
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Duplicate Bug Report Detection

Using Hybrid Model

by

Nabiya Fatima

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2023

i

Copyright © 2023 by Nabiya Fatima

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

It is with great joy and pleasure to dedicate my thesis work to both my parents,

without whom I would not have been able to make it this far in life. My parents

have been there for me, through all the highs and lows, lending me with infinite

support to carryout this journey. I’m truly grateful for the love and luxuries

bestowed upon me by my parents. I would also like to dedicate this thesis to my

supervisor for his cooperative and helpful guidance.

iv

Author’s Declaration

I, Nabiya Fatima hereby state that my MS thesis titled “Duplicate Bug Re-

port Detection Using Hybrid Model” is my own work and has not been sub-

mitted previously by me for taking any degree from Capital University of Science

and Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Nabiya Fatima)

Registration No: MCS213027

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Duplicate

Bug Report Detection Using Hybrid Model” is solely my research work

with no significant contribution from any other person. Small contribution/help

wherever taken has been duly acknowledged and that complete thesis has been

written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Nabiya Fatima)

Registration No: MCS213027

vi

Acknowledgement

I would like to acknowledge the blessings of Allah Almighty for helping me through

all the hardships of my life. I would like to acknowledge the help and support of

my family, who showered me with constant and never-ending support. Further

more, I acknowledge the support and much needed guidance of my supervisior in

conduction of this thesis.

(Nabiya Fatima)

vii

Abstract

Duplicate bug report detection is an essential and challenging task, in large soft-

ware projects where hundreds and thousands of bugs are reported each day and

maintained through bug tracking systems. The process is necessary to avoid redun-

dant work and to maintain the quality of the software. Duplication occurs when

multiple users report the same bug. As the bug reports are written in natural

language the same bug can be reported multiple times with varying descriptions,

generating non-trivial duplicate bug reports. In order to avoid the redundant work

an expert need to identify these duplicates and label them manually. This process

requires extensive amount of efforts in terms of time and cost and directly impacts

the bug fixing time. Earlier studies on Duplicate bug report detection uses Infor-

mation Retrieval techniques. These techniques are fast and create sparse vectors

for text representation. They however, lack to capture contextual and seman-

tic meaning of words. However recent efforts to identify duplicate reports rely

on advanced deep neural techniques. These approaches typically involve dense

representations of bug reports, taking into account the semantic meaning of the

words. Their higher precision and recall rates unfortunately, is accompanied by

higher computational cost and processing time. There exists a need to develop

new techniques with lower run time and higher precision. This work proposed

a hybrid model that uses both IR and DL techniques to identify duplicate bug

reports. The proposed approach utilizes both structured and unstructured data

to retrieve the possible duplicates. It uses a time efficient technique, BM25 to

filter out the bug reports and then a semantic reranking model is applied to rank

the duplicates based on semantic similarities. We validate our approach on two

benchmark datasets: Eclipse and Open Office. The results show a mean of 83.5%

for the retrieval task, at Recall@20 and a MAP of 68.5% across both the datasets

with an average of 5.65s PSPT.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgement vi

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Bug Tracking . 3

1.1.1 Issues in Bug Tracking . 6

1.2 Problem Statement . 10

1.3 Research Questions . 11

1.4 Proposed Solution . 11

1.5 Objective . 12

1.6 Thesis Organization . 12

2 Literature Review 13

2.1 Duplicate Bug Report Detection (DBRD) 13

2.2 Information Retrieval Approaches 14

2.2.1 Count Based Approaches . 14

2.2.2 BM25 Approach . 15

2.3 Machine Learning Approaches . 17

2.3.1 CNN Based Approaches . 17

2.3.2 BERT Based Approaches . 18

2.3.3 Hybrid Approaches . 19

2.3.4 Other Approaches . 21

2.4 Discussion on DBRD Approaches 22

viii

ix

3 Research Methodology 27

3.1 Problem Identification . 27

3.1.1 Literature Review . 29

3.1.2 Research Gap Identification 30

3.1.3 Problem Formulation . 30

3.1.4 Dataset Review and Selection 30

3.1.4.1 Eclipse dataset . 30

3.1.4.2 OpenOffice dataset 31

3.1.4.3 Firefox . 31

3.1.4.4 Kibana dataset . 32

3.1.4.5 Selected datasets 32

3.1.5 Preliminary Preprocessing 33

3.1.6 Proposed Hybrid Model for DBRD 34

3.1.7 Preprocessing . 34

3.1.7.1 Feature Selection 34

3.1.7.2 Natutal Language Processing 36

3.1.7.3 Tokenization . 37

3.1.7.4 Stemming . 37

3.1.7.5 Stop words removal 37

3.1.7.6 Processed Feature Set 38

3.1.7.7 BM25 Indexing . 39

3.1.7.8 Similarity Measure and Ranking 39

3.1.8 Semantic Reranking . 41

3.1.8.1 SBERT . 41

3.1.8.2 Fine Tuning SBERT Model 42

3.1.8.3 Data Preparation 42

3.1.8.4 Select SBERT model 43

3.1.8.5 Architecture . 43

3.1.8.6 Loss Function . 44

3.1.8.7 Similarity Measure 45

3.1.9 Evaluation metrics . 46

3.1.9.1 Recall@K . 46

3.1.9.2 Mean Average Precision (MAP) 48

4 Results and Discussion 49

4.1 Dataset Description . 49

4.2 Duplicate Bug Report Retrieval Performance 50

4.3 Comparision with Previous Bug Report Retrieval Techniques 52

4.4 Effectivness of the Approach in Terms of Response Time 54

4.5 Addressing Research Questions . 57

5 Conclusion and Future Work 59

5.1 Limitations . 59

5.1.1 Dependency on BM25 Model 59

5.1.2 Generalization Across Diverse Platforms 59

x

5.2 Conclusion . 60

5.3 Future Work . 60

5.3.1 Cross-domain Data . 60

5.3.2 Optimizing Top-N Selection for Enhanced Duplicate Bug
Report Detection . 61

5.3.3 Integration with Bug Tracking Tools 61

Bibliography 62

List of Figures

1.1 Bug life cycle [12] . 3

1.2 Percentage of DBRs . 8

1.3 No. of days required for analyzing the DBRs 8

1.4 IR model [23] . 9

1.5 Deep Learning based NLP [25] . 10

3.1 Proposed research methodology for retrieval of DBRs 28

3.2 Literature review hierarchy . 29

3.3 Bugs title with tags . 33

3.4 Bugs title without tags . 33

3.5 Proposed approach for DBRD . 35

3.6 Tokenization of title using NLTK 37

3.7 Stemming of tokenized title . 38

3.8 Stop words removal of tokenized Title 38

3.9 Top-N similar bugs reports . 41

3.10 Bugs triplet dataset . 43

3.11 SBERT architecture . 44

3.12 Triplet loss working . 45

4.1 Recall@K on Eclipse dataset using BM25+SBERT 51

4.2 Recall@K on OpenOffice dataset using BM25+SBERT 51

4.3 MAP of Eclipse and OpenOffice datasets 52

4.4 Comparision of recall@K for BM25 and BM25+SBERT on Eclipse
dataset . 53

4.5 Comparision of recall@K for BM25 and BM25+SBERT on OpenOf-
fice dataset . 54

4.6 Recall rate at various values of K, and baseline approach in com-
parison to BM25 and BM25+SBERT. 55

4.7 Recall rate at various values of K, and all baselines in comparison
to BM25 and BM25+SBERT. 55

4.8 PSPT of BM25, BERT, and BM25+SBERT 57

xi

List of Tables

1.1 Generic bug report format[15] . 5

1.2 Example of duplicate bug report [13] 7

1.3 Bugs data statistics [21] . 7

2.1 Comparative Analysis of Existing Techniques 24

3.1 Eclipse Dataset statistics . 31

3.2 OpenOffice Dataset statistics . 31

3.3 Firefox Dataset statistics . 32

3.4 Kibana Dataset statistics . 32

3.5 Eclipse - Bug report format [52] . 36

3.6 Example of TF-IDF calculation . 40

3.7 Cosine similarity calculation example 47

4.1 Eclipse and Open Office datasets statistics 50

4.2 Train and test split . 50

4.3 Recall@K for Eclipse dataset on all approaches 53

4.4 Recall@K for Open Office dataset on all approaches 54

4.5 PSPT for different sample sizes . 56

xii

Abbreviations

DBRD Duplicate Bug Report Detection

DBR Duplicate Bug Report

DL Deep Learning

IR Information Retrieval

ML Machine Learning

NLP Natural Language Processing

SQA Software Quality Assurance

xiii

Chapter 1

Introduction

In the rapidly changing landscape of software development, ensuring quality soft-

ware has become a principal concern. Nearly every industry relies on software for

various purposes, including development, marketing, production, and support. A

primary objective of software engineering is to develop high-quality software while

adhering to predetermined cost and time constraints [1]. In the present time,

software’s have evolved into complex and sizable systems, and the expense to fix

errors or faults in them is quite high [2].

Software engineering serves as the foundation upon which dependable and high-

quality software is built [3]. It encompasses a systematic approach to designing, de-

veloping, testing, and maintaining software systems. By employing methodologies

grounded in software engineering, development teams can harness structured and

well-defined processes to create software that not only fulfills functional require-

ments but also adheres to principles of scalability, maintainability, and reusability

[3].

Software Quality Assurance (SQA) emerges as a crucial discipline, encompassing a

range of practices and processes aimed at delivering software that meets or exceeds

user expectations. At the core of SQA lies the objective of achieving reliable,

robust, and user-friendly software that aligns with industry standards and best

practices [4]. SQA plays a pivotal role in identifying and mitigating potential risks

throughout the software development life cycle.

1

Introduction 2

One of the key strategies employed within SQA is software testing [5]. Software

testing is a systematic process that involves evaluating a software application’s

behavior against specified requirements [4]. It serves as a means to verify that

the software functions as intended and that it performs consistently across various

scenarios [5]. By subjecting software to a battery of test cases, developers can

identify deviations from the expected behavior and rectify issues before they reach

end-users [6].

Among the diverse methodologies and techniques within software testing, Black

Box Testing stands out as a foundational approach [7]. Black Box Testing involves

examining the behavior of software externally, without knowledge of its code or

internal structure [7]. Testers analyze the software’s using inputs and examine

outputs to assess whether the software responds correctly and as expected.

A natural consequence of thorough software testing is the identification of defects

or bugs within the application [8]. As Black Box Testing focuses on evaluating

the software from an end-user perspective, it is particularly effective in revealing

functional discrepancies that may otherwise remain unnoticed [7]. Detected bugs

can encompass a wide range of issues, from minor inconveniences to critical failures

that impact the software’s functionality and reliability [8].

In this context, effective bug reporting becomes a pivotal activity. Timely and

comprehensive reporting of bugs, anomalies, and unexpected behaviors allows de-

velopment teams to prioritize and address these issues promptly [9]. The bug

reporting process serves as a bridge between the testing phase and the software

development cycle, enabling developers to refine the software based on real-world

usage scenarios [8].

Typically, bugs are reported by testers or users to explain the nature of the problem

they encounter while using the software [10]. These bug reports help the developers

to locate and fix the reported bug. In large software projects, several hundreds of

bug reports are submitted to the Bug Tracking System (BTS) per day. Moreover,

effective communication channels between testers and developers are crucial for a

streamlined bug resolution process.

Introduction 3

1.1 Bug Tracking

Bug Tracking refers to the process of identifying, monitoring, prioritizing and

fixing bugs in software products [9]. Large software systems may have hundreds

or thousands of bugs. To maintain the quality of the software, these bugs need to

be identified, monitored, prioritized and resolved within a given time frame [11].

It is an iterative process as each new software update or version needs to be tested

and debugged[9].

When a bug is detected, it is passed through different stages. Figure 1.1 shows

how bug reports are addressed at each stage. At each stage of this cycle, the bug

is handled as described below [12]:

Figure 1.1: Bug life cycle [12]

� New: A new bug is initially discovered by a user or the QA team, and it is

logged. Then, it is moved to the ”Assigned” stage, where it is classified to

determine how it will be handled.

Introduction 4

� Assigned: At this stage, a tester logs the bug, and it undergoes triage to

determine its priority and/or severity. If the bug is found to be unimportant,

it is moved to the ”Rejected” phase. However, if the bug is considered

significant, it is assigned to the relevant developer according to its priority

and severity.

� Open: At this stage, the bugs that are assigned to developers are analyzed

and corrected. When the bug is fixed, it is moved to the ”Fixed” stage.

� Fixed: At this stage, the developer sends the bug to the testing team after

resolving it. Based on the results of the test, the bug may be moved to the

”Reopen” or ”Retest” stages, depending on whether further fixing or testing

is required.

� Reopen: If a bug is still present even after the developer has fixed it, it is

sent back to the ”Assigned” stage, and the cycle is repeated.

� Rejected: If a defect is not genuine then the status is set to ”Rejected”.

� Deferred: When a bug is assigned the ”Deferred” status, it means that it is

expected to be fixed in the next releases. This status may be assigned due

to various reasons such as low priority of the bug, lack of time for release,

and minimal impact on the software.

� Duplicate: If a bug is reported more than once or if two bugs cause the same

problem, one of them is marked as ”Duplicate.”

� Retest: At this stage, the tester performs a retest on the modified code

provided by the developer to check if the defect has been resolved.

� Verified: After the developer has fixed the bug, the tester performs a retest.

If the bug is no longer present, its status is changed to ”Verified.”

� Closed: If the tester test that the bug no longer exists, then its status is

changed to ”Closed”.

The purpose of the bug life cycle is to easily communicate the current status of

the bug to different users and to track the actual progress of bugs. In practice,

Introduction 5

the process is not that simple. A reporter has to manually examine all the reports

before reporting a new bug [13].

The general format for reporting a bug is shown in Table 1.1. Bug report typi-

cally contains both structured and unstructured information. Structured features

encompass project-related details like priority, component, version, and status,

among other features. Unstructured fields comprise text composed in natural lan-

guage, encompassing features such as the title, which offers a concise bug descrip-

tion, and the detailed description, which provides developers with an explanation

of the code malfunction, its causes, and how to reproduce it. Developers frequently

depend on these unstructured features within bug reports for bug identification

and resolution [14].

Table 1.1: Generic bug report format[15]

Feature Description

Bug ID 112212

Product General

Component Preferences

Title Language encodings in font preferences dialog not sorted

Status Closed

Resolution Fixed

Duplicate ID 1112

Priority P4

Severity Minor

Version 5.0

Platform Macintosh

OS 10.12.0

Created 2020-03-11 11:53:00 -0500

Modified 2020-05-20 18:07:18 -0400

Description Language encodings are listed in a seemingly random
order.; The order be alphabetical (and therefore change
with localization).; As a special case; User-Defined
should be last.

Introduction 6

These bugs are stored in a bug repository. These bugs are then assigned the bug to

a developer who then determines the order in which to work on the assigned bug

based upon its severity and priority. These bug reports are manually examined to

identify if a new bug is a duplicate of the existing bug or not [15].

As the reports are written using natural language, a tester either relies on their

knowledge of the bug repository or must perform a series of manual searches in

order to find the duplicate bug. The former approach relies in the knowledge and

expertise of the tester and the latter approach involves a lot of effort in terms

of time and cost [16]. Both of these approaches could result in missed or false

identification of the duplicate. Therefore, the challenge of identifying duplicate

bugs is exacerbated by the reliance on natural language in bug reports.

1.1.1 Issues in Bug Tracking

Finding the DBR (duplicate bug report) is a challenging task. The repository

contains two types of bug reports: Master reports and duplicate reports [17].

Each DBR must have a corresponding master report and have to make sure that

they both address the same bug [17]. Duplication occurs when more than one

user submits the bug report for the same problem [18, 19]. Due to the use of

natural language to write bug reports, it is possible to describe the same bug

in many different ways. Table 2 illustrates an example of DBRs (duplicate bug

reports). To address the issue of duplicate bugs, it is necessary to classify these

bugs as duplicates and link them to the master bug report. Manually identifying

the duplicate bug report requires an extensive amount of effort both in terms of

time and cost, and requires complete knowledge of the bugs [20].

An exploratory study [21], on nine different projects was performed. The study

analyzes the total number of bugs reported in a specific project, the number of

duplicates reported, the percentage of duplicates, and the time required to resolve

the duplicate bug reports. Table 1.3 encapsulates the statistical details for each

project, shedding light on the prevalence of duplicate bug reports and their impact

on overall project timelines.

Introduction 7

Table 1.2: Example of duplicate bug report [13]

Bug Id Summary

85064 [Notes 2] No scrolling of document content by use of
mouse wheel

85377 [CWS notes2] unable to scroll in a note with the mouse
wheel

85502 Alt+¡letter¿ does not work in dialogs

85819 Alt-¡key¿ no longer works as expected

85487 Connectivity: evoab2 needs to be changed to build
against changed api

85496n Connectivity fails to build (evoab2) in m4

Table 1.3: Bugs data statistics [21]

Project #Bugs #Duplicates %Duplicates
Median -
Resolving Time

Mozilla Core 205,069 44,691 21.8% 102.1 days
Firefox 115,814 35,814 30.9% 76.4 days
Thunderbird 32,551 12,501 38.4% 83.7 days
Eclipse Platform 85,156 14,404 16.9% 29.8 days
JDT 45,296 7,688 17.0% 23.0 days
Hadoop 12,855 1,861 14.5% 14.3 days
HDFS 12,779 1,659 13.0% 9.7 days
Cassandra 14,071 2,083 14.8% 8.6 days
MapReduce 7,019 977 13.9% 28.2 days

A graph illustrating the proportion of DBRs can be noted in Figure 1.2. It is

evident that duplicate bug reports account for nearly 20% of the entire bug report

count. The time dedicated to searching for and analyzing these duplicate bug

reports is depicted in Figure 1.3.

Duplicate bug detection approaches can be divided into Information Retrieval (IR)

techniques and Deep Learning (DL) based techniques. IR involves the process

of representing, storing, and searching through a large dataset with the aim of

extracting valuable insights and providing access to discover pertinent outcomes

that fulfill the user’s requirements in response to a user query [22]. The core

structure of IR has the following steps.

Introduction 8

Figure 1.2: Percentage of DBRs

Figure 1.3: No. of days required for analyzing the DBRs

Introduction 9

A user query that initializes the process, and a corpus of documents, constituting

the data under consideration. Next is the preprocessing phase which encompasses

tokenization, stemming, and stop word removal. The most important step is

indexing which constitutes a pivotal phase where a comprehensive index is crafted

for the terms within the documents. This index maps terms to the pertinent

documents, serving as a catalyst for expediting the retrieval process. The last

step is matching and ranking. This process yields relevance scores via query-

document comparison, presenting ranked results to users [23]. Figure 1.4 shows a

basic workflow for information retrieval model.

Figure 1.4: IR model [23]

In IR, the representation of text is done using Bag of Words (BOW), Term Fre-

quency (TF), or Inverse Document Frequency (TFIDF). These techniques generate

sparse vectors but fail to capture the semantic relation between words [24].

To overcome the problems of semantic search, deep learning has emerged as a

prominent area of research, finding widespread application across various chal-

lenges within Natural Language Processing (NLP). Some of the notable deep

learning models for natural language processing are Word2vec, GloVe, and BERT.

These models are effective in capturing the semantic meaning of the document.

They represent text using dense vectors. These dense vectors are then used for

various tasks like topic modeling, classification, etc [25]. Figure 1.5 shows a basic

workflow for NLP based deep learning model.

Introduction 10

Figure 1.5: Deep Learning based NLP [25]

Consequently, the measure of semantic likeness between words is established based

on spatial separation, often using metrics like cosine similarity or Euclidean dis-

tance [5]. Although these models are able to capture the semantic meaning be-

tween query and document they come at a cost of high computational complexity.

1.2 Problem Statement

Existing studies either use IR or DL models to find the duplicate bug report from

the corpus. We have performed an in-depth analysis of the literature and identified

the following gaps:

1. In most of the studies [26–31], traditional IR techniques like TF-IDF, and

BM25 have been used to compute similarity between bug reports. These

techniques are comparatively fast and generate sparse vectors for text rep-

resentation but struggle to capture the semantic and contextual meaning of

words in a document.

Introduction 11

2. Recent studies [10, 13, 16, 32] have employed DL models such as CNN,

BERT, and Word2Vec. These models excel in capturing semantic signifi-

cance, yielding dense vectors. While these DL models have higher precision

and recall rates, their computational cost and hence the response time is high.

Hence, a comparative assessment should be done to replace the existing ap-

proaches with some new simpler techniques with low runtime complexity

[29, 33, 34].

.

1.3 Research Questions

We have formulated the following research questions based on the problem state-

ment described above.

1. How the proposed approach using both sparse and dense vectors be more

efficient in retrieving duplicate bug reports?

2. How can the processing time of the proposed approach be reduced compared

to previous DBRD approaches?

1.4 Proposed Solution

The proposed approach merges two distinct methodologies, IR and deep learning

semantic model, with the objective of effectively detecting duplicate bug reports.

IR models are fast as compared to DL models but fail to capture the semantic

meaning. On the other hand, DL models are computationally expensive but are

able to capture the semantic meaning between words. This integration seeks to

capitalize on the strengths of both techniques. Initially, the solution employs

a BM25, which is an IR technique for the identification of potential duplicate

reports. Subsequently, to enhance the accuracy and relevance of the results, a

Introduction 12

specialized semantic model is used to rerank the bug reports based on semantic

similarity. This two-step process is designed to overcome the limitations inherent

in singular approaches. As a result, the processing time required is notably reduced

in comparison to employing only full semantic models.

1.5 Objective

� To propose a novel hybrid model that efficiently utilizes IR and DL models.

� Evaluate the effectiveness of the proposed technique on the benchmark dataset.

� Reduce the computational cost and hence the processing time for DBRD.

1.6 Thesis Organization

The subsequent sections of the study are structured as follows:

Chapter 1: Introduces the research subject and goals, addressing the problem

statement and technological context to ensure effective outcome presentation.

Chapter 2: Presents Literature Review, exploring relevant prior research and

identifying research gaps.

Chapter 3: Proposed a methodology for addressing the questions raised in Chap-

ter 1.

Chapter 4: Presents the performance evaluation of outcomes achieved through

the application of the proposed approach.

Chapter 5: Summarizes the research findings, draws conclusions, and outlines

future directions for study.

Chapter 2

Literature Review

2.1 Duplicate Bug Report Detection (DBRD)

DBRD is a process of identifying DBRs within bug tracking repository. In a

standard bug tracking system, over a thousand bugs are logged on a daily basis,

as mentioned by Kukkar et al. [13] in a study on duplicate issues. The problem

arises when the same bug is reported by multiple users. As bug reports are written

in plain text, it can be challenging for the tester reporting the issue to recognize

a DBR prior to submitting a new one [16].

In DBRD domain various approaches have been proposed for the classification

and retrieval of DBRs. Approaches for identifying DBRs encompass both struc-

tured and unstructured data [35]. Structured data includes product, priority,

component, resolution, bug severity, bug status, and version. On the other hand,

unstructured data pertains to textual attributes, typically derived from fields like

title and description, which form a textual document [14]. Hybrid-structured re-

ports involve the combined utilization of both textual and categorical features.

Occasionally, they also incorporate execution-related information like stack traces

or logs [36].

DBRD approaches are categorized into IR and machine learning (ML) based so-

lutions. The approaches used by different studies over the past years have been

discussed below in detailed.

13

Literature Review 14

2.2 Information Retrieval Approaches

In past research, IR has been applied for the automated identification of DBRs. IR

approaches allow users to quickly access information from large datasets. These

techniques can scale to handle a wide range of data sources and types, making

them suitable for DBRD. However, a notable drawback of employing IR techniques

is its disregard for the contextual placement of words and its sole reliance on

word frequency within the vector representation. The studies, that rely only on

IR techniques, face limitations in capturing the semantic similarity [37]. Such

limitations can lead to challenges in identifying duplicates that are semantically

similar.

2.2.1 Count Based Approaches

Count-based approaches in NLP involve quantifying the frequency of terms in a

corpus of text. These approaches are based on the idea that the frequency of

certain words or terms can provide significant information about the content and

characteristics of the text data [38].

The earlier research into the identification of DBRs was done by Runeson et al.

[39]. This study employed a feature vector for documents using the Bag of Words

(BoW) technique to characterize bug reports. The study employed cosine simi-

larity between report vectors to detect potential duplicates by assessing content

similarity. The accuracy attained in identifying duplicates within an exclusive

dataset from Sony Ericsson Mobile Communications reached a maximum of 40%.

Nonetheless, this approach maintains its status as a straightforward and compu-

tationally economical technique.

The techniques presented by Wang et al. [40] and Jalbert and Weimer [41] used

TF-IDF to transform textual information into vectors. These vectors were then

used to calculate similarity scores, facilitating the identification of DBRs. Wang et

al. achieved detection accuracies of 71% for Eclipse and 82% for Firefox datasets.

Literature Review 15

In contrast, Jalbert and Weimer achieved an accuracy rate of 43% for the Mozilla

dataset by incorporating bug severity, date fields, textual similarity, and graph

data into their classifier. The technique can be further improved by separately

handling non-natural text during the duplicate retrieval process.

Sun et al. [26] enhanced the earlier technique proposed by [40] using sparse vectors

that rely on Inverse Document Frequency (IDF) to determine the importance of

individual words within a bug report. Subsequently, they implemented a Support

Vector Machine (SVM) to assess whether a pair of reports were duplicates or not.

The outcomes of their investigations revealed accuracy rates ranging from 50% to

70% across three distinct datasets i.e. Eclipse, Firefox, and Open Office.

2.2.2 BM25 Approach

BM25 (Best Matching 25), is a ranking function used in (IR) and text mining. It is

an improvement over the traditional TF-IDF weighting scheme and is specifically

designed for ranking bug reports based on their similarity to a given query. There

are several variants and adaptations of the BM25 ranking function, few notable

variants are BM25+, BM25F, BM15 etc [42].

In 2011 Sun et al. [27] addresses the challenge of accurately identifying dupli-

cates by using both textual (unstructured) and categorical (structured) features.

It introduces a retrieval function (REP) that assesses the similarity between bug

reports. The study extends BM25F for textual similarity measurement and op-

timizes REP using two-round stochastic gradient descent. The research demon-

strates a relative enhancement in the recall rate@k of 10-27% and an improvement

in Mean Average Precision (MAP) values of 17-23% when compared to the ap-

proach previously suggested by Sun and colleagues [26].

Aggarwal et al. [43] devised a contextual technique by creating a vocabulary for

eight different word lists, derived from general software engineering literature and

technical documentation of four different projects. The bug reports were analyzed

by comparing their title and description fields. This comparison was carried out

Literature Review 16

using BM25F, which includes assessments for both individual words (unigram

comparison) and pairs of words (bigram comparison). For categorical fields, the

binary rating system was employed, assigning a value of 1 when there was a match

and 0 otherwise. Subsequently, contextual attributes were generated by employing

BM25F similarity scores based on word lists extracted from bug reports. The

research results in a classification accuracy of 90% for identifying DBRs across

various datasets, including Mozilla, OpenOffice, Eclipse, and Android.

Hindle et al. [28] introduced a technique to prevent duplicates by continuously

querying bug repositories. Their approach involved an updating search mecha-

nism that provided suggestions for potential duplicates. The study focused on

combining TF-IDF, BM25, and cosine distance for effective bug report matching.

Tests were conducted on 12 datasets including OpenOffice, Mozilla, Eclipse, and

Android. Results demonstrated a significant 42% reduction in DBRs. However,

the approach’s reliance on individual words might limit its effectiveness due to

synonyms and similar terms.

Behzad et al. [30] introduced an efficient feature extraction model to enhance

Duplicate Bug Report Detection (DBRD). This approach integrates new textual

features based on term frequency and Inverse Document Frequency (IDF) aggre-

gation in both uni-gram and bi-gram forms. The model was evaluated on datasets

from Android, Eclipse, Mozilla, and Open Office, demonstrating a significant im-

provement in DBRD with a 75% recall rate. The incorporation of these features

enhances the ability of the model to accurately identify and validate duplicate bug

reports, offering potential benefits for more effective bug tracking and resolution

in software development.

Another study done by Neysiani et al. [31] uses Manhattan distance along with

BM25 for bug reports similarity. The study serves the purpose of extracting differ-

ent topics as contextual features. These features are then incorporated to enhance

the effectiveness of bug report similarity detection in software systems. The tech-

nique was evaluated on four benchmark datasets, including Mozilla, OpenOffice,

Android, and Eclipse. The proposed study achieved an accuracy ranging from

96% to 97% for the classification task.

Literature Review 17

2.3 Machine Learning Approaches

Recently, ML approaches have been effectively utilized for the identification of

DBRs. They offer substantial advantages in terms of semantic understanding,

feature extraction, and accuracy in DBRD. However, it’s important to note that

all those approaches that use deep learning models, inherit both their advantages

and limitations. These models excel at capturing semantic nuances and extracting

relevant features from textual data, but they also require substantial training data,

computational resources, and domain-specific adaptation making them infeasible

for smaller projects [37]. These considerations must be carefully weighed when

applying them to real-world tasks in software development.

2.3.1 CNN Based Approaches

Deshmukh et al. [16] utilized a deep Siamese model that takes hybrid features as

input. This architecture incorporates three types of networks: MLP (Multilayer

Perceptron), CNN and BiLSTM (Bidirectional long short-term memory). It pro-

duces a compact vector that represents the bug report and utilizes a triplet loss

function during training with the goal of increasing the similarity among dupli-

cates while reducing it among non-duplicates. This method was put to the test

on three extensive datasets: Eclipse, NetBeans, and OpenOffice, resulting in an

accuracy ranging from 72% to 82% for the classification task and a retrieval rate

spanning from 50% to 81%.

Another similar study conducted by Kukkar et al. [13] introduced a DL model

based on CNN. This CNN model employed a Siamese structure to capture the syn-

tactic and semantic relationships among words in bug report content by examining

their preceding and following words. The words were encoded using Word2Vec,

with each word represented in a vector of 300 dimensions. In their study, the clas-

sification tasks yielded an average accuracy ranging from 85% to 99%, while the

retrieval tasks achieved a Recall@20 rate spanning from 79% to 94%. Six different

datasets are used for evaluation of the proposed approach.

Literature Review 18

Xie [15] introduced a framework that combines structured data, including specific

domain-related characteristics like component and bug severity, with Convolu-

tional Neural Networks (CNN). The textual content within bug reports is repre-

sented using word embedding vectors, which are then fused with these domain-

specific attributes. In order to distinguish whether a pair of bug reports are du-

plicates, the model conducts a classification at its final layer, determining the

duplicate status of these bug reports. This classification process unfolds within

the concealed layers of the CNN, extracting latent features from the bug reports.

This approach’s efficacy was tested across four datasets: Hadoop, Hdfs, MapRe-

duce, and Spark, resulting in classification accuracy ranging from 82% to 94%.

In 2020 He et al. [10] extended the utilization of CNN by introducing a Dual-

Channel CNN (DC-CNN) technique. An innovative method for representing pairs

of bug reports was introduced, which involved crafting a dual-channel matrix by

merging two single-channel matrices, each representing an individual bug report.

These pairs of bug reports were then input into a CNN model to capture the con-

textual relationships between them and classify a pair of bug reports as duplicates

or non-duplicate. The evaluation of this approach was conducted on three exten-

sive datasets from three open-source projects, OpenOffice, Eclipse, and NetBeans,

along with a larger combined dataset. The classification accuracy achieved was

94%, 96%, 95%, and 95%, respectively, for these datasets.

2.3.2 BERT Based Approaches

BERT (Bidirectional Encoder Representations from Transformers) stands as a pi-

oneering pre-trained deep learning model for natural language processing (NLP),

adept at comprehending contextual relationships and word meanings within text

[44]. Building upon BERT’s success, various adaptations and variants, including

RoBERTa, GPT-3, and T5, have emerged, pushing the boundaries of NLP capabil-

ities. These models have demonstrated remarkable performance across a diverse

array of NLP applications, showcasing the continuous evolution and impact of

transformer-based architectures in the field.

Literature Review 19

Rocha et al. [32] proposed a system for detecting DBRs based on semantic con-

text using a Siamese architecture. This architecture consisted of two networks:

BERT for processing textual features and MLP, LDA for handling categorical fea-

tures and topic distributions respectively. The model was trained using a Quintet

Loss function, optimizing the similarity of duplicates reports and minimizing it

between unique bug reports. The study validated the approach on NetBeans, and

Eclipse datasets, achieving an average recall rate of 85% for retrieval task and an

AUROC of 84% for classification tasks. However, it’s worth noting that using an

attention-based model like BERT is computationally more expensive than many

other methods.

Messaoud et al. [14] proposed a self-attention-based Neural Language Model for

detecting duplicate reports. The proposed framework uses unstructured data of

bugs to generate corresponding BERT’s words representation with 300 dimensions.

Next the self-attention layer is used to identify the contextual relationship between

the words. The output obtained is then fed into MLP layer to get the correspond-

ing duplicate or non-duplicate category. The model is validated on three popular

projects Thunderbird, Mozilla, and Eclipse and achieved an average recall rate of

91% for classification task. The approach does not use any structured information

in DBRD.

Wu et al. [45] introduced a novel approach, CTEDB (Combination of Term Ex-

traction and DeBERTaV3), for detecting DBR. CTEDB employs technical term

extraction based on Word2Vec and TextRank algorithms to identify terms. It then

calculates contextual similarity using Word2Vec and SBERT models and utilizes

the DeBERTaV3 model for DBR detection. Experimental results demonstrate

that CTEDB achieve a classification accuracy of 98.44% on mozilla core.

2.3.3 Hybrid Approaches

Recently Jiang et al. [37] performed a study to determine if well-established DL

based methods outperformed classic IR based methods in the task of DBRD. They

proposed a novel technique, combining IR and DL models.

Literature Review 20

For a more comprehensive computation of textual similarity. The experimental

results revealed that the DL based method alone did not achieve high performance

in comparison to IR based methods. However, the combined approach significantly

improved the MAP metric of classic IR based methods, with a median improve-

ment ranging from 7.09% to 11.34% and a maximum improvement of 17.228% to

28.97%.

A similar study was conducted by Zang et al. [46]. They introduce Cupid, an ap-

proach that combines the traditional DBRD method REP proposed by [27] with

the advanced ChatGPT language model. ChatGPT is initially utilized for ex-

tracting key bug report information, which is then input into REP for duplicate

bug report identification. Cupid’s performance was evaluated against three exist-

ing approaches across three datasets Spark, Hadoop, and Kibana, achieving new

state-of-the-art results with Recall Rate@10 scores ranging from 0.59 to 0.67 on

all datasets.

Chauhan et al. [47] presented a framework called DENATURE, designed for the

detection of DBRs and the identification of bug types. Duplicate bugs were iden-

tified using IR method, while ML classification techniques were employed to cate-

gorize bug reports by their type (Bug or feature). Experimental results indicated

that the proposed framework achieved prediction accuracy levels of up to 88.81%

on the Eclipse dataset.

In addition, the dual-tier approach introduced by Akilan et al. [48] not only com-

bined classification and clustering but also leveraged Latent Dirichlet Allocation

(LDA) for clustering based on topics. The multimodal text representation tech-

niques, including FastText (FT), Global Vectors for Word Representation (GloVe),

andWord2Vec (W2V), were integrated into the model, enhancing its ability to cap-

ture diverse semantic relationships. Furthermore, a unified text similarity measure

employing Cosine and Euclidean metrics was incorporated, enhancing its ability to

capture diverse semantic relationships and providing a comprehensive evaluation

of textual similarities. The model’s effectiveness was tested on the Eclipse dataset,

comprising over 80,000 bug reports, and yielded promising results with a Recall

Rate (RR) of 67% for Top-N similar bugs.

Literature Review 21

2.3.4 Other Approaches

Banerjee et al. [33] employed three techniques: base text similarity approaches,

time windows, and document-related factors. The study uses cosine similarity

with group centroids and identifies the longest common subsequences. It compares

either the title field or both the title and the summary fields of new reports with

every prior report in the repository. Time windows and document-related factors

play a crucial role in narrowing down the search space. The results were evaluated

on the Eclipse, Firefox, and Open Office repositories, achieving a high initial recall

of 70%.

Budhiraja et al [49] introduced the Deep Word Embedding Neural Network, model

designed to ascertain whether a pair of bug reports constitutes duplicates. This

model takes into account both the description and title of the bug reports, repre-

senting words using CBOW (Continuous Bag of Words) and Skip-Gram vectors.

Classification is performed using a Sigmoid output layer and an MLP layer. The

study reported a retrieval rate of 77% for duplicate identification in the retrieval

task and achieved a classification accuracy of 94% when applied to the Open Of-

fice and Firefox datasets. Notably, the study does not incorporate the categorical

features of bug reports.

Another study by Ebrahimi et al. [36] used stack traces from bug reports to

detect duplicate bugs. The study employed a Hidden Markov Model (HMM) for

the automatic detection and classification of DBRs. The approach was validated

using Firefox and Gnome datasets resulting in an average recall rate of 71.5%.

However, it’s worth noting that the approach does not work for bug reports that

don’t have prior duplicates in the repository.

Mahfoodh et al. [50], introduced two distinct similarity metrics for the identifica-

tion of duplicated bugs, employing the Word2Vec and natural language processing

technique within the Tensorflow framework. An experimental comparison was

conducted using bug report descriptions from eight different software components

within the Mozilla Core dataset.

Various sentence types were selected from the duplicated bug category records to

Literature Review 22

evaluate and discuss the accuracy of each component. The study also incorporated

an earlier method to calculate software risk values from duplicate records and pre-

dict bug-fix times for components not identified as duplicates by the Word2Vec

approach. The study’s findings demonstrated a maximum precision accuracy of

99.89% for components correctly identified as duplicates by the employed ap-

proach.

Neysiani and Babamir [35] conducted research focused on evaluating the most

effective automated bug report detection methods, considering both information

retrieval (IR) and machine learning (ML) solutions. They utilized various classi-

fiers, including K-Nearest Neighbors (KNN) and Logistic Regression (LR), cou-

pled with algorithms such as Support Vector Machine (SVM), Information Gain

Ratio (IGR), Chi-Square (CS), Gini Index (GI), and Principal Component Anal-

ysis (PCA) for document representation. Their findings indicated that ML-based

approaches outperformed IR-based methods, especially when hybrid-structured

information was employed in all experiments. In terms of retrieval tasks, the ML-

based methods successfully retrieved 51% of replicas. It’s important to note that

the study was exclusively evaluated using the Android dataset.

2.4 Discussion on DBRD Approaches

For many years IR based approaches were the state-of-art techniques for DBRD.

These approaches used Bag of Words (BOW), Term Frequency-Inverse Document

Frequency (TF-IDF), and BM25 models for representing bug reports as vectors

[32]. They often rely on the statistical analysis of term frequencies within bug re-

ports to identify potential duplicates. BOW, for instance, characterizes bug reports

as document feature vectors and uses cosine similarity to measure the similarity

between these vectors. While these methods exhibit computational efficiency, they

have limitations in capturing contextual relationships among terms.

In contrast, DL based approaches represent a more recent trend in DBRD. These

approaches harness the power of neural networks to learn complex patterns and

Literature Review 23

semantic relations from textual data.

Prominent DL models, including CNN, Dual-Channel CNN (DC-CNN), BERT

with Siamese architecture, and HMM, have been applied to DBRD.

While CNN and models like BERT have shown promise in the domain of DBRD,

they are not without their limitations. The computational demands of DL models

like CNN and BERT are substantial. A study [37, 51] shows a comparison of IR and

DL approaches. The results indicate that REP, introduced in 2011, surpasses more

recent, sophisticated deep learning-based approaches, emphasizing its importance

as a robust benchmark.

DBR contains both structured and unstructured data. Detecting duplicate re-

ports is a multifaceted task that involves not only the lexical matching of terms

but also a deeper understanding of the semantic context within textual data. IR

techniques are well-suited for lexical search. However, to achieve a more compre-

hensive and nuanced understanding of textual content, DL techniques come into

play. DL models, such as BERT, excel at capturing semantic relationships and

contextual similarities between bug reports. Combining the lexical precision of

IR with the semantic understanding of DL models will lead to more effective and

precise identification of DBRs in software repositories.

Literature Review 24

Table 2.1: Comparative Analysis of Existing Techniques

Ref. Dataset Techniques Result

[39] Sony Ericsson

Mobile Commu-

nications

weight = 1 +

log(frequency),

Time window,

Cosine Similarity,

RR@ k= 31% - 42%

[26] Mozilla,

OpenOffice,

Firefox, Eclipse

weight=

log2(frequency),

Support Cosine

Similarity, Vector

Machine,

Recall= 100%, F1=

14.8%

[40] Firefox, Eclipse,

Mozilla

Cosine Similarity,

TF-IDF

Recall rate @ k=

84% - 93%, 67 -

93%

[41] Mozilla Firefox weight= 3 + 2

log2 (frequency),

Graphic Cluster

Algorithm, Linear

Regression, Cosine

Similarity

RR @ k= 25% -

50%

[27] Eclipse, Mozilla Gradient descent,

BM25F

RR @ k= 36% -

73%, 43% - 76%

Literature Review 25

[28] Android, AppIn-

ventor, Bazaar,

Cyanogen-

mod, Eclipse,

K9Mail, Mozilla,

MyTrack, Open-

STack, Tempest,

Osmand

TF-IDF with

Cosine Distance,

BM25

42% duplicate pre-

vention

[31] Android,

Mozilla, Eclipse,

Openoffice

Manhattan Dis-

tance Similarity,

Decision Tree,

Näıve Bayes,

Neural Networks

Accuracy= 99.47%,

96.58%, 97.14%,

96.87%

[43] Android, Eclipse LDA, Labelled

LDA, Cosine

Similarity

Recall rate @

k=95.09%, 95.47%

[10] NetBeans,

Eclipse,

OpenOffice,

Combined

DC-CNN, Word

Embedding

(Word2Vec)

Classification: 94-

95%

[13] Mozilla, Net-

Beans, Eclipse,

OpenOffice,

Gnome, Firefox,

Combined

Siamese, CNN,

Word Embedding

(Word2Vec)

Classification: 85-

99 % Retrieval: 79-

94%

[15] Hdfs, Hadoop,

Spark, MapRe-

duce

CNN, Context,

Word Embedding

(Glove, Word2Vec,

Random)

Classification: 82-

94%

Literature Review 26

[16] OpenOffice,

Eclipse, Net-

Beans, Com-

bined

Siamese, MLP,

Bi-LSTM, CNN,

Glove

Classification: 72-

82% Retrieval: 50-

81%

[32] OpenOffice,

Eclipse, Net-

Beans

LDA, BERT Classification: 84%

Retrieval: 85%

[35] Android KNN, PCA, LR,

CS, IGR, GI

Classification: 97%

Retrieval: 34-51%

[49] Firefox,

OpenOffice

MLP, Word Em-

bedding (CBOW,

SkipGram)

Classification: 60-

94% Retrieval: 21-

77%

[34] Firefox, Eclipse Longest Com-

mon Subsequence

(LCS), Match

size within gr

oup weight, Time

window

RR @ k= 42% -

75%, 55% - 83%

[47] Spark, Hadoop,

Kibana

ChatGPT, REP RR @ 10= 59% -

67%

[47] Eclipse Logistic Regres-

sion, KNN, Naive

bayes, AdaBoost,

Decision Tree,

SVM

Auucracy 88.81%

Chapter 3

Research Methodology

This chapter discusses the conducted research methodology for this study. It

encompasses three phases. Phase 1 encompasses the conceptualization of the re-

search idea. Phase 2 involves the planning of the research, including the selection

of benchmark datasets. In Phase 3, the implementation, evaluation and outcomes

of the research are discussed. Figure 3.1 shows the proposed research methodology.

3.1 Problem Identification

In large software projects, bugs are reported and maintained through specialized

software generally called BTS. Duplication occurs when the same bug is reported

by multiple users. The issue with bug reporting is to determine if a new bug report

is a duplicate of an existing bug and to find the original or similar bugs from the bug

repository. As the reports are written in natural language, a tester either relies on

their knowledge of the bug repository or must perform a series of manual searches

in order to find the DBRs. Manually identifying the DBR requires a considerable

amount of effort both in terms of time and cost, and requires complete knowledge

of the bugs [20]. Automating the process of DBRD becomes imperative to alleviate

the time and effort in manual identification, offering an efficient solution for DBR.

The problem of DBRD was discussed in detail in Chapter 1 under section 1.1.

27

Research Methodology 28

Figure 3.1: Proposed research methodology for retrieval of DBRs

Research Methodology 29

3.1.1 Literature Review

The literature review is categorized into two primary sections: studies utilizing

IR techniques for DBRD retrieval and studies employing ML based techniques.

The IR techniques encompass count-based approaches, specifically Bag-of-Words

(BoW), TF-IDF, and BM25. On the other hand, ML-based studies are catego-

rized into four distinct groups: those employing the CNN model for DBRD, those

utilizing the BERT model, those employing hybrid approaches combining IR and

ML, and those exploring various other innovative techniques. Figure 3.2 illustrates

the studies that have employed the aforementioned approaches.

Figure 3.2: Literature review hierarchy

Research Methodology 30

3.1.2 Research Gap Identification

From the literature, it is concluded that:

� IR techniques are fast as compared to DL techniques for lexical search, but

do not capture contextual meaning.

� DL models like BERT are efficient in capturing the semantic similarity but

are computationally expensive.

3.1.3 Problem Formulation

This study addresses the trade-off between traditional IR techniques, such as TF-

IDF and BM25, known for their speed but limited semantic understanding, and

DL models like CNN, BERT, and Word2Vec, which excel in capturing semantic

nuances but come with high computational costs. Our aim is to conduct a compar-

ative assessment to explore simpler techniques with lower processing time, seeking

a balance between computational efficiency and semantic accuracy in DBRD.

3.1.4 Dataset Review and Selection

Each software has its own bug dataset that describes the software’s specific nature.

Consequently, the types of bugs, issues, and feature requests reported for one

project may differ from those reported for another. Some of the famous datasets

in the field of DBRD are discussed below.

3.1.4.1 Eclipse dataset

The Eclipse dataset is a widely recognized benchmark in the field of DBRD. It

consists of a diverse range of bug reports extracted from the Eclipse open-source

project. This dataset is characterized by its substantial size and extensive history,

spanning various versions and components of the Eclipse platform. Researchers

Research Methodology 31

favor the Eclipse dataset due to its rich and diverse bug reports, which encompass

a wide spectrum of software development issues. Table 3.1 shows eclipse dataset

statistics.

Table 3.1: Eclipse Dataset statistics

Eclipse Data statistics

Total Bug Reports 110181

Duplicate Reports 29037

Components 927

3.1.4.2 OpenOffice dataset

The OpenOffice dataset is notable for its use in research related to DBRD. It

originates from the Apache OpenOffice project, which provides a comprehensive

office suite. This dataset is valued for its well-structured bug reports and their

associated metadata, contributing to the robustness and reliability of experiments

in DBRD research. Table 3.2 shows eclipse dataset statistics.

Table 3.2: OpenOffice Dataset statistics

OpenOffice Data statistics

Total Bug Reports 111121

Duplicate Reports 19785

Components 15

3.1.4.3 Firefox

The Firefox dataset is another prominent dataset employed for DBRD studies.

This dataset exhibits characteristics of real-world bug repositories and captures

the complexities of managing a high-profile open-source software project. Table

3.3 shows eclipse dataset statistics. The Firefox dataset provides a diverse and

comprehensive collection of bug reports, making it an ideal choice for evaluating

and enhancing DBRD systems.

Research Methodology 32

Table 3.3: Firefox Dataset statistics

Firefox Data statistics

Total Bug Reports 115814

Duplicate Reports 35814

Components 52

3.1.4.4 Kibana dataset

The Kibana dataset represents bug reports from the Kibana open-source data

visualization platform. It is characterized by its focus on log and event data anal-

ysis. Researchers find this dataset valuable for studying duplicate detection in

the context of log analysis tools, where the ability to identify and manage dupli-

cate reports is crucial for maintaining efficient log processing and troubleshooting.

Table 3.4 shows eclipse dataset statistics.

Table 3.4: Kibana Dataset statistics

Kibana Data statistics

Total Bug Reports 17015

Duplicate Reports 470

Components -

3.1.4.5 Selected datasets

We have selected two benchmark bug datasets from large open-source datasets,

OpenOffice and Eclipse, which have been widely utilized in previous studies for

duplicate bug detection [10, 13, 16, 27, 28, 32, 40, 43, 49]. Published by [52],

these datasets provide a substantial volume of bug reports, each accompanied by

corresponding ground truth information regarding Duplicate Bug Reports (DBRs),

ensuring their relevance and reliability in DBRD research. These datasets serve as

valuable resources for training and evaluating DBRD models, offering diverse and

Research Methodology 33

real-world examples to enhance the robustness and generalizability of the research

findings.

3.1.5 Preliminary Preprocessing

The preliminary preprocessing phase includes collecting the data from the bugs

repository. It also includes removing the extra tags that are associated with each

bug report in the title field as shown in Figure 3.3. Some of the bugs have extra

information attached to them like stack traces or part of the code where the error

is located. This information needs to be removed before using the data. The

precessed title is shown in Figure 3.4

Figure 3.3: Bugs title with tags

Figure 3.4: Bugs title without tags

Research Methodology 34

3.1.6 Proposed Hybrid Model for DBRD

The proposed Duplicate Bug Report Retrieval (DBRR) model uses both IR and

DL techniques to identify the DBRs. Our approach consists of two steps. First,

we retrieve duplicate bug reports using BM25 a popular IR model that works on

lexical matching of the words in a bug report. The top 100 duplicate reports

are then reranked using a semantic model SBERT based on semantic similarity.

Figure 3.5 shows the overview of our proposed approach.

3.1.7 Preprocessing

The preprocessing of bug datasets is an important step in preparing the data for

efficient analysis and modeling. This process consists of two key phases: feature

selection and NLP. Each of these phases are discussed below in detail.

3.1.7.1 Feature Selection

Bug reports consist of several fields that provide essential information for under-

standing and addressing software bugs. An example of a bug report from Eclipse

dataset is shown in Table 3.5. The report contains both structured and unstruc-

tured files. These fields serve as foundational elements in bug reports, helping

developers and testers understand, reproduce, and address software problems effi-

ciently.

Feature selection in this study is guided by insights from the existing literature,

specifically drawn from the comprehensive review of prior research in the field. Bug

reports contain both structured and unstructured information. The unstructured

data includes the title and description fields, which are crucial for identifying

duplicates as they provide descriptive insights into the nature of the bug. A study

conducted by Zhang et al. [51] has underscored the importance of these two

features in duplication identification, while few other studies [14, 39, 49] used only

title and description fields for DBRD.

Research Methodology 35

Figure 3.5: Proposed approach for DBRD

Research Methodology 36

Table 3.5: Eclipse - Bug report format [52]

Eclipse - Bug Report

Bug id 232732

Product PDE

Component API Tools

Short description Preference page does not use dialog font

Status Verified

Resolution Fixed

Dup id []

Priority P3

Severity Normal

Version 3.4

creation ts 19/05/2008 5:01:00 am

delta ts 20/05/2008 5:48:00 pm

Description 3.4 RC1 - go to General > Appearance > Colors and
Fonts and change the dialog font. - Close and reopen
the preferences, go to the API Errors/Warnings page.
Tabs and control descriptions are still shown with the
default font

Many studies [10, 13, 15, 16, 32] have adopted a hybrid feature set that combines

both structured and unstructured attributes. In our study, we follow suit by amal-

gamating both unstructured (title and description) and structured fields (product,

component, version). This hybrid approach allows us to leverage the strengths of

both types of data for more accurate duplicate bug report detection.

3.1.7.2 Natutal Language Processing

The bug dataset comprises both structured and unstructured features. The un-

structured features encompass the title and description fields, which are expressed

in natural language. In the context of NLP, three essential preprocessing steps

Research Methodology 37

are performed: tokenization, removal of stop words, and stemming. Each of these

steps is elaborated below.

3.1.7.3 Tokenization

Tokenization is the initial phase, entailing the segmentation of text into meaningful

fragments referred to as tokens. These tokens may encompass words or sub-words,

contingent upon the specific objective. In our context, we’ve elected to partition

title and description into words, using Natural Language Toolkit (NLTK1) – the

most widely recognized and extensively employed library for NLP [53]. Figure 3.6

shows an example of tokenization of title field in a bug report.

Figure 3.6: Tokenization of title using NLTK

3.1.7.4 Stemming

Stemming involves the transformation of words into their foundational or root

forms. The benefit of stemming lies in its capacity to diminish vocabulary dimen-

sions. We conducted stemming through the application of the Porter stemmer

algorithm (Porter, 1980), which modifies all terms within a text into their root

forms. This stemming process was implemented on all title and description fields.

Figure 3.7 shows an example of stemming on bug title field.

3.1.7.5 Stop words removal

Stop words represent the most prevalent terms within a language. As these words

lack significant meaning, it’s essential to eliminate them from the text to attain

Research Methodology 38

Figure 3.7: Stemming of tokenized title

precise measurements. To exclude stop words from the title and description fields,

we’ve employed the NLTK library, which encompasses a compilation of stop words.

NLTK cross-references its own stop word list with the tokenized inventory and sub-

sequently carries out the process of eliminating stop words from the text collection.

Figure 3.8 shows an example of stop word removal on a tokenized title.

Figure 3.8: Stop words removal of tokenized Title

3.1.7.6 Processed Feature Set

The final phase of preprocessing involves combining the selected structured fea-

tures and the processed unstructured features into a unified dataset. The result is

a processed feature set that contains both structured and textual data, ready for

the DBRD.

Research Methodology 39

3.1.7.7 BM25 Indexing

BM25 (Best Matching 25) is an IR model that is used for indexing and ranking

of reports. It’s an improvement over the earlier TF-IDF model. TF-IDF provides

insight into the significance of terms within a document, encompassing two key

elements: TF and IDF. Term Frequency gauges the frequency of a term’s occur-

rence within a document. Given that document lengths vary, there’s a possibility

that a term appears more frequently in lengthy documents compared to shorter

ones. To address this, the term frequency is often normalized by dividing it by

the document length. The term frequency can be defined using Eq 3.12

TF =
No. of times a term appears in a report

Total no. of terms in the report
(3.1)

IDF evaluates the significance of a term. In the computation of Term Frequency

(TF), all terms are treated with equal importance. Nonetheless, it’s recognized

that specific terms like ”is,” ”of,” and ”that” may exhibit high frequency but pos-

sess limited relevance. Consequently, it becomes necessary to reduce the influence

of commonly occurring terms while elevating the significance of rare ones. This is

achieved by calculating the IDF score using the formula in Eq 3.2

IDF = log10

(
No. of reports

No. of reports in which the term appears

)
(3.2)

The table 3.6 illustrates an example of TF-IDF calculation on two bug report titles.

Bug1: [’Option’, ’CVS’, ’Server’, ’Name’] and Bug2: [’CVS’, ’Core’, ’support’,

’custom’, ’server’, ’string’].

3.1.7.8 Similarity Measure and Ranking

DBRs are not only similar in title and description fields but also in categorical fields

like component, product, version, priority etc. The retrieval function presented is

given by the Eq 3.3

Research Methodology 40

Table 3.6: Example of TF-IDF calculation

Terms TF IDF

Bug1 Bug2

options 1/4 0 log(2/1)=0.3

cvs 1/4 1/6 log(2/2)=0

server 1/4 1/6 log(2/2)=0

name 1/4 0 log(2/1)=0.3

core 0 1/6 log(2/1)=0.3

support 0 1/6 log(2/1)=0.3

custom 0 1/6 log(2/1)=0.3

string 0 1/6 log(2/1)=0.3

Score(d, q) =
5∑

i=1

featurei (3.3)

The Eq 3.4 and Eq 3.5 define the textual similarity over the title and description

fields computed using BM25. The Equations 3.6, 3.7 and 3.8 are based on equality

of categorical fields component, product and version. These fields are used in

calculating the textual and categorical similarity of DBRs. The bug reports are

then ranked in decending order of the score. Figure 3.9 shows a top-N similar bug

reports.

feature1(title)(br, qr) = BM25(br, qr) (3.4)

feature2(description)(br, qr) = BM25(br, qr) (3.5)

feature3(br, qr) =

1, if br.product = qr.product

0, otherwise

(3.6)

Research Methodology 41

feature4(br, qr) =

1, if br.component = qr.component

0, otherwise

(3.7)

feature5(br, qr) =

1, if br.version = qr.version

0, otherwise

(3.8)

where br and qr are the bug report and query report respectively.

Figure 3.9: Top-N similar bugs reports

3.1.8 Semantic Reranking

BM25 model ranks duplicate bugs based on lexical matching of terms. The purpose

of semantic reranking is to rank bugs based on semantic similarity between bug

reports. A fine-tuned SBERT model is used for semantic reranking of duplicate

bug reports.

3.1.8.1 SBERT

Sentence-BERT (SBERT) is a model architecture designed to create semantically

meaningful sentence embeddings. It builds upon the principles of the BERT archi-

tecture but with modifications tailored specifically for generating sentence embed-

dings rather than word embeddings. The core idea behind SBERT is to capture the

Research Methodology 42

semantic similarity between sentences and used it for natural language processing

tasks.

3.1.8.2 Fine Tuning SBERT Model

Pre-trained models are typically trained on large, generic datasets and designed to

understand general language patterns. Fine-tuning allows us to adapt these mod-

els to perform specialized tasks. Instead of training a model from scratch, which

can be data and resource-intensive, we start with a pre-trained model and adjust

it for the specific task. This is especially useful when labeled task-specific data

is limited. It also allows us to benefit from both the general knowledge captured

during pre-training and the task-specific nuances required for high-performance

applications. By leveraging pre-existing knowledge captured during pre-training

on large, generic datasets, fine-tuning becomes a resource-efficient approach, par-

ticularly beneficial when labeled task-specific data is limited. This strategy ensures

a balance between the general language understanding gained through pre-training

and the task-specific adaptations necessary for achieving optimal performance in

DBRD applications.

3.1.8.3 Data Preparation

The creation of the triple dataset involved leveraging an existing repository of

bug reports to enhance the semantic search capabilities of the Sentence-BERT

(SBERT) model. Each triple in the dataset was structured with an ”anchor”

bug report, which acted as a reference point, a ”positive” bug report representing

a duplicate of the anchor, and a ”negative” bug report randomly selected from

non-duplicate reports. This framework facilitated the model’s understanding of

semantic similarity and dissimilarity, crucial for accurate DBR identification. The

dataset’s composition was thoughtfully designed to encompass a diverse range of

anchor-positive-negative combinations, striking a balance between comprehensive

training and computational efficiency. Figure 3.10 below shows the triplet dataset

Research Methodology 43

for model training.

Figure 3.10: Bugs triplet dataset

3.1.8.4 Select SBERT model

From the transformers encoder ‘distilroberta-base’ is used as the word embedding

model. The model has 6 layers of Transformer blocks. Each Transformer block

contains a multi-head self-attention mechanism and a feedforward neural network.

This is in contrast to the original ’roberta-base,’ which has 12 layers.

The hidden size or dimensionality of the ’distilroberta-base’ model is 768. This

means that the output of each Transformer block in the model has a dimension

of 768. The hidden size determines the dimension of the contextual embeddings

learned by the model.

3.1.8.5 Architecture

Individual layers were defined, with ’distilroberta-base’ serving as the word em-

bedding model. The layer was constrained to a maximum sequence length of 256.

To achieve a fixed-size representation for an entire bug, a mean pooling layer was

employed to consolidate the token embeddings. These layers were then integrated

into a new Sentence Transformer model. Figure 3.11 shows the architecture of the

SBERT fine-tuned model.

Research Methodology 44

Figure 3.11: SBERT architecture

3.1.8.6 Loss Function

Triplet loss is a loss function used in machine learning, particularly in tasks related

to metric learning and similarity or dissimilarity learning. It is designed to train

models, often neural networks, to learn embeddings (vector representations) of

data points in a way that encourages similar items to have embeddings that are

close in distance, while pushing dissimilar items apart. Triplet loss is particularly

important in tasks where measuring similarity or dissimilarity between data points

is crucial. It is given by the Eq 3.9 Components of the triplet loss function are

given below

Ltriplet =
N∑
i=1

[d(ai, pi)− d(ai, ni) + α]+ (3.9)

Where: - Ltriplet represents the triplet loss. - i is the index for the training samples.

- N is the total number of training samples. - d(ai, pi) is the distance between

the anchor sample and the positive sample. - d(ai, ni) is the distance between the

Research Methodology 45

anchor sample and the negative sample. - α is the margin or a constant value

that determines the desired separation between the anchor-positive and anchor-

negative distances. - The square brackets with the subscript + indicate that the

loss is calculated as zero if the value inside the brackets is less than zero, otherwise,

it’s the value inside the brackets.

� Anchor is the data point for which we want to learn an embedding.

� A positive example is a point that is similar or belongs to the same category

as the anchor. The goal is to make the distance between the anchor and the

positive example as small as possible.

� Negative example the data point that is dissimilar or belongs to a different

category than the anchor. The goal is to make the distance between the

anchor and the negative example as large as possible.

Figure 3.12 shows the working of the triplet loss function.

Figure 3.12: Triplet loss working

3.1.8.7 Similarity Measure

Cosine similarity is used as a similarity measure. It assesses the degree of content

resemblance between two bug reports. In mathematical terms, this metric gauge

Research Methodology 46

the cosine of the angle formed by the projections of two bug report vectors within

a multi-dimensional space. This utilization of cosine similarity offers a distinct

advantage, as it captures similarities between bug reports that might be distantly

positioned in terms of Euclidean distance but still exhibit a closely aligned ori-

entation. A reduced angle corresponds to heightened cosine similarity, while an

increased angle corresponds to diminished cosine similarity. Existing literature

attests to the widespread adoption of cosine similarity as a prominent measure for

quantifying likeness among textual documents. This measure is useful in various

domains including IR. The standardized formula for computing cosine similarity

is given by Eq 3.10.

Cosine Similarity(qn, bm) =

∑n
i=1 qibi√∑n

i=1 q
2
i

√∑n
i=1 b

2
i

(3.10)

In the above formula, the q and b represent query bug report and existing bug

report vectors respectively. For understanding purpose, we have calculated the

cosine similarity between two bug reports. Table 3.7 shows an example of calcu-

lating cosine similarity between two vectors. To do this, we start with two vectors.

To determine their similarity, we have executed all the necessary steps.

3.1.9 Evaluation metrics

Evaluation metrics used for duplicate bug retrieval are as follows:

3.1.9.1 Recall@K

Recall@k is the proportion of relevant items found in the top-k recommendations.

The measure is expressed by Eq 3.11. High recall@k values show that a significant

percentage of the relevant items or documents have been successfully retrieved

within the top K results. Previous works [16, 27, 32, 46, 48, 49] used Rcall@k as

a metric to evaluate the quality of their proposed techniques in retrieving DBRs

given a new report.

Research Methodology 47

Table 3.7: Cosine similarity calculation example

Step Calculation

Bug 1 Vector (3.4, 0.1, 0.4, 3.1, 2.3, 3.5, 4.3, 0.5, 4.5, 0.6)

Bug 2 Vector (3.2, 1.5, 0.4, 3.5, 2.6, 5.5, 3.3, 0.5, 4.6, 0.8)

∑10
i=1 B1i , B2i (3.4 · 3.2) + (0.1 · 1.5) + (0.4 · 0.4) + (3.1 · 3.5)

+(2.3 · 2.6) + (3.5 · 5.5) + (4.3 · 3.3) + (0.5 · 0.5)

+(4.5 · 4.6) + (0.6 · 0.8)

= 10.88 + 0.15 + 0.16 + 10.85 + 5.98 + 19.25

+14.19 + 0.25 + 20.7 + 0.48 = 82.89

√∑n
i=1 B

2
ni

√
(3.4)2 + (0.1)2 + (0.4)2 + (3.1)2 + (2.3)2

+(3.5)2 + (4.3)2 + (0.5)2 + (4.5)2 + (0.8)2

=
√
78.23 = 8.845

√∑n
i=1 B

2
mi

√
(5.5)2 + (3.3)2 + (0.5)2 + (4.6)2 + (0.8)2

+(3.2)2 + (1.5)2 + (0.4)2 + (3.5)2 + (2.6)2

=
√
90.85 = 9.53

∑10
i=1 Bni ,Bmi√∑n

i=1 B
2
ni

·
√∑n

i=1 B
2
mi

= 82.89
8.845·9.53 = 82.89

84.31
= 0.97

Research Methodology 48

Recall@k =
1

N

N∑
t=1

duplicate

1
(3.11)

duplicate =

1 if found at least one duplicate in N bugs

0 otherwise

where N value is the number of bug reports considered in the evaluated queries,

and ’duplicate’ signifies the condition used to identify instances where at least one

duplicate bug is retrieved.

3.1.9.2 Mean Average Precision (MAP)

It is the mean of the average precision for all queries. Unlike precision, which only

looks at the top-k results, MAP considers the entire ranking list. It provides a

more realistic assessment of the system’s performance by accounting for the order

in which results are presented to users. Mathematically, this is given by Eq 3.12.

MAP(K) = 1− 1

|K|

|K|∑
i=1

1

indexi
(3.12)

Given a set K of duplicate reports, for each duplicate, the system continually re-

trieves masters in descendent order of similarity until the right master is retrieved,

and records its index in the ranked list. where index(i) is the index here the right

master is retrieved for the i-th query

Chapter 4

Results and Discussion

This chapter states and discusses the results of DBR retrieval. We present a

detailed account of our experimental outcomes, evaluate the strengths and weak-

nesses of different approaches, and draw meaningful conclusions that contribute

to the broader field of software quality assurance.

4.1 Dataset Description

For the purpose of evaluating the proposed hybrid model, we used bug reposi-

tories from two extensive open-source projects: Eclipse and OpenOffice collected

from [52]. Eclipse is an extensible multi-language software development environ-

ment written in Java [2]. The Eclipse dataset exhibits a versatile composition

encompassing defects originating from 189 projects. These projects are further

categorized into nine hundred and twenty-seven discrete components, facilitating

a comprehensive representation of the software ecosystem.

Similarly, the second dataset, drawn from the OpenOffice, encompasses bug re-

ports from nineteen distinct projects within the OpenOffice framework. This

dataset is characterized by its segmentation into fifteen distinct components, thus

enabling a holistic representation of the software’s functional areas. Table 4.1

shows Eclipse dataset.

49

Results and Discussion 50

OpenOffice dataset statistics and table 4.2 shows the train and test split of the

dataset.

Table 4.1: Eclipse and Open Office datasets statistics

Features Eclipse Open Office

Product (encompasses values from different
eclipse projects)

189 19

Components (Product have multiple compo-
nents)

927 15

Version (Each project has different versions) 547 11

Table 4.2: Train and test split

Dataset Training reports Test reports

Eclipse 20000 5000

OpenOffice 17000 5000

4.2 Duplicate Bug Report Retrieval Performance

In this section, we present the results of our proposed hybrid model. The model

is a hybrid of IR and DL based techniques to determine whether a bug report

is a duplicate or not. We assess our model performance for duplicate bug report

retrieval using two datasets and two performance metrics.

Figure 4.1 shows recall@k results on Eclipse dataset using the proposed hybrid

model. Starting with a recall@1 of 0.62, the model improved as the recommen-

dation list grew, reaching a peak of 0.84 at recall@25. This suggests the hybrid

model’s effectiveness in retrieving relevant DBRs, making it an effective approach

for duplicate bug report retrieval systems.

Figure 4.2 shows the recall@k results on OpenOffice dataset and Eclipse dataset.

The results show an increase in recall values as the top-K list of duplicates in-

creases.

Results and Discussion 51

Figure 4.1: Recall@K on Eclipse dataset using BM25+SBERT

Figure 4.2: Recall@K on OpenOffice dataset using BM25+SBERT

Results and Discussion 52

Figure 4.3 shows the MAP across Eclipse and OpenOffice datasets. The graph

shows that MAP of eclipse datasets is higher as compared to OpenOffice dataset.

Figure 4.3: MAP of Eclipse and OpenOffice datasets

4.3 Comparision with Previous Bug Report Re-

trieval Techniques

In this section, we compare the experimental results of our proposed hybrid model

with traditional models. These baseline techniques are based on IR and DL models

proposed by Sun et al. [27] and Rocha et al. [32]. The comparison is done on

Eclipse and OpenOffice datasets.

Figure 4.4 and Figure 4.5 provide a graphical representation of the performance

of duplicate bug retrieval using two distinct models: BM25 and a proposed hy-

brid model. The visual comparison illustrates that the hybrid model consistently

outperforms the traditional BM25 model in terms of recall rate. In the case of

OpenOffice dataset, the relative improvement ranges from 32.81% and 38.89%.

For the Eclipse dataset, the improvement is even higher ranging from 25.37% to

42.31%.

Results and Discussion 53

The primary rationale behind this marked improvement is attributed to the in-

herent characteristics of the BM25 model compared to the hybrid model. BM25

relies on lexical search, primarily focusing on text and keyword matching, while

largely neglecting the semantic nuances of the content.

In contrast, the proposed hybrid model employs a more sophisticated approach by

integrating both IR and semantic-aware SBERT models.

Figure 4.4: Comparision of recall@K for BM25 and BM25+SBERT on Eclipse
dataset

Table 4.3 and 4.4 shows the results achieved by all approaches on two distinct

datasets.

Table 4.3: Recall@K for Eclipse dataset on all approaches

RR@1 RR@5 RR@10 RR@15 RR@20 RR@25
SiameseQAT [32] 0.57 0.73 0.78 0.80 0.82 0.83
BM25 0.45 0.52 0.57 0.62 0.65 0.67
BM25+SBERT 0.62 0.75 0.80 0.82 0.83 0.835

Figures 4.6 and 4.7 provide a comparative analysis of the performance of our hy-

brid model against BM25 and the baseline model in terms of recall@k. The results

clearly demonstrate that our proposed method outperforms the others models.

in the task of retrieving DBRs. Specifically, for the Eclipse dataset, we observe

an improvement in the recall rate ranging from 1.2% to 8.77%. Similarly, for

Results and Discussion 54

Figure 4.5: Comparision of recall@K for BM25 and BM25+SBERT on
OpenOffice dataset

Table 4.4: Recall@K for Open Office dataset on all approaches

RR@1 RR@5 RR@10 RR@15 RR@20 RR@25

SiameseQAT [32] 0.59 0.74 0.79 0.81 0.83 0.85

BM25 0.45 0.54 0.60 0.62 0.63 0.64

BM25+SBERT 0.61 0.75 0.81 0.83 0.84 0.85

the OpenOffice dataset, the recall rate shows an increase of approximately 3.39%.

These findings underscore the effectiveness of our hybrid model in accurately iden-

tifying DBRs among the master bug reports.

4.4 Effectivness of the Approach in Terms of Re-

sponse Time

The performance of the proposed approach was assessed using Google Colab with

an Intel(R) Xeon(R) CPU @ 2.20GHz, 4GB RAM, and a Tesla T4 GPU.

The program is running on the Windows 10 Operating System. Table 4.5 shows

the per-sample processing time of three different approaches.

Results and Discussion 55

Figure 4.6: Recall rate at various values of K, and baseline approach in com-
parison to BM25 and BM25+SBERT.

Figure 4.7: Recall rate at various values of K, and all baselines in comparison
to BM25 and BM25+SBERT.

Results and Discussion 56

It shows that the processing time of the proposed approach is 5.88s for 2000K

sample size. The proposed approach is approximately 1.608 times faster than the

baseline approach.

Table 4.5: PSPT for different sample sizes

10 100 500 1000 2000

M4 [48] 9.257 9.438 9.318 9.3468 9.468

BM25 0.9 0.97 0.98 1.0 1.1

BM25+SBERT 5.54 5.62 5.66 5.76 5.88

Lexical models like BM25 rely on simple heuristics and precomputed indices, mak-

ing them computationally efficient. They can quickly scan the text to retrieve

relevant information. In contrast, semantic models like BERT require more com-

plex computations, such as neural network inference, attention mechanisms, and

contextual embeddings, leading to higher per-sample processing times.

BERT, being a deep transformer model, has a large number of parameters and

intricate architecture. It performs token-level computations on input sequences,

including self-attention mechanisms, which can lead to longer processing times.

The complexity of its architecture contributes to higher per-sample processing

times compared to simpler models.

To achieve a trade-off between per-sample processing time and recall rate, a hybrid

model is proposed. It uses BM25 and SBERT, BM25 offers faster processing

time but might have lower recall rates due to its lexical nature. On the other

hand, semantic models like BERT offer higher recall rates at the cost of increased

processing times. Combining both, as seen in BM25+SBERT, can strike a balance.

BM25 rapidly identifies potential duplicate candidates, allowing deep learning

models like BERT to concentrate on fine-grained similarity analysis. This not

only expedites the detection of duplicate bug reports but also optimizes resource

allocation, ensuring that the computational overhead of deep learning is reserved

for cases where its sophistication is indispensable. Figure 4.8 shows the Per Sample

Processing Time (PSPT) of proposed approach, BM25 and M4 technique proposed

by [48]. It shows that the PSPT of the proposed approach is reduced by 3.5.

Results and Discussion 57

Figure 4.8: PSPT of BM25, BERT, and BM25+SBERT

4.5 Addressing Research Questions

To assess the effectiveness of our proposed hybrid system compared to the tradi-

tional techniques, we address the following two research questions: RQ1: Does

the proposed approach using both sparse and dense vectors be more efficient in

retrieving the DBRs?

The proposed hybrid model uses both BM25 and SBERT models for DBRs re-

trieval. The bug reports contain both structured and unstructured fields. NLP

steps are applied to unstructured fields of the bug reports to get tokenized words.

These tokenized words are then combined with categorical features to get a pro-

cessed bug report feature set. The BM25 model is then used to index the bug

reports. The model is based on TF-IDF which generates a sparse vector for bug

representation. The sparse vectors are then used to retrieve duplicate bug reports

based on the lexical matching of terms. The BM25 model is fast but fails to

get semantically similar bug reports. A semantic-based reranker model is used to

rerank the DBRs based on semantic similarity. Table 4.3 and 4.4 show a significant

improvement in recall rate. Therefore it is concluded that the proposed hybrid

approach using both sparse and dense retrieval vectors is effective in retrieving the

possible DBRs.

Results and Discussion 58

RQ2: How can the processing time of previous DBRD approaches be reduced

compared with the proposed approach?

The processing time of previous DBRD approaches can be significantly reduced

compared to the proposed approach by leveraging a hybrid model that combines

the strengths of both lexical and semantic models. Lexical models like BM25

offer fast processing times due to their reliance on precomputed indices and simple

heuristics. However, they may have limitations in recall rates as they lack semantic

understanding.

In contrast, semantic models like BERT or SBERT excel in capturing semantic

information and achieving higher recall rates but require more complex computa-

tions, leading to longer processing times. The proposed hybrid approach, denoted

as BM25+SBERT, takes advantage of this trade-off.

First, BM25 is used to rapidly filter out a subset of potentially relevant bug re-

ports, benefiting from its computational efficiency. Then, semantic models like

SBERT or BERT are applied to refine the results further, enhancing recall rates

without imposing excessive processing time. This hybrid strategy achieves a bal-

ance between processing time and recall rate, offering a solution to reduce the

processing time compared to previous DBRD approaches while maintaining or

even improving recall rates.

Chapter 5

Conclusion and Future Work

5.1 Limitations

In this section, we discussed a few limitations that may affect the validity of our

model.

5.1.1 Dependency on BM25 Model

It is important to acknowledge that the performance of the reranker model is

intimately linked to the quality of top-N duplicate bug reports retrieved, which

serves as input to the reranker model. Consequently, if the BM25 model fails

to adequately prioritize and rank relevant bug reports, it can have a cascading

effect on the performance of the subsequent re-ranker model. In instances where

the BM25 model encounters challenges in accurately identifying or ranking dupli-

cates, the re-ranker model may also face limitations in its ability to rectify these

shortcomings.

5.1.2 Generalization Across Diverse Platforms

Although this study is evaluated on two diverse datasets. Variability in platforms,

development practices, and bug report structures could hinder the generalizability

59

Conclusion and Future Work 60

of the proposed system. The system’s effectiveness in detecting duplicate bug

reports may be influenced by platform-specific idiosyncrasies, potentially limiting

its applicability in broader software development contexts. Therefore, it is essential

to recognize that the system’s performance may not be universally applicable, and

future research may be needed to improve its adaptability.

5.2 Conclusion

In this study, a hybrid model for duplicate bug report retrieval using IR and se-

mantic learning is proposed. The model utilizes both structured and unstructured

information for the retrieval of duplicate bug reports. It uses BM25 a time-efficient

IR model to retrieve top-N similar bug reports. A semantic model is used to re-

rank the top-N duplicate bug reports. We have evaluated our approach on two

sizeable open-source bug repositories Eclipse, and OpenOffice. The experimental

results of the proposed hybrid model compared to BM25 show relative improve-

ment ranging from 32.81% and 38.89% in the case of OpenOffice dataset and even

higher improvement ranging from 25.37% to 42.31% in case of Eclipse. When

compared with the baseline technique SimaeseQAT the proposed model shows a

relative improvement of 4.6% to 12.16% with a per-sample processing time of 5.65s

for 2000 sample size.

5.3 Future Work

5.3.1 Cross-domain Data

There are additional publicly accessible datasets such as Firefox, Thunderbird,

Cassandra, and JDT mentioned in existing literature. This presents an opportu-

nity to conduct experiments by amalgamating all these datasets into a compre-

hensive and unified dataset. This experiment would assess the model’s ability to

create a generalized representation of duplicate reports across different projects.

Conclusion and Future Work 61

5.3.2 Optimizing Top-N Selection for Enhanced Duplicate

Bug Report Detection

To further enhance the robustness of our approach, future work can focus on

the systematic exploration of hyperparameter tuning techniques for determining

the most suitable top-N value. This can include employing advanced optimiza-

tion algorithms, such as Bayesian optimization or Optuna, to efficiently search

for the optimal top-N parameter. Additionally, considering the potential variance

in optimal top-N values across different software development projects, an adap-

tive approach that adjusts the top-N value dynamically based on project-specific

characteristics could be explored.

5.3.3 Integration with Bug Tracking Tools

Creating seamless integrations with popular bug-tracking tools to facilitate adop-

tion in real-world development environments.

Bibliography

[1] S. Reddivari and J. Raman, “Software quality prediction: An investigation

based on machine learning,” in 2019 IEEE 20th International Conference on

Information Reuse and Integration for Data Science (IRI), pp. 115–122, 2019.

[2] G. Tassey, “The economic impacts of inadequate infrastructure for software

testing,” National Institute of Standards and Technology, 05 2002.

[3] N. H. Adnan and A. D. Ritzhaupt, “Software engineering design principles ap-

plied to instructional design: What can we learn from our sister discipline?,”

TechTrends, vol. 62, pp. 77–94, 2018.

[4] I. Ushakova, Y. Skorin, and A. Shcherbakov, “Methods of quality assurance of

software development based on a systems approach,” Journal Name, vol. Vol-

ume Number, p. Page Range, 2022.

[5] Z. Li, X. Jing, and X. Zhu, “Progress on approaches to software defect pre-

diction,” IET Software, vol. 12, no. 3, pp. 161–175, 2018.

[6] N. Anwar and S. Kar, “Review paper on various software testing techniques &

strategies,” Global Journal of Computer Science and Technology, pp. 43–49,

05 2019.

[7] N. M. D. Febriyanti, A. A. K. O. Sudana, and I. N. Piarsa, “Implementasi

black box testing pada sistem informasi manajemen dosen,” Jurnal Ilmiah

Teknologi dan Komputer, vol. 2, pp. 535–544, 12 2021.

[8] S. Supriyono, “Software testing with the approach of blackbox testing on the

academic information system,” IJISTECH (International Journal of Infor-

mation System and Technology), vol. 3, pp. 227–233, May 2020.

62

Bibliography 63

[9] “What is bug tracking system? — kissflow workflow - issue tracking.”

[10] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug report detection

using dual-channel convolutional neural networks,” in Proc. 28th Int. Conf.

Program Comprehension, pp. 117–127, July 2020.

[11] T. Akilan, D. Shah, N. Patel, and R. Mehta, “Fast detection of duplicate bug

reports using lda-based topic modeling and classification,” in 2020 IEEE In-

ternational Conference on Systems, Man, and Cybernetics (SMC), pp. 1622–

1629, 2020.

[12] D.-G. Lee and Y.-S. Seo, “Systematic review of bug report processing tech-

niques to improve software management performance,” Journal of Informa-

tion Processing Systems, vol. 15, no. 4, pp. 967–985, 2019.

[13] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, and K.-S. Kwak, “Du-

plicate bug report detection and classification system based on deep learning

technique,” IEEE Access, vol. 8, pp. 200749–200763, 2020.

[14] M. B. Messaoud, A. Miladi, I. Jenhani, M. W. Mkaouer, and L. Ghadhab,

“Duplicate bug report detection using an attention-based neural language

model,” IEEE Transactions on Reliability, 2022.

[15] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng, “Detecting duplicate bug re-

ports with convolutional neural networks,” in 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), pp. 416–425, December 2018.

[16] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta, and N. Dubash,

“Towards accurate duplicate bug retrieval using deep learning techniques,” in

2017 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pp. 115–124, 2017.

[17] D. Swapna and K. Thammi Reddy, “A study of information retrieval ap-

proaches in duplicate bug detection,” Indian J. Sci. Technol, vol. 9, no. 43,

2016.

Bibliography 64

[18] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten bug

report,” in 2013 17th European Conference on Software Maintenance and

Reengineering, March 2013.

[19] J. Zou, L. Xu, M. Yang, M. Yan, D. Yang, and X. Zhang, “Duplication detec-

tion for software bug reports based on topic model,” in 2016 9th International

Conference on Service Science (ICSS), October 2016.

[20] G. Canfora and L. Cerulo, “How software repositories can help in resolving a

new change request,” p. 99, September 2005.

[21] S. Gupta and S. K. Gupta, “A systematic study of duplicate bug report detec-

tion,” International Journal of Advanced Computer Science and Applications,

vol. 12, no. 1, 2021.

[22] S. Ibrihich, A. Oussous, O. Ibrihich, and M. Esghir, “A review on re-

cent research in information retrieval,” Procedia Computer Science, vol. 201,

pp. 777–782, 2022. The 13th International Conference on Ambient Systems,

Networks and Technologies (ANT) / The 5th International Conference on

Emerging Data and Industry 4.0 (EDI40).

[23] N. Lal, S. Qamar, and S. Shiwani, “Information retrieval system and chal-

lenges with dataspace,” International Journal of Computer Applications,

vol. 147, no. 8, 2016.

[24] G. Kowalski, Information Retrieval Architecture and Algorithms. 01 2011.

[25] S. Landolt, T. Wambsganß, and M. Söllner, “A taxonomy for deep learning

in natural language processing,” 01 2021.

[26] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative

model approach for accurate duplicate bug report retrieval,” in Proc. 32nd

ACM/IEEE Int. Conf. Softw. Eng., vol. 1, pp. 45–54, May 2010.

[27] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval

of duplicate bug reports,” in 2011 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE 2011), pp. 253–262, 2011.

Bibliography 65

[28] A. Hindle and C. Onuczko, “Preventing duplicate bug reports by continuously

querying bug reports,” Empirical Software Engineering, vol. 24, pp. 902–936,

2019.

[29] B. Soleimani Neysiani and S. M. Babamir, “Improving performance of au-

tomatic duplicate bug reports detection using longest common sequence,”

in IEEE 5th International Conference on Knowledge-Based Engineering and

Innovation (KBEI), 2019.

[30] B. Soleimani Neysiani, S. M. Babamir, and M. Aritsugi, “Efficient feature

extraction model for validation performance improvement of duplicate bug

report detection in software bug triage systems,” Information and Software

Technology, vol. 126, p. 106344, Oct 2020.

[31] B. S. Neysiani and S. M. Babamir, “New methodology for contextual features

usage in duplicate bug reports detection: Dimension expansion based on man-

hattan distance similarity of topics,” in 2019 5th International Conference on

Web Research (ICWR), Apr. 2019.

[32] T. M. Rocha and A. L. D. C. Carvalho, “Siameseqat: A semantic context-

based duplicate bug report detection using replicated cluster information,”

IEEE Access, vol. 9, pp. 44610–44630, 2021.

[33] S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan, and B. Cukic, “Au-

tomated triaging of very large bug repositories,” Information and Software

Technology, vol. 89, pp. 1–13, 2017.

[34] S. Banerjee, B. Cukic, and D. Adjeroh, “Automated duplicate bug report

classification using subsequence matching,” in IEEE 14th International Sym-

posium on High-Assurance Systems Engineering (HASE), pp. 74–81, IEEE,

2012.

[35] B. S. Neysiani and S. M. Babamir, “Automatic duplicate bug report detection

using information retrieval-based versus machine learning-based approaches,”

in 2020 6th International Conference on Web Research (ICWR), pp. 288–293,

2020.

Bibliography 66

[36] N. Ebrahimi, A. Trabelsi, M. S. Islam, A. Hamou-Lhadj, and K. Khanmo-

hammadi, “An hmm-based approach for automatic detection and classifica-

tion of duplicate bug reports,” Information and Software Technology, vol. 113,

pp. 98–109, Sep. 2019.

[37] Y. Jiang, X. Su, C. Treude, C. Shang, and T. Wang, “Does deep learning

improve the performance of duplicate bug report detection? an empirical

study,” Journal of Systems and Software, vol. 198, p. 111607, 2023.

[38] A. Søgaard, Ž. Agić, H. Mart́ınez Alonso, B. Plank, B. Bohnet, and A. Jo-

hannsen, “Inverted indexing for cross-lingual NLP,” in Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pp. 1713–1722, July 2015.

[39] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect

reports using natural language processing,” in Proc. 29th Int. Conf. Softw.

Eng., pp. 499–510, May 2007.

[40] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting

duplicate bug reports using natural language and execution information,” in

Proc. 30th Int. Conf. Softw. Eng., pp. 461–470, 2008.

[41] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking

systems,” in Proc. IEEE Int. Conf. Dependable Syst. Netw. With FTCS DCC

(DSN), pp. 52–61, 2008.

[42] C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin, “Which bm25 do you

mean? a large-scale reproducibility study of scoring variants,” in Advances

in Information Retrieval, pp. 28–34, 2020.

[43] K. Aggarwal, T. Rutgers, F. Timbers, A. Hindle, R. Greiner, and E. Stroulia,

“Detecting duplicate bug reports with software engineering domain knowl-

edge,” in Proc. IEEE 22nd Int. Conf. Softw. Anal., Evol., Reeng. (SANER),

pp. 211–220, March 2015.

Bibliography 67

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” 2019.

[45] X. Wu, W. Shan, W. Zheng, Z. Chen, T. Ren, and X. Sun, “An intelligent

duplicate bug report detection method based on technical term extraction,” in

2023 IEEE/ACM International Conference on Automation of Software Test

(AST), pp. 1–12, 2023.

[46] T. Zhang, I. C. Irsan, F. Thung, and D. Lo, “Cupid: Leveraging chatgpt for

more accurate duplicate bug report detection,” 2023.

[47] R. Chauhan, S. Sharma, and A. Goyal, “Denature: Duplicate detection and

type identification in open source bug repositories,” International Journal of

Systems Assurance Engineering and Management, vol. 14, no. Supplement 1,

pp. 275–292, 2023.

[48] T. Akilan, D. Shah, N. Patel, and R. Mehta, “Fast detection of duplicate bug

reports using lda-based topic modeling and classification,” in 2020 IEEE In-

ternational Conference on Systems, Man, and Cybernetics (SMC), pp. 1622–

1629, 2020.

[49] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava, “Dwen: Deep word

embedding network for duplicate bug report detection in software reposito-

ries,” in Proc. 40th Int. Conf. Softw. Eng., Companion, pp. 193–194, May

2018.

[50] H. Mahfoodh, “Identifying duplicate bug records using word2vec prediction

with software risk analysis,” International Journal of Computing and Digital

Systems, vol. 11, pp. 763–773, 2022.

[51] T. Zhang, D. Han, V. Vinayakarao, I. C. Irsan, B. Xu, F. Thung, D. Lo, and

L. Jiang, “Duplicate bug report detection: How far are we?,” ACM Trans.

Softw. Eng. Methodol., vol. 32, may 2023.

[52] A. Lazar, S. Ritchey, and B. Sharif, “Generating duplicate bug datasets,” in

Proceedings of the 11th Working Conference on Mining Software Repositories,

pp. 392–395, 2014.

Bibliography 68

[53] E. Loper and S. Bird, “NLTK: The natural language toolkit,” CoRR, vol. 28,

no. 3, pp. 228–236, 2002.

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Bug Tracking
	1.1.1 Issues in Bug Tracking

	1.2 Problem Statement
	1.3 Research Questions
	1.4 Proposed Solution
	1.5 Objective
	1.6 Thesis Organization

	2 Literature Review
	2.1 Duplicate Bug Report Detection (DBRD)
	2.2 Information Retrieval Approaches
	2.2.1 Count Based Approaches
	2.2.2 BM25 Approach

	2.3 Machine Learning Approaches
	2.3.1 CNN Based Approaches
	2.3.2 BERT Based Approaches
	2.3.3 Hybrid Approaches
	2.3.4 Other Approaches

	2.4 Discussion on DBRD Approaches

	3 Research Methodology
	3.1 Problem Identification
	3.1.1 Literature Review
	3.1.2 Research Gap Identification
	3.1.3 Problem Formulation
	3.1.4 Dataset Review and Selection
	3.1.4.1 Eclipse dataset
	3.1.4.2 OpenOffice dataset
	3.1.4.3 Firefox
	3.1.4.4 Kibana dataset
	3.1.4.5 Selected datasets

	3.1.5 Preliminary Preprocessing
	3.1.6 Proposed Hybrid Model for DBRD
	3.1.7 Preprocessing
	3.1.7.1 Feature Selection
	3.1.7.2 Natutal Language Processing
	3.1.7.3 Tokenization
	3.1.7.4 Stemming
	3.1.7.5 Stop words removal
	3.1.7.6 Processed Feature Set
	3.1.7.7 BM25 Indexing
	3.1.7.8 Similarity Measure and Ranking

	3.1.8 Semantic Reranking
	3.1.8.1 SBERT
	3.1.8.2 Fine Tuning SBERT Model
	3.1.8.3 Data Preparation
	3.1.8.4 Select SBERT model
	3.1.8.5 Architecture
	3.1.8.6 Loss Function
	3.1.8.7 Similarity Measure

	3.1.9 Evaluation metrics
	3.1.9.1 Recall@K
	3.1.9.2 Mean Average Precision (MAP)

	4 Results and Discussion
	4.1 Dataset Description
	4.2 Duplicate Bug Report Retrieval Performance
	4.3 Comparision with Previous Bug Report Retrieval Techniques
	4.4 Effectivness of the Approach in Terms of Response Time
	4.5 Addressing Research Questions

	5 Conclusion and Future Work
	5.1 Limitations
	5.1.1 Dependency on BM25 Model
	5.1.2 Generalization Across Diverse Platforms

	5.2 Conclusion
	5.3 Future Work
	5.3.1 Cross-domain Data
	5.3.2 Optimizing Top-N Selection for Enhanced Duplicate Bug Report Detection
	5.3.3 Integration with Bug Tracking Tools

	Bibliography

