
Unity Networking
Fundamentals

Creating Multiplayer Games with Unity
—
Sloan Kelly
Khagendra Kumar

Unity Networking
Fundamentals

Creating Multiplayer Games
with Unity

Sloan Kelly
Khagendra Kumar

Unity Networking Fundamentals: Creating Multiplayer Games with Unity

ISBN-13 (pbk): 978-1-4842-7357-9		 ISBN-13 (electronic): 978-1-4842-7358-6
https://doi.org/10.1007/978-1-4842-7358-6

Copyright © 2022 by Sloan Kelly and Khagendra Kumar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-7357-9. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Sloan Kelly
Niagara Falls, ON, Canada

Khagendra Kumar
Katihar, Bihar, India

https://doi.org/10.1007/978-1-4842-7358-6

iii

Table of Contents

Chapter 1: ��Networking Concepts���1

Client-Server Model���2

Connected vs. Connectionless Services��4

Packets���5

Connection-Oriented Service��5

Connectionless-Oriented Service���8

Physical Network Devices��9

Network Addressing���11

Media Access Control (MAC) Address���12

IP Address���12

Domain Name System��16

Sockets and Ports��17

What Is a Port Number?���18

What Is a Socket?���18

Open Systems Interconnection (OSI) Model���19

Command-Line Tools��21

Opening a Command Prompt��21

Hostname���21

Ping��22

About the Authors���ix

About the Technical Reviewer��xi

Introduction��xiii

iv

IP Configuration��23

Address Resolution Protocol Cache��23

Network Status���25

Tracing the Route to the Server��27

Summary���28

Chapter 2: ��Serialization���31

Serialization Basics��31

JSON��32

Simple JSON Serialization/Deserialization���33

Binary���40

Simple Binary Serialization/Deserialization��41

The Network Library NetLib���47

Summary���54

Chapter 3: ��RESTful APIs���55

What Is a RESTful API?���56

RESTful Requests���57

RESTful Responses���60

Authentication and Restrictions���60

The UnityWebRequest Class��61

Fetching Text��62

Fetching Images���63

The Weather Application��68

Registering and Getting an API Key��69

The User Interface��70

Creating the Project��71

The OpenWeather Daily Forecast Endpoint��73

Table of Contents

v

Fetching the Data���74

Running the Weather Application���85

Generic RESTful API Client���85

Summary���89

Chapter 4: ��TCP Connections��91

The TCP Three-Way Handshake���91

TCP Client-Server Connections��93

Socket Connections���94

Establishing a Socket Connection��95

Accepting a Socket Connection��96

Sending Data��97

Receiving Data���101

Hello World Using TCP Sockets���105

Simple Network Copier���112

TcpClient Connections���125

Sockets vs. TcpClient and TcpListener���125

Connecting to a Server Using TcpClient���125

Sending Data Using TcpClient��126

Reading Data Using a TcpClient���127

TcpListener: Accepting a TcpClient Connection��130

Hello World Example Using TcpClient and TcpListener��������������������������������������132

Tic-Tac-Toe��139

Starter Files��142

The Game Architecture���144

NetLib Classes��151

Client and Server Classes���167

Running the Game��191

Summary���193

Table of Contents

vi

Chapter 5: ��Networking Issues���195

Authoritative Servers���195

Synchronous or Asynchronous���196

Planning Multiplayer Games��198

Game Lag���199

Client-Side Prediction and Server Reconciliation��210

Client-Side Predictions���211

Synchronization Issues���213

Server Reconciliation���215

Further Steps���216

Getting Ping from Unity��216

Summary���217

Chapter 6: ��Develop a Maze Shooter���219

Lobby���219

Matchmaking���219

Spawn/Respawn��220

Spawn Point���220

Introducing the RPG Game���220

The Game’s Story���220

Game Prerequisites��221

Section 1: Creating the Project and Setting Up Unity�����������������������������������222

Section 2: Downloading and Installing MLAPI��224

Section 3: Programming with MLAPI��225

MLAPI Event Messaging���236

Using Remote Procedural Calls (RPCs)���236

Working with Bullets in Multiplayer Games��236

Summary���238

Table of Contents

vii

Chapter 7: ��LAN Networking���239

How VPN Works��241

What Is Hamachi?��242

Using Hamachi���243

LAN Party in Games���246

Summary���247

Chapter 8: ��Servers���249

What Is a Server?���250

Dedicated Servers��250

Who Should Get a Dedicated Server?��251

Dedicated Servers in Gaming��252

Headless Server, AKA Listen Server���253

Why a Headless Server?��253

Headless Servers in Games���254

Peer-to-Peer Networks��254

Peer-to-Peer Networks in Games��255

Benefits of a Peer-to-Peer Network���255

Load Balancers��256

Hardware-Based Load Balancers���257

Software-Based Load Balancers��258

Summary���258

Index��259

Table of Contents

ix

About the Authors

Sloan Kelly has worked in the games industry for more than 13 years.

He worked on a number of AAA and indie titles and currently works for

an educational game company. He lives in Ontario, Canada with his wife

and children. Sloan is on Twitter @codehoose and makes YouTube videos

in his spare time. 

Khagendra Kumar has worked with a number of educational institutions

and game studios for training and solutions. He lives in Bihar, India and

spends most of his time working with game AI. He can be reached via

LinkedIn at /itskhagendra and on Instagram @Khagendra_Developer.

xi

About the Technical Reviewer

Simon Jackson is a long-time software

engineer and architect with many years of

Unity game development experience, as well as

an author of several Unity game development

titles. He both loves to both create Unity

projects as well as lend a hand to help educate

others, whether it's via a blog, vlog, user group,

or major speaking event. 

His primary focus at the moment is with

the XRTK (Mixed Reality Toolkit) project, which is aimed at building

a cross-platform Mixed Reality framework to enable both VR and AR

developers to build efficient solutions in Unity and then build/distribute

them to as many platforms as possible.

xiii

Introduction

This book sets out to demystify network programming and open you

and your games up to the wider world using the Unity Engine and the C#

programming language. The .NET framework that C# sits on top of has

several classes that make creating networked games a little easier.

�Intended Audience
This book is intended for Unity developers who are familiar with C# and

want to implement their own networking framework, or those who want to

have a better understanding of low-level network programming.

This is meant to be an introductory guide to networking. The book

concentrates mostly on developing smaller games that can be run on

your local network rather than larger multiplayer games played over

the Internet. These basic concepts will help you better understand the

underlying technology behind multiplayer games and the inherent

constraints involved in passing data across a network. The last chapter

of the book covers making your game available on the Internet using a

third-party service.

�Software and Hardware Requirements
The examples in this book were written using Unity 2020.1.6f1. I used both

a MacBook Pro (mid-2012, Intel i7) and a PC (mid-2015, Intel i5) during

xiv

the writing of this book and the examples. To run Unity, you will need a

device that meets the following requirements:

•	 Windows: Windows 7 (SP1+)/Windows 10, 64-bit

only, X64 architecture CPU with SSE2 instruction set

support, DX10-, DX11-, or DX12-compatible GPU.

•	 MacOS: High Sierra 10.13+, X64 architecture CPU with

SSE2 instruction set support, Metal-capable Intel or

AMD GPU.

•	 Linux (preview support): Ubuntu 16.04, 18.04, or

CentOS 7, X64 architecture CPU with SSE2 instruction

set support, OpenGL 3.2+ or Vulkan-compatible

NVIDIA and AMD GPU, GNOME desktop environment.

Requires proprietary NVIDIA or AMD graphics driver.

Be sure to check the Unity system requirements page for the most up-

to-date information.

�How This Book Is Organized
The book is organized into the following chapters:

•	 Networking basics

•	 Serialization

•	 UnityWebRequest and RESTful APIs

•	 Connected services with TCP

•	 Connectionless services with UDP

•	 Common networking issues

•	 First person maze shooter

•	 Remote connections

Introduction

xv

�Source Code
The source code for this book is available on GitHub via the book’s product

page, located at www.apress.com/978-1-4842-7357-9. The source code

contains everything you need to build the following:

•	 Real-time weather app

•	 Networked tic-tac-toe

•	 First person maze shooter

•	 Basic TCP and UDP examples

�Conventions Used In This Book
Various typefaces and styles are used in this book to identify code blocks,

warnings, and other notices.

C# code is written in this style:

if (player.IsLoggedIn)

{

 print("Player is logged in");

 server.PlayerAttached(player.ID);

}

This book contains a list of some tools that come with your operating

system to help you. These all run from the command line, also known

as the terminal or DOS prompt depending, on your operating system.

Command lines are written in the following style. The $ at the beginning of

the line should not be typed:

$ ls -al

Introduction

http://www.apress.com/ISBN

xvi

If an issue needs special attention, the following block is used:

Note  This is a call out and will alert you to any information that is
important.

Introduction

1© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_1

CHAPTER 1

Networking Concepts
This chapter covers the very basics of networking and introduces some

tools that are beneficial when you need to debug your application. This

chapter includes a brief overview of the client-server model, discusses how

we will build the games in this book, and covers networking fundamentals

that will help you understand and debug your games when developing the

networking components.

By the end of this chapter, you will be familiar with the devices used to

connect your PC to the outside world, how Internet addressing works, and

what the client-server model is.

If you have an email account, surf the web, use social media, or play

online games, you have used networking components. The modern

Internet runs on a suite of protocols based on Transportation Control

Protocol/Internet Protocol (TCP/IP).

Internet browsers like Chrome and Firefox use HTTP and HTTPS

(HyperText Transport Protocol and HyperText Transport Protocol Secure,

respectively) to communicate with remote servers. As shown in Figure 1-1,

an encyclopedia is just a click away!

https://doi.org/10.1007/978-1-4842-7358-6_1#DOI

2

The Firefox (or Chrome, Safari, or Edge) browser is a client that

requests a document from a server. The server sends data back to the

client. The client takes that data and renders it to the window. This is called

the client-server model.

�Client-Server Model
The client-server model is a distributed application structure. The

responsibilities are divided between the client and the server. The client

typically makes requests to the server and then displays the fetched

information for the user. The server takes the request and processes it,

returning the data back to the client. The server itself rarely displays any

output.

Figure 1-1.  A Firefox browser containing the wikipedia.org home
page

Chapter 1 Networking Concepts

3

Typically, the client and server run on two separate machines and are

linked using a computer network. However, it is entirely possible for the

client and the server to run on the same machine.

The client-server model allows multiple clients to access a single

resource. For example, printers, documents on a hard drive, and remote

compute power.

The client and the server need to speak the same language. In the case

of a web client/server, this is HTTP/HTTPS, depending on the security of

the site. To retrieve a document, users type an address into the address bar

of the browser:

https://www.wikipedia.org

The https:// indicates the protocol that will be used when

communicating with the server. The part after the double slashes is the

address of the server. The web client – the browser – will then make a

request to the remote server using the HTTP language.

The request part of the message uses a verb like GET or POST and a

resource name. For example:

GET /index.html HTTP/1.1

This statement says “Fetch me the index.html page using the HTTP

version 1.1. protocol.” The server will interpret this message and return the

document to the client, as shown in Figure 1-2.

Chapter 1 Networking Concepts

4

The web is one example of a client-server model.

The examples in this book show you how to create your own client-

server model based games and how to write your own protocols to allow

them to communicate effectively. In games, each player connects using

a client to a remote server that contains all the rules for the game. Clients

send movement information to the game server and the server updates the

clients with new position and state data.

�Connected vs. Connectionless Services
When you send a message across the Internet, it is split into many smaller

messages called packets. These packets are routed all over the network

and arrive at the destination. Some packets can take longer to arrive;

some packets never make it. This is not good if you want your web page

to arrive in one piece. Luckily, the web is a connection-oriented service

and it guarantees that your message will arrive. Let’s take a deeper look at

connection- and connectionless-oriented services.

Figure 1-2.  The sequence of events fetching a document from a web
server

Chapter 1 Networking Concepts

5

�Packets
Your message is split into small packets and routed through the network.

This is done for several reasons. It could be because a route to the server is

blocked or because it is more efficient to group the packets and send them

later when reaching a node in the network.

Your packets can arrive at the destination out of order, as shown in

Figure 1-3.

In the example in Figure 1-3, the file is sent across the network in

smaller packets numbered 1, 2, 3, and 4. As they travel through the

network, Packet 2 is lost and Packet 4 arrives before Packet 3.

Sometimes packet loss is acceptable and other times it is not. It is up to

the application developer to decide if packet loss or packets received out

of sequence are acceptable side-effects. The developer will choose either a

connection-oriented or connectionless-oriented approach, depending on

the needs of the game. In a fast-moving game, some packet loss might be

acceptable for the sake of maintaining speed.

�Connection-Oriented Service
If you need to guarantee that messages arrive at the remote device in

the correct order with no parts missing, you need to write a connection-

oriented service.

Figure 1-3.  File split into smaller packets, packet loss and packets
received out of sequence

Chapter 1 Networking Concepts

6

Anything that uses Transport Control Protocol (TCP) will guarantee

that packets arrive in order and the message you send will be intact. An

example of an application that uses TCP is the web. HTTP is built using

TCP to guarantee that messages arrive intact.

Using TCP, your client must establish a connection with a server to

allow communication to flow between them. The connection can last

any amount of time, from a couple of seconds to days. The connection is

required to ensure that data is sent and received.

TCP provides error-free data transmission. If packets are dropped

or corrupted, they are retransmitted. When packets arrive at their

destination, the sender is notified.

Note T he error-free data transmission process is handled by the
TCP protocol. Your code does not have to retransmit dropped packets.
This is all handled for you by TCP on your machine’s operating
system.

As an example, the client in Figure 1-4 is transferring a PNG file to a

remote server. A packet is dropped and the receiver sends a message back

to the sender asking it to resend Packet 2. The sender obliges and resends

Packet 2.

Chapter 1 Networking Concepts

7

If your application needs to guarantee that transmitted messages

appear in the correct order and are complete, use a TCP connection. Other

applications for TCP include:

•	 Chat applications

•	 File transfer

•	 Mail services

The TCP/IP suite of applications is an example of a connection-

oriented service. Example services are:

•	 POP/IMAP/SMTP for mail transfer

•	 FTP for file transfer

•	 HTTP for delivering web pages

Figure 1-4.  Sequence showing the recovery of a dropped packet using
TCP

Chapter 1 Networking Concepts

8

The downside is that TCP is slower, due to the handshaking and

confirmation messages that pass between the client and the server. If

you do not care about the order of packets or don’t care if any packets

are dropped along the way, you can use a faster connectionless-oriented

service.

�Connectionless-Oriented Service
There are times when you do not need to guarantee delivery of packets.

If they can arrive out of order, or not at all, you should consider creating a

connectionless-oriented service.

In a connectionless-oriented service, the client does not connect

with a server, it just sends the information. If the server cannot receive

the packet, then it’s lost. Because there is no connection, the number of

messages sent per packet transferred is always just one – the packet being

transferred.

Connectionless-oriented services are used for things like:

•	 Video streaming

•	 Multiplayer games

A video stream sends a minimum of 24 frames per second. It must get

there very quickly (1/24th of a second) and so if one frame is lost there is

not enough time to ask for another.

In multiplayer games, it is often too much overhead to use a TCP

connection for game play. If the player input is sent at 60 frames per

second (fps), then the occasional dropped packet will not make much

difference. As you will see later in the book, there are ways around this.

The IP part of the TCP/IP offers a connectionless-oriented protocol

called User Datagram Protocol (UDP). UDP allows developers to send

so-called “fire and forget” messages to remote machines. There is no

guarantee that the packets will arrive on time, or in sequence. If that is a

sacrifice you’re willing to make for speed, then UDP is a perfect choice.

Chapter 1 Networking Concepts

9

�Physical Network Devices
Devices like your mobile phone, PC, and tablet need to connect to a

network. They do this using a network card. The formal name of this is a

network interface card (NIC). Your device will connect to a local device

called a router using either a WiFi (wireless) or an Ethernet (wired)

connection.

Your router might be part of a cable or ADSL modem or a separate

device altogether. The modem – short for modulator/demodulator – is a

device that turns the received zeros and ones into wavelengths that can

be passed down a wire and onto the Internet. Figure 1-5 shows a typical

network diagram for a home network and a connection to a remote server

like www.google.com.

All the traffic from your local devices to a remote server travels through

the router. The router also provides another function that provides each

connected device with a unique address on the LAN. This function is

called Dynamic Host Control Protocol. This address will be used by other

machines to communicate with each other.

Figure 1-5.  Devices on your Local Area Network (LAN) connect
through a router to the Internet

Chapter 1 Networking Concepts

http://www.google.com

10

There are two Internet Protocol address formats: IPv4 and IPv6. Each

device will have an IPv4 and IPv6 address. This book uses IPv4 addresses.

We cover addressing in the next section.

IPv4 and IPv6 are logical addresses. Each network card is assigned a

physical address at the factory. This address is called the Media Access

Control (MAC) address.

The architects of the original Internet — called DARPANet, short for

Defense Advanced Research Projects Agency Network — used a mesh

network, as shown in Figure 1-6.

LANs are connected to the Wider Area Network (WAN) or to the

Internet using routers. The routers pass messages between each other until

the destination is reached. This is why they are called routers; they route

messages between nodes on the network. A node is a device connected

to the network and can be a router or computer or any other network-

accessible device.

Figure 1-6.  Mesh network routing past disabled routers from Device
A to B

Chapter 1 Networking Concepts

11

The mesh network allows the messages to be routed past broken or

inaccessible parts of the network. When Device A wants to send a message

to Device B, the devices on the network will reroute messages past the

inactive nodes. Later, you will learn about a command-line tool that shows

how messages are routed to a remote server.

The mesh network is an example of a network topology. Topology is

just a fancy way of saying the shape of something. There are other network

topologies:

•	 Bus – Each node on the network is connected to a

single cable and T-connectors are used to connect PCs

and other devices to the network.

•	 Ring – Data travels around the ring in one direction.

Each device acts as a repeater to keep the signal strong.

Every node is a critical link in the network.

•	 Star – This is the most common setup and the one that

you have in your home. It’s a central device, usually a

router, connected to a larger network (your Internet

Service Provider). Each local device connects to the

router and thus out to the larger network.

•	 Tree – The tree topology is a combination of the star

and bus.

�Network Addressing
When you enter an address in the address box at the top of your browser

and press Return, the page you requested appears after a few seconds.

But how does the browser know where to go? This section explores the

addresses used on the network, specifically with respect to the Internet.

Chapter 1 Networking Concepts

12

So far, we have talked at a high level about data passing through a

network using connection and connectionless services. How are these

connected devices identified on the network? This section looks at how the

IPv4 address system works and discusses the “uniqueness” of the number.

To connect to a network using TCP/IP, a device needs a network card

of some kind. It can be wired or wireless. Each network card is given a

“unique” hardware ID number called a MAC address. A network card is

an electronic device that connects devices like computers, mobile phones,

and games consoles to a computer network.

�Media Access Control (MAC) Address
The MAC address is a group of six hexadecimal digits, like 01-23-45-67-89-ab.

For example, the MAC address of the network card on my PC is C8-60-00-

D0-5E-A5. MAC addresses are burned into the card and cannot be altered.

This is the physical address of your device. The physical address is what

identifies the device on the network.

The first three-digits of the MAC address identify the manufacturer.

C8-60-00 is ASUSTek Computer Inc. That is the manufacturer of my

computer’s motherboard.

Because there are only six hexadecimal digits left, it would be

impossible for manufacturers to give each device a unique physical

ID. Instead, what they do is ship batches of network cards to different parts

of the world to minimize the chances of two devices in the same location

having the same address.

�IP Address
The IP protocol uses a logical address to access devices on the network.

This logical address is known as the IP address of the device. There are two

ways to assign an IP address to a device; static and dynamic.

Chapter 1 Networking Concepts

13

�Static IP Addresses

The IP address can be set on the machine. This is a static address. This

is usually only done for servers because these devices are known as

endpoints in the network.

�Dynamic IP Addresses

Dynamic IP addresses are assigned to each device when they boot up. The

TCP/IP stack reaches out to the network to find a DHCP (Dynamic Host

Control Protocol) server. The DHCP server assigns an address to the client.

The dynamic addresses have a lease time, which means they expire and

need to be renewed.

On my LAN, my PC seems to be given the same IP address, but it might

not be the same on the network where your machine is connected.

�IP Address Format

This book concentrates on IPv4 rather than IPv6. There are minor changes

to the code to get it to run for IPv6, a flag or two to set.

The IPv6 address is much longer than its v4 counterpart. It consists

of eight groups of four hexadecimal digits. An example IPv6 address is as

follows:

1234:5678:9abc:def0:1234:5678:9abc:def0

On the contrary, IPv4 uses only four bytes separated by a period (.),

such as:

192.168.1.1

Each digit in the IPv4 address is called an octet because it contains

eight bits (one byte). The address’s format is called dotted decimal because

it contains four decimals separated by full stops. Four bytes is the same

amount of space as an integer. This means that an IPv4 address can access

Chapter 1 Networking Concepts

14

up to 2^32 or 4.3 billion devices. But wait – aren’t there more devices in

existence than that? What about all the IoT (Internet of Things) devices like

light bulbs, toasters, fridges, and the like?

It turns out that IPv4 was not enough and that is why we moved

to IPv6. IPv4 gets around its limited address space by using network

segmentation.

Note  For the remainder of this book, when referring to an IP
address, it means an IPv4 address unless otherwise stated.

Address Classification

If you look at your machine’s IP address using the ipconfig or ifconfig

command (depending on your operating system), it is probably going to be

something like 192.168.1.17 and your router is probably going to be located

at address 192.168.1.1. A magic trick? No – most routers default to the Class

C network, which is 192.168.1.x.

The IP addresses are split into several ranges. Each range represents

the number of networks and the number of hosts that each network can

contain. A host is just another name for a device. These ranges are called

classes. There are also special IP addresses that you cannot use for your

machine.

There are five classes of networks in the available IPv4 address ranges,

called Classes A through E. Classes A to C are the ones most used because

D and E are reserved classes. Table 1-1 shows each classification and

describes what it means with respect to the available networks in that class

and the number of hosts allowed per network.

Chapter 1 Networking Concepts

15

Each network classification uses a subnetwork mask. This is a bitwise

mask that you will be able to immediately tell the classification of your

network. If you use the ipconfig command in Windows or ifconfig in

Linux/Mac, you will see output similar to the this:

IPv4 Address. : 192.168.1.149

Subnet Mask : 255.255.255.0

Default Gateway : 192.168.1.1

More on this command later. There are two indications that the

IPv4 address is a Class C address. The first is that the first octal is 192.

The second is that the subnetwork mask is 255.255.255.0. This number

is bitwise ANDed with the IP address on the local network to obtain the

network, which would be 192.168.1.0..255 in this case.

There are special addresses that you cannot assign to your machine

and have special meaning.

•	 The first is the loopback address. This is 127.0.0.1. That

address is the machine you are using. If you start a

service using that IP, it cannot be accessed from outside

your computer.

Table 1-1.  Network Classes

Class Address Range Supports

Class A 1.0.0.1 to 126.255.255.254 127 networks, 16 million hosts

Class B 128.1.0.1 to 191.255.255.254 16,000 networks, 65,000 hosts

Class C 192.0.1.1 to 223.255.254.254 2 million networks, 254 hosts

Class D 224.0.0.0 to 239.255.255.255 Reserved for multicast groups

Class E 240.0.0.0 to 254.255.255.254 Reserved for future use or

experimental use only

Chapter 1 Networking Concepts

16

•	 The second is the broadcast address. You can send a

UDP message out onto the local area network using the

address 255.255.255.255. This message will be sent to

every device.

Note IP addresses are unique to the local area network. However,
they are not globally unique.

�Domain Name System
When you type in the address for the Wikipedia website, you use text rather

than an IP address. How does the web browser know how to translate the

wikipedia.org text into an IP address? It uses a service called the Domain

Name System (DNS).

The DNS is a fundamental part of the Internet. It matches up the name

of the website’s IP address. A website is just the server part of the web’s

client-server model. Each device that’s connected to the network needs an

address. The IP address for the website is the IP address for the server.

Most ISPs (Internet Service Providers – usually your telephone

company) have their own DNS server. It is often best to use this server,

because it will resolve addresses quicker.

A DNS server is simply a giant lookup table containing names of

servers and their IP addresses. Listing 1-1 shows how this can be achieved

using .NET’s Dns.GetHostAddresses() function. It returns an array of IP

addresses that can be used to access the server. The script will print the

addresses to the console. You simply add the script to a GameObject in the

scene of a Unity project and run the game.

Chapter 1 Networking Concepts

17

Listing 1-1.  Using Dns.GetHostAddresses() to Fetch the Addresses

of the Google Server from the Current DNS

using System.Net;

using UnityEngine;

public class DnsLookup : MonoBehaviour

{

 public string url = "www.google.com";

 void Start()

 {

 �System.Net.IPAddress[] addresses =

Dns.GetHostAddresses(url);

 foreach (var address in addresses)

 {

 print(address);

 }

 }

}

When the game runs, you should see something like the following

output in the console:

172.217.1.164

UnityEngine.MonoBehaviour:print (object)

DnsLookup:Start () (at Assets/Scripts/DnsLookup.cs:13)

�Sockets and Ports
You will often hear people talking about network programming as socket

programming. This is because network sockets are used in the TCP/IP

suite. The combination of a port number and an IP address is called a

socket address. You now know what an IP address is, so let’s look at what a

port number so that you can fully understand what a socket does.

Chapter 1 Networking Concepts

18

�What Is a Port Number?
When you connect to a remote machine, you need two things—the IP

address of the remote machine and the port number that the service

is running. Port numbers are in the range 1-65535, but you cannot use

numbers below 256 because they are reserved for Internet services like

FTP (21) and HTTP (80). Numbers in the range 256-1023 are also reserved

for other well-known services. Anything from 1024 and above is available.

When you go to a website, your browser automatically tries to connect

to port 80. You can force the browser to try another port by using a colon

followed by the port number. For example, http://127.0.0.1:8080 will

try to access a web server running on port 8080.

By using different port numbers for each service, the computer can route

calls to multiple services running on the same computer. For example, you

can run a web server on port 80 and an FTP server on port 21, on the same

computer. An FTP client will attach to the service running on 21, while a web

client will ask the service running on port 80 for the wanted resource.

Games that host other players will have to expose themselves on a port

number just like any other networked service.

�What Is a Socket?
Not to be confused with a socket address, the singular socket class is

a .NET representation of the Berkeley Socket. Let’s take a trip down

memory lane for this one. BSD is a flavor of the UNIX operating system

and version 4.2 shipped with a programming interface that made network

programming a lot easier. It was called Berkeley Sockets.

How did it make networking programming easier? In UNIX, everything

is a file. When you open a file, a console, an input device like a keyboard,

you get a file descriptor. This is a unique integer number representing the

file you just opened. If you want to write to the file, you pass that number

to the write() function.

Chapter 1 Networking Concepts

19

When designing Berkeley Sockets, they chose to use this paradigm for

their network programming interface. The socket() function returns a

number that represents a file descriptor to a socket address. This number

allows you to read and write to that socket address like you would a file.

The socket address represents a connection to a remote machine.

The .NET framework has its own version of the low-level file descriptor,

the socket class. This too references a socket address; an IP address plus

port number.

Note A socket file descriptor allows you to access a socket
address, which is a combination of an IP address and a port number.

The socket class is low-level and for some situations it is useful. If you

are using a connection-based service with TCP, though, there is a much

better way in .NET, using network streams.

�Open Systems Interconnection (OSI) Model
The TCP/IP suite is synonymous with the Internet. The suite dovetails

quite nicely into the conceptual stack of protocols, known as the OSI

seven-layer model, that allows communication between remote devices.

These devices can be your computer, a mobile phone, a tablet, etc. The

model itself does not describe how these devices talk to each other. Instead

it focuses on the purpose of each layer.

The OSI model was created by the International Organization for

Standardization (ISO) because during the early days of the Internet it was

common for a large network of computers to use a variety of protocols.

This led to network fragmentation. To clarify how a network should be set

up, the OSI model was created, as shown in Figure 1-7.

Chapter 1 Networking Concepts

20

The model defines the Physical layer (the connections, voltages,

etc.) to the Application layer. Reading from bottom to the top, each layer

builds on the previous one and abstracts itself more and more. By the

time you get to the top, where you will be building your games, you don’t

need to know about how data is routed through the network, or how

error detection at the Data Link layer is handled. But it is nice to have a

background in this process.

On the right side of Figure 1-7 are groups of protocols or services

that use the accompanying layers. For example, the IP protocol sits at

the Network layer. TCP and UDP sit at the Transport layer. Examples

of services like POP (Post Office Protocol), DNS (Dynamic Name

Service), and HTTP (HyperText Transport Protocol) use the Application,

Presentation, and Session layers.

Now that we have explored some of the concepts, let’s take a look at

some command-line tools that will help you when you run into problems

creating your networked games.

Figure 1-7.  The OSI seven-layer OSI model

Chapter 1 Networking Concepts

21

�Command-Line Tools
There are several command-line tools that you should familiarize yourself

with when creating a networked game, or indeed any application that uses

networking. The examples in this section were run using Windows 10, but

you can use the same commands on other operating systems too. There

are notes for changes to make when using Ubuntu/macOS.

Commands are entered using the DOS prompt in Windows, or using

the Terminal application in either Mac or Linux.

�Opening a Command Prompt
To open a command prompt in Windows or terminal in Mac and Linux,

follow the instructions for your operating system:

•	 Windows – Press the Window Key+R, type cmd, and

press Return

•	 Mac – Press Command+Space, type terminal, and

press Return

•	 Ubuntu – Press Ctrl+Alt+T

�Hostname
The first command will display the name of your PC. This is handy if

you want to give this information to other people on your network. Type

hostname at the command prompt. The output will be the name of your

host, which in my case is Sloan-PC:

$ hostname

Sloan-PC

Chapter 1 Networking Concepts

22

�Ping
The ping command is used to determine if your machine can “see”

another machine. It sends a small packet of data to the remote machine

and the time taken to reach the destination. If you’ve played multiplayer

games, you’re probably familiar with the name ping. Run the command

with the name of the remote machine. Use the -4 option in Windows/

Linux to show only the IPv4 addresses:

$ ping -4 www.google.com

Pinging www.google.com [172.16.1.86] with 32 bytes of data:

Reply from 172.16.1.86: bytes=32 time=3ms TTL=128

Reply from 172.16.1.86: bytes=32 time=3ms TTL=128

Reply from 172.16.1.86: bytes=32 time=2ms TTL=128

Reply from 172.16.1.86: bytes=32 time=2ms TTL=128

Ping statistics for 172.16.1.86:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 2ms, Maximum = 3ms, Average = 2ms

If you are having issues connecting to a remote server, you can check

that your machine is connected to the network using ping with 127.0.0.1:

$ ping -4 127.0.0.1

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

When a remote server is unavailable, it may be powered off or the

network cable may be disconnected; you will see output like this:

$ ping -4 172.16.1.86

Pinging 172.16.1.86 with 32 bytes of data:

Request timed out.

Chapter 1 Networking Concepts

23

�IP Configuration
To list the IP configuration for your machine, use the ipconfig command.

It will display the IP address, subnetwork mask, and default gateway of

your current network connection. For Ubuntu and macOS, use ifconfig:

$ ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

 Connection-specific DNS Suffix . :

 Link-local IPv6 Address : fe80::...:64dc%13

 IPv4 Address. : 172.18.1.149

 Subnet Mask : 255.255.255.0

 Default Gateway : 172.16.1.1

You can share the IPv4 address with others on your LAN to allow

them to connect to your PC. You will see a programmatic way to get this

information later.

�Address Resolution Protocol Cache
The Address Resolution Protocol is used to discover the Link Layer

address – the MAC address – associated with an IPv4 address. The arp

command displays the entries in the ARP cache. These are IP addresses

that have been resolved to a given MAC address. Each device has a

physical address (the MAC address) and, when a device connects to the

network, the DHCP server assigns it a logical address (the IP address). The

ARP shows the link between the logical and physical addresses.

Chapter 1 Networking Concepts

24

Enter the arp -a command at the prompt to list the contents of the

cache:

$ arp -a

Interface: 192.168.1.149 --- 0xd

 Internet Address Physical Address Type

 172.16.1.1 2c-56-dc-55-c0-c8 dynamic

 172.16.1.19 f0-18-98-14-e4-90 dynamic

 172.16.1.31 20-c9-d0-c9-60-53 dynamic

 172.16.1.46 3c-2a-f4-01-bb-c6 dynamic

 172.16.1.59 00-90-a9-cf-8a-b4 dynamic

 172.16.1.86 24-0a-64-3a-86-c5 dynamic

 172.16.1.110 00-09-b0-47-b0-df dynamic

 172.16.1.117 c0-41-f6-5b-cb-e5 dynamic

 172.16.1.164 60-6d-3c-23-0b-74 dynamic

 172.16.1.173 f0-f0-a4-2a-ed-f4 dynamic

 172.16.1.230 b0-72-bf-4a-8d-02 dynamic

 172.16.1.243 00-a0-96-e8-fc-54 dynamic

 172.16.1.250 a0-ce-c8-d3-c6-46 dynamic

 172.16.1.255 ff-ff-ff-ff-ff-ff static

 224.0.0.2 01-00-5e-00-00-02 static

 224.0.0.22 01-00-5e-00-00-16 static

 224.0.0.251 01-00-5e-00-00-fb static

 224.0.0.252 01-00-5e-00-00-fc static

 239.0.0.250 01-00-5e-00-00-fa static

 239.255.255.250 01-00-5e-7f-ff-fa static

 255.255.255.255 ff-ff-ff-ff-ff-ff static

This command is handy if you suspect that two or more computers

might be sharing the same IPv4 address. The “dynamic” and “static” refer

to how the IP address was assigned. If the address was set on the machine,

it is static; if it was assigned an IP address by a DHCP server, it is dynamic.

Chapter 1 Networking Concepts

25

�Network Status
The netstat command displays the active TCP/IP connections. If you are

having issues with your application while it is running, this application

might help you determine if you have connections. It is sometimes used

with the grep or findstr command to filter the results. grep is short for get

regular expression and, like findstr (find string), it can be used to filter the

output from a command to cut down on the information displayed. Run

the command without any options:

$ netstat

Active Connections

 Proto Local Address Foreign Address State

 TCP 127.0.0.1:5354 Sloan-PC:61997 ESTABLISHED

 TCP 127.0.0.1:5354 Sloan-PC:61998 ESTABLISHED

 TCP 127.0.0.1:2701 Sloan-PC:56361 ESTABLISHED

 TCP 127.0.0.1:2701 Sloan-PC:61994 ESTABLISHED

 TCP 127.0.0.1:4966 Sloan-PC:49670 ESTABLISHED

 TCP 127.0.0.1:4967 Sloan-PC:49669 ESTABLISHED

 TCP 127.0.0.1:4969 Sloan-PC:49693 ESTABLISHED

 TCP 127.0.0.1:4969 Sloan-PC:49692 ESTABLISHED

 TCP 127.0.0.1:4993 Sloan-PC:49935 ESTABLISHED

 TCP 127.0.0.1:4993 Sloan-PC:49934 ESTABLISHED

The columns, from left to right, show the protocol used, the local

address as a socket address (the IP and port number), the foreign (remote)

address, which is also a socket address but, as shown here, can show

names as well as IP addresses. The last column shows the state of the

connection.

Chapter 1 Networking Concepts

26

This will take some time to complete; it is usually a very long list. If

you are using Windows, you can filter these results using the findstr

command. For Ubuntu and macOS, use the grep command instead. To

find all the HTTP connections, run the following:

$ netstat | grep ":http"

TCP 192.168.1.149:4969 server-13-249-130-224:http CLOSE_WAIT

TCP 192.168.1.149:4999 ec2-99-80-242-242:https CLOSE_WAIT

TCP 192.168.1.149:4999 ec2-99-80-242-242:https CLOSE_WAIT

TCP 192.168.1.149:5004 ec2-99-80-242-242:https CLOSE_WAIT

TCP 192.168.1.149:5005 ec2-99-80-242-242:https CLOSE_WAIT

TCP 192.168.1.149:6406 yyz10s03-in-f5:https TIME_WAIT

TCP 192.168.1.149:6407 52.114.74.43:https ESTABLISHED

TCP 192.168.1.149:6408 220:https TIME_WAIT

The right-most column shows the status of the connection. In this

example:

•	 CLOSE_WAIT – Means the connection is waiting for a

connection termination request from the local user.

•	 TIME_WAIT – Means the connection is waiting for

enough time to pass to be sure the remote TCP received

the acknowledgement of its connection termination

request.

•	 ESTABLISHED – Means the connection is open and the

data was received and can be delivered to the user. This

is the normal state for the data transfer phase of the

connection.

If you are running Windows, the same output can be achieved using

findstr:

$ netstat | findstr ":http"

Chapter 1 Networking Concepts

27

�Tracing the Route to the Server
To find the route that your messages take when transferring data to the

remote machine, you can use the tracert command, which is traceroute

on Mac and Linux. It takes a single parameter, which is the name of the

host. For example, if I ping www.google.com:

$ tracert www.google.com

Tracing route to www.google.com [172.217.165.4]

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms router.asus.com [172.16.1.1]

2 1 ms 1 ms 1 ms 192.168.0.1

3 10 ms 11 ms 7 ms 10.91.64.1

4 15 ms 12 ms 11 ms 10.0.75.209

5 19 ms 14 ms 11 ms 10.0.18.73

6 14 ms 15 ms 13 ms 209.85.173.40

7 14 ms 15 ms 13 ms 74.125.244.145

8 17 ms 13 ms 14 ms 216.239.40.255

9 14 ms 14 ms 11 ms yyz12s06-in-f4.1e100.net

[172.217.165.4]

This shows the journey through the mesh network that the packet took.

Remember that mesh networks are robust and the devices on the network

will route packets a different way if nodes are not available. If you run this

command multiple times, you might get multiple different routes.

From left to right, the columns are:

•	 The hop number, which represents the next node in the

route. The first node is the local network’s router. The

last node (number 9) is the destination.

Chapter 1 Networking Concepts

http://www.google.com

28

•	 At each hop, the tracert command makes three

attempts to contact that node. These three numbers

in milliseconds (ms) are the response times for each

attempt.

•	 The last column is the IPv4 address of the node, or the

name if it can be resolved.

Sometimes tracert can’t determine the response time and you might

see an asterisk (*) in one or more of the response time columns. This is

usually okay and might just be an issue with the node. However, if your

route does not get traced and you continually see a “Request Timed Out”

message, there might be an issue with that node. It could be as simple as

that particular node doesn’t respond to pings.

�Summary
There are many different parts to networking; this introductory chapter

covered the basics that you need in order to understand how networking

works “under the hood.”

The Internet and by extension your local area network and your

devices use the TCP/IP suite: Transport Control Protocol/Internet

Protocol. This protocol is part of the OSI seven-layer conceptual

networking model and describe how data is routed through the Internet.

There are two ways to send data across the network using the TCP/IP

suite. One uses connection-based TCP and the other uses connectionless

UDP.

We use IPv4 addressing in this text rather than the newer IPv6. IPv4

addresses are made up of four octals (bytes).

Chapter 1 Networking Concepts

29

Every device has a physical address (MAC) and a logical address (IP).

Each machine can be given a name that is exposed through the Domain

Name System (DNS), allowing you to use words rather than IP addresses to

find remote servers.

Services running on a host use another type of address, called a socket

address, that contains both the IP address of the host and the port number.

A socket is also a name given to a low-level object that can be used to send

and receive data to and from the socket address.

There is a set of useful command-line tools available on all modern

operating systems to help you debug your application if you run into

problems.

Chapter 1 Networking Concepts

31© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_2

CHAPTER 2

Serialization
Serialization is the process of taking data in memory and reformatting it to

store, to send it across the network, or to construct an object in memory. A

large part of message transmission and reception processes in networking

use object serialization. This chapter covers the two serialization formats

used in this book: JSON and binary.

�Serialization Basics
In its basic form, serialization takes the public properties or fields of an

instance of a class or struct and writes the name and value of them to disk

or sends them across the network. The collection of property names and

values is called the state of an object at a particular time. It is this state that

you want to capture for storage or for transmission across the network.

Serialization is taking a snapshot of the current state of the class

or struct instance. When an object is created, it automatically has the

methods needed to manipulate its data. The state is the value that the

player has given the object, either directly or indirectly during their

interaction with the game.

Uses for serialization include:

•	 Player data. When the player returns to the game,

their save state is restored and they can begin where

they left off.

https://doi.org/10.1007/978-1-4842-7358-6_2#DOI

32

•	 Telemetry. Usage data can be sent to analytic services

to determine how many people have completed

a particular level or how many people bought a

particular item of clothing in the game.

•	 Networking. Sending data from one machine to another

to update a player’s position or to send a chat message.

�JSON
JavaScript Object Notation (JSON), as you might get from the name,

is derived from JavaScript and is language-independent. A number of

languages have adopted its usage to serialize data. JSON has become the

go-to data format for the web and is now ubiquitous. It is a collection of

key-value pairs in a human-readable form. The key is the name of the field

or property and the value is the data the field or property contains at the

time the instance was serialized.

For example, in Listing 2-1, the JSON object describes a player object

with character data.

Listing 2-1.  JSON Data Containing Character Information

{

 "name": "El Player",

 "lives": 3,

 "completed_levels": [1, 2, 3, 4],

 "last_pos": {

 "x": 10,

 "y": 15

 }

}

Chapter 2 Serialization

33

The JSON file format has the following requirements:

•	 Property names must be wrapped in double quotation

marks.

•	 A JSON object starts and ends with braces ({ and }).

•	 A string must be wrapped in double quotation marks.

•	 Numbers (integers and decimals) and Boolean values

are typed as is, without quotes.

•	 Arrays start and end with square brackets ([and]).

•	 Elements are separated with commas (,).

Unity has a built-in utility class called JsonUtility that makes creating

JSON formatted strings and reconstructing objects from those strings very

easy. There are two main static methods in JsonUtility:

•	 ToJson() takes an object and creates the JSON-

formatted string.

•	 FromJson<T>() takes the JSON-formatted string and

converts it to an object of type T.

Let’s look at this process in action by creating a Unity project.

�Simple JSON Serialization/Deserialization
Follow these instructions to set up the project.

	 1.	 Create a new 2D project in Unity called

json-serialization-example.

	 2.	 Create a folder called Scripts in the Assets folder.

Chapter 2 Serialization

34

	 3.	 Inside the Scripts folder, create two C# scripts:

JsonSerializationExample and BasicObject.

	 4.	 Drag and drop the JsonSerializationExample

script onto the main camera object in the scene.

Once you have the project set up, double-click the BasicObject script

file to open the C# file in Visual Studio (or your code editor of choice).

When the code editor opens, change the BasicObject.cs file to look like

Listing 2-2.

Listing 2-2.  The BasicObject That Will Be Serialized and

Deserialized to and from JSON

using System;

using UnityEngine;

[Serializable]

public class BasicObject

{

 public Vector3 position;

 public string name;

 public int health;

 public int shield;

}

The class does not have a constructor. Having a constructor would

cause problems when an attempt is made to deserialize the object. The

deserializer would try to create an instance of the object but wouldn’t be

able to find a non-parameterized constructor. You can get around this by

creating two constructors—one with parameters to set the initial state and

a parameterless constructor for serialization. Because it is a simple data

object, I have chosen to omit constructors completely.

Chapter 2 Serialization

35

Any class that’s used to serialize data should have the Serializable

attribute (located in the System namespace) applied to it.

Note A ttribute classes are used in C# to provide additional
information at runtime about the class, class member, or parameter
to which the class has been applied.

The class also contains the Vector3 Unity class. The JSON serializer

will have no problem serializing this field because it is part of the Unity

Engine. In general, though, class instances you want to serialize should

extend from MonoBehaviour or ScriptableObject, or plain class or structs

with the [Serializable] attribute.

Save the file and open the JsonSerializationExample script file.

Change the JsonSerializationExample.cs file to match Listing 2-3.

Listing 2-3.  The JsonSerializationExample Script that Will Serialize

and Deserialize an Object to and from JSON

using UnityEngine;

public class JsonSerializationExample : MonoBehaviour

{

 void Start()

 {

 var basicObject = new BasicObject

 {

 shield = 100,

 health = 50,

 name = "Sven The Explorer",

 position = new Vector3(1, 2, 3)

 };

Chapter 2 Serialization

36

 string json = JsonUtility.ToJson(basicObject);

 Debug.Log(json);

 �BasicObject copy = JsonUtility.

FromJson<BasicObject>(json);

 Vector3 pos = copy.position;

 Debug.Log($"{copy.name} at {pos.x}, {pos.y}, {pos.z}");

 }

}

When the game runs, you should see the following output in the

console.

{"position":{"x":1.0,"y":2.0,"z":3.0},"name":"Sven The Explorer",

"health":50,"shield":100}

UnityEngine.Debug:Log (object)

JsonSerializationExample:Start () (at Assets/Scripts/

JsonSerializationExample.cs:17)

Sven The Explorer at 1, 2, 3

UnityEngine.Debug:Log (object)

JsonSerializationExample:Start () (at Assets/Scripts/

JsonSerializationExample.cs:21)

In Listing 2-3, an instance of BasicObject is constructed. Because I

opted not to create constructors, you can see that the initialization here is

a similar format to the JSON in that it contains key-value pairs. The order

doesn’t matter at all. This instance is passed to the ToJson() static method

of JsonUtility from the UnityEngine namespace and a string is returned.

This is the JSON string-formatted version of the object. The JSON string is

printed to the console window. The output is shown in Figure 2-1.

The JSON string is then passed into the static method FromJson<T>()

of the JsonUtility and a new instance of BasicObject is created with the

values from the original object applied to it. To fit on the line, I assigned

Chapter 2 Serialization

37

the copy’s position field to a temporary variable called pos. This keeps the

code to one line in this book. You could have easily used copy.position.x

and so on in the interpolated string that displays the values of the newly

created object.

As you can see, the JSON format is great for humans, because it’s really

easy to read. You can immediately see the property and field values – the

state of the object and the file is structured in such a way that you can see

the object’s hierarchy.

When using the UnityWebRequest object to transfer data back and

forth between a remote web server, you will use the JSON string as your

medium. However, in order to transmit this data across the network using

sockets, you need to perform an additional step. You need to convert the

string into a series of bytes, because bytes (in the form of 0s and 1s) is how

data transmission happens using sockets.

Even though JSON is a good store of the object’s current state, it cannot

be used to transmit across a network. All the methods used to send and

receive data across the network use streams of bytes. In code this means

that you need to convert the data you want to transmit to an array of bytes.

Similarly on the receiving end of the communication, the bytes retrieved

must be converted back.

Figure 2-1.  The output of the two Debug.Log() functions in the
JsonSerializationExample script

Chapter 2 Serialization

38

Note  JSON is how you store a snapshot of an object’s state; bytes
is how you transfer that state across the network.

�Binary Representation of a String

We are going to use the ASCII (American Standard Code for Information

Interchange) text format to send and receive data. ASCII is a lookup table

where an integer represents a shape displayed onscreen. For example,

the letter A is ASCII value 65, while the letter Z is ASCII value 90. The .NET

framework provides easy ways to encode and decode messages in this format.

And it provides methods to convert a string to and from an array of bytes.

We are going to use the GetBytes() method to convert the string into

a series of bytes and the GetString() method to convert the bytes to a

string. GetBytes() is used during serialization. GetString() is used during

deserialization. Both of these methods are in the Encoding.ASCII class.

The changes to the script are in bold in Listing 2-4.

Listing 2-4.  The Binary Version of the JSON Serializer. Additional

Lines Shown in Bold

using System.Text;

using UnityEngine;

public class JsonSerializationExample : MonoBehaviour

{

 void Start()

 {

 var basicObject = new BasicObject

 {

 shield = 100,

 health = 50,

Chapter 2 Serialization

39

 name = "Sven The Explorer",

 position = new Vector3 { x = 1, y = 2, z = 3 }

 };

 string json = JsonUtility.ToJson(basicObject);

 Debug.log(json);

 byte[] bytes = Encoding.ASCII.GetBytes(json);

 �Debug.Log($"{bytes[0]:x} {bytes[1]:x} {bytes[2]:x}

{bytes[3]:x}");

 string jsonFromBytes = Encoding.ASCII.GetString(bytes);

 �BasicObject copy = JsonUtility.FromJson<BasicObject>(js

onFromBytes);

 Vector3 pos = copy.position;

 Debug.Log($"{copy.name} at {pos.x}, {pos.y}, {pos.z}");

 }

}

The output from the console window should look similar to this:

{"position":{"x":1.0,"y":2.0,"z":3.0},"name":"Sven The Explorer

","health":50,"shield":100}

UnityEngine.Debug:Log (object)

JsonSerializationExample:Start () (at Assets/Scripts/

JsonSerializationExample.cs:17)

7b 22 70 6f

UnityEngine.Debug:Log (object)

JsonSerializationExample:Start () (at Assets/Scripts/

JsonSerializationExample.cs:20)

Sven The Explorer at 1, 2, 3

UnityEngine.Debug:Log (object)

JsonSerializationExample:Start () (at Assets/Scripts/

JsonSerializationExample.cs:25)

Chapter 2 Serialization

40

The JSON string is converted to a byte array. This byte array is what

you send across the network. In this example, though, the additional print

statement displays the first four bytes of the array to show you its contents.

I used the :x option to format the numbers in hexadecimal.

If you convert those numbers to ASCII values, as shown in Table 2-1,

you can see that they represent the characters {"po, which are the first four

characters of the JSON string.

�Binary
The JSON format is verbose. It contains information about the data that

you might not want or need to transmit. An alternative is to create a binary

representation of your data. This can be achieved by using structs to hold

the data and data marshaling to get the struct into a byte array.

Marshaling is the process of taking an object like a struct and

transforming it into a format suitable for storage or transmission.

That sounds a lot like serialization! In fact, marshaling is one form of

serialization. Marshaling maintains the shape of the data so that when

it’s de-marshaled, the object can be constructed again. Marshaling in

.NET is used to share data between the managed memory of .NET and the

unmanaged memory owned by the program.

Table 2-1.  The First Four Bytes of the Message with their ASCII

Values Shown as Hexadecimal and Decimal Values

Hexadecimal Decimal ASCII Character

7b 123 {

22 34 “

70 112 P

6f 111 O

Chapter 2 Serialization

41

Managed memory allows for easy garbage collection within your C#

program. Unmanaged memory can be accessed by Windows systems

outside of the .NET environment. For example, if you want to make

low-level system calls. The major difference between the two is how

the memory is freed. When using unmanaged memory, it us up to the

programmer to free the memory. Managed memory is freed when the

program terminates.

Marshaling provides you with an easy way to convert an object to a

byte array.

�Simple Binary Serialization/Deserialization
Follow these instructions to set up the project.

	 1.	 Create a new 2D project in Unity called binary-

serialization-example.

	 2.	 Create a folder called Scripts in the Assets folder.

	 3.	 Inside the Scripts folder, create two C# scripts:

BinarySerializationExample and MyData.

	 4.	 Drag and drop the BinarySerializationExample

onto the main camera object in the scene.

Once you have the project set up, double-click the MyData script file to

open the C# file in Visual Studio (or your code editor of choice). When the

code editor opens, change the MyData.cs file to look like Listing 2-5.

Listing 2-5.  The MyData Structure

using System;

using System.Runtime.InteropServices;

using UnityEngine;

Chapter 2 Serialization

42

[Serializable]

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct MyData

{

 public Vector3 position;

 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)]

 public string name;

 public int health;

 public int shield;

 public override string ToString()

 {

 �return $"{name}, health: {health}, shield: {shield}

@ {position}";

 }

}

The contents of the struct are almost the same as the data from

the JSON example. There are a couple of additional attributes, though:

StructLayout and MarshalAs. These are part of the interoperation services

(interop services) between .NET and COM (Common Object Model) used

by Windows. To use these services, you must include the System.Runtime.

InteropServices namespace.

The StructLayout attribute is required because .NET determines

the most efficient way to pack data. You might assume that the data will

be stored in the order that you write it in code, but that might not be the

case. To force .NET to keep the order that you used, you must apply the

StructLayout attribute with the LayoutKind.Sequential option. The Pack

parameter specifies the padding value. By setting it to 1, you make sure

that the struct is not padded and takes up the number of bytes specified,

i.e., an integer takes four bytes.

Chapter 2 Serialization

43

The MarshalAs attribute is used on the string field name because the

marshaler needs to know the size of the strings. Always specify the least

amount of storage for this. If it is possible to compress the name into a

smaller size, try to do that to minimize the overall size of the structure.

Save this file.

Listing 2-6 shows the contents of the .cs file. Open this file and change

its contents to the following.

Listing 2-6.  The BinarySerializationExample Class

using System.Runtime.InteropServices;

using UnityEngine;

public class BinarySerializationExample : MonoBehaviour

{

 void Start()

 {

 var data = new MyData

 {

 shield = 100,

 health = 50,

 name = "Sven The Destroyer",

 position = new Vector3(1, 2, 3)

 };

 Debug.Log($"Original: {data}");

 byte[] bytes = ToBytes(data);

 MyData copy = ToObject<MyData>(bytes);

 Debug.Log($"Copy: {copy}");

 }

Chapter 2 Serialization

44

 /// <summary>

 /// Deserialize an array of bytes and return an

 /// instance of object type T with the serialized data.

 /// </summary>

 �/// �<typeparam name="T">Class or Struct type to be

created</typeparam>

 �/// �<param name="data">Array of bytes containing serialized

data</param>

 /// <returns>An instance of object type T</returns>

 private T ToObject<T>(byte[] data)

 {

 �// Create an area of memory to store the byte array and

 // then copy it to memory

 var size = Marshal.SizeOf(typeof(T));

 var ptr = Marshal.AllocHGlobal(size);

 Marshal.Copy(data, 0, ptr, size);

 �// Using the PtrToStructure method, copy the bytes out

 // into the Message structure

 �var copyData = (T)Marshal.PtrToStructure(ptr, typeof(T));

 Marshal.FreeHGlobal(ptr);

 return copyData;

 }

 /// <summary>

 /// Serialize an object to an array of bytes.

 /// </summary>

 /// <param name="data">The object to be serialized</param>

 �/// �<returns>The serialized object as an array of bytes

</returns>

 private byte[] ToBytes(object data)

 {

Chapter 2 Serialization

45

 �// Create a pointer in memory and allocate the size of

the structure

 var size = Marshal.SizeOf(data);

 byte[] buf = new byte[size];

 var ptr = Marshal.AllocHGlobal(size);

 �// Copy the structure to the newly created memory space

 // and then copy it to the byte buffer

 Marshal.StructureToPtr(data, ptr, true);

 Marshal.Copy(ptr, buf, 0, size);

 // Always free your pointers!

 Marshal.FreeHGlobal(ptr);

 return buf;

 }

}

The Start() method creates an instance of the MyData structure and

fills it with data. A copy of the data structure is created. The contents of the

original instance and the copy are printed to the console when the game

runs, as shown in Figure 2-2.

The two methods of interest in this example are the ToBytes() and

ToObject() methods.

Figure 2-2.  The output from the binary serialization example

Chapter 2 Serialization

46

�Creating a Byte Array from a Struct

Creating a byte array from a struct involves copying the struct to

unmanaged memory and copying the contents of that unmanaged

memory back to managed memory in the array.

In order to allocate the right amount of memory, the object’s size is

required. In this case, it’s the size of the MyData structure. The size of a

structure is determined by the size of each of the elements. In this case:

•	 One Vector3 = 4 float values = 4 * 4 bytes = 16

•	 Two integers = 2 * 4 bytes = 8

•	 One string = 128

The total size of this struct is 152 bytes. To create a byte array from a

struct, follow these steps as performed in the ToBytes() method:

	 1.	 Create a byte buffer (an array) to hold the resulting

bytes.

	 2.	 Allocate memory from the unmanaged memory of

the process that will hold the struct data.

	 3.	 Copy the structure to the unmanaged memory using

the StructureToPtr() method.

	 4.	 Copy the data stored in the unmanaged memory to

the byte array.

	 5.	 Free up the unmanaged memory.

�Re-Create an Object from a Byte Array

Once you have the object in a byte array, the natural next step is to create

a copy of the object at the other end. As might be expected, this is the

opposite of the method required to place the object in a byte array.

Chapter 2 Serialization

47

To re-create the struct from a byte array, follow these steps as

performed in the ToObject() method:

	 1.	 Allocate enough unmanaged memory to hold the

structure.

	 2.	 Copy the byte array into the unmanaged memory.

	 3.	 Use the PtrToStructure() method to extract the

structure from unmanaged memory.

	 4.	 Free up the unmanaged memory.

Note  Unmanaged memory is not freed by .NET when your program
exits! To avoid memory leaks, always free up unmanaged memory!

�The Network Library NetLib
To make things easier and so that you’re not duplicating a lot of code, I’m

going to suggest that you create a network library to store helper functions

and classes that you will build on throughout the book.

I’m going to start by creating extension methods for marshaling/

unmarshaling structs and for conversion between JSON to byte arrays and

back again.

Use the same project as the binary serialization example. You can

always make a Unity package for the NetLib, or just copy the folder to the

new project later.

To create the NetLib folder, follow these steps:

	 1.	 In the Scripts folder, create a new folder called

NetLib.

	 2.	 In the Scripts folder, create a new C# script file

called BinarySerializationWithNetLib.

Chapter 2 Serialization

48

	 3.	 Open the NetLib folder.

	 4.	 Create two new C# script files inside the NetLib

folder: JsonExtensions and StructExtensions.

	 5.	 Save the current scene.

	 6.	 Create a new scene called NetLibExample.

	 7.	 Drag the BinarySerializationWithNetLib script to

the camera.

You should now have the folder structure shown in Figure 2-3.

Once you have completed all these steps, double-click the

JsonExtensions file to open it and replace its contents with the ones

shown in Listing 2-7.

Figure 2-3.  The folder structure of the binary project with the new
classes in the correct folders

Chapter 2 Serialization

49

Listing 2-7.  The JsonExtensions Class

using System.Text;

using UnityEngine;

public static class JsonExtensions

{

 �public static byte[] ToJsonBinary<T>(this T data) where T:

new()

 {

 string json = JsonUtility.ToJson(data);

 return Encoding.ASCII.GetBytes(json);

 }

 �public static T FromJsonBinary<T>(this byte[] data) where

T: new()

 {

 string json = Encoding.ASCII.GetString(data);

 return JsonUtility.FromJson<T>(json);

 }

}

These static methods use similar code that was created for the

JsonSerializationExample script. ToJsonBinary() is an extension

method for objects to help serialize them to a byte array containing JSON

data. FromJsonBinary() is an extension method for byte arrays to convert

the contents to an instance of an object. Save the file.

Open the StructExtensions script file and replace it with the code in

Listing 2-8. These are the same methods, slightly renamed, that were used

in the binary serialization example.

Chapter 2 Serialization

50

Listing 2-8.  The StructExtensions Class

using System.Runtime.InteropServices;

public static class StructExtensions

{

 �public static T ToStruct<T>(this byte[] data) where T: struct

 {

 var size = Marshal.SizeOf(typeof(T));

 var ptr = Marshal.AllocHGlobal(size);

 Marshal.Copy(data, 0, ptr, size);

 var copyData = (T)Marshal.PtrToStructure(ptr, typeof(T));

 Marshal.FreeHGlobal(ptr);

 return copyData;

 }

 public static byte[] ToArray (this object data)

 {

 var size = Marshal.SizeOf(data);

 byte[] buf = new byte[size];

 var ptr = Marshal.AllocHGlobal(size);

 Marshal.StructureToPtr(data, ptr, true);

 Marshal.Copy(ptr, buf, 0, size);

 Marshal.FreeHGlobal(ptr);

 return buf;

 }

}

Save the file.

Tying these classes together is the BinarySerializationWithNetLib

class. Open this file and replace it with the code in Listing 2-9.

Chapter 2 Serialization

51

Listing 2-9.  The Basic BinarySerializationWithNetLib Class

using UnityEngine;

public class BinarySerializationWithNetLib : MonoBehaviour

{

 void Start()

 {

 }

}

Each of the listings that follow will be added one at a time to the Start()

method. Listing 2-10 creates the instance of the MyData class and assigns some

values to the instance. A debug statement outputs the contents to the console.

Listing 2-10.  Creating the MyData Instance

 MyData data = new MyData

 {

 shield = 100,

 health = 50,

 name = "Sven The Destroyer",

 position = new Vector3(1, 2, 3)

 };

 Debug.Log($"Original: {data }");

Because you’re using extension methods, the code looks a lot cleaner

and you don’t need to place additional functions in each class that

requires it. Static helper methods could be used, but extension methods

are cleaner because they are attached to the object. This elegance can be

seen in Listing 2-11, which shows how the structure is marshaled into a

byte array using the ToArray() extension method and re-created using

the ToStruct() extension method. To demonstrate that it worked, a debug

print statement outputs the contents of the copy.

Chapter 2 Serialization

52

Listing 2-11.  Performing a Binary Serialization/Deserialization

 byte[] bytes = data.ToArray();

 MyData copy = bytes.ToStruct<MyData>();

 Debug.Log($"Copy: {copy}");

Last but not least, Listing 2-12 uses the extension methods

ToJsonBinary() and FromJsonBinary() to serialize/deserialize an object

to and from the binary JSON format. A debug print displays the contents of

the copy.

Listing 2-12.  JSON Serialization/Deserialization Using Extension

Methods

 byte[] jsonBytes = data.ToJsonBinary();

 MyData jsonCopy = jsonBytes.FromJsonBinary<MyData>();

 Debug.Log($"Json Copy: {jsonCopy}");

Save the file. When it runs, the program produces the output shown in

Figure 2-4.

The complete listing of the BinarySerializationWithNetLib class is

shown in Listing 2-13.

Figure 2-4.  The output showing the original, the binary copy, and
the JSON copy

Chapter 2 Serialization

53

Listing 2-13.  The Completed BinarySerializationWithNetLib Class

using UnityEngine;

public class BinarySerializationWithNetLib : MonoBehaviour

{

 // Start is called before the first frame update

 void Start()

 {

 �// Create an instance of the data to be serialized/

deserialized

 var data = new MyData

 {

 shield = 100,

 health = 50,

 name = "Sven The Destroyer",

 position = new Vector3(1, 2, 3)

 };

 Debug.Log($"Original: {data}");

 // Make a copy of the data

 byte[] bytes = data.ToArray();

 MyData copy = bytes.ToStruct<MyData>();

 Debug.Log($"Copy: {copy}");

 // And now some JSON

 // Make a copy of the data and serialize it to JSON and

 // back again

 byte[] jsonBytes = data.ToJsonBinary();

 MyData jsonCopy = jsonBytes.FromJsonBinary<MyData>();

 Debug.Log($"Json Copy: {jsonCopy}");

 }

}

Chapter 2 Serialization

54

�Summary
Serialization is the process of taking an in-memory object and storing

the contents of its various fields, also known as the object’s state, to disk

or for transmission across the network. This book uses two types of

serialization—JSON and binary. While JSON is a string-based format,

you need to convert that string to a byte array for transmission across the

network. JSON is how you store a snapshot of an object’s state; bytes are

how you transfer that state across the network.

Binary serialization involves using only structs. These structs are

marshaled from managed memory into unmanaged memory as a

sequence of bytes. Those byte sequences are read back into unmanaged

memory. The .NET runtime will clean up managed memory used by

the game when it terminates. However, it will not clean up unmanaged

memory used by the program. It is the programmer’s responsibility to free

unmanaged memory consumed by the program. Memory allocated as

part of this operation in the unmanaged space must be freed up to prevent

memory leaks.

The next chapter provides an example of serialization/deserialization

using a remote weather service. Data will be queried for using URLs and

the returned message will be a JSON string.

Chapter 2 Serialization

55© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_3

CHAPTER 3

RESTful APIs
Up to this point, you have been learning about low-level concepts when it

comes to networking. For the most part, though, network programming is

done at the Application layer. This is the top-most layer of the OSI model,

as shown in Figure 3-1, where your game sits.

Your game might utilize some form of web service to get data for your

game, such as leaderboards, friend’s lists, etc.

Figure 3-1.  The OSI seven-layer network model

https://doi.org/10.1007/978-1-4842-7358-6_3#DOI

56

The UnityWebRequest class can be used to connect to a web server and

perform web requests. It is possible to write your own code to do this using

Sockets or TcpClient, but because this class exists and provides a lot of the

functionality that you need already, it’s best to use it instead. Among other

features, it can be used to get data from web pages using what is known as

RESTful APIs.

�What Is a RESTful API?
In its simplest form, a RESTful API is a way for clients to request data using

a web URL (Uniform Resource Locator) and the request can be given a

response in a known format from the server. The client can use HTTP verbs

like GET, PUT, and DELETE to perform actions on the data. This matches

up with typical CRUD (Create, Read, Update and Delete) operations like

getting leaderboard data, saving or replacing player state, and deleting

a save slot, for example. This means that the client does not have to be

written in the same language as the server. Because the requests use URLs

and standard HTTP messages, there is no need to open additional ports.

The developer just needs to be able to request a web page to read or write

information.

REST is short for REpresentational State Transfer. API is short for

Application Programming Interface. As long as the client and the server

agree on the messages – the format of the requests and their responses –

and how those requests are made using HTTP, both the client and the

server will understand the messages passed between them.

Note  REST is a concept; it does not define the API. APIs are
different for each service.

Chapter 3 RESTful APIs

57

As shown in Figure 3-2, a request is made to a website using a RESTful

call. The response that returns is a JSON string.

�RESTful Requests
Each URL that’s used to access a RESTful API is called a request and it is

made up of four things:

•	 An endpoint

•	 A method

•	 Headers

•	 The data, also known as the body

Figure 3-2.  A RESTful request and response showing a GET request
for a leaderboard and the JSON response that’s returned

Chapter 3 RESTful APIs

58

�The Endpoint

This is the URL that forms the request for the data you need. It is somewhat

arbitrary and depends on the API creator, but it follows the structure:

https://server/path/feature/sub-feature

For example:

https://api.example.com/games/leaderboard

There is also a root endpoint. This is the starting point of the API and

usually includes the protocol. For example:

https://api.example.com

�A Method

The path is what comes after the root endpoint. For example:

/games/leaderboard

You need to look at the service’s API documentation to see the paths

that it offers. For example, there is extensive documentation for the Steam

API at https://developer.valvesoftware.com/wiki/Steam_Web_API.

You could think of paths as being synonymous with functions and

methods in a normal program.

Sometimes a path in an API document will specify a colon. This means

that you should put in a value there. For example, let’s say your service

has leaderboards for lots of games. You might see a path defined in a

document as follows:

/games/:gamename/leaderboard

To access the leaderboard of your game called “Jump Game” for

example, you might have a path like so:

/games/jump-game/leaderboard

Chapter 3 RESTful APIs

https://developer.valvesoftware.com/wiki/Steam_Web_API

59

�The Headers

The headers provide extra information to the client and server. Headers

can be used for a number of reasons, including authentication and

providing additional metadata to the receiving device.

HTTP headers are property-value pairs that are separated by a colon.

The following example shows a header that identifies the content as a

JSON string:

Content-Type: application/json

�The Data

The data is sometimes called the body or the message. It contains

information that you want to send to the server. This option is only used

with POST, PUT, PATCH, and DELETE requests. Examples are shown in

Table 3-1.

Table 3-1.  HTTP Verbs and Their Uses

HTTP Verb Use

POST Create something new on the server, such as when a player logs

in for the first time.

PUT Create or update. This could be used when saving player state to

the server.

PATCH Update a small amount of information. For example, when the

player updates their password.

DELETE Remove something from the game. For example, when a player

deletes their account.

Chapter 3 RESTful APIs

60

�RESTful Responses
The format of the response varies from service to service but it is typically

formatted as a JSON string. This string can be easily converted into a class

using a JSON parser like the one provided by Unity’s JsonUtility class.

Responses can also contain additional HTTP headers. These are

the same HTTP headers as for the client/server requests. See https://

developer.mozilla.org/en-US/docs/Web/HTTP/Headers for more

information.

�Authentication and Restrictions
You should be respectful of the limits placed by the API provider. They

usually limit you to a few hundred calls per minute. More calls than that

and you could find yourself banned from the service after repeat offenses.

RESTful API providers also want to ensure that only authorized users

have access to their services. This means that you will most likely have to

go through some authentication process like OAuth or provide a token as

part of the URL, typically called an API token, that uniquely identifies your

application. Tokens usually take the form of a large hexadecimal number:

42dca02c33584aa783280d83d5e01d04

The major difference is who owns the authority to use the website.

With OAuth, the user must validate themselves to a provider like Google,

Facebook, Twitter, or OpenID using a username and password. The result

is that they receive a token to use with the remote server. The token is

unique to the user.

In the case of the client application owning the authorization, the API

key becomes the token. The token is unique to the application.

Chapter 3 RESTful APIs

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

61

Note  Always keep tokens and passwords safe! Do not let your
token fall into the wrong hands!

In the weather application detailed later in this chapter, you will be

using the simpler API token method for OpenWeatherMap rather than

OAuth.

�The UnityWebRequest Class
Reading and writing data to a remote website is made possible through

the UnityWebRequest class. You do not create a UnityWebRequest class

directly. Instead you use the Get() method and pass in the URL of the

RESTful API endpoint.

The UnityWebRequest class is typically used in a co-routine because of

its asynchronous nature. A request is made and at some point in the future

that request is given a response.

A normal function in Unity must execute completely before anything

else can complete. If there is a function that takes a long time, this will

affect the performance of your game. To combat this, Unity created

co-routines. These are functions that yield control back to Unity when

they need to wait longer than a frame to complete. When the function is

called again, it picks up where it left off. See https://docs.unity3d.com/

Manual/Coroutines.html for more details.

Errors are handled by checking the isNetworkError and isHttpError

properties once the request operation has completed. The text of the error

is contained in the error property of the request instance.

The response is located in the text property of the web request’s

downloadHandler. This is just C# code and no further processing is

required. The response will usually be in the JSON format, so creating

classes from it is a simple matter of using JsonUtility.FromJson<T>().

Chapter 3 RESTful APIs

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html

62

�Fetching Text
Listing 3-1 illustrates how to fetch a web page. For this example, it’s the

Google home page. The script can be attached to a game object like the

Main Camera in a blank project and run.

Listing 3-1.  Fetch the Google Home Page from the Web Using

UnityWebRequest

using System.Collections;

using UnityEngine;

using UnityEngine.Networking;

public class FetchGoogle : MonoBehaviour

{

 IEnumerator Start()

 {

 �UnityWebRequest request = UnityWebRequest.Get(

"https://www.google.com/");

 yield return request.SendWebRequest();

 if (request.result == UnityWebRequest.Result.Success)

 {

 Debug.Log(request.downloadHandler.text);

 }

 else

 {

 Debug.Log(request.error);

 }

 }

}

Chapter 3 RESTful APIs

63

The Start() method is a co-routine that will not stall out the game

while the web request is waiting for a response. The SendWebRequest()

method returns an enumerator that exits when either an error occurs or

when the data has been received.

If an error occurs in this example, it is printed to the console. If data

is returned it is printed to the console, as shown in Figure 3-3. This is

the HTML of the Google home page—the one with the search box in the

middle of the screen.

Note  A request is required for each resource. If you were building
a web server, you would have to make several requests for the HTML
page, each image, each stylesheet, and each JavaScript file needed
to display the page completely.

�Fetching Images
The UnityWebRequest class can be used to return an image. The following

example fetches the Unity Logo from Wikimedia Commons, as shown in

Figure 3-4.

Figure 3-3.  The output from the FetchGoogle script showing the
contents of the Google home page’s HTML

Chapter 3 RESTful APIs

64

�Creating the Project

Create the project by completing the following steps:

	 1.	 Create a new 2D project from Unity Hub named

Fetch Example.

	 2.	 Add an empty GameObject to the scene called Logo.

	 3.	 Add a SpriteRenderer component to the Logo

GameObject.

	 4.	 Create a new folder in Assets called Scripts.

	 5.	 Inside the Scripts folder, create a C# script called

FetchLogo.

	 6.	 Attach the FetchLogo script to Logo using the Add

Component button or by dragging the script onto

Logo.

Figure 3-4.  The Unity logo as shown on the Wikimedia Commons
website

Chapter 3 RESTful APIs

65

The GameObject’s component list should look like the one shown in

Figure 3-5. Save the scene.

�Fetching the Image

The UnityWebRequest class is part of a group of classes that are used to

download data from remote websites. To download an image, use the

UnityWebRequestTexture class.

Open the FetchLogo script and change the script to look like

Listing 3-2.

Listing 3-2.  Fetching an Image from a Website Using

UnityWebRequestTexture

using System.Collections;

using UnityEngine;

using UnityEngine.Networking;

Figure 3-5.  The list of components added to the game object

Chapter 3 RESTful APIs

66

public class FetchLogo : MonoBehaviour

{

 IEnumerator Start()

 {

 �string url = "https://upload.wikimedia.org/wikipedia/

commons/8/8a/Official_unity_logo.png";

 var request = UnityWebRequestTexture.GetTexture(url);

 yield return request.SendWebRequest();

 if (request.result == UnityWebRequest.Result.Success)

 {

 �var textureHandler = request.downloadHandler as

DownloadHandlerTexture;

 Texture2D texture = textureHandler.texture;

 SpriteRenderer = GetComponent<SpriteRenderer>();

 �var rect = new Rect(0, 0, texture.width, texture.

height);

 �spriteRenderer.sprite = Sprite.Create(texture,

rect, Vector2.zero);

 }

 else

 {

 Debug.Log(request.error);

 }

 }

}

Instead of using the Get() method, as you did for the text,

the GetTexture() method is used. This returns an instance of

UnityWebRequestTexture, but, the actual return is an object of type

UnityWebRequest. You must do some casting to get the objects back to the

type that you need in order to get the texture.

Chapter 3 RESTful APIs

67

The download handler that is returned from a UnityWebRequest

is a standard DownloadHandler instance. However, after casting

the UnityWebRequestTexture’s downloadHandler property to the

DownloadHandlerTexture class, we can access the downloadHandler’s

texture property.

Then it is a simple matter of creating a Sprite object and passing the

downloaded texture. When run, the image is downloaded and the sprite is

constructed, as shown in Figure 3-6.

�Fetching Other Types

Other resources can be downloaded from websites by using the

appropriate UnityWebRequest class and the associated DownloadHandler:

•	 Audio – UnityWebRequestMultimedia/DownloadHandler

AudioClip

•	 Asset Bundle – UnityWebRequestAssetBundle/Download

HandlerAssetBundle

Figure 3-6.  The Unity logo is displayed in the game after
downloading it from the remote site

Chapter 3 RESTful APIs

68

•	 Text – UnityWebRequest/DownloadHandler

•	 Textures – UnityWebRequestTexture/Download

HandlerTexture

Asset bundles can group assets together. Typical uses include texture

packs and downloadable content (DLC).

�The Weather Application
In this chapter, you are going to build a functioning application that uses

data provided by a remote site. Access to the data is through a RESTful API

and requires a token.

The OpenWeather project provides accurate weather forecasting data

and has an API with which to build your own applications. The website,

shown in Figure 3-7, is located at https://openweathermap.org/.

Figure 3-7.  The OpenWeather home page

Chapter 3 RESTful APIs

https://openweathermap.org/

69

�Registering and Getting an API Key
Before you start, you need to obtain an API key. This key will be used in all

your queries. To obtain a key, you must first get an account with the site.

To do that, locate the Sign In menu option along the top of the page and

click the Create an Account link. This will take you to the sign-up page, as

shown in Figure 3-8.

Once completed, you will get a confirmation message sent to the email

account that you provided. Do not forget to verify your email address!

Note  It can take upwards of two hours to get a confirmation back
while OpenWeather creates a valid key.

Once logged in, you will be taken to your account home page. Click the

API Keys link shown in Figure 3-9.

Figure 3-8.  The OpenWeather sign-up page

Chapter 3 RESTful APIs

70

By default, an API key is defined for you with the name default.

You can edit this to be any name you like: for example, the name of your

application. The most important part, though, is the key itself. This is

what will be used to verify your application when you make a call to an

API. Figure 3-10 shows my API key that I have renamed to Unity Net Book.

The name is more of a mnemonic for you and is not required when making

an API call.

Note  Each new application requires a different API key.

�The User Interface
The application’s user interface, shown in Figure 3-11, includes a text box

to allow users to enter their city and country, a button to fetch data, and a

button to toggle between Celsius and Fahrenheit.

Figure 3-9.  The API Keys link shown in a box

Figure 3-10.  The default API key has been renamed Unity Net Book

Chapter 3 RESTful APIs

71

The resources for this project can be obtained by clicking

the Download Source Code button located at www.apress.

com/9781484273579. This includes the images for the weather icons, the

prefabs for each day, and the fonts.

�Creating the Project
Follow these instructions to create the basic WeatherApp project:

	 1.	 Create a new blank 2D project in Unity Hub named

weather-app.

	 2.	 Import the weather-application.unitypackage

from the resources folder on the GitHub repo to get

the prefabs, images, fonts, and starting scene.

Figure 3-11.  The application showing the five day forecast for
New York City

Chapter 3 RESTful APIs

http://www.apress.com/9781484273579
http://www.apress.com/9781484273579

72

�Importing the weather-application.unitypackage

In the Unity editor, choose Assets ➤ Import Package ➤ Custom Package

from the main menu. In the Import Package dialog box, locate the

weather-application.unitypackage and open it. Figure 3-12 shows the

contents of the package. These files will be added to the blank project.

Click Import at the bottom-right side of the dialog to add the files to your

project.

Figure 3-12.  The Import Unity Package window showing the
contents of the weather-package.unitypackage

Chapter 3 RESTful APIs

73

�The OpenWeather Daily Forecast Endpoint
The OpenWeather daily forecast endpoint allows clients to request up to 16

days of weather from the system. The endpoint documentation is located

at https://openweathermap.org/forecast16. The API documentation

states that the endpoint is located at:

https://api.openweathermap.org/data/2.5/forecast/daily

The endpoint takes in three parameters that will be passed to the

method using an HTTP query string, which you need to provide in order to

obtain the data.

A query string is set of key-value pairs that appear after the question

mark (?) character in a web address. The key and the value are separated

by an equals sign (=). Query strings are not secure because they are part of

the web address and are sent in plain text.

The three parameters are:

•	 q – The city and country code of the location.

•	 cnt – The number of days to return. You will set this to 5

in your example.

•	 appid – The API key for the application.

To request the forecast in Boston for the next five days, the URL would

look like the following – API key truncated:

https://api.openweathermap.org/data/2.5/forecast/daily?q=Boston

&cnt=5&appid=dc54fac

Chapter 3 RESTful APIs

https://openweathermap.org/forecast16

74

The API can be tested using the CURL command. Curl stands for client

URL and is used to download resources from websites on the command

line. It’s perfect for testing APIs because of this. Open a terminal window or

DOS prompt. At the prompt, type in the command like so. Don’t forget to

change your appid to your application’s ID:

$ curl "https://api.openweathermap.org/data/2.5/forecast/daily?

q=Boston&cnt=5&appid=dc54fac"

The query (q) must be URL-encoded. This means that the string will

have whitespace characters trimmed out and problematic characters

replaced with HTML entities. For example, a space becomes a plus

symbol (+). The example shows two lines—the normal text followed by

the URL-encoded version:

Niagara Falls, Ontario

Niagara+Falls%2c+Ontario

The .NET framework’s HttpUtility class has a method called

UrlEncode() that will take a string and return the URL-encoded version:

var urlEncodedCity = HttpUtility.UrlEncode(city);

�Fetching the Data
With the barebones project imported via the package, you need to create

additional scripts that will:

•	 Provide classes to decode the JSON message received

from the API call

•	 Use a common function to make the call to the API

•	 Send out the request when the user clicks the Fetch button

Chapter 3 RESTful APIs

75

Let’s start by creating the script files you need. In the Unity Editor’s

Project view, open the Scripts folder and add the following C# script files:

•	 FetchResults

•	 OpenWeatherMapAPI

Then create a new folder in Scripts called Serialization. Create the

following C# script files inside the Serialization folder:

•	 ResponseContainer

•	 ResponseItem

•	 ResponseTemperature

•	 WeatherItem

The last four C# script files will hold the response from the server. You

should now have a project that looks like the hierarchy shown in Figure 3-13.

Figure 3-13.  The project hierarchy for the weather application

Chapter 3 RESTful APIs

76

�Serialization Classes

The serialization classes in Scripts/Serialization will just be plain

classes with public fields that will be populated with data.

Note U nity’s JsonUtility can only serialize/deserialize public
fields. Do not use properties for your serialization classes!

The shape of the data (i.e. the names of the fields and the class

structure) is dictated by the application. In the case of the daily forecast

from OpenWeather, this is defined at https://openweathermap.org/

forecast16#JSON and a portion of it is shown in Figure 3-14.

The date (dt), sunrise, and sunset fields are 10 digits long. These

values are the number of seconds since midnight on 1/1/1970. You’ll learn

how to create a function to convert them to something human readable

later in the UnixTimeToDateTime() function.

Taking this hierarchy, you can draw a diagram to represent the parent-

child relationships of each class as shown in Figure 3-15.

Figure 3-14.  Example showing the shape of the data returned from
the API endpoint for daily forecasting using the OpenWeather API

Chapter 3 RESTful APIs

https://openweathermap.org/forecast16#JSON
https://openweathermap.org/forecast16#JSON

77

The ResponseContainer is the message received from the server. Each

ResponseItem is a day of the week.

The leaf node in this hierarchy is what I called the WeatherItem and it

is defined in Listing 3-3.

Listing 3-3.  The WeatherItem Script

using System;

[Serializable]

public class WeatherItem

{

 public int id;

 public string main;

 public string description;

 public string icon;

}

Figure 3-15.  The parent-child relationships of the response message
from OpenWeather’s API call

Chapter 3 RESTful APIs

78

This class contains the icon used to visually represent the weather as

well as a description of the weather itself. Paired with the WeatherItem

class is the ResponseTemperature class, shown in Listing 3-4. It contains,

unsurprisingly, the temperature for the parts of the day. The temperatures

returned from the API are in Kelvin. You will write a function called

ToHumanTemperature() that will convert the temperature from Kelvin to

Celsius or Fahrenheit.

Note  Zero Kelvin is approximately -273 Celsius or -460 Fahrenheit!

Listing 3-4.  The ResponseTemperature Script

using System;

[Serializable]

public class ResponseTemperature

{

 public float day;

 public float night;

 public float min;

 public float max;

 public float eve;

 public float morn;

}

Daily temperatures, icons, and descriptions are contained in the

ResponseItem class, as shown in Listing 3-5. This represents a single day’s

results in addition to the sunrise and sunset times for that day.

Chapter 3 RESTful APIs

79

Listing 3-5.  The ResponseItem Script

using System;

[Serializable]

public class ResponseItem

{

 public long dt;

 public ResponseTemperature temp;

 public WeatherItem[] weather;

 public long sunrise;

 public long sunset;

}

The dt, sunrise, and sunset fields are not in the DateTime format. This

is because the OpenWeatherMap API returns times in what is called UNIX

Epoch time. This is the number of seconds since midnight on 1/1/1970.

Lastly, the actual message itself is represented in code as

ResponseContainer, as shown in Listing 3-6. It contains a collection

of ResponseItem instances as well as the count of the number of days

requested.

Listing 3-6.  The ResponseContainer Script

using System;

[Serializable]

public class ResponseContainer

{

 public string cod;

 public float message;

 public int cnt;

 public ResponseItem[] list;

}

Chapter 3 RESTful APIs

80

Now that the serializable classes have been defined, you can take a

look at creating a MonoBehaviour that queries the OpenWeather endpoint

for a particular location and returns the result to the caller.

�Calling the API

As in the previous examples, you will use the UnityWebRequest class to

fetch the data from the remote server. JsonUtility.FromJson<T>() is used

to create the ResponseContainer from the JSON response.

There is one exposed field that is settable through the Unity editor for

the API key. You will have to provide that key yourself. The entire class is

shown in Listing 3-7.

Listing 3-7.  The OpenWeatherMapAPI MonoBehaviour Script

using System.Collections;

using System.Web;

using UnityEngine;

using UnityEngine.Networking;

public class OpenWeatherMapAPI : MonoBehaviour

{

 �private static readonly string ApiBaseUrl =

"https://api.openweathermap.org/data/2.5/forecast/

daily?q={0}&cnt=5&appid={1}";

 �[Tooltip("The key that allows access to the OpenWeatherMap API")]

 public string apiKey;

 public ResponseContainer Response { get; private set; }

 public IEnumerator GetForecast(string city)

 {

 Response = null;

 string urlEncodedCity = HttpUtility.UrlEncode(city);

Chapter 3 RESTful APIs

81

 �string url = string.Format(ApiBaseUrl, urlEncodedCity,

apiKey);

 UnityWebRequest webRequest = UnityWebRequest.Get(url);

 yield return webRequest.SendWebRequest();

 �if (webRequest.result == UnityWebRequest.Result.Success)

 {

 string json = webRequest.downloadHandler.text;

 �Response = JsonUtility.FromJson<ResponseContainer>(

json);

 }

 else

 {

 Debug.Log(webRequest.error);

 }

 }

}

Notice that the endpoint is stored as a constant called ApiBaseUrl and

the string.Format() method is used to place the query and the API key

in the query. Also of note is the UrlEncode() method, which is used to

encode the query string.

This MonoBehaviour is used by the final script that you write, which

acts as a controller for the whole application. If you were writing an

application that uses a lot of API calls, it would be rather inefficient to

rewrite this over and over again. At the end of this chapter, you’ll take a

look at making this more generic.

�The Controller: Final Wiring

The controller acts as the glue code between the UI and the API. The script

is attached to the FetchButton object in the project hierarchy, shown in

Figure 3-16, along with the OpenWeatherMapAPI MonoBehaviour.

Chapter 3 RESTful APIs

82

The FetchResults class, as shown in Listing 3-8, adds a click event

handler to the button to which it is attached. The event handler calls the

FetchData() method and that in turn calls the OpenWeatherMapAPI’s

GetForecast() method. On a successful response, the day prefabs are

filled.

Listing 3-8.  The FetchResults MonoBehaviour script

using System.Collections;

using System.Collections.Generic;

using TMPro;

using UnityEngine;

using UnityEngine.UI;

public class FetchResults : MonoBehaviour

{

 private static readonly string DefaultIcon = "01d";

 private bool isRunningQuery;

Figure 3-16.  The FetchButton GameObject with the two script
components: FetchResults and OpenWeatherMapAPI

Chapter 3 RESTful APIs

83

 private Button;

 private OpenWeatherMapAPI api;

 �private Dictionary<string, Sprite> sprites = new

Dictionary<string, Sprite>();

 public GameObject loadingMessage;

 public TMP_InputField cityInputField;

 public DayCard[] dayCards;

 public Sprite[] spriteIcons;

 public CanvasGroup panel;

 void Awake()

 {

 button = GetComponent<Button>();

 api = GetComponent<OpenWeatherMapAPI>();

 �// Create the dictionary that maps the name of the

sprite to its image

 foreach (Sprite s in spriteIcons)

 {

 sprites[s.name] = s;

 }

 button.onClick.AddListener(delegate

 {

 �if (!string.IsNullOrEmpty(cityInputField.text.

Trim()) && !isRunningQuery)

 {

 StartCoroutine(FetchData(cityInputField.text));

 }

 });

 }

Chapter 3 RESTful APIs

84

 private IEnumerator FetchData(string query)

 {

 isRunningQuery = true;

 panel.alpha = 0;

 loadingMessage.SetActive(true);

 yield return api.GetForecast(query);

 loadingMessage.SetActive(false);

 isRunningQuery = false;

 if (api.Response != null)

 {

 FillDays(api.Response);

 panel.alpha = 1;

 }

 }

 private void FillDays(ResponseContainer response)

 {

 panel.alpha = 1;

 for (int i = 0; i < dayCards.Length; i++)

 {

 var icon = response.list[i].weather[0].icon;

 if (!sprites.ContainsKey(icon))

 {

 icon = DefaultIcon;

 }

 Sprite = sprites[icon];

 �DayCardModel day = new DayCardModel(response.

list[i], sprite);

 DayCard = dayCards[i];

Chapter 3 RESTful APIs

85

 dayCard.SetModel(day);

 }

 }

}

The final thing to do is to enter the API token on the OpenWeatherMapAPI

script in the Unity Editor. At this point, you can test the application—

everything is complete!

�Running the Weather Application
Save all the open code files in your editor/IDE. In the Unity Editor, click the

Play button to start the app. Enter your location in the text box and click

the Fetch button. You should see the days appear. If not, here are some

things to check:

•	 The code is typed exactly as written

•	 You have a network connection

•	 You have entered the API token correctly

•	 Your token is valid

Remember that it can take up to two hours for the token to be validated

by the OpenWeather service. Check your email!

�Generic RESTful API Client
As I mentioned earlier, you may find yourself doing multiple calls to

various endpoints to build your client. If this is the case, it is better to

abstract the remote call out of the class and into a helper class.

Chapter 3 RESTful APIs

86

Listing 3-9 shows how this can be achieved using a static method

on a static class. The RestfulHelper class’ Fetch method takes three

parameters:

•	 endPoint – The endpoint of the API method

•	 onSuccess – An action to be called when the data has

been successfully received by the client

•	 onError – An action to be called when the data could

not be retrieved by the client

The helper class also correctly handles the disposal of the

UnityWebRequest class by wrapping it inside a using block.

Listing 3-9.  The RestfulHelper Class

using System;

using System.Collections;

using UnityEngine;

using UnityEngine.Networking;

public static class RestfulHelper

{

 �public static IEnumerator Fetch<T>(string endPoint,

Action<T> onSuccess, Action<string> onError) where T:

class, new()

 {

 �using (UnityWebRequest webRequest = UnityWebRequest.

Get(endPoint))

 {

 yield return webRequest.SendWebRequest();

 �if (webRequest.isNetworkError || webRequest.

isHttpError)

 {

Chapter 3 RESTful APIs

87

 onError?.Invoke(webRequest.error);

 }

 else

 {

 string json = webRequest.downloadHandler.text;

 �onSuccess?.Invoke(JsonUtility.

FromJson<T>(json));

 }

 }

 }

}

The OpenWeatherMapAPI class can now be rewritten (see Listing 3-10) to

take advantage of this new helper class. Any additional endpoint calls can

be defined in this class and called each from a separate method. Because

you’re calling only one endpoint, you use GetForecast(), but you could

add other methods, like GetDailyForecast(), GetGlobalAlerts(), etc.

Listing 3-10.  The Refactored OpenWeatherMapAPI Class Utilizing

the RestfulHelper Static Class

using System;

using System.Collections;

using System.Web;

using UnityEngine;

class OpenWeatherMapAPI : MonoBehaviour

{

 �private static readonly string ApiBaseUrl =

"https://api.openweathermap.org/data/2.5/forecast/

daily?q={0}&cnt=5&appid={1}";

 �[Tooltip("The key that allows access to the OpenWeatherMap API")]

 public string apiKey;

Chapter 3 RESTful APIs

88

 �public IEnumerator GetForecast(string city,

Action<ResponseContainer> onSuccess)

 {

 string urlEncodedCity = HttpUtility.UrlEncode(city);

 �string url = string.Format(ApiBaseUrl, urlEncodedCity,

apiKey);

 yield return RestfulHelper.Fetch(url, onSuccess, print);

 }

}

With the signature of GetForecast() changing, Action<Response

Container> has been added as a required parameter. You must also

change the FetchResults.FetchData() method, as shown in Listing 3-11.

Listing 3-11.  The Modified FetchData() Method in the

FetchResults Class

private IEnumerator FetchData(string query)

{

 runningQuery = true;

 panel.alpha = 0;

 loadingMessage.SetActive(true);

 yield return api.GetForecast(query, FillDays);

 loadingMessage.SetActive(false);

 runningQuery = false;

}

The bold code line is the one that performs the API call to get the

forecast data. The FillDays() method will be called automatically once

the remote call has completed successfully.

Chapter 3 RESTful APIs

89

�Summary
Your game can act as a client to a remote service that exposes various

methods using a RESTful interface. This will allow you to perform read

and write operations on remote data. These are performed by requesting a

particular URL or endpoint.

There are two methods of authentication: one is per user, the other is

per application. OAuth requires users to sign in to a service like Google,

Twitter, etc. and obtain a token. The alternative is that the application

provides the token. The token is then passed via each call to the remote

server to validate the request. Out of date or invalid tokens will get

rejected.

Results from the remote service are usually returned in a JSON format.

Classes can be easily created using the JSON function built into Unity.

If you are making multiple calls to different endpoints, it is a good idea

to create a generic function to perform the remote calls.

The weather application uses a high-level client server architecture. It’s

now time to switch gears and look at the lower-level socket programming

that is provided as part of the .NET framework, as this will allow you to

create your own protocols.

Chapter 3 RESTful APIs

91© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_4

CHAPTER 4

TCP Connections
In Chapter 3, you used the UnityWebRequest class as a client to access

data stored on a website (the server). The UnityWebRequest class handled

all the underlying communication with the web server. This included

the use of HTTP (HyperText Transport Protocol) to format messages and

deconstruct the data returned from the server.

HTTP is quite a heavy protocol and is not recommended for games

beyond its use at fetching leaderboards, or for updating a player’s save

game to a cloud service. This chapter looks at how you can create your

own protocol that will provide a client/server game; you will use Transport

Control Protocol (TCP) to do that.

Remember that TCP is a connection-oriented protocol. This means

that the messages that are passed to and from the client and server are in

order and complete. All of this is handled at the TCP level; how it achieves

the connection and maintains the integrity of the data is determined by the

way the client and server synchronize and acknowledge data.

�The TCP Three-Way Handshake
TCP is a connection-oriented protocol and, as such, it has a way of tracking

and ensuring that data that’s sent is received by the remote party. It does

this using a system called sequence and acknowledgement numbers.

https://doi.org/10.1007/978-1-4842-7358-6_4#DOI

92

•	 The client establishes a connection with the remote

machine. It sends a synchronization message (SYN)

with a sequence number and lets the remote machine

know that the client is ready.

•	 The server responds to the client with a

synchronization/acknowledgement (SYN-ACK). The ACK

contains the next number in the client’s SYN message

and the SYN holds the sequence number to start

subsequent messages.

•	 The client acknowledges (ACK) the response of the

server with the next number in the server’s SYN

message.

The three-way handshake is complete, so the local machine (client)

and the remote machine (server) can begin the actual data transfer

process. This is illustrated in Figure 4-1.

Chapter 4 TCP Connections

93

�TCP Client-Server Connections
The TcpListener class in the System.Net.Sockets namespace provides

you with a simple way to allow incoming TCP connections to be

established in your game. The TcpListener can accept an incoming socket

or TcpClient. It provides both synchronous and asynchronous methods to

accept connections.

Once a server is created, a remote machine can try to connect to it.

These requests will be placed in a queue that is handled by the underlying

networking framework. This isn’t something you have to worry about!

Figure 4-1.  The TCP three-way handshake illustrating the SYN/ACK
sequence numbers

Chapter 4 TCP Connections

94

However, be careful when using synchronous calls. When there is nothing

in the queue, the main thread will be blocked, waiting for clients to

connect or messages to be received.

Note S ynchronous method calls are blocking calls. This means that
the main thread cannot do anything while waiting for the method to
return a value or complete the task. On the other hand, asynchronous
calls allow you to provide a callback (another method to call)
when something happens. Think of them as event-driven network
programming. Asynchronous calls allow the main thread to keep
processing—moving characters around, updating animations, and so
on. The downside is that messages received are on another thread.
This will be covered later.

�Socket Connections
Remember that Berkeley’s networking suite abstracted network

programming using the file descriptor paradigm. A socket is a file

descriptor for networking and it represents an IP address and a port

number. Any communication to and from the remote server can be made

through the Socket class.

A connection to a remote server can be made using the low-level

Socket class. Because this class is IDisposable, I recommend wrapping it

inside a using(), as shown in Listing 4-1.

Chapter 4 TCP Connections

95

Listing 4-1.  Creating a TCP Socket Wrapped Inside a using() Block

using (var socket = new Socket(SocketType.Stream,

ProtocolType.Tcp))

{

 // Send and receive and then close the socket

 socket.Close();

}

The socket type and protocol are passed to the socket in the

constructor. The socket type is Stream. This represents a connection-

oriented service and the protocol type is TCP because that is the protocol

you are using to establish the connection.

Note  You should always call Close() on a Socket class.

�Establishing a Socket Connection
To connect to a remote server, use the Connect() method. It takes two

parameters. The first is the IP address of the remote server and the second

is the port where the service is running. Listing 4-2 shows that the client is

connecting to a service running on the local machine at port 9021.

Listing 4-2.  Connecting to a Local Service Running on Port 9021

try

{

 socket.Connect(IPAddress.Parse("127.0.0.1"), 9021);

}

catch (SocketException e)

{

 print(e);

}

Chapter 4 TCP Connections

96

Because the Connect() method can throw an exception, it is best to

wrap it inside a try/catch block, as shown in this example.

�Accepting a Socket Connection
There are two ways to accept an incoming socket connection

using TcpListener—AcceptSocket(), which is synchronous and

BeginAcceptSocket(), which is asynchronous.

Listing 4-3 shows how to accept a socket connection synchronously.

We will not be using this method in the book. This is a blocking call and it’s

best not to block the main thread.

Listing 4-3.  Accepting a Socket Synchronously

var listener = new TcpListener(IPAddress.Any, 9021);

listener.Start()

Socket = listener.AcceptSocket();

The better option is to use the BeginAcceptSocket() method, which

takes two parameters:

•	 The callback method

•	 The state object

The state object can be anything or null, but I recommend passing

in the listener. It will be accessible through the callback’s IAsyncResult

parameter’s AsyncState property.

Listing 4-4 shows how to create a TcpListener instance listening

on port 9021 of the local machine using any IP and to signal when a

connection from a remote machine has been established.

Chapter 4 TCP Connections

97

Listing 4-4.  Accepting a Socket Connection Asynchronously

var listener = new TcpListener(IPAddress.Any, 9021);

listener.Start();

listener.BeginAcceptSocket(Socket_Connected, _listener);

Listing 4-5 shows the code for the Socket_Connected event. Notice

that the AsyncState is accessed as a TcpListener because that is the state

object that you passed into the BeginAcceptSocket() call.

Listing 4-5.  Completing the Acceptance of an Incoming Socket

Connection

private void Socket_Connected(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var socket = (ar.AsyncState as TcpListener)

 .EndAcceptSocket(ar);

 // TO DO: Do something with socket

 }

}

�Sending Data
Data is sent to the remote server using Send() or BeginSend(). The Send()

method is the synchronous call and BeginSend() is the asynchronous call.

As with all data transferred via sockets, it takes the form of a byte array.

Byte arrays will form part of your serialization/deserialization routines.

For now, though, these examples will just use plain ASCII text converted to

and from a byte array.

Chapter 4 TCP Connections

98

�Synchronous Send

Listing 4-6 illustrates how to send a simple ASCII message to the remote

server using a byte[] array.

Listing 4-6.  Sending a Simple Message Using a Blocking Call

byte[] msgOut = Encoding.ASCII.GetBytes("Hello, World!");

int bytesOut = socket.Send(msgOut);

The number of bytes sent is returned from the Send() method. If

the number of bytes sent is less than the total number of bytes in your

message, you will have to advance the pointer and send again. A simple

while loop can be used, as shown in Listing 4-7. The receiver will also have

a buffer to accept the incoming data. The receiver will have to maintain a

count of received bytes to make sure that the complete message has been

received. The buffer can be periodically written out to disk or some other

storage—a memory stream for example.

Listing 4-7.  Sending a Large Amount of Data in Multiple Sends

int sizeOfBuffer = buffer.Length;

int offset = 0;

int sent = socket.Send(buffer,

 offset,

 buffer.Length,

 SocketFlags.None);

while (sent < sizeOfBuffer)

{

 sizeOfBuffer = Mathf.Max(0, sizeOfBuffer - sent);

 offset += sent;

Chapter 4 TCP Connections

99

 sent = socket.Send(buffer,

 offset,

 buffer.Length - offset,

 SocketFlags.None);

}

The Send() method in Listing 4-7 takes four parameters:

•	 The buffer containing the message to send

•	 The offset inside the buffer to send

•	 The size of the message to send

•	 Socket flags

The offset is used to point to the next element in the array to start

sending the data from. For example, if you have a buffer of 100 bytes and

send 10 bytes at a time, the offset will be set to 0, 10, 20, 30, and so on, as

each part of the buffer is filled and sent to the receiver.

�Asynchronous Send

Sending data asynchronously is achieved through the BeginSend()

method. The asynchronous callback takes an IAsyncResult object that

contains an AsyncState property. This property can be filled by passing

the state parameter to BeginState(). I recommend that you pass in the

socket, as shown in Listing 4-8.

Listing 4-8.  Asynchronous Sending of Data Using a TCP Socket

void Start()

{

 var socket = new Socket(SocketType.Stream,

 ProtocolType.Tcp);

 socket.Connect(IPAddress.Parse("127.0.0.1"), 9021);

Chapter 4 TCP Connections

100

 var msg = Encoding.ASCII.GetBytes("Hello, from Client!");

 socket.BeginSend(msg,

 0,

 msg.Length,

 SocketFlags.None,

 Send_Complete,

 socket);

}

void Send_Complete(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var socket = ar.AsyncState as Socket;

 var bytesSent = socket.EndSend(ar);

 print($"{bytesSent} bytes sent");

 }

}

The BeginSend() method takes six parameters:

•	 The buffer containing the message to send

•	 The offset inside the buffer to send

•	 The length of the message

•	 Socket flags

•	 The asynchronous result callback

•	 The state object

Note T he state object can be null, but for BeginSend(), I
recommend using the Socket instance.

Chapter 4 TCP Connections

101

�Receiving Data
Data is received by both the client and the server; the client when receiving

a result from the server and the server when receiving a request from the

client. In order to receive data from a remote machine, you must have a

place to store the incoming messages. In C#, this is a byte array.

As with sending, you can receive synchronously with the Receive()

method and asynchronously with the BeginReceive() method.

�Synchronous Receive

Listing 4-9 illustrates how to receive a message into a buffer using a socket.

The code assumes that socket is a valid instance of Socket.

Listing 4-9.  Receiving Data Into a Buffer from a Remote Machine

Using a Socket

byte[] buffer = new byte[1024];

var bytesReceived = socket.Receive(buffer);

var recv = Encoding.ASCII.GetString(buffer, 0, bytesReceived);

print(recv);

Receiving a larger file into a smaller buffer is possible. It is good

practice for the sender to send information about the data being

transferred, including the size of the file. If you were going to write a file

transfer program, you might want to send the size of the file as the first part

of the transmission and then the contents of the file as the remainder.

The receiver would then read the first four bytes and use this as a

counter against the number of bytes received. Listing 4-10 contains

code that receives a byte array. The first four bytes represent an integer

indicating the size of the transfer. BitConverter.ToInt32() can convert

bytes to an integer easily and the remaining bytes of the message are a

matter of arithmetic.

Chapter 4 TCP Connections

102

Listing 4-10.  Receiving a Large File Over TCP Using a Socket

byte[] superBuffer;

var buffer = new byte[1024];

var recv = client.Receive(buffer);

int length = BitConverter.ToInt32(buffer, 0);

superBuffer = new byte[length];

recv -= 4;

int sbOffset = recv;

int bytesRemaining = length - recv;

Array.Copy(buffer, 4, superBuffer, 0, sbOffset);

while (bytesRemaining > 0)

{

 Array.Clear(buffer, 0, buffer.Length);

 recv = client.Receive(buffer);

 bytesRemaining -= recv;

 Array.Copy(buffer, 0, superBuffer, sbOffset, recv);

 sbOffset += recv;

}

This is part of a program that receives a file sent over the network. The

first four bytes of a received file is the length of the file. These four bytes are

converted into an integer and the remaining bytes are added to a buffer

that will contain the whole file.

Messages are received into a temporary byte array that’s 1024 bytes in

size, called buffer. The superBuffer is created with the length of the actual

file—the first four bytes of the received data. The contents of buffer are

copied to superBuffer. This process is repeated until there are no more

bytes to copy, i.e., bytesRemaining is zero.

Chapter 4 TCP Connections

103

�Asynchronous Receive

As with the synchronous Receive(), any messages received will go into a

buffer. Because there is a callback involved, it would be difficult to access

this buffer if it was created locally. Therefore, I recommend creating a state

object that can be used to hold not only the socket that sent the message

but also the buffer. Listing 4-11 shows such a class.

Listing 4-11.  An Example State Object with Socket and Buffer

Properties

using System.Net.Sockets;

public class StateObject

{

 public byte[] Buffer { get; }

 public Socket Socket { get; }

 public StateObject(Socket socket, int bufferSize = 1024)

 {

 Buffer = new byte[bufferSize];

 Socket = socket;

 }

}

The StateObject can be used to pass information to the callback

through the IAsyncResult.AsyncState property. For example, when a

socket connects, you can start to receive on that socket, as shown in

Listing 4-12.

Chapter 4 TCP Connections

104

Listing 4-12.  The Socket_Connected Callback Sets Up an

Asynchronous Receive

private void Socket_Connected(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var socket = (ar.AsyncState as TcpListener)

 .EndAcceptSocket(ar);

 var state = new StateObject(socket);

 socket.BeginReceive(state.Buffer,

 0,

 state.Buffer.Length,

 SocketFlags.None,

 Socket_Received,

 state);

 }

}

The BeginReceive() method takes six parameters:

•	 The buffer that the message will be received into

•	 The offset inside this buffer

•	 The number of bytes that can be received

•	 Socket flags

•	 The received callback

•	 The state object

The received callback is called when the operation completes.

Listing 4-13 shows how to complete a receive.

Chapter 4 TCP Connections

105

Listing 4-13.  Completing a Receive on a TCP Socket

private void Socket_Received(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var state = ar.AsyncState as StateObject;

 var bytesIn = state.Socket.EndReceive(ar);

 var newState = new StateObject(state.Socket);

 state.Socket.BeginReceive(state.Buffer,

 0,

 state.Buffer.Length,

 SocketFlags.None,

 Socket_Received,

 newState);

 }

}

Once you have completed a receive, you must call BeginReceive()

again if you want to allow the client to send you multiple messages or if

you have not received the correct number of bytes in a larger message. The

number of bytes received is returned in bytesIn. Check this variable. You

may have to go through a loop like in Listing 4-10.

�Hello World Using TCP Sockets
In this example, you will create a Unity project that re-creates the classic

“Hello, World” program, but using TcpListener and Socket. To create this

project, follow these steps:

	 1.	 Create a new 2D project in Unity.

	 2.	 Create a Scripts folder inside the Assets folder.

Chapter 4 TCP Connections

106

	 3.	 Create a C# script file called

TcpSocketAsyncBehaviour inside the Scripts

folder.

	 4.	 Create a C# script file called

TcpListenSocketBehaviour inside the Scripts

folder.

	 5.	 Create a C# script file called StateObject inside the

Scripts folder.

	 6.	 Drag and drop the TcpListenSocketBehaviour

script onto the MainCamera in the scene view.

	 7.	 Drag and drop the TcpSocketAsyncBehaviour onto

the MainCamera in the scene view.

	 8.	 Save the scene as AsyncSockets.

You should now have a project hierarchy like the one shown in

Figure 4-2.

Open the StateObject script file in your IDE and change the text to the

contents of Listing 4-14. Make sure you save this file when you’re done.

Figure 4-2.  The hierarchy of the Async Sockets project

Chapter 4 TCP Connections

107

Listing 4-14.  The StateObject Script File

using System.Net.Sockets;

public class StateObject

{

 public byte[] Buffer { get; }

 public Socket Socket { get; }

 public StateObject(Socket socket, int bufferSize = 1024)

 {

 Buffer = new byte[bufferSize];

 Socket = socket;

 }

}

The StateObject class is used by the TcpListenSocketBehaviour

class. Open the TcpListenSocketBehaviour script file in your IDE and

change the text to the contents of Listing 4-15. Save the file when you are

done.

Listing 4-15.  The TcpListenSocketBehaviour Script File

using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

using UnityEngine;

public class TcpListenSocketBehaviour : MonoBehaviour

{

 private TcpListener _listener;

 [HideInInspector]

 public bool _isReady;

Chapter 4 TCP Connections

108

 [Tooltip("The port the service is running on")]

 public int _port = 9021;

 void Start()

 {

 _listener = new TcpListener(IPAddress.Any, _port);

 _listener.Start();

 _listener.BeginAcceptSocket(Socket_Connected,

 _listener);

 _isReady = true;

 }

 private void OnDestroy()

 {

 _listener?.Stop();

 _listener = null;

 }

 private void Socket_Connected(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var socket = (ar.AsyncState as TcpListener)

 .EndAcceptSocket(ar);

 var state = new StateObject(socket);

 socket.BeginReceive(state.Buffer,

 0,

 state.Buffer.Length,

 SocketFlags.None,

 Socket_Received,

 state);

 }

 }

Chapter 4 TCP Connections

109

 private void Socket_Received(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var state = ar.AsyncState as StateObject;

 var bytesIn = state.Socket.EndReceive(ar);

 if (bytesIn > 0)

 {

 var msg = Encoding.ASCII

 .GetString(state.Buffer,

 0,

 bytesIn);

 print($"From client: {msg}");

 }

 var newState = new StateObject(state.Socket);

 state.Socket.BeginReceive(state.Buffer,

 0,

 state.Buffer.Length,

 SocketFlags.None,

 Socket_Received,

 newState);

 }

 }

}

Finally, TcpSocketAsyncBehaviour is shown in Listing 4-16. Open the

TcpSocketAsyncBehaviour script file and enter the text in Listing 4-16.

Save the file when you’re done.

Chapter 4 TCP Connections

110

Listing 4-16.  The TcpSocketAsyncBehaviour Script

using System;

using System.Collections;

using System.Net;

using System.Net.Sockets;

using System.Text;

using UnityEngine;

[RequireComponent(typeof(TcpListenSocketBehaviour))]

public class TcpSocketAsyncBehaviour : MonoBehaviour

{

 private Socket _socket;

 [Tooltip("The port the service is running on")]

 public int _port = 9021;

 IEnumerator Start()

 {

 var listener =

 GetComponent<TcpListenSocketBehaviour>();

 while (!listener._isReady)

 {

 yield return null;

 }

 _socket = new Socket(SocketType.Stream,

 ProtocolType.Tcp);

 _socket.Connect(IPAddress.Parse("127.0.0.1"), _port);

 var msg = Encoding.ASCII.GetBytes("Hello, from Client!");

 _socket.BeginSend(msg,

 0,

 msg.Length,

 SocketFlags.None,

Chapter 4 TCP Connections

111

 Send_Complete,

 _socket);

 }

 private void Send_Complete(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var socket = ar.AsyncState as Socket;

 var bytesSent = socket.EndSend(ar);

 print($"{bytesSent} bytes sent");

 }

 }

}

Check your typing and save the files if you haven’t already. Run

the program. The TcpListenSocketBehaviour is the server. It is

waiting for a socket to connect to it and begin communications. The

TcpSocketAsyncBehaviour is the client. It connects to the server and sends

a simple "Hello, from Client!" message.

The message is converted to a byte array and sent to the server

using TCP. It is received and placed in a local byte buffer. The text can

be extracted from this byte array and displayed onscreen, as shown in

Figure 4-3.

Figure 4-3.  The output from the Async Sockets Unity project

Chapter 4 TCP Connections

112

�Simple Network Copier
To illustrate a synchronous network call, I created a program that can copy

a file from the local machine to a remote device. I have found this handy

when I want to copy files from one computer to another, but I don’t want to

set up an FTP server or network share.

This is a command-line tool, but it’s easily something that could be

adapted to Unity if you needed this functionality. To create the project,

follow these steps:

	 1.	 Create a new Console application in Visual Studio

using the latest .net framework.

	 2.	 Create a class file called Config.cs.

	 3.	 Create a class file called Receiver.cs.

	 4.	 Create a class file called Sender.cs.

Along with Program.cs, you should now have the same solution

hierarchy as shown in Figure 4-4. The names of the solution file and

project might be different; the ones in the figure are NetCopy and ncp

respectively, but that won’t matter.

Figure 4-4.  The network copier project hierarchy

Chapter 4 TCP Connections

113

This is a command-line tool. You have to open a DOS/command

prompt to run these. To run the program as a server (receiving a file), use

the following command-line format. The filename is required. This is the

destination filename that the file will be copied into.

$ ncp -p 9021 mypicture.png

The port option can be omitted. It defaults to the 9021 port if not

specified:

$ ncp mypicture.png

To send a file, the following command-line format is used:

$ ncp -ip 127.0.0.1 -port 9021 mypicture.png

The IP is the IP address of the server. The port is the port number the

service is running on. The last parameter is the local file to copy to the

remote server.

The first class you will look at is the Config class. This class parses the

command-line arguments for the following parameters:

•	 Filename

•	 Port (default is 9021)

•	 IsServer (default is True)

•	 Debug (Boolean)

•	 ServerIP (default is IPAddress.Any)

•	 AskForHelp (Boolean)

Open the Config.cs file and enter the code in Listing 4-17; save the file.

Chapter 4 TCP Connections

114

Listing 4-17.  The Config Command-Line Parser

using System.Linq;

using System.Net;

namespace SloanKelly.Networking.NetCopy

{

 class Config

 {

 public string Filename { get; }

 public int Port { get; } = 9021;

 public bool IsServer { get; } = true;

 public bool Debug { get; }

 public IPAddress ServerIP { get; }

 public bool AskForHelp { get; }

 public Config(string[] args)

 {

 ServerIP = IPAddress.Any;

 if (args.Length ==0)

 {

 return;

 }

 int index = 0;

 while (index < args.Length)

 {

 if (IsMatch(args[index], "-ip", "/ip", "ip"))

 {

 index++;

Chapter 4 TCP Connections

115

 ServerIP = IPAddress.Parse(args[index]);

 IsServer = false;

 �} else if (IsMatch(args[index], "-p", "/p",

"port"))

 {

 index++;

 Port = int.Parse(args[index]);

 }

 �else if (IsMatch(args[index], "-h", "/h", "/

help", "help"))

 {

 AskForHelp = true;

 return;

 }

 else if(IsMatch(args[index], "-d", "/d"))

 {

 Debug = true;

 }

 else

 {

 Filename = args[index];

 }

 index++;

 }

 }

 �private bool IsMatch(string leftHand, params string[]

rightHand)

 {

 �var match = rightHand.FirstOrDefault(s => s ==

leftHand.ToLower());

Chapter 4 TCP Connections

116

 return !string.IsNullOrEmpty(match);

 }

 }

}

The Sender class sends the file to the remote machine. It does this by

reading in the contents of a file as a byte array and sending that byte array

to the server. Before it sends the contents of the file, it sends an integer

(four bytes). This integer contains the length of the file. This is important

because the server has no idea how large the payload is until you tell it.

Note P rotocols are all about setting up rules, such as “The first four
bytes represent the size of the file being sent.”

Open the Sender.cs file and enter the code in Listing 4-18. Save the file

when you’re done.

Listing 4-18.  The Sender Class Used to Send Data to a Remote

Server

using System;

using System.IO;

using System.Net;

using System.Net.Sockets;

namespace SloanKelly.Networking.NetCopy

{

 class Sender

 {

 private IPAddress _serverIP;

 private int _port;

 private string _filename;

 private bool _debug;

Chapter 4 TCP Connections

117

 �public Sender(IPAddress serverIP, int port, string

filename, bool debug)

 {

 _serverIP = serverIP;

 _port = port;

 _filename = filename;

 _debug = debug;

 }

 public void Run()

 {

 var contents = File.ReadAllBytes(_filename);

 var offset = 0;

 var length = contents.Length;

 var socket = Create(_serverIP, _port);

 if (socket == null)

 return;

 socket.Send(BitConverter.GetBytes(contents.Length));

 while (length > 0)

 {

 var sent = socket.Send(contents,

 offset,

 length,

 SocketFlags.None);

 length -= sent;

 offset += sent;

 Console.WriteLine($"Sent {sent} byte(s)");

 socket.Send(contents,

 offset,

 length,

 SocketFlags.None);

 }

Chapter 4 TCP Connections

118

 Console.WriteLine("Finished!");

 socket.Close();

 socket.Dispose();

 }

 private Socket Create(IPAddress ip, int port)

 {

 try

 {

 var socket = new Socket(SocketType.Stream,

 ProtocolType.Tcp);

 socket.Connect(ip, port);

 return socket;

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 return null;

 }

 }

}

The Receiver class receives the data from the remote client. As

discussed, it uses two buffers. The first is the main buffer used to store the

entire file. The second is a smaller receive buffer, which is 1KB (1024 bytes)

in size.

Open the Receiver.cs file in the IDE and enter the code from Listing 4-19.

Save the file when you’re done.

Chapter 4 TCP Connections

119

Listing 4-19.  The Receiver Class Is Used to Receive the Data

using System;

using System.IO;

using System.Net;

using System.Net.Sockets;

namespace SloanKelly.Networking.NetCopy

{

 class Receiver

 {

 private IPAddress _serverIP;

 private int _port;

 private string _fileName;

 private bool _debug;

 �public Receiver(IPAddress serverIP, int port, string

fileName, bool debug)

 {

 _serverIP = serverIP;

 _port = port;

 _fileName = fileName;

 _debug = debug;

 }

 public void Run()

 {

 Console.WriteLine("Listening for connection");

 var contents = ReceiveContents();

 if (contents == null || contents.Length == 0)

 {

 return;

 }

Chapter 4 TCP Connections

120

 else

 {

 File.WriteAllBytes(_fileName, contents);

 }

 }

 private byte[] ReceiveContents()

 {

 byte[] superBuffer;

 var listener = new TcpListener(_serverIP, _port);

 listener.Start();

 var socket = listener.AcceptSocket();

 var buffer = new byte[1024];

 var recv = socket.Receive(buffer);

 recv -= 4;

 int length = BitConverter.ToInt32(buffer, 0);

 superBuffer = new byte[length];

 �Console.WriteLine($"Size of file received is

{length} byte(s)");

 if (_debug)

 Console.WriteLine($"Received {recv} byte(s)");

 int sbOffset = recv;

 int bytesRemaining = length - recv;

 Array.Copy(buffer, 4, superBuffer, 0, sbOffset);

 while (bytesRemaining > 0)

 {

 Array.Clear(buffer, 0, buffer.Length);

 recv = socket.Receive(buffer);

Chapter 4 TCP Connections

121

 bytesRemaining -= recv;

 if (_debug)

 �Console.WriteLine($"Received {recv}

byte(s). {bytesRemaining} left.");

 Array.Copy(buffer,

 0,

 superBuffer,

 sbOffset,

 recv);

 sbOffset += recv;

 }

 socket.Close();

 socket.Dispose();

 listener.Stop();

 return superBuffer;

 }

 }

}

Lastly is the Program class. This is the entry point into the application.

It creates the classes that will be used, depending on the contents of the

arguments passed on the command line. These are parsed out using the

Config class. Help is given if the user requests it or if they make an error in

the arguments passed.

Open the Program.cs file and enter the code in Listing 4-20. Save the

file when you’re done.

Chapter 4 TCP Connections

122

Listing 4-20.  Program Is the Entry Point to the Application

using System;

namespace SloanKelly.Networking.NetCopy

{

 class Program

 {

 static void Main(string[] args)

 {

 var config = new Config(args);

 �if (config.AskForHelp || string.

IsNullOrEmpty(config.Filename))

 {

 Console.WriteLine("NetCopy - Sloan Kelly 2020");

 �Console.WriteLine("Provides a simple peer to

peer copy from one machine to another");

 Console.WriteLine("Usage");

 �Console.WriteLine("\tSend\tncp [-ip serverIP]

[-p port] filename");

 �Console.WriteLine("\tReceive\tncp [-p port]

filename");

 }

 else if (config.IsServer)

 {

 var server = new Receiver(config.ServerIP,

 config.Port,

 config.Filename,

 config.Debug);

 server.Run();

 }

Chapter 4 TCP Connections

123

 else

 {

 var sender = new Sender(config.ServerIP,

 config.Port,

 config.Filename,

 config.Debug);

 sender.Run();

 }

 }

 }

}

Before you can run the program, you have to change the name of the

executable. Follow these steps to do so:

	 1.	 Right-click the Project file in the Solution Explorer.

	 2.	 Click Properties. This will open the Project

Properties window.

	 3.	 Click the Application tab,

	 4.	 Change the Assembly Name to ncp.

	 5.	 Click the Save All icon.

Figure 4-5 shows the Project Properties window.

Chapter 4 TCP Connections

124

To try this program, you have to run it from the command line. Two

command prompt windows are required—one for the server and the other

for the client.

To receive a picture, on one command prompt window, the output

might look like this after an image has been sent:

$ ncp troncopy2.jpg

Listening for connection

Size of file received is 2330429 byte(s)

On a client, the output might look like:

$ ncp -ip 127.0.0.1 -port 9021 tron.jpg

Sent 2330429 byte(s)

Finished!

The TcpListener and Socket classes makes things easier, but to

make things really easy, the .Net framework also has another class called

TcpClient. This class wraps the Socket class into a neat package. You’ll

look at how the TcpClient can be used to talk to a TcpListener next.

Figure 4-5.  The project properties window with ncp as the assembly
name

Chapter 4 TCP Connections

125

�TcpClient Connections
The TcpClient class connects to a remote server and is used on the server

to refer to a remote connection from another machine. The TcpClient

class exposes a NetworkStream that is used to read and write data.

While it is certainly possible to use synchronous methods with

TcpClient, this book will be avoiding them in favor of the asynchronous

versions.

The TcpClient wraps the Socket class and contains an internal buffer.

Because you’re using the asynchronous methods, this buffer is returned

when the read operation is completed.

�Sockets vs. TcpClient and TcpListener
When should you choose to use sockets or the TcpClient/TcpListener

classes very much depends on how the client and server will connect. If you

are using TCP, then using TcpClient and TcpListener makes sense. They

act as wrappers around the Socket class and use TCP over IPv4 or IPv6.

Sockets are not protocol specific. This is why when you create a socket

you get a greater number of options for socket and protocol type. A socket

can be UDP or TCP. See the Socket class’ constructor for details.

�Connecting to a Server Using TcpClient
To connect to a server running a connection-oriented TCP service, you

should use the TcpClient class. The Connect() method connects to a

server. The method takes either an endpoint or a separate IP address in

the form of a string and a port number (an integer). The EndPoint class

contains the IP address and the port number, combined. Listing 4-21

shows how a client could connect to a server running on the local machine

on port 9021.

Chapter 4 TCP Connections

126

Listing 4-21.  Connecting to a Service Running on Port 9021 on the

Local Machine

var client = new TcpClient();

client.Connect("127.0.0.1", _port);

�Sending Data Using TcpClient
Data is sent to the client using the client’s network stream. It is possible to

use a BinaryReader and BinaryWriter around the NetworkStream of the

client, but it involves having two threads—one for the read and one for the

write. It is easier to use the asynchronous method on the NetworkStream

called BeginWrite, as shown in Listing 4-22.

Listing 4-22.  Writing Data to a Remote Server Using the

BeginWrite() Method of NetworkStream

var stream = client.GetStream();

var msg = Encoding.ASCII.GetBytes("Message to send");

client.GetStream()

 .BeginWrite(msg, 0, msg.Length, Send_Complete, client);

The BeginWrite() method takes five arguments:

•	 The byte array buffer containing the message to send

•	 The offset from the buffer

•	 The number of bytes to send

•	 The callback method

•	 The state. This can be anything, but it is recommended

that at least the client be used as the state object

Chapter 4 TCP Connections

127

Listing 4-23 shows the contents of the Send_Complete method that will

be called when the operation ends.

Listing 4-23.  The callback Send_Complete Method Used to

Complete the Transaction

void Send_Complete(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var client = ar.AsyncState as TcpClient;

 client.GetStream()

 .EndWrite(ar);

 }

}

The state object is contained in the AsyncState property of the

IAsyncResult. Because you passed in the TcpClient, it can be used

directly here to obtain the NetworkStream used to end the write

transaction.

�Reading Data Using a TcpClient
The TcpClient is used to represent a connection with a remote machine.

This means that the TcpClient is used on the actual machine requesting

the data (the client), as well as on the server as a reference to the

connection with the client. Both the client and the server will use the

TcpClient to receive messages.

Listing 4-24 shows how to receive a message using the NetworkStream’s

BeginRead() asynchronous method.

Chapter 4 TCP Connections

128

Listing 4-24.  Asynchronous Reception of a Message Using a

TcpClient

var state = new StateObject(client, buffer);

client.GetStream()

 .BeginRead(buffer,

 0,

 State.Buffer.Length,

 Client_Received,

 state);

The BeginRead() method takes five parameters:

•	 The buffer used to store the incoming message

•	 The offset inside the buffer where new messages will be

received

•	 The number of bytes to receive

•	 The callback

•	 The state object

The state object StateObject, shown in Listing 4-25, contains the

TcpClient and the buffer used to receive data. This is required because the

callback will use both the TcpClient instance and the buffer. Because there

can only be one state object, a new class needs to be constructed to hold

the reference to the TcpClient and the receive buffer.

Listing 4-25.  The StateObject Class

using System.Net.Sockets;

public class StateObject

{

 public TcpClient Client { get; }

Chapter 4 TCP Connections

129

 public NetworkStream Stream => Client.GetStream();

 public byte[] Buffer { get; }

 public ClientStateObject(TcpClient client,

 int bufferSize = 1024)

 {

 Client = client;

 Buffer = new byte[bufferSize];

 }

}

Because the buffer is integral to the state, it is created in the

constructor. Listing 4-26 shows the Client_Received callback where the

StateObject is used.

Listing 4-26.  The Client_Received Callback

private void Client_Received(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var state = ar.AsyncState as StateObject;

 var bytesIn = state.Stream.EndRead(ar);

 if (bytesIn > 0)

 {

 var msg = Encoding.ASCII

 .GetString(state.Buffer,

 0,

 bytesIn);

 print($"From client: {msg}");

 }

Chapter 4 TCP Connections

130

 var newState = new StateObject(state.Client);

 state.Stream

 .BeginRead(state.Buffer,

 0,

 state.Buffer.Length,

 Client_Received,

 newState);

 }

}

The state object is read from the AsyncState property of the

IAsyncResult. The network stream read is completed by calling the

EndRead() method and this returns the number of bytes received.

Similar to the socket example earlier, this might not be the complete

message and you will have to listen for more. This is why there is a call to

BeginRead() at the very end of this method.

�TcpListener: Accepting a TcpClient Connection
With the previous example using sockets, TcpListener also allows

incoming connections from a TcpClient. The BeginAcceptTcpClient()

method takes two parameters:

•	 A callback to be called when a connection is made

•	 A state object

It is recommended to use at least the TcpListener as the state object.

Listing 4-27 shows how a TcpListener would start accepting an inbound

TcpClient connection.

Chapter 4 TCP Connections

131

Listing 4-27.  TcpListener Accepting an Asynchronous Inbound

TcpClient connection

var Listener = new TcpListener(IPAddress.Any, 9021);

listener.Start();

listener.BeginAcceptTcpClient(Socket_Connected, listener);

Listing 4-28 illustrates an example callback when a client is connected.

At the end of the method there is a further call to accept an incoming

connection. Without this, no other client could connect to your service.

Listing 4-28.  Example Callback to Accept a TCP Client

private void Socket_Connected(IAsyncResult ar)

{

 if (ar.IsCompleted)

 {

 var listener = (ar.AsyncState as TcpListener);

 var client = listener.EndAcceptTcpClient(ar);

 // TO DO: Something with client

 listener.BeginAcceptTcpClient(Socket_Connected,

 listener);

 }

}

Note I f you want to accept more than one connection, you have to
re-call BeginAcceptTcpClient() when a client connects.

Don’t worry about timing. Clients are buffered in a queue as

they connect and are presented to you one at a time. This is handled

automatically by the operating system too.

Chapter 4 TCP Connections

132

�Hello World Example Using TcpClient
and TcpListener
In this section, you see how to create a Hello World example using the

TcpClient and TcpListener. You will revisit the Unity project from earlier

in this chapter. Follow these steps:

	 1.	 Create a new scene in the project.

	 2.	 In the Scripts folder, create a new C# script file

called TcpListenClientBehaviour.

	 3.	 In the Scripts folder, create a new C# script file

called TcpClientAsyncBehaviour.

	 4.	 In the Scripts folder, create a new C# script file

called ClientStateObject.

	 5.	 Drag and drop the TcpClientAsyncBehaviour script

file onto the MainCamera in the scene.

	 6.	 Drag and drop the TcpListenClientBehaviour

script file onto the MainCamera in the scene.

	 7.	 Save the scene as AsyncClients.

You should now have the project hierarchy shown in Figure 4-6.

Chapter 4 TCP Connections

133

With those steps complete, you will now fill in the script files that were

just created. Listing 4-29 is the full script of the ClientStateObject class.

This class is the state object used when receiving data from the client.

It contains a reference to the TcpClient as well as the buffer that data is

received into. Replace the current contents of the ClientStateObject

script with Listing 4-29.

Listing 4-29.  The ClientStateObject Script

using System.Net.Sockets;

public class ClientStateObject

{

 public TcpClient Client { get; }

 public NetworkStream Stream => Client.GetStream();

 public byte[] Buffer { get; }

Figure 4-6.  The project hierarchy after completing the steps to add
the TcpClient script files

Chapter 4 TCP Connections

134

 public ClientStateObject(TcpClient client,

 int bufferSize = 1024)

 {

 Client = client;

 Buffer = new byte[bufferSize];

 }

}

Save the script file. The TcpListenClientBehaviour class will contain

the TcpListener. It will be used to accept incoming client connections.

By default, the server will run on any IP address on port 9021. This can

be changed by altering the value of _port or in the Inspector in the Unity

Editor.

Replace the contents of the TcpListenClientBehaviour script file with

the code in Listing 4-30.

Listing 4-30.  The TcpListenClientBehaviour Script

using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

using UnityEngine;

public class TcpListenClientBehaviour : MonoBehaviour

{

 private TcpListener _listener;

 [HideInInspector]

 public bool _isReady;

 [Tooltip("The port the service is running on")]

 public int _port = 9021;

Chapter 4 TCP Connections

135

 void Start()

 {

 _listener = new TcpListener(IPAddress.Any,

 _port);

 _listener.Start();

 _listener.BeginAcceptTcpClient(Socket_Connected,

 _listener);

 _isReady = true;

 }

 private void OnDestroy()

 {

 _listener?.Stop();

 _listener = null;

 }

 private void Socket_Connected(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var client = (ar.AsyncState as TcpListener)

 .EndAcceptTcpClient(ar);

 var state = new ClientStateObject(client);

 client.GetStream()

 .BeginRead(state.Buffer,

 0,

 state.Buffer.Length,

 Client_Received,

 state);

 }

 }

Chapter 4 TCP Connections

136

 private void Client_Received(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var state = ar.AsyncState as ClientStateObject;

 var bytesIn = state.Stream.EndRead(ar);

 if (bytesIn > 0)

 {

 var msg = Encoding.ASCII

 .GetString(state.Buffer,

 0,

 bytesIn);

 print($"From client: {msg}");

 }

 var newState = new ClientStateObject(state.Client);

 state.Stream

 .BeginRead(state.Buffer,

 0,

 state.Buffer.Length,

 Client_Received,

 newState);

 }

 }

}

Save the file. Finally, Listing 4-31 contains the contents of

TcpClientAsyncBehaviour. Replace the current contents of the

TcpClientAsyncBehaviour script file with the code in Listing 4-31. The

assumption is that the client is connecting to a server running locally on

port 9031, but those values can be changed in the code or through the

Unity Editor’s Inspector. Don’t forget to save the file.

Chapter 4 TCP Connections

137

Listing 4-31.  The TcpClientAsyncBehaviour Class

using System;

using System.Collections;

using System.Net.Sockets;

using System.Text;

using UnityEngine;

[RequireComponent(typeof(TcpListenClientBehaviour))]

public class TcpClientAsyncBehaviour : MonoBehaviour

{

 private TcpClient _client;

 [Tooltip("The server's IP address")]

 public string _ipAddress = "127.0.0.1";

 [Tooltip("The port the service is running on")]

 public int _port = 9021;

 IEnumerator Start()

 {

 var listener = GetComponent<TcpListenClientBehaviour>();

 while (!listener._isReady)

 {

 yield return null;

 }

 _client = new TcpClient();

 _client.Connect(_ipAddress, _port);

 �var msg = Encoding.ASCII.GetBytes("Hello, from

TcpClient!");

Chapter 4 TCP Connections

138

 _client.GetStream()

 .BeginWrite(msg,

 0,

 msg.Length,

 Send_Complete,

 _client);

 }

 private void Send_Complete(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var client = ar.AsyncState as TcpClient;

 client.GetStream()

 .EndWrite(ar);

 }

 }

}

When you run the program in Unity, the console should, as shown in

Figure 4-7, show the message received from the client.

Figure 4-7.  The console output after running the scene containing the
TcpClient example

Chapter 4 TCP Connections

139

�Tic-Tac-Toe
Tic-Tac-Toe—also known as Naughts and Crosses or Xs and Os—is a game

played on a 3x3 grid. The goal is to be the first to place three tokens in a

line on the grid. Each player takes turn placing their token—an X or an O

on a blank grid square. The game is popular because the rules are simple

and you only need a flat surface and something to draw the shapes on.

Figure 4-8 shows a typical game in progress.

Games can end in one of two ways; X or O can win by creating a row of

tokens horizontally, vertically, or diagonally. The game can also end in a

tie, sometimes referred to as a “cat’s game.” This is when there is no winner

and no more moves are available, i.e., the board is full.

Figure 4-8.  An in-progress game of Tic-Tac-Toe played on a piece of
paper. X is about to win

Chapter 4 TCP Connections

140

In the remaining pages of this chapter, you are going to create a client-

server networked version of Tic-Tac-Toe that you can play with someone

on their device. Figure 4-9 shows the same game as earlier, but in progress

on the finished Tic-Tac-Toe client-server version you will build.

This project will use the TcpClient and TcpListener classes to build

the client-server application. To add more functionality, these classes

will be wrapped inside some custom classes, located in the NetLib folder.

These classes will help you maintain the list of clients connected to the

server, messaging events and serialization/deserialization. You could just

as easily not write these additional classes and code everything into the tic-

tac-toe game itself. Abstraction of the network layer provides a better way

to separate the game from the networking classes.

To pass data between the client and the server, you will use a simple

serialization protocol. The messages passed will be simple text messages.

The first line will contain a header with the size of the payload.

Figure 4-9.  An in-progress game of Tic-Tac-Toe played in the
networked game. X is about to win

Chapter 4 TCP Connections

141

The payload is the actual message being sent. The payload contains the

state of the board and the current player as well as a command to inform

the client application what state to be in.

The client and server will use a small finite state machine (FSM) to

control the current state of the program. See https://en.wikipedia.org/

wiki/Finite-state_machine for more details on finite state machines.

The Tic-Tac-Toe game will allow one player to act as a server and allow

another to connect. The player running the server will also connect via the

network, but this will be transparent to the player.

When the game starts, the players are shown the title page, as shown in

Figure 4-10. It contains two options—start or join a server.

When the server starts, a client is automatically created and joins the

server. The first client to join is always X. The second client will be another

player running on another device. When the second client joins, the game

starts and X gets to make their first turn. Then O, and so on, until the game

Figure 4-10.  The title screen showing the Start Server, Join, and IP
address controls

Chapter 4 TCP Connections

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

142

ends. It isn’t possible to click a square when another player is choosing

their grid square.

Each cell or button click on the client sends a message to the server.

This will result in a message being sent back to all the clients.

Clients can only send commands to the server and the server can only

send updates to the command. The cycle is shown in Figure 4-11 with one

client, but in the actual application, the updates will be sent to both clients.

�Starter Files
A project of this size requires some work up front. The source code for this

and other chapters is available on GitHub via the book’s product page,

located at https://www.apress.com/us/book/9781484273579.

�Getting Started

The project uses the Canvas and UI controls to build the game and its

various states. To create the starter project, follow these steps:

Figure 4-11.  The client sends a command and the server broadcasts
the updated board, game state, and current player to each client

Chapter 4 TCP Connections

https://www.apress.com/us/book/9781484273579

143

	 1.	 Create a new 2D project in Unity called Tic-Tac-Toe.

	 2.	 Download the tictactoe-starter.unitypackage

file from the book’s GitHub repo.

	 3.	 Double-click the package to install it into the open

project.

You should now have a scene called StartHere and the list of assets, as

shown in Figure 4-12.

Figure 4-12.  The project hierarchy after importing the tictactoe-
starter.unitypackage

Chapter 4 TCP Connections

144

�The Game Architecture
The game uses the Canvas/UI MonoBehaviours provided by Unity to create

a series of panels that are nested under the TicTacToeUI game object:

•	 Title – A panel with the Start Server and Join buttons

•	 WaitForOpponent – A panel that is displayed when the

server is waiting for an opponent to join

•	 WaitForServer – A panel that is displayed when a client

is connecting to a server

•	 Error – A panel used to display an error message like

“server not found” to the player

•	 Play – The panel that displays the tic-tac-toe board and

allows the players to interact with each other

What is currently missing are the networking portions of the game,

something you’ll need! You also need some way to glue the UI to the

networking.

�The Client

The tic-tac-toe game has been built using the client-server model.

Figure 4-13 shows some of the classes used on the client side of the game

and how they communicate internally and with the server.

Chapter 4 TCP Connections

145

The TicTacToeClientBehaviour provides the glue code between the

UI—the play grid and the buttons—and the network communications.

Even though the client handles events, it does not directly respond to

them and instead waits for confirmation of the action from the server. This

ensures the integrity of the game state.

Each time the player clicks a button in the UI, it is translated into

an event. The event handler on TicTacToeClientBehaviour calls a

method on the TicTacToeClient, which in turn sends a message to the

server. When messages are received from the server, they are placed

on a queue and processed one at a time in the Update() method of the

TicTacToeClientBehaviour. These messages update the visual state of the

game and the circle is complete.

Note  You should never trust the client! Confirm all actions on the
server to ensure that the game is being played fairly.

Figure 4-13.  The TicTacToeClientBehaviour class and how it
communicates internally with the UI and to and from the server via
the TcpClient

Chapter 4 TCP Connections

146

The Client Events

The TicTacToeClientBehaviour subscribes to three events exposed by the

BoardController class:

•	 CellClicked – Fired when the player clicks a cell in the

tic-tac-toe grid

•	 PlayAgainClicked – Fired when the player clicks the

Play Again button

•	 ReturnToTitleClick – Fired when the player clicks the

Return to Title button

In each case, the handlers call methods on the TicTacToeClient that

will send a message to the server. No UI update is performed in these event

handlers.

To connect to the server, a new game object will be created and the

TicTacToeClientBehaviour component will be attached to it.

Note T he entire application will use standard .Net events to
decouple the classes. These will be used on the networking side to
inform subscribers when a message has been received.

The TicTacToeClient

The TicTacToeClient provides several services for the

TicTacToeClientBehaviour:

•	 Handles sending messages to the server. Methods are

exposed to TicTacToeClientBehaviour to send those

messages without it having to explicitly know how to

format them.

Chapter 4 TCP Connections

147

•	 Handles incoming messages from the server.

•	 Provides event handlers that the

TicTacToeClientBehaviour can subscribe to for

starting the game, toggling the active player, showing

the winner screen, and quitting to return to the title.

The TicTacToeClient contains an instance of the NetworkClient

class. This will provide the underlying network access.

NetworkClient

The NetworkClient class wraps the .Net TcpClient class and a buffer into

a single class. This makes the reception and transmission of data to and

from a client easier. Internally, there is a MessageBuffer class that will be

used to store large messages received from the server. Once a complete

message has been received, anyone subscribing to the MessageReceived

event will be notified.

It should be noted that any messages received will be on a thread that

is not the main thread. There must be a way to send the message from the

remote machine to the main thread. In the game, this will be implemented

using a very simple message queue.

The Message Queue

The central part of the TicTacToeClientBehaviour is the message queue.

Messages received using the asynchronous method of BeginRead() of the

TcpClient are not received on the main thread. In order to get them onto

the main thread, we will employ a simple message queue that uses actions.

Listing 4-32 shows the implementation of a simple message queue using

the Queue<T> class and demonstrates placing items on the queue and

taking them off and executing them one at a time.

Chapter 4 TCP Connections

148

Listing 4-32.  Implementing a Simple Message Queue

var _actions = new Queue<Action>();

// Put an action on the queue

Action action = () => print("Hello there!");

lock (_actions)

{

 _actions.Enqueue(action);

}

// Cycle through the actions on the queue,

// executing one at a time

lock(_actions)

{

 while (_actions.Count > 0)

 {

 _actions.Dequeue().Invoke();

 }

}

Each time there is an interaction with the queue, you must lock it. This

prevents other threads from accessing the message queue while an action

is enqueued/dequeued.

Note  Use the lock() pattern to ensure that other threads cannot
access the data at the same time.

�The Server

TicTacToeServer is based on the NetworkServer<T> class that contains a

TcpListener instance. The TicTacToeServer class handles the network

traffic and the TicTacToeGameServer class acts as a bridge between the

Chapter 4 TCP Connections

149

network traffic (in and out bound) and the game logic. Figure 4-14 shows

how the server classes pass messages internally and externally to the

connected clients.

The AppController class extends MonoBehaviour and has links to the

PanelController; it handles the user interaction with the title screen,

which includes event handlers for the Join and Start Server buttons.

The NetworkServer<T> class contains a TcpListener instance and

maintains a list of clients using the NetworkClientCollection class.

Each time a client connects, an event is fired. The class can also limit

the maximum number of clients that can connect. You will be using this

feature in this application because only two people can play tic-tac-toe.

The class is generic because, when a message is received, it is deserialized

into the correct class/struct instance.

Figure 4-14.  The relationship between the classes used in the server
part of the game

Chapter 4 TCP Connections

150

�Serialization

To minimize the errors in serialization/deserialization, a factory class

called GameSerialization will be created. This will contain functions to

generate the messages in the correct format. It will also provide a way to

deserialize a byte array into a message.

The message class is GameMessage and contains three fields:

•	 messageType – An enumeration that represents the type

of message being passed

•	 playerId (int) – The currently active player

•	 boardState (int[]) – An array of integer values that

represents the current state of the board. This means

that there will always be nine values in this array; one

for each grid square

The boardState will contain one of three possible values for each grid

square:

•	 0 – The grid square is unoccupied

•	 1 – An X is placed in the grid square

•	 2 – An O is placed in the grid square

Messages passed from server to client will always contain the current

state of the game.

Messages passed from client to server will provide the server with the

player ID (which could be validated on the server side); the boardState

value contains an array with a single integer representing the move if the

messageType is MessageType.ClientMakeMove. All other messages from

the client to the server will have an array with a single 0 (zero) in them,

because those commands do not need extra information.

Chapter 4 TCP Connections

151

The payload format uses a simple colon-separated list in this format:

messageType:playerId:gridState

Where messageType is the type of message being transmitted,

playerId is the ID of the player (1 – first player, 2 – second player) who

has control of the board, and the gridState is a comma-separated list

of values representing the state of the board. For example, the following

message will let the client know whose turn it is while indicating the state

of the board. The top left of the board is occupied with an X (player 1):

Size: 38

ServerTogglePlayer:2:1,0,0,0,0,0,0,0,0

Notice that the entire message includes the header. The header will be

stripped out and the payload will be read separately by the deserializer.

�NetLib Classes
To abstract the networking code from the main logic of the Tic-Tac-Toe

game, you will create some wrapper classes around TcpClient and

TcpListener. These classes will provide you with ways to handle passing

messages across the network as well as maintain client connections.

Follow these instructions to create the script files for the new NetLib

classes:

	 1.	 Create a new C# script file in the Scripts/NetLib

folder called MessageBuffer.

	 2.	 Create a new C# script file in the Scripts/NetLib

folder called NetworkClient.

	 3.	 Create a new C# script file in the Scripts/NetLib

folder called NetworkClientConnection.

Chapter 4 TCP Connections

152

	 4.	 Create a new C# script file in the Scripts/NetLib

folder called NetworkServer.

	 5.	 Create a new folder called Events inside the NetLib

folder.

	 6.	 Create a new C# script file in the Scripts/NetLib/

Events folder called MessageReceivedEventArgs.

	 7.	 Create a new C# script file in the Scripts/NetLib/

Events folder called NetworkClientEventArgs.

	 8.	 Create a new C# script file in the Scripts/NetLib/

Events folder called PayloadEventArgs.

With all those files created, you should have a hierarchy inside your

NetLib folder that looks like Figure 4-15.

With all those files created, it’s time to start adding the code. The

classes have been separated into logical breaks to give a little insight to

their purpose and how they can be used outside of this project.

Figure 4-15.  The NetLib script hierarchy after completing the tasks

Chapter 4 TCP Connections

153

�MessageBuffer Class

The MessageBuffer class is located in the NetLib folder. It is used to

store incoming large messages from a remote device. On completion,

the IsComplete property is set. Listing 4-33 shows the contents of the

MessageBuffer class. Open the MessageBuffer.cs file and replace the

contents with the code in Listing 4-33.

Listing 4-33.  The MessageBuffer Class

using System;

public class MessageBuffer

{

 private int _currentOffset;

 public byte[] Buffer { get; }

 public bool IsComplete => _currentOffset == Buffer.Length;

 public int Length => Buffer.Length;

 public MessageBuffer(int size)

 {

 Buffer = new byte[size];

 }

 public void Append(byte[] source, int length = -1)

 {

 var len = length > 0 ? length : source.Length;

 Array.Copy(source, 0, Buffer, _currentOffset, len);

 _currentOffset += len;

 }

}

Chapter 4 TCP Connections

154

When a message has been received, subscribers should be notified.

The MessageReceivedEventArgs will be used with an event handler

to provide subscribers with the needed information. Listing 4-34

contains the contents of the MessageReceivedEventArgs class. Open the

NetLib/Events/MessageReceivedEventArgs script file and replace the

contents with the code in Listing 4-34.

Listing 4-34.  The MessageReceivedEventArgs Class

using System;

public class MessageReceivedEventArgs : EventArgs

{

 public byte[] Data { get; }

 public MessageReceivedEventArgs(byte[] data, int length)

 {

 Data = new byte[length];

 Array.Copy(data, Data, length);

 }

}

�NetworkClient Class

The NetworkClient class is used by the client (unsurprisingly!) and the

server to allow for two-way communication between the client and server.

It contains an instance of TcpClient to provide the networking and a

MessageBuffer to hold larger messages.

It is based on a simple text-based protocol that has a header describing

the size of the payload and the payload itself. The header and payload are

separated by a single \n (newline) character.

The format of the header is as follows:

Size: size-of-header

Chapter 4 TCP Connections

155

Where size-of-header is an integer that is the length of the payload in

bytes. It is assumed that the messages passed in are in the correct format.

For simplicity, there is no error checking, which can be added later.

When a message has been received in full, the MessageReceived event

is triggered. This uses the MessageReceivedEventArgs class that you

created earlier.

Listing 4-35 contains the full listing for NetworkClient. Open the

NetworkClient script file in the NetLib folder and replace it with the

following listing.

Listing 4-35.  The NetworkClient Class

using System;

using System.Net.Sockets;

using System.Text;

using System.Text.RegularExpressions;

public class NetworkClient

{

 public const int DefaultBufferSize = 4096;

 private readonly byte[] _buffer;

 private TcpClient _client;

 private MessageBuffer _store;

 private bool ClientCanRead

 {

 get

 {

 return _client != null &&

 _client.Connected &&

 _client.GetStream().CanRead;

 }

 }

Chapter 4 TCP Connections

156

 private bool ClientCanWrite

 {

 get

 {

 return _client != null &&

 _client.Connected &&

 _client.GetStream().CanWrite;

 }

 }

 �public event EventHandler<MessageReceivedEventArgs>

MessageReceived;

 public NetworkClient(TcpClient client,

 int bufferSize = DefaultBufferSize)

 {

 _client = client;

 _buffer = new byte[bufferSize];

 _client.GetStream().BeginRead(_buffer,

 0,

 _buffer.Length,

 Remote_ReceivedMessage,

 null);

 }

 public NetworkClient(int bufferSize = DefaultBufferSize)

 {

 _buffer = new byte[bufferSize];

 _client = new TcpClient(AddressFamily.InterNetwork);

Chapter 4 TCP Connections

157

 _client.GetStream().BeginRead(_buffer,

 0,

 _buffer.Length,

 Remote_ReceivedMessage,

 null);

 }

 public void Close()

 {

 _client.Close();

 _client.Dispose();

 _client = null;

 }

 public void Send(byte[] message)

 {

 if (!ClientCanWrite)

 {

 return;

 }

 var header = $"Size: {message.Length}\n";

 var headerBytes = Encoding.ASCII.GetBytes(header);

 �var fullMessage = new byte[message.Length + header.

Length];

 �Array.Copy(headerBytes, fullMessage, headerBytes.

Length);

 �Array.Copy(message, 0, fullMessage, headerBytes.Length,

message.Length);

Chapter 4 TCP Connections

158

 _client.GetStream().BeginWrite(fullMessage,

 0,

 fullMessage.Length,

 Write_Callback,

 null);

 }

 private void Remote_ReceivedMessage(IAsyncResult ar)

 {

 if (ar.IsCompleted && ClientCanRead)

 {

 var bytesReceived = _client.GetStream()

 .EndRead(ar);

 if (bytesReceived > 0)

 {

 if (_store != null)

 {

 AppendToStore(bytesReceived);

 }

 else

 {

 ReadBuffer(bytesReceived);

 }

 Array.Clear(_buffer, 0, _buffer.Length);

 _client.GetStream()

 .BeginRead(_buffer,

 0,

 _buffer.Length,

 Remote_ReceivedMessage,

 null);

 }

 }

 }

Chapter 4 TCP Connections

159

 private void ReadBuffer(int bytesReceived)

 {

 var text = Encoding.ASCII

 .GetString(_buffer,

 0,

 bytesReceived);

 var sizeMatch = new Regex("^[S|s]ize:\\s");

 var match = sizeMatch.Match(text);

 if (match.Success)

 {

 var startOfLength = match.Index + match.Length;

 var endOfLine = text.IndexOf('\n', startOfLength);

 var lengthStr = text.Substring(startOfLength,

 endOfLine - startOfLength);

 var length = int.Parse(lengthStr);

 var payloadSoFar = text.Substring(endOfLine + 1,

 text.Length –

 (endOfLine + 1));

 var payload = Encoding.ASCII

 .GetBytes(payloadSoFar);

 if (payloadSoFar.Length == length)

 {

 var args = new

 MessageReceivedEventArgs(payload,

 payload.Length);

 MessageReceived?.Invoke(this, args);

 }

Chapter 4 TCP Connections

160

 else

 {

 _store = new MessageBuffer(length);

 _store.Append(payload);

 }

 }

 }

 private void AppendToStore(int bytesReceived)

 {

 _store.Append(_buffer, bytesReceived);

 if (_store.IsComplete)

 {

 �var args = new MessageReceivedEventArgs(_store.

Buffer, _store.Length);

 MessageReceived?.Invoke(this, args);

 _store = null;

 }

 }

 private void Write_Callback(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 _client.GetStream().EndWrite(ar);

 }

 }

}

Note  Don’t forget to save the files as you type!

Chapter 4 TCP Connections

161

On the server, the clients are stored inside a NetworkClientCollection

class. This class keeps the clients together and provides a single

MessageReceived event handler that subscribers can hook into. The

subscribers also receive the NetworkClient instance that sent the message.

Open NetworkClientCollection in the NetLib folder and replace it

with the code in Listing 4-36.

Listing 4-36.  The NetworkClientCollection Class

using System;

using System.Collections;

using System.Collections.Generic;

public class NetworkClientCollection :

IEnumerable<NetworkClient>

{

 private readonly List<NetworkClient> _clients =

 new List<NetworkClient>();

 public int Count => _clients.Count;

 public event EventHandler<MessageReceivedEventArgs>

 MessageReceived;

 public void Add(NetworkClient client)

 {

 _clients.Add(client);

 client.MessageReceived += Client_MessageReceived;

 }

 public IEnumerator<NetworkClient> GetEnumerator()

 {

 return _clients.GetEnumerator();

 }

Chapter 4 TCP Connections

162

 public void DisconnectAll()

 {

 foreach (var client in _clients)

 {

 client.Close();

 }

 _clients.Clear();

 }

 private void Client_MessageReceived(object sender,

 MessageReceivedEventArgs e)

 {

 MessageReceived?.Invoke(sender, e);

 }

 IEnumerator IEnumerable.GetEnumerator()

 {

 return GetEnumerator();

 }

}

�NetworkServer

The NetworkServer class is located in the NetLib folder; it handles the

incoming connections and maintains a list of connected clients. The

maximum number of clients allowed to connect can be set at runtime. The

NetworkServer is a wrapper around the TcpListener class. It provides four

events for subscribers:

•	 ClientConnected – Subscribers are informed each time

a client connects.

•	 ConnectionOverflow – Subscribers are informed when

a client tries to connect but the maximum number of

connections has been exceeded.

Chapter 4 TCP Connections

163

•	 PayloadReceived – Subscribers are informed when a

payload has been received from one of the clients.

•	 ClientListFull – Subscribers are informed when the

maximum number of clients have connected. This fires

when the current client connects and the number of

connected clients equals the maximum allowed.

The NetworkServer class is an abstract class. Each game

needs to provide its own subclass and implement a single method,

CreatePayload(). Optionally, subclasses can override the

OnClientConnected() method.

Before you create the NetworkServer class, you need to create the

two remaining event argument classes—NetworkClientEventArgs and

PayloadEventArgs.

Open the NetworkClientEventArgs script file in NetLib/Events folder.

Replace the existing code with the contents in Listing 4-37. Save the file.

Listing 4-37.  The NetworkClientEventArgs Class

using System;

public class NetworkClientEventArgs : EventArgs

{

 public NetworkClient { get; }

 public NetworkClientEventArgs(NetworkClient networkClient)

 {

 NetworkClient = networkClient;

 }

}

Now open the PayloadEventArgs script file in the NetLib/Events

folder. Replace the existing code with the contents of Listing 4-38. Save

the file.

Chapter 4 TCP Connections

164

Listing 4-38.  The PayloadEventArgs Class

public class PayloadEventArgs<T>

{

 public T Payload { get; }

 public PayloadEventArgs(T payload)

 {

 Payload = payload;

 }

}

With those two classes complete, you can now finish the

NetworkServer class. It is a generic class that takes a type that represents

the payload. For this game, that will be the GameMessage class. As you will

see later, the TicTacToeServer extends NetworkServer and provides this

generic parameter.

Open the NetworkServer script file located in the NetLib folder.

Replace the contents of this file with the code in Listing 4-39 and save the

file.

Listing 4-39.  The NetworkServer Abstract Class

using System;

using System.Net;

using System.Net.Sockets;

public abstract class NetworkServer<T>

{

 private readonly NetworkClientCollection _clients =

 new NetworkClientCollection();

 private readonly TcpListener _listener;

 private readonly int _maxConnections;

Chapter 4 TCP Connections

165

 �public event EventHandler<NetworkClientEventArgs>

ClientConnected;

 �public event EventHandler<NetworkClientEventArgs>

ConnectionOverflow;

 �public event EventHandler<PayloadEventArgs<T>>

PayloadReceived;

 public event EventHandler ClientListFull;

 public NetworkServer(int port, int maxConnections = 16)

 {

 _listener = new TcpListener(IPAddress.Any, port);

 _maxConnections = maxConnections;

 _clients.MessageReceived += Client_MessageReceived;

 }

 public void Start()

 {

 _listener.Start();

 �_listener.BeginAcceptTcpClient(Listener_

ClientConnected, null);

 }

 public void Stop()

 {

 _clients.DisconnectAll();

 _listener.Stop();

 }

 private void Listener_ClientConnected(IAsyncResult ar)

 {

 if (ar.IsCompleted)

 {

 var client = _listener.EndAcceptTcpClient(ar);

 var networkClient = new NetworkClient(client);

Chapter 4 TCP Connections

166

 if (_clients.Count == _maxConnections)

 {

 ConnectionOverflow?.Invoke(this,

 new NetworkClientEventArgs(networkClient));

 }

 else

 {

 _clients.Add(networkClient);

 OnClientConnected(networkClient);

 if (_clients.Count == _maxConnections)

 {

 ClientListFull?.Invoke(this,

 EventArgs.Empty);

 }

 else

 {

 �_listener.BeginAcceptTcpClient(Listener_

ClientConnected, null);

 }

 }

 }

 }

 private void Client_MessageReceived(object sender,

 MessageReceivedEventArgs e)

 {

 var payload = CreatePayload(e.Data);

 PayloadReceived?.Invoke(sender,

 new PayloadEventArgs<T>(payload));

 }

Chapter 4 TCP Connections

167

 protected abstract T CreatePayload(byte[] message);

 protected void Broadcast(byte[] message)

 {

 foreach (var c in _clients)

 {

 c.Send(message);

 }

 }

 protected virtual void OnClientConnected(NetworkClient

 networkClient)

 {

 ClientConnected?.Invoke(this,

 new NetworkClientEventArgs(networkClient));

 }

}

�Client and Server Classes
The classes you just added to NetLib are generic enough that you can use

them pretty much in any project you want. They provide a lightweight

TCP-based protocol (small header and payload) that is easy to use. But in

order to get the functionality that you require for this game, you have to

build game-specific classes that sit on top.

Follow these instructions to build the classes that you will need. Once

the script files have been created, you can get started populating them.

	 1.	 Create a new folder in the Scripts folder called

TicTacToeNetworking.

	 2.	 Create a new folder in Scripts/

TicTacToeNetworking called Events.

Chapter 4 TCP Connections

168

	 3.	 Create a new C# script file called GameMessageEventArgs

in Scripts/TicTacToeNetworking/Events.

	 4.	 Create a new C# script file in Scripts/

TicTacToeNetworking called GameMessage.

	 5.	 Create a new C# script file in Scripts/

TicTacToeNetworking called GameSerialization.

	 6.	 Create a new C# script file in Scripts/

TicTacToeNetworking called MessageType.

	 7.	 Create a new C# script file in Scripts/

TicTacToeNetworking called TicTacToeClient.

	 8.	 Create a new C# script file in Scripts/

TicTacToeNetworking called

TicTacToeClientBehaviour.

	 9.	 Create a new C# script file in Scripts/

TicTacToeNetworking called TicTacToeGameServer.

	 10.	 Create a new C# script file in Scripts/

TicTacToeNetworking called TicTacToeServer.

	 11.	 Create a new C# script file in Scripts/UI called

AppController.

�Messages

The game messages are sent between the classes using standard .Net event

handlers. Each GameMessage consists of three elements:

•	 The message type, which is an enum value from

MessageType

•	 The player ID

•	 The state of the tic-tac-toe grid as an array of integers

Chapter 4 TCP Connections

169

Open the MessageType script file. Replace the contents of this file with

Listing 4-40 and save the file.

Listing 4-40.  The MessageType Enumeration

public enum MessageType

{

 ServerStartGame,

 ServerTogglePlayer,

 ServerShowPodium,

 ClientMakeMove,

 ClientPlayAgain,

 ClientQuit

}

Open the GameMessage script file. Replace the contents of the

GameMessage script file with Listing 4-41 and save the file.

Listing 4-41.  GameMessage Struct

public struct GameMessage

{

 public MessageType;

 public int playerId;

 public int[] boardState;

}

The GameMessage instances are passed around using an

EventHandler that emits a GameMessageEventArgs instance. Open the

GameMessageEventArgs script file. Replace the contents of the file with

Listing 4-42.

Chapter 4 TCP Connections

170

Listing 4-42.  GameMessageEventArgs

using System;

public class GameMessageEventArgs : EventArgs

{

 public GameMessage Message { get; }

 public GameMessageEventArgs(GameMessage message)

 {

 Message = message;

 }

}

To make it easier to serialize game messages to a byte array and

from a byte array to a GameMessage instance, a factory class called

GameSerialization needs to be created. Open the GameSerialization

script file and replace the contents of that file with Listing 4-43. Don’t

forget to save what you have done so far.

Listing 4-43.  The GameSerialization Factory Class Helps Serialize

and Deserialize GameMessage Instances

using System;

using System.Linq;

using System.Text;

public static class GameSerialization

{

 public static byte[] CreateMove(int playerId,

 int cellIndex)

 {

 return CreateMessage(playerId,

 MessageType.ClientMakeMove,

 new int[1] { cellIndex });

 }

Chapter 4 TCP Connections

171

 public static byte[] CreatePlayAgain()

 {

 return CreateMessage(0, MessageType.ClientPlayAgain);

 }

 public static byte[] CreateClientQuit()

 {

 return CreateMessage(0, MessageType.ClientQuit);

 }

 public static byte[] CreatePodium(int currentPlayer,

 int[] boardState)

 {

 return CreateMessage(currentPlayer,

 MessageType.ServerShowPodium,

 boardState);

 }

 public static byte[] CreateMessage(int playerId,

 MessageType type,

 int[] boardState = null)

 {

 var state = boardState == null ||

 boardState.Length == 0 ? new int[1] { 0 }

 : boardState;

 var message = new GameMessage

 {

 boardState = state,

 messageType = type,

 playerId = playerId

 };

 return ToBytes(message);

 }

Chapter 4 TCP Connections

172

 public static GameMessage FromBytes(byte[] message)

 {

 var str = Encoding.ASCII.GetString(message);

 var split = str.Split(":".ToCharArray());

 �var messageType = (MessageType)Enum.

Parse(typeof(MessageType),

 split[0]);

 var playerId = int.Parse(split[1]);

 var payload = split[2].Split(',').Select(int.Parse);

 return new GameMessage

 {

 boardState = payload.ToArray(),

 messageType = messageType,

 playerId = playerId

 };

 }

 public static byte[] ToBytes(GameMessage message)

 {

 var str = $"{message.messageType}:{message.

playerId}:{string.Join(",", message.boardState)}";

 return Encoding.ASCII.GetBytes(str);

 }

}

�Client Classes

There are two client classes used by the game—TicTacToeClient and

TicTacToClientBehaviour.

TicTacToeClient is a wrapper around NetworkClient and exposes a

number of events that subscribers can hook into. These events are fired

when a message is received from the server:

Chapter 4 TCP Connections

173

•	 StartGame – The server has indicated that the game is

starting

•	 TogglePlayer – The active player has changed

•	 ShowPodium – Show the winners podium

•	 ReturnToTitle – The game should return to the title

screen

The TicTacToeClientBehaviour is created when the player that is

hosting the game starts the server or when a remote player joins a server. It

uses the methods on the TicTacToeClient to send messages to the server.

Open the TicTacToeClient script file and replace the contents with

the code shown in Listing 4-44.

Listing 4-44.  The TicTacToeClient Script File

using System;

public class TicTacToeClient

{

 private readonly NetworkClient _client;

 public event EventHandler<GameMessageEventArgs> StartGame;

 public event EventHandler<GameMessageEventArgs> TogglePlayer;

 public event EventHandler<GameMessageEventArgs> ShowPodium;

 public event EventHandler ReturnToTitle;

 public TicTacToeClient(NetworkClient client)

 {

 _client = client;

 _client.MessageReceived += MessageReceived;

 }

Chapter 4 TCP Connections

174

 public void PlayAgain()

 {

 _client.Send(GameSerialization.CreatePlayAgain());

 }

 public void ReturnToLobby()

 {

 _client.Send(GameSerialization.CreateClientQuit());

 }

 public void MakeMove(int index)

 {

 _client.Send(GameSerialization.CreateMove(0, index));

 }

 public void Cleanup()

 {

 _client.MessageReceived -= MessageReceived;

 }

 �private void MessageReceived(object sender,

MessageReceivedEventArgs e)

 {

 var data = new byte[e.Data.Length];

 Array.Copy(e.Data, data, e.Data.Length);

 var message = GameSerialization.FromBytes(data);

 switch (message.messageType)

 {

 case MessageType.ServerStartGame:

 �StartGame?.Invoke(this, new GameMessageEvent

Args(message));

 break;

Chapter 4 TCP Connections

175

 case MessageType.ServerTogglePlayer:

 �TogglePlayer?.Invoke(this, new GameMessageEvent

Args(message));

 break;

 case MessageType.ServerShowPodium:

 �ShowPodium?.Invoke(this, new GameMessageEvent

Args(message));

 break;

 case MessageType.ClientQuit:

 ReturnToTitle?.Invoke(this, EventArgs.Empty);

 break;

 }

 }

}

Open the TicTacToeClientBehaviour script file and replace the

contents with the code shown in Listing 4-45. This class will be instantiated

in the AppController class.

Listing 4-45.  TicTacToeClientBehaviour Class

using System;

using System.Collections.Generic;

using System.Net.Sockets;

using UnityEngine;

public class TicTacToeClientBehaviour : MonoBehaviour

{

 private int _playerID;

 private NetworkClient _networkClient;

 private TicTacToeClient _client;

Chapter 4 TCP Connections

176

 public AppController _app;

 public BoardController _board;

 private Queue<Action> _actions;

 void Awake()

 {

 _actions = new Queue<Action>();

 }

 void Update()

 {

 lock(_actions)

 {

 while (_actions.Count > 0)

 {

 _actions.Dequeue().Invoke();

 }

 }

 }

 private void OnDestroy()

 {

 lock (_actions)

 {

 _actions.Clear();

 }

 _client.ShowPodium -= Client_ShowPodium;

 _client.StartGame -= Client_StartGame;

 _client.TogglePlayer -= Client_TogglePlayer;

 _client.ReturnToTitle -= Client_ReturnToTitle;

 _board.CellClicked -= BoardCell_Clicked;

Chapter 4 TCP Connections

177

 _board.PlayAgainClicked -= PlayAgain_Clicked;

 _board.ReturnToTitleClicked -= ReturnToTitle_Clicked;

 _client.Cleanup();

 }

 public void Connect(TcpClient tcpClient)

 {

 _networkClient = new NetworkClient(tcpClient);

 _client = new TicTacToeClient(_networkClient);

 _client.ShowPodium += Client_ShowPodium;

 _client.StartGame += Client_StartGame;

 _client.TogglePlayer += Client_TogglePlayer;

 _client.ReturnToTitle += Client_ReturnToTitle;

 _board.CellClicked += BoardCell_Clicked;

 _board.PlayAgainClicked += PlayAgain_Clicked;

 _board.ReturnToTitleClicked += ReturnToTitle_Clicked;

 }

 private void Client_ReturnToTitle(object sender, EventArgs e)

 {

 Action action = () => _app.StopServer();

 lock (_actions)

 {

 _actions.Enqueue(action);

 }

 }

 �private void ReturnToTitle_Clicked(object sender,

EventArgs e)

 {

 _client.ReturnToLobby();

 }

Chapter 4 TCP Connections

178

 private void PlayAgain_Clicked(object sender, EventArgs e)

 {

 _client.PlayAgain();

 }

 �private void BoardCell_Clicked(object sender,

CellClickedEventArgs e)

 {

 _client.MakeMove(e.CellIndex);

 }

 �private void Client_TogglePlayer(object sender,

GameMessageEventArgs e)

 {

 lock (_actions)

 {

 _actions.Enqueue(() =>

 {

 �_board.ToggleCellButtons(_playerID ==

e.Message.playerId);

 _board.UpdateBoard(e.Message.boardState);

 });

 }

 }

 �private void Client_StartGame(object sender,

GameMessageEventArgs e)

 {

 Action action = () =>

 {

 �_playerID = e.Message.playerId < 0 ? 2 : e.Message.

playerId;

 _board.ResetBoard(e.Message.boardState);

Chapter 4 TCP Connections

179

 _board.ToggleCellButtons(_playerID == 1);

 _app._panels.ShowPanel(PanelType.Play);

 };

 lock (_actions)

 {

 _actions.Enqueue(action);

 }

 }

 �private void Client_ShowPodium(object sender,

GameMessageEventArgs e)

 {

 Action action = () =>

 {

 _board.UpdateBoard(e.Message.boardState);

 _board.ToggleCellButtons(false);

 _board.ToggleActionButtons(true);

 _board.BoardWinner(e.Message.playerId);

 };

 lock (_actions)

 {

 _actions.Enqueue(action);

 }

 }

}

Note  Because TicTacToeClientBehaviour provides the link
between the network messages and UI, a message queue has to be
used to process the messages on the main thread.

Chapter 4 TCP Connections

180

�Server Classes

There are two server classes—TicTacToeServer is the networking

component and TicTacToeGameServer is the part that interfaces

the networking code with the tic-tac-toe game engine. The

TicTacToeGameEngine class does not need to know that it is running a

networked game of tic-tac-toe. The TicTacToeGameServer provides some

code to bridge the actions coming from the client and the game.

The TicTacToeServer extends NetworkServer and provides it with

the generic argument—GameMessage, which is the struct you declared

earlier. Open the TicTacToeServer script file and replace it with the code

in Listing 4-46.

Listing 4-46.  TicTacToeServer Class

using System.Collections.Generic;

public class TicTacToeServer : NetworkServer<GameMessage>

{

 �private readonly List<NetworkClient> _players = new

List<NetworkClient>();

 public TicTacToeServer(int port)

 : base(port, 2)

 {

 }

 public void StartGame()

 {

 �SetCurrentPlayer(1, new int[9], MessageType.

ServerStartGame);

 }

Chapter 4 TCP Connections

181

 public void QuitToTitle()

 {

 �_players.ForEach((p) => p.Send(GameSerialization.

CreateClientQuit()));

 }

 �public void SetCurrentPlayer(int currentPlayer,

int[] boardState, MessageType type = MessageType.

ServerTogglePlayer)

 {

 for (int i = 0; i < _players.Count; i++)

 {

 �var player = (i + 1 == currentPlayer) ?

currentPlayer : -1;

 var message = GameSerialization

 �.CreateMessage(player, type,

boardState);

 _players[i].Send(message);

 }

 }

 �public bool IsCurrentPlayer(NetworkClient client, int

currentPlayer)

 {

 return (_players.IndexOf(client) + 1) == currentPlayer;

 }

 public void ShowPodium(int currentPlayer, int[] cells)

 {

 �Broadcast(GameSerialization.CreatePodium(currentPlayer,

cells));

 }

Chapter 4 TCP Connections

182

 protected override GameMessage CreatePayload(byte[] message)

 {

 return GameSerialization.FromBytes(message);

 }

 �protected override void OnClientConnected(NetworkClient

networkClient)

 {

 base.OnClientConnected(networkClient);

 _players.Add(networkClient);

 }

}

As you have noticed, these are methods that wrap around network

calls. The TicTacToeGameServer uses these methods to interact with the

clients. Open the TicTacToeGameServer script file and replace the contents

with Listing 4-47. Save the file.

Listing 4-47.  TicTacToeGameServer Class

using System;

public class TicTacToeGameServer

{

 private readonly TicTacToeServer _server;

 private readonly TicTacToeGameEngine _engine;

 public TicTacToeGameServer(TicTacToeServer server)

 {

 _server = server;

 _server.PayloadReceived += Server_PayloadReceived;

 _server.ClientListFull += StartTheRound;

 _engine = new TicTacToeGameEngine();

 }

Chapter 4 TCP Connections

183

 private void StartTheRound(object sender, EventArgs e)

 {

 _engine.Reset();

 _server.StartGame();

 }

 private void MakeMove(int[] boardState)

 {

 var cellIndex = boardState[0];

 var state = _engine.MakeMove(cellIndex);

 if (state == TicTacToeGameState.Podium)

 {

 _server.ShowPodium(_engine.Winner, _engine.Cells);

 }

 else

 {

 �_server.SetCurrentPlayer(_engine.CurrentPlayer,

_engine.Cells);

 }

 }

 �private void Server_PayloadReceived(object sender,

PayloadEventArgs<GameMessage> e)

 {

 var client = (NetworkClient)sender;

 switch (_engine.State)

 {

 case TicTacToeGameState.Playing:

 �if (_server.IsCurrentPlayer(client, _engine.

CurrentPlayer))

Chapter 4 TCP Connections

184

 {

 �if (e.Payload.messageType == MessageType.

ClientMakeMove)

 {

 MakeMove(e.Payload.boardState);

 }

 }

 break;

 case TicTacToeGameState.Podium:

 �if (e.Payload.messageType == MessageType.

ClientPlayAgain)

 {

 StartTheRound(this, EventArgs.Empty);

 }

 �else if (e.Payload.messageType == MessageType.

ClientQuit)

 {

 _server.QuitToTitle();

 }

 break;

 }

 }

}

�AppController

The last class is the AppController class. The class provides a link between

the UI panels used to create the game’s visuals as well as instantiation of

the server and client. Its main function is to wait for the player to click the

Start Server or Join buttons. This action will set off a series of events that

will start the server and connect a client, or, in the case of Join, will attempt

to join a server.

Chapter 4 TCP Connections

185

Open the AppController script file and replace the contents with

Listing 4-48. Save the file.

Listing 4-48.  AppController Class

using System;

using System.Collections;

using System.Collections.Generic;

using System.Net;

using System.Net.Sockets;

using UnityEngine;

public class AppController : MonoBehaviour

{

 public PanelController _panels;

 private TicTacToeGameServer _gameController;

 private TicTacToeServer _server;

 private List<TicTacToeClientBehaviour> _clients;

 �[Tooltip("The port number the Tic Tac Toe server is

running")]

 public int _port = 9021;

 void Start()

 {

 _clients = new List<TicTacToeClientBehaviour>();

 �_panels.GetPanel<MainTitlePanel>().StartServerClicked +=

StartServer;

 �_panels.GetPanel<MainTitlePanel>().JoinServerClicked +=

JoinServer;

 �_panels.GetPanel<StartServerPanel>().CancelClicked +=

CancelServer;

 }

Chapter 4 TCP Connections

186

 private void OnDestroy()

 {

 �_panels.GetPanel<MainTitlePanel>().StartServerClicked -=

StartServer;

 �_panels.GetPanel<MainTitlePanel>().JoinServerClicked -=

JoinServer;

 }

 private void ShowError(string error)

 {

 _panels.GetPanel<ErrorPanel>()._text.text = error;

 StartCoroutine(ShowErrorPanel());

 }

 private void JoinServer(object sender, EventArgs e)

 {

 CreateClient();

 }

 private void CancelServer(object sender, EventArgs e)

 {

 StopServer();

 }

 private void StartServer(object sender, EventArgs e)

 {

 if (_server == null)

 {

 _server = new TicTacToeServer(_port);

 _gameController = new TicTacToeGameServer(_server);

 _server.Start();

 }

Chapter 4 TCP Connections

187

 CreateClient(true);

 _panels.ShowPanel(PanelType.StartServer);

 }

 public void StopServer()

 {

 _server?.Stop();

 _gameController = null;

 _server = null;

 _panels.ShowPanel(PanelType.Title);

 ClearClients();

 }

 private void ClearClients()

 {

 foreach (var c in _clients)

 {

 Destroy(c.gameObject);

 }

 _clients.Clear();

 }

 private void CreateClient(bool local = false)

 {

 var go = new GameObject("Client");

 �var client = go.AddComponent<TicTacToeClientBehaviour>();

 client._app = this;

 client._board = FindObjectOfType<BoardController>();

 var address = IPAddress.Parse("127.0.0.1");

Chapter 4 TCP Connections

188

 if (!local)

 {

 �var userEnteredAddress = _panels.

GetPanel<MainTitlePanel>().ServerAddress;

 address = GetAddress(userEnteredAddress);

 }

 if (address == IPAddress.None)

 {

 ShowError("Invalid IP Address!");

 }

 else

 {

 var tcpClient = new TcpClient();

 tcpClient.Connect(address, _port);

 client.Connect(tcpClient);

 }

 _clients.Add(client);

 }

 public IPAddress GetAddress(string ipAddress)

 {

 try

 {

 var address = IPAddress.Parse(ipAddress);

 return address;

 }

 catch (FormatException)

 {

 return IPAddress.None;

 }

 }

Chapter 4 TCP Connections

189

 private IEnumerator ShowErrorPanel(float duration = 3)

 {

 _panels.ShowPanel(PanelType.Error);

 yield return new WaitForSeconds(duration);

 _panels.ShowPanel(PanelType.Title);

 }

}

The CreateClient() method is called if the player is running the

server locally or if they are connecting remotely. You need to know the

IP address of the server. If you are running the server locally, the default

callback of 127.0.0.1 is used.

Now that you have the code for this class, it should be added to the

scene. Follow these instructions to add AppController to the scene:

	 1.	 In the scene hierarchy, create a new GameObject

called AppController.

	 2.	 Drag and drop the AppController script file to the

AppController game object.

	 3.	 With the AppController object selected, drag

and drop the TicTacToeUI game object into the

AppController’s Panels field in the Inspector.

You should now have the object hierarchy shown in Figure 4-16.

Chapter 4 TCP Connections

190

When selected, the Inspector should look like Figure 4-17 for the

AppController object. Your positional data may be different, but you

should have an AppController script attached to it.

Now that everything has been written, it’s time to play a game of tic-

tac-toe!

Figure 4-17.  The Inspector showing the components attached to the
AppController GameObject

Figure 4-16.  The scene hierarchy after creating the AppController
object

Chapter 4 TCP Connections

191

�Running the Game
In order to debug the game, you will need to have two versions running. To

do this, you will have to build a version of the game and use that to connect

to the one running under the editor.

The first step is to choose the platform to build on. Choose File ➤ Build

Settings to access the Build Settings window shown in Figure 4-18. If the

current scene isn’t in the list, click the Add Open Scenes button.

Figure 4-18.  The Build Settings window

Chapter 4 TCP Connections

192

Select the PC, Mac, and Linux Standalone platform and click the Build

button. You will be prompted to specify a location. The build will then

start.

Run the editor first. This will act as the server for the game. The

application you just built will act as the client. Run the client. You may

have to use Alt+Tab (also known as Cool Switch) to shift focus between the

running game and the Unity Editor.

Figure 4-19 shows the layout of the game being played on a dual

monitor. The left side is the client and the right side is the server running in

the Unity Editor. Once the applications have been placed side by side, it is

easy to see what is happening and play the game.

Notice that it doesn’t take long for the screens to update on a grid click,

even though the updates are happening over a network connection. This

is because the client and the server are both running on the same machine

using the loopback 127.0.0.1 address. Even when playing across the local

area network, you shouldn’t see much if any delay.

Figure 4-19.  The client and server running on the same machine in
side-by-side windows. The client on the left is a standalone executable
and the right shows the server running inside the Unity Editor

Chapter 4 TCP Connections

193

If you run into any problems, there are a couple of troubleshooting

points you can try:

•	 Change the port number of the server. This can

be done by changing the port number field on the

AppController GameObject. The default is 9021.

•	 Ensure that your firewall is not blocking the port you

selected.

•	 Check the classes and ensure that everything is typed

correctly.

There isn’t a quick way to change the port number on the client, but

I leave that as an exercise for you, dear reader! In the program given, you

would need to change the port number and recompile.

�Summary
The .Net framework provides a low-level socket connection class in the

form of Socket. It can be used to establish a connection using a variety of

socket types (datagram and stream, for example) and protocols, including

TCP. It is easier, however, when using TCP, to use the higher-level classes

TcpClient and TcpListener.

Both synchronous (blocking) and asynchronous (non-blocking)

methods are provided to read, write, and wait for connections. It is always

better to use the non-blocking methods. This does mean that, in order to

complete the operation, you must also code a callback. This is a small price

to pay to avoid your game from stuttering or freezing all together.

The TcpClient uses a NetworkStream to read and write data. It

is possible to use a BinaryWriter, for example, to write data and a

BinaryReader to read data from this stream. It is often easier using the

BeginWrite() and BeginRead() methods. These methods allow a state

object to be passed to allow context to be established in the callback.

Chapter 4 TCP Connections

194

For example, when ending a write the state object would be the client

performing the write operation.

Reading or writing large amounts of data might require multiple

operations. This can be done by having a smaller reception buffer and

filling a larger buffer. You will need to include some way in your protocol to

inform the receiver what size of payload you intend to send.

At the end of this chapter, you built on your knowledge to create a

TCP version of Tic-Tac-Toe for two players, utilizing the TcpClient and

TcpListener classes. You used wrappers to abstract the client connections

and the server to make it easier for the game code to interact with the

underlying networking code.

Chapter 4 TCP Connections

195© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_5

CHAPTER 5

Networking Issues
The previous chapters covered multiple concepts related to network

fundamentals. Those fundamentals work great and provide a great deal of

support when working with any network architecture.

Since games are similar to software to a certain extent, those concepts

should work fine with games as well. But things start getting completed

when you consider a zero lag system and authority issues in case of

discrepancies. This chapter covers these networking caveats and their

workarounds.

�Authoritative Servers
To understand the concept of authoritative servers, let’s look at the

traditional communication method of a chat system. Chat apps usually

display messages in order of time stamps. If two people send a message

at the same time, the app takes the message that reached the server first,

making it more like a race condition. This method is good but not scalable.

If the number of messages grows, the app will not be able to sort the

messages, as it might not have enough time differences.

That is the case with most games since they usually work with UDP

data packets and need to be in sync with other players. Whose copy of the

data is valid? This issue becomes even more complicated when it’s a P2P

network.

https://doi.org/10.1007/978-1-4842-7358-6_5#DOI

196

In turn-based games, it is usually much easier to give the server the

final authority. With real-time games, that design is usually a good place

to start, but once you add latency, the movement/actions of the gamers

will feel unresponsive. You can add some sort of “hide delay,” which

allows customers to touch their character or units quickly to solve that

problem, but then you have to deal with reconciliation issues when the

client and game state servers start to differ. Most of the time, that it is

okay, because you can pop or lerp the things the client touched instead

of authorization. But when there is an avatar player, for example, that

solution is not acceptable. You have to start to empower the client in some

of the actions. Now you have to reconcile more games on the server, and

then give yourself the opportunity to “cheat” with a bad client. If you care

more about these reconciliation issues and try to fix them, you’ll usually

have to apply predictive logic to compensate for the issues. This where all

the teleport/dupe/any bug/cheat efforts come from.

You can simply start with a model where all the clients have control

over their own stuff and ignore the cheating problem (which works

in a few cases). But now you are at risk of having a major impact on

the game’s performance if that client goes out, or “falls backwards to

match the simulation.” Effectively, all player games will end up paying

the consequences for the client who is lagging behind or doing poorly,

by waiting for the backlog to catch, or have the game state they control

without syncing.

�Synchronous or Asynchronous
Multiplayer games rely on players interacting with each other, which

generates a lot of data about every player. That data needs to be shared,

depending on the type of game the player is playing.

The game developer must decide how the data will be shared with

other players—whether it will be shared synchronously or asynchronously.

Chapter 5 Networking Issues

197

Synchronous games are the type of games in which players all play at

the same time. To guarantee a good game-playing experience, you must

ensure that all the players’ data is shared in real-time with all the other

players.

A common strategy is to ensure that all players work in the same

game state and agree on the player’s input list (one of the types described

previously). The game simulation game is then played harmoniously on

all machines. This means that the simulation must be precisely aligned or

the games will be out of sync. This is both easier and harder than it might

seem. It’s easy because the game is just code, and code works very well

when it has the same input (even generators with random numbers). It is

difficult in two cases:

•	 When you accidentally use random play without

imitating your game

•	 When you are using a float

The first one is fixed by having strict rules/guarantees about which

RNG (Random Number Generator) game systems are used. The latter is

solved by not using a float. (Floats actually have two problems—they work

very differently based on the planned performance of your project and

they work inconsistently with other different processors.) StarCraft/World

of Warcraft and any game that offers “replay” may use this model. In fact,

having a replay system is a great way to check that your RNGs are synced.

Roleplay games are very good examples of these kinds of games.

Asynchronous games doesn’t require that all the game state data be

shared with every player. One example are turn-based games such as

online pool, online Ludo, or online Carrom. The players don’t play the

game at the same time. More than one player plays the game and the data

of each player is shared with the other players.

Chapter 5 Networking Issues

198

In an asynchronous solution, game management is simply spread to

the other clients over and over again. Clients take that data and add it to

their game state (and normally do some simple tricks until they get the next

update). This is where UDP becomes a viable option, because it infects

the entire game state very quickly. However, discarding a portion of those

updates is not necessary. For games that have a small game empire (such as

Earthquake and World of Warcraft), this is usually a simple solution.

�Planning Multiplayer Games
Games are complex pieces of software and there are a lot of places where

they can go wrong. When you start developing your game, you will usually

follow some software development principles to ensure that the game

works properly. There is usually a design stage whereby you design the

system architecture and services architecture to optimize the development

and performance of the game.

From a software engineering point of view, a multiplayer game needs

to share each and every movement of one player with all the other players

in real-time. This can be a very complicated process. Luckily, you can

focus on a few game-specific parameters while designing a system for your

multiplayer game, such as the following:

•	 Loading data: Every computer will have the same

models and graphics, and just the names and locations

will be transmitted over the Internet. If every player can

customize their own character, you have to move this

data around.

•	 Cheating: Should you worry about this? Can you trust

what each customer says? Otherwise, the server-side

line will look different than your customer’s perspective.

Consider this simple case whereby each of your 10

players has a different movement speed due to the force

Chapter 5 Networking Issues

199

of the electric current. To reduce cheating, you have to

calculate how far each player can go between connection

updates from the server. Otherwise, players can hack

when they are fast and nothing can stop them. If a player

consistently slows down faster than expected or jumps

once, the server will reset to the closest possible location,

as it could be a clock issue or a one-time communication

interruption. However, if a player stays as fast as possible,

it would be wise to take them out of the game. The

more numbers, the more parts of the game mode you

can double-check on the server. The game will be more

consistent and cheating will be more difficult.

•	 Local server: No matter what the game looks like you

will want one player to start the game and use it as a

server. This is a lot easier than trying to manage other

clouds. In the absence of a server, you need to use the

protocol for resolving disputes between two machines

with incompatible gaming consoles.

Once you have planned and thought through your pipeline and the

techniques that you will be using in your multiplier game, you need to look

deeper into the technology and technicalities.

�Game Lag
Anyone developing an application that uses the Internet or that has

networking capabilities must consider two key things that can affect the

performance of the application. If the application relies completely on the

Internet, it might become unusable because of these two issues:

•	 Bandwidth

•	 Latency

Chapter 5 Networking Issues

200

�Bandwidth

Bandwidth is the maximum amount of data that can pass through the

network at a given time. Consider it like lanes on the highway, whereby

only a certain number of vehicles can drive on them at one time.

Bandwidth should not be confused with the speed of the Internet,

although it does affect the speed indirectly. The more available bandwidth

there is, the more data can be downloaded synchronously.

In other words, bandwidth is the volume of data moving at any instant

in time.

Even though bandwidth measures data volume over a network, it does

not speculate about how data is moving from one node of the network

to another. As data travels through the network (via Ethernet, coax, fiber,

or any other connection media), bandwidth turns a blind eye toward the

network speed.

For bandwidth, it can be helpful to imagine a hose connected via

a pipe or a tube to a water tank. This water tank can upload data at an

infinite speed and has an unlimited bandwidth (which is realistically not

possible). Speed at which the water is flowing is the Internet speed and

the volume of water that is coming out of the hose at any given instance is

the bandwidth. If you increase the diameter of hose, the volume of water

coming out will increase, but the speed of water might not be affected.

Data often moves through multiple networks or computers, and the

terminating points of these are usually the personal devices, such as

computer, phone, or laptop. If we backtrack the connections, we will find

that bandwidth is very high for backbone systems of the Internet. For

example, bandwidth available via India’s TIER-I provider is more than

20+Tbps. Because of this, you commonly don’t get slow data if you have

more bandwidth available with your ISP.

Chapter 5 Networking Issues

201

How Bandwidth Works

The more bandwidth there is, the more data can be sent and received at

once. The wider the hose, the more water can pass through. Likewise, the

higher the capacity of the connection or pipeline, the more data can pass

through in a second.

Most of these expenses are paid by the end consumers. The higher the

bandwidth you want for your connection, the higher the charges for that

connection.

Bandwidth vs. Speed

Many people confuse bandwidth and speed. The main part of the

confusion is due to the way they are portrayed in advertisements for high

speed, when they actually mean high bandwidth. In fact, speed means

how fast data can be sent and received and bandwidth means how much

data can be sent and received. Fiber-optic based connections are close to

the speed of light, so the bandwidth will define how your experience is.

Why Bandwidth Is Important

For connectivity in homes and offices, bandwidth requirements vary

based on use. Most homes need less bandwidth compared to businesses,

because the latter may have hundreds of computers connected to the

Internet, all with time-critical information to be carried back and forth.

Low bandwidth in this case would choke the Internet. In conclusion, high

bandwidth is required when multiple devices are connected to the Internet

simultaneously.

Chapter 5 Networking Issues

202

How to Measure Bandwidth

Bandwidth is usually measured in bits per second, not in bytes per second,

which is why there is a difference of symbols (Mbps and MBPS). Bits are

represented with a lowercase b, whereas bytes are represented with an

uppercase B. Most modern systems have very high transmission power

and can send and receive millions of bits per second:

[8 bit = 1 Byte]

Bandwidth come in two types:

•	 Symmetrical

Networks that can upload and download the same

amount of data at a time are known as symmetrical

connections.

These types of connections are very common on wired

connections such as fiber optic connections.

•	 Asymmetrical

Networks that are not configured for uploading and

downloading the same amount of data at a time are

known as asymmetrical connections.

These connections are very common in wireless

connections, such as mobile data and satellite Internet.

These types of connections are used in home-based

connections, as not a lot of people upload huge

amounts of data over the Internet.

Performance Factors

There are a lot of factors that can impact the performance of a network.

A lot of them have to do with the activities and the way the network is

organized. For example, if the devices are connected to a same access

Chapter 5 Networking Issues

203

point without proper rules about how the traffic should be handled by the

access point or router, there may be packet loss and network congestion,

which adversely affect the network’s performance.

Demand on Demand

Demand on demand is a marketing term that can be understood by VOD

(Video on Demand). As the name suggests, video is available whenever

there is a demand for it. It may be via OTT platforms or streaming websites.

Corporate Internet connections are dedicated lines and are sold at

fixed prices. In the case of domestic connections, most people are unaware

of their bandwidth requirements. How much bandwidth do they need?

They often opt for plans according to their budget or based on the sales

representative’s recommendation. In many situations, they buy more than

they need. Even if they need it, they may not be saturating the bandwidth

24*7, allowing the bandwidth to be shared by other people with the same

plans.

According to my research, ISPs opt for a 1:50 ratio. This means that

for every 1Mbps of bandwidth, they will have 50 people on it, as not all of

them will be using it at one instance. Whenever that happens, you get a

slow experience.

�Latency

What is network latency? Is it important? Why does it differ a lot? Figure 5-1

is a graphical representation of latency.

Chapter 5 Networking Issues

204

Latency can simply be considered a delay. Delay and latency are used

interchangeably in literature but not in networking terminology. Latency

in networking is measured as the roundtrip delay, i.e., the time it takes the

data packet to travel from the source to the destination and to come back.

This roundtrip delay is an important measure, as computers use the

TCP/IP protocol, whereby the computer sends data to its destination

and then waits for its acknowledgement before sending new data. Thus,

roundtrip delay can have a significant impact on network performance.

Latency is the time taken by the system/network on the users’ action

over the network for a resulting response. Network delays refer to the

delays directly in the network. I general terms, latency is the time taken by

the website or service to respond over the Internet once the user clicks the

button and the appropriate result is shown to them.

Although data travels at the speed of light, the distance can still affect

the system and cause delays. Latency often comes from the infrastructure

required by the Internet itself, which cannot be completely eliminated.

However, this infrastructure can be reduced and optimized for better

latency.

What Causes Network Latency?

There are many factors that cause delays over networks. One of the main

causes is distance, mostly the distance between the client and server. If a

website is hosted in the United States and the client is in India, the request

has to travel the entire distance and come back.

Figure 5-1.  Latency representation

Chapter 5 Networking Issues

205

For data traveling at the speed of light, this doesn’t seem very far, but it

can result in a few milliseconds of added delay. This affect is compounded,

as most websites have at least five network connections for CSS and

JavaScript files. There is also the processing time for all those files.

Nowadays, web pages incorporate complex structures and a huge

amount of data in terms of graphics and the downloadable content from

multiple sources, so web developers include techniques like lazy load

to deliver the website faster. But if the web page has many graphical

elements, it could still take longer to load.

In addition, the way web pages are designed can also lead to slower

performance. Web pages that incorporate large amounts of heavy content

or downloadable content from third parties can be slow, because browsers

have to download large files to display them. Users close to the datacenter

hosting the website they are accessing may be fine, but if the website has

many high-definition images (for example), there may still be a delay as

the images upload.

All of this can be summarized as follows:

•	 The connection type and types of hardware can

significantly affect network delays.

•	 The distance between the client and server can affect

the delay.

•	 Infrastructure elements such as router switches and

exchange also add delay caused by processing time.

•	 I/O delay will also add up, as it takes milliseconds to

fetch data from storage devices.

Now let’s explore some common problems that can add delay from the

client and server sides.

Chapter 5 Networking Issues

206

Distribution Delay

This is the time required by the data to reach its destination, which is a

function of the speed at which the signal is being transmitted and the

distance it must travel.

Delivery Delay

The time required for a file/web page to collect the data packet from

the transmission. This is dependent on the data packet size and the

transmission speed.

Processing Delay

The time taken by the system to process the data packet for errors and

integrity, and then to forward that packet to the destination.

Line Delay

The delay caused by being in the queue for processing to happen.

A delay between the client and the server is the total sum of all the

calculated delays. Distribution time is defined by the distance and location

of the signal. As you will see, the speed of distribution is often within the

normal range of the speed of light, whereas the delivery delay is caused by

the availability of data at the relay server after processing.

As an example, say that you want to transfer a 10MB file over two

destinations: 1 Mbps and 100 Mbps. It will take 10 seconds to put the entire

file “on the phone” at the 1 Mbps link and only 0.1 seconds at the 100 Mbps

link.

The next step is to check the data packet for its next steps from its

information header. First the router will check the data integrity, then it

will look for the next step, information from header. Most of these things

are done via hardware processing, which is usually slower than the data

Chapter 5 Networking Issues

207

transmission rate. Therefore, the data packets start queuing up in the

incoming buffer. Time spent in that buffer is called a linear delay.

Every data packet will have multiple instances of these types of delays,

depending on the distance between the server and the client and the

number of routers or hops the data packet takes. The more devices or

routers there are, the longer the delay will be and the longer the line delay

will be as well.

Speed of Light and Latency

Nothing can travel faster than light and data packets carried through

light inside optical fibers are traveling at that same speed. This creates a

limitation on the rate that data can be transmitted.

However, light can travel at a speed of 299 million meters/sec or 186K

miles/hour. This speed is in a vacuum; light carrying data packets cannot

travel at these max speeds. The speed at which data can travel in copper

wire is much lower than in optical fiber. Table 5-1 outlines these speeds.

Table 5-1.  Signal Latencies

Route Distance Time (Light in
Vacuum)

Time (Light in
Fiber)

RTT

New York to San

Francisco

4148 KM 14ms 21ms 42ms

New York to London 5585 KM 19ms 28ms 56ms

New York to Sydney 15993 KM 53ms 80ms 160ms

Equatorial

circumference

40075 KM 133.7ms 200ms 400ms

Chapter 5 Networking Issues

208

The speed of light is fast but it is not instant; it still takes more than

150 milliseconds to travel from New York to Sydney and back. The data in

Table 5-1 assumes that packets travel through optical fiber in a large circle

between cities, which is rare. In most cases, the route taken by data packets

has a very large number of hops in between and can take longer to reach

its destination. Each hop will add delay, and the actual roundtrip time will

increase significantly. Considering everything, the roundtrip time can be

200-300ms, which is really good.

Humans are not very sensitive to delays in milliseconds; however,

research suggests that a delay of 100-200ms can be detected by the human

brain. When the 300ms delay mark is crossed, the human brain sees it as

lazy. If it reaches 1000ms, (1 second), the human brain will start questing

the connection speed, the system response, the connectivity, and so on.

The point of all this information is that you should try to make content

available for users as close to them as possible, in order to reduce the delay

and latency and keep it under 100ms. To be successful in reducing the

latency of the network, you must carefully manage it and provide a clear,

less congested path.

Last Mile Latency

You might be astonished to know that most latency is added when the

connection is about to reach your home office, not in underground cables

or when crossing continents. This is referred to as the last mile latency.

To connect to your home, your ISP will use wires with the router at its

exchange and might add several hops along the line to reduce installation

and maintenance costs. Sometime these can add up to hundreds of

milliseconds of latency.

Chapter 5 Networking Issues

209

According to the FCC, global-based broadband service has three

performance ratings:

•	 10-20ms is good

•	 15-40ms is moderate

•	 30-65ms is a DSL connection

This latency of 10-65ms is to the closest server inside the main ISP

network, before the data packet is delivered to its final destination. The

FCC report mainly focuses on United States broadband. However, the

last mile connectivity is a challenge for all Internet service providers in

all geographic locations. Ironically, this the area where most Internet

bandwidth is affected as well.

If you want to know about latency in your network, you can run a

simple traceroute command in a shell. It will tell you how many hops

there are before reaching the destination. See Figure 5-2.

Figure 5-2.  Traceroute maps for connecting servers

Chapter 5 Networking Issues

210

As the last mile doesn’t have a distance-based limitation, it usually

varies with the ISP. Some ISPs have a small service area, whereas other

giants have a very huge service area. Depending on the technology and

topology used by your ISP, the quality of your connection will be different.

To get better service and speed, always research the ISPs in your area.

�Client-Side Prediction and Server
Reconciliation
A basic implementation of user action prediction and server reconciliation

leads to a delay between the commands given by the user in the game and

the changes reflected onscreen, as well as the changes propagated to other

players. For example, consider a player pressing arrow keys to move their

character, but it takes 500 milliseconds for the character to start moving.

This happens because the command/button press information takes time

to reach the server. The server must process the input and calculate the

new vector position of the player. Once that is done, the update will be sent

to the player. See Figure 5-3.

Figure 5-3.  Representation of network delay

Chapter 5 Networking Issues

211

In an online gaming environment where delays matter a lot, a delay of

even a few seconds may make the game feel unresponsive. In a worse-case

scenario, players might leave the game. We must find ways to reduce or

even eliminate this problem.

�Client-Side Predictions
Almost all online games will have some cheaters playing the game and

most gaming servers are configured in a way to process valid requests.

(Assuming cheaters camouflage their requests as legit requests.) This

means that the input received by the server will be processed and the

game will be updated as expected. If a player was at (10,10), for example,

and the right arrow key is pressed, the player’s new position after a server

update will be (11,10). Since these behaviors are predictable, you can use

this to your advantage. Assume, for example, that you are playing a game

and the character animation plays for 100ms. You have a latency of 100ms,

so you have total latency of 200ms. See Figure 5-4.

Chapter 5 Networking Issues

212

Let’s assume that whatever input is sent to the server is executed

successfully. In that case, the client can predict the game state according

to the game environment, after the input has been processed by the server.

This way, the prediction made by client will be correct most of the time.

So rather than sending the input to the server and waiting for the

result, you can send the input directly to the game and get the input,

assuming that the server sent the report using a prediction method and

you can wait for the server to respond accordingly. See Figure 5-5.

Figure 5-4.  Network delay plus animation delay

Chapter 5 Networking Issues

213

This way, you don’t have a delay between the player’s actions onscreen

while the server is still in control (if there is a discrepancy in the data, the

server data will be considered valid).

�Synchronization Issues
In the previous example, we carefully chose a number that reduced the

mathematical complexities. However, it is far from an ideal case. So now

let’s say that the delay between the server and the user is 250ms and

the animation plays for 100ms. If the player makes a move two times by

pressing the appropriate button, Figure 5-6 shows how this process might

proceed.

Figure 5-5.  Playing animation during network delay

Chapter 5 Networking Issues

214

The delay is 250ms, so we can consider t = 250ms. Whenever there

is movement in the game, a new game state will be there. Now let’s say

the player status after the move is (12,10) on the player’s computer. The

server will assume that the player is at (11,10), as the player made two

movements and the server needs to compute for two movements. After

completing the first calculation, the player will go back to (11,10) at 350ms,

but after processing the second command, the server will bring the player

back to (12,10).

From the player’s perspective, they made a move in the game and

then started waiting for something. But in the meantime, the character

was skipping left and right because of the server calculation, which is

unacceptable.

Figure 5-6.  Predictive state mismatch with an authoritative server

Chapter 5 Networking Issues

215

�Server Reconciliation
There are ways to fix this problem. One of the key approaches is to have

a priority update. This means that if the player is playing the game, the

server will send the updates to the game. That way, if the server has not

finished processing all the commands from the player, it will not update

that player. It should update the player after completing the commands.

This is not very difficult to implement. First, the client uses a sequence

number found in the header information of each request sent to it. When

the server needs to respond, it keeps the sequence data inside the header.

See Figure 5-7.

Once this method is implemented, the server will respond differently.

When t =250ms, the server might respond. For your first request, for

example, the player should be at (11,10) and then for your second request,

the player should be at (12,10), which is correct.

Figure 5-7.  Client prediction and server reconciliation

Chapter 5 Networking Issues

216

�Further Steps
All these examples are from player movement and these same principles

can be applied to any other logic as well.

Games are very complex pieces of software and are very difficult

to develop. along When players get excited during the game, their

movements can affect other players, such as scoring or dying in the game.

It’s best to let the server verify whether the player is dead or not to avoid

conflicts.

It doesn’t matter which kind of player is in the games player base,

whether there are bots or hackers playing the game. The server data might

not match the client game. This might not be a great concern in a single-

player player game, but can be of concern when a lot of players are playing

the game.

�Getting Ping from Unity
The following code snippet returns the ping time taken by the application

to complete an RTT:

Ping ping = new Ping("<<Server IP>>);

While(!ping.isDone){

 Yield;

 }

return ping.time;

--

Chapter 5 Networking Issues

217

�Summary
This chapter started by covering problems with conventional networking

that you have to handle before you can focus on multiplayer game

development. The chapter then discussed synchronous and asynchronous

games, which are types of multiplayer games that buffer a lot when

implementing the system.

Lastly, the chapter covered bandwidth, latency, and ping and how

to handle these shortcomings with server reconciliation and client

prediction.

Chapter 5 Networking Issues

219© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_6

CHAPTER 6

Develop a Maze
Shooter
In this chapter, you will learn how to create a multiplayer game. The

chapter goes through the key steps required to create a multiplayer game.

The process is divided into multiple steps.

Before we jump right into multiplayer games, let’s look at some

keywords used frequently in multiplayer games.

�Lobby
A lobby is a waiting area in any building. Similar to that concept, a lobby is

the matchmaking area of a multiplayer game.

�Matchmaking
The room allocation or matchmaking process can be handled by allocating

players to different rooms using matchmaking algorithms.

One of the simplest ways is to allocate on a first-come/first-serve

basis, but there are many more sophisticated algorithms to ensure a better

match. These algorithms are similar to matchmaking algorithms , or

algorithms used by dating websites. The key concept is to match a player

with another player of a similar level so that the match is fair. Most online

https://doi.org/10.1007/978-1-4842-7358-6_6#DOI

220

multiplayer service providers use multiple KPIs to match players, such as

network speed, past scores, game winning history, and so on. Combining

these and more details helps create a rank and using this rank, algorithms

create a group of players who are suited to play together.

�Spawn/Respawn
The process of appearing or reappearing in the game, either at the

beginning of the game or after dying in the game.

�Spawn Point
The room or the area of a game where players respawn after death.

�Introducing the RPG Game
This section is a hands-on, step-by-step tutorial for creating a simple

multiplayer game.

This game is a primitive representation of RPG shooting game that

happens inside a Maze environment. It’s created this way for the sake

of simplicity and understanding and can be extended to a complete

multiplayer game.

�The Game’s Story
The game starts with a maze and the player in a certain start position.

Enemies are placed inside the maze as well. The goal of the player is to

reach the end of the maze and collect the treasure to finish the game.

Chapter 6 Develop a Maze Shooter

221

�Game Prerequisites
To create this game, you must have:

•	 A basic understanding of Unity and game development

in Unity.

•	 A basic understanding of object-oriented programming

using C#.

•	 An understanding of the material covered in Chapters 1-5.

•	 Downloaded the Unity Hub and at least one Unity

Editor (preferably 2020.3 or higher).

•	 Git Bash installed in your system, as it is utilized in the

Unity multiplayer setup.

This tutorial project uses a mid-level networking library provided

by Unity. Unity provides this mid-level networking library with most

of the methods and communications system already programmed.

As you learned in the previous chapters, creating a socket connect is a

complicated process.

Creating an entire system for a multiplayer game can be very tedious.

High-level multiplayer libraries can come in handy because they

include code for multiple subsystems such as:

•	 Network management

•	 Network behavior

•	 Message handling

•	 High-purpose deserialization of data

•	 Object management

•	 Game state synchronization

•	 Server class, client class, connection class, and so on

Chapter 6 Develop a Maze Shooter

222

�Section 1: Creating the Project and Setting
Up Unity
To create a Unity project, you need to open the Unity Hub. This section

assumes that you have Unity Hub and Unity Editor installed.

Open Unity Hub and create a new project. Select 3D as the template

and then create a 3D project, as shown in Figure 6-1.

After creating the project, create a plane by choosing Game Object ➤

3D ➤ Plane. You will then get the screen shown in Figure 6-2.

Figure 6-1.  Create a 3D project

Chapter 6 Develop a Maze Shooter

223

Now create a simple maze level using the simple cube primitives. For

this reference, apply the maze design texture on the Plane gameObject

using a material. After you do this, you’ll get the view shown in Figure 6-3.

Figure 6-2.  Create a plane

Figure 6-3.  Maze texture

Chapter 6 Develop a Maze Shooter

224

After this step, you can use the cube to create the similar game level.

There are multiple ways to create the level:

•	 Use a digital content creation (DCC) tool

•	 Use pro-builder inside Unity

•	 Use primitives

We will use primitives to create the level in this example. (For details on

using pro-builder, refer to the Unity documentation for Pro-Builder and for

DCC tools, refer to the Asset Import section of the Unity Documentation.)

To create a cube, choose Game Object ➤ 3D ➤ Cube and then use the

Move and Scale tools to place the object properly.

After creating the cube, you can remove the texture of maze from the

plane and add a grass texture; see Figure 6-4.

�Section 2: Downloading and Installing MLAPI
To install MLAPI, you need Git Bash installed on your computer. If it’s not

installed, be sure to install it. It requires you to restart your PC. After that,

you can continue from this same position.

Figure 6-4.  The maze with a grass texture

Chapter 6 Develop a Maze Shooter

225

To install the MLAPI package, you need to use Package Manager.

Choose Window ➤ Package Manager to access it. From this Package

Manager, click the + button and select Add Package from Git

URL. Then enter https://github.com/Unity-Technologies/com.

unity.multiplayer.mlapi.git?path=/com.unity.multiplayer.

mlapi#release/0.1.0 as the Git URL in the provided field. Then click Add.

After successful installation, the Package Manager will appear as shown in

Figure 6-5.

�Section 3: Programming with MLAPI
During this step, you need to add your player to the game. Since you are

creating a multiplayer game, you also need to finalize a few things in this

game. You need to make a few decisions and lay down some ground rules

before you move any further.

Game decisions:

•	 The game will have an authoritative server which will

control everything.

•	 The first player to start the game will host the game on

a local network. Others will join as clients.

Figure 6-5.  The Package Manager

Chapter 6 Develop a Maze Shooter

https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi.git?path=/com.unity.multiplayer.mlapi#release/0.1.0
https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi.git?path=/com.unity.multiplayer.mlapi#release/0.1.0
https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi.git?path=/com.unity.multiplayer.mlapi#release/0.1.0

226

�Section 3.1 Adding a Network Manager

To begin development of this multiplayer game, you need to create a

Network Manager which will be responsible for creating/spawning the

players. You will create an empty game object. You can name this object

anything, but for simplicity, let’s call it the Network Manager.

Now select the Network Manager and go to the Inspector tab to add

some components that will allow this Network Manager to act like a real

Network Manager. Add the Network Manager available in the MLAPI

group; to do this go to the Inspector window and choose Add Component

➤ MLAPI ➤ Network Manager.

After this step, you need to configure network transport. From this

Inspector panel, you will find Select Transport option in which you

need to select a transport layer. Select UNet Transport. After selecting

UNet Transport, it will add another component of UNet Transport to the

Network Manager game object. The UNet Transport object should not be

deleted and it should look Figure 6-6.

After you complete all the steps properly, the Inspector window of the

Network Manager should look like Figure 6-7.

Figure 6-6.  The UNet Transport object

Chapter 6 Develop a Maze Shooter

227

�Section 3.2

Once the Network Manager is ready, you can create your player using any

prefab. Let’s use a capsule as a player. To create a capsule, choose Game

Object 3D ➤ Capsule.

Figure 6-7.  The Inspector window of the Network Manager

Chapter 6 Develop a Maze Shooter

228

Once the player is ready, you need to add some MLAPI components

so that it can be utilized properly. To do that, you will again add a network

object component to this game object. To add the component, select

the player game object from the Inspector window and choose Add

Component ➤ MLAPI ➤ Network Object. After this, your Inspector

window should look like Figure 6-8.

Figure 6-8.  The Inspector window

Chapter 6 Develop a Maze Shooter

229

Player Movement

In order to add movement to your characters, you create a first-person

controller for the player. Since it’s an authoritative server, the player’s

movement should be authorized by the server. This movement should be

part of the networking library.

To make the movement part of the network, the player prefab should

have another component called networkTransform.

Choose Add Component ➤ MLAPI ➤ Network Transform.

It should be noted that the player prefab will have two MLAPI

components—NetworkObject and NetworkTransform—and an FPS

controller for the player controls. After all these components, the Inspector

panel should look Figure 6-9.

Figure 6-9.  The updated Inspector panel

Chapter 6 Develop a Maze Shooter

230

Now you need to configure the Network Manager, as it will be

responsible for creating a player once the game starts. The server will not

be able to control things that are not created by the Network Manager.

For this, you must save the player as a prefab first; drag the player from

the Hierarchy to the Project window to create a prefab. After creating the

prefab, you can safely delete the player from the hierarchy.

�Section 3.3

To make the Game Manager work for this game, you need the UI to start

the game. You can create simple buttons called Host and Client using

Unity Canvas.

To create a canvas, choose gameObject ➤ UI ➤ Canvas. To add

buttons and text input options, first select the Canvas and then choose

Game Object ➤ UI ➤ Button. The button will then be created as a

child component of the Canvas. Inside this button, you will have a text

component. You can change the name of the button by selecting the text

component from the hierarchy. In the Inspector window, change the

Button Text to HOST, which will start the server (see Figure 6-10).

Similarly, you can create a Join button which will be used by clients to

join the server; see Figure 6-11.

Figure 6-10.  Changing the button text

Chapter 6 Develop a Maze Shooter

231

To manage the UI and the connections, you can create an empty game

object and call it connectionManager. In this connection manager, add a

new component script to add functionality to this UI. Create a script by

choosing Add Component ➤ New Script ➤ ConnectionManager.

�Section 3.4

To open the connectionManager script, double-click it. It should open

by default in the code editor. If not, you can configure the text editor

by choosing Edit ➤ Preferences ➤ External Tools and finding External

Script Editor. Select your favorite tool from the dropdown or browse the

Launcher Location. See Figure 6-12.

Figure 6-11.  Create a Join button

Chapter 6 Develop a Maze Shooter

232

After opening the script in the text editor, the first thing you have to do

is import the MLAPI Library in the code. You will write this using MLAPI at

the start of the file.

using MLAPI;

To connect and control the UI panel’s visibility, create a public variable

of GameObject type and name it ConnectionPanelUI; see Figure 6-13.

Now go back to the Unity Editor and add the Canvas to this public field.

You do this by dragging the Canvas GameObject to this field. Or you can

click the circle-looking symbol at the corner of the field and select Canvas

from that dropdown. See Figure 6-14.

Figure 6-12.  Use the External Script Editor

Figure 6-13.  Create the ConnectionPanelUI variable

Chapter 6 Develop a Maze Shooter

233

After that, you can control the canvas with the ConenctionPanelUI

variable. To create a button functionality for the Host button, create a

public StartHost function as follows.

public void StartHost()

 {

 ConnectionPanelUI.gameObject.SetActive(false);

 �NetworkManager.Singleton.ConnectionApprovalCallback +=

ApprovalCheck;

 �NetworkManager.Singleton.StartHost(SpawnCharacter(),

Quaternion.identity);

 }

This code creates a function named StartHost which runs

whenever the user clicks the Host button on the screen. When the user

clicks the Host button, it will hide the canvas, for which we are using

setActive(false).

NetworkManager is a singleton class that’s available inside the MLAPI

library. We are using that instance of that class to pass the parameters to

start the hosting server. In this case, it takes the spawnCharacter function

and its position.

ApprovalCheck determines if the networking setup is correct in the

UNet Transport settings. It also determines if the clients can join the game

or not.

Figure 6-14.  Add the Canvas to the public field

Chapter 6 Develop a Maze Shooter

234

To learn more about singletons and events and delegates, read more

about C# references.

This code is hiding the UI panel and starting the server as the host; it’s

also spawning the player at the position defined by the SpawnCharacter()

function.

To provide the approval using this function, you must set up the

password. To do that, you must define the approval check function being

called via the delegate event.

This uses a hardcoded password for simplicity of code. With this

change, the code for the host will change, as the host must have an

authentication system to authenticate a new player.

Once the StartHost button is clicked, its requesting connection

approval calls back to check and authenticate the password.

private void ApprovalCheck(byte[] connectionData, ulong

ClientID, NetworkManager.ConnectionApprovedDelegate callback)

 {

 �bool approve = System.Text.Encoding.ASCII.

GetString(connectionData) == "Password1234";

 �callback(true, null, approve, SpawnCharacter(),

Quaternion.identity);

 }

Joining the Game

To join any online game, you must know the IP address of the server so

that the game can connect and share its data. For this, you must enter the

IP address when you want to join the server.

By default, the localhost IP is 127.0.0.1 so you can keep this IP

hardcoded in your game. Since this is a networking game, one server

can host multiple games. The game server will have some type of

authentication system to allow and block players.

Chapter 6 Develop a Maze Shooter

235

After receiving the callback, the host will start the game. It’s time

for the client to connect to the player. You pass the IP address from

the UI of the game as a dynamic string value to the code by using

InputOnValueChangeEvent().

To join the game, the host and client must know the IP. You pass the

IP address to the UNetTransport layer of MLAPI, which is the low-level

networking library for Unity. To do this, you will again set a reference to

NetworkManager and its UNetTransport component.

transport = NetworkManager.Singleton.

GetComponent<UNetTransport>();

Once you get the reference to UNetTransport, you can set the IP for the

client connection.

public void Join()

 {

 �transport = NetworkManager.Singleton.

GetComponent<UNetTransport>();

 transport.ConnectAddress = ipAddress;

 ConnectionPanelUI.gameObject.SetActive(false);

 �NetworkManager.Singleton.NetworkConfig.ConnectionData =

System.Text.Encoding.ASCII.GetBytes("Password1234");

 NetworkManager.Singleton.StartClient();

 }

This code implements the Network Manager as a singleton pattern

named singleton. This is defined along with MonoBehaviour. This same

singleton contains information about the host, server, and client.

You will call these methods in the onGUI() method of Unity to render it

in runtime.

Chapter 6 Develop a Maze Shooter

236

�MLAPI Event Messaging
To understand MLAPI event messaging, this section uses a shooting

mechanism example. For this to happen, you must write object-pooling

code for a bullet.

�Using Remote Procedural Calls (RPCs)
Remote procedural calls are utilized by network communication interfaces

to share information from the client to the server and vice versa.

Especially with an authoritative server configuration, nothing moves

without the server’s consent and most of the commands given by the

player need to be executed by the server. In these cases, the commands’

communication can be established by RPC. For example, if a player has to

shoot, the player will initialize a [ServerRPC] so that the server can shoot

on behalf of the player. Similarly, the server will send the data back and the

gameObject can receive that data using [ClientRPC] params.

For more params like this in MLAPI, see the “Event Messaging”

reference in the documentation.

�Working with Bullets in Multiplayer Games
In a normal game, once a bullet is shot, the player or the Game Manager

takes control of the bullet and decides the next step. This works fine in

single player games, as everything is local. But this is not the case with

multiplayer games. Bullets cannot be managed by the Game Manager

because all the players have a Game Manager that’s managing all local

changes. Since the server is the highest authority and it’s managing all the

players, control of the bullet should go to the server.

But that’s also not possible because the server will have to do a lot of

computation and it may not be able to manage the game properly.

Chapter 6 Develop a Maze Shooter

237

One of the most common approaches is to share bullet details to

all clients. Then the client can compute for itself and the server can just

monitor it.

public GameObject gunbullet;

 public Transform gun;

 // Update is called once per frame

 void Update()

 {

 if(IsLocalPlayer)

 {

 if(Input.GetMouseButtonDown(0))

 {

 ShootServerRPC();

 }

 }

 }

 [ServerRpc]

 void ShootServerRPC()

 {

 ShootClientRpc();

 }

 [ClientRpc]

 void ShootClientRpc()

 {

 �var bullet = Instantiate(gunbullet, gun.position,

Quaternion.identity);

 bullet.transform.position = gun.transform.position;

 //To do Bullet Hit Logic

 }

Chapter 6 Develop a Maze Shooter

238

There is more than one player in a multiplayer game and since they

will have the same movement script, you need to determine which

component is the local player. This is because you will be playing the game

locally and the other parts of the game are coming from the server.

To achieve this, the code checks whether you are a local payer and calls

shootserverRPC, which will instruct the server to shoot a bullet using the

RPC calls.

�Summary
This chapter discussed common multiplayer gameplayer terms and dove

into developing a multiplayer game. You learned how multiplayer games

work and how the data is shared between the server and the players.

To create this game, you used MLAPI of Unity, which is a mid-level

networking library.

Chapter 6 Develop a Maze Shooter

239© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_7

CHAPTER 7

LAN Networking
A Local Area Network (LAN) is a computer network that connects nearby

devices, such as ones in a home, school, university, business, etc.

Most people with Internet connectivity use LAN networking in their

homes. The ISP will provide only one connection, but you can use that

same connection in multiple devices because of LAN networking. LAN

networking setup includes a router, which routes your traffic internally and

over the Internet. By using LAN with multiple devices and a router, you

essentially have a mini-Internet at your disposal, as shown in Figure 7-1.

Figure 7-1.  A LAN with multiple devices and a router

https://doi.org/10.1007/978-1-4842-7358-6_7#DOI

240

Most people use the same network when hosting a LAN party to play a

game. Whenever you start a server, it’s actually starting the server on your

machine. Since it’s a local Internet and there is minimal restriction by the

router, you can connect to any port of any computer or device from any

computer or device internally. That means you can connect to a local LAN

party and play your game.

Hamachi is a Virtual Private Networking (VPN) service. A VPN is

protected from the global Internet via a router/modem (see Figure 7-2).

The local Internet is often called an intranet.

In order to access LAN parties, players need to join from the same

network or be available in same network. No one outside the local area

network can find that server, as the router protects that server from

external communications.

There are two ways to solve that problem:

•	 Create an open server: Create a server that’s open to the

world and open the required ports, to which anyone

from anywhere can connect.

This setup is not typically feasible because it exposes

the networking devices and data and requires you to

have a static IP, which is not available by default.

This will additionally require you to set up a firewall

service to protect your network from malicious

activity. Your computer’s default firewall might not

be enough to protect you in these cases.

•	 Create a VPN for your network and allow only

trustworthy people to connect to it: This way, you are

not allowing everyone to join your network. VPN makes

it possible to be part of a local network, so others have a

direct tunnel to your LAN.

Chapter 7 LAN Networking

241

A VPN service provides privacy and anonymity to its users by masking

their Internet to VPN networks. It then forwards the request to the desired

client. Most VPN service providers doesn’t keep logs in order to maintain

the anonymity of their consumers.

�How VPN Works
VPNs rely heavily on virtual tunneling, which is the ability to create a

private tunnel to share data from one computer securely. VPN providers

use a similar technique to create a tunnel from the client’s computer to

their network/location and then expose the data packet to the Internet. See

Figure 7-3.

Figure 7-2.  A VPN protects your data and your identity

Chapter 7 LAN Networking

242

Any attack on your system will be handled by the VPN. To securely

transmit data from your computer to the VPN service, heavy encryption

systems encrypt the data. In most cases, only the VPN can decrypt the

data.

�What Is Hamachi?
Hamachi is a very popular VPN service that’s used to create local LAN

parties across the Internet. The game that you created in this book cannot

be played via the Internet, because a local server hosts the game and all

the players must be connected to that same network.

Using Hamachi, however, you can bring other people into same VPN

LAN party so they can play a local LAN party game over the Internet. A lot

of gamers use these types of services to play with their friends.

Figure 7-3.  VPNs use virtual tunneling

Chapter 7 LAN Networking

243

�Using Hamachi
Hamachi can be downloaded from its website; it’s available for many

platforms. Once you download and install Hamachi, it’s very easy use.

Follow these steps to set it up and use it:

	 1.	 Launch Hamachi.

	 2.	 Click the Power button to start Hamachi, as shown

in Figure 7-4.

	 3.	 Log in with your credentials if you’re asked for

them. After you do so, you will be logged in and the

Hamachi service will start, as shown in Figure 7-5.

Figure 7-4.  Starting Hamachi

Chapter 7 LAN Networking

244

	 4.	 Note the IP address given to you next to the Start

Service button.

	 5.	 If you are planning to host the game, click Create a

New Network, as shown in Figure 7-6.

Figure 7-5.  Logging into Hamachi

Figure 7-6.  Create a new network if you are hosting the game

Chapter 7 LAN Networking

245

	 6.	 You will be prompted to enter the network ID and

password (see Figure 7-7). This network ID and

password must also be shared with friends who

want to join the LAN party and play the game.

	 7.	 Your friends should click the Join an Existing

Network button to join your network. They will be

prompted to enter the network ID and password as

well, as shown in Figure 7-8.

Figure 7-7.  Supply the network ID and password

Chapter 7 LAN Networking

246

	 8.	 Once you are successfully connected, open the

game and enter the IP address into the game’s Start

screen to play the game.

�LAN Party in Games
There are many ways that games leverage the LAN party concept. One very

simple way is by creating a server on your computer. Then you scan for a

local server, which usually scans for the ports that have been programmed

by developers to be used for LAN party servers across the local network.

The newer and more popular way to create a LAN party is by creating

a local WiFi network or by connecting all the devices to the same WiFi

network.

Figure 7-8.  Other players also have to supply the network ID and
password to join the network

Chapter 7 LAN Networking

247

�Summary
This chapter talked about how LAN parties work. It discussed the major

problems that arise when you try to connect to a LAN party from outside

the network. The chapter also looked into how you can rectify these

solutions using VPN.

You learned what a VPN is and how it solves these LAN party issues.

You also learned how to create a VPN-based LAN party using Hamachi.

Chapter 7 LAN Networking

249© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6_8

CHAPTER 8

Servers
Servers are like computers that sit at the other end of the network helping

you do things. Servers are used for multiple purposes, including as

webservers. They are used for data storage, loud storage, cloud computing,

research, and for games as well.

Games use servers in different ways, which means the way the servers

are developed is different as well (see Figure 8-1).

•	 Dedicated servers

•	 Listen servers

•	 Peer-to-peer networks

Figure 8-1.  Server and clients

https://doi.org/10.1007/978-1-4842-7358-6_8#DOI

250

�What Is a Server?
A server is a computer that connects to different computers over the

network to serve data over LANs (Local Area Networks) or WANs (Wide

Area Networks).

You might have heard of different types of servers—email servers, web

servers, file servers—these servers have similar hardware components

whereas the software they run is unique.

Server software includes Apache, Nginx, and Microsoft IIS, which are

most predominantly used for website hosting. Some SMTP servers used for

email services include Exim, iMail, etc.

While any computer can be configured as a server, the major difference

is the hardware design. Servers are designed to run around the clock

without any hiccups. Many industries and big organizations don’t use

traditional computers for servers; they use especially designed cases for

servers named as 1U, 2U, 3U and so on, the sizes of which vary upon their

usage. These servers are typically mounted on hardware racks for storage.

Since these devices are capable of running with major interruptions

and can be left alone, most of these servers are configured in a way that

they can be controlled and managed remotely.

�Dedicated Servers
Dedicated servers are exactly what they sound like. These servers are

dedicated to one specific purpose, which can be for video streaming, web

hosting, or for any other purpose. Most businesses prefer dedicated servers

because of their immense power and flexibility. Servers are mostly used

by websites over the Internet and most websites across the Internet are

hosted on shared servers.

Chapter 8 Servers

251

Shared servers are servers that host hundreds or thousands of

websites. This makes renting server space a lot cheaper for owners who

don’t require a lot of storage and computational power. However, once

they need to upgrade their plan, they can migrate to dedicated servers,

which are usually known as VPSs (Virtual Private Servers).

With a VPS, you get a virtual computer, which you can configure

according to your needs. A VPS is as flexible as dedicated servers to an

extent. But this is still far from an actual dedicated server, which means

you have access to the actual server. The major downsides to this kind of

approach are cost and maintenance. As their devices are manufactured to

run continuously in isolation, they also can be extremely loud and might

require an ideal environment to operate at 100% capacity.

�Who Should Get a Dedicated Server?
Consider these characteristics of dedicated servers:

•	 Scalability: Dedicated servers are very easy to scale up,

which is beneficial for growth. For example, websites

like Google and YouTube, which serve billions of users

daily and are expected to grow, would burn a lot of

money in renting servers.

•	 Security: Companies that deal with very sensitive data

may not want to use dedicated servers. Keeping that

data in a shared space is a big concern. If any of the

websites or services hosted on that same shared space

are compromised, the possibility of confidential data

being leaked is significant.

Any malicious web service could also rent the same

server with bad intentions to compromise the service.

They could infect the service with ransomware, virus-

vulnerable code, or any other malicious activity.

Chapter 8 Servers

252

•	 Speed: Shared services can lead to instability,

depending on a load of the shared websites and this, in

turn, can affect the performance of your services.

•	 Control: As discussed earlier, dedicated servers allow

you to customize your services as needed, which

means you have the power to offer non-traditional

services, such as game builds, game streaming, etc.

�Dedicated Servers in Gaming
Since the beginning of personal computers, private game servers/

dedicated game servers were always among the top choices for gaming

platforms. This was preferrable to depending on a multiplayer service

provider.

Creating your dedicated game server has a lot of benefits, including

stability, customizability, and control. A lot of different multiplayer systems

use dedicated game servers, including PUBG, ARK: Survival Evolved, Team

Fortress 2, etc.

Most public game servers use the client-server model (discussed

in Chapter 5) or peer-to-peer (P2P) hosting, both of which have their

problems. Client servers are run by process owners, usually the publishers

or manufacturer, and as a consequence they can manage individual

connections. This model works in most cases, but it lags in terms of

customizability options.

P2P (peer-to-peer networking) is another very popular modern

multiplayer gaming service. Using P2P, one player can dynamically act

as host or master, which can facilitate connections from other devices

or players. This system is highly random, as anyone can be chosen as

the host. If the host’s network is poor, everyone will have a bad gaming

experience.

Chapter 8 Servers

253

�Headless Server, AKA Listen Server
A headless server can be controlled over a network. These servers don’t

have a keyboard, mouse, or any other peripherals. For example, servers

that are configured on rack mounts are typically headless servers, as

shown in Figure 8-2.

A system without a head (a monitor) or without a local interface is also

headless. There need to be peripherals like a keyboard, mouse, screen,

or a local interface to control it. Headless systems lack graphical systems

to access and administer them, instead they are usually administered

remotely over a network, via SSH or VNC.

�Why a Headless Server?
When we talk about servers, we mostly talk about datacenters and

very large server arrays that look like a sci-fi movie scene. In these

environments, computers are usually stacked on top of one another and

Figure 8-2.  Server racks in a datacenter

Chapter 8 Servers

254

hundreds of racks of that type are placed together. These server farms

or datacenters are controlled via networks and they rarely need human

intervention for maintenance.

These systems are managed over the Internet so they don’t need any

peripherals except networking gear. Server hardware is getting smaller and

more efficient, and these systems can run for years without any human

intervention, provided the Internet and power are constantly provided.

The popularity of headless servers is growing day by day.

�Headless Servers in Games
In game-based dedicated servers, the server might act as a bot or be

coordinating the actions of another player or playing by themselves as a

bot. This is considered a dedicated gaming server and these types of games

are usually multiplayer games. In this case, a headless server is mostly

used for administrative purposes.

Many times, you’ll want to play an online game where a server will

be used mostly for administrative purposes. These servers do not have a

graphical interface or have any human interaction from the server-side.

For example, consider a game where every person has a task to complete

and they are not competing with each other. The AI is running on a device,

competing against a real human. Just for the sake of management and a

sense of competitiveness, the server will be used to assign the level and AI

parameters, which means the allocation and administrative jobs. In this

case, it uses a headless server.

�Peer-to-Peer Networks
As you might notice, we don’t call these peer-to-peer servers because peer-

to-peer communication is not considered server-based, per se.

Chapter 8 Servers

255

When two or more devices connect to each other directly, without any

entity in between, that’s called a peer-to-peer network. The device trying to

share the data is directly connected to the device waiting to receive the data.

�Peer-to-Peer Networks in Games
This type of network is widely used with games that want to create a local

group of players, such as with Counter Strike, Mini Militia, and many more.

They can create a local server on which players can connect and then

directly join the game. These kinds of network games are called peer-to-

peer games. Because there is a local server, the delay and other networking

issues will be minimized.

�Benefits of a Peer-to-Peer Network
•	 No central server: Developers do not need to manage

costly servers and handle all the networking issues.

•	 No queue management: Developers don’t have to

manage multiple game rooms and do matchmaking for

players, as this is handled automatically by the players.

The local network can support more than 10 people.

•	 No downtime: As most servers will be completely

managed by the local players and there is very little

dependency on the Internet, there isn’t any downtime.

•	 No loss of players: In online games, developers have

to deal with loss of players due to loss of network, rage

quits, etc. These need to be handled and developers

manage them by replacing the player with a bot. In this

case, developers don’t have to do that, as a local peer-

to-peer setup reduces the chances of network dropout.

Developers don’t need to use bots either.

Chapter 8 Servers

256

�Load Balancers
As the name suggests, the basic functionality of a load balancer is to help

the datacenter balance the load between the servers. It can also be seen as

a tool to distribute the workload request from the client to different servers

in order to optimize the delivery time and effective utilization of servers.

A load balancer can be a physical device or a virtual device running

along the server to process incoming requests and control the assigning

of requests to different servers. This is also known as Application Delivery

Controllers (ADCs) and this type of system is designed to improve the

performance and security of systems (see Figure 8-3). They predominantly

use scheduling algorithms like Round-Robin, SJFS, and many more to

effectively manage loads.

Load balancers are a crucial part of the modern Internet infrastructure,

a load balancing-capable ADC will help the IT department ensure secure

scalability by ensuring 100% availability of services. Their advanced

functionality of traffic management can help businesses and consumers

Figure 8-3.  Load balancing ADC

Chapter 8 Servers

257

efficiently serve customer requests while maintaining efficient usage of

hardware resources. An ADC might offer additional services to enhance

security and flexibility, such as firewall protection, data encryption, and

DDOS protection.

A load balancer can be of two types (see Figure 8-4):

•	 Hardware based

•	 Software based

�Hardware-Based Load Balancers
Hardware-based load balancers are capable of securely managing and

processing hundreds of gigabits of traffic from multiple sources. They also

have built-in virtualization capabilities that allow them to be configured

as an army of load balancers for some specific use cases. This kind of

flexibility provides a multi-tenant architecture with full isolation, along

with other benefits. See Figure 8-5.

Figure 8-4.  Load balancer types

Chapter 8 Servers

258

�Software-Based Load Balancers
The job of load balancers is to manage the load or incoming traffic, and

software-based load balancers can be installed on any hypervisor to

ensure the functionality of load balancers. They can run on the same

server using a hypervisor or they can be run inside containers of Linux

subsystems to reduce the load on an existing server. This can save a lot of

space and hardware expense.

�Summary
The chapter started with a discussion of servers and how they work. You

learned about server segregation based on game systems, like dedicated,

headless, and P2P servers, and you also learned about how these servers

are used in games.

Figure 8-5.  Load balancing switching

Chapter 8 Servers

259© Sloan Kelly and Khagendra Kumar 2022
S. Kelly and K. Kumar, Unity Networking Fundamentals,
https://doi.org/10.1007/978-1-4842-7358-6

Index

A, B
Application Delivery

Controllers (ADCs), 256
Application Programming Interface

(API), see RESTful APIs

C
Command-line tools

address resolution protocol
cache, 23

grep/findstr command, 25
hostname, 21
IP configuration, 23
netstat command, 25, 26
ping command, 22
terminal application, 21
tracert command, 27
Windows/terminal app, 21

Connection/connectionless-
oriented services

connection, 5, 7
connectionless, 8
packets, 5

D, E, F, G
Dedicated server

characteristics, 251
gaming process, 252
headless server, 253, 254
local interface, 253
shared servers, 250

Dns.GetHostAddresses() function,
16, 17

Domain Name System (DNS), 16, 29

H, I
Hamachi

download/installation, 243
hosting process, 244
ID and password, 245, 246
log in, 243, 244
network connection, 242

Hardware-based load
balancers, 257

Headless servers, 253, 254
HyperText Transport Protocol

(HTTP), 91

https://doi.org/10.1007/978-1-4842-7358-6#DOI

260

J, K
JavaScript Object Notation (JSON)

character data, 32
hexadecimal and decimal

values, 40
JsonUtility, 33
requirements, 33
serialization/deserialization

BasicObject.cs file, 34
binary representation, 38, 39
constructors, 34
Debug.Log() functions, 37
GetBytes()/GetString()

method, 38
instructions, 33
JsonSerializationExample

script file, 35, 36
UnityWebRequest

object, 37

L
Load balancers

application delivery
controllers, 256

hardware, 257, 258
software, 258
types, 257

Lobby, 219
Local Area Network (LAN)

games leverage, 246
Hamachi (see Hamachi)
intranet, 240
multiple devices/router, 239

networking concepts, 9
servers, 250
VPN service, 241

data/identity, 241
intranet, 240
virtual tunneling, 241, 242

M
Matchmaking process, 219
Maze shooter development

lobby, 219
matchmaking process, 219
MLAPI event messaging, 236

bullet, 236, 237
remote procedural calls, 236

multiplayer games, 219
RPG (see Role-playing video

game)
spawn/respawn, 220

Media access control (MAC) address
classes, 15
IP protocol

classification, 14
dotted decimal, 13
dynamic addresses, 13
format, 13
logical address, 12
segmentation, 14
static address, 13

network concepts, 10
physical address, 12
subnetwork mask, 15

Mesh network routing, 10

INDEX

261

N
NetLib classes

hierarchy, 152
MessageBuffer class, 153, 154
MessageReceivedEventArgs

class, 154
NetworkClient class, 154–162
NetworkClientCollection

class, 161
NetworkClientEventArgs

class, 163
NetworkServer class, 162–167
PayloadEventArgs class, 164
script files, 151

Networking
addressing, 11–17
client-server model, 2–4
command-line tools, 21–28
connection/connectionless-

oriented services, 4–8
Firefox browser, 1, 2
mesh network, 11
open systems interconnection

model, 19, 20
overview, 1
physical network devices, 9–11
sockets/ports, 17–19

Networking issues
authoritative servers, 195, 196
bandwidth

asymmetrical
connections, 202

definition, 200

demand on demand, 203
measurement, 202
performance factors, 202
requirements, 201
speed, 201
symmetrical

connections, 202
types, 202
working process, 201

client prediction/server
reconciliation

animation delay, 212–214
predictive state

mismatch, 214
representation, 210
synchronization, 213, 214

concepts, 195
latency

cause delays, 204, 205
destination, 206
file/web page, 206
linear, 207
mile option, 208
processing data, 206
representation, 203, 204
roundtrip delay, 204
signal latencies, 207
traceroute maps, 209

multiplayer games
bandwidth, 200–203
game-specific

parameters, 198
latency, 203–210

INDEX

262

networking capabilities, 199
overview, 198

ping time unity, 216
principles, 216
server reconciliation, 215
synchronous/asynchronous,

196–198
Network interface card (NIC), 9
Network library (NetLib)

binary serialization/
deserialization, 52

BinarySerializationWithNetLib
class, 50, 52

folder structure, 48
JsonExtensions file, 48
marshaling/unmarshaling

structs, 47
MyData class, 51
program output, 52
steps, 47
StructExtensions script file, 49
ToJsonBinary()/

FromJsonBinary()
methods, 52

O
Open systems interconnection

(OSI) model, 19, 20

P, Q
Peer-to-peer (P2P) network, 252,

254, 255

Physical network devices, 9–11
Port numbers, 18

R
Random Number Generator

(RNG), 197
Remote procedural calls (RPCs), 236
REpresentational State Transfer

(REST), see RESTful APIs
RESTful APIs

authorization/restrictions, 60, 61
GET, PUT, and DELETE, 56
JSON response, 57
low-level concepts, 55
requests, 57

data, 59
endpoint, 57
headers, 59
method, 58
POST/PUT/PATCH/DELETE

requests, 59
response, 60
UnityWebRequest class, 56

DownloadHandler, 67
FetchLogo script, 65
GameObject’s component, 65
Get() method, 61
isNetworkError and

isHttpError properties, 61
project creation, 64
SendWebRequest()

method, 63
unity logo, 64

Networking issues (cont.)

INDEX

263

UnityWebRequestTexture, 65
web page, 62, 63

URLs request, 56
weather application (see

Weather application)
Role-playing video game

connectionManager script
ConnectionPanelUI

variable, 232
external script editor, 231
online game, 234, 235
public field, 233
SpawnCharacter()

function, 234
StartHost function, 233
text editor, 232

game manager
button text, 230
canvas work, 230
join button, 231

high-level multiplayer
libraries, 221

MLAPI package
inspector window, 227, 228
network manager, 226, 227
package manager, 225
player movement, 229
programming, 225
UNet transport object, 226
updated inspector

panel, 229
prerequisites, 221
shooting game, 220
stories, 220

unity project/setting up
game level creation, 224
grass texture, 224
maze texture, 223
plane creation, 223
3D project, 222

S
Serialization

binary
BinarySerializationExample

class, 43
byte array creation, 46
garbage collection, 41
marshaling, 40
MyData.cs file, 41
program output, 45
PtrToStructure() method, 47
re-create object, 47
serialization/deserialization,

41
StructLayout attribute, 42
StructureToPtr() method, 46
ToBytes() method, 46

definition, 31
formats, 31
JSON, 32–40
NetLib folder, 47–53

Servers
clients, 249
dedicated

characteristics, 251
gaming process, 252

INDEX

264

headless server, 253, 254
shared server, 250

games, 249
LANs/WANs, 250
load balancer, 256–258
peer-to-peer, 254, 255
webserver, 249

Socket connections
accept, 96, 97
BeginAcceptSocket() method, 96
Connect() method, 96
establishment, 95
file descriptor paradigm, 94
Hello, World program

async sockets project, 106
output screen, 111
project creation, 105
StateObject script file, 107
TcpListenSocketBehaviour

script file, 107–109
TcpSocketAsyncBehaviour

script file, 109–111
network copier project

command-line parser,
114, 115

command-line tool, 112
Config class, 113
destination filename, 113
hierarchy, 112
Program.cs file, 121, 122
program steps, 123
project properties window,

123, 124

Receiver.cs file, 118–121
Sender.cs file, 116–118

receiving data
BeginReceive() method, 104
buffer properties, 103
IAsyncResult.AsyncState

property, 103
synchronous, 101–103

sending data
asynchronous, 99, 100
Send()/BeginSend()

method, 97
synchronous, 98

using() block, 95
Software load balancers, 258
Synchronization message (SYN), 92

T
Tic-Tac-Toe game

AppController class, 184–190
build settings window, 191–193
client-server model

BoardController class, 146
message queue, 147, 148
NetworkClient class, 147
script files, 167
serialization/deserialization,

150, 151
server, 149, 150
TicTacToeClient, 146
TicTacToeClientBehaviour

class, 144, 145
client-server version, 140

Servers (cont.)

INDEX

265

CreateClient() method, 189
FSM, 141
game architecture, 144
in-progress game, 139
messages

elements, 168–172
GameMessageEventArgs, 170
GameMessage script file, 169
GameSerialization script file,

170–172
MessageType

enumeration, 169
NetLib folder, 140
NetLib classes, 151–167
project hierarchy, 143, 144
server broadcasts, 142
server classes, 180–184
side-by-side windows, 192
start server/join/IP address

controls, 141
TicTacToeClient script file,

173–180
title screen, 141

Transport Control Protocol (TCP)
client-server connections, 93
connection-oriented protocol,

91–93
connection-oriented services, 6
Hello World

ClientStateObject script, 133
console output, 138
project hierarchy, 132

TcpClientAsyncBehaviour
class, 137, 138

TcpListenClientBehaviour
script, 134–136

unity project steps, 132
overview, 91
sequence and

acknowledgement
numbers, 91

socket (see Socket connections)
SYN/ACK sequence

numbers, 93
TcpClient connections

BeginAcceptTcpClient()
method, 130

BeginRead() method, 127
BeginWrite() method, 126
Client_Received

callback, 129
Hello World, 132–138
NetworkStream class, 125
reading data, 127–130
sending data, 126, 127
server connection, 125
sockets vs. TcpListener, 125
StateObject class, 128
TcpListener, 130, 131

U
Uniform Resource

Locator (URL), 56

INDEX

266

V
Virtual Private Networking (VPN)

service
data/identity, 241
intranet, 240
virtual tunneling, 241, 242

Virtual Private Servers (VPS), 251

W, X, Y, Z
Weather application

API keys link, 70
barebones project, 74
controller, 81, 82
FetchResults/

OpenWeatherMapAPI, 82
forecast endpoint, 73, 74
generic client

FetchResults.FetchData()
method, 88

FillDays() method, 88
OpenWeatherMapAPI

class, 87, 88
RestfulHelper class, 86–88

MonoBehaviour script, 80
OpenWeather home page, 68
project hierarchy, 75
registering API keys, 69, 70
serialization folder, 75
serialization classes

daily forecasting, 76
parent-child relationships, 77
ResponseContainer script, 79
ResponseItem class, 78
ResponseTemperature

class, 78
scripts/serialization

classes, 76
UnixTimeToDateTime()

function, 76
WeatherItem script, 77

sign-up page, 69
unity editor, 85
unity net book, 70
user interface, 70, 71
WeatherApp project, 71
weather-package.

unitypackage, 72
Wider Area Network (WAN), 10

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Networking Concepts
	Client-Server Model
	Connected vs. Connectionless Services
	Packets
	Connection-Oriented Service
	Connectionless-Oriented Service

	Physical Network Devices
	Network Addressing
	Media Access Control (MAC) Address
	IP Address
	Static IP Addresses
	Dynamic IP Addresses
	IP Address Format
	Address Classification

	Domain Name System

	Sockets and Ports
	What Is a Port Number?
	What Is a Socket?

	Open Systems Interconnection (OSI) Model
	Command-Line Tools
	Opening a Command Prompt
	Hostname
	Ping
	IP Configuration
	Address Resolution Protocol Cache
	Network Status
	Tracing the Route to the Server

	Summary

	Chapter 2: Serialization
	Serialization Basics
	JSON
	Simple JSON Serialization/Deserialization
	Binary Representation of a String

	Binary
	Simple Binary Serialization/Deserialization
	Creating a Byte Array from a Struct
	Re-Create an Object from a Byte Array

	The Network Library NetLib
	Summary

	Chapter 3: RESTful APIs
	What Is a RESTful API?
	RESTful Requests
	The Endpoint
	A Method
	The Headers
	The Data

	RESTful Responses
	Authentication and Restrictions

	The UnityWebRequest Class
	Fetching Text
	Fetching Images
	Creating the Project
	Fetching the Image
	Fetching Other Types

	The Weather Application
	Registering and Getting an API Key
	The User Interface
	Creating the Project
	Importing the weather-application.unitypackage

	The OpenWeather Daily Forecast Endpoint
	Fetching the Data
	Serialization Classes
	Calling the API
	The Controller: Final Wiring

	Running the Weather Application

	Generic RESTful API Client
	Summary

	Chapter 4: TCP Connections
	The TCP Three-Way Handshake
	TCP Client-Server Connections
	Socket Connections
	Establishing a Socket Connection
	Accepting a Socket Connection
	Sending Data
	Synchronous Send
	Asynchronous Send

	Receiving Data
	Synchronous Receive
	Asynchronous Receive

	Hello World Using TCP Sockets
	Simple Network Copier

	TcpClient Connections
	Sockets vs. TcpClient and TcpListener
	Connecting to a Server Using TcpClient
	Sending Data Using TcpClient
	Reading Data Using a TcpClient
	TcpListener: Accepting a TcpClient Connection

	Hello World Example Using TcpClient and TcpListener
	Tic-Tac-Toe
	Starter Files
	Getting Started

	The Game Architecture
	The Client
	The Client Events
	The TicTacToeClient
	NetworkClient
	The Message Queue

	The Server
	Serialization

	NetLib Classes
	MessageBuffer Class
	NetworkClient Class
	NetworkServer

	Client and Server Classes
	Messages
	Client Classes
	Server Classes
	AppController

	Running the Game

	Summary

	Chapter 5: Networking Issues
	Authoritative Servers
	Synchronous or Asynchronous
	Planning Multiplayer Games
	Game Lag
	Bandwidth
	How Bandwidth Works
	Bandwidth vs. Speed
	Why Bandwidth Is Important
	How to Measure Bandwidth
	Performance Factors
	Demand on Demand

	Latency
	What Causes Network Latency?
	Distribution Delay
	Delivery Delay
	Processing Delay
	Line Delay
	Speed of Light and Latency
	Last Mile Latency

	Client-Side Prediction and Server Reconciliation
	Client-Side Predictions
	Synchronization Issues

	Server Reconciliation
	Further Steps
	Getting Ping from Unity
	Summary

	Chapter 6: Develop a Maze Shooter
	Lobby
	Matchmaking
	Spawn/Respawn
	Spawn Point
	Introducing the RPG Game
	The Game’s Story
	Game Prerequisites
	Section 1: Creating the Project and Setting Up Unity
	Section 2: Downloading and Installing MLAPI
	Section 3: Programming with MLAPI
	Section 3.1 Adding a Network Manager
	Section 3.2
	Player Movement

	Section 3.3
	Section 3.4
	Joining the Game

	MLAPI Event Messaging
	Using Remote Procedural Calls (RPCs)
	Working with Bullets in Multiplayer Games

	Summary

	Chapter 7: LAN Networking
	How VPN Works
	What Is Hamachi?
	Using Hamachi
	LAN Party in Games
	Summary

	Chapter 8: Servers
	What Is a Server?
	Dedicated Servers
	Who Should Get a Dedicated Server?
	Dedicated Servers in Gaming
	Headless Server, AKA Listen Server

	Why a Headless Server?
	Headless Servers in Games
	Peer-to-Peer Networks
	Peer-to-Peer Networks in Games
	Benefits of a Peer-to-Peer Network
	Load Balancers
	Hardware-Based Load Balancers
	Software-Based Load Balancers

	Summary

	Index

