
Numerical Simulation of Natural Convective 

Flow in an Inclined Cavity with Internal Heat 

Generation/ Absorption 

 

By 

 

Muhammad Yamin 

 
 

 

 

 

MASTER OF PHILOSOPHY IN MATHEMATICS 

 
 

 

 

 

DEPARTMENT OF MATHEMATICS 

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY 

ISLAMABAD 

2017 



 

Numerical Simulation of Natural Convective 

Flow in an Inclined Cavity with Internal Heat 

Generation/ Absorption 

By 

Muhammad Yamin 

 

A research thesis submitted to the Department of Mathematics, 

Capital University of Science and Technology, Islamabad 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF PHILOSOPHY IN MATHEMATICS 

 

 

 

DEPARTMENT OF MATHEMATICS 

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY 

ISLAMABAD 

2017  



 

CERTIFICATE  OF  APPROVAL 

 Numerical Simulation of Natural Convective Flow in an Inclined Cavity with 

Internal Heat Generation/Absorption 

by 

Muhammad Yamin 

MMT153004 

THESIS  EXAMINING  COMMITTEE 

S No Examiner Name Organization 

(a) External Examiner                   Dr. Muhammad Sabeel  IST,  Islamabad 

(b) Internal Examiner  Dr. Muhammad Sagheer CUST, Islamabad 

(c) Supervisor Dr. Shafqat Hussain CUST, Islamabad 

 

________________________________ 

Dr. Shafqat Hussain 

Thesis Supervisor 

               Sep, 2017 

______________________________ 

Dr. Muhammad Sagheer 

Head of Department 

Department of Mathematics 

Dated :           Sep, 2017 

 

___________________________ 

Dr. Muhammad Abdul Qadir 

Dean 

Faculty of Computing 

Dated :           Sep, 2017 

 

  

 

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY 

ISLAMABAD 
Islamabad Expressway, Kahuta Road, Zone-V, Islamabad 

Phone: +92 51 111 555 666, Fax: 92 51 4486705 
Email: info@cust.edu.pk, Website: http”//www.cust.edu.pk  

mailto:info@cust.edu.pk


 

             

     
Certificate 

 

This is to certify that Mr. Muhammad Yamin has incorporated all observations, suggestions and 

comments made by the external evaluators as well as the internal examiners and thesis 

supervisor. The title of his Thesis is: Numerical Simulation of Natural Convective Flow in an 

Inclined Cavity with Internal Heat Generation/ Absorption. 

 

 

 

     

Dr. Shafqat Hussain  

  (Thesis Supervisor) 
 



“It’s not that I’m so smart, It’s just that I stay with problems longer.”

Albert Einstein



Abstract

The objective of this work is to analyze the influence of internal heat generation or ab-

sorption parameter on two dimensional, steady and incompressible natural convective

flow in a square tilted cavity. The cavity is assumed with adiabatic conditions on the top

and bottom walls, heated on the left wall and cooled on the right wall. The governing

equations for the heat exchange and fluid flow have been solved numerically by utilizing

Galerkin weighted residual finite element method. Discretization of the governing equa-

tions is carried out with the help of finite element method. In particular, velocity and

temperature fields are discretized by the biquadratic element Q2 and for pressure P1
disc

is utilized. The impact of physical parameters on the heat and fluid flow are discussed

in terms of streamlines and isotherms and viewed by some useful plots. Effect of the

physical parameters in specified ranges such as heat generation/absorption parameter

(q∗ = −10, −5, 0 and 5), Prandtl number (Pr = 0.025 ), Raleigh number (Ra = 103-105)

and inclination angle (φ = 15◦, 30◦, 60◦ and 75◦) on the fluid flow and heat transfer

has been investigated. A significant effect in the heat transfer has been observed for

the heat generation/absorption parameter. It is found that the average Nusselt number

shows a decreasing behavior for the heat generation parameter (q∗ > 0), while in the

case of heat absorption (q∗ < 0), the rate of heat transfer is enhanced.
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Chapter 1

Introduction

Natural convection is a heat transport process caused by the buoyancy force in the fluid

flow. The study of natural convective flow has been receiving a great attention in recent

years based on various applications in many fields of engineering including cooling de-

vices [1], thermoelastic damping [2], solar collectors [3], thermal flow in boiler tubes [4],

rarefied gas flows [5], welding [6] etc. Due to this tremendous and widespread expansion

of free convection applications, many researchers are incessantly investigating the con-

vective heat flow in various physical systems such as magnetohydrodynamics convection

[7–9], forced convection [10], convection of nanofluids [11–13] etc. However, convective

flow within a square cavity is one of the most investigated solution of Navier-Stokes equa-

tions. This simple geometry of the problem has made its study much familiar among

scientists.

Natural convective flow within the cavities is investigated by many researchers. A

few earlier publications on the natural convection flow within enclosures with various

boundary conditions are discussed here. Roy and Basak [14] numerically performed the

simulations on natural convection flow in square enclosure heated at the bottom wall,

the top wall being insulated and the vertical walls are at various hot/cold temperature.

The convective heat transfer is observed both analytically and numerically in a square

enclosure, filled with water heated from bottom and cooled along one vertical wall by

November and Nasteel [15]. The significant enhancement in the heat transfer is obtained

when bottom wall of the cavity is less than the half heated. Shiralker and Tein [16] in-

vestigated the simultaneous differential heating impact of the vertical walls as well as

1



Introduction 2

the horizontal walls of the square enclosure. Numerical study of the free convection flow

in a rectangular enclosure cooled on one side and heated from bottom is investigated by

Ganzarolli and Milanez [17].

In past few years, particular attention has been given to examine the convective heat

flow in enclosures with different geometries. Based on the observations it was established

that the attributes of the fluid and heat flow are very sensitive to the geometry [18–22].

Many researchers have also paid a more important attention on the inclination angle

effects on the thermal flow characteristics within inclined cavities [23, 24].

The studies on the heat flow characteristics in inclined cavities are examined by few

researchers [23–34]. Biswal et al. [23] numerically inspected the impact of angle of in-

clination on free convection in tilted square cavity with porous media. They considered

two cases corresponding to the bottom wall which is heated due to isothermal and non-

isothermal heating. They concluded that non-isothermal heating, comparatively to the

isothermal heating, in heating strategy is efficient with realistic thermal management.

The detailed analysis of convective heat transfer inside square tilted cavities with oppo-

sitely cooled vertical walls and insulated top wall is parallel to the bottom hot wall were

discussed by Singh et al. [24]. In 2004, Cianfrini et al. [25] investigated the influence of

angle of inclination on heat transport in square enclosure with opposite walls are differ-

entially heated. They obtained the significant effect of the angle of inclination on overall

heat transport in both x-direction and y-direction which is comparatively larger than

that of untilted case. The study of free convection heat flow inside a rectangular cavity

with porous media for various values of inclination angle is investigated numerically by

Baez and Nicolas [26].

Dalal and Das [27] presented convective heat flow in a tilted cavity subjected to a

sinusoidal temperature on one wall and other walls are kept at constant temperature.

Their results have shown that the flow and rate of heat transfer is enhanced by inclina-

tion angle. Natural convection flow and characteristics of heat transfer within L-shaped

inclined enclosure was studied by Tasnim and Mahmud [28]. In 2008, Jeng et al. [29]

have performed study on transient natural convective flow and mass transfer both nu-

merically and experimentally in inclined enclosures for different inclination angles. It

was observed from the results that the inclination angle has a substantial effect on the
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entire flow.

Ozoe et al. [30] analyzed the rate of heat transfer experimentally as well as numerically

within an inclined cavity in which the inclined side is kept at constant hot tempera-

ture while the opposite side is provided with low temperature. Rasoul and Prinos [31]

analyzed numerically the influence of inclined cavity on laminar natural convection for

various Prandtl numbers and Raleigh numbers. It was noticed that increase in incli-

nation angle resulting into decrease in average Nusselt number, irrespective of Prandtl

number and Raleigh numbers. More comprehensive study on natural convection with

the effect of inclination angle is also examined by Cotton et al. [32], Hamady et al. [33]

and Al-Farhany and Turan [34] for various parameters and arbitrary inclination angles.

Natural convection driven by heat generation/absorption involve in large number of

physical phenomena. In moving fluids, the significance of the heat generation has been

noticed in various problems concerning with chemical reaction and dissociating fluids.

The influence of internal heat generation may alter the distribution of temperature and

therefore, the particle deposition rate. Moreover, the investigation of internal heat gen-

eration effects are much important in number of applications including metal waste, food

stuffs storage and reactor safety analysis. The study of natural convection with inter-

nat heat generation in various geometries has been investigated by several investigators

[35–37] and, motivated by these works; the current project is intended to analyze the

impact of heat generation/absorption on steady and incompressible natural convection

flow in a tilted square cavity.

1.1 Thesis contributions

Aim of this study is to investigate the natural convection heat flow with internal heat gen-

eration/absorption parameter inside an inclined square cavity. The Galerkin weighted

residual method is adopted to solve the equations governing the heat exchange and fluid

flow. Finite element Q2 is used to discretize the velocity and temperature, and discon-

tinuous P1 element is for the pressure. The numerical results of the problem are plotted

and analyzed in terms of isotherms and streamlines. Effect of the physical parameters in
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specified ranges such as heat generation/absorption parameter, Prandtl number, Raleigh

number and inclination angle on the flow and heat transfer have also been investigated.

1.2 Thesis layout

This dissertation further comprises of four chapters.

• Chapter 2 contains some basic definitions and physical laws regarding this

work. Also, the numerical method used for the simulation of the concerned problem

is explained stepwise and illustrated by an example.

• Chapter 3 targets the review of the research paper Basak et al. [38]. In this

chapter, the steady natural convective flow is inspected in square cavity inclined at

different angles. A suitable transformation is used to convert equations governing

the flow into non-dimensional form and solve these nonlinear coupled PDEs nu-

merically using Galerkin finite element method. Numerical results are calculated

for various parameters such as Pr, Ra and inclination angle φ.

• In Chapter 4 the work of Basak et al. [38] is extended with the idea of in-

ternal heat generation/absorption. The non-dimensional governing equations are

discretized using biquadratic element Q2 for velocity and temperature, and discon-

tinuous P1 element for pressure. Simulations are performed for various parameters

such as heat generation/absorption q∗, Pr, Ra and φ, and their corresponding

effects can be seen through streamlines and isotherms.

• Finally in Chapter 5 results of the current thesis are concluded.



Chapter 2

Some basic definitions and

governing equations

2.1 Basic definitions

This chapter contains some basic definitions of fluid flow and its properties, heat trans-

fer, dimensionless numbers and physical laws regarding this work [39]. The procedure

of finite element method is also explained and illustrated by a two dimensional Poisson

problem.

Definition 2.1.1. (Fluid)

A matter which continuously changes its shape under the influence of shear stress is

called fluid. It yields easily to shear stress and repeatedly deforms its shape as long as

the shear stress acts. Fluid has no fixed shape and conforms to the shape of a container

in which it is placed.

Definition 2.1.2. (Fluid mechanics)

The study of fluid mechanics is concerned with various properties of fluid and the forces

acting on them. Fluid mechanics is mainly divided into two categories: fluid static which

deals with the study of fluid at rest and fluid dynamic which deals with the study of

fluid in motion.

5



Some basic definitions and governing equations 6

Definition 2.1.3. (Pressure)

An expression of applied force to the unit area is said to be pressure. It is denoted by

P and mathematically, it can be written as

P =
F

A
, (2.1)

where F , A denote the applied force and area of the surface, respectively.

Definition 2.1.4. (Density)

Mass of an object per unit its volume is called density of that object. The most often

symbol used for it is ρ and mathematically written as

ρ =
m

V
, (2.2)

The terms V and m in the above expression are the volume of the material and mass

of the material, respectively.

Definition 2.1.5. (Stress)

Stress is a force acted upon a material per unit of its area and is denoted by σ. Mathe-

matically, it can be written as;

τ =
F

A
, (2.3)

where F denotes the force and A represents area.

Definition 2.1.6. (Shear stress)

It is a type of stress in which the force vector acts parallel to the material surface or

cross section of a material.

Definition 2.1.7. (Normal stress)

Normal stress is a type of stress in which force vector acts perpendicular to the surface

of the material or cross section of a material.
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Definition 2.1.8. (Yield stress)

It is the property of a material at which it begins to deform plastically.

Definition 2.1.9. (Viscosity)

Viscosity of a fluid is defined as the measure of resistance to steady distortion by

shear/tensile stress. A notation used for viscosity is µ and its mathematical expres-

sion is

viscosity(µ) =
shear stress

shear strain
. (2.4)

Definition 2.1.10. (Kinematic viscosity)

The relationship between dynamic viscosity to the fluid density is called kinematic vis-

cosity. It is denoted by symbol ν and can be expressed mathematically as

ν =
µ

ρ
, (2.5)

where µ and ρ denote the dynamic viscosity and the density respectively.

2.2 Classification of fluids

Definition 2.2.1. (Ideal fluid)

An incompressible fluid having zero viscosity is said to be an ideal or inviscid fluid.

Shear stress has no existence in an deal fluid as the viscosity of it is zero.

Definition 2.2.2. (Real fluid)

A compressible fluid which experience some resistance during the flow is characterized

as a real or viscid fluid.

Definition 2.2.3. (Newton’s law of viscosity)

It is a relationship in which shear stress is directly and linearly proportional to the

velocity gradient. Mathematically, it can be written as

τyx ∝
(
du

dy

)
,
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τyx = µ

(
du

dy

)
. (2.6)

In the above expression, τyx is the shear stress applied to the velocity component u of

fluid and µ is the viscosity proportionality constant.

Definition 2.2.4. (Newtonian fluid)

Those fluids are categorized as Netownian, for which the shear stress varies directly

and linearly as the deformation rate. Shear stress of Newtonian fluid is mathematically

defined as

τyx = µ

(
du

dy

)
, (2.7)

where τyx is the shear stress, u denotes the x-component of velocity and µ the dynamic

viscosity. Examples of Newtonian fluids are air, water, oxygen gas and silicone oil etc.

Definition 2.2.5. (Non-Newtonian fluid)

For non-Newtonian fluid, the relationship between shear stress is and the deformation

rate is not linear. It can also be defined as, the fluid which does not satisfy the New-

ton’s law of viscosity is called Non-Newtonian fluids. Mathematically, it can be written

as

τyx ∝
(
du

dy

)m
, m 6= 1

τyx = µ

(
du

dy

)m
. (2.8)

Here µ denotes the viscosity and m the index of the flow performance. Some common

examples of non-Newtonian fluids are shampoo, grease, paint, blood and melt polymer

etc.

2.3 Flows

Definition 2.3.1. (Flow)

An object exhibits the flow if unbalanced forces lead to a limitless deformation.

Definition 2.3.2. (Laminar flow)

The flow in which fluid particles move very orderly and in parallel layers is said to be



Some basic definitions and governing equations 9

laminar. The example of laminar flow is the rising of cigarette smoke. If we observe the

smoke rising for the first few seconds the flow seems to be laminar but later it becomes

turbulent.

Definition 2.3.3. (Uniform flow)

A flow, where the velocity of each fluid particle remains unchanged at any instant of

time is called uniform flow. Mathematically, it can be written as

dV

ds
= 0, (2.9)

where V is the velocity and s is the displacement in any direction.

Definition 2.3.4. (Non uniform flow)

A flow in which the velocity of fluid particles varies from point to point at a given instant

of time is known as uniform flow. Mathematically, it is expressed as

dV

ds
6= 0, (2.10)

where V is the velocity and s is the displacement.

Definition 2.3.5. (Internal flow)

Fluid flow which is bounded by the solid surface is known as internal flow. The flow in

a pipe is an example of the internal flow.

Definition 2.3.6. (External flow)

The flow which is not confined by the solid surface, is known as external flow. The flow

of water in the ocean or in the river is an example of the external flow.

Definition 2.3.7. (Steady flow)

A flow in which properties of the fluid have no dependency on time is said to be steady

flow. Mathematically, it can be written as

dξ

dt
= 0, (2.11)
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where ξ is fluid property.

Definition 2.3.8. (Unsteady flow)

A fluid flow in which fluid properties are dependent of time is known as unsteady flow.

Mathematically, it can be written as

dξ

dt
6= 0, (2.12)

where ξ is fluid property.

Definition 2.3.9. (Compressible flow)

Fluid flow which has varying density with respect to the substance variable is said to be

compressible flow. Mathematically, it is expressed by

ρ(x, y, z, t) 6= c, c is a constant. (2.13)

Definition 2.3.10. (Incompressible flow)

Flow of a fluid is said to be incompressible when the material density during the flow

remains constant. It can be expressed mathematically as

ρ(x, y, z, t) = c, (2.14)

where c is a constant.

2.4 Some basic definitions of heat transfer

Definition 2.4.1. (Conduction)

In conduction process, the transmission of heat through matter occurs by the intersection

of free electrons and molecules. In other words, when heat is transferred from one object

to another due to the molecular interaction without disturbance or motion of the material

as whole then the process is known as conduction. Mathematically, it can be written as

q = −kA
(

∆T

∆n

)
, (2.15)
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where k and ∆T
∆n denote the constant of the thermal conductivity and gradient of the

temperature respectively.

Definition 2.4.2. (Convection)

It is a mechanism in which heat transfer occurs due to the motion of molecules within the

fluid such as air and water. The convection phenomenon takes place through diffusion

or advection. A mathematical expression for convection phenomena is

q = hA(Ts − T∞), (2.16)

where h, A, Ts and T∞ denote the heat transfer coefficient, the area, the temperature

of the surface and the temperature away from the surface respectively. Further, it is

subdivided into the following three categories.

Forced convection

It is a type of heat transfer in which an external source is used to produce motion of the

fluid. e.g. fan or a pump.

Natural convection

In a process of heat transfer where motion of the fluid particles is not generated by an

independent source, but occurs naturally is called natural convection or free convection.

It occurs in a fluid only when there is a density difference.

Mixed convection

A convection mechanism in which heat is transferred by the combination of both forced

and natural convection process, is called mixed convection.

Definition 2.4.3. (Radiation)

In radiation process, heat is transferred through electromagnetic waves or rays. An

example of radiation would be atmosphere, the atmosphere is heated by the radiation

of the sun. Mathematically, it can be written as

q = Eσ∗A[(∆T )4], (2.17)
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where E, σ∗, (∆T )4, A, q are the emissivity of the scheme, the constant of Stephan-

Boltzmann (5.670×10−8 W
m2K4 ), the variation of the temperature, the area and the heat

transfer respectively.

2.5 Thermal conductivity

It is the property of a substance which measures the ability to transfer heat. Fourier’s

law of conduction which relates the flow rate of heat by conduction to the temperature

gradient is
dQ

dt
= −kAdT

dx
, (2.18)

where A, k, dT
dx , dQ

dt are the area, the thermal conductivity, the temperature and the

rate of heat transfer, respectively. The SI unit of thermal conductivity is Kg.m
s3

and the

dimension of thermal conductivity is [ML
T 3 ].

2.6 Thermal diffusivity

The ratio of the unsteady heat conduction (k) of a substance to the product of specific

heat capacity (cp) and density (ρ) is called thermal diffusivity. It quantify the ability of

a substance to transfer heat rather to store it. Mathematically, it can be written as

α =
k

ρcp
, (2.19)

2.7 Dimensionless numbers

Definition 2.7.1. (Prandtl number)

The ratio of kinematic diffusivity to the heat diffusivity is said to be Prandtl number.

It is denoted by Pr and mathematically it can be written as

Pr =
ν

α
,

Pr =

µ
ρ

k
ρcp

,
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Pr =
µcp
k
. (2.20)

where ν and α denote the momentum diffusivity or kinematic diffusivity and the ther-

mal diffusivity respectively. Physical importance of Prandtl number is that it provides

the respective thickness of thermal boundary layer and velocity boundary layer. Heat

distributes rapidly relative to the momentum for small values of Pr.

Definition 2.7.2. (Raleigh number)

It is the relationship between the kinematic diffusivity to heat diffusivity multiplied by

the ratio of viscosity forces and buoyancy forces. It is a dimensionless number introduced

by Lord Raleigh. It is denoted by Ra and mathematically it can be written as

Ra =
gβ

να
(Th − Tc)L3, (2.21)

Definition 2.7.3. (Nusselt number)

It is the relationship between the convective to the conductive heat transfer through

the boundary of the surface. It is a dimensionless number which was first introduced

by the German mathematician Nusselt. Heat transfer due to conduction is denoted by

k∆T
δ and heat transfer due to convection is denoted by h∆T. It is denoted by Nu and

mathematically, it is expressed by

Nu =
h∆T
k∆T
δ

,

Nu =
hδ

k
, (2.22)

where h, δ, k denote the coefficient of heat transfer, the characteristic length and the

thermal conductivity respectively.
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2.8 Basic equations

Definition 2.8.1. (Continuity equation)

The equation of continuity is derived from the mass conservation law and mathemati-

cally, it is expressed by

∂ρ

∂t
+∇.(ρV ) = 0, (2.23)

where t is the time. If fluid is an incompressible, then the continuity equation is expressed

by

∇.V = 0. (2.24)

Definition 2.8.2. (Law of conservation of momentum)

Each particle of fluid obeys Newton’s second law of motion which is at rest or in steady

state or accelerated motion. This law states that the combination of all applied external

forces working on an object is equal to the time rate of change of its linear momentum.

In vector notation this law is expressed as

ρ
dV

dt
= div τ + ρb, (2.25)

For Navier-Stokes equation

τ = −pI + µA1, (2.26)

where A1 is the tensor and first time it was produced by Rivlin-Erickson.

A1 = grad V + (grad V )t, (2.27)

In the above equations, d
dt denote the material time derivative or total derivative, V

denote velocity field, ρ denote density, τ here denotes the Cauchy stress tensor, b the

body forces, p is the pressure and µ the dynamic viscosity.

The stress tensor τ is expressed in the matrix form as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 , (2.28)
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where σxx, σyy and σzz are normal stresses, others wise the shear stresses. For two-

dimensional flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

grad V =


∂u
∂x

∂u
∂y 0

∂v
∂x

∂v
∂y 0

0 0 0

 , (2.29)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.30)

Similarly, we repeat the above process for Y component as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.31)

Definition 2.8.3. (Energy equation)

The energy equation for the fluid is

ρcp

(
∂

∂t
+ V∇

)
T = k∇2T + τL+ ρcp

[
DB∇C.∇T +

DT

Tm
∇T
]
, (2.32)

where (cp)f denotes the specific heat of the basic fluid, (cp)s the specific heat of the

material, ρf the density of basic fluid, T is fluid temperature, L represent strain tensor

rate, DB denote the Brownian motion coefficient, DT the temperature diffusion coeffi-

cient and Tm denote the mean temperature. The expression for stress tensor τ for the

incompressible fluid is expressed by

τ = −pI + µA1, (2.33)

where A1 is the tensor, p the pressure and µ the dynamic viscosity.

A1 = grad V + (grad V )t, (2.34)

where t represents transpose of the matrix for two dimensional field velocity of the fluid,

τ is the stess tensor and can be written as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 . (2.35)
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2.9 Finite Element Method

Finite element was first introduced by Clough and is considered as a powerful computer

oriented technique. It is a technique for approximating the solution to the problems of

physics and engineering. Finite element method subdivides a huge problem into smaller

parts, called as finite elements. The basic idea regarding FEM is to transform the

governing equations into an appropriate form which is known as weak or variational

form. In weak formulation the governing equations are multiplied by some suitable

functions called the weight functions or test functions and then integrated over the

whole domain. Examples of the weak formulation are the well known weighted residual

method, the discontinuous Galerkin method, mixed method, etc. [40]

Definition 2.9.1. (Galerkin weighted residual method)

Among the finite element methods, Galerkin method of weighted residual is the most

common method for calculating the global stiffness matrix. To solve the problems by

using the finite element method, we carry out the following process.

1. Multiply both sides of governing equation of the problem by the test function

w(x) ∈ W , that is vanishing on the boundaries of the domain, where W is a test

space.

2. Perform integration by parts such that some derivative will be transferred from

trial function to the test function.

3. Impose natural boundary conditions in the boundary integrals and essential bound-

ary conditions to the trial and test spaces. This is called the variational formulation

or weak formulation.

4. Generate mesh or triangulation:

Divide the entire domain into non over-lapping elements. In one dimension, mesh

is a set of points that is,

x0 = 0, x1, x2, ..., xN = 1,

where xi is a node and ei = [xi, xi+1], is an element such that ei
⋂
ej = Φ for i 6= j.

Let hi = xi − xi−1 for i = 0, 1, 2, 3, ..., N. hi is known as the mesh size.
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5. Approximate the infinite dimensional trial space V and test spaces W by the finite

dimensional spaces Vh and Wh respectively

Vh (finite dimensional space) ⊂ V (the solution space).

To illustrate the method of Galerkin weighted residual, we consider the following exam-

ple.

Example

• Consider a 2D Poisson problem

−∆u = f, in Ω (2.36)

u = 0, on ∂Ω (2.37)

where f is known function and u is to find, Ω is domain of the problem which is

open, bounded and connected and ∂Ω is the boundary.

The Variational Form:

• The exact solution u of the Eq. (2.36) should be twice continuously differentiable

and satisfying Eq. (2.36). Let w be a test function such that w(x) = 0 on the

boundary of the domain.

• Weighted residual integral statement of the poisson problem (2.36) is

−
∫

Ω
w ∆u dΩ =

∫
Ω
wf dΩ, (2.38)

• 2nd order derivatives of u can be reduced to 1st order by using Green’s formula.

∫
∂Ω
w
∂u

∂n
ds =

∫
Ω
∇w∇u dΩ +

∫
Ω
w∆u dΩ, (2.39)

• Using Eq. (2.39) in Eq. (2.38), we obtain

−
∫
∂Ω
w
∂u

∂n
ds︸ ︷︷ ︸

0

+

∫
Ω
∇w∇u dΩ =

∫
Ω
wf dΩ, (2.40)
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where the boundary integral vanishes due to the homogeneous boundary condi-

tions, so we are left with

∫
Ω
∇w∇u dΩ =

∫
Ω
wf dΩ, (2.41)

• Elemental weak form is

∫
Ωe

∇w∇u dΩ =

∫
Ωe

wf dΩ, (2.42)

• In xy plane, Eq. (2.42) can be written as

∫
Ωe

(
∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)
dΩ =

∫
Ωe

wf dΩ, (2.43)

• Approximate solution over an element is

ue =
NEN∑
i=1

uj
eSj

e(x, y). (2.44)

where Sj is a shape function and uj are the solution values at nodes.

2.9.1 Advantages of FEM

• Finite element method is useful for managing complicated geometrical boundaries

[40].

• FEM can handle a wide variety of engineering problems [41].

• There are many commercial packages based on finite element method. i.e., ADINA,

ANSYS for analyzing pratical problems.



Chapter 3

Simulations of natural convective

flow in an inclined square cavity

In this chapter, we numerically find the solution for the steady and incompressible natu-

ral convective flow in a square tilted cavity. By means of an appropriate transformation,

the governing equations are transformed into dimensionless coupled partial differential

equations. These dimensionless governing equations has been solved by employing the

finite element technique together with Galerkin weighed residual method. The influence

of governing parameters is analyzed through streamlines and isotherms. In this chapter,

a review of the article [38] is presented.

3.1 Problem Description and Mathematical Formulation

Let us take a two-dimensional, steady and incompressible natural convective flow in a

tilted square cavity. The schematic diagram of the problem under consideration with

boundary conditions is shown in Figure 3.1. The cavity is tilted at an inclination angle

φ◦ with horizontal coordinate. Two parallel walls AB and CD of the cavity are assumed

to be adiabatic where the wall BC is kept cold at temperature Tc (cold wall) and the

wall DA of the cavity is maintained at high temperature Th (hot wall). By means of

Boussinesq approximation, a change in density which arises due to variation in the fluid

temperature is calculated while other physical properties of the density differences are

19
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ignored except in the buoyancy term. Navier-stokes equation and energy equation gov-

erning the flow inside the cavity have been given below.

Figure 3.1: Geometry of the problem.

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

x-momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gβ(T − Tc) sinφ, (3.2)

y-momentum equation:

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gβ(T − Tc) cosφ, (3.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
. (3.4)

Here ν represent the kinematic fluid viscosity, ρ is fluid density, α is the thermal diffu-

sivity, the expansion coefficient is β, φ is an inclination angle, fluid temperature is T , Tc

is the cold right wall temperature, acceleration due to gravity is g, p is pressure of the
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fluid and u, v denote the components of velocity.

The dimensional boundary conditions on each wall of the cavity for velocity and tem-

perature fields are given by

• On the horizontal walls AB and CD:

u(x, y) = 0, v(x, y) = 0,
∂T

∂n
= 0 (3.5)

• On the right wall BC:

u(x, y) = 0, v(x, y) = 0, T = Tc (3.6)

• On the left Wall DA:

u(x, y) = 0, v(x, y) = 0, T = Th (3.7)

where n denotes the normal vector.

3.1.1 Dimensionless Form of the Governing Equations

The dimensionless form of the Eqs. (3.1)-(3.4) may be obtained by using the following

dimensionless parameters [38].

X = x
L , Y = y

L , U = uL
α , V = vL

α , P = pL2

ρα2 , θ = T−Tc
Th−Tc

Pr = ν
α , Ra = gβ(Th−Tc)L3Pr

ν2
.
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The above parameters leads to the following dimensionless governing equations.

∂U

∂X
+
∂V

∂Y
= 0, (3.8)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+Ra Pr θ sinφ, (3.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ra Pr θ cosφ, (3.10)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
. (3.11)

The dimensionless boundary conditions on each wall of the cavity for velocity and tem-

perature fields are given by

• Temperature is adiabatic along the horizontal walls:

U(X,Y ) = 0, V (X,Y ) = 0,
∂θ

∂n
= 0 (3.12)

• Wall BC is maintained at cold temperature:

U(X,Y ) = 0, V (X,Y ) = 0, θ = 0 (3.13)

• Wall DA is maintained at hot temperature:

U(X,Y ) = 0, V (X,Y ) = 0, θ = 1 (3.14)

where n denote the normal vector.

3.2 Numerical method of solution

The transformed non-dimensional governing Eqs. (3.8)-(3.11) together with the bound-

ary conditions (3.12)-(3.14) has been carried out numerically by Galerkin finite element

method using the bi-quadratic element for velocity and temperature, and discontinu-

ous P1 element for pressure. First, the weak formulation of the governing equations

is derived and then the solution is approximated by using the Galerkin approximation

method.



Simulations of natural convective flow in inclined square cavity 23

3.2.1 Variational Formulation

The idea of variational formulation is to transform the governing equations into integral

equations. The variational formulation of the governing equations is obtained by multi-

plying with test function and then integrating over the whole domain.

Strong form of governing equations:

∂U

∂X
+
∂V

∂Y
= 0, (3.15)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+Ra Pr θ sinφ, (3.16)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ra Pr θ cosφ, (3.17)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
. (3.18)

Weak formulation/Variational form:

First, multiply both sides of momentum equations and the temperature equation by

the test function w ∈ W and the continuity equation is multiplied by test function z

∈ Q∗ and then integrate over the whole domain where W and Q∗ are test spaces. The

test space W = (H1(Ω), H1(Ω), H1(Ω)) is considered for the velocity components and

temperature, and Q∗ = L2(Ω) is test space for the pressure term. Thus, the variation-

al/weak formulation of Eqs. (3.15)-(3.18) reads as follows

Find (U , V , θ, P ) ∈ W ×Q∗ such that

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w dΩ− Pr

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w dΩ

−Ra Pr sin φ

∫
Ω
θ w dΩ +

∫
Ω

∂P

∂X
w dΩ = 0, (3.19)∫

Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w dΩ− Pr

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w dΩ

−Ra Pr cos φ

∫
Ω
θ w dΩ +

∫
Ω

∂P

∂Y
w dΩ = 0, (3.20)∫

Ω

(
∂U

∂X
+
∂V

∂Y

)
z dΩ = 0, (3.21)∫

Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
w dΩ−

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ = 0, (3.22)

for all (w, z) ε W ×Q∗.
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In Galerkin discretization, the infinite dimensional test and trial spaces are approxi-

mated by the finite dimensional spaces. In particular, following are the trial and test

spaces

Trial spaces:

U ≈ Uh, V ≈ Vh, θ ≈ θh and P ≈ Ph.

Test spaces:

W ≈Wh, Q∗ ≈ Q∗h.

The Galerkin discretization results into the following non-linear discretized integral equa-

tions.

Pr

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
wh dΩ

−Ra Pr sinφ

∫
Ω
θh wh dΩ +

∫
Ω

∂Ph
∂X

wh dΩ = 0, (3.23)

Pr

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
wh dΩ

−Ra Pr cosφ

∫
Ω
θh wh dΩ +

∫
Ω

∂Ph
∂Y

wh dΩ = 0, (3.24)∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
zh dΩ = 0, (3.25)∫

Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
wh dΩ = 0, (3.26)

In the next step, discretized test and trial functions are approximated by using the finite

element approximations. Solving the above system of discrete integral equations lead to

the following block matrix.


Pr L∗ +N(U, V ) O B1 −Ra Pr sinφ M

O Pr L∗ +N(U, V ) B2 −Ra Pr cosφ M

BT
1 BT

2 O O

O O O L∗ +N(U, V )


︸ ︷︷ ︸

A


U

V

P

θ


︸ ︷︷ ︸
U

=


0

0

0

0


︸︷︷︸
F

(3.27)

In the block matrix (3.27), L∗ is the Laplace marix, M is mass matrix, N is the convective

matrix and O is the zero matrix. B1 and B2 are the pressure matrices and BT
1 , BT

2

are their corresponding transpose matrices. Velocity components and temperature are

discretized by Q2-element of 3rd order accuracy and pressure is approximated by P disc1 -

element of 1st order accuracy (see [42] for details). The coupled non-linear equations are

linearized by the Picard iteration method and Guassian elimination method is utilized
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to solve the associated linear subproblems. Some tolerance value for the convergence

of iterative scheme is prescribed to see the absolute difference of the two consecutive

iteration values to the preceding iteration values. The stopping criterion to the iterative

scheme is given by

∣∣∣∣Ψn+1 −Ψn

Ψn+1

∣∣∣∣ ≤ 10−6. (3.28)

Here Ψ is used to represent U , V , P , θ, where the superscript n denotes the iteration

number.

3.3 Code Validation

In order to validate the code adopted for the numerical solution of equations governing

the natural convective flow, the comparison of current results with some of the earlier

published work on free convection [43–46] are displayed in Table 3.1. Results obtained

from the current code are in good agreement with the published results [43–46].

Table 3.1: Comparison of current code results with some earlier results of [43–46].

Raleigh
number

Present
study

Ref [43] Ref [44] Ref [45] Ref [46]

103 1.118 1.117 1.121 1.118 1.115
104 2.245 2.246 2.286 2.243 2.226
105 4.522 4.518 4.546 4.519 4.508

3.4 Results and discussion

Galerkin weighted residual method is utilized to solve the equations governing the heat

transfer and fluid flow. The obtained numerical results are visualized by means of

streamlines and isotherms in the square inclined cavity which can be seen through Fig-

ures 3.2-3.4. The cavity for the given problem is considered with two adiabatic walls

AB and CD, whereas the wall DA is kept at maximum temperature and the wall BC is

kept cold. Effect of the governing parameters such as Prandtl number, Raleigh number
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and inclination angle on the for various considered values is observed.

Figure 3.2(a)-(d) illustrates the effect of the variation of the inclination angles (φ = 15◦,

30◦ 60◦ and 75◦) on fluid flow in an inclined cavity with Ra = 103 and Pr = 0.025.

At Ra = 103, the isotherms are found to be slightly curved nature due to inclination

angle effect. For all inclination angles, the isotherms are flattened near the top section

of wall BC (cold wall) and lower section of wall DA (hot wall). Flow of the fluid inside

the square cavity is weak which can be viewed by the low intensity of streamlines. The

flow strength with augmentation in inclination angle decreases at low Raleigh number as

|ψ|max = 1.21, 1.20, 0.88 and 0.51 for φ = 15◦, 30◦, 60◦ and 75◦, respectively. The flow

strength increases with an increment in the Raleigh number due to onset of convection.

At Ra = 104 and Pr = 0.025, the isotherms in core of the cavity are gradually contorted

for all inclination angles. The convection starts gradually inside the cavity for Ra = 104.

Figure 3.3(a)-(d) depicts the fluid flow for Ra = 105 and Pr = 0.025 inside the cavity by

varying the inclination angles. The buoyancy driven forces with the Raleigh number in-

crease and thus convection at high Ra (Ra = 105) dominates in the cavity. At Ra = 105,

it is observed that the isotherms are extremely distorted for all inclination angles at the

centre portion of the cavity due to the dominance of convection. In contrast to the

previous case (Ra = 103), the isotherms for all φ are found to be compressed at the top

of wall BC (cold wall) and at the bottom of left wall DA (hot wall). The streamline

contours follow the similar circular pattern as in the previous case (Ra = 103). The

flow intensity inside the cavity increases, irrespective of φ which can be visualized by

the maximum magnitude of the streamlines. The values of |ψ|max at Ra = 105 are 10.4,

14.4, 21.9 and 23.5 for φ = 15◦, 30◦, 60◦ and 75◦, respectively (see Figure 3.3(a)-(c)).

Figure 3.4(a)-(d) shows the effect of various inclination angles on isotherms and stream-

lines at Ra = 105 and Pr = 998. It is observed that the isotherms at the lower section

of the wall DA and at the upper section of the cold wall BC are highly compressed for

all values of the inclination angle φ. It may be seen that the streamline contours appear

in the shape of cavity near the walls, which contrasts the previous case with Ra = 103

where it was observed in circular pattern. The streamlines at the center of the cavity

occur in almost elliptical shape for φ = 30◦ 60◦ and 75◦, whereas dumbbell shape is

observed in streamlines at φ = 15◦. The maximum magnitude of streamlines indicates
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that the fluid flow intensity inside the cavity is high as compared with the previous case

(Pr = 0.025) for all values of φ. At high Prandtl number (Pr = 998), the values ob-

served for |ψ|max are 14.1, 17.3, 23.3 and 24.6 for φ = 15◦, 30◦, 60◦ and 75◦, respectively.

The influence of the physical parameters i.e., Raleigh number (Ra = 103) and Prandtl

number (Pr = 0.025 and 998 ) with the varying inclination angle φ on the heat transfer

is illustrated in Figure 4.5. For low Raleigh number (Ra = 103), the declination in the

graph of average Nusselt number has been observed for all inclination angles.

In Figure 4.6, the average heat transfer against the inclination angle ϕ and physical

parameters i.e., Raleigh number (Ra = 105) and Prandtl number (Pr = 0.025 and 998)

is plotted. At Pr = 0.025, the enhancement in average Nusselt number has been ob-

served for φ = 15◦ - 60◦ and it decreases for φ = 75◦. For the case of high Prandtl

number, the rate of heat transfer enhanced for small inclination angles whereas the op-

posite effect has been observed for the large values of φ.

The effect of the varying Raleigh number on the heat transfer rates is depicted in Fig-

ure 4.7. An augmentation in the average Nusselt number is observed for both cases

of Prandtl number. Maximum values of heat transfer rate are found at high Raleigh

number (i.e. Ra = 105 ) due to strong convection.
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Figure 3.2: Influence of inclination angle on isotherms (left) and streamlines (right)
for Ra = 103 and Pr = 0.025.
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Figure 3.3: Influence of inclination angle on isotherms (left) and streamlines (right)
for Ra = 105 and Pr = 0.025.
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Figure 3.4: Influence of inclination angle on isotherms (left) and streamlines (right)
for Ra = 105 and Pr = 998.
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Figure 3.5: The influence of inclination angle with Ra = 103 and Pr on Nusselt
number.

Figure 3.6: The influence of inclination angle with Ra = 105 and Pr on Nusselt
number.

Figure 3.7: The influence of Raleigh number with φ = 15o and Pr on Nusselt number.



Chapter 4

Simulations of natural convective

flow considering internal heat

generation/absorption

Many researchers have analyzed the study of natural convective flow. Previously, effects

of different physical parameters and inclination angles have been observed but despite

of all the great work has been done, there is certainly a less information regarding nat-

ural convective flow with internal heat generation/absorption inside the inclined square

enclosure. In this chapter, the inspirational work of Basak et al. [38] is extended. The

main purpose of the current project is to asses and analyze the impact of internal heat

genration/absorption on heat transfer by means of isotherms and fluid flow via stream-

lines.

In this chapter, we investigate the influence of heat generation/absorption on the steady

and incompressible natural convective flow in a square tilted cavity. In order to solve the

governing equations, the dimensionless form of the system of equations is obtained by

using a suitable transformation. This system of dimensionless coupled partial differential

equations is approximated by utilizing a well known Galerkin finite element technique.

Impact of internal heat generation/absorption parameter on flow and heat exchange is

viewed by some useful plots and analyzed by isotherms and streamlines. This chapter

is an extension of the work presented in Chapter 3.

32
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4.1 Mathematical Formulation

The two dimensional, steady and incompressible natural convective flow with internal

heat generation/absorpion in tilted square cavity is considered. Two horizontal walls

(AB and CD) of the cavity are assumed to be adiabatic with the left hot and the right

cold wall. The enclosure is skewed at an angle φ◦ with horizontal coordinate. Under

these assumptions, the equations of continuity, momentum and energy equation with

internal heat generation takes the following form.

Figure 4.1: Geometry of the problem.

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

x-momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gβ(T − Tc) sinφ, (4.2)

y-momentum equation:

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gβ(T − Tc) cosφ, (4.3)
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Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+
Q0

ρcp
(T − Tc). (4.4)

In the above system of equations, ν represents the kinematic fluid viscosity, ρ is fluid

density, cp is the specific heat, Q0 is the heat flux, α is the thermal diffusivity, the ex-

pansion coefficient is β, φ is an inclination angle, fluid temperature is T and Tc is the

cold right wall temperature, acceleration due to gravity is g, p is pressure of the fluid

and u,v denote the components of velocity.

Following are the boundary conditions for the dimensional velocity and temperature.

• On the horizontal walls AB and CD:

u(x, y) = 0, v(x, y) = 0,
∂T

∂n
= 0 (4.5)

• On the right wall BC:

u(x, y) = 0, v(x, y) = 0, T = Tc (4.6)

• On the left Wall DA:

u(x, y) = 0, v(x, y) = 0, T = Th (4.7)

where n denote the normal vector.

4.1.1 Dimensionless form of the Governing Equations

By using the following dimensionless parameters [38], Eqs. (4.1)-(4.4) are converted into

the dimensionless form as follows.

X = x
L , Y = y

L , U = uL
α , V = vL

α , P = pL2

ρα2 , θ = T−Tc
Th−Tc

Pr = ν
α , Ra = gβ(Th−Tc)L3Pr

ν2
, q∗ = Q0L2

ρcpα
.
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The transformed dimensionless governing reads the following.

∂U

∂X
+
∂V

∂Y
= 0, (4.8)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+Ra Pr θ sinφ, (4.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ra Pr θ cosφ, (4.10)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
+ q∗ θ. (4.11)

Following are the dimensionless boundary conditions for velocity and temperature fields

along each side of the cavity.

• Temperature is adiabatic along the horizontal walls:

U(X,Y ) = 0, V (X,Y ) = 0,
∂θ

∂n
= 0 (4.12)

• Wall BC is maintained cold:

U(X,Y ) = 0, V (X,Y ) = 0, θ = 0 (4.13)

• Wall DA is maintained hot:

U(X,Y ) = 0, V (X,Y ) = 0, θ = 1 (4.14)

where n is the normal vector.

4.2 Numerical Solution

The system of dimensionless governing Eqs. (4.8)-(4.11) together with the boundary con-

ditions (4.12)-(4.14) has been solved numerically by finite element method with Galerkin

weighted residual method.
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4.2.1 Variational Formulation

Finding a solution in strong form is not always possible and there may not be a smooth

solution to a particular problem. In order to overcome these difficulties, weak formu-

lation is preferred. Weak formulation minimize the continuity or smoothness require-

ments on approximation functions. The main concept of weak/variational formulation

is to turn the governing equations into integral equations. For the derivation of weak

form, the governing equations are first multiplied by the test function obtained and then

integration is performed over the entire domain.

Let W = (H1(Ω))3 and Q∗ = L2(Ω) be the test spaces for velocity components, tem-

perature and pressure respectively. The variational formulation of the governing Eqs.

(4.8)-(4.11) reads the following

Find (U , V , θ, P ) ∈ W ×Q∗ such that

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w dΩ− Pr

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w dΩ

−Ra Pr sinφ

∫
Ω
θ w dΩ +

∫
Ω

∂P

∂X
w dΩ = 0, (4.15)∫

Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w dΩ− Pr

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w dΩ

−Ra Pr cosφ

∫
Ω
θ w dΩ +

∫
Ω

∂P

∂Y
w dΩ = 0, (4.16)∫

Ω

(
∂U

∂X
+
∂V

∂Y

)
z dΩ = 0, (4.17)∫

Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
w dΩ−

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ− q∗

∫
Ω
θ w dΩ = 0. (4.18)

for all (w, z) ε W ×Q∗.

The infinite dimensional test and trial spaces are approximated to finite dimensional

spaces using Galerkin method. Following are the approximations

U ≈ Uh, V ≈ Vh, θ ≈ θh and P ≈ Ph
W ≈Wh, Q∗ ≈ Q∗h
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Using the Galerkin approximation in Eqs. (4.15)-(4.18), we get

Pr

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
wh dΩ

−Ra Pr sinφ

∫
Ω
θh wh dΩ +

∫
Ω

∂Ph
∂X

wh dΩ = 0, (4.19)

Pr

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
wh dΩ

−Ra Pr cosφ

∫
Ω
θh wh dΩ +

∫
Ω

∂Ph
∂Y

wh dΩ = 0, (4.20)∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
zh dΩ = 0, (4.21)∫

Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
wh dΩ− q∗

∫
Ω
θh wh dΩ = 0.

(4.22)

Substituting the approximate(or basis) functions for Uh, Vh, Ph and θh, the above system

of equations yield the following block matrix.


Pr L∗ +N(U, V ) O B1 −Ra Pr sinφ M

O Pr L∗ +N(U, V ) B2 −Ra Pr cosφ M

BT
1 BT

2 O O

O O O L∗ + q∗ M +N(U, V )


︸ ︷︷ ︸

A


U

V

P

θ


︸ ︷︷ ︸
U

=


0

0

0

0


︸︷︷︸
F

(4.23)

Laplace matrix, mass matrix, convective matrix and zero matrix in the block matrix

(4.23) are denoted by L∗, M , N and O, respectively. B1 and B2 are the pressure

matrices where the matrices BT
1 and BT

2 are their corresponding transpose matrices. Q2

(or biquadratic) element is used to discretize the temperature and velocity components

where pressure term is approximated by P disc1 element (see [42] for details). The non-

linear system of governing equations are linearized by means of the Picard iteration

method and the associated linear subproblems are solved using Guassian elimination

method. The stopping criterion to the iterative scheme for the convergence of solution

is given by

∣∣∣∣Ψn+1 −Ψn

Ψn+1

∣∣∣∣ ≤ 10−6. (4.24)
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In the above defined expression, Ψ denotes U , V , P , θ and the superscript n is used for

the iteration number.

4.3 Results and Discussion

The governing equations for the given flow are solved utilizing the Galerkin finite element

method. Simulations are performed and the results are exhibited in square enclosure

with inclination effect by means of isotherms and streamlines. The cavity under consid-

eration has two vertical walls with thermal boundary conditions and the two horizontal

walls under the adiabatic condition. Impact of the various parameters is observed on

the flow with the specified values such as Prandtl number (Pr = 0.025), Raleigh number

(Ra = 102 − 105) and internal heat generation/absorption (q∗= -10, -5, 0 and 5) with

inclination angle (φ = 15◦, 30◦, 60◦ and 75◦).

Figure 4.1(a)-(d) depicts the effect of Raleigh numbers (Ra = 102−105) on flow in square

tilted cavity while other parameters are kept fixed such as Prandtl number (Pr = 0.025)

and heat generation parameter (q∗ = −5) with inclination angle (φ = 15◦). From Figure

4.1(a), it can be seen that the hot fluid rises to the wall DA of the cavity due to the

inclination effect of the enclosure. In this case, the transfer of heat is mainly due to con-

duction as the isotherm contours are uniformly distributed. Due to conduction dominant

heat transfer, it is observed that the magnitude of streamines is very low. Enhancement

in the Raleigh number causes a curvature in the isotherms which can be seen through

Figure 4.1(b). It may also be noted that the isotherms are semi-parallel to walls DA

and BC of the cavity. A slight increment in the intensity of streamlines is also noticed.

The convection heat transfer mode begins at Ra = 104 due to which disturbance in

the streamlines occur at the middle portion of the cavity. Further, enhanced convection

patterns occur inside the cavity for high Ra (i.e. Ra = 105) and high deformation in

the isotherm contours occur at the core of cavity due to dominance of convection. In

all cases, streamlines occur almost in a circular shape inside the cavity. The strength

of fluid flow enhanced inside the cavity with increase in Ra which is evident from the

maximum magnitude of streamfuntion (see Figure 4.1(a)-(d)). For all considered cases

the values noticed for |ψ|max are 0.11, 1.09, 5.73 and 11.33 for Ra = 102, 103, 104 and

105, respectively.
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Impact of the varying inclination angles on isotherms and streamlines in square inclined

enclosure with Pr = 0.025, Ra = 105 and q∗ = −5 is illustrated in Figure 4.2(a)-(c).

With the enhancement in inclination angle φ, the streamfunction grows in magnitude

which shows that the flow strength inside the cavity increases as |ψ|max = 11.3, 15.41,

22.1 and 23.7 for φ = 15◦, 30◦, 60◦ and 75◦, respectively (see Figure 4.2(a)-(d)). For all

φ, it is observed that isotherms near the top portion of right wall BC and at the bottom

portion of wall DA are highly compressed. The contours of isotherm follow almost the

similar pattern for all values of inclination angle.

Effect of internal heat generation (q∗ > 0) or absorption parameter (q∗ < 0) on stream-

lines and isotherms distribution with Pr = 0.025, Ra = 105 and φ = 15◦ is displayed

in Figure 4.3(a)-(c). It is noticed that the fluid temperature in the presence of heat

generation parameter increases in the boundary layer of the heated wall whereas the op-

posite effect has been observed for the heat absorption; namely, thickness of the thermal

boundary layer decreases with the decrease in heat absorption parameter. In fact, heat

generation process produces hot layer of the fluid near surface resulting increase in the

fluid temperature and decrease in the rate of heat transfer. Overall, the heat transfer

rates deteriorates with an increase in q∗ and it increases with an increases in the heat

absorption parameter (negative values). The heat generation/absorption parameter (q∗)

has a slight effect on streamline contours (see Figure 4.3(a)-(d)).

The impact of Raleigh number for different cases of heat generation/absorption param-

eter on the heat transfer rate can be visualized through Figure 4.5. Values of Prandtl

number and inclination angle are kept fixed i.e., Pr = 0.025 and φ = 15◦. The incre-

ment in average Nusselt number is observed by increasing the Raleigh number. This is

due to the fact that convection is dominant inside the cavity for high Raleigh numbers

(Ra ≥ 104) resulting increase in the rate of heat transfer.

In Figure 4.6, the variation in inclination angle against average Nusselt number has been

depicted. The average Nusselt number first increases for inclination angles φ = 15◦, 30◦

then a slight decrease is observed for φ = 60◦ and it further decreases for φ = 75◦.
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The effect of heat generation/absorption parameter on average Nusselt number for var-

ious cases of Ra is shown in Figure 4.7. For all cases it is seen that the average Nusselt

number increases for q∗ < 0 while reduction is observed for q∗ > 0. In other words, the

heat flow decreasing continuously by increasing the value of q∗ from q∗ = −10 to 5.
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Figure 4.2: Influence of Raleigh number on isotherms (left) and streamlines (right)
for Pr = 0.025, φ = 15◦ and q∗ = −5.



Simulations of natural convective flow with heat generation/absorption 42

(a
)
φ

=
1
5◦

(b
)
φ

=
30
◦

(c
)
φ

=
60
◦

(d
)
φ

=
75
◦

Figure 4.3: Influence of inclination angle on isotherms (left) and streamlines (right)
for Pr = 0.025, Ra = 105 and q∗ = −5.
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Figure 4.4: Influence of heat gneration/absorption parameter on isotherms (left) and
streamlines (right) for Pr = 0.025, Ra = 105 and φ = 15◦.
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Figure 4.5: The influence of Raleigh number on average Nusselt number.

Figure 4.6: The influence of inclination angle on average Nusselt number.

Figure 4.7: The influence of heat generation/absorption on average Nusselt number.



Chapter 5

Conclusion

In this dissertation, the study of two dimensional steady and incompressible natural

convection flow under the influence of internal heat generation/absorption parameter is

carried out in a tilted square cavity. The cavity is considered with two adiabatic walls

at the top and bottom, hot wall at the left and cold wall at the right side (see Fig-

ure 4.1). The major equations developed for the heat exchange and fluid flow are first

transformed into dimensionless form by using an appropriate transformation and then

solved numerically by employing the Galerkin finite element method. The finite element

Q2 (biquadratic element) is used for velocity and temperature and P disc1 is for pressure

term. The effect of emerging parameters such as Raleigh number, Prandtl number and

heat generation/absorption with the inclination angle on the heat transfer and fluid flow

has been thoroughly observed. The numerical simulations of the dimensionless velocity

and temperature are analyzed by the streamlines and isotherms, respectively, while the

average Nusselt number is viewed by some useful plots against different physical param-

eters and inclination angle.

In this thesis, the work of Basak et al. [40] is extended with the notion of internal

heat generation or absorption parameter. The contribution of heat generation term is

incorporated into energy equation. The impact of heat generation (q∗ > 0) and heat

absorption (q∗ < 0) parameters on the flow by means of streamlines and isotherms has

been observed. The average Nusselt number against the heat generation/absorption is

also analyzed by Matlab plots.

45
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Some valuable results obtained through this numerical study may be listed as follows;

• The convective forces for high Raleigh number (Ra ≥ 104) enhanced inside the

cavity. At high Raleigh number, an increment in the fluid flow and heat flow

is observed due to the strong convection for all considered cases of q∗. Large

values are noticed for the magnitude of streamfunction at the center of the cavity

irrespective of the Prandtl number and inclination angle.

• At q∗ = 5, heat transfer rate decreases for all inclination angles. For small values

of q∗, the rate of heat transfer increases for lower values of φ and decreases at high

inclination angle (i.e. φ = 75◦).

• Rate of heat transfer decelerates with an augmentation in the heat generation

parameter (q∗ > 0) for all cases of Ra. On the other hand, heat transfer is enhanced

for the heat absorption parameter (q∗ < 0) and attained maximum values at high

Raleigh number.

5.1 Future determination

In future, the work presented in this thesis may be extend in the following direction

• Observing the magnetohydrodynamics effect on heat flow.

• Analyzing the impact of porous media.

• To perform the non-stationary simulation.

• Apply the higher order finite elements in space.

• Apply the Galerkin discretization scheme for temporal discretization.



Bibliography

[1] H. F. Oztop, Y. Varol, and A. Koca. Experimental investigation of cooling of heated

circular disc using inclined circular jet. International Communications in Heat and

Mass Transfer, 38(7):990–1001, 2010.

[2] Y. C. Pei. Thermoelastic damping in rotating flexible micro-disk. International

Journal of Mechanical Sciences, 61:52–64, 2012.

[3] A. Muftuoglu and E. Bilgen. Heat transfer in inclined rectangular recievers for

concentrated solar radiation. International Communications in Heat and Mass

Transfer, 35(5):551–556, 2008.

[4] M. Rahimi, I. Owen, and J. Mistry. Thermal stresses in boiler tubes arises from

high-speed cleaning jets. International Journal of Mechanical Sciences, 45:995–

1009, 2003.

[5] C. Nieto, H. Power, and M. Giraldo. A boundary integral equation formulation

for the thermal creep gas flow at finite Peclet numbers. International Journal of

Mechanical Sciences, 88:267–275, 2014.

[6] A. Bahrami, D. T. Valentine, and D. K. Aidun. Computational analysis of the

effect of welding parameters on energy consumption in GTA welding process. In-

ternational Journal of Mechanical Sciences, 93:111–119, 2015.

[7] M. Turkyilmazoglu. Exact solution for the incompressible viscous magnetohydrody-

namics fluid of a porous rotating disk flow with hall current. International Journal

of Mechanical Sciences, 56:86–95, 2012.

[8] M. Turkyilmazoglu. The analytical solution of mixed convection heat transfer and

fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Interna-

tional Journal of Mechanical Sciences, 77:263–268, 2013.

47



Bibliography 48

[9] H. Aminfar, M. Mohammadpourfard, and Y. N. Kahnamouei. Numerical study of

magnetic field effects on the mixed convection of a magnetic nanofluid in a curved

tube. International Journal of Mechanical Sciences, 7:81–90, 2014.

[10] M. S. Alam, M. A. Khatun, M. M. Rahman, and K. Vajraveluc. Effects of variable

fluid properties and thermophoresis on unsteady forced convective boundary layer

along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt

numbers. International Journal of Mechanical Sciences, 105:191–205, 2016.

[11] H. Aminfar, M. Mohammadpourfard, and F. Mohseni. Numerical investigation of

thermocapillary and buoyancy driven convection of nanofluids in a floating zone.

International Journal of Mechanical Sciences, 65:147–156, 2012.

[12] R. Kandasamy, I. Muhaimin, and R. Mohamad. Thermophoresis and Brownian

motion effects on MHD boundary-layer flow of a nonofluid in the presense of thermal

stratification due to solar radiation. International Journal of Mechanical Sciences,

70:146–154, 2013.

[13] M. A. Sheremet, I. Pop, and R. Nazar. Natural convection in a square cavity filled

with a porous medium saturated with a nanofluid using the thermal noneequilibrium

model with a Tiwari and Das nanofluid model. International Journal of Mechanical

Sciences, 100:312–321, 2015.

[14] S. Roy and T. Basak. Finite element analysis of natural convective flows in a square

cavity with non-uniformly heated walls. International Journal of Thermal Sciences,

52:112–126., 2012.

[15] M. November and M. W. Nasteel. Natural convection in rectangular enclosures

heated from below and cooled along one side. International Journal of Thermal

Sciences, 48:363–371, 2009.

[16] G. S. Shiralker and C. L. Tien. A numerical study of the effect of a vertical temper-

ature difference imposed on a horizontal enclosure. International Journal of Heat

and Fluid Flow, 28:1492–1506, 2007.

[17] M. M. Ganzoralli and L. F. Milanez. Natural convection in rectangular enclosure

heated from below and symmetrically cooled from the sides. Communications in

Nonlinear Science and Numerical Simulation, 15:1501–1510, 2010.



Bibliography 49

[18] A. C. Baytas and I. Pop. Natural convection in a trapezoidal enclosure filled with

a porous medium. International Journal of Mechanical Sciences, 39:125–134, 2001.

[19] B. V. R. Kumar and Shalini. Free convection in a non-Darcian wavy porous enclo-

sure. International Journal of Engineering Science, 41:1827–1848, 2003.

[20] K. Khanafer, B. Al-Azmi, A. Marafie, and I. Pop. Non-Darcian effects on natural

convection heat transfer in a wavy porous enclosure. International Journal of Heat

and Mass Transfer, 52:1887–1896, 2009.

[21] M. Zeng, P. Yu, F. Xu, and Q. W. Wang. Natural convection in triangular attics

filled with porous medium heated from below. Numerical Heat Transfer A-Appl,

63:735–754, 2013.

[22] F. Wu, W. J. Zhou, G. Wang, X. X. Ma, and Y. Q. Wang. Numerical simulation of

natural convection in a porous cavity with linearly temperature distribution under

the local thermal non-equilibrium condition. Numerical Heat Transfer A-Appl, 68:

1394–1415, 2015.

[23] P. Biswal, A. Nag, and T. Basak. Analysis of thermal management during natural

convection within porous tilted square cavities via heatline and entropy generation.

International Journal of Mechanical Sciences, 51:893–911, 2012.

[24] A. K. Singh, S. Roy, and T. Basak. Analysis of Bejan’s heatlines on visualization

of heat flow and thermal mixing in tilted square cavities. International Journal of

Heat and Mass Transfer, 55.

[25] C. Cianfrini, M. Corcione, and P. P. Dell’Omo. Natural convection in tilted square

cavities with differentially heated opposed walls. International Journal of Mechan-

ical Sciences, 44(5):441–451, 2005.

[26] E. Baez and A. Nicolas. 2D natural convection flows in tilted cavities: porous

media and homogeneous fluids. International Journal of Heat and Mass Transfer,

49:4773–4785, 2006.

[27] A. Dalal and M. K. Das. Laminar natural convection in an inclined complicated

cavity with spatially variable wall tempeature. International Journal of Heat and

Mass Transfer, 48(18):3833–3854, 2005.



Bibliography 50

[28] S. H. Tasnim and S. Mahmud. Laminar free convection inside an inclined l-shaped

enclosure. International Communications in Heat and Mass Transfer, 33(8):936–

942, 2006.

[29] D. Z. Jeng, C. S. Yang, and C. Gau. Experimental and numerical study of transient

natural convection due to mass transfer in inclined enclosure. International Journal

of Heat and Mass Transfer, 52(1-2):181–192, 2009.

[30] H. Ozoe, H. Sayama, and S. W. Churchill. Natural convection in an inclined square

channel. International Journal of Heat and Mass Transfer, 17:401–406, 1974.

[31] J. Rasoul and P. Prinos. Natural convection in an inclined enclosure. International

Journal of Numerical Methods for Heat and Fluid Flow, 7:438–478, 1997.

[32] I. Catton, P. S. Ayyaswamy, and R. M. Clever. Natural convection flow in a finite

rectangular slot arbitrarily oriented with respect to the gravity vector. International

Journal of Heat and Mass Transfer, pages 173–184, 1974.

[33] F. J. Hamady, J. R. Lloyd, H. Q. Yang, and K. T. Yang. Study of local natural

convection heat transfer in an inclined enclosure. International Journal of Heat and

Mass Transfer, 32:1697–1708, 1989.

[34] K. Al-Farhny and A. Kuran. Numerical study of double diffusive natural convective

heat and mass transfer in an inclined rectangular cavity filled with porous medium.

International Communications in Heat and Mass Transfer, 39:174–181, 2012.

[35] A. J. Chamkha. Effects of heat generation/absorption and thermophoresis on hy-

dromagnetic flow with heat and mass transfer over a flat surface. International

Journal of Numerical Methods for Heat and Fluid Flow, 10:432–439, 2000.

[36] M. M. Molla, M. A. Hossain, and L. S. Yao. Natural convection flow along a

vertical wavy surface with uniform surface temperature in the presence of heat gen-

eration/absorption. International Journal of Thermal Sciences, 34:157–163, 2004.

[37] M. M. Molla, M. A. Hossain, and M. C. Paul. Natural convection flow from an

isothermal horizontal circular cylinder in the presence of heat generation. Interna-

tional Journal of Engineering Science, 44:949–955, 2006.

[38] T. Basak, A. K. Singh, T. P. Akshaya Sruthi, and S. Roy. Finite element simulations

on heat flow visualization and entropy generation during natural convection in



Bibliography 51

inclined square cavities. International Communication in Heat and Mass Transfer,

51:1–8, 2014.

[39] F. M. White. Viscous fluid flow. McGraw-Hill, Inc., 2, 1992.

[40] J. H. Ferziger and M. Peric. Computational methods for fluid dynamics. Springer,

3, 2002.

[41] R. Lohner. Applied computational fluid dynamics techniques. Wiley, 2, 2008.

[42] S. Hussain, F. Scheiweck, and S. Turek. Efficient Newton multigrid solution tech-

niques for higher order space time Galerkin discretizations of incompressible flow.

Applied Numerical Mathematics, 83:51–71, 2014.

[43] F. Kuznik, J. Vareilles, G. Rusaouen, and G. Krauss. A double-population Lattice

Boltzmann method with non-uniform mesh for the simulation of natural convection

in a square cavity. International Journal of Heat and Fluid Flow, 28:862–870, 2007.

[44] H. N. Dixit and V. Babu. Simulations of high Raleigh number natural convection

in a square cavity using the Lattice Boltzmann method. International Journal of

Heat and Mass Transfer, 49:727–739, 2006.

[45] G. D. V. Davis. Natural convection in a square cavity: a benchmark numerical

solutions. International Journal for Numerical Methods in Fluids, 3:261–282, 2009.

[46] R. Djebali, M. E. Ganaoui, H. Sammouda, and R. Bennacer. Some benchmarks of

a side wall heated cavity using Lattice Boltzmann approach. Fluid Dynamics and

Material Processing, 83:51–71, 2014.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Thesis contributions
	1.2 Thesis layout

	2 Some basic definitions and governing equations 
	2.1 Basic definitions
	2.2 Classification of fluids
	2.3 Flows
	2.4 Some basic definitions of heat transfer
	2.5 Thermal conductivity
	2.6 Thermal diffusivity
	2.7 Dimensionless numbers
	2.8 Basic equations
	2.9 Finite Element Method
	2.9.1 Advantages of FEM


	3 Simulations of natural convective flow in an inclined square cavity
	3.1 Problem Description and Mathematical Formulation
	3.1.1 Dimensionless Form of the Governing Equations

	3.2 Numerical method of solution
	3.2.1 Variational Formulation

	3.3 Code Validation
	3.4 Results and discussion

	4 Simulations of natural convective flow considering internal heat generation/absorption
	4.1 Mathematical Formulation
	4.1.1 Dimensionless form of the Governing Equations

	4.2 Numerical Solution
	4.2.1 Variational Formulation

	4.3 Results and Discussion

	5 Conclusion
	5.1 Future determination

	Bibliography



