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Chapter 1

Introduction

The theory of fixed point provides very productive and constructive tools in present-time

mathematics and may also assessed as a key topic of nonlinear analysis. In the last 50

years, the theory of fixed point has become the most growing and interesting field of

research for almost every mathematicians. The origination of this theory, which date to

the later part of the 19th century, rest in the use of unbroken and sequential estimation to

built the uniqueness as well as existence of results, especially to the differential equations.

This method is related with so many recognized mathematicians alike Banach [23],

Lipschitz [14], Fredrick [14] and Picard [22]. One of the major field of theory of fixed

point was theory of metric fixed point and we acknowledge that the more valuable content

in the growth of non linear analysis is fixed point theory. Historically the starting line in

this field was well-defined by the creation of “Banach’s Fixed Point Theorem” familiar

as “Banach contraction principle” or “BCP” in short.

It states that every contraction on a complete metric space has a unique fixed point.

More precisely, if (X, d) is a complete metric space and T : X → X is a self map on X

and α ∈ [0, 1) is such that

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ X then T has a unique fixed point. It is well established that “BCP” is

basic result in the innovation of theory of fixed point, have pre-owned and expanded in

non-identical ways and so many different kinds of fixed point theorems were put into

effect. The BCP is prolonging, refining and extending in two typical directions

1. By expanding and developing of contraction conditions on the mapping T.

2. By spreading the structure of the spaces on which T is defined.

In above first quoted way, the BCP has widespreaded in a lot of other aspects. Actu-

ally, the massive quantity of literature wetbacking the generalizations and extensions of

1



Chapter 1 2

that amazing theorem. Banach [18] established that a contraction mapping possessed

a unique fixed point in complete metric space. Presic S.B [61] In 1965 and shortly in

1968 Kannan [45] refined this contraction mapping principle, more extention came from

A Meir and Emmett Keeler [54] in 1969. After this Dass B.K. Gupta [28] and also Kol-

mogorov A.N. and S.V. Fomin [46] made more extention through rational expression in

Banach contraction principle, then Dolhare U.P [29] extended this remarkable Banach

contraction mapping principle. The contraction mapping is weakened in some general-

ization, (see [9, 23, 44, 54, 62]) and the weakened topology in some other generalization

(see [14, 15, 20, 30, 36] and others.

In above second quoted way, The “BCP” is also extended by Nadler (see [59]) from

single valued to set valued contraction maps, the metric spaces were widespreaded by

changing the axioms of metric such as, partial metric spaces [55], cone metric spaces

[41], G-metric spaces [56], 2-metric spaces [39] and many others. These generalized met-

ric spaces frequently arises to be measurable and the contraction conditions conserved

the true changes, particularly, the fixed point results may be proven on few generalized

metric spaces from questionless outcome in usual metric spaces. In the present days,

few new classes of metric spaces were brought in and different types of spaces raised

as mixtures of the preceding such as partial cone metric spaces [58], metric like spaces

[49], quasi partial metric spaces [35], cone rectangular metric spaces [8], quasi b-metric

spaces [66], m-metric spaces [7], quasi metric like spaces [65], partial rectangular metric

spaces [64] and others. The weaken axioms are main reason in the construction of these

metric spaces.

The usual metric spaces have also been generalized in well known spaces as mentioned

above, some of these spaces are b-metric spaces [10], rectangular and rectangular b-

metric spaces [8]. The idea of b-metric spaces was introduced by Czerwik [22] after the

generalization of metric space. On the other hand, Bakhtin in [10] also generalized the

metric spaces. After that, many papers have been published having fixed point conclu-

sion in b-metric spaces for single and multi-valued functions (see [14, 20]). After that

many other papers have also been published in the field of this theory with single as

well as multivalued mappings in b-metric spaces (for example [11–13, 22, 24–26]) and

the references therein.

On the other hand, Branciari [14] has introduced the notion of rectangular b-metric

space(RMS) by exchanging the sum of three terms expression in right hand side of tri-

angular instead of two terms. After that more results involving fixed point with different

contractive mappings in rectangular metric spaces came into view (see [6, 8, 21, 30–

33, 35, 53]).

In this thesis, we used the idea of the rectangular b-metric space, not necessarily Haus-

dorff which generalizes the idea of the b-metric spaces. Particularly we reveiwed the

results presented in [68] in the setting of b-metric space. We then extended these results
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in the setting of rectangular b-metric spaces. Some of these results like Kannan type

theorem as well as BCP are also extended in rectangular b-metric spaces. We have also

proved some other contraction mappings in rectangular b-metric spaces. We have also

constructed some examples which show that our generalizations are genuine.

The rest of the thesis is organized as follows.

• In Chapter 2, we throw light on basic definitions of abstract spaces like rectangular

b-metric spaces and presented some examples which satisfy the properties of above

spaces.

• In Chapter 3, we reviewed comprehensively some fixed point results like Ciric’s

and Generalized Contraction in b-metric spaces presented in [68].

• In Chapter 4, we established new fixed point theorems by extending the results

of “BCP” and Kannan type theorem in rectangular b-metric space. In the last

section, we conclude our thesis.



Chapter 2

preliminaries

The concept of distance between the points allow us to define more general concept

of a metric which move us to the metric space. The idea of the space arrived from

fundamental concept of abstract set X whose elements satisfy certain axioms.

In this chapter, we need to recall some basic definitions, lemmas, theorems and necessary

results from existing literature. The following definitions, lemmas and theorems are

related to our main research. Through out, R stands for set of real numbers, R+ stands

for set of positive real numbers, R+
0 stands for set of positive real numbers including 0

and N stands for set of natural numbers.

2.1 Metric spaces

In the present section, we have stated all basic concepts, definitions with examples for

understanding the structure of metric spaces.

Definition 2.1.1. [40](Metric space)

“Let X be a non-empty set, a mapping d : X ×X → [0,+∞) is called metric on X for

all x, y, z ∈ X, if the following axioms satisfied

M1. d(x, y) = 0⇔ x = y

M2. d(x, y) = d(y, x)

M3. d(x, z) ≤ d(x, y) + d(y, z).

and the pair (X, d) is called a metric space.”

4
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Example 2.1.2. R is the real line and define the distance by

d(x, y) = |x− y|.

then d is metric on R and the pair (R, d) is a usual metric space.

Example 2.1.3. R2 is the plane and the usual distance as

d((x1, y1), (x2, y2)) = [(x1 − x2)2 + (y1 − y2)2]
1
2 .

then sometimes, it is said to be 2-metric d2.

We are going to give the concept and definition of Cauchy sequence, convergence se-

quence in metric space and the completeness of the metric space. Following definitions

are taken from [40].

Definition 2.1.4. (Cauchy sequence)

“A sequence {xn} in metric space (X, d) is called Cauchy sequence if for every ε > 0

there exist a positive integer N such that for m,n > N, we have

d(xm, xn) < ε.”

Definition 2.1.5. (Convergence sequence)

“A sequence {xn} in metric space (X, d) is called convergent sequence if for every ε > 0

and n > N we have

d(xn, x) < ε.

where x is called the limit of the sequence {xn}.”

Definition 2.1.6. (Complete metric space)

“A metric space (X, d) is said to be complete if every Cauchy sequence in X converges

to a point of X.”

Example 2.1.7. The space R of real numbers and the space C of complex numbers

(with the metric given by the absolute value) are complete, and so is Euclidean space

Rn with the usual distance metric.

2.2 b-metric spaces

In this section, we have presented some basic concepts and definitions regarding the b-

metric spaces. We have also given some examples to understand the structure of b-metric

spaces. Czerwike [24] defined a b-metric space as follows:
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Definition 2.2.1. [24](b-metric space)

“Let X be a non-empty set and if b ≥ 1 be any real number then a mapping db : X×X →
[0,+∞) is said to be b-metric if for all x, y, z ∈ X if the following axioms are satisfied

B1. db(x, y) = 0⇔ x = y

B2. db(x, y) = db(y, x)

B3. db(x, z) ≤ b[db(x, y) + db(y, z)].

The pair (X, db) is then called b-metric space.”

Remark 2.2.2. Let (X, db) is b-metric space. Generally the b-metric db is not continues.

The following example illustrates this fact.

Example 2.2.3. [52]

“Let X = N ∪ {∞} and let db : X ×X → {0,+∞} is defined by

db(m,n) =



0 if m = n,

| 1m −
1
n | if one of m,n is even and the other is even or ∞.

5, if one of m,n is odd and the other is odd or ∞,

2, otherwise.

It can be checked that for all m,n, p ∈ X, we have

db(m, p) ≤
5

2
[db(m,n) + db(n, p)].

Thus (X, db) is a b-metric space with b = 5/2. Let xn = 2n for each n ∈ N, then

db(2n,∞) =
1

2n
→ 0 as n→∞

that is, xn →∞, but db(xn, 1) = 2 9 5 = db(∞, 1) as n→∞.”

Example 2.2.4. [5] “Let X = {0, 1, 2}. Define a mapping db : X × X → (0,+∞) as

following

db(0, 0) = db(1, 1) = db(2, 2) = 0.

db(0, 1) = db(1, 0) = db(1, 2) = db(2, 1) = 1.

db(0, 2) = db(2, 0) = m > 2 for b =
m

2
where m > 2.

the function defined above is a b-metric space but not a metric for m > 2 because if we

take m > 2 then the coefficient b > 1 which contradict the third axiom of metric space.”
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We are going to give the concept and definition of Cauchy sequence, convergence se-

quence in b-metric space and the completeness of the b-metric space. These definitions

are taken from [43].

Definition 2.2.5. (Cauchy sequence)

“A sequence {xn} in b-metric space (X, db) is called Cauchy sequence if for every ε > 0

there exist a positive integer N such that for m,n > N , we have

db(xm, xn) < ε.”

Definition 2.2.6. (Convergence sequence)

“A sequence {xn} in b-metric space (X, db) is called convergent sequence if for every

ε > 0 and n > N we have

db(xn, x) < ε.

where x is called the limit point of the sequence {xn}.”

Definition 2.2.7. (Complete b-metric space)

“A b-metric space (X, db) is said to be complete if every Cauchy sequence in X converges

to a point of X.”

2.3 Rectangular b-metric space

Here, we have given some basic concepts and definitions for the rectangular b-metric

spaces. We have given few examples for understanding the structure of rectangular

b-metric spaces.

Definition 2.3.1. [38](Rectangular metric space)

“Let X be a non-empty set, a mapping db : X ×X → [0,+∞) is said to be rectangular

metric if for every x, y, z ∈ X and u, v ∈ X \ {x, z} satisfies the following axioms

RM1. db(x, y) = 0⇔ x = y.

RM2. db(x, y) = db(y, x)

RM3. db(x, z) ≤ db(x, u) + db(u, v) + db(v, z).

The pair (X, db) is called Rectangular metric space.”
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Example 2.3.2. Let X = { 1n : n ∈ R+} ∪ {0} define dr : X ×X → R by

dr(x, y) =


0 if x = y;

1
n , if {x, y} = {0, 1n};

1, if x 6= y, x, y ∈ X \ {0}

then, (X, dr) is a rectangular metric space but not a metric space as

dr(x, y) = 1 >
2

n
= dr(x, 0) + dr(0, y)

for n > 2 and all distinct x, y ∈ X.

Definition 2.3.3. [38](Rectangular b-metric space)

“Let X be non empty set and if b ≥ 1 is a real number then a mapping db : X ×X →
[0,+∞) is said to be rectangular b-metric for every x, z ∈ X and u, v ∈ X \{x, z} satisfy

the following axioms

RbM1. db(x, y) = 0⇔ x = y.

RbM2. db(x, y) = db(y, x)

RbM3. db(x, z) ≤ b[db(x, u) + db(u, v) + db(v, z)].

The pair (X, db) is then called a rectangular b-metric space.”

Example 2.3.4. [38]

“Let X = N, define db : X ×X → X such that db(x, y) = db(y, x) for all x, y ∈ X and

db(x, y) =



0 if x = y,

10α, if x = 1, y = 2,

α, if x ∈ {1, 2} and y ∈ {3},

2α, if x ∈ {1, 2, 3} and y ∈ {4},

3α, if x or y /∈ {1, 2, 3, 4} and x 6= y,

where α > 0 is constant. then (X, db) is rectangular b- metric space with coefficient

b = 2 > 1, but (X, db) is not rectangular metric space. as

db(1, 2) = 10α > 5α = db(1, 3) + db(3, 4) + db(4, 2).”
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Example 2.3.5. [38]

“Let X = N, define db : X ×X → X by

db(x, y) =


0 if x = y,

4α, if x, y ∈ {1, 2} and x 6= y,

α, if x or y /∈ {1, 2} and x 6= y,

where α > 0 is constant. then (X, db) is rectangular b- metric space with coefficient

b =
4

3
> 1, but (X, db) is not rectangular metric space as

db(1, 2) = 4α > 3α = db(1, 3) + db(3, 4) + db(4, 2).”

We are going to give the concept and definition of Cauchy sequence, convergence se-

quence in rectangular b-metric space and the completeness of the rectangular b-metric

space. Following definitions are taken from [38].

Definition 2.3.6. (Cauchy sequence)

“A sequence {xn} in rectangular b-metric space (X, db) is called Cauchy sequence if for

every ε > 0 there exist a positive integer N such that for m,n > N, we have

db(xm, xn) < ε.”

Definition 2.3.7. (Convergence sequence)

“A sequence {xn} in rectangular b-metric space (X, db) is called convergent sequence if

for every ε > 0 and n > N we have

db(xn, x) < ε.

where x is called the limit point of the sequence {xn}.”

Definition 2.3.8. (Complete rectangular b-metric space)

“A rectangular b-metric space (X, db) is said to be complete if every Cauchy sequence

in X converges to a point of X.”

2.4 Fixed point theory and Contractions

In the following section, we have presented the definition of fixed point as well as various

types of contractions. We have also given some examples to understand these concepts.
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Definition 2.4.1. (Fixed point)

Consider a metric space X and a mapping F : X → X. Then any x ∈ X is said to be a

fixed point of F if F (x) = x.

Example 2.4.2. Consider X = R and F : X → X is a mapping define as

F (x) = 2x+ 1

then F has a unique fixed point x = −1 in X.

The following definition and example are taken from [70].

Definition 2.4.3. [70](lipschitzian mapping)

“Suppose that X is a metric space and F is a mapping from X to X. The mapping F

is called a Lipschitz mapping if there exists a constant k > 0 such that

d(F (x), F (y)) ≤ kd(x, y)

for all x, y ∈ X. The infimum over all such constants k is called the Lipschitz constant.”

Example 2.4.4. [70]

“Suppose that F : R → R is continuously differentiabe and |F ′(x)| ≤ k for every x ∈ R
then according to the mean value theorem

|F (x)− F (y)| = |F ′(ξ)||x− y| ≤ k|x− y|

for all x, y ∈ R. This shows that F is a Lipschitz mapping.”

Definition 2.4.5. [42](Contraction)

“Let X be a metric space, a mapping F : X → X is called contraction if there exists

k < 1 such that for any x, y ∈ X,

d(Fx, Fy) ≤ kd(x, y).

This contraction is also known as Banach contraction.”

Example 2.4.6. [70]

“Consider the metric space (R, d) where d is Euclidean distance metric, that is

d(x, y) = |x− y|.

The function f : R→ R where f(x) = x
a+b is a contraction if a > 1.”
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Theorem 2.4.7. [49](Banach’s Contraction Principle)

“Let (X, d) be a complete metric space, T : X → X be a contraction mapping. Then T

has a unique fixed point x0, and for each x ∈ X, we have

lim
n→∞

Tn(x) = x0,

Moreover, for each x ∈ X, we have

d(Tn(x), x0) ≤
kn

1− k
d(T (x), x).”

Here, we have presented various types of contraction for understanding and these con-

tractions were very useful for our work.

Definition 2.4.8. [19](Generalized contraction)

“Let (X, d) be a metric space, a mapping F : X → X is said to be generalized contraction

if and only if for every x, y ∈ X, there exist c1, c2, c3, c4 such that

sup{c1 + c2 + c3 + 2c4 : x, y ∈ X} < 1

and

d(Fx, Fy) ≤ c1.d(x, y) + c2.d(x, Fx) + c3.d(y, Fy) + c4.[d(x, Fy) + d(y, Fx)]”

Definition 2.4.9. [47](Kannan type contraction)

“Let (X, d) be a metric space, a mapping T : X → X is said to be a Kannan type

mapping if there exist o < λ < 1 such that, for all x, y ∈ X, the following inequality is

satisfied

d(Fx, Fy) ≤ λ

2
[d(x, Fx) + d(y, Fy)]”

Definition 2.4.10. [63](Ciric’s type contraction)

“Let (X, d) be a metric space, a mapping F : X → X is said to be Cric’s type contraction

if and only if for all x, y ∈ X, there exist h < 1 and

d(Fx, Fy) ≤ h.max{d(x, y), d(x, Fx), d(y, Fy),
d(x, Fy) + d(y, Fx)

2
}”

Definition 2.4.11. [19](Quasi contraction)

“Let (X, d) be a metric space, a mapping F : X → X is said to be quasi contraction if

and only if for all x, y ∈ X, there exist h < 1 and

d(Fx, Fy) ≤ h.max{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy) + d(y, Fx)}”
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Definition 2.4.12. [16](Weak contraction)

“Let (X, d) be a metric space, a self mapping F : X → X is said to be weak contraction

if there exist a constant α ∈ (0, 1) and some β ≥ 0 such that

d(Fx, Fy) ≤ α.d(x, y) + β.d(y, Fx) (2.1)

for all x, y ∈ X.
Due to the symmetry of distance, it includes the following

d(Fx, Fy) ≤ α.d(x, y) + β.d(x, Fy) (2.2)

for all x, y ∈ X.”

The following theorem is very useful for the review of some other theorems.

Theorem 2.4.13. [50]

“Let (X, db) be a complete b- metric space with b > 1, a mapping F : X → X be a

contraction with α ∈ [0, 1) and bα < 1 then F in X has a unique fixed point.”



Chapter 3

Fixed point theorems in b-metric

space

In the present chapter, I have reviewed and underrstood the fixed point theorems and

also a related lemma for generalized and Ciric’s type contraction in b-metric space. We

also reviewed few results involving rational contractive type conditions. These results

are presented in paper [68] by Muhammad Sarwar. From now on, by a b-metric we mean

a continuous b-metric db.

3.1 Results in b-metric space

The following lemma is useful for the results we presented in this section.

Lemma 3.1.1. Consider a b-metric space (X, db) and a sequence {xn} in b-metric space

as

db(xn, xn+1) ≤ s.db(xn−1, xn) (3.1)

here as n= 0, 1, 2, . . . , 0 ≤ bs < 1, s ∈ [0, 1) and b > 1 then {xn} in X is Cauchy

sequence.

Proof : Consider for n,m ∈ N and m > n, we get

db(xn, xm) ≤ b.[db(xn, xn+1) + db(xn+1, xm)]

≤ b.db(xn, xn+1) + b2.[db(xn+1, xn+2) + db(xn+2, xm)]

≤ b.db(xn, xn+1) + b2.db(xn+1, xn+2) + b3.db(xn+2, xn+3)

+ . . .+ bm.db(xn+m−1, xm)]

13
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As using (3.1) we get

db(xn, xm) ≤ bsn.db(x0, x1) + b2sn+1.db(x0, x1) + b3sn+2.db(x0, x1)

+ . . .+ bmsn+m−1.db(x0, x1)

≤ [1 + bs+ (bs)2 + . . .+ (bs)m−1].bsndb(x0, x1)

≤ bsn(
1− (bs)m

1− bs
).db(x0, x1)

Since 0 ≤ bs < 1⇒ s <
1

b
and b > 1 then we get

lim
m,n→∞

db(xn, xm) = 0.

Thus {xn} is a Cauchy sequence in X.

Theorem 3.1.2. Assume that (X, db) be a complete b-metric space with the continues

b-metric db and b > 1. Consider F : X → X be a self mapping satisfies the conditions

given below

db(Fx, Fy) ≤ α.db(x, y) + β.db(x, Fx) + γ.db(y, Fy) + µ.[db(x, Fy) + db(y, Fx)] (3.2)

for every x, y ∈ X, where α, β, γ, µ > 0 with

bα+ bβ + γ + (b2 + b)µ < 1 (3.3)

then F has a unique fixed point in X.

Proof : Assume x0 be any element in X, then {xn} in X is a sequence define by the

rule

x0, x1 = Fx0, x2 = Fx1, . . . , xn+1 = Fxn,

Suppose

db(xn, xn+1) = db(Fxn−1, Fxn)

Using (3.2), we get

db(xn, xn+1) ≤ α.db(xn−1, xn) + β.db(xn−1, xn) + γ.db(xn, xn+1)

+ µ.[db(xn−1, xn+1) + db(xn, xn)]

≤ α.db(xn−1, xn) + β.db(xn−1, xn) + γ.db(xn, xn+1)

+ µ.b[db(xn−1, xn) + db(xn, xn+1)]
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So

db(xn, xn+1) ≤
(α+ β + bµ)

(1− (γ + bµ))
db(xn−1, xn)

≤ ηdb(xn−1, xn)

Where

η =
(α+ β + bµ)

(1− (γ + bµ))

we can see from (3.3) that η < 1
b .

Using Lemma 3.1.1, {xn} is clearly a Cauchy sequence. There is an element u ∈ X such

that

lim
n→∞

xn = u.

we will verify that u is a fixed point in X, for this we assume

db(Fu, Fxn) ≤ α.db(u, xn) + β.db(u, Fu) + γ.db(xn, Fxn)

+ µ.[db(u, Fxn) + db(xn, Fu)]

≤ α.db(u, xn) + β.db(u, Fu) + γ.db(xn, xn+1)

+ µ.[db(u, xn+1) + db(xn, Fu)]

As n→∞, we get

db(Fu, u) ≤ α.db(u, u) + β.db(u, Fu) + γ.db(u, u) + µ.[db(u, u) + db(u, Fu)]

≤ (β + µ).db(Fu, u)

The above inequality is possible only if db(Fu, u) = 0 then Fu = u.

Thus it is verified u is a fixed point.

uniqueness : We will prove u is unique fixed point, consider that u, v as u 6= v the fixed

points of F then

db(u, v) = db(Fu, Fv)

≤ α.db(u, v) + β.db(u, Fu) + γ.db(v, Fv) + µ.[db(u, Fv) + db(v, Fu)]

= (α+ 2µ).db(u, v)

As we know u, v of F are two fixed points so finally by (3.3), the above inequality is

possible only if db(u, v) = 0 then u = v.

Thus u of F in X is a unique fixed point.

The above theorem yield the following corollary which is given below.
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Corollary 3.1.3. Assume (X, db) is a complete b-metric space for any coefficient b > 1.

Consider F is a self mapping satisfies the conditions given below

db(Fx, Fy) ≤ α.db(x, y) + β.db(x, Fx) + γ.db(y, Fy) (3.4)

for every x, y ∈ X, where α, β, γ > 0 for

bα+ bβ + γ < 1 (3.5)

then F has a unique fixed point in X.

Proof : Assume x0 in X be an arbitrary element, then the sequence {xn} in X define

by the rule

x0, x1 = Fx0, x2 = Fx1, . . . , xn+1 = Fxn

Suppose

db(xn, xn+1) = db(Fxn−1, Fxn)

Using (3.8), we get

db(xn, xn+1) = db(Fxn−1, Fxn) ≤ α.db(xn−1, xn) + β.db(xn−1, xn) + γ.db(xn, xn+1)

≤ α.db(xn−1, xn) + β.db(xn−1, xn) + γ.db(xn, xn+1)

So

db(xn, xn+1) ≤
(α+ β)

1− γ
.db(xn−1, xn)

≤ η.db(xn−1, xn)

Where

η =
(α+ β)

1− γ

We can see from (3.9) that η < 1
b .

Using Lemma 3.1.1, {xn} is clearly a Cauchy sequence, now an element u ∈ X such that

lim
n→∞

xn = u.

We have to verified u as a fixed point, for this we assume

db(Fu, Fxn) ≤ α.db(u, xn) + β.db(u, Fu) + γ.db(xn, Fxn)

≤ α.db(u, xn) + β.db(u, Fu) + γ.db(xn, xn+1)
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As n→∞, we get

db(Fu, u) ≤ α.db(u, u) + β.db(u, Fu) + γ.db(u, u)

≤ β.db(u, Fu)

The above inequality is possible only if db(Fu, u) = 0 so Fu = u.

Thus it is verified u is a fixed point.

Uniqueness : We will verify u as a unique fixed point in X. Consider the fixed points

u, v as u 6= v, we get

db(u, v) = db(Fu, Fv)

≤ α.db(u, v) + β.db(u, Fu) + γ.db(v, Fv)

= α.db(u, v)

As we know u, v of F are fixed points so finally by using (3.9), the above inequality is

possible only if b(u, v) = 0 then u = v.

Thus it is verified that u be a unique fixed point in X.

The above corollary yield the following two corollaries given below.

Corollary 3.1.4. Assume (X, db) as a complete b-metric space for constant b > 1.

Consider the self mapping F satisfies the conditions given below

db(Fx, Fy) ≤ α.db(x, y) + β.db(x, Fx) (3.6)

with every x, y ∈ X, also α, β > 0 for

bα+ bβ < 1 (3.7)

then the mapping F has a unique fixed point in X.

Proof : We replace γ = 0 in above corollary then we can easily get our required result.

Corollary 3.1.5. Assume (X, db) as a complete b-metric space for any coefficientb > 1.

Consider the self mapping F satisfies the conditions given below

db(Fx, Fy) ≤ α.db(x, y) (3.8)

for every x, y ∈ X, with α > 0 for

bα < 1 (3.9)

then the mapping F has a unique fixed point in X.

Proof : We replace β = 0 in above corollary then we can easily get our required result.
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Theorem 3.1.6. Assume (X, db) as a complete b-metric space for any b > 1. Consider

the self mapping F satisfies the conditions given below

db(Fx, Fy) ≤ β.db(x, y) + µ.
db(x, Fx).db(x, Fy) + db(y, Fy).db(y, Fx)

db(x, Fy).db(y, Fx)
(3.10)

for every x, y ∈ X with β, µ > 0, db(x, Fy).db(y, Fx) 6= 0 with b(β + µ) < 1, then F has

a unique fixed point in X.

Proof : Assume x0 in X is any element then the sequence {xn} is define by the rule

x0, x1 = Fx0, x2 = Fx1, . . . , xn+1 = Fxn

we will verify the sequence {xn} as a Cauchy in X, we consider

db(xn, xn+1) = db(Fxn−1, Fxn)

Using (3.10), we get

db(xn, xn+1) ≤ β.db(xn−1, xn)

+ µ.
db(xn−1, Fxn−1).db(xn−1, Fxn) + db(xn, Fxn).db(xn, Fxn−1)

db(xn−1, Fxn) + db(xn, Fxn−1)

≤ β.db(xn−1, xn)

+ µ.
db(xn−1, xn).db(xn−1, xn+1) + db(xn, xn+1).db(xn, xn)

db(xn−1, xn) + db(xn, xn)

≤ (β + µ).db(xn−1, xn)

Since (β + µ) < 1
b , therefore by using Lemma 3.1.1, it is clear that {xn} is a Cauchy

sequence, now an element u ∈ X such as

lim
n→∞

xn = u.

We will have to verify u is a fixed point in X, for this consider

db(Fxn, Fu) ≤ β.db(xn, u) + µ.
db(xn, Fxn).db(xn, Fu) + db(u, Fu).db(u, Fxn)

db(xn, Fu) + db(u, Fxn)

≤ β.db(xn, u) + µ.
db(xn, xn+1).db(xn, Fu) + db(u, Fu).db(u, xn+1)

db(xn, Fu) + db(u, xn+1)

As n→∞, we get

≤ β.db(xn, u) + µ.
db(xn, xn+1).db(xn, Fu) + db(u, Fu).db(u, xn+1)

db(xn, Fu) + db(u, xn+1)
−→ 0

So

db(u, Fu) = 0 then Fu = u.
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so it is clearly verified u is a fixed point in X.

Uniqueness : We will have to verify u as a unique fixed point, for this we consider the

fixed points u, v as u 6= v, we get

db(u, v) = db(Fu, Fv)

≤ β.db(u, v) + µ.
db(u, Fu).db(u, Fv) + db(v, Fv).db(v, Fu)

db(u, Fv) + db(v, Fu)

As we know u, v are fixed points in X, so we have

db(u, v) = db(Fu, Fv)

≤ β.db(u, v) + µ.
db(u, u).db(u, v) + db(v, v).db(v, u)

db(u, v) + db(v, u)

= β.db(u, v)

The above inequality is possible only if db(u, v) = 0→ u = v

Thus it is verified u as a unique fixed point in X.

Now we are going to review a theorem with rational type contraction in two terms, the

previous theorem was in one term rational type contraction.

Theorem 3.1.7. Assume (X, db) as a complete b-metric space for any constant b > 1.

Consider the self mapping F satisfies the conditions given below

db(Fx, Fy) ≤ α.db(x, y)+β.
db(y, Fy)[1 + db(x, Fx)]

1 + db(x, y)
+γ.

db(y, Fy) + db(y, Fx)

1 + db(y, Fy).db(y, Fx)
(3.11)

for each x, y ∈ X, with α, β, γ > 0 and also bα + β + γ < 1 then F has a unique fixed

point in X.

Proof : Assume x0 be an element in X then the sequence {xn} in X is define by the

rule

x0, x1 = Fx0, x2 = Fx1, . . . , xn+1 = Fxn

we will verify the sequence {xn} as a Cauchy in X, we consider

db(xn, xn+1) = db(Fxn−1, Fxn)

Using (3.11), we get

db(xn, xn+1) ≤ α.db(xn−1, xn) + β.
db(xn, xn+1)[1 + db(xn−1, xn)]

1 + db(xn−1, xn)

+ γ.
db(xn, xn+1) + db(xn, xn)

1 + db(xn, xn+1).db(xn, xn)
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≤ α.db(xn−1, xn) + β.
db(xn, xn+1)[1 + db(xn−1, xn)]

1 + db(xn−1, xn)
+ γ.db(xn, xn+1)

Therefore

db(xn, xn+1) ≤
α

1− (β + γ)
.db(xn−1, xn)

= k.db(xn−1, xn)

Where k = α
1−(β+γ) with k < 1

b , because bα+ β + γ < 1 Similarly, we have

db(xn, xn+1) ≤ k2.db(xn−2, xn−1)

Continuing this same process, we get

db(xn, xn+1) ≤ kn.db(x0, x1)

Since 0 ≤ k < 1 so kn → 0 as n → ∞, therefore by using Lemma 3.1.1, it is clear that

{xn} is a Cauchy sequence, now an element u ∈ X such as

lim
n→∞

xn = u.

Now we have to verify u as a fixed point in X, for this we assume

db(Fxn, Fu) ≤ α.db(xn, u) + β.
db(u, Fu)[1 + db(xn, Fxn]

1 + db(xn, u)
+ γ.

db(u, Fu) + db(u, Fxn)

1 + db(u, Fu).db(u, Fxn)
(3.12)

From construction, it is clear that Fxn = xn+1 and also a Cauchy sequence {xn} con-

verges to u.

Therefore we takes limit n→∞ then (3.12) become

db(u, Fu) ≤ (β + γ).db(u, Fu)

which is possible only if db(u, Fu) = 0, so Fu = u.

Thus it is verified that u is a fixed point in X.

Uniqueness. We will verify u as a unique fixed point, for this we consider u, v as u 6= v

the fixed points so we have

db(u, v) = db(Fu, Fv)

≤ α.db(u, v) + β.
db(v, Fv)[1 + db(u, Fu)]

1 + db(u, v)
+ γ.

db(v, Fv) + db(v, Fu)

1 + db(v, Fu).db(v, Fu)
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so the above inequality become

db(u, v) ≤ (α+ λ).db(u, v)

above inequality is possible only if db(u, v) = 0 then u = v

Thus it is verified u is a unique fixed point in X.

Now we have reviewed a theorem which has Ciric’s type contraction.

Theorem 3.1.8. Assume (X, db) as a complete b-metric space for any b > 1. Consider

F be a self mapping satisfies the conditions given below

db(Fx, Fy) ≤ k.max{db(x, y), db(x, Fx), db(y, Fy),
1

2b
[db(x, Fy) + db(y, Fx)]} (3.13)

for all x, y ∈ X with k ∈ [0, 1) and as bk ≤ 1 then F has a unique fixed point in X.

Proof : Assume x0 in X be an element then the sequence {xn} is define by the rule

x0, x1 = Fx0, x2 = Fx1, . . . , xn+1 = Fxn

we will verify the sequence {xn} as a Cauchy in X, now we consider

db(xn, xn+1) = db(Fxn−1, Fxn)

Using (3.13), to get

db(xn, xn+1)

≤ k.max{db(xn−1, xn), db(xn−1, Fxn−1), db(xn, Fxn),
1

2b
[db(xn−1, Fxn)

+ db(xn, Fxn−1)]}

= k.max{db(xn−1, xn), db(xn−1, xn), db(xn, xn+1),
1

2b
[db(xn−1, xn+1) + db(xn, xn)]}

≤ k.max{db(xn−1, xn), db(xn−1, xn), db(xn, xn+1),
1

2
[db(xn−1, xn) + db(xn, xn+1)]}

= k.max{db(xn−1, xn), db(xn, xn+1),
1

2
[db(xn−1, xn) + db(xn, xn+1)]} (3.14)

If

db(xn−1, xn) < db(xn, xn+1).
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Then

db(xn−1, xn) <
1

2
[db(xn−1, xn) + db(xn, xn+1)] < db(xn, xn+1)

Now applying (3.14), we get

db(xn, xn+1) ≤ k.db(xn, xn+1)

Which is not possible because k < 1, so we ignore this term b(xn, xn+1), thus (3.14)

become

db(xn, xn+1) ≤ k.db(xn−1, xn)

therefore by using Lemma 3.1.1, it is clearly verified that {xn} is a Cauchy sequence,

there is an element u ∈ X such that

lim
n→∞

xn = u.

Now we will verify u as a fixed point in X, for that consider

db(Fu, Fxn) ≤ k.max{db(u, xn), db(u, Fu), db(xn, Fxn),
1

2b
[db(u, Fxn)

+ db(xn, Fu)]}

≤ k.max{db(u, xn), db(u, Fu), db(xn, xn+1),
1

2b
[db(u, xn+1)

+ db(xn, Fu)]}

As n→∞, to get

db(Fu, u) ≤ k.max{db(u, Fu),
1

2b
db(u, Fu)}

≤ k.db(Fu, u)

the above inequality is possible only if

db(Fu, u) = 0 then Fu = u.

Thus it is verified u as a fixed point in X.

Uniqueness : We will verify u as a unique fixed point in X, for that we consider u, v as

u 6= v the fixed points so we have

db(u, v) = db(Fu, Fv)

≤ k.max{db(u, v), db(u, Fu), db(v, Fv),
1

2b
[db(u, Fv) + db(v, Fu)}]
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since u, v are the fixed points of F , so finally we get

db(u, v) ≤ k.db(u, v)

The above inequality is possible only if

db(u, v) = 0 then u = v.

Thus it is clearly verified that u is a unique fixed point in X.

The corollary given below is produced from the above theorem by using b = 1.

Corollary 3.1.9. Assume (X, db) be a complete b-metric space with coefficient, also

the self mapping F : X → X satisfies the conditions given below

db(Fx, Fy) ≤ k.max{db(x, y), db(x, Fx), db(y, Fy),
1

2
[db(x, Fy) + db(y, Fx)]} (3.15)

for every x, y ∈ X with k ∈ [0, 1) then F has a unique fixed point in X.

Proof : Replace b = 1 in above theorem then we can easily get the required result.

Example 3.1.10. “Assume that if X = [0, 1] with b(x, y) = |x − y|2 along coefficient

b = 2 is a b-metric for every x, y ∈ X.
Define a mapping F by Fx = 2

3 if x ∈ [0, 1) and F (1) = 0 then F will fulfill every

conditions of the theorem (3.4) given above for k ∈ [49 ,
1
2) with x = 2

3 is its fixed point

which is unique in X.”
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Fixed point theorems in

rectangular b-metric space

In the present chapter, we proved some fixed point results with different types of con-

traction in Rectangular b-metric space which are reviewed already in Chapter 3. We also

extended the Banach contraction principle (BCP) in Rectangular b- metric space. We

also proved the Kannan type theorem in rectangular b-metric space. We have included

some examples which confirm and show that our generalizations are genuine. First,

we have extended the lemma in rectangular b-metric space which is already proved in

b-metric space and we also used the result of this lemma in our next theorems which are

Banach contraction principle and Kannan type fixed point theorem. Here throughout db

is a continuous rectangular b-metric. From now on, by a rectangular b-metric we mean

a continuous rectangular b-metric db.

4.1 Main results in RbMS

The following lemma is the generalization of the lemma which is already reviewed in

previous chapter. This lemma is very useful for the generalizations of our upcoming

theorems and results.

Lemma 4.1.1. Consider a rectangular b-metric space (X, db) with the constant b > 1

and also assume a sequence {xn} in rectangular b-metric space such that

db(xn, xn+1) ≤ α.db(xn−1, xn) (4.1)

with n = 1, 2, 3, . . ., 0 ≤ bα < 1, α ∈ [0, 1) and b is defined in rectangular b-metric space

then {xn} is a Cauchy sequence in X.

24
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Proof : Assume if n,m ∈ N with m > n, we have

db(xn, xm) ≤ b[db(xn, xn+1) + db(xn+1, xn+2) + db(xn+2, xm)]

≤ b[db(xn, xn+1) + db(xn+1, xn+2)] + b2[db(xn+2, xn+3)

+ db(xn+3, xn+4) + db(xn+4, xm)]

≤ b[db(xn, xn+1) + db(xn+1, xn+2)] + b2[db(xn+2, xn+3)

+ db(xn+3, xn+4)] + b3[db(xn+4, xn+5) + db(xn+5, xn+6)]

+ . . .+ bm[db(xn+m−2, xm)]

Now using (4.1) and repeating the same process, we have

db(xn, xm) ≤ b[αn + αn+1]db(x0, x1) + b2[αn+2 + αn+3]db(x0, x1)

+ b3[αn+4 + αn+5]db(x0, x1) + . . .+ bmαn+m−2db(x0, x1)

≤ [1 + bα2 + b2α4 + b3α6 + . . .+ bmα2m][bαndb(x0, x1) + bαn+1db(x0, x1)]

≤ [
(1− (bα2)m

1− bα2
].(1 + α)bαndb(x0, x1)

Since bα2 < 1 therefore we takes m,n→∞, we get

lim
m,n→∞

db(xn, xm) = 0.

Thus {xn} in rectangular b-metric space X is a Cauchy sequence.

Our next aim is to extend the Banach contraction principle (BCP) in rectangular b-

metric space.

Theorem 4.1.2. Consider a complete rectangular b-metric space (X, db) for any con-

stant b > 1, a self mapping F : X → X satisfies the conditions given below

db(Fx, Fy) ≤ α.db(x, y) (4.2)

for every x, y ∈ X, for α ∈ [0, 1b ] then F has a unique fixed point in X.

Proof : Assume that x0 ∈ X be an element, a sequence {xn} in X is define as

xn+1 = Fxn

for each n > 0, we will prove {xn} in X as a Cauchy sequence. If xn = xn+1 then xn in

X is a fixed point. Now consider xn 6= xn+1 for every n > 0.
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Setting db(xn, xn+1) = dbn, it follows from (4.1)

db(xn, xn+1) = db(Fxn−1, Fxn)

≤ α.db(xn−1, xn)

dbn ≤ α.db(n−1)

If we repeat this process as shown above, we get

dbn ≤ αn.db0 (4.3)

Also, we can assume that x0 is a point of F but not periodic. We have no doubt if

x0 = xn then by using (4.2), for any n > 2, we have

db(x0, Fx0) = db(xn, Fxn)

db(x0, x1) = db(xn, xn+1)

db0 = dbn

≤ αn.db0

This is a contradiction. Therefore, we must have db0 = 0, that is, x0 = x1, and so

x0 is a fixed point. Therefore we will consider xm 6= xn with n,m ∈ N. Again setting

db(xn, xn+2) = d∗bn and now by using (4.1) for any n ∈ N, we get

db(xn, xn+2) = db(Fxn−1, Fxn+1)

≤ α.db(xn−1, xn+1)

d∗bn ≤ α.d∗b(n−1)

If we repeat this process, we get

db(xn, xn+2) ≤ αn.d∗b0 (4.4)
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For the sequence {xn}, we consider db(xn, xn+p) in two cases. If p is odd say 2m + 1

then by using (4.2) we get

db(xn, xn+2m+1) ≤ b[db(xn, xn+1) + db(xn+1, xn+2) + db(xn+2, xn+2m+1)]

≤ b[dbn + db(n+1)] + b2[db(xn+2 + xn+3) + db(xn+3 + xn+4)

+ db(xn+4 + xn+2m+1)]

≤ b[dbn + db(n+1)] + b2[db(n+2) + db(n+3)] + b3[db(n+4) + db(n+5)]

+ . . .+ bmdb(n+2m)

≤ b[αndb0 + αn+1db0] + b2[αn+2db0 + αn+3db0]

+ b3[αn+4db0 + αn+5db0] + . . .+ bmαn+2mdb0

≤ bαn[1 + bα2 + b2α4 + . . .]db0 + bαn+1[1 + bα2 + b2α4 + . . .]db0

=
1 + α

1− bα2
bαndb0

where bα2 < 1 therefore

d(xn, xn+2m+1) ≤
1 + α

1− bα2
bαndb0

If p is even, we can say 2m then by using (4.2) and (4.3), we get

db(xn, xn+2m) ≤ b[db(xn, xn+1) + db(xn+1, xn+2) + db(xn+2, xn+2m)]

≤ b[dbn + db(n+1)] + b2[db(xn+2 + xn+3) + db(xn+3 + xn+4)

+ db(xn+4 + xn+2m)]

≤ b[dbn + db(n+1)] + b2[db(n+2) + db(n+3)] + b3[db(n+4) + db(n+5)]

+ . . .+ bm−1[db(2m−4) + db(2m−3)] + bm−1[xn+2m−2 + xn+2m]

≤ b[αndb0 + αn+1db0] + b2[αn+2db0 + αn+3db0]

+ b3[αn+4db0 + αn+5db0] + . . .+ bm−1[α2m−4db0 + α2m−3db0]

+ bm−1αn+2m−2d∗b0

≤ bαn[1 + bα2 + b2α4 + . . .]db0 + bαn+1[1 + bα2 + b2α4 + . . .]db0

+ bm−1αn+2m−2d∗b0

Therefore

db(xn, xn+2m) ≤ 1 + α

1− bα2
bαndb0 + bm−1αn+2m−2d∗b0

≤ 1 + α

1− bα2
bαndb0 + (bα)2mαn−2d∗b0

≤ 1 + α

1− bα2
bαndb0 + αn−2d∗b0

Therefore

db(xn, xn+2m) ≤ 1 + α

1− bα2
bαndb0 + αn−2d∗b0 (4.5)
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It follows from (4.4) and (4.5) that

lim
n→∞

db(xn, xn+p) = 0 (4.6)

for all p > 0, Thus it is verified {xn} in X is a Cauchy sequence. we will prove (X, db)

is a complete space then there is u ∈ X as

lim
n→∞

xn = u. (4.7)

We will prove u in X is a fixed point by taking any n ∈ N then we have

db(u, Fu) ≤ b[db(u, xn) + db(xn, xn+1) + db(xn+1, Fu)]

= b[db(u, xn) + dbn + db(Fxn, Fu]

≤ b[db(u, xn) + dbn + α.db(xn, u)]

Now by using (4.6) and (4.7), we have

db(u, Fu) = 0→ Fu = u.

Hence it is clearly verified u as a fixed point in X.

Uniquness : Assume that there are u, v as v 6= u, if we follows (4.1) we get

db(u, v) = db(Fu, Fv) ≤ α.db(u, v) < db(u, v)

which is contradiction, so we must have

db(u, v) = 0→ u = v.

Thus it is clearly verified u as a unique fixed point in X.

Example 4.1.3. Assume that if X = A∪B, where A = { 1n : n ∈ {5, 4, 3, 2}}, B = [1, 2],

db : X ×X → [0,∞) is define as db(x, y) = db(y, x) for every y, x ∈ X

db(
1
2 ,

1
3) = db(

1
4 ,

1
5) = 0.03

db(
1
2 ,

1
5) = db(

1
3 ,

1
4) = 0.02

db(
1
2 ,

1
4) = db(

1
5 ,

1
3) = 0.6

db(x, y) = |x− y|2 otherwise

Then (X, db) is rectangular b-metric space for any constant b = 4 > 1, here (X, db) is

not metric as well as rectangular metric space. Assume a mapping F : X → X is define
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by

Fx =


1
4 if x ∈ A
1
5 if x ∈ B

then the mapping F satisfies all the conditions related to BCP and also x = 1
4 is a

unique fixed point.

Next target is to extend the theorem which is kannan type contraction in rectangular

b-metric space.

Theorem 4.1.4. Assume that a complete rectangular b-metric space (X, db) for constant

b > 1, F : X → X be a self mapping satisfies the conditions given below

db(Fx, Fy) ≤ α[db(x, Fx) + db(y, Fy)] (4.8)

for every x, y ∈ X with α ∈ [0, 1
b+1 ] then the mapping F has a unique fixed point in X.

Proof : Assume that x0 is an element in X, a sequence {xn} is define as

xn+1 = Fxn

for each n > 0. First, we shall prove {xn} is a Cauchy sequence. If xn = xn+1 then it is

clearly verified xn is a fixed point, assume xn+1 6= xn for every n > 0.

Setting db(xn, xn+1) = dbn, it follows from (4.8)

db(xn, xn+1) = db(Fxn−1, Fxn)

≤ α[db(xn−1, Fxn−1) + db(xn, Fxn)]

db(xn, xn+1) ≤ α[db(xn−1, xn) + db(xn, xn+1)]

dbn ≤ α[db(n−1) + dbn]

dbn ≤ α

1− α
.db(n−1)

= µ.db(n−1)

where µ = α
1−α <

1
b as α < 1

b+1 . If we repeat this process then we get

dbn ≤ µn.db0 (4.9)

Also, we can assume that x0 is a point of F but not period then we have no doubt if

x0 = xn then by using (4.9) for every n > 2 we get

db(x0, Fx0) = db(xn, Fxn)

db(x0, x1) = db(xn, xn+1)

db0 = dbn
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Hence

db0 ≤ µn.db0

This is a contradiction. Therefore we must have db0 = 0, that is x0 = x1 and so x0 in X

is a fixed point.

Now we consider xn 6= xm for n,m ∈ N. Again setting db(xn, xn+2) = d∗bn and by using

(4.8) and (4.9) for any n ∈ N we get

db(xn, xn+2) = db(Fxn−1, Fxn+1)

≤ α[db(xn−1, Fxn−1) + db(xn+1, Fxn+1)]

= α[db(xn−1, xn) + db(xn+1, xn+2)]

= α[db(n−1) + db(n+1)]

≤ α[µn−1db0 + µn+1db0]

= αµn−1[1 + µ2]db0

= βµn−1db0

Therefore

db(xn, xn+2) ≤ βµn−1db0 (4.10)

where β = α[1 + µ2] > 0, for the sequence {xn} we consider db(xn, xn+p) in two cases. If p is

odd say 2m+ 1 then by using (4.9) we get

db(xn, xn+2m+1)

≤ b[db(xn, xn+1) + db(xn+1, xn+2) + db(xn+2, xn+2m+1)]

≤ b[dbn + db(n+1)] + b2[db(xn+2 + xn+3) + db(xn+3 + xn+4)

+ db(xn+4 + xn+2m+1)]

≤ b[dbn + db(n+1)] + b2[db(n+2) + db(n+3)] + b3[db(n+4) + db(n+5)]

+ . . .+ bmdb(n+2m)

≤ b[µndb0 + µn+1db0] + b2[µn+2db0 + µn+3db0]

+ b3[µn+4db0 + µn+5db0] + . . .+ bmµn+2mdb0

≤ bµn[1 + bµ2 + b2µ4 + . . .]db0 + bµn+1[1 + bµ2 + b2µ4 + . . .]db0

≤ 1 + µ

1− bµ2
bµndb0

Therefore

d(xn, xn+2m+1) ≤
1 + µ

1− bµ2
.bµndb0 (4.11)
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If p is even, we can say 2m then by using (4.9) and (4.10) we get

db(xn, xn+2m)

≤ b[db(xn, xn+1) + db(xn+1, xn+2) + db(xn+2, xn+2m)]

≤ b[dbn + db(n+1)] + b2[db(xn+2 + xn+3) + db(xn+3 + xn+4)

+ db(xn+4 + xn+2m)]

≤ b[dbn + db(n+1)] + b2[db(n+2) + db(n+3)] + b3[db(n+4) + db(n+5)]

+ . . .+ bm−1[db(2m−4) + db(2m−3)] + bm−1[xn+2m−2 + xn+2m]

≤ b[µndb0 + µn+1db0] + b2[µn+2db0 + µn+3db0] + b3[µn+4db0 + µn+5db0]

+ . . .+ bm−1[µ2m−4db0 + µ2m−3db0] + bm−1µn+2m−2d∗b0

≤ bµn[1 + bµ2 + b2µ4 + . . .]db0 + bµn+1[1 + bµ2 + b2µ4 + . . .]db0

+ bm−1µn+2m−2d∗b0

That is

db(xn, xn+2m) ≤ 1 + µ

1− bµ2
bµndb0 + bm−1µn+2m−2d∗b0

<
1 + µ

1− bµ2
bµndb0 + (bµ)2mµn−2d∗b0

≤ 1 + µ

1− bµ2
bµndb0 + µn−2d∗b0

Therefore

db(xn, xn+2m) ≤ 1 + µ

1− bµ2
bµndb0 + µn−2d∗b0 (4.12)

It follows from (4.11) and (4.12) that

lim
n→∞

db(xn, xn+p) = 0 (4.13)

for all p > 0. Thus it is clearly verified {xn} is a Cauchy sequence. We will prove (X, db)

is complete space by taking u ∈ X as

lim
n→∞

xn = u. (4.14)

we will prove u in X is a fixed point by taking any n ∈ N then we have

db(u, Fu) ≤ b[db(u, xn) + db(xn, xn+1) + db(xn+1, Fu)]

= b[db(u, xn) + dbn + db(Fxn, Fu]

≤ b[db(u, xn) + dbn + α.{db(xn, Fxn) + db(u, Fu)}]

= b[db(u, xn) + dbn + α.{db(xn, xn+1) + db(u, Fu)}]

(1− bα)db(u, Fu) ≤ b[db(u, xn) + µndb0 + α.db(xn, xn+1)]
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Now by using (4.13) and (4.14) and we also know that α < 1
b+1 then the above inequality

become

db(u, Fu) = 0→ Fu = u.

Hence it is clearly verified u in X is a fixed point.

Uniquness : Assume that there are two fixed points u, v in X such that u 6= v, now if

we follows (4.8) we get

db(u, v) = db(Fu, Fv) ≤ α[db(u, Fu) + db(v, Fv)] = α[db(u, u) + db(v, v)] = 0

Thus

db(u, v) = 0→ u = v.

Hence it is verified u is a unique fixed point in X.

Remark 4.1.5. In this chapter, we have the following on the basis of discussion con-

tained:

1. The defined of open balls in b-metric, rectangular and rectangular b-metric spaces

are not necessarily open set.

2. The open balls collections in b-metric space, rectangular metric space and rectan-

gular b-metric space do not necessarily form a basis for a topology.

3. the b-metric, rectangular and rectangular b-metric spaces are not necessarily Hous-

dorff.

Conclusion

We concluded this thesis as follows:

• We have thrown some light on generalization of b-metric space and used the idea

of rectangular b-metric space.

• We have reviewed some fixed point results in the setting of b-metric space.

• We have generalized some results presented in [68] by using the concept of rectan-

gular b-metric space.

• We have also generalized and extended the Banach contraction principle in rect-

angular b-metric space.

• We have also generalized and extended the Kannan type theorem in rectangular

b-metric space.
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