CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, ISLAMABAD

The Impact of Cattaneo-Christov Double Diffusion, Thermal

 Radiation on a Rotating Flow of Casson Nanofluid byMuhammad Samiullah
A thesis submitted in partial fulfillment for the
degree of Master of Philosophy

in the
Faculty of Computing
Department of Mathematics

Copyright (C) 2023 by Muhammad Samiullah

All rights reserved. No part of this thesis may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, by any information storage and retrieval system without the prior written permission of the author.

I dedicate my dissertation work to my family and dignified teachers. A special feeling of gratitude to my loving parents who have supported me in my studies.

CERTIFICATE OF APPROVAL

The Impact of Cattaneo-Christov Double Diffusion, Thermal Radiation on a Rotating Flow of Casson Nanofluid

 byMuhammad Samiullah
(MMT213008)

THESIS EXAMINING COMMITTEE

(a)	External Examiner	Dr. Bilal Ahmed	University of Wah
(b)	Internal Examiner	Dr. Muhammad Sabeel Khan	CUST, Islamabad
(c) Supervisor	Dr. Muhammad Sagheer	CUST, Islamabad	

Thesis Supervisor
September 2023
 Head

Dept. of Mathematics
September, 2023

Faculty of Computing
September, 2023

Author's Declaration

I, Muhammad Samiullah, hereby state that my MPhil thesis titled "The Impact of Cattaneo-Christov Double Diffusion, Thermal Radiation on a Rotating Flow of Casson Nanofluid" is my own work and has not been submitted previously by me for taking any degree from Capital University of Science and Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation, the University has the right to withdraw my MPhil Degree.

(Muhammad Samiullah)
Registration No: MMT213008

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled "The Impact of Cattaneo-Christov Double Diffusion, Thermal Radiation on a Rotating Flow of Casson Nanofluid" is solely my research work with no significant contribution from any other person. Small contribution/help wherever taken has been dully acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science and Technology towards plagiarism. Therefore, I as an author of the above titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after award of MPhil Degree, the University reserves the right to withdraw my MPhil degree and that HEC and the University have the right to publish my name on the HEC/University website on which names of students are placed who submitted plagiarized work.

(Muhammad Samiullah)
Registration No: MMT213008

Acknowledgement

I got no words to articulate my cordial sense of gratitude to Almighty Allah who is the most merciful and most beneficent to his creation.

I also express my gratitude to the last prophet of Almighty Allah, Prophet Muhammad (PBUH) the supreme reformer of the world and knowledge for human being.

I would like to be thankful to all those who provided support and encouraged me during this work.

I would like to be grateful to my thesis supervisor Dr. Muhammad Sagheer, the Head of the Department of Mathematics, for guiding and encouraging towards writing this thesis. It would have remained incomplete without his endeavours. Due to his efforts I was able to write and complete this dissertation. I would like to pay great tribute to my parents, for their prayers, moral support, encouragment and appreciation.

Last but not the least, I want to express my gratitude to my friends who helped me throughout in my MPhil degree.
(Muhammad Samiullah)

Abstract

The theoretical and numerical investigation of viscous dissipation and thermal radiation effects on Casson nanofluid flow over a stretching sheet has been carried out through the utilization of the shooting method. The primary objective of the current research is to comprehensively analyze the influence of viscous dissipation and thermal radiation, while incorporating the Cattaneo-Christov double diffusion model. Additionally, this study takes into account factors such as thermophoresis, diffusion, Brownian motion, thermal diffusivity, and chemical reaction, in the context of a Casson nanofluid flowing over an extensible sheet. The similarity transformations have been employed to convert the nonlinear partial differential equations into a set of ordinary differential equations. Tables and graphs vividly illustrate the impact of various parameters, including the magnetic field parameter, heat generation parameter, Prandtl number, thermophoresis parameter, Brownian motion parameter, and chemical reaction parameter. The findings indicate that as the rotation parameter increases, both the velocity and temperature profiles exhibit a decrease. As the Casson parameter β values increase, there is a decrease in the local Nusselt number values and a simultaneous increase in the Sherwood number.

Contents

Author's Declaration iv
Plagiarism Undertaking V
Acknowledgement vi
Abstract vii
List of Figures x
List of Tables xii
Abbreviations xiii
Symbols xiv
1 Introduction 1
1.1 Thesis Contributions 4
1.2 Layout of Thesis 4
2 Preliminaries 6
2.1 Some Fundamental Terminologies 6
2.2 Types of Fluid 8
2.3 Types of Flow 9
2.4 Kinds of Heat Transfer 10
2.5 Dimensionless Numbers 11
2.6 Governing Laws 13
2.7 Shooting Method 14
3 A Casson Nanofluid Flow on a Stretching Surface Effected by Thermal Radiation 17
3.1 Introduction 17
3.2 Mathematical Modeling 18
3.3 Numerical Method for Solution 29
3.4 Results and Discussion of Graphs and Tables 34
4 The Impact of Cattaneo-Christov Double Diffusion, Thermal Ra- diation on a Rotating Flow of Casson Nanofluid 49
4.1 Introduction 49
4.2 Mathematical Modeling 50
4.3 Numerical Method for Solution 58
4.4 Representation of Graphs and Tables 65
5 Conclusion 84
Bibliography 86

List of Figures

3.1 Methodical presentation of the tangible system. 18
3.2 Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against β 39
3.3 Velocity $\mathrm{g}(\eta)$ discrepancy against β 39
3.4 Temperature $\theta(\eta)$ discrepancy against M 40
3.5 Velocity f' (η) discrepancy against γ_{1} 40
3.6 Velocity $\mathrm{g}(\eta)$ discrepancy against γ_{1} 41
3.7 Temperature $\theta(\eta)$ discrepancy against $N t$ 41
3.8 Concentration $\phi(\eta)$ discrepancy against $N t$ 42
3.9 Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against M 42
3.10 Velocity $\mathrm{g}(\eta)$ discrepancy against M 43
3.11 Temperature $\theta(\eta)$ discrepancy against θ_{w} 43
3.12 Concentration $\phi(\eta)$ discrepancy against $S c$ 44
3.13 Temperature $\theta(\eta)$ discrepancy against $N b$ 44
3.14 Concentration $\phi(\eta)$ discrepancy against $N b$ 45
3.15 Temperature $\theta(\eta)$ discrepancy against γ_{1} 45
3.16 Temperature $\theta(\eta)$ discrepancy against $R d$ 46
3.17 Temperature $\theta(\eta)$ discrepancy against Pr 46
3.18 Temperature $\theta(\eta)$ discrepancy against $E c$ 47
3.19 Sherwood number $S h_{x}$ discrepancy against $N b$ and $N t$ 47
3.20 Nusselt number $N u_{x}$ discrepancy against $N b$ and $N t$ 48
4.1 Methodical display of the tangible system 50
4.2 Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against β 70
4.3 Velocity $\mathrm{g}(\eta)$ discrepancy against β 70
4.4 Temperature $\theta(\eta)$ discrepancy against M 71
4.5 Velocity $f^{\prime}(\eta)$ discrepancy against γ_{1} 71
4.6 Velocity $\mathrm{g}(\eta)$ discrepancy against γ_{1} 72
4.7 Temperature $\theta(\eta)$ discrepancy against $N t$ 72
4.8 Concentration $\phi(\eta)$ discrepancy against $N t$ 73
4.9 Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against M 73
4.10 Velocity $\mathrm{g}(\eta)$ discrepancy against M 74
4.11 Temperature $\theta(\eta)$ discrepancy against θ_{w} 74
4.12 Concentration $\phi(\eta)$ discrepancy against $S c$ 75
4.13 Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against K 75
4.14 Velocity $\mathrm{g}(\eta)$ discrepancy against K 76
4.15 Temperature $\theta(\eta)$ discrepancy against $N b$ 76
4.16 Concentration $\phi(\eta)$ discrepancy against $N b$ 77
4.17 Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against Γ 77
4.18 Velocity $g(\eta)$ discrepancy against Γ 78
4.19 Temperature $\theta(\eta)$ discrepancy against γ_{1} 78
4.20 Concentration $\phi(\eta)$ discrepancy against K_{c} 79
4.21 Temperature $\theta(\eta)$ discrepancy against $R d$. 79
4.22 Concentration $\phi(\eta)$ discrepancy against λ_{C} 80
4.23 Temperature $\theta(\eta)$ discrepancy against Pr 80
4.24 Temperature $\theta(\eta)$ discrepancy against $E c$ 81
4.25 Temperature $\theta(\eta)$ discrepancy against β 81
4.26 Temperature $\theta(\eta)$ discrepancy against λ_{E} 82
4.27 Temperature $\theta(\eta)$ discrepancy against ϵ 82
4.28 Sherwood number $S h_{x}$ discrepancy against $N b$ and $N t$ 83
4.29 skin friction $C f_{y}$ discrepancy against γ_{1} and M 83

List of Tables

3.1 Results of $R e_{x}^{\frac{1}{2}} C_{f x}$ and $R e_{x}^{\frac{1}{2}} C_{f y}$ for various parameters 37
3.2 Results of $R e_{x}^{-\frac{1}{2}} N u_{x}$ and $R e_{x}^{-\frac{1}{2}} S h_{x}$ for various parameters 38
4.1 Results of $\operatorname{Re}_{x}^{\frac{1}{2}} C_{f x}$ and $\operatorname{Re}_{x}^{\frac{1}{2}} C_{f y}$ for various parameters 68
4.2 Results of $R e_{x}^{-\frac{1}{2}} N u_{x}$ and $R e_{x}^{-\frac{1}{2}} S h_{x}$ for various parameters 69

Abbreviations

IVPs Initial value problems
MHD Magnetohydrodynamics
ODEs Ordineary differential equations
PDEs Partial differential equations
RK Runge-Kutta

Symbols

μ	Viscosity
ρ	Density
ν	Kinematic viscosity
τ	Stress tensor
k	Thermal conductivity
α	Thermal diffisuitivity
σ	Electrical conductivity
u	x-component of fluid velocity
v	y-component of fluid velocity w
z-component of fluid velocity	
B_{0}	Magnetic field constant
Γ_{c}	relaxation time for mass flux
Γ_{e}	relaxation time for heat flux
Ω	angular velocity
a	Stretching constant
T_{w}	Temperature of the wall
T_{∞}	Ambient temperature of the nanofluid
T	Temperature
C_{w}	Concentration of the wall
C_{∞}	Ambient concentration of the nanofluid
C	Concentration
ρ_{f}	Density of the fluid
μ_{f}	Viscosity of the fluid

$\nu_{f} \quad$ Kinematic viscosity of the base fluid
$\rho_{n f} \quad$ Density of the nanofluid
$\mu_{n f} \quad$ Viscosity of the nanofluid
$q_{r} \quad$ Radiative heat flux
$q \quad$ Heat generation constant
$q_{w} \quad$ Heat flux
$q_{m} \quad$ Mass flux
$\sigma^{*} \quad$ Stefan Boltzmann constant
$k^{*} \quad$ Absorption coefficient
$\psi \quad$ Stream function
$\theta \quad$ Stream function
$\phi \quad$ Stream function
$\eta \quad$ Similarity variable
$\chi \quad$ Similarity variable
$C_{f x} \quad$ Skin friction coefficient along x direction
$C_{f y} \quad$ Skin friction coefficient along y direction
$N u \quad$ Nusselt number
$N u_{x} \quad$ Local Nusselt number
Sh Sherwood number
$S h_{x} \quad$ Local Sherwood number
Re Reynolds number
$R e_{x} \quad$ Local Reynolds number
$\phi \quad$ Nanoparticle volume fraction
$\mathrm{Nb} \quad$ Brownian motion parameter
Nt Thermophoresis parameter
M Magnetic parameter
$\alpha_{f} \quad$ Thermal diffusivity
$\lambda_{C} \quad$ relaxation time Parameter of concentration
$\lambda_{E} \quad$ relaxation time Parameter of temperature
Ec Eckert number
Pr Prandtl number

ϵ	heat generation/absorption parameter
Q	heat generation/absorption coefficient
$B i$	Biot number
$S c$	Schmidt number
K_{c}^{*}	rate of chemical reaction
K_{c}	Chemical reaction parameter
γ_{1}	rotation parameter
ρ_{f}	Density of the pure fluid
$\mu_{n f}$	Viscosity of the nanofluid
μ_{f}	Viscosity of the base fluid
$\left(\rho c_{p}\right)_{f}$	Heat capacitance of fluid
σ_{f}	Electrical conductivity of the fluid
κ_{f}	Thermal conductivity of the fluid
D_{T}	Thermophortic diffusion coefficient
D_{B}	Brownian diffusion coefficient
f	Dimensionless velocity
g	Dimensionless velocity
θ	Dimensionless temperature
ϕ	Dimensionless concentration

Chapter 1

Introduction

A specific branch in the study of fluid mechanics that focuses on delineating the fluids motion, like gases and liquids is said to be fluid dynamics. Within the widely acknowledged field of fluid mechanics, distinct branches such as aerodynamics and hydrodynamics are notable components of fluid dynamics. This encompasses a diverse range of practical applications, including the computation of forces and moments, estimation of oil mass flow rates in pipelines, prediction of weather patterns, exploration of interstellar nebulae, and the practice of modeling. Zhao and Collins [1] were the first who introduced fluid dynamics through their experimental work. This innovation paved the way for additional research and offered humanity a platform to extract further advancements from it. The initial contributions to the field of fluid dynamics had been done by Li et al. [2], Eisazadeh et al. [3] and Wang et al. [4] etc.

The introduction of colloidal suspensions of nanoparticles into base fluids has introduced a novel category of fluids known as nanofluids. Nanofluids exhibit extraordinary properties that the conventional fluids were unlikely to achieve through traditional means of technology. When conventional fluids are infused with nanosized particles, they demonstrate improved strength, chemical reactivity, electrical conductivity, supermagnetic attributes, and notably, enhanced heat transfer and thermal conductivity. The utilization of nanofluids in sectors such as aeronautics,
medicine, pharmaceutics, and photoelectricity has yielded remarkable advancements. For instance, applications like brake fluids, nuclear reactions, enhancements in cooling transformer oil, and power plant efficiency improvements have showcased notable breakthroughs. The term "nanofluids" was introduced through experimental work conducted by Choi and Eastman [5]. The foundational research on nanofluids was conducted by Wang and Majumdar [6], Yang et al. [7], and Jahani et al. [8].

A fluid that exhibits shear-thinning behavior, with a theoretical infinite viscosity at zero shear rate and a viscosity of zero at an infinite shear rate, is referred to as a Casson nanofluid. In comparison to Newtonian-based nanofluid flow, Casson nanofluids are more advantageous as cooling and friction-reducing agents. Casson fluids include various examples such as honey, jelly, sauce, and soup etc. Applications of Casson nanofluids span various sectors, including heat transfer and cooling systems, biomedical and pharmaceutical, food industry, cosmetics and personal care, oil and gas industrial processing and automotive. The earliest work on Casson nanofluid was done by Casson et al. [9] to forecast fluid attributes bearing similarity to printing ink. A series-based remedy to tackle heat and mass transfer occurences for a non Newtonian fluid is examined by Nadeem et al. [10]. According to their findings, variations in the Casson parameter, whether positive or negative, give rise to relocations of the stagnation point concerning its initial position. The study by Butt et al. [11] focused on elucidating the heat transfer properties in the context of boundary layer flow for a Casson rotating fluid on a extending surface.

The research conducted by Gorla et al. [12] delved into the analysis of flow in boundary layer for nanofluids, incorporating the buoyancy force impacts. Shehzad et al. [13] investigated various types of nanoparticles in order to examine the peristaltic transport behavior of nanofluids. Additionally, they introduced two models, namely Maxwell and Hamilton Crosser, to facilitate a comparative analysis of their findings. Sheikholeslami et al. [14-18] investigated the heat transfer behaviours and flow patterens of a nanofluid across diverse geometric setups while
considering a variety of boundary conditions. Hayat et al. [19] introduced the concept of Newtonian mass flux condition within the context of nanofluid flow around a permeable stretching cylinder. Presently, numerous researchers are integrating magnetohydrodynamic flow into their studies, motivated by its broad industrial use in applications involving solar atmosphere and laboratory plasmas.

The examination of fluid motion with rotation that gives rise to the Coriolis force finds noteworthy applications in a range of disciplines, including astrophysics, oceanography, and various geophysical situations. Moreover, this specific flow pattern over a stretching surface is employed across various domains. Wang [20] considered a two-dimensional stretchable surface to investigate the issue of rotating fluid flow. Moreover, when the rotational parameter outran unity, he gained a precise solution through analytical means, afterward contrasting it with the numerical technique. Zaimi et al. [21] employed the Keller-box method to analyze the rotating flow due to a stretching surface by considering a non-Newtonian viscoelastic fluid.

Rashidi et al. [22] employed the law of increased Entropy to present an analysis of Entropy generation in the context of rotating nanofluid flow. Mabood et al. [23] conducted an investigation into the impact of Brownian motion and thermophoresis on the flow of rotating nanofluid. This analysis was carried out considering the presence of magnetic fields, radiation, viscous dissipation effects, heat source etc. The research executed by Das et al. [24] centered on investigating how transient hydromagnetic Couette flow of a viscous fluid is influenced by both magnetic fields and rotation. The study revealed a substantial alteration in fluid velocity resulting from the combined effects. Ali et al. [25] investigated various types of nanoparticles to analyze how magnetic fields within a rotational setup modifies Couette flow.

Radiation heat transfer plays a peripheral role in numerous engineering processes that take place under high-temperature conditions. A significant quantity of both experimental and theoretical research has been undertaken by numerous scholars to explore the impact of radiation effects [26-29]. Hayat et al. [30] introduced
a novel boundary condition known as zero nanoparticle mass flux. This condition was put into practice to inspect the impact in viscoelastic fluid for threedimensional flow due to thermal radiations act as nonlinear.

1.1 Thesis Contributions

Within the thesis, comprehensive examine a specific rotating nanofluid flow presented by Archana et al. [31] through a review study. The ongoing study is directed towards conducting a theoritical and numerical analysis of the Cattaneo-Christov double diffusion within a rotating flow of Casson nanofluid over a stretching sheet, incorporating the impact of inclined magnetic field, porous medium, chemical reaction and heat source/sink which has not yet been explored. The current research aims to address this research gap, and the outcomes of the present study present a novel contribution to the existing literature. Throughout the procedure, nonlinear partial differential equations (PDEs) have been transformed using similarity transformations into a system of dimensionless ordinary differential equations (ODEs), and the outcomes have been generated through the shooting method. The numerical outcomes are visually derived with the assistance of MATLAB. The influence of key parameters on velocity distributions $f^{\prime}(\eta)$ and $g(\eta)$, temperature distribution $\theta(\eta)$, concentration distribution $\phi(\eta)$, skin friction coefficients $C f_{x}$ and $C f_{y}$, local Nusselt number $N u_{x}$ and local Sherwood number $S h_{x}$ has been examined through graphical representations and tabular presentations.

1.2 Layout of Thesis

The following is a quick summary about thesis contents.
Chapter 2 covers fundamental definitions along definite nomenclature which would be imperative and dicussed afterward.

Chapter 3 provides the proposed analytical evaluation of a Casson nanofluid flow on a stretching surface effected by thermal radiation with magnetic field effect and
shooting methodology is used to generate the numerical solutions of the governing flow model.

Chapter 4 extends the proposed model flow mentioned in Chapter 3 by including the Cattaneo-Christov double diffusion, Casson nanofluid and chemical reaction effects.The shooting methodology is used to generate the numerical solutions of the governing flow model.

Chapter 5 serves the section in which thesis concludes.
The Biblography provides all the refrences which are utilized in the thesis.

Chapter 2

Preliminaries

The present chapter outlines crucial definitions and governing laws, that will serve as a foundation in forthcoming chapters.

2.1 Some Fundamental Terminologies

Definition 2.1.1 (Fluid)

"A substance that cannot keep its own shape but instead adopts that of its container is referred to as a fluid." [32]

Definition 2.1.2 (Fluid Mechanics)

"The fluid mechanics is defined as the science that deals with the behavior of fluids at rest or in motion, and the interaction of fluids with solids or other fluids at the boundaries." [33]

Definition 2.1.3 (Fluid Dynamics)

"The study of fluid if the pressure forces are also considered for the fluids in motion, that branch of science is called fluid dynamics." [33]

Definition 2.1.4 (Fluid Statics)

"The study of fluid at rest is called fluid statics." [33]

Definition 2.1.5 (Viscosity)

"Viscosity is defined as the property of a fluid which offers resistance to the movement of one layer of fluid over another adjacent layer of the fluid. Mathematically,

$$
\mu=\frac{\tau}{\frac{\partial u}{\partial y}},
$$

where μ is viscosity coefficient, τ is shear stress and $\frac{\partial u}{\partial y}$ represents the velocity gradient." [33]

Definition 2.1.6 (Kinematic Viscosity)

"It is defined as the ratio between the dynamic viscosity and density of fluid. It is denoted by symbol ν called 'nu'. Mathematically,

$$
\nu=\frac{\mu}{\rho} . "[33]
$$

Definition 2.1.7 (Thermal Conductivity)

"The Fourier heat conduction law states that the heat flow is proportional to the temperature gradient. The coefficient of proportionality is a material parameter known as the thermal conductivity which may be a function of a number of variables." [34]

Definition 2.1.8 (Thermal Diffusivity)

"The rate at which heat diffuses by conducting through a material depends on the thermal diffusivity. It can be defined as,

$$
\alpha=\frac{k}{\rho C_{p}},
$$

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density and C_{p} is the specifc heat at constant pressure." [34]

2.2 Types of Fluid

Definition 2.2.1 (Ideal Fluid)

"A fluid, which is incompressible and has no viscosity, is known as an ideal fluid. Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some viscosity." [33]

Definition 2.2.2 (Real Fluid)

"A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all the fluids are real fluids." [33]

Definition 2.2.3 (Newtonian Fluid)

"A real fluid, in which the shear stress is directly proportional to the rate of shear strain (or velocity gradient), is known as a Newtonian fluid." Examples are water and alcohol." [33]

Definition 2.2.4 (Non-Newtonian Fluid)

"A real fluid in which the shear stress is not directly proportional to the rate of shear strain (or velocity gradient), is known as a non-Newtonian fluid." NonNewtonian fluids include substances like toothpaste and honey."

$$
\begin{aligned}
& \tau_{x y} \propto\left(\frac{d u}{d y}\right)^{m}, \quad m \neq 1 \\
& \tau_{x y}=\mu\left(\frac{d u}{d y}\right)^{m}
\end{aligned}
$$

Definition 2.2.5 (Magnetohydrodynamics)

"Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid flow and magnetic fields. The fluids in question must be electrically conducting and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas) and strong electrolytes." [35]

2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

"Rotational flow is that type of flow in which the fluid particles while flowing along stream-lines, also rotate about their own axis." [33]

Definition 2.3.2 (Irrotational Flow)

"Irrotational flow is that type of flow in which the fluid particles while flowing along stream-lines, do not rotate about their own axis then this type of flow is called irrotational flow." [33]

Definition 2.3.3 (Compressible Flow)

"Compressible flow is that type of flow in which the density of the fluid changes from point to point or in other words the density (ρ) is not constant for the fluid, Mathematically,

$$
\rho \neq k
$$

where k is constant." [33]

Definition 2.3.4 (Incompressible Flow)

"Incompressible flow is that type of flow in which the density is constant for the fluid. Liquids are generally incompressible while gases are compressible, Mathematically,

$$
\rho=k,
$$

where k is constant." [33]

Definition 2.3.5 (Steady Flow)

"Steady flow is defined as that type of flow in which the fluid characteristics like velocity, pressure, density, etc., at a point do not change with time. Thus for steady flow, Mathematically we have,

$$
\frac{\partial Q}{\partial t}=0
$$

where Q is any fluid property." [33]

Definition 2.3.6 (Unsteady Flow)

"Unsteady flow is defined as that type of flow in which the fluid characteristics like velocity, pressure, density, etc., at a point do change with time. Thus for Unsteady flow, Mathematically, we have,

$$
\frac{\partial Q}{\partial t} \neq 0
$$

where Q is any fluid property." [33]

Definition 2.3.7 (Laminar Flow)

"Laminar flow is defined as that type of flow in which the fluid particles move along well-defined paths or stream lines and all the stream-lines are straight and parallel." [32]

Definition 2.3.8 (Turbulent Flow)

"Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way." [32]

2.4 Kinds of Heat Transfer

Definition 2.4.1 (Heat Transfer)

"Heat transfer is a branch of engineering that deals with the transfer of thermal energy from one point to another within a medium or from one medium to another due to the occurrence of a temperature difference. For example, heat is transferred from stove to the cooking pan." [34]

Definition 2.4.2 (Conduction)

"The transfer of heat within a medium due to a diffusion process is called conduction. The Fourier heat conduction law states that the heat flow is proportional to the temperature gradient." Examples are during the ironing process, heat is
transferred from the iron to the fabric. Chocolate candy in a hand will eventually melt as heat is conducted from a hand to the chocolate" [34]

Definition 2.4.3 (Convection)

"Convection heat transfer is usually defined as energy transport effected by the motion of a fluid. The convection heat transfer between two dissimilar media is governed by Newton's law of cooling. It states that the heat flow is proportional to the difference of the temperatures of the two media. The proportionality coefficient is called the convection heat transfer coefficient." Examples are heating water on the stove and air Conditioner" [34]

Definition 2.4.4 (Thermal Radiation)

"Thermal radiation is defined as radiant (electromagnetic) energy emitted by a medium and is solely to the temperature of the medium. Sometimes radiant energy is taken to be transported by electromagnetic wave while at other times it is supposed to be transported by particle like photons. " [34]

2.5 Dimensionless Numbers

Definition 2.5.1 (Eckert Number)

"It is the dimensionless number used in continuum mechanics. It describes the relation between flows and the boundary layer enthalpy difference and it is used for characterized heat dissipation. Mathematically,

$$
E c=\frac{u^{2}}{C_{p} \nabla T}
$$

where C_{p} denotes the specific heat." [32]

Definition 2.5.2 (Prandtl Number)

"It is the ratio between the momentum diffusivity ν and thermal diffusivity α. Mathematically, it can be defined as

$$
\operatorname{Pr}=\frac{\nu}{\alpha}=\frac{\frac{\mu}{\rho}}{\frac{k}{C_{p} \rho}}=\frac{\mu C_{p}}{k}
$$

where μ represents the dynamic viscosity, $C p$ denotes the specific heat and k stands for thermal conductivity. The relative thickness of thermal and momentum boundary layer is controlled by Prandtl number. For small Pr, heat distributed rapidly corresponds to the momentum." [32]

Definition 2.5.3 (Skin Friction Coefficient)

"The steady flow of an incompressible gas or liquid in a long pipe of internal D. The mean velocity is denoted by u_{w}. The skin friction coefficient can be defined as

$$
C_{f}=\frac{2 \tau_{0}}{\rho u_{w}^{2}}
$$

where τ_{0} denotes the wall shear stress and ρ is the density." [36]

Definition 2.5.4 (Nusselt Number)

"The hot surface is cooled by a cold fluid stream. The heat from the hot surface, which is maintained at a constant temperature, is diffused through a boundary layer and convected away by the cold stream. Mathematically,

$$
N u=\frac{q L}{k}
$$

where q stands for the convection heat transfer, L for the characteristic length and k stands for thermal conductivity." [37]

Definition 2.5.5 (Sherwood Number)

"It is the nondimensional quantity which show the ratio of the mass transport by convection to the transfer of mass by diffusion. Mathematically:

$$
S h=\frac{k L}{D}
$$

here L is characteristics length, D is the mass diffusivity and k is the mass transfer" coeffcient." [38]

Definition 2.5.6 (Reynolds Number)

"It is defined as the ratio of inertia force of a flowing fluid and the viscous force of the fluid. Mathematically,

$$
R e=\frac{V L}{\nu},
$$

where V denotes the free stream velocity, L is the characteristic length and ν stands for kinematic viscosity." [33]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

"The principle of conservation of mass can be stated as the time rate of change of mass is fixed volume is equal to the net rate of flow of mass across the surface. Mathematically, it can be written as"

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0[34]
$$

Definition 2.6.2 (Momentum Equation)

"The momentum equation states that the time rate of change of linear momentum of a given set of particles is equal to the vector sum of all the external forces acting on the particles of the set, provided Newton's Third Law of action and reaction governs the internal forces. Mathematically, it can be written as":

$$
\frac{\partial}{\partial t}(\rho \mathbf{u})+\nabla \cdot[(\rho \mathbf{u}) \mathbf{u}]=\nabla \cdot \mathbf{T}+\rho g .[34]
$$

Definition 2.6.3 (Energy Equation)

"The law of conservation of energy states that the time rate of change of the total energy is equal to the sum of the rate of work done by the applied forces and change of heat content per unit time.

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{u}=-\nabla \cdot \mathbf{q}+Q+\phi
$$

where ϕ is the dissipation function." [34]

Definition 2.6.4 (Conservation Equation)

"The principle of conservation of mass can be stated as the time rate of change of mass is fixed volume is equal to the net rate of flow of mass across the surface. Mathematically, it can be written as:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0
$$

where t is time, the fluid density is ρ, and the fluid velocity is u." [34]

2.7 Shooting Method

It is a numerical approach for resolving boundary value problems expressed in the form of nonlinear ordinary differential equations. Initially, the higher-order nonlinear ordinary differential equations (ODEs) are converted into a system of first-order ODEs. The missing initial conditions are guessed to have a complete initial value problem (IVP). To explain the detailed computational procedure, consider the classical Blausius problem in the dimensionless form governed by he following ODEs along with the relavant boundary conditions:

$$
\left.\begin{array}{l}
2 f^{\prime \prime \prime}(x)+f(x) f^{\prime \prime}(x) \tag{2.1}\\
f(0)=0=f^{\prime}(0), \quad f^{\prime} \rightarrow 1 \text { as } x \rightarrow \infty
\end{array}\right\}
$$

Introduce the following notations to reduce the order of the above boundary value problem.

$$
\begin{align*}
& f=z_{1}, \\
& f^{\prime}=z_{1}^{\prime}=z_{2}, \tag{2.2}\\
& f^{\prime \prime}=z_{2}^{\prime}=z_{3} .
\end{align*}
$$

As a result, (2.1) is transformed into the following system of first order ODEs:

$$
\begin{array}{ll}
z_{1}^{\prime}=z_{2}, & z_{1}(0)=0 \\
z_{2}^{\prime}=z_{3}, & z_{2}(0)=1 \\
z_{3}^{\prime}=-\frac{1}{2}\left(z_{1} z_{3}\right), & z_{3}(0)=h \tag{2.5}
\end{array}
$$

where h is the missing initial condition which will be guessed to initialize the computational problem.

The $R K-4$ method will be used for the numerical solution of the provided initial value problem (IVP). The choice of " h " should be made to meet this condition:

$$
\begin{equation*}
z_{2}(x, h)=1 . \tag{2.6}
\end{equation*}
$$

For convenience, now onward $z_{2}(x, h)$ will be denoted by $z_{2}(h)$. Let us further denote $z_{2}(h)-1$ by $\phi(h)$, so that

$$
\begin{equation*}
\phi(h)=0 . \tag{2.7}
\end{equation*}
$$

The iterative formula detailed below allows us to implement Newton's method as a solution approach for the previously discussed equation:

$$
\begin{align*}
& h_{n+1}=h_{n}-\frac{\phi\left(h_{n}\right)}{\left(\frac{\partial \phi(h)}{\partial h}\right)_{h=h_{n}}}, \\
& h_{n+1}=h_{n}-\frac{z_{2}\left(h_{n}\right)-1}{\left(\frac{\partial z_{2}(h)}{\partial t}\right)_{h=h_{n}}} . \tag{2.8}
\end{align*}
$$

For $\frac{\partial z_{2}(h)}{\partial h}$, we introduce the following notations:

$$
\begin{equation*}
\frac{\partial z_{1}}{\partial h}=z_{4}, \quad \frac{\partial z_{2}}{\partial h}=z_{5}, \quad \frac{\partial z_{3}}{\partial h}=z_{6} . \tag{2.9}
\end{equation*}
$$

With the use of these notations, representation for iterative scheme of Newton is:

$$
\begin{equation*}
h_{n+1}=h_{n}-\frac{z_{2}\left(h_{n}\right)-1}{z_{5}\left(h_{n}\right)} . \tag{2.10}
\end{equation*}
$$

Differentiating the first-order ODEs (2.3)-(2.4) with respect to 'h', we derive a different system of ODEs as below:

$$
\begin{array}{ll}
z_{4}^{\prime}=z_{5}, & z_{4}(0)=0 \\
z_{5}^{\prime}=z_{6}, & z_{5}(0)=0 \\
z_{6}^{\prime}=-\frac{1}{2}\left[z_{1} z_{6}+z_{3} z_{4}\right], & z_{6}(0)=1 .
\end{array}
$$

Writing all the four ODEs (2.3), (2.4), (2.10) and (2.11) together, we have the following IVP.

$$
\begin{array}{ll}
z_{1}^{\prime}=z_{2}, & z_{1}(0)=0 . \\
z_{2}^{\prime}=z_{3}, & z_{2}(0)=1 . \\
z_{3}^{\prime}=-\frac{1}{2}\left[z_{1} z_{3}\right], & z_{3}(0)=h . \\
z_{4}^{\prime}=z_{5}, & z_{4}(0)=0 . \\
z_{5}^{\prime}=z_{6}, & z_{5}(0)=0 . \\
z_{6}^{\prime}=-\frac{1}{2}\left[z_{1} z_{6}+z_{3} z_{4}\right], & z_{6}(0)=1 .
\end{array}
$$

To solve the above IVP, we will apply the fourth-order Runge-Kutta numerical method.

The stopping criteria for the shooting technique is established as:

$$
\left|z_{2}(h)-1\right|<\epsilon,
$$

where ϵ is an arbitrarily small positive number.

Chapter 3

A Casson Nanofluid Flow on a
 Stretching Surface Effected by Thermal Radiation

3.1 Introduction

The primary focus of this chapter has been about the numerical inspection of a Casson nanofluid rotating flow when subjected to the impact of a magnetic field, viscous dissipation, Joule heating and nonlinear thermal radiation. This model was proposed and numerically computed by Archana et al. [31] by utilizing shooting method together with Runge-Kutta the fourth order method. The conversion of the governing nonlinear PDEs into a set of dimensionless ODEs is a prerequisite for implementing the shooting method. To conclude that, result from numerical analysis for various parameters is debated for the dimensionless velocity f^{\prime}, temperature distribution θ and concentration distribution ϕ. The obtained numerical results have been presented through tables and graphs.

3.2 Mathematical Modeling

Consider a three-dimensional steady, laminar flow of an incompressible Casson nanofluid through a stretching sheet surface. The fluid has been assumed to rotate about z-axis with an angular velocity Ω, where the domain of flow is $z \geq 0$. Suppose that the sheet has been stretched with velocity $U_{w}(x)=a x$. In the z-direction, a constant magnetic field of strength B_{0} is applied. Suppose C_{w} represents the wall concentration and T_{w} signifies the wall temperature. While $C_{\infty}<C_{w}$ and T_{∞} $<T_{w}$ are ambient concentartion and temperature respectively. A dimensionless parameter, temperature ratio θ_{w} is defined as, $\theta_{w}=\frac{T_{w}}{T_{\infty}}>1$.

Figure 3.1: Methodical presentation of the tangible system.

The set of equations describing the flow are:

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0, \tag{3.1}\\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}-2 \Omega v=\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} u}{\partial z^{2}}-\frac{\sigma B_{0}^{2}}{\rho_{f}} u, \tag{3.2}\\
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+2 \Omega v=\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} v}{\partial z^{2}}-\frac{\sigma B_{0}^{2}}{\rho_{f}} v, \tag{3.3}\\
& u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}=\frac{\partial}{\partial z}\left[\left(\alpha+\frac{16 \sigma^{*} T^{3}}{3 K^{*}\left(\rho c_{p}\right)_{f}}\right) \frac{\partial T}{\partial z}\right] \\
& +\tau\left[D_{B} \frac{\partial T}{\partial z} \frac{\partial C}{\partial z}+\frac{D_{T}}{T_{\infty}}\left(\frac{\partial T}{\partial z}\right)^{2}\right] \\
& +\frac{\mu}{\left(\rho c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}\right)+\frac{\sigma B_{0}^{2}}{\left(\rho c_{p}\right)_{f}}\left(u^{2}+v^{2}\right), \tag{3.4}\\
& u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}+w \frac{\partial C}{\partial z}=\frac{\partial}{\partial z}=D_{B} \frac{\partial^{2} C}{\partial z^{2}}+\frac{D_{T}}{T_{\infty}} \frac{\partial^{2} T}{\partial z^{2}} . \tag{3.5}
\end{align*}
$$

The associated BCs have been taken as:

$$
\left.\begin{array}{l}
u=U_{w}(x), \quad v=0, \quad w=0, \quad T=T_{w}, \quad C=C_{w} \quad \text { at } \quad z=0, \tag{3.6}\\
u \rightarrow 0, \quad v \rightarrow 0 \quad T \rightarrow T_{\infty}, \quad C \rightarrow C_{\infty} \quad \text { as } \quad z \rightarrow \infty .
\end{array}\right\}
$$

With the utilization of the Rosseland approximation for radiation, q_{r} is introduced as the radiative heat flux:

$$
q_{r}=-\frac{4 \sigma^{*}}{3 k^{*}} \frac{\partial T^{4}}{\partial y},
$$

where σ^{*} represents the Stefan-Boltzmann constant, and k^{*} denotes the absorption coefficient. If the difference of temperature is relatively minor, then the temperature T^{4} can be expanded about T_{∞} using Taylor series, as follows.

$$
T^{4}=T_{\infty}^{4}+4 T_{\infty}^{3}\left(T-T_{\infty}\right)+6 T_{\infty}^{2}\left(T-T_{\infty}\right)^{2}+\ldots
$$

Ignoring the terms with higher order, we write:

$$
T^{4}=T_{\infty}^{4}+4 T_{\infty}^{3}\left(T-T_{\infty}\right)
$$

$$
\begin{aligned}
& =T_{\infty}^{4}+4 T_{\infty}^{3} T-4 T_{\infty}^{4} \\
& =-3 T_{\infty}^{4}+4 T_{\infty}^{3} T \\
& =4 T_{\infty}^{3} T-3 T_{\infty}^{4}
\end{aligned}
$$

To transform the equations (3.1)-(3.5) into a set of ODEs, we have taken into consideration the subsequent similarity transformations.

$$
\left.\begin{array}{l}
u=a x f^{\prime}, \quad v=a x g, \quad w=-\sqrt{a \nu} f \tag{3.7}\\
T=T_{\infty}\left(1+\left(\theta_{w}-1\right) \theta\right), \quad \phi=\frac{C-C_{\infty}}{C_{w}-C_{\infty}}, \quad \eta=z \sqrt{\frac{a}{\nu}} .
\end{array}\right\}
$$

where $\theta_{w}=\frac{T_{w}}{T_{\infty}}>1$ denotes the temperature ratio parameter.
The detailed method for converting equations (3.1)-(3.5) into dimensionless form is discussed below:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial}{\partial x} a x f^{\prime}=a f^{\prime} \\
& \frac{\partial v}{\partial y}=\frac{\partial}{\partial y}(a x g)=0 \\
& \frac{\partial w}{\partial z}=\frac{\partial}{\partial z}(-\sqrt{a \nu} f)=-\sqrt{a \nu} f^{\prime} \sqrt{\frac{a}{\nu}}=-a f^{\prime} .
\end{aligned}
$$

The satisfaction of Equation (3.1) by using the above results, as follows:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=a f^{\prime}-a f^{\prime}=0 \tag{3.8}
\end{equation*}
$$

Below derivatives are determined from equation (3.2) as:

$$
\begin{aligned}
\frac{\partial \eta}{\partial z} & =\sqrt{\frac{a}{\nu}} . \\
\frac{\partial u}{\partial z} & =\frac{\partial}{\partial z}\left(a x f^{\prime}\right)=a x f^{\prime \prime} \sqrt{\frac{a}{\nu}} . \\
\frac{\partial^{2} u}{\partial z^{2}} & =a x f^{\prime \prime \prime} \frac{a}{\nu}=\frac{a^{2}}{\nu} x f^{\prime \prime \prime} . \\
u \frac{\partial u}{\partial x} & =a^{2} x f^{\prime 2} .
\end{aligned}
$$

$$
\begin{aligned}
w \frac{\partial u}{\partial z} & =a x f^{\prime \prime} \sqrt{\frac{a}{\nu}}(-\sqrt{a \nu}) f=-a^{2} x f f^{\prime \prime} \\
\frac{\partial u}{\partial y} & =\frac{\partial}{\partial y}\left(a x f^{\prime}\right)=0 .
\end{aligned}
$$

The left side of (3.2) becomes, by using above derivatives:

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}-2 \Omega v=a^{2} x f^{\prime 2}-a^{2} x f f^{\prime \prime}-2 \gamma_{1} a^{2} x g \tag{3.9}
\end{equation*}
$$

Similarly, right side of (3.2) turns into:

$$
\begin{equation*}
\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} u}{\partial z^{2}}-\frac{\sigma B_{0}^{2}}{\rho_{f}} u=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{a^{2}}{\nu} x f^{\prime \prime \prime}\right)-\frac{a^{2} x \sigma B_{0}^{2} f^{\prime}}{a \rho_{f}} . \tag{3.10}
\end{equation*}
$$

The dimensionless form of (3.2) is, by comparing (3.9)-(3.10) as follows:

$$
\begin{align*}
& a^{2} x f^{\prime 2}-a^{2} x f f^{\prime \prime}-2 \gamma_{1} a^{2} x g=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{a^{2}}{\nu} x f^{\prime \prime \prime}\right)-\frac{a^{2} x \sigma B_{0}^{2} f^{\prime}}{a \rho_{f}} . \\
\Rightarrow & f^{\prime 2}-f f^{\prime \prime}-2 \gamma_{1} g=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{1}{\nu} f^{\prime \prime \prime}\right)-\frac{\sigma B_{0}^{2} f^{\prime}}{a \rho_{f}} . \\
\Rightarrow & \left(1+\frac{1}{\beta}\right) f^{\prime \prime \prime}-f^{\prime 2}+f f^{\prime \prime}+2 \gamma_{1} g-M f^{\prime}=0 . \tag{3.11}
\end{align*}
$$

The following dimensionless parameters are used in equation (3.11):

$$
\gamma_{1}=\frac{\Omega}{a}, \quad M=\frac{\sigma B_{0}^{2}}{\rho a}
$$

For the momentum equation (3.3), we must compute the following derivatives:

$$
\begin{aligned}
\frac{\partial v}{\partial x} & =\frac{\partial}{\partial x}(a x g)=a g . \\
u \frac{\partial v}{\partial x} & =a^{2} x f^{\prime} g . \\
\frac{\partial v}{\partial y} & =\frac{\partial}{\partial y}(a x g)=0 . \\
\frac{\partial v}{\partial z} & =a x g^{\prime} \sqrt{\frac{a}{\nu}} . \\
w \frac{\partial v}{\partial z} & =-a^{2} x g^{\prime} f .
\end{aligned}
$$

$$
\frac{\partial^{2} v}{\partial z^{2}}=\frac{a^{2}}{\nu} x g^{\prime \prime}
$$

The left side of (3.3) becomes, by using above derivatives:

$$
\begin{equation*}
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+2 \Omega u=a^{2} x f^{\prime} g-a^{2} x g^{\prime} f+2 \gamma_{1} a^{2} x f^{\prime} \tag{3.12}
\end{equation*}
$$

Similarly, the right side of (3.3) becomes:

$$
\begin{equation*}
\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} v}{\partial z^{2}}-\frac{\sigma B_{0}^{2}}{\rho_{f}} v=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{a^{2}}{\nu} x g^{\prime \prime}\right)-\frac{a^{2} x \sigma B_{0}^{2} g}{a \rho_{f}} . \tag{3.13}
\end{equation*}
$$

The dimensionless form of (3.3) is, by comparing (3.12)-(3.13) as below:

$$
\begin{align*}
& a^{2} x f^{\prime} g-a^{2} x g^{\prime} f+2 \gamma_{1} a^{2} x f^{\prime}=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{a^{2}}{\nu} x g^{\prime \prime}\right)-\frac{a^{2} x \sigma B_{0}^{2} g}{a \rho_{f}} . \\
\Rightarrow & f^{\prime} g-g^{\prime} f+2 \gamma_{1} f^{\prime}=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{1}{\nu} g^{\prime \prime}\right)-\frac{\sigma B_{0}^{2} g}{a \rho_{f}} . \\
\Rightarrow & \left(1+\frac{1}{\beta}\right) g^{\prime \prime}+f g^{\prime}-f^{\prime} g-2 \gamma_{1} f^{\prime}-M g=0 . \tag{3.14}
\end{align*}
$$

Now, for the conversion of energy equation (3.4), the following procedure has been carried out.

$$
\begin{aligned}
\theta & =\frac{T-T_{\infty}}{T_{w}-T_{\infty}} . \\
& =T_{\infty}+\left(T_{w}-T_{\infty}\right) \theta \\
& =T_{\infty}+T_{\infty}\left(\frac{T_{w}}{T_{\infty}}-1\right) \theta \\
& =T_{\infty}\left(1+\left(\theta_{w}-1\right) \theta\right) . \\
\theta_{w} & =\frac{T_{w}}{T_{\infty}} . \\
\frac{\partial T}{\partial z} & =\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime} \sqrt{\frac{a}{\nu}}\right) . \\
w \frac{\partial T}{\partial z} & =\left(-a f\left(T_{w}-T_{\infty}\right) \theta^{\prime}\right) . \\
u \frac{\partial T}{\partial x} & =0=v \frac{\partial T}{\partial y} .
\end{aligned}
$$

The governing equation for the conservation of energy is

$$
\begin{align*}
& u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}=\frac{\partial}{\partial z}\left[\left(\alpha+\frac{16 \sigma^{*} T^{3}}{3 k^{*}\left(\rho c_{p}\right)_{f}}\right) \frac{\partial T}{\partial z}\right] \\
& +\tau\left[D_{B} \frac{\partial T}{\partial z} \frac{\partial C}{\partial z}+\frac{D_{T}}{T_{\infty}}\left(\frac{\partial T}{\partial z}\right)^{2}\right]+\frac{\mu}{\left(\rho c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}\right) \\
& +\frac{\sigma B_{0}^{2}}{\left(\rho c_{p}\right)_{f}}\left(u^{2}+v^{2}\right) . \\
\Rightarrow & -a f\left(T_{w}-T_{\infty}\right) \theta^{\prime}=\frac{\partial}{\partial z}\left[\alpha \sqrt{\frac{a}{\nu}}\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime}\right. \\
& \left.+R d \alpha \sqrt{\frac{a}{\nu}}\left(T_{w}-T_{\infty}\right) \theta^{\prime}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right] \\
& +\tau\left[D_{B}\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime}\left(\sqrt{\frac{a}{\nu}}\right)\right)\left(C_{w}-C_{\infty}\right) \phi^{\prime}\left(\sqrt{\frac{a}{\nu}}\right)\right. \\
& \left.+\frac{D_{T}}{T_{\infty}}\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime}\left(\sqrt{\frac{a}{\nu}}\right)\right)^{2}\right]+\frac{\mu}{\left(\rho c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left[\left(a x f^{\prime \prime} \sqrt{\frac{a}{\nu}}\right)^{2}\right. \\
& \left.+\left(a x g^{\prime} \sqrt{\frac{a}{\nu}}\right)^{2}\right]+\frac{\sigma B_{0}^{2}}{\left(\rho c_{p}\right)_{f}}\left[\left(a x f^{\prime}\right)^{2}+(a x g)^{2}\right] . \\
\Rightarrow & -a f\left(T_{w}-T_{\infty}\right) \theta^{\prime}=\frac{\alpha a}{\nu}\left[\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime}+R d\left(T_{w}-T_{\infty}\right) \theta^{\prime}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right. \\
& \left.+3 R d\left(\theta_{w}-1\right)\left(T_{w}-T_{\infty}\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}\right]+a N_{b}\left(T_{w}-T_{\infty}\right) \theta^{\prime} \phi^{\prime} \\
& +a N_{t}\left(T_{w}-T_{\infty}\right) \theta^{\prime 2}+\frac{a U_{w}^{2}}{\left(c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+\frac{a \sigma B_{0}^{2} U_{w}^{2}}{a\left(\rho c_{p}\right)_{f}}\left(f^{\prime 2}+g^{2}\right) . \\
\Rightarrow & -\operatorname{Pr} f \theta^{\prime}=\theta^{\prime \prime}+R d \theta^{\prime \prime}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}+3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2} \\
& +\operatorname{Pr} N_{b} \theta^{\prime} \phi^{\prime}+\operatorname{Pr} N_{t} \theta^{\prime 2}+\operatorname{Pr} E c\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+\operatorname{Pr} E c M\left(f^{\prime 2}+g^{2}\right) \\
\Rightarrow & \left(\left(1+R d\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right) \theta^{\prime}\right)^{\prime}+\operatorname{Pr}\left[+\operatorname{Pr}^{2} \theta^{\prime} N_{b} \theta^{\prime} \phi^{\prime}+N_{t} \theta^{\prime 2}\right. \\
& \left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)\right]=0 . \tag{3.15}
\end{align*}
$$

The dimensionless parameters used in equation (3.15) are:

$$
\begin{gathered}
M=\frac{\sigma B_{0}^{2}}{\rho a}, \quad R d=\frac{16 \sigma^{*} T_{\infty}^{3}}{3 k k^{*}}, \quad \operatorname{Pr}=\frac{\nu}{\alpha}, \quad N b=\frac{\tau D_{B}\left(C_{w}-C_{\infty}\right)}{\nu}, \\
N t=\frac{\tau D_{T}\left(T_{w}-T_{\infty}\right)}{\nu T_{\infty}}, \quad E c=\frac{U_{w}^{2}}{\left(c_{p}\right)_{f}\left(T_{w}-T_{\infty}\right)} .
\end{gathered}
$$

Now, for the conversion of concentration equation (3.5), the following process is carried out:

$$
\begin{aligned}
\phi & =\frac{C-C_{\infty}}{C_{w}-C_{\infty}} . \\
\Rightarrow \frac{\partial C}{\partial z} & =\left(C_{w}-C_{\infty}\right) \phi^{\prime} \sqrt{\frac{a}{\nu}} . \\
\Rightarrow w \frac{\partial C}{\partial z} & =-a f\left(C_{w}-C_{\infty}\right) \phi^{\prime} . \\
\frac{\partial^{2} C}{\partial z^{2}} & =\left(C_{w}-C_{\infty}\right) \phi^{\prime} \frac{a}{\nu} . \\
\frac{\partial T}{\partial z} & =\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime} \sqrt{\frac{a}{\nu}}\right) . \\
\Rightarrow \frac{\partial^{2} T}{\partial z^{2}} & =\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime} \frac{a}{\nu}\right) . \\
\frac{\partial C}{\partial x} & =\frac{\partial C}{\partial y}=0 .
\end{aligned}
$$

The governing equation of concentration is converted into dimensionless form as:

$$
\begin{align*}
& u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}+w \frac{\partial C}{\partial z}=D_{B} \frac{\partial^{2} C}{\partial z^{2}}+\frac{D_{T}}{T_{\infty}} \frac{\partial^{2} T}{\partial z^{2}} . \\
\Rightarrow & -a f\left(C_{w}-C_{\infty}\right) \phi^{\prime}=D_{B}\left(C_{w}-C_{\infty}\right) \phi^{\prime} \frac{a}{\nu}+\frac{D_{T}}{T_{\infty}}\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime} \frac{a}{\nu}\right) . \\
\Rightarrow & -f \phi^{\prime}=\frac{D_{B}}{\nu} \phi^{\prime}+\frac{D_{T}}{\nu T_{\infty}}\left(\frac{T_{w}-T_{\infty}}{C_{w}-C_{\infty}} \theta^{\prime}\right) . \\
\Rightarrow & \phi^{\prime \prime}+S c f \phi^{\prime}+\frac{N t}{N b} \theta^{\prime \prime}=0 . \tag{3.16}
\end{align*}
$$

The dimensionless parameters used in equation (3.16) are:

$$
N b=\frac{\tau D_{B}\left(C_{w}-C_{\infty}\right)}{\nu}, \quad N t=\frac{\tau D_{T}\left(T_{w}-T_{\infty}\right)}{\nu T_{\infty}}, \quad S c=\frac{\nu}{D_{B}} .
$$

The governing model's ultimate dimensionless form is:

$$
\begin{align*}
& \left(1+\frac{1}{\beta}\right) f^{\prime \prime \prime}-f^{\prime 2}+f f^{\prime \prime}+2 \gamma_{1} g-M f^{\prime}=0 \tag{3.17}\\
& \left(1+\frac{1}{\beta}\right) g^{\prime \prime}+f g^{\prime}-f^{\prime} g-2 \gamma_{1} f^{\prime}-M g=0 \tag{3.18}
\end{align*}
$$

$$
\begin{align*}
& \left(\left(1+R d\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right) \theta^{\prime}\right)^{\prime}+\operatorname{Pr}\left[\operatorname{Pr} f \theta^{\prime}+N_{b} \theta^{\prime} \phi^{\prime}\right. \\
& \left.+N_{t} \theta^{\prime 2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)\right]=0 . \tag{3.19}\\
& \phi^{\prime \prime}+S c f \phi^{\prime}+\frac{N t}{N b} \theta^{\prime \prime}=0 . \tag{3.20}
\end{align*}
$$

The transformation of corresponding BCs into the non-dimensional form is given below:

$$
\begin{aligned}
& u=U_{w}(x), \\
& \Rightarrow \quad a x f^{\prime}(\eta)=a x, \\
& \Rightarrow \quad f^{\prime}(0)=1, \\
& v=0, \quad \text { at } z=0 . \\
& \Rightarrow \operatorname{axg}(\eta)=0, \quad \text { at } \quad \eta=0 . \\
& \Rightarrow \quad g(0)=0, \\
& w=0, \\
& \Rightarrow \quad-\sqrt{a \nu} f(\eta)=0, \\
& \text { at } \quad \eta=0 . \\
& \Rightarrow \quad f(0)=0, \\
& T=T_{w}, \\
& \text { at } \quad z=0 \text {. } \\
& \Rightarrow \quad \theta(\eta)\left(T_{w}-T_{\infty}\right)+T_{\infty}=T_{w}, \\
& \text { at } \quad \eta=0 \text {. } \\
& \Rightarrow \quad \theta(\eta)\left(T_{w}-T_{\infty}\right)=\left(T_{w}-T_{\infty}\right), \\
& \text { at } \quad \eta=0 \text {. } \\
& \Rightarrow \quad \theta(0)=1 \text {, } \\
& C=C_{w}, \quad \text { at } z=0 . \\
& \Rightarrow \quad \phi(\eta)\left(C_{w}-C_{\infty}\right)=\left(C_{w}-C_{\infty}\right), \\
& \text { at } \quad \eta=0 \text {. } \\
& \Rightarrow \quad \phi(0)=1 \text {, } \\
& u \rightarrow 0, \quad \text { as } z \rightarrow \infty \text {. } \\
& \Rightarrow \quad f^{\prime}(\eta) \rightarrow 0, \\
& \text { as } \quad \eta \rightarrow \infty \text {. } \\
& v \rightarrow 0, \\
& \text { as } \quad z \rightarrow \infty \text {. } \\
& \Rightarrow \quad g(\eta) \rightarrow 0, \\
& \text { as } \quad \eta \rightarrow \infty .
\end{aligned}
$$

$$
\begin{aligned}
& w \rightarrow 0, & \text { as } z \rightarrow \infty . \\
\Rightarrow & f(\eta) \rightarrow 0, & \text { as } \eta \rightarrow \infty . \\
& T \rightarrow T_{\infty}, & \text { as } z \rightarrow \infty . \\
\Rightarrow & \theta(\eta) \rightarrow 0, & \text { as } \eta \rightarrow \infty . \\
& C \rightarrow C_{\infty}, & \text { as } z \rightarrow \infty . \\
\Rightarrow & \phi(\eta) \rightarrow 0, & \text { as } \eta \rightarrow \infty .
\end{aligned}
$$

The dimensionless form of associated BCs (3.6) are:

$$
\left.\begin{array}{rl}
f(0) & =0, \tag{3.21}\\
& g(0)=0, \quad f^{\prime}(0)=1, \quad \theta(0)=0, \quad \phi(0)=0, \quad \text { as } \eta \rightarrow 0 \\
f^{\prime} & \rightarrow 0, \quad g \rightarrow 0, \quad \theta \rightarrow 0, \quad \phi \rightarrow 0 \text { as } \eta \rightarrow \infty
\end{array}\right\}
$$

The skin friction coefficients, are given as follows:

$$
\begin{equation*}
C_{f x}=\frac{\tau_{w x}}{\rho_{f} U_{w}^{2}}, \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{w x}=\left(\mu_{B}+\frac{1}{\beta}\right)\left(\frac{\partial u}{\partial z}\right)_{z=0} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{f y}=\frac{\tau_{w y}}{\rho_{f} U_{w}^{2}}, \tag{3.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{w y}=\left(\mu_{B}+\frac{1}{\beta}\right)\left(\frac{\partial v}{\partial z}\right)_{z=0}, \tag{3.25}
\end{equation*}
$$

Therefore

$$
C_{f x}=\frac{\mu_{B}\left(1+\frac{1}{\beta}\right)\left(\frac{\partial u}{\partial z}\right)_{z=0}}{\rho_{f} U_{w}^{2}}
$$

$$
\begin{gather*}
=\frac{\mu_{B}\left(1+\frac{1}{\beta}\right)\left(a x f^{\prime \prime}(0) \sqrt{\frac{a}{\nu}}\right)}{\rho_{f} U_{w}^{2}} \\
=\frac{\nu U_{w}}{U_{w}^{2}} \sqrt{\frac{a}{\nu}}\left(1+\frac{1}{\beta}\right) f^{\prime \prime}(0) \\
=\frac{\sqrt{a} \sqrt{\nu}}{\sqrt{U_{w}^{2}}}\left(1+\frac{1}{\beta}\right) f^{\prime \prime}(0) \\
=\frac{1}{\sqrt{R e_{x}}}\left(1+\frac{1}{\beta}\right) f^{\prime \prime}(0) . \\
\Rightarrow \quad\left(R e_{x}\right)^{1 / 2} C_{f x}=\left(1+\frac{1}{\beta}\right) f^{\prime \prime}(0) . \tag{3.26}
\end{gather*}
$$

Similarly

$$
\begin{gather*}
C_{f y}=\frac{\mu_{B}\left(1+\frac{1}{\beta}\right)\left(\frac{\partial v}{\partial z}\right)_{z=0}}{\rho_{f} U_{w}^{2}} \\
=\frac{\mu_{B}\left(1+\frac{1}{\beta}\right)\left(a x g^{\prime}(0) \sqrt{\frac{a}{\nu}}\right)}{\rho_{f} U_{w}^{2}} \\
=\frac{\nu U_{w}}{U_{w}^{2}} \sqrt{\frac{a}{\nu}}\left(1+\frac{1}{\beta}\right) g^{\prime}(0) \\
=\frac{\sqrt{a} \sqrt{\nu}}{\sqrt{U_{w}^{2}}}\left(1+\frac{1}{\beta}\right) g^{\prime}(0) \\
=\frac{1}{\sqrt{R e_{x}}}\left(1+\frac{1}{\beta}\right) g^{\prime}(0) \\
\Rightarrow \quad\left(R e_{x}\right)^{1 / 2} C_{f y}=\left(1+\frac{1}{\beta}\right) g^{\prime}(0) . \tag{3.27}
\end{gather*}
$$

Here $R e_{x}=\frac{U_{w}^{2}}{a \nu}$ denotes the local Reynolds number.
Local Nusselt number is defined as follows:

$$
\begin{equation*}
N u_{x}=\frac{U_{w} q_{w}}{a k\left(T_{w}-T_{\infty}\right)} . \tag{3.28}
\end{equation*}
$$

where

$$
q_{w}=k\left(\frac{\partial T}{\partial z}\right)_{z=0}+\left(q_{r}\right)_{w}
$$

and

$$
\begin{equation*}
\left(q_{r}\right)_{w}=\left(-\frac{16 \sigma^{*} T^{3}}{3 k^{*}}\left(\frac{\partial T}{\partial z}\right)_{z=0}\right)_{w} \tag{3.29}
\end{equation*}
$$

The dimensionless form of $N u_{x}$ is produced by the following steps:

$$
\begin{aligned}
& N u_{x}=-U_{w}\left(T_{w}-T_{\infty}\right)\left[\frac{-k \theta^{\prime}(0)-\frac{16 \sigma^{*} k T_{\infty}^{3}}{3 k k^{*}}\left(1+\left(\theta_{w}-1\right) \theta\right)_{w}^{3} \theta^{\prime}(0)}{a k\left(T_{w}-T_{\infty}\right)}\right] \sqrt{\frac{a}{\nu}} \\
&=-U_{w} \theta^{\prime}(0)\left[\frac{-1-R d\left(1+\left(\theta_{w}-1\right) \theta\right)_{w}^{3}}{a}\right] \sqrt{\frac{a}{\nu}} \\
&=-\sqrt{\frac{U_{w}^{2}}{a \nu}}\left[-1-R d\left(1+\left(\theta_{w}-1\right) \theta\right)_{w}^{3}\right] \theta^{\prime}(0) \\
&=-\left(R e_{x}\right)^{1 / 2}\left[-1-R d\left(1+\left(\frac{T_{w}-T_{\infty}}{T_{\infty}}\right)\left(\frac{T-T_{\infty}}{T_{w}-T_{\infty}}\right)\right)_{w}^{3}\right] \theta^{\prime}(0) \\
& \Rightarrow \quad R e_{x}^{-1 / 2} N u_{x}=-\left[1+R d\left(\theta_{w}\right)^{3}\right] \theta^{\prime}(0) .
\end{aligned}
$$

The Local Sherwood number $S h_{x}$ is termed as:

$$
\begin{equation*}
S h_{x}=\frac{x q_{m}}{D_{B}\left(C_{w}-C_{\infty}\right)} . \tag{3.30}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{m}=-D_{B}\left(\frac{\partial C}{\partial z}\right)_{z=0} \tag{3.31}
\end{equation*}
$$

The dimensionless form of $S h_{x}$ can be produced through the following steps:

$$
\begin{gathered}
S h_{x}=-\frac{x D_{B}\left(C_{w}-C_{\infty}\right) \phi^{\prime}(0) \sqrt{\frac{a}{\nu}}}{D_{B}\left(C_{w}-C_{\infty}\right)} \\
=-\frac{x \phi^{\prime}(0) \sqrt{a}}{\sqrt{\nu}} \\
=-\sqrt{\frac{U_{w}^{2}}{a \nu}} \phi^{\prime}(0) . \\
\Rightarrow \quad R e_{x}^{-1 / 2} S h_{x}=-\phi^{\prime}(0) .
\end{gathered}
$$

3.3 Numerical Method for Solution

The ordinary differential equations (3.17) and (3.18) have been solved numerically by using the shooting technique. For this purpose, the following notations have been taken:

$$
\begin{array}{ll}
f=Z_{1}, & f^{\prime}=Z_{1}^{\prime}=Z_{2}, \quad f^{\prime \prime}=Z_{1}^{\prime \prime}=Z_{2}^{\prime}=Z_{3}, \\
g=Z_{4}, & g^{\prime}=Z_{4}^{\prime}=Z_{5} .
\end{array}
$$

The momentum equations are then transformed into the following system of firstorder ODEs:

$$
\begin{array}{ll}
Z_{1}^{\prime}=Z_{2}, & Z_{1}(0)=0 . \\
Z_{2}^{\prime}=Z_{3}, & Z_{2}(0)=1 . \\
Z_{3}^{\prime}=\frac{\beta}{1+\beta}\left(Z_{2}^{2}-Z_{1} Z_{3}-2 Z_{4} \gamma_{1}+M Z_{2}\right), & Z_{3}(0)=r . \\
Z_{4}^{\prime}=Z_{5}, & Z_{4}(0)=0 . \\
Z_{5}^{\prime}=\frac{\beta}{1+\beta}\left(-Z_{1} Z_{5}+Z_{2} Z_{4}-2 Z_{2} \gamma_{1}+M Z_{4}\right), & Z_{5}(0)=m .
\end{array}
$$

RK-4 method has been applied for solving the above IVP.
The domain of the problem is considered to be bounded i.e. $\left[0, \eta_{\infty}\right]$, where η_{∞} represents as a + ve real number, for which the variation in the solution is ignorable after $\eta=\eta_{\infty}$. The missing conditions r and m are to be chosen such that.

$$
Z_{2}\left(\eta_{\infty}, r, m\right)=0, \quad Z_{4}\left(\eta_{\infty}, r, m\right)=0
$$

Newton's method will be used to find r and m. This method has the following iterative scheme:

$$
\left[\begin{array}{c}
r \\
m]_{(n+1)}=\left[\begin{array}{c}
r \\
m
\end{array}\right]_{(n)}-\left[\begin{array}{ll}
\frac{\partial Z_{2}}{\partial r} & \frac{\partial Z_{2}}{\partial m} \\
\frac{\partial Z_{4}}{\partial r} & \frac{\partial Z_{4}}{\partial m}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Z_{2} \\
Z_{4}
\end{array}\right]_{(n)},{ }^{(n)} \text { (n) }
\end{array}\right.
$$

Now introducing the following notations:

$$
\begin{array}{llll}
\frac{\partial Z_{1}}{\partial r}=Z_{6}, & \frac{\partial Z_{2}}{\partial r}=Z_{7}, & \frac{\partial Z_{3}}{\partial r}=Z_{8}, & \frac{\partial Z_{4}}{\partial r}=Z_{9},
\end{array} \frac{\frac{\partial Z_{5}}{\partial r}=Z_{10}}{\frac{\partial Z_{1}}{\partial m}=Z_{11},} \begin{array}{lll}
\frac{\partial Z_{2}}{\partial m}=Z_{12}, & \frac{\partial Z_{3}}{\partial m}=Z_{13}, & \frac{\partial Z_{4}}{\partial m}=Z_{14},
\end{array} \frac{\frac{\partial Z_{5}}{\partial m}=Z_{15}}{}
$$

The iterative scheme of Newton method is, by using the results of above notations as follows:

$$
\left[\begin{array}{c}
r \\
m
\end{array}\right]_{(n+1)}=\left[\begin{array}{l}
r \\
m
\end{array}\right]_{(n)}-\left[\begin{array}{ll}
Z_{7} & Z_{12} \\
Z_{9} & Z_{14}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Z_{2} \\
Z_{4}
\end{array}\right]_{(n)} .
$$

The last set of five first order ODEs in terms of r and m are differentiated to get another system of ODEs, as follows:

$$
\begin{array}{ll}
Z_{6}^{\prime}=Z_{7}, & Z_{6}(0)=0 . \\
Z_{7}^{\prime}=Z_{8}, & Z_{7}(0)=0 . \\
Z_{8}^{\prime}=\frac{\beta}{1+\beta}\left(2 Z_{2} Z_{7}-Z_{6} Z_{3}-Z_{1} Z_{8}-2 Z_{9} \gamma_{1}+M Z_{7}\right), & Z_{8}(0)=1 . \\
Z_{9}^{\prime}=Z_{10}, & Z_{9}(0)=0 . \\
Z_{10}^{\prime}=\frac{\beta}{1+\beta}\left(-Z_{6} Z_{5}-Z_{1} Z_{1} 0+Z_{7} Z_{4}+Z_{2} Z_{9}-2 Z_{7} \gamma_{1}+M Z_{9}\right), & Z_{10}(0)=0 . \\
Z_{11}^{\prime}=Z_{12}, & Z_{11}(0)=0 . \\
Z_{12}^{\prime}=Z_{13}, & Z_{12}(0)=0 . \\
Z_{13}^{\prime}=\frac{\beta}{1+\beta}\left(2 Z_{2} Z_{12}-Z_{11} Z_{3}-Z_{1} Z_{13}-2 Z_{14} \gamma_{1}+M Z_{12}\right), & Z_{13}(0)=0 . \\
Z_{14}^{\prime}=Z_{15}, & Z_{14}(0)=0 . \\
Z_{15}^{\prime}=\frac{\beta}{1+\beta}\left(-Z_{11} Z_{5}-Z_{1} Z_{15}+Z_{12} Z_{4}+Z_{2} Z_{14}-2 Z_{1} 2 \gamma_{1}+M Z_{14}\right), & Z_{15}(0)=1 .
\end{array}
$$

For the Newton's technique, the stopping criteria is as follows:

$$
\max \left\{\left|Z_{2}\left(\eta_{\infty}, r^{n}, m^{n}\right)\right|,\left|Z_{4}\left(\eta_{\infty}, r^{n}, m^{n}\right)\right|\right\}<\epsilon,
$$

where $\epsilon>0$ is an arbitrarily small number, which has been considered as 10^{-10}.

The ordinary differential equations (3.19) and (3.20) will be approximated by using the shooting technique, assuming f and g as known functions.
Consider equations (3.19)-(3.20) in the following form:

$$
\begin{align*}
\theta^{\prime \prime} & =\frac{1}{\left(1+R d\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}\right. \\
& -\operatorname{Pr}\left[f \theta^{\prime}+N_{b} \theta^{\prime} \phi^{\prime}+N_{t} \theta^{\prime 2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)\right.\right. \\
& \left.\left.\left.+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right] \tag{3.32}\\
\phi^{\prime \prime}= & -S c f \phi^{\prime}-\left(\frac{N t}{N b}\right) \frac{1}{\left[1+R d\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right]}\left[-3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\right. \\
& \left(1+\left(\theta_{w}-1\right) \theta\right)^{2} \operatorname{Pr}\left[f \theta^{\prime}+N_{b} \theta^{\prime} \phi^{\prime}+N_{t} \theta^{\prime 2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)\right.\right. \\
& \left.\left.\left.+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right] . \tag{3.33}
\end{align*}
$$

To apply the shooting method, we utilize the following notions:

$$
\begin{array}{ll}
\theta=Y_{1}, & \theta^{\prime}=Y_{1}^{\prime}=Y_{2}, \\
\phi=Y_{3}, & \phi^{\prime}=Y_{3}^{\prime}=Y_{4} .
\end{array}
$$

The above equations are then transformed into the set of first-order ODEs:

$$
\begin{aligned}
Y_{1}^{\prime}= & Y_{2}, \\
Y_{2}^{\prime}= & \frac{1}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right. \\
& -\operatorname{Pr}\left[\operatorname{Pr} f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)\right.\right.
\end{aligned}
$$

$$
\begin{array}{rlrl}
& \left.\left.+M\left(f^{\prime 2}+g^{2}\right)\right)\right], & Y_{2}(0)=l . \\
Y_{3}^{\prime}= & Y_{4}, & Y_{3}(0)=1 . \\
Y_{4}^{\prime}= & -S c f Y_{4}-\left(\frac{N t}{N b}\right) \frac{1}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\right. \\
& \left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[\operatorname{Prf} Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right. & \\
& \left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right]
\end{array}
$$

RK-4 method is applied for solving numerically, the last IVP.
l and p are to be chosen as missing conditions:

$$
\begin{equation*}
Y_{1}\left(\eta_{\infty}, l, p\right)=0, \quad Y_{3}\left(\eta_{\infty}, l, p\right)=0 \tag{3.34}
\end{equation*}
$$

Newton method is used to solve the above equations with the iterative scheme as follows:

$$
\left[\begin{array}{l}
l \\
p
\end{array}\right]_{(n+1)}=\left[\begin{array}{l}
l \\
p
\end{array}\right]_{(n)}-\left[\begin{array}{ll}
\frac{\partial Y_{1}}{\partial l} & \frac{\partial Y_{1}}{\partial p} \\
\frac{\partial Y_{3}}{\partial l} & \frac{\partial Y_{3}}{\partial p}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Y_{1} \\
Y_{3}
\end{array}\right]_{(n)}
$$

Introducing the following further notations:

$$
\begin{array}{llll}
\frac{\partial Y_{1}}{\partial l}=Y_{5}, & \frac{\partial Y_{2}}{\partial l}=Y_{6}, & \frac{\partial Y_{3}}{\partial l}=Y_{7}, & \frac{\partial Y_{4}}{\partial l}=Y_{8} \\
\frac{\partial Y_{1}}{\partial p}=Y_{9}, & \frac{\partial Y_{2}}{\partial p}=Y_{10}, & \frac{\partial Y_{3}}{\partial p}=Y_{11}, & \frac{\partial Y_{4}}{\partial p}=Y_{12}
\end{array}
$$

The form of Newton iterative scheme is, by using the results of above notations are as follows:

$$
\left[\begin{array}{l}
l \\
p
\end{array}\right]_{(n+1)}=\left[\begin{array}{l}
l \\
p
\end{array}\right]_{(n)}-\left[\begin{array}{ll}
Y_{5} & Y_{9} \\
Y_{7} & Y_{11}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Y_{1} \\
Y_{3}
\end{array}\right]_{(n)}
$$

The last set of four first order ODEs in terms of l and p are differentiated to get
another system of ODEs, as follows:

$$
\begin{aligned}
& Y_{5}^{\prime}=Y_{6}, \\
& Y_{5}(0)=0 . \\
& Y_{6}^{\prime}=\frac{1}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) 2 Y_{2} Y_{6}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right. \\
& -6 R d\left(\theta_{w}-1\right)^{2} Y_{5} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right) \\
& \left.-\operatorname{Pr}\left[\operatorname{Prf} Y_{6}+N_{b} Y_{6} Y_{4}+N_{b} Y_{2} Y_{8}+2 N_{t} Y_{2} Y_{6}\right]\right] \\
& -\frac{3 R d\left(\theta_{w}-1\right) Y_{5}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}}\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right. \\
& -\operatorname{Pr}\left[\operatorname{Prf} Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)\right.\right. \\
& \left.\left.\left.+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right], \\
& Y_{6}(0)=1 . \\
& Y_{7}^{\prime}=Y_{8}, \\
& Y_{7}(0)=0 . \\
& Y_{8}^{\prime}=-S c f Y_{4}-\left(\frac{N t}{N b}\right) \frac{1}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) 2 Y_{2} Y_{6}\right. \\
& \left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-6 R d\left(\theta_{w}-1\right)^{2} Y_{5} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)-\operatorname{Pr}\left[\operatorname{Prf} Y_{6}\right. \\
& \left.\left.+N_{b} Y_{6} Y_{4}+N_{b} Y_{2} Y_{8}+2 N_{t} Y_{2} Y_{6}\right]\right]+\frac{3 R d\left(\theta_{w}-1\right) Y_{5}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}} \\
& \left(\frac{N t}{N b}\right)\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[\operatorname{Prf} Y_{2}+N_{b} Y_{2} Y_{4}\right.\right. \\
& \begin{array}{lrl}
& \left.\left.+N_{t} Y_{2}^{2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right], & \\
=Y_{10}, & Y_{8}(0) & =0 . \\
Y_{9}(0) & =0 .
\end{array} \\
& Y_{10}^{\prime}=\frac{1}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) 2 Y_{2} Y_{5}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -6 R d\left(\theta_{w}-1\right)^{2} Y_{9} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)-\operatorname{Pr}\left[\operatorname{Prf} Y_{10}\right. \\
& \left.\left.+N_{b} Y_{10} Y_{4}+N_{b} Y_{2} Y_{12}+2 N_{t} Y_{2} Y_{10}\right]\right]-\frac{3 R d\left(\theta_{w}-1\right) Y_{9}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}} \\
& {\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[\operatorname{Pr} f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right.\right.} \\
& \left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime^{\prime \prime} 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right], \quad Y_{10}(0)=0 . \\
Y_{11}^{\prime}= & Y_{12}, \\
Y_{12}^{\prime}= & -S c f Y_{12}-\frac{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}{\left(\frac{N t}{N b}\right)\left[-3 R d\left(\theta_{w}-1\right) 2 Y_{2} Y_{10}\right.} \\
& \left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-6 R d\left(\theta_{w}-1\right)^{2} Y_{9} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)-\operatorname{Pr}\left[\operatorname{Pr} f Y_{10}\right. \\
& \left.\left.+N_{b} Y_{10} Y_{4}+N_{b} Y_{2} Y_{12}+2 N_{t} Y_{2} Y_{10}\right]\right]+\frac{3 R d\left(\theta_{w}-1\right) Y_{9}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}} \\
& \left(\frac{N t}{N b}\right)\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[\operatorname{Pr} f Y_{2}+N_{b} Y_{2} Y_{4}\right.\right. \\
& \left.\left.+N_{t} Y_{2}^{2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)\right]\right],
\end{aligned}
$$

The Newton's method stopping criteria is established as:

$$
\max \left\{\left|Y_{1}\left(\eta_{\infty}, l^{n}, p^{n}\right)\right|,\left|Y_{3}\left(\eta_{\infty}, l^{n}, p^{n}\right)\right|\right\}<\epsilon
$$

3.4 Results and Discussion of Graphs and Tables

In this section, we will thoroughly discuss the influence of the dimensionless parameters on the skin friction coefficients $R e_{x}^{\frac{1}{2}} C_{f_{x}}, R e_{y}^{\frac{1}{2}} C_{f_{y}}$, Nusselt number $R e_{x}^{-\frac{1}{2}} N u_{x}$ and Sherwood number $R e_{x}^{-\frac{1}{2}} S h_{x}$ through different graphs and tables. Table 3.1
shows the effect of Casson parameter β, rotation parameter γ_{1} and magnetic parameter M on $\operatorname{Re}_{x}^{\frac{1}{2}} C_{f_{x}}$ and $\operatorname{Re}_{y}^{\frac{1}{2}} C_{f_{y}}$. For accelerating the values of Casson parameter $\beta, \operatorname{Re}_{x}^{\frac{1}{2}} C_{f_{x}}$ and $\operatorname{Re}_{x}^{\frac{1}{2}} C_{f_{y}}$ increase. Table 3.1 expresses the intervals I_{f} and I_{g} from where the missing conditions r and m can be chosen respectively. Analysis conducted regarding the Nusselt number, shows a great flexibility in the choice of missing initial conditions. Table 3.2 explains the impact of Casson parameter β, rotation parameter γ_{1}, magnetic parameter M, radiation parameter $R d$, temprature ratio parameter, θ_{w}, Prandtl number Pr, Brownian parameter $N b$, thermophoresis parameter $N t$, Eckert number $E c$ and Schmidt number $S c$ on $R e_{x}^{-\frac{1}{2}} N u_{x}$ and Sherwood number $R e_{x}^{-\frac{1}{2}} S h_{x}$. A decreasing behaviour is observed in $R e_{x}^{-\frac{1}{2}} N u_{x}$ and $R e_{x}^{-\frac{1}{2}} S h_{x}$ by rising Casson parameter β.

Figure 3.2 illustrates how the velocity profile f^{\prime} decreases as the Casson parameter β increases. From a tangible perspective, the Casson parameter is impacted by the yield stress. This stress, in turn, creates an opposing force that results in a decrease in the velocity of the fluid with the progressive rise of β values.

Figure 3.3 gives perception into the alike parameter correlated to the lateral velocity profile $g(\eta)$ in the y-direction. The velocity $g(\eta)$ exhibits an upward trend with respect to β. Within this framework, $g(\eta)$ adopts the configuration like parabolic, signifying that the flow transpires in the negative direction due to its negative values. The influence of M in the temperature profile θ is manifestly observed in Figure 3.4. It demonstrates that an escalation of this parameter leads to an elevation in the temperature profile, driven by the Lorentz force generated in the presence of a magnetic field.

The influence of the parameter γ_{1} on f^{\prime} and g is portrayed in Figures 3.5 and 3.6. It has been observed that an increase in the rotation parameter leads to a deterioration of velocity along the x-direction. In a physical sense, higher values of this parameter correspond to lower stretching rates along the x-direction. This parameter causes a decrease in the velocity along the x-direction. The results indicate that as the value of $N t$ is increased, both the temperature distribution and the concentration profile rise, as shown in Figures 3.7 and 3.8. This parameter signifies the availability of nanoparticles within the fluid.

The consequences of altering Magnetic parameter M for the velocity profiles f^{\prime} and g is visualized in Figures 3.9 and 3.10, showcasing a decrease in f^{\prime} and an increase in g with an increase in M. This occurs because a drag force which is temred as Lorentz force get raised due to applied magnetic field generated by the motion of charges. This force causes a decrease in the magnitude of velocity along the x-direction. Distinct values of θ_{w} illustrate the temperature profile θ increment in Figure 3.11. As this parameter increases, the temperature also experiences a corresponding increase.

A decline in the concentration profile ϕ is evident as the value of the Schmidt parameter $S c$ increases, as illustrated in Figure 3.12. Given that the Schmidt number is influenced by the Brownian diffusion coefficient, rise in Schmidt number leads to a decrease in the Brownian diffusion coefficient. Consequently, this suggests a reduction in nanoparticle concentration due to the diminished diffusion behavior. The effect of $N b$ is illustrated in Figures 3.13 and 3.14. As $N b$ increases, the temperature distribution rises, while the concentration profile decreases. The occurrence of Brownian motion in the fluid is attributed to the presence of nanoparticles. With an increase in $N b$, this motion undergoes changes, leading to a subsequent decrease in the thickness of the concentration boundary layer for the nanoparticles.

Figure 3.15 reveals that due to an increment in γ_{1}, the temperature distribution also increases. In Figure 3.16, the impact of the radiation parameter $R d$ on the temperature distribution θ is depicted. As the radiation parameter boosts, it leads to the emit of more heat energy into the flow, resulting in an uplifted temperature profile. Figure 3.17 displays the impact of the Prandtl number Pr on the temperature distribution θ. Both the thickness of the thermal boundary layer and the temperature are functions that decrease as the Prandtl number Pr increases. Certainly, the influence of the Eckert number Ec on the temperature distribution θ showcases a rising pattern in θ as the value of $E c$ increases, as illustrated in Figure 3.18. The temperature distribution escalates as the value of Eckert number goes up. This outcome arises from the fact that the Eckert number is dependent on kinetic energy, which, upon being converted to heat energy within the fluid,
results in a temperature increase. The impact of the Brownian parameter Nb in conjunction with the thermophoresis parameter $N t$ on the Sherwood number $R e^{-\frac{1}{2}} x S h x$ is depicted in Figure 3.19. It has been observed that an increase in the value of $N b$ leads to a decreasing trend in the Sherwood number $R e^{-\frac{1}{2}} x S h x$. Conversely, the Sherwood number exhibits an increasing trend as the value of $N t$ rises. The influence of the Brownian parameter $N b$ and the thermophoresis parameter $N t$ on the Nusselt number $R e^{-\frac{1}{2}} x N u x$ is illustrated in Figure 3.20. It has been noted that an increase in the value of $N b$ leads to a decreasing trend in the Nusselt number $R e^{-\frac{1}{2}} x N u x$. While, the Nusselt number exhibits a decreasing trend as the value of $N t$ rises.

Table 3.1: Results of $R e_{x}^{\frac{1}{2}} C_{f x}$ and $\operatorname{Re}^{\frac{1}{2}} C_{f y}$ for various parameters

β	γ_{1}	M	$\operatorname{Re}^{\frac{1}{2}} C_{f x}$	$\operatorname{Re}^{\frac{1}{2}} C_{f y}$	I_{f}	I_{g}
0.5	0.5	0.5	-2.25599	-0.74306	[-2.60, -0.80]	[-1.90, -0.40]
0.8			-1.95536	-0.64464	[-1.90, -0.05]	[-2.10, -0.70]
1.0			-1.84389	-0.60783	[-1.50, -0.30]	[-3.30, -2.50]
	0.3		-2.17631	-0.46452	[-2.30, -2.20]	[-2.10, -1.70]
	0.6		-2.30372	-0.86977	[-2.00, -1.80]	[-1.96, -1.60]
	0.9		-2.48950	-1.20444	[-2.70, -2.00]	[-1.90, -1.80]
		0	-1.96303	-0.89072	[-2.20, -2.10]	[-3.40, -1.10]
		0.4	-2.10783	-0.76799	[-2.70, -1.70]	[-2.20, -1.60]
		0.8	-2.42690	-0.67951	[-2.20, -1.60]	[-3.30, -2.20]

Table 3.2: Results of $R e_{x}^{-\frac{1}{2}} N u_{x}$ and $R e_{x}^{-\frac{1}{2}} S h_{x}$ for various parameters

β	γ_{1}	M	$R d$	θ_{w}	Pr	$N b$	$N t$	$E c$	$S c$	$R e_{x}^{-\frac{1}{2}} N u_{x}$	$R e_{x}^{-\frac{1}{2}} S h_{x}$
0.5	0.5	0.5	0.2	1.5	2.0	0.5	0.5	0.2	5.0	0.14108	1.77018

0.8
1.0
$0.14565 \quad 1.72238$
$0.14675 \quad 1.70095$
$\begin{array}{lll}0.3 & 0.19374 & 1.74255\end{array}$
$\begin{array}{lll}0.6 & 0.14098 & 1.74147\end{array}$
$\begin{array}{lll}0.0 & 0.26108 & 1.72395\end{array}$
$\begin{array}{lll}0.4 & 0.18124 & 1.73817\end{array}$
$0.4 \quad 0.25770 \quad 1.70134$
$\begin{array}{lll}0.5 & 0.29915 & 1.68865\end{array}$

1.2		0.11804	1.76998
1.4		0.14631	1.75114
	0.0	0.20289	1.64514
	0.5	0.22277	1.63901

$\begin{array}{lll}0.2 & 0.27343 & 1.78912\end{array}$
$\begin{array}{lll}0.4 & 0.19469 & 1.75236\end{array}$
$0.2 \quad 0.22871 \quad 1.66604$
$\begin{array}{lll}0.4 & 0.18207 & 1.71491\end{array}$
$0.0 \quad 0.46312 \quad 1.60693$
$0.05 \quad 0.38878 \quad 1.63960$
$\begin{array}{lll}3.0 & 0.17080 & 1.31038\end{array}$
$\begin{array}{lll}4.0 & 0.16415 & 1.54173\end{array}$

Figure 3.2: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against β

Figure 3.3: Velocity $\mathrm{g}(\eta)$ discrepancy against β

Figure 3.4: Temperature $\theta(\eta)$ discrepancy against M

Figure 3.5: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against γ_{1}

Figure 3.6: Velocity $g(\eta)$ discrepancy against γ_{1}

Figure 3.7: Temperature $\theta(\eta)$ discrepancy against $N t$

Figure 3.8: Concentration $\phi(\eta)$ discrepancy against $N t$

Figure 3.9: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against M

Figure 3.10: Velocity $\mathrm{g}(\eta)$ discrepancy against M

Figure 3.11: Temperature $\theta(\eta)$ discrepancy against θ_{w}

Figure 3.12: Concentration $\phi(\eta)$ discrepancy against $S c$

Figure 3.13: Temperature $\theta(\eta)$ discrepancy against $N b$

Figure 3.14: Concentration $\phi(\eta)$ discrepancy against $N b$

Figure 3.15: Temperature $\theta(\eta)$ discrepancy against γ_{1}

Figure 3.16: Temperature $\theta(\eta)$ discrepancy against $R d$

Figure 3.17: Temperature $\theta(\eta)$ discrepancy against Pr

Figure 3.18: Temperature $\theta(\eta)$ discrepancy against $E c$

Figure 3.19: Sherwood number $S h_{x}$ discrepancy against $N b$ and $N t$

Figure 3.20: Nusselt number $N u_{x}$ discrepancy against $N b$ and $N t$

Chapter 4

The Impact of Cattaneo-Christov Double Diffusion, Thermal Radiation on a Rotating Flow of Casson Nanofluid

4.1 Introduction

The model which is discussed in Chapter 3 has been extended in this chapter by taking an inclined magnetic field to account of the momentum equation. The effect of Cattaneo-Christov double diffusion has been taken for temperature and concentration equations. In this chapter, we will execute numerical analysis of the Cattaneo-Christov double diffusion Casson nanofluid flow on a linearly extending sheet. By employing similarity transformations, the governing nonlinear partial differential equations are converted into a set of dimensionless ODEs. Using the shooting technique as a numerical method, we compute the numerical solution for the ODEs.

4.2 Mathematical Modeling

Consider a three-dimensional steady, laminar flow of an incompressible Casson nanofluid along stretching sheet surface. In this study, the fluid has been considered to rotate around the z-axis with an angular velocity Ω within a flow region where z is restricted to values ≥ 0. Assume that the velocity of extending sheet is represented by $U_{w}(x)=a x$. An inclined magnetic field of magnitude B_{0} is applied in z - axis. Energy transport phenomenon has been assumed in the presence of thermal radiation, heat generation, and Cattaneo-Christov double diffusion.

Figure 4.1: Methodical display of the tangible system.

By considering the above assumptions, the goverining PDEs become:

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0, \tag{4.1}\\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}-2 \Omega v=\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} u}{\partial z^{2}}-\frac{\mu}{\rho_{f}} \frac{u}{k}-\frac{\sigma B_{0}^{2}}{\rho_{f}} u \sin ^{2}(\Gamma), \tag{4.2}\\
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+2 \Omega u=\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} v}{\partial z^{2}}-\frac{\mu}{\rho_{f}} \frac{v}{k}-\frac{\sigma B_{0}^{2}}{\rho_{f}} v \sin ^{2}(\Gamma), \tag{4.3}\\
& u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}+\Gamma_{e}\left[u^{2} \frac{\partial^{2} T}{\partial x^{2}}+v^{2} \frac{\partial^{2} T}{\partial y^{2}}+w^{2} \frac{\partial^{2} T}{\partial z^{2}}+2 u v \frac{\partial^{2} T}{\partial x \partial y}\right. \\
& \quad+2 v w \frac{\partial^{2} T}{\partial y \partial z}+2 u w \frac{\partial^{2} T}{\partial x \partial z}+\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right) \frac{\partial T}{\partial x} \\
& \left.\quad+\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right) \frac{\partial T}{\partial y}+\left(u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right) \frac{\partial T}{\partial z}\right] \\
& = \\
& \quad \frac{\partial}{\partial z}\left[\left(\alpha+\frac{16 \sigma^{*} T^{3}}{3 K^{*}\left(\rho c_{p}\right)_{f}}\right) \frac{\partial T}{\partial z}\right]+\tau\left[D_{B} \frac{\partial T}{\partial z} \frac{\partial C}{\partial z}+\frac{D_{T}}{T_{\infty}}\left(\frac{\partial T}{\partial z}\right)^{2}\right] \\
& \quad+\frac{\mu}{\left(\rho c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}\right) \tag{4.4}\\
& \quad+\frac{\sigma B_{0}^{2}}{\left(\rho c_{p}\right)_{f}}\left(u^{2}+v^{2}\right) \sin ^{2}(\Gamma)+\frac{Q}{\left(\rho c_{p}\right)_{f}}\left(T-T_{\infty}\right), \\
& u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}+w \frac{\partial C}{\partial z}+\Gamma_{c}\left[u^{2} \frac{\partial^{2} C}{\partial x^{2}}+v^{2} \frac{\partial^{2} C}{\partial y^{2}}+w^{2} \frac{\partial^{2} C}{\partial z^{2}}+2 u v \frac{\partial^{2} C}{\partial x \partial y}\right. \\
& \quad+2 v w \frac{\partial^{2} C}{\partial y \partial z}+2 u w \frac{\partial^{2} C}{\partial x \partial z}+\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right) \frac{\partial C}{\partial x} \\
& \left.\quad+\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right) \frac{\partial C}{\partial y}+\left(u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right) \frac{\partial C}{\partial z}\right] \tag{4.5}\\
& = \\
& \\
& \quad D_{B} \frac{\partial^{2} C}{\partial z^{2}}+\frac{D_{T}}{T_{\infty}} \frac{\partial^{2} T}{\partial z^{2}}-K_{c}^{*}(C-C \infty) .
\end{align*}
$$

The associated BCs have been taken as:

$$
\left.\begin{array}{l}
u=U_{w}(x), \quad v=0, \quad w=0, \quad T=T_{w}, \quad C=C_{w} \quad \text { at } \quad z=0, \tag{4.6}\\
u \rightarrow 0, \quad v \rightarrow 0 \quad T \rightarrow T_{\infty}, \quad C \rightarrow C_{\infty} \quad \text { as } \quad z \rightarrow \infty
\end{array}\right\}
$$

For the conversion of the mathematical model in the form of partial differential equations (4.1)-(4.5) into the ODEs, the following similarity transformation is used:

$$
\left.\begin{array}{l}
u=a x f^{\prime}, \quad v=a x g, \quad w=-\sqrt{a \nu} f \\
T=T_{\infty}\left(1+\left(\theta_{w}-1\right) \theta(\eta)\right), \quad \phi=\frac{C-C_{\infty}}{C_{w}-C_{\infty}}, \quad \eta=z \sqrt{\frac{a}{\nu}} \tag{4.7}
\end{array}\right\}
$$

where $\theta_{w}=\frac{T_{w}}{T_{\infty}}, \theta_{w}>1$ denotes the temperature ratio parameter.

The identical satisfaction of (4.1) is already mentioned in Chapter 3.
The dimensionless momentum equation (4.2) is achieved by using the derivatives which have been discussed earlier in Chapter 3.

$$
\begin{aligned}
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}-2 \Omega v=\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} u}{\partial z^{2}}-\frac{\mu}{\rho_{f}} \frac{u}{k}-\frac{\sigma B_{0}^{2}}{\rho_{f}} u \sin ^{2}(\Gamma) . \\
\Rightarrow & a^{2} x f^{\prime 2}-a^{2} x f f^{\prime \prime}-2 \gamma_{1} a^{2} x g=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{a^{2}}{\nu} x f^{\prime \prime \prime}\right) \\
& -\frac{\nu a^{2} x f^{\prime}}{a k}-\frac{a^{2} x \sigma B_{0}^{2} f^{\prime}}{a \rho_{f}} \sin ^{2}(\Gamma) . \\
\Rightarrow & f^{\prime 2}-f f^{\prime \prime}-2 \gamma_{1} g=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{1}{\nu} f^{\prime \prime \prime}\right)-\frac{\nu f^{\prime}}{a k}-\frac{\sigma B_{0}^{2} f^{\prime}}{a \rho_{f}} \sin ^{2}(\Gamma) .
\end{aligned}
$$

Finally, The momentum equation in the dimensionless form is as follows:

$$
\begin{equation*}
\left(1+\frac{1}{\beta}\right) f^{\prime \prime \prime}-f^{\prime 2}+f f^{\prime \prime}+2 \gamma_{1} g-K f^{\prime}-M f^{\prime} \sin ^{2}(\Gamma)=0 \tag{4.8}
\end{equation*}
$$

The following dimensionless parameters are used in equation (4.8):

$$
\gamma_{1}=\frac{\Omega}{a}, \quad M=\frac{\sigma B_{0}^{2}}{\rho a}, \quad K=\frac{\nu}{a k} .
$$

Similarly, the momentum equation (4.3) in the dimensionless form is written as:

$$
\begin{align*}
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+2 \Omega u=\nu\left(1+\frac{1}{\beta}\right) \frac{\partial^{2} v}{\partial z^{2}}-\frac{\mu}{\rho_{f}} \frac{v}{k}-\frac{\sigma B_{0}^{2}}{\rho_{f}} v \sin ^{2}(\Gamma) . \\
\Rightarrow & a^{2} x f^{\prime} g-a^{2} x g^{\prime} f+2 \gamma_{1} a^{2} x f^{\prime}=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{a^{2}}{\nu} x g^{\prime \prime}\right)-\frac{\nu a^{2} x g}{a k}-\frac{a^{2} x \sigma B_{0}^{2} g}{a \rho_{f}} . \\
\Rightarrow & f^{\prime} g-g^{\prime} f+2 \gamma_{1} f^{\prime}=\nu\left(1+\frac{1}{\beta}\right)\left(\frac{1}{\nu} g^{\prime \prime}\right)-\frac{\nu g}{a k}-\frac{\sigma B_{0}^{2} g}{a \rho_{f}} . \\
& \left(1+\frac{1}{\beta}\right) g^{\prime \prime}+f g^{\prime}-f^{\prime} g-2 \gamma_{1} f^{\prime}-K g-M g \sin ^{2}(\Gamma)=0 . \tag{4.9}
\end{align*}
$$

The equation (4.4) is transformed, by using the derivatices below:

$$
\begin{align*}
& \frac{\partial^{2} T}{\partial z^{2}}=\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime} \frac{a}{\nu} . \tag{4.10}\\
& w^{2} \frac{\partial^{2} T}{\partial z^{2}}=a \nu f^{2}\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime} \frac{a}{\nu} . \tag{4.11}\\
& u \frac{\partial T}{\partial x}=v \frac{\partial T}{\partial y}=0 . \tag{4.12}\\
& u^{2} \frac{\partial^{2} T}{\partial x^{2}}=v^{2} \frac{\partial^{2} T}{\partial y^{2}}=0 . \tag{4.13}\\
& 2 u v \frac{\partial^{2} T}{\partial x \partial y}=2 v w \frac{\partial^{2} T}{\partial y \partial z}=2 u w \frac{\partial^{2} T}{\partial x \partial z}=0 . \tag{4.14}\\
& w \frac{\partial w}{\partial z}=a \sqrt{a \nu} f f^{\prime} . \tag{4.15}
\end{align*}
$$

The governing equation (4.4) for the conservation of energy gets the following dimensionless form, through the procedure shown below:

$$
\begin{aligned}
& u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}+\Gamma_{e}\left[u^{2} \frac{\partial^{2} T}{\partial x^{2}}+v^{2} \frac{\partial^{2} T}{\partial y^{2}}+w^{2} \frac{\partial^{2} T}{\partial z^{2}}+2 u v \frac{\partial^{2} T}{\partial x \partial y}\right. \\
&+2 v w \frac{\partial^{2} T}{\partial y \partial z}+2 u w \frac{\partial^{2} T}{\partial x \partial z}+\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right) \frac{\partial T}{\partial x} \\
&\left.+\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right) \frac{\partial T}{\partial y}+\left(u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right) \frac{\partial T}{\partial z}\right] \\
&= \frac{\partial}{\partial z}\left[\left(\alpha+\frac{16 \sigma^{*} T^{3}}{3 K^{*}\left(\rho c_{p}\right)_{f}}\right) \frac{\partial T}{\partial z}\right]+\tau\left[D_{B} \frac{\partial T}{\partial z} \frac{\partial C}{\partial z}+\frac{D_{T}}{T_{\infty}}\left(\frac{\partial T}{\partial z}\right)^{2}\right] \\
&+\frac{\mu}{\left(\rho c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}\right) \\
&+\frac{\sigma B_{0}^{2}}{\left(\rho c_{p}\right)_{f}}\left(u^{2}+v^{2}\right) \sin ^{2}(\Gamma)+\frac{Q}{\left(\rho c_{p}\right)_{f}}\left(T-T_{\infty}\right) . \\
& \Rightarrow-a f\left(T_{w}-T_{\infty}\right) \theta^{\prime}+\Gamma_{e}\left[+a \nu f^{2}\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime} \frac{a}{\nu}\right)\right. \\
&\left.+a \sqrt{a \nu} f f^{\prime}\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime}\left(\sqrt{\frac{a}{\nu}}\right)\right)\right] \\
&= \frac{\alpha a}{\nu}\left[\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime}+R d\left(T_{w}-T_{\infty}\right) \theta^{\prime}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right. \\
&\left.+3 R d\left(\theta_{w}-1\right)\left(T_{w}-T_{\infty}\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}\right]+a N_{b}\left(T_{w}-T_{\infty}\right) \theta^{\prime} \phi^{\prime} \\
&+a N_{t}\left(T_{w}-T_{\infty}\right) \theta^{\prime 2}+\frac{a U_{w}^{2}}{\left(c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\frac{a \sigma B_{0}^{2} U_{w}^{2}}{a\left(\rho c_{p}\right)_{f}}\left(f^{\prime 2}+g^{2}\right)+\frac{Q}{\left(\rho c_{p}\right)_{f}}\left(T-T_{\infty}\right) . \\
\Rightarrow & -f \theta^{\prime}+a \Gamma_{e}\left[+f^{2} \theta^{\prime \prime}+\sqrt{a \nu} f f^{\prime} \theta^{\prime} \sqrt{\frac{a}{\nu}}\right]=\frac{\alpha}{\nu}\left[\theta^{\prime \prime}+R d \theta^{\prime}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right. \\
& \left.+3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}\right]+N_{b} \theta^{\prime} \phi^{\prime}+N_{t} \theta^{\prime 2} \\
& +\frac{a U_{w}^{2}}{\left(T_{w}-T_{\infty}\right)\left(c_{p}\right)_{f}}\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right) \\
& +\frac{\sigma B_{0}^{2} U_{w}^{2}}{a\left(T_{w}-T_{\infty}\right)\left(\rho c_{p}\right)_{f}}\left(f^{\prime 2}+g^{2}\right)+\frac{Q}{\left(\rho c_{p}\right)_{f}} \frac{\left(T-T_{\infty}\right)}{a\left(T_{w}-T_{\infty}\right.}-\operatorname{Pr} f \theta^{\prime} . \\
\Rightarrow & +\operatorname{Pr} \lambda_{E}\left[f^{2} \theta^{\prime \prime}+f f^{\prime} \theta^{\prime}\right]=\theta^{\prime \prime}+R d \theta^{\prime \prime}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3} \\
& +3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}+\operatorname{Pr} N_{b} \theta^{\prime} \phi^{\prime}+\operatorname{Pr} N_{t} \theta^{\prime 2} \\
& +\operatorname{Pr} E c\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+\operatorname{Pr} E c M\left(f^{\prime 2}+g^{2}\right)+\operatorname{Pr} \epsilon \theta . \\
\Rightarrow & \left(\left(1+R d\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right) \theta^{\prime}\right)^{\prime} \\
& +\operatorname{Pr}\left[+\operatorname{Pr} f \theta^{\prime} N_{b} \theta^{\prime} \phi^{\prime}+N_{t} \theta^{\prime 2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)\right.\right. \\
& \left.\left.+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left[f^{2} \theta^{\prime \prime}+f f^{\prime} \theta^{\prime}\right]-\epsilon \theta\right]=0 . \tag{4.16}
\end{align*}
$$

The dimensionless parameters used in equation (4.16) are:

$$
\begin{gathered}
M=\frac{\sigma B_{0}^{2}}{\rho a}, \quad R d=\frac{16 \sigma^{*} T_{\infty}^{3}}{3 k k^{*}}, \quad \operatorname{Pr}=\frac{\nu}{\alpha}, \quad N b=\frac{\tau D_{B}\left(C_{w}-C_{\infty}\right)}{\nu}, \\
N t=\frac{\tau D_{T}\left(T_{w}-T_{\infty}\right)}{\nu T_{\infty}}, \quad E c=\frac{U_{w_{w}^{2}}^{\left(c_{p}\right)_{f}\left(T_{w}-T_{\infty}\right)}, \quad \epsilon=\frac{Q}{a\left(\rho c_{p}\right)_{f}}}{},
\end{gathered}
$$

Now, for the conversion of concentration equation (4.5), the following derivatives are required.

$$
\begin{gather*}
\phi=\frac{C-C_{\infty}}{C_{w}-C_{\infty}} \\
\Rightarrow \quad C=C_{\infty}+\left(C_{w}-C_{\infty}\right) \phi . \\
w \frac{\partial C}{\partial z}=-a f\left(C_{w}-C_{\infty}\right) \phi^{\prime} . \tag{4.17}\\
\frac{\partial^{2} C}{\partial z^{2}}=\left(C_{w}-C_{\infty}\right) \phi^{\prime \prime} \frac{a}{\nu} . \tag{4.18}
\end{gather*}
$$

$$
\begin{align*}
& u \frac{\partial C}{\partial x}=v \frac{\partial C}{\partial y}=0 \tag{4.19}\\
& u^{2} \frac{\partial^{2} C}{\partial x^{2}}=v^{2} \frac{\partial^{2} C}{\partial y^{2}}=0 . \tag{4.20}\\
& 2 u v \frac{\partial^{2} C}{\partial x \partial y}=2 v w \frac{\partial^{2} C}{\partial y \partial z}=2 u w \frac{\partial^{2} C}{\partial x \partial z}=0 . \tag{4.21}\\
& w \frac{\partial w}{\partial z}=a \sqrt{a \nu} f f^{\prime} \tag{4.22}
\end{align*}
$$

The governing equation (4.5) for the conservation of concentration gets the following dimensionless form:

$$
\begin{align*}
&-a f\left(C_{w}-C_{\infty}\right) \phi^{\prime}+\Gamma_{c}\left[a \nu f^{2}\left(\left(C_{w}-C_{\infty}\right) \phi^{\prime \prime} \frac{a}{\nu}\right)\right. \\
&\left.+a \sqrt{a \nu} f f^{\prime}\left(\left(C_{w}-C_{\infty}\right) \phi^{\prime} \sqrt{\frac{a}{\nu}}\right)\right]=D_{B}\left(C_{w}-C_{\infty}\right) \phi^{\prime \prime} \frac{a}{\nu} \\
&+\frac{D_{B}}{T_{\infty}}\left(\left(T_{w}-T_{\infty}\right) \theta^{\prime \prime} \frac{a}{\nu}\right)-K_{c}^{*}\left(C-C_{\infty}\right) . \\
& \Rightarrow-f \phi^{\prime}+a \Gamma_{C}\left[f^{2} \phi^{\prime \prime}+f f^{\prime} \phi^{\prime}\right]=\frac{D_{B}}{\nu} \phi^{\prime \prime} \\
&+\frac{D_{T}}{T_{\infty}} \frac{\left(T_{w}-T_{\infty}\right)}{\left(C_{w}-C_{\infty}\right)} \frac{\theta^{\prime \prime}}{\nu}-K_{c}^{*} \frac{\left(C-C_{\infty}\right)}{a\left(C_{w}-C_{\infty}\right)} \\
& \Rightarrow-f \phi^{\prime}+\lambda_{C}\left[f^{2} \phi^{\prime \prime}+f f^{\prime} \phi^{\prime}\right]=\frac{D_{B}}{\nu} \phi^{\prime \prime} \\
&+\frac{D_{T}}{T_{\infty}} \frac{\left(T_{w}-T_{\infty}\right)}{\left(C_{w}-C_{\infty}\right)} \frac{\theta^{\prime \prime}}{\nu}-\frac{K_{c}^{*}}{a} \phi \\
&-\frac{\nu}{D_{B}} f \phi^{\prime}+\frac{\nu}{D_{B}} \lambda_{C}\left[f^{2} \phi^{\prime \prime}+f f^{\prime} \phi^{\prime}\right]=\phi^{\prime \prime} \\
&+\frac{D_{T}}{T_{\infty}} \frac{\nu}{D_{B}} \frac{\tau\left(T_{w}-T_{\infty}\right)}{\tau\left(C_{w}-C_{\infty}\right)} \frac{\theta^{\prime \prime}}{\nu}-\frac{\nu}{D_{B}} \frac{K_{c}^{*}}{a} \phi . \\
& \Rightarrow-S c f \phi^{\prime}+S c \lambda_{C}\left[f^{2} \phi^{\prime \prime}+f f^{\prime} \phi^{\prime}\right]=\phi^{\prime \prime} \\
&+\frac{N_{t}}{N_{b}} \theta^{\prime \prime}-S c K_{c} \phi . \\
& \phi^{\prime \prime}+S c\left[f \phi^{\prime}-\lambda_{C}\left(f^{2} \phi^{\prime \prime}+f f^{\prime} \phi^{\prime}\right)-K_{c} \phi\right]+\frac{N_{t}}{N_{b}} \theta^{\prime \prime}=0 . \tag{4.23}
\end{align*}
$$

The following dimensionless parameters are used in equation (4.32):

$$
\begin{gathered}
N b=\frac{\tau D_{B}\left(C_{w}-C_{\infty}\right)}{\nu}, \quad N t=\frac{\tau D_{T}\left(T_{w}-T_{\infty}\right)}{\nu T_{\infty}}, \quad S c=\frac{\nu}{D_{B}} \\
\lambda_{C}=\mathrm{a} \Gamma_{c}, \quad K_{c}=\frac{K_{c}^{*}}{a} .
\end{gathered}
$$

The related dimensionless BCs are converted by the following procedure.

$$
\begin{aligned}
& u=U_{w}(x), \\
& \Rightarrow \quad a x f^{\prime}(\eta)=a x, \\
& \Rightarrow \quad f^{\prime}(0)=1, \\
& v=0, \\
& \Rightarrow \quad \operatorname{axg}(\eta)=0, \\
& \Rightarrow \quad g(0)=0, \\
& w=0, \quad \text { at } z=0 . \\
& \Rightarrow \quad-\sqrt{a \nu} f(\eta)=0, \\
& \Rightarrow \quad f(0)=0, \\
& T=T_{w}, \quad \text { at } z=0 . \\
& \Rightarrow \quad \theta(\eta)\left(T_{w}-T_{\infty}\right)+T_{\infty}=T_{w}, \quad \text { at } \eta=0 . \\
& \Rightarrow \quad \theta(\eta)\left(T_{w}-T_{\infty}\right)=\left(T_{w}-T_{\infty}\right), \quad \text { at } \quad \eta=0 . \\
& \Rightarrow \quad \theta(0)=1 \text {, } \\
& C=C_{w}, \quad \text { at } z=0 . \\
& \Rightarrow \quad \phi(\eta)\left(C_{w}-C_{\infty}\right)=\left(C_{w}-C_{\infty}\right), \quad \text { at } \quad \eta=0 . \\
& \Rightarrow \quad \phi(0)=1, \\
& u \rightarrow 0, \quad \text { as } z \rightarrow \infty . \\
& \Rightarrow \quad f^{\prime}(\eta) \rightarrow 0, \quad \text { as } \eta \rightarrow \infty . \\
& v \rightarrow 0, \quad \text { as } z \rightarrow \infty \text {. } \\
& \Rightarrow \quad g(\eta) \rightarrow 0, \quad \text { as } \eta \rightarrow \infty \text {. } \\
& w \rightarrow 0, \\
& \text { as } \quad z \rightarrow \infty \text {. } \\
& \Rightarrow \quad f(\eta) \rightarrow 0, \\
& \text { as } \quad \eta \rightarrow \infty . \\
& T \rightarrow T_{\infty}, \quad \text { as } \quad z \rightarrow \infty . \\
& \Rightarrow \quad \theta(\eta) \rightarrow 0, \quad \text { as } \eta \rightarrow \infty \text {. } \\
& C \rightarrow C_{\infty}, \quad \text { as } z \rightarrow \infty . \\
& \Rightarrow \quad \phi(\eta) \rightarrow 0, \quad \text { as } \eta \rightarrow \infty .
\end{aligned}
$$

The ultimate governing model into dimensionless is:

$$
\begin{align*}
& \left(1+\frac{1}{\beta}\right) f^{\prime \prime \prime}-f^{\prime 2}+f f^{\prime \prime}+2 \gamma_{1} g-\kappa f^{\prime}-M f^{\prime} \sin ^{2}(\Gamma)=0, \tag{4.24}\\
& \left(1+\frac{1}{\beta}\right) g^{\prime \prime}+f g^{\prime}-f^{\prime} g-2 \gamma_{1} f^{\prime}-\kappa g-M g \sin ^{2}(\Gamma)=0, \tag{4.25}\\
& \left(\left(1+R d\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right) \theta^{\prime}\right)^{\prime}+\operatorname{Pr}\left[+\operatorname{Pr} f \theta^{\prime}+N_{b} \theta^{\prime} \phi^{\prime}\right. \\
& +N_{t} \theta^{\prime 2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right) \\
& \left.-\lambda_{E}\left[f^{2} \theta^{\prime \prime}+f f^{\prime} \theta^{\prime}\right]+\epsilon \theta\right]=0 . \tag{4.26}\\
& \phi^{\prime \prime}+S c\left[f \phi^{\prime}-\lambda_{C}\left(f^{2} \phi^{\prime \prime}+f f^{\prime} \phi^{\prime}\right)-K_{c} \phi\right]+\frac{N_{t}}{N_{b}} \theta^{\prime \prime}=0 . \tag{4.27}
\end{align*}
$$

The dimensionless form for the related BCs (4.6) are:

$$
\begin{array}{llll}
f(0)=0, & g(0)=0, & f^{\prime}(0)=1, & \theta(0)=0, \tag{4.28}
\end{array} \quad \phi(0)=0, \quad \text { as } \eta \rightarrow 0 . ~ 子
$$

The dimensionless numbers are same as discussed in Chapter 3, as the following:

$$
\begin{align*}
& C_{f x}=\frac{\tau_{w x}}{\rho_{f} U_{w}^{2}}, \tag{4.29}\\
& C_{f y}=\frac{\tau_{w y}}{\rho_{f} U_{w}^{2}}, \tag{4.30}\\
& R e_{x}^{-\frac{1}{2}} N u_{x}=\frac{U_{w} q_{w}}{a k\left(T_{w}-T_{\infty}\right)} . \tag{4.31}
\end{align*}
$$

Now, the local Sherwood number is defined as:

$$
\begin{equation*}
S h_{x}=\frac{x q_{m}}{D_{B}\left(C_{w}-C_{\infty}\right)}, \tag{4.32}
\end{equation*}
$$

where

$$
q_{m}=-D_{B}\left(\frac{\partial C}{\partial z}\right)_{z=0}
$$

Therefore

$$
\begin{gather*}
S h_{x}=-\frac{x D_{B}\left(C_{w}-C_{\infty}\right) \phi^{\prime}(0) \sqrt{\frac{a}{\nu}}}{D_{B}\left(C_{w}-C_{\infty}\right)} \\
=-\frac{x \phi^{\prime}(0) \sqrt{a}}{\sqrt{\nu}} \\
=-\sqrt{\frac{U_{w}^{2}}{a \nu}} \phi^{\prime}(0) \\
\Rightarrow \quad R e_{x}^{-1 / 2} S h_{x}=-\phi^{\prime}(0) . \tag{4.33}
\end{gather*}
$$

4.3 Numerical Method for Solution

The ordinary differential equations (4.24) and (4.25)have been resolved using the shooting method.

$$
\begin{aligned}
& f^{\prime \prime \prime}=\frac{1}{\left(1+\frac{1}{\beta}\right)}\left[f^{\prime 2}-f f^{\prime \prime}-2 \gamma_{1} g+\kappa f^{\prime}+M f^{\prime} \sin ^{2}(\Gamma)\right], \\
& g^{\prime \prime}=\frac{1}{\left(1+\frac{1}{\beta}\right)}\left[-f g^{\prime}+f^{\prime} g+2 \gamma_{1} f^{\prime}+\kappa g+M g \sin ^{2}(\Gamma)\right] .
\end{aligned}
$$

For this purpose, the following notations have been taken:

$$
\begin{array}{ll}
f=Z_{1}, & f^{\prime}=Z_{1}^{\prime}=Z_{2}, \quad f^{\prime \prime}=Z_{1}^{\prime \prime}=Z_{2}^{\prime}=Z_{3}, \\
g=Z_{4}, & g^{\prime}=Z_{4}^{\prime}=Z_{5} .
\end{array}
$$

The momentum equations are then transformed into the following system of firstorder ODEs:

$$
\begin{array}{ll}
Z_{1}^{\prime}=Z_{2}, & Z_{1}(0)=0 . \\
Z_{2}^{\prime}=Z_{3}, & Z_{2}(0)=1 . \\
Z_{4}^{\prime}=Z_{5}, & Z_{4}(0)=0 .
\end{array}
$$

$$
Z_{5}^{\prime}=\frac{\beta}{1+\beta}\left(-Z_{1} Z_{5}+Z_{2} Z_{4}+2 \gamma_{1} Z_{2}+\kappa Z_{4}+M Z_{4} \sin ^{2}(\Gamma)\right), \quad Z_{5}(0)=m
$$

RK-4 method is applied to compute the above IVP.
The domain of the problem is considered to be bounded i.e. $\left[0, \eta_{\infty}\right]$, where η_{∞} represents as a + ve real number, in which variation in the solution is ignorable after $\eta=\eta_{\infty}$. The missing conditions r and m are to be chosen such that:

$$
Z_{2}\left(\eta_{\infty}, r, m\right)=0, \quad Z_{4}\left(\eta_{\infty}, r, m\right)=0
$$

Newton's method will be used to find r and m. This method has the following iterative scheme:

$$
\left[\begin{array}{c}
r \tag{4.34}\\
m
\end{array}\right]_{(n+1)}=\left[\begin{array}{c}
r \\
m
\end{array}\right]_{(n)}-\left[\begin{array}{cc}
\frac{\partial Z_{2}}{\partial r} & \frac{\partial Z_{2}}{\partial m} \\
\frac{\partial Z_{4}}{\partial r} & \frac{\partial Z_{4}}{\partial m}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Z_{2} \\
Z_{4}
\end{array}\right]_{(n)}
$$

We further introduce the following notations:

$$
\begin{array}{lllll}
\frac{\partial Z_{1}}{\partial r}=Z_{6}, & \frac{\partial Z_{2}}{\partial r}=Z_{7}, & \frac{\partial Z_{3}}{\partial r}=Z_{8}, & \frac{\partial Z_{4}}{\partial r}=Z_{9}, & \frac{\partial Z_{5}}{\partial r}=Z_{10} \\
\frac{\partial Z_{1}}{\partial m}=Z_{11}, & \frac{\partial Z_{2}}{\partial m}=Z_{12}, & \frac{\partial Z_{3}}{\partial m}=Z_{13}, & \frac{\partial Z_{4}}{\partial m}=Z_{14}, & \frac{\partial Z_{5}}{\partial m}=Z_{15} .
\end{array}
$$

The iterative scheme of Newton method is, by using the results of above notations as follows:

$$
\left[\begin{array}{c}
r \tag{4.35}\\
m
\end{array}\right]_{(n+1)}=\left[\begin{array}{c}
r \\
m
\end{array}\right]_{(n)}-\left[\begin{array}{ll}
Z_{7} & Z_{12} \\
Z_{9} & Z_{14}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Z_{2} \\
Z_{4}
\end{array}\right]_{(n)} .
$$

The last set of five first order ODEs in terms of r and m are differentiated to get another system of ODEs, as follows:
$Z_{6}^{\prime}=Z_{7}$,

$$
Z_{7}^{\prime}=Z_{8},
$$

$$
\begin{aligned}
& Z_{6}(0)=0 . \\
& Z_{7}(0)=0 .
\end{aligned}
$$

$$
\begin{array}{lr}
Z_{8}^{\prime}=\frac{\beta}{1+\beta}\left(2 Z_{2} Z_{7}-Z_{6} Z_{3}-Z_{1} Z_{8}-2 Z_{9} \gamma_{1}+\kappa Z_{7}+M Z_{7} \sin ^{2}(\Gamma)\right), & Z_{8}(0)=1 . \\
Z_{9}^{\prime}=Z_{10}, & Z_{9}(0)=0 . \\
Z_{10}^{\prime}=\frac{\beta}{1+\beta}\left(-Z_{6} Z_{5}-Z_{1} Z_{1} 0+Z_{7} Z_{4}+Z_{2} Z_{9}-2 Z_{7} \gamma_{1}+\kappa Z_{9}+M Z_{9} \sin ^{2}(\Gamma)\right), \\
& Z_{10}(0)=0 . \\
Z_{11}(0)=0 . \\
Z_{11}^{\prime}=Z_{12}, & Z_{12}(0)=0 . \\
Z_{12}^{\prime}=Z_{13}, & Z_{13}(0)=0 . \\
Z_{13}^{\prime}=\frac{\beta}{1+\beta}\left(2 Z_{2} Z_{12}-Z_{11} Z_{3}-Z_{1} Z_{13}-2 Z_{14} \gamma_{1}+\kappa Z_{12}+M Z_{12} \sin ^{2}(\Gamma)\right), \\
\\
Z_{14}^{\prime}=Z_{15}, & (0)=0 . \\
Z_{15}^{\prime}=\frac{\beta}{1+\beta}\left(-Z_{11} Z_{5}-Z_{1} Z_{15}+Z_{12} Z_{4}+Z_{2} Z_{14}-2 Z_{1} 2 \gamma_{1}+\kappa Z_{14}+M Z_{14} \sin ^{2}(\Gamma)\right), \\
& Z_{15}(0)=1 .
\end{array}
$$

For the Newton's technique, the stopping criteria is as follows:

$$
\max \left\{\left|Z_{2}\left(\eta_{\infty}, r^{n}, m^{n}\right)\right|,\left|Z_{4}\left(\eta_{\infty}, r^{n}, m^{n}\right)\right|\right\}<\epsilon,
$$

where $\epsilon>0$ is a sufficiently small number, which has been considered as 10^{-10}. The ordinary differential equations (4.26) and (4.27) will be approximated by using the shooting technique assuming f and g as the known functions. Consider equations (4.26)-(4.27) in the following form:

$$
\begin{align*}
\theta^{\prime \prime}= & \frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+\operatorname{Rd}\left(1+\left(\theta_{w}-1\right) \theta\right)^{3}\right)}\left[-3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}\right. \\
& \left.\left.\left.+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} \theta^{\prime}\right)+\epsilon \theta\right]\right], \tag{4.36}\\
\phi^{\prime \prime} & =\frac{1}{1-S c \lambda_{C} f^{2}(\eta)}\left\{-S c\left[f \phi^{\prime}-\lambda_{C}\left(f f^{\prime} \phi^{\prime}\right)-K_{c} \phi\right]\right.
\end{align*}
$$

$$
\begin{align*}
& {\left[-3 R d\left(\theta_{w}-1\right) \theta^{\prime 2}\left(1+\left(\theta_{w}-1\right) \theta\right)^{2}-\operatorname{Pr}\left[f \theta^{\prime}+N_{b} \theta^{\prime} \phi^{\prime}+N_{t} \theta^{\prime 2}\right.\right.} \\
& \left.\left.\left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} \theta^{\prime}\right)+\epsilon \theta\right]\right]\right]\right\} \tag{4.37}
\end{align*}
$$

The notations below has been taken into consideration:

$$
\begin{array}{ll}
\theta=Y_{1}, & \theta^{\prime}=Y_{1}^{\prime}=Y_{2} \\
\phi=Y_{3}, & \phi^{\prime}=Y_{3}^{\prime}=Y_{4} .
\end{array}
$$

The equations (4.26) - (4.27) are then transformed into the following system of first-order ODEs:

$$
\begin{aligned}
Y_{1}^{\prime} & =Y_{2}, \\
Y_{2}^{\prime} & =\frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)} \\
& {\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right.\right.} \\
& \left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} Y_{2}\right)+\epsilon Y_{1}\right]\right] \\
Y_{3}^{\prime} & =Y_{4}, \\
Y_{4}^{\prime} & =\frac{1}{1-S c \lambda_{C} f^{2}(\eta)}\left[-S c\left[f Y_{4}-\lambda_{C}\left(f f^{\prime} Y_{4}\right)-K_{c} Y_{3}\right]\right. \\
& -\frac{N_{t}}{N_{b}}\left\{\frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\right. \\
& {\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right.\right.} \\
& \left.\left.\left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} Y_{2}\right)+\epsilon Y_{1}\right]\right]\right\}\right]
\end{aligned}
$$

$R K-4$ method is applied for solving numerically, the last IVP. l and p are to be chosen as missing conditions as follows:

$$
Y_{1}\left(\eta_{\infty}, l, p\right)=0, \quad Y_{3}\left(\eta_{\infty}, l, p\right)=0
$$

Newton method is applied for solving the above equations with the iterative scheme as follows:

$$
\left[\begin{array}{l}
l \tag{4.38}\\
p
\end{array}\right]_{(n+1)}=\left[\begin{array}{l}
l \\
p
\end{array}\right]_{(n)}-\left[\begin{array}{ll}
\frac{\partial Y_{1}}{\partial l} & \frac{\partial Y_{1}}{\partial p} \\
\frac{\partial Y_{3}}{\partial l} & \frac{\partial Y_{3}}{\partial p}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Y_{1} \\
Y_{3}
\end{array}\right]_{(n)}
$$

We further introduce the following notations:

$$
\begin{array}{llll}
\frac{\partial Y_{1}}{\partial l}=Y_{5}, & \frac{\partial Y_{2}}{\partial l}=Y_{6}, & \frac{\partial Y_{3}}{\partial l}=Y_{7}, & \frac{\partial Y_{4}}{\partial l}=Y_{8} \\
\frac{\partial Y_{1}}{\partial p}=Y_{9}, & \frac{\partial Y_{2}}{\partial p}=Y_{10}, & \frac{\partial Y_{3}}{\partial p}=Y_{11}, & \frac{\partial Y_{4}}{\partial p}=Y_{12}
\end{array}
$$

The form of Newton iterative scheme is, by using the results of above notations are as follows:

$$
\left[\begin{array}{l}
l \tag{4.39}\\
p
\end{array}\right]_{(n+1)}=\left[\begin{array}{l}
l \\
p
\end{array}\right]_{(n)}-\left[\begin{array}{cc}
Y_{5} & Y_{9} \\
Y_{7} & Y_{11}
\end{array}\right]_{(n)}^{-1}\left[\begin{array}{l}
Y_{1} \\
Y_{3}
\end{array}\right]_{(n)}
$$

The last set of four first order ODEs in terms of l and p are differentiated to get another system of ODEs, as follows:

$$
\begin{aligned}
Y_{5}^{\prime}= & Y_{6}, \\
Y_{6}^{\prime}= & \frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)} \\
& -6 R d\left(\theta_{w}-1\right)^{2} Y_{5} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)-\operatorname{Pr}\left[f Y_{6}+N_{b} Y_{6} Y_{4}+N_{b} Y_{2} Y_{8}\right. \\
& \left.\left.+2 N_{t} Y_{2} Y_{6}-\lambda_{E}\left(f f^{\prime} Y_{6}\right)+\epsilon Y_{5}\right]\right]-\frac{3 R d\left(\theta_{w}-1\right) Y_{5}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+\operatorname{Rd}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right.\right.} \\
& \left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} Y_{2}\right)+\epsilon Y_{1}\right]\right], \\
& Y_{6}(0)=1 \text {. } \\
& Y_{7}^{\prime}=Y_{8}, \\
& Y_{7}(0)=0 . \\
& Y_{8}^{\prime}=\frac{1}{1-S c \lambda_{C} f^{2}(\eta)}\left[-S c\left[f Y_{8}-\lambda_{C}\left(f f^{\prime} Y_{8}\right)-K_{c} Y_{7}\right]\right. \\
& -\frac{N_{t}}{N_{b}}\left\{\frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) y_{1}\right)^{3}\right)}\right. \\
& {\left[-6 R d\left(\theta_{w}-1\right) Y_{2} Y_{6}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right.} \\
& -6 R d\left(\theta_{w}-1\right)^{2} Y_{5} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right) \\
& \left.-\operatorname{Pr}\left[f Y_{6}+N_{b} Y_{6} Y_{4}+N_{b} Y_{2} Y_{8}+2 N_{t} Y_{2} Y_{6}-\lambda_{E}\left(f f^{\prime} Y_{6}\right)+\epsilon Y_{5}\right]\right] \\
& -\frac{3 R d\left(\theta_{w}-1\right) Y_{5}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}} \\
& \left(-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right.\right. \\
& \left.\left.\left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} Y_{2}\right)+\epsilon Y_{1}\right]\right)\right\}\right], \\
& Y_{8}(0)=0 . \\
& Y_{9}^{\prime}=Y_{10}, \\
& Y_{9}(0)=0 . \\
& Y_{10}^{\prime}=\frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+\operatorname{Rd}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)} \\
& {\left[-6 R d\left(\theta_{w}-1\right) Y_{2} Y_{10}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right.} \\
& -6 R d\left(\theta_{w}-1\right)^{2} Y_{9} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)-\operatorname{Pr}\left[f Y_{10}\right. \\
& \left.\left.+N_{b} Y_{10} Y_{4}+N_{b} Y_{2} Y_{12}+2 N_{t} Y_{2} Y_{10}-\lambda_{E}\left(f f^{\prime} Y_{10}\right)+\epsilon Y_{9}\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3 R d\left(\theta_{w}-1\right) Y_{9}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}} \\
& {\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[f Y_{2}+N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}\right.\right.} \\
& \left.\left.+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right)-\lambda_{E}\left(f f^{\prime} Y_{2}\right)+\epsilon Y_{1}\right]\right] \text {, } \\
& Y_{10}(0)=0 . \\
& Y_{11}^{\prime}=Y_{12}, \\
& Y_{11}(0)=0 . \\
& Y_{12}^{\prime}=\frac{1}{1-S c \lambda_{C} f^{2}(\eta)}\left[-S c\left[f Y_{12}-\lambda_{C}\left(f f^{\prime} Y_{12}\right)-K_{c} Y_{11}\right]\right. \\
& -\frac{N_{t}}{N_{b}}\left\{\frac{1}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)}\right. \\
& {\left[-6 R d\left(\theta_{w}-1\right) Y_{2} Y_{10}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}\right.} \\
& -6 R d\left(\theta_{w}-1\right)^{2} Y_{9} Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)-\operatorname{Pr}\left[f Y_{10}+N_{b} Y_{10} Y_{4}\right. \\
& \left.\left.+N_{b} Y_{2} Y_{12}+2 N_{t} Y_{2} Y_{10}-\lambda_{E}\left(f f^{\prime} Y_{10}\right)+\epsilon Y_{9}\right]\right] \\
& -\left[\frac{3 R d\left(\theta_{w}-1\right) Y_{9}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}}{\left(1-\operatorname{Pr} \lambda_{E} f^{2}+R d\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{3}\right)^{2}}\right] \\
& {\left[-3 R d\left(\theta_{w}-1\right) Y_{2}^{2}\left(1+\left(\theta_{w}-1\right) Y_{1}\right)^{2}-\operatorname{Pr}\left[f Y_{2}\right.\right.} \\
& +N_{b} Y_{2} Y_{4}+N_{t} Y_{2}^{2}+E c\left(\left(1+\frac{1}{\beta}\right)\left(f^{\prime \prime 2}+g^{\prime 2}\right)+M\left(f^{\prime 2}+g^{2}\right)\right) \\
& \left.\left.\left.\left.-\lambda_{E}\left(f f^{\prime} Y_{2}\right)+\epsilon Y_{1}\right]\right]\right\}\right], \\
& Y_{12}(0)=1 .
\end{aligned}
$$

For the Newton's method the stopping criteria is set as:

$$
\max \left\{\left|Y_{1}\left(\eta_{\infty}, l^{n}, p^{n}\right)\right|,\left|Y_{3}\left(\eta_{\infty}, l^{n}, p^{n}\right)\right|\right\}<\epsilon
$$

where $\epsilon>0$ is a sufficiently small number, which has been considered as 10^{-10}.

4.4 Representation of Graphs and Tables

In this section, we thoroughly discuss the influence of the dimensionless parameters on the skin friction coefficient $R e_{x}^{\frac{1}{2}} C_{f_{x}}, R e_{y}^{\frac{1}{2}} C_{f_{y}}$, Nusselt number $R e_{x}^{-\frac{1}{2}} N u_{x}$ and sherwood number $R e_{x}^{-\frac{1}{2}} S h_{x}$ through different graphs and tables. Table 4.1, shows the effect of Casson parameter β, rotation parameter γ_{1}, magnetic parameter M, porous medium parameter K and inclination angle Γ on $R e_{x}^{\frac{1}{2}} C_{f_{x}}$ and $R e_{y}^{\frac{1}{2}} C_{f_{y}}$. For accelerating the values of Casson parameter $\beta, \operatorname{Re}_{x}^{\frac{1}{2}} C_{f_{x}}, \operatorname{Re}_{x}^{\frac{1}{2}} C_{f_{y}}$ increase. Table 4.1 expresses the intervals I_{f} and I_{g} from where the missing conditions r and m can be chosen. Observation made on the Nusselt number, shows a great flexibility of the choice of missing initial conditions. Table 4.2 explains the impact of Casson parameter β, rotation parameter γ_{1} magnetic parameter M, porous medium parameter K, inclination angle Γ, radiation parameter $R d$, temprature ratio parameter θ_{w}, Prandtl number Pr, Brownian parameter $N b$, thermophoresis parameter $N t$, Eckert number Ec and Schmidt number $S c$, time relaxtaion parameter of temperature λ_{E}, time relaxtaion parameter of concentration λ_{C}, heat generation/absorption parameter ϵ and chemical reaction parameter K_{c}.

Figure 4.2 shows a decreasing behaviour of the velocity f^{\prime} when increasing the Casson parameter β. From a tangible perspective, the Casson parameter is impacted by the yield stress. This stress, in turn, creates an opposing force that results in a decrease in the velocity of the fluid with a gradual increase in β values. The identical parameter concerned with the velocity distribution $g(\eta)$ together with y-axis is absorbed by Figure 4.3. The velocity distribution $g(\eta)$ reveals an upward trend with respect to β is mentioned in figure. Within this framework, the function $g(\eta)$ adopts a parabolic configuration, signifying that the flow transpires in the negative direction due to its negative values.

The influence of M in the temperature profile θ is manifestly observed in Figure 4.4. It demonstrates that an escalation of this parameter leads to an elevation in
the temperature profile, driven by the Lorentz force generated in the presence of a magnetic field. The influence of the parameter γ_{1} on f^{\prime} and g is portrayed in Figures 4.5 and 4.6. It has been observed that an increase in the rotation parameter leads to a deterioration of velocity along the x-direction. The results indicate that as the value of $N t$ is increased, both the temperature distribution and the concentration profile rise, as shown in Figures 4.7 and 4.8. The consequences of altering Magnetic parameter M for the velocity profiles f^{\prime} and g is visualized in Figures 4.9 and 4.10, showcasing a decrease in f^{\prime} and an increase in g with an increase in M. This occurs because a drag force which is termed as Lorentz force get raised due to applied magnetic field generated by the motion of charges. This force causes a decrease in the magnitude of velocity along the x-direction.

Distinct values of θ_{w} illustrate the temperature profile θ increment in Figure 4.11. As this parameter increases, the temperature also experiences a corresponding increase. A decline in the concentration profile ϕ is evident as the value of the Schmidt parameter $S c$ increases, as illustrated in Figure 4.12. Given that the Schmidt number is influenced by the Brownian diffusion coefficient, rise in Schmidt number leads to a decrease in the Brownian diffusion coefficient. Consequently, this suggests a reduction in nanoparticle concentration due to the diminished diffusion behavior. Figures 4.13 and 4.14 depict the velocity profiles for varying values of the porous medium parameter K. The profile denoted as f^{\prime} exhibits a decreasing trend as K increases, while the profile represented by g demonstrates an increase with rising values of K. This occurs because, on increasing the permeability of a porous medium will increase the flow rate of fluid through it, assuming a constant pressure gradient.

Figures 4.15 and 4.16 demonstrate the influence of $N b$. As $N b$ increases, the temperature distribution rises, while the concentration profile decreases. The occurrence of Brownian motion in the fluid is attributed to the presence of nanoparticles. With an increase in $N b$, this motion undergoes changes, leading to a subsequent decrease in the thickness of the concentration boundary layer for the nanoparticles. Through the analysis of Figures 4.17 and 4.18 for various distinct values of Γ, it has been noted that f^{\prime} exhibits a decreasing trend, while g demonstrates an
increasing trend. It demonstrates that for the inclined angles, the gravitational force opposes the stretching effect, potentially delaying the flow initiation and altering the boundary layer structure. Figure 4.19 reveals that with an increase in the value of γ_{1}, the temperature distribution also increases.

Figure 4.20 illustrates that as the value of the chemical reaction parameter K_{c} increases, there is a noticeable decreasing trend in the concentration discrepancy ϕ. This occurs because when the chemical reaction parameter is increased, the concentration distribution decreases owing to the accelerated movement of fluid molecules. Figure 4.21 reflects the variation in temperature profile θ due to a parameter $R d$. As the radiation parameter boosts, it leads to the emit of more heat energy into the flow, resulting in an uplifted temperature profile. Figure 4.22 shows the relation between relaxation time parameter of concentration λ_{C} and ϕ, where ϕ decreases by increasing λ_{C}. Genuinely, an elevated λ_{C} value induces a diminished mass diffusivity, leading to a concentration distribution with a narrower profile.

Figure 4.23 displays the impact of the Prandtl number Pr on the temperature distribution θ. Both the thickness of the thermal boundary layer and the temperature are functions that decrease as the Prandtl number Pr increases. Certainly, the influence of the Eckert number Ec on the temperature distribution θ showcases a rising pattern in θ as the value of $E c$ increases, as mentioned in Figure 4.24. The temperature distribution escalates as the value of Eckert number goes up. This outcome arises from the fact that the Eckert number is dependent on the kinetic energy, which upon being converted to the heat energy within the fluid, results in a temperature increase. The Figure 4.25 indicates that on rising the Casson parameter β the temperature discrepancy θ shows a rising behaviour. Figure 4.26 expresses the relation between relaxation time parameter of temperature λ_{E} and temperature discrepancy θ, where θ has decreasing trend by rising λ_{E}. visibly, when λ_{E} attains higher values, the system manifests non-conductive features, which in turn leads to a contraction of the thermal distribution.

For increasing the values of heat generation/absorption ϵ, Figure 4.27 depicts that
the temperature discrepancy θ is increasing. The impact of the Brownian parameter $N b$ in conjunction with the thermophoresis parameter $N t$ on the Sherwood number $R e_{x}^{-\frac{1}{2}} S h_{x}$ is depicted in Figure 4.28. It has been observed that an increase in the value of $N b$ leads to a decreasing trend in the Sherwood number $R e_{x}^{-\frac{1}{2}} S h_{x}$. Conversely, the Sherwood number exhibits an increasing trend as the value of $N t$ rises. In Figure 4.29, increasing the magnetic parameter M has been noted to result in an increase in the skin friction $\operatorname{Re}_{x}^{\frac{1}{2}} C_{f_{y}}$, whereas for higher values of γ_{1}, $R e_{x}^{\frac{1}{2}} C_{f_{y}}$ exhibits a declining trend.

Table 4.1: Results of $R e_{x}^{\frac{1}{2}} C_{f x}$ and $R e_{x}^{\frac{1}{2}} C_{f y}$ for various parameters

β	γ_{1}	M	K	Γ	$R e_{x}^{\frac{1}{2}} C_{f x}$	$R e_{x}^{\frac{1}{2}} C_{f y}$	I_{f}	I_{g}
0.5	0.5	0.5	0.4	$\pi / 2$	-2.48263	-0.66128	[-1.70, 1.90]	$[-2.30,1.70]$
0.8					-2.15059	-0.57329	[-1.90, 1.60]	$[-2.50,1.90]$
1.0					-2.02772	-0.54057	[-1.80, 2.30]	[-2.70, 0.60]
	0.3				-2.42473	-0.40770	[-1.10, 2.60]	[-3.10, 2.20]
	0.6				-2.51875	-0.78023	[-2.20, 2.80]	[-2.60, 3.00]
	0.9				-2.64364	-1.10502	[-2.30, 3.10]	$[-2.40,1.70]$
		0			-2.19783	-0.76779	[-1.20, 3.50]	[-2.80, 2.70]
		0.4			-2.42669	-0.67951	[-1.80, 3.30]	[-3.10, 3.30]
		0.8			-2.64515	-0.61357	[-1.80, 3.60]	[-2.00, 1.10]
			0.6		-2.59172	-0.62842	[-2.20, 3.80]	[-2.60, 3.10]
			0.8		-2.69784	-0.59963	[-2.30, 3.40]	[-1.90, 1.20]
			1.0		-2.80102	-0.57418	[-2.00, 3.30]	[-2.70, 3.30]
				$\pi / 6$	-2.27046	-0.73718	[-2.50, 3.10]	[-3.10, 3.20]
				$\pi / 4$	-2.34222	-0.70947	[-2.10, 2.70]	[-1.80, 1.50]
				$\pi / 3$	-2.41297	-0.68427	[-2.20, 3.00]	[-3.20, 3.30]

Table 4.2: Results of $R e_{x}^{-\frac{1}{2}} N u_{x}$ and $R e_{x}^{-\frac{1}{2}} S h_{x}$ for various parameters

Table 4.2: Results of $R e_{x}^{-\frac{1}{2}} N u_{x}$ and $R e_{x}^{-\frac{1}{2}} S h_{x}$ for various parameters

Figure 4.2: Velocity $\mathbf{f}^{\prime}(\eta)$ discrepancy against β

Figure 4.3: Velocity $\mathrm{g}(\eta)$ discrepancy against β

Figure 4.4: Temperature $\theta(\eta)$ discrepancy against M

Figure 4.5: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against γ_{1}

Figure 4.6: Velocity $g(\eta)$ discrepancy against γ_{1}

Figure 4.7: Temperature $\theta(\eta)$ discrepancy against $N t$

Figure 4.8: Concentration $\phi(\eta)$ discrepancy against $N t$

Figure 4.9: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against M

Figure 4.10: Velocity $\mathrm{g}(\eta)$ discrepancy against M

Figure 4.11: Temperature $\theta(\eta)$ discrepancy against θ_{w}

Figure 4.12: Concentration $\phi(\eta)$ discrepancy against $S c$

Figure 4.13: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against K

Figure 4.14: Velocity $\mathrm{g}(\eta)$ discrepancy against K

Figure 4.15: Temperature $\theta(\eta)$ discrepancy against $N b$

Figure 4.16: Concentration $\phi(\eta)$ discrepancy against $N b$

Figure 4.17: Velocity $\mathrm{f}^{\prime}(\eta)$ discrepancy against Γ

Figure 4.18: Velocity $g(\eta)$ discrepancy against Γ

Figure 4.19: Temperature $\theta(\eta)$ discrepancy against γ_{1}

Figure 4.20: Concentration $\phi(\eta)$ discrepancy against K_{c}

Figure 4.21: Temperature $\theta(\eta)$ discrepancy against $R d$

Figure 4.22: Concentration $\phi(\eta)$ discrepancy against λ_{C}

Figure 4.23: Temperature $\theta(\eta)$ discrepancy against Pr

Figure 4.24: Temperature $\theta(\eta)$ discrepancy against $E c$

Figure 4.25: Temperature $\theta(\eta)$ discrepancy against β

Figure 4.26: Temperature $\theta(\eta)$ discrepancy against λ_{E}

Figure 4.27: Temperature $\theta(\eta)$ discrepancy against ϵ

Figure 4.28: Sherwood number $S h_{x}$ discrepancy against $N b$ and $N t$

Figure 4.29: skin friction $C f_{y}$ discrepancy against γ_{1} and M

Chapter 5

Conclusion

In this thesis, the work of Archana et al. [31] is reviewed and extended by Cattaneo-Christov double diffusion in the temperature equation and concentration equation as well. Firstly, by using similarity transformation, the momentum, energy and concentartion equations are altered into the ODEs. Through the application of the Shooting technique, numerical solutions for the transformed ODEs have been achieved. Utilizing diverse values for the governing parameters, we showcase the outcomes in the form of Tables and graphs for velocity, temperature, and concentration profiles. Following are the key results of current work:

- Increasing the values of M, the velocity profile $f^{\prime}(\eta)$ decreases while the temperature distribution increases.
- The temperature distribution is showing decreasing trend by rising the Prandtl number.
- By increasing the values of Schmidt number, an increasing behaviour is observed in concentration distribution.
- Increasing values of the Casson parameter demonstrate an upward trend in both $g(\eta)$ and $\theta(\eta)$.
- The concentration distribution is decreasing on increasing the values of time relaxation parameter of concentration.
- An increase in the temperature distribution is observed as the values of the Eckert number 'Ec' are raised.
- Increasing values of chemical reaction parameter gives a decreasing trend in concentration distribution.
- The temperature distribution is decreasing on increasing the values of time relaxation parameter of temperature.
- By increasing the values of brownian parameter, the Sherwood number decreases, while sherwood number is showing increasing trend by rising the values of thermophoresis parameter.

Bibliography

[1] S. Zhao, X. Xu, and M. Collins, "The numerical analysis of fluid-solid interactions for blood flow in arterial structures part 2: development of coupled fluid-solid algorithms," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 212, no. 4, pp. 241252, 1998.
[2] Y. B. Li, Z. Q. Lin, S. J. Hu, and G. L. Chen, "Numerical analysis of magnetic fluid dynamics behaviors during resistance spot welding," Journal of Applied Physics, vol. 101, no. 5, 2007.
[3] H. Eisazadeh, M. Hamedi, and A. Halvaee, "New parametric study of nugget size in resistance spot welding process using finite element method," Materials § Design, vol. 31, no. 1, pp. 149-157, 2010.
[4] J. Wang, H.-P. Wang, F. Lu, B. E. Carlson, and D. R. Sigler, "Analysis of AL-steel resistance spot welding process by developing a fully coupled multiphysics simulation model," International Journal of Heat and Mass Transfer, vol. 89, pp. 1061-1072, 2015.
[5] S. U. Choi and J. A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles," tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States), 1995.
[6] X.-Q. Wang and A. S. Mujumdar, "A review on nanofluids-part i: theoretical and numerical investigations," Brazilian Journal of Chemical Engineering, vol. 25, pp. 613-630, 2008.
[7] C. Yang, W. Li, Y. Sano, M. Mochizuki, and A. Nakayama, "On the anomalous convective heat transfer enhancement in nanofluids: a theoretical answer to the nanofluids controversy," Journal of Heat Transfer, vol. 135, no. 5, p. 054504, 2013.
[8] K. Jahani, M. Mohammadi, M. B. Shafii, and Z. Shiee, "Promising technology for electronic cooling: nanofluidic micro pulsating heat pipes," Journal of Electronic Packaging, vol. 135, no. 2, p. 021005, 2013.
[9] N. Casson, "Flow equation for pigment-oil suspensions of the printing inktype," Rheology of Disperse Systems, pp. 84-104, 1959.
[10] S. Nadeem, R. Mehmood, and N. S. Akbar, "Oblique stagnation point flow of a Casson-nano fluid towards a stretching surface with heat transfer," Journal of Computational and Theoretical Nanoscience, vol. 11, no. 6, pp. 1422-1432, 2014.
[11] A. S. Butt, A. Ali, and A. Mehmood, "Study of flow and heat transfer on a stretching surface in a rotating Casson fluid," Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 85, no. 3, pp. 421-426, 2015.
[12] R. S. R. Gorla and A. J. Chamkha, "Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nonNewtonian nanofluid," International Journal of Microscale and Nanoscale thermal Fluid transport Phenomena, vol. 2, pp. 211-227, 2011.
[13] S. Shehzad, F. Abbasi, T. Hayat, and F. Alsaadi, "Model and comparative study for peristaltic transport of water based nanofluids," Journal of Molecular Liquids, vol. 209, pp. 723-728, 2015.
[14] M. Sheikholeslami, M. Rashidi, T. Hayat, and D. Ganji, "Free convection of magnetic nanofluid considering MFD viscosity effect," Journal of Molecular Liquids, vol. 218, pp. 393-399, 2016.
[15] M. Sheikholeslami, "CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure," The European Physical Journal Plus, vol. 131, no. 11, p. 413, 2016.
[16] M. Sheikholeslami, "CuO-water nanofluid free convection in a porous cavity considering Darcy law," The European Physical Journal Plus, vol. 132, no. 1, p. 55, 2017.
[17] M. Sheikholeslami, "Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder," Journal of Molecular Liquids, vol. 229, pp. 137-147, 2017.
[18] M. Sheikholeslami, "Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model," Journal of Molecular Liquids, vol. 225, pp. 903-912, 2017.
[19] T. Hayat, M. I. Khan, M. Waqas, and A. Alsaedi, "Newtonian heating effect in nanofluid flow by a permeable cylinder," Results in Physics, vol. 7, pp. 256262, 2017.
[20] C. Wang, "Stretching a surface in a rotating fluid," Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 39, no. 2, pp. 177-185, 1988.
[21] K. Zaimi, A. Ishak, and I. Pop, "Stretching surface in rotating viscoelastic fluid," Applied Mathematics and Mechanics, vol. 34, pp. 945-952, 2013.
[22] M. Rashidi, S. Abelman, and N. F. Mehr, "Entropy generation in steady mhd flow due to a rotating porous disk in a nanofluid," International Journal of Heat and Mass transfer, vol. 62, pp. 515-525, 2013.
[23] F. Mabood, S. Ibrahim, and W. Khan, "Framing the features of Brownian motion and thermophoresis on radiative nanofluid flow past a rotating stretching sheet with magnetohydrodynamics," Results in Physics, vol. 6, pp. 1015-1023, 2016.
[24] S. Das, R. Jana, and O. Makinde, "Transient hydromagnetic reactive Couette flow and heat transfer in a rotating frame of reference," Alexandria Engineering Journal, vol. 55, no. 1, pp. 635-644, 2016.
[25] A. O. Ali, O. D. Makinde, and Y. Nkansah-Gyekye, "Numerical study of unsteady mhd Couette flow and heat transfer of nanofluids in a rotating system with convective cooling," International Journal of Numerical Methods for Heat $\mathcal{E J}^{\mathcal{J}}$ Fluid Flow, vol. 26, no. 5, pp. 1567-1579, 2016.
[26] B. Prasannakumara, B. Gireesha, and P. Manjunatha, "Melting phenomenon in mhd stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink," International Journal for Computational Methods in Engineering Science and Mechanics, vol. 16, no. 5, pp. 265-274, 2015.
[27] S. Das, R. Jana, and O. Makinde, "Magnetohydrodynamic free convective flow of nanofluids past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects," Journal of Mechanics, vol. 32, no. 2, pp. 197-210, 2016.
[28] O. D. Makinde and A. S. Eegunjobi, "Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media," Journal of Porous Media, vol. 19, no. 9, 2016.
[29] M. Sheikholeslami and S. Shehzad, "Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity," International Journal of Heat and Mass Transfer, vol. 109, pp. 82-92, 2017.
[30] T. Hayat, T. Muhammad, A. Alsaedi, and M. Alhuthali, "Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation," Journal of Magnetism and Magnetic Materials, vol. 385, pp. 222-229, 2015.
[31] M. Archana, B. Gireesha, B. Prasannakumara, and R. Gorla, "Influence of nonlinear thermal radiation on rotating flow of Casson nanofluid," Nonlinear Engineering, vol. 7, no. 2, pp. 91-101, 2018.
[32] R. W. Fox, A. McDonald, and P. Pitchard, "Introduction to Fluid Mechanics," 2006.
[33] R. Bansal, A Textbook of Fluid Mechanics. Firewall Media, 2005.
[34] J. N. Reddy and D. K. Gartling, The Finite Element Methods in Heat Transfer and Fluid Dynamics. CRC press, 2010.
[35] P. A. Davidson and A. Thess, Magnetohydrodynamics, vol. 418. Springer Science \& Business Media, 2002.
[36] M. Gad-el Hak, Advances in Fluid Mechanics Measurements, vol. 45. Springer Science \& Business Media, 2013.
[37] R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Methods for Heat and Fluid Flow. John Wiley \& Sons, 2004.
[38] J. Kunes, Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012.
Turnitin Originality Report
The Impact of Cattaneo-Christov Double Diffusion, Thermal Radiation on a Rotating Flow of turnitin
Casson Nanofluid by Muhammad Samiullah
From Ms Theses (CUST Library)

- Processed on 23 -Nov-2023 12:15 PKT
- ID: 2236777867
- Word Count: 16255
Similarity Index
18\%
Similarity by Source
Internet Sources:
13\%
Publications:
12\%
Student Papers:

sources:

1 1\% match (student papers from 17-Feb-2016)
Submitted to Higher Education Commission Pakistan on 2016-02-17

2 1\% match (Frank Hawthorne. "The crystal structure of braithwaiteite", Journal of Coordination Chemistry, 2008)
Frank Hawthorne. "The crystal structure of braithwaiteite", Journal of Coordination Chemistry, $\underline{2008}$

3 1\% match (Internet from 12-Oct-2022)
http://studentsrepo.um.edu.my/11762/2/Nadhirah.pdf

4 1\% match (Internet from 07-Nov-2022)
https://dokumen.pub/applied-mathematics-and-scientific-computing-international-conference-on-advances-in-mathematical-sciences-vellore-india-december-2017-volume-ii-1st-ed-978-3-030-01122-2-978-3-030-01123-9.htm|

5
< 1\% match (student papers from 03-Sep-2021)
Submitted to Higher Education Commission Pakistan on 2021-09-03
< 1\% match (student papers from 21-Jan-2014)
Submitted to Higher Education Commission Pakistan on 2014-01-21

7 < 1\% match (student papers from 22-Feb-2019)
Submitted to Higher Education Commission Pakistan on 2019-02-22
< 1\% match (student papers from 02-May-2019)
Submitted to Higher Education Commission Pakistan on 2019-05-02

9 < 1\% match (student papers from 02-Jan-2015)
Submitted to Higher Education Commission Pakistan on 2015-01-02
$10<1 \%$ match (student papers from 24-Jun-2019)
Submitted to Higher Education Commission Pakistan on 2019-06-24
$11<1 \%$ match (student papers from 27-Dec-2014)
Submitted to Higher Education Commission Pakistan on 2014-12-27

12
< 1% match (student papers from 29-Nov-2018)
Submitted to Higher Education Commission Pakistan on 2018-11-29
< 1% match (student papers from 16-Feb-2018)
Submitted to Higher Education Commission Pakistan on 2018-02-16
< 1\% match (Internet from 02-Feb-2023)
https://thesis.cust.edu.pk/UploadedFiles/MMT183011-Muhammad\ Asif\ Khan.pdf
< 1\% match (Internet from 15-Jan-2023)
https://thesis.cust.edu.pk/UploadedFiles/Naveeda\ Aziz-MMT153001.pdf

