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Abstract

The theoretical and numerical investigation of viscous dissipation and thermal ra-

diation effects on Casson nanofluid flow over a stretching sheet has been carried

out through the utilization of the shooting method. The primary objective of the

current research is to comprehensively analyze the influence of viscous dissipation

and thermal radiation, while incorporating the Cattaneo-Christov double diffusion

model. Additionally, this study takes into account factors such as thermophore-

sis, diffusion, Brownian motion, thermal diffusivity, and chemical reaction, in the

context of a Casson nanofluid flowing over an extensible sheet. The similarity

transformations have been employed to convert the nonlinear partial differential

equations into a set of ordinary differential equations. Tables and graphs vividly il-

lustrate the impact of various parameters, including the magnetic field parameter,

heat generation parameter, Prandtl number, thermophoresis parameter, Brownian

motion parameter, and chemical reaction parameter. The findings indicate that

as the rotation parameter increases, both the velocity and temperature profiles

exhibit a decrease. As the Casson parameter β values increase, there is a decrease

in the local Nusselt number values and a simultaneous increase in the Sherwood

number.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgement vi

Abstract vii

List of Figures x

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Layout of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6

2.1 Some Fundamental Terminologies . . . . . . . . . . . . . . . . . . . 6

2.2 Types of Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Types of Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Kinds of Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Governing Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Shooting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 A Casson Nanofluid Flow on a Stretching Surface Effected by
Thermal Radiation 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Numerical Method for Solution . . . . . . . . . . . . . . . . . . . . 29

3.4 Results and Discussion of Graphs and Tables . . . . . . . . . . . . . 34

viii



ix

4 The Impact of Cattaneo-Christov Double Diffusion, Thermal Ra-
diation on a Rotating Flow of Casson Nanofluid 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Numerical Method for Solution . . . . . . . . . . . . . . . . . . . . 58

4.4 Representation of Graphs and Tables . . . . . . . . . . . . . . . . . 65

5 Conclusion 84

Bibliography 86



List of Figures

3.1 Methodical presentation of the tangible system. . . . . . . . . . . . 18

3.2 Velocity f’(η) discrepancy against β . . . . . . . . . . . . . . . . . . 39

3.3 Velocity g(η) discrepancy against β . . . . . . . . . . . . . . . . . . 39

3.4 Temperature θ(η) discrepancy against M . . . . . . . . . . . . . . . 40

3.5 Velocity f’(η) discrepancy against γ1 . . . . . . . . . . . . . . . . . . 40

3.6 Velocity g(η) discrepancy against γ1 . . . . . . . . . . . . . . . . . . 41

3.7 Temperature θ(η) discrepancy against Nt . . . . . . . . . . . . . . . 41

3.8 Concentration ϕ(η) discrepancy against Nt . . . . . . . . . . . . . . 42

3.9 Velocity f’(η) discrepancy against M . . . . . . . . . . . . . . . . . 42

3.10 Velocity g(η) discrepancy against M . . . . . . . . . . . . . . . . . 43

3.11 Temperature θ(η) discrepancy against θw . . . . . . . . . . . . . . . 43

3.12 Concentration ϕ(η) discrepancy against Sc . . . . . . . . . . . . . . 44

3.13 Temperature θ(η) discrepancy against Nb . . . . . . . . . . . . . . 44

3.14 Concentration ϕ(η) discrepancy against Nb . . . . . . . . . . . . . . 45

3.15 Temperature θ(η) discrepancy against γ1 . . . . . . . . . . . . . . . 45

3.16 Temperature θ(η) discrepancy against Rd . . . . . . . . . . . . . . . 46

3.17 Temperature θ(η) discrepancy against Pr . . . . . . . . . . . . . . . 46

3.18 Temperature θ(η) discrepancy against Ec . . . . . . . . . . . . . . . 47

3.19 Sherwood number Shx discrepancy against Nb and Nt . . . . . . . 47

3.20 Nusselt number Nux discrepancy against Nb and Nt . . . . . . . . 48

4.1 Methodical display of the tangible system. . . . . . . . . . . . . . . 50

4.2 Velocity f’(η) discrepancy against β . . . . . . . . . . . . . . . . . . 70

4.3 Velocity g(η) discrepancy against β . . . . . . . . . . . . . . . . . . 70

4.4 Temperature θ(η) discrepancy against M . . . . . . . . . . . . . . . 71

4.5 Velocity f’(η) discrepancy against γ1 . . . . . . . . . . . . . . . . . . 71

4.6 Velocity g(η) discrepancy against γ1 . . . . . . . . . . . . . . . . . . 72

4.7 Temperature θ(η) discrepancy against Nt . . . . . . . . . . . . . . . 72

4.8 Concentration ϕ(η) discrepancy against Nt . . . . . . . . . . . . . . 73

4.9 Velocity f’(η) discrepancy against M . . . . . . . . . . . . . . . . . 73

4.10 Velocity g(η) discrepancy against M . . . . . . . . . . . . . . . . . 74

4.11 Temperature θ(η) discrepancy against θw . . . . . . . . . . . . . . . 74

4.12 Concentration ϕ(η) discrepancy against Sc . . . . . . . . . . . . . . 75

4.13 Velocity f’(η) discrepancy against K . . . . . . . . . . . . . . . . . . 75

4.14 Velocity g(η) discrepancy against K . . . . . . . . . . . . . . . . . . 76

x



xi

4.15 Temperature θ(η) discrepancy against Nb . . . . . . . . . . . . . . 76

4.16 Concentration ϕ(η) discrepancy against Nb . . . . . . . . . . . . . . 77

4.17 Velocity f’(η) discrepancy against Γ . . . . . . . . . . . . . . . . . . 77

4.18 Velocity g(η) discrepancy against Γ . . . . . . . . . . . . . . . . . . 78

4.19 Temperature θ(η) discrepancy against γ1 . . . . . . . . . . . . . . . 78

4.20 Concentration ϕ(η) discrepancy against Kc . . . . . . . . . . . . . . 79

4.21 Temperature θ(η) discrepancy against Rd . . . . . . . . . . . . . . . 79

4.22 Concentration ϕ(η) discrepancy against λC . . . . . . . . . . . . . . 80

4.23 Temperature θ(η) discrepancy against Pr . . . . . . . . . . . . . . . 80

4.24 Temperature θ(η) discrepancy against Ec . . . . . . . . . . . . . . . 81

4.25 Temperature θ(η) discrepancy against β . . . . . . . . . . . . . . . 81

4.26 Temperature θ(η) discrepancy against λE . . . . . . . . . . . . . . . 82

4.27 Temperature θ(η) discrepancy against ϵ . . . . . . . . . . . . . . . . 82

4.28 Sherwood number Shx discrepancy against Nb and Nt . . . . . . . 83

4.29 skin friction Cfy discrepancy against γ1 and M . . . . . . . . . . . 83



List of Tables

3.1 Results of Re
1
2
xCfx and Re

1
2
xCfy for various parameters . . . . . . . 37

3.2 Results of Re
− 1

2
x Nux and Re

− 1
2

x Shx for various parameters . . . . . 38

4.1 Results of Re
1
2
xCfx and Re

1
2
xCfy for various parameters . . . . . . . 68

4.2 Results of Re
− 1

2
x Nux and Re

− 1
2

x Shx for various parameters . . . . . 69

xii



Abbreviations

IVPs Initial value problems

MHD Magnetohydrodynamics

ODEs Ordineary differential equations

PDEs Partial differential equations

RK Runge-Kutta

xiii



Symbols

µ Viscosity

ρ Density

ν Kinematic viscosity

τ Stress tensor

k Thermal conductivity

α Thermal diffisuitivity

σ Electrical conductivity

u x-component of fluid velocity

v y-component of fluid velocity

w z-component of fluid velocity

B0 Magnetic field constant

Γc relaxation time for mass flux

Γe relaxation time for heat flux

Ω angular velocity

a Stretching constant

Tw Temperature of the wall

T∞ Ambient temperature of the nanofluid

T Temperature

Cw Concentration of the wall

C∞ Ambient concentration of the nanofluid

C Concentration

ρf Density of the fluid

µf Viscosity of the fluid

xiv



xv

νf Kinematic viscosity of the base fluid

ρnf Density of the nanofluid

µnf Viscosity of the nanofluid

qr Radiative heat flux

q Heat generation constant

qw Heat flux

qm Mass flux

σ∗ Stefan Boltzmann constant

k∗ Absorption coefficient

ψ Stream function

θ Stream function

ϕ Stream function

η Similarity variable

χ Similarity variable

Cfx Skin friction coefficient along x direction

Cfy Skin friction coefficient along y direction

Nu Nusselt number

Nux Local Nusselt number

Sh Sherwood number

Shx Local Sherwood number

Re Reynolds number

Rex Local Reynolds number

ϕ Nanoparticle volume fraction

Nb Brownian motion parameter

Nt Thermophoresis parameter

M Magnetic parameter

αf Thermal diffusivity

λC relaxation time Parameter of concentration

λE relaxation time Parameter of temperature

Ec Eckert number

Pr Prandtl number



xvi

ϵ heat generation/absorption parameter

Q heat generation/absorption coefficient

Bi Biot number

Sc Schmidt number

K∗
c rate of chemical reaction

Kc Chemical reaction parameter

γ1 rotation parameter

ρf Density of the pure fluid

µnf Viscosity of the nanofluid

µf Viscosity of the base fluid

(ρcp)f Heat capacitance of fluid

σf Electrical conductivity of the fluid

κf Thermal conductivity of the fluid

DT Thermophortic diffusion coefficient

DB Brownian diffusion coefficient

f Dimensionless velocity

g Dimensionless velocity

θ Dimensionless temperature

ϕ Dimensionless concentration



Chapter 1

Introduction

A specific branch in the study of fluid mechanics that focuses on delineating the

fluids motion, like gases and liquids is said to be fluid dynamics. Within the widely

acknowledged field of fluid mechanics, distinct branches such as aerodynamics and

hydrodynamics are notable components of fluid dynamics. This encompasses a

diverse range of practical applications, including the computation of forces and

moments, estimation of oil mass flow rates in pipelines, prediction of weather pat-

terns, exploration of interstellar nebulae, and the practice of modeling. Zhao and

Collins [1] were the first who introduced fluid dynamics through their experimental

work. This innovation paved the way for additional research and offered humanity

a platform to extract further advancements from it. The initial contributions to

the field of fluid dynamics had been done by Li et al. [2], Eisazadeh et al. [3] and

Wang et al. [4] etc.

The introduction of colloidal suspensions of nanoparticles into base fluids has

introduced a novel category of fluids known as nanofluids. Nanofluids exhibit ex-

traordinary properties that the conventional fluids were unlikely to achieve through

traditional means of technology. When conventional fluids are infused with nano-

sized particles, they demonstrate improved strength, chemical reactivity, electrical

conductivity, supermagnetic attributes, and notably, enhanced heat transfer and

thermal conductivity. The utilization of nanofluids in sectors such as aeronautics,

1
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medicine, pharmaceutics, and photoelectricity has yielded remarkable advance-

ments. For instance, applications like brake fluids, nuclear reactions, enhance-

ments in cooling transformer oil, and power plant efficiency improvements have

showcased notable breakthroughs. The term ”nanofluids” was introduced through

experimental work conducted by Choi and Eastman [5]. The foundational research

on nanofluids was conducted by Wang and Majumdar [6], Yang et al. [7], and Ja-

hani et al. [8].

A fluid that exhibits shear-thinning behavior, with a theoretical infinite viscos-

ity at zero shear rate and a viscosity of zero at an infinite shear rate, is referred to

as a Casson nanofluid. In comparison to Newtonian-based nanofluid flow, Casson

nanofluids are more advantageous as cooling and friction-reducing agents. Casson

fluids include various examples such as honey, jelly, sauce, and soup etc. Ap-

plications of Casson nanofluids span various sectors, including heat transfer and

cooling systems, biomedical and pharmaceutical, food industry, cosmetics and per-

sonal care, oil and gas industrial processing and automotive. The earliest work

on Casson nanofluid was done by Casson et al. [9] to forecast fluid attributes

bearing similarity to printing ink. A series-based remedy to tackle heat and mass

transfer occurences for a non Newtonian fluid is examined by Nadeem et al. [10].

According to their findings, variations in the Casson parameter, whether positive

or negative, give rise to relocations of the stagnation point concerning its initial

position. The study by Butt et al. [11] focused on elucidating the heat transfer

properties in the context of boundary layer flow for a Casson rotating fluid on a

extending surface.

The research conducted by Gorla et al. [12] delved into the analysis of flow in

boundary layer for nanofluids, incorporating the buoyancy force impacts. She-

hzad et al. [13] investigated various types of nanoparticles in order to examine

the peristaltic transport behavior of nanofluids. Additionally, they introduced two

models, namely Maxwell and Hamilton Crosser, to facilitate a comparative anal-

ysis of their findings. Sheikholeslami et al. [14–18] investigated the heat transfer

behaviours and flow patterens of a nanofluid across diverse geometric setups while
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considering a variety of boundary conditions. Hayat et al. [19] introduced the con-

cept of Newtonian mass flux condition within the context of nanofluid flow around

a permeable stretching cylinder. Presently, numerous researchers are integrating

magnetohydrodynamic flow into their studies, motivated by its broad industrial

use in applications involving solar atmosphere and laboratory plasmas.

The examination of fluid motion with rotation that gives rise to the Coriolis force

finds noteworthy applications in a range of disciplines, including astrophysics,

oceanography, and various geophysical situations. Moreover, this specific flow

pattern over a stretching surface is employed across various domains. Wang [20]

considered a two-dimensional stretchable surface to investigate the issue of rotat-

ing fluid flow. Moreover, when the rotational parameter outran unity, he gained

a precise solution through analytical means, afterward contrasting it with the nu-

merical technique. Zaimi et al. [21] employed the Keller-box method to analyze

the rotating flow due to a stretching surface by considering a non-Newtonian vis-

coelastic fluid.

Rashidi et al. [22] employed the law of increased Entropy to present an analysis of

Entropy generation in the context of rotating nanofluid flow. Mabood et al. [23]

conducted an investigation into the impact of Brownian motion and thermophore-

sis on the flow of rotating nanofluid. This analysis was carried out considering

the presence of magnetic fields, radiation, viscous dissipation effects, heat source

etc. The research executed by Das et al. [24] centered on investigating how tran-

sient hydromagnetic Couette flow of a viscous fluid is influenced by both magnetic

fields and rotation. The study revealed a substantial alteration in fluid velocity

resulting from the combined effects. Ali et al. [25] investigated various types of

nanoparticles to analyze how magnetic fields within a rotational setup modifies

Couette flow.

Radiation heat transfer plays a peripheral role in numerous engineering processes

that take place under high-temperature conditions. A significant quantity of both

experimental and theoretical research has been undertaken by numerous scholars

to explore the impact of radiation effects [26–29]. Hayat et al. [30] introduced
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a novel boundary condition known as zero nanoparticle mass flux. This condi-

tion was put into practice to inspect the impact in viscoelastic fluid for three-

dimensional flow due to thermal radiations act as nonlinear.

1.1 Thesis Contributions

Within the thesis, comprehensive examine a specific rotating nanofluid flow pre-

sented by Archana et al. [31] through a review study. The ongoing study is directed

towards conducting a theoritical and numerical analysis of the Cattaneo-Christov

double diffusion within a rotating flow of Casson nanofluid over a stretching sheet,

incorporating the impact of inclined magnetic field, porous medium, chemical re-

action and heat source/sink which has not yet been explored. The current research

aims to address this research gap, and the outcomes of the present study present a

novel contribution to the existing literature. Throughout the procedure, nonlinear

partial differential equations (PDEs) have been transformed using similarity trans-

formations into a system of dimensionless ordinary differential equations (ODEs),

and the outcomes have been generated through the shooting method. The numer-

ical outcomes are visually derived with the assistance of MATLAB. The influence

of key parameters on velocity distributions f ′(η) and g(η), temperature distribu-

tion θ(η), concentration distribution ϕ(η), skin friction coefficients Cfx and Cfy,

local Nusselt number Nux and local Sherwood number Shx has been examined

through graphical representations and tabular presentations.

1.2 Layout of Thesis

The following is a quick summary about thesis contents.

Chapter 2 covers fundamental definitions along definite nomenclature which

would be imperative and dicussed afterward.

Chapter 3 provides the proposed analytical evaluation of a Casson nanofluid flow

on a stretching surface effected by thermal radiation with magnetic field effect and
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shooting methodology is used to generate the numerical solutions of the governing

flow model.

Chapter 4 extends the proposed model flow mentioned in Chapter 3 by including

the Cattaneo-Christov double diffusion, Casson nanofluid and chemical reaction

effects.The shooting methodology is used to generate the numerical solutions of

the governing flow model.

Chapter 5 serves the section in which thesis concludes.

The Biblography provides all the refrences which are utilized in the thesis.



Chapter 2

Preliminaries

The present chapter outlines crucial definitions and governing laws, that will serve

as a foundation in forthcoming chapters.

2.1 Some Fundamental Terminologies

Definition 2.1.1 (Fluid )

”A substance that cannot keep its own shape but instead adopts that of its con-

tainer is referred to as a fluid.” [32]

Definition 2.1.2 (Fluid Mechanics)

“The fluid mechanics is defined as the science that deals with the behavior of fluids

at rest or in motion, and the interaction of fluids with solids or other fluids at the

boundaries.” [33]

Definition 2.1.3 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in mo-

tion, that branch of science is called fluid dynamics.” [33]

Definition 2.1.4 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [33]

6
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Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [33]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called ‘nu’. Mathematically,

ν =
µ

ρ
.” [33]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [34]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity. It can be defined as,

α =
k

ρCp

,

where α is the thermal diffusivity, k  i s the thermal conductivity, ρ  i s the density 

and Cp is the specifc heat at constant pressure.” [34]
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2.2 Types of Fluid

Definition 2.2.1 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [33]

Definition 2.2.2 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [33]

Definition 2.2.3 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” Examples are water

and alcohol.” [33]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate

of shear strain (or velocity gradient), is known as a non-Newtonian fluid.” Non-

Newtonian fluids include substances like toothpaste and honey.”

τxy ∝
(
du

dy

)m

, m ≠ 1

τxy = µ

(
du

dy

)m

[33]

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [35]
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2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [33]

Definition 2.3.2 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [33]

Definition 2.3.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ ̸= k,

where k is constant.” [33]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [33]

Definition 2.3.5 (Steady Flow)

“Steady flow is defined as that type of flow in which the fluid characteristics like

velocity, pressure, density, etc., at a point do not change with time. Thus for

steady flow, Mathematically we have,

∂Q

∂t
= 0,

where Q is any fluid property.” [33]
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Definition 2.3.6 (Unsteady Flow)

“Unsteady flow is defined as that type of flow in which the fluid characteristics

like velocity, pressure, density, etc., at a point do change with time. Thus for

Unsteady flow, Mathematically, we have,

∂Q

∂t
̸= 0,

where Q is any fluid property.” [33]

Definition 2.3.7 (Laminar Flow)

“Laminar flow is defined as that type of flow in which the fluid particles move

along well-defined paths or stream lines and all the stream-lines are straight and

parallel.” [32]

Definition 2.3.8 (Turbulent Flow)

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way.” [32]

2.4 Kinds of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference. For example, heat is transferred

from stove to the cooking pan.” [34]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion. The Fourier heat conduction law states that the heat flow is proportional

to the temperature gradient.” Examples are during the ironing process, heat is
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transferred from the iron to the fabric. Chocolate candy in a hand will eventually

melt as heat is conducted from a hand to the chocolate” [34]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newton’s law of cooling. It states that the heat flow is proportional

to the difference of the temperatures of the two media. The proportionality co-

efficient is called the convection heat transfer coefficient.” Examples are heating

water on the stove and air Conditioner” [34]

Definition 2.4.4 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium. Sometimes radiant en-

ergy is taken to be transported by electromagnetic wave while at other times it is

supposed to be transported by particle like photons. ” [34]

2.5 Dimensionless Numbers

Definition 2.5.1 (Eckert Number)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where Cp denotes the specific heat.” [32]

Definition 2.5.2 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as
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Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp

k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [32]

Definition 2.5.3 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. The skin friction coefficient can be defined

as

Cf =
2τ0
ρu2w

where τ0 denotes the wall shear stress and ρ is the density.” [36]

Definition 2.5.4 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [37]

Definition 2.5.5 (Sherwood Number)

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Sh =
kL

D
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here L is characteristics length, D is the mass diffusivity and k is the mass trans-

fer” coeffcient.” [38]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,

where V denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [33]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change

of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as”

∂ρ

∂t
+∇.(ρu) = 0 [34]

Definition 2.6.2 (Momentum Equation)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newton’s Third Law of action and reaction

governs the internal forces. Mathematically, it can be written as”:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T+ ρg. [34]
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Definition 2.6.3 (Energy Equation)

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q+Q+ ϕ,

where ϕ is the dissipation function.” [34]

Definition 2.6.4 (Conservation Equation)

“The principle of conservation of mass can be stated as the time rate of change

of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as:

∂ρ

∂t
+∇.(ρu) = 0,

where t is time, the fluid density is ρ, and the fluid velocity is u.” [34]

2.7 Shooting Method

It is a numerical approach for resolving boundary value problems expressed in

the form of nonlinear ordinary differential equations. Initially, the higher-order

nonlinear ordinary differential equations (ODEs) are converted into a system of

first-order ODEs. The missing initial conditions are guessed to have a complete

initial value problem (IVP). To explain the detailed computational procedure,

consider the classical Blausius problem in the dimensionless form governed by he

following ODEs along with the relavant boundary conditions:

2f ′′′(x) + f(x)f ′′(x)

f(0) = 0 = f ′(0), f ′ → 1 as x→ ∞.

 (2.1)
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Introduce the following notations to reduce the order of the above boundary value

problem.

f = z1,

f ′ = z′1 = z2,

f ′′ = z′2 = z3.

 (2.2)

As a result, (2.1) is transformed into the following system of first order ODEs:

z′1 = z2, z1(0) = 0. (2.3)

z′2 = z3, z2(0) = 1. (2.4)

z′3 = −1

2
(z1z3), z3(0) = h. (2.5)

where h is the missing initial condition which will be guessed to initialize the

computational problem.

The RK-4 method will be used for the numerical solution of the provided initial

value problem (IVP). The choice of ”h” should be made to meet this condition:

z2(x, h) = 1. (2.6)

For convenience, now onward z2(x, h) will be denoted by z2(h). Let us further

denote z2(h)− 1 by ϕ(h), so that

ϕ(h) = 0. (2.7)

The iterative formula detailed below allows us to implement Newton’s method as

a solution approach for the previously discussed equation:

hn+1 = hn −
ϕ(hn)(

∂ϕ(h)
∂h

)
h=hn

,

hn+1 = hn −
z2(hn)− 1(
∂z2(h)

∂t

)
h=hn

. (2.8)
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For ∂z2(h)
∂h

, we introduce the following notations:

∂z1
∂h

= z4,
∂z2
∂h

= z5,
∂z3
∂h

= z6. (2.9)

With the use of these notations, representation for iterative scheme of Newton is:

hn+1 = hn −
z2(hn)− 1

z5(hn)
. (2.10)

Differentiating the first-order ODEs (2.3)-(2.4) with respect to ’h’, we derive a

different system of ODEs as below:

z′4 = z5, z4(0) = 0. (2.11)

z′5 = z6, z5(0) = 0. (2.12)

z′6 = −1

2

[
z1z6 + z3z4

]
, z6(0) = 1. (2.13)

Writing all the four ODEs (2.3), (2.4), (2.10) and (2.11) together, we have the

following IVP.

z′1 = z2, z1(0) = 0.

z′2 = z3, z2(0) = 1.

z′3 = −1

2

[
z1z3

]
, z3(0) = h.

z′4 = z5, z4(0) = 0.

z′5 = z6, z5(0) = 0.

z′6 = −1

2

[
z1z6 + z3z4

]
, z6(0) = 1.

To solve the above IVP, we will apply the fourth-order Runge-Kutta numerical

method.

The stopping criteria for the shooting technique is established as:

| z2(h)− 1 |< ϵ,

where ϵ is an arbitrarily small positive number.



Chapter 3

A Casson Nanofluid Flow on a

Stretching Surface Effected by

Thermal Radiation

3.1 Introduction

The primary focus of this chapter has been about the numerical inspection of a

Casson nanofluid rotating flow when subjected to the impact of a magnetic field,

viscous dissipation, Joule heating and nonlinear thermal radiation. This model

was proposed and numerically computed by Archana et al. [31] by utilizing shoot-

ing method together with Runge-Kutta the fourth order method. The conversion

of the governing nonlinear PDEs into a set of dimensionless ODEs is a prerequisite

for implementing the shooting method. To conclude that, result from numerical

analysis for various parameters is debated for the dimensionless velocity f ′, tem-

perature distribution θ and concentration distribution ϕ. The obtained numerical

results have been presented through tables and graphs.

17
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3.2 Mathematical Modeling

Consider a three-dimensional steady, laminar flow of an incompressible Casson

nanofluid through a stretching sheet surface. The fluid has been assumed to rotate

about z-axis with an angular velocity Ω, where the domain of flow is z ≥ 0. Sup-

pose that the sheet has been stretched with velocity Uw(x)=ax. In the z-direction,

a constant magnetic field of strength B0 is applied. Suppose Cw represents the

wall concentration and Tw signifies the wall temperature. While C∞ < Cw and T∞

< Tw are ambient concentartion and temperature respectively. A dimensionless

parameter, temperature ratio θw is defined as, θw=
Tw

T∞
> 1.

Figure 3.1: Methodical presentation of the tangible system.
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The set of equations describing the flow are:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2Ωv = ν

(
1 +

1

β

)
∂2u

∂z2
− σB2

0

ρf
u, (3.2)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωv = ν

(
1 +

1

β

)
∂2v

∂z2
− σB2

0

ρf
v, (3.3)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

∂

∂z

[(
α +

16σ∗T 3

3K∗ (ρcp)f

)
∂T

∂z

]

+ τ

[
DB

∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z

)2 ]
+

µ

(ρcp)f

(
1 +

1

β

)((
∂u

∂z

)2

+

(
∂v

∂z

)2)
+

σB2
0

(ρcp)f

(
u2 + v2

)
, (3.4)

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
=

∂

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
. (3.5)

The associated BCs have been taken as:

u = Uw(x), v = 0, w = 0, T = Tw, C = Cw at z = 0,

u→ 0, v → 0 T → T∞, C → C∞ as z → ∞.

 (3.6)

With the utilization of the Rosseland approximation for radiation, qr is introduced

as the radiative heat flux:

qr = −4σ∗

3k∗
∂T 4

∂y
,

where σ∗ represents the Stefan-Boltzmann constant, and k∗ denotes the absorption

coefficient. If the difference of temperature is relatively minor, then the tempera-

ture T 4 can be expanded about T∞ using Taylor series, as follows.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

Ignoring the terms with higher order, we write:

T 4 = T 4
∞ + 4T 3

∞(T − T∞)
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= T 4
∞ + 4T 3

∞T − 4T 4
∞

= −3T 4
∞ + 4T 3

∞T

= 4T 3
∞T − 3T 4

∞.

To transform the equations (3.1)-(3.5) into a set of ODEs, we have taken into

consideration the subsequent similarity transformations.

u = axf
′
, v = axg, w = −

√
aνf,

T = T∞ (1 + (θw − 1) θ) , ϕ =
C − C∞

Cw − C∞
, η = z

√
a

ν
.

 (3.7)

where θw=
Tw

T∞
> 1 denotes the temperature ratio parameter.

The detailed method for converting equations (3.1)-(3.5) into dimensionless form

is discussed below:

∂u

∂x
=

∂

∂x
axf

′
= af

′

∂v

∂y
=

∂

∂y
(axg) = 0

∂w

∂z
=

∂

∂z
(−

√
aνf) = −

√
aνf ′

√
a

ν
= −af ′.

The satisfaction of Equation (3.1) by using the above results, as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= af ′ − af ′ = 0. (3.8)

Below derivatives are determined from equation (3.2) as:

∂η

∂z
=

√
a

ν
.

∂u

∂z
=

∂

∂z
(axf ′) = axf ′′

√
a

ν
.

∂2u

∂z2
= axf

′′′ a

ν
=
a2

ν
xf

′′′
.

u
∂u

∂x
= a2xf ′2.
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w
∂u

∂z
= axf ′′

√
a

ν
(−

√
aν)f = −a2xff ′′.

∂u

∂y
=

∂

∂y
(axf

′
) = 0.

The left side of (3.2) becomes, by using above derivatives:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2Ωv = a2xf ′2 − a2xff ′′ − 2γ1a

2xg. (3.9)

Similarly, right side of (3.2) turns into:

ν

(
1 +

1

β

)
∂2u

∂z2
− σB2

0

ρf
u = ν

(
1 +

1

β

)(
a2

ν
xf

′′′
)
− a2xσB2

0f
′

aρf
. (3.10)

The dimensionless form of (3.2) is, by comparing (3.9)-(3.10) as follows:

a2xf ′2 − a2xff ′′ − 2γ1a
2xg = ν

(
1 +

1

β

)(
a2

ν
xf

′′′
)
− a2xσB2

0f
′

aρf
.

⇒f ′2 − ff ′′ − 2γ1g = ν

(
1 +

1

β

)(
1

ν
f

′′′
)
− σB2

0f
′

aρf
.

⇒
(
1 +

1

β

)
f

′′′ − f ′2 + ff
′′
+ 2γ1g −Mf ′ = 0. (3.11)

The following dimensionless parameters are used in equation (3.11):

γ1=
Ω
a
, M=

σB2
0

ρa

For the momentum equation (3.3), we must compute the following derivatives:

∂v

∂x
=

∂

∂x
(axg) = ag.

u
∂v

∂x
= a2xf

′
g.

∂v

∂y
=

∂

∂y
(axg) = 0.

∂v

∂z
= axg′

√
a

ν
.

w
∂v

∂z
= −a2xg′f.
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∂2v

∂z2
=
a2

ν
xg

′′
.

The left side of (3.3) becomes, by using above derivatives:

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωu = a2xf ′g − a2xg′f + 2γ1a

2xf ′. (3.12)

Similarly, the right side of (3.3) becomes:

ν

(
1 +

1

β

)
∂2v

∂z2
− σB2

0

ρf
v = ν

(
1 +

1

β

)(
a2

ν
xg

′′
)
− a2xσB2

0g

aρf
. (3.13)

The dimensionless form of (3.3) is, by comparing (3.12)-(3.13) as below:

a2xf ′g − a2xg′f + 2γ1a
2xf ′ = ν

(
1 +

1

β

)(
a2

ν
xg

′′
)
− a2xσB2

0g

aρf
.

⇒f
′
g − g

′
f + 2γ1f

′
= ν

(
1 +

1

β

)(
1

ν
g

′′
)
− σB2

0g

aρf
.

⇒
(
1 +

1

β

)
g

′′
+ fg

′ − f
′
g − 2γ1f

′ −Mg = 0. (3.14)

Now, for the conversion of energy equation (3.4), the following procedure has been

carried out.

θ =
T − T∞
Tw − T∞

.

= T∞ + (Tw − T∞)θ

= T∞ + T∞

(
Tw
T∞

− 1

)
θ

= T∞ (1 + (θw − 1) θ) .

θw =
Tw
T∞

.

∂T

∂z
=

(
(Tw − T∞)θ

′
√
a

ν

)
.

w
∂T

∂z
=

(
− af(Tw − T∞)θ

′
)
.

u
∂T

∂x
= 0 = v

∂T

∂y
.
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The governing equation for the conservation of energy is

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

∂

∂z

[(
α +

16σ∗T 3

3k∗ (ρcp)f

)
∂T

∂z

]
+ τ

[
DB

∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z

)2]
+

µ

(ρcp)f

(
1 +

1

β

)((
∂u

∂z

)2

+

(
∂v

∂z

)2
)

+
σB2

0

(ρcp)f
(u2 + v2).

⇒− af(Tw − T∞)θ
′
=

∂

∂z

[
α

√
a

ν
(Tw − T∞)θ

′′

+Rdα

√
a

ν
(Tw − T∞)θ

′
(
1 + (θw − 1)θ

)3]
+ τ

[
DB

(
(Tw − T∞)θ

′
(

√
a

ν
)

)(
Cw − C∞

)
ϕ

′
(

√
a

ν
)

+
DT

T∞

(
(Tw − T∞)θ

′
(

√
a

ν
)

)2]
+

µ

(ρcp)f

(
1 +

1

β

)[(
axf ′′

√
a

ν

)2

+

(
axg′

√
a

ν

)2]
+

σB2
0

(ρcp)f

[(
axf ′)2 + (axg)2].

⇒− af(Tw − T∞)θ
′
=
αa

ν

[
(Tw − T∞)θ

′′
+Rd(Tw − T∞)θ

′
(
1 + (θw − 1)θ

)3

+ 3Rd(θw − 1)(Tw − T∞)θ′2
(
1 + (θw − 1)θ

)2]
+ aNb(Tw − T∞)θ

′
ϕ

′

+ aNt(Tw − T∞)θ′2 +
aU2

w

(cp)f

(
1 +

1

β

)(
f

′′2 + g′2
)
+
aσB2

0U
2
w

a(ρcp)f

(
f

′2 + g2
)
.

⇒− Prfθ
′
= θ

′′
+Rdθ

′′
(
1 + (θw − 1)θ

)3

+ 3Rd(θw − 1)θ′2
(
1 + (θw − 1)θ

)2

+ PrNbθ
′
ϕ

′
+ PrNtθ

′2 + PrEc

(
1 +

1

β

)(
f

′′2 + g′2
)
+ PrEcM

(
f

′2 + g2
)

⇒
((

1 +Rd

(
1 + (θw − 1)θ

)3)
θ
′
)′

+ Pr

[
+ Prfθ

′
Nbθ

′
ϕ

′
+Ntθ

′2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2
)
+M

(
f

′2 + g2
))]

= 0. (3.15)

The dimensionless parameters used in equation (3.15) are:

M=
σB2

0

ρa
, Rd=16σ∗T 3

∞
3kk∗

, Pr= ν
α
, Nb= τDB(Cw−C∞)

ν
,

Nt= τDT (Tw−T∞)
νT∞

, Ec= U2
w

(cp)f (Tw−T∞)
.
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Now, for the conversion of concentration equation (3.5), the following process is

carried out:

ϕ =
C − C∞

Cw − C∞
.

⇒ ∂C

∂z
=
(
Cw − C∞

)
ϕ

′
√
a

ν
.

⇒w
∂C

∂z
= −af

(
Cw − C∞

)
ϕ

′
.

∂2C

∂z2
=

(
Cw − C∞

)
ϕ

′ a

ν
.

∂T

∂z
=

(
(Tw − T∞)θ

′
√
a

ν

)
.

⇒ ∂2T

∂z2
=

(
(Tw − T∞)θ

′ a

ν

)
.

∂C

∂x
=
∂C

∂y
= 0.

The governing equation of concentration is converted into dimensionless form as:

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
.

⇒− af

(
Cw − C∞

)
ϕ

′
= DB

(
Cw − C∞

)
ϕ

′ a

ν
+
DT

T∞

(
(Tw − T∞)θ

′ a

ν

)
.

⇒− fϕ
′
=
DB

ν
ϕ

′
+

DT

νT∞

(
Tw − T∞
Cw − C∞

θ
′
)
.

⇒ϕ′′ + Scfϕ′ +
Nt

Nb
θ′′ = 0. (3.16)

The dimensionless parameters used in equation (3.16) are:

Nb= τDB(Cw−C∞)
ν

, Nt= τDT (Tw−T∞)
νT∞

, Sc= ν
DB

.

The governing model’s ultimate dimensionless form is:

(
1 +

1

β

)
f

′′′ − f ′2 + ff
′′
+ 2γ1g −Mf ′ = 0. (3.17)(

1 +
1

β

)
g

′′
+ fg

′ − f
′
g − 2γ1f

′ −Mg = 0. (3.18)
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((
1 +Rd

(
1 + (θw − 1)θ

)3)
θ
′

)′

+ Pr

[
Prfθ

′
+Nbθ

′
ϕ

′

+Ntθ
′2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))]

= 0. (3.19)

ϕ′′ + Scfϕ′ +
Nt

Nb
θ′′ = 0. (3.20)

The transformation of corresponding BCs into the non-dimensional form is given

below:

u = Uw(x), at z = 0.

⇒ axf ′(η) = ax, at η = 0.

⇒ f ′(0) = 1,

v = 0, at z = 0.

⇒ axg(η) = 0, at η = 0.

⇒ g(0) = 0,

w = 0, at z = 0.

⇒ −
√
aνf(η) = 0, at η = 0.

⇒ f(0) = 0,

T = Tw, at z = 0.

⇒ θ(η)(Tw − T∞) + T∞ = Tw, at η = 0.

⇒ θ(η)(Tw − T∞) = (Tw − T∞), at η = 0.

⇒ θ(0) = 1,

C = Cw, at z = 0.

⇒ ϕ(η)(Cw − C∞) = (Cw − C∞), at η = 0.

⇒ ϕ(0) = 1,

u→ 0, as z → ∞.

⇒ f ′(η) → 0, as η → ∞.

v → 0, as z → ∞.

⇒ g(η) → 0, as η → ∞.
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w → 0, as z → ∞.

⇒ f(η) → 0, as η → ∞.

T → T∞, as z → ∞.

⇒ θ(η) → 0, as η → ∞.

C → C∞, as z → ∞.

⇒ ϕ(η) → 0, as η → ∞.

The dimensionless form of associated BCs (3.6) are:

f(0) = 0, g(0) = 0, f ′(0) = 1, θ(0) = 0, ϕ(0) = 0, as η → 0

f
′ → 0, g → 0, θ → 0, ϕ→ 0 as η → ∞.

 (3.21)

The skin friction coefficients, are given as follows:

Cfx =
τwx

ρfU2
w

, (3.22)

where

τwx =
(
µB +

1

β

)(∂u
∂z

)
z=0

, (3.23)

and

Cfy =
τwy

ρfU2
w

, (3.24)

where

τwy =
(
µB +

1

β

)(∂v
∂z

)
z=0

, (3.25)

Therefore

Cfx =

µB

(
1 + 1

β

)(
∂u
∂z

)
z=0

ρfU2
w
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=

µB

(
1 + 1

β

)(
axf ′′(0)

√
a
ν

)
ρfU2

w

=
ν Uw

U2
w

√
a

ν

(
1 +

1

β

)
f ′′(0)

=

√
a
√
ν√

U2
w

(
1 +

1

β

)
f ′′(0)

=
1√
Rex

(
1 +

1

β

)
f ′′(0).

⇒ (Rex)
1/2Cfx =

(
1 +

1

β

)
f ′′(0). (3.26)

Similarly

Cfy =

µB

(
1 + 1

β

)(
∂v
∂z

)
z=0

ρfU2
w

=

µB

(
1 + 1

β

)(
axg′(0)

√
a
ν

)
ρfU2

w

=
ν Uw

U2
w

√
a

ν

(
1 +

1

β

)
g′(0)

=

√
a
√
ν√

U2
w

(
1 +

1

β

)
g′(0)

=
1√
Rex

(
1 +

1

β

)
g′(0).

⇒ (Rex)
1/2Cfy =

(
1 +

1

β

)
g′(0). (3.27)

Here Rex = U2
w

aν
denotes the local Reynolds number.

Local Nusselt number is defined as follows:

Nux =
Uwqw

ak(Tw − T∞)
. (3.28)

where

qw = k
(∂T
∂z

)
z=0

+ (qr)w
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and

(qr)w =

(
− 16σ∗T 3

3k∗

(∂T
∂z

)
z=0

)
w

. (3.29)

The dimensionless form of Nux is produced by the following steps:

Nux = −Uw(Tw − T∞)

[−kθ′(0)− 16σ∗kT 3
∞

3kk∗

(
1 + (θw − 1)θ

)3

w

θ′(0)

ak(Tw − T∞)

]√
a

ν

= −Uwθ
′(0)

[ −1−Rd

(
1 + (θw − 1)θ

)3

w

a

]√
a

ν

= −
√
U2
w

aν

[
− 1−Rd

(
1 + (θw − 1)θ

)3

w

]
θ′(0)

= −(Rex)
1/2

[
− 1−Rd

(
1 + (

Tw − T∞
T∞

)

(
T − T∞
Tw − T∞

))3

w

]
θ′(0) .

⇒ Re−1/2
x Nux = −

[
1 +Rd

(
θw

)3]
θ′(0).

The Local Sherwood number Shx is termed as:

Shx =
xqm

DB(Cw − C∞)
. (3.30)

where

qm = −DB

(∂C
∂z

)
z=0

. (3.31)

The dimensionless form of Shx can be produced through the following steps:

Shx = −
xDB(Cw − C∞)ϕ

′
(0)
√

a
ν

DB(Cw − C∞)

= −xϕ
′
(0)

√
a√

ν

= −
√
U2
w

aν
ϕ

′
(0).

⇒ Re−1/2
x Shx = −ϕ′

(0).
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3.3 Numerical Method for Solution

The ordinary differential equations (3.17) and (3.18) have been solved numerically

by using the shooting technique. For this purpose, the following notations have

been taken:

f = Z1, f ′ = Z ′
1 = Z2, f ′′ = Z ′′

1 = Z ′
2 = Z3,

g = Z4, g′ = Z ′
4 = Z5.

The momentum equations are then transformed into the following system of first-

order ODEs:

Z ′
1 = Z2, Z1(0) = 0.

Z ′
2 = Z3, Z2(0) = 1.

Z ′
3 =

β

1 + β

(
Z2

2 − Z1Z3 − 2Z4γ1 +MZ2

)
, Z3(0) = r.

Z ′
4 = Z5, Z4(0) = 0.

Z ′
5 =

β

1 + β

(
− Z1Z5 + Z2Z4 − 2Z2γ1 +MZ4

)
, Z5(0) = m.

RK-4 method has been applied for solving the above IVP.

The domain of the problem is considered to be bounded i.e. [0, η∞], where η∞

represents as a +ve real number, for which the variation in the solution is ignorable

after η = η∞. The missing conditions r and m are to be chosen such that.

Z2(η∞, r,m) = 0, Z4(η∞, r,m) = 0.

Newton’s method will be used to find r and m. This method has the following

iterative scheme:

 r
m


(n+1)

=

 r
m


(n)

−

∂Z2

∂r
∂Z2

∂m

∂Z4

∂r
∂Z4

∂m

−1

(n)

Z2

Z4


(n)
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Now introducing the following notations:

∂Z1

∂r
= Z6,

∂Z2

∂r
= Z7,

∂Z3

∂r
= Z8,

∂Z4

∂r
= Z9,

∂Z5

∂r
= Z10,

∂Z1

∂m
= Z11,

∂Z2

∂m
= Z12,

∂Z3

∂m
= Z13,

∂Z4

∂m
= Z14,

∂Z5

∂m
= Z15.

The iterative scheme of Newton method is, by using the results of above notations

as follows:  r
m


(n+1)

=

 r
m


(n)

−

Z7 Z12

Z9 Z14

−1

(n)

Z2

Z4


(n)

.

The last set of five first order ODEs in terms of r and m are differentiated to get

another system of ODEs, as follows:

Z ′
6 = Z7, Z6(0) = 0.

Z ′
7 = Z8, Z7(0) = 0.

Z ′
8 =

β

1 + β

(
2Z2Z7 − Z6Z3 − Z1Z8 − 2Z9γ1 +MZ7

)
, Z8(0) = 1.

Z ′
9 = Z10, Z9(0) = 0.

Z ′
10 =

β

1 + β

(
− Z6Z5 − Z1Z10 + Z7Z4 + Z2Z9 − 2Z7γ1 +MZ9

)
, Z10(0) = 0.

Z ′
11 = Z12, Z11(0) = 0.

Z ′
12 = Z13, Z12(0) = 0.

Z ′
13 =

β

1 + β

(
2Z2Z12 − Z11Z3 − Z1Z13 − 2Z14γ1 +MZ12

)
, Z13(0) = 0.

Z ′
14 = Z15, Z14(0) = 0.

Z ′
15 =

β

1 + β

(
− Z11Z5 − Z1Z15 + Z12Z4 + Z2Z14 − 2Z12γ1 +MZ14

)
, Z15(0) = 1.

For the Newton’s technique, the stopping criteria is as follows:

max{| Z2(η∞, r
n,mn) |, | Z4(η∞, r

n,mn) |} < ϵ,
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where ϵ > 0 is an arbitrarily small number, which has been considered as 10−10.

The ordinary differential equations (3.19) and (3.20) will be approximated by

using the shooting technique, assuming f and g as known functions.

Consider equations (3.19)−(3.20) in the following form:

θ′′ =
1(

1 +Rd

(
1 + (θw − 1)θ

)3)
[
− 3Rd(θw − 1)θ′2

(
1 + (θw − 1)θ

)2

− Pr

[
fθ

′
+Nbθ

′
ϕ

′
+Ntθ

′2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))]]

(3.32)

ϕ′′ = −Scfϕ′ −
(
Nt

Nb

)
1[

1 +Rd

(
1 + (θw − 1)θ

)3]
[
− 3Rd(θw − 1)θ′2

(
1 + (θw − 1)θ

)2

Pr

[
fθ

′
+Nbθ

′
ϕ

′
+Ntθ

′2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)

+M

(
f

′2 + g2
))]]

. (3.33)

To apply the shooting method, we utilize the following notions:

θ = Y1, θ′ = Y ′
1 = Y2,

ϕ = Y3, ϕ′ = Y ′
3 = Y4.

The above equations are then transformed into the set of first-order ODEs:

Y ′
1 = Y2, Y1(0) = 1.

Y ′
2 =

1(
1 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
PrfY2 +NbY2Y4 +NtY

2
2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
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+M

(
f

′2 + g2
))]]

, Y2(0) = l.

Y ′
3 = Y4, Y3(0) = 1.

Y ′
4 = −ScfY4 −

(
Nt

Nb

)
1(

1 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
PrfY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))]]

, Y4(0) = p.

RK-4 method is applied for solving numerically, the last IVP.

l and p are to be chosen as missing conditions:

Y1(η∞, l, p) = 0, Y3(η∞, l, p) = 0. (3.34)

Newton method is used to solve the above equations with the iterative scheme as

follows:  l
p


(n+1)

=

 l
p


(n)

−

∂Y1

∂l
∂Y1

∂p

∂Y3

∂l
∂Y3

∂p

−1

(n)

Y1
Y3


(n)

Introducing the following further notations:

∂Y1
∂l

= Y5,
∂Y2
∂l

= Y6,
∂Y3
∂l

= Y7,
∂Y4
∂l

= Y8,

∂Y1
∂p

= Y9,
∂Y2
∂p

= Y10,
∂Y3
∂p

= Y11,
∂Y4
∂p

= Y12.

The form of Newton iterative scheme is, by using the results of above notations

are as follows:

 l
p


(n+1)

=

 l
p


(n)

−

Y5 Y9

Y7 Y11

−1

(n)

Y1
Y3


(n)

The last set of four first order ODEs in terms of l and p are differentiated to get
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another system of ODEs, as follows:

Y ′
5 = Y6, Y5(0) = 0.

Y ′
6 =

1(
1 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)2Y2Y6

(
1 + (θw − 1)Y1

)2

− 6Rd(θw − 1)2Y5Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
PrfY6 +NbY6Y4 +NbY2Y8 + 2NtY2Y6

]]

−
3Rd(θw − 1)Y5

(
1 + (θw − 1)Y1

)2

(
1 +Rd

(
1 + (θw − 1)Y1

)3)2

[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
PrfY2 +NbY2Y4 +NtY

2
2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)

+M

(
f

′2 + g2
))]]

, Y6(0) = 1.

Y ′
7 = Y8, Y7(0) = 0.

Y ′
8 = −ScfY4 −

(
Nt

Nb

)
1(

1 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)2Y2Y6

(
1 + (θw − 1)Y1

)2

− 6Rd(θw − 1)2Y5Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
PrfY6

+NbY6Y4 +NbY2Y8 + 2NtY2Y6

]]
+

3Rd(θw − 1)Y5

(
1 + (θw − 1)Y1

)2

(
1 +Rd

(
1 + (θw − 1)Y1

)3)2

(
Nt

Nb

)[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
PrfY2 +NbY2Y4

+NtY
2
2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))]]

, Y8(0) = 0.

Y ′
9 = Y10, Y9(0) = 0.

Y ′
10 =

1(
1 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)2Y2Y5

(
1 + (θw − 1)Y1

)2
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− 6Rd(θw − 1)2Y9Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
PrfY10

+NbY10Y4 +NbY2Y12 + 2NtY2Y10

]]
−

3Rd(θw − 1)Y9

(
1 + (θw − 1)Y1

)2

(
1 +Rd

(
1 + (θw − 1)Y1

)3)2

[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
PrfY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))]]

, Y10(0) = 0.

Y ′
11 = Y12, Y11(0) = 0.

Y ′
12 = −ScfY12 −

1(
1 +Rd

(
1 + (θw − 1)Y1

)3)(NtNb
)[

− 3Rd(θw − 1)2Y2Y10

(
1 + (θw − 1)Y1

)2

− 6Rd(θw − 1)2Y9Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
PrfY10

+NbY10Y4 +NbY2Y12 + 2NtY2Y10

]]
+

3Rd(θw − 1)Y9

(
1 + (θw − 1)Y1

)2

(
1 +Rd

(
1 + (θw − 1)Y1

)3)2

(
Nt

Nb

)[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
PrfY2 +NbY2Y4

+NtY
2
2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))]]

, Y12(0) = 1.

The Newton’s method stopping criteria is established as:

max{| Y1(η∞, ln, pn) |, | Y3(η∞, ln, pn) |} < ϵ.

3.4 Results and Discussion of Graphs and Tables

In this section, we will thoroughly discuss the influence of the dimensionless param-

eters on the skin friction coefficients Re
1
2
xCfx , Re

1
2
yCfy , Nusselt number Re

− 1
2

x Nux

and Sherwood number Re
− 1

2
x Shx through different graphs and tables. Table 3.1
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shows the effect of Casson parameter β, rotation parameter γ1 and magnetic pa-

rameter M on Re
1
2
xCfx and Re

1
2
yCfy . For accelerating the values of Casson param-

eter β, Re
1
2
xCfx and Re

1
2
xCfy increase. Table 3.1 expresses the intervals If and Ig

from where the missing conditions r and m can be chosen respectively. Analysis

conducted regarding the Nusselt number, shows a great flexibility in the choice of

missing initial conditions.Table 3.2 explains the impact of Casson parameter β, ro-

tation parameter γ1, magnetic parameter M , radiation parameter Rd, temprature

ratio parameter, θw, Prandtl number Pr, Brownian parameter Nb, thermophore-

sis parameter Nt, Eckert number Ec and Schmidt number Sc on Re
− 1

2
x Nux and

Sherwood number Re
− 1

2
x Shx. A decreasing behaviour is observed in Re

− 1
2

x Nux and

Re
− 1

2
x Shx by rising Casson parameter β.

Figure 3.2 illustrates how the velocity profile f ′ decreases as the Casson parameter

β increases. From a tangible perspective, the Casson parameter is impacted by

the yield stress. This stress, in turn, creates an opposing force that results in a

decrease in the velocity of the fluid with the progressive rise of β values.

Figure 3.3 gives perception into the alike parameter correlated to the lateral veloc-

ity profile g(η) in the y-direction. The velocity g(η) exhibits an upward trend with

respect to β. Within this framework, g(η) adopts the configuration like parabolic,

signifying that the flow transpires in the negative direction due to its negative

values. The influence of M in the temperature profile θ is manifestly observed

in Figure 3.4. It demonstrates that an escalation of this parameter leads to an

elevation in the temperature profile, driven by the Lorentz force generated in the

presence of a magnetic field.

The influence of the parameter γ1 on f
′
and g is portrayed in Figures 3.5 and

3.6. It has been observed that an increase in the rotation parameter leads to a

deterioration of velocity along the x-direction. In a physical sense, higher values

of this parameter correspond to lower stretching rates along the x-direction. This

parameter causes a decrease in the velocity along the x-direction. The results in-

dicate that as the value of Nt is increased, both the temperature distribution and

the concentration profile rise, as shown in Figures 3.7 and 3.8. This parameter

signifies the availability of nanoparticles within the fluid.
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The consequences of altering Magnetic parameter M for the velocity profiles f
′

and g is visualized in Figures 3.9 and 3.10, showcasing a decrease in f
′
and an

increase in g with an increase in M . This occurs because a drag force which is

temred as Lorentz force get raised due to applied magnetic field generated by the

motion of charges. This force causes a decrease in the magnitude of velocity along

the x-direction. Distinct values of θw illustrate the temperature profile θ increment

in Figure 3.11. As this parameter increases, the temperature also experiences a

corresponding increase.

A decline in the concentration profile ϕ is evident as the value of the Schmidt

parameter Sc increases, as illustrated in Figure 3.12. Given that the Schmidt

number is influenced by the Brownian diffusion coefficient, rise in Schmidt num-

ber leads to a decrease in the Brownian diffusion coefficient. Consequently, this

suggests a reduction in nanoparticle concentration due to the diminished diffu-

sion behavior. The effect of Nb is illustrated in Figures 3.13 and 3.14. As Nb

increases, the temperature distribution rises, while the concentration profile de-

creases. The occurrence of Brownian motion in the fluid is attributed to the pres-

ence of nanoparticles. With an increase in Nb, this motion undergoes changes,

leading to a subsequent decrease in the thickness of the concentration boundary

layer for the nanoparticles.

Figure 3.15 reveals that due to an increment in γ1, the temperature distribution

also increases. In Figure 3.16, the impact of the radiation parameter Rd on the

temperature distribution θ is depicted. As the radiation parameter boosts, it leads

to the emit of more heat energy into the flow, resulting in an uplifted temperature

profile. Figure 3.17 displays the impact of the Prandtl number Pr on the temper-

ature distribution θ. Both the thickness of the thermal boundary layer and the

temperature are functions that decrease as the Prandtl number Pr increases.

Certainly, the influence of the Eckert number Ec on the temperature distribution

θ showcases a rising pattern in θ as the value of Ec increases, as illustrated in

Figure 3.18. The temperature distribution escalates as the value of Eckert number

goes up. This outcome arises from the fact that the Eckert number is dependent

on kinetic energy, which, upon being converted to heat energy within the fluid,
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results in a temperature increase. The impact of the Brownian parameter Nb

in conjunction with the thermophoresis parameter Nt on the Sherwood number

Re−
1
2xShx is depicted in Figure 3.19. It has been observed that an increase in

the value of Nb leads to a decreasing trend in the Sherwood number Re−
1
2xShx.

Conversely, the Sherwood number exhibits an increasing trend as the value of Nt

rises. The influence of the Brownian parameter Nb and the thermophoresis pa-

rameter Nt on the Nusselt number Re−
1
2xNux is illustrated in Figure 3.20. It

has been noted that an increase in the value of Nb leads to a decreasing trend in

the Nusselt number Re−
1
2xNux. While, the Nusselt number exhibits a decreasing

trend as the value of Nt rises.

Table 3.1: Results of Re
1
2
xCfx and Re

1
2
xCfy for various parameters

β γ1 M Re
1
2
xCfx Re

1
2
xCfy If Ig

0.5 0.5 0.5 -2.25599 -0.74306 [-2.60, -0.80] [-1.90, -0.40]

0.8 -1.95536 -0.64464 [-1.90, -0.05] [-2.10, -0.70]

1.0 -1.84389 -0.60783 [-1.50, -0.30] [-3.30, -2.50]

0.3 -2.17631 -0.46452 [-2.30, -2.20] [-2.10, -1.70]

0.6 -2.30372 -0.86977 [-2.00, -1.80] [-1.96, -1.60]

0.9 -2.48950 -1.20444 [-2.70, -2.00] [-1.90, -1.80]

0 -1.96303 -0.89072 [-2.20, -2.10] [-3.40, -1.10]

0.4 -2.10783 -0.76799 [-2.70, -1.70] [-2.20, -1.60]

0.8 -2.42690 -0.67951 [-2.20, -1.60] [-3.30, -2.20]



Thermal Radiation Casson Nanofluid Flow 38

Table 3.2: Results of Re
− 1

2
x Nux and Re

− 1
2

x Shx for various parameters

β γ1 M Rd θw Pr Nb Nt Ec Sc Re
− 1

2
x Nux Re

− 1
2

x Shx

0.5 0.5 0.5 0.2 1.5 2.0 0.5 0.5 0.2 5.0 0.14108 1.77018

0.8 0.14565 1.72238

1.0 0.14675 1.70095

0.3 0.19374 1.74255

0.6 0.14098 1.74147

0.0 0.26108 1.72395

0.4 0.18124 1.73817

0.4 0.25770 1.70134

0.5 0.29915 1.68865

1.2 0.11804 1.76998

1.4 0.14631 1.75114

0.0 0.20289 1.64514

0.5 0.22277 1.63901

0.2 0.27343 1.78912

0.4 0.19469 1.75236

0.2 0.22871 1.66604

0.4 0.18207 1.71491

0.0 0.46312 1.60693

0.05 0.38878 1.63960

3.0 0.17080 1.31038

4.0 0.16415 1.54173
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Chapter 4

The Impact of Cattaneo-Christov

Double Diffusion, Thermal

Radiation on a Rotating Flow of

Casson Nanofluid

4.1 Introduction

The model which is discussed in Chapter 3 has been extended in this chapter

by taking an inclined magnetic field to account of the momentum equation. The

effect of Cattaneo-Christov double diffusion has been taken for temperature and

concentration equations. In this chapter, we will execute numerical analysis of the

Cattaneo-Christov double diffusion Casson nanofluid flow on a linearly extending

sheet. By employing similarity transformations, the governing nonlinear partial

differential equations are converted into a set of dimensionless ODEs. Using the

shooting technique as a numerical method, we compute the numerical solution for

the ODEs.

49
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4.2 Mathematical Modeling

Consider a three-dimensional steady, laminar flow of an incompressible Casson

nanofluid along stretching sheet surface. In this study, the fluid has been consid-

ered to rotate around the z-axis with an angular velocity Ω within a flow region

where z is restricted to values ≥ 0. Assume that the velocity of extending sheet is

represented by Uw(x) = ax. An inclined magnetic field of magnitude B0 is applied

in z- axis. Energy transport phenomenon has been assumed in the presence of

thermal radiation, heat generation, and Cattaneo-Christov double diffusion.

Figure 4.1: Methodical display of the tangible system.
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By considering the above assumptions, the goverining PDEs become:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2Ωv = ν

(
1 +

1

β

)
∂2u

∂z2
− µ

ρf

u

k
− σB2

0

ρf
usin2(Γ), (4.2)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωu = ν

(
1 +

1

β

)
∂2v

∂z2
− µ

ρf

v

k
− σB2

0

ρf
vsin2(Γ), (4.3)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
+ Γe

[
u2
∂2T

∂x2
+ v2

∂2T

∂y2
+ w2∂

2T

∂z2
+ 2uv

∂2T

∂x∂y

+ 2vw
∂2T

∂y∂z
+ 2uw

∂2T

∂x∂z
+

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
∂T

∂x

+

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
∂T

∂y
+

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
∂T

∂z

]
=

∂

∂z

[(
α +

16σ∗T 3

3K∗ (ρcp)f

)
∂T

∂z

]
+ τ

[
DB

∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z

)2 ]
+

µ

(ρcp)f

(
1 +

1

β

)((
∂u

∂z

)2

+

(
∂v

∂z

)2)
+

σB2
0

(ρcp)f

(
u2 + v2

)
sin2(Γ) +

Q

(ρcp)f
(T − T∞), (4.4)

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
+ Γc

[
u2
∂2C

∂x2
+ v2

∂2C

∂y2
+ w2∂

2C

∂z2
+ 2uv

∂2C

∂x∂y

+ 2vw
∂2C

∂y∂z
+ 2uw

∂2C

∂x∂z
+

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
∂C

∂x

+

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
∂C

∂y
+

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
∂C

∂z

]
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
−K∗

c (C − C∞). (4.5)

The associated BCs have been taken as:

u = Uw(x), v = 0, w = 0, T = Tw, C = Cw at z = 0,

u→ 0, v → 0 T → T∞, C → C∞ as z → ∞.

 (4.6)

For the conversion of the mathematical model in the form of partial differential

equations (4.1)-(4.5) into the ODEs, the following similarity transformation is

used:
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u = axf
′
, v = axg, w = −

√
aνf,

T = T∞ (1 + (θw − 1) θ(η)) , ϕ =
C − C∞

Cw − C∞
, η = z

√
a

ν
.

 (4.7)

where θw=
Tw

T∞
, θw > 1 denotes the temperature ratio parameter.

The identical satisfaction of (4.1) is already mentioned in Chapter 3.

The dimensionless momentum equation (4.2) is achieved by using the derivatives

which have been discussed earlier in Chapter 3.

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2Ωv = ν

(
1 +

1

β

)
∂2u

∂z2
− µ

ρf

u

k
− σB2

0

ρf
usin2(Γ).

⇒ a2xf ′2 − a2xff ′′ − 2γ1a
2xg = ν

(
1 +

1

β

)(
a2

ν
xf

′′′
)

− νa2xf
′

ak
− a2xσB2

0f
′

aρf
sin2(Γ).

⇒ f ′2 − ff ′′ − 2γ1g = ν

(
1 +

1

β

)(
1

ν
f

′′′
)
− νf

′

ak
− σB2

0f
′

aρf
sin2(Γ).

Finally, The momentum equation in the dimensionless form is as follows:

(
1 +

1

β

)
f

′′′ − f ′2 + ff
′′
+ 2γ1g −Kf ′ −Mf ′sin2(Γ) = 0. (4.8)

The following dimensionless parameters are used in equation (4.8):

γ1=
Ω
a
, M=

σB2
0

ρa
, K = ν

ak
.

Similarly, the momentum equation (4.3) in the dimensionless form is written as:

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωu = ν

(
1 +

1

β

)
∂2v

∂z2
− µ

ρf

v

k
− σB2

0

ρf
vsin2(Γ).

⇒ a2xf ′g − a2xg′f + 2γ1a
2xf ′ = ν

(
1 +

1

β

)(
a2

ν
xg

′′
)
− νa2xg

ak
− a2xσB2

0g

aρf
.

⇒ f ′g − g′f + 2γ1f
′ = ν

(
1 +

1

β

)(
1

ν
g

′′
)
− νg

ak
− σB2

0g

aρf
.(

1 +
1

β

)
g

′′
+ fg

′ − f
′
g − 2γ1f

′ −Kg −Mgsin2(Γ) = 0. (4.9)
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The equation (4.4) is transformed, by using the derivatices below:

∂2T

∂z2
= (Tw − T∞)θ

′′ a

ν
. (4.10)

w2∂
2T

∂z2
= aνf 2(Tw − T∞)θ

′′ a

ν
. (4.11)

u
∂T

∂x
= v

∂T

∂y
= 0. (4.12)

u2
∂2T

∂x2
= v2

∂2T

∂y2
= 0. (4.13)

2uv
∂2T

∂x∂y
= 2vw

∂2T

∂y∂z
= 2uw

∂2T

∂x∂z
= 0. (4.14)

w
∂w

∂z
= a

√
aνff ′. (4.15)

The governing equation (4.4) for the conservation of energy gets the following

dimensionless form, through the procedure shown below:

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
+ Γe
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∂2T

∂x2
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∂v

∂y
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∂z

)
∂T

∂y
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∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
∂T

∂z
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=

∂

∂z

[(
α +

16σ∗T 3

3K∗ (ρcp)f

)
∂T

∂z

]
+ τ
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∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z
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µ
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1

β

)((
∂u

∂z

)2
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(
∂v
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)2)
+

σB2
0

(ρcp)f

(
u2 + v2

)
sin2(Γ) +

Q

(ρcp)f
(T − T∞).

⇒ − af(Tw − T∞)θ
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[
+ aνf 2
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ν
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′
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+
aσB2

0U
2
w

a(ρcp)f

(
f

′2 + g2
)
+

Q

(ρcp)f
(T − T∞).

⇒ − fθ
′
+ aΓe

[
+ f 2θ

′′
+
√
aνff ′θ

′
√
a

ν

]
=
α

ν

[
θ
′′
+Rdθ

′
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)3

+ 3Rd(θw − 1)θ′2
(
1 + (θw − 1)θ

)2]
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′
ϕ

′
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aU2

w
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(
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1
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f
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)

+
σB2

0U
2
w
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(
f
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+

Q

(ρcp)f

(T − T∞)

a(Tw − T∞
− Prfθ

′
.

⇒ + PrλE
[
f 2θ′′ + ff ′θ′

]
= θ

′′
+Rdθ

′′
(
1 + (θw − 1)θ

)3

+ 3Rd(θw − 1)θ′2
(
1 + (θw − 1)θ

)2

+ PrNbθ
′
ϕ

′
+ PrNtθ

′2

+ PrEc

(
1 +

1

β

)(
f

′′2 + g′2
)
+ PrEcM

(
f

′2 + g2
)
+ Prϵθ.

⇒
((

1 +Rd

(
1 + (θw − 1)θ

)3)
θ
′
)′

+ Pr

[
+ Prfθ

′
Nbθ

′
ϕ

′
+Ntθ

′2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)

+M

(
f

′2 + g2
))

− λE
[
f 2θ′′ + ff ′θ′

]
− ϵθ

]
= 0. (4.16)

The dimensionless parameters used in equation (4.16) are:

M=
σB2

0

ρa
, Rd=16σ∗T 3

∞
3kk∗

, Pr= ν
α
, Nb= τDB(Cw−C∞)

ν
,

Nt= τDT (Tw−T∞)
νT∞

, Ec= U2
w

(cp)f (Tw−T∞)
, ϵ = Q

a(ρcp)f
.

Now, for the conversion of concentration equation (4.5), the following derivatives

are required.

ϕ =
C − C∞

Cw − C∞

⇒ C = C∞ + (Cw − C∞)ϕ.

w
∂C

∂z
= −af

(
Cw − C∞

)
ϕ

′
. (4.17)

∂2C

∂z2
=

(
Cw − C∞

)
ϕ

′′ a

ν
. (4.18)
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u
∂C

∂x
= v

∂C

∂y
= 0. (4.19)

u2
∂2C

∂x2
= v2
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∂y2
= 0. (4.20)

2uv
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= 2vw
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∂y∂z
= 2uw

∂2C

∂x∂z
= 0. (4.21)

w
∂w

∂z
= a

√
aνff ′. (4.22)

The governing equation (4.5) for the conservation of concentration gets the follow-

ing dimensionless form:

− af

(
Cw − C∞

)
ϕ

′
+ Γc

[
aνf 2

(
(Cw − C∞)ϕ

′′ a

ν

)
+ a

√
aνff ′

(
(Cw − C∞)ϕ

′
√
a

ν

)]
= DB

(
Cw − C∞

)
ϕ

′′ a

ν

+
DB

T∞

(
(Tw − T∞)θ

′′ a

ν

)
−K∗

c (C − C∞).

⇒− fϕ
′
+ aΓC

[
f 2ϕ

′′
+ ff ′ϕ

′
]
=
DB

ν
ϕ

′′

+
DT

T∞

(Tw − T∞)

(Cw − C∞)

θ
′′

ν
−K∗

c

(C − C∞)

a(Cw − C∞)
.

⇒− fϕ
′
+ λC

[
f 2ϕ

′′
+ ff ′ϕ

′
]
=
DB

ν
ϕ

′′

+
DT

T∞

(Tw − T∞)

(Cw − C∞)

θ
′′

ν
− K∗

c

a
ϕ

− ν

DB

fϕ
′
+

ν

DB

λC

[
f 2ϕ

′′
+ ff ′ϕ

′
]
= ϕ

′′

+
DT

T∞

ν

DB

τ(Tw − T∞)

τ(Cw − C∞)

θ
′′

ν
− ν

DB

K∗
c

a
ϕ.

⇒− Scfϕ
′
+ ScλC

[
f 2ϕ

′′
+ ff ′ϕ

′
]
= ϕ

′′

+
Nt

Nb

θ
′′ − ScKcϕ.

ϕ
′′
+ Sc

[
fϕ

′ − λC

(
f 2ϕ

′′
+ ff ′ϕ

′
)
−Kcϕ

]
+
Nt

Nb

θ
′′
= 0. (4.23)

The following dimensionless parameters are used in equation (4.32):

Nb= τDB(Cw−C∞)
ν

, Nt= τDT (Tw−T∞)
νT∞

, Sc= ν
DB

λC=aΓc, Kc =
K∗

c

a
.
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The related dimensionless BCs are converted by the following procedure.

u = Uw(x), at z = 0.

⇒ axf ′(η) = ax, at η = 0.

⇒ f ′(0) = 1,

v = 0, at z = 0.

⇒ axg(η) = 0, at η = 0.

⇒ g(0) = 0,

w = 0, at z = 0.

⇒ −
√
aνf(η) = 0, at η = 0.

⇒ f(0) = 0,

T = Tw, at z = 0.

⇒ θ(η)(Tw − T∞) + T∞ = Tw, at η = 0.

⇒ θ(η)(Tw − T∞) = (Tw − T∞), at η = 0.

⇒ θ(0) = 1,

C = Cw, at z = 0.

⇒ ϕ(η)(Cw − C∞) = (Cw − C∞), at η = 0.

⇒ ϕ(0) = 1,

u→ 0, as z → ∞.

⇒ f ′(η) → 0, as η → ∞.

v → 0, as z → ∞.

⇒ g(η) → 0, as η → ∞.

w → 0, as z → ∞.

⇒ f(η) → 0, as η → ∞.

T → T∞, as z → ∞.

⇒ θ(η) → 0, as η → ∞.

C → C∞, as z → ∞.

⇒ ϕ(η) → 0, as η → ∞.
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The ultimate governing model into dimensionless is:

(
1 +

1

β

)
f

′′′ − f ′2 + ff
′′
+ 2γ1g − κf ′ −Mf ′sin2(Γ) = 0, (4.24)(

1 +
1

β

)
g

′′
+ fg

′ − f
′
g − 2γ1f

′ − κg −Mgsin2(Γ) = 0, (4.25)((
1 +Rd

(
1 + (θw − 1)θ

)3)
θ
′
)′

+ Pr

[
+ Prfθ

′
+Nbθ

′
ϕ

′

+Ntθ
′2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

[
f 2θ′′ + ff ′θ′

]
+ ϵθ

]
= 0. (4.26)

ϕ
′′
+ Sc

[
fϕ

′ − λC

(
f 2ϕ

′′
+ ff ′ϕ

′
)
−Kcϕ

]
+
Nt

Nb

θ
′′
= 0. (4.27)

The dimensionless form for the related BCs (4.6) are:

f(0) = 0, g(0) = 0, f ′(0) = 1, θ(0) = 0, ϕ(0) = 0, as η → 0.

f
′ → 0, g → 0, θ → 0, ϕ→ 0, as η → ∞.

 (4.28)

The dimensionless numbers are same as discussed in Chapter 3, as the following:

Cfx =
τwx

ρfU2
w

, (4.29)

Cfy =
τwy

ρfU2
w

, (4.30)

Re
− 1

2
x Nux =

Uwqw
ak(Tw − T∞)

. (4.31)

Now, the local Sherwood number is defined as:

Shx =
xqm

DB(Cw − C∞)
, (4.32)

where

qm = −DB

(∂C
∂z

)
z=0

.
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Therefore

Shx = −
xDB(Cw − C∞)ϕ

′
(0)
√

a
ν

DB(Cw − C∞)

= −xϕ
′
(0)

√
a√

ν

= −
√
U2
w

aν
ϕ

′
(0)

⇒ Re−1/2
x Shx = −ϕ′

(0). (4.33)

4.3 Numerical Method for Solution

The ordinary differential equations (4.24) and (4.25)have been resolved using the

shooting method.

f
′′′
=

1(
1 + 1

β

)[f ′2 − ff
′′ − 2γ1g + κf ′ +Mf ′sin2(Γ)

]
,

g
′′
=

1(
1 + 1

β

)[− fg′ + f ′g + 2γ1f
′ + κg +Mgsin2(Γ)

]
.

For this purpose, the following notations have been taken:

f = Z1, f ′ = Z ′
1 = Z2, f ′′ = Z ′′

1 = Z ′
2 = Z3,

g = Z4, g′ = Z ′
4 = Z5.

The momentum equations are then transformed into the following system of first-

order ODEs:

Z ′
1 = Z2, Z1(0) = 0.

Z ′
2 = Z3, Z2(0) = 1.

Z ′
4 = Z5, Z4(0) = 0.
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Z ′
5 =

β

1 + β

(
− Z1Z5 + Z2Z4 + 2γ1Z2 + κZ4 +MZ4sin

2(Γ)

)
, Z5(0) = m.

RK-4 method is applied to compute the above IVP.

The domain of the problem is considered to be bounded i.e. [0, η∞], where η∞

represents as a +ve real number, in which variation in the solution is ignorable

after η = η∞. The missing conditions r and m are to be chosen such that:

Z2(η∞, r,m) = 0, Z4(η∞, r,m) = 0.

Newton’s method will be used to find r and m. This method has the following

iterative scheme: r
m


(n+1)

=

 r
m


(n)

−

∂Z2

∂r
∂Z2

∂m

∂Z4

∂r
∂Z4

∂m

−1

(n)

Z2

Z4


(n)

(4.34)

We further introduce the following notations:

∂Z1

∂r
= Z6,

∂Z2

∂r
= Z7,

∂Z3

∂r
= Z8,

∂Z4

∂r
= Z9,

∂Z5

∂r
= Z10,

∂Z1

∂m
= Z11,

∂Z2

∂m
= Z12,

∂Z3

∂m
= Z13,

∂Z4

∂m
= Z14,

∂Z5

∂m
= Z15.

The iterative scheme of Newton method is, by using the results of above notations

as follows:

 r
m


(n+1)

=

 r
m


(n)

−

Z7 Z12

Z9 Z14

−1

(n)

Z2

Z4


(n)

. (4.35)

The last set of five first order ODEs in terms of r and m are differentiated to get

another system of ODEs, as follows:

Z ′
6 = Z7, Z6(0) = 0.

Z ′
7 = Z8, Z7(0) = 0.
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Z ′
8 =

β

1 + β

(
2Z2Z7 − Z6Z3 − Z1Z8 − 2Z9γ1 + κZ7 +MZ7sin

2(Γ)

)
, Z8(0) = 1.

Z ′
9 = Z10, Z9(0) = 0.

Z ′
10 =

β

1 + β

(
− Z6Z5 − Z1Z10 + Z7Z4 + Z2Z9 − 2Z7γ1 + κZ9 +MZ9sin

2(Γ)

)
,

Z10(0) = 0.

Z ′
11 = Z12, Z11(0) = 0.

Z ′
12 = Z13, Z12(0) = 0.

Z ′
13 =

β

1 + β

(
2Z2Z12 − Z11Z3 − Z1Z13 − 2Z14γ1 + κZ12 +MZ12sin

2(Γ)

)
,

Z13(0) = 0.

Z ′
14 = Z15, Z14(0) = 0.

Z ′
15 =

β

1 + β

(
− Z11Z5 − Z1Z15 + Z12Z4 + Z2Z14 − 2Z12γ1 + κZ14 +MZ14sin

2(Γ)

)
,

Z15(0) = 1.

For the Newton’s technique, the stopping criteria is as follows:

max{| Z2(η∞, r
n,mn) |, | Z4(η∞, r

n,mn) |} < ϵ,

where ϵ > 0 is a sufficiently small number, which has been considered as 10−10. The

ordinary differential equations (4.26) and (4.27) will be approximated by using the

shooting technique assuming f and g as the known functions. Consider equations

(4.26)−(4.27) in the following form:

θ′′ =
1(

1− PrλEf 2 +Rd

(
1 + (θw − 1)θ

)3)[− 3Rd(θw − 1)θ′2
(
1 + (θw − 1)θ

)2

+M

(
f

′2 + g2
))

− λE

(
ff ′θ′

)
+ ϵθ

]]
, (4.36)

ϕ′′ =
1

1− ScλCf 2(η)

{
− Sc

[
fϕ

′ − λC

(
ff ′ϕ

′
)
−Kcϕ

]
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[
− 3Rd(θw − 1)θ′2

(
1 + (θw − 1)θ

)2

− Pr

[
fθ

′
+Nbθ

′
ϕ

′
+Ntθ

′2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′θ′

)
+ ϵθ

]]]}
.

(4.37)

The notations below has been taken into consideration:

θ = Y1, θ′ = Y ′
1 = Y2,

ϕ = Y3, ϕ′ = Y ′
3 = Y4.

The equations (4.26)−(4.27) are then transformed into the following system of

first-order ODEs:

Y ′
1 = Y2, Y1(0) = 1.

Y ′
2 =

1(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
fY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′Y2

)
+ ϵY1

]]
,

Y2(0) = l.

Y ′
3 = Y4, Y3(0) = 1.

Y ′
4 =

1

1− ScλCf 2(η)

[
− Sc

[
fY4 − λC

(
ff ′Y4

)
−KcY3

]

− Nt

Nb

{
1(

1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
fY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′Y2

)
+ ϵY1

]]}]

, Y4(0) = p.
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RK-4 method is applied for solving numerically, the last IVP. l and p are to be

chosen as missing conditions as follows:

Y1(η∞, l, p) = 0, Y3(η∞, l, p) = 0.

Newton method is applied for solving the above equations with the iterative scheme

as follows:

 l
p


(n+1)

=

 l
p


(n)

−

∂Y1

∂l
∂Y1

∂p

∂Y3

∂l
∂Y3

∂p

−1

(n)

Y1
Y3


(n)

. (4.38)

We further introduce the following notations:

∂Y1
∂l

= Y5,
∂Y2
∂l

= Y6,
∂Y3
∂l

= Y7,
∂Y4
∂l

= Y8,

∂Y1
∂p

= Y9,
∂Y2
∂p

= Y10,
∂Y3
∂p

= Y11,
∂Y4
∂p

= Y12.

The form of Newton iterative scheme is, by using the results of above notations

are as follows:  l
p


(n+1)

=

 l
p


(n)

−

Y5 Y9

Y7 Y11

−1

(n)

Y1
Y3


(n)

. (4.39)

The last set of four first order ODEs in terms of l and p are differentiated to get

another system of ODEs, as follows:

Y ′
5 = Y6, Y5(0) = 0.

Y ′
6 =

1(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)
− 6Rd(θw − 1)2Y5Y

2
2

(
1 + (θw − 1)Y1

)
− Pr

[
fY6 +NbY6Y4 +NbY2Y8

+ 2NtY2Y6 − λE

(
ff ′Y6

)
+ ϵY5

]]
−

3Rd(θw − 1)Y5

(
1 + (θw − 1)Y1

)2

(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)2
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[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
fY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′Y2

)
+ ϵY1

]]
,

Y6(0) = 1.

Y ′
7 = Y8, Y7(0) = 0.

Y ′
8 =

1

1− ScλCf 2(η)

[
− Sc

[
fY8 − λC

(
ff ′Y8

)
−KcY7

]

− Nt

Nb

{
1(

1− PrλEf 2 +Rd

(
1 + (θw − 1)y1

)3)
[
− 6Rd(θw − 1)Y2Y6

(
1 + (θw − 1)Y1

)2

− 6Rd(θw − 1)2Y5Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
fY6 +NbY6Y4 +NbY2Y8 + 2NtY2Y6 − λE

(
ff ′Y6

)
+ ϵY5

]]

−
3Rd(θw − 1)Y5

(
1 + (θw − 1)Y1

)2

(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)2

(
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
fY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′Y2

)
+ ϵY1

])}]
,

Y8(0) = 0.

Y ′
9 = Y10, Y9(0) = 0.

Y ′
10 =

1(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 6Rd(θw − 1)Y2Y10

(
1 + (θw − 1)Y1

)2

− 6Rd(θw − 1)2Y9Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
fY10

+NbY10Y4 +NbY2Y12 + 2NtY2Y10 − λE

(
ff ′Y10

)
+ ϵY9

]]
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−
3Rd(θw − 1)Y9

(
1 + (θw − 1)Y1

)2

(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)2

[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
fY2 +NbY2Y4 +NtY

2
2

+ Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′Y2

)
+ ϵY1

]]
,

Y10(0) = 0.

Y ′
11 = Y12, Y11(0) = 0.

Y ′
12 =

1

1− ScλCf 2(η)

[
− Sc

[
fY12 − λC

(
ff ′Y12

)
−KcY11

]

− Nt

Nb

{
1(

1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)
[
− 6Rd(θw − 1)Y2Y10

(
1 + (θw − 1)Y1

)2

− 6Rd(θw − 1)2Y9Y
2
2

(
1 + (θw − 1)Y1

)
− Pr

[
fY10 +NbY10Y4

+NbY2Y12 + 2NtY2Y10 − λE

(
ff ′Y10

)
+ ϵY9

]]

−

[ 3Rd(θw − 1)Y9

(
1 + (θw − 1)Y1

)2

(
1− PrλEf 2 +Rd

(
1 + (θw − 1)Y1

)3)2

]

[
− 3Rd(θw − 1)Y 2

2

(
1 + (θw − 1)Y1

)2

− Pr

[
fY2

+NbY2Y4 +NtY
2
2 + Ec

((
1 +

1

β

)(
f

′′2 + g
′2

)
+M

(
f

′2 + g2
))

− λE

(
ff ′Y2

)
+ ϵY1

]]}]
, Y12(0) = 1.

For the Newton’s method the stopping criteria is set as:

max{| Y1(η∞, ln, pn) |, | Y3(η∞, ln, pn) |} < ϵ.
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where ϵ > 0 is a sufficiently small number, which has been considered as 10−10.

4.4 Representation of Graphs and Tables

In this section, we thoroughly discuss the influence of the dimensionless parame-

ters on the skin friction coefficient Re
1
2
xCfx , Re

1
2
yCfy , Nusselt number Re

− 1
2

x Nux and

sherwood number Re
− 1

2
x Shx through different graphs and tables. Table 4.1, shows

the effect of Casson parameter β, rotation parameter γ1, magnetic parameter M ,

porous medium parameter K and inclination angle Γ on Re
1
2
xCfx and Re

1
2
yCfy . For

accelerating the values of Casson parameter β, Re
1
2
xCfx , Re

1
2
xCfy increase. Table

4.1 expresses the intervals If and Ig from where the missing conditions r and m

can be chosen. Observation made on the Nusselt number, shows a great flexi-

bility of the choice of missing initial conditions. Table 4.2 explains the impact

of Casson parameter β, rotation parameter γ1 magnetic parameter M , porous

medium parameter K, inclination angle Γ, radiation parameter Rd, temprature

ratio parameter θw, Prandtl number Pr, Brownian parameter Nb, thermophoresis

parameter Nt, Eckert number Ec and Schmidt number Sc, time relaxtaion pa-

rameter of temperature λE, time relaxtaion parameter of concentration λC , heat

generation/absorption parameter ϵ and chemical reaction parameter Kc.

Figure 4.2 shows a decreasing behaviour of the velocity f ′ when increasing the

Casson parameter β. From a tangible perspective, the Casson parameter is im-

pacted by the yield stress. This stress, in turn, creates an opposing force that

results in a decrease in the velocity of the fluid with a gradual increase in β values.

The identical parameter concerned with the velocity distribution g(η) together

with y-axis is absorbed by Figure 4.3. The velocity distribution g(η) reveals an

upward trend with respect to β is mentioned in figure. Within this framework, the

function g(η) adopts a parabolic configuration, signifying that the flow transpires

in the negative direction due to its negative values.

The influence of M in the temperature profile θ is manifestly observed in Figure

4.4. It demonstrates that an escalation of this parameter leads to an elevation in
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the temperature profile, driven by the Lorentz force generated in the presence of

a magnetic field. The influence of the parameter γ1 on f ′ and g is portrayed in

Figures 4.5 and 4.6. It has been observed that an increase in the rotation param-

eter leads to a deterioration of velocity along the x-direction. The results indicate

that as the value of Nt is increased, both the temperature distribution and the

concentration profile rise, as shown in Figures 4.7 and 4.8. The consequences of

altering Magnetic parameter M for the velocity profiles f ′ and g is visualized in

Figures 4.9 and 4.10, showcasing a decrease in f
′
and an increase in g with an

increase in M . This occurs because a drag force which is termed as Lorentz force

get raised due to applied magnetic field generated by the motion of charges. This

force causes a decrease in the magnitude of velocity along the x-direction.

Distinct values of θw illustrate the temperature profile θ increment in Figure 4.11.

As this parameter increases, the temperature also experiences a corresponding

increase. A decline in the concentration profile ϕ is evident as the value of the

Schmidt parameter Sc increases, as illustrated in Figure 4.12. Given that the

Schmidt number is influenced by the Brownian diffusion coefficient, rise in Schmidt

number leads to a decrease in the Brownian diffusion coefficient. Consequently,

this suggests a reduction in nanoparticle concentration due to the diminished dif-

fusion behavior. Figures 4.13 and 4.14 depict the velocity profiles for varying

values of the porous medium parameter K. The profile denoted as f ′ exhibits a

decreasing trend as K increases, while the profile represented by g demonstrates

an increase with rising values of K. This occurs because, on increasing the perme-

ability of a porous medium will increase the flow rate of fluid through it, assuming

a constant pressure gradient.

Figures 4.15 and 4.16 demonstrate the influence of Nb. As Nb increases, the tem-

perature distribution rises, while the concentration profile decreases. The occur-

rence of Brownian motion in the fluid is attributed to the presence of nanoparticles.

With an increase in Nb, this motion undergoes changes, leading to a subsequent

decrease in the thickness of the concentration boundary layer for the nanoparti-

cles. Through the analysis of Figures 4.17 and 4.18 for various distinct values of

Γ, it has been noted that f ′ exhibits a decreasing trend, while g demonstrates an
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increasing trend. It demonstrates that for the inclined angles, the gravitational

force opposes the stretching effect, potentially delaying the flow initiation and al-

tering the boundary layer structure. Figure 4.19 reveals that with an increase in

the value of γ1, the temperature distribution also increases.

Figure 4.20 illustrates that as the value of the chemical reaction parameter Kc

increases, there is a noticeable decreasing trend in the concentration discrepancy

ϕ. This occurs because when the chemical reaction parameter is increased, the

concentration distribution decreases owing to the accelerated movement of fluid

molecules. Figure 4.21 reflects the variation in temperature profile θ due to a

parameter Rd. As the radiation parameter boosts, it leads to the emit of more

heat energy into the flow, resulting in an uplifted temperature profile. Figure 4.22

shows the relation between relaxation time parameter of concentration λC and ϕ,

where ϕ decreases by increasing λC . Genuinely, an elevated λC value induces a di-

minished mass diffusivity, leading to a concentration distribution with a narrower

profile.

Figure 4.23 displays the impact of the Prandtl number Pr on the temperature

distribution θ. Both the thickness of the thermal boundary layer and the temper-

ature are functions that decrease as the Prandtl number Pr increases. Certainly,

the influence of the Eckert number Ec on the temperature distribution θ show-

cases a rising pattern in θ as the value of Ec increases, as mentioned in Figure

4.24. The temperature distribution escalates as the value of Eckert number goes

up. This outcome arises from the fact that the Eckert number is dependent on

the kinetic energy, which upon being converted to the heat energy within the

fluid, results in a temperature increase. The Figure 4.25 indicates that on rising

the Casson parameter β the temperature discrepancy θ shows a rising behaviour.

Figure 4.26 expresses the relation between relaxation time parameter of temper-

ature λE and temperature discrepancy θ, where θ has decreasing trend by rising

λE. visibly, when λE attains higher values, the system manifests non-conductive

features, which in turn leads to a contraction of the thermal distribution.

For increasing the values of heat generation/absorption ϵ, Figure 4.27 depicts that
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the temperature discrepancy θ is increasing. The impact of the Brownian param-

eter Nb in conjunction with the thermophoresis parameter Nt on the Sherwood

number Re
− 1

2
x Shx is depicted in Figure 4.28. It has been observed that an increase

in the value of Nb leads to a decreasing trend in the Sherwood number Re
− 1

2
x Shx.

Conversely, the Sherwood number exhibits an increasing trend as the value of Nt

rises. In Figure 4.29, increasing the magnetic parameter M has been noted to

result in an increase in the skin friction Re
1
2
xCfy , whereas for higher values of γ1,

Re
1
2
xCfy exhibits a declining trend.

Table 4.1: Results of Re
1
2
xCfx and Re

1
2
xCfy for various parameters

β γ1 M K Γ Re
1
2
xCfx Re

1
2
xCfy If Ig

0.5 0.5 0.5 0.4 π/2 -2.48263 -0.66128 [-1.70, 1.90] [-2.30, 1.70]

0.8 -2.15059 -0.57329 [-1.90, 1.60] [-2.50, 1.90]

1.0 -2.02772 -0.54057 [-1.80, 2.30] [-2.70, 0.60]

0.3 -2.42473 -0.40770 [-1.10, 2.60] [-3.10, 2.20]

0.6 -2.51875 -0.78023 [-2.20, 2.80] [-2.60, 3.00]

0.9 -2.64364 -1.10502 [-2.30, 3.10] [-2.40, 1.70]

0 -2.19783 -0.76779 [-1.20, 3.50] [-2.80, 2.70]

0.4 -2.42669 -0.67951 [-1.80, 3.30] [-3.10, 3.30]

0.8 -2.64515 -0.61357 [-1.80, 3.60] [-2.00, 1.10]

0.6 -2.59172 -0.62842 [-2.20, 3.80] [-2.60, 3.10]

0.8 -2.69784 -0.59963 [-2.30, 3.40] [-1.90, 1.20]

1.0 -2.80102 -0.57418 [-2.00, 3.30] [-2.70, 3.30]

π/6 -2.27046 -0.73718 [-2.50, 3.10] [-3.10, 3.20]

π/4 -2.34222 -0.70947 [-2.10, 2.70] [-1.80, 1.50]

π/3 -2.41297 -0.68427 [-2.20, 3.00] [-3.20, 3.30]
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Table 4.2: Results of Re
− 1

2
x Nux and Re

− 1
2

x Shx for various parameters

β γ1 M K Γ Rd θw Pr Nb Nt Ec Sc λE ϵ λC Kc Re
− 1

2
x Nux Re

− 1
2

x Shx

0.5 0.5 0.5 0.4 π/2 0.2 1.5 2.0 0.5 0.5 0.2 5.0 0.1 0.2 0.1 0.2 0.01724 1.96539

0.6 0.01285 1.95535

0.2 0.06499 1.96819

0.3 0.05309 1.96747

0.0 0.14902 1.96936

0.3 0.06959 1.96686

0.3 0.02879 1.96765

0.5 0.00547 1.96319

π/6 0.11585 1.96828

π/4 0.08277 1.96726

0.4 0.06359 1.95224

0.5 0.07338 1.94802

1.6 0.02836 1.96224

1.7 0.03901 1.95920

1.0 0.05238 1.93649

1.5 0.04469 1.95296

Table 4.2: Results of Re
− 1

2
x Nux and Re

− 1
2

x Shx for various parameters

β γ1 M K Γ Rd θw Pr NbNt Ec Sc λE ϵ λC Kc Re
− 1

2
x Nux Re

− 1
2

x Shx

0.2 0.08835 2.00692

0.3 0.05054 1.97964

0.0 0.05179 1.90933

0.05 0.03431 1.93689

0.0 0.40286 1.92442

0.05 0.30721 1.93453

3.0 0.00517 1.49949

4.0 0.01153 1.74717

0.2 0.03533 1.96580

0.3 0.05267 1.96630

0.0 0.26899 1.94262

0.1 0.15202 1.95344

0.13 0.01758 1.97309

0.15 0.01782 1.97828

0.1 0.01203 1.69165

0.0 0.01479 1.83341
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Figure 4.2: Velocity f’(η) discrepancy against β
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Figure 4.3: Velocity g(η) discrepancy against β
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Figure 4.4: Temperature θ(η) discrepancy against M
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Figure 4.5: Velocity f’(η) discrepancy against γ1
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Figure 4.6: Velocity g(η) discrepancy against γ1
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Figure 4.7: Temperature θ(η) discrepancy against Nt
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Figure 4.8: Concentration ϕ(η) discrepancy against Nt
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Figure 4.9: Velocity f’(η) discrepancy against M
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Figure 4.10: Velocity g(η) discrepancy against M
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Figure 4.11: Temperature θ(η) discrepancy against θw
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Figure 4.12: Concentration ϕ(η) discrepancy against Sc
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Figure 4.13: Velocity f’(η) discrepancy against K
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Figure 4.14: Velocity g(η) discrepancy against K
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Figure 4.15: Temperature θ(η) discrepancy against Nb
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Figure 4.16: Concentration ϕ(η) discrepancy against Nb
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Figure 4.17: Velocity f’(η) discrepancy against Γ
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Figure 4.18: Velocity g(η) discrepancy against Γ
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Figure 4.19: Temperature θ(η) discrepancy against γ1
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Figure 4.20: Concentration ϕ(η) discrepancy against Kc
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Figure 4.21: Temperature θ(η) discrepancy against Rd
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Figure 4.22: Concentration ϕ(η) discrepancy against λC
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Figure 4.23: Temperature θ(η) discrepancy against Pr
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Figure 4.24: Temperature θ(η) discrepancy against Ec
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Figure 4.25: Temperature θ(η) discrepancy against β
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Figure 4.26: Temperature θ(η) discrepancy against λE
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Figure 4.27: Temperature θ(η) discrepancy against ϵ
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Figure 4.28: Sherwood number Shx discrepancy against Nb and Nt
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Figure 4.29: skin friction Cfy discrepancy against γ1 and M



Chapter 5

Conclusion

In this thesis, the work of Archana et al. [31] is reviewed and extended by

Cattaneo-Christov double diffusion in the temperature equation and concentra-

tion equation as well. Firstly, by using similarity transformation, the momentum,

energy and concentartion equations are altered into the ODEs. Through the appli-

cation of the Shooting technique, numerical solutions for the transformed ODEs

have been achieved. Utilizing diverse values for the governing parameters, we

showcase the outcomes in the form of Tables and graphs for velocity, temperature,

and concentration profiles. Following are the key results of current work:

� Increasing the values of M , the velocity profile f ′(η) decreases while the

temperature distribution increases.

� The temperature distribution is showing decreasing trend by rising the Prandtl

number.

� By increasing the values of Schmidt number, an increasing behaviour is ob-

served in concentration distribution.

� Increasing values of the Casson parameter demonstrate an upward trend in

both g(η) and θ(η).

� The concentration distribution is decreasing on increasing the values of time

relaxation parameter of concentration.

84
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� An increase in the temperature distribution is observed as the values of the

Eckert number ’Ec’ are raised.

� Increasing values of chemical reaction parameter gives a decreasing trend in

concentration distribution.

� The temperature distribution is decreasing on increasing the values of time

relaxation parameter of temperature.

� By increasing the values of brownian parameter, the Sherwood number de-

creases, while sherwood number is showing increasing trend by rising the

values of thermophoresis parameter.
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