TAD-like self-interacting domains and that genomic positions 
of these TADs correspond to positions of domains with divergent transcription 
(Mizuguchi et al., 2014). This latter observation prompted us to test by simulation 
whether sequential domains with divergent transcription can self-organize into 
TADs just due to negative supercoiling generated between diverging RNA poly-
merases. To this aim, we the simulated behavior of long chromatin fibers con-
taining ten domains with divergent transcription. In each domain with divergent 
transcription, we placed two torsional motors that recapitulate the effect of diver-
gent transcription and lead to accumulation of negative supercoiling between 
diverging RNA polymerases. To account for the fact that type I topoisomerases 
associated with RNA polymerases preferentially relax positive supercoiling gen-
erated ahead of transcribing RNA polymerases (Baranello et al., 2016), we set the 
dihedral potential to zero in portions of the chain located between RNA poly-
merases converging toward the borders of domains with divergent transcrip-
tion. Portions of the chain with dihedral potential set to zero can freely swivel 
and this mimics the action of eukaryotic type I DNA topoisomerases (Seol and 
Neuman, 2016). In addition, motivated by studies showing that type II DNA 
topoisomerases are located at borders of TADs (Uuskula-Reimand et al., 2016), 
we introduced at the borders between domains with divergent transcription 
short “phantom” regions that showed no excluded volume and therefore could 
permit other regions of modeled chains to pass through these regions. Such pas-
sages correspond to passages that are mediated by type II DNA topoisomerases 
(Seol and Neuman, 2016).

Figure 6.7a shows a snapshot of our simulated system containing ten domains 
with divergent directions of transcription. Each domain is colored differently. 
Torsional motors are presented in the same way as in Figure 6.6 and bonds that 
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Figure 6.7 Simulations of the chromosomal portion with 10 divergently 
transcribed domains produce contact maps resembling experimental contact 
maps of S. pombe chromosomes. a. Simulation snapshot of chromosome frag-
ments containing 10 divergently transcribed domains. Each domain is shown 
in different color. Insets offer a detailed view on borders between domains 
with the position and direction of action of torsional motors, preceding them 
free swivels and phantom-like zones of free passages. Insets α, β and γ show 
an intra-chain passage occurring during simulation. b. Scheme of the overall 
construction indicating positions of modeled RNA polymerases, preceding 
them are free swivels and zones of intra-chain passages accounting for the 
action of type II DNA topoisomerases. c. contact map obtained in simulations 
of constructs presented in a and b. d. The experimental contact map of a 
portion of chromosome 2 of S. pombe. Hi-C contact map of that chromosome 
portion was shown in Figure 6.1f by Mizuguchi et al. and we generated it here 
using the deposited data (Mizuguchi et al., 2014). Blue vertical lines in panel c 
and d indicate positions of borders between domains with divergent transcrip-
tion in simulated and real biological systems, respectively. Figure 6.7 is based 
on Figure 6.2 in (Benedetti et al., 2017).
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allow free rotations are placed just ahead of spinning top symbols indicating the 
orientation of RNA polymerases, which induce rotational motion of transcribed 
regions. The regions that allow intrachain passages are shown as semi-transpar-
ent. Figure 6.7b schematically presents the overall construction of modeled chro-
mosome fragments including placements of special regions acting as torsional 
motors, free swivels, and chain portions permitting intrachain passages. Insets α, 
β, and γ show three selected snapshots visualizing the process of intrachain pas-
sage occurring during the simulation at one of the semi-transparent regions. Our 
simulations show that individual domains with divergent transcription show 
moderate self-compaction due to the negative supercoiling accumulated between 
diverging RNA polymerases. Figure 6.7c presents contact maps obtained in 
ongoing simulations of chromosome fragments with ten domains with diverging 
directions of transcription. That simulated contact map shows that each domain 
with diverging directions of transcription corresponds to a TAD-like region 
showing an increased frequency of internal contacts. In our simulations, the size 
of individual domains was randomly chosen from the experimentally observed 
size distribution of TAD-like domains in S. pombe and does not correspond to a 
particular genomic region. However, when our simulated contact map (Figure 6.7c) 
is compared to experimentally determined contact map (Figure 6.7d) of a particu-
lar genomic region studied by Mizuguchi et al. (Mizuguchi et al., 2014), one can 
appreciate the qualitative similarity of these contact maps. This similarity, together 
with the fact that in S. pombe chromosomes the location of TADs coincides with 
the location of chromosomal domains with divergent directions of transcription, 
supports our proposal that transcription-induced supercoiling organizes chromo-
somes into TADs.

6.9  TRANSCRIPTION-INDUCED SUPERCOILING CAN 
DRIVE CHROMATIN LOOP EXTRUSIONS

Several recent studies provided evidence that TADs in chromosomes of higher 
eukaryotes are formed by chromatin loop extrusion (Rao et al., 2014, Sanborn  
et al., 2015, Fudenberg et al., 2016). It was proposed that cohesin in the form of indi-
vidual rings or co-joined two rings binds to chromatin fiber in such a way that it 
induces the formation of a small chromatin loop with chromatin fibers passing 
through cohesin rings (Sanborn et al., 2015, Fudenberg et al., 2016). These small 
chromatin loops were proposed to grow rapidly so that after about 20 min, which 
is the average life-time of cohesin rings bound to chromatin fibers (Hansen et al., 
2017), these loops can reach the size of TADs, which can be as large as a mega-
base. Cohesins spanning each individual loop were proposed to slide with respect 
to embraced chromatin fibers until they reach and bind correctly oriented CTCF 
proteins bound to specific DNA sequences known as CTCF binding sites. CTCF 
binding sites determine the location of TADs borders (Rao et al., 2014, Sanborn 
et al., 2015, Fudenberg et al., 2016). It is now established that both cohesin and 
CTCF are essential for the formation of TADs and cells without cohesin do not 
form TADs (Rao et al., 2017), whereas in cells without CTCF the formed chroma-
tin loops are frequently larger as their growth is not stopped at the CTCF binding 
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sites (Nora et al., 2017). Although new studies have provided a growing number 
of details about the process of chromatin loop extrusion (Rao et al., 2017, Nora 
et al., 2017), it is not yet known how the process is driven. Cohesin is an ATPase, 
therefore, in principle, it could use the energy of ATP hydrolysis to actively slide 
along chromatin fibers. However, various biochemical tests only indicated that 
the sole role of ATPase activity in cohesin is during its binding and unbinding 
from chromatin fibers (Stigler et al., 2016). In the absence of evidence supporting 
the possibility of active sliding of cohesin along chromatin, other possibilities 
were considered. For example, other motor proteins acting as DNA translocases 
may be needed to push cohesin rings along chromatin fibers. Experiments have 
shown, for example, that FtsK, which is a bacterial DNA translocase, is perfectly 
able to push cohesin rings along DNA (Stigler et al., 2016). However, a proposal 
that other DNA translocases push cohesin rings needs to explain how these 
translocases would “know” in which direction they should push cohesin rings, 
so that chromatin loops would grow and not shrink with time.

In vitro observations of individual cohesin rings on DNA and reconstituted 
chromatin fibers revealed that individual cohesin rings embrace chromatin fibers 
very tightly (Stigler et al., 2016). These observations rather excluded the possibil-
ity that two chromatin fibers can be embraced by the same cohesin ring and sup-
ported the proposal that co-joined cohesin rings in form of handcuffs are needed 
during chromatin loop extrusion (Stigler et al., 2016). These in vitro observations 
revealed also that due to the tightness of cohesin rings there is a large drag oppos-
ing diffusion of cohesin rings along embraced by them chromatin fibers.

Recent studies of TADs organization in human cells revealed that topoi-
somerase TopIIB is associated with CTCF proteins bound at TADs borders 
(Uuskula-Reimand et al., 2016). This observation suggests that there is a flux of 
transcription-induced supercoiling from the source of its generation, transcrib-
ing RNA polymerases to sites where it can be dissipated, i.e., sites of action of 
TopIIB at TADs borders. This flux can be realized by the axial rotation of chro-
matin fibers located between transcribing polymerases and the borders of TADs. 
We, therefore, tested by simulation what difference it makes when chromatin 
fibers undergoing transcription can freely rotate as compared to a situation 
where their rotation is limited by the presence of cohesin handcuffs.

Figure 6.8 shows our toy models of individual TADs, in which we placed 
motors introducing negative supercoiling as this reflects the combined topologi-
cal effect of transcribing RNA polymerase associated with DNA topoisomerase 
Top1. There is a net production of negative supercoiling during transcription as 
RNA polymerase produces negative supercoiling behind and positive supercoil-
ing ahead of its actual position but positive supercoiling is preferentially relaxed 
by DNA topoisomerase Top1 positioned ahead of RNA polymerase (Baranello 
et al., 2016). Motors producing negative supercoiling are simply modeled by us as 
a step in the dihedral circuit where the rest angle needed for the calculation of the 
dihedral angle potential is progressively changing with each step of simulations. 
In our toy models of TADs, we also accounted for the action of TopIIB, which is 
known to be positioned at TADs borders (Uuskula-Reimand et al., 2016). Since 
the action of TopIIB can be very local, permitting passages between incoming and 
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outgoing linkers from the same nucleosome (Salceda et al., 2006), we accounted 
for this action by placing free swivels at the TAD borders. To account for the non-
local action of TopIIB permitting passages of distal chromatin portion through 
each other, we placed several beads devoid of self-avoidance near simulated TAD 
borders.

The simulation snapshots shown in the left column in Figure 6.8 show what 
happens when supercoiling generated at modeled sites of transcription can freely 
diffuse till modeled sites of TopIIB action. As could be predicted, in such a situ-
ation there is no accumulation of supercoiling. The right column of Figure 6.8 
shows what happens when the dissipation of supercoiling is limited by tight 

Figure 6.8 Accumulation of transcription-induced supercoiling in chromatin 
loops spanned by cohesin handcuffs. a–c. Snapshots from the simulation 
of our modeled TAD under conditions where the diffusion of continuously 
introduced transcription-induced supercoiling is not inhibited. Supercoiling 
generated by transcribing RNA polymerase can freely diffuse to sites of 
supercoiling relaxation by DNA topoisomerases and there is no accumulation 
of supercoiling. d–f. Simulation snapshots showing progressive accumulation 
of transcription-induced supercoiling in chromatin loops spanned by cohesin 
handcuffs that limit free rotations of modeled chromatin fibers. Two insets 
show positions of torsional motors that introduce negative supercoiling and 
thus mimic the combined action of RNA polymerase with associated Top1 that 
preferentially relaxes positive supercoiling generated ahead of RNA poly-
merase but does not act on negative supercoiling generated behind transcrib-
ing polymerase (Baranello et al., 2016). Another inset shows positions of sites 
that permit free swiveling (these sites are presented as sharp tips in contact 
with flat surfaces) and sites that permit intersegmental passages (these sites 
are presented as semitransparent regions of modeled chromatin fibers). Figure 
6.8 is a modified version of Figure 6.2 in Racko et al. (2017).
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cohesin handcuffs. To model the effect of cohesin handcuffs, we added to our 
simulations a chain forming a figure-of-eight arrangement and placed it on a 
starting configuration of modeled TAD so that a short loop containing a motor 
was spanned by cohesin handcuffs (see Figure 6.8d). To account for a large 
hydrodynamic drag opposing rotational and translational movement of chro-
matin fibers with respect to enclosing the cohesin rings (Stigler et al., 2016), we 

Figure 6.9 Transcription-induced supercoiling drives chromatin loop extru-
sion by pushing cohesin handcuffs. a–c. Simulation snapshots showing further 
progression of the situation presented in Figure 6.8 f. Growing plectoneme 
pushes cohesin handcuffs towards sites where supercoiling is dissipated. 
Schematics above snapshots illustrate how the length of chromatin loops 
spanned by cohesin handcuffs (green arc) grows with time.
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associated this large hydrodynamic drag with the quintuples of additional beads 
(see Figure 6.1) of modeled chromatin fibers that were passing through the cohe-
sin handcuffs and thus at a given step of simulation were recognized as the closest 
to centers of both cohesin rings forming the handcuffs (Racko et al., 2017). This 
updating procedure permitted the cohesin handcuffs to move, while still limiting 
free supercoil diffusion via axial rotation of modeled chromatin fibers. Figures 
6.8e and f show that transcription-induced supercoiling starts to accumulate in 
the chromatin loop that contains the source of supercoiling and is spanned by 
cohesin handcuffs.

Figure 6.9a–c shows a further evolution of the system presented in Figure 6.8d–f. 
As supercoiling continues to be generated, the grooving plectoneme pushes the 
cohesin handcuffs towards TADs borders. This process is formally analogous to the 
chromatin loop extrusion as shown on schematic diagrams above the snapshots. 
Our simulations, therefore, show that transcription induced supercoiling can drive 
chromatin loop extrusion.

An important part of the loop extrusion mechanism is that the loop extrusion 
process should stop when the cohesin rings reach the correctly oriented CTCF 
proteins at the TAD borders. To model such a stopping mechanism it is suffi-
cient to introduce bulky beads at the sites corresponding to TAD borders. These 

Figure 6.10 The mechanism of chromatin loop extrusion shown in one image 
resulting from the superposition of many simulation snapshots. In addition to 
elements discussed in Figures 6.8 and 6.9, the simulations presented in  
Figure 6.10 contained beads that were too large to pass through openings in 
cohesin handcuffs. These beads were intended to represent CTCF proteins that 
block the movement of cohesin handcuffs and limit the size of extruded chroma-
tin loops. Positions of TopIIB, which are normally associated with CTCF (Uuskula-
Reimand et al., 2016) are indicated. See the main text for the explanation of how 
the directionality of CTCF binding sites can be included in the model.
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bulky beads representing CTCF proteins possibly bound with other proteins 
such as TopIIB should be larger than the openings of modeled cohesin rings. 
When pushed cohesin rings reach such bulky beads they will be stopped there as 
shown in our concluding Figure 6.10. To account for the observation that stable 
loops are only observed between convergent CTCF sites (Rao et al., 2014) one 
would need still additional modifications of the model. For example, one can 
include in the model stabilization of cohesin handcuffs beyond their average 20 
min life-time (Hansen et al., 2017) occurring only when the orientation of the 
CTCF protein with respect to contacting cohesin permits the C-terminal end of 
CTCF protein to bind cohesin (Xiao et al., 2011).
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7
Structure and Microrheology 
of Genome Organization: 
From Experiments to Physical 
Modeling

ANDREA PAPALE AND ANGELO ROSA

The mechanisms beyond chromosome folding within the nuclei of eukaryotic 
cells have fundamental implications in important processes like gene expres-
sion and regulation. Yet, they remain widely unknown. Unveiling the secrets 
of nuclear processes requires a cross-disciplinary approach combining experi-
mental techniques to theoretical, mathematical and physical modeling. In this 
review, we discuss our current understanding of the generic aspects of genome 
organization during interphase in terms of the conceptual connection between 
the large-scale structure of chromosomes and the physics beyond the crumpled 
structure of entangled ring polymers in solution. Then, we employ this frame-
work to discuss recent experimental and theoretical results for microrheology of 
Brownian nanoprobes dispersed in the nuclear medium.
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7.1  OUTLINE OF THE REVIEW

An accurate description of the mechanisms underlying the regulation of the 
genome in eukaryotes inevitably involves the study of the genetic code contained 
in the DNA string. Obviously fundamental, this information represents nonethe-
less only a small part of the intricate puzzle that determines the correct function-
ing of the entire cell. Each strand of DNA contained in a single chromosome is, 
in fact, part of the cell nucleus, and the way each chromosome is individually 
bent within the nucleus and in relation to the other chromosomes and the other 
nuclear structures is crucial to the future of the whole cell. In other words, the 
proper functioning of the genome of each organism is based not only on the 
alphabet contained in the sequence (genome in one dimension, or 1D genome), 
but also on how this sequence is folded and moves within the cell nucleus (genome 
“in space and time”, or 4D genome [1, 2]).

The intricate relationship between genome structure and function within the 
nucleus can be now systematically explored owing to the development of high-res-
olution experimental techniques providing more and more accurate data for chro-
mosome positioning and interactions [3, 4], chromosome mobilities [5, 6] and the 
viscoelastic properties of the nucleus and the cytoplasm [7]. At the same time, the 
amount of experimental data is growing so fast as to require the additional input 
provided by sophisticate quantitative tools such as rigorous statistical methods [8], 
machine learning [9] and physical models [10–13] of the three-dimensional struc-
ture and dynamics of chromosomes and the nuclear and cellular environments.

In this review article, we focus on recent experimental progress concerning 
nuclear chromosome structure and dynamics and the motion of nuclear bodies 
and their interpretation in terms of theoretical concepts borrowed from generic 
polymer and soft matter physics. In particular, we highlight two fundamental 
aspects: the physical origin of chromosome organization explained in terms of 
the slow relaxation of large polymers subjected to topological constraints and the 
impact of nuclear structure on the Brownian diffusion of nanoprobes microin-
jected within the nucleus (microrheology).

The material of the review is organized as follows: Sections 7.2.1 and 7.2.2 provide 
the necessary introduction to the phenomenology of chromosome organization 
and single-particle tracking applied to the exploration of the nucleus. In Sections 
7.3.1 and 7.3.2 we present the general concepts and applications of polymer theory 
to model nuclear architecture and microrheology. Conclusions with highlights on 
future research topics are sketched in Section 4. Technical details on the general 
principles of microrheology and the physics of ring polymers which may be skipped 
at first reading are organized in specific sections (boxes) throughout of the article.

7.2  NUCLEAR ORGANIZATION AND GENOME STRUCTURE

7.2.1  From DNA to chromosomes

The cells of eukaryotes are partitioned into distinct compartments (Figure 
7.1A), each of which is delimited by a “wall” made of a single or double lipid 
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Figure 7.1 (A) Schematic illustration of the typical eukaryotic cell, showing the 
peculiar division into physically separated compartments. The nucleus is one 
of these compartments, it is shown in light red at the cell’s center. The black 
rope inside represents DNA. (B) More detailed representation of the nucleus, 
showing its own compartmentalization. Inside, there exists regions void of 
chromatin (“interchromatin” compartments) and chromosomes condense into 
“territories” (see Sec. 7.2). Reproduced with permission from Ref. [14].
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layer membrane [15]. In general, each compartment has evolved to fulfill a well-
defined function.

The nucleus constitutes one of these compartments (Figure 7.1B): It consists 
of a roughly spherical region physically separated from the rest of the cell by the 
nuclear envelope, whose external layer is connected to the cytoplasm, while the 
internal layer connects to the nuclear lamina. Importantly, the structure of 
the envelope helps the nucleus to sustain its shape. A fundamental role of the 
nucleus is to isolate the DNA double-helix from the rest of the cell and to protect 
it from physical and/or chemical damage. Inside the nucleus, the genetic infor-
mation carried by DNA is decoded and then post-processed to fulfill the cellular 
processes.

It is now well established that, in a manner similar to proteins who must 
acquire a unique three-dimensional shape (a so-called “native” state) in order to 
accomplish their functional role [15], the correct expression of the genetic infor-
mation encoded in the linear sequence of DNA is the result of appropriate folding 
of the double-helix inside the nucleus [16, 17].

A vivid example of the intriguing connection between genome structure and 
function is provided by the nuclear architecture of the rod photoreceptor cells in 
nocturnal against diurnal mammals [18]. The rods of the diurnal retinas show 
the typical architecture of nearly all eukaryotic cells, with most heterochromatin 
(a tightly packed form of chromatin) close to the nuclear periphery and euchro-
matin (a gene-rich, lightly packed form of chromatin) concentrated toward the 
nuclear interior. Instead, the rods of nocturnal retinas display the reverse pattern 
of the heterochromatin nearby the nuclear center and the euchromatin closer 
to the nuclear envelope. The two opposite configurations are the results of the 
best adaptation of the corresponding species to the environment. At the same 
time, chromosome “misfolding” is typically associated with severe pathologies: 
for instance, fibroblasts of individuals affected by premature aging due to the 
Hutchinson–Gilford progeria syndrome show massive chromatin decondensa-
tion not observed in healthy cells [19–21]. Further examples include some forms 
of cancer [22] and other genetic dysfunctions [23].

In a typical human nucleus, about two meters (corresponding to ≈ 6 × 109 base-
pairs (bp)) of DNA are packed into distinct chromosomes, each chromosome made 
of a unique filament of chromatin fiber. Chromatin results from the association 
of the double-helix with specific protein complexes (Figure 7.2). Approximately 
147 bp of DNA wrap around the nucleosome complex (an octamer of core his-
tone proteins (H2A, H2B, H3, H4) [25]), forming a 10-nm-wide and 6-nm-thick 
nucleosome-core particle (ncp) [26]. Consecutive ncp’s are linearly connected into 
the so-called “10 nm” fiber by ≈ 50 bp of “linker” DNA [24], making the typical dis-
tance between the centers of neighboring core particles of the order of “10 nm + 50 
bp/(3 bp/nm) = 25 nm”. The contour length density of the 10 nm fiber is hence “200 
bp/(25 nm) = 8 bp/nm”, which is ≈ 3 times more compact than bare DNA. In spite 
of the considerable experimental work of the last decades, there is little consensus 
concerning how chromatin folds above the 10 nm fiber.

In general, in vitro studies of reconstituted nucleosomal arrays have pointed 
out [24] the role of nucleosome–nucleosome interactions in mediating the 
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formation of helical-like structures with a diameter in the range 30–40 nm and a 
contour length density of ≈ 100 bp/nm, i.e., ≈ 30 times more compact than bare 
DNA. This so-called “30 nm” fiber has been proposed as an essential element 
of the three-dimensional structures of interphase and mitotic chromosomes in 
vivo. Yet, its true existence remains highly controversial.

In fact, recent experimental studies by Maeshima and coworkers based on 
small-angle X-ray scattering (SAXS) on HeLa cells [27] in combination with com-
putational modeling, essentially detected no structural features beyond the 10 
nm fiber. Based on these results, the authors proposed [28] an alternative model 
where chromosomes in interphase nuclei look like an interdigitated polymer melt 
of nucleosome fibers lacking the 30 nm chromatin structure (Figure 7.3A). Very 
recently, these results have been substantially confirmed by chromEMT [29], a 
novel high-resolution experimental technique combining electron microscopy 
tomography (EMT) with a labeling method (ChromEM) that selectivity enhances 
the contrast of DNA. ChromEMT supports the picture where chromatin fibers 
form disordered structures packed together at different concentrations in the 
nucleus (Figure 7.3B). Interestingly, although chromatin compaction is locally 
changing in time, measurements of density fluctuations at high-resolution reveal 
that nuclear chromatin behaves like a compact and dynamically “stable” fractal 
medium [30].

Although the distribution of chromatin fibers seems to display, to some 
extent, some degree of randomness, other notable features emerge which suggest 

Figure 7.2 Schematic illustration of DNA and chromatin fiber structure in 
nuclei of eukaryotic cells. The chromatin fiber originates from the wrapping 
of DNA around the nucleosome complex which produces the necklace-like 
structure known as the 10 nm fiber, and the folding of 10 nm fibers into 30 
nm fibers. The nature and very existence of the latter remain highly debated. 
Reproduced with permission from Ref. [24].
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that some order at the nuclear level does exist [33]. First, chromosome mapping 
by “fluorescence in situ hybridization” (FISH) reveals the presence of distinct 
and moderately overlapping [34] regions termed “chromosome territories”, see 
Figure 7.4A,B. Moreover, the spatial distance of each territory from the nuclear 
envelope is non-random, with gene-poor/rich chromosomes being systemati-
cally closer to the nuclear envelope/center [35]. Second, chromatin–chromatin 
contacts detected by Hi-C [4] have shown spatial segregation of chromosome 
sequences the size of a few megabasepairs (Mbp) termed “A/B sub-compart-
ments” (Figure 7.4C). The data suggest that sub-compartments tend to interact 
more if they are alike than if they are not, and that A/B compartments correlate 
with (tissue-dependent) active/inactive chromatin. Third, chromosomes were 
partitioned into topologically associating domains (TADs, Figure 7.4C) of linear 
size 
�
<1 Mbp: within a TAD, DNA sequences interact more frequently with each 

other than with sequences outside the TAD [32]. Remarkably, TADs appear well 
conserved across tissues within the same species [36] and even between different 
species [37].

In summary, nuclear chromatin fibers form an intricate polymer-like network 
at small chromatin scales, with “vague” echoes of ordered structures starting 
from intermediate to large spatial scales (TADs ⟶ A/B compartments ⟶ 
territories).

The next question is how such intricacy affects and is affected by another 
important ingredient of nuclear organization, the presence of macromolecular 

Figure 7.3 (A) Polymer melt-like model by Maeshima and coworkers [27, 28] 
of the eukaryotic nucleus filled by interdigitated 10 nm chromatin fibers. 
Topologically associating domains (TADs) partition the genome into regions 
where chromatin–chromatin contacts (see also Figure 7.4(C)) are more intense 
between the elements of the same region than between elements belonging 
to different regions. Reproduced with permission from [28]. (B) ChromEMT [29] 
reveals that chromatin forms a disordered 3d structure with regions of vari-
able concentrations from high (red) to low (blue). Reproduced with permission 
from [29].
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Figure 7.4 Chromosome organization is hierarchical from territories down to 
macro-domains and TADs. (A,B) Territorial organization of the human nucleus 
is visualized by FISH by using a combination labeling scheme in which each 
chromosome is labeled with a different set of fluorochromes. In this way, each 
chromosome territory can be identified by the corresponding combination of 
different colors and, then, appropriately annotated by its corresponding num-
ber. Reproduced with permission from [31]. (C) Hi-C shows an extensive  
network of chromatin–chromatin contacts within the genome. These interac-
tions can be represented in the form of matrices showing a characteristic pat-
terning into tissue-specific macro-domains (

�
> 1 megabasepairs (Mbp)) of  

active/inactive (A/B) chromatin [4], and tissue-independent micro-domains  
(
�
< 1 Mbp) termed TADs [32]. DNA interacts more frequently intra-TAD than 
inter-TAD. Reproduced with permission from [10].
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complexes and enzymes which move through the nucleus directed towards spe-
cific DNA target-binding sequences [38, 39]. In the next section, we discuss the 
connection between chromatin folding and the diffusion of nuclear complexes 
from the point of view of microrheology, one of the most versatile and powerful 
experimental tools available today.

7.2.2  Microrheology of the nucleus

Microrheology is based on the tracking of the Brownian motion of fluorescent 
nanoprobes injected inside the cytoplasm or the nucleus. From nanoprobe 
motion, one extracts the time (τ) mean-square displacement (MSD) of the probe, 
∆x2 t( ) , which is used as a proxy for the viscoelastic properties of the embed-

ding medium (see Box 7.1 and Refs. [7, 40–43] for details).
In fact, the MSD constitutes an important source of information concern-

ing the nature of the environment [44]. For instance, in a thermally fluctuating, 
purely viscous medium, nanoprobe motion is described by standard diffusion 
with x D2 t t( ) ~  where D is the diffusion coefficient. Instead, in complex and 
disordered media [44–46], nanoprobes can behave quite differently: in general, 
x D2 t ta

a( ) ~  with α ≠ 1 and Da  is the “generalized” diffusion coefficient.
Particularly relevant to the cellular context is the case of subdiffusion with 

0 < α< 1. In fact, a growing number of experimental studies employing single-
particle tracking of fluorescently labeled chromatin loci [5, 6] has demonstrated 
that loci dynamics is typically subdiffusive [47] and, at least in some cases, ATP-
dependent [48, 49]. From the physical point of view, subdiffusion can be ascribed 
either to the macromolecular crowding of the nucleus [50, 51] which obstructs 
free chromatin motion or to the polymer-like nature of the chromatin fiber [52], 
or, most likely, to a combination of both.

Subdiffusion is also an important feature emerging in microrheological stud-
ies of tracked nanoprobes within the cytoplasm or the nucleus. However, the 
literature on this topic is surprisingly much more limited than on single-particle 
tracking of chromosome loci.

To our knowledge, the first microrheological studies in live cells are ascribable 
to Tseng et al. [40, 53] who measured the viscoelastic properties of the cytoplasm 
and the intranuclear region of mouse cells (Swiss 3T3 fibroblasts). Yellow-green 
fluorescent spherical nanoprobes of diameter = 100 nm were microinjected 
within the cytoplasm and their trajectories tracked inside the nucleus and the 
perinuclear region of the cytoplasm. Important differences between the two sit-
uations were reported. Nanospheres fluctuating in the crowded nuclear region 
displayed non-overlapping trajectories with “caged-and-escape” motion. On the 
contrary, nanospheres moving inside the cytoplasm showed extensive overlap. 
The corresponding MSDs reflect these differences. The MSD of nanoprobes dif-
fusing inside the nucleus grows with τ on short time scales (0–0.1 s), then shows 
a plateau (0.1–1 s), and finally grows again at large lag-times, in agreement with 
the “caged-and-escape” motion between confining domains of average linear 
size ≈290 nm. Conversely, the plateau displayed by cytoplasmic nanospheres 
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BOX 7.1: Principles of particle-tracking microrheology.

Microrheology exploits the erratic (Brownian) motion of fluorescent 
nanoprobes (see Figure 7.5) carefully injected inside the cytoplasm or 
the nucleus as a proxy for the viscoelastic properties of the embedding 
medium [7, 40–43]. Compared to standard (bulk) rheology, microrheology 
grants systematic screening over wide ranges of length and time scales 
for the feasibility of designing trackable nanoprobes of linear sizes rang-
ing from only a few nanometers [100] to hundreds of nanometers [40] and 
microns [54]. Microrheology is nowadays especially suitable for studies of 
biological materials [43] since, being minimally invasive, it allows to per-
form experiments in vivo and with very small samples [41].

Experimental data for microrheology can be obtained by various 
means, such as dynamic light scattering (DLS) [101]. More commonly, the 
motion of the probe in the form of its spatial coordinates (Figure 7.5)  
can be recorded through direct imaging and transformed into the 

time-mean-square displacement, Dx x t x t dt2 1
2

0
t tt

t

( ) º +( ) - ( )( )-

-

ò

 � �
,

where   is the measurement time and τ the lag-time [44]. Then, the 
viscoelasticity of the embedding medium and nanoprobe motion are con-
nected by the following mathematical relation [102]:

Figure 7.5 Sequential steps in microrheology: (A) After the initial prepara-
tion of the sub-micron fluorescent probes, (B) the beads are spread on a 
grid and (C) ballistically injected inside the cytoplasm where they rapidly 
disperse. (D) The cells are then placed under a fluorescence microscope and 
the random motion of the probes is monitored with high spatial and tem-
poral resolutions. Examples of three trajectories are shown in red (1), blue 
(2), green (3). (E) The recorded time-dependent coordinates,

�
x t( ) , of the 

probes are transformed into time-lag mean-square displacements (MSDs). 
(F) Finally, the MSDs of the probes are used to derive the local values of the 

frequency-dependent storage ( ˆ ( )′G ω ) and loss ( ˆ ( )¢¢G w ) moduli of the cyto-
plasm and/or the nucleoplasm. Reproduced with permission from [7].

(Continued) 



148 Structure and Microrheology of the Genome 

takes a higher value and reflects the restricted motion inside the cell. Finally, 
MSDs were used (Box 7.1) to calculate the complex shear modulus whose real  
( ¢ˆ ( )G w ) and imaginary ( ¢¢ˆ ( )G w ) parts correspond to the storage and loss mod-
uli of the medium embedding the nanoprobes. Qualitatively, the curves for the 
cytoplasm and the nucleoplasm have similar shapes. Quantitatively, by compar-
ing the plateau values for ′G ( )w  under shear the nucleoplasm is ≈twice stiffer 
than the cytoplasm. Moreover, the low viscosity of the cytoplasm compared 
to the nucleus should facilitate the transport of proteins and molecules from 
and to the nucleus. At the same time, nuclear viscosity, higher if compared 
to cytoplasm, might play an active role in chromosome reorganization during 
interphase.

While the work by Tseng et al. focuses on passive diffusion within the cyto-
plasm or the nucleus, the motion of a large number of macromolecular nuclear 
bodies and subnuclear organelles like transcription compartments (TCs), promy-
elocytic leukemia (PML) nuclear bodies or Cajal bodies (CBs) which are involved 
in transcriptional regulation or RNA processing results from the combination of 
both, passive and active (i.e., energy-consuming), processes [55–57]. Moreover, 
recent work in bacteria [48] suggests that consumption of ATP increases the 
mobility of cellular bodies and chromatin more steeply with temperature in 
untreated cells than in ATP-depleted cells.

 ˆ
ˆ

.G i
T

d x
Bw k

p w w
( ) = −

( )
2

2∆
 (7.1)

Here: i = −1  is the imaginary unit; kB  is the Boltzmann constant; 
T is the absolute temperature; d is the nanoprobe diameter; ∆ ˆ ( )x2 w  
is the Laplace-Fourier (LF) transform of ∆x2( )t  (ω is the frequency). 
ˆ ˆ ˆ( ) ( ) ( )G G iGw w w≡ ′ + ′′  is the complex shear modulus of the medium: its real 

( ˆ ( )′G w ) and imaginary ( ˆ ( )′′G w ) parts correspond to the storage (elastic) 
and loss (viscous) moduli [74], respectively.

To illustrate the method, we consider the general situation where nano-
probe diffusion is power-law-like [45]: 〈 ( )〉 =∆x D2 6τ τα

α , where Dα  is the 
(generalized) diffusion coefficient (0 ≤ α ≤ 1) and τ is the lag-time. With 
the corresponding LF-transform given by D Gˆ ( )x D i2 16 1w aa

a( ) = +( ) - +( )w , 
ˆ ( )′G w  and ˆ ( )′′G w  are expressed by the simple formulas:

 ˆ ˆ( )
/

, ( )
/

′ = ( )
+( ) ′ = ( )

G
T
d D

G
T
d D

B Bw k
p

pa
a

w w k
p

paa

a3
2
1 3

2cos sin

α Γ Γ aa
wa

+( )1
.  (7.2)

The two “special” limits of α = 0 and α = 1 correspond, respec-
tively, to the well-known cases of ˆ ˆ( )G G const BT

d Dw k
p= ′ = = 3 0

 and 
ˆ ˆ( ) ( )G iG i iBT

d Dw w k
p= ′′ = ≡3 1

ω ηω . In the former case, the medium responds 
as an elastic (Hookean) solid, while in the latter its behavior is as of a 
classical fluid with “bulk” viscosity = η. In the intermediate case of 0 < α < 1 
both, ˆ ( )¢G w  and ˆ ( )′′G w , are non-zero and the medium displays intermedi-
ate (solid/liquid) properties.
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In order to understand the role of active processes on nuclear dynamics and 
the motion of nuclear bodies, Hameed et al. [54] compared the passive motion of 
nanoprobes to the driven motion of transcription compartments (TCs). TCs are 
chromatin domains with an open chromatin structure which partially colocal-
ize to active “transcription factories”. During this process and at physiological 
temperatures (37 °C), they undergo directed movements which are influenced by 
ATP-dependent chromatin remodeling processes [58], and which are suppressed 
at lower, non-physiological temperatures.

To characterize the motion of TCs, Hameed et al. tracked tens of nanoprobes 
of linear size = 1 µm microinjected within the nuclei of HeLa cells at 25°C by 
using a protocol similar to the one by Tseng et al. (Figure 7.6A). The results are 
in quantitative agreement with those reported in previous work, in particular, 
the nanoprobe motion is caged within domains of linear size ≈250 nm (Figure 
7.6B), a value remarkably close to the one (≈290 nm) measured by Tseng et al. 
in murine fibroblasts. Furthermore, single trajectories can be clustered into two 
groups according to the long-term behaviors of corresponding MSDs: in the first 
group, MSDs are plateauing after a long time while in the second they steadily 
increase (Figure 7.6C–E). The analysis is finally completed by computing the 
storage and loss moduli, ¢ˆ ( )G w  and ¢¢( )Ĝ w  (Figure 7.6F): the nucleus behaves like 
a “power-law” solid ( ¢ > ¢¢ˆ ˆG G ) at low frequencies (again, in qualitative agreement 
with the experiments by Tseng et al.) crossing over to viscous-like behavior at 
large frequencies. The procedure was then repeated at 37 °C with analogous 
results.

Next, passive nanoprobe motion was compared to the motion of TCs at the 
same two temperatures. As anticipated above, at the non-physiological tempera-
ture of 25 °C, TC motion loses directionality and becomes similar to the pas-
sive motion of nanoprobes with analogous confinement and dispersion of MSD 
curves (Figures 7.6G,H). Conversely, trajectories taken at 37 °C display “mixed” 
behavior of confined motion and jump between close-by cages (Figures 7.6I,J, 
analogous to the results for passive nanoprobes in murine fibroblasts discussed 
before and significantly larger mobility (Figure 7.6K). Accordingly (Figure 7.6L), 
curves for storage and loss moduli at 25 °C are qualitatively similar to the ones for 
passive nanoprobes, while at the higher temperature they show a drastic change 
with the nuclear environment becoming sensibly much softer to TC motion. 
The temperature dependent behavior is dramatically affected by ATP depletion 
and perturbations to chromatin remodeling processes [54], suggesting that TC 
motion is partially stimulated by an active component.

Interestingly, the dynamic behavior of TCs contrasts analogous results [56] for 
the motion of Cajal bodies (CBs) in healthy (normal) and ATP-depleted nuclei. 
CBs are dynamic structures implicated in RNA-related metabolic processes. They 
can diffuse inside the nucleus, merge or split to form larger or smaller CBs and 
even associate/dissociate with/from specific genomic loci [56]. These processes 
were investigated in normal cells and in ATP-depleted cells in order to quantify 
the role of ATP in CB dynamics (see Figure 7.7). Typically, CBs show anomalous 
diffusion while moving within the interchromatin nuclear compartment. Quite 
unexpectedly, upon ATP depletion CBs tend to diffuse faster and they are no 
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longer associated with dense chromatin regions. In conclusion, the association 
between CB and chromatin is an active process needing ATP.

To summarize, these results illustrate the prominent role of microrheology in 
the characterization of nuclear organization and how this influences the motion 
of nuclear bodies that participate in the correct functioning of cellular processes. 
In the next section, we discuss the connection between the physics of solutions of 
crumpled polymers and chromosome structure and dynamics, and illustrate its 
implications in the theoretical description of nuclear microrheology.

Figure 7.6 Microrheology of mammalian nuclei (live HeLa cells (human)): pas-
sive (A–F) versus active (G–L) dynamics. (A) Schematic illustration of the exper-
imental setup used for single-particle tracking. Inset: focus on microinjected 
probes tracked by fluorescence microscopy. (B) Typical trajectory of a nano-
probe at 25 °C showing diffusion in a confined cage. Inset: Histogram of cage 
sizes lc. (C,D) Time mean-square displacements (MSDs) for different nano-
probes, displaying behavior I (C, plateauing at large times) and II (D, monotoni-
cally increasing). (E) Mean effective exponents αeff ( ( ) )MSD t ta∼ eff  as a function 
of inverse time for trajectories I and II and their combination. (F) Storage and 
loss moduli, ¢ˆ ( )G w  and ¢¢ˆ ( )G w  as functions of frequency ω. At low ω's the 
nucleus is elastic ( ˘ ˘ )¢ > ¢¢G G  while becoming increasingly viscous at higher ω's. 
(G) Typical trajectory of a transcription compartment (TC) at 25 °C showing 
diffusion in a confined cage as for microinjected beads. Inset: Histogram of 
cage sizes lc. (H) Time MSDs for different TCs at 25 °C. (I) Typical trajectory of 
a TC at 37 °C showing diffusion in confined cages intermitted with jumps even 
across long distances. (J) Time MSDs for different TCs at 37 °C. (K) Mean effec-
tive exponents αeff as functions of inverse time for the two temperatures. (L) 
Storage and loss moduli, ¢ˆ ( )G w  and ¢¢ˆ ( )G w , as functions of frequency ω for the 
two temperatures. Reproduced from [54] under Creative Commons License.
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Figure 7.7 Diffusion of Cajal bodies (CBs) through the nuclear interchromatin 
space is an APT-dependent process. (A) Examples of consecutive temporal 
frames of nuclei of HeLa live cells: a healthy (control) nucleus (left) versus 
an ATP-depleted nucleus (right). CBs are stained green, while chromosomal 
DNA is stained red. Consecutive positions of CBs are indicated by the white 
arrowheads. CBs in ATP-depleted nuclei show higher mobility and they are 
no longer associated with dense chromatin regions. Scale bar = 10 µm. (B) 
Reconstructed trajectories of individual CBs. Different colors correspond to 
different CBs. Reproduced with permission from [56].
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7.3  POLYMER MODEL OF NUCLEAR CHROMOSOME 
ORGANIZATION

7.3.1  “Topological” origin of chromosome territories

In spite of their intrinsic complexity (discussed in Sections 7.2), the general 
behavior of interphase chromosomes is remarkably well described by generic 
polymer physics [11–13, 66–71].

To explain these ideas, we start from a set of experiments dated back to the 60–70s 
featuring very accurate estimates of nuclear volumes (NV, in micrometers3(µm3)) 
from different organisms compared to the sizes of the corresponding genomes 
(GS, in basepairs (bp)). The data are summarized in Table  7.1 (animals) and 
Table 7.2 (plants). Remarkably, the data fit well (see Figure 7.8) to the linear rela-
tionship “GS ~ NV”. Moreover, this law appears to be the same for animals and 
plants including the prefactor which, within statistical fluctuations (see Figure 
7.8, inset), suggests a rather robust DNA density of r » ±( )0 054 0 028 3. . /bp nm . 
This value corresponds to a volume occupancy from ≈7% (for DNA being mod-
eled as a cylinder of 2.2 nm of diameter with linear density of ≈3 bp/nm [15]) up 
to ≈25% (for chromatin being modeled as a cylinder of 30 nm of diameter with 
linear density of ≈100 bp/nm, see Section 7.2).

Under these conditions and supported by experimental observations on the 
polymer-like nature of the chromatin fiber (Section 7.2), the theory of semi-dilute 
polymer solutions [74] represents a good starting point for a quantitative descrip-
tion of chromosome organization inside the nucleus.

At the beginning of interphase, each chromosome evolves from its initial, com-
pact mitotic conformation and starts swelling inside the nucleus (Figure 7.9A). 
Rosa and Everaers [72] argued that the time to reach the complete mixing of all 
chromosomes starting from the fully unmixed state can be estimated by assum-
ing ordinary reptation dynamics [74, 75] for linear polymers in concentrated 
solutions: t tmix e

L
L

c

c
≈ ( )3  where te ≈ 32 seconds and Le ≈ 0 12.  megabasepairs (Mbp) 

are, respectively, the entanglement time and entanglement length of the chroma-
tin fibers solution (Table 7.3). With typical mammalian chromosomes of total 
contour length Lc  of the order of 102Mbp (Table 7.1), tmix  is exceeding by orders 
of magnitude the typical cell lifetime. As a consequence, the spatial structures of 
chromosomes remain effectively stuck into territorial-like conformations retain-
ing the topological “memory” of the initial mitotic state.

These considerations were adapted into a generic bead-spring polymer 
model   [72], taking into account the density, stiffness and local topology con-
servation of the chromatin fiber (Table 7.3). Extensive Molecular Dynamics 
computer simulations then showed that the swelling of model mitotic-like chro-
mosomes (Figure 7.9B) leads to compact territories with physical properties akin 
to crumpled conformations of ring polymers in entangled solutions (Box 7.2). The 
analogy between chromosome territories and ring polymers motivated the for-
mulation of the efficient multiscale algorithm described in [73] which is capable 
of generating hundreds of putative chromosome conformations (see Figure 7.9C  
for a single example) in negligible computer time. The polymer model was shown 
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Table 7.1 List of nuclear volumes (NV, in micrometers3 (µm3)), nuclear radii 

( ( ) ,/≡ 3
4

1 3
p mNV  in m), genome sizes (GS, in basepairs (bp)) and genome densities 

( )≡ GS
NV  for different animal species or different cell types of the same species. 

Corresponding sources are indicated at the top of each sub-panel

animals

Organism

Nuclear 
volume 
[µm3]

Nuclear 
radius 
[µm]

Genome 
size [×109 

bp]

Genome 
density  

[bp/nm3]

Anurans, liver parenchymal cells [59]
A. obstetricans  253  3.92  20.54  0.081
X. laevis  125  3.10   7.34  0.059
B. marinus  221  3.75  9.49  0.043
B. viridis  122  3.08  10.47  0.086
B. fowleri  157  3.35  12.32  0.079
B. bufo  231  3.81  13.89  0.060
B. calamita  123  3.09    9.00  0.073
B. americanus  136  3.19  10.56  0.078
H. squirella  137  3.20  10.17  0.074
H. septentrionales  107  2.95    4.30  0.040
R. pipiens  168  3.42  14.67  0.087
R. catesbiana  225  3.77  14.87  0.066
R. temporaria  129  3.14  8.61  0.067
R. esculenta  196  3.60  13.79  0.070

Salamanders, liver parenchymal cells [59, 60]
N. maculosus  1784  7.52  192.47  0.108
P. anguinus  1223  6.63  102.79  0.084
A. tigrinum  1104  6.41  83.42  0.076
A. mexicanum  943  6.08  75.31  0.080
A. means  3852  9.73  188.56  0.049
N. viridescens  943  6.08  91.15  0.097
T. granulosa  716  5.55 66.50 ± 5.87 0.093 ± 0.008
T. cristatus  697  5.50  51.35  0.074
T. vulgaris  768  5.68  69.44  0.090
T. alpestris  730  5.59  73.55  0.101
D. fuscus  523  5.00  35.21  0.067
E. bislineata  1236  6.66  73.37  0.059
P. ruber  579  5.17 48.90 ± 1.96 0.085 ± 0.003

(Continued)
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to reproduce the experimentally observed behavior of (sequence-averaged [71]) 
properties of interphase chromosomes: these include chromosomes spatial posi-
tions measured by FISH, chromatin–chromatin interaction data and time mean-
square displacements of chromosome loci [71, 72, 78, 79].

For illustration purposes, the single chromosome structure is described 
through the structure factor [74] S q eiq r ri j( ) ≡ ⋅ −� � �

( )  as a function of the norm of 
the wave vector q qº

�
 (Figure 7.11A). 

�
ri  are the spatial positions of chromosome 

loci and the average is taken over all chromosome conformations. For wave vec-
tors q

dT�
< 2p  where dT ≈ 245 nm is the tube diameter of the chromatin fiber [72,  

78] S q q( ) -~ 3, which corresponds to the expected result for a compact, scale-free 
polymer.

While S(q) provides information on single-chain properties, it is instructive 
to look at the spatial relationship between different territories. To this end, we 
consider the average DNA density at spatial distance r from the chromosome 

Table 7.1 (Continued) List of nuclear volumes (NV, in micrometers3 (µm3)), nuclear 

radii ( ( ) ,/≡ 3
4

1 3
p mNV  in m), genome sizes (GS, in basepairs (bp)) and genome 

densities ( )≡ GS
NV  for different animal species or different cell types of the same 

species. Corresponding sources are indicated at the top of each sub-panel

animals

Organism

Nuclear 
volume 
[µm3]

Nuclear 
radius 
[µm]

Genome 
size [×109 

bp]

Genome 
density  

[bp/nm3]

Other organisms [61]
N. viridescens (lens)  4174  9.99  93.50  0.022
T. cristatus (heart)  1748  7.47  58.29  0.033
R. pipiens (embryo)  627  5.31  14.02  0.022
X. laevis (kidney)  294  4.13    7.51  0.026
X. laevis (heart)  307  4.19    7.51  0.025
S. holbrooki (heart)  197  3.61    3.70  0.019
P. crinitus (lung)  153  3.32   6.16  0.040
M. musculus  435  4.70  13.50  0.031
H. sapiens (lymphocytes)  232  3.81   6.10  0.026
H. sapiens (lung)  170  3.44    6.10  0.036
H. sapiens (HeLa, cervix)  374  4.47  10.45  0.028
C. sabaeus (kidney)  421  4.65  13.65  0.032
C. griseus (ovary)  188  3.55    5.87  0.031
G. gallus domesticus 

(embryo)
 210  3.69    2.62  0.013

T. pyriformis  678  5.45  15.36  0.023
D. melanogaster 

(imaginal disc)
 78  2.65    0.29  0.004

S. cerevisiae  3.3  0.92    0.02  0.005



 7.3 Polymer Model of Nuclear Chromosome Organization 155

Ta
b

le
 7

.2
 N

o
ta

ti
o

n 
is

 a
s 

in
 T

ab
le

 7
.1

P
la

nt
s

O
rg

an
is

m
N

uc
le

ar
 v

o
lu

m
e 

[µ
m

3 ]
N

uc
le

ar
 r

ad
iu

s 
[µ

m
]

G
en

o
m

e 
si

ze
 [×

10
9 
b

p
]

G
en

o
m

e 
d

en
si

ty
 [b

p
/n

m
3 ]

H
ig

he
r 

p
la

nt
s 

[6
2]

K
. d

ai
g

re
m

on
tia

na
10

5.
0 

±
 3

.8
2.

93
 ±

 0
.0

4
 1

0.
76

 ±
 0

.9
8

0.
10

3 
±

 0
.0

13
R

. s
at

iv
us

 1
11

.0
 ±

 2
.9

2.
98

 ±
 0

.0
3

4.
89

 ±
 0

.9
8

0.
04

4 
±

 0
.0

10
R

. s
an

g
ui

ne
us

 1
20

.0
 ±

 3
.9

3.
06

 ±
 0

.0
3

4.
89

 ±
 0

.9
8

0.
04

1 
±

 0
.0

10
T.

 m
aj

us
 1

52
.0

 ±
 4

.4
 3

.3
1 

±
 0

.0
3

 1
0.

76
 ±

 0
.9

8
 0

.0
71

 ±
 0

.0
09

V.
 a

ng
us

tif
ol

ia
 1

86
.0

 ±
 5

.8
 3

.5
4 

±
 0

.0
4

 9
.7

8 
±

 0
.9

8
 0

.0
53

 ±
 0

.0
07

R
. s

te
no

p
hy

llu
s

 2
12

.0
 ±

 6
.2

 3
.7

0 
±

 0
.0

4
11

.7
4 

±
 0

.9
8

 0
.0

55
 ±

 0
.0

06
R

. o
b

tu
si

fo
liu

s
 2

17
.0

 ±
 6

.9
 3

.7
3 

±
 0

.0
4

 7
.8

2 
±

 0
.9

8
 0

.0
36

 ±
 0

.0
06

R
. l

on
g

ifo
liu

s
 2

49
.0

 ±
 9

.3
 3

.9
0 

±
 0

.0
5

 1
2.

71
 ±

 1
.9

6
 0

.0
51

 ±
 0

.0
10

C
. n

ip
p

on
ic

um
 2

70
.0

 ±
 1

0.
2

 4
.0

1 
±

 0
.0

5
 4

3.
03

 ±
 4

.8
9

 0
.1

59
 ±

 0
.0

24
G

. s
p

. H
V

 m
an

so
er

 2
81

.0
 ±

 8
.5

 4
.0

6 
±

 0
.0

4
 5

.8
7 

±
 0

.9
8

 0
.0

21
 ±

 0
.0

04
H

. a
nn

uu
s

 2
93

.0
 ±

 1
0.

7
 4

.1
2 

±
 0

.0
5

 1
5.

65
 ±

 1
.9

6
 0

.0
53

 ±
 0

.0
09

C
. j

ac
km

an
ni

i
 3

47
.0

 ±
 1

5.
0

 4
.3

6 
±

 0
.0

6
 2

1.
52

 ±
 0

.9
8

 0
.0

62
 ±

 0
.0

06
C

hr
ys

an
th

em
um

 s
p

. I
 3

60
.0

 ±
 1

0.
9

 4
.4

1 
±

 0
.0

5
 3

6.
19

 ±
 6

.8
5

 0
.1

01
 ±

 0
.0

22
N

. d
em

as
ce

na
 3

92
.0

 ±
 1

2.
8

 4
.5

4 
±

 0
.0

5
 2

7.
38

 ±
 1

.9
6

 0
.0

70
 ±

 0
.0

07
C

. y
ez

oe
ns

e
 4

78
.0

 ±
 1

6.
4

 4
.8

5 
±

 0
.0

6
 2

8.
36

 ±
 1

.9
6

 0
.0

59
 ±

 0
.0

06
T.

 b
lo

ss
fe

ld
ia

na
 4

81
.0

 ±
 1

6.
8

 4
.8

6 
±

 0
.0

6
 3

9.
12

 ±
 2

.9
3

 0
.0

81
 ±

 0
.0

09
V.

 fa
b

a
 5

21
.0

 ±
 1

4.
1

 4
.9

9 
±

 0
.0

5
 4

3.
03

 ±
 7

.8
2

 0
.0

83
 ±

 0
.0

17
N

. t
az

et
ta

 5
79

.0
 ±

 2
0.

6
 5

.1
7 

±
 0

.0
6

 3
0.

32
 ±

 1
.9

6
 0

.0
52

 ±
 0

.0
05

A
. c

ep
a 

H
V

 e
xc

el
 6

21
.0

 ±
 2

4.
6

 5
.2

9 
±

 0
.0

7
 5

2.
81

 ±
 5

.8
7

0.
08

5 
±

 0
.0

13
T.

 s
p

. g
ol

d
en

 h
ar

ve
st

 8
44

.0
 ±

 2
3.

4
 5

.8
6 

±
 0

.0
5

 7
0.

42
 ±

 7
.8

2
 0

.0
83

 ±
 0

.0
12

(C
on

tin
ue

d
)



156 Structure and Microrheology of the Genome 

Ta
b

le
 7

.2
 N

o
ta

ti
o

n 
is

 a
s 

in
 T

ab
le

 7
.1

P
la

nt
s

O
rg

an
is

m
N

uc
le

ar
 v

o
lu

m
e 

[µ
m

3 ]
N

uc
le

ar
 r

ad
iu

s 
[µ

m
]

G
en

o
m

e 
si

ze
 [×

10
9 
b

p
]

G
en

o
m

e 
d

en
si

ty
 [b

p
/n

m
3 ]

S.
 s

ib
iri

ca
 H

V
 a

lb
a

 9
08

.0
 ±

 4
2.

8
 6

.0
1 

±
 0

.0
9

 7
1.

39
 ±

 2
0.

54
 0

.0
79

 ±
 0

.0
26

Tr
ad

es
ca

nt
ia

 s
p

. I
 9

16
.0

 ±
 2

7.
6

 6
.0

2 
±

 0
.0

6
 5

7.
70

 ±
 4

.8
9

 0
.0

63
 ±

 0
.0

07
T.

 p
al

ud
os

a
 9

47
.0

 ±
 3

6.
6

6.
09

 ±
 0

.0
8

 5
2.

81
 ±

 5
.8

7
 0

.0
56

 ±
 0

.0
08

L.
 s

q
ua

m
ig

er
a

 1
01

7.
0 

±
 2

4.
0

 6
.2

4 
±

 0
.0

5
 1

25
.1

8 
±

 1
1.

74
 0

.1
23

 ±
 0

.0
15

C
hr

ys
an

th
em

um
 s

p
. I

I
 1

18
3.

0 
±

 4
4.

9
 6

.5
6 

±
 0

.0
8

 7
7.

26
 ±

 9
.7

8
 0

.0
65

 ±
 0

.0
11

T.
 v

irg
in

ia
na

 1
32

4.
0 

±
 3

8.
8

 6
.8

1 
±

 0
.0

7
 1

13
.4

5 
±

 7
.8

2
 0

.0
86

 ±
 0

.0
08

L.
 lo

ng
ifl

or
um

 I
 1

34
7.

0 
±

 4
4.

8
 6

.8
5 

±
 0

.0
8

 1
03

.6
7 

±
 1

3.
69

 0
.0

77
 ±

 0
.0

13
C

. l
ac

us
tr

e
 1

66
3.

0 
±

 5
3.

8
 7

.3
5 

±
 0

.0
8

 1
38

.8
8 

±
 7

.8
2

 0
.0

84
 ±

 0
.0

07
T.

 p
al

ud
os

a
 1

76
7.

0 
±

 9
6.

7
 7

.5
0 

±
 0

.1
4

 1
15

.4
0 

±
 1

6.
63

 0
.0

65
 ±

 0
.0

13
L.

 lo
ng

ifl
or

um
 II

 2
80

9.
0 

±
 1

58
.1

 8
.7

5 
±

 0
.1

6
 1

73
.1

1 
±

 1
9.

56
 0

.0
62

 ±
 0

.0
11

H
er

b
ac

eo
us

 a
ng

io
sp

er
m

s 
[6

3,
 6

4]
A

. t
ha

lia
na

 3
2 

±
 3

 1
.9

7 
±

 0
.0

6
 0

.5
9 

±
 0

.2
7

 0
.0

18
 ±

 0
.0

10
L.

 m
ar

iti
m

a
 4

9 
±

 5
 2

.2
7 

±
 0

.0
8

 1
.0

8 
±

 0
.0

4
 0

.0
22

 ±
 0

.0
03

C
. a

rie
tin

um
 9

6 
±

 5
 2

.8
4 

±
 0

.0
5

 1
.8

6
 0

.0
19

 ±
 0

.0
01

N
. l

ut
ea

 1
39

 ±
 7

 3
.2

1 
±

 0
.0

5
 1

.8
9

 0
.0

14
 ±

 0
.0

01
S.

 o
le

ra
ce

a
 1

56
 ±

 7
 3

.3
4 

±
 0

.0
5

 2
.0

1
 0

.0
13

 ±
 0

.0
01

A
. p

ul
sa

til
la

 4
35

 ±
 2

7
 4

.7
0 

±
 0

.1
0

 3
4.

03
 0

.0
78

 ±
 0

.0
05

T.
 n

av
ic

ul
ar

is
 5

52
 ±

 2
7

 5
.0

9 
±

 0
.0

8
 5

3.
97

 ±
 3

.6
5

 0
.0

98
 ±

 0
.0

11
C

. m
aj

al
is

 7
10

 ±
 1

7
 5

.5
3 

±
 0

.0
4

 3
3.

22
 0

.0
47

 ±
 0

.0
01

F.
 la

nc
eo

la
ta

 1
46

6 
±

 1
15

 7
.0

5 
±

 0
.1

9
 8

9.
24

 0
.0

61
 ±

 0
.0

05
F.

 c
am

sc
ha

tc
en

si
s

 1
82

4 
±

 1
03

 7
.5

8 
±

 0
.1

4
 1

09
.7

8
 0

.0
60

 ±
 0

.0
03

L.
 lo

ng
ifl

or
um

 3
27

3 
±

 1
67

 9
.2

1 
±

 0
.1

6
 6

8.
85

 0
.0

21
 ±

 0
.0

01
(C

on
tin

ue
d

)



 7.3 Polymer Model of Nuclear Chromosome Organization 157

Ta
b

le
 7

.2
 N

o
ta

ti
o

n 
is

 a
s 

in
 T

ab
le

 7
.1

P
la

nt
s

O
rg

an
is

m
N

uc
le

ar
 v

o
lu

m
e 

[µ
m

3 ]
N

uc
le

ar
 r

ad
iu

s 
[µ

m
]

G
en

o
m

e 
si

ze
 [×

10
9 
b

p
]

G
en

o
m

e 
d

en
si

ty
 [b

p
/n

m
3 ]

S.
 fo

rm
os

is
si

m
a

 4
63

8 
±

 2
62

 1
0.

35
 ±

 0
.2

0
 1

28
.0

1
 0

.0
28

 ±
 0

.0
02

G
ym

no
sp

er
m

s 
[6

5,
 6

4]
P.

 s
tr

ob
us

 I
 1

46
8 

±
 9

4
 7

.0
5 

±
 0

.1
5

 5
0.

17
 0

.0
34

 ±
 0

.0
02

P.
 s

tr
ob

us
 II

 1
25

9 
±

 5
1

 6
.7

0 
±

 0
.0

9
 5

0.
17

 0
.0

40
 ±

 0
.0

02
P.

 g
la

uc
a 

I
 1

13
7 

±
 5

2
 6

.4
8 

±
 0

.1
0

 3
1.

59
 0

.0
28

 ±
 0

.0
01

A
. b

al
sa

m
ea

 1
11

4 
±

 6
2

 6
.4

3 
±

 0
.1

2
 3

2.
08

 0
.0

29
 ±

 0
.0

02
L.

 la
ric

in
a

 1
11

0 
±

 5
5

 6
.4

2 
±

 0
.1

1
 1

8.
58

 0
.0

17
 ±

 0
.0

01
P.

 p
on

d
er

os
a

 1
09

5 
±

 5
1

 6
.3

9 
±

 0
.1

0
 4

7.
34

 0
.0

43
 ±

 0
.0

02
P.

 r
es

in
os

a
 1

08
4 

±
 5

9
 6

.3
7 

±
 0

.1
2

 4
6.

55
 0

.0
43

 ±
 0

.0
02

Ts
. c

an
ad

en
si

s 
I

 1
07

7 
±

 6
7

 6
.3

6 
±

 0
.1

3
 3

6.
38

 0
.0

34
 ±

 0
.0

02
P.

 a
b

ie
s

 1
02

3 
±

 6
1

 6
.2

5 
±

 0
.1

2
 3

9.
14

 0
.0

38
 ±

 0
.0

00
2

P.
 g

la
uc

a 
II

 1
01

4 
±

 4
7

 6
.2

3 
±

 0
.1

0
 3

1.
59

 0
.0

31
 ±

 0
.0

02
P.

 p
un

g
en

s
 9

77
 ±

 3
8

 6
.1

6 
±

 0
.0

8
 3

5.
50

 0
.0

36
 ±

 0
.0

01
P.

 g
la

uc
a 

III
 9

53
 ±

 3
7

 6
.1

1 
±

 0
.0

8
 3

1.
59

 0
.0

33
 ±

 0
.0

01
Ts

. c
an

ad
en

si
s 

II
 8

52
 ±

 4
1

 5
.8

8 
±

 0
.0

9
 3

6.
38

 0
.0

43
 ±

 0
.0

02
L.

 le
p

to
le

p
is

 8
44

 ±
 4

2
 5

.8
6 

±
 0

.1
0

 2
5.

82
 0

.0
31

 ±
 0

.0
02

T.
 m

ed
ia

 I
 6

45
 ±

 2
8

 5
.3

6 
±

 0
.0

8
 2

2.
01

 ±
 0

.3
9

 0
.0

34
 ±

 0
.0

02
P.

 d
ou

g
la

si
i

 7
42

 ±
 2

9
 5

.6
2 

±
 0

.0
7

 3
7.

26
 0

.0
50

 ±
 0

.0
02

Ta
. c

an
ad

en
si

s
 6

77
 ±

 2
8

 5
.4

5 
±

 0
.0

8
 2

2.
69

 0
.0

34
 ±

 0
.0

01
T.

 m
ed

ia
 II

 4
93

 ±
 2

3
 4

.9
0 

±
 0

.0
8

 2
2.

01
 ±

 0
.3

9
 0

.0
45

 ±
 0

.0
03

S.
 g

ig
an

te
um

 4
31

 ±
 2

1
 4

.6
9 

±
 0

.0
8

 1
9.

41
 0

.0
45

 ±
 0

.0
02

T.
 o

cc
id

en
ta

lis
 3

58
 ±

 1
9

 4
.4

1 
±

 0
.0

8
 2

4.
17

 0
.0

68
 ±

 0
.0

04



158 Structure and Microrheology of the Genome 

center of mass and its two components (Figure 7.11B): the self-density contribu-
tion from the given chromosome ( r D

s
NA

elf ( )r ) and the external contribution from 
the surrounding chromosomes ( r D

e
NA

xt ( )r ). The plots demonstrate that chromo-
somes are rather “soft”. As for common polymer systems [80], the core of each 
chromosome contains a significant amount of DNA protruding from close-by 
chains. In summary, territoriality is not a preclusion for chromosome strands 
to intermingle with each other, in agreement with cryo-FISH experiments [34].

7.3.2  Microrheology of the nucleus

It is indeed quite remarkable that, separately, Tseng et al. [40] and Hameed et al. [54] 
reported a consistent value of 250–290 nm value for nanoprobe-caging domains 
within nuclei of different types of cells and organisms (Section 7.2.2): this suggests 
a common origin for the domains. As noticed by Valet and Rosa [81], this value is 
also surprisingly close to the nominal tube diameter, dT ≈ 245nm, predicted by the 
“topological” polymer model describing chromosome territories (Sec. 7.3.1).

Topological constraints by polymer fibers are likely to induce confinement of 
dispersed nanoprobes of diameter d if d dT

�
>  [82–84]. Motivated by this phenom-

enon, Valet and Rosa [81] employed large-scale numerical simulations to study 
the effect of polymer entanglement on the diffusion of nanoprobes of diameter 
d, and therefore obtain quantitative information for the viscoelastic properties of 
the nucleoplasm modelled as a semi-dilute solution of chromatin fibers. Different 

Figure 7.8 Scatter plot of genome-size (GS) versus nuclear volume (NV). Detailed 
data for animals and plants families are summarized in Tables 7.1 and 7.2, respec-
tively. Lines correspond to best fits of the two sets of data to GS NV=a g , which 
give ganimals = ±1 25 0 09. .  and γ plants = ±1 08 0 07. . . Inset: Probability distribution 
function for genome density P(ρ) (solid curve) is well described by the Gaussian 
function with same average and standard deviation (dashed curve).
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Figure 7.9 “Topological” model for chromosome territories. (A) At the 
beginning of interphase, condensed mitotic chromosomes start swelling. 
The path to full relaxation and complete mixing cannot take place on natural 
time scales due to “slow” relaxation of the topological degrees of freedom 
[72]. Chromosome structures thus remain effectively quenched into separate 
territories which retain “memory” of the initial conformations. (B) Numerical 
implementation of the model by Molecular Dynamics (MD) computer simula-
tions [72]. Model chromosomes are initially prepared into non-overlapping 
mitotic-like structures. MD simulations show the rapid relaxation of polymer 
length scales up to the tube diameter dT , while larger length scales fold into a 
crumpled structure resembling the behavior of ring polymers (Box 7.2). Each 
color corresponds to a single model chromosome. Reproduced from [72] 
under Creative Commons License. (C) The analogy between solutions of ring 
polymers and chromosome territories can be systematically exploited owing 
to an efficient coarse-grain protocol [73] which can produce hundreds of inde-
pendent model conformations of mammalian-sized chromosomes. The model 
can be mapped to real-time and length scales (see bars) with no free param-
eters [72, 73]. The snapshot here provides a typical view for a model human 
nucleus. Reproduced with permission from [73].
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Table 7.3 rDNA, DNA density calculated for an “average” human nucleus of 5 µm 
radius;r30nm , 30 nm chromatin fiber density assuming fiber compaction of 100 bp/nm 
(Sec. 7.2.1); �K , Kuhn length of the 30 nm fiber [76]; ξ, average distance from a 
monomer on one chain to the nearest monomer on another chain (“correlation 
length” [74]); Le , entanglement length obtained from the condition of “optimal 
packing” of 20 chains per entanglement volume by Kavassalis and Noolandi [77]; 
dT , average spatial distance between entanglements (“tube diameter” [74]); t e , 
time scale marking the onset of entanglement effects

Physical parameters of the “bead-spring”
polymer model by rosa and Everaers [72, 73].

rDNA  0 012 3. /bp nm

r30nm  1 2 10 4 2. /× - nm

�K  (30 nm fiber) 300 nm = 30 kbp 

ξ 90 nm 
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BOX 7.2: Structure and microrheology of entangled ring 
polymers in solution.

Structure – Ring polymers in entangled solutions have to respect global 
topological invariance requiring that all chains remain permanently 
unlinked at the expense of entropic loss [103]. Consequently, topological 
constraints between close-by rings induce chain conformations to fold 
into compact (i.e., “territorial” [104]) structures which are reminiscent 
of the “crumpled” (or “fractal” [4]) globule [105–108]. Recent numerical 
work [73, 109, 110] has confirmed this conjecture and, thus, demonstrated 
that the typical end-to-end mean-square spatial distance between chain 
monomers with contour separation L is given by:
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�K  is the Kuhn length of the polymer describing chain stiffness [74]. Le, 
which depends on �K  and on the solution density [77, 111], is the so-called 
entanglement length marking the onset of entanglement effects. The cor-
responding end-to-end spatial distance between entanglement strands 
d LT K e≈ ( ) /� 1 2  (the “entanglement distance”) is also called the “tube 
diameter” by analogy to systems of linear chains [75]. Among their notice-
able features and in spite of compactness, rings do not expel close-by 
rings: on average, in fact, their surface remains “rough” and shares many 
contacts with neighbors [108, 110, 112, 113]. Indeed, rings interpenetrate 
as “threading” conformations [114, 115] (Figure 7.10A) akin to interacting 
“branched structures” [73] with long-range (loose) loops [116, 117].

Microrheology – Depending on nanoprobe diameter three regimes 
(Figure 7.10B) can be distinguished [82–84]:

I) Small nanoprobes, d
�
< x , where ξ (the “correlation length”) is the 

average distance from a monomer on one chain to the nearest monomer 
on another chain [74]. Nanoprobes interact only with the solvent, and their 
motion remains diffusive:

 〈 ( )〉∆x D
T
d

s
B

s

2 τ τ κ
η

τ~ ~ .  (7.4)

Ds is the diffusion coefficient and ηs is the viscosity of the solvent.
II) Intermediate nanoprobes, x

� �
< <d dT . Nanoprobe motion is now 

affected by the polymers, showing three regimes:

 ∆x
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 (7.5)

In (II.a), nanoprobe motion is driven only by random collisions with 
the solvent, as in (I). This regime stops at tx , the relaxation time of a 
polymer strand of spatial size ξ. Then (II.b), the nanoprobe experiences 
a time-dependent viscosity h t h t h t tx( ) ( ) ( )~ / /

s str sn ≡ 1 2 , where nstr ( )t  is 
the number of strands which have relaxed at time τ. This regime stops 
at timetd , the relaxation time of a larger polymer strand of spatial size 
= = ( )d nstr dx t . Above td  (II.c), nanoprobe motion becomes diffusive 
again with effective viscosity ~ ( )h h ts str d , which is ~ ( / )d x 2  times larger 
than the value in pure solvent.

III) Large nanoprobes, d dT
�
> . Regime (II.a) still holds, while regime 

(II.b) stops at t t xxd d TT d= = ( )/ 4 . Above tdT , entanglements affect nano-
probe motion. By scaling arguments [74], the time-dependent friction 

(Continued)
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h h t t t= ( ) ≈ ( )G  where: G
T

L
Bt k

n t
( ) ( )~ /2 3

 is the stress relaxation modu-

lus, 𝜈 is the monomer volume and L Le et t t( ) ( )~ /
/1 γ

 (γ = 2.33–2.57 [116, 

118, 119]) is the contour length of the polymer strand with relaxation 

time τ. Therefore,

 ∆x
T

L d
L

d
B e

e

2
2 3 1

t k
h t

t n t
t

( ) ( )( )






~ ~ ,
/ /γ

 (7.6)

and nanoprobe diffusion is anomalous with exponent 1/γ = 0.39–0.43. 

This regime breaks down at ′ ( )( ) = ( )( ) −
t t t

g
d e K e e K ed L d L~ / /

/ . .2 3 2 2 3 50 3 86
� � , 

 the relaxation time of a ring strand of spatial extension ≈d in the com-

pact regime (Equation 7.3 for L Le
�
> ). For t t> ′d, nanoprobe diffusion is 

normal with ∆x
T

L d
B

d

2 t k
h t

t( )
′( )( )~ .

By applying Equations 7.1 and 7.2 (Box 7.1), the shapes of the storage 
and loss moduli can be then recovered (Figure 7.10C).

Figure 7.10 (A) Schematic illustration of ring polymers in dense solution. 
Shaded areas highlight threadings between close-by chains. (B) Time 

mean-square displacement ∆x2( )t  of nanoprobes in solutions of ring 
polymers. (C) Corresponding predictions (obtained by using Eqs. 7.1 and 
7.2) for the storage modulus ′ ( )G w  as a function of frequency ω. Each 
crossover frequency is the inverse of the corresponding crossover time 
in panel (B) multiplied by “2π”. An analogous plot for the loss modulus 
¢¢ˆ ( )G w  can be constructed. Plots are in log-log scales.

nanoprobes were considered, with d ranging from 30 nm (the fiber diameter) to 
300 nm (slightly above dT ).

Figure 7.12 reports the main results, in terms of: (A) nanoprobe time mean-
square displacement, Dx2 t( ) ; (B) time-dependent diffusion coefficient, 

D
x

t
t

t
( ) º

( )D 2

6
; (C) time-dependent viscosity h t k

p t
( ) º ( )

BT

dD3
; (D) asymptotic 

diffusion coefficient (D D¥ ¥º ®( )t ) and viscosity (h h t¥ ¥º ®( )) versus 
nanoprobe diameter. The data demonstrate that for d smaller than the polymer 
correlation length (Box 7.2) ξ ≈ 90 nm and neglecting the short-time ballistic 
regime ( Dx2 2t t( ) ~ ), nanoprobe motion is not or only weakly coupled to 
chromosome dynamics, implying Dx D2 6t t( ) º ¥  with “standard” behaviors 
D d¥ ~ -1 and h¥ ~ d0. Viceversa, for d > ξ coupling to chromosome dynamics 
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Figure 7.11 Predicted spatial structure of model mammalian chromosomes 
[72, 73]. (A) Structure factor S q

�( )  versus the norm of the wave vector q q≡
�

.  
The two regimes q−1 (rod-like) and q-3(compact-like) are for spatial scales, 
respectively, below and above the tube diameter, dT ≈ 245nm , of the chroma-
tin fiber. The wavy behavior at large q is an artifact due to the discrete bead-
spring nature of the model. (B) Average DNA density at spatial distance r from 
the chromosome center of mass: r D

s
NA

elf ( )r , the self-density contribution from 
the given chromosome; r D

e
NA
xt ( )r , the external contribution from the surround-

ing chromosomes. The sum of the two equals the average DNA density = 0.012 
bp/nm3 (Table 7.3). For reference, the dashed line corresponds to the pre-
dicted average size of a single chromosome territory.
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induces nanoprobe subdiffusion ( Dx2 1 2t t( ) ~ / ) at small τ and consequent 
“anomalous” behaviors D d¥ ~ -3 and h¥ ~ d2, in agreement with theoretical pre-
dictions (see discussion in Box 7.2).

Figure 7.13 completes the previous analysis by showing (A, B) the distribu-
tion functions for D∞  and (C–E) the distribution functions for particle displace-
ments Dx x xt t t t( ) º ¢ +( ) - ¢( )  at different lag-times τ (see caption for details). 
In general, D∞  and Dx t( ) appear Gaussian-distributed (black lines). With one 
notable exception: for t t� e  and large nanoprobes, P xD t( )( ) appears signifi-
cantly different from the Gaussian function. This follows from the presence of 
surrounding polymers exerting constraints and inducing spatial correlations [81] 
on nanoprobe displacement.

Finally, by using the fundamental relation of microrheology connecting the 
complex shear modulus to the nanoprobe mean-square displacement (Equation 
7.1 in Box 7.1), theoretical predictions for the storage and loss moduli at frequency 

Figure 7.12 Viscoelasticity of model interphase chromosomes analyzed by 
microrheology. (A) Time mean-square displacement, ∆x2 t( ) , of nanoprobes 
with varying diameter d. Vertical dashed lines mark the position of chromatin 
entanglement time t e » 32  seconds [72]. (B) Time-dependent diffusion coeffi-

cient, D xt t t( ) º ( )D 2 6/ . (C) Time-dependent viscosities, h t k
t

( ) º ( )
BT

d D3p .  

(D) Asymptotic diffusion coefficient (□),D D¥ ¥º ®( )t , and particle viscos-
ity (◦), h h t¥ ¥º ®( ), as functions of nanoprobe diameter, d. Solid lines are 
for theoretical predictions in the non-entangled regime (Box 7.2). Polymer-
mediated effects start at nanoprobe diameter d ≈ ξ ≈ 90 nm (Box 7.2). The 
largest nanoprobe diameter is of the order of the tube diameter, dT ≈ 245nm, 
of the chromatin solution. Reproduced with permission from [81].



 7.3 Polymer Model of Nuclear Chromosome Organization 165

ω can be extracted and then compared to available experimental results, see Table 
7.4. In spite of its simplicity, the polymer model is in reasonable agreement with 
experiments. The main difference is that experiments predict nuclei with ˆ ˆ¢ > ¢¢G G  
(i.e., more solid- than liquid-like, see Box 7.1), while the polymer model predicts 
the opposite. Since nanoprobes with diameters larger than dT  should experience a 
more solid-like behavior (Box 7.2), this difference can be ascribed to the size of the 

Figure 7.13 (A,B) Distribution functions for the asymptotic diffusion coef-
ficients,D∞ . The shape of the distributions compares well to the Gaussian 
function (black line). (C,D,E) Distribution functions for one-dimensional 

nanoprobe displacements, Dx x t x tt t( ) º +( ) - ( ) , at different lag-times τ 
(see corresponding captions). The x-axis has been rescaled according to the 

corresponding standard deviations ∆x2 t( ) and the curves compared to the 
normal form of the Gaussian function describing ordinary diffusion [85]. At 
t t� e , P x∆ t( )( )  shifts from Gaussian to non-Gaussian behavior at increasing 
nanoprobe diameters. Universal Gaussian behavior is recovered at all d’s at 
t t� e . Color code is as in Figure 7.12.
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simulated nanoprobes which is just about dT . It would be interesting to test then 
if larger nanoprobes would go more towards the observed experimental behavior.

At the same time, other factors which have not been taken into account because 
of the initial intention to keep the polymer model as simple as possible could con-
tribute to explain deviations from experiments as well. In the next section, we will 
comment briefly on these issues and highlight possible directions for future work.

7.4  CONCLUSIONS AND FUTURE DIRECTIONS

In this review, we have summarized the results of our efforts to understand chro-
mosome folding and nuclear structure in terms of generic polymer physics. In 
particular, we have discussed the physical origin of:

 1. Chromosome territories. In our framework, the territorial organization 
of the nucleus (Section 7.2.1) is explained in terms of the slow Brownian 
relaxation of non-overlapping long polymer chains subjected to topological 
constraints (Section 7.3.1). As a consequence, average chromosome confor-
mations in eukaryotes resemble ring polymers (Figure 7.8) with a crumpled 
yet intermingling structure (Figure 7.9).

 2. Microrheology of the nucleus. The viscoelastic properties of the nucleus (Sec. 
7.2.2) have been compared to the dynamic behavior of nanoprobes immersed 
in the ring polymers solution (Section 7.3.2). The model is in good quantitative 
agreement with theoretical expectations (Figure 7.10) and in qualitative agree-
ment with the available experiments for nuclear microrheology (Table 7.4).

Obviously, due to the complexity of the genome and the simplicity of the model, 
it is no surprise that there is still much work ahead which remains to be done in 
order to arrive at a satisfactory picture of genome organization in terms of polymer 
physics. In this spirit, in this section, we discuss a few promising directions which 
should be undertaken to make the model more coherent with experimental data.

First, an evident inconsistency between the outcome of microrheology experi-
ments and the results of our polymer model in the latter shows no sign of a plateau 
in the time MSD or the storage modulus ¢( )Ĝ w  (compare Figure 3A,B of Ref. [40] to 
Figure 7.10A), in spite of the very similar sizes of nanoprobes used. It should be pos-
sible to “level” this discrepancy though, by introducing a fixed amount of long-lived 
or permanent crosslinks between chromatin fibers. Crosslinks are known to quench 
polymer dynamics without altering significantly the average polymer 3d structure 
[86] and may affect nanoprobe diffusive behavior when its size becomes larger than 
the polymer tube diameter [87]. On the biological side, there exists a conspicuous 
number of experimental observations [4, 32, 88] proving the existence of func-
tionally relevant protein bridges between sequence-distant chromatin loci which, 
indeed, may act as effective crosslinks. In this respect then, numerical investigations 
of nanoprobe dynamics could help to estimate the specific amount of cross-links 
present in the genome and elucidating their role in chromatin organization.

Second, a few recent studies [48, 54] have demonstrated that chromosome activity 
and chromosome dynamics consist of the subtle interplay between passive thermal 
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diffusion and active, ATP-dependent motion triggered by chromatin remodeling 
and transcription complexes. Stimulated by active processes, chromatin dynam-
ics influences also the motion of dispersed nanoprobes [54]. Taken together, these 
results suggest that the standard picture adopted so far where chromatin is mod-
eled as a passive polymer is an oversimplification. In recent years, non-equilibrium 
physics of active systems [89] and active polymers [90] has received considerable 
attention for being at the interface between statistical, soft matter and biological 
physics. To our knowledge, the first attempt to include activity in a numerical poly-
mer model for eukaryotic chromosomes was made by Ganai et al. [91] who argued 
that non-random chromosome segregation is the result of differences in non-equi-
librium activity across chromosomes originating in the inhomogeneous distribu-
tion of ATP-dependent chromatin remodeling and transcription machinery on 
each chromosome. In their model, each monomer is characterized by a given tran-
scription level whose fluctuations are suitably taken into account by a local “effec-
tive” temperature: “hot” (respectively, “cold”) monomers are associated with active 
and gene-rich (respectively, inactive and gene-poor) monomers. Through a similar 
approach and rigorous theoretical considerations, Smrek and Kremer [92] showed 
that entangled polymer solutions where single chains have different temperatures 
undergo a non-equilibrium phase separation similar to the classical equilibrium 
phase separation observed in polymer mixtures [74]. As in the aforementioned case 
of transcription or in the recently proposed looping extrusion mechanism [93], 
active processes play a fundamental role in chromosome organization. It would be 
interesting, then, to explore to which extent the viscoelastic properties of chroma-
tin fibers are changed by the presence of non-equilibrium mechanisms.

To conclude, we hope to have convinced the reader that polymer physics rep-
resents a fundamental tool to describe and predict chromosome structure during 
the different stages of the cell cycle. In general, the conspicuous amount of exper-
imental data currently being published is causing the field to boom and many 
different polymer models (see, for instance, Ref. [11]) are available at present. The 
specificity of the point of view adopted here (and in our work [72, 73, 78, 81] 
on which this review is based) consists of the assumption that topological con-
straints are an essential feature to be retained in all minimal polymer models. In 
particular, a quantitative understanding of this “null model” with the inclusion of 
proper mapping [72] to real-time and length scales is a prerequisite for attempts 
[94–99] to reconstruct or predict the three-dimensional chromosome structure 
and the dynamics of entire cell nuclei, and provide then a reliable description of 
the large-scale structure and dynamics of nuclear compartmentalization.
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8.1  INTRODUCTION

In this chapter, we describe chromatin dynamics using stochastic modeling 
and polymer physics. Brownian motion is the classical description of dynamics 
driven by thermal noise first observed by Robert Brown in 1827 when studying 
pollen grains moving in water. Brownian motion results from millions of fast 
collisions of the grain with solvent molecules, as explained in 1905 by Albert 
Einstein [1]. Stochastic processes are now routinely used to describe molecular 
behavior in cellular biology, reviewed recently in [2].

In a similar context, the motion of proteins, RNA and chromatin is spanning 
a few to hundred nanometers, is inherently stochastic. However, the Brownian 
description is often insufficient to describe their motion because they are embed-
ded in a complex field of forces imposed by the nuclear environment. Our goal in 
this chapter is to summarize briefly modeling and analysis approaches that goes 
beyond classical Brownian motion and reveal how the cell imposes biological 
constraints on molecular motion.

In parallel to the theoretical approaches of modeling, analysis and simula-
tions, live cell microscopy techniques generate large quantities of data of in vivo 
molecular dynamics that need to be interpreted. For example, single-particle 
tracking of chromatin [3, 4] provided many short/long, confined/unconfined 
trajectories, but establishing the connection between basic cellular function and 
nuclear organization remains a major challenge. Converting the information 
contained in these trajectories to molecular processes requires a physical model, 
which is often speculative.

Chromatin dynamics has been studied by f luorescently tagging a spe-
cific locus and tracking its motion, leading to the conclusion that chroma-
tin movement is restricted in subregions [5] smaller than the total nuclear 
volume. Yet, the origin of this restriction remains unclear. Can it be due to 
nuclear crowding, self-avoiding interactions or simply internal forces acting 
on the chromatin? We present here modeling and analysis approaches to 
questions.

Locus trajectories were initially analyzed using classical statistical quan-
tities derived from the study of a single Brownian motion [6–8], such as 
the Mean-Square-Displacement (MSD) computed along single-particle tra-
jectories. Trajectories of an individual particle inside a f luid, on the chro-
matin or a membrane, are usually described and analyzed in the physical 
literature using the Smoluchowski’s limit of the Langevin equation [9] (see 
equation 8.1). Under some conditions, it is often possible to recover the field 
of force and the diffusion tensor from a large number of trajectories. This 
approach has been used in a massive amount of Single-Particle Trajectory 
(SPT) super-resolutions [10, 11], but it remains difficult to apply to complex 
polymers such as chromatin. Thus, alternative methods have been found. 
In the following section, we show how single-particle trajectory data can be 
used to recover the chromatin organization and the ensemble of interactions 
it experiences.
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8.2  SINGLE-PARTICLE TRAJECTORIES RECORDED FROM  
A CHROMATIN LOCUS

In this section, we describe the statistical analysis of SPTs of a chromatin locus. 
Several cell functions such as transcription, DNA repair or cell division can now 
be monitored in vivo, but interpreting trajectories in correlation with these events 
remains difficult due to all the mechanisms involved in generating motion. There 
is also a large unexplained variability in the different statistics of trajectories 
between cells. We first describe how SPT data are acquired and, in the second 
part, we present recent polymer models and the statistical analysis used to inter-
pret data and extract biophysical parameters.

8.2.1  Live imaging of nuclear elements

Routine molecular construction (see Figure 8.1a) enables the tagging of a chro-
matin locus so that it becomes fluorescent and thus can be tracked using live 
cell microscopy. This molecular construction is based on a Lac operon, which is 
integrated at a specific position. For example, in the yeast genome [3], a LacI pro-
tein bound to a GFP (making a LacI-GFP complex) (Figure 8.1b) allows us to see 
chromatin moves. The nuclear membrane can also be visualized by tagging the 
elements of the nuclear pore protein. Recently, with the development of the Cas9 
system [12], it became much easier to insert fluorescent tags within any chroma-
tin site of bacteria, yeast or mammalian cells [13]. By tracking a chromatin locus 
for a certain time length, trajectories can be generated. Fluorescent dyes cannot 
be measured for too long, as they eventually bleach. Hence, imaging at a high 
frequency would result in a shorter trajectory duration.

Ignoring the polymer nature of the chromatin, using a Brownian description, 
an effective diffusion coefficient can be estimated. For example, while proteins 
have a fast diffusion of D ≈ 10 2µm s [14, 15], chromatin motion is characterized 
by an apparent diffusion coefficient of about three to four orders of magnitude 
slower [4]. Thus, a possible timescale to study sub-nuclear processes is seconds 
and below. Sometimes deconvolution procedures are necessary to recover the 
precise location from noisy measurement, but they can introduce various local-
ization errors that must be differentiated from physical motions [16].

8.2.2  Statistics analysis of SPTs

The ability to follow a single locus located at different positions on chromosomes 
[6] revealed the heterogeneity of the nuclear organization. The yeast nucleus has a 
radius of the order of 1 μm. Interestingly, trajectories can be restricted to a small 
region (Figure 8.1c–i, where the confined ball has a radius of 221 nm). Other tra-
jectories can be contained in an even smaller ball (radius 164 nm, Figure 8.1c–ii). 
The large heterogeneity of loci behavior across cell populations suggests that the loci 
can experience different interactions over a time scale of minutes. Thus, chromatin 
loci appear to be localized over an extended time. In the diluted yeast nucleus, locus 
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Figure 8.1 Imaging a chromatin locus. (a) A fluorescent tag inserted on chro-
mosome III of the yeast [17]. (b) MAT locus in yeast (green) is observed using 
the LacI-lacO system while the nuclear membrane (red) was marked with the 
nup49-mCherry fusion protein (left). The nucleus is imaged in 8 stacks along 
the Z-axis and trajectories are projected on the XY-plane (right). (c) Two tra-
jectories of a chromatin locus and with time resolution of 330 ms, recorded 
for 100 seconds. At the beginning, the locus trajectory is red and gradually 
becomes green, while the spindle pole body (SPB) starts red and gradually 
becomes blue (upper and lower left). 2d projection: the trajectory of the locus 
(red) and the displacement of the spindle pole body trajectory (blue) inside the 
nucleus is projected on a plane (upper and lower right). The nuclear membrane 
is reconstructed based on the nup49-mCherry fusion protein. (d) A trajectory 
of the MAT locus taken at a time resolution of 300 msec during 300 frames. (e) 
Correlation function C(t) (Equation 8.19) of the position depicted (from c). At 
short times, the sub-diffusion regime is characterized by an anomalous expo-
nent α = 0.39 (inset magnification at short times). (Reproduced from [18]).
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localization can be studied with respect to their distance from the centrosome [19]. In 
higher Eukaryotes, chromosomes reside in distinct territories [20], maintaining the 
cell identity. Chromatin loci appear well localized in mammalian cells. In a mouse 
embryonic stem cell, a locus diffuses in an area with a radius of 200 nm [21]. These 
constraints could be maintained via specific interaction with anchoring points on the 
membrane such as Lamin-A proteins [22], or via self-avoiding interactions.

ATP also proved to be important to maintaining the locus mobility. After 
treating E. Coli with sodium azide, which inhibits ATP synthesis, the diffusion 
coefficient of a DNA locus was reduced [23]. In yeast, glucose starvation abolishes 
large range chromatin movements [4]. Thus, chromatin movement is sensitive to 
various ATP energy levels. Indeed, chromatin remodeler molecules rather than 
RNA or DNA polymerases [24] underlie the ATP-driven motions. However, the 
biophysical origin of all these modifications is still not completely clear.

To extract biophysical parameters from SPTs of a chromatin locus, a physi-
cal model for the locus motion is needed. This model can be coarse-grained to 
account for the local organization of the medium, paved with obstacles and local 
forces [25]. At a molecular level, the Langevin equation is the gold standard. In 
that case, a stochastic particle modeled by the Langevin equation in the over-
damped limit has a velocity �X proportional to the applied force F(X) plus an 
additional white noise, leading to

 g g� �X f= + 2Dww, (8.1)

where γ is the friction coefficient [26], D the diffusion coefficient and ω is the unit 
Wiener process. The source of the driving noise is the thermal agitation [26, 27]. 
By averaging over the ensemble of velocity realizations, it is possible to compute 
the first moment, which contains information about the force fields applied to 
the particle. However, for a polymer chain, there are also internal forces between 
monomers and thus, as the SPTs are measured at a single monomer location, the 
internal forces acting on the measured monomer should be separated from the 
external forces acting possibly on all monomers.

The model and analysis presented here assume that the local environment 
is stationary so that the statistical properties of trajectories do not change over 
time. In practice, the assumption of stationary is usually satisfied as trajectories 
are acquired for short time, where few changes of chromatin organization are 
expected to occur. The coarse-grained model 8.1 is recovered from the condi-
tional moments of the trajectory increments D DX X t t X t= +( ) - ( ) (see [27]),
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Here the notation  × ( ) =éë ùû| X t x  means averaging over all trajectories that 
are at point X at time t. We shall now show how this statistic can be com-
puted for a Rouse polymer model and used to extract the forces acting on the 
chromatin.
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8.2.3  The Rouse Polymer Model

We recall that the Rouse model is defined as a collection of beads connected by 
springs [28]. Monomers are positioned at (Rn n N=( )1 2, ,… ), subject to Brownian 
motions and the spring forces are due to the coupling between the nearest neigh-
boring beads. The potential energy is defined by

 f k
R R R( ) = -( )

=

-å2
1

1
2

n

N

n n .  (8.3)

In the Rouse model, only neighboring monomers interact [28]. In the 
Smoluchowski’s limit of the Langevin equation, the dynamics of the monomer Rn 
is driven by the potential f R R1,.., N( ) , which generates the force −∇ ( )Rn Nf R R1,.., . 
The ensemble of stochastic equations is

 d
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wn = - - -( )+- +k 2 21 1 D ,  (8.4)

for n =1,..N . In this model, the variance of the distances between neighboring 
monomers averaged over different polymer realization is given by

 R R bn n+ -( ) =1
2 2, (8.5)

where b is the standard deviation of the bond length, k = dk T bB / 2 is the spring 
constant with d the spatial dimension, kB  is the Boltzmann coefficient and t the 
temperature.

Starting with a given configuration, the relaxation of a Rouse polymer to a 
steady state in a free space can be analyzed using the Fourier space
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=
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where the change of coordinates is encoded in the matrix

 a
p

p
n N

p

N
n

p

N

=
=

-( )æ
è
ç

ö
ø
÷

ì

í
ï
ï

î
ï
ï

1
0

2
1 2

,

/ , .cos otherwise

 (8.7)

u0  represents the motion of the center of mass. The potential ϕ is defined in equa-
tion 8.3 as
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where
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Equation 8.4 is now decoupled, resulting in N d-( )1  independent Ornstein-
Uhlenbeck (OU) processes
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where �ω p  are independent d-dimensional Brownian motions with mean zero 
and variance l and D Dp =  for p N= -1 1.. , while D D N0 = /  and the relaxation 
times are defined by t kp pD=1/ . The center of mass behaves as a freely diffusing 
particle. Starting from a stretched configuration, the relaxation time for a Rouse 
polymer is dominated by the slowest time constant
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8.2.4  A Rouse Polymer Driven By An External Force 
Applied To A Single Monomer

Relation 8.3 has been generalized to a Rouse polymer when an external force is 
applied on a single monomer. We define the potential Uext R( )  to describe the 
total energy

 f k
R R R R( ) = −( ) + ( )

=

−∑2
2

1

2

j

N

j j Uext .  (8.12)

The monomers dynamics follows from equation 8.4. When the monomer Rc  is 
tracked to generate a trajectory, the first moment of the monomer increment 
position R Rc ct t t+( ) − ( )∆ , which is proportional to the velocity can be com-
puted. This computation requires to average overall polymer realizations and it 
thus accounts for the entire polymer configuration [29]. We recall the following 
relation between the force and the increment [29]

 lim
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where {. | }R xc =  denotes averaging over all polymer configuration under the  
condition that the tagged monomer is at the position R xc = . Formula 8.13 is 
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generic as it generalizes relation 8.1 and does not depend on the particular expres-
sion of the external forces acting on the polymer. No restrictions are imposed on 
the domain Ω where the polymer evolves, but it is reflected at the boundary ∂Ω 
of the domain. The conditional probability P N cR R R R x1 2, , , |… =( ) to observe a 
polymer configuration R R R1 2, , ,… N  conditioned that R xc =  is computed from 
the equilibrium joint probability distribution function (pdf) P NR R R1 2, , ,…( ),  
which satisfies the Fokker-Planck equation in the phase-space Ω Ω× ⊂.. 3N :

 0 = ( ) + ∇⋅ ∇ ( )( )∆P PR Rf ,  (8.14)

with boundary condition
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where ni is the normal vector to the boundary ∂Ω  at position Ri . The model for 
the external force acting on monomer n and located at position Rn is the gradient 
of a harmonic potential

 U kn next R R( ) = −( )1

2

2mm ,  (8.15)

where k is the force constant and we choose n < c. This external potential will 
affect the dynamics of the entire polymer although it is applied specifically on Rn.  
What will be the influence on the observed locus c?

In this scenario, the mean velocity of monomer c is given by [29]
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Expression 8.16 links the average velocity of the observed monomer c to the force 
applied on monomer n. The coefficient kcn  depends on the harmonic well strength k,  
the inter-monomer spring constant Κ and it is inversely proportional to the dis-
tance n c−  between monomers n and c along the chain. When more monomers 
are interacting with external potentials, the expression for the velocity retains its 
structure, but in general kcn  will be the sum of all tethering forces [29].

Inversion formula 8.16 assumes the Boltzmann distribution for the single 
monomer and that the entire polymer has reached equilibrium at the time scale 
of the experiment. Finally, formula 8.16 reveals how internal and external poly-
mer forces are mixing together and are influencing the monomer velocity. It also 
shows the explicit decay of the force amplitude with the distance between the 
observed and the forced monomer.

The effective spring coefficient kcn  can be estimated from Brownian simulations 
of a tethered polymer with self-avoiding interactions. The comparison with the 
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experimental radius of confinement measured for chromatin loci [6, 8, 30, 31], reveals 
that the distance from the centromere is inversely correlated with the effective spring 
constant and this suggests that at very long times (time between cell divisions), this 
distance determines the loci localization in yeast. At shorter times, transient interac-
tions could influence significantly the locus dynamics and localization.

8.2.5  Constraint Length of a Locus

We now discuss another parameter to characterize the locus dynamics which is 
the standard deviation (SD) of the position with respect to its mean averaged over 
time. This SD is a characteristic length, called the constraint length LC, estimated 
by the empirical sum

 L
T

h tC c

h

T

c c= ( ) = ( ) − 〈 〉( )
=

∑Var R R R
1

1

2
∆ ,  (8.17)

where 〈 〉Rc  is the average position of the locus along the trajectory. When the 
chromatin is tethered, the steady-state variance Var

lim
R

Rc tt c
( )

→ ( )•
 of the mono-

mer’s position is given by LC
d

Kcn

2 = . This relation is reminiscent of long-time 
asymptotic behavior of classical Ornstein-Uhlenbeck processes.

8.2.6  Other Empirical Estimators and Statistical Properties

The MSD, the cross-correlation function and any derived quantities are the most 
common statistical estimators to study stochastic trajectories. These are defined 
for a time series Rc t( )  (locus position at time t) by [9, 32] 

 C t tc ct t t( ) = +( ) − ( )( )R R
2

,  (8.18)

where á ñ.  denotes the average over ensemble realization. When the data contains 
enough recursion, the ergodicity assumption says that the function C t( )  can be 
also computed along a trajectory from the empirical estimator
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for t = 1, T – 1, where T is the duration of the entire trajectory. Figure 8.1d–e show 
the function C t( )  computed for a chromatin locus. Similarly, the MSD of a tra-
jectory is defined by

 MSD t tc c( ) = ( ) − ( )( )R R 0
2

.  (8.20)

For a Brownian particle moving in  d space, characterized by the diffusion coef-
ficient D, the MSD is MSD t dDt( ) = 2  [9]. While C t( )  is linear in time for a free 
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Brownian particle, it reaches an asymptotic value when the particle is moving in 
a confined space Ω, with an exponential rate [33].

For a particle confined in a harmonic potential by a spring force with constant 
k [9] and friction coefficient γ, the stochastic description is an OU-process

 d
k

dt Ddc cR R w= − +
γ

2 ,  (8.21)

and the cross-correlation function is

 C t
dk T

k
eB t( ) = −( )−2

1 t ,  (8.22)

where t k= k T DB / . We note that the auto-correlation function for an OU pro-
cess is

 R R R Rc c c c
B t t t tt t t t
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In summary, when the correlation function C t( )  converges to an asymptotic 
value, the underlying motion can either be restricted by a tethering force or 
by obstacles. However, this ambigutity can be resolved by computing the first 
moment (Equation 8.16), which is nonzero where there is a field of force.

Figure 8.2 Dynamics of an observed locus when another locus is interacting 
with a nuclear element. (a) Schematic representation of the nucleus, where one 
locus is observed and followed with a fluorescent label while another (non-vis-
ible) chromatin locus is interacting with some nuclear element. (b: i) Schematic 
representation of a polymer, where some monomers (red) interact with fixed 
harmonic potential wells. Monomer c (blue) is observed. (b: ii, iii) Stochastic 
trajectories of three monomers, part of a polymer where the two extremi-
ties interact with potential wells fixed at the origin and at position µ = (5b,0,0) 
respectively. The middle monomer trajectory (blue) is more extended than the 
two others, shown for a polymer of length N = 21 (ii) and N = 41 (iii).
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8.2.7  The MSD of a Tagged Monomer

We now discuss the time evolution of the MSD for a tagged monomer, which 
belongs to a long polymer chain. For a Rouse polymer, the MSD of monomer Rc  
is a sum of independent OU-variables (see equation 8.6):
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where d is the spatial dimension. Formula 8.24 shows the deviation compared 
to the MSD of a Brownian motion, for which the correlation function increases 
linearly in time. There are three distinct regimes:

 1. For a short time t N�t -1,the variance of the normal modes can be   
approximated as s p t Dt2 ( ) » , independent of p, the sum in equation 8.24 
leads to

 var dDtRc( ) ≈ 2 ,   (8.25)

 which is the classical diffusion regime.
 2. For a long time, t �t1 , the exponential terms in relation 8.24 become 

independent of t and only the second term in the equation corresponding to 
the diffusion of the center of mass gives the time-dependent behavior. This 
regime is dominated by normal diffusion, with a diffusion coefficient D/N.

 3. For intermediate times t tN t-1 1� � , such that 2 1t p/t > , the sum of expo-
nentials contributes to equation 8.24. The variance 8.24 is
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  where pmin  is such that t pmin t= 2 . We have var tcR( ) ~ /1 2 . A Rouse monomer 
exhibits anomalous diffusion. The time interval can be arbitrarily long with 
the size N of the polymer.

8.2.8  Anomalous Diffusion Of A Chromatin Locus

At an intermediate time regime, a tagged monomer belonging to a Rouse poly-
mer diffuses with MSD ~ /t1 2 . This motion belongs to a class of dynamical 
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behavior called anomalous diffusion. The random motion of a small molecular 
probe located at a position R t( )  at time t is characterized by the statistics of its 
second moment time series, given for small time t by

 R Rt At( ) − ( )( ) ≈0
2 a ,  (8.27)

where á×ñ  means averaging over realization and A is a constant. The exponent α 
characterizes the deviation from normal diffusion: when α < 1 (resp. α > 1) it is the 
subdiffusion (resp. superdiffusion) regime. The correlation function (Equation 
8.19) of a DNA locus (Figure 8.1e) shows the anomalous diffusion behavior, char-
acterized by an exponent α < 1, [34–36].

The dynamics of the locus reflects the local chromatin organization and the 
ensemble of interactions it experiences. Thus, the anomalous exponent could con-
tain physical information about the underlying polymer model describing the chro-
matin [37]. However, it is still unclear what the precise significance of the anomalous 
exponent is, computed from empirical data. Single cell analysis reveals that there is a 
large distribution of the anomalous exponent between cells. That could suggest that 
chromatin structure changes over time and across cell populations [38, 39].

Interestingly, the anomalous exponent of a moving locus was reported in 
many experiments to be smaller than 1/2 [18]. This result has called for a differ-
ent polymer models to describe chromatin dynamics.

When topological constraints are important, the polymer is threaded around 
obstacles and has to move back and forth to wiggle around them. Such move-
ment is known as reptation and the polymer moves in what is know as a reptation 
tube [40]. At an intermediate time regime, such motion results in subdiffusion 
with α = 1/4. However, the yeast nucleus is not particularly crowded, and loci do 
not appear to move in a reptation tube (see Figure 8.1c), but have approximately 
spherically shaped trajectories. We shall now present three models that are used 
to explain the observed dynamics of chromatin. It is still unclear which model 
better represents in vivo behavior, but in both cases, the dynamics of chromatin 
is approximated by an unentangled polymer systems.

We recall that chromatin is not structured as a simple linear chain. Using 
Hi-C experiments to study chromatin organization, it was shown [41] that chro-
matin is packed more compactly than a flexible chain. This observation leads to a 
model where the distance between monomers l and m scales like

 R R l ml m
df-( ) -2 2∼ /  (8.28)

where df > 0 is called the fractal dimension of the polymer. For a Rouse polymer 
df = 2, while for a fractal globule df = 3 [42]. Experimentally, the distance between 
chromatin sites of distance s along the chain scales as sg , where γ is empirically 
found in the range between 1 and 1.5. Thus, it was suggested that chromatin 
is organized as a fractal globule polymer [42]. This scaling probably originates 
from interlinking between far away chromatin sites, resulting in unique topolog-
ical domains along the strand [43–45]. The fractal description of the chromatin 
remains quite speculative. However, an important question remains: How can we 
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relate chromatin dynamics to its structure? We now introduce a generalization of 
the Rouse model to account for homogeneous long-range connections.

8.2.9  The β-Polymer Is A Generalized Rouse Model

How is it possible to construct a polymer model with a prescribed anomalous 
exponent α? We will now demonstrate the construction and the resulting polymer 
model, called the β-polymer model introduced in [46]. We shall see that prescrib-
ing the anomalous exponent α imposes intrinsic long-range interactions between 
monomers. The construction of this polymer is based on extending monomer 
interactions beyond the closest neighbors starting with the Rouse model.

We recall that the dynamics of a polymer is determined by the scaling relax-
ation time t kp pD=1/ . The construction is based on modifying the spring coef-
ficient to
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where we will specify later on the value of β. This new power will change the scal-
ing time constants � �t k b

p pD p= -1/ ~ , where 1 < β ≤ 2. Note that β = 2 corresponds 
to a Rouse polymer [46]. The new Hamiltonian of the polymer is
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Such a construction defines a unique ensemble of long-range interactions, and 
the associated potential energy differs from that of a flexible chain (Equation 8.3).  
For β < 2, all monomers become coupled and the strength of the interaction 
decays with the distance along the chain, as shown in Figure 8.3a–b.

The modified Hamiltonian can be diagonalized, and the β-polymer dynam-
ics is described by the Smoluchowski’s limit of the Langevin equation (8.10) 
with the modified spring coefficient �k p. At an intermediate time scale where 
� � �� �t t tb

N Nt N− −≈1 1 1 (anomalous regime), the asymptotics of the time cross-
correlation function is given by [46]
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Hence,

 var Rc t( ) ~ ,a  (8.33)

with α = 1–1/β. This model maps the dynamics of the chain to a structure 
parameter β representing the interaction between different parts of the chain. 
Consequently, the monomer of a denser polymer (smaller β) will move slower, 
characterized by a smaller anomalous exponent (Figure 8.3c–e).

8.2.9.1  ANOMALOUS DIFFUSION IN FRACTAL GLOBULES

The relation between chromatin structure/organization can be described using 
the dynamics of a tagged monomer when the chromatin is described as a static 
fractal globule. Assuming that a piece of the strain moves together with an effec-
tive diffusion coefficient that scales as D Dsd

at~ - , and moves a distance that 
scales with d s df2/ , then the anomalous exponent is a f fd= +( ) =2 2 0 4.  [47, 48], 
similar to the one experimentally observed. The fractal globule model remains 

Figure 8.3 The β-polymer model. (a) Representation of a β-polymer, where all 
monomers are connected together with springs whose strength decay depend-
ing on their distance along the chain. The central monomer (blue) interacts with 
all other monomers in a chain of length N = 9 for β = 1.5 (interaction unit  
k = 3 2/ b ). (b) Monomer–monomer interactions in the modified Rouse polymer 
model (β-model). The coefficients Alm (in units of κ) measure the strength of 
the interaction between two monomers. Shown are the coefficients Alm for the 
polymer with β = 1.1, where l = 50 and N = 100. All monomers interact with each 
other and the strength of the interaction decays with the distance along the 
chain (adapted from [46]). (c–e) Examples of β-polymer configuration for differ-
ent values of β. The anomalous exponent at an intermediate regime is given by 
α = 1–1/β. β = 2 corresponds to a Rouse polymer. The radius of  
gyration is Rg . Adapted from [18].
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speculative and is not sufficient to explain the large heterogeneity observed in 
both chromatin structure and its dynamics.

8.2.10  Fractional Brownian Motion Of A Locus

In the previous subsection, we assumed that the solvent surrounding the poly-
mer chain is a Newtonian liquid, where friction acting on the beads constituting 
polymer chain is inversely proportional to their velocity. This is not necessarily 
the case, and the motion of a probe particle in non-Newtonian/viscoelastic sol-
vents can result in long-memory effects. This modeling approach offers a differ-
ent explanation of correlated motion inside the nucleus.

The probability density function of a stochastic motion with long-memory is 
described by the fractional Fokker-Planck equation [49] or fractional Brownian 
motion (FBM). Phenomenological models [35, 50] based on the fractional 
Langevin equation leads to a MSD that exhibits a power law. The construction 
of the associated polymer model relies on the Langevin equation with a memory 
kernel with an algebraical decay. This kernel reflects the properties of the visco-
elastic fluid, which slows down the loci dynamics [36].

A subdiffusive process B tH ( ) is generated by the FBM [51, 52] and has the fol-
lowing properties
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where the parameter H is called the Hurst exponent (0 < H < 1). The generalized 
Langevin’s equation [53] is

 m
dv t

dt
v t K t t dt Ddw tf

t( ) = − ( ) −( ) + ( )
−∞∫γ ’ ’ ’ 2 ,  (8.35)

where m is the mass, γ is the friction coefficient and D the associated diffusion 
coefficient. The memory kernel K t t-( )’  is associated with the fractional noise 
dw tf ( )  so that the autocorrelation function satisfies the relation

 á ( ) ( )ñ = -( )dw t dw t k T K t tf f
B’ ’g .  (8.36)

When the kernel is a δ-function, we recover the classical Langevin’s equation. 
However, for a kernel with a long-time decay (such as a power law), the motion is 
described as sub-diffusion. For example, with the kernel [54, 55]

 K t H H
t H( ) = -( ) - +2 2 1

1
2 2| |

,  (8.37)
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the anomalous diffusion exponent is α = 2 H. The variance of the position of a 
tagged monomer governed by equation 8.35 is given by
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To conclude, in that framework, a particle performs an anomalous diffusion 
with exponent α = 2–2 H. The FBM was used in [36] to describe chromatin locus 
dynamics. The power-law decaying kernel accounts for the motion of the loci in 
a viscoelastic fluid. In that medium, the motion of a locus as well as the chromo-
some dynamics are slowed down, resulting in a sub-diffusion regime. Relating 
the exponent H to the local chromatin properties or the nuclear environment 
remains a challenge and we refer to the references mentioned in this section for 
further information.

8.3  DIRECTED MOTION OF CHROMATIN: ACTIVE 
MOTION AND ARTIFACTS

Some trajectories revealed by a chromatin locus appear long and directed 
(Figure 8.4a). This behavior can result from the motion of the entire nucleus (or 
reference frame) or can be due to internal forces. Can these two cases be dis-
criminated? In the first case, such motion will be classified as an artifact because 
it is due to the movement of the entire domain where the locus is embedded. 
Actually, the motion of the locus with respect to other nuclear bodies can be 
studied by considering the projection to the perpendicular direction of the tra-
jectory (Figure 8.4a).

To detect a directed motion, a fixed and marked reference point is chosen in 
the nucleus. In yeast, it is the spindle pole body (SPB). Interestingly, when the SPB 
is marked, it does jitter around its averaged position (Figure 8.4b), which leads to 
the conclusion that the yeast nucleus performs random precessions (oscillation 
around an axis, that can change over time) [18]. Correcting for such precession is 
not simple and it actually requires tagging more than one point on the nucleus to 
detect the precession in three dimensions. This precession motion can be abolished 
using the sponge toxin Latrunculin A that depolymerize the actin mesh wrapped 
around the nucleus in the yeast cytoplasm. When Latrunculin A was applied in 
yeast, it stopped the precession motion [18], possibly by decoupling the nucleus from 
the cytoplasm actin and microtubule network. Following this procedure (addition 
of Latrunculin A), the anomalous exponent drops from a value of α = 0.48 ± 0.14 to 
α = 0.3 ± 0.14 [18], confirming that a directed component of the motion is removed.

A direction motion couples the motion of monomers and can be introduced 
in the polymer model, starting from the Rouse equations, by adding in the 
Hamiltonian of equation 8.30 a noise component
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where n,m are the monomers and i,j are spatial directions. Here B t t-( )’  is a 
function correlated in time. Thus, the model can account for an anomalous dif-
fusion larger than the Rouse one.

For example, an exponentially correlated colored noise B t t e t t A-( ) -’ ~ /  can 
result in a larger anomalous exponent or even ballistic motion for the tagged 
monomer at an intermediate time regime [56]. However, at later times, the 
motion is again subdiffusive, before reaching a steady-state behavior for long 
periods. Hence, a noise with a characteristic time similar to the relaxation mode 

Figure 8.4 Directed motion of a chromatin locus. (a) Two tagged loci on the 
X chromosomes of a mouse ESC expressing Tet repressor-EGFP, visualized in 
live-cell fluorescence microscopy. The 3D position of each chromosomal locus 
is determined over a period of 180 s at 900 ms intervals, and principal compo-
nent analysis is used to extract the longitudinal (l) and transversal (t) compo-
nent of the trajectory (identified as the directions of maximum (longitudinal) 
and minimum (transversal) variance across the trajectory). (adapted from [21]). 
(b) Schematic representation of the nucleus of the yeast Saccharomyces cere-
visiae. Each chromosome is connected at the centromere to filaments con-
necting to the spindle pole body (SPB), which is a fixed point on the nucleus 
membrane. (c) The nucleus is embedded in a network of actin filaments that 
cause it to move in precession motion. (d) The trajectory of a tagged locus 
(red) and that of the SPB (blue). The SPB is performing angular motion sug-
gesting the nucleus is undergoing random precession.
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of the polymer can affect the dynamics during an observation window of the 
same time order. When the active noise component is coupled between different 
monomers reflected in the correlation function C n m-( ) , we expect an increase 
of the anomalous exponent.

By correlating the motion of monomers in time or space along the polymer 
chain, it is possible to model and analyze active noise. However, it cannot be used 
to directly infer the properties of an active component such as the directed motion 
of the media and rotation. Directed motion of physiological importance has also 
been shown to affect the anomalous exponent [57] by following telomere motion 
in ALT (alternative lengthening of telomere) cancer cells. (Telomeres are repeti-
tive elements at the end of chromosomes that shorten upon cell division). In stem 
cells and cancer cells, telomeres are elongated to allow the cell to divide many 
times. In ALT cells, telomeres maintain their length via homologous recombina-
tion (HR), when they encounter and use each other as a template for elongation: 
Telomeres perform long-range movement to actively search for recombination 
partners. This motion is characterized by anomalous diffusion with α = 0.8 [57] 
on average. Interestingly, the motion is aided by Rad51 filaments, allowing the 
telomeres to move on the order of microns, and perform ballistic motion at long 
timescales. These filaments mediate the search and repair of breaks.

8.3.1  In Vivo Modification Of Chromatin Mobility

The formation of a double-stranded DNA break (DSB) at a molecular level causes 
a massive perturbation of the entire nucleus. Many DSBs can occur continuously 
as our genetic material is constantly exposed to radiation and attacked by free 
radicals. A break is potentially very harmful, as it can lead to cell death or to can-
cer. Hence, from bacteria to high Eukaryotes, cells have developed highly sophis-
ticated mechanisms to repair these damages [58].

The choice of repair mechanism often depends on the cell phase or on the 
location of the break. During the growth phase (G1), yeast prefers to repair 
DSBs using the non-homologous end joining pathway [59]. In this pathway, the 
two broken ends of the DSB are quickly re-ligated. However, a piece of the DNA 
sequence material can be lost, leading to a loss of genetic information after the 
break is resolved. When the yeast is in duplication mode (S phase), it often prefers 
the homologous recombination (HR) pathway, in which the break searches for a 
homologous sequence on a different chromosome and uses it as a template for 
repair [60]. In S phase, the presence of a nearby newly synthesized duplicate of 
the chromosome allows the break to find the target rapidly, but cells which are 
diploids will also use the other chromosome as a template.

DSBs at random locations in the genome can be induced using radiation [61] or 
toxins such as Zeocin [62]. These actions cause massive chromatin modifications. 
Indeed, following treatment with Zeocin chromatin starts to move rapidly and can 
be seen by the formation of repair proteins foci at break sites [62]. When measuring 
different dynamical parameters of the foci, they show a significant increase (diffu-
sion coefficient, anomalous exponent, and localization). To interpret these modifi-
cations, the polymer models introduced in the previous sections are used [18, 63].
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Another method to study the consequence of DSBs is to induce them locally 
using a restriction enzyme, cutting DNA in proximity to a fluorescent label 
(Figure 8.5a). Interestingly, once a break is induced, in S phase, the tagged locus 
increase its motion, possibly to scan a larger sub-nuclear domain (Figure 8.5b) 
[7, 8, 64]. This increased motion could facilitate repair via homologous recom-
bination by allowing the break to find its homologous partner on another chro-
mosome. This change is reflected in the biophysical properties of the chromatin 
strand. Indeed, different repair proteins evict histones in the proximity of the 
break site, causing a decrease in parameters such as the spring constant kc  [18], 
suggesting a reduction in tethering forces (Figure 8.5c–d). This is accompanied 
by an increase of the anomalous exponent (Figure 8.5e).

The FBM model of chromatin dynamics interprets the subdiffusion of chro-
matin loci to be a consequence of the viscoelastic behavior of the nuclear plasma. 
Thus, the FBM model of chromatin cannot readily explain such a modification in 

Figure 8.5 Dynamics of a double-stranded DNA break. (a) Double-stranded 
DNA break (DSB) induced in yeast using a restriction enzyme and monitored 
by a fluorescent tag. (b) Trajectory of an unbroken locus (blue), which following 
break induction, increases its motion (red). (c–d) The effective spring constant 
kc  (computed from equation 8.16) of the locus decreases following a break, 
reducing the tethering interactions. (e–f) Increase of the anomalous exponent 
α following break induction. (Adapted from [18]).
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the anomalous exponent α, as the DSB is a local event, and any local modification 
to chromatin will not affect the overall viscoelastic properties of the nuclear solu-
tion. However, according to the β-polymer model, an increase in the exponent α 
corresponds to an open or a local de-condensation of chromatin (Figure 8.5f). 
Following break induction, such de-condensation was observed using super-
resolution microscopy [18, 61, 62]. The de-condensation seems to result from 
nucleosome eviction and their degradation.

Another possible explanation for the increased mobility is the release of the 
centrosome from its tight grip on the centromere [65], which is connected to the 
SPB (see Figure 8.4b). The release of tethering forces would allow the locus to 
scan a larger domain. From a modeling perspective, this scenario agrees with 
a decrease in the spring constant kc , which represents the sum of all tethering 
forces acting on the chromatin around the observed locus.

Finally, changes in chromatin mobility could be attributed to a modification 
in the persistence length lp  [64, 66, 67]. We recall that the DNA has a persistence 
length of 50 nm, which corresponds to 150 base pairs. However, it is still unclear 
what the persistence length lp  of chromatin is. It is probably not constant along 
the strand, as chromatin is epigenetically modified locally. In yeast, it was ini-
tially estimated to be of the order  lp = ±197 62nm [6], which corresponds to about 
28kbs. However, recent Hi-C experiments [68], give an estimate less than 5kbp, 
much smaller than previous estimates for the 30 nm fiber. Another approach is to 
estimate lp  from SPTs, but it is limited due to the motion artifact described above.

We recall that a rigid rod can result in an anomalous exponent of 0.75 [69]. 
Thus, partial nucleosome removal associated with a break will certainly increase 
lp , which could be directly measured from a locus dynamics. Such experiments 
would require a fast sampling time, at a rate below the flexible chain relaxation 
time. While in the Rouse model, the relaxation modes depend on ~ p-2, where 
p is the mode (introduced previously), the relaxation modes of a rigid rod scales 
with the fourth power ~ p-4, as predicted from classical elasticity theory. Neither 
scaling was yet demonstrated for chromatin. Another possibility to study chro-
matin rigidity is the longitudinal and transversal oscillations of the strand. If 
rigidity plays a significant role in loci dynamics, we predict that the stand should 
move much more in the transversal direction.

8.3.2  Is The Directed Motion Of A Break During HR  
An Active Or A Passive Mechanism?

Following the induction of DSBs in the yeast nucleolus, which is the loca-
tion of ribosomal DNA, breaks are expelled outside this dense domain [70]  
(see Figure 8.6a [18]). Later on, proteins associated with the repair process assem-
ble at the break location, by a mechanism that remains unclear. Similar behavior 
is shown in heterochromatin (in Drosophila [71]), where breaks slowly relocate 
outside of a dense sub-nuclear domain.

Since these domains contain many repetitive DNA sequences, repair by NHEJ 
(simple re-ligation) could result in mismatch repair and chromosomal trans-
locations (incorrect repair of two strands). These translocations could also be 
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produced if a break was repaired inside the dense domain via HR. Thus, it has 
been suggested that DSBs relocate to prevent abnormal recombination. Such a 
major reorganization of chromatin is not very common in higher Eukaryotes 
[72]. It could potentially be the result of an active process pulling the DSBs out-
side of the domains, as discussed in the context of the ALT cell, where directed 
motion was mediated by Rad51 filaments. However, Rad51 is only recruited to 
the break once it is outside of the dense domain and cannot assist in such motion.

The physical mechanism of DSB relocation remains unclear but could simply 
be passive. Indeed, chromatin local decondensation at the break site can be mod-
eled using the β polymer model [18]. The local chromatin modification at the DSB 

Figure 8.6 Dynamics of a dsDNA break outside of a dense domain. (a) Once 
a chromatin locus in the yeast nucleolus is cleaved by a restriction enzyme, 
the DSB moves outside the nucleolus, and the repair protein Rad52 can be 
recruited to form a focus. Rad52 is largely excluded from the nucleolus. (b) 
Steady-state configuration of a β-polymer model with Lennard–Jones interac-
tions (left). Once a break is induced (right), the Hamiltonian changes (Equation 
8.40) and the broken site (red) does not participate in long-range interaction 
with far away monomers. Polymer simulations predict a break extrusion as is 
seen experimentally in (a). (c) Two trajectories following a monomer unaffected 
by the extrusion, and the broken monomer shown in (b). The time during the 
0.05 s simulation, is represented by the color change of the trajectory from red 
to green. (d) Anomalous exponent for the locus shown in (a). Latrunculin A was 
added to remove nuclear precession. (adapted from [18]). (e) Schematics of a 
DSB repair via HR in the yeast nucleolus.
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is modeled at the “broken” monomer by decreasing the connections to the ones 
located far away but remains connected only to its nearest neighbors. In such a sce-
nario, for a break at monomer n, the associated Hamiltonian �f  (Equation 8.30) is

 �f k
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It was shown [18], that with such modifications, in a stochastic polymer simu-
lations with Hamiltonian 8.40, after a transient regime, the polymer is reorga-
nized where the break is extruded and relocated to the surface of the polymer 
globule (Figure 8.6b). This redistribution is a passive process. It is the result of 
the energy minimization of the polymer configuration and does not require an 
active mechanism of transport (Figure 8.6c). In addition, this relocalization is 
associated with an increase of the anomalous exponent α of the break due to 
chromatin decondensation and relocation to the periphery of the domain. This 
prediction was observed experimentally following break initiation, reported as 
an increase of the anomalous exponent while the DSB is gradually moving out-
side the nucleolus (Figure 8.6d). Such a model can potentially explain large-scale 
rearrangement of chromatin, that would require a lot of energy and would be 
difficult to achieve in the dense environment of the nucleolus.

8.3.3  Long-Range Correlations Of Chromatin Mobility

A directed or persistent loci motion can be due to local or global histone modi-
fications, arising from DNA breaks. However, long-range correlations are often 
observed without a precise perturbation of the strand. For example, the strand 
can have a micron range correlation in its velocity [73], leading to displacement 
correlation with a magnitude of 4–5 µm (see Figure 8.7).

The origin of these correlations remains unclear, yet, ATP depletion abolishes 
them completely. Thus, ATP-active motion could be the physical source although 
the exact physical mechanism is unclear. Since hydrodynamical interactions 
decay slowly in a solution (inversely proportional to the spatial distance), they 
could used as a model to explain the observed correlation, when the dense chro-
matin is approximated by a fluid medium propagating the velocity fields. This 
model is known as chromatin hydrodynamics [74].

Fluctuations of the nuclear membrane can lead to long-range mobility corre-
lation of chromatin and perhaps some of these correlations could generate a flow 
inside the nucleus, which could be significant (see Figure 8.4a).

As a possible modeling perspective, it would be interesting to see how the 
result of such a continuum model of chromatin mobility coincides with the 
description of chromatin as a linear chain discussed in the previous sections. 
Recent experiments suggest that some bodies/regions in the nucleus behave as if 
undergoing liquid–liquid phase separation from the rest of the nuclear cytoplasm 
[75]. The nucleolus and heterochromatin are some examples [76]. A complete the-
ory of chromatin should be able to explain the fast relaxation times associated 
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with such domains, as well as the localized behavior of chromatin loci that would 
not be expected for a particle in a liquid drop.

8.4  CONCLUSION: WHAT HAVE WE LEARNED SO FAR 
FROM ANALYSING SPTS OF CHROMATIN?

SPTs of a chromatin locus behavior has revealed the heterogeneity of molecu-
lar dynamics, driven by diffusion, and short and long range drift motion. Yet, 
relating the anomalous exponent and the diffusion coefficient extract from SPT 
of chromatin loci to the local chromatin organization has remained a major 
challenge. The relationship between the anomalous exponent and interactions 
between different segments of the strand (mediated by cohesin molecules for 
example) has been partially addressed in [44, 45].

It is now clear that polymer modeling plays a key role in the reconstruction of 
chromatin structure inside the nucleus, but also by defining parameters that can be 
extracted from SPTs to reveal the physical forces acting on the strand. Such mod-
els also reveal how the local chromatin organization can confine a locus motion 
in a small domain. Several estimators are now being used routinely to extract bio-
physical parameters, such as the effective spring coefficient kcn, the local drift due 
to external forces, the apparent spring coefficient, the anomalous exponents or the 
size of a confinement domain. The predictions of polymer models are now tested 
experimentally. Because classical processes such as transcription repair, differen-
tiation, and different pathologies correlate with chromatin motion, studying their 
dynamics reveal information about the physics of key steps.

To conclude, the field of polymer models is now mature enough for the nucleus 
to be studied as a physical system and at a given scale. More high throughput data 

Figure 8.7 Long range correlations of chromatin mobility. (a) Velocity correla-
tion of chromatin. Sections with the same colors move together in the same 
direction. (Adapted from [73]).
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of both structural (Hi-C for example) and dynamical nature are being generated. 
A future challenge will be to integrate and develop sophisticated statistical meth-
ods to interpret these data. Since imaging is becoming more and more accurate 
in the optical resolution, the analysis of multiple chromatin loci will certainly 
reveal the manner and frequency in which different parts of our genome interact 
with one another. This should allow us to understand both the dynamics and 
organization of the nucleus.
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9.1  INTRODUCTION

This chapter is dedicated to chromosome organization and dynamics in bacteria. 
We will review some of the main discoveries and open questions on the bacterial 
chromosome that emerged from recent studies, through the experimental, theo-
retical and computational work performed around them. Our aim is to highlight 
research directions in this area where theoretical and experimental work per-
formed on bacteria can lead the way to formulating new questions concerning 
eukaryotic chromosomes, and, vice versa, attempt to identify where studies per-
formed on eukaryotes can inform the field of the bacterial chromosome.

An important distinction in terms of cellular structure is that eukaryotes have 
a dedicated organelle for storage of the genetic material, the nucleus, which is 
absent in prokaryotes. The genetic material of prokaryotes is immersed in the 
surrounding cytoplasm, but occupies a spatially defined region, inside a nucleo-
protein complex called the nucleoid, where gene transcription and DNA repli-
cation take place. In this region of the cell, DNA is organized in one or more 
chromosomes carrying the genetic information. In bacteria, each chromosome 
has typically a single replication origin, which plays an important role in its 
structure and function [1]. Why is it interesting to study chromosome organiza-
tion and dynamics in bacteria? An important motivation to study the bacterial 
chromosome is that it is one of the main players in mediating physiological shifts 
in response to rapidly changing environments and stimuli [2, 3], as the physi-
ological changes in the course of each cell cycle. Chromosomal changes impact 
on genome replication and gene transcription, both at the local and at the global 
level, via the interplay of protein binding, self-tethering, and tethering to other 
cellular structures. In this kind of response, mechanical and physical aspects of 
the genome are deeply interconnected with biological processes affecting genes. 
Recently, we have described this response using the technological metaphor of 
“smart polymers” [4] a polymer with sensors embedded and responding to envi-
ronmental changes with dynamic structural transitions.

As many excellent reviews on the biology of bacterial chromosome orga-
nization are available (see, e.g., refs [2, 5–11]), our aim is not to be exhaustive. 
Rather, we select some topics that are under debate today, and where the cross-
fertilization between the bacterial chromosome community and that focusing 
on eukaryotes seems plausible. Our account is divided into four different but 
inter-related areas of (i) chromosome folding, (ii) DNA-organizing proteins (iii) 
chromosome dynamics, and (iv) role of molecular crowding, presented in sepa-
rate sections (Figure 9.1).

9.2  CHROMOSOME FOLDING

The comprehensive assessment of the folding of bacterial chromosomes has ben-
efited from progress in several high-throughput techniques, including chromo-
somal conformation capture (3C) [13, 14], single-cell omics [15], cryo-electron 
tomography [16], and super-resolution microscopy techniques, such as in vivo 
photo-activation localization microscopy (PALM) [17].
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The presence of interactions between distant loci results in the formation of 
patterns in chromosome conformation at different length scales: an exhaustive 
classification of these patterns, as well as the identification of the proteins and the 
sequence elements that cause their emergence, has been the subject of chromo-
some conformation capture studies of prokaryotes as well as eukaryotes. 3C tech-
niques allow the measurement of the mean contact frequencies between genomic 
loci in a cell population through stabilization using formaldehyde crosslinking 
and genome fragmentation, followed by identification of interacting segments 
via re-ligation and sequencing. Results are usually represented in the form of a 
matrix, quantifying the relative contact frequencies between pairs of loci – the 
“contact matrix”. As in eukaryotes, the three-dimensional (3D) architecture of 
bacterial genomes was found to both reflect and regulate its functional state.

The main pattern observed in any 3C experiment is a thick diagonal signal 
along the main matrix axis, reflecting the DNA polymer backbone. Indeed, 
since the frequency of interaction reflects the spatial proximity of genomic loci, 
sequences that are closer to each other along the genome coordinate show a 
higher contact frequency than sequences that are farther away [13]. For the same 

Figure 9.1 Examples of the influence of structuring effects of DNA-organizing 
proteins on the folded structure and function of the bacterial chromosome. (A) 
Individualization of newly replicated chromatin. For example, SMC is loaded 
by ParB at parS sites and moves along the DNA chain in the Ori-Ter axis in 
association with loop extrusion. (B) Chromosome folding and DNA-organizing 
proteins. For example, the loop formed by the RctB protein on chromosome 
two in V. cholerae and the crtS locus on chromosome one initiates chromo-
some two replication. Specifically, chromosome two replication initiates when 
the crtS locus is duplicated, allowing for a perfect synchronization between 
the replication processes of the two chromosomes. (C) Compaction can be 
induced by DNA-organizing proteins, such as HU through bending and H-NS 
through bridging, affecting mobility and key functions (e.g., transcription). 
Recent results show a significant correlation between the short-time dynamics 
of chromosomal loci and estimates of compaction levels by 3C data [12].
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reason, in presence of multiple chromosomes, these chromosomes are detected 
as well-defined blocks on the contact matrix. Finally, intra-chromosomal pat-
terns may also show up as blocks in the contact matrix of the same chromosome. 
The formation of structural patterns of functional importance correlates with 
DNA-structuring proteins (also called nucleoid-associated proteins, NAPs), rep-
lication, and transcription (reviewed in ref. [3, 5]).

9.2.1  Replication and segregation are the main  
determinants of genome folding at large scales

Each organism, in order to survive, needs to ensure the proper segregation of 
duplicated chromosomes between mother and daughter cells. Different bacteria 
adopt different strategies in order to compact and spatially resolve the replicated 
chromosomes. In Bacillus subtilis and Caulobacter crescentus, SMC condensins 
and the ParB partitioning protein have been observed to play a central role in 
the interplay of chromosome folding and segregation [18–20]. SMC condensins 
are ring-shaped complexes composed of two subunits that constrain and bridge 
DNA segments [21, 22]. Cells lacking condensin subunits are viable, but they are 
inefficient in spatially segregating their replication origins, producing anucleated 
cells [23, 24]. In both C. crescentus and B. subtilis, SMC is associated with the 
presence of a secondary diagonal in the interaction matrix, called the main hair-
pin, perpendicular to the main polymer diagonal, spanning from the terminus 
of replication to an origin-proximal region and holding the left and right repli-
chores together.

The generation of this pattern occurs in association with the so-called “loop-
extrusion” process [25], whereby the condensin is recruited on the chromosome 
by ParB which is bound to the centromeric parS site near the origin of repli-
cation. During chromosome replication, the SMC rings translocate from parS 
(by diffusion or active transport) toward Ter along the two chromosomal arms 
joining at the replication fork. This activity helps in the resolution of knots and 
entanglements in the DNA backbone, and allows the separation of the individual 
chromosomes. The continuous loading of additional SMC at parS sustains the 
formation of the hairpin structure, and the SMC rings move along with the repli-
cation complex toward the replication terminus, until segregation is fully accom-
plished. A single copy of parS is sufficient to load SMC on the chromosome. The 
introduction of multiple ectopic parS sites generates multiple independent hair-
pins, associated with SMC loading, along the chromosomal arms [19].

Curiously, the B. subtilis genome harbors several parS binding sites in the 
origin-proximal region. The presence of multiple copies leads to the internal 
restructuring of the Ori (replication origin) genomic segment. Additionally, a 
second bow-shaped, intra-arm hairpin, has been detected originating at the parS 
loci positioned ~350 kb away from Ori on the left arm. The Ori-region structur-
ing and the second intra-arm hairpin are not related to segregation. Instead, it 
was proposed that they exist in order to bring distant binding sites for DnaA, the 
protein responsible for initiation of DNA replication, into the vicinity of OriC, 
thus playing a role in the regulation of this process [20]. The role of SMC-like 
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proteins in the coordination of replication and segregation has been also estab-
lished in eukaryotic cells [26–31].

9.2.2  Genome folding role in replication initiation

Little is known about the possible role of chromosome structure changes as a 
regulatory mechanism for initiation, but recent evidence implicates chromosome 
structure as a possible player, working jointly with the DnaA initiator protein 
circuit [32]. The mechanisms behind the proposed role of the structuring of the 
B. subtilis Ori region in the control of replication initiation still need to be fully 
elucidated. Even less is known about the possible role of chromosome structur-
ing in the initiation of DNA replication in E. coli, but a recent genomic study in 
Vibrio cholerae revealed a new control mechanism for the replication initiation 
of the secondary chromosome in this bacterium [33]. V. cholerae, like 10% of 
all bacterial species, carries a second chromosome 1Mb in size, in addition to 
its main (3Mb) chromosome. Initiation of replication in the first chromosome 
is controlled by DnaA; the second chromosome has a plasmid-like origin con-
trolled by a Vibrio-specific factor, called RctB. This protein binds to the origin of 
replication of the second chromosome, called the “iteron”, as well as to a 39-mer 
regulatory site on the second chromosome, strongly inhibiting initiation [34].

RctB was also found to bind to a locus on the first chromosome, crtS, acting 
upon chromosome 2 as an enhancer of initiation [35]. The initiation of both chro-
mosomes occurs only once per cycle and terminates at the same time, implying 
a tight concerted control between replication of the first chromosome and the 
initiation of the replication of the second chromosome. Marker frequency analy-
sis, a method that allows the measurement of the relative mean copy number of 
different chromosomal loci, indicates that the timing of replication at the RctB 
binding site on the first chromosome tightly controls the timing of replication 
initiation of the second chromosome. 3C analysis reveals that the two chromo-
somes are individual entities in terms of interactions, apart from the two Ter 
regions exhibiting strong contact. Their interaction is possibly due to structuring 
by the Ter-condensing protein MatP [36]. The origin of replication of the second 
chromosome and the crtS locus interact, pointing toward a mechanical process 
driving origin initiation in the second chromosome.

9.2.3  Transcription defines chromatin-interaction domains

Chromosome conformation capture analyses also led to the discovery of local 
domains of increased interaction frequency, called chromosomal interaction 
domains (CIDs). For example, experiments performed at high genomic resolu-
tion (obtained by using frequent-cutter restriction enzymes and deep sequenc-
ing) show short-range domains of interactions in C. crescentus [25]. 23 CIDs 
ranging in length from 30 to 420 kb have been identified, generally flanked by 
highly expressed genes. Inhibition of transcription using rifampicin causes dis-
ruption of CID boundaries, suggesting that high transcription induces domain 
formation. CIDs persist throughout the cell cycle and are independent of the 
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SMC protein (see below). Similar patterns of genome organization have been 
detected in V. cholerae (see previous paragraph) and B. subtilis. In B. subtilis, 20 
CID barriers were identified, ranging in size from 50 to 300 kb. As in V. cholerae, 
the barriers coincided with highly expressed genes and were sensitive to rifam-
picin treatment [20]. Finally, in Mycoplasma pneumoniae similar patterns were 
also found. For this organism, it was demonstrated that CIDs contain genes that 
are preferentially coexpressed and coregulated [37]. This specific point has not 
been addressed for the other organisms. At larger scales, domains of different 
natures can emerge. In B. subtilis the Ori and Ter (replication origin and termi-
nus) regions show a higher level of compaction than the rest of the chromosome. 
In E. coli, the NAP MatP appears to structure the Ter region [12, 36, 38, 39], and 
the NAP HU (discussed in the next section) increases short-distance interactions 
in C. crescentus [25] and E. coli [12].

The 3C technique detects a population average of the folded state and the local 
compaction of chromatin. Interestingly, these measurements correlate with the 
local dynamics of chromatin, measured in single cells. Indeed, recent 3C mea-
surements in E. coli show that local compaction correlates with the mobility and 
fluctuations in time of chromosomal loci [12]. In this study, local compaction was 
inferred from a locus-dependent estimate of the interaction probability P(s) from 
3C data, while short-time subdiffusive dynamics of loci around the chromosome 
had been previously measured through fluorescent-tag microscopy of labeled 
chromosomal loci [40] (see below).

9.3  DNA-ORGANIZING PROTEINS

A prominent role in organizing chromosome folding at different length scales is 
played by a set of DNA-binding proteins with diverse properties. Both prokary-
otes and eukaryotes abundantly express DNA-binding proteins involved in the 
organization and compaction of their genomes [10, 41, 42]. Generically, these 
proteins are referred to as “chromatin proteins”, proteins that shape the prokary-
otic or eukaryotic chromatin.

9.3.1  Genome compaction

Typical of eukaryotes are the histone proteins, which assemble as octamers 
on DNA to yield nucleosomes; DNA with a unit length of about 150 bp is 
wrapped in a left-handed manner around an octameric histone core. DNA 
decorated with nucleosomes is referred to as the “10 nm fiber”. Depending 
on the separation distance (referred to as linker length) and its regularity, 10 
nm fibers can assemble into thicker “30 nm fibers”, formed due to nucleo-
some-nucleosome stacking interaction [5]. Among prokaryotes, a distinction 
needs to be made between bacteria and archaea. Both bacteria and archaea 
express many different chromatin proteins, or NAPs [41, 43]. Bacteria do 
not express homologues of eukaryotic histones. Some archaeal phyla, which 
are considered to share a common predecessor with eukaryotes, do express 
histone homologues [44, 45]. Therefore, studies of archaeal chromosome 
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organization might provide useful information on the evolution of eukary-
otic chromosome organization.

In bacteria and archaea, the functional equivalents of eukaryotic histones 
achieve compaction by their ability to bend DNA. The best-characterized (and 
cellularly most abundant) example of a DNA-bending protein is HU [46]. This 
protein lacks sequence specificity; it effectively compacts DNA by binding and 
bending at multiple apparently random sites along its contours in vitro [47]. HU 
is the only protein for which the ability to compact DNA has also been corrobo-
rated in vivo [48]. Interestingly, the binding of HU in vitro is cooperative and 
leads to the formation of stiff filamentous structures at elevated protein densities 
[47, 49]. While the physiological relevance of this mode of binding is currently 
unclear, it highlights architectural diversity due to protein–protein interaction 
as an important feature of nucleoid-associated proteins. Among archaea, exam-
ples of simple DNA-bending proteins include the Sul7, Cren7, MC1, and Sso10a 
proteins [50]. All these proteins compact DNA by bending, but apart from 
Sso10a they do not share with HU the ability to assemble into stiff filaments [51]. 
Archaeal histones have been recently proposed to be associated with the genome 
in vivo in different multimeric states, as single dimers or multimers [52], a prop-
erty reminiscent of that described previously for simple DNA-bending proteins. 
The X-ray crystallography structure of archaeal-histone DNA complexes [53] 
reveals that histones associate side-by-side, giving rise to a hypernucleosome 
structure, in which DNA is wrapped in a left-handed manner around an “end-
less” histone core [44, 53]. Distinct from the other characterized DNA-bending 
proteins, side-by-side association of histones, in this case, yields a tenfold linear 
compaction. It is tempting to consider the archaeal hypernucleosome and the 
eukaryotic nucleosome as the product of simple DNA-bending proteins evolved 
to self-associate.

9.3.2  Genome organization

While the proteins described above contribute to genome compaction, a plas-
tic genome responsive to ambient signals, as well as robust to the consequences 
of endogenous and exogenous DNA damage, requires functional organization. 
Such functional organization is achieved by proteins capable of mediating DNA–
DNA interactions [54], which due to their global structural impact also affect 
gene activity. The prototypical example of a protein with such functionality is 
the H-NS protein, conserved among gram-negative bacteria such as E. coli. H-NS 
was originally described as a major constituent of the bacterial nucleoid [55] and 
later identified as a protein involved in regulation (usually repression) of numer-
ous genes [56]. Characteristic of the protein is its modular build-up and result-
ing bi/multivalency. Despite its small size (15.6 kDa) the protein harbors at least 
three functional domains, a dimerization domain, a multimerization domain, 
and a DNA-binding domain [57]. Recently, a fourth functional domain, involved 
in sensing physico-chemical signals was identified [58]. At low concentrations 
in solution, the protein exists as a dimer and is thus bivalent. Self-association 
along DNA leads to stiffening of the DNA [58–60]. This multivalent DNA-bound 
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multimer is capable of interaction with DNA provided in trans [61, 62]. This 
property of the protein is referred to as “DNA bridging”.

H-NS can bind along an extended region of the chromosome, and represses 
5–10% of genes in E. coli, with a preference for genes that are recently gained 
from horizontal transfers [63–67]. Many of these genes can be then de-repressed, 
leading to gene expression, in response to environmental signals [68, 69]. The 
mechanism by which H-NS exerts gene repression has been under scrutiny and 
discussion for over three decades. Rather than a single mechanism operating at all 
H-NS repressed genes, repression can, in fact, be achieved through a number of 
mechanisms: 1) occlusion of the transcription machinery from the transcription 
start site and regulatory elements; 2) trapping of the transcription machinery at 
the transcription start site, not allowing transcription to take off; and 3) permit-
ting transcription to take off, but hindering the progression of the transcription 
machinery by binding intragenically along the transcribed gene [10, 70]. Note that 
both modes of H-NS binding, the lateral filament, as well as the bridged complex, 
are expected to be able to occlude the transcription machinery from the transcrip-
tion start site. There is possibly a difference in the strength of repression for the 
two modes of binding in vivo, separating different “classes” of H-NS repressed 
genes. Trapping relies on DNA bridging of upstream and downstream elements. 
Progression could theoretically be hindered by both lateral filaments and bridged 
complexes, but experimentally it has been shown that the lateral filaments do not 
provide a barrier to progression of the transcription machinery [71].

Additionally, the bi/multivalency of the protein allows it to form repressive 
loops on short scales, on the scale of genes and operons, described above, but the 
protein has also been implied in mediating long-distance loops [72]. This model is 
based on the observation that the genome is divided into so-called topologically 
isolated domains [73–75], which could arise due to the formation of loops, as seen 
in classical images of isolated bacterial chromosomes [76]. The size of topologically 
isolated domains, as well as that of the observed loops, is on average 10 kbp, which 
corresponds with the average spacing between H-NS bound regions along the 
genome in vivo [77]. According to this model global organization of the genome in 
loops coincides with clustering of H-NS repressed genes. This model has not been 
verified in vivo yet, but an approach combining chromosome conformation cap-
ture and specific pull-down of H-NS-bound-DNA could shed light on this issue.

In addition to H-NS, there are other proteins capable of mediating long-
range genomic interactions, SMC-like proteins [24, 25, 31]. These proteins are 
much larger in size than H-NS, exist as ring-like structures, and are conserved 
throughout all domains of life. Finally, an emerging theme in the bacterial field 
is that many nucleoid-associated proteins exhibit different structural proper-
ties (combining bending and stiffening, or bending, stiffening, and bridging), 
depending on the DNA-binding density [5].

9.3.3  “Smart polymer” behavior

The combination of targeted binding, sensory behavior, regulatory capabilities and 
role in the global folding of the genome of nucleoid-associated proteins like H-NS 
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suggests the existence of a complex but highly coordinated interplay of global and 
local factors orchestrating the physiological response of a cell from both the bio-
logical and the physical viewpoint. This has been described by the technological 
metaphor of a “smart polymer” [4] for the behavior of the bacterial nucleoid. In 
soft-matter physics and engineering, smart polymers are designed to respond to a 
wide range of external stimuli and perform a wide range of mechanical and chemi-
cal tasks. The bacterial nucleoid is similar, in that it modulates its compaction and 
conformation according to growth conditions, cell-cycle stage, and environmental 
and internal cues. We are just beginning to understand this behavior [7]. From a 
theoretical standpoint, capturing the mechanisms coupling the physical properties 
of the chromosome and its surrounding medium to the dynamic changes in cell 
composition and chromosome state in response to conditions, and the internal/
external environment is the main challenge for the coming years.

9.4  DYNAMICS OF CHROMOSOMES AND THEIR 
EMBEDDING MEDIUM

At faster time scales than those of the orchestrated movements, such as chromo-
some segregation, macromolecules immersed in the cytoplasm perform random 
jiggly movements, and such fluctuations carry a wealth of information on the 
physics of the intra-cellular environment [78]. In bacteria, while active forces and 
processes may be very relevant, active directed transport is less prevalent than in 
eukaryotes, and molecular interactions are mainly limited by cytoplasmic diffu-
sion. Yet, it is becoming more and more evident that short-time fluctuations play 
an important role in eukaryotes as well [79, 80]. In spite of the complexity and 
diversity of the cytosolic environment, the observed diffusion of tracer particles 
across cells, conditions, and species presents certain common statistical features, 
which has spawned research on a common set of analytical tools. Such robust-
ness also encourages a modeling approach where the most relevant aspects of 
the medium are taken into account, and more specific details can be left out. 
This lies at the core of a framework based on statistical physics, which is guid-
ing important discoveries on the physical nature of the bacterial cytoplasm and 
chromosome.

9.4.1  Subdiffusion of chromosomal loci and particles

The classic theory of a particle suspended in a simple fluid is that of Brownian 
motion. The hallmark of Brownian behavior is the linear scaling of fluctuations 
with time. A commonly used measure of the fluctuations, computed from the 
individual trajectories r t( ) , is the mean squared displacement, defined as

 MSD t t( ) = +( ) - ( )éë ùûr t r t
t

2
,  (9.1)

where the average is performed by using all time points t available and all tra-
jectories. For Brownian motion, MSD t t( ) = D , where the diffusivity D k T= m B  
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depends on the mobility µ and the temperature T. Additionally, the step-size 
distribution is Gaussian at all time scales τ. Both the power-law scaling of the 
MSD and this scale invariance are essentially consequences of the Central Limit 
Theorem. However, experiments in many areas have shown that such a descrip-
tion is inadequate for more complex fluids and materials, where the relation 
between the MSD and time deviates from linearity, often taking the form of a 
power law

 MSD appt t( ) = D a .  (9.2)

Here Dapp is an apparent diffusion coefficient, and the exponent α measures the 
deviation from normal diffusion [81]. Sub-diffusion, signaled by a less-than-unity 
α, has been observed in vivo both for bacterial chromosomal loci [78, 82, 83] 
and for cytoplasmic RNA-protein particles [83–85] as well as for complexes such 
as replisomes [86]. The definition of MSD is useful for single-molecule tracking 
experiments, e.g., in time-lapse fluorescence microscopy, giving access to the full 
traces r t( ) . The relevant quantities α and Dapp can also be obtained with other 
experimental techniques, such as fluorescence recovery after photobleaching or 
fluorescence correlation spectroscopy [87].

9.4.2  Challenges to the interpretation of data

The precise physical picture emerging from the experiments focusing on bacte-
rial nucleoid dynamics is unclear. Roughly, we should picture it as a complex 
heterogeneous fluid where the folded supercoiled chromosome structure, the 
crowding from cytosolic macromolecules, and the presence of diffusing elastic 
elements and nucleoid-associated proteins contribute to the overall sub-diffusion 
of both chromosomal loci and intracellular particles [40, 83, 84,]. Recent studies 
found systematic dependencies of short-time mobility indicators with nucleoid 
structure and cell physiology. For instance, it was observed that the short-time 
diffusivity of genomic loci in E. coli depends on their chromosomal coordinate 
and subcellular localization [40], and is affected by sublethal doses of clinically 
relevant antibiotics [88]. Therefore, an important challenge is to disentangle the 
different factors contributing to the short-time dynamics, and to characterize 
their signatures in the data. Much effort is being put into theoretical analyses 
and computer simulations of models probing different physical scenarios, with 
the aim of establishing a corpus of model-guided data-analysis techniques [78].

The classic Rouse model [8, 89] may provide a first simplified description of 
the chromosome as an ideal polymer chain fluctuating in a simple fluid. This 
model predicts a =1 2/  and normally distributed fluctuations of the steps 
r t t r t+( ) - ( )d . However, the exponents measured in most experiments are sen-
sibly smaller than this prediction, and the motion of cytoplasmic particles, not 
attached to the chromosome, appears to be itself subdiffusive. These observa-
tions led to a more sophisticated model where a non-interacting polymer chain 
is immersed in a viscoelastic medium, i.e., a fluid responding both viscously and 
elastically to stress. This model gives predictions for the values that the anomalous 
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exponent takes for chromosome-bound tracers (achr) and for cytosolic particles 
(acyt ). In particular, it predicts that the ratio a acyt chr/  is 2 in an ideal case [89].

The picture has been further expanded by the recent theoretical discovery 
that a compacted chromosome, arranged in a fractally organized globule, but 
immersed in a simple viscous fluid, would yield subdiffusion exponents in agree-
ment with those observed in bacteria (around 0.4) [8, 90]. Experimentally, it 
is still very unclear to what extent the observed anomalous diffusion is due to 
the dynamics of the folded chromosome or to the complexity of the cytosolic 
medium. A related question regards the degree of viscoelasticity of the intra-
cellular medium. A clear elastic response is observed by measuring the velocity 
autocorrelation function of tracer trajectories [91], which robustly presents anti-
correlation peaks (see Figure 9.2). However, it is not clear whether such behavior 
is a signature of the presence of elastic elements (such as the chromosome) or 
could arise from the complex interaction with a “disordered” environment (pos-
sibly as a consequence of high molecular crowding, see Section 9.4.3). Further 
information on the rheology of the medium could be extracted by considering 
the full space-time dependence of correlation functions.

On the theoretical side, attempts have been made to develop a polymer dynam-
ics framework predicting the correlation in the motion of distant chromosomal 
loci, taking into account their connection through the DNA backbone and the 
subdiffusive properties of the embedding medium [91, 92]. This approach predicts 
that the time scale of stress propagation through the polymer segment between a 
pair of loci can be obtained by analyzing time-delayed correlations between the 
two loci. The original theory by Lampo and coworkers [91] considers the effect of 
cytoplasm viscoelasticity on an unorganized polymer (a Gaussian chain) repre-
senting the chromosome. More recent work extends this framework to the case of 
a polymer with a complex folded state, describing the chromosome, immersed in 
a viscoelastic medium [92]. This model can disentangle the intrinsic contribution 
to the dynamics induced by the chromosome folding from the specific properties 
of the cytoplasm. These theoretical studies indicate that dynamic measurements 
from multiple tagged chromosomal loci and cytoplasmic particles are a way to 
resolve the question of the relative contributions of chromosome and surround-
ing medium to the physical properties of the cytoplasm as a complex fluid. In 
particular, correlations in the fluctuations of two tagged loci with controllable 
arc-length distance along the chromosome are expected to carry rich informa-
tion on stress propagation through the polymer backbone. Such measurements 
will allow a quantitative and independent assessment of both the local degree 
of chromosomal compaction and the rheology of the cytoplasm or nucleoplasm  
[91, 92] (see Figure 9.2).

9.4.3  New concepts and models

Particle dynamics in the bacterial chromosome-cytosol environment were 
initially approached theoretically mostly as an equilibrium thermal process. 
However, recent advances are depicting a much more heterogeneous situa-
tion, where non-equilibrium, possibly athermal, processes superimpose on the 
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subdiffusive background, yielding a rich — and largely unexplored — spectrum 
of crossovers. ATP-dependent enzymatic activity has been shown to affect the 
motion of chromosomal loci in E. coli, giving rise to a “super-thermal” response 
of fluctuations at increasing temperature [80]. Cellular metabolism was shown 
to also have a fluidizing effect on the cytoplasm alone (see the following section), 
allowing larger particles to become mobile, whereas they are trapped in ATP-
depleted cells (an observation that was interpreted as a sign of glassy behavior) 
[84, 85].

In E. coli, rapid fluctuations and relocations of nucleoid mass [93] were 
detected, as well as sporadic quasi-ballistic motions of chromosomal loci, quali-
tatively different from the subdiffusive background [94]. Phenomenological 
modeling analysis shows that the intensity and typical time scales of the forces 
related to the fast relocations vary across the chromosome and are associated 
with increased noise levels [95]. More generally, these rapid movements may 
emerge from global or local chromosomal rearrangements, stress relocation due 

Figure 9.2 Sketch of the main determinants of chromosome and cytoplasmic 
particle dynamics in bacteria. The folded structure of the chromosome in the 
nucleoid is connected to its local (short-time) dynamics, and to the crowd-
ing levels in the cytoplasm [8]. Crowding affects biochemical processes and 
mobility of particles, as well as causing polymer collapse. Dynamic tracking of 
single tags gives access to temporal correlations and displacements. Tracking 
multiple intracellular tags can give access to spatio-temporal correlations. 
Such correlations starting to be explored theoretically, and are expected to 
be an important tool for investigating the physical properties of both chromo-
some and cytoplasm.
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to ruptures of a self-tethered structure, the action of molecular motors, etc. [7]. 
Their precise nature is not known and they may emerge from several of these 
sources at the same time. Additionally, such active movements have been pro-
posed to have some periodicity or characteristic time scale and may play an 
important role in cell cycle progression [7].

The methods and concepts developed in this context could be useful in stud-
ies specifically targeted at eukaryotes, where they can be applied to disentangle 
the contributions of active movements and basal (sub)diffusion. For instance, a 
crossover between transient subdiffusion at short time spans and nearly normal 
diffusion at long time spans was found by looking at telomere-bound proteins in 
mammalian cells [96]. Very recently, the origin of such behavior has been con-
nected to the action of stochastic forces of cytoskeletal origin [79].

9.5  ROLE OF MOLECULAR CROWDING

The problems discussed in the previous section are deeply interconnected 
with the open question of the physical consequences of molecular crowding 
in the bacterial cell, and in particular its impact on chromosome dynamics 
and organization. The high concentration of charged and polydisperse mac-
romolecules in a cell affects both cytoplasm and chromosome. Such macro-
molecular crowding is responsible for a number of physical effects of entropic 
and energetic nature, which are still incompletely understood (see Figure 
9.2). Crowding agents can favor molecular association events and acceler-
ate molecular reactions, but also dramatically decrease molecular mobility 
in a strongly size-dependent way. Depletion interactions, a consequence of 
crowding, create an effective short-range attraction between larger macro-
molecules. Such interactions are felt by large molecular assemblies in the 
presence of smaller particles, and are due to a reduction in the total excluded 
volume by the latter.

9.5.1  Compaction by molecular crowding

DNA condensation by crowding agents such as PEG or dextran can be observed 
in vitro under controlled conditions. In bacteria such as E. coli, the chromosome 
occupies roughly one sixth of the available cell volume, and upon cell lysis it 
expands to about five times the cell radius, while many of the nucleoid-associated 
proteins remain bound [97]. These observations already suggest that cytoplasmic 
crowding plays a major role in chromosome compaction.

This was hypothesized early on by Odijk [98], and observed in purified nucle-
oids from both wild-type and mutants lacking nucleoid-associated proteins 
[99–101], leading to the hypothesis that the effects of crowding on compaction 
are independent of the NAP composite background. In a more recent study by 
Pelletier and coworkers [97], PEG was added to purified nucleoids in microfluidic 
channels and the compaction transition was quantified, as well as the response of 
nucleoids to the applied force. The results of this work suggest that the in vivo lev-
els of crowding make the chromosome very close to the transition to the compact 
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state. This speculation is intriguing, as this condition would be close to the opti-
mal compromise between accessibility and size.

After the pioneering work by Odijk, simulation and theoretical studies have 
approached the question only in recent years [102]. A combined theoretical and 
computational study considered the collapse of a polymer due to a two-body 
short-range attraction describing crowding and discrete bridging representing 
the action of bridging proteins such as H-NS [103]. The authors find that bridging 
leads to a sudden collapse transition, and to a spontaneous tendency to fold into 
separate compartmentalized domains without the need of intra-specific interac-
tions. These domains are stable under compaction due to depletion interactions, 
provided that such interactions do not become stronger than bridging.

However, crowding is not a two-body force. Molecular dynamics simulations 
with simple but explicit descriptions of crowders are available, and allow, for 
example, the study of the role of size and polydispersity of crowding agents on 
chromosome compaction [104, 105]. These studies indicate that the compaction 
transition is continuous, and occurs at lower volume fractions, but larger con-
centrations with smaller crowding agents. A recent study [106] followed the same 
approach to describe the compression experiments by Pelletier and coworkers. 
They found that the osmotic compression force by crowders dominates over the 
entropic expansion force exerted by the compressed DNA, even at low density.

Depletion interactions are expected to occur between any large objects, such 
as ribosomes [107], and may also be important in modulating bridging interac-
tions [103, 108]. More in general, depletion provides a likely explanation for the 
formation of several macromolecular assemblies such as transcription factories 
[107, 109], which are also observed in bacteria [110, 111]. A recent study com-
bining experiments with theoretical arguments has looked at the combined col-
lapse of purified nucleoids by the bridging protein H-NS and a crowding agent 
(PEG) [112]. While H-NS alone had little impact on nucleoid size, the addition 
of this bridging protein strongly affected nucleoid collapse by PEG. The authors 
interpret this effect as an enhancement of depletion due to the increased effective 
diameter of the DNA helix, causing an increase of the self-attraction induced by 
PEG. They also conclude that in presence of H-NS, the free energy of the nucle-
oid depends so weakly on H-NS concentration, that the latter is essentially not 
relevant for the transition. Hence, while the cooperation between crowders and 
the bridging protein is evident, the predicted effect is binary, and not gradual or 
tunable by protein amounts.

9.5.2  Crowding and cytoplasmic mobility

Crowding also affects cytosol dynamics, and, as discussed in the previous section, 
this has consequences on the mobility of chromosomal loci. The physical origin 
of the anomalous diffusion behavior of both chromosomal loci and cytoplasmic 
particles in bacteria is subject of an intense debate. As mentioned above, tracked 
cytoplasmic particles of different size and origin on the minute time scale show 
heterogeneous (and bimodal) mobility distributions [84], as well as highly probe-
size-dependent motion, typical of colloidal glasses. ATP-dependent processes 
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appear to be the main driver of the mobility of such cytoplasmic particles, as 
they drastically reduce their motion under ATP depletion. More recent work [85] 
extracted further details of this complex picture for cytoplasmic objects. These 
tracked objects show velocity–velocity correlation functions with an anticorre-
lated part, pointing to viscoelastic behavior. Additionally, the ensemble of par-
ticle displacements reveals a non-Gaussian Laplace-like distribution at a wide 
range of time scales, rather than the Gaussian distribution predicted by the cen-
tral limit theorem. The non-Gaussian behavior may emerge from both heteroge-
neity across trajectories of different particles (e.g. due to spatially heterogeneous 
confinement) and dynamic heterogeneity (disorder) along single trajectories. The 
emergent picture is that disorder due to extreme crowding may be one of the 
main drivers of mobility of any cytosolic object, but on the theoretical side, we 
lack a more specific description of the processes at play.

9.5.3  Crowding as a player in cell physiology

A final, more biological comment goes to the wider context of the role of 
crowding (and hence of chromosome organization). It is well known from clas-
sic work in bacterial cell physiology that bacteria perform strong buffering of 
total molecular concentration [113]. More recent work has linked this behavior 
to several key cellular properties, leading to the hypothesis that the level of 
crowding in the cytoplasm must be under tight homeostatic control [114], and 
cells actively maintain the overall concentration of macromolecules within a 
narrow range.

Intriguingly, crowding and chromosome compaction can also be an inte-
gral effector of physiological changes. At the theoretical level, this factor has 
been addressed in the framework of the quantitative approach to bacterial 
physiology [115]. Experimentally, the joint physiological switch affecting 
chromosome and total cytoplasmic density remains relatively unexplored, 
but recent intriguing evidence appears to come from work on eukaryotes. For 
example, a recent study in yeast [116] has shown that glucose starvation trig-
gers cell and vacuole size changes that slow down the physiology making the 
cells quiescent. Such a chain of events clearly involves crowding (measured 
as chromosomal and cytoplasmic mobility using tagged particles). Another 
recent (unpublished) study [117] in eukaryotes has shown that the well known 
mTORC1 pathway, the primary pathway for cell growth, tunes macromo-
lecular crowding and therefore the size-dependent mobility of intracellular 
macromolecules and intracellular phase separation through the regulation of 
ribosome concentration.

In conclusion, the emergent picture is that crowding may be a constraint for 
several core cellular processes, but is also a regulatory tool to drive chromosome 
organization, and this question is still under-explored in eukaryotes. Conversely, 
recent work on eukaryotes focuses more on the physiological consequences of 
crowding, which appear relatively less explored in bacteria. The physical nature 
of the crowded cytoplasm/nucleoid system remains a largely open problem, to 
address both experimentally and theoretically in bacteria.
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9.6  CONCLUSIONS

Overall, the organization and dynamics of prokaryotic and eukaryotic 
chromosomes bear a set of common features, ranging from a compartmen-
talized structure, to their short-time dynamics, and to their dynamics on 
the scale of cell cycle transitions, such as replication initiation, and chromo-
some segregation [7]. Our knowledge is still very limited and many central 
questions appear to be open, such as the physical nature of the cytoplasm 
and nucleoplasm, and their interplay with cell decisions, homeostasis, and 
chromosome state and dynamics. The “smart-polymer” paradigm for the 
chromosome appears to be a promising guiding principle for both king-
doms, as increasing evidence supports the picture of a joint role of physical 
organization and biological degrees of freedom to perform key physiologi-
cal changes in the cell.
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Restraint-Based Modeling 
of Genomes and Genomic 
Domains

MARCO DI STEFANO AND MARC A. MARTI-RENOM

10.1  INTRODUCTION

The function of the genome in living cells depends on various layers of regu-
lation [1]. The first one is the nucleotide sequence of the DNA molecules. The 
sequencing of the entire human genome has been a milestone of biology in the 
last decades [2], and opened the way to the annotation of the genes and regulatory 
sequences on the 1D DNA sequence (promoters, enhancers, etc…). The second 
and still largely unexplored level of organization is how the genome is folded in 
3D space [3]. In fact, similar to the words in a book, genes are meaningful when 
they can be read and put in the correct context [4]. In the genome, this happens 
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only if the DNA fiber is accessible to the transcription machinery, and if specific, 
and eventually distant, sequences (e.g., enhancers, promoters) are brought close 
in 3D space [5, 6].

To explore this aspect of genome function, several experimental techniques 
have been introduced to investigate the 3D organization of the DNA in cells at 
different scales. On the one hand, imaging (e.g., 3D FISH) has revealed the large-
scale organization of the chromosomes in separated areas of the nucleus, called 
chromosome territories [7, 8], which typically occupy different nuclear radial 
positions depending on the gene content [9–11]. On the other hand, atomic reso-
lution techniques, such as X-ray crystallography, provided a detailed description 
of the stacked organization of the DNA base-pairs [12] and of the structures of 
the double-helix DNA molecule and its wrapping around histone proteins [13].

Only recently it has been possible to start filling the gaps between the 
entire chromosome scale and the atomistic one [14]. This effort has been led by 
Chromosome Conformation Capture (3C) technologies (e.g., 3C [15], 4C (3C- 
on-chip or Circular 3C) [16–18], 5C [19], Hi-C [20], in situ-Hi-C [21], TCC [22] or 
Capture C [23, 24], among others), which are here referred as 3C-based technolo-
gies. These experimental setups can differ in the biochemical reactions involved, 
but they have at least two aspects in common. Firstly, all these approaches are 
normally applied to a population of cells and, so, study the cumulated contacts 
over millions of cells. These cells can be heterogeneous in terms of cell stage or 
cell development, or synchronized at a given stage [25]. Secondly, the read from 
these techniques are the numbers of captured interactions between pairs of DNA 
fragments that were close in 3D space. This quantitative information is typically 
visualized as heat maps (Figure 10.1A).

Since the very first introduction of the 3C-based technologies, they have 
been complemented by computational techniques that take as input the mea-
sured interaction frequencies to determine the structural folding of genomes 
and genomic domains [15]. These computational methods, which have been 

Figure 10.1 Representation. (A) Binned 3-C-based interaction matrices are 
represented in TADbit using individual particles for each bin in the matrix. (B) 
Each particle in the model is given spatial restraints to place them with respect 
to each other based on the data from the interaction matrix.
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further developed over recent years [22, 26–28], have a common workf low 
made of three main stages: the representation of the chromatin as a set of 
points, the scoring of the conformations that these points can assume in 3D 
space, based on the translation of the 3C interaction frequencies into spa-
tial restraints, and the sampling of the model conformations which optimally 
satisfy the imposed restraints, and as a consequence optimally represent the 
input 3C interactions. In this chapter, we will discuss the modeling strat-
egy behind TADbit (https://github.com/3DGenomes/tadbit), a computational 
tool developed in our group, which is designed with the aim of providing a 
single tool for the complete analysis and 3D modeling of 3C-based experi-
ments [29].

10.2  3C INTERACTIONS PROCESSING IN TADBIT

TADbit is a Python library (https://github.com/3DGenomes/tadbit) to manage 
3C-based data from their production, to the analysis of the obtained interaction 
maps and the 3D modeling based on the interaction data. Specifically, TADbit 
is capable of evaluating the quality of the sequenced reads using the Phred score 
[30], mapping the read in the FASTQ files to the reference genome using GEM 
[31], obtaining raw interaction 3C heat maps binned at the desired resolution, 
normalizing and correcting the obtained interaction matrices to remove experi-
mental biases by applying several normalization algorithms [32, 33], filtering 
the heat maps removing rows with low coverage and studying the hierarchi-
cal organization of the genome in A/B compartments [20] and in Topological 
Associating Domains (TADs) [34]. It is also possible to compare Hi-C maps 
using Spearman correlation analysis, or eigenvectors decomposition analysis 
[32], and to compare the hierarchical organization inferred from 3C matrices to 
describe the differences and similarities between cell types. Once the 3C-based 
heat maps have been obtained, TADbit also provides all the tools necessary to 
determine 3D models that optimally reproduce the interaction patterns of the 
input 3C matrix and allow analysis of the various structural properties from the 
models. In the following, we will focus on the technical details of the 3D model-
ing strategy.

10.3  RESTRAINT-BASED MODELING STRATEGY FOR 
STRUCTURAL DETERMINATION

Once a 3C-based interaction map is obtained, a simple strategy to reconstruct 
a 3D structure of chromatin that best reproduces the data is to force regions 
with a high number of interactions to stay close together, while regions with few 
interactions are kept far apart. In simple words, one can use interaction frequen-
cies as a proxy of spatial proximity. The TADbit strategy implements this simple 
yet useful way of reconstructing 3D genomic domains by using the points-and-
restraints strategy implemented in the Integrative Modelling Platform [35–37] 
(IMP, http://integrativemodeing.org), a general framework for restraint-based 
modeling of 3D bio-molecular structures. Inheriting from IMP, the TADbit 

https://github.com/
https://github.com/
http://integrativemodeing.org
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modeling strategy is designed in three steps, which are discussed in details in the 
following sections.

10.3.1  Representation

The modeling strategy starts by describing each bin of the 3C interaction matrix as 
a spherical particle of a given radius (Figure 10.1B). Spheres have the advantage of 
being isotropic objects described by only four numbers: the Cartesian coordinates 
(x,y,z) of the center, and the magnitude of the radius. While the sphere position 
is decided to get the optimal structure (see Section 10.3.2), the radius is set to be 
proportional to the amount of DNA contained in the described bin (bw). The con-
version from the DNA amount (in base pairs) to the radius length (in nanometers) 
is done via a parameter called scale (s), which is equal to the linear space in nano-
meters occupied by a single base pair. That is, the radius of a particle is equal to

 R sbw= 0 5.  (10.1)

The scale parameter describes the typical linear compaction of the chromatin 
fiber expected a priori for the studied region. The most used value is by default 
equal to s = 0.01 nm/bp, which corresponds to the expected physical compaction 
of the so-called 30-nm fiber [38, 39], which typically spans 30 nm every 3 kilo-
bases of DNA. However, in TADbit, it is possible to change and to optimize the 
value of the scale parameter adapting the produced models to the desired level of 
nominal compaction.

10.3.2  Scoring: The distance restraints

One of the crucial steps in the TADbit modeling approach is converting the 
3C interaction frequencies (cij) into harmonic distance restraints. A harmonic 
distance restraint is an energetic term expressed by a harmonic function that 
enforces the distance between two particles in the system to be in a certain range. 
The harmonic form is particularly convenient because it is defined by only two 
free parameters: the spring constant (k) and the equilibrium distance (deq). Given 
any pair of particles (i and j) in the system at distance dij, the harmonic energy 
(penalty) associated with the distance restraints between them is:

 H d k d dij ij ij eq
ij( ) = −( )( )0 5

2

.  (10.2)

where kij  and deq
ij( )  are respectively the specific spring constant and equilib-

rium distance for the particle pair (i and j). Usually, in restraint-based modeling 
approaches, there are three possible different types of harmonic restraints that 
could be applied between any two particles depending on the range of distances 
one wants to enforce: (a) Harmonic distance restraint is used to keep two particles 
around the equilibrium distance deq

ij( ) , and is implemented using Equation 10.2 
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only for any possible value of distance between particles, dij; (b) harmonic lower-
bound distance restraint is used to keep two particles further than the equilib-
rium distance, and is implemented using Equation 10.2 only if this condition 
is not accomplished (that is, dij < deq); and (c) harmonic upper-bound distance 
restraint is used to keep two particles closer than the equilibrium distance, and is 
implemented using Equation 10.2 only if dij > deq.

The sum of all the harmonic distance restraints between all the pairs of par-
ticles in the system involved in spatial restraints is the so-called objective func-
tion. By definition, the objective function is exactly equal to zero when all the 
distance restraints are simultaneously satisfied, and is high when many of them 
are violated. As a consequence, the aim of the restraint-based modeling strategy 
is to obtain a 3D conformation of points that closely satisfy as many restraints as 
possible, which invariably would result in a low objective function.

However, it has to be noted that since the objective function may contain 
upper- and lower-bound restraints and since the restraints act on the pairwise 
distance between particles, a value of zero could be associated with different 3D 
conformations, which are all legitimate, because they all satisfy the entire set of 
restraints. In 3D coordinate space, it is usually found that the differences between 
models are largely the result of the mirroring of portions of the structures. The 
presence of mirrors is expected, because perfect mirror images are indistinguish-
able in the distance space [40].

The next step in the modeling procedure is converting the 3C interaction fre-
quencies into restraints that will score the objective function. To map the 3C 
interaction frequency onto pairwise harmonic distance restraints, one has to 
define the strengths kij and the equilibrium distances deq

ij( )  for all the pairs of 
particles (i and j) as a function of cij. In this procedure, the contact frequencies are 
re-normalized by log10 transformation and Zscore computation:

 Z
log c

score ij
ij=

− ( )µ
σ

10  (10.3)

where μ and σ are the average and standard deviation of the log10 interaction 
counts for the entire 3C matrix. The log10 transformation is meant to smooth the 
values of the 3C interaction frequencies which can have very high values next to 
zeros, and the Zscore is used to weigh each interaction value by its statistical sig-
nificance, because it increases with the number of standard deviations that the 
3C interaction is far from the average value.

The strength, kij, is set equal to the square root of the absolute value of the 3C 

Zscore observed between a pair of bins: k Zij scoreij= . In this way, the larger the 
Zscore (i.e., the more significant the 3C interaction), the stronger the harmonic 
force applied to the restraint. To obtain the equilibrium distance, we hypothesize 
an inverse linear relationship between the deq and the absolute Zscore. Specifically, 
a straight interpolation line is drawn to connect the point with the min(Zscore) and 
the maximum distance (maxdist) admitted between two particles, and the point 
with the max(Zscore) and the minimum target distance (mindist). The equation of 
the resulting linear interpolation is:
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 d mindist
maxdist mindist

Z Z
Zeq

score score
scor= + −

( ) − ( )max
max

min
ee scoreZ( ) −( )  (10.4)

where mindist is equal to a particle diameter, and maxdist is a free parameter in 
the TADbit optimization strategy. maxdist corresponds to the maximum dis-
tance at which two particles are kept by the 3C-based (lower-bound) distance 
restraints. Using this formula, it is possible to assign a unique value of equilib-
rium distance to each value of Zscore.

To filter the restraints to use for modeling, which greatly decreases the com-
putational time for modeling, the Zscore values close to zero corresponding to the 
values of 3C interaction frequency close to average are usually discarded. To do 
this, other two parameters are introduced, the lowfreq and the upfreq that cor-
respond to the lower and larger values of the discarded Zscore. To decide which 
type of restraint (harmonic, harmonic lower-bound or harmonic upper-bound) 
for a given pair of particles, TADbit implements a strategy based on stratify-
ing the interaction depending on the genomic distance between the involved 
fragments. This idea comes from the general observation that due to the poly-
meric structure of chromatin, regions closer in the 1D sequence than others 
have also a larger probability to be captured by 3C-based techniques, and to 
have higher interaction frequencies [20]. This implies that 3C data close to the 
main diagonal should be evaluated differently than data far away. The stratifica-
tion is done as following (Figure 10.2): (a) When two bins are nearest neighbors 
along the chromosome sequence, they are connected using a harmonic restraint 
of strength k = 5.0. If the 3C interaction is higher than the parameter upfreq the 
equilibrium distance deq of the harmonic restraints are set based on the 3C Zscore 
of the interaction value, while if it is lower a physics-based harmonic restraint 
with deq equal to 2 particle radii is enforced. This data-driven implementation 
of the nearest neighbor’s interaction produces useful biological measures from 
the models since it takes into account possible variations of the local chroma-
tin compaction in contrast to the average value of the scale used by default  
(see Section 10.3.1). This change in compaction is a sign of close (or open) chro-
matin conformation [26, 40–43] and can be directly correlated with experi-
mental data, such as ATAC-seq profiles [44]. As discussed later, it is possible 
to measure the level of closeness (or openness) of the chromatin fiber on the 
models, computing the chromatin density in TADbit (see Sections 10.5). (b) A 
second nearest neighbor connectivity is further enforced in TADbit by upper-
bound harmonic restraints between particles at positions i and i + 2 along the 
model sequence. The strength and the target distance of these restraints are con-
stant for all the particles pairs, and are k = 5.0 and deq equal to 2 particle diam-
eters. (c) For distances larger than 2 particles the imposed restraint depends 
on the 3C interaction frequency of the corresponding bins in the interaction 
heat map. If the Zscore is higher than the upfreq parameters, a harmonic restraint 
(Equation 10.2) is enforced to keep the particles close to each other, if lower than 
the lowfreq parameter a lower-bound harmonic restraint is imposed to keep the 
two particles far apart. After filtering, in the 3C interaction maps there can be 
high entries flanking a discarded bin. To smooth the signal for the long-range 
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interactions only, a Zscore is assigned also to the discarded bin as the average of 
the nearest neighbor values. From the interpolated Zscore, the equilibrium dis-
tance, deq, of the corresponding harmonic oscillator is computed using the con-
version curve in Equation 10.4 with a spring constant equal to half of the usual 
value, k Zscore= 0 5. .

Finally, in some applications, additional restraints are applied to take into account 
other factors affecting the genome organization, which are not explicitly related to 

Figure 10.2 Scoring. (A) The final score of a model conformation is obtained 
by the weighted sum of all the scores (penalties) for each of the imposed 
restraints in the model. In TADbit there are three types of harmonic restraints 
imposed on the models. Harmonic restraints are used as “attractive forces” 
that aim to obtain an optimal distance between two particles, they are used 
for consecutive particles as well as for detected long-range (i, i + n where n is 
3 or more) interactions in the input matrix. Harmonic lower-Bound restraints 
are used as “repulsive forces” to avoid that two particles get closer than an 
equilibrium distance if they barely interact. Finally, harmonic upper-bound 
restraints are used only for keeping the connectivity of the chain by apply-
ing them between i and i + 2 particles. B) Interaction matrices, represented 
by their Zscore, are then transformed into a series of harmonic (orange) and 
harmonic lower-bound (blue) restraints that will enforce the final conformation 
after optimization.
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the 3C interactions. These restraints are provided by non-3C experimental sources 
(biological restraints) [45], and by the general principles of (polymer) physics (physi-
cal restraints). An example of biological restraints is the phenomenological confin-
ing of the genome inside the nucleus [40]. To implement this, TADbit provides the 
option to define a confining environment composed of a cylinder capped with two 
half-spheres (capsule shape). This flexible geometrical construction can be custom-
ized to model, for example, spherical, or ellipsoidal confinements varying the height 
of the cylinder. Model confinement has been used to model the Caulobacter crescen-
tus genome [40]. In this case, all the particles of the model have been constrained 
to be inside a parallelepiped box of dimensions of 2,350 nm × 600 nm × 600 nm, 
which is slightly larger than the dimensions of Caulobacter cells. These restraints 
were implemented using harmonics with a large spring constant of 100 to be sure 
that no fragments are lying outside of the box [40].

Additionally, physics-based restraints are based on the general principle that 
each particle in the model should not have large overlaps with any of the other 
particles. To this purpose, excluded volume harmonic interactions with strength 
kexcl = 5.0 are applied between all pairs of particles in the system using standard 
IMP commands [37]. We notice that excluded volume restraints are costly to 
implement, because their numbers grow as the number of particles in the system 
squared, and in some cases, they can be unnecessary. Specifically, depending on 
the coarse-graining of the models the physical hindrance of the chromatin fiber 
can play a marginal role. For example, if a model is produced at 10 kb, which follow-
ing TADbit representation in Equation 10.1 has particles of diameter 100 nm, the 
fraction of the particle volume physically occupied by the chromatin fiber is only 
about 10%. The particle should be considered, in fact, mostly void. This implies that 
two distinct particles could largely overlap without breaking any steric hindrance 
physical restraint.

10.3.3  Sampling of the chromatin conformational space

Once the bins are represented as spherical particles, and the experimental 3C 
contacts are converted into distance restraints, we face the problem of finding 
the 3D arrangements of the particles that best satisfies the imposed restraints. 
To solve this complex optimization problem TADbit builds on the engines of the 
Integrative Modelling Platform (IMP) [37], and follows the steps below.

All the particles are initially positioned in a random, yet non-overlapping, 
manner inside a cubic box, whose typical size largely exceeds the expected size 
of the final modeled region [26, 41]. However, the initial cubic box doesn’t act 
as a confining environment, and any particle of the system can escape it during 
the simulation protocol without any additional penalty in the objective function. 
Starting from these unbiased locations, the optimal positions of the particles 
are found by carrying out an optimization approach combining Monte Carlo 
sampling (MC), and molecular dynamics simulation (MD). Typically, 10 com-
binations of 500 MC rounds and 5 local steps of MD are carried out within a 
standard simulated annealing scheme [26, 41, 46]. At each MC round, a model 
conformation is proposed, moving all the particles in the system using MD, this 
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possibly new model is evaluated by computing the correspondent objective func-
tion value, and it is accepted (or rejected) according to the Metropolis criterion 
[47]. The 500 rounds of this hybrid optimization procedure are enough to ensure 
that the convergence of the objective function is to a minimum (Figure 10.3).  
As a consequence, the conformation associated with this minimum is retained as 
the representative model for the single simulation run.

Since the 3C input restraints represent an average picture of a possibly hetero-
geneous population of cells (see Introduction), a single model typically describes 
only a fraction of the proximities in the 3C interaction map. To provide a more 
complete description of the chromatin structures compatible with the input data, 
the sampling procedure is repeated thousands of times (usually 5,000), obtaining 
at the end an equal number of optimal model conformations (resampling pro-
cedure) [45]. By ranking the obtained models according to the associated objec-
tive function value (the lower the better), the top 20% of the obtained structures 
(about 1,000) are used to compose the ensemble of optimal structures which 
best satisfy the input restraints. Since the latter depends on the internal TADbit 
parameters (maxdist, lowfreq, upfreq), we will discuss in the following the proce-
dure used to obtain the triplet of optimal values.

10.3.4  Optimization of TADbit parameters

The values of the free TADbit parameters (maxdist*, lowfreq*, upfreq*) to be 
used for modeling the genomic domain under investigation are determined by 

Figure 10.3 Optimization. A) Flowchart of a typical optimization protocol in 
TADbit based on simulated annealing and Monte-Carlo moves. B) Modeling 
score as a function of modeling iteration. All particles in the model are ran-
domly placed at iteration zero and are optimally placed to globally minimize 
the scoring function in TADbit. A few models are shown as examples of how 
the model conformation changes during the optimization.
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a systematic grid search exploring several of the possible combinations. Given a 
triplet of values (maxdist, lowfreq, upfreq), this empirical search is done as follows:

 1. A limited number of independent model conformations (usually 500) are 
generated.

 2. The top 20% (usually 100) conformations, which are the ones associated with 
the lowest values of objective function, are used to compute the model contact 
map at a contact radius equal to 2 particle diameters. This contact map obtained 
from the structural models is the counterpart of the 3C interaction map.

 3. The Spearman correlation coefficient is computed between the input 3C 
interaction map and the model contact map.

The optimal triplet (maxdist*, lowfreq*, upfreq*) corresponds to the set of 
parameters that gives the highest Spearman correlation value. Such a proce-
dure ensures that the ensemble of obtained models best describes the input 3C 
interaction frequency. The contact map computed on the best TADbit models 
typically has a Spearman correlation value higher than 0.6 with the input 3C 
interaction map, which is normally for large matrices statistically significant [43, 
48]. Unfortunately, a general rule to select the triplets to explore in the grid search 
is not available, and a simple empirical approach is usually followed. As a rule 
of thumb, the maxdist is varied from 3 to 8 times the particle diameter, lowfreq 
between the lower value of the Zscore (~ −3.0) up to 0.0 (to use positive values 
would mean to keep far apart genomic regions with 3C interactions above aver-
age), and upfreq between 0.0 and the larger Zscore value (~3.0). The initial search 
along each of the 3 parameters can be done with large steps (e.g., 1.0). Next, when 
the sub-region of the maximum correlation is pinned down, one can do a finer 
search (e.g., in steps of 0.2) inside this limited parameter space.

10.4  MODEL VALIDATION

In principle, the optimal ensemble of models is consistent with the input 3C data. 
However, the sole comparison with the input data is obviously tautological and a 
proper validation is needed. Validation means controlling the consistency of the 
structural properties of the models with the experimental evidences obtained from 
techniques independent of 3C. This process ensures that the models are consistent 
not only with the data used to obtain them but also with other unrelated data, and 
further structural predictions obtained from them are significant and reliable.

The 3C-based technologies probe the pattern of contacts between chromo-
somal regions, and are a priori oblivious of other structural features. For example, 
these technologies don’t provide direct measures of the spatial distance between 
pairs of genomic loci, but only in how many cells this distance is below an interac-
tion cutoff [49, 50]. For this reason, a crucial step in TADbit modeling procedure 
is the conversion of the 3C interactions into special distances (see Section 10.3.2). 
This is why restraint-based models obtained from 3C data are usually validated 
using imaging data, which can aptly provide information on the spatial dis-
tances between selected pairs of genomic loci in cells [27]. Therefore, models are 
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normally validated by comparing the measured distances in the models with the 
correspondent distances observed by imaging. For example, fluorescence in situ 
hybridization (FISH) [51–53] was used to measure the spatial distances between 
a pair of genomic loci of the ENm008 region of human chromosome 16 in two 
different cell lines K562, and GM12878 [41]. The loci, positioned at a genomic 
distance of 500 kb, were found at an average spatial distance of 318.8 ± 17.0 nm in 
GM12878, and of 391.9 ± 23.4 nm in K562 cells, showing a more extended con-
formation of the genomic region in the latter. Consistently, the distances com-
puted on the models obtained using TADbit were 198.9 ± 0.7 nm and 434.6 ± 1.4 
nm for GM12878 and K562 models, respectively, providing the first validation of 
the TADbit modeling approach. Similar validations based on FISH were carried 
out in other works, in which TADbit has been applied to study eukaryote and 
prokaryote organisms [40, 42, 43].

Another structural feature of the obtained TADbit models, which is not 
directly encoded in the 3C data, is the overall volume occupied by the chromo-
some region. This quantity depends on the specific conversion of 3C interaction 
into spatial distances (see Section 10.3.2), and on the maxdist of TADbit param-
eters, but is only partially tested using point-wise distances as in FISH-based 
validations. Interestingly, it has been possible to use the volume occupied by 
models of the entire Mycoplasma pneumoniae genome for model validation [43]. 
Specifically, they measured the volume of M. pneumoniae cells using a combina-
tion of transmission electron microscopy (TEM), quick-freeze deep-etch replica 
method [54], and computer 3D reconstruction. This volume of 0.075 mm3 was 
consistent with the chromosome volume estimated form the ensemble of models 
obtained using TADbit of 0.074 mm3.

10.5  MODEL ANALYSIS

It could be seen as obvious, but once the models have been produced the first 
thing to do is to visualize them. For this purpose, TADbit offers the possibility to 
save the obtained model structures in formats compatible with Chimera, a state-
of-the-art software for the visualization of bio-molecules [55], as well as TADkit 
(http://www.3dgenomes.org/tadkit), a new 3D genome browser that allows map-
ping genomic tracks to the 3D models. The visual inspection of the models has, 
in fact, many advantages that can drive the entire modeling process. On the one 
hand, by looking at the obtained structures it is possible to spot errors in the mod-
eling procedure immediately. For example, the overall size of the models could be 
too small, or larger than expected. In this regard, opening the best model using 
Chimera [55], and computing the distances between particles at the extremes of 
the models using the Chimera interface is a simple operation. If these distances fit 
with the expected spatial confinement of the structure, that in the case of genome-
wide models can be, for instance, the nuclear (in eukaryotes) or the cell size (in 
prokaryotes), is a preliminary hint that the models are biologically sound, and a 
deeper quantitative analysis can be performed. Secondly, the model visual inspec-
tion can suggest further quantitative analyses to perform on the models. A part of 
the vast choice of model analysis provided in TADbit is discussed subsequently.

http://www.3dgenomes.org/
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One of the most evident characteristics of the restraint-based 3D models is 
that the thousands of structures generated typically bear large similarities in 
their overall shape. To quantify this, TADbit performs model structure compari-
son using pair-wise rigid-body superposition to minimize the root mean square 
deviation (RMSD) between the conformations [56]. This optimal superposition 
is summarized in an all-against-all matrix storing the number of particles that 
align within a given distance cut-off. This cut-off (e.g., 75 nm and 100 nm have 
been previously used in [42] and [40], respectively) depends on the granularity 
of the models, and the overall size of the modeled chromatin region. Next, this 
scoring matrix is processed using the Markov Cluster Algorithm (MCL) pro-
gram [57] to generate unsupervised sets of clusters of related structures. Two 
main parameters, the pre-inflation (pi) and the inflation (I), affect the clustering 
outcome of the MCL program. Similar to the empirical optimization of TADbit 
parameters (see Section 10.3.4), the values of these two parameters are chosen 
to maximize the Spearman correlation between the contact map computed 
on the models of the top cluster and the input 3C interaction map. A striking 
example of the biological insight that is possible to get from clustering analysis 
has been previously discussed [40]. Here, 10,000 models of the structural orga-
nization of the entire genome of Caulobacter crescentus were generated using 
TADbit. Interestingly, the clustering analysis revealed the presence of only 4 sig-
nificantly different spatial organizations, and a visual inspection of the main rep-
resentative structures of each of the clusters clarified that the 4 different spatial 
organizations were mainly mirror (or partial mirror) structures of each other  
(Figure 10.4A). This is a practical case in which the reduction of the structural 
variance helped to rationalize in simple terms the expectedly large variability of 
genomic structures.

Once the most representative structures of the models’ ensemble have been 
identified, TADbit offers a set of quantitative tools to analyze the global prop-
erties of the modeled regions. For example, a typical quantity is the radius of 
gyration (Rg) of a chromatin region. This is the root mean square distance of 
the objects’ particles from its center of mass, and measures the linear size of the 
spatial region occupied by the object. Another related quantity is the particle 
accessibility. It measures the accessible fraction of a particle in the model to a 
hypothetical spherical object of a given radius. The default value of this radius is 
75 mn, which corresponds to the expected average size of the protein complexes 
typically interacting with the chromatin fiber [58]. These two quantities have 
been used to measure the size and the structural accessibility of topological asso-
ciated domains (TADs) in human breast cancer cells [59]. It has been possible to 
show using TADbit models that after progesterone treatment specific TADs open 
(larger Rg), and get more structurally accessible (larger accessibility) than the 
control wild-type condition (Figure 10.4B).

In addition to the global structural arrangement, the TADbit model analysis 
also implements a tool to determine the spatial distances between any two loci 
(particles) in the models. This feature, also discussed for validation purposes in 
Section 10.4, has been used to characterize the proximity of the alpha-globin 
genes and their enhancer (HS40) in K562 cells, in which the genes are active, and 
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Figure 10.4 Analysis. A) The Caulobacter crescentus 3D modeling exercise 
[40] resulted in thousands of different models that could be clustered in four 
different conformations (clusters 1 to 4). Those clusters represented mir-
rors or partial mirrors of each other. B) The modeling of several Topological 
Associating Domains (TADs) of the human genome before and after proges-
terone induction [41] resulted in clear different conformations where TADs that 
get their resident genes activated after progesterone increase their overall 
radius of gyration, size and accessibility. C) The modeling of the alpha-globin 
domain [42] indicated that there was a change in local DNA density around the 
locus control region of the alpha-globin when the genes are expressed (K5562 
cell line) compared to when they are silent (GM12878 cell line).
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the substantially larger spatial separation in GM12878 cells, in which they are 
inactive [26, 41] (Figure 10.4C). In this application, the structural models and the 
associated analysis provided new biological insight into the mechanisms of gene 
expression regulation.

The local organization of the chromatin fiber can be also quantitatively 
studied by looking at the typical compaction of the model chromatin fiber 
along its contour length. This quantity on the models is measured by com-
puting the number of DNA base-pairs contained in a single nanometer 
along the model contour length. Interestingly, the chromatin fiber com-
paction of the models can be directly compared to experimental measures 
probing analogous properties of the chromatin in real nuclei as ATAC-seq 
[44], or can be correlated to the presence of specific histone markers associ-
ated with open (e.g., H3K4me3) or closed (e.g., H3K9me3, and H3K27me3) 
chromatin using ChiP-Seq [60]. This analysis, called density in TADbit, has 
been used in many different systems. For example, in the human alpha-glo-
bin locus to show that transcriptionally active loci have a more open chro-
matin state [41], and in a genome-wide study of C. crescentus [40] to show 
that the region spanning 100–200 kb on the left of specific sites (ParS) assume 
a compact chromatin conformation in wild type and mutant strains, and 
to study the different degrees of compaction of chromatin of different types  
(colors) in Drosophila melanogaster, where inactive black chromatin has the 
highest density in TADbit models (median 212 bp/nm), slightly more than 
blue (207 bp/nm), and substantially more than green, yellow and red chroma-
tin (182 bp/nm, 180 bp/nm, and 179 bp/nm, respectively) [29].

10.6  LIMITS OF THE TADbit MODELING APPROACH

When producing 3D models of biomolecules, it is important to be able to evalu-
ate the limits of the approach. For the TADbit modeling strategy, this issue has 
been extensively addressed [48]. The TADbit benchmark strategy was based on 
producing datasets of simulated toy circular chromosomes embedding expected 
structural features of realistic chromosomes. Half of the produced toy models 
were organized in local globular domains to mimic the presence of TADs, while 
the other half was not. Per each of these two groups (hereafter named TAD-like 
and not-TAD-like), three groups of models were produced, varying the chroma-
tin content per model particle or the so-called density. All models spanned 1Mb, 
one group of models was composed of 202 particles each containing 5 kb (density 
150 bp/nm), the second had 402 particles each of 2.5 kb (density 75 bp/nm), and 
the third had 626 particles 1.6 kb each (40 bp/nm).

Next, for each of the six different conditions, simulations were done to repro-
duce in silico typical biases of the 3C technologies. Specifically, for each of the 6 
architectural organizations, a total of 7 groups of 100 models each were produced 
using the Monte Carlo method [48, 61]. The models in each group were separated 
by a different number of sampling steps. Models in the first group were sepa-
rated by 100 step (group 0), in the second by 101 steps (group 1), etc., up to group 
7 whose models were separated by 106 steps. The increasing number of steps 
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separating the models reproduced an increasing degree of structural variabil-
ity in the ensemble of toy conformations. This procedure reproduced the expected 
cell-to-cell structure variability typical of a 3C sample [45, 50, 62]. Finally, the 
analysis of the toy models leading to the computation of the contact map repro-
duced in silico typical biases of the 3C technologies. Specifically, the noise level 
introduced by the 3C capturing procedure [62, 63] was reproduced in the toy 
models by computing the contact maps using a Monte Carlo procedure with 4 
different levels of noise compared to a direct contact map generated from the 
models [48]. The entire procedure resulted in a total of 168 simulated 3C interac-
tion maps with six architectures, seven levels of structural variability and four 
levels of noise in the data.

In the second part of the study, from each of the matrices, TADbit 3D 
models were generated using the standard procedure presented in Section 
10.3. Finally, the comparison between the contact maps computed on the 
TADbit reconstructed models and the input-simulated interaction maps 
demonstrated at which degree each simulated dataset was accurately recon-
structed by the TADbit modeling approach. The benchmark of the TADbit 
modeling strategy revealed that reconstructed models are robust to noise 
but sensitive to structural variability. This implies that experimental noise, 
which could originate from limitations in any of the main steps in 3C-based 
methods (cell fixation, DNA fragmentation, DNA ligation and read-out by 
sequencing), is not highly relevant for 3D reconstruction. However, 3C inter-
action maps obtained from a homogeneous as possible population of cells 
(e.g., synchronized in cell cycle, same cell state, unique cell type, etc.) are 
more useful for 3D reconstruction. Another experimental aspect that yields 
accurate models is producing high-resolution matrices, which corresponded 
to the low-density toy models. Those invariably resulted in a larger propor-
tion of restraints per particle, which in turn resulted in more accurate mod-
els. Therefore, increasing the sequencing depth of a Hi-C experiment will 
result not only in higher resolution models (i.e., finer binning of the interac-
tion matrix) but also in models of higher overall accuracy. Finally, the local 
organization in domains (such as TADs) gives more accurate models at any 
levels of noise and structural variability.

10.7  DATA “MODELABILITY”: ARE 3C DATA GOOD 
ENOUGH TO OBTAIN 3D MODELS?

An important result of the benchmark analysis [48] was the introduction of the 
Matrix Modeling Potential (MMP) score, which evaluates a priori whether the 
3C-based interaction matrix is suitable to generate accurate 3D models using 
TADbit. This score is defined, in fact, using three statistical quantities of the 3C 
input map: the significant eigenvectors score (SEV), the Skewness (SK) and the 
Kurtosis (KU) of the Zscore distribution in the input 3C matrix. The MMP score is 
calculated then as:

 MMP Size SK KU SEV= - * + * - * + * +0 0002 0 0335 0 0229 0 0069 0 8126. . . . .  
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where Size is the number of bins in the generated 3C interaction map. In general, 
3C matrices with high MMP scores are likely to result in accurate 3D recon-
structed models. For example, for 3C interaction maps of M. pneumoniae at a 
10 kb resolution obtained using two different restriction enzymes (HindIII and 
HpaII) the MMP scores ranged from 0.71 to 0.74 [43], with a maximum pre-
dicted model accuracy of 0.70 (0.58–0.81 at 95% confidence interval), suggesting 
the feasibility of the TADbit modeling, which in the study provided accurate 3D 
genome-wide models.

10.8  CONCLUSION

In this chapter, we have discussed in detail the TADbit computational package. 
TADbit here represents the so-called restraint-based 3D genome reconstruction  
methods but many other computational tools have recently been produced [45, 64]. 
Such new methods aim at addressing the challenge of analyzing and visualizing 
chromatin interaction data. Such datasets are more common today since there 
has been improved protocols, as well as a significant reduction in the costs of 
performing such experiments [65]. We have also shown specific examples where 
the resulting 3D models based on interaction data have already provided signifi-
cant insights into how the 3D spatial conformation of the genome impacts gene 
expression and gene regulation.
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11.1  INTRODUCTION

The three-dimensional organization of chromosomes and their locations in the 
nucleus greatly influences the functions of genes, including expression, silenc-
ing, and replication. The relative locations of tens of thousands of genes and 
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millions of potential regulatory elements play an important role in orchestrat-
ing nuclear functions. For example, promoter–enhancer interactions and other 
regulatory interactions often act over considerable sequence distances in the kb 
to mb range or even between different chromosomes (Tolhuis et al., 2002; Dekker 
et al., 2017). Also the locations of genes and regulatory elements with respect to 
nuclear bodies, such as nucleoli, nuclear speckles, and lamina often influence 
their functions. Chromatin at the nuclear lamina is more likely to be silenced, 
while genes close to nuclear speckles tend to be highly expressed (Guelen et al., 
2008; Dekker et al., 2017). For a better understanding of nuclear functions, it is 
therefore necessary to study the spatial folding patterns of chromosomes and 
the spatial organization of nuclear bodies in the nuclear context. Recent studies 
point to a hierarchical chromatin organization with compartments of chromatin 
in related functional states (Lieberman-aiden et al., 2009), topologically associat-
ing domains (TADs) (Dixon et al., 2012), sub-domains (Shen et al., 2012), and 
chromatin loops (Rao et al., 2014) (Figure 11.1). Chromosome conformation cap-
ture experiments revealed that chromatin is spatially compartmentalized into at  
least two major subcompartments, one associated with active, more open chro-
matin and one with inactive more compacted chromatin (Lieberman-aiden  
et al., 2009). The transcriptional repressor CTCF, cohesin, and other architec-
tural proteins mediate chromatin interactions by stabilizing chromatin loops of 
about 100 kb sequence lengths, as well as the formation chromatin topological 
associated domains (Rao et al., 2014; de Wit et al., 2015; Sanborn et al., 2015; 
Fudenberg et al., 2016; Schwarzer et al., 2017).

Acquiring spatial information for a chromatin polymer containing billions 
of basepairs is a daunting task, especially when considering genome dynamics, 

Figure 11.1 Hierarchical organization of genome structure.
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which leads to structural variations from cell to cell in an isogenic sample. 
Recently, there has been a rapid development of new imaging and genomics tech-
nologies to shed light on genome organization in greater detail. New ensemble, 
as well as single-cell genomic, technologies probe chromatin interactions at an 
unprecedented resolution (Denker and De Laat, 2016). High-throughput imaging 
approaches localize the probabilistic distributions of chromatin probes and live-
cell and super-resolution imaging visualize loci and sub-nuclear structures as 
well as trace the dynamics of chromatin loop formation (Dekker et al., 2017). To 
maximize synergy between different approaches and further enhance the field, a 
concerted effort is needed to coordinate the mapping of the dynamic nucleome 
organization.

Recently the National Institute of Health (NIH) formed the 4DN Nucleome 
consortium (https://www.4dnucleome.org/) to tackle this difficult mapping 
problem by coordinating efforts between many research groups (Dekker et al., 
2017). The goal of the consortium is to develop a set of methods for mapping the 
structures and dynamics of the genome as well as produce integrated approaches 
to generate a first draft of a model of the 4D Nucleome. A central piece of these 
efforts is a joint analysis project in which many research groups pledged to pro-
duce a variety of different data on a selected set of tier 1 cell lines, comprising 
H1-ES human embryonic cells, hTert-HFF humane foreskin fibroblasts, as well 
as IMR90 lung fibroblasts, and GM12878 B-lymphocytes. Producing a wide array 
of data from many complementary experimental methods will facilitate bench-
marking of the various experimental technologies and also will lay the foun-
dation for integrating the various data to generate quantitative models of the 
nuclear organization for these cell types.

An important aspect of this project is therefore to establish computational 
tools that can integrate the wealth of information from various imaging and 
omics experiments to map three-dimensional (3D) structures compatible with 
the data. There are several benefits in calculating 3D structures from omics and 
imaging data. First, 3D structures are a natural way of integrating data types 
from complementary experimental methods. All data from omics and imaging 
experiments originate from 3D structures, often from a large population of cells. 
Therefore, when using an appropriate representation of experimental errors and 
uncertainties, one should be able to relate all data to an ensemble of represen-
tative 3D genome structures. Second, generating structures that are simultane-
ously consistent with different data sources allows a cross-validation of the data 
types. For example, one can directly assess 3D models generated from Hi-C data 
with spatial information from imaging experiments and analyze disagreement 
between the data. Third, 3D structures provide added value by revealing addi-
tional features not visible in the original input data set. For example, an ensemble 
of genome structures generated from Hi-C data may reveal specific higher order 
(i.e., multivariate) chromatin clusters that are observed in statistically significant 
subsets of cells, even though the ensemble-based Hi-C data provides only binary 
interactions (Dai et al., 2016).

To achieve these goals, it is essential to transform all experimental information 
into an accurate representation of chromatin structures. However, characterizing 

https://www.4dnucleome.org/
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3D genome structures at a meaningful resolution is a challenging task. Genome 
structures can substantially vary between single cells and are dynamic in nature. 
A probabilistic description is thus needed, surpassing traditional structural 
modeling that is based on the assumption of a single equilibrium structure, or a 
small number of metastable structures.

Here in this review, we first summarize various experimental methods that 
are used in the 4DN joint analysis project to shed light on aspects of the genome 
structural organization. Then we provide an overview of data-driven computa-
tional methods that use experimental data to generate structural models consis-
tent with it. We specifically discuss methods for comprehensive data integration, 
which can reveal the folded states of complete genomes, and consider the struc-
tural heterogeneity across different cells. The ultimate goal for structural model-
ing is to provide a better understanding of how the chromosomal folding state 
relates to gene regulation and to provide insights on mechanisms and driving 
forces of chromatin folding.

11.2  EXPERIMENTAL SOURCES OF SPATIAL 
INFORMATION

To date, many experimental techniques are available to probe the spatial organi-
zation of the genome (Table 11.1). We categorize these techniques according to 
the type of spatial information they provide for genome modeling. For instance, 
data may provide information about a pairwise chromatin contact, multivariate 
chromatin contacts, probability distributions of locations or distances between 
loci, or the probability of specific contacts between chromatin regions or chro-
matin regions and nuclear bodies. When performing 3D structure modeling, the 
information class decides how the data is transformed into spatial restraints. In 
the following sections, we summarize some of the experimental methods accord-
ing to this classification scheme.

In addition, a distinction is made between single-cell and ensemble methods. 
Single-cell experiments provide data specific to a single nucleus. The advantage of 
having a direct observation of a single physical structure comes with the downside 
that the variability of structures across different nuclei has to be analyzed by repeated 
experimental sampling. The throughput can be a limiting factor to capture relatively 
rare but functionally relevant events. In addition, low data coverage per cell may also 
be challenging. Ensemble methods, on the other side, provide aggregated data from 
a whole cell sample in a single experiment. Sample averages are statistically more 
accurate, but all the single cell information is lost, such as multivariate chromatin 
interactions in individual cells. Also, rare but functionally relevant features of indi-
vidual cells may not be detectable in ensemble averaged data.

11.2.1  Frequencies of pairwise chromatin–chromatin 
interactions

Chromosome Conformation Capture (3C) methods (Dekker et al., 2002; Denker 
and De Laat, 2016), and their variants such as in situ Hi-C (Rao et al., 2014), 
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TCC (Kalhor et al., 2012), Micro-C (Hsieh et al., 2015), and DNAse-Hi-C (Ramani  
et al., 2016) as well as Chromatin Interaction Analysis by Paired-End Tag 
Sequencing (ChiaPET) (Fullwood et al., 2009; J. Zhang et al., 2012) probe the 
relative frequency of millions of binary chromatin interactions in a population 
of cells (Table 11.1) by averaging chromosome conformations from millions of 
nuclei. Most chromosome conformation capture protocols follow some general 
steps. First, an isogenic sample of cells is fixed by formaldehyde crosslinking. 
Second, the genetic material is digested either through a restriction enzyme (in 
Hi-C, in situ Hi-C, TCC) or through DNAse (DNAse-Hi-C), or micrococcal 
nuclease (Micro-C). Then re-ligation of proximal DNA fragments is induced. 
Due to the crosslinking step, many genomic regions close in 3D space will likely 
remain in spatial proximity even after the digestion step. This, in turn, will favor 
their ligation in the following step, regardless of their relative position in the 
sequence. Finally, newly formed ligation sites are extracted followed by pair-end 
sequencing of the extracted fragments. Alignment of the sequenced fragments to 
their position in the reference genome determines the contact frequency of chro-
matin regions that are in spatial proximity in the initial cell population. A variety 
of methods build on a similar schema, with different protocols or technologies 
applied at each step.

3C based methods map the proximity of chromatin without distinguishing 
the proteins that mediate these interactions. In contrast, ChiaPET (Fullwood  
et al., 2009; J. Zhang et al., 2012) relies on an immuno-precipitation step, yielding 
chromatin contact frequency maps for interactions mediated by only a specific 
protein of interest. For instance, ChiaPET has been applied to detect chromatin 
interactions mediated by architectural proteins CTCF, cohesion, or RNA poly-
merase II (Fullwood et al., 2009; J. Zhang et al., 2012; Tang et al., 2015).

Capture Hi-C is a variant of the Hi-C assay for probing interactions of specific 
genomic loci (Mifsud et al., 2015; Schoenfelder et al., 2015). Because sequencing 
is focused only on a subset of genomic loci, it typically achieves deeper sequenc-
ing and thus higher resolution than all-against-all genome-wide Hi-C assays. For 
example, capture Hi-C was used to examine the long-range regulatory interac-
tions of tens of thousands of promoters in human cell types (Mifsud et al., 2015; 
Schoenfelder et al., 2015). By enhancing the signal provided by specific proteins 
or genomic loci, these methods can potentially enrich the signal of rare but func-
tionally important interactions and therefore can convey additional functional 
information.

All ensemble-based chromosome conformation capture assays produce the 
relative frequency of specific interactions that are observed in a population of 
cells. Typically the pair-end sequenced reads are binned at a given resolution  
(> ~1 kb) and the resulting contact frequencies are normalized to correct systematic 
biases (Yaffe and Tanay, 2011; Imakaev et al., 2012). When used for 3D structural 
modeling, Hi-C contact frequencies have been used in several different ways. For 
example, Tjong et al. transformed contact frequencies into probabilities of observ-
ing a given chromatin contact in a cell population and used these probabilities 
to generate models which reproduce the frequency of direct contacts observed in 
the cell population (Tjong et al., 2016). Several additional approaches incorporate 
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significant Hi-C contacts in form of direct contact constraints (Paulsen et al., 
2017), whereas other approaches (Duan et al., 2010; Rousseau et al., 2011; Hu  
et al., 2013; Zhang et al., 2013; Varoquaux et al., 2014) relate contact frequencies 
to averaged distances between loci, either based on empirical curves obtained 
from imaging assays or on polymer physics considerations. These distances are 
then used to generate either a single consensus structure or an ensemble of pos-
sible structural solutions (see section below for more details).

Single-cell Hi-C methods (Nagano et al., 2013, 2017; Flyamer et al., 2017; 
Stevens et al., 2017) perform the Hi-C assay to individual nuclei and therefore 
enable the detection of pairwise DNA contacts present in the same cell. Because 
the experiment is performed on genetic material of only a single cell, only a 
fraction of all contacts can be detected. Despite the challenges, however, recent 
improvements in conformation capture protocols detect more than one million 
contacts per cell to be detected (Flyamer et al., 2017). The method has also been 
recently applied to thousands of individual cells and revealed insights into chro-
mosome structural changes during the cell cycle (Nagano et al., 2017).

A second experimental strategy, combinatorial single cell Hi-C, is based on 
multiplex barcoding (Ramani et al., 2017). This method utilizes genetic “bar-
codes”, i.e., short DNA sequences uniquely associated with each cell. Although 
applied to a large population of cells, barcodes enable the mapping of pairwise 
chromatin interactions to individual cells. After genome digestion, but before 
cell lysis, the sample is separated into multiple wells. A short barcode sequence, 
different for each well, is then added to the exposed DNA fragments. The whole 
sample is then mixed and separated again into multiple wells, and another ran-
dom short sequence is added to the DNA in each well. This process is repeated 
multiple times, extending the barcode sequences, effectively creating a genetic 
identifier for each pair-end sequencing read that is unique to each cell. The prob-
ability for two different cells to acquire the exact same barcode by random chance 
drops exponentially with the number of iterations, and a small number of itera-
tions is usually sufficient to ensure the uniqueness of the barcode per cell.

A large number of pairwise chromatin contacts can strongly constrain the 
configurational space, giving a “snapshot” of the genome configuration for the 
given cell. Because these data are typically only a small fraction of all chroma-
tin interactions modeling efforts often are augmented with additional informa-
tion, for example from ensemble Hi-C experiments. In addition, as in ensemble 
Hi-C it may not be possible in most cases to differentiate chromatin regions from 
the two homologous chromosome copies. In the paper of Nagano et al. (Nagano  
et al., 2013) modeling was performed for the single X chromosome of male cells. 
In a more recent paper, Carstens et al. adapted a Bayesian structure determina-
tion framework to include information about average chromosome extensions 
from Fluorescent in situ hybridization (FISH) data in the modeling process. In 
the same framework, they proposed a way to model diploid structures from data 
which does not separate between chromosome copies (Carstens, Nilges, and 
Habeck, 2016). In the study by Stevens et al., the modeling of whole cells was 
facilitated by the use of haploid embryonic mouse cells, effectively removing the 
degeneracy introduced by multiple chromosome copies (Stevens et al., 2017).  



260 Comprehensive Data Integration 

In their work, structures of 8 cells at 100 kb resolution were produced and ana-
lyzed. Interestingly, the resulting structures are robust even when only partial 
data is used. The model analysis confirmed that structural features like the com-
partmentalization of active and inactive chromatin are systematically found in 
each cell. At the same time, however, loops and TADs appear to be stochastic in 
nature and, although present in a population, they are subject to wide variations 
on a cell-to-cell basis.

11.2.2  Multivariate chromatin interactions from ligation 
free methods

In addition to ligation-based methods, such as Hi-C and its variants which 
provide a way to map pairwise contacts between genomic regions, ligation free 
methods allow the detection of “higher-order” interactions, i.e., the simultane-
ous co-localization of several chromatin regions in a given cell. One such method 
is Genome Architecture Mapping (GAM) (Beagrie et al., 2017), which sequences 
the genetic material of thin slices of individual fixed nuclei, obtaining a list of 
chromatin regions co-localized in the two-dimensional slab of a single cell. 
Using a large number of cell slices, mathematical modeling then enables the 
determination of the probability of pairwise and multivariate co-localization of 
chromatin regions in individual nuclei. GAM revealed more pronounced long-
range and inter-chromosomal chromatin interaction patterns in comparison to 
Hi-C data (Beagrie et al., 2017). GAM data can be used in 3D structure modeling 
by incorporating spatial constraints for multivariate chromatin co-localizations. 
For instance, population-based modeling methods can be extended to reproduce 
the experimentally detected multivariate co-localization probabilities in a popu-
lation of genome models.

A second method, Split-Pool Recognition of Interactions by Tag Extension 
(SPRITE), is based on split-pool barcoding of RNA and DNA (Quinodoz et al., 
2017). After crosslinking, medium-sized particles of genetic material (i.e., clus-
ters) are separated by sonication. The clusters are then uniquely barcoded by an 
iterative multiplex procedure before sequencing. The method can therefore pro-
vide data on hundreds of thousands of multivariate chromatin co-localizations 
in a population of cells. In structure modeling, SPRITE can provide single-cell 
multivariate contact constraints to ensure that specific chromatin clusters are 
present in individual cells of the population.

11.2.3  Probing chromatin proximity to nuclear bodies

Several experimental methods map the proximity of chromatin to nuclear bod-
ies, such as the lamina located at the nuclear envelope (NE) or speckles, which are 
nuclear domains enriched in pre-mRNA splicing factors.

The proximity of chromatin to the nuclear envelope has been probed with 
Lamina DNA adenine methyltransferase identification (DamID) experiments 
(Vogel, Peric-Hupkes and van Steensel, 2007) by the van Steensel group,  
both as ensemble and single cell assays (Van Steensel and Henikoff, 2000;  
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Guelen et al., 2008; Kind et al., 2015; Yáñez-Cuna and van Steensel, 2017). Essentially, 
the method determines a molecular contact frequency of DNA to Dam-methylase 
fusion proteins. For instance, lamina-B fusion protein probes DNA proximity to 
the nuclear envelope (Yáñez-Cuna and van Steensel, 2017), whereas other proteins 
could measure DNA proximity to other nuclear compartments. Lamina-DamID 
data has been probed for a population of cells, in the form of lamina-binding “pro-
pensity” profiles, or, more recently, even for single cells (Kind et al., 2015).

Another method is Tyramide Signal Amplification–Sequencing (TSA–Seq), 
which has recently been introduced by the laboratory of Andrew Belmont to 
probe the proximity of DNA loci to nuclear speckles (Dekker et al., 2017).

In 3D structure modeling, lamina-DamID data can be used to constraint spe-
cific loci to regions close to the NE. A recent study integrated lamina-DamID 
with Hi-C data to produce a population of genome structures that reproduce 
both, chromatin–chromatin contact probabilities as well as the probabilities of 
loci to be in spatial proximity to the NE (Li et al., 2017). Another study used 
lamina-DamID and Hi-C data in a resampling approach to ensure that lamina-
associated domains (LADs) have a higher probability to be located at the nuclear 
periphery (Paulsen et al., 2017). Modeling highlighted differences in the posi-
tioning of specific domains in HeLa cells carrying mutations associated with 
known pathologies.

11.2.4  Imaging methods for mapping the spatio-temporal 
organization of the nucleus

Various imaging technologies visualize the structural organization and dynam-
ics of the nucleus at spatio-temporal resolution. Microscopy tools are important 
in providing direct spatial relationships of genomic loci and nuclear bodies. 
Because imaging does not suffer from mappability or sequencing biases they pro-
vide important complementary information for cross-validating findings from 
genomics and proteomics mapping methods.

Fluorescent in situ hybridization (FISH) uses oligonucleotide probes or RNA-
mediated recruitment of fluorescently labeled dCas9 (Deng et al., 2015) in fixed 
cells to probe spatial distances and interactions of genomic loci. FISH has pro-
vided key insights into the spatial organization of chromosomes and the spatial 
relationships between genomic loci (Boyle et al., 2011). For instance, FISH experi-
ments have revealed the formation of chromosome territories (Bolzer et al., 2005; 
Cremer and Cremer, 2010), the sub-compartmentalization of chromosomes into 
functionally distinct regions (Boyle et al., 2011) and have been used to analyze 
spatial proximities between specific loci. Recently a multiplex FISH method 
traced the detailed structural folding patterns of entire chromosomes in a single 
cell at 1Mb resolution (Wang et al., 2016). These data were generated by imag-
ing a multitude of probes simultaneously through multiplex imaging. Inherently, 
single-cell methods generally suffer from limited throughput to describe suffi-
cient statistical variations of spatial features. HIPMap is a method for large-scale 
automatic analysis from high-throughput FISH imaging, which allows a detail 
description of the probability densities of pairwise and multivariate distances 
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between genomic loci as well as radial positioning of genomic loci in a population 
of tens of thousands of cells (Shachar et al., 2015; Shachar, Pegoraro and Misteli, 
2015).

Probability densities of multivariate distances from high-throughput imag-
ing can be incorporated as spatial constraints in modeling efforts. For example, 
FISH imaging has been used to constrain average spatial distances in 3D structure 
modeling of chromosomes (Wang, Xu and Zeng, 2015). Ideally, one would generate 
populations of genome models that reproduce the observed probability densities.

Some imaging methods do not require crosslinking or cell fixation, and 
therefore allow observations in living cells. Live-cell imaging approaches, such 
as CRISPR–dCas9 FISH can provide detailed information about the dynamic 
behavior of chromatin regions. CRISPR–dCas9 FISH in live cells (Chen et al., 
2013; Anton et al., 2014; Ma et al., 2015, 2016; Fu et al., 2016; Guan et al., 2017; 
Takei et al., 2017) can map the dynamic behavior of chromatin regions in real 
time. In addition, several other super-resolution live-cell imaging methods, such 
as 3DSIM, PALM, STORM, STED can be used to probe the dynamics of loci 
(Müller et al., 2010; Weiland, Lemmer, and Cremer, 2011; Doksani et al., 2013; 
Beliveau et al., 2015; Boettiger et al., 2016; Nozaki et al., 2017).

Cryo soft X-ray tomography (SXT) reveals details of the nuclear ultrastructure, 
such as the size and shape of the nucleus, as well as its spatial compartments 
such as euchromatic and heterochromatic chromatin clusters, the location and 
sizes of nuclear bodies. SXT is an imaging technique for visualizing cells and 
their interior structures in 3D without the need for chemical fixation, staining, or 
dehydration, and consequently leads to images of the entire nucleus in its native 
state. An SXT tomogram is reconstructed from a series of 2D projection images. 
Contrast in SXT images is generated by variations of the linear absorption coeffi-
cient (LAC) for different nuclear regions and functional chromatin subcompart-
ments (i.e., eu- and hetero-chromatin regions), membranes, and nuclear bodies 
such as the nucleolus, which can be easily detected in SXT reconstructions (Do 
et al., 2015). For instance, SXT allowed detailed segmentations of nuclear com-
partments, detection of pericentromeric chromosome clusters (Do et al., 2015; Le 
Gros et al., 2016; Tjong et al., 2016), and even the reconstruction of the detailed 
conformation of an X-chromosome in eight cells (Smith et al., 2014)

Chrom-EMT (CEMT) visualizes the chromatin ultrastructure across multiple 
scales by combining electron microscopy tomography with a labeling method 
(chromEM) to enhance the contrast of DNA. In this method, a fluorescent DNA-
binding dye is able to photo-oxidize and polymerize diaminobenzidine (DAB), 
which in turn binds OsO4 to allow detection of DNA and chromatin ultrastruc-
tures in electron tomograms of a nucleus of glutaraldehyde-fixed cells. This 
labeling makes it possible to detect chromatin folding patterns at nucleosome 
resolution inside a nucleus. Chrom-EMT images revealed that chromatin is a 
disordered 5 to 24-nm-diameter granular chain that is packed together at differ-
ent concentration densities in the nucleus (Ou et al., 2017).

Cryo-electron tomography (CET) generates 3D reconstructions of cells in 
hydrated, close to native states at molecular resolutions (Mahamid et al., 2016; 
Oikonomou and Jensen, 2017). Recent advances in focused ion beam (FIB) 
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technology make it possible to generate thin slices of mammalian cells that 
allow imaging of nuclear organization and folding patterns of chromatin in the 
nucleus. However, tracing of the chromatin fiber and reconstruction of individ-
ual complexes in the crowded nuclear environment are challenging due to the 
relatively low contrast and signal to noise ratio and distortions due to the missing 
wedge (Mahamid et al., 2016). However, new imaging technologies and advances 
in automation will make it possible to detect both structures and spatial positions 
of multiple large macromolecular complexes in individual cells at molecular res-
olution (Frazier, Xu and Alber, 2017).

After summarizing various experimental methods that provide data about the 
spatial genome organization, in the following sections we discuss data-driven 
computational methods that use experimental data to generate 3D genome struc-
tures consistent with it. In the last section of this review, we discuss methods that 
can integrate complementary sets of data and discuss recent examples.

11.3  COMPUTATIONAL METHODS FOR DATA-DRIVEN 
GENOME STRUCTURE MODELING

There are a number of approaches for data-driven genome structure modeling 
(Imakaev, Fudenberg, and Mirny, 2015; Serra et al., 2015) (Table 11.2). These 
methods use experimental data to generate genome or chromosome structures 
consistent with it. Approaches can be classified into three major groups based on 
the type of modeling, (Table 11.1): 1) Consensus models, which represent the data 
by a single “averaged” structure; 2) Resampling methods, which explore confor-
mational variability of the structures; and 3) Population-based modeling, which 
perform a deconvolution of the ensemble data (Serra et al., 2015) (see a compari-
son in Table 11.2). In addition, models can differ in the structural granularity of 
chromatin representation, which can be described as i) DNA fiber and chromatin 
fiber models ranging from 10 basepair to 100 kb resolution; and ii) chromosome 
or genome models represented by positions of the chromatin domains at < ~1Mb 
resolution (i.e., Topological Associated Domains, henceforth TAD), or larger 
macro-domains and subcompartments at > ~5Mb resolution. Computational 
methods also differ in how the data is interpreted and translated into spatial con-
straints. So far, most modeling approaches use data from chromosome confor-
mation capture experiments (e.g., Hi-C data) almost exclusively. For example, 
some methods interpret the contact frequency from ensemble Hi-C experiments 
into spatial distances between the corresponding loci, whereas other methods 
use contact constraints to enforce actual contacts between loci in a subset of 
structures in an ensemble so that the total number of contacts agrees with the 
relative contact frequency in the experiment (Table 11.2). We first discuss the dif-
ferent types of computational approaches.

11.3.1  Consensus structure methods

Consensus models generate a single structure, which represents a “best fit” of the 
data. Often this data is generated from a population of cells, for example ensemble 
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Table 11.2 Comparison Of Data-Driven 3D Genome Modeling Methods (from 
(Hua et al., 2017))

Method

Distance 
or 

Contact 
based

Genome 
coverage Species Model type

Duan et al. (Duan 
et al., 2010)

Distance Whole Genome Budding 
Yeast

Consensus

BACH (Hu et al., 
2013)

Distance All chromosomes Mouse Consensus

AutoChrom3D 
(Peng et al., 
2013)

Distance 500–800 kb Human Consensus

ChromSDE 
(Zhang et al., 
2013)

Distance Chromosome 13 Mouse, 
Human

Consensus

PASTIS 
(Varoquaux  
et al., 2014)

Distance All chromosomes Mouse Consensus

ShRec3D (Lesne 
et al., 2014)

Distance 30Mb, 
Chromosome 1

Human Consensus

HAS (Zou, Zhang 
and Ouyang, 
2016)

Distance All chromosomes Human Consensus

3D-GENOME 
(Szalaj et al., 
2016)

Distance All chromosomes Human Consensus

MCMC5C 
(Rousseau  
et al., 2011)

Distance 142 kb(5C), 
88.4Mb(Chr14, 
HiC)

Human Resampling

TADbit (Baù and 
Marti-Renom, 
2012)

Distance 500 kb(5C) Human Resampling

Junier et al. 
(Junier et al., 
2012)

Contact 1.2Mb (chr11) Human Resampling

Gehlen et al. 
(Gehlen et al., 
2012)

Contact Whole Genome Budding 
Yeast

Resampling

Meluzzi and Arya 
(Meluzzi and 
Arya, 2013)

Contact 135–270 kb Pseudo Resampling

(Continued)
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Hi-C (Peng et al., 2013; Zhang et al., 2013). In this case, ensemble Hi-C contact 
frequencies are typically mapped to spatial distances, assuming an inverse rela-
tionship between contact frequencies and distances. A single 3D structure is then 
generated that minimizes the residual errors between modeled and expected 
distances by either optimizing a scoring function (Duan et al., 2010; Peng  
et al., 2013; Zhang et al., 2013; Lesne et al., 2014; Varoquaux et al., 2014), a likeli-
hood function through Bayesian inference (Hu et al., 2013), or solving a gen-
eralized linear model (Zou, Zhang and Ouyang, 2016). Consensus models have 
been applied to whole genomes (Duan et al., 2010), individual chromosomes  
(Y. Zhang et al., 2012; Hu et al., 2013; Varoquaux et al., 2014; Szalaj et al., 2016; 

Table 11.2 (Continued) Comparison Of Data-Driven 3D Genome Modeling 
Methods (from (Hua et al., 2017))

Method

Distance 
or 

Contact 
based

Genome 
coverage Species Model type

Trieu and Cheng 
(Trieu and 
Cheng, 2014)

Contact All chromosomes Human Resampling

InfMod3DGen 
(Wang, Xu and 
Zeng, 2015)

Distance All chromosomes Yeast Resampling

MOGEN (Trieu 
and Cheng, 
2016)

Contact Whole Genome Human Resampling

Di Stefano et al. 
(Di Stefano  
et al., 2016)

Contact Whole genome Human Resampling

Chrom3D 
(Paulsen et al., 
2017)

Contact Whole genome Human Resampling

Kalhor et al. 
(Kalhor et al., 
2012)

Contact Whole genome Human Population

Giorgetti et al. 
(Giorgetti  
et al., 2014)

Contact 780 kb Human Population

MiChroM (Zhang 
and Wolynes, 
2015; Di Pierro 
et al., 2016)

Contact All chromosomes Mouse Population

PGS (Tjong et al., 
2016)

Contact Whole genome Human Population
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Zou, Zhang and Ouyang, 2016), and chromatin globules (Peng et al., 2013; Lesne 
et al., 2014). A consensus model is typically fast to generate, and summarizes 
averaged structural features from ensemble data. However, chromosome con-
formations vary between cells and a single consensus structure cannot convey 
aspects of variability and dynamics and therefore may not represent instances of 
individual observable structures.

11.3.2  Resampling methods

Resampling methods (Table 11.2) calculate an ensemble of structures by independent 
optimizations of the same scoring function derived from the data. These methods 
introduce aspects of conformational variability because of the presence of multiple 
minima, unconstrained degrees of freedom, or thermodynamic fluctuations.

For instance, in a study by Junier et al., a thermodynamic ensemble of con-
figurations of the human beta-globin locus were produced by enforcing CTCF 
loops; the strength of the interaction was tuned to reproduce the observed 3C 
contacts distributions (Junier et al., 2012). Meluzzi and Arya (Meluzzi and 
Arya, 2013) proposed a polymer model in which 3C contact probabilities can be 
reproduced by a thermodynamic ensemble of configurations in an opportunely 
shaped energy landscape. Other methods extended the frequency-to-distance 
mapping widely used in consensus modeling by allowing statistical deviations. 
For instance, MCMC5C uses the Markov chain Monte Carlo method to generate 
a representative sample from the posterior probability distribution over the space 
of structures from 5C (Chromosome Conformation Capture Carbon Copy) data 
(Rousseau et al., 2011). Another instance is InfMod3Dgen (Wang, Xu, and Zeng, 
2015), which uses a polymer chain representation and a Bayesian framework in 
which the conformational energy from polymer physics is used as prior informa-
tion to model an ensemble of chromatin structures based on Hi-C data.

A caveat in the resampling procedure comes from the fact that ensemble data-
sets can include conflicting data from mutually exclusive chromatin conforma-
tions. If the complete data is considered simultaneously in a single structure, 
there can be inconsistencies between data and models (i.e., restraints violations). 
As a consequence, some methods use only a subset of the data, for instance the 
most significant contact and non-contact information. TADbit is a package 
which includes a resampling modeling method (Baù and Marti-Renom, 2012; 
Serra et al., 2017). The procedure performs many independent optimizations 
from random starting configurations using the Integrative Modeling Platform 
(IMP) (Alber et al., 2007; Russel et al., 2012) by restraining the distance between 
two loci if their interaction frequency Z-score exceeds a cutoff (or keeping them 
apart if the frequency is below a lower cutoff). This protocol has been applied to 
model multiple systems, on different scales, including the alpha globulin locus 
in K562 and lymphoblastoid cells (Baú et al., 2011), the structure of the bacterial 
genome of Caulobacter crescentus (Umbarger et al., 2011), and genomic domains 
in Drosophila melanogaster (Serra et al., 2017).

Similarly, in another software tool called MOGEN, high and low valued fre-
quency pairs in Hi-C maps are considered as contacts and non-contacts (Trieu 
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and Cheng, 2014, 2016). In another study, Gehlen et al. randomly selected a sub-
set from a pool of frequently observed interactions to explore the effect of specific 
genomic contacts in the yeast genome (Gehlen et al., 2012).

Di Stefano et al. (Di Stefano et al., 2016) selected significant intra-chromo-
some interactions in human lung fibroblast and stem cells to restrain the struc-
tural space of full diploid genomes at very high resolution (~3 kb). The structures 
are optimized using molecular dynamics, and reproduce the average nuclear 
positioning of active and lamina-associated genomic regions.

Finally, in a modeling framework developed by Paulsen et al. (Chrom3D), only 
statistically significant pair-wise interactions between TADs are considered in 
addition to significant contacts of TADs to the NE derived from lamina-DamID 
data. It simulates the positions of topologically associated domains (TADs) rela-
tive to each other and to the nuclear periphery by using a Monte Carlo optimiza-
tion of a loss-score function (Paulsen et al., 2017).

11.3.3  Population-based deconvolution methods

Population-based deconvolution approaches generate a population of structures, 
in which the accumulated contacts overall structures reproduce the probability 
of contacts in the ensemble Hi-C data rather than each structure individually 
(Kalhor et al., 2012; Giorgetti et al., 2014; Zhang and Wolynes, 2015). As noted in 
the previous section, enforcing the full set of detected chromatin contacts may 
lead to violated restraints. Effectively, population-based methods distribute all 
expected Hi-C chromatin contacts across different structures in a population. 
As a result, they allow structures in different conformational states, where each 
state could contain only a coherent subset of chromatin contacts. For example, 
Giorgetti et al. developed a physical polymer model which uses an iterative 
Monte Carlo scheme to generate a thermodynamic ensemble of chromatin con-
formations (Giorgetti et al., 2014), and reproduced the 5C data well for a region 
spanning 780 kb. To achieve this goal, specific chromatin contact interaction 
potentials were optimized to mimic interactions statistically favoring or disfa-
voring the co-localization of chromatin regions according to the chromosome 
conformation capture data. The method was used to explore the repertoire of 
chromatin conformations within TADs.

In another approach, Zhang and Wolynes used the maximum entropy 
principle and molecular dynamics to model an ensemble of chromosome con-
formations consistent with a pseudo-Boltzmann distribution for an effective 
energy landscape that reproduces the experimentally measured pairwise con-
tact frequencies from Hi-C data (Zhang and Wolynes, 2015). The approach was 
applied to model a population of mouse chromosomes with good agreement with 
experiment.

Additionally, an ensemble of structures for the C. crescentus bacterial genome 
was recently generated by combining restraint and population-based modeling 
approaches (Yildirim and Feig, 2018). In this study, a multiscale modeling pro-
tocol was performed guided by weak distance restraints derived from available 
Hi-C data (Le et al., 2013) and resulting models were then further reweighted in 
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order to match the Hi-C data better considering the cell-to-cell variability. The 
approach resulted in an ensemble of highly structurally variable C. crescentus 
chromosome models that is in agreement with the Hi-C data.

Our group developed a population-based deconvolution method and software 
package (PGS – Population-based Genome Structure) for modeling structures 
of complete diploid genomes from Hi-C data (Kalhor et al., 2012; Tjong et al., 
2016; Hua et al., 2017). The method performs a structure-based deconvolution 
of ensemble Hi-C data and generates a large population of distinct diploid 3D 
genome structures by maximizing the likelihood of observing the data. This 
is achieved by performing an iterative and step-wise optimization of both the 
assignment and satisfaction of chromatin contact constraints in the ensemble of 
genome configurations. Each iteration involves two steps: the constraint assign-
ment (A-step) and the genome structure optimization (M-step). The latter uses a 
combination of the simulated annealing and conjugate gradient methods applied 
to each structure of the population (Hestenes and Stiefel, 1952; Kirkpatrick, 
Gelatt and Vecchi, 1983; Russel et al., 2012). The optimization hardness is 
increased in a step-wise manner by gradually adding more contact constraints 
during the iterative optimization process. The optimized genome structures can 
typically reproduce almost all the contacts from Hi-C experiments and avoid 
unphysical structures from simultaneous enforcement of conflicting data in the 
same structure.

We recently released the PGS software package (https://github.com/alberlab/
pgs), which takes an experimental Hi-C contact frequency map and a segmenta-
tion of the genome sequence into chromatin domains (e.g., TADs) as input data. 
PGS then produces a population of 3D genome structures with the positions of 
each TAD in the nucleus, so that the probability of TAD domain contacts in the 
population reproduces those derived from the Hi-C experiment. The software 
automatically performs a basic analysis of the structures, including a report of 
the model quality using the contact probability agreement with experiments and 
structural features, such as the radial positions of individual chromatin domains 
in the nucleus.

The genome structures can provide rich sources of structural information, for 
example the presence of higher-order structural chromatin clusters (as described 
in (Dai et al., 2016)). For an assessment of the models, it is necessary to com-
pare the predicted structures with independent experimental data which are not 
included as input information when modeling structures such as distances from 
3D FISH experiments, chromatin-NE contact probabilities from lamina-DamID 
experiments or spatial features extracted from soft X-ray tomography experi-
ments (Tjong et al., 2016). The method has been applied to model the diploid 
genomes of human lymphoblastoid cells (Kalhor et al., 2012; Tjong et al., 2016; 
Hua et al., 2017), mouse neutrophil cells (Kalhor et al., 2012; Tjong et al., 2016; 
Hua et al., 2017; Li et al., 2017), and Drosophila melanogaster embryonic cells at 
resolution ranging from 1Mb to 5Mb (Li et al., 2017) (Figure 11.2).

Since the 3D genome structures can vary dramatically from cell to cell, it is 
challenging to perform an analysis of structure–function relationships. In par-
ticular, it is necessary to distinguish functional chromatin interactions from 

https://github.com/
https://github.com/
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the noise and also from random chromatin collisions in the models. As spa-
tial patterns occurring in multiple structures are expected to be more likely of 
functional importance, we recently proposed an approach to comprehensively 
identify 3D chromatin clusters that occur frequently across a population of 
genome structures (Dai et al., 2016). Applying our method to genomes of human 
lymphoblastoid at Mb-scale resolution allowed the identification of an atlas of 
several thousand relatively stable inter-chromosomal chromatin clusters (Dai  
et al., 2016). Interestingly, a major portion of these clusters, given their enrich-
ment in binding of specific regulatory factors, represents a spectrum of regulatory 
communities, with transcription communities being the most prevalent type. We 
revealed two major factors, centromere clustering and transcription factor bind-
ing, which significantly stabilize such communities. Finally, we show that the 
regulatory communities differ dramatically from cell to cell.

11.3.4  Comprehensive data integration through 
population-based genome structure modeling

Most models of genome structures have relied on just one data source, such as 
Hi-C, even though a single experimental method cannot typically capture all 

Figure 11.2 Structural representation of genome models. (A) Representation 
of the genome at the level of topological domains (right panel), which are 
defined by spheres of specific volumes. Domains boundaries are determined 
from the Hi-C contact map (left panel) using domain detection algorithms. (B) 
Structural representation of the genome at different levels of resolution. Also 
given are the number of particles used to model the genome.
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aspects of the spatial genome organization. However, integrating data from a 
wide range of technologies, each with complementary strengths and limitations 
will greatly increase the accuracy, resolution, and coverage of genome structure 
models. Moreover, integrative models will offer a way to cross-validate the con-
sistency of data obtained from complementary technologies, for example from 
imaging and genomic technologies. However, it remains a major challenge to 
develop hybrid methods that can systematically integrate data from many dif-
ferent technologies to generate structural maps of the genome. Population-based 
deconvolution methods provide an ideal framework for comprehensive data 
integration. We have recently extended our expectation-maximization model-
ing framework to integrate variable data sources, for example combining contact 
frequency information from Hi-C and lamina-DamID data (Li et al., 2017). Here 
we describe a generalized framework that allows comprehensive integration of 
many data types (Figure 11.3).

To formalize the process, we can generally divide data into univariate, bivari-
ate, and multivariate data types.

Univariate data describe features that depend on only a single chromosome 
region, such as the probability of a chromosome region to be in proximity to the 
lamina at the NE, which is derived from lamina-DamID data. Typically these 
data can be represented by a probability vector U u I NI= =( )( )| 1 2, ,..,  with ele-
ments describing the probability that chromosome regions I = 1,2,…,N share a 
given feature (e.g., the probability of a chromosome region I to be in proximity 
with the lamina at the NE). N is the number of all chromosomal regions in the 
genome (i.e., the total number of TAD domains or 100 kb bins).

Bivariate data describe features that depend on two chromatin regions, for exam-
ple the probability of interaction between two chromosomal regions. Typically, 
these data are represented by a probability matrix M = =( )m I J NIJ | , , ,..,1 2 ; for 
example, a contact probability matrix derived from ensemble Hi-C data. Each 

Figure 11.3 Genome structure calculation through data integration and 
population-based modeling.
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element mIJ is the probability that a given contact between chromosomal regions 
I and J exists in an ensemble of cells.

Multivariate data describe higher-order relationships between multiple chro-
mosome regions, for example, the probability of observing several different 
chromosome regions to be in spatial proximity to each other. These data are rep-
resented by third order or higher-order tensors T = =( )t I J K NIJK | , , , ,..,1 2 . The 
general goal is to generate a population of genome structures ( X X X X= { }1 2, , ,� S  
as a set of S diploid genome structures) that are statistically consistent with all 
available univariate (V), bivariate (M), and multivariate (T) data probabilities.

We formulate this genome structure modeling problem as a maximization of the 
likelihood P U , , |M T X( ) . With known U, M, and T, we can calculate the struc-
ture population X such that the likelihood , , |P V M T X( )  is maximized. However, 
in a diploid genome, each domain has two homologous copies and in most cases 
the data expressed in the probability vectors U, matrices M and tensors T do not 
distinguish between homologous chromosome copies (i.e., the data is based on 
unphased data). Moreover, U, M, and T are probabilities typically derived from 
ensemble experiments (for example, ensemble Hi-C experiments), therefore they 
cannot reveal which of the individual features co-exist in the same 3D structure.

To represent information derived from individual cells, we introduce latent 
variables (V,W,R), which contain the information missing from ensemble data, 
namely which of the observed features belong to each of the S structures in the 
model population and also which homologous chromosome copies are involved. 
For example, for univariate lamina-DamID data, the latent variable is a binary 
matrix, V = ( ) ×vis N S2

, which specifies which domain is located near the NE in each 
structure s of the population and also distinguishes between the two homologous 
TAD copies (vis =1  indicates that TAD i is located near the NE in structure s; vis = 0  
otherwise). For bivariate data we introduce the latent variables W = ( ) × ×

wijs N N S2 2
, 

which is a binary, 3rd-order tensor. For example, in the case of Hi-C data, we define 
W as the “contact indicator tensor”, which contains the information about which 
specific domain contacts belong to each of the S structures in the model popula-
tion and also which homologous chromosome copies are involved (wijs =1  indi-
cates a contact between domain spheres i and j in structure s; wijs = 0  otherwise). 
W is a detailed expansion of M into a diploid, single-structure representation of  
the data. The structure population X is consistent with W. Therefore, the depen-
dence relationship between these three variables is given as X→W→M. Similarly, 
the dependence relationship between X, V, and U is given as X→V→U, because X is 
the structure population consistent with V and V is a detailed expansion of U at a 
diploid and single-structure representation of the data. Similarly, we define a latent 
variable R to define the missing information in the multivariate data type T.

In addition, we can also consider additional information such as the nuclear 
volume or excluded volume constraints applicable to all domains that describe 
the non-overlapping volume of each domain.

Thus, the data integration optimization problem is expressed as:

 
�
X M T V W R X

X,V,W,R
= ( )arg max log , , , , , |P U  
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The log likelihood can be expanded as

 
log , | log , | |

|

P U P U PM,T,V,W,R X M,T, V,W,R V,W,R X

T R

( ) = ( ) ( )

= (log P )) ( ) ( ) ( )P UM W V V,W,R X| | |P P

 

Because there is no closed form of solution to the problem, we have developed a 
variant of the Expectation-maximization (EM) method to iteratively optimize 
this log likelihood (Tjong et al., 2016; Li et al., 2017). Each iteration consists of 
two steps (Figure 11.4a):

 ⚫ Assignment step (A-step): Given the current model X t( )  at the iteration step t, 
estimate the latent variables R t +( )1 , W t +( )1 , and V t +( )1  by maximizing the log-
likelihood over all possible values of R, W, and V.

 ⚫ Modeling step (M-step): Given the current estimated latent variables R t +( )1 ,  
W t +( )1 , and V t +( )1 , find the model X t +( )1  that maximizes the log-likelihood 
function.

The detailed implementation of the A-step and M-step are described in detail 
in (Tjong et al., 2016; Hua et al., 2017; Li et al., 2017) (Figure 11.4). The step-wise 
optimization strategy also includes a gradual increase of the optimization hard-
ness by adding contact constraints gradually with a decreasing contact probabil-
ity threshold.

As a case study showcasing the benefits of data integration and 3D modeling, 
we review results from a study, which used the previously mentioned approach 
to determine the genome structure of Drosophila melanogaster embryonic cells 
by integrating ensemble Hi-C and lamina-DamID data (Li et al., 2017). The 
genome consists of 4 diploid chromosomes (chromosomes 2, 3, 4, and X) and 
was segmented at the level of TAD domains, which were represented by the 
positions of 1169 TAD spheres (Sexton et al., 2012; Li et al., 2017) (Figure 11.4). 
Chromatin contact probabilities M were derived from ensemble Hi-C experi-
ments (Sexton et al., 2012) and the probabilities for domains to reside at the 
nuclear envelope V was derived from lamina-DamID experiments (Pickersgill 
et al., 2006). Following the procedure described above, the likelihood function �
X ,M,V,W XX,V,W= ( )arg max log |P V  was optimized to generate a popula-
tion of 10,000 genome structures that accurately reproduced the domain contact 
probabilities M and the NE-association probabilities V (Figure 11.4).

The contact probabilities (M) derived from the genome structure models 
were in excellent agreement with those from Hi-C experiments (average col-
umn-based Pearson’s correlation coefficient (PCC) is 0.984) (Figure 11.5ab). The 
genome structures also satisfied almost all imposed contact constraints with-
out constraint violations (e.g., 99.999% of all imposed contact restraints were 



 11.3 Computational Methods for Data-driven Genome Structure Modeling 273

satisfied at a tolerance of 0.05). The models also showed excellent agreement with 
the NE-association probabilities V derived from lamina-DamID experiments 
(Pearson’s correlation of 0.95) (Figure 11.5cd).

11.3.5  Added value from 3D structure modeling

Embedding Hi-C and lamina-DamID data into 3D spatial models can provide 
substantial added value, namely predictions of structural features that are not 
visible from the individual input datasets (Figure 11.5). In the following section 
we highlight some examples showcasing the added values from 3D modeling the 
D. melanogaster genome structures. A quality measure of the structures can be 
obtained by analyzing how well contact probabilities can be predicted that were 
not included as input information in the optimization. When leaving out Hi-C 
data for any pair of TADs whose contact probability was lower than mij = 0.06, 

Figure 11.4  Overview of the population-based genome structure modeling 
approach and its application to the Drosophila genome. (A) The initial struc-
tures are random configurations. Maximum likelihood optimization is achieved 
through an iterative process with two steps, assignment (A) and modeling 
(M). We increase the optimization hardness over several stages by includ-
ing contacts from the Hi-C matrix A with lower probability thresholds (θ). (B) 
Schematic of the Drosophila genome. Centromeres are labeled “C”. Numbers 
indicate the length of the section in megabases (Mb). The heterochromatic 
region of each chromosome arm is labeled “H”. (C) Snapshot of a single struc-
ture randomly picked from the final population (Left panel). (Right panel) The 
euchromatin domains are colored to reflect their epigenetic class: red–Active, 
blue–PcG, green–HP1, and dark–Null. Heterochromatin spheres are grey, and 
the nucleolus is pink. [This figure and caption are taken from (Li et al., 2017)].



274 Comprehensive Data Integration 

the models were capable of predicting the missing data with good accuracy  
(Figure 11.5b, right panel). The models also allow predictions about the nuclear 
locations and interactions of pericentromeric heterochromatin. Due to technical 
limitations, no Hi-C measurements are available for interactions between repeat 
sequences, such as those of satellite repeats in pericentromeric heterochromatin. 

Figure 11.5 Reproduction of Hi-C and lamina-DamID data. (A) Heat maps of 
intra-arm contact probabilities from Hi-C experiments (left) and intra-arm con-
tact frequencies from the structure population (right). (B) Agreement between 
the experimental data and model contact probabilities. (Left panel) The blue 
dot-line is the linear regression line between the average model contact 
probabilities of each bin and the midpoint Hi-C contact probabilities of the 
bins. Their Pearson’s correlation is 0.998 with p-value < 2.2e−16. (Right panel) 
Close-up of the agreement between experiment and model for contacts with 
probabilities less than 6%, which are not used as constraints in our modeling 
procedure. In this range, Pearson’s correlation is 0.907 with p-value = 4.87e-3. 
(C) The agreement between NE-association frequencies from lamina-DamID 
experiments and the model population. This figure is plotted in the same 
way as (B). The structure population well reproduces the input frequencies 
derived from lamina-DamID data, with a Pearson’s correlation of 0.95 and 
p-value < 2.2e−16. (D) Comparison of experimental and model lamina-DamID 
frequencies on chrX. The top panel shows the input frequencies derived from 
the lamina-DamID signal, the middle panel shows the fraction of domains 
located at the NE in the structure population obtained by Hi-C and lamina-
DamID data integration, and the bottom panel shows the fractions obtained in 
our control structure population generated using only Hi-C data. [Figure and 
caption are taken from (Li et al., 2017)].
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However, through embedding the data into 3D models, it is possible to analyze 
the positions of genes with respect to the locations of pericentromeric hetero-
chromatin in the model.

These models revealed distinct differences between heterochromatin localiza-
tion probabilities for different chromosomes. For example, within the hetero-
chromatin cluster, pericentromeric heterochromatin of chromosomes X and 4 
were more often found closer to each other and were more peripheral in their 
nuclear locations than pericentromeric chromatin of chromosomes 2 and 3. 
These predictions were confirmed by FISH staining of heterochromatic repeat 
satellites.

Similarly, it was possible to predict the most probable locations of the nucleo-
lus, which was also confirmed by FISH experiments. The models also provided 
significant insight into the distinct localization probability of euchromatic 
regions which were distinct for different chromosomes.

Surprisingly, the models also provided insights into the mechanisms of chro-
mosome pairing. The genome of D. melanogaster is characterized by somatic 
homologous chromosome pairing in the interphase nucleus. The paired chro-
mosomes touch only at a few specific interstitial sites. In the genome structure 
models, the pairing frequencies of homologous domains showed distinct and 
reproducible variations along the chromosomes. In the optimized structures, 
certain domain pairs of homolog TADs consistently have smaller average separa-
tions while others consistently have larger separations.

These pairing distance variations are TAD specific. Several proteins are known 
to affect somatic homolog pairing, one of which is Mrg15 (Smith et al., 2013). 
Mrg15 binds to chromatin and recruits the CAP-H2 proteins to cause homo-
log un-pairing. Interestingly, the genome models showed an anti-correlation 
between Mrg15 binding enrichment in a domain and its frequency of homolo-
gous pairing, even though this information is not imposed as input information. 
The higher the enrichment of Mrg15 in a domain, the lower is the fraction of 
paired homologs in the genome structures.

This observation also holds true if one focuses only on TADs in the same 
chromatin state, for example only TADs containing transcriptionally active 
open chromatin. Active domains observed with relatively high homolog pairing 
frequency are significantly more enriched with Mrg15 binding sites in compari-
son to active domains showing low levels of homolog pairing. It is remarkable 
that these models support the role of Mrg15 in disrupting homolog pairing, even 
though the structures were generated without any locus-specific constraints on 
the separation of homologous domains.

Also, the models reproduce the effect that polycomb associated chromatin 
(PcG) domains show significantly tighter homolog pairing than transcriptionally 
active domains, confirming previous experimental observations of tight homo-
log pairing to enhance gene silencing.

The question arises, why are these structural models able to reproduce obser-
vations about homolog chromosome pairing, even though the unphased Hi-C 
data and lamina-DamID data did not distinguish between chromosome cop-
ies and therefore could not provide any experimental clues about chromosome 



276 Comprehensive Data Integration 

pairing? The chromosome pairing frequencies are naturally an indirect conse-
quence of embedding all the data into 3D space of a limited nuclear volume and 
an excluded volume associated with all chromosome domains. The number of 
Hi-C contacts per chromatin domain and their location in the nucleus will affect 
the probability with which homolog domains approach each other in the model 
and therefore the observed pairing frequency reflects a complex interdependence 
of all the input constraints in the model. A 3D model allows a simple readout of 
such complex behaviors.

11.3.6  Data integration increases the accuracy of genome 
structure models

Finally, we highlight the benefits of integrating variable complementary data 
sources in this section. With an increasing amount of data, the quality of the 
model accuracy increases. For example, the accuracy of the NE-association 
probability in the models can be substantially improved when lamina-DamID 
data is combined with Hi-C data. A model that is only generated with Hi-C data 
reproduces the experimental lamina-DamID data with a Pearson’s correlation 
of 0.64 with a p-value < 2.2e-16. When the lamina-DamID data is considered in 
the modeling, the data is reproduced with a Pearson’s correlation of 0.95 and a 
p-value < 2.2e-16.

The models were also compared with the results from FISH experiments 
which measured the NE co-localization frequency of 11 loci. The comparison of 
the NE-association frequency in a model that is generated with only Hi-C data 
leads to a Spearman correlation coefficient of 0.376 (p-value 0.2542). In contrast, 
the model that integrates both Hi-C and lamina-DamID data reproduces the 
FISH data with a Spearman correlation of 0.642 (p-value 0.03312). This example 
highlights the improved accuracy of the models through the integration of com-
plementary data. More importantly, apparently unrelated observables such as 
frequency of homolog domains are more accurate with the incorporation of lam-
ina-DamID with Hi-C data. The Pearson’s correlation between the Mrg15 bind-
ing signal and the average frequency of homolog pairing per domain is improved 
from −0.7 (p-value: 4.46e-4) to −0.81 (p-value: 7.59e-6) when lamina-DamID 
data was incorporated along with the Hi-C data during the generation of models.

11.4  CONCLUSIONS

Recent years have seen an enhanced interest in the spatial organization of 
genomes. Technological advances have revealed new insights and increased 
understanding of the genome folding processes and their functional relevance. A 
joint and coordinated effort of many research laboratories will facilitate the chal-
lenging task of producing quantitative models of the dynamic nucleome. Such 
models may help to study the role of genome structure in cell differentiation and 
disease; may allow a better understanding of the mechanistic principles of chro-
matin folding; and may facilitate the detection of the molecular machinery that 
shape variations of genome organization in different cells.
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12.1  INTRODUCTION

Mammalian chromosomes are extraordinarily complex polymers, composed of 
~1011  atoms each. If the molecular structure of the chromatin fiber up to the 
kilobase (kb) scale has been widely studied in vitro and computationally (Bascom 
and Schlick, 2018), little is known about its fine-scale (sub-kb) structural prop-
erties in vivo (Belmont, 2014), although advances in electron microscopy have 
recently started to shed some light on this long-standing open question (Ou  
et al., 2017). On the other hand, the recent deployment and refinement of 3C-based 
techniques and Hi-C in particular have provided an extraordinary amount of 
information on how the chromatin fiber is folded inside a chromosome at larger 
genomic length scales (≥10 kb). The introductory chapter by Job Dekker in this 
book (Chapter 1) gives a thorough overview of 3C methods, and the findings they 
have enabled. Here, we will only recall that 3C-based experiments have revealed 
that mammalian chromosomes are folded in a highly non-random manner, with 
organizational units spanning several orders of magnitude in genomic lengths. 
Dynamic loops of ~100 kb connecting sites bound by CTCF are embedded into a 
complex hierarchy of sub-megabase interaction domains including topologically 
associating domains (TADs), themselves merging into even larger multi-mega-
base compartments arising from the exclusive interactions of active and inactive 
chromosomal segments (Gibcus and Dekker, 2013).

An ever-growing body of experimental evidence suggests that chromosomal 
structures and TADs in particular play an important role in the control of gene 
expression, by partitioning the physical interactions between genes and their 
long-range regulatory sequences such as enhancers, and specifically favoring 
those that connect functionally related genetic elements. (Nora et al., 2012; Dixon 
et al., 2012; Galupa and Heard, 2018; Zhan et al., 2017). 3C-based data, however, 
represent average contacts over populations of millions of cells and do not give 
direct access to the actual conformations of the chromatin fiber in single cells, 
and how they evolve in time. Measurements based on DNA in situ hybridization 
(DNA FISH), which can measure the spatial position of selected genomic loci in 
single cells, revealed extensive variation in the three-dimensional conformation 
of chromosomes at all scales (Giorgetti and Heard, 2016). Measuring the cell-to-cell 
and temporal variability in chromosome conformation is therefore important to 
better understand how genes communicate with their enhancers, and how tran-
scription is controlled in single cells.

Physical models of the chromatin fiber represent valuable tools in extract-
ing the ensemble of conformations of the chromatin fiber that are “hidden” in 
3C-based data, and in predicting its dynamics. Since loops and TADs, as well as 
enhancer–promoter interactions, occur over genomic length scales that are at 
least two orders of magnitude larger than those where the chromatin structure is 
partially understood (at least in vitro and computationally), physical models aim-
ing at describing the long-range conformational properties of the genome include 
a significant degree of coarse-graining. Indeed, coarse-grained mechanistic 
models such as the loop-extrusion model (see Chapter 4) have provided impor-
tant insights into the processes that might give rise to the structures observed in 
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3C-based experiments. However, they are not able to infer the single-cell con-
formations of the chromatin fiber that, once averaged over the cell population, 
give rise to the contacts measured at a specific genomic location in a specific 
3C-based experiment. By contrast, the computational approach we describe in 
this chapter (which we have developed in (Giorgetti et al., 2014; Tiana et al., 2016; 
Zhan, Giorgetti, and Tiana, 2017)) rather focuses on the task of reconstructing 
the conformational ensemble of the chromatin fiber across a cell population, at 
the level of single TADs, starting from population-averaged 5C or Hi–C contact 
maps, without making any mechanistic assumption on the specific forces that 
drive chromosomal structures.

The model assumes that at the level of single TADs (within the 100 kb–1 Mb 
length scale), the set of conformations that the chromatin fiber adopts in a cell 
population can be described as the equilibrium ensemble of an interacting model 
polymer. Monomers in the polymer represent chromosomal segments that are 
long enough (well above the kb) that their internal molecular structure can be 
disregarded. Contrary to first-principle models, the model is completely agnostic 
on the molecular origins of the interactions between monomers. These latter, in 
fact, are only suggested by the experimental data (see Section 12.2) and eventu-
ally can be interpreted in terms of effective interactions accounting for the effects 
of specific proteins (e.g., CTCF) that mediate the spatial proximity of their DNA-
binding sites, as well as more indirect effects due to nonspecific interactions in 
the nuclear milieu.

It is unlikely that an entire mammalian chromosome reaches equilibrium any-
time during the ~20 hours of a cell cycle after expanding from the compact mitotic 
conformation. Indeed, the statistical properties of chromosomal contacts across 
several genomic length scales are compatible with those of an out-of-equilibrium 
(crumpled) globule (Lieberman-Aiden et al., 2009). On the other hand, however, 
time-lapse fluorescence microscopy experiments suggest that conformational 
changes within Mb-sized domains might take place on the time scale of minutes. 
Thus, the chromatin fiber within single TADs might have time to equilibrate in 
one single cell cycle (Tiana et al., 2016). Although the validity of the equilibrium 
ensemble cannot be formally proven, it is strongly supported by the fact that equi-
librium models of TADs located at the X inactivation center in mouse embry-
onic stem cells provided realistic reconstructions of the 3D configuration of the 
chromatin fiber, including its cell-to-cell variability, and correctly predicted the 
structural effects deleting clusters of CTCF sites (see Section 12.4 and Giorgetti et 
al., 2014). This model was instrumental in demonstrating that single TADs arise 
from a multiplicity of conformations of the chromatin fiber, and that cell-to-cell 
differences in chromosome structure within TADs can correlate with gene tran-
scription levels (Giorgetti et al., 2014).

12.2  SETTING UP THE MODEL

The general aim of our strategy is to build a coarse-grained polymer model of a 
sub-Mb chromosomal region, whose equilibrium ensemble reproduces experi-
mental 3C-based data.
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12.2.1  The experimental data

The input of the model is 3C-based contact matrices representing the three-
dimensional interactions of the chromatin fiber across hundreds of kilobases of 
genomic sequences, such as 5C and Hi-C (Dekker et al., 2002) (see Chapter 1). 5C 
describes the chromosomal contacts across a target-enriched, selected genomic 
region spanning up to a few megabases. In the left panel of Figure 12.1, for 
example, we show 5C data from the central part of the X inactivation center in 
mouse embryonic stem cells, and highlight the two TADs that harbor the Tsix 
and Xist transcripts (Nora et al., 2012), which we simulated in (Giorgetti et al., 
2014). 5C was performed in this case using the HindIII restriction enzyme and 
has an average genomic resolution of 3 kb. The 5C contact matrix elements Cij  
are proportional to the number of times a ligation product between single restric-
tion fragments i and j have been sequenced in the experiment. Since restriction 
fragments have different genomic sizes, the matrix representation in Figure 12.1 
is not symmetric (each restriction fragment being represented with its actual 
genomic length). Hi-C data, in contrast, describe chromosomal interactions 
across the entire genome and their resolution strongly depends on high-through-
put sequencing depth. In the Hi-C matrix subset shown in the right panel of 
Figure 12.1 for example, the data (Giorgetti et al., 2016) were binned at 20 kb 
resolution. It should be noted that Hi-C data are affected by experimental biases 
arising from the uneven mappability of genomic bins, as well as other factors that 
have been thoroughly discussed elsewhere (Imakaev et al., 2012; Yaffe and Tanay, 
2011). Iterative data normalization procedures such as ICE (Imakaev et al., 2012) 
must be necessarily applied to the data before they can be used for modeling. The 
normalized Hi-C contact matrix elements Cij  are thus proportional to the num-
ber of times that any genomic sequences belonging to the genomic bins i and j 

Figure 12.1 Left: 5C contact map of the Tsix and Xist TADs in the X inactiva-
tion center on the X chromosome in mouse embryonic stem cells (mESC). 
Dashed lines indicate the boundaries of the two TADs as described in (Nora 
et al., 2012) and (Giorgetti et al., 2016). Right: Iteratively corrected Hi-C inter-
action map of a region on chromosome 19 in mESCs. Dashed lines indicate 
TAD boundaries identified using the CaTCH algorithm (Zhan et al., 2017).
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have been sequenced in the experiments. Note that the Hi-C matrix is symmetric 
since all genomic bins have the same length.

The central assumption that our model makes is that in both 5C and Hi-C, 
the matrix count Cij  (where i and j are single restriction fragments in 5C or 
larger genomic bins in Hi-C) is proportional to equilibrium contact probability 
between i and j, that is

 p r r
C

z
ij
exp

i j
ijº ( ) =D , ,  (12.1)

where the contact probability pij  between loci i and j is defined as the equilib-
rium average of a contact function D r ri j,( ), which will be formally defined later 
and which is equal to 1 if the spatial positions ri  and rj  of the two loci are suf-
ficiently close to each other, and zero otherwise. z is a proportionality constant, 
whose numerical value needs to be determined based on the experimental data. 
We generally assume pij =1  if C zij > .

We usually set the numerical value of z to be equal to the average count of 
adjacent genomic segments (i.e., i and i ± 1), as it is reasonable to assume that they 
are always in contact with each other (at least at their extremities). In the case of 
the 5C map displayed in Figure 12.1, for example, this procedure gives z = 3097 
(Giorgetti et al., 2014). interestingly, this value coincides with the numerical 
value where the distribution of counts from non-adjacent segments ( Cij  with i ≠ 
j ± 1) drops to zero at C ≈ 3000 (cf. Figure 12.2). Thus, this value can be reason-
ably associated with the maximum contact probability based on the available 
contact data.

Since 5C and Hi-C experiments are performed in replicates, it is possible to 
associate a standard error of sij  to each count Cij.

12.2.2  Geometry of the model

Due to the molecular complexity of the chromatin fiber (and the fact that its 
exact microscopic structure is unknown at sub-kilobase scale), we employ a 

Figure 12.2 Histograms of 5C counts Cij  associated with adjacent (i = j ± 1, 
green) and non-adjacent (i > j + 1, blue) restriction fragments within the 
Tsix/Xist domains. The arrow marks the median of non-adjacent counts.
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coarse-grained approach and describe it as a chain of beads on a string (see Figure 
12.3a). The position of each bead is identified by its Cartesian coordinates ri . The 
distance a r ri iº - +1  between consecutive beads is kept fixed and equal to the size 
of the experimental restriction fragment (in 5C) or bin (in Hi-C), expressed in 
kb. This is the most natural choice, as the model has the same resolution as the 
experimental data it aims at describing.

An important assumption that is implicitly made at this stage is that the linear 
density of the chromatin fiber is constant across the simulated region (i.e., all 
segments of a given number of kb display the same linear length). This is by no 
means obvious, as every bead represents a complex molecular system composed 
of DNA, nucleosomes, and DNA-binding proteins which can display differential 
internal rearrangements depending on the local abundance of histone modifica-
tions and the identity of the proteins bound to DNA. This assumption seems, 
however, to be reasonable in the case of the Tsix TAD (Giorgetti et al., 2016) 
where orthogonal experiments based on DNA FISH validated the conformations 
predicted by the model (see Section 12.4).

We will make no assumption initially on the numerical value of the base-
pair density, as in the simulations all lengths will be expressed in terms of the 
bead distance a. This value will rather be obtained a posteriori by comparing the 
results of the simulations with independent experiments based on DNA FISH 
(see Section 3.2).

12.2.3  Choice of interactions: general principles

The core of the modeling strategy consists in finding interaction potentials between 
beads such that the equilibrium contact map of the model is as close as possible to 
the experimental data. To this aim, we rely on the principle of maximum entropy 
(Jaynes, 1957), which states that in the least-biased model, the associated prob-
ability distribution maximizes Shannon’s entropy S P P P

ri[ ] º - { }S log  under 
the constraints

 P r r r pk i j ij
exp

rk
{ }( ) ( ) =

{ }∑ ∆ , ,  (12.2)

Figure 12.3 (a) Coarse-grained polymer model of the chromatin fiber. (b) The 
symmetrical square-well potential between beads. The interaction energy Bij  
can be either negative (attractive) or positive (repulsive). (c) The elementary 
moves of the Monte Carlo algorithm.
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i.e., that the average contact function matches the experimental data, and that the 
probability is normalized ( )S ri

P{ } =1 . In other words, the model that maximizes 
the entropy is the one that guarantees that the minimum amount of subjective 
information (on top of the experimental data) is provided. The constrained max-
imization of the entropy gives

 P r
Z

r rk ij i j
ij

{ }( ) = - ( )é
ëê

ù
ûúå1

exp l D , ,  (12.3)

where lij  are the Lagrange multipliers which, in principle, set the averages by 
¶ ¶ =log Z pij ij

exp/ l . However, this is a set of implicit equations involving the parti-
tion function, which is numerically intractable. A strategy to find the numerical 
values of the Lagrange multipliers is thus needed.

Together with Eq. (3), one can use the hypothesis that the polymer is at equi-
librium to write the probability distribution according to Boltzmann, i.e.,

 P r
Z

U r

kT
k

i{ }( ) = -
{ }( )é

ë
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ê

ù

û
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ú

1
exp ,  (12.4)

where k is the Boltzmann constant and T is the temperature of the system. 
Comparing Eqs. (3) and (4) one finds

 U r B r ri ij i j
ij

{ }( ) = ( )å D , ,  (12.5)

with B kTij ij= l . Thus, the interaction potential of the maximum-entropy model 
is the sum of contact functions, modulated by energy parameters, proportional 
to the Lagrange multipliers of Eq. (3), which need to be determined.

12.2.4  Choice of interactions: implementation

The maximum entropy principle suggests the functional form of the interaction 
potential (Eq. 5), but does not provide any hint on how to find its numerical 
parameters. It asserts that the functional form of the potential should be the same 
as the quantity ∆ij  that is averaged in the experiment. Although we do not know 
exactly the functional form of the contact function in a 5C/Hi-C experiment, it 
is reasonable to assume a simple, spherical-well potential as depicted in Figure 
12.3b, thus corresponding to a contact potential in the form

 B r r

r r R

B R r r R

r r R

ij i j

i j HC

ij HC i j

i j
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This choice introduces two further parameters, namely the hard-core radius RHC  
and the interaction range R. We will consider them as meta parameters, build 
a maximum-entropy model for each of them, and eventually select the model 
which returns the best agreement with the experimental data.
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In order to find the interaction matrix Bij , we use an iterative Monte Carlo 
(MC) scheme to optimize the c 2  between the experimental contact probabilities 
pij

exp  and those pij( )  that are back-calculated from the simulation as

 p r rij i jº ( )D , .  (12.7)

The c 2  is defined as

 c
s

2

2

2

2

1

3 4
=

-( ) -( )
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< -
åN N

p p

i j

ij ij
exp

ij

( )
,  (12.8)

where s ij  is the standard deviation of the normalized counts obtained from rep-
licate experiment, N is the length of the chain and only the pairs of beads sepa-
rated by at least two other beads are considered in the sum.

We start from an initial guess for the interaction matrix, namely

 B
p

p
j iij

ij
exp

ij
exp

= -
-

- -log log
1

3

2
,  (12.9)

corresponding to the hypothesis of independent contact formation, with an 
entropy term borrowed from an ideal chain. We then perform a MC simulation 
(Section. 3.1) at temperature T = 1, corresponding to the temperature of the exper-
iment in arbitrary units, recording the sampled conformations every nstr  step. 
The optimal choice of nstr  corresponds to the decorrelation time of the Markov 
chain generated by the Monte Carlo simulation; with the scheme described in 3.1 
it corresponds to nstr ≈ 5000. The initial c 2  is calculated by evaluating the pij  by 
Eq. (7) and inserting them into Eq. (8). In Eq. (9) we have also set the Boltzmann 
constant k equal to unity, thus, expressing temperature and energies in the same 
arbitrary units.

To optimize the interaction matrix Bij  so that the model reproduces the 
experimental contact probabilities, we perform a random minimization of c 2  by 
varying a random matrix element by a random value extracted from a Gaussian 
distribution centered on zero and with standard deviation sR , then recalculate 
the new c 2  and accept the change in Bij  only if c 2  is decreased.

To make this optimization efficient, we use a reweighing scheme (Figure 
12.4) similar to the one described in (Norgaard, Ferkinghoff-Borg, and Lindorff-
Larsen, 2008). After each change B Bij ij® ¢  in the interaction matrix, the new con-
tact probabilities are calculated by reweighing the conformations ri{ }  visited in 
the Monte Carlo simulation performed with the original interaction matrix Bij :

 ¢ =
¢

-( ) - ¢ +éë ùû
{ }
åp
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where the new partition function is evaluated as
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The random optimization procedure is repeated nro ~103  times, after which the con-
formations visited by the original Monte Carlo simulation are no longer representative 
of the equilibrium state of the new potential, and a new Monte Carlo sampling must 
is necessary. This procedure is repeated until the c 2  has converged to a minimum.

Note that no angular potential is added to the model; however, stiffness can 
emerge from the simulation through the appearance of attractive potentials Bij  
between near neighbors along the chain, if this is needed to satisfy the experi-
mental contacts.

12.3  THE MODEL AT WORK

12.3.1  The sampling algorithm

The sampling of the conformational space of the polymer model is performed 
with a Metropolis Monte Carlo algorithm (Metropolis et al., 1953). Although in 
principle one can use molecular dynamics simulations, provided that the contact 

Figure 12.4 Scheme of the iterative MC scheme for the optimization of inter-
action potentials. Adapted from (Giorgetti et al., 2014).
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function ∆ is approximated with a differentiable function, in our experience 
Monte Carlo simulations are more efficient for this specific problem.

We developed a Monte Carlo implementation which is suitable for studying 
coarse-grained models of most types of biopolymers (Tiana et al., 2014). The two 
types of elementary moves that are useful for chromatin models are random flips 
and random pivots (see Figure 12.3c), the frequency of the latter being 1/100 of 
that of the former.

For polymers of ~102  beads (corresponding to 300 kb, the size of the Tsix 
TAD), a reasonable degree of equilibration is obtained after 108  steps of the 
Monte Carlo algorithm, thus recording ~10 103 4-  conformations.

12.3.2  Finding the interaction matrix

In Figure 12.5 we show, as an example, the results of the optimization process 
applied to the 5C data from the Tsix TAD in mouse embryonic stem cells. Along 
the optimization process, the c 2  reaches a value of ≈ 10. Using lower-resolution 
Hi-C data it is easier to obtain c 2 1»  (Zhan, Giorgetti, and Tiana, 2017); in this 
case the simulation is stopped when the c 2  reaches 1, to avoid overfitting.

Multiple independent optimization runs converge to interaction matrices 
which are well correlated (cf. Figure 12.5c). This is not a trivial result, since the 
constrained entropy that is minimized by Eq. (3) is strictly convex (and thus 

Figure 12.5 (a) The c 2  between the 5C data of the Tsix domain and that back-
calculated from the model during the optimization procedure. (b) Comparison 
between the experimental 5C map and that back-calculated from the model. 
(c) Comparison between energy matrices obtained from independent optimi-
zations. (d) Dependence of c 2  on RHC  and R.
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guarantees a unique solution) only if the experimental data points Cij  are uncor-
related from each other (Pitera and Chodera, 2012). However, this is often not the 
case: for example, a polymeric effect, which assigns a large value to pi j, +1  if beads 
i and j interact strongly, causes correlations in the contact matrix.

The optimal value of c 2  obtained from the simulations depends on the choice 
of RHC  and R (see Figure 12.5d). For the model of the Tsix/Xist domains the 
lowest c 2  is obtained using R aHC = 0 6.  and R = 1.5a (where a is the distance 
between consecutive beads, which sets the length scale of the system). This result, 
obtained with a model in which beads correspond to 3 kb (corresponding to the 
experimental resolution), is not easy to extend to models with different bin-
ning size (e.g., to simulate Hi-C data), because a bin corresponds to a complex 
spatial arrangement of a flexible chain. The simplest approximation there is to 
assume the scaling law of an ideal chain; for Hi-C data with binning of 20 kb, for 
example, this leads to R a aHC = ( ) × =3 20 0 6 0 24

1 2/
. .  and R a a= ( ) × =3 20 1 5 0 6

1 2/
. .  

(Zhan, Giorgetti, and Tiana, 2017).

12.4  VALIDATION OF THE MODEL

In (Giorgetti et al., 2014), we validated the model by comparing its predictions to 
the results of independent experiments that were not used to train the model. The 
first validation was performed using 3D DNA with fluorescence in situ hybrid-
ization (3D DNA FISH) experiments in the Tsix TAD. In DNA FISH experi-
ments, specific locations on chromosomes can be directly visualized in the cell 
nucleus using a fluorescence microscope, by hybridizing fluorescent DNA probes 
to their complementary target genomic sequence. When two or more probes labeled 
with different fluorophores are used, it is possible to measure distances between 
genomic locations as well as their cell-to-cell distribution, which can be com-
pared with those predicted by the model.

Comparison between the predicted and the observed distance distributions 
from (Giorgetti et al., 2014) are displayed in Figure 12.6. It should be noted that 
several alternative (non-optimized) models can predict the average experimen-
tal distances between pairs of loci in the Tsix domain to a reasonable degree of 
approximation, including a set of models in which optimized interactions were 
randomly reshuffled. However, the full shape of the distribution is much more 
difficult to reproduce; for example, the p-value of the comparison between stan-
dard deviation in distances against randomly reshuffled models is < -10 3  com-
pared to p = 0.05 for the comparison of average distances (Giorgetti et al., 2014).

An interesting consequence of the comparison with FISH data is that it can 
define the numerical value of the length scale a. In fact, the comparison between 
calculated distance distributions (where lengths are expressed in units of a) and 
experimental distributions (where lengths are expressed in nm) requires the 
determination of the linear density of the fiber. This can in fact be extracted as the 
proportionality constant between the average predicted distances and the exper-
imental ones, which results in a = 53 nm every 3 kb. The hard-core radius return-
ing the best agreement with the contact probabilities was thus R aHC = =0 6 32.  
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nm, in agreement with the width of 30 nm observed in chromatin fibers in vitro 
(Bian and Belmont, 2012), but larger than what was observed in recent electron 
microscopy experiments in vivo (Ou et al., 2017). It should be noted, however, that 
a represents an effective fiber diameter including the size of proteins bound to 
DNA and does not necessarily only describe DNA wrapped around nucleosomes.

A further, important, level of validation consists of testing the effects of 
genomic deletions in the model and in experiments. in (Giorgetti et al., 2014), we 
verified that the model correctly predicts the change in distances between pairs 
of loci within the Tsix TAD when genomic sequences corresponding to CTCF 
sites were deleted in real cells. In this case, the interaction potentials that had 
been initially optimized in the wild-type contact map were used without further 
optimization. Only the beads corresponding to the experimental mutation were 
deleted in silico (Giorgetti et al., 2014).

We further produced virtual mutations of every single bead in the Tsix TAD 
model, in order to predict the effect of systematically deleting sequences of ≈3 
kb across the entire TAD. Importantly, deleting most beads leads to very little 
effects on the contact map, whereas deletion of a small number of them results 
in massive unfolding of the Tsix domain accompanied by increased interactions 
across the boundary with the neighboring Xist domain. These highly sensitive 
sites largely correlate with genomic locations bound by CTCF, which hinted at 
a fundamental role played by CTCF and its partner cohesin in establishing and 
maintaining TAD boundaries, which was later confirmed experimentally (Nora 
et al., 2017; Rao et al., 2017).

12.5  LESSONS WE LEARNED FROM THE MODEL

3C-based experiments provide information on the contact probabilities between 
chromosome loci, measured over a population of millions of cells. The model we 
described here essentially deconvolves single-cell conformations out of the pop-
ulation-averaged 3C-based data and can therefore give insights into otherwise 

Figure 12.6 Comparison between the distribution of distances measured 
using 3D DNA FISH with probes in the Tsix TAD and those predicted by the 
model.
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inaccessible quantities, such as the extent of fluctuations and correlations in chromo-
some structure, the size and shape of single TADs, and their dynamical properties.

12.5.1  Chromosome domains display large conformational 
fluctuations

Quantitative analysis of the ensembles of conformations obtained by the simula-
tion of TADs within the X inactivation center showed that the chromatin fiber 
fluctuates among very different (but not random) conformations (Tiana et al., 
2016). The structural similarity between pairs of equilibrium conformations can 
be quantified by the distance root mean square difference (dRMSD), defined as
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or by the fraction q of common contacts, defined as
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The distribution of both quantities displays a broad, unimodal peak at large values 
of dRMSD, qualitatively similar to that of a random globule of a homopolymer 
and not compatible with a picture in which there is a dominant conformation 
of the fiber and small thermal fluctuations around it. On the other hand, how-
ever, equilibrium ensembles of chromosomal domains obtained from 5C and 
Hi-C maps are very different from those of a random globule, which would dis-
play a uniform decrease of contact probability moving away from the diagonal. 
Therefore, chromosome domains at the sub-Mb scale seem to display a hybrid 
behavior in between a random chain and a structured polymer. Indeed, dRMSD 
clustering of single conformations at the Tsix locus results in two large clusters of 
conformations, containing either elongated or compactly folded conformations 
(Figure 12.7a). Importantly, the coexistence of extremely different types of con-
formations was confirmed in 3D DNA FISH experiments where the entire Tsix 
TAD was imaged using structured illumination microscopy, a super-resolution 
technique allowing the lateral resolution of ~100 nm (Figure 12.7b). Strikingly, 
different degrees of TAD compaction correlate with the level of gene expression at 
the level of single cells (Giorgetti et al., 2014), suggesting that structural fluctua-
tions could result in differential distances between promoters and their regulatory 
sequences within a single TAD, resulting in differential levels of transcription.

12.5.2  Size and shape of domains

Although the computational strategy described so far was initially based on 5C 
data, its technical implementation using Hi-C data is straightforward. Based on 
Hi-C data obtained in mouse embryonic stem cells (Giorgetti et al., 2016), we 
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modeled each of the ≈2500 TADs in the mouse genome (Zhan, Giorgetti, and 
Tiana, 2017). This led to the discovery of interesting trends at the genome-wide 
level. We found that the population-averaged gyration radius of single TADs 
scales as N1 2/ where N is its genomic length were similar to what was expected 
from ideal chains. This can be expected from the Flory theorem for segments 
embedded in a large globule. However, other properties depart from this sim-
plistic picture. First, the average number of intra-domain contacts scales linearly 
with N. Second, the degree of isotropy of the models is variable, not correlated 
with their mean size, and overall larger than what was expected for segments 
of a globule. Interestingly, many geometrical features of single TADs correlate 
with the expression level of the gees that they contain, with highly transcribed 
domains being overall more elongated than silent TADs (Zhan, Giorgetti, and 
Tiana, 2017).

Figure 12.7 (a) Clustering of conformations in the equilibrium ensemble 
obtained after the optimization of interaction potentials shows that chromo-
some conformation is highly variable within the Tsix TAD. (b) Super-resolution 
3D DNA FISH experiments confirm the presence of elongated and compact 
states at the same locus in single cells. Reproduced from (Giorgetti et al., 
2014).
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12.5.3  Correlations in contact formation

The equilibrium ensembles generated by the model can also be used to predict the 
probability that multiplets of genomic loci are found in contact with each other 
simultaneously (Zhan, Giorgetti, and Tiana, 2017). This is another information 
which cannot be directly extracted from the 5C/Hi-C matrix. We focused on trip-
lets of loci that are found in contact with each other significantly more often than 
what was expected from their pairwise contact probabilities. Operatively, defin-
ing with pijk  the equilibrium contact probability of the triplet calculated from the 
model, the excess colocalization probability is p p p p p p p pijk ijk ij jk ik kj ki ij

* º - + +( )/ 3,  
where pij  is the equilibrium contact probability of the pair. A triplet is defined as 
co-localizing if the associated pijk

*  displays a p-value lower than 5% in a negative 
control obtained reshuffling randomly the model interactions Bij .

Based on our simulations, the ≈2500 domains of mouse embryonic stem cells 
display a diverse number of co-localizing triplets, ranging from zero to ~103.  
This is a small number if compared to the total number of possible triplets 
~ / ! ~N 3 53 10  and, interestingly, does not correlate with the activity of genes 
in the domains. These triplets are, however, enriched in CTCF, suggesting 
that the molecular mechanism employed by this protein is not just dimeriza-
tion. Additionally, the statistical significance of triplets composed by three 
active promoters, as well as two active promoters and an enhancer is high, 
suggesting the sporadic occurrence of transient hubs containing multiple 
promoters and/or regulatory sequences. Interestingly, the triplet composed 
of the Xite/Chic1/Linx loci within the Tsix TAD belongs to those that are 
significantly colocalized, as previously observed experimentally [Giorgetti  
et al. (2014)].

12.5.4  Dynamical properties

Finally, the model can be used to predict the time-dependent dynamics of the 
chromatin fiber within single TADs. This task in principle presents two problems. 
First, the potentials in the model are step functions, and thus discontinuous. If 
this is not a problem for the Monte Carlo algorithm used to sample equilibrium 
conformations, it prevents the simulation of the dynamics of the polymer using, 
for example, Langevin equations. However, we have previously shown that a 
Monte Carlo algorithm can reproduce the correct dynamics of a system in the 
limit that its elementary moves are small (Tiana, Sutto, and Broglia, 2007). To 
comply with this requirement in the case of the polymer model of single TADs, 
only flips constrained to a width of 1 can be used as elementary moves of the 
polymer chain.

An additional problem is that the Monte Carlo algorithm does not provide 
an intrinsic time scale for the motion of the model, but measures time in terms 
of the number of steps of unknown time duration. We, however, got around this 
problem by equating the instantaneous diffusion coefficient of a monomer in the 
simulation with the experimental value that we measured in live-cell imaging of 
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the Chic1 locus within the Tsix TAD (Tiana et al., 2016). This resulted in 1 MC 
step = 0.015 s.

We then studied the time evolution of the Tsix TAD conformation by impos-
ing an initial conformation of the model polymer and simulating multiple time 
trajectories starting from the same conformation. Despite the fact that the 
dynamics take place in a high-dimensional space of coordinates that is difficult 
to visualize, it is possible to map it to a quantity q(t) ≡ q(r(t), r(0)) (Eq. 13) that 
measures the fraction of contacts which were present in the initial conforma-
tion and are maintained at time t. We found that the dynamics q(t) averaged 
over many replicated simulations starting from the same conformation is well 
described by the power law (Figure 12.8)

 q t t( ) -~ /a 2  (12.14)

with exponents α ranging from 0.5 to 1, depending on the initial conformation.
The power law behavior suggests that the system undergoes a sub-diffusive 

dynamic and does not have to cross large (i.e., � kT ) barriers along its trajec-
tory (this would result in an exponential decay). This can be easily understood 
considering the dynamics of the distance between pairs of loci. If the motion is 
purely diffusive, the distance ∆ri  between two loci would undergo diffusion, and 
the associated probability would be Gaussian,
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where Di  is the diffusion coefficient associated with the i th pair. The average 
fraction of maintained initial contacts is then

Figure 12.8 The dynamics of the model of a chromatin domain. Red dashed 
lines indicate power-law fits. In the inset, the distribution of exponents α of 
the fit.
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Where nc  is the number of contacts in the initial conformation, q c( )  is a func-
tion equal to 1 if condition c is true and 0 if it is false, and R is the interaction 
range of the potential. In the limit t R Di i� 2 min , this can be approximated as

 q t
n

R

D tc k k

( ) = ×å2

2

1
1 2 1 2 1 2p / / /( )

 (12.17)

implying an exponent 1/2 in Eq. (14).
If the loci are constrained by correlations imposed by the polymer, which 

however does not have to cross large energy barriers, a subdiffusive behavior is 
expected (Bouchaud and Georges, 1990), and Eq. (14) applies with α < 1. If, on 
the other hand, the initial conformation were separated from the rest of con-
formational space by energy barriers comparable to kT, the formation of each 
contact could be regarded as a two-state dynamics, controlled by the master 
equation

 dp

dt
u p t w p tk

k k k k= - ( )éë ùû - ( )1 ,  (12.18)

whose solution is

 p t A w u t Bk k k( ) = - +( )éë ùû +exp  (12.19)

and, thus, one would observe

 q t
n

w u t C
c k

k k( ) = - +( )éë ùû +å1
exp ,  (12.20)

where typically only the slowest exponential decay can be detected.
In principle, a non-exponential decay of q t( )  could be compatible with 

a glassy dynamic, namely the low-temperature behavior of a system with het-
erogeneous interactions. Typically, at low temperatures these systems display 
a small number (small with respect to the total number of allowed conforma-
tions) of populated thermodynamic states. In this case, depending on the details 
of the model, the dynamics can be described at low temperature by stretched 
exponentials (De Dominicis, Orland, and Lainee, 1985), logarithmic relaxation 
(Bryngelson and Wolynes, 1989; Shakhnovich and Gutin, 1989) or power laws 
(Koper and Hilhorst, 1987). However, this does not seem to be the case here, since 
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the equilibrium properties of our model of the chromatin fiber are different from 
those of a glassy phase (cf. Sect. 5.1).

Figure 12.8 shows that the order of magnitude of the time q t( )  needs to reach 
low values, i.e., the time it takes for the polymer to significantly move away from 
its initial conformation, is hundreds of minutes. This has important implications 
for transcriptional regulation, as it suggests that contacts between enhancers 
and their target genes within the same TAD could be lost and reformed multiple 
times within a single cell cycle, which lasts ≈ 16 h in mouse ESCs. This also 
implies that all contacts might appear and disappear dynamically, thus giving 
rise to the observed structural variability within a cell population.

12.6  CONCLUSIONS AND OUTLOOK

Our strategy for modeling chromosome structure using equilibrium polymer 
models has been instrumental in obtaining the first fundamental insights into 
the extent of cell-to-cell variability in chromosome conformation at the scale 
of TADs. Complemented with single-cell RNA and DNA FISH experiments, 
this led to the discovery that transcriptional fluctuations at the Tsix locus  
are coupled to structural fluctuations, possibly as a consequence of alter-
native spatial arrangements of genes and enhancers within the Tsix TAD. 
Despite the intense research efforts in the field, a few years later we still ignore  
the timescales over which such structural fluctuations are established. Many 
fundamental questions remain to be addressed, such as: How dynamic is chro-
mosome conformation at the level of TADs and their sub-structures? How 
is the structural dynamics related to enhancer–promoter interaction frequen-
cies? Do cell-to-cell and temporal variability in enhancer–promoter distances 
control transcription levels and heterogeneity, and if so, to what extent? Our 
model of the Tsix TAD, coupled with live-cell imaging of one genomic location 
within the same TAD, predicts that enhancer/promoter interactions dynami-
cally assemble and disassemble several times during a cell cycle, with impor-
tant implications for transcriptional regulation. Live-cell imaging experiments 
visualizing two or more loci within the TAD simultaneously would provide a 
much-needed test for this prediction. The recent revolution in genome edit-
ing technologies (notably spearheaded by the CRISPR/Cas9 approach) has 
brought the goal of imaging chromatin motion as well as RNA production in 
multiple colors simultaneously one step closer. Being able to evaluate if the 
structural dynamics in single cells reflects the predictions of our model will 
be an important test not only for our computational strategy, but more gener-
ally for the entire class of equilibrium polymer models based on population-
averaged, crosslinking-based datasets.
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13.1  INTRODUCTION

Francis Crick famously advised biologists that if they wanted to understand 
biological function, they should first study biological structure. Doubtless, he 
came to this piece of wisdom from his early work with Watson that proposed the 
double helical structure of DNA whose beautiful symmetry by itself provided an 
explanation for heredity.

Crick’s insight powered molecular biology for more than half a century. It has, 
nevertheless, been hard to strictly follow his advice on studying biology at the scale 
of chromosomes in living cells. The bottom-up viewpoint that gets at structure 
by starting from interatomic forces, which was partially employed by Crick and 
Watson for the DNA molecule, has an enormous range to cover to get all the way to 
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the chromosome, from the nanometer scale of proteins to the meter. Whether the 
kind of symmetry considerations Watson and Crick employed so successfully in 
postulating the double-helix play any role at the cellular scale has also been unclear, 
aesthetic considerations aside. At the same time, the strict top-down approach, of 
just looking at chromosomes, is only just now starting to bear fruit, powered by 
recent advances in super-resolution microscopy techniques. Unlike the bottom-up 
approach based on forces, in any case, our yearning for an “explanation” of the 
structure would remain unsatisfied by mere observation, no matter how detailed. 

In this chapter, we argue that the energy landscape theory, which has proven 
useful in understanding protein folding (Bryngelson, et al. 1995; Wolynes, 2015), 
provides a powerful bridge between the top-down and bottom-up perspectives 
when thinking about chromosome structure and function. In our view, there 
are many features of the energy landscape theory that recommend this method 
of attack. First, the energy landscape theory starts by acknowledging that all 
biomolecular constructs, not just large ones such as the chromosome, dynami-
cally sample many structures. Sometimes, the range of structural variation is 
very small, so that a single snapshot does give a clear idea of what the molecule is 
doing, as it did for the DNA double-helix. That situation, arising from a funneled 
energy landscape, characterizes the smaller well-folded proteins, at least if you 
do not look too closely. But even proteins, as they function, often must depart 
far from the single snapshot view – they vibrate, crack, and locally disorder to 
carry out their responsibilities. When there are many structures, the statistical 
mechanical description employed by energy landscape comes to the fore by offer-
ing mathematical descriptions of the ensemble of structures through first quanti-
fying the energetics and then simulating them by using coarse-grained force fields 
that can be employed at various length scales, ad libitum. The energy landscape 
theory can also quantify the extent of ordering and symmetry of the ensemble by 
employing statistical mechanical order parameters. Smaller biomolecular con-
structs are so battered by thermal motions that they remain mechanically near to 
equilibrium. For such systems near to thermal equilibrium, the energy landscape 
theory also provides a rigorous connection between dynamical pathways and 
thermodynamics. The rigor of this connection between kinetics and the land-
scape will break down, however, for the largest systems, where dynamical flows 
that violate detailed balance come into play (Wang, 2015). Certainly, some of the 
events in the cell’s life history that set up chromosome structure during replica-
tion are such far-from-equilibrium processes. Nevertheless, we believe that much 
of the structure does not require very large-scale motions so that it is helpful to 
explore how far a quasi-equilibrium picture of chromosome structure formation 
and dynamics can be taken using an effective energy landscape. (We endorse in 
this way the viewpoint of Weiskopf about theory in the field of nuclear physics 
in the 1950’s: Theories are like Austrian railway timetables before World War 
II. The timetables were not completely correct, but without them how would we 
have known how late the trains were?) In this spirit, the present chapter out-
lines the first steps we have undertaken to apply the energy landscape theory 
to the study of chromosomes. We have taken a top-down approach by starting 
from experimental structural data that are themselves highly coarse-grained. 
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Employing a maximum entropy Bayesian approach, we have used Hi-C data to 
construct coarse-grained energy landscapes for chromosomes. These experi-
mentally informed landscapes, whatever their mechanistic limitations, essen-
tially all reproduce the detailed information about the contacts between different 
genomic segments that has so far been provided by Hi-C. At the same time, sim-
ulation of these landscapes reproduces the results from independent experimen-
tal techniques as well, even though the data these provide were not used to build 
the landscape itself. The Hi-C crosslinking experiment gives information similar 
to that obtained for proteins using fluorescence resonance energy transfer and 
NMR spectroscopy. These experiments all measure the probability of forming 
specific physical contacts between locations on a chain molecule. By faithfully 
inverting these experimental data, the effective energy landscape characterizes, 
as well as we can, chromosome structures without introducing any other dynam-
ical assumptions. Simulation of the landscape for the interphase chromosome 
shows the chromosome at interphase to be globally disordered but indicates that 
it does have a fluctuating order on moderate length scales (Zhang and Wolynes 
2015). It is likely these locally ordered regions, by opening and closing, can act 
as structural switches for gene expression. In contrast, the landscape inferred for 
the mitotic chromosome when simulated gives rise to a globally ordered macro-
scopic structure with a beautiful hierarchical symmetry (Zhang and Wolynes 
2016). The study of these effective energy landscapes that faithfully reflect the 
experimental data alone suggested to us a far simpler description of the landscape 
that is transferable from one chromosome to another, and from type to another. 
In other words, the principles learned using the energy landscape theory allow 
the construction of a force field that predicts detailed Hi-C data for many distinct 
human chromosomes, using epigenetic marks found through binding assays  
(Di Pierro, et al. 2017). 

13.2  MAXIMUM ENTROPY PRINCIPLE AS A GENERAL 
FRAMEWORK FOR DATA-DRIVEN THEORIES

The use of Bayesian analysis and information theory to describe natural systems 
has a fraught philosophical history. 

While some argue that information theory is logically prior to physics, many 
others (including, quite frankly, some of the present authors) would hold that 
physics is prior to information theory. For natural systems, we must first under-
stand what constraints are so solidly settled in physics that they can be assumed 
to be given a priori. For bio-molecular problems, we would often seem safe in 
assuming that chain molecules remain connected and, therefore, have a fixed 
definite sequence. Even this assumption is not ironclad for the chromosome, 
because, during their life history, chromosomes can undergo recombination 
events. Likewise, we might regard it as trivially obvious that DNA molecules can-
not lie on top of each other, because of excluded volume. Again, this constraint is 
generally valid, but topoisomerases do allow transient overlaps between chains to 
occur. Finally, do we believe that most of the degrees of freedom of the chromo-
some will be thoroughly “stirred” by thermal and biological motions? Whether 
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the strong stirring motions assumption is true is quite unclear. Turbulence pro-
vides a clear caution to assuming that stirring always leads to a quasi-equilib-
rium state: vigorously stirring three-dimensional fluids, concentrates the kinetic 
energy in special modes so that the equipartition principle of indifference to 
where the energy is shared is strongly violated (Lee, 1952). 

With all these caveats in mind, we believe it still makes sense to apply Bayesian 
arguments to chromosome structures by assuming that, besides the weak con-
straints just mentioned, the ensemble of structures resembles a Boltzmann ensem-
ble for a chain molecule moving on some coarse-grained free energy surface.

In order to use the Maximum Entropy Principle of information theory to 
build an energy landscape for chromatin, we start from the landscape associated 
with a generic polymer with weak excluded volume and then introduce informa-
tion specific to chromosomes as it emerges from experimental evidence present 
in the literature. 

The starting point describes a homo-polymer with a potential U rHP
�( ), which 

encodes the reliable a priori knowledge. This potential includes soft-core interac-
tions and energies for bonds and angles energies. Additional features must be 
added to this potential so that the sequence-specific experimental data for a chro-
mosome can be fit. The total potential characterizing the ensemble is then U r

�( ). 
Using this model we can write the canonical average for a generic function j

�
r( ) 

representing an experimental observable with the relation:
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Setting each one of these quantities equal to zero provides the maximum entropy 
solution; the first equation ensures that the probability will be normalized, the 
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second fixes the average potential energy E0  and the last n equations ensure that 
the expectation values from the maximum entropy ensemble and the experimen-
tally measured values coincide for each one of the considered observables.

To find the probability density p ME r
�( )  we need to maximize the information 

entropy 

 S r r drME ME= - ( ) ( )( )òp p
� � �

ln  

subject to the input data constraints. This approach is based on the fact that a 
constrained maximization of the entropy is tantamount to minimizing the infor-
mation built into the distribution, other than what is contained in the constraints 
themselves and our a priori notions about chain connectivity, etc.

Using Lagrange multipliers to perform the constrained maximization yields 
the following extremum condition 
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which in turn leads to the probability distribution
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Renaming the parameter l1  to the familiar name of β, thus, setting the energy 
scale, we see that the potential energy function associated with the maximum 
entropy probability then takes the form: 
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The last step needed before obtaining the least biased data-driven energy func-
tion is to adjust the parameters li  so that the energy scale is set and expectation 
values of the observables are made to coincide with their experimental values in 
the canonical ensemble: 
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To carry out the fitting we can define a convex objective function θ as

 q l l b l j
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The partial derivatives of this objective function are 
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It is easy to see that once all the constraint equations j j
li i
�

*
exp=  are satisfied for 

a certain parameter vector 
�
l*  then the target function has achieved a stationary 

value. There is, however, no guarantee that a unique stationary solution exists. 
To find the solution iteratively, we can calculate the Hessian matrix of second 
derivatives of the target function: 
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This matrix is positive semi-definite; as a result, if a stationary point exists then 
it is a minimum. 

It is easy to find the optimal set of parameters 
�
l*  numerically, then, by using 

Newton’s method. This procedure involves iterating the following scheme over l

 l l l ll l l lB g+ -= - ( ) ( )1 1   

until the parameter set { }ll  converges adequately.

13.3  INTERPRETING DNA–DNA LIGATION ASSAYS AND 
DECODING THE STRUCTURE OF CHROMOSOMES

We see that by assuming that the set of chromosome structures from a popu-
lation of cells can be described by a quasi-Boltzmann distribution, we can use 
experimental structural data, even if highly averaged and incomplete, to derive 
an effective energy landscape for chromosomes. DNA–DNA ligation assays, for 
example, Hi-C (Lieberman-Aiden, et al. 2009), offer the largest data sets on how 
the structure correlates with genomic location. Therefore, Hi-C data represent 
very promising experimental constraints for the determination of the structural 
ensembles of chromosomes. Genome-wide ligation assays measure the frequency 
at which any given pair of genomic segments in the chromosomes comes into 
close spatial proximity inside the nucleus. Chromosomes are first crosslinked 
using formaldehyde to freeze interactions between loci. Subsequently, the DNA 
is cut into fragments using restriction enzymes. A ligase is then used to randomly 
ligate DNA at a low concentration so that ligation between crosslinked fragments 
is favored in comparison to freely floating fragments. The ligated interacting loci 
are then amplified by polymerase chain reaction, sequenced, and their number 
quantified. 
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For the interpretation of Hi-C experiments and for defining the mathematical 
constraints that go along with these chemically complex experiments it seems 
that the probability of crosslinking should be the key phase space observable. 
Little is known about the precise functional relationship between crosslinking 
probability and geometric distances in the original DNA. Rigorously inferring 
this relationship between geometry and chemistry would depend on multiple 
factors related to the experimental set-up and the reagents. Everything is further 
complicated by the coarse-grained nature of both the data and the correspond-
ing polymer model, which we have defined in the previous section as the tabula 
rasa. It is, however, safe to assume that the probability for a crosslinking event 
to take place between two loci i and j is a decreasing function of their geometric 
distance rij .

We postulate that the probability of crosslinking can be approximated by the 
function 

 f r r rij c ij( ) = + -( )éë ùû( )1

2
1 tanh m  

This functional form is a switch function; at a short distance, the probability of 
crosslinking is close to unity (sure event) while at a long distance the probabil-
ity of a crosslinking event is zero. Such a shape for the probability is consistent 
with the fact that crosslinking is only possible in case of physical proximity. The 
normalization of f, as well as the parameter µ, may depend not only on the experi-
mental protocol but also through chemistry on the sequence. We assume the 
sequence effects have been normalized properly.

Typically, DNA–DNA ligation assays collect crosslinking events over a set of 
many cells. The sampling of the crosslinking probability is therefore averaged 
over a set of different chromosome conformations to produce the measured 
probabilities:
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where we have used the canonical ensemble and where b =1/ k TB , 
�
r  is the vector 

characterizing the positions in Cartesian space of all the loci in the chromosome, 
U r
�( )  is the potential energy of the system that is found using the maximum 

entropy principle.
The most general energy function consistent with the experimental knowl-

edge turns out to be then: 
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As we have discussed, the remaining step in determining the energy func-
tion above is to learn the optimal set of parameters by iterating the scheme 
described before until the simulated and experimental contact probabilities 
agree to a desired accuracy. This procedure for learning an effective potential 
from structural data has strong analogies to how optimal statistical potentials 
are determined from databases of protein structures using Z-score optimization 
(Goldstein, et al. 1992), an approach already motivated by the energy landscape 
theory. 

Once the energy function has been properly inferred from the experimen-
tal data, molecular dynamics simulations enable the study of the structure and 
dynamics of the chromosome in full three-dimensional detail. These simulations 
have led to results that are not at all obvious just by inspecting the two-dimen-
sional data sets obtained from the ligation assays themselves. 

In carrying out simulations, it is not obvious how to find the equilibrium 
properties of our data-driven energy function since long molecules move very 
slowly and if there is strong excluded volume, they also can entangle with them-
selves. We note that chromatin in vivo can overcome topological constraints, and 
the extent to which this entangling can occur will influence the conformational 
ensemble of the chromatin polymer. Inside the cell, equilibrium is encouraged by 
the activity of topoisomerases, which are enzymes that cut DNA so to change its 
topology. These enzymes, which are absolutely needed for replication, are gener-
ally present in the cell nucleus. To mimic their effect, equilibrium is achieved 
in simulations by allowing the chromatin polymer to occasionally cross its own 
chains; that is, in the tabula rasa model one uses relatively “soft” repulsive inter-
actions that allow an overlap with only a small energy penalty, enough to keep 
particles from remaining for a long time on top of each other but nevertheless 
weak enough to allow the chains to pass through each other. 

The analysis of the three-dimensional configurations sampled by simulating 
the interphase energy landscape has revealed many interesting features that are 
by no means immediately evident in the two-dimensional input data. Interphase 
chromosomes simulated with the landscape model turn out to be mostly unknot-
ted, having at most a trefoil knot, while an equilibrated chain with a trivial energy 
landscape should contain many quite complex knots. In the data-driven energy 
landscape, the chain becomes locally more rigid than in the tabula rasa model, 
thus, preventing the formation of knots (Figure 13.1). Such rigidity appears to 
arise from the chain coiling upon itself, forming structures that resemble a new 
level of supercoiling beyond that which is familiar at the DNA level. While inter-
phase chromosomes are disordered at a global scale, sampling many structures, 
it is possible to study the dominant local structure in chromosomes. These local 
minimum energy structures can be found by reducing the effective temperature 
of the Boltzmann distribution. At length scales shorter than a megabase, these 
quenched structures resemble those sampled at a higher temperature; but on 
larger length scales, differences arise because at high temperature order is lost 
through fluctuations between ordered and disordered local states. 

Some topologically associated domains (TADs) display distinctly two-state-
like free energy profiles, reminiscent of the folding-unfolding transitions in small 
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proteins. The local free energy landscape of each of the TADs varies along the 
genome sequence. The free energy profiles for some TADs are much more clearly 
bistable than the profiles for other regions. These activated transitions between 
folded (closed) and unfolded (open) TADs suggest a possible mechanism for tem-
porally modulating or controlling distal interactions in gene transcription. 

The energy landscape for chromatin exhibits a structural complexity that 
reflects its biological heterogeneity as well as possibly experimental error. A sim-
pler description of the typical local order in chromosomes can be found by aver-
aging over different regions, so as to create an “ideal” chromosome landscape. 
The resulting model then describes a uniformly self-interacting chromosome 
that has an energy function that is invariant to translation along the sequence. 
The quenched structures of the ideal chromosome energy landscape resemble 
those formed from the complete data-driven landscape locally but are more  
simply patterned. Strikingly, on the global scale, the quenched ideal chromo-
some displayed a regular hierarchically layered fiber of fibers resembling the  
familiar metaphase chromosome as visualized in the light microscope  
(Kireeva, et al. 2004). In some sense, this is expected for any sequence translation 
invariant Hamiltonian as a mathematical consequence of sequence translation 
symmetry. It is interesting that Crick postulated such a structure for the chro-
mosome based on symmetry and some nuclear digestion experiments decades 

Figure 13.1 (A) Chromosome 2 of human lymphoblastoid cells (GM12878) is 
modeled as a sequence of discrete chromatin types, similar to a sequence of 
amino acids for a protein. (B) Given such a sequence, the Minimal Chromatin 
Model (Di Pierro, et al. 2016) can be used to generate an ensemble of 3D 
conformations. (C) The simulated ensemble (top right triangle) reproduces the 
compartmentalization patterns observed in Hi-C experiments (bottom left 
triangle from (Rao, et al. 2014)). (D) The complexity of the knots in the chromo-
some is studied by calculating the minimal rope length associated with each 
polymer conformation by the algorithm Shrink-On-No-Overlap (Pieranski, 
1998) The chromosomes simulated with MiChroM have significantly fewer 
knots (red histogram) than a control model constituted by a typical random 
homo-polymer (blue histogram). The most common knot in the MiChroM chro-
mosome is the trefoil knot (31 corresponding to a minimal rope length of 16.33 
(Pieranski, 1998)) and the vast majority of the conformations contain knots 
simpler than a 71, corresponding to a minimal rope length of 30.70 (Pieranski, 
1998).
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ago (Bak, et al. 1977). Apparently, the metaphase and replication are governed by 
symmetry principles. 

When we used the maximum entropy strategy to invert Hi-C data that are 
directly obtained for the metaphase chromosome itself we do indeed find struc-
tures that resemble the quenched ideal chromosome. The mitotic chromosome 
as determined by the experimentally informed landscape is not a crystal, but 
is clearly an anisotropic liquid crystal that breaks rotational symmetry to form 
a cylinder (Figure 13.2). It is also chiral. This breaking of symmetry predicted 
analyzing the energy landscape of mitotic chromosomes has been also seen in 
microscopic studies of sister chromatids, which are mirror image pairs directly 
after the genome is duplicated (Delatour and Laemmli, 1988). 

The success obtained by the data-driven energy landscapes and the resulting 
symmetry ideas open the way to the possibility of specifying a transferable force 
field describing the physical principles behind chromatin folding. The ideal chro-
mosome landscape encodes the symmetry principles by capturing the generic 
tendency of chromatin to order locally like liquid crystals. 

Figure 13.2 (A) The chromosomal structure formed at a low information theo-
retic temperature by the Ideal Chromosome. The Ideal Chromosome potential 
was obtained in this case from the direct inversion of metaphase DNA–DNA 
ligation assays. (B) A structure obtained by the direct inversion of contact 
maps from a mitotic chromosome. Like that of the quenched ideal chromo-
some, the super-helical structure is evident. (C) Coarse-grained representa-
tion of the structure in panel B. We see that chiral symmetry is spontaneously 
broken: the mitotic chromosome possesses handedness.
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13.4  LEARNING THE PRINCIPLES OF CHROMATIN 
FOLDING: THE MINIMAL CHROMATIN MODEL

In this section, we describe a physical theory motivated by symmetry princi-
ples that explains how local interactions between genomic loci can lead to the 
conformations of human chromosomes in interphase. This theoretical energy 
landscape model for chromatin folding has been called the Minimal Chromatin 
Model (MiChroM) (Di Pierro, et al. 2016) to highlight the intent to include in 
the model as little detailed sequence information as possible. The MiChroM 
energy function again relies on the maximum entropy principle to parameterize 
the structural consequences of biochemical interactions between DNA and the 
nuclear proteome, as discussed below in detail. The MiChroM approach assumes 
that chromosomes fold under the action of a cloud of proteins each of which 
binds to DNA with a different selectivity and can mediate DNA–DNA interac-
tions; any physical process involved in chromatin folding is assumed to oper-
ate through such protein-mediated contact interactions. Importantly, the free 
energy landscape approach is able to model the structural effect of biochemi-
cal interactions even though the precise identity of the interacting biomolecules 
remains unknown. 

The first assumption made about the nature of the biochemical interactions 
between DNA and proteins is that the genome can be partitioned into intervals 
where only one of a few “types” of chromatin is found. Each type of chromatin 
we assume is marked by some characteristic histone modifications and inter-
acts with a characteristic combination of nuclear proteins. As a result, when 
two segments of chromatin come into contact, the effective free energy change 
due to this contact depends, at first order, on the chromatin type assigned to 
each segment. This assumption is supported by both biochemical and structural 
data. For instance, the binding patterns of nuclear proteins have revealed five 
distinct types of chromatin in Drosophila cells (Filion, et al. 2010). Similarly, 
high-resolution contact mapping experiments (Hi-C) have revealed that, glob-
ally, human chromatin is indeed segregated into compartments. Analysis of early 
Hi-C experiments revealed that loci typically exhibited one of two long-range 
contact patterns, a finding that was initially interpreted as there being two spa-
tial neighborhoods, dubbed the A and B compartments (Lieberman-Aiden, et al. 
2009). More recently, higher resolution experiments indicate the presence of six  
distinct interaction patterns, corresponding then to six sub-compartments (A1, A2, 
B1, B2, B3, and B4) in human lymphoblastoid cells (GM12878) (Rao, et al. 2014). 
A similar compartmentalization of the genome has been observed in many 
organisms [including mouse (Dixon, et al. 2012; Rao, et al. 2014) and Drosophila 
(Sexton, et al. 2012; Eagen, et al. 2015; Li, et al. 2017)], and has been confirmed by 
microscopy (Wang, et al. 2016). Crucially, the contact patterns seen at any given 
locus are cell type–specific and are strongly associated with particular chromatin 
marks. MiChroM postulates that the contact patterns seen in DNA–DNA liga-
tion assays are the result of a process of some sort of phase separation in which 
chromatin with similar biochemical properties coalesce together in the nucleus. 
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In the full MiChroM model, it is also assumed that certain specific pairs of 
loci bind together to form particularly frequent contacts. In high-resolution Hi-C 
maps of the human genome, these strong contacts are visible as fairly distinct 
local peaks in the contact probability (Rao, et al. 2014). The majority of these 
contacts are intra-chromosomal and are associated with the presence of CCCTC-
binding factor (CTCF) and the cohesin protein complex; these contacts have 
been usually called “loops” in the literature. It must be noted, however, that some 
strong intra-chromosomal contacts also exist in absence of CTCF or cohesin. 
Recently, it has been suggested that some strong inter-chromosomal contacts are 
also associated with the presence of super-enhancers and bound transcription 
factors (Rao, et al. 2017); contacts of this sort have been referred as “links”. In a 
far-from-equilibrium process, it is thought that cohesin forms loops by extrud-
ing DNA through its ring (Nasmyth, 2001; Alipour and Marko 2012; Sanborn, 
et al. 2015; Fudenberg, et al. 2016), while the protein CTCF acts to control the 
extrusion by marking the loci at which it should stop (Rao, et al. 2014). Loops 
associated with the presence of CTCFs typically enclose a few hundred kilobases 
of DNA. There is evidence that such structures are involved in diverse regulatory 
functions, including activation, repression, and insulation (Phillips and Corces, 
2009). MiChroM makes no assumption about the particular mechanism of loop 
formation and any non-equilibrium aspect is thought to still be describable as a 
very strong constraining potential. The tendency of chromatin to form particu-
larly long-lived contacts at special loci along the genome is encoded in the model 
as a change in the effective free energy of a chromatin configuration when the 
two loci anchoring a loop are in contact. 

MiChroM embraces the idea of there being an ideal chromosome potential by 
assuming that every time any pair of loci comes into contact, whatever their type, 
there is a gain/loss of effective free energy and that this contact energy depends 
on the genomic distance between the two loci. As already stressed, the ideal chro-
mosome potential describes the local structure of chromatin in the absence of 
compartmentalization. This last physical assumption is supported by the wide-
spread evidence that chromatin often behaves like a liquid crystal (Boy de la Tour 
and Laemmli, 1988; Naumova, et al. 2013), and is consistent with the existence of 
some sort of higher-order fiber in chromatin (Maeshima, et al. 2010; Grigoryev, 
et al. 2016), although the idea behind it is more general. 

The energy terms reflecting the three physical assumptions explained above 
are themselves directly related to three collective phase-space observables, which 
can be defined using the input probability of crosslinking. One of these collective 
variables is the average number of crosslinks between two chromatin structural 
types k and l; this quantity for a chromosome configuration 
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The expectation value of Tkl  is a proxy for the energy associated with kl-type 
contacts. Therefore, constraining Tkl  to its experimental value is similar to con-
straining the effective contact energy between types to an appropriate value. 
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Another relevant collective variable is the total number of crosslinking events 
between loci that are known to form a loop. This quantity is

 L r f rij

i j
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,  Loops Sites

  

This quantity determines the looping energy. The number of contacts that occur 
for each fixed genomic distance* d:
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constrains the ideal chromosome energy terms. We can now constrain the expec-
tation value of the phase-space observables defined above to their experimentally 
determined values extracted from the DNA–DNA ligation assays. This results in 
three classes of constraints that capture the assumptions made about the process 
of chromatin folding.
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The constraints above define the maximum entropy probability distribution and 
the MiChroM energy function:
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The potential energy is composed of 4 terms: the initial homo-polymer potential, 
type-to-type interactions, loop interactions, and an ideal chromosome term. The 
first three terms in the energy function depend only on Cartesian distance while 

* If we label loci of size ∆d in a chromosome by using an increasing integer index i then 

the distance between a locus i and a locus j is represented by d = j – i in units ∆d. 
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the last term depends both on Cartesian and genomic distance. All terms only act 
through direct physical contact, a very appealing feature that is consistent both 
with the idea that chromosome organization arises from the differential binding 
of proteins on chromatin and with the fact that crosslinking can only act at short 
range in space.

In developing the MiChroM model the Lagrange multipliers α’s, χ, and γ’s, 
were determined using Newton’s iteration method to adjust the parameter set to 
reproduce as well as possible the collective observables for the Hi-C map of chro-
mosome 10 of GM12878 cells (Rao, et al. 2014). Chromosome 10, which is 136 
Mbp long, was modeled as a polymer containing 2,712 monomers, each repre-
senting 50 kb of DNA. The compartment annotations from Hi-C maps were used 
to assign to each monomer a corresponding chromatin type. Similarly, the posi-
tions of loops between pairs of monomers were extracted from the same Hi-C 
maps in an automated way (Rao, et al. 2014). 

The final MiChroM energy function contains just 27 parameters to specify the 
entire chromatin map, which contains much more information. Once this func-
tion has been learned using data from one chromosome, it is possible to perform 
molecular dynamics simulations of chromatin using the classification of loci 
into chromatin types and the location of loops as input; a procedure comparable 
to simulating protein folding using an amino acid sequence and disulfide bond 
positions as input. 

The fitted structural ensemble of chromosome 10 found with the MiChroM 
energy function closely reproduces the experimental data sets. Apparently, the 
minimal amount of information introduced in the model (much less than in the 
full inversion that we discussed in the previous section) is sufficient to character-
ize adequately the current data sets. Additionally, the simple physical processes 
that were postulated seem to be sufficient to reproduce the complexity of genome 
organization of the single chromosome 10 with today’s experimental accuracy. 
The contact map obtained from simulations is extremely well correlated to the 
experimental contact map (Pearson’s r = 0.95). The correspondence of the “check-
erboard” patterns that were previously attributed to compartmentalization is 
visually obvious. The scaling relationship between the probability of forming 
contacts and genomic distance, which was often used to justify the non-equilib-
rium fractal globule model, is also reproduced with great accuracy by this effec-
tive equilibrium model. In general, all features reasonably larger than the 50 kb 
resolution of the model are correctly recapitulated by MiChroM. 

Without any further modification, once having been trained only on chromo-
some 10, the MiChroM energy landscape was able to predict the conformational 
ensembles of all the remaining autosomes of the same cell line (GM12878). Using 
the experimental input of the monomer type sequences and the loop annotations, 
the model produced chromosomal structural ensembles that were again consis-
tent with the experimental contact maps of every chromosome studied. Notably, 
for all these chromosomes, none of which was ever used in the training phase, 
the correlation between simulation and experiment was as good as for the train-
ing chromosome (typically Pearson’s r ≥ 0.95). The transferability of the effective 
energy function clearly highlights the effectiveness of the assumptions made and, 
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more broadly, suggests that the physical mechanisms encoded in MiChroM pro-
vide an appropriate physical basis for chromatin folding. 

The conformational ensembles of the chromosomes display compact chromo-
somal territories. The phase separation of the chromatin types is evident in the 
sampled ensembles; similarly, highly expressed genes tend to co-localize. In sim-
ulations, segments of chromatin belonging to the same structural type segregate 
forming liquid droplets, which rearrange dynamically by splitting and fusing. 
This simple process of phase separation is then sufficient to explain the emer-
gence of the patterns of compartmentalization observed in DNA–DNA ligation 
assays and microscopy experiments. Interestingly, in the simulations, A-type 
chromatin tends to be less densely packed and lies preferably at the periphery of 
the chromosomal territory. This observation is consistent with previous findings 
using both microscopy and Hi-C (Hubner and Spector, 2010; Rao, et al. 2014; 
Boettiger, et al. 2016).

Like the structures formed from the complete Hi-C data inversion, MiChroM 
chromosomal conformations turn out to be largely devoid of knots. This topolog-
ical feature follows directly from the quasi-equilibrium energy landscape based 
on the experimental ligation assay data. If unusual far-from-equilibrium physics 
is required to prevent knot formation it is somehow mimicked quite well by an 
energy landscape. Remarkably, the simple equilibrium mechanism underlying 
the energy landscape approach produces ensembles of structures that are almost 
knot-free, even though topoisomerases in the nucleus (and the weak excluded 
volume in simulations) allow topology changes. 

When simulating multiple chromosomes, despite the existence of extensive 
contacts, the polymers occupy non-overlapping regions of space. The phase sepa-
ration of chromatin types now extends across these chromosomal territories. The 
intra- and inter-chromosomal patterns of interaction are still correctly sampled, 
suggesting that MiChroM may encode correlations beyond the single chromo-
some scale and might be applicable to study features of the nucleus as a whole.

The Minimal Chromatin Model assumes that chromosomes fold through pro-
tein-mediated contact interactions and offers a simple strategy for recapitulating 
the energy landscape created by such interactions. This model forms transient 
contacts rather than permanent ones, which is consistent with the fact that most 
of the experimentally observed contacts between two genetic loci only occur in a 
small fraction of cells at a given time (Lieberman-Aiden, et al. 2009; Bantignies, 
et al. 2011). In humans, a handful of chromatin structural types define a sequence 
that encodes the energy landscape of chromosomes; knowledge of this sequence 
is sufficient to predict the arrangement of interphase DNA in vivo. The MiChroM 
Hamiltonian can reliably be transferred from one chromosome to other chromo-
somes; suggesting the plausibility of the proposed energetic mechanism, even if 
the underlying biochemical details are presently unclear. 

The classification of loci into chromatin types and the positions of specific 
chromatin loops, which are inputs to MiChroM, was initially extracted from the 
Hi-C data; this input is however strongly associated with epigenetic features (his-
tone modifications and bound CTCF motifs in convergent orientation) that can 
be directly and inexpensively assayed by ChIP sequencing. In the next section, 
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we explain how it is possible to exploit these associations along with MiChroM 
to predict in silico the three-dimensional structure of whole genomes starting 
from one-dimensional genomics data, which are often already publicly available 
(Figure 13.3).

13.5  BREAKING THE CODE OF CHROMATIN FOLDING: 
USING MACHINE LEARNING TO UNRAVEL THE 
RELATIONSHIP BETWEEN EPIGENETICS AND 
GENOME ARCHITECTURE

Hi-C studies (Rao, et al. 2014) of human chromosomes show that the presence of 
certain biomarkers located at a chromatin locus, such as histone tail methylation 
or acetylation, correlates well with which compartment that locus will occupy. 
For example, chromatin that belongs to the B1 sub-compartment typically 
exhibits an enhanced presence of the H3K27me3 histone tail methylation. Does 
detailed information about such epigenetic modifications and DNA-binding pro-
teins that decorate chromatin, suffice to predict the fold of chromosomes? If so, 
readily available one-dimensional data about how the genome is modified could 
give us information about chromosome structure in many different cells and cell 
types, without going to the expense of Hi-C studies.

The chromatin immunoprecipitation-sequencing (ChIP-Seq) data sets for 
many human chromosomes have already been collected by the Encyclopedia 
of DNA Elements (ENCODE) Consortium (Dunham, et al. 2012). Each ChIP-
Seq experiment probes the presence of a particular epigenetic modification or 
nuclear binding protein along the genome. The ChIP-Seq biochemical assay first 
crosslinks the proteins that are bound to DNA and then shears the DNA into 
fragments. Fragments of interest are then immuno-precipitated using antibod-
ies designed to bind specific proteins. The fragments are then sequenced to find 
the genomic position where the proteins were bound. Generally, each ChIP-Seq 
experiment reports the number of counts for observing a particular biomarker 
at each locus of chromatin normalized by the number of counts from a control 
experiment. This ratio is referred to as the signal enrichment. 

Figure 13.3 Schematic representation of the MEGABASE + MiChroM compu-
tational pipeline (Di Pierro, et al. 2017). 
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A ChIP-Seq data track for a transcription factor typically displays narrow 
peaks on the order of a few base pairs, which reveal the binding sites of that 
particular protein on the DNA. Other biomarkers, such as epigenetic modifica-
tions of the histones, tend to exhibit diffuse enrichment patterns on the genome. 
Rather than modeling high-resolution ChIP-Seq data, which can be strongly 
influenced by the presence or absence of a single signal peak, we integrate (sum) 
the signal enrichment for each experiment over windows of 50 kilobases for 
each locus. These re-binned smoothed data are less sensitive to the presence of 
any single signal peak. Each 50 kb window contains roughly ten nucleosomes. 
Furthermore, the re-binned signal enrichment for each experiment is discretized 
into 20 states ranging from 1 (low) to 20 (high) for simplicity. 

The chromatin sequence is thus coarse-grained and re-encoded as a sequence 
indicating which biomarkers are strongly or weakly enriched at each locus. (Rao, 
et al. 2014) explored the relationship between compartmentalization and ChIP-
Seq data by calculating the average signal enrichment of select biomarkers for 
loci belonging to the A1, A2, B1, B2, B3, or B4 sub-compartments. This work 
showed that the sub-compartments A1 and A2 tended to exhibit higher levels of 
epigenetic modifications, such as histone tail methylation and acetylation, com-
pared to the B1, B2, and B3 sub-compartments. The one exception is that B1 loci 
on average exhibit higher levels of H3K27me3 modification. 

While the existence of a correspondence between structural types and epi-
genetic marks is clear, the precise way epigenetic marks encode subtype is not 
immediately evident. A closer examination of the full distribution of signal 
enrichment for each sub-compartment reveals a rather complicated picture. 
For example, while the average acetylation level for chromatin of the A1 sub-
compartment is generally higher than the acetylation level for B compartment 
chromatin, the distribution of acetylation levels for any sub-compartments 
overlap strongly with those of other sub-compartments. The difference between 
the means of the distributions is roughly as large as the square root of the vari-
ance of either distribution. The long tail of the distribution for A1 that extends 
towards high signals is responsible for the higher average levels of acetylation. 
A similar picture exists for other biomarkers; additional examples can be found 
in (Di Pierro, et al. 2017). It seems clear that simply classifying chromatin 
structural types based on any single ChIP-Seq enrichment signal being high 
or low would be insufficient to predict the compartmentalization observed in 
the experiment. Chromatin compartmentalization cannot be attributed to the 
presence or absence of any single biomarker. Yet it also seems there may be a 
more subtle but still predictable set of correlations that might be used to assign 
sub-compartment types.

To learn such an association between structure and biochemistry, we first 
align the structural annotation from DNA–DNA ligation experiments with the 
ChIP-Seq data tracks. The structural and biochemical characterization of each 
chromatin locus l can then be combined into a state vector:

 
�

…s ( ) ( ( ), ( ), ( ), , ( ))l C l l l lL=  Exp Exp Exp1 2  
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where C is the sub-compartment annotation for the GM12878 cell line (Rao,  
et al. 2014) (i.e., A1, A2, B1, B2, or B3) and the components labeled by Exp with 
subscripts ranging from 1 to L denote the signals for each of the ChIP-Seq experi-
ments at the same locus.

The ChIP-Seq signals of adjacent chromatin loci are highly correlated. We 
would expect measurement noise to be uncorrelated. Hence, the correlated bio-
chemical state of adjacent chromatin loci may provide additional information 
about their local structural properties. To allow for this information to be incor-
porated, we append to the measured state vector of any locus l the biochemical 
state of the adjacent loci (i.e., l-2, l-1, l+1, l+2). A database for learning the rules 
of association can then be set up. This database consists of a set of state vectors:

   

�
… …s ( ) ( ( ), ( ), , ( ), ( ), , ( ),l CST l l l l lL L= - - - -Exp Exp Exp Exp1 12 2 1 1 EExp  

Exp Exp Exp Exp Exp

1

1 11 1 2

( ), ,

( ), ( ), , ( ), ( ), ,

l

l l l lL L L

…

… …+ + + (( ))l + 2
 

Classifying all chromatin loci in this manner allows us to collect M vectors, 
{ }( )�

…s s
s M=1 .

To quantify the information encoded in the collection of state vectors, we 
once again employ the Principle of Maximum Entropy to formulate a probabi-
listic model for the association of biochemical input data and the local chroma-
tin sub-compartment type. That is we seek a P( )

�
s  that is consistent with the 

experimentally sampled data, i.e., { }( )�
…s s

s M=1 . We can think of this construction 
as reflecting a local energy function for certain biochemical marks to show up in 
a compartment.

This model is constrained to reproduce the single-site and pairwise frequen-
cies of the data set,

 P f
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Here, fi i( )s  and fij i j( , )s s  denote the single-site and pairwise frequencies, 
respectively, and i and j are indices of the state vector 

�
s . As discussed earlier, 

the solution to maximizing the entropy given these constraints corresponds to a 
Boltzmann distribution for some energy function:
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and Jij  and hi  parameters are the Lagrange multipliers. The Jij  interactions 
capture local pairwise correlations between epigenetic markers and between 
markers and chromatin types, while the hi  parameters are related to the indi-
vidual frequencies of chromatin types and markers.

To determine the parameters of the probability distribution (i.e., the Jij  and 
hi  parameters) one must then determine a set of parameters that are most con-
sistent with the data { }( )�

…s s
s M=1 . This training can be done with the pseudo-like-

lihood maximization Direct Coupling Analysis (plmDCA) approach (Ekeberg,  
et al. 2013), which uses the pseudo-likelihood approximation of Besag (Besag, 
1975) to construct a probabilistic model for sequences composed of discrete 
labels. In the present case, these sequences contain the combined information of 
the epigenetic markers and the sub-compartment types. 

Instead of maximizing the likelihood of observing an entire sequence of data, 
{ }( )�

…s s
s M=1 , which would be computationally difficult, in practice the algorithm 

maximizes an approximate form of the likelihood of observing 
�
s ( )s  called a 

pseudo-likelihood based only on each local neighborhood:
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where the normalization in the denominator is summed over the collection of 5 
labels A1, A2, B1, B2, B3 as well as the 20 signal states assigned to ChIP-Seq data. 

Maximizing the pseudo-likelihood of observing the collection of M training 
state vectors, { }( )�

…s s
s M=1 , is equivalent to minimizing the negative of the log of 

the pseudo-likelihoods with respect to the parameters J and h:
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To avoid overlearning from noisy data, the minimization is actually performed 
supplemented by a regularization term added to lPL:
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where the parameters l lJ h M= = 0 01.  were used. The model remains robust for 
a wide range of parameter values ranging from 0.0001-0.1. Hence, in practice we 
minimize the object function, i.e., �PL R+ , with respect to the parameters J and 
h to find a model that optimally represents the training set of data:

 { , } arg min ( , ,
{ , }

J h J h J h
J h

= ( )+ ( )( )�PL LR 2  

The conjugate gradient method is used to iteratively minimize the objective func-
tion until convergence is reached. 

This inferred probabilistic model dubbed Maximum Entropy Genomic 
Annotation from Biomarkers Associated with Structural Ensembles 
(MEGABASE) was introduced in (Di Pierro, et al. 2017). Once the model is 
obtained, it can be used to predict the chromatin structural types for a locus 
l given only the experimental ChIP-Seq measurements of neighboring loci 
( , , , , )l l l l l- - + +2 1 1 2 : 

 CST l P CST l l l l lL( ) arg max ( | ( , , , , )), ,= - - + + Exp1 2 1 1 2…  

This procedure is equivalent to finding the chromatin type that minimizes the 
inferred local energy function, H

�
s( ) , given a set of experimental ChIP-Seq 

measurements. 
The most probable sequence of chromatin types predicted in this way can then 

be used as direct input for further molecular dynamics simulations using the 
MiChroM potential, which generates an ensemble of 3D structures from the pre-
dicted sub-compartment assignments. The de novo prediction of chromosome 
architecture for human lymphoblastoid cells was extensively compared against 
DNA–DNA ligation and fluorescence in situ hybridization data (Di Pierro, et al. 
2017). The comparison demonstrated that there is sufficient information encoded 
in the biochemical data to accurately predict chromosomal structures. The broad 
agreement between theory and experiment points to there being a fairly definite, 
albeit complex, sequence-to-structure relationship between epigenetic modifica-
tions made to chromosomes and the forces that lead to their three-dimensional 
structure. 

Since the MEGABASE annotation can be found by using as input biochemi-
cal data about epigenetic marks alone, it supports the idea that phase separa-
tion of distinct chromatin types is either caused by the marked proteins or 
partially causes epigenetic marks to be made at some point in the cell’s life. 
The cartoon in Figure 13.4 illustrates a possible physical process responsible for 
compartmentalization.

While the chromosomal contact maps predicted by using MEGABASE along 
with MiChroM agree remarkably well with the experiment, a number of mis-
matches exist between the type annotation provided by MEGABASE and the 
sub-compartment annotations from the experiment; this is entirely expected. 
While the compartment annotation was made from observing chromatin loci 
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in spatial proximity to one another, MEGABASE relies entirely on biochemical 
information only from each particular locus. A locus of chromatin may end up 
in a compartment composed of biochemically dissimilar chromatin because it is 
physically connected to those segments, a sort of local frustration (Bryngelson, 
et al. 1995; Wolynes, 2015). 

Since correlation is not necessarily causation, the success of MEGABASE 
does not rigorously imply that biomarkers cause compartmentalization. It is pos-
sible some structural environments encourage particular epigenetic markings. 
Nevertheless, some theoretical (Potoyan and Papoian, 2012) and experimental 
studies (Shogren-Knaak, et al. 2006; Tessarz and Kouzarides, 2014; Wilkins,  
et al. 2014) show that epigenetic modifications can change chromosomal struc-
ture locally. In our view, it is likely that the causality link is indeed oriented from 
epigenetics to structure in a similar manner as the information flow of the com-
putational pipeline of MEGABASE and MiChroM.

13.6  CONCLUSION

In the few pages of this chapter, we have retraced the steps that have already led to 
a usefully predictive physical theory of chromatin folding. The path taken resem-
bles the one traveled not so long ago in setting the foundations of the energy 
landscape theory for protein folding. Three main factors contribute to the success 
of the endeavor and possibly characterize, at large, the modern approach to devel-
oping physical theories in biology. The first factor is the rigorous mathematical 

Figure 13.4 Proteins and epigenetic markings (shown in red and blue) deco-
rate the naked DNA giving it distinct biochemical properties; these markings 
differ between cell types. Biochemically similar segments of the chromatin 
phase separate together, forming micro-phases that shape the cell-type-
specific 3D architecture of the genome. The resulting patterns of interactions 
between loci predict accurately DNA–DNA ligation experiments. Our results 
indicate that epigenetic markings carry enough information to determine the 
global organization of the genome.
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language of physics; embedding a new theory in the construct of statistical 
mechanics, thermodynamics, and symmetry principles allows one to immedi-
ately access and employ a vast array of ideas and methods, such as, for example, 
the maximum entropy method. This method allows one to see patterns in the 
data that are otherwise inaccessible, e.g., the absence of knots and the presence of 
liquid crystalline order. Specific biological insights are also necessary for a new 
theory of genome organization. These insights in the present case are the exis-
tence of chromatin types as well as the existence of special looping interactions. 
Of course, the success of such a mathematical understanding of chromosomes 
relies on the existence of the large data sets that are now available to molecular 
biologists. 

Combining these three elements, we see the energy landscape theory of the 
chromosome allows us to suss out unexpected three-dimensional structural 
principles from two-dimensional experimental data. In many ways, the theory 
for chromatin folding outlined in this chapter is similar to molecular mechan-
ics models in computational chemistry; just as with proteins, a one-dimensional 
sequence (amino acids there, epigenetic markers here) leads predictably to a 
well-defined ensemble of three-dimensional conformations. Much as for coarse-
grained force fields in chemistry, the number of parameters in MiChroM is small, 
but, nevertheless, the number of parameters is large enough to require clever 
optimization methods to find them; these methods can be formulated using 
energy landscapes. The level of detail in the model has already proved enough 
to produce specific, quantitative predictions. The quality of these predictions not 
only validates the physical approach, but also provides new computational tools 
to use in further investigations of the structure–function relation at the chromo-
somal level. 
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14.1  INTRODUCTION

Modeling chromosome conformation is arguably one of the most active, and rap-
idly growing, areas in theoretical and computational biophysics. This upsurge of 
genome modeling studies was prompted by the rapid development of experimen-
tal procedures, in primis chromosome conformation capture techniques [1–8]. 
These techniques crosslink proximal genomic regions, and ligate the interact-
ing DNA, thereby mapping the propensity of various genomic loci to interact in 
3D space. A related technique can be used to detect interactions at the single-
cell level [9–11]. Despite their recent introduction, these quantitative techniques 
have already reshaped our view about how chromosomes are organized in the 
nucleus, how they are reconfigured in different cell lines or at different stages 
of the cell cycle, and about their structure–function interplay [7, 10, 12–14]. For 
these reasons, already from their very first applications, chromosome conforma-
tion capture methods [1, 15] have been used as phenomenological constraints in 
structural models. The modeling step served the dual purpose of interpreting the 
experimental data and formulating verifiable quantitative predictions.

The challenge of using experimental data, and particularly distance (or 
proximity) restraints, to establish three-dimensional models is common in 
molecular biophysics, especially for protein structure determination [16]. Such 
approaches are typically articulated over three steps, possibly repeated in an 
iterative fashion.

First, one defines a general polymer model that, while purposely lacking any 
chemical specificity, can still capture the salient physical properties of the target 
biomolecule, e.g., contour length, thickness, bending, and torsional rigidities. 
Next, a stochastic sampling procedure, such as Monte Carlo or constant-temper-
ature molecular dynamics, is used to explore the conformational ensemble of the 
aspecific polymer model. Finally, out of the explored structural repertoire, one 
singles out the conformers whose properties best match those measured experi-
mentally (overall gyration radius, domain organization, locality of contacts, 
etc.). If the sought properties are unlikely to emerge spontaneously in the unbi-
ased ensemble, as is the case for secondary structure elements or specific sets of 
contacts, the phenomenological modeling can be alternatively accomplished by 
gradually introducing ad hoc biased interactions in the model to promote better 
and better agreement with the target experimental data. In both cases, a judi-
cious combination of the aspecific physics-based properties of the polymer and 
the ad hoc, specific phenomenological constraints, can yield a viable structural 
ensemble for the biomolecule of interest. Transferring these approaches to entire 
genomes is a formidable task for the stratification of several challenges: the sheer 
size of genomic systems, the high packing density of chromosomes in the nuclear 
environment, and the paucity of experimental data compared to the large num-
ber of degrees of freedom needed to pin down detailed chromosome models.

Here, we shall discuss and revisit recent studies where we tackled such challenges 
[17–21]. Our approach was largely based on the use of steered molecular dynam-
ics and on coarse-grained models of human chromosomes inside the nucleus to 
enforce the spatial proximity of loci that are known [7, 20] or assumed [17] to be in 
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contact. The viability of the models was established a posteriori by verifying that 
they were stable against introducing additional constraints [8], and that the mod-
els could reproduce known structural and functional features that had not been 
used as input for the phenomenological constraints. The advantages of such strat-
egy are twofold. On the one hand, it provides a three-dimensional structure of the 
chromosomes, thus, giving an evocative and realistic representation of the sought 
genome arrangement. On the other hand, the physical model exposes in a direct 
manner a number of functionally oriented features that are already embodied in 
the phenomenological constraints, albeit in an implicit form. As a notable illustra-
tion of the latter point, we will examine the intriguing connection between gene 
coregulation and gene colocalization [17]. Specifically, we will show that models 
of the human chromosome 19 obtained by imposing the spatial proximity of loci 
known to be coregulated [22] acquire large-scale features that are compatible with 
those of Hi-C maps [7]. The result proves the viability of the hypothesis of hubs 
where genes are efficiently coexpressed because they are brought in spatial proxim-
ity, and shows that structural models of the genome can be obtained by using data 
other than Hi-C as sources for the imposed constraints. This is an important point 
for the prospective use of combining phenomenological data from diverse sources 
to improve the resolution of the models.

In this chapter, we will give a detailed account of the aforementioned model-
ing studies, giving ample space to the methodological challenges.

14.2  GENOME-WIDE HUMAN CHROMOSOME MODELS

In this section, we describe the modeling approach by presenting the three main 
steps of its implementation. The first is the definition of a general polymer model 
representing the chromosomes. The second is the identification of those pairs 
of intra-chromosomal loci that correspond to statistically significant entries in 
Hi-C maps. The third is the use of steered molecular dynamics to colocalize these 
pairs on chromosome models packed inside a nucleus. In addition to these major 
elements, we will cover other more specific technical issues. For example, we dis-
cuss the strategy we used to organize the chromosome models inside the nucleus, 
taking into account the experimental radial positions [23], or the strategy we 
applied to match the resolution of the experimental Hi-C maps (100kb) with the 
intrinsic granularity of the general polymer model.

14.2.1  General polymer model

To represent chromosomes, we used an aspecific bead-spring model [24] that is 
entirely general, apart from capturing the salient physical properties of the 30 nm 
chromatin fiber [25]. The model was introduced by Rosa et al. [26, 27] to address 
the out-of-equilibrium physical mechanisms participating in the formation of 
chromosome territories [28, 29]. Since then it has been used in various contexts, 
from studying the organization of chromatin in the form of crumpled (or fractal) 
globules [30, 31] to testing the coregulation–colocalization hypothesis [17] and 
the presently discussed human genome modeling [20].
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The potential energy of the polymer model consists of three terms:

 H = + +U U ULJ F K .ENE P  (14.1)

The first term is a truncated and shifted, purely repulsive Lennard–Jones poten-
tial, which accounts for the excluded volume effects:
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where e = k TB  is the Lennard–Jones amplitude, kB is the Boltzmann constant, T 
is the temperature, e ij  is equal to 10 if i j- =1 , and 1 otherwise, σ = 30 nm is 
the thickness of the chain and corresponds to ~3 kb, and di j,  is the modulus of � � �
d r ri j i j, = -  which is the distance vector between monomers i and j at positions 

�
ri  

and 
�
rj , respectively.

The second term, which enforces the chain connectivity, is a FENE potential:
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where R0 1 5= . s  is the maximum bond length.
The last term is a Kratky–Porod potential, and is needed to reproduce the bending 

rigidity of the chromatin fiber, whose persistence length, lp , is about 150 nm [32]:
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where we set lp = =5 150s nm .
The three terms in Eq. 14.1 account for the intra-molecular interactions of 

each individual model chromosome. The inter-molecular potential is, instead, 
simply given by the excluded-volume Lennard–Jones interactions (Eq. 14.2) 
between pairs of overlapping monomers in two chromosomes.

There are two practical advantages of using this polymer model. First, the 
potentials in Eq. 14.1 are short range, which makes it possible to simulate with 
an affordable computational time even large systems, such as the entire human 
genome. Second, it allows for a precise control of the topological properties of the 
chains. In fact, the combined action of the FENE and LJ potentials restrains the 
fluctuations in bond length and this prevents chain crossing events that could 
yield to cis or trans entanglement, such as knots or links.

14.2.2  Initial conditioning of the model nucleus

Generating the initial state for the simulations of the model nucleus is a chal-
lenge in itself because of the tight confinement of the 23 pairs of chromosomes, 
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totaling ~2m in contour length, inside the nucleus, approximately a ~10 µm 
wide sphere. Packing the model chromosomes at this high density, correspond-
ing to 10% volume fraction, while avoiding steric clashes is a non-trivial task. 
Even more so considering that to model interphase conditions, the chromosomes 
should not mix randomly, but rather form separate territories [33] with only lim-
ited intermingling [34]. Additionally, one wishes to account for phenomenologi-
cal propensities of different chromosomes to be at definite radial distances from 
the center of the nucleus [23]. Finally, one should also account for the fact that 
regions such as centromeres, which contain highly repetitive elements, should 
form compact domains [35–37].

To satisfy these multiple requirements, we devised a specific protocol for the 
initial nuclear positioning of the model chromosomes. These consisted of two 
copies of the human autosomes (chromosomes 1 to 22), and of a single copy of 
the sex chromosome X, i.e., we neglected the inactive copy of chromosome X (in 
females), or the small chromosome Y (in males).

First, following ref. [26], we organized each chromosome in a rod-like sole-
noid made of stacked rosettes. This arrangement is meant to mimic the linear, 
compact, and ordered organization of mitotic chromosomes, where intra- and 
inter-chain entanglement is expectedly minimal.

The rod-like chromosomes are then phenomenologically positioned inside 
a spherical nucleus with a diameter equal to 10 µm. Specifically, the rods are 
placed with their midpoints at the correct phenomenological distance from 
the nuclear sphere center, while the orientation of their axis is picked ran-
domly. The positioning proceeds from the longest to the shortest rod: for 
each newly added chromosome, 10,000 random positioning attempts are car-
ried out and, out of these, we retain the one that: (i) is free of steric clashes 
with previously placed rods, and (ii) whose midpoint radial positioning best 
matches the experimental average distance from the nuclear center reported 
in ref. [23].

We note that this positioning scheme does not guarantee that all rods fit 
entirely inside the nuclear sphere. In fact, the longest chromosome (chromosome 1), 
whose solenoidal molecule has a length of ~14.5 µm, inevitably has parts that 
protrude outside the ~10 µm-wide nucleus. These protrusions were eliminated 
during the initial stages of the system dynamical evolution, as described in the 
following section.

14.2.3  Molecular dynamics simulations

The free dynamics of the chains was described with an underdamped Langevin 
equation:

 mr r ti i i i�� �a a a ag h= -¶ - + ( )H .  (14.5)

Here, H is the system potential energy, index i runs overall monomers in the sys-
tems, α runs over the x,y,z Cartesian components, m is the monomer mass, γ is 
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the friction coefficient, and η is a stochastic noise satisfying the standard fluctua-
tion dissipation relations: á ñ =h ai 0  and á ( ) ( )ñ = -( )¢ ¢h h k g d d da b abi j B ijt t T t t2 .

The dynamical evolution was integrated with the LAMMPS simulation pack-
age [38], using values for the bead mass, m = 1.0, and for the friction coefficient 
g t= ( )m LJ/ 2  from [24]. The integration time step was set equal to 0 006. t LJ, 
where t s eLJ m= ( )/

/1 2  is the characteristic Lennard–Jones time.
During the very first stages of the Langevin dynamics, the system of rod-like 

chromosomes was subjected to the action of a radial potential that exerted a 
compressive force exclusively on the monomers protruding beyond the nuclear 
sphere. Applying this confining potential for 1 200, t LJ  was typically sufficient to 
bring all chromosomes entirely inside the spherical nucleus. During this com-
pression step, each centromere was concomitantly compactified by attractive 
Lennard–Jones potentials acting on its constitutive beads.

After this stage, the system was allowed to evolve spontaneously for a total of 
2 107´ integration steps, corresponding to 1.2 105t LJ.

14.2.3.1  MAPPING OF THE SIMULATION TIME TO ACTUAL TIME UNITS

It is informative to establish an approximate mapping of the characteristic 
Lennard–Jones time, t LJ  to actual time units, so to develop a feeling for the order 
of magnitude of the actual time scales addressable in simulations.

The simplest possible mapping can be made by matching the nominal 
diffusion coefficient of individual monomers (beads) in our simulations, 

D k TB= , with the one expected from Stoke’s law, k TB

6 2phs /
. Equating the two

expressions for the diffusion coefficient yields m = 6 2phs
e

, which in turn

gives t phs
eLJ =

6 3

. For our model system σ = 30nm and T = 300K, so that

e = =k T pN nmB 4 2. . The remaining parameter is the viscosity, η.
If we were dealing with polymeric chains with much smaller size than chro-

mosomes, e.g., globular proteins of a few hundred amino acids, then η could be 
set to the nominal viscosity of the nucleosol (about 1 cP). However, it has been 
shown that the motion of entire chromosomes and of their subparts is controlled 
by a much higher effective viscosity [39], η ~ 200. This enhancement arguably 
arises from the fact that the obstacles in the crowded and structured nucleosol 
environment may offer a higher hindrance to the motion of chromosomes than 
to protein-sized molecules.

Using the larger effective viscosity, one estimates that the duration of the 
simulated relaxation dynamics, 1.2 105t LJ  corresponds to timespans in the hour 
range, in realtime.

Over this timespan, the initial rod-like chromosomes rearrange significantly, 
filling most of the nuclear sphere. The final arrangement, shown in Figure 14.1A 
is qualitatively similar to that observed in imaging experiments, such as FISH 
[23, 33], on interphase genomes, which established that individual chromosomes 
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fill local regions of space with only modest intermingling at their boundaries 
[34]. This is indeed analogous to what is seen in Figure 14.1B, which presents a 
cut-through view of the system.

14.2.4  Statistical models to identify constraints from Hi-C 
datasets

The utilization of Hi-C data as constraints in 3D genome modeling may require 
a conversion of chromosome-interaction frequencies to Euclidean distances. 
Several strategies for defining distance constraints from Hi-C data have been 
used. Common to these strategies is the assumption that a high number of 
detected Hi-C interactions between pairs of regions is indicative of close proxim-
ity in 3D space. In one strategy, an inverse relationship between the Hi-C interac-
tions and spatial proximity is assumed. This relationship can be encoded through 
a simple mapping function [40], or by more sophisticated curve-fitting methods 
[41]. Both of these strategies, however, assume that the (population-based) Hi-C 
data stem from an unbiased probabilistic sampling from a single, stable confor-
mation. It is increasingly realized that such assumption is not strictly valid, as 
structural variability between single cells is commonly observed [42]. To accom-
modate this variability, two strategies have been used. In population-based mod-
eling, the goal is to define a scoring function on an entire population of structural 
models that is simultaneously optimized [43]. In statistics-based modeling, the 
constraints are selected based on statistical tests that identify interactions in the 
Hi-C data that are significantly frequent in the population. The structural models 
are then constrained based on the stable contacts.

Figure 14.1 Genome-wide models of human chromosomes in lung fibroblast 
cells (IMR90). (A) Typical genome-wide spatial arrangement of the human 
chromosomes after the phenomenological chromosome positioning based on 
the FISH data in ref. [23] and the steering process based on the Hi-C data from 
ref. [7]. (B) Tomographic slice of 150 nm of the chromosomes conformation in 
panel A. Different colors correspond to different chromosomes. Reproduced 
with permission from ref. [20].
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We have used the zero-inflated negative binomial method (ZiNB) to define 
such contacts:

 P X n p N B X n pij ij ijδ ( | , , ) ( | , ).≥ = −( ) ≥
∧ ∧ ∧ ∧ ∧ ∧
q p p q1  (14.6)

In this expression, p, θ, and π are determined for groups of genomic distances 
(dij ) between bins in the Hi-C data (see Figure 14.2). This statistical model cap-
tures the probability of observing a given number of contacts (nij ) between two 
bins (i and j) conditional on the genomic distance between them (dij ), while 
taking into account the sparsity of the data at high resolutions. The p parameter 
gives an estimate of the probability of observing a zero in the negative binomial 
model. Expectedly, this will gradually increase for increasingly higher genomic 
distances, since the data are typically more sparse away from the diagonal. 
The θ parameter captures the dispersion, or the extra variance observed with 
respect to a Poisson distribution. This parameter will typically decrease with 

Figure 14.2 Overview of the statistical method used to detect significant Hi-C 
interactions. (A) Input Hi-C interaction matrix. The matrix is divided into bins 
according to increasing genomic distances (δ). (B) For each genomic distance 
bin, best-fit parameters (p, θ, π) of the Zero-inflated Negative Binomial (ZiNB) 
distribution are fitted. (C) For each pixel in the Hi-C interaction matrix, a 
P-value is calculated utilizing the parameter set given by the genomic distance 
bin the pixel belongs to. D–E: From the P-values, statistically significant entries 
of the matrix are identified (D) and multiple testing correction is performed 
(E). The resulting significant interactions are used as pairwise constraints in the 
3D modeling.
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increasing genomic distance, since the contact frequencies in the Hi-C data are 
higher near the diagonal. The π parameter accounts for to the additional zeros 
in the data that cannot be explained by the negative binomial distribution alone. 
This parameter will typically be highest at short genomic distances, since the 
distribution will approximate a normal distribution for large expected contact 
frequencies. The zero entries will, in that case, have to be modeled through the 
parameter π. For larger genomic distances (and therefore lower expected inter-
action frequencies), zero entries can be incorporated in the negative binomial 
model directly.

The ZiNB model is applied to each enrty of Hi-C matrices, obtaining indi-
vidual P-values for all possible pairwise interaction. Due to the large number of 
P-values, these have to be corrected for multiple testing before selecting a subset 
of the significant pairwise interactions as constraints in the modeling.

For more coarse-grained systems such as domain-level modeling, taking data 
sparsity into account is less important, meanwhile, it becomes necessary to also 
incorporate the general propensity of observing contacts for the domains overall. 
This can be done in the noncentral hypergeometric (NCHG) model [19, 21]:
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In this expression, the model incorporates both the total number of contacts 
observed for each domain (ni  and nj), as well as the total number of observed 
contacts for a chromosome (n). The dependency of contact frequencies on 
genomic distance is captured by the wij  parameter, which is estimated from the 
expected number of contacts for given genomic distances:

 w
l l l l l
l l l lij

ij i j ij

i ij j ij

=
- - +( )

-( ) -( )
2

,  (14.8)

where lij  is the expected number of contacts between domain i and j for a given 
genomic distance (dij ).

14.2.5  Steered molecular dynamics simulations

To enforce the colocalization of the regions corresponding to the statistically sig-
nificant (target) pairings, we used a protocol based on steered molecular dynamics.

First, based on the mapping of 100 kbp (the Hi-C map resolution) with 33 beads 
in our model, we identified the specific stretches of the model chromosomes that 
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correspond to the target pairs. For each pair of stretches, A and B, we introduced 
a time-dependent harmonic potential

 U k L t d dAB A B eqH = ( ) -( )1

2

2
, ,  (14.9)

where dA B,  is the distance of the centers of mass of the segments A and B, and deq 
and k L tAB ,( )  are respectively the reference distance, and the spring constant of 
the harmonic constraint. The former was set equal to deq = 60  nm, comparable to 
the size of proteins that bridge chromatin strands in Hi-C experiments.

The spring constant, k, was instead varied during the steering dynamics. 
Specifically, it was ramped up gradually with time according to:

 k L t k L tAB AB LJ, /( ) = ( ) × ( )0 6000 t  (14.10)

until an overstretching of the chain was detected, in which case the ramping was 
stopped. The overstretching condition used to stop the ramping of the potential 
was that the harmonic force between Hi-C constrained regions remained equal 
or below 300 σ/ε.

Note that in Eq. 14.10, the amplitude k LAB
0 ( )  depends on the sequence dis-

tance of the A and B regions, LAB. This dependence was introduced to account 
for the fact that, in the absence of constraints, regions at small genomic dis-
tances obviously have a higher chance of being in contact than regions at higher 
sequence separations, and hence a stronger constraining potential has to be used 
in the second case.

We accordingly first divided the target contacts into sets covering dif-
ferent ranges of genomic distances in steps of 10 Mbp ([0:10]Mbp, [10:20]
Mbp etc.). Next, for each set, we computed the probability distribution of 
the spatial distance of the various target pairs in the relaxed configuration, 
P drelaxed AB( ). To a first approximation, the addition of a harmonic biasing poten-
tial of amplitude k as in Eq. 14.9 would modify the contacting probability to: 
P d P d k d d k Tbiased AB relaxed AB AB eq B( ) » ( ) × - - ( )( )exp ( ) /2 2 . We, therefore, estab-
lished k LAB

0 ( )  as the potential amplitude, k, needed to have a probability larger  
than 90% to bring the pair into contact, that is at a distance smaller than 
d dc eq= =2 120  nm.

14.3  STEERED CONFORMATIONS

The first relevant question that can be addressed within our framework is to what 
extent the target contacts derived from Hi-C matrices can be actually established 
within a steered-MD trajectory. This is clearly an important question per se from 
the modeling perspective, but is also relevant biologically, because it can reveal 
the degree of polydispersity, or structural diversity, captured within Hi-C maps. 
In fact, if the latter was too high, it would become unfeasible to satisfy a signifi-
cant proportion of the target constraints within any given simulation.
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The compliance of the genomic model to the steering protocol is shown in Figure 
14.3. The figure shows the time evolution of the percentage of target pairs that have 
been brought closer than 120, 240, and 480 nm. The steady increase of the curves, 
which have been averaged over 10 trajectories, reflects the progressive action of the 
steering dynamics. On average, at the end of the simulation, 80% of the target con-
tacts are established within 240 nm, and about all of them within 480 nm.

14.3.1  Functional insight from structural models

Profiling the number of imposed constraints that are actually satisfiable is a 
necessary first assessment of the viability of the modeling scheme. Much more 
interesting and informative, however, is probing the obtained configurations 
for features that have not been used as input for the constraints. Of particular 
interest are functionally oriented features encoded in the genome spatial orga-
nization. This includes, for instance, fluorescence in situ hybridization (FISH) 
measurements of the preferential radial positioning of loci that have high or 
low gene content, that are up or down regulated, that are associated with the 
nuclear lamina, and so on. Note that such features are not manifestly encoded 
in Hi-C matrices. It is precisely for this reason that verifying whether the correct 
nuclear positioning of these regions emerges after, and only after, imposing the 
phenomenological constraints would be highly significant from the biophysical 
point of view.

Figure 14.3 Time-dependent percentage of established Hi-C constraints. 
The curves show the increase of the amount of satisfied Hi-C constraints, 
based on [7]. The proximity criterion between segments of 100 kb (33 model 
beads) is assessed on the distance between the closest pair of beads for vari-
ous cutoff distances: 120 nm, 240 nm, and 480 nm. This contact definition is 
mimicking the mechanism of interaction capture in a typical Hi-C experiment. 
Reproduced with permission from ref. [20].



342 Physical 3D modeling of whole genomes 

14.3.2  Nuclear positioning of functional regions

As a prerequisite for the structural-functional analysis, we first examined to 
what extent the imposed proximity constraints, which are much fewer than the 
number of degrees of freedom of the model genome, suffice to pin down specific 
structural features. We addressed this point by considering various portions of 
each chromosome and measuring how much their radial positioning, that is their 
distance from the center of the spherical nucleus, varied across ten independent 
steering simulations.

The observed variability of the radial placement is summarized in the color-
coded map of Figure 14.4. One notes interesting patterns: the degree of variabil-
ity does not show obvious correlations with the length of chromosomes. Rather it 
depends on the density of Hi-C constraints. In particular, the chromosomes with 
the highest number of constraints per unit length (16, 19, 7, and 9) are also those 
with the least variable radial positioning. This pleasing feature, which is not nec-
essarily expected a priori, is an encouraging basis for investigating more detailed 
aspects of the model genome organization.

We then moved on to examine the radial positioning of several functional 
regions before and after the steering process. Specifically, we considered loci 
corresponding to gene-rich and gene-poor regions, lamina-associated domains 
(LADs), regions enriched with activating or repressing histone modifications and 
of loci associated with positive (gpos) or negative (gneg) bands of the Giemsa 

Figure 14.4 Chromosome-wise variability of radial bead position. The color 
scale indicates the standard deviation of the radial positions of beads in the 
10 genome-wide models in IMR90 human cells with phenomenological initial 
chromosome positioning. Reproduced with permission from ref. [20].
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staining technique. The latter are known to correspond to regions that are respec-
tively poor or rich on AT content which, in turn, is reflective of heterochromatic 
or euchromatic regions [44].

The circular plot of Figure 14.5A clarifies that prior to the steering process, 
these loci are about evenly distributed (compared to other regions) across spheri-
cal shells at various radial distances. This clarifies that the initial placement of 
chromosomes, despite being based on the known preferred radial positioning, 
does not bias significantly the radial location of specific functional regions com-
pared to any other region.

This uniformity is lost during the steering process when the aforementioned 
functional loci systematically acquire specific positional preferences. In par-
ticular, as it is shown in Figure 14.5, regions that are rich in genes, in epigen-
etic markers controlling gene activation and repression (H3K4me3, H3K9me3, 
and H3K27me3), or generally in euchromatin (negative Giemsa bands) show a 
marked preference to occupy the nuclear center only after steering. The opposite 
preference is, instead, clearly visible in regions that are gene poor or associated 
with heterochromatin (positive Giemsa bands) and LADs.

All these preferential positionings introduced by steering are correct, in that 
they match known positional propensities observed in vivo. Gene-rich chro-
mosomes (e.g., chromosome 19) are consistently visualized in the center of the 
nucleus by FISH experiments, while gene-poor ones (such as chromosome 18) 
retain a peripheral positioning [33, 45, 46]. In ref. [44], chromosomal regions 
associated with positive (or negative) Giemsa bands of chromosome 7 are found 
at the nuclear periphery (or center) in human cells. Finally, it is known that 

Figure 14.5 Radial positioning of functionally related features in the model 
nucleus. The circular histograms give the percentage of beads associated 
with functional features relatively to the total number of beads in a given 
radial shell cumulated over the 10 simulation replicates. The results are shown 
for regions associated to H3K9me3 (orange), H3K4me3 (yellow), H3K27me3 
(green), LADs (blue) and genes (red), and negative (cyan) and positive (purple) 
Giemsa staining bands before (A) and after steering (B). Adapted with permis-
sion from ref. [20] and its related supplementary material.
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chromosome regions which interact preferentially with the nuclear lamina are 
located at the periphery of the nucleus. These domains result from anchoring of 
chromosomal regions to a protein meshwork (the nuclear lamina) coating the 
inner nuclear membrane. Genomic regions anchor to the nuclear lamina in large 
domains (0.1–100 kilobases) that are observed in single cells, but also display cell-
to-cell variation [47].

This is an important point. Not so much for the found positioning per se, 
because it largely supports previously known biological facts [47]. But rather, the 
key point is that the results demonstrate that this genuinely functional informa-
tion is actually implicitly encoded in the significant Hi-C constraints. In fact, 
though it is not immediately evident from the Hi-C map, the preferential posi-
tioning can be extracted from it and made explicit thanks to a physics-based 
modeling.

14.3.3  Model refinement and interphase-mitotic 
reconfiguration

As we discussed, the steering process based on the limited number of phenom-
enological constraints sufficed to establish a number of specific, and biologically 
correct, structural features in the model interphase genome.

This observation poses, in turn, two questions, both related to the plasticity 
of the steered conformations: (i) can they be reorganised by adding additional 
phenomenological constraints? (ii) can they be reconfigured into locally com-
pact configurations, thus mimicking the rearrangements that interphase chro-
mosomes sustain when transitioning to their mitotic forms [13, 48]?

For the former question, we applied to the steered conformations an addi-
tional set of distance constraints based on the in situ Hi-C study of IMR90 cells 
of ref. [8]. The set consisted of 8,040 interactions, that are largely complementary 
to those used so far [7]. In fact, they were obtained using different in situ Hi-C 
experiments at a higher nominal resolution (~1 kb) and have a higher degree 
of locality. Specifically, the median sequence separation of the contacts in [8] 
is 220 kilobases, which is about 200 times shorter than the contacts in [7] (46.8 
Megabases).

As shown in Figure 14.6, the steered system responded well to the addition of 
the local target constraints, which were established with about the same compli-
ance as the original set. Pleasingly, the formation of these new contacts did not 
disrupt previously established ones and, especially, all aforementioned function-
ally oriented radial placements were preserved [20].

Additionally, we compared the large-scale structural organization of the chro-
mosomes obtained by combining the two sets of target contacts with the genomic 
model of Kalhor et al. [6]. We chose this term of comparison because it estab-
lished the macro-domain organization of human chromosomes using a variety of 
phenomenological constraints other than Hi-C. It is, therefore, complementary to 
ours. We restricted considerations to chromosome 19, which is the one with the 
highest gene density, and found that the domains found or ref. [6] had a signifi-
cant overlap with the spatial clusters in our steered model, see Figure 14.7. This 
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result has two relevant implications: (i) it provides an independent confirmation 
of the correctness of the large-scale organization in the physics-based genomic 
modeling and (ii) it shows the feasibility of adding various layers of constraints to 
progressively refine the model itself.

Figure 14.6 Time-dependent percentage of established Hi-C constraints 
during the additional steering dynamics. The curves show the percentage of 
the maintained constrained based on ref. [7], and the newly established from 
ref. [8]. The same contact criterion, and cutoff distances of Figure 14.3 apply. 
Reproduced with permission from ref. [20].

Figure 14.7 Partition of chromosome 19 in macrodomains. The boundaries of 
the optimal 13 macrodomains are overlaid on the upper triangle of the map of 
spatial distances between 100 kb regions on chromosome 19, and juxtaposed 
to the borders of the 13 blocks identified in ref. [6]. The overlapping regions 
(shown in blue) of the two partitions span 63% of the chromosome excluding 
the centromere (shown in gray). Reproduced with permission from ref. [20].
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Next, we studied whether the model chromosomes could be straightforwardly 
reconfigured to a state rich in local contacts, as are mitotic states [13, 49], or if 
they would be prevented to do so by the emergence of conflicting topological 
constraints. We accordingly took the steered configuration as the starting point 
of further steering simulations, where we switched off the Hi-C-based target con-
straints and replaced them with aspecific ones promoting the spatial proximity 
of all beads at genomic distances smaller than 200 kb (~66 beads).

We found that the hindrance towards establishing these local constraints was 
minimal. In fact, most of these constraints were satisfied at the end of the steer-
ing protocol, as shown in Figure 14.8. As a matter of fact, the lack of significant 
topological barriers, and the plasticity of the chromosome models allows the 
condensing chromosomes to segregate neatly, see Figure 14.9, with almost no 
interchain linking in qualitative accordance with FISH observations [23, 33, 34].

14.4  GENE COREGULATION-COLOCALIZATION STUDY

The physics-based approach presented above allowed for recovering several func-
tionally related features of the human genome by using Hi-C-based structural 
data.

This fact stimulates an even more challenging question: can one infer the 
structural organization of the genome by using functionally related data only?

Along these lines, we recently carried out a modeling study [17] that was 
inspired by the so-called gene-kissing hypothesis [50]. This phenomenologically 
based hypothesis [51] posits that the coexpression of genes on the same or dif-
ferent chromosomes is reflective of their colocalization in space. While not all 

Figure 14.8 Time-dependent percentage of established mitotic constraints. 
The panel shows the increasing percentage of satisfied constraints during the 
interphase⟶mitotic recondensation dynamics. The same cutoff distances of 
Figure 14.3 are used. Reproduced with permission from ref. [20].



 14.4 Gene Coregulation-Colocalization Study 347

coregulated sets of genes are necessarily expected to be colocalized, an increasing 
number of cases where the gene-kissing hypothesis holds have been reported, 
from bacteria [52] to eukaryotes [53, 54].

In our study of [17], which we revisit here, we explored the relationship 
between colocalization and coregulation of genes using physical models to test 
a drastic version of the hypothesis. Specifically, we asked whether it is physi-
cally feasible to colocalize simultaneously all pairs of genes that are significantly 
coregulated. A positive answer to this question is not obvious, given the signifi-
cant frustration expected to arise from conflicting colocalization constraints, 
and would provide a strong, albeit indirect, element for the more general viabil-
ity of the hypothesis.

14.4.1  Coregulated gene pairs

As a first step, we identified the pairs of genes of human chromosome 19 (the 
one with highest gene density) whose transcriptional activity is significantly 
coregulated.

We followed the strategy of ref. [22] and analyzed a publicly available [55] set 
of 20,255 expression profiles for the 1,278 genes in human chr19 measured in 
591 distinct microarray experiments. The number of expression profiles is about 
16-times larger than the number of genes, ensuring a good statistical coverage. 
However, the expression profile dataset, based on the HG-U133A Affymetrix 
chip, is rather heterogeneous because it contains data from different human tis-
sues, different cell types, different biological conditions, and is processed with 
different normalization protocols. To use data from all experiments on equal 
footing, this heterogeneity had to be accounted for. Following ref. [22], we intro-
duced a coarse-graining procedure of the expression profiles. All expression 
levels in each experiment were equipartitioned into three discrete states: low, 
medium, and high, depending on the measured intensity.

Figure 14.9 Chromosome mitotic recondensation. The chromosome con-
formations obtained using the using the initial phenomenological place-
ment of ref. [23], and the steering based on the Hi-C data in refs. [7] and [8] 
were recondensed towards mitotic-like arrangements by means of harmonic 
constraints between pairs of beads at 200 kb (66 beads). Reproduced with 
permission from ref. [20].
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Next, to measure the degree of correlation, or covariation, of any gene pair, we 
computed their mutual information value (MI) overall available (coarse-grained) 
expression profiles, see Figure 14.10A, i and j
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gb+ =S  are the marginal probabilities to observe expression level α 
[β] for gene i [j]. The MI thus provides a statistically founded measure of how 
the gene expression pattern for gene i is predictable, assuming the knowledge of 
another pattern j (or, vice versa).

To identify the genes with statistically significant MI values, we first grouped 
all possible distinct gene pairs according to their genomic distances [22]. We used 
in total 15 groups, each covering a 4 Mb-long interval. Next, using the baseline 
statistics of ref. [56], we fitted the distribution of the pairwise MI values in each 
group, using the exponential function a x bxexp -( )  expected from the statisti-
cal null model, see Figure 14.10B.

Finally, we singled out the statistically significant coregulated pairs in each 
group as those with atypically large deviations from the null distribution [17], see  
Figure 14.10C and D for the bin including pairs at distance in the [28:32] Mbp range.

Overall, we identified a total of 1,487 non-redundant probe set pairs, involving 
412 distinct genes. As shown in Fig 14.10E, these genes are distributed over the 
entire chromosome 19, and the gene pairs span genomic distances up to almost 
the total chromosome length. In view of their statistically significant covariation 
of expression levels, we regarded these pairs as being genuinely coregulated [22].

14.4.2  Colocalization of coregulated gene pairs

We then enforced the spatial colocalization of these pairs in coarse-grained mod-
els of chromosome 19. The model conformations are entirely analogous to those 
discussed in section 14.2. Specifically, we represented chromosome 19 as a chain 
of 19,710 beads of thickness σ = 30 nm, and persistence length l nmp =150 , for a 
total contour length of ~59.13Mb.

Because we are exclusively focusing on chromosome 19, we mimicked the 
nuclear crowding by placing multiple copies of the chromosome in the periodic 
cubic simulation box. More precisely, we placed six copies within a box of side 
equal to 3 µm, so to match the typical nuclear density 0 012 3. /bp nm . The six chro-
mosome copies were initially prepared in the idealized rod-like mitotic arrange-
ment, placed in a random but non-overlapping manner inside the simulation 
box, and were then let to relax with a standard push-off protocol of 1 200, t LJ.

This initially relaxed state, shown in Figure 14.11A, was then subjected to a 
steering protocol for bringing into contact the coregulated pairs. The steering 
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Figure 14.10 Statistical analysis of mutual information values. (A) Mutual 
information (MI) matrix for any pairs of genes on human chromosome 19. The 
middle point of each locus identifies its position along the chromosome. The 
centromeric region is indicated as gray stripes, and has no probed gene in it. 
(B) Histograms of values of mutual information for pairs of genes located at var-
ious intervals of their genomic separation. The black lines correspond to fitting 
the histograms with the theoretical (null case) MI distribution. The vertical black 
dashed lines correspond to the estimated threshold values. (C) Example of 
E-value (expected number of false positives) distribution for gene pairs located 
at genomic separation in the range 28–32 Mbp. Here and in all the distribu-
tions at a given interval of genomic separation (see panel B), the threshold for 
significant MI values is at E-value equal to 1.0. (D) The network of coregulated 
gene pairs resulting from the analysis at 28–32 Mbp separation is represented 
on a circularized cartoon sketch of chromosome 19 (The scale is in µm). The 
significantly high values of Mutual Information correspond to connections (cyan 
links) between coregulated gene pairs (red dots). (E) The entire network of 
coregulated gene pairs is represented as 3 sub-networks for different genomic 
separations between the involved loci of 0–20 Mbp (left), 20–40 Mbp (middle) 
and 40–60 Mbp (right), respectively. Reproduced with permission from ref. [17].
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process was carried out by simultaneously ramping up an attractive harmonic 
(spring) interaction between the centers of mass of the significantly coregulated 
regions.

Attempting the simultaneous colocalization of ~1,500 paired regions is 
expectedly a frustrating problem. The pairs, in fact, involve only ~500 distinct 
regions, meaning that on average each region will be steered towards three other 
loci, likely at very large genomic distances. From these considerations alone, we 
were then expecting that only a subset of the target constraints would be colo-
calizable, corresponding to a core of spatially coregulated genes common to the 
heterogeneous ensemble of cell types in datasets.

The steering process, however, had a different outcome from what we had 
expected. In fact, we found that as much as 80% of the target gene pairs were 
colocalized at the end of the steering process.

The result is illustrated in Figure 14.11B, which shows that the proportion of 
satisfied constraints could actually be even higher, by continuing the steering pro-
cess, which we did not pursue, as this would also introduce artifactual overstretch-
ing of the chain. The result is both appealing and thought-provoking, because it 
suggests that spatial colocalization could be a general and physically viable mech-
anism to ensure an efficient and robust coregulation of genes. At the same time, 
it poses the question of whether an analogous colocalization compliance should 
be expected for an equivalent, but generic polymer system or whether it emerges 
from specific features of the coregulatory network and of the initial conformation. 
We addressed these questions by considering various alternative models.

First, to examine the role of the initial conformation, we replaced the relaxed 
mitotic-like chains with random walks. These walks, which were initially relaxed 

Figure 14.11 Re-shaping of chromosome 19 models under the action of spatial 
constraints based on gene pair coregulation. (A) The initial rearrangements 
(before steering) of the six copies of model human chromosome 19 are shown 
together with the cubic simulation box. Due to the periodic boundary condi-
tions of the simulation the chromosome chains can protrude out from the 
elementary box. (B) The curve describes the increasing percentage of satisfied 
gene coregulation spatial constraints during the steered dynamics. The crite-
rion for a contact between two genes is defined on the spatial proximity  
(<120 nm) of the respective centers of mass of the chromosome stretches 
hosting them. (C) The rearrangements of chromosome 6 models are shown at 
the end of the steering process. Chromosome regions involved in the coregu-
latory network are highlighted in red. Adapted with permission from ref. [17].



 14.4 Gene Coregulation-Colocalization Study 351

to remove steric clashes, showed a negligible steering compliance, see Figure 14.12. 
This is because the random nature of the walks creates a significant level of 
intra- and inter-chain entanglement that hinders chain plasticity. The effect 
is visible in the accompanying snapshot of the end (post-steering) configura-
tion, and confirms the intuition that the ordered relaxed mitotic conforma-
tion is an important element for the reconfiguration compliance of the model 
chromosomes.

For the additional alternative models, we, therefore, maintained the relaxed 
mitotic-like states as initial configurations and, instead, randomly rewired the 
network of colocalization constraints. We considered two rewiring protocols.

First, we kept fixed the sequence location of the original target regions, but we 
reshuffled the pairings. To be as conservative as possible, the random reshuffling 
was carried out while keeping fixed the number of constraints involving each 
target region. This reorganized network was found to have about half the colo-
calization compliance of the original one, see Figure 14.12.

Secondly, we reorganized the network by displacing the target regions in a 
random (but non-overlapping) manner along the chromosome. The original 
target pairings were instead preserved. Strikingly, this reshuffled target network 

Figure 14.12 Steering process in the randomized cases. The time-evolution of 
the percentage of satisfied spatial constraints is shown for the 3 randomized 
variants. The 3 corresponding configurations reached at the end of the steer-
ing protocol are shown on the right. Chromosome regions that take part in the 
pairs of loci to be colocalized are highlighted in red. Adapted with permission 
from ref. [17].
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had about the same compliance of the original network. Figure 14.12 shows, in 
fact, that about 80% of the target contacts between the displaced corresponding 
regions are established at the end of the steering process, see Figure 14.11.

Taken together, the results from the two alternative models indicate that 
the high colocalization compliance of the phenomenological coregulated pairs 
reflects specific properties of the coregulatory network, while the positioning of 
the corresponding genes on the chromosomes is less crucial.

Based on the a posteriori analysis and inspection of the coregulatory net-
work, we concluded that this specific feature is directly related to the presence 
of coregulatory cliques, that is groups of genes that are mutually significantly 
coregulated. It is, in fact, the presence of these cliques that arguably facilitates 
the gene colocalization, because it guarantees that many target pairings can be 
simultaneously satisfied by bringing them all together in space.

14.4.3  Testing the coregulation-colocalization hypothesis: 
macrodomain organization of chromosome 19

The analysis described in the previous subsection shows that the colocalization 
of significantly coregulated pairs is physically viable, and that this is possible 
thanks to the abundance of coregulatory cliques.

A more stringent question is whether imposing the colocalization of coreg-
ulated pairs alone suffices to induce the correct spatial organization of chro-
mosome 19. To explore this, we compared the contact map of the post-steered 
conformations of chromosome 19 with the actual Hi-C maps obtained by Dixon 
et al. [7]. Because the number of colocalization constraints is small compared to 
the degrees of freedom of the model chromosomes, we examined the accord of 
the two maps at the level of macro-domains.

Specifically, we used a general (K-medoids) clustering algorithm to partition 
the chromosomes into up to ten domains. We then compared the overlap of the 
subdivisions of the steered chromosome contact map with those of the Hi-C one, 
for an equal number of domains. We found that the overlaps were all statisti-
cally significant compared to random partitions for all considered numbers of 
domains. In particular, the good correspondence of subdivisions into an inter-
mediate number of domains (seven not counting the pre-assigned centromere) is 
visible in Figure 14.13. The corresponding overlap is 79%, and the probability to 
observe a match that is equally good or better is less than 3%.

The overall good consistency of the post-steering spatial organization of chro-
mosome 19, which we recall is based exclusively on coexpression data, gives a 
strong, albeit indirect, element supporting the relevance of colocalization as a 
general and biologically viable means of achieving gene coregulation in vivo.

To further explore how spatial chromosomal arrangement and gene coex-
pression interrelate on this chromosome, we generated side-by-side Circos 
plots [57] of significant Hi-C interactions (from ZiNB) and coexpressed genes (see 
Figure 14.14). These plots reveal a striking correspondence between coexpressed 
and colocalized regions throughout the chromosome. When inspecting this 
information in relation to features such as gene expression and gene density, 
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it is evident that the coexpressed genes form an active hub of colocalization. 
By comparison with our previous radial positioning plots (Figure 14.5), where 
active regions are shown to be positioned towards the nuclear interior, it is likely 
that the active hub on chromosome 19 is positioned in the active nuclear center. 
Intriguingly, as the Circos plots show, spatial colocalization is less prominent 
around the centromere. This is supported from the previous observation that 
centromeres tend to be positioned more towards the nuclear periphery [58]. 
The compatibility of a general colocalization of active regions arising from our 
genome-wide 3D models further suggests that coregulation might be encoded 
in long-range, non-local contacts (i.e., >10 Mb) rather than short-range con-
tacts, which seem to be involved in processes organizing TAD structure [8]. 
The compatibility of these short-range contacts [8] added as constraints after 
the steering of non-local contacts, suggest that these two types of interactions 
serve independent mechanisms. The overall emerging view is a multi-level 
organization of chromatin starting at the level of TADs or subTADs. The figure 
shows the location of Hi-C interaction points and some aspects of gene regula-
tion for chromosome 19, such as coregulated genes, gene density, gene families, 
and the location of housekeeping genes. Chromosome 19 contains nearly 55% 
repetitive sequences, notably due to an unusually high content of short inter-
spersed nuclear elements (SINEs), with Alu repeats constituting 25.8% of the 
chromosome [59]. The G + C content of the chromosome is also unusually high, 

Figure 14.13 Partition in macrodomains of structures obtained using gene 
colocalization constraints. The contact maps for Chr19 obtained at the end 
of the steered-MD simulations and the Hi-C interaction map from ref. [7] are 
shown on the left and right, respectively. The grey bands mark the centromere 
region. The boundaries of the 7 spatial domains (centromere excluded) are 
overlaid on the matrices. The overlapping parts of the two partitions account 
for a large fraction (79%) of the chromosome (centromere excluded). They are 
visualized in the sketch of chromosome 19 in the center (different colors indi-
cate different domains). Non-overlapping regions are shown in white, and the 
centromere region in grey. Adapted with permission from ref. [17].
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with an average of 48%, reflecting the high gene density of the chromosome. 
In fact, chromosome 19 has the highest density of genes of all human chro-
mosomes, where exons cover around 6.4% of the sequence, and protein-coding 
loci (exons plus introns) span around 50% of the chromosome. Also of interest 
from an organizational perspective is the prevalence of duplication structures 
of two types: tandemly clustered gene families and large segmental duplications. 
Chromosome 19 shows evidence of extensive genomic duplication with 7.35% 
of the sequence sharing sequence homology to more than one location in the 
genome. This is predominantly due to an increase in intrachromosomal dupli-
cations (6.20% of the sequence). These duplications often contain paralog genes 
that may lead to similar proteins that cooperate in common pathways and in 
protein complexes. More than 25% of the genes on chromosome 19 are mem-
bers of large, well-defined, tandemly clustered gene families. The largest group 
of such genes on chromosome 19 encodes Krüppel-type (or C2H2) zinc finger 
transcription factor (ZNF) proteins, with 266 of the approximately 800 total 
human genes of this type located primarily within 11 large familial clusters. In 
a recent study on coregulation of paralog genes [60], it was found that paralog 
gene pairs are enriched for colocalization in the same TAD, share more often 

Figure 14.14 Comparison of colocalization networks from Hi-C interactions 
and gene pairs coregulation. Left: Circos plot illustrating significant interac-
tions (red arcs) on chromosome 19 based on the hESC cell line from [8], and 
used as constraints in the 3D modeling procedure. Various features along 
chromosome 19 are plotted. The outer circle illustrates the genomic position 
on chromosome 19. The purple circular histogram illustrates the relative gene 
density. The green circular histogram illustrates the relative gene expression 
of the genes on the chromosome. Colored segments with gray background 
illustrate genomic positioning of gene cluster classes from [60]. The black 
segments on the light blue background indicate the positions of housekeeping 
genes on chromosome 19. Right: The same plot as on the left, but with the 
1,487 pairs of coexpressed genes (used as constraints in [17]) indicated in blue.
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common enhancer elements than expected, and have increased contact frequen-
cies over large genomic distances.

Coregulation of genes through colocalization in 3D is compatible with differ-
ent types of mechanisms. TADs represent genes in relatively close proximity, while 
another recently described feature is that of coexpression domains, as defined by 
being regions containing highly coexpressed co-linear genes [61]. These chromo-
somal domains were found to be more coexpressed both internally in a domain, 
and between domains. Hi-C interaction maps represent physical proximity, and 
these contacts can be both tissue-specific or relatively invariant. They found that 
housekeeping genes are slightly overrepresented for coexpression in domains, as 
is also observed from our model. Further, we also find that these genes are more 
likely to be colocalized in 3D. Taken together, our results suggest a 3D colocaliza-
tion-dependent regulation of active genes in the nuclear center.

14.5  CONCLUSIONS

Based on the work of ref. [20], we discussed how viable coarse-grained three-
dimensional models of entire genomes can be obtained by using phenomeno-
logical data, and particularly Hi-C interaction maps, as distance restraints in 
otherwise general and aspecific chromosome models.

The statistical analysis of the phenomenological data is a key step of the pro-
cess, because it can single out the pairs of genomic loci whose contact probability 
is much enhanced compared to the reference, background value. As we discuss, 
when this step is performed using appropriate statistical criteria, the significant 
pairs that are identified are largely compatible, meaning that they can be mostly 
colocalized simultaneously in a steered-MD approach, without generating con-
flicting topological constraints. As we discuss with a specific example, this is 
important also in view of combining data from various sources to improve the 
spatial resolution of the genomic model.

Besides being relevant per se, having access to three-dimensional genomic 
models can elucidate the tight connection between structure and function. This 
is not otherwise manifested in the raw Hi-C data. In particular, we showed that 
the latter encodes the preferential radial placement of gene-rich and gene-poor 
regions, lamina-associated domains, regions enriched with activating or repress-
ing histone modifications and of loci associated with positive or negative bands of 
the Giemsa staining technique. That such functionally oriented properties can be 
recovered from Hi-C data and made evident with physics-based modeling is not 
obvious a priori and is very promising for the perspectives of genome modeling.

Finally, as an exemplary case of the close structure–function relationship, 
we revisited a recent in silico study of the gene-kissing hypothesis on human 
chromosome 19 [17]. The latter refers to the possibility, actually documented 
for specific sets of genes, that an effective means of coregulating genes would be 
to colocalize them in space, where their expression can be concerted locally by 
shared cellular machinery. As an extreme test of this hypothesis, we applied the 
same physical approach mentioned, but requiring the proximity of significantly 
coregulated pairs instead of significant Hi-C-based ones.
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The modeling was aimed at verifying two open issues: (i) whether it is at all 
feasible to colocalize in space simultaneously a large number of coregulated loci 
and (ii) whether the resulting conformation is compatible with independent 
Hi-C measurements. We showed that the answer to both questions is affirmative, 
again a result that is striking and not granted a priori.

Overall both types of results reflect positively on the possibility of unveiling 
new functional/structural features in the future as more detailed phenomeno-
logical constraints become available. 
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Dynamics/cell-to-cell variation in 

chromatin interactions, 8–9
Dynamic simulations, 86
Dynamic supercoiling of chromatin 

fibers, 125–128

E

ENCODE, see Encyclopedia of DNA 
Elements (ENCODE)

Encyclopedia of DNA Elements 
(ENCODE), 320

Energy landscape theory, 306
Ensemble-based chromosome conformation 

capture assays, 258
Entangled ring polymers, structure and 

microrheology of, 160–162
epigenome-driven phase separation, of 

chromatin
block copolymer model, 27–28
comparison to experiments, 30–33
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Eu-chromatic domains, 60
Euchromatin, 22, 25
Euchromatin phase separation, 27, 32, 35, 

44, 98, 142
Eukaryotic chromosomes, 116
Extensive Molecular Dynamics computer 
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locus, 191–192
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coregulation-colocalization 

hypothesis, 352–355
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Genome structure models, 276
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models
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initial conditioning of model nucleus, 
334–335

molecular dynamics simulations, 
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steered molecular dynamics 
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Hi-C experiments, 97–99
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Hi-C variant, 5
High-throughput imaging approaches, 

255
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Homologous recombination (HR) 

pathway, 194
HR pathway, see Homologous 

recombination (HR) pathway
Hutchinson– Gilford progeria 

syndrome, 142
Hybrid capture approaches, 6
Hydrodynamical interactions, 198

I

IMP, see Integrative Modeling 
Platform (IMP)

Inactive regions, 22, 98, 103
InfMod3Dgen, 266
Initial conditioning of model nucleus, 

334–335
Integrative Modeling Platform (IMP), 266
Inter-domain interactions, 104
Interparticle repulsion, 84
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In vivo modification of chromatin 

mobility, 194–198

K

Kinetic Monte-Carlo (KMC) scheme, 29
KMC scheme, see Kinetic Monte-Carlo 

(KMC) scheme
Kratky–Porod potential, 334

L

Lac operon, 179
LADs, see Lamina-associated domains 

(LADs)
Lamina-associated domains (LADs), 22
Lamina-DamID data, 261
Lamin-A roteins, 181
Langevin equation, 181
Langevin equation of motion, 85
Large-scale compartmentalization, 30
Large-scale simulations of genomes, 87
LC model, see Living chromatin (LC) 

model
LEF, see Loop extruding factor (LEF)
Lennard–Jones amplitude, 334
Ligation free methods, 260
Ligation-mediated amplification  
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Live-cell imaging approaches, 262
Live cell microscopy techniques, 178
Live imaging of nuclear elements, 179
Living chromatin (LC) model, 37–39
LMA, see Ligation-mediated amplification 

(LMA)
Locus trajectories, 178
long epigenomic domain, 27
Long-range correlations of chromatin 

mobility, 198–199
Loop extruding factor (LEF), 72

bridged loops, 86
Loop extrusion, 10, 35, 64, 69–73, 99, 286

accurate dynamic chromatin 
simulations of, 87

active and diffusive, 105–108

chromatin, 130–135
consequences of, 109–110
during interphase, 78–84
mechanism, 10
during mitosis, 74–78
polymer simulations, elements of, 

84–88
process, 210

M

Macrodomain organization, of 
chromosome 19, 352–355

Macromolecular crowding, 146, 219, 221
Mammalian chromosomes, 163, 285–302
Markov Cluster Algorithm (MCL) 

program, 244
Markov model approach, 103
Matrix Modeling Potential (MMP) score, 

247–248
Maximum Entropy Genomic Annotation 

from Biomarkers Associated 
with Structural Ensembles 
(MEGABASE), 324

Maximum Entropy Principle of 
information theory, 308

Mbp, see Megabasepairs (Mbp)
MCL program, see Markov Cluster 

Algorithm (MCL) program
MCS, see Monte Carlo step (MCS)
Mean-square-displacement (MSD) of 

tagged monomer, 187
MEGABASE, see Maximum Entropy 

Genomic Annotation from 
Biomarkers Associated 
with Structural Ensembles 
(MEGABASE)

Megabasepairs (Mbp), 144
MiChroM, see Minimal chromatin model 
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Microphase separation, 30, 81, 103, 104
Microrheology, of genome organization

nuclear organization and genome 
structure, 140–151

polymer model of nuclear chromosome 
organization, 152–167
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Mitotic-like chromosomes, 152
Mixture model, of chromatin, 60–61

organization, 60
MMP score, see Matrix Modeling 

Potential (MMP) score
Modeling chromosome conformation, 332
MOGEN, 266–267
“Molecular bridges,” 100
Molecular crowding, role of, 36, 146, 217

compaction by, 219–220
and cytoplasmic mobility, 220–221
player in cell physiology, 221

Molecular dynamics simulations, 220, 
335–337

Molecular genomic approaches, 
development of, 2

Molecular nature of binding domains, 
62–63
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Monte Carlo implementation, 294
Monte Carlo method, 246
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Multi-cellular organism, cells of, 24
Multiplex fluorescence in situ 

hybridization, 261
Multivariate chromatin interactions, from 
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Mutations on genome 3D architecture, 
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Nanoprobe-caging domains, 158
“Nano-reactor” hypothesis, 35–36
Nanospheres fluctuating, 146
National Institute of Health (NIH), 255
Negative supercoiling, 116, 121

Newman-projection, 118
NIH, see National Institute of Health (NIH)
“Noisy” conversion, 38
Non-equilibrium polymer models of 

chromosomes, 71
Non-homologous end joining pathway, 194
Nuclear bodies, 99–103, 140, 150, 254, 262

chromatin proximity probing to, 
260–261

Nuclear chromosome organization, 
polymer model of

microrheology of nucleus, 158–167
“topological” origin of chromosome 

territories, 152–158
Nuclear organization/genome structure

from DNA to chromosomes, 140–146
microrheology of nucleus, 146–151

Nuclear organization, mechanisms of, 10
Nuclear positioning of functional regions, 
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Nucleoid, 208, 214–216, 218, 219, 220
Null chromatin, 25

O

Objective function, 237
1D-3D positive feedback, 36–37
one epigenomic domain, stability of, 39–41
Optimal triplet, 242

P

Pairwise chromatin-chromatin 
interactions, 256–260

“Parental” loops, 73
Particle-to-particle attraction, 85
Particle-tracking microrheology, 147–148
Pattern formation topologically 
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block-copolymer model, 61–62

PcG domains, 32
PGS, see Population-based genome 

structure (PGS)
Phase-diagram, 28, 29–32, 40, 41, 45, 58–60
Phenomenological physical models, 70
Phosphorylation, 101
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system, 37
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architectures, 70
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mechanisms, 78
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model, of nuclear chromosome 

organization, 152–167
physics theory of, 9
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smart, 208, 214–215

Poor solvent conditions, 74, 78
Population-based deconvolution methods, 
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Position-dependent variation of 
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Promoter–enhancer interactions, 27
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Python library, 235
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Quasi-static simulations, 86
Quiescent chromatin, 25, 27

r

Radial organization of loops , in 
bottlebrush, 77

Random walk polymer model, 71
“Reader-writer/eraser” mechanism, 37
Recruited conversion, 38

Regulatory biomolecules, 36
“Reinforced” loop, 73
Resampling methods, 266–267
Restraint-based modeling of genomes/
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TADbit, 235
data “modelability,” 247–248
model analysis, 243–246
model validation, 242–243
strategy for structural determination, 

235–242
TADbit modeling approach, 246–247

Ring polymers, 152, 159, 160–162
RMSD, see Root mean square deviation 

(RMSD)
Rod-like chromosomes, 335
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Rouse polymer model, 182–185, 187, 

189–191
Routine molecular construction, 179

S
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(SAM) domains

SAW polymer, see Self-avoiding walk 
(SAW) polymer

SAXS, see Small-angle X-ray scattering 
(SAXS)

Self-avoiding polymer, 84
Self-avoiding walk (SAW) polymer, 58
Setting desired DLK, 121–123
Signal enrichment, 320
Simple coarse-grained approach, 60
Simulated contact maps, 124–125
Simulated protein clusters, 101
Simulating loop extrusion, 86
Single-cell analysis of chromosome 

conformation, 6
Single-cell experiments, 256
Single-cell Hi-C methods, 259
Single-particle trajectory (SPT), recorded 

from chromatin locus
anomalous diffusion of chromatin 

locus, 187–189
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empirical estimators and statistical 

properties, 185–186
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