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Preface

In 1845 Edgar Allan Poe published a story titled “The Purloined Letter,” in which
a protagonist, Mr. C. Auguste Dupin, says the following:

The mathematics are the science of form and quantity; mathematical reasoning is
merely logic applied to observation upon form and quantity. The great error lies
in supposing that even the truths of what is called pure algebra, are abstract or
general truths. And this error is so egregious that I am confounded at the universality
with which it has been received. Mathematical axioms are not axioms of general
truth. What is true of relation — of form and quantity — is often grossly false in
regard to morals, for example. In this latter science it is very usually untrue that the
aggregated parts are equal to the whole. [. . . ] two motives, each of a given value,
have not, necessarily, a value when united, equal to the sum of their values apart.
There are numerous other mathematical truths which are only truths within the limits
of relation. But the mathematician argues, from his finite truths, through habit, as
if they were of an absolutely general applicability — as the world indeed imagines
them to be.

A safe reaction to this excerpt (especially in view of Mr. Dupin’s subsequent
remarks, omitted here) is that Mr. Dupin has a hopelessly approximate notion
of mathematics. However, his appellation to morals and motives provides an
opportunity for a more generous reaction, making Mr. Dupin’s tirade relevant to a
discussion of mathematical psychology. One could interpret this tirade as stating
that

D1 given two motives or moral ideas A and B that are combined in some well-
defined sense (e.g., co-occur chronologically),

D2 and assuming that each of them can be assigned a value represented by a real
number, a and b,

D3 and assuming that the combination of A and B can also be assigned a value c
that is a real number,

D4 and assuming that the combination of A and B is represented by the sum of
their individual values, a+ b,

D5 we observe empirically that the value c is not generally equal to a+ b;
D6 the contradiction between D4 and D5 shows that the laws of arithmetic do not

apply to motives and moral ideas.

vii
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viii Preface

Of course, the assumptions D1–D4 are hidden, they are not explicated by Mr.
Dupin. Nor would he stop to think about how he could know the truth of D5. Deny
any of the assumptions D1–D5, and Mr. Dupin will lose any grounds to blame
mathematics. For instance, if the assumption D4 is not made, then c does not have
to be equal to a + b, it can instead be ab or max (a,b), or perhaps a and b alone
do not determine c at all. Mathematics is perfectly fine with these possibilities.
Mathematics is also fine with the possibility that the assumptions D2 and D3 are
wrong, and the motives or moral ideas are not representable by anything that can
be subjected to conventional addition. Perhaps a and b are dimensioned numbers,
but their dimensionality is not the same (say, they are measured in “love units” and
“revenge units,” respectively).

Is there any useful lesson that can be derived from this admittedly too easy
critique of Mr. Dupin’s perorations? We think there is. The lesson is that
mathematics in psychology (or chemistry, or wherever else it is applied) is not
about adding, multiplying, or, generally, computing. It is primarily about striving
for conceptual clarity and avoiding conceptual confusions. Before we can compute,
we need to explicate the hidden assumptions we make, and often when we do this
we find out these assumptions are not all that compelling.

Take as an example the following piece of reasoning one can encounter in the
modern literature. In logic, the conjunction of two statements is commutative, A&B
is the same as B&A. However, we have empirical evidence that the chronological
order in which two statements are presented or evaluated does matter for one’s
judgment of the truth value (or probability) of their conjunction. Ergo, classical
logic (probability theory) is not applicable to human judgments. Let us see what is
involved in this reasoning.

L1 Assuming that if A is presented first and B is presented second, then their
combination is represented by A&B,

L2 whence, by symmetry, if A is presented second and B is presented first, their
combination is represented by B&A;

L3 and knowing from classical logic that A&B and B&A are equivalent,
L4 their truth value (or probability) M should be the same, M (A&B) = M (B&A).
L5 But empirical observations tell us this is not generally the case.
L6 Ergo, classical logic (classical probability) here does not work.

The reasoning here is definitely “Dupinesque.” Far from not being applicable,
formal logic, if applied correctly, would lead one to reject, by reductio ad
absurdum, the assumptions L1 and L2. Indeed, L3 and the implication L3→L4 are
unassailable, and we assume L5 truthfully describes empirical facts. The ways to
constructively deny L1 and L2 readily suggest themselves. One way is to introduce
a special, noncommutative operation A then B. Another way is to identify the
statements not only by their content but also by their chronological position in
the pair: a statement with content A, if presented first, is A1, when presented
second it is A2. So the rejected representations A&B and B&A in L1 and L2 are in
reality A1&B2 and A2&B1, respectively. The commutativity of the conjunction is
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Preface ix

perfectly preserved, e.g., A1&B2 ≡ B2&A1. But A1&B2 and A2&B1 are different
propositions, and one should generally expect that

M (A1&B2) �= M (A2&B1) ,

whatever M may be. One can further investigate which of the two solutions, the
introduction of A then B or the positional labeling, is preferable. Thus, if the truth
values of the statements A and B themselves, and not just of their conjunction,
depends on their chronological position, then the positional labeling clearly wins.

The quest for conceptual clarity and explication of hidden assumptions often
faces greater and subtler difficulties than in the examples above. The greater then
are the rewards ensuing from resolving these difficulties. Take as an illustration the
question of whether the ways we measure certain quantities constrain the way these
quantities can be related to each other. The historical context for this question is the
emergence in mathematical psychology in the second half of the twentieth century
of the line of research referred to as representational theory of measurement. It is
an unusual theory, in the sense that while it is a firmly established branch or part
of mathematical psychology, its aim is to formalize all empirical measurements,
across sciences, and even provide necessary conditions for all possible scientific
laws and regularities.

One of the tenets of this theory, widely accepted in modern psychology (and
in textbooks of elementary statistics), is that all entities we deal with, physical
or mental, are measured on specific scales, such as ordinal, interval, or ratio
scales. We need not get here into the details of the qualitative, or pre-numerical,
symmetries (automorphisms) postulated for the entities being measured. Suffice it
to mention that the scale type assigned to these entities is characterized by the class
(usually, a parametric group) of interchangeable mathematical representations, i.e.,
measurement functions, mapping the entities being measured into mathematical
objects, usually real numbers. Thus, if entities x ∈ X , say, stimulus intensity or
sensation magnitude values, are said to be measured on a ratio scale, it means that
the measurement functions for X map this set into intervals of real numbers, and
that if f and g are such measurement functions, then, for every x ∈ X ,

f (x) = kg (x) ,

for some positive constant k. R. Duncan Luce, arguably one of the two greatest
mathematical psychologists of the twentieth century (along with William K. Estes),
made use of the notion of a measurement scale to restrict theoretically the class
of possible psychophysical functions, those relating the magnitude of stimulus to
the magnitude of sensation it causes. Luce proposed this idea in a book entitled
Individual choice behavior (Luce, 1959a) and in a journal article (Luce, 1959b).
The idea is so attractive aesthetically that it deserves being reproduced here,
mutatis mutandis.

Let x = f (x) and s = ϕ (s) represent measurement functions for the
stimulus magnitude x and sensation magnitude s, respectively, and let the
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x Preface

psychophysical function relating s to x, written in terms of these specific
measurement functions, be

s = ψ (x) .

Assume that both x and s are of the ratio-scale type. Consider another admissible
measurement function for x:

x′ = kf (x) ,

for some k > 0. Then, Luce hypothesized, if one switches from x to x′, the
psychophysical function should be presentable as

s′ = ψ
(
x′
)
,

where

s′ = cϕ (s) ,

for some c > 0. That is, s′ is another admissible measurement function for s.
Put differently, the function ψ is invariant with respect to admissible changes of
the measurement function for x, provided that the measurement function for the
dependent variable s can also change to other measurement functions accordingly.
The last word, “accordingly,” means that the choice of the measurement function
for s generally depends on the choice of the measurement function for x, i.e.,

c = K (k) ,

for some function K.
The reasoning here is seductively plausible, and Luce thought that examples of

the well-established laws of physics confirmed its validity. Thus, Newton’s law of
gravitation is conventionally written as

F = γ
m1m2

r2
.

If we assume that everything on the right-hand side is fixed except for the distance
measurement function r, then augmenting this measurement function by the factor
of k = 10 would result in the same expression, except that the measurement
function F for force will have to be multiplied by c = k−2 = 1/100.

Having accepted Luce’s hypothesis (Luce called it a “principle of theory
construction”), we are led to a surprising conclusion: the psychophysical function
cannot be anything but a power function. What is surprising here is that this
conclusion is based on no empirical evidence, it is obtained deductively, by merely
assuming that the magnitudes of stimulus and sensation are of the ratio-scale type.
Indeed, the reasoning above translates into

ψ (kx) = ψ
(
x′
) = s′ = cs = cψ (x) = K (k) ψ (x) ,

whence, by eliminating all but the marginal terms, we get the functional equation

ψ (kx) = K (k) ψ (x) .
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Here, the values of x and k are positive, and the functions ψ and K are positive and
increasing. Since the functional equation holds for all positive k and all x on some
interval of positive reals, its only solution is known to be (Aczel, 1987)

ψ (x) = bxβ,K (k) = kβ,

for some positive b and β.
It looks like we have here an immaculate piece of deductive reasoning, with all

concepts rigorously defined and all assumptions explicated. However, what shall
we do with the fact that psychophysical laws of other forms have been proposed
too? Most notably, every psychologist knows of the logarithmic law proposed by
Gustav Theodor Fechner in 1861:

s = s0 log
x

x0
.

Here, x0 is the numerical representation of the absolute threshold magnitude
x0, one at which the numerical representation of s is zero, for all measurement
functions.

We can see that Fechner’s law does not violate any of Luce’s assumptions. Since
x and x0 are measured by the same measurement function, the value of

f (x)

f (x0)
= kx

kx0

is the same for all admissible f . The magnitude of the absolute lower threshold is
defined irrespective of the measurement function chosen for x, because so is
defined s = 0. Even if one denies the existence of absolute threshold as a
fixed constant, such operational definitions of x0 as “the value of x detected
with probability p” are independent of the measurement function for x. The
measurement function for the dependent variable s is chosen independently, which
formally translates into K (k) = 1. The value s0 is the numerical representation of
the value of s corresponding to the value of x at which log x

x0
= 1.

Since the logarithmic law is not the same as the power law, Luce must have made
a hidden assumption that Fechner’s derivation of his law violates. This hidden
assumption is not difficult to detect. It is the assumption that the dependence of s
on x ∈ X contains no parameters (constants with respect to x) that belong to the
same set X and are therefore represented by the same measurement function. Such
parameters are called measurement-dependent constants, or dimensional constants
in the case of ratio scales. An expression

s = s0ψ

(
x

x0

)
,

with dimensional constants x0 and s0, can hold for any positive increasing function
ψ . Using examples of physical laws, this was pointed out to Duncan Luce by
William W. Rozeboom in a 1962 article (Rozeboom, 1962). Being a true scientist,
Luce accepted this criticism and withdrew his “principle of theory construction”
(Luce, 1962). Interestingly, in the formulation of this principle, Luce did in fact
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mention dimensional constants: the form of the dependence ψ should be invariant,
he wrote, “except for the numerical values of parameters that reflect the effect
on the dependent variables of admissible transformations of the independent
variables.” This is precisely what dimensional constants are. Using Luce’s own
example of the universal gravitation law, in the formula

F = γ
m1m2

r2
,

if one uses the distance–time–mass–force system of units, changing the dimen-
sionality of mass or distance in no way leads to the change of the dimensionality
of force. Rather, the dimensional constant γ , whose dimensionality is

force · distance2 · mass−2,

changes its numerical value. In essence, γ is a coalesced form (using the expression
coined by Percy Williams Bridgman) of the “individual” dimensional constants in
the formula

F

F0
=

m1
m0

m2
m0(

r
r0

)2
.

The lesson we learn from the story of Duncan Luce’s “principle of theory
construction” is that hidden assumptions and lack of conceptual clarity due to the
failure to explicate them can be present even in very rigorous treatments. Moreover,
explication of these hidden assumptions, while resolving the issue at hand, leads
to new conceptual problems and opens new avenues of conceptual research. In our
example the new conceptual problems can be formulated thus:

P1 What is the nature of dimensional (more generally, measurement-
dependent) constants in empirical laws? Where do they come from?

P2 How do we know the scale type (the group of admissible measurement
functions) of a given entity? Is it imposed on the entity by the human
mind, or is it objectively present in it, to be uncovered?

These questions are at the foundations of all empirical science, and it is an
interesting historical fact that their development owes a great deal to mathematical
psychology (see, e.g., Dzhafarov, 1995; Falmagne & Doble, 2018; Narens, 2007).
This preface, of course, is not a place to discuss these questions in any detail.

About this Volume

This is the third, and concluding, volume of the New Handbook of Mathematical
Psychology. In the same way as the first two volumes, it offers a representative
sample of several branches of mathematical psychology. This volume focuses on
sensory and perceptual processing, learning and memory, and cognition.

Chapter 1, written by Brian Wandell and David Brainard, surveys low-level
encoding of visual information. Modern vision science is highly interdisciplinary,
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combining ideas from physics, biology, and psychology. In recent years, deductive
mathematics in vision science is often combined with computational modeling
to add realism to the mathematical formulations. Together, the mathematics and
computational tools provide a realistic estimate of the initial signals that the
brain analyzes to render visual judgments of various aspects of visual image,
such as motion, depth, and color. The chapter first traces the calculations from
the representation of the light signal, to how that signal is transformed by the
lens to the retinal image, and then how the image is converted into the cone
photoreceptor excitations. The central steps in the initial encoding rely heavily on
linear systems theory and the mathematics of signal-dependent noise. The chapter
describes computational methods used to understand how light is encoded by cone
excitations. The chapter also provides a mathematical formulation of the ideal
observer that uses all the encoded information to perform a visual discrimination
task, as well as Bayesian methods that combine prior information and sensory data
to estimate the light input. These tools help one to reason about what information
is present in the neural representation, what information is lost, and what types of
neural circuits could extract information to make judgments about a visual scene.

Chapter 2, by Adele Diederich and Hans Colonius, deals with the topic of
multisensory integration – that is, with the merging of the information provided by
different sensory modalities. This topic has been the subject of many competing
theories, often crossing boundaries between psychology and neuroscience. In
defining the somewhat fuzzy term of “multisensory integration,” it has been
observed that at least some kind of numerical measurement assessing the strength
of the crossmodal effects is always required. The focus of this chapter is on
measures of multisensory integration based on both behavioral and single-neuron
recording data: spike numbers, reaction time, frequency of correct or incorrect
responses in detection, recognition, and discrimination tasks. On the empirical
side, these measures typically serve to quantify effects on multisensory integration
of attention, learning, and such factors as age, certain disorders, developmental
conditions, training and rehabilitation. On the theoretical side, these measures
often help to quantify important characteristics of multisensory integration, such as
optimality in combining information or inverse effectiveness, without necessarily
subscribing to any specific model of the mechanisms of multisensory integration.

Ehtibar Dzhafarov and Hans Colonius present a systematic theory of generalized
(or universal) Fechnerian scaling in Chapter 3 that is based on the intuition
underlying Fechner’s original theory. This intuition is that subjective distances
among stimuli are computed by means of cumulating small discriminability values
between “neighboring” stimuli. A stimulus space is supposed to be endowed by a
dissimilarity function, computed from a discrimination probability function for any
pair of stimuli chosen in two distinct observation areas. On the most abstract level,
one considers all possible chains of stimuli leading from a stimulus a to a stimulus
b and back to a, and takes the infimum of the sums of the dissimilarities along these
chains to be the subjective distance between a and b. In arc-connected spaces,
the cumulation of dissimilarity values along all possible chains reduces to their
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cumulation along continuous paths, leading one to a fully fledged metric geometry.
In topologically Euclidean spaces, the cumulation along paths further reduces to
integration along smooth paths, and the geometry in question acquires the form of
a generalized Finsler geometry. The chapter also discusses such related issues as
Fechner’s original derivation of his logarithmic law, an observational version of
the sorites paradox, a generalized Floyd–Warshall algorithm for computing metric
distances from dissimilarities, an ultra-metric version of Fechnerian scaling, and
data-analytic applications of Fechnerian scaling.

Gregory Ashby, Matthew J. Crossley, and Jeffrey Inglis review mathematical
models of human learning in Chapter 4. Although learning was a key focus
during the early years of mathematical psychology, the cognitive revolution of
the 1960s caused the field to languish for several decades. Two breakthroughs
in neuroscience resurrected the field. The first was the discovery of long-term
potentiation and long-term depression, which served as promising models of
learning at the cellular level. The second was the discovery that humans have
multiple learning and memory systems that each require a qualitatively different
kind of model. Currently, the field is well represented at all of Marr’s three levels
of analysis. Descriptive and process models of human learning are dominated by
two different but converging approaches – one rooted in Bayesian statistics and one
based on popular machine-learning algorithms. Implementational models are in the
form of neural networks that mimic known neuroanatomy and account for learning
via biologically plausible models of synaptic plasticity. Models of all these types
are reviewed, and advantages and disadvantages of the different approaches are
considered.

Marc W. Howard’s Chapter 5 surveys formal models of memory. The idea that
memory behavior relies on a gradually changing internal state has a long history in
mathematical psychology. The chapter traces this line of thought from statistical
learning theory in the 1950s, through distributed memory models in the latter
part of the twentieth century and early part of the twenty-first century, through to
modern models based on a scale-invariant temporal history. The author discusses
the neural phenomena consistent with this form of representation and sketches the
kinds of cognitive models that can be constructed with its use, in connection with
formal models of various memory tasks.

In Chapter 6, Gregory Ashby and Michael Wenger review statistical decision
theory, which provides a general account of perceptual decision-making in a wide
variety of tasks that range from simple target detection to complete identification.
The fundamental assumptions are that all sensory representations are inherently
noisy and that every behavior, no matter how trivial, requires a decision. Statistical
decision theory is referred to as signal detection theory (SDT) when the stimuli
vary on only one sensory dimension, and as general recognition theory (GRT)
when the stimuli vary on two or more sensory dimensions. SDT and GRT are
both reviewed. The SDT review focuses on applications to the two-stimulus
identification task and multiple-look experiments, and on response-time extensions
of the model (e.g., the drift-diffusion model). The GRT review focuses on
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applications to identification and categorization experiments, and in the former
case, especially on experiments in which the stimuli are constructed by factorially
combining several levels of two stimulus dimensions. The basic GRT properties
of perceptual separability, decisional separability, perceptual independence, and
holism are described. In the case of identification experiments, the summary
statistics methods for testing perceptual interactions are described, and so is the
model-fitting approach. Response time and neuroscience extensions of GRT are
reviewed.

Chapter 7, written by Hans Colonius and Adele Diederich, deals with response
inhibition, which is an organism’s ability to suppress unwanted impulses, or
actions and responses that are no longer required or have become inappropriate.
In a stop-signal task experiment, participants perform a response time task (go
task), and occasionally the go stimulus is followed by a stop signal after a variable
delay, indicating subjects to withhold their response (stop task). The main interest
of modeling is in estimating the unobservable latency of the stopping process as
a characterization of the response inhibition mechanism. The authors analyze and
compare the underlying assumptions of different models, including parametric and
nonparametric versions of the race model. New model classes based on the concept
of copulas are introduced, and a number of unsolved problems facing all existing
models are pointed out.

In Chapter 8, written by Noah Thomas, Brandon M. Turner, and Trisha Van
Zandt, approximate Bayesian analysis is presented as the solution for complex
computational models where no explicit maximum likelihood estimation is possi-
ble. The activation-suppression race model (ASR), which does have a likelihood
amenable to Markov chain Monte Carlo methods, is used to demonstrate the
accuracy with which parameters can be estimated with the approximate Bayesian
methods.

The cognitive diagnosis models considered in Chapter 9 by Jimmy de la Torre
and Miguel A. Sorrel have their historical origins in the field of educational
measurement, as a psychometric tool to provide finer-grained information suitable
for formative assessment. Typically, but not necessarily, these models classify
examinees as masters and nonmasters on a set of binary attributes. The chapter
aims to provide a general overview of the original models and the extensions, and
methodological developments, that have been made in the last decade. The topics
covered in the chapter include model estimation, Q-matrix specification, model
fit evaluation, and procedures for gathering validity and reliability evidences. The
chapter ends with a discussion of future trends in the field.

Finally, Chapter 10, written by Fabian Soto and Gregory Ashby, reviews encod-
ing models in neuroimaging. This is the neuroimaging area closest to mathematical
psychology in which models of neuroimaging data are constructed by combining
assumptions about underlying neural processes with knowledge of the task and
the type of neuroimaging technique being used to produce equations that predict
values of the dependent variable that is measured at each recording site (e.g., the
fMRI BOLD response). Voxel-based encoding models include an encoding model
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that predicts how every hypothesized neural population responds to each stimulus,
and a measurement model that first transforms neural population responses into
aggregate neural activity and then into values of the dependent variable being
measured. Encoding models can be inverted to produce decoding schemes that
use the observed data to make predictions about what stimulus was presented on
each trial, thereby allowing unique tests of a mathematical model. Representational
similarity analysis is a multivariate method that provides unique tests of a model by
comparing its predicted similarity structures to similarity structures extracted from
neuroimaging data. Model-based fMRI is a set of methods that were developed
to test the validity of purely behavioral computational models against fMRI data.
Collectively, encoding methods provide useful and powerful new tests of models –
even purely cognitive models – that would have been considered fantasy just a few
decades ago.
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Only infrequently is it possible to subject the manifold phenomena of life to
simple and strict forms of mathematical treatment without forcing the data
and encountering contradiction, probably never without a certain abandonment
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2 b. wandell and d. brainard

of the immense multiplicity of details to which those phenomena owe their
aesthetic attractiveness. Nevertheless, however, it has often proved to be possible
and useful to establish, for wide fields of biological processes and organic
arrangements, comparatively simple mathematical formulas which, though they
are probably not applicable with absolute accuracy, nevertheless simulate to
a certain approximation a large number of phenomena. Such representations
not only offer preliminary orientation in a field that at first seems completely
incomprehensible, but they also often direct research into a correct course, in as
much as first an insight into those fundamental formulations is sought, and then
the deviations from their strict validity, which become apparent here and there, are
made the subject of special investigations. Among the fields of physiology which
have permitted the establishment of such guiding formulas the theory of visual
sensations and of color mixture assumes a particularly distinguished position.
(von Kries, 1902)

1.1 Introduction

Vision research has many purposes. Medical investigators aim to diagnose
and repair visual disorders ranging from optical focus to retinal dysfunction to
cortical lesions. Psychologists aim to identify and quantify the systematic rules
of perception, including models of visual sensitivity, image quality, and the laws
that predict percepts such as brightness, color, motion, size, and depth. Systems
neuroscientists seek to relate visual experience and performance to the neural
signals in the visual pathways, and computational investigators seek principles and
models of perceptual and neural processes. Image systems engineers ask how to
design sensors and processing to provide effective artificial vision systems.

Vision science draws upon findings from many fields, including biology,
computer science, electrical engineering, neuroscience, psychology, and physics.
Clear communication among people trained in different disciplines is not always
straightforward. One of the ways that vision science has flourished is by using the
language of mathematics to communicate core ideas. Vision science uses many
types of mathematics; here we describe methods that have been used for many
decades. These are certain linear methods, descriptions of noise distributions,
and Bayesian inference. Many other linear methods (e.g., principal components,
Fourier and Gabor bases, and independent components analysis) and nonlinear
methods (e.g., linear–nonlinear cascades, normalization, information theory, and
neural networks) can be found throughout the vision science literature. For this
chapter, we focus on a few core mathematical methods and the complementary
role of computation.

Physics – the field that quantifies the input to the visual system – provides
mathematical representations of the light signal and definitions of physical units.
The field of physiological optics quantifies the optical and biological properties
of the lens. These properties are summarized as a mathematical transformation
that maps the physical stimulus to the image focused on the retina, generally
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Principles and Consequences of the Initial Visual Encoding 3

referred to as the retinal image. At each retinal location the image is characterized
as the spectral irradiance (power per unit area as a function of wavelength).
Retinal anatomy and electrophysiology identify the properties of the rod and cone
photoreceptors, enabling us to calculate the photopigment excitations from the
retinal image using linear algebraic methods.

Perhaps the most famous use of mathematics in vision science is at the
intersection of physics and psychology: the laws of color matching formalize the
relationship between the physics of light and certain aspects of color appearance.
The mathematical principles of color matching are also deeply connected to
Thomas Young’s biological insight that there are only three types of cone
photopigment (Young, 1802). This insight implies a low-dimensional biological
encoding of the high-dimensional spectral light. The linear algebraic techniques
used to describe the laws of color matching were developed by the mathematician
Hermann Grassmann. Indeed, he developed vector spaces in part for this purpose
(Grassmann, 1853). The mathematics he introduced remains central to color
imaging technologies and throughout science and engineering.

While acknowledging the importance of mathematical foundations, it is also
important to recognize that there is much to be gained by building compu-
tational methods that account for specific system properties. The added value
of computations is clear in many different fields, not just vision science. The
laws of gravity are simple, but predicting the tides at a particular location on
earth is not done via analytic application of Newton’s formulas. Similarly, that
color vision is three-dimensional is a profound principle, yet precise stimulus
control requires accounting for many factors, such as variations of the inert
pigments across the retinal surface (CIE, 2007; Whitehead, Mares, & Danis,
2006) and the wavelength-dependent blur of chromatic aberration (Marimont &
Wandell, 1994). The mathematical principles guide, but we need detailed com-
putations to predict precisely how color matches vary from central to peripheral
vision.

We hope this chapter helps the reader value principles expressed by equations
and computations embodied in software. Establishing the principles first provides
a foundation for implementing accurate computations. Historically, our knowledge
about vision has been built up by developing principles, testing them against
experiments, and combining them with computation; this remains a useful and
important approach. Indeed, we believe the goal of vision science includes not only
producing models that account for performance and enable engineering advances,
but also leveraging those models to extract new principles that help us think about
how visual circuits work.

There are competing views: some would argue that large data sets combined
with analyses using machine learning provide the best way forward to under-
standing, and recent years have seen impressive engineering advances achieved
with this approach (D. D. Cox & Dean, 2014). We are certainly interested in
the performance of such models as a point of departure, but here we emphasize
principles and data-guided computational implementations of these principles.
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This chapter begins by describing the representation of the visual stimulus,
and how light rays in the scene pass through the optics of the eye and
arrive at the retina. Next, we explain how the retinal photoreceptors (a)
transform the retinal spectral irradiance into photoreceptor excitations, and (b)
spatially sample the retinal image. Each of these steps can be expressed by a
crisp mathematical formulation. To describe the real system with quantitative
precision, we implemented software that models specific features of the
scene, optics, and retina (ISETBio; Cottaris et al., 2019, 2020; https://github
.com/isetbio/isetbio/wiki), and we illustrate the use of these models in several
examples.

The frontiers of vision science use mathematics to understand visual percepts,
which provide a useful basis for thought and action. The information provided
by light-driven photopigment excitations is used to create these percepts, but
knowledge of the excitations alone falls far short of describing visual perception.
The brain makes inferences about the external world from the retinal encoding
of light, and throughout the history of vision science many investigators have
suggested that the role of neural computation is to implement the principles that
underlie these inferences. This point was emphasized as early as Helmholtz, who
wrote:

The general rule determining the ideas of vision that are formed whenever an
impression is made on the eye, is that such objects are always imagined as being
present in the field of vision as would have to be there in order to produce the same
impression on the nervous mechanism. (Helmholtz, 1866; English translation
Helmholtz, 1896)

Within psychology this idea is called unconscious inference, a phrase that
emphasizes that we are not aware of the neural processes that produce our
conscious experience, an idea that was important to Helmholtz. Perhaps more
important in this context is the principle that the percepts represent critical
properties of external objects in the field of view, such as depth, reflectance, shape,
and motion.

The mathematics of perceptual inference can take many forms, and in common
scientific practice the mathematics of inference depend on what is known about
the input signal. If the scene properties are not uniquely determined by the sensory
measurements, such as when only three spectral classes of cones sample the
spectral irradiance of the retinal image, probabilistic reasoning about the likely
state of the world is inevitable. In vision science, linear methods combined
with the mathematical tools of probabilistic inference are commonly used to
understand how the brain interprets the mosaic of photoreceptor excitations to
see objects, depth, and color. In the final part of this chapter we close the
loop between sensory measurements and perceptual inference by introducing the
mathematics of such inferences, focusing on two specific examples relevant to the
study of the initial visual encoding. The principles we introduce, however, apply
generally.
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1.2 Scene to Retinal Image

1.2.1 Light Field

Light is the most important visual stimulus.1 The word light means the electromag-
netic radiation that is visible to the human eye.2 The mathematical representation
of light has been developed over many centuries through a series of famous
experiments, and these experiments provide several different ways to think about
light. Many properties of how light is encoded by the eye can be understood by
treating light as comprising rays of many different wavelengths.

In a passage in his 1509 notebook (Da Vinci, 1970), Leonardo da Vinci noted
that an illuminated scene is filled with rays that travel in all directions.3 As
evidence, he described a pinhole camera (camera obscura) made by placing a small
hole in a wall of a windowless room (Figure 1.1). The wall is adjacent to a brightly
illuminated piazza; an image of the piazza (inverted) appears on a wall within the
room. Leonardo noted that an image is formed wherever the pinhole is placed, and
he concluded that the rays needed to form an image must be present at all of these

Figure 1.1 Light field geometry. The complete set of rays in the environment
is the light field. The rays that arrive at the imaging system, in this figure a
large pinhole camera, are the incident light field. If the imaging system includes
a lens, rather than just a pinhole, the incident light field is described by the
positions and angles of the rays at the lens aperture. Figure reproduced from
Ayscough (1755).

1 Mechanical force on the retina (pressure phosphenes) and injecting current into the retina or brain
(electrical phosphenes) can also cause a visual sensation.

2 www.merriam-webster.com/dictionary/light
3 From the section prove how all objects, placed in one position, are all everywhere.
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6 b. wandell and d. brainard

positions. Leonardo compared the space-filling light rays to the traveling waves
that arise after dropping a rock in a pond.

The Russian physicist, Andrey Gershun, provided a mathematical representation
of the geometry of these rays, which he called the light field (Gershun, 1939). The
mathematical representation of the light field quantifies the properties of the light
rays at each position in space [Equation (1.1)]. Each ray travels from a location
(x,y,z) in a direction (α,β) and has a wavelength and polarization (λ,ρ). To know
these parameters and the intensity of every ray is to know the light field at a given
moment in time:

LF(x,y,z,α,β,λ,ρ). (1.1)

The light field representation does not capture some phenomena of electro-
magnetic radiation such as interference (waves) or the Poisson character of light
(photon) absorption by the photoreceptors. Even so, the light field representation
provides an excellent model to describe the ways in which light interacts with
surfaces, and the geometric description of the light field is important in the
mathematics of computer graphics, a technology that is important for illumination
engineering, photography, and cinema (Pharr, Jakob, & Humphreys, 2016; Wald
et al., 2003, 2006).

1.2.2 The Incident Light Field

An eye – or a camera – records a small subset of the light field, those rays arriving
at the pupil or entrance aperture. We call these the incident light field. In Figure 1.1
the dashed and solid lines are the light field and the solid lines are the incident light
field. The natural parameterization of the incident light differs from the general
light field. We can represent the incident light field using only the position (u,v)
and angle (α,β) of the rays at the entrance aperture of the imaging system:

ILF(u,v,α,β,λ,ρ,t). (1.2)

Equation (1.2) also represents time (t) explicitly, which allows it to describe effects
of motion both in the scene and by the eye.

1.2.3 Spectral Irradiance and the Plenoptic Function

The eye and most cameras do not measure the full incident light field. Rather,
the rays are focused to an image at the retina or sensor, and the photodetectors
respond to the sum across all directions of the image rays. To be explicit about this,
Adelson and Bergen (1991) introduced the term plenoptic function, a simplified
version of the incident light field, that was chosen to guide thinking about the
computations carried out in the human visual pathways [their Equation (2)]. First,
they approximated the eye as a pinhole camera; with this approximation all rays
have the same entrance position p. Additionally, the retina/sensor surface defines
the direction (d) of the rays that pass through the pinhole. For the pinhole case,
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specifying two angles of a ray at the pinhole is equivalent to specifying the location
where a ray will intersect the retina/sensor surface, (rx,ry). Finally, Adelson and
Bergen ignored polarization as unimportant for human perception. With these
restrictions, the plenoptic function for human vision is simply the retinal spectral
irradiance, over time (t):

E(rx,ry,λ,t;p,d). (1.3)

In Equation (1.3) we have explicitly reintroduced position and direction, but these
are often implicit [as in the formulation of Equation (1.2) above]. Understanding
the progression from light field to incident light field to retinal spectral irradiance
is useful for understanding how the information available for visual processing
relates to the complete set of potential information that could be sensed by a visual
system.

Adelson and Bergen note that by placing the pinhole at many different positions
and viewing directions, we can estimate the full light field from the set of spectral
irradiances. It is possible to be more efficient and estimate the incident light
field by using a lens, rather than a pinhole, inserting a microlens array over
the photodetector array and placing multiple detectors behind each microlens.
Both cameras and microscopes have employed this technology to support depth
estimation (Adelson & Wang, 1992) and control focus and depth of field in post-
processing (Ng et al., 2005). Cameras that estimate the full incident light field
are not currently in wide use (Wikipedia contributors, 2021); but, the widely used
dual pixel autofocus technology obtains a coarse measure of the incident light
field (Canon U.S.A., Inc., 2017; Mlinar, 2016). This is accomplished by inserting
a microlens array over pairs of photodetectors. With this design rays from, say,
the left and right sides of the lens are captured by adjacent detectors. This coarse
estimate of the light field is useful for setting the lens focus and estimating depth.

1.2.4 The Initial Visual Encoding

Computational models of the early visual pathways define a series of transfor-
mations that characterize how the incident light field becomes a neural response.
In this chapter, we introduce the mathematics used to characterize the initial
visual encoding in the context of the first few of these transformations (Figure 1.2;
see also Brainard & Stockman, 2010; Packer & Williams, 2003; Rodieck, 1998;
Wandell, 1995). We focus on the encoding of the spectral radiance by the
photoreceptors – subsequent neural processing operates on this visual encoding.

A visual scene’s light field is generated by the properties and locations of the
light sources and objects, and how the rays from the light sources are absorbed
and reflected by the objects. Here we consider the special case of scenes presented
on a flat display, so that in the idealized case where the display is the only object
and there are no other light sources, the full light field is determined just by the
spectral radiance emitted at each location of the display. Elsewhere, we consider
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Figure 1.2 The initial encoding of light by the visual system. Scene: An image
on a display surface is characterized by the spectral radiance at each display
location. Images of the display spectral radiance are shown at a few sample
wavelengths, along with a rendering of the image. Optics: The incident light
field enters the pupil of the eye and a spectral irradiance image is formed on
the retina. The retinal image is blurred relative to the displayed image, and
the spectral irradiance is affected by lens and macular pigment absorptions.
Cone mosaic: The retinal image is spatially sampled by the L-, M-, and
S-cone mosaics. Cone excitations: The retinal image irradiance, spectrally
weighted by each cone photopigment absorptance function, is integrated within
the cone’s aperture and temporally integrated over the exposure duration to
produce a pattern of cone excitations. This figure should be viewed in color.
The color version is available at https:/ /color.psych.upenn.edu/supplements/
earlyencoding/computationsColorFig.pdf . We thank Nicolas Cottaris for the
figure.

the more general case of modeling the formation of the retinal spectral irradiance,
given a description of the light sources and objects in a three-dimensional scene
(Lian et al., 2019).

The optics of the eye collect the incident light field and focus the rays to
produce the spectral irradiance arriving at the retina. Factors such as diffraction
and aberrations in the eyes optics mean that this image is blurred relative to the
displayed image. In addition, wavelength-selective absorption of short-wavelength
light by the lens and inert macular pigment also affect the spectral irradiance. Of
note (but not illustrated in Figure 1.2), the density of the macular pigment is high
in the central area of the retina and falls off rapidly with increasing eccentricity.

Photoreceptors spatially sample the retinal image. Excitations of photopigment
molecules in these photoreceptors provide the information available to the visual
system for making perceptual inferences about the scene. Here we consider the
cone photoreceptors, which operate at light levels typical of daylight. There are
three spectral classes of cones, each characterized by its own spectral sensitivity.
That there are three classes leads to the trichromatic nature of human color
vision. Figure 1.2 illustrates a patch of cone mosaic from the central region of
the human retina. The properties of the mosaic are quite interesting. For example,
there are no S-cones in the very center of the retina, and many properties of the
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mosaic (e.g., cone density, cone size, cone photopigment optical density) vary
systematically with eccentricity (Brainard, 2015; Hofer & Williams, 2014).

Not considered here is a separate mosaic of highly sensitive rod photoreceptors
that is interleaved with the cone mosaic. The rods mediate human vision at
low light levels (Rodieck, 1998). We also ignore the melanopsin containing
intrinsically sensitive retinal ganglion cells (Gamlin et al., 2007; Hattar et al.,
2002; Van Gelder & Buhr, 2016). The principles we develop, however, also apply
to modeling the excitations of these receptors.

Modeling of the initial visual encoding is well understood, and we explain the
key linear systems principles next, using a simplified representation of the light
stimulus. Advanced modeling of the subsequent neural processes includes non-
linearities; the mathematical principles and computational methods we introduce
are a fundamental part of the full description. After explaining the mathematical
principles, we illustrate how to extend them through computational modeling that
harnesses the power of computers to characterize biological reality in more detail
than is possible with analytic calculations alone.

1.3 Mathematical Principles

1.3.1 Linear Systems

Linear systems and the tools of linear algebra are the most important mathematical
methods used in vision science. Indeed, when trying to characterize a system,
the scientist’s and engineer’s first hope is that the system can be approximated
as linear. A system, L, is linear if it follows the superposition rule:

L(x+ y) = L(x)+ L(y). (1.4)

Here x and y are two possible inputs to the system and x + y represents
their superposition. The homogeneity rule of linear systems follows from the
superposition rule. Consider that

L(x+ x) = L(2x)

= L(x)+ L(x)

= 2L(x).

This is easily generalized for any integer m to show that:4

L(mx) = mL(x). (1.5)

4 It is an exercise for the reader to show that a system that follows the superposition rule also obeys the
homogeneity rule, not just for integers, but for any real scalar. If x is a real-valued scalar, homogeneity
also implies superposition. When x is a real-valued vector with entries xn, however, a system can
obey homogeneity but not superposition. For example, f (x) = 3

√∑
x3

n satisfies homogeneity but not
superposition. The reader may find it of interest to consider why we used an exponent of three rather
than two for this example.
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No physical system can be linear over an infinite range – if you put enough
energy into a system it will blow up! But many systems are linear over a
meaningful range of input values.

1.3.2 Linearity Example: Cone Excitations and Color Matching

Vision is initiated when a photopigment molecule absorbs a photon of light.
The absorption can cause the photopigment, a protein, to change conformation,
an event we refer to as a photopigment excitation. The excitation initiates a
molecular cascade inside the photoreceptor that changes the ionic currents at
the photoreceptor membrane. The change in current modulates the voltage at the
photoreceptor synapse and causes a release of neurotransmitter (Rodieck, 1998).

The transformation from the spectral energy of light, E(λ), incident upon a
cone to the number of photopigment excitations, n, produced by that light is an
important, early vision, linear system. Consider two different spectra, denoted by
E1(λ) and E2(λ). Let L represent the system that describes the transformation
between spectra and excitations. This system obeys the superposition rule:

L(E1 + E2) = L(E1)+ L(E2). (1.6)

This linearity holds well over a wide range of light levels typical of daylight natural
environments (Burns et al., 1987).

An important feature of photopigment excitations is that their effect on the
membrane current and transmitter release does not differ with the wavelength
of the exciting photon. Such differences might have existed because different
wavelengths are preferentially absorbed at different locations within the cone outer
segment, or because photons of different wavelengths carry different amounts of
energy. The observation that all excitations have the same impact is called the
Principle of Univariance. As Rushton wrote:

The output of a receptor depends upon its quantum catch, but not upon what
quanta are caught. (Rushton, 1972)

The color-typical human retina contains three distinct classes of cones, which
are referred to as the L (long-wavelength sensitive), M (middle-wavelength
sensitive), and S (short-wavelength sensitive) cones. While the effects of pho-
topigment excitations are univariant, the probability of a photopigment excitation
is wavelength-dependent. The wavelength-dependent probability that an incident
photon leads to an excitation is characterized by the pigment’s spectral absorp-
tance.5 The absorptance depends on the density of the photopigment within the

5 The absorptance spectrum is the probability that a photon is absorbed. Not all absorbed photons lead
to an excitation, so an additional factor specifying the quantal efficiency (probability of excitation
given absorption) needs to be included in the calculation. Current estimates put the quantal efficiency
of human cone photopigment near 67%. In addition, the calculation of cone excitations from spectral
irradiance requires taking into account the size of the cone’s light-collecting aperture.
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cone’s outer segment, as well as on the outer segment length; details are elaborated
elsewhere (Rodieck, 1998; see also Packer & Williams, 2003; Pugh, 1988).

It is difficult to measure the light at the retinal surface in the living eye, but it
is straightforward to measure the light incident at the cornea. Hence, it is typical
to specify the absorptance with respect to the spectrum of the light incident at
the cornea. This convention effectively combines the effects of the lens, the inert
retinal macular pigment, the photopigment absorptance, and quantal efficiency.
For simplicity, vision scientists call the cornea-referred spectral excitation curve
the cone fundamental.

The three (L-, M-, and S-) cone fundamentals define for each cone type
the probability of excitation given the spectrum of light entering the eye.
The human cone fundamentals have been carefully measured and tabulated
(Figure 1.3; Stockman & Sharpe, 2000; Stockman, Sharpe, & Fach, 1999; www
.cvrl.org) and are the subject of an international standard (CIE, 2007).
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Figure 1.3 Human cone fundamentals. The left panel shows estimates of the
L-, M-, and S-cone fundamentals for foveal viewing. The fundamentals are
the probability of excitation per photon entering the cone’s entrance aperture,
but with pre-retinal absorption taken into account. Note the large difference
between the L- and M-cone fundamentals compared to the S-cone fundamental.
This difference is due partly to the selective absorption of short-wavelength
light by the lens and macular pigment. The right panel shows estimates for
cones at 10◦ eccentricity. The S-cone fundamental is relatively higher at 10◦,
because there is little or no macular pigment at that eccentricity; and for the
same reason there is a slight change in the relative values of the L- and M-
cone fundamentals. In addition, the cone outer segment lengths decrease with
eccentricity, leading to the lower peak probability of excitation in the periphery.
This reduction, however, is more than compensated for by an increase in the size
of the cone apertures with eccentricity. The impact of the aperture is not shown
in these plots, but see Figure 1.4.
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To compute the number of cone excitations we use linear formulas. Suppose
that a cone’s fundamental is given by C(λ). Using linearity and continuous
mathematics, we compute the number of excitations at a single location as

N(rx,ry) =
∫

C(λ)E(rx,ry,λ)dλ. (1.7)

The discrete form of this integral, commonly used in computational methods,
is the inner product of the cone fundamental with the cornea-referred spectral
irradiance incident upon a retinal location:6

N(rx,ry) =
∑
λi

C(λi)E(rx,ry,λi)	λ. (1.8)

Here the λi are a set of w discretely sampled wavelengths, and 	λ is the
wavelength sample spacing.

1.3.3 Matrix Formulation of Linearity

We can calculate cone excitations by a matrix multiplication. The matrix C
combines the three discretized cone fundamentals CL(λi), CM(λi), and CS(λi) into
its rows, so that its dimension is 3×w. Similarly, we write the spectral irradiance at
a position, E(rx,ry,λ), as a w×1 vector e(rx,ry). The L-, M-, and S-cone excitations
available at a retinal location are described by a three-dimensional column vector:

n(rx,ry) = Ce(rx,ry). (1.9)

The vector field n(rx,ry) describes the potential information available to the visual
system from the cones at a moment in time. This representation replaces the
dependence of the spectral irradiance on wavelength with the excitations of the
three classes of cones. As we describe in more detail below, not all of this potential
information is sensed by the visual system, since the cones discretely sample
n(rx,ry).

It is worth reflecting on the implication of the linearity expressed by Equation
(1.9). If we measure the cone fundamentals at each of the sample wavelengths
λi, we can predict the cone excitations to any spectrum E(rx,ry,λi). Thus, linearity
implies that we can compute the system response to any input after making enough
measurements to determine the system matrix C. The ability to delineate the set
of measurements required for complete system characterization is an important
consequence of linearity, and this observation applies to linear systems in general,
not just to computation of cone excitations.

A second implication of Equation (1.9) concerns which spectral radiances
appear to be the same; these pairs are called metamers. Young (1802) had proposed
that metamers arise if two lights produce the same set of cone excitations. This

6 In this formulation, we do not make the spatial extent of the cone acceptance aperture explicit. This
aperture introduces additional blur into the retinal image. Computational models (see Figure 1.7)
account for this factor; it is significant.
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implies that the difference between a metameric pair is in the null space of the
matrix, C.7 That is, e1 and e2 must satisfy

Ce1 = Ce2

0 = C(e2 − e1). (1.10)

Wyszecki (1958; see also Wyszecki & Stiles, 1982) referred to vectors in the null
space of C as metameric black spectra. Adding a nonzero metameric black to any
spectrum produces a metamer.

Displays and printers do not reproduce the original physical stimulus; rather,
they create lights designed to be metamers to the original. Thus, calculating
metamers is central to color reproduction technologies. Practical aspects of the
computation of metamers for color reproduction applications, including limitations
based on the spectra a device can produce, are discussed in detail elsewhere
(Brainard & Stockman, 2010; Hunt, 2004).

1.3.4 Color-Matching Functions

James Clerk Maxwell (1860) was the first to measure pairs of spectral irradiance
functions, e1 and e2, that appear the same to humans despite being physically
different. These data place constraints on estimates of the matrix C, but do not
uniquely determine it. To understand why, note that the null space of C is the same
as the null space of T = MC, for any invertible 3 × 3 matrix M. Thus, any such
matrix T predicts the same set of matches.

The rows of T, when viewed as functions of wavelength, are referred to as
a set of color-matching functions. We say that the color-matching functions are
only unique up to a linear transformation. The technology for creating metamers
relies on color-matching functions which were chosen as an international standard
(CIE, 1986, 2007). How color-matching functions may be obtained directly from
perceptual color-matching experiments, without explicit reference to the cone
fundamentals, is treated in many sources (Brainard & Stockman, 2010; Wandell,
1995; Wyszecki & Stiles, 1982). Indeed, high-quality measurements of behavioral
color matching (e.g., Stiles & Burch, 1959) provide key data that constrain modern
estimates of human cone fundamentals.

There are a number of properties of the eye that must be modeled if we are to
compute a true estimate of cone mosaic excitations. For example, only one type
of cone is present at each position, so we must specify a cone spatial sampling
scheme. That is the reason that we use the term potential information to describe
cone excitations n(rx,ry) as a function of retinal location – not all of that informa-
tion is sampled by the cone mosaic. Also, as noted above, the density of both inert
pigments and photopigments varies with retinal location, as does the size of the

7 The null space of a matrix C is the space of vectors v such that Cv = 0. If a matrix has column
dimension n and rank r, its null space has dimension n− r.
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cone apertures. Enough is known about these properties to enable us to compute a
reasonable approximation to the cone mosaic excitations across the retina.

1.3.5 Noise in the Sensory Measurements

Measurement noise is fundamental in the physical sciences and engineering. Two
types of noise are used throughout the sensory sciences: Gaussian (normal) noise
and Poisson noise. Gaussian noise has two parameters (a mean and variance)
but the Poisson distribution has a single parameter (the Poisson mean equals its
variance). The formulas for the Gaussian density function and Poisson probability
mass function, along with example draws from these distributions, are provided in
Figure 1.4.

The Gaussian and Poisson distributions can be compared by setting the Gaussian
mean equal to its variance. For small values, the Gaussian has values below
zero. As the Poisson mean increases, the matched Gaussian is extremely similar
(Figure 1.4).

There is an important conceptual difference between how these noise distribu-
tions are used in applications. There are many theorems about additive Gaussian
noise, and thus it is common to introduce noise in a model with such noise
using a fixed mean (μ) and standard deviation (σ ). The added noise has the same
distribution for all values of the signal (signal-independent noise).

For typical sensor measurements, including the cone excitations, the noise
depends on the signal. Specifically, for the cones and many other measurement
devices, the noise is Poisson distributed, with the Poisson parameter equal
to the mean number of excitations (signal-dependent noise). The difference
between signal-independent and signal-dependent noise can be quite significant
(Figure 1.4).

1.3.6 Image Formation

The linear system principles described for one-dimensional spectral functions can
be extended to two-dimensional functions, such as images. We use linear system
methods to analyze how the cornea and lens form the retinal image. An important,
but simple, case occurs for an image confined to a plane, such as a visual display or
an optometrist’s eye chart. For such images we can estimate the spectral irradiance
at the cone apertures using a two-dimensional linear system computation.

The image emitted from a visual display is a function of position (x,y) and
wavelength λ. As a first approximation, the display emits the same density of
rays over a wide angle, which is why the display appears to be approximately
the same when seen from different positions. The image from the display is called
the spectral radiance, I(x,y,λ), and it has units of W/sr/m2/nm.

The spectral irradiance at the retina, E(rx,ry,λ), is formed from the cone of rays
that are captured by the pupil. In this case, rx and ry specify retinal location and
the units of the image are those of spectral irradiance, W/m2/nm, which result from
integration over the solid angle of the pupil.
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Figure 1.4 The number of cone excitations is inescapably noisy, following a
signal-dependent Poisson distribution. (Top) For mean values greater than 10,
the Poisson distribution is reasonably approximated by a Gaussian distribution
with a mean equal to the variance. For smaller values, it is necessary to clip
the negative values for the Gaussian to achieve a good approximation. Low
excitation rates are common under low-light conditions and for nearly all
conditions when assessing the S-cones and rods (Baylor et al., 1979; Hecht,
Schlaer, & Pirenne, 1942). (Bottom) The signal-dependent nature of Poisson
noise is important; simply adding Gaussian noise with a fixed mean is not a
good approximation if there is a substantial range in the mean excitation values.
The images illustrate the excitations in response to a series of bars spanning a
large range of mean excitation using a signal-independent clipped Gaussian
noise (left) and a Poisson noise (right). The Gaussian distribution added to
the signal has zero mean and variance equal to the number of excitations in
the brightest bar (arrows); this approximates Poisson noise for that bar. The
inset trace, which shows excitations across a row of the image, illustrates that
the Gaussian noise is too large for the dark bars. Had the variance been set to
match the noise at the dark bar, the clipped Gaussian would be too small for the
brightest bar. The simulation was created for an array of M-cones in the central
fovea, a 2 ms exposure duration, achromatic bars of increasing intensity, and
a bright bar luminance of 300 cd/m2. This figure should be viewed in color.
The color version is available at https:/ /color.psych.upenn.edu/supplements/
earlyencoding/noiseColorFig.pdf .
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The key linear system idea [Equation (1.6)] holds for retinal image formation
(Wandell, 1995). If two input images, I1(x,y,λ) and I2(x,y,λ), produce two retinal
images, E1(rx,ry,λ) and E2(rx,ry,λ), then the superposition of the input images,
I1(x,y,λ) = I1(x,y,λ)+I2(x,y,λ), produces the superposition of the retinal images:

E(rx,ry,λ) = E1(rx,ry,λ)+ E2(rx,ry,λ). (1.11)

It follows that if the input image is the weighted sum of two input images,
I(x,y,λ) = αI1(x,y,λ)+ βI2(x,y,λ), the output retinal image will be the weighted
sum of the two corresponding retinal images:

E(rx,ry,λ) = αE1(rx,ry,λ)+ βE2(rx,ry,λ). (1.12)

As noted above, an important consequence of linearity is that it tells us how to
generalize. When we know the response to an image Ik, measuring the response
to a second image, Ij, enables us to predict the responses to an entire class of new
images, all images of the form αIk + βIj.

1.3.7 Shift-Invariance and Convolution

To characterize color matching we used the fact that a discrete linear system may
be expressed as a matrix multiplication [Equation (1.9)]. A matrix can also be used
to express retinal image formation, but in this case the number of measurements
required to determine the requisite matrix is very large. For this reason, we consider
an additional special and simplifying property linear systems can have: shift-
invariance. These are linear systems such that shifting the position of the input
correspondingly shifts the position of the output, without changing its form.8 It is
possible to measure whether a system is shift-invariant by a simple experiment.
For an input image, say I(x,y,λ), measure the retinal image E(rx,ry,λ). Then shift
the input, I(x−δx,y−δy,λ), and measure the retinal image again. If for all choices
of (δx,δy) in the image domain, the output is shifted equivalently, E(rx − δrx,ry −
δry,λ) in the retinal image domain, then the system is shift-invariant. Here the
retinal image shifts (δrx,δry) differ from their image counterparts (δx,δy) by the
factor that converts the positional units of the image to those of the retinal image.

We can express linearity and shift-invariance using the convolution formula.
For simplicity, we choose one wavelength and suppress λ. Suppose P(rx,ry) is the
retinal image from an image that is just a single point. The image P(rx,ry) plays
a central role in the characterization of convolutional optical systems: it is called
the point spread function.9 The point spread function is all we need to compute the
retinal image for any input image. The idea is to treat the input image as a set of
points, and to add shifted copies of the point spread function, each weighted by the
input image intensity:

8 When describing optics, a shift-invariant region within the visual field is called an isoplanatic region.
9 The point spread function is the spatial analog of the impulse response function used to characterize

time-invariant linear systems.
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E(rx,ry) =
∫

u

∫
v

I(u,v)P(rx − u,ry − v)dudv. (1.13)

The importance of linear shift-invariance is that we characterize the system
fully by one measurement, P(rx,ry). We use the convolution formula and this
measurement to compute the responses of a linear shift-invariant system to any
input.

While shift-invariance and convolution are important concepts, the eye’s optics
deviate significantly from this ideal. Shift-invariance is a good approximation
of human retinal image formation in local regions, say spanning a few degrees
of visual angle and a change in wavelength of 20–50 nm. Properties of the
photoreceptor sampling mosaic further limit the accuracy of the shift-invariant
approximation of the visual encoding (see Figure 1.6). Thus the convolutional
approximation is helpful for thinking about encoding over small regions, but it
is not an accurate depiction when one considers a larger field of view. A realistic
approximation requires computational modeling.

1.4 Computational Model of the Initial Encoding

The mathematical principles described above tell us how to compute
the retinal image and the noisy cone excitations from a displayed image; the
calculations are straightforward for a single retinal location. But an accurate
model of the visual system must account for variations in the optics, pigments,
and sampling properties of the cone mosaic with visual field location. These are
substantial and impact the information available to the brain for making perceptual
inferences about the visual scene. Parameters with significant spatial variation
across the visual field include the optical point spread function, density and size
of the cones in the mosaic, the distribution of different cone types within the
overall mosaic, and the cone fundamentals. To make a realistic calculation requires
implementing a computational model of the visual transformations.

1.4.1 The Value of Computational Modeling

Carefully validated computer simulation of the initial visual encoding has the
potential to support advances in understanding many aspects of visual function. We
use image-computable models to build upon the mathematical characterizations –
earned through 400 years of experimental and theoretical work in vision science –
and estimate the initial visual signals. Such knowledge is an essential foundation
to use when modeling less well understood visual processes. The models help us
separate effects attributable to known factors of the initial encoding from effects
of factors that arise in later processing. For example, understanding cortical visual
processing requires representing the input to the cortex. Without accurate modeling
of the input, we risk attributing features of the cortical signals to the wrong neural
mechanisms.

https://doi.org/10.1017/9781108902724.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.002


18 b. wandell and d. brainard

Because of the central role computational modeling plays in understanding
vision, we have invested in developing a set of freely available software tools to
model retinal image formation and cone excitations (Image Systems Engineering
Tools for Biology – ISETBio; https://github.com/isetbio/isetbio.git; Cottaris et al.,
2019, 2020). The tools can be used for images presented on planar displays and
for full three-dimensional descriptions of the objects and light sources in the
scene (Image Systems Engineering Tools 3D; https://github.com/iset/iset3d.git;
Lian et al., 2019). In this section we briefly illustrate some basic calculations
enabled by ISETBio. We are not advocating for our implementation in particular,
but we do believe that the field needs to develop trusted open-science tools for
computational modeling.

1.4.2 Shift-Varying and Wavelength-Dependent Point Spreads

The point spread functions from a single subject, measured at different retinal
locations and wavelengths, differ significantly (Figure 1.5). The variation with
retinal location occurs because the optical aberrations depend on the direction of
the rays incident at the retina. The ISETBio tools can explicitly represent the full

Figure 1.5 The human point spread function. The images in the top row show
the point spread functions at 550 nm from a typical subject measured at three
different visual eccentricities. The point spread increases with eccentricity. The
bottom images show the point spread but for light at 450 nm. The human eye
cannot focus these two wavelengths at the same time because the index of
refraction in the lens and cornea is wavelength-dependent. For many people,
chromatic aberration is the largest aberration. A diagram showing simple ways
to estimate degrees of visual angle is available from Branwyn (2016).

https://doi.org/10.1017/9781108902724.002 Published online by Cambridge University Press

https://github.com/isetbio/isetbio.git
https://github.com/iset/iset3d.git
https://doi.org/10.1017/9781108902724.002


Principles and Consequences of the Initial Visual Encoding 19

incident light field and calculate these effects from a model eye (Lian et al., 2019).
Improvement of eye models is an active area of investigation, and in some cases
ISETBio relies on empirical measurements of the eye’s optics to predict responses
over a range of retinal field locations (Jaeken & Artal, 2012; Polans et al., 2015).

The point spread function varies with pupil diameter and wavelength in addition
to visual field position. The dependence on pupil diameter, which varies with the
light level of the scene, occurs for two reasons. As the pupil opens, the aberrations
vary because more of the imperfectly shaped corneal and lens surfaces refract
the light. As the pupil closes, diffraction starts to be a significant factor. The
wavelength dependence is explained by the refractive indices of the cornea and
lens. These chromatic aberrations are the largest of all the aberrations (Thibos
et al., 1990; Wandell, 1995).

1.4.3 Shift-Varying Sampling

Figure 1.6 shows the spatial arrangement of cones at different locations within the
retina. The cone density is highest in the central fovea where the cones are tightly
packed. Moving away from the center, cone density falls off and the cone aper-
tures become larger. As cone density decreases, rod photoreceptors (the smaller
receptors in the peripheral images) appear and fill the gaps between the cones. In
addition, not apparent in the figure, cones become shorter away from the fovea.
The shortening reduces the spectral absorptance.

Figure 1.6 Human cone and rod sampling mosaics. The en face images show
the photoreceptor inner segments, where light enters the cones, at four retinal
eccentricities. In the central region, all of the receptors are cones. At 4◦ and
beyond, the large apertures are the cones and the smaller apertures are the rods.
The cone sampling density and cone aperture sizes differ substantially between
the central fovea and other visual eccentricities. The reduced sampling density
limits the spatial resolving power of the eye. The larger cone apertures increase
the rate of photon excitations per cone. Scale bar is 10 μm. Recomposited from
figures in Curcio et al. (1990).
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The sampling density reduction means that less spatial information about the
retinal image is extracted at retinal locations away from the central fovea. The
relative density of the different cone types also varies with eccentricity. Indeed, as
noted above, there are no S-cones in the very central fovea (Williams, MacLeod,
& Hayhoe, 1981), so that vision in this small retinal region is dichromatic rather
than trichromatic. Perhaps this region is specialized for high-resolution vision and
omitting a few S-cones, which see a blurry retinal image at short wavelengths
because of the chromatic aberrations, maximizes the information transmitted to
the brain about spatial structure (Brainard, 2015; Garrigan et al., 2010; Hofer &
Williams, 2014; Williams et al., 1991; Zhang, Cottaris, & Brainard, 2021).

The impact of the cone size and density, along with variations in the inert
pigments described above, mean that calculating the cone excitations is shift-
varying: the calculation is linear, but the parameters change with eccentricity.
These eccentricity-dependent calculations are included in the ISETBio simula-
tions. There is little value in expressing the full complexity of these calculations in
pure mathematical form.

The impact of the several eccentricity-dependent factors on the cone excitations
is substantial and illustrated in Figure 1.7. The images in the left column illustrate
calculations in the central fovea and the images in the right column illustrate the
same calculations at 10◦ in the periphery. The top image shows the differences in
the size and density of the cone photoreceptor apertures. Also, notice the absence
of S-cones in the small region of the very central fovea. The images inset in the
top show the size of the point spread function for an in-focus wavelength: there are
many more cones within the foveal point spread than within the 10◦ point spread.

The images in the middle row represent the number of cone excitations in
response to a relatively low-frequency grating pattern. There are more excitations
per cone at 10◦ than in the fovea, and there are many more cones representing the
stimulus in the fovea. The third row shows the effect of increasing the stimulus
spatial frequency. The foveal mosaic samples densely enough to preserve the
regular pattern, but at 10◦ the spatial samples look like a wobbly representation
of the stimulus.

Finally, notice that many cones have relatively low excitation levels to this
achromatic stimulus. These cones appear as the quasi-regular array of black dots
that are easy to see at 10◦. They are also present, but harder to see, in the excitations
for the central location. These cones are the S-cones, which absorb many fewer
photons than the L- and M-cones. This lower excitation rate is partly due to the
spectral transmission of the lens (and in the central region the macular pigment),
which absorbs a great deal of short-wavelength light.

In summary, the principles of linearity and shift-invariance are useful guides for
reasoning about cone excitations. These principles were part of our toolkit as we
built a specific model of the human eye, and so they would be for any model.
However, in the human eye deviations from shift-invariance are substantial. In
addition, there are significant differences between people that may be important for
explaining between-subject differences. Thus, an essential ingredient for building
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Figure 1.7 Excitation calculations. The two columns represent two retinal
eccentricities, each about 1◦2. (Top) The interleaved L-, M-, and S-cone
mosaics, shown as red, green, and blue dots, are shown at the top. The inset
shows an expanded view of the point spread function in the same region. The
rods are not represented. (Middle and bottom) The gray level in these images
shows the estimated cone excitations for a 6 c/deg harmonic and a 12 c/deg
harmonic. The scale for the foveal location runs between 0 and 250, while that
for the peripheral location runs from 0 to 1000. Peripheral cones have more
excitations to the same stimulus because the cone apertures are larger. This
figure should be viewed in color. The color version is available at https://color
.psych.upenn.edu/supplements/earlyencoding/excitationsColorFig.pdf. Figure
courtesy of Nicolas Cottaris.
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a computational model are data sets that quantify the critical model parameters
(e.g., how the optical point spread function and cone density vary with visual field
position) and how these parameters vary across individuals. For these reasons,
a computational model is essential for applications that aim to create realistic
estimates of the cone excitations for a population.

The computational implementation has benefited from mathematical principles
and from data collected and shared by many investigators. Conversely, the exercise
of building computational models often highlights the need for data sets that do not
yet exist (e.g., across individuals, are optical quality and cone density independent,
or do they covary in some systematic way?) At this point in the chapter, the reader
might find it useful to re-read the quote at the start of this chapter, which was
written by von Kries, Helmholtz’s greatest disciple (Cahan, 1993), more than a
century ago.

1.4.4 Spatial Derivatives of the Cone Excitations Mosaic

Adelson and Bergen (1991) observed that the partial derivatives of the spectral
irradiance correspond to computations performed by neurons in the early visual
system. Figure 1.8 illustrates these derivatives for several cases: derivatives with

Figure 1.8 Derivatives of the retinal image. A scene (top) is represented as
spectral irradiance hypercubes for the left and right eye. The responses of
neurons that compute the local differences, as indicated by several oval pairs
with ±, approximate local partial derivatives. Differences can be taken across
spatial location, across wavelength, across the spectral radiance measured by
the two eyes, and across time (not shown). This figure should be viewed in color.
The color version is available at https:/ /color.psych.upenn.edu/supplements/
earlyencoding/derivativesColorFig.pdf . The original color image was kindly
provided by David Sparks.
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respect to spatial position, wavelength, and viewpoint (i.e., across the viewpoints
provided by the left and right eyes). Receptive fields that respond to these deriva-
tives include neurons that are pattern-selective (Priebe, 2016; Shapley & Lennie,
1985), cone-opponent (Shevell & Martin, 2017; Solomon & Lennie, 2007), and
stereo disparity-selective (Cumming & DeAngelis, 2001). Partial derivatives with
respect to time describe motion-selective neurons (Pasternak & Tadin, 2020; Wei,
2018).

The emphasis that Adelson and Bergen (1991) place on these derivatives is
consistent with the generally accepted idea that it is the local change (contrast) in
the spectral irradiance, not the absolute level of that irradiance, that provides the
critical information used for perception (Shapley, 1986). Later in the chapter, we
analyze psychophysical measurements of contrast sensitivity, which characterize
quantitatively how small changes in spatial contrast are encoded by human vision.

An additional advantage of representations based on derivatives is that they are a
highly compressible representation of naturally occurring spectral irradiance. The
reason for this is that natural radiances tend to vary slowly, and thus many of the
partial derivatives are near zero. A distribution with many repeated values may
be compressed by coding the repeated values with tokens specified with a small
number of bits, reserving tokens specified with a large number of bits for rarely
occurring values (Cover & Thomas, 1991; Wandell, 1995).

1.5 Perceptual Inference

1.5.1 Ambiguity and Perceptual Processing

An important and consistent take-away from the analysis of sensory encoding is
that the information available to the brain about the state of the external world
is ambiguous: many different physical configurations produce the same sensory
representation. A classic example is metamerism: there are only three classes of
cone photoreceptors and different spectra produce identical triplets of responses in
the L-, M-, and S-cones. Another well-known example is depth reconstruction: the
three spatial dimensions of the light field are projected onto a two-dimensional
retina, and many 3D shapes produce the same retinal image. Such many-to-
one mappings are a reason why Helmholtz (1866, 1896) emphasized perceptual
inference: the brain decodes the sensory representation to produce perceptions
that are a likely guess about the state of the external world. Perception is an
unconscious inference.

1.5.2 Mathematical Principles of Inference

The mathematical formulation of perceptual inference can be developed within
a Bayesian probabilistic framework. Suppose x is a vector that describes some
aspect of a scene. The entries of x might represent the spectral power density
of a light entering the eye at a set of discretely sampled wavelengths, the pixel
values of a displayed stimulus image, the optical flow vectors corresponding to a
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viewed dynamic scene, or a full 3D scene description input to a computer graphics
package. Now, suppose y is the sensory representation at some stage of the visual
system produced when an observer views the scene described by x. The entries
of y might describe the retinal image, the excitations of each cone in the retinal
mosaic, or the action potentials in a class of retinal ganglion cells.

Because sensory measurements are noisy, the relation between y and x is
described by a conditional probability distribution, p(y|x). This distribution is
referred to as the likelihood function. The likelihood can be thought of as a forward
model that relates the scene parameters x to the sensory representation y.

Within the Bayesian framework, the perceptual representation results from a
choice the brain makes about the most likely scene given the observed sensory
representation. Indeed, we can reverse the likelihood function, p(y|x), to obtain
a conditional probability distribution p(x|y), which is called the posterior distri-
bution. The posterior defines which are the more or less likely scenes, given the
sensory measurements. To obtain the posterior, we use Bayes’ rule (Bishop, 2006;
Lee, 1989):

p(x|y) = K(y)p(y|x)p(x), (1.14)

where K(y) is a normalizing factor that depends on y but not x. This factor ensures
that the posterior integrates to 1 for any value of y. For many applications, our inter-
est is in how the posterior depends on x, and it is not necessary to compute K(y).

Critically, p(x) is a prior distribution that describes the statistical regularities
of the scenes; how likely it is a priori that the world is in the state x. A
prior is essential because many scenes might have produced the same sensory
measurements. Bayes’ rule specifies how to combine the prior with the likelihood.
Sometimes little is known about the prior. In these cases, using the Bayesian
formulation directs our attention to learn more about it. The Bayesian formulation
also forces us to make the forward model explicit in the form of the likelihood.

The posterior is a distribution over possible x. We need a means of selecting a
specific value, say x̂, to generate the percept. One common way to make a choice is
to select a value x̂ that is most likely: the maximum a posteriori (MAP) estimate.
Other possibilities, such as the mean of the posterior, are also commonly used. The
interested reader is referred to the literature on Bayesian decision theory for more
on this topic (e.g., Berger, 1985).

It is helpful to consider a simple example. Above we explained that the mean
cone excitations at a location are a linear function of the radiance of a displayed
image. Suppose we treat the spectral radiance on a display as the state of the
world x, with the entries of x appropriately ordered, and we denote the noisy cone
excitations as y. Then

y = Cx+ ε (1.15)

for an appropriately arranged matrix C, and where the noise in cone excitations
is represented by the random variable ε. If we approximate ε with a signal-
independent zero-mean Gaussian distribution, we have
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p(y|x) = norm(Cx,σ 2
y Iy), (1.16)

where norm() denotes the multivariate Gaussian distribution, σ 2
y is the variance of

the noise added to each mean cone excitation under the Gaussian approximation
to the Poisson noise. The symbol Iy denotes the identity matrix with the same
dimensionality as the vector y.

We can also use a Gaussian distribution to describe a prior over x:

p(x) = norm(μx,�x), (1.17)

where the vector μx and matrix �x represent the mean and covariance of the prior.
Given the Gaussian likelihood and prior, the posterior is also Gaussian; its

mean and covariance matrix may be computed analytically from the mean and
covariance matrices of the likelihood and prior. This result follows from a standard
identity that the product of two multivariate Gaussian distibutions is also a
multivariate Gaussian (see Rasmussen & Williams, 2006; Brainard, 1995 provides
the derivation in the context of the Bayesian posterior). In the case where the
posterior is a multivariate Gaussian, its mean μx|y provides the estimate of x that
corresponds to both the posterior mean and the MAP estimate.

Figure 1.9 illustrates the idea for a simple example case. Suppose that the display
has only two pixels and emits at only one wavelength. Then x = [x1,x2]T . We will
assume that the radiance at each pixel of the display can range between 0 and 1. For
natural images, there is a strong correlation between the radiance at neighboring
pixels at the same wavelength (Burton & Moorehead, 1987; Tkacik et al., 2011).
A bivariate Gaussian prior distribution with this property is illustrated in the left
panel of Figure 1.9. The mean of the prior is x = [0.5,0.5]T while the covariance
matrix �x corresponds to a common standard deviation of 0.127 and a correlation
across the two pixels of 0.89. The strong correlation in the prior restricts the best
guesses about the values of x relative to the full available range.

Figure 1.9 Bayes’ reconstruction. See description in text. For the prior and
posterior, probability is given as the probability mass for a region of size
0.012 in the pixel radiance plane. Matlab code to produce this figure is
available at https:/ /github.com/DavidBrainard/BrainardFigListings.git (sub-
directory scripts/MathPsychChapter/FigLinBayesExample, script Example.m).
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To compute a likelihood we need to know the nature of the sensory measure-
ments. We suppose that there is just one cone and that it is equally sensitive to
the radiance at the two display pixels. This gives us C = [0.5,0.5]. We assume
that the mean excitation of the cone is perturbed by zero-mean Gaussian noise
with standard deviation σy = 0.01. The middle panel of Figure 1.9 illustrates the
likelihood for the specific cone excitation y = 0.3: the likelihood p(y = 0.3|x) is
plotted as a function of x1 and x2. This likelihood is highest along the ridge where
the weighted sum of the pixel radiances sums to the observed cone excitation of
0.3. The likelihood falls off away from this ridge, with the rate of falloff determined
by the magnitude of the noise. If the noise were smaller, the falloff would be faster
and the likelihood ridge thinner, and conversely if the noise were larger, the falloff
would be slower and the likelihood ridge wider. The likelihood alone tells us that x
is unlikely to lie far from the ridge. At the same time, the likelihood makes explicit
the ambiguity about x remaining after observing y, with many values of x equally
likely.

Bayes’ rule specifies that the prior and likelihood should be combined using
point-by-point multiplication over the pixel radiance plane [Equation (1.14)], and
then normalized to form the posterior. The right panel of Figure 1.9 illustrates
the result of this multiplication. The same result may be obtained directly by
application of the analytic formulas for the posterior.

The posterior makes intuitive sense: it is large where both the prior and
likelihood are large, and the resulting distribution is more concentrated than
either the prior or likelihood alone. Although there is still uncertainty remaining
in the posterior, it captures what we know about the scene when we combine
the statistical regularities of the displayed images with the sensory measurement
provided by the cone excitation.

1.5.3 Thresholds and Ideal Observer Theory

In this and the next sections, we show how ideas of perceptual inference as
implemented through Bayes’ rule help us understand perceptual processing. We
begin with analysis of threshold measurements. A threshold is the minimum
difference required for an observer to correctly discriminate between two stimuli;
threshold measurements are a fundamental psychophysical tool. They are used
to characterize perceptual performance and guide inferences about the neural
mechanisms underlying this performance.

Consider, for example, discrimination between a uniform field and a contrast
grating (see Figure 1.10). In a typical experiment, the observer is shown the
uniform field and the grating in sequence, with the order randomized on each trial.
The observer’s task is to indicate which was presented first. In the experiment the
stimulus contrast is titrated to a level at which the observer is correct, say, 80% of
the time. The estimated contrast is the threshold.

Threshold measurements quantify the information needed by the visual system
to make a basic perceptual decision: namely, that two stimuli differ. They involve
small perturbations of the visual stimulus, and they may be thought of as assessing
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Figure 1.10 Modeling the human contrast sensitivity function. (A) Sensitivity,
defined as the inverse of threshold contrast, is plotted as a function of spatial
frequency. The stimuli were small, equal-sized patches of contrast gratings.
Replotted from De Valois, Morgan, and Snodderly (1974). The smooth curve
replots the smooth curve in the original figure, while the solid points show
the spatial frequencies on the smooth curve at which contrast sensitivity was
measured. See the original figure for the actual sensitivity measurements
through which the smooth curve was drawn. The thumbnails below the plot
illustrate contrast grating patches at different spatial frequencies, but are not
otherwise matched to the spatial frequency of the plot. (B) Triangles and
black line: Human contrast sensitivity function for two observers, data from
Banks, Geisler, and Bennett (1987). Grey circles/line: Contrast sensitivity
of an ideal observer implemented at the level of the Poisson limited cone
excitations, from Banks, Geisler, and Bennett (1987). Red circles/line: Ideal
observer CSF with recent estimates of optics and mosaic properties. Blue
circles/line: Computational observer CSF with decision rule determined using
supervised machine learning. Green circles/line: Computational observer CSF
additionally accounting for fixational drift. Purple circles/line: Computational
observer CSF additionally incorporating a model of the transformation from
excitations to photocurrent. This figure should be viewed in color. The color ver-
sion is available at https:/ /color.psych.upenn.edu/supplements/earlyencoding/
csfColorFig.pdf . If you are nonetheless viewing a grayscale version of the
figure, the order of the colors of the ideal/computational observer CSFs from
top to bottom is: gray, red, blue, green, purple. After Figure 6 of Cottaris et al.
(2020).

sensitivity to derivatives of the retinal image. In this way, thresholds are connected
to the ideas introduced above about the importance of derivatives of the spectral
radiance as a basis for visual processing.

https://doi.org/10.1017/9781108902724.002 Published online by Cambridge University Press

https://color.psych.upenn.edu/supplements/earlyencoding/csfColorFig.pdf
https://color.psych.upenn.edu/supplements/earlyencoding/csfColorFig.pdf
https://doi.org/10.1017/9781108902724.002


28 b. wandell and d. brainard

Figure 1.10 shows the threshold for contrast gratings measured as a function
of grating spatial frequency: this is called the spatial contrast sensitivity function
(CSF). When measured with static or very slowly moving gratings, the human CSF
has an inverted U-shape: the highest contrast sensitivity is between three and six
cycles per degree, with lower sensitivity at higher and lower spatial frequencies.
Because any image may be synthesized by a weighted superposition of sinusoidal
gratings (Bracewell, 1978), the CSF characterizes the sensitivity to basic stimulus
components. Because the visual system as a whole is neither shift-invariant nor
linear, however, the CSF is a useful but incomplete description of sensitivity.

We would like to understand how the human contrast sensitivity function is
limited by the properties of the visual components described in this chapter. Bayes’
rule provides a way to build this understanding by linking the initial encoding
to performance on the psychophysical threshold detection task. Analyses of this
sort are called ideal observer theory (Geisler, 1989). Ideal observer theory allows
us to estimate the extent to which discrimination performance is limited by the
early visual encoding. Relevant factors include blurring by the eye’s optics, which
reduces the retinal contrast of a grating stimulus, spatial sampling by the cone
mosaic, and the Poisson variability in the cone excitations. Of particular interest is
separating aspects of visual performance that are tightly coupled to these factors
from aspects that are limited by processes not incorporated into the ideal observer
calculation.

So, how do we use Bayes to predict performance in the two-interval forced
choice task described above? We use the terms reference stimulus and comparison
stimulus to describe the two stimuli being discriminated. In this example the
reference stimulus is a spatially uniform field and the comparison stimulus
is a patch of contrast grating with known spatial frequency, orientation, size,
and contrast; but, the ideas we develop here apply to any two stimuli being
discriminated.

Using the computational methods described in this chapter, we compute the
mean cone excitations to the reference and comparison stimuli. Let ur be the vector
of mean cone mosaic excitations in response to the reference stimulus and let uc be
the vector of mean cone excitations in response to the comparison stimulus. In the
two-interval forced choice task, the observer must indicate whether the reference
came first followed by the comparison, or the other way around. We thus form two
concatenated vectors, u1 = [ur,uc] and u2 = [uc,ur].

To apply Bayes’ rule to this problem, we think of the scene as described by a
binary random variable. This variable, x, can take on value 1 or 2. These values
represent the reference first and reference second possibilities that can occur on
each trial. The prior probability p(x) is given by

p(x = 1) = 0.5; p(x = 2) = 0.5. (1.18)

The data available to the observer to make a response of x = 1 or x = 2 are the
pattern of observed cone excitations across the two intervals, which we will denote
by y. We know that for x = 1, each entry of y is an independent Poisson random
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variable with mean given by the corresponding entry of u1, while for x = 2 the
means are given by the corresponding entries of u2. From this, we have for the
posterior:

p(x = 1|y) = Kp(y|x = 1)p(x = 1) = K
∏

i

p(yi|x = 1)p(x = 1), (1.19)

where yi denotes the ith entry of y and we have explicitly expressed the joint
distribution of independent random variables as the product of their individual
distributions. K is a normalizing constant whose value we need not calculate.

We substitute the expression for the probability mass function of a Poisson
random variable and the value of p(x = 1) to obtain

p(x = 1|y) = K
∏

i

u1i
yie−u1i

yi!
0.5, (1.20)

where u1i denotes the ith entry of u1. Similarly, we have

p(x = 2|y) = K
∏

i

u2i
yie−u2i

yi!
0.5. (1.21)

To maximize the percent correct on the task, the observer should compare
p(x = 1|y) with p(x = 2|y) and indicate 1 or 2 according to which is larger. It
is instructive to implement this comparison in terms of the difference of the logs
of p(x = 1|y) and p(x = 2|y), with a response of 1 corresponding to a difference
greater than or equal to 0 and a response of 2 corresponding to a difference less
than 0. Writing the difference of logs explicitly and simplifying, we have decision
variable

δ =
∑

i

yilog

(
u1i

u2i

)
+
∑

i

(u2i − u1i). (1.22)

An observer who responds according to the sign of δ will maximize the percent
correct. The value of the percent correct depends on how δ is distributed when
x = 1 and x = 2. Geisler (1984) provides a Gaussian approximation to these
distributions, which may be used to obtain the corresponding percent correct. As
with the human psychophysical experiment, contrast may be titrated to find the
ideal observer threshold contrast, that which leads to the ideal observer having the
criterion percent correct.

Figure 1.10B shows the ideal observer contrast sensitivity for human foveal
viewing (gray circles/line), along with psychophysical measurements of human
contrast sensitivity at spatial frequencies increasing from 5 cpd, and with the
measurements (triangles/black line) made with stimuli matched to those used in
the ideal observer calculations (Banks, Geisler, & Bennett, 1987). As with the
human data at higher spatial frequencies, the ideal observer contrast sensitivity
function falls off as spatial frequency increases; the slope of this falloff closely
resembles that of the human observer. This correspondence suggests that the
factors that cause the human falloff share basic features with those included in
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the ideal observer calculation. Here the primary factor is blur from the eye’s optics
and cone apertures, both of which reduce the contrast captured by spatial variation
in the cone excitations.

The ideal observer CSF also differs from the human measurements. One differ-
ence is that the overall sensitivity of the ideal observer is markedly higher than that
of the human observer. The Poisson noise in the cone excitations limits the ideal
observer sensitivity. The fact that incorporating only this noise source leads to an
ideal observer more sensitive than the human tells us that additional factors limit
human sensitivity and motivates study of what these additional factors are.

One approach is to define a single “efficiency” parameter representing an
omnibus loss of information by the actual visual system relative to an ideal
observer calculation. This is often sufficient to bring ideal observer predictions
into alignment with measured human performance (Burge, 2020), as is true in the
case of the ideal and human CSF rolloff at high spatial frequencies. The efficiency
parameter can be thought of as capturing the effect of additional noise in the
human visual system, not included in the ideal observer calculation, whose effect
on performance is stimulus-independent.

It is important to note, however, that the difference between ideal and human
performance is not fully explained by a single efficiency parameter. For example,
the ideal observer CSF does not roll off at low spatial frequencies but the human
CSF does. The factors that produce the measured low-spatial-frequency rolloff
are not included in the ideal observer calculations presented here. As with the
difference in overall sensitivity, the difference between ideal and human CSF at
low spatial frequencies motivates investigation of what additional factors in the
human visual system account for the difference.

1.5.4 Computational Observers

The ideal observer calculation used by Banks, Geisler, & Bennett, (1987) employed
a simplified model of the eye’s point spread function and cone mosaic, and this
simplification enabled efficient computation of ideal observer performance. In two
recent papers, Cottaris et al. (2019, 2020) employed computational methods to
examine the effect of more recent estimates of the point spread function (Thibos
et al., 2002) and a more detailed model of the foveal mosaic on performance.
These had only a modest effect on the predictions (Figure 1.10B, red circles/line).

The ideal observer developed above has full knowledge of mean cone excitations
and Poisson structure of the noise, so that the observer’s performance is not
degraded by stimulus uncertainty (Geisler, 2018; Pelli, 1985). Cottaris et al.
(2019) relaxed this assumption by replacing the ideal observer decision rule with
a decision rule based on a trained linear classifier (C. D. Manning, Raghavean,
& Schutze, 2008; Schölkopf et al., 2002). The classifier measured the match of
the data to a template that had the same spatial structure as the stimuli. The
decision boundary was optimized in the presence of noise. The need to partially
learn the decision rule reduced the absolute level of ideal observer performance
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while retaining the same CSF shape (blue circles/line in Figure 1.10B). Cottaris
et al. (2020) then introduced a computational model of fixational eye movements
(Mergenthaler & Engbert, 2007; see also Engbert & Kliegl, 2004) and showed that
an approach to handling the stimulus motion blur introduced by these movements
further reduced performance (green circles/line). Finally, Cottaris et al. (2020)
introduced a computational model of the transformation from excitations to
electrical photocurrent, which included both gain control and additional noise.
Accounting for this transformation brought computational observer performance
into approximate alignment with the human measurements at the higher spatial
frequncies (purple circles/line).

This analysis outlines a set of factors that together provide an account of the
high-spatial-frequency limb of the human spatial CSF, capturing both the shape
and absolute level of this important measure of performance. For the purposes
of the present chapter, we emphasize less the specific elements of the account,
which will surely be refined by future research, but rather the way the mathematical
principles are combined with computational modeling with the goal of accounting
for the full richness of the visual system. The combination of principles and
computations accounts for factors that are beyond what is possible using analytic
calculations alone.

1.5.5 Image Reconstruction

The ideal observer and computational observer development above applies
Bayesian inference to the analysis of threshold measurements. Thresholds
characterize the limits of visual performance, and the analyses illustrate how
threshold performance can be linked to quantitative measurements of physiological
optics, retinal anatomy, and retinal physiology. Not all vision is threshold vision,
however. Sometimes we are interested in predicting what clearly visible stimuli
look like (e.g., “that apple looks red”) or how similar easily distinguishable objects
appear (e.g., “the color of the apple appears more similar to the color of the tomato
than it does to the color of the banana”). There are a number of methods for
studying suprathreshold vision. These include asymmetric matching (Brainard &
Wandell, 1992; Burnham, Evans, & Newhall, 1957; Wandell, 1995) and various
scaling techniques (T. F. Cox & Cox, 2001; Knoblauch & Maloney, 2012; Maloney
& Yang, 2003). We will not treat these methods here. Below, however, we illustrate
how Bayesian methods can be used to understand how the initial visual encoding
shapes the perceptual inferences that can be made about suprathreshold stimuli.

In our introduction to Bayes’ rule, we illustrated the core ideas by considering
reconstruction of a two-pixel image from the excitations of a single cone, using
both a Gaussian and a Gaussian likelihood. As computer power has increased,
these same Bayesian principles have been applied to increasingly large perceptual
problems. As we illustrate here, it is now possible to reconstruct an estimate of
a full displayed color image from a realistic model of cone excitations using the
Poisson likelihood (Zhang, Cottaris, & Brainard, 2021).
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The forward computation starts with the displayed image x and computes the
cone excitations y. The vector x can be thought of as the concatenation of the
linearized and rasterized pixel values for each of the red, green, and blue channels
of the display. Using the Poisson noise model of the cone excitations, we compute
the likelihood of observed cone excitations p(y|x). Here the vector y is simply a list
of the excitations of each cone in the mosaic. Because the mean cone excitations
are a linear function of the display pixel values, we can write for these mean
excitations

ȳ = Rx (1.23)

for some matrix R. Each column of this matrix may be computed as the vector
of cone excitations produced when one pixel is at its maximum value for one
color channel, with the display values for all other pixels and color channels set to
zero, and these computations may be implemented in software such as ISETBio to
determine explicitly the matrix R (Zhang, Cottaris, & Brainard, 2021). This yields
for the likelihood

p(y|x) = Poisson(Rx), (1.24)

where Poisson() denotes the result of Poisson noise applied independently to
its vector argument by taking each entry of the argument as the corresponding
Poisson mean.

Next, we specify a prior distribution p(x) for natural images. Natural images
have a great deal of structure (Simoncelli, 2005), and a full statistical description of
this structure is not currently available. There are two robust regularities of natural
images, however, that can be described by a multivariate Gaussian. The first is that
within a single wavelength band, the spectral radiances at nearby image locations
are highly correlated (Field, 1987; Pratt, 1978; Ruderman, Cronin, & Chiao, 1998).
The second regularity is that at a single position, values in nearby wavelength
bands are highly correlated (Burton & Moorehead, 1987; Tkacik et al., 2011).
This is a consequence of the relatively smooth spectral functions one observes
in nature (Cohen, 1964; Maloney, 1986; Vrhel, Gershon, & Iwan, 1994). These
two observations may be used to construct a covariance matrix for a multivariate
Gaussian that describes the second-order statistics of natural images. Together with
the average image, these provide a Gaussian image prior.

With the likelihood and prior, we can construct an estimate of the image given a
vector of cone excitations. As with many calculations described in this chapter, the
principles of Bayesian estimation guide the way, but once we introduce the Poisson
likelihood, we turned to numerical computational methods to find the solution.

We used ISETBio to reconstruct images from cone excitations, with the Poisson
likelihood and Gaussian image prior described above. We reconstructed images
for retinal patches at various visual field eccentricities. As visual field eccentricity
increases, the point spread of the retinal image becomes more blurred and the
density with which the cones sample the image decreases (Figures 1.5, 1.6,
and 1.7). Thus, less information becomes available to the visual system in the
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Figure 1.11 Image reconstructions from cone excitations at three retinal
eccentricities. Each row shows reconstructions of seven images using the
Bayesian method and Poisson likelihood and multivariate Gaussian prior.
The reconstructions at 1◦ eccentricity are close to veridical, with increasing
distortions seen at the 10 and 18◦ locations. Each original and reconstructed
image was represented at a pixel resolution of 128 × 128, and the extent
of each image on the retina was 1◦ × 1◦. The mean excitation of the cones
was 105 excitations per cone, so the simulation corresponds to a relatively
high signal-to-noise regime. The parameters of the Gaussian prior were fit to
16 × 16 pixel patches of images from the ImageNet ILSVRC data set (www
.image-net.org), and extended in an overlapping blockwise fashion to the higher
image pixel resolution. This figure should be viewed in color. The color ver-
sion is available at https:/ /color.psych.upenn.edu/supplements/earlyencoding/
GaussianReconColorFig.pdf . Figure courtesy Lingqi Zhang. See Zhang, Cot-
taris, and Brainard (2021) for a more extended discussion of Bayesian image
reconstruction and the general methods used to produce this figure.

peripheral visual field. The effect of this loss for reconstruction depends on the
prior. Although the information loss means that two images whose cone excitations
are different in the fovea can produce the same cone excitations in the periphery,
this ambiguity need not degrade the reconstructions if the probability that one of
the two images will occur is small.

The reconstructions in Figure 1.11 show the effect of information loss at the
level of the cone excitations, in the context of the Gaussian image prior. The
reconstructed image quality in the periphery is worse than in the fovea, but many
objects remain recognizable from the peripheral reconstructions. Moreover, there
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are interesting interactions between the likelihood and prior. For example, the
recovery of color can be better in the fovea and more peripheral locations than
it is in the mid-periphery (see images of strawberries in Figure 1.11, for example).
Zhang, Cottaris, and Brainard (2021) describe the reconstruction approach to
analyzing the initial visual encoding in more detail, extending the ideas to a more
realistic prior than the Gaussian, and showing a number of calculations that use
image reconstruction to examine how prior and likelihood interact to support both
color and spatial vision (see also Brainard, Williams, & Hofer, 2008).

Image reconstruction computations provide useful insights about how statistical
regularities in natural scenes interact with the sensory measurements to guide
perception. But, it is important to bear in mind that reconstruction of displayed
images is not the task for which visual perception evolved. Rather, we view the
task of perception to reconstruct the properties and positions of objects in the three-
dimensional environment. The Bayesian ideas presented here have applicability to
this task as well (Knill & Richards, 1996), but a computational solution that is as
effective as human vision currently remains elusive. This is an area where recent
progress in machine learning and deep neural networks may provide new insights.

1.5.6 Optimizing Sensory Measurements

Earlier in this chapter, we explained that the visual system appears to extract
information about motion, color, and pattern from the pattern of cone excitations
by estimating the local derivatives of various quantities (Adelson & Bergen,
1991). The Bayesian framework provides a quantitative framework for addressing
how to optimize which signals should be transduced by a sensory system when
the goal is reconstruction of the state of the environment, as well as how the
sensory signals should be summarized (e.g., in the form of local derivatives) for
further processing. Indeed, the Bayesian image reconstruction methods developed
here point towards the ingredients required for a full analysis of such questions.
To know what measurements we should make, we first need to know the
prior distribution over the environmental states that an organism will encounter.
We then need a parameterized set of candidate likelihood functions, each of
which describes a feasible arrangement of the sensory apparatus and (if desired)
associated early processing. This information allows us to compute the posterior
over the environmental states for any candidate likelihood function, and we can
ask how well different sensory measurements constrain the posterior, averaging
this information over the environmental states described by the prior. Developing
a parameterized set of candidate likelihood functions requires an understanding
of what biological constraints apply to the sensory system. Also required is an
understanding of the cost of different types of error in the resultant perceptual
representation (the loss function; Berger, 1985), as well as how the cost of error
should be balanced against the energetic cost of making and processing the
sensory measurements (Balasubramanian, Kimber, & Berry, 2001; Koch et al.,
2004; Laughlin, 2001). A number of authors have pursued questions of optimizing
sensory measurements in this manner (Garrigan et al., 2010; Levin, Durand, &
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Freeman, 2008; J. R. Manning & Brainard, 2009; Zhang, Cottaris, & Brainard,
2021).10 It would be interesting to compare the results of an analysis of this sort to
the Adelson/Bergen conjecture that approximations to local derivatives represent
an optimal measurement set.

1.6 Summary and Conclusions

To focus on the mathematics of the initial visual encoding, we introduce
vision science from the point of view of a forward calculation: physics of the stim-
ulus, image formation, and quantitative system modeling. The key mathematical
principles are linear algebra, shift-invariant linear systems, and specification of
sensory noise. The mathematics of vision science shares much in common with
the mathematics of many fields of science and engineering.

After expressing and implementing the forward calculations, we explore the
mathematics of Helmholtz’s hypothesis: people perceive a stimulus that is the most
likely explanation of the cone excitations. We use Bayesian inference methods
to clarify the uncertainty about the encoded signal. This approach requires that
we confront the problem of establishing priors on the signal. There is a close
connection between Helmholtz’s unconscious inference and Bayesian inference;
the latter may be thought of as a quantitative implementation of Helmholtz’s idea.

The approach we describe has a long and accomplished tradition. But, it is not
the only valid way to make progress in vision science; several other approaches are
important. A quantitative study of behavioral rules can be very informative. For
example, color appearance matching was a largely behavioral exploration at first;
an understanding of the physics of the signal and the biological underpinnings
followed later. Also, neurobiological measures can be helpful. Anatomical and
functional measurements that characterize the properties of multiple pathways
within the visual system – including multiple types of retinal ganglion cells and
multiple pathways through the visual cortex – are useful guides to understanding
visual specializations and computations, particularly for stages of vision beyond
the initial encoding. Finally, engineering work to build functional artificial visual
systems continues to be very helpful in understanding vision: a classic principle
states that the best way to demonstrate you understand a system is to build one that
does the same thing. Engineering efforts continue to clarify features that we might
look for in the nervous system, as well as why certain behavioral patterns emerge.

The field of vision science is large and vigorous enough that there is no need to
choose a single approach. We are inspired by the fact that different investigators
adopt different approaches, all seeking to gain understanding. To the student
thinking about how to approach vision science, we offer advice from an American
philosopher who commented about making difficult decisions: “When you come
to a fork in the road, take it” (Yogi Berra).

10 The formalism used in these analyses is interestingly similar to that underlying Bayesian adaptive
psychophysical procedures (Watson, 2017; Watson & Pelli, 1983).
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1.7 Related Literature

This chapter introduces key mathematical and computational approaches
to understanding the initial visual encoding. A number of the mathematical
ideas we present here are developed in more detail by Wandell (1995), and the
classic treatment of visual perception by Cornsweet (1970) remains a valuable
introduction to the field, as does Rodieck (1998). Principles of ray tracing are
introduced in many computer graphics texts (e.g., Pharr, Jakob, & Humphreys,
2016); similarly many texts introduce optics (e.g., Hecht, 2017). In the context of
the retinal image and cone excitations specifically, Packer and Williams (2003),
Pugh (1988), and Yellott, Wandell, and Cornsweet (1984) are useful. Brainard
and Stockman (2010) elaborate in more detail on using linear algebra in support
of colorimetric applications. Although we do not treat the Fourier transform
and frequency domain representations in this chapter, the reader who wishes to
specialize in this field will want to learn about these ideas. Two useful sources
are Bracewell (1978) and Pratt (1978). Useful introductions to statistical inference
include Bishop (2006) and Duda, Hart, and Stork (2001).
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2.1 Overview

The investigation of processes involved in merging information from
different sensory modalities has become the subject of research in many areas,
including anatomy, physiology, and behavioral sciences. This field of research
termed “multisensory integration” (MI) is flourishing, crossing borders between
psychology and neuroscience. The focus of this chapter is on measures of
multisensory integration based on numerical data collected from single neurons
and in behavioral paradigms: spike numbers, reaction time, frequency of correct
or incorrect responses in detection, recognition, and discrimination tasks. Defining
that somewhat fuzzy term, it has been observed that at least some kind of numerical

42
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measurement assessing the strength of crossmodal effects is required. On the
empirical side, these measures typically serve to quantify effects of various covari-
ates on MI, like age, certain disorders (e.g., dyslexia), developmental conditions,
training and rehabilitation, in addition to attention and learning. On the theoretical
side, these measures often help to probe hypotheses about underlying integration
mechanisms like optimality in combining information or inverse effectiveness,
without necessarily subscribing to a specific model.

Given the important role of its neurophysiological basis, we start with a
presentation of the major rules of integration observed in neural responses in the
form of spike numbers elicited, and introduce numerical measures based on them.
The essential role of the concept of “probability summation” in deriving measures
satisfying certain “optimality” criteria emerges soon, and it reappears in later
sections on measures based on response speed in different behavioral paradigms.1

Subsequently, measures based on accuracy are discussed in the context of
signal detection theory, followed by measures developed within the broad area of
audiovisual speech identification. A proposal for measuring integration efficiency
based on the Fechnerian scaling approach closes that section.

The number of models trying to reveal the mechanisms underlying MI at
different levels of description, from the neural to the behavioral, is large and
growing. In the corresponding section, we had to be very selective, and we
primarily sketch models that help motivate a specific measure of integration.

In order to keep the presentation focused, measures suggested for multisensory
“illusions,” like the McGurk effect or the sound-induced flash illusion (typically,
percentages), are not considered at all, nor are those derived from functional
magnetic resonance imaging data sets. A list of all measures discussed in the
chapter is found in the discussion section. Finally, the reader should not expect
a balanced presentation of the large field of measuring multisensory integration;
instead, we mainly consider those more or less related to our own work.

2.2 Measures of Multisensory Integration: Introduction

2.2.1 Defining Multisensory Integration

Progress in MI is documented in several recent handbooks (see Section 2.8 for an
overview of the literature). Due to the large range of contexts – from neurophysiol-
ogy to applied psychology and marketing, from single cells to food tastes – the field
has been labeled in different ways (e.g. as “intersensory facilitation/enhancement,”
“intersensory/crossmodal interaction,” or “multisensory integration”), creating
some semantic confusion among many researchers. In 2010, a group of authors,
together with Barry Stein, one of the founders of the field in neuroscience, agreed
upon defining “multisensory integration” as

1 Optimality is always defined here only in relation to a specific paradigm.
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the neural process by which unisensory signals are combined to form a new prod-
uct. It is operationally defined as a multisensory response (neural or behavioral)
that is significantly different from the responses evoked by the modality-specific
component stimuli. (B. E. Stein et al., 2010, p. 1719)

This broad definition does not commit to a specific model or experimental
paradigm, nor to a criterion of optimality. Nevertheless, it requires some type of
measure to assess whether the multisensory response is “significantly different”
from the unisensory responses. Investigating such measures, as well as some
models related to them, is the focus of this chapter.2 Moreover, while the definition
encompasses both facilitation and inhibition of the multisensory response, most
measures presented here are formulated for the case of facilitation only and would
need to be adapted to comprise inhibition.

2.2.2 Measuring Multisensory Integration

First, we introduce some needed notation (see Table 2.1 for a list of abbreviations
used in this chapter). Beginning with the stimulus side, stimuli of a specific modal-
ity are labeled by sA,sV,sT , for auditory, visual, and tactile (or somatosensory)

Table 2.1 Abbreviations used in the chapter.

Acronym Meaning

CRE crossmodal response enhancement
E expected value (mean)
FS Fechnerian scaling
FLMP fuzzy logical model of perception
IE integration efficiency
MI multisensory integration
OUP Ornstein–Uhlenbeck process
PRE prelabeling (model)
PS probability summation
RMI race model inequality
RT reaction time
SC superior colliculus
SDT signal detection theory
SFE statistical facilitation effect
SOA stimulus onset asynchrony
SRT saccadic reaction time
TOJ temporal order judgment
TWIN time window of integration (model)
UI unisensory balance
VE/AE visual/auditory enhancement

2 Note, however, that issues of testing statistical significance are not central to this chapter.

https://doi.org/10.1017/9781108902724.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.003


Measuring Multisensory Integration in Selected Paradigms 45

stimuli, respectively, where further stimulus-specific information, like intensity,
has to be added as needed. When a label is only used as index of modality, we
often omit the s part. A basic distinction to keep in mind is between a unisensory
context where stimuli of a single modality, sA,sV,sT , are presented, and a cross-
sensory context where stimuli from two or more modalities are presented in a to-
be-specified spatio-temporal arrangement. For concreteness, we refer to A,V,T as
the unisensory context where only auditory, visual, or tactile stimuli are presented,
respectively. Similarly, VA denotes a bisensory (visual–auditory) context with stim-
ulus combinations labeled sVA being presented, VAT a trisensory context with
combined stimuli sVAT , etc., where again further information about the specific
presentation mode may have to be added. When the number of sensory modalities
is not specified, we also use the label crossmodal (for context, condition, stimulus,
response, etc.). Moreover, in this chapter mainly measures combining the visual
and auditory modalities will be considered, but most of these would also apply to
other modality combinations with minor modification.

Each time a specific auditory stimulus sA, say, is presented, it will give rise
to a unisensory response (e.g., a reaction time or a number of spikes within a
certain time interval). Typically, these responses are considered as instantiation
(realization) of some random variable (e.g., RTA or NA, respectively). Similarly, a
combination stimulus sVA elicits bisensory responses considered as realizations of
some random variables, RTVA or NVA. To simplify the exposition, we will neglect
all experimental details for now.

At the sample level, a descriptive measure of MI has to relate the set of
multisensory responses to the sets of unisensory responses; for example, how much
does the average auditory–visual response differ from the average auditory and
average visual response? At the level of random variables, the MI measure should
assess how, or how much, the distribution of responses to bisensory stimuli differs
from the distributions to unisensory stimuli.

We define measures only at the level of probability distributions, the correspond-
ing sample level measures are then easily derivable. In order to reduce the number
of possible formats, one should consider necessary or desirable features of such
a measure, denoted by CRE (crossmodal response enhancement/inhibition). We
first state a few elementary properties any CRE measure of MI should have. The
following list seems uncontroversial:

(i) (Real-valued function) CRE is a real-valued function of the crossmodal and
unisensory empirical distributions, or of some parameter of these distributions
(e.g., the mean).

(ii) (No-integration case) If the crossmodal distribution does not differ from one
of the unisensory distributions, CRE equals zero.

(iii) (Facilitation-inhibition) Negative values of CRE indicate crossmodal inhibi-
tion, positive values crossmodal facilitation.

Clearly, these features do not impose strong restrictions on the form of the
measure; this does not come as a surprise, however, given the huge number of

https://doi.org/10.1017/9781108902724.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.003


46 a. diederich and h. colonius

different experimental paradigms where MI is observable in various forms. Thus,
(i) to (iii) should be seen as a minimal set of necessary requirements. Next, we
consider two first examples satisfying them.

Example 2.1 (Spike numbers) The following measure of MI in a single neuron
is common in neurophysiology:

CRESP = ENVA −max{ENV,ENA}
max{ENV,ENA} × 100, (2.1)

where ENVA is the mean3 (absolute) number of spikes in response to the cross-
modal stimulus and ENV,ENA denote the mean (absolute) numbers of spikes to
the visual and auditory unisensory stimuli, respectively.4 Thus, CRESP quantifies
crossmodal enhancement/inhibition as the percentage difference between the
response to a crossmodal pair VA and the largest response to one of its unisensory
components, V or A.

Example 2.2 (Reaction time measure) An analogous measure for RTs is

CRERT = min{ERTV,ERTA} − ERTVA

min{ERTV,ERTA} × 100, (2.2)

where ERTVA is mean RT to an auditory–visual stimulus combination and
min{ERTV,ERTA} is the faster of the unisensory mean RTs to the visual and
auditory stimulus. Thus, CRERT expresses multisensory enhancement/inhibition
as a proportion of the faster unisensory response. For example, CRERT = 10
means that mean response time to the visual–auditory stimulus is 10% faster than
the faster of the expected response times to unimodal visual and auditory stimuli.

2.3 Measures for the Multisensory Neuron Response

2.3.1 Rules of Multisensory Integration

The first systematic neuronal studies of MI, performed in the 1970s, focused on
a midbrain structure, the cat superior colliculus (SC) (Meredith & Stein, 1983).
Stein and colleagues showed that neurons in the deep layers of the SC are primary
sites of multisensory convergence: if a visual–auditory stimulus combination
is presented such that the visual stimulus is within its visual receptive field
and the auditory stimulus is within its auditory receptive field, it will typically
produce response enhancement, in the form of increased spike numbers, even when
the stimuli are not found at the exact same spatial location. Likewise, response
depression (inhibition) tends to occur if the visual stimulus is within its receptive
field while the auditory stimulus is outside its receptive field. This has become
known as the spatial rule of MI.

3 Note that we drop the brackets in E[.] when there is no risk of confusion.
4 Spike numbers are counted in a specified time interval and may or may not include spontaneous

activity.
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Similarly, changing the interval between auditory and visual stimulation can
change enhancement to depression: presenting a visual stimulus 50 ms or 150 ms
before the auditory (V50A or V150A, for short) produced response enhancement,
whereas longer intervals (V300A or A200V) produced fewer impulses than a
unisensory stimulus (i.e., depression) (Meredith & Stein, 1983). The effect, termed
temporal rule of MI, largely depends on the amount of overlap of the peak dis-
charge periods of the neuron’s unisensory responses. Later, these spatiotemporal
rules of single neuron recordings have also been observed in other species like the
monkey, ferret, owl, guinea pig, rat, snake, and others.

A third major factor affecting MI is the efficacy of the component stimuli within
the neuronal receptive fields. Response enhancement is found to be greater the
less effective the unisensory stimuli are. This rule of inverse effectiveness is most
impressive when the unisensory stimulus intensities are below the threshold of
eliciting any response from the neuron but in combination generate a reliable
response.

More recently, a more nuanced function of unisensory signal strength and the
temporal rule has been observed in cat SC (R. Miller et al., 2015). For each neuron,
response magnitude (mean number of impulses per trial) to the visual (V) and the
auditory stimuli (A) can be used to quantify the notion of unisensory imbalance
(UI):

UI = |ENA − ENV |
ENA + ENV

× 100. (2.3)

UI quantifies the relative difference between the response magnitude to the visual
and the auditory stimuli. It has a minimum of zero when the visual and auditory
responses are of equal magnitude and a maximum of 100 when one of the
responses is lacking.

In view of the above definition of crossmodal enhancement [Equation (2.1)],
increasing unisensory imbalance should not affect CRESP. However, across a wide
range of response magnitude, increasing imbalance was found to be coupled with
both a decrease in the multisensory response (ENVA) and in crossmodal enhance-
ment CRESP (see Figure 2.1). Moreover, the order of arrival also mattered: when
the unisensory response magnitudes were imbalanced, multisensory enhancement
was maximized when stronger responses were advanced in time relative to weaker
responses (“stronger first”) and minimized when stronger responses were delayed
(“stronger second”) (for details, see R. Miller et al., 2015). Thus, only when the
unisensory stimuli are “balanced” does multisensory enhancement depend solely
on their absolute temporal offset.

Still a different twist on the single-cell mechanism in SC has emerged from
developmental findings. Since the early studies, it had been known that, just before
and after birth, cat SC neurons are largely unresponsive to sensory stimulation and
lack spontaneous activity. Successively, neurons start responding to tactile, then
auditory, and finally visual stimulation. Besides unisensory neurons, multisensory
neurons appear, but they do not yet show enhanced responses, instead they appear
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Figure 2.1 Relationships between multisensory responses (ME ≡ CRESP)

and unisensory imbalance (UI) in normal and naïve cohorts. (A) Neurons
from normally reared animals produce their greatest response enhancements
when the spatiotemporally concordant cues produced balanced unisensory
responses: an inverse relationship between ME and UI (dotted line). (B) Naïve
SC neurons showed a similar inverse relationship between ME and UI, but
even-balanced samples failed to produce significantly enhanced multisensory
products, and imbalanced samples induced multisensory depression. (C) His-
tograms summarizing the results. Vertical lines through the bars represent
standard error (from Yu et al., 2019).

to act as a common conduit for different senses to reach the same motor output
systems. These early studies had shown that blocking an animal’s multisensory
experience (e.g., rearing cats with no visual stimulation at all) results in mul-
tisensory responses not stronger than the most effective component, suggesting
CRE to be equal to zero. However, findings by Yu and colleagues (Yu et al.,
2019) revealed that there exists competition between the senses in these “naïve”
neurons: crossmodal stimuli, whether spatio-temporally disparate or not, can elicit
inhibition in these neurons’ responses. They conclude that the default mode of
multisensory processing in SC is competition rather than absence of integration,
and they develop a neurocomputational model consistent with this assumption.
Thus, some form of MI (including competition) seems to occur at all stages of
maturation, and the ability of enhanced (orienting) responses to crossmodal events
increases over subsequent stages of development (Yu et al., 2019, p. 1374).

All the rules, sometimes referred to as principles of MI, discussed above
have raised a discussion about whether, and in how far, they also determine
multisensory behavior in humans and under more complex stimulus contexts.
Before we follow up on these issues, we need to consider an aspect that proved
particularly noteworthy in measuring MI.

2.3.2 Multisensory Integration vs. Probability Summation

The fact that a multisensory neuron is responsive to multiple sensory modalities
does not guarantee that it has actually engaged in integrating its multiple sensory
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inputs. Rather, it may simply respond to the most effective stimulus in a given
trial (i.e., to the stimulus eliciting the strongest response).5 In other words, it is
possible that the response to a visual–auditory stimulus is simply determined by
the larger of the responses to the modality-specific components, that is, by the
component that happens to elicit the higher absolute number of spikes in a given
trial. Assuming random variation of the responses, such a mechanism is known as
probability summation (PS).

In order to explore implications for how to measure MI in single neurons in the
presence of PS, we first introduce some relevant statistical concepts. Only the case
of facilitation will be discussed here, while the case of inhibition can be developed
analogously. As before, the unisensory (visual, auditory) responses are conceived
of as realizations of random variables NV and NA. We define distribution functions
GV and GA, respectively:

P [NV ≤ nV ] = GV(nV) and P [NA ≤ nA] = GA(nA),

with nV and nA taking integer values 0,1, . . .. For the bisensory condition, we
assume a distribution function GVA exists such that

P [NVA ≤ n] = GVA(n),

with n = 0,1, . . .. Thus, NV,NA, and NVA are random variables whose realizations
(samples) are observed in the experiment under to-be-specified conditions.

Probability Summation (PS) in Spike Numbers
For clarity, the three assumptions underlying the concept of PS in this multisensory
context will be stated in detail. The first assumption refers to the observation
that realizations of the random variables NV and NA are collected under different
stimulus conditions (visual vs. auditory) and, thus, occur in distinct probability
spaces. A priori, there is no prescribed way to combine them. In particular, any
assumption about stochastic (in-)dependence between NV and NA is meaningless.
However, one can postulate a stochastic coupling6 of the two random variables.

Assumption 1: There exists a random vector (ÑV,ÑA) with a joint distribution
H̃VA:

H̃VA(nV,nA) = P [ÑV ≤ nV,ÑA ≤ nA].

Assuming the existence of H̃VA amounts to a coupling of the random variables ÑV

and ÑA, which is always possible. Of course, we want ÑV and ÑA to be a “copy”
of NV and NA in the following sense.

5 As Stein and colleagues (B. E. Stein et al., 2009, p. 114) have put it, “At the time of the early
physiology studies in the 1980s, it was considered possible that these neurons only represented a
common route by which independent inputs from a variety of senses could gain access to the same
motor apparatus in generating behavior (e.g., possibly employing a ‘winner-take-all’ algorithm).”

6 See Colonius (2016) for an introduction to the concept in this context.
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Assumption 2: The marginal distributions of H̃VA(nV,nA) are equal to GV and
GA, respectively:

H̃VA(nV,∞) = GV(nV) and H̃VA(∞,nA) = GA(nA).

This important restriction, equating the marginals to the observable unisensory
response distributions, is often called “context invariance.”

Note that we have not assumed a specific form for H̃VA. In fact, we are only
interested in the values on the diagonal, H̃VA(n,n). For n = 0,1, . . ., we write

H̃VA(n,n) = P [{ÑV ≤ n} ∩ {ÑA ≤ n}]
= P [max{ÑV,ÑA} ≤ n]

≡ G̃VA(n).

The third assumption specifies the probability mechanism proper.

Assumption 3: For n = 0,1, . . .

GVA(n) = G̃VA(n). (2.4)

That is, the observable crossmodal responses are the result of taking the maximum
of the unisensory responses.

It is always possible to construct some bivariate distribution H̃VA(nV,nA) (e.g.,
by assuming stochastic independence):

H̃VA(nV,nA) = P [ÑV ≤ nV ] P [ÑA ≤ nA],

which implies the empirically testable hypothesis

GVA(n) = G̃VA(n) = GV(n) GA(n)

for n = 0,1, . . . , under context invariance (Assumption 2).
In general, however, it is not obvious how Assumption 3 should be tested.

Stochastic independence, while convenient, may not be the most judicious choice,
as will be argued below.

2.3.3 Measures of MI under PS Hypothesis

It is straightforward to compare observed responses with those predicted by PS:
one has to gauge the difference between the means (expected values) associated
with GVA and G̃VA, that is ENVA and E max{NV,NA}, respectively. The common
measure of MI based on spike counts introduced in Example 2.1:

CRESP = ENVA −max{ENV,ENA}
max{ENV,ENA} × 100 (2.5)

is then replaced by

CRE∗SP =
ENVA − E max{NV,NA}

E max{NV,NA} × 100. (2.6)
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Note that Assumption 2 permits us to write measure CRE∗SP with NV,NA instead of
ÑV,ÑA. By a well-known statistics result (Jensen’s inequality; e.g., Ross, 1996):

max{ENV,ENA} ≤ E max{NV,NA}
always holds, obviously implying

CRE∗SP ≤ CRESP. (2.7)

This inequality reveals an important consequence: in order to assess “true” MI, that
is, over and above the effect of PS, the criterion mean number of spikes observed
(ENAV ) has to be larger than the mean taking PS into account.

Effects of Unisensory Imbalance
The move from CRESP to CRE∗SP opens up the possibility to probe effects of
unisensory imbalance mentioned above [Equation (2.3)]:

UI = |ENA − ENV |
ENA + ENV

.

Note that only the maximum of ENA and ENV enters into CRESP, so that varying
imbalance has no effect on that index. In contrast, computing E max{NV,NA}
involves the distribution of both variables, NA and NV , and it is easy to find
instances where CRE∗SP depends on both ENA and ENV simultaneously (see, e.g.,
Colonius & Diederich, 2017 for an example with Poisson-distributed spike counts).

Towards an Optimal Measure of MI
Inequality (2.7) holds without assuming a specific distribution for G̃VA. While
stochastic independence between NV and NA is typically taken for granted in
computing the value of E max{NV,NA}, it turns out that it is not the most
conservative choice possible.7 To demonstrate, we recall (without proof) a classic
result from statistics (Fréchet, 1951) about upper and lower bounds for arbitrary
distributions, here applied to H̃VA.

Lemma 2.3 (Fréchet inequalities) For m,n= 0,1, . . ., let H̃VA(m,n)=P(ÑV ≤
m,ÑA ≤ n) be a bivariate distribution with marginals G̃V(m),G̃A(n), respectively.
Then

max{0,G̃V(m)+ G̃A(n)− 1} ≤ H̃VA(m,n) ≤ min{G̃V(m),G̃A(n)}.
The upper and lower bound in the lemma represent bivariate distributions as well,
with the same marginals as H̃VA(m,n) but possessing maximal positive, respec-
tively negative, dependence between ÑV and ÑA (e.g., Joe, 1997). Setting m = n,
we denote the lower bound with maximal negative dependence by G̃(−)

VA (n). Then,

G̃(−)
VA (n) ≡ max{0,G̃V(n)+ G̃A(n)− 1} ≤ G̃VA(n) (2.8)

for n = 0,1, . . ..

7 Here, “conservative” means that one wants to avoid claiming MI to hold when, in reality, it does not.
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Importantly, maximal negative dependence between ÑV and ÑA maximizes the
expected value of E max{NV,NA}:
Lemma 2.4. Let E(−) max{ÑV,ÑA} be the expected value of max{ÑV,ÑA} under
bivariate distribution max{0,G̃V(m)+ G̃A(n)− 1}; then

E max{ÑV,ÑA} ≤ E(−) max{ÑV,ÑA}

under any bivariate distribution H̃VA(m,n) for E max{ÑV,ÑA}.
This can be shown as follows. Rewriting Equation (2.8) as

1− G̃VA(n) ≤ 1− G̃(−)
VA (n)

and summing over all n yields

E max{NV,NA} ≡
∞∑

n=0

[1− G̃VA(n)] ≤
∞∑

n=0

[1− G̃(−)
VA (n)] ≡ E(−) max{NV,NA}.

The upshot of Lemma 2.4 is that an optimal choice for defining CRE∗SP [Equation
(2.6)] is to insert E(−) max{NV,NA}:
Definition 2.5. The measure of MI taking into account PS with maximal negative
dependence between the unisensory responses is

CREmax
SP =

ENVA − E(−) max{NV,NA}
E(−) max{NV,NA}

× 100. (2.9)

Note that it is not claimed here that a multisensory neuron actually operates
under this extreme negative dependency rule. As long as PS is considered a
possible alternative to “true” MI, however, some specification of the stochastic
relation between the unisensory responses has to be made in CRE∗SP. Assuming
maximal negative dependency is simply the most efficient way to hedge against
a “false alarm,” that is, declaring true MI while enhancement may simply be a
product of PS. Whenever there is empirical or theoretical evidence in favor of
some other form of dependence (e.g., stochastic independence), this could be used
to modify the benchmark appropriately.

Because, in general, the new measure is more restrictive than the traditional
CRE measure, many neurons previously categorized as “multisensory” may lose
that property. The purpose of the new measure corresponds to that of the traditional
measure: given a fixed statistical criterion, one may categorize a single neuron as
either being “multisensory” or not. It is, of course, possible that a neuron actually
“truly” integrates the unimodal activations but still does not meet the criterion set
by maximal negative PS. However, as long as one has no direct insight into the
integration mechanism, an alternative interpretation in terms of PS simply cannot
be ruled out.
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Figure 2.2 Pairs of sample estimates of (CRESP,CREmax
SP ) based on 27 record-

ing blocks (15 stimulus presentations in each block). In the left-hand panel
spontaneous activity was included, in the right-hand panel it has been removed.
Filled circles indicate no significant difference between CRESP and CREmax

SP ,
based on bootstrap confidence intervals (N = 10,000, α = 0.05). Thus, each
open circle refers to a recording where the label multisensory may be lost when
applying measure CREmax

SP . There were 4 out of 27 cases with no significant
difference between both measures (left panel), after spontaneous activity was
removed, only 1 out of 19 cases was not significant (right panel) (from Colonius
& Diederich, 2017).

Example Application of CREmax
SP

Estimating E max{ÑV,ÑA} from sample data is straightforward. Without going
into detail, the procedure is as follows. We have two samples of numbers of
spikes from each modality of size nv and na, say, and assume nv = na. Under
the stochastic independence version of SP, the number of spikes occurring in trial
i,i = 1, . . . ,nv is randomly paired with the number of spikes in trial j,j = 1, . . . ,na

(without replacement). The maximum in each pair is determined and the average
of the maxima yields an estimate of E max{ÑV,ÑA}.

Under maximal negative dependence of PS, trial i with the largest number of
spikes is paired with trial j with the smallest number of spikes, the second largest i
is paired with the second lowest j, and so on (method of “antithetic variables”), and
the average of the maxima is again computed as the estimate of E max{ÑV,ÑA}. If
the unisensory samples are of different sizes, some replacement procedure could
be applied. In an illustrative sample of cat SC neurons,8 Colonius and Diederich
(2017) showed that there was a significant decrease from CRESP to CREmax

SP in 24
out of 27 recording blocks collected from 20 neurons. Whether or not the label
“multisensory” is actually lost for some neurons, however, depends on criteria of
the statistical test comparing the sample means (see Figure 2.2).

8 Data provided by the lab of Mark Wallace (personal communication).
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2.4 Measures Based on Response Speed

The earliest observations of MI effects have likely been reported in the
context of measuring the speed and accuracy of responses to crossmodal stimuli at
the beginning of the twentieth century (see Welch & Warren, 1986, for a review).
In a typical paradigm, participants are instructed to respond via button press as
soon as a signal of any modality occurs (redundant signals paradigm9). It is to be
distinguished from a related paradigm, often called focused attention paradigm; in
the latter, one modality is designated as “target” modality, the other as “distractor”
modality, and participants are instructed to respond only to signals from the target
modality (mostly, visual) but not to distractor signals. The two paradigms demand
separate treatments for the measurement of MI.

Note that erroneous responses should also be defined differently for the two
paradigms, but we will first ignore errors entirely since they are often kept at a
negligible rate in the experiments. Accuracy measures are discussed later.

2.4.1 MI Measures in Redundant Signals Paradigms

In general, bisensory, in particular visual–auditory, stimulation results in smaller
mean RT compared to unisensory stimulation, and responses to trisensory stimula-
tion (often visual, auditory, and tactile) are faster on average than to bisensory
stimulation. The magnitude of the speed-up depends on the specifics of the
experiment, in particular the intensity of the different modalities and their temporal
configuration. For visual–auditory presentations, the greatest effect is typically
found when the visual stimulus precedes the auditory by an interval that equals
the difference between the unisensory mean RTs.

Hence the MI measure for RTs introduced in Equation (2.2) should be aug-
mented to include stimulus onset asynchrony (SOA), denoted as τ :

CRERT,τ = min{ERTV,ERTA + τ } − ERTVτA

min{ERTV,ERTA + τ } × 100, (2.10)

where RTVτA is the RT to a visual–auditory stimulus combination with the visual
preceding the auditory by τ [ms]; thus, the maximum of CRERT,τ would be
expected10 for τ = ERTV − ERTA.

For trisensory stimulus contexts (VAT), the analogous measure is

CRERT,τ1τ2 =
min{ERTV,ERTA + τ1,ERTT + τ1 + τ2} − ERTVτ1Aτ2T

min{ERTV,ERTA + τ1,ERTT + τ1 + τ2} × 100,

(2.11)

where RTVτ1Aτ2T is the RT to a visual–auditory–tactile stimulus combination with
the visual preceding the auditory by τ1 [ms] and the auditory preceding the tactile
by τ2 [ms].

9 Also known as divided attention paradigm.
10 Visual RTs tend to be slower than auditory RTs at comparable intensity levels.
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Note that adding a third modality increases the possible measures of response
enhancement: trisensory response speed may now also be compared with the speed
of any bisensory combination (e.g., Vτ1Aτ2T with Vτ1A or Aτ2T), as long as these
different combinations have been presented in the experiment. For example:

CRERT,(τ1)τ2 =
ERTVτ1A − ERTVτ1Aτ2T

ERTVτ1A
× 100, (2.12)

measuring the additional multisensory effect of a tactile stimulus, presented τ2

[ms] later, on the speed of a visual–auditory combination.

2.4.2 Probability Summation in the Redundant Signals Paradigm

None of the RT measures of MI considered so far takes the PS hypothesis into
account. In this context, the hypothesis amounts to postulating the so-called race
model and as such, arguably, represents the most widely known version of PS in
multisensory research. The idea is that, for example, a visual–auditory stimulus
combination triggers random visual and auditory processing times such that the
observed RT equals the minimum of the two (i.e., the “winner of the race”).

Usually, RTs are assumed to comprise some additive components, like motor
preparation and execution. To simplify the discussion, we neglect this distinction
here. Observed samples from random variables, denoted as TV , TA, and TVA, repre-
sent RTs obtained in unisensory visual, auditory, and bisensory trials, respectively.
Thus, we equate realizations of TV , TA, and TVA with the observable RT under
these conditions.

We define underlying distribution functions FV and FA, respectively:

P [TV ≤ tV ] = FV(tV) and P [TA ≤ tA] = FA(tA),

with TV and TA taking on non-negative real numbers. For the bisensory context,
we assume a distribution function FVA such that

P [TVA ≤ t] = FVA(t),

with t ≥ 0. Hence, TV,TA, and TVA are random variables whose realizations are
observed in an experiment under to-be-specified conditions.

Probability Summation (PS) in Reaction Times
The exact definition of PS follows in close analogy to the one given for spike
numbers in the previous section.

Assumption 1: There exists a random vector (T̃V,T̃A) with a joint distribution
K̃VA:

K̃VA(tV,tA) = P [T̃V ≤ tV,T̃A ≤ tA].

Assuming the existence of K̃VA amounts again to a coupling of the random
variables T̃V and T̃A, which is always possible. Of course, we want T̃V and T̃A

to be a “copy” of TV and TA in the following sense.
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Assumption 2: The marginal distributions of K̃VA(tV,tA) are equal to FV and FA,
respectively:

K̃VA(tV,∞) = FV(tV) and K̃VA(∞,tA) = FA(tA).

Thus, “context invariance” is postulated for RT distributions as well. It follows that
for t ≥ 0:

K̃VA(t,t) = P [{T̃V ≤ t} ∩ {T̃A ≤ t}]
= P [max{T̃V,T̃A} ≤ t]

≡ F̃VA(t).

Assumption 3: For t ≥ 0

FVA(t) = F̃V(t)+ F̃A(t)− F̃VA(t). (2.13)

Assumption 2 is the central one again, implying that the observable crossmodal
RTs result from taking the minimum of the unisensory RTs (race model).

It is always possible to construct some bivariate distribution K̃VA(tV,tA) (e.g., by
assuming stochastic independence):

K̃VA(tV,tA) = P [T̃V ≤ tV ] P [T̃A ≤ tA]

= FV(tV) FA(tA) by Assumption 2.

This implies the special case of “independent race model”:

FVA(t) = 1− (1− FV(t))(1− FA(t)). (2.14)

The PS hypothesis has been studied as a possible non-parametric model for RTs in
the redundant signals paradigm. Being equivalent to the “race model,” it predicts
a specific relation between the distribution functions for bisensory and unisensory
conditions:

FVA(t) = F̃V(t)+ F̃A(t)− F̃VA(t) by Assumption 3

= FV(t)+ FA(t)− F̃VA(t) by Assumption 2

≤ FV(t)+ FA(t). (2.15)

Inequality (2.15) is a simple version of Boole’s inequality and has been called
“race-model inequality” (RMI) in this context. Testing it has become routine
in a vast number of empirical studies, using a variety of different statistical
procedures.11 Note that the right-hand side of RMI approaches 2 for t going to
infinity, so it can be replaced by min{FV(t)+ FA(t),1}. Typically, RMI tends to be
violated for t not too large.

11 Sometimes, the “independent” version of the inequality is tested, FVA(t) ≤ FV (t) + FA(t) −
FV (t)FA(t), but violations of this inequality would only rule out the special case of a stochastically
independent race.
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2.4.3 Measures of MI in Redundant Signals Paradigms under PS

In addition to testing the race model, a quantitative measure of the degree of RMI
violation has been proposed. The latter turns out to be the basis of a measure of MI
in redundant signal experiments.

We define a function RVA(t), for t ≥ 0:

RVA(t) ≡ FVA(t)−min{FV(t)+ FA(t),1}. (2.16)

Hence, values of t with RVA(t) > 0 indicate a violation of RMI, whereas values
of t with RVA(t) ≤ 0 are compatible with the race model. The positive part of the
area between FVA(t) and min{FV(t) + FA(t),1} is often taken as a measure of the
amount of RMI violation. Integrating RVA(t) results in a convenient interpretation
as MI measure. First, observe that

RVA(t) = FVA(t)−min{FV(t)+ FA(t),1}
= 1−min{FV(t)+ FA(t),1} − [1− FVA(t)]

= max{1− FV(t)− FA(t),0} − [1− FVA(t)].

Integrating yields∫ ∞
0

RVA(t) dt =
∫ ∞

0
max{1− FV(t)− FA(t),0} dt −

∫ ∞
0

[1− FVA(t)] dt

= E(−) min{TV,TA} − E{TVA},
where E(−) min{TV,TA} denotes mean RT predicted by a race model with maximal
negative dependence between the latencies TV and TA. This leads to a modified
version of CRERT,τ [see Equation (2.10)] accounting for PS:

CREmin
RT,τ =

E(−) min{RTV,RTA + τ } − ERTVτA

E(−) min{RTV,RTA + τ } × 100, (2.17)

where TV,TA are identified with RTV,RTA, respectively.

2.4.4 MI Measures in Focused Attention Paradigms

Let us assume a stimulus from the visual modality is the target. The task is
to respond to the occurrence of the target, via button press, while ignoring
an auditory stimulus (“distractor”) presented in spatio-temporal proximity. In a
frequent variant, the required response is to execute an eye movement towards a
target that occurs at a randomized spatial position in the visual field, with saccadic
RT and/or accuracy of the trajectory/landing position being recorded. In all cases,
MI is measured by how much the response to the target is modulated by the
presence of a distractor. For RTs, a simple adaption of the CRE measure in the
redundant paradigm results in

CRERT = ERTV − ERTVA

ERTV
× 100. (2.18)
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The amount and direction (facilitation vs. inhibition) of CRERT depends on a
host of experimental conditions. Because visual and auditory stimuli activate
visuomotor neurons in superior colliculus (SC), thereby eliciting goal-directed
eye movements, many studies of MI have focused on gaze behavior, in particular
saccadic reaction time.12

While the temporal and spatial rules of MI are, in general, consistent with
findings in the redundant signals task, effects of the role of localizability of the
auditory distractor have found special attention in eye movement experiments.
Specifically, when target and distractor are presented at the same position (e.g.,
both above or below fixation point), SRTs are faster than when they are presented
at opposite positions (e.g., target above, distractor below fixation point). However,
this effect disappears when localization of the auditory stimulus is made more
difficult (e.g., by increasing the level of a background noise). Hence, the perceived
rather than the physical distance between target and distractor controls the MI
effect (Colonius, Diederich, & Steenken, 2009).

2.5 MI Measures Based on Accuracy

Next, we discuss MI measures based on accuracy. These measures turn up
in a variety of multisensory tasks, including detection, discrimination, recognition,
and identification. We will not be able to cover all of them, but rather focus on a
few important aspects.

2.5.1 MI Measures Based on Detection Accuracy

Let pV,pA, and pVA denote the probability of responding “Yes” to the question
of whether a visual, auditory, or combined visual–auditory stimulus has been
presented, respectively. In analogy to CRE measures of response speed in the
redundant signals task, we define the crossmodal detection rate as

CREDR = pVA −max{pV,pA}
max{pV,pA} × 100. (2.19)

Typically, the probability of a “Yes” response will primarily depend on stimulus
intensity. If at least one of the unisensory stimuli is clearly detectable (i.e., pA or
pV close to one), pVA will also be close to one, and so the crossmodal detection
rate will be close to zero. If intensity is low or, equivalently, the level of noise
during presentation is (moderately) high, determining the likelihood of responding
“Yes” is not straightforward: the participant may have a tendency to guess and/or
may have an internal criterion for responding “Yes” or “No,” which leads us to the
realm of signal detection theory (SDT) (Green & Swets, 1974).

In the terminology of SDT, it is not sufficient to compare the crossmodal hit rate
(probability of saying “Yes” when the stimulus is presented) with the unisensory

12 We limit the presentation here to SRTs; MI measures involving other aspects of eye movements are
similarly obtainable.
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hit rates because increasing the hit rate often goes along with increasing the
false-alarm rate (probability of saying “Yes” when no stimulus is presented) as
well. Assuming the standard equal-variance Gaussian distribution model of SDT,
CREDR can be replaced by inserting the corresponding d-prime measures:

CRESDT =
d′VA −max{d′V,d′A}

max{d′V,d′A}
× 100. (2.20)

This measure assesses the relative amount of sensitivity increase in the visual–
auditory condition compared to the best unisensory condition, while separating
sensitivity from possible biases to respond “Yes” or “No” in each condition. An
analogous definition for the focused attention task is obvious.

Measure CRESDT tests against a benchmark where the observer simply ignores
the less detectable modality. However, it is also possible to modify CRESDT such
that a PS strategy is taken into account. Let us assume that an observer sets two
criteria, λV and λA, and a “Yes” response is given if at least one of the criteria
is exceeded. Under stochastic independence, the probabilities of misses (1 minus
probability of a hit) and correct rejections (1 minus probability of a false alarm) are
the product of their modality components. Writing fV,fA, hV,hA and fVA,hVA for the
false-alarm and hit rates for the unisensory and bisensory conditions, respectively,
we get

fVA = 1− (1− fV)(1− fA) = 1−(λV)(λA)

hVA = 1− (1− hV)(1− hA) = 1−(λV − d′V)(λA − d′A),

with  denoting the standard Gaussian distribution function. From this we can
compute the visual–auditory sensitivity under the PS strategy:

d′PS
VA = −1(hVA)−−1(fVA).

Inserting into expression (2.20) results in a modified measure of response enhance-
ment gauging against PS:

CREPS
SDT =

d′VA − d′PS
VA

d′PS
VA

× 100. (2.21)

Besides the PS notion, numerous alternative models on how unisensory detection
accuracy is combined into a bisensory one have been discussed in the literature
(see Jones, 2016 for a recent tutorial). Finally, when there is empirical evidence
against the equal-variance assumption of SDT, alternative measures, like the area
under the operating characteristic, may be considered instead of d-prime values
(see, e.g., Lovelace, Stein, & Wallace, 2003 for a focused-attention example).

2.5.2 Measures for Audiovisual Speech Identification

Arguably, one of the most thoroughly studied lines of multisensory research is the
identification of speech in an audiovisual paradigm. In typical audiovisual speech
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identification (or recognition) tests, listeners are presented with audio materials
like syllables, words, phrases, or sentences along with a video of a speaker’s
face acquired at the same time as the audio materials. Commonly, speech heard
in noise (often, talker babble noise at different levels) can be more accurately
identified or recognized when the participant sees a speaker’s articulating face or
lip movements.

However, there still seems to be considerable controversy with respect to the
source of this audiovisual advantage. According to several studies, when hearing-
impaired individuals, or different age groups, are compared with respect to the
amount of audiovisual benefit, one finds large differences across individuals or
groups. Notably, these differences are often found to persist even when differing
unisensory auditory or visual speech recognition performance levels are taken
into account. Thus, besides lipreading ability and auditory encoding ability, an
ability to integrate auditory and visual information should be assessed in order
to explain audiovisual performance (Grant, 2002). In contrast, it is also held that
an audiovisual speech signal represents a more robust representation of any given
word because, first, simultaneous auditory and visual speech signals provide com-
plementary information: vision contributes clues about some aspects of the speech
event that are hard to hear and which may depend on the shape and contour of the
lower face being clearly visible. Second, reinforcing information may be provided
by the temporal congruence between amplitude fluctuations in the auditory signal
and mouth opening and closing in the visual signal. That is, when the auditory
signal gets louder, the visible mouth and jaw tend to be opening; when the signal
gets softer, the mouth and jaw tend to be closing (see Tye-Murray et al., 2016).

Measures of Response Enhancement and Superadditivity
Without subscribing to a specific source of the audiovisual advantage, ad-hoc
measures of enhancement have been developed. Letting pAV denote the proba-
bility13 of correctly identifying words in the audiovisual condition and pV,pA

the corresponding probability in the vision-only and auditory-only condition,
respectively, one defines visual enhancement (VE) as

VE = pAV − pA

1− pA
. (2.22)

Thus, VE represents the amount of benefit afforded by the addition of the
visual channel of speech, normalized for the amount of possible improvement.
Analogously, one defines auditory enhancement (AE) as

AE = pAV − pV

1− pV
. (2.23)

Thus, AE represents the amount of benefit afforded by the addition of the auditory
channel of speech, again normalized for the amount of possible improvement.

13 Note that pV , pA, and pAV here are not the same as in the previous section on detection, but no
confusion should arise.
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Although these enhancement measures do not seem controversial, some criti-
cism has been raised against them. First, whereas there is broad empirical support
for the principle of inverse effectiveness (Section 2.3.1) being valid in audiovisual
speech performance, the normalization involved in calculating AE biases against
finding results consistent with it. Specifically, among listeners with equivalent
improvement (i.e., equal numerators), AE will be lower for those who made more
lipreading errors, inconsistent with the principle (as pointed out by Tye-Murray
et al., 2010, p. 639).

Second, a more sweeping argument was recently made by Dias, McClaskey, and
Harris (2021), studying the mean proportion of correctly identified words for two
different age groups. Consistent with previous research, they found pV and pA to
decline with age and to correlate positively with each other, but pAV did not differ
significantly between age groups. Importantly, they did not find VE and AE to
exhibit any age effects. Dias and colleagues offer the following explanation, after
defining “superadditivity” psAV as

psAV = pAV − (pA + pV). (2.24)

Rewriting the expressions for VE and AE yields

VE = pAV − pA

1− pA
= pV + psAV

1− pA

and

AE = pAV − pV

1− pV
= pA + psAV

1− pV
.

The superadditivity term occurring in both VE and AE explains the positive
correlation; moreover, the authors argue, the absence of an age effect is due to
the declining values of pV and pA with age, canceling an alleged increase of
superadditivity, psAV , also with age.14

Measures Derived from Modeling Audiovisual Speech Identification
Different models of auditory–visual speech integration have been proposed. They
often predict “optimal” performance in the bisensory condition given the informa-
tion extracted in the unimodal conditions separately (e.g., for nonsense syllables,
words, or sentences), thereby providing quantitative measures of integration
efficiency (IE).

The simplest one is a model representing a PS version of crossmodal detection
rate CREDR [Equation (2.19)]. Assuming independent PS for auditory and visual
performance, the probability pI

AV of recognizing an item in the audiovisual
condition equals

pI
AV = 1− (1− pA)× (1− pV) = pA + pV − pA × pV .

14 Dias, McClaskey, and Harris (2021) use notation AO, VO, and AV instead of probabilities; see the
paper for details of their exhaustive statistical analyses.
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From this, integration efficiency is defined as (e.g., Tye-Murray, Sommers, &
Spehar, 2007)

IEI = pobs
AV − pI

AV

1− pI
AV

, (2.25)

where pobs
AV is the observed probability in the audiovisual condition. Integration

efficiency measured this way has often been found to be positive, but some recent
findings support the PS model as well (van de Rijt et al., 2019), implying zero
integration efficiency.

A prominent model for audiovisual speech identification is Massaro’s fuzzy
logical model of perception (FLMP), with an optimal integration rule equivalent to
Bayes’ theorem (see Massaro & Cohen, 2000).

Prelabeling model of integration (PRE). Another widely known model is
Braida’s PRE model (Braida, 1991), where each response Rj corresponds to
a point in a D-dimensional Euclidean vector space of stimulus attributes (cue
vectors) referred to as prototypes. Each presentation of a stimulus i generates a
D-dimensional vector of cues X in the same space following a multivariate normal
distribution with independent components, unit variance, and a given mean Si

not necessarily identical to the prototype corresponding to Ri. According to a
decision rule of multidimensional signal detection theory, the subject responds
Rj if and only if the (Euclidean) distance of X to the prototype of Rj is smaller
than the distance to any other prototype. The prototype locations are assumed
to reflect response bias effects, whereas the subject’s sensitivity in discriminating
stimulus i from stimulus j, d-prime value d ′(i,j), is given by the Euclidean distance
between Si and Sj. The model parameters (i.e., the components of vectors Si

and Ri) are estimated iteratively through nonmetric multidimensional scaling by
comparing observed and predicted confusion matrices. The decision space for
the AV condition is assumed to be the Cartesian product of the space for the
A condition and the space for the V condition. A subject’s sensitivity in the
AV condition can be shown to be related to the unimodal sensitivities by

d ′AV(i,j) =
√

d ′A(i,j)2 + d ′V(i,j)2. (2.26)

An IE measure is then defined by taking the ratio between the obtained and
predicted d ′AV scores:

IEPRE = d ′AV(obs)

d ′AV(pred)
. (2.27)

Note that perfect integration need not be associated with high overall AV
performance: if a participant has very bad hearing or is a very poor speech reader,
it is unlikely that they will achieve a high AV score. Nevertheless, a subject may
still integrate the available A and V cues in a nearly optimal manner, and if so, the
integration efficiency measure should be near unity (see Figure 2.3).
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Figure 2.3 PRE model: Observed and derived measures obtained from exper-
iment on consonant recognition in noise (40 subjects). (Top) Observed vs.
predicted PRE AV scores. The line indicates perfect integration efficiency:
IEPRE = 1. Predicted and observed AV scores for several subjects fall near
the main diagonal, whereas observed scores for other subjects are significantly
less than predicted. (Bottom) Histogram showing distribution of IEPRE values
across subjects (from Grant & Seitz, 1998).
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Integration Efficiency Based on Fechnerian Scaling
The validity of any IE measure derived from a model of AV speech integration, like
the prelabeling model (PRE), depends on the specific assumptions of the model
being valid empirically. We briefly discuss an alternative, less restrictive approach
based on a theory of computing subjective distances on very general stimulus sets
(Dzhafarov & Colonius, 2006).

Recall that a metric is a non-negative function d defined on pairs (x,y) from a
set X, say, such that for all x,y,z ∈ X:

(i) d(x,y) ≥ 0 and d(x,y) = 0 implies x = y;
(ii) d(x,y) = d(y,x);
(iii) d(x,y)+ d(y,z) ≥ d(x,z).

The theory of Fechnerian scaling (FS) (see, e.g., Dzhafarov & Colonius, 2007)
deals with the computation of subjective distances among stimuli from their
pairwise discrimination probabilities. The latter are the probabilities with which
the judgment “these two stimuli are different” is chosen over “these two stimuli
are the same”:

ψ(x,y) = P [subject judges x and y in (x,y) to be different]. (2.28)

For identification tasks, data from confusion matrices are available instead of
discrimination probabilities. The cell in a confusion matrix is the probability that
stimulus y is identified as stimulus x, denoted as η(x,y) for all x,y in the stimulus
set X. Thus, we need the additional assumption that

1− ψ(x,y) = η(x,y).

Given η(x,y) for all x,y in the stimulus set X, FS allows one to compute a metric G,
say, on X satisfying properties (i) to (iii) above. The only necessary and sufficient
empirical condition for the construction is regular maximality:

η(x,x) > max{η(x,y),η(y,x)} (2.29)

for any x,y ∈ X,x �= y. In other words, when stimulus x is presented, the probability
of identifying x as x should be greater than the probability of identifying x as y, a
stimulus different from x. Importantly, η(x,x) may vary with x and η(x,y) may be
different from η(y,x).

Let us assume that Fechnerian metrics GA, GV , and GAV have been computed
from the confusion matrices in the auditory, visual, and audiovisual condition,
respectively, for each pair of stimuli {i,j}. The corresponding metric values GA(i,j),
GV(i,j), and GAV(i,j) are interpreted as subjective distance between the two stimuli
under auditory, visual, and audiovisual presentation, respectively. A priori, these
three values are unrelated to each other since they are defined on different stimulus
sets. On the other hand, there is a natural one-to-one correspondence across the
visual, auditory, and bisensory stimulus sets (i.e., visual stimulus i ↔ auditory
stimulus i ↔ bisensory stimulus component i). Moreover, given that Fechnerian
distances on a given set are unique only up to a similarity transformation

https://doi.org/10.1017/9781108902724.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.003


Measuring Multisensory Integration in Selected Paradigms 65

(i.e., multiplication with a positive constant), one can standardize each of them
such that the maximum distance equals one.15

If GAV(i,j) is larger than GA(i,j) or GV(i,j), this suggests that adding information
from the other modality (V or A) increases the subjective distance between i
and j. This increase in subjective distance from the unisensory to the bisensory
presentation is proposed as indicator of visual, respectively auditory enhancement,
in analogy to VE and VA in Section 2.5.2:

VEFS(i,j) = GAV(i,j)− GA(i,j)

1− GA(i,j)

= GV(i,j)+ GsAV(i,j)

1− GA(i,j)
(2.30)

and

VEFS(i,j) = GAV(i,j)− GV(i,j)

1− GV(i,j)

= GA(i,j)+ GsAV(i,j)

1− GV(i,j)
, (2.31)

with

GsAV(i,j) = GAV(i,j)− [GA(i,j)+ GV(i,j)]

denoting the superadditivity term, in analogy to Equation (2.24).
In order to derive an overall index of integration efficiency, averaging across

all superadditivity terms results in a Fechnerian scaling-based multisensory
integration efficiency index:

IEFS =
(

N

2

)−1 ∑
{i,j}⊂ S

GsAV(i,j), (2.32)

i �= j, with N denoting the number of stimuli in stimulus set S.
The FS-based approach to integration efficiency presented here, and the prela-

beling model (PRE), share the idea of converting the information contained in
the confusion matrices into a representation of subjective distances between the
stimuli. An important difference is that the FS-based approach neither requires
explicit assumptions about the space (e.g., Euclidean) and its dimensionality nor
any parameter estimation.

One can argue that the definition of IEFS being based on superadditivity is
somewhat arbitrary. Nonetheless, Colonius and Diederich (2007) report on a small
data set, a reduced confusion matrix for consonants /b/, /d/, and /g/ presented in
Braida, Sekiyama, and Dix (1998). Table 2.2 lists all three confusion matrices

15 Importantly, Fechnerian distances are always a function of the entire (base) set used to compute
them, and the G values are not monotonically related to the probabilities η(x,y), although they
have been found to correlate highly in many empirical data sets. Moreover, it seems plausible that
Fechnerian distances for corresponding stimulus pairs are measured in the same “units.”
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Table 2.2 Each cell: ψ at top and G (Fechnerian
distances) at bottom, for auditory (A), visual (V), and
audiovisual (AV) presentation (rows ≡ stimuli,
columns ≡ responses) with resulting value of
IEFS = 0.8737.

ψA = 1− ηA

GA “b” “d” “g”

0.437 0.717 0.846
b– 0.000 0.450 0.589

0.700 0.530 0.757
d– 0.450 0.000 0.350

0.746 0.689 0.566
g– 0.589 0.350 0.000

ψV = 1− ηV

GV

0.022 0.983 0.996
–b 0.000 1.805 1.527

0.990 0.146 0.871
–d 1.805 0.000 0.864

0.989 0.575 0.436
–g 1.527 0.864 0.000

ψAV = 1− ηAV

GAV

0.007 0.996 0.998
bb 0.000 1.860 1.704

0.997 0.126 0.876
dd 1.860 0.000 1.203

0.991 0.731 0.278
gg 1.704 1.203 0.000

(auditory, visual, auditory–visual) together with their corresponding Fechnerian
distances GA,GV , and GVA.

The value of IEFS was computed16 as 0.8737, which is very close to the correct
identification score (87.1%) predicted by the PRE model (Braida, Sekiyama, &
Dix, 1998) for the same data set. In general, however, most of the indexes of
audiovisual integration efficiency presented here have some degree of arbitrariness
and will have to prove their utility and cross-study consistency in future research.

16 The IEFS index used was based on the superadditivity term GsAV (i,j) written as ratio rather than
difference.
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2.6 Measures Based on MI Modeling of RTs

The focus of this chapter has so far been on measuring MI, rather than
modeling. Yet PS, which is a model, has emerged several times as benchmark:
any improvement (response speed reduction, improved detection probability, etc.)
beyond the level predicted by PS has been defined as measure of MI. In keeping
with this approach, we will define CRE as a function of the enhancement observed
beyond what is predicted by a particular MI model under consideration. Given that
these models typically require estimation of some parameters, the idea here is to
estimate them from the unisensory conditions only and subsequently insert these
estimates into the MI model in order to predict bisensory RTs. Measures of MI then
assess by how much these model predictions fall short of the observed bisensory
data. Given the multitude of integration models, however, we need to be selective
and will only sketch a few modeling approaches with respect to how they estimate
and predict the amount of MI.

2.6.1 Coactivation Models

Coactivation is a generic term suggested by J. Miller (1982) to describe models
that allow activation from different channels (in particular, modalities) to combine
in satisfying a single criterion for response initiation, in distinction to separate
activation models (or, race models), where the system never combines activation
from different channels in order to meet its criterion for responding (J. Miller,
1982, p. 248). Coactivation models differ with respect to their state space (i.e.,
whether the state space within which combination is performed, is continuous or
discrete). We consider measures of MI for continuous-time models with either
discrete or continuous state space. Discrete-time coactivation models are not
considered here because of our emphasis on response time measurements.

The (Poisson) superposition model. Presentation of a stimulus induces a neural
renewal (counting) process,17 {N(t),t ≥ 0}, with interarrival times {Xn,n= 1,

2 . . .}. Let W(n) =
n∑

i=1
Xi be the waiting time for the nth counts. The assumption is

that a response is initiated as soon as a fixed number of counts, c, is reached. Note
that

P(N(t) ≥ c) = P(W(c) ≤ t).

Finally, the observable RT is assumed to be additively composed of the waiting
time plus all processes following (or preceding) it. The duration of these addi-
tional processes, which may include motor preparation and response execution
components, is represented by a random variable M:

RT = W(c)+M.

17 For exact definitions, see Ross (1996).
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The superposition assumption holds that the unisensory renewal processes,
NV(t) and NA(t), are simply added, defining a new renewal process, so that the
waiting time for the cth count is reduced; specifically, if the visual stimulus is
presented τ ms (τ > 0) before the auditory:

NVA(t) = NV(t)+ NA(t − τ),

where NA(t − τ) = 0 for t < τ .
Under the simplest renewal process (Poisson), expected waiting time for the

bisensory condition can be computed as

EWVτA(c) = c

αV
− αA

αV(αV + αA)
exp(−αVτ)

c−1∑
i=0

(αVτ)i

i!
(c− i), (2.33)

where αV and αA are the Poisson intensity parameters for the visual and auditory
stimulus, respectively.18 For τ = 0, this reduces to c/(αV + αA).

Let ERTVτA = EWVτA(c) + EM. In obvious notation, we define as measure of
crossmodal response enhancement for the Poisson superposition model:

CRESUP,τ =
ERTVτA − ERT obs

VτA

ERTVτA
× 100, (2.34)

assuming parameters c and EM to be invariant across the unisensory and bisensory
conditions. Note that CRESUP,τ increases as a function of c; thus, the Poisson
superposition model is consistent with the prediction of inverse effectiveness. On
the other hand, it cannot predict inhibition.

Diffusion models. In these models, presentation of a stimulus is assumed to
induce a stochastic process that is often described by a linear, first-order stochastic
differential equation19 of the form

dX(t) = μ(X(t),t)+ σ(X(t),t) dW(t), (2.35)

where W(t) is a standard Wiener process, μ(x,t) is called the effective drift rate
describing the instantaneous rate of expected increment change at time t and state
x = X(t). Factor σ(X(t),t) in front of the instantaneous increments dW(t) is called
the diffusion coefficient relating to the variance of the increments.

Modeling information accumulation and predicting response times, however,
requires one to make concrete assumptions on drift rates and diffusion coefficients,
resulting in a large variety of stochastic diffusion models. For example, setting
μ(x,t) = δ and σ(X(t),t) = σ defines a time-homogeneous Wiener process with
drift (setting δ = 0 is the standard Wiener process). The drift rate is interpreted
as describing the rate of information accumulation under different stimulus
conditions.

Termination of the accumulation process is then defined by the first time it
reaches a threshold, C (C > 0). This stopping time, denoted as ν, is the smallest

18 For τ < 0, τ must be replaced by −τ and αV and αA interchanged.
19 For exact definitions, we must refer to the literature.
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value for t such that X(t) = C. If X(0) = 0, expected stopping time in the Wiener
process with drift δ is

E[ν |X(0) = 0] = C/δ, (2.36)

which is independent of the diffusion coefficient. Observed RT is defined as the
sum of (random variables) ν and a non-decision component M, RT = ν +M.

Applying this model version to the redundant signals paradigm, we assume
two Wiener processes with drift rates δV and δA, respectively, for the unisensory
conditions. In the bisensory condition with SOA ≡ τ = 0, a superposed Wiener
process is defined by

XVA(t) = XV(t)+ XA(t) (2.37)

with drift rate δV + δA, while postulating identical threshold values C and
mean values of M, for all conditions. Given the expected stopping times
C/δV,C/δA,C/(δV + δA), one can define a measure of crossmodal enhancement
exactly like Equation (2.34) for the Poisson superposition model at τ = 0.
Obviously, however, under these simplified assumptions the two models become
indistinguishable, predicting the same amount of enhancement. The problem
dissolves when predictions for non-simultaneous stimuli for two modalities
(Schwarz, 1994) or more (Diederich, 1995) are derived and CRE measures
analogous to Equation (2.34) can be defined:

CREDIF,τ =
ERTVτA − ERT obs

VτA

ERTVτA
× 100. (2.38)

Moreover, for τ = 0, setting μ(x,t) = δ − γ x and σ(x,t) = σ defines a time-
homogeneous Ornstein–Uhlenbeck process (OUP).20 For γ > 0 this implies that
the accumulation rate decays depending on the current state x (e.g., Diederich,
1995). Given that for this and related models, expected stopping times are often
not available in closed form, crossmodal enhancement measures of the form of
Equation (2.38) may be approximated by simulation or, alternatively, by Markov
chain approximation.21

2.6.2 Time-Window-of-Integration Framework

While the PS mechanism by itself constitutes a broad class of models at both
the neural and behavioral level, simple race models often do not fare too well
empirically and, as mentioned, typically only serve as point of reference in defining
an enhancement measure (see Section 2.4.3). The time-window-of-integration
(TWIN) framework for response speed, measured as manual or saccadic RT, is

20 But τ �= 0 implies a non-time-homogeneous OU process.
21 Roughly, after fitting the unisensory data with an OUP model each, sample unisensory values xV (t)

and xA(t) for any t, add them to define a superposed process, and estimate the expected stopping
time of that process.
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a simple extension of the PS model. The amount of RT facilitation not accounted
for by the latter [cf. Equation (2.17)] is,

E min{RTV,RTA} − ERTVA,

where RTA and RTV are the observed latencies of unisensory responses. Here,
E min{RTV,RTA} refers to the RT predicted by a PS rule (stochastically indepen-
dent or dependent race) and ERTVA is the observed bisensory mean RT. The TWIN
framework postulates two serial processing stages. A first (race) stage among the
activity elicited by the different modalities is followed by a second stage that is
defined by default: it includes all subsequent, possibly temporally overlapping,
processes that are not part of the processes in the first stage, and crossmodal
interaction can only occur in the second stage.

While the framework is mute about the specific mechanism of integration in the
second stage, its central feature is the notion of a time-window of MI. It postulates
that crossmodal interaction occurs only if the peripheral processes of the first stage
all terminate within a given temporal interval, the “time window of integration.”
The result of crossmodal interaction manifests itself in an increase, or decrease,
of second-stage processing time. The window acts as a filter determining whether
afferent information delivered from different sensory organs is registered close
enough in time to trigger MI. Passing the filter is necessary, but not sufficient,
for crossmodal interaction to occur, because the amount of interaction may also
depend on many other aspects of the stimulus context, in particular the spatial
configuration of the stimuli.22 Although the amount of interaction does not depend
directly on stimulus onset asynchrony (SOA) of the stimuli, temporal tuning of the
interaction still occurs because the probability of the integration event is modulated
by the SOA value. Formalization of the framework makes these observations
explicit.

We introduce some notation and derive an expression for the measure of MI in
the TWIN framework. With τ (−∞ < τ < +∞) as SOA value and ω (ω ≥ 0)
as parameter for the integration window width, these assumptions imply that the
event that MI occurs, denoted by I, equals

I ≡ {|TV − (TA + τ)| < ω}
= {TA + τ < TV < TA + τ + ω} ∪ {TV < TA + τ < TV + ω},

where TV,TA are assumed to be continuous random variables and the presentation
of the visual stimulus is (arbitrarily) defined as the physical zero time point. Thus,
the probability of integration occuring, P(I), is an increasing function of ω, but its
dependence on τ will be a function of the specific distributions assumed for TV

and TA.

22 Note that the window of the TWIN framework is only defined temporally, in contrast to the spatio-
temporal window sometimes postulated.
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Writing S1 and S2 for first and second-stage processing times, respectively,
overall expected RT in the crossmodal condition with an SOA equal to τ ,
E[RTVτA], is computed conditioning on event I (integration) occurring or not:

E[RTVτA] = E[S1]+ P(I) E[S2|I]+ [1− P(I)] E[S2|Ic]

= E[S1]+ E[S2|Ic]− P(I)×	.

= E[min(TV,TA + τ)]+ E[S2|Ic]− P(I)×	. (2.39)

Here, Ic denotes the event complementary to I and 	 stands for E[S2|Ic]−E[S2|I].
The term P(I)×	 is a measure of the expected amount of crossmodal interaction
in the second stage, with positive 	 values corresponding to facilitation, negative
ones to inhibition. Because event I cannot occur in the unimodal (visual or
auditory) condition, expected RT under these conditions is, respectively:

E[RTV ] = E[TV ]+ E[S2|Ic] and E[RTA] = E[TA]+ E[S2|Ic].

Note that the race in the first stage produces a not directly observable statistical
facilitation effect (SFE) analogous to the one in the “classic” race model:

SFE ≡ min{E[TV ],E[TA]+ τ } − E[min{TV,TA + τ }].
This contributes to the overall crossmodal interaction effect predicted by TWIN,
which amounts to

min{E[RTV ],E[RTA]+ τ } − E[RTVτA] = SFE + P(I)×	.

Thus, in the TWIN framework crossmodal facilitation observed in a redundant
signals task may be due to MI or statistical facilitation, or both. This shows that
the TWIN extends the race model class by predicting integration effects over and
above statistical facilitation. Moreover, a potential multisensory inhibitory effect
occurring in the second stage may be weakened, or even masked completely, by
the simultaneous presence of statistical facilitation in the first stage.

We have shown that one can derive various empirically testable predictions from
the TWIN framework even without assuming specific distributions for the random
processing times. In addition, when TV and TA are independent and exponentially
distributed random variables and the expected value for second-stage processing
time with no crossmodal interaction is set as parameter μ, then numerical estimates
of the overall crossmodal interaction effect, SFE + P(I) × 	, are available. This
suggests the following definition for crossmodal enhancement:

CRETWIN =
ERTVτA − ERT obs

VτA

ERTVτA
× 100, (2.40)

with ERT obs
VτA denoting observed mean bisensory RT and ERTVτA the expected

bisensory RT under the TWIN model, which can be calculated using parameter
estimates obtained from fitting the model to the observations.

Note that “temporal window of integration” has become an important concept in
describing crossmodal binding effects as a function (e.g., of age, specific disorders,
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or training in a variety of MI tasks apart from RTs).23 In fact, the width of the
time window can by itself be taken as a measure for MI: in the temporal order
judgment (TOJ) task, where subjects are required to judge the order of stimuli
(visual first vs. auditory first), the width of the window determines how often
the two stimuli will be “bound together” and, thereby, how often the subject can
only guess that the visual stimulus occurred first. Within a simple extension of
the TWIN framework to include the TOJ task, widening the temporal window
of integration in a RT task, or narrowing it in a TOJ task, can be seen as an
observer’s strategy to optimize performance in an environment where the temporal
structure of sensory information from separate modalities provides a critical cue
for inferring the occurrence of crossmodal events (Diederich & Colonius, 2015).

2.7 Conclusions

It turned out that, in order to construct valid measures of integration, a
possible effect of PS had to be taken into account, in both behavioral and neural
contexts. Specifically, we have argued that the common index for RTs in the
redundant signals paradigm [see Equation (2.2)],

CRERT = min{ERTV,ERTA} − ERTVA

min{ERTV,ERTA} × 100, (2.2)

should be replaced by assuming a race model with maximal negative dependence:

CREmin
RT =

E(−) min{RTV,RTA} − ERTVA

E(−) min{RTV,RTA}
× 100,

which is Equation (2.17) for τ = 0. The latter is a more conservative index
because it allows for the possibility that the “race” between visual and auditory
activation may be (maximally) negatively dependent in the statistical sense, that is,
it measures how much faster observed mean RT is than the fastest one that can be
generated by PS alone. See Table 2.3 for a list of all indexes used in the chapter.

A further argument in favor of using CRE(−)
RT is that E(−) min{RTV,RTA} can be

sensitive to the shape of the entire distribution of the unisensory RT distributions,
like moments higher than the mean, see Colonius and Diederich (2017). Another,
non-RT, example is a discrimination task where estimator variance is required
to obtain a statistically optimal linear combination of modalities (Drugowitsch
et al., 2014; Ernst & Banks, 2002), so that any MI measure gauging the degree
of deviation from optimality will be a function of the second moment.

Thus, instead of defining MI measures via means only, it may be argued that one
should compare entire distributions in order to obtain more informative measures.

23 It is worth pointing out that the time window concept in the TWIN framework differs from the one
used in most empirical studies. The latter is typically defined by the range of SOA values wherein
crossmodal effects can be observed. In contrast, in the former (i) window width is a parameter to be
estimated from the data, and (ii) the filter is not in principle limited to the temporal structure of the
stimulus context but could be defined more broadly (e.g., including spatial features or subjective
values; see Bean, Stein, & Rowland, 2021).
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Table 2.3 List of all indexes in the chapter (for spikes, RTs, detection accuracy,
AV speech identification, RT models).

Type Index Definition Section

spikes

CRESP
ENVA−max{ENV,ENA}

max{ENV,ENA} × 100 2.3.3

CRE∗SP
ENVA−E max{NV,NA}

E max{NV,NA} × 100 2.3.3

CREmax
SP

ENVA−E(−) max{NV,NA}
E(−) max{NV,NA}

× 100 2.3.3

RTs

CRERT,τ
min{ERTV,ERTA+τ }−ERTVτA

min{ERTV,ERTA+τ } × 100 2.4.1

CRERT,τ1τ2

min{ERTV,ERTA+τ1,ERTT+τ1+τ2}−ERTVτ1Aτ2T

min{ERTV,ERTA+τ1,ERTT+τ1+τ2} × 100 2.4.1

CRERT,(τ1)τ2

ERTVτ1A−ERTVτ1Aτ2T

ERTVτ1A
× 100 2.4.1

CREmin
RT

E(−) min{RTV,RTA}−ERTVA

E(−) min{RTV,RTA}
× 100 2.4.1

accuracy

CREDR
pVA−max{pV,pA}

max{pV,pA} × 100 2.5.1

CRESDT
d′VA−max{d′V,d′A}

max{d′V,d′A}
× 100 2.5.1

CREPS
SDT

d′VA−d′PS
VA

d′PS
VA

× 100 2.5.1

AV speech

psAV (superadditivity) pAV − (pA + pV ) 2.5.2

VE (vis. enhancement) pAV−pA
1−pA

= pV+psAV
1−pA

2.5.2

AE (aud. enhancement) pAV−pV
1−pV

= pA+psAV
1−pV

2.5.2

pI
AV 1− (1− pA)× (1− pV ) 2.5.2

IEI (integr. efficiency)
pobs

AV −pI
AV

1−pI
AV

2.5.2

IEPRE d ′AV (obs)/d ′AV (pred) 2.5.2

GsAV (i,j) GAV (i,j)− [GA(i,j)+ GV (i,j)] 2.5.2

IEFS (N
2
)−1∑

{i,j}⊂ S GsAV (i,j) 2.5.2

RT model

CRESUP,τ
ERTVτA−ERT obs

VτA
ERTVτA

× 100 2.6.1

CREDIF,τ
ERTVτA−ERT obs

VτA
ERTVτA

× 100 2.6.1

CRETWIN
ERTVτA−ERT obs

VτA
ERTVτA

× 100 2.6.2

Assume there exists a numerical function δ measuring the distance between two
distributions (e.g., δ(FA,FVA)); one may define crossmodal response enhancement,
in analogy to CRERT above, by

CREδ = min{δ(FV,FVA),δ(FA,FVA)} × 100. (2.41)
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Here, δ is already normalized to a range from zero to one; if FVA is equal to one
of the unisensory distributions, then CREδ = 0.24 Thus, the first two requirements
for a CRE measure (see Section 2.2.2) are satisfied, while the inhibition case is not
covered. More complex measures are certainly possible; however, a more pressing
task is to find criteria for selecting some measure δ from the “universe” of distance
measures between distributions that would make the choice less arbitrary.

2.8 Related Literature

Despite the limited scope of this chapter, we hope to have given a first
glimpse into the various ways and issues of defining measures of MI. A broader
and deeper view may be gained from the references given in this section.

A number of comprehensive handbooks and review articles on MI are available:
Bremner, Lewkowicz, and Spence (2012); Calvert, Spence, and Stein (2004);
Colonius and Diederich (2020); Murray and Wallace (2012); Naumer and Kayser
(2010); B. E. Stein (2012); Stevenson et al. (2014); van Opstal (2016). The first
monograph on MI from the neurophysiology point of view is B. E. Stein and
Meredith (1993), while B. E. Stein et al. (2009) discuss quantitative methods for
measuring MI at the single-neuron level. Early studies by Todd (1912), measuring
RT to stimuli from two or more sensory modalities, presented both singly and
together, are often seen as the beginnings of the scientific study of crossmodal
behavior. Raab (1962) is the classic reference for a treatment of the “race model”
and PS mechanisms for RTs. The latter has typically been presented under the
hypothesis of stochastic independence. The “race model inequality” [see Equation
(2.15)], first developed by J. Miller (1982) and tested by Diederich and Colonius
(1987), initiated the discussion of non-independent PS in the context of copula the-
ory (Colonius, 1990, 2016; Colonius & Diederich, 2017) and the development of
related statistical tests (Gondan, 2010; Gondan, Riehl, & Blurton, 2012; Lombardi,
D’Allesandro, & Colonius, 2019; Ulrich, Miller, & Schröter, 2007). Generalized
race model inequalities have been discussed in Colonius, Woff, and Diederich
(2017); Gondan, Dupont, and Blurton (2020); Gondan and Vorberg (2021). The
“principle of congruent effectiveness” (Otto, Dassy, & Mamassian, 2013), stating
that multisensory behavior (specifically, speedup of response times) is largest
when behavioral performance in corresponding unisensory conditions is similar,
corresponds to the index of unisensory imbalance (UI) [see Equation (2.3)].

Regarding accuracy measures, Jones (2016) provides a comprehensive tutorial
about models of cue combination based on measures of sensitivity, including signal
detection theory (Macmillan & Creelman, 2005; Wickens, 2002). Schwarz and
Miller (2014) point out that PS does not always lead to facilitation in compound
detection and discrimination tasks because an increase of hit rate may also cause an
increase of false alarms; evaluating unisensory vs. bisensory performance should,

24 Probability summation could be accounted for by defining CREδ = δ(min{FV (t)+FA(t),1},FVA)×
100.
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therefore, be performed via comparing the associated areas under the ROC curves.
Billock et al. (2021) present a framework for comparing spike rates from AV
integration in cortical bisensory neurons with psychophysical (discrimination) data
and suggest vector-like Minkowski combination models describing either.

The literature on AV speech processing is huge; the handbook by Bailly, Perrier,
and Vatikiotis-Bateson (2012) is a good source, as well as reports from the Interna-
tional Conference on Auditory-Visual Speech Processing (AVSP).25 More details
on the Fechnerian scaling approach can be found in the chapter by E. N. Dzhafarov
and H. Colonius in this volume (Fechnerian Scaling: Dissimilarity Cumulation
Theory).

The Poisson superposition model for MI has been introduced in Schwarz (1989)
and discussed in Diederich (1995), Diederich and Colonius (1991), and Schwarz
(1994). A tutorial on diffusion processes for RTs is given in Smith (2000), and a
comprehensive treatment of stochastic models for decision-making is the chapter
by Diederich and Mallahi-Karai in Volume II (Diederich & Mallahi-Karai, 2018).
Notably, diffusion models can be extended to describe binary choice response
tasks by assuming an upper and a lower absorbing bound for the accumulation
process (Ratcliff, 1978). Such a diffusion superposition model for audiovisual
data is discussed and tested by experiment in Blurton, Greenlee, and Gondan
(2014). Drugowitsch et al. (2014) introduce a diffusion model for visual–vestibular
integration with a weighted superposition approach that accumulates evidence
optimally across both cues and time. For other extensions of diffusion models, see
Diederich (1997), Diederich and Oswald (2016), and Mallahi-Karai and Diederich
(2021). The time-window-of-integration model was introduced by the authors in
2004 (Colonius & Diederich, 2004) and subsequently extended and experimentally
tested in Diederich and Colonius (2007a, 2007b, 2008a, 2008b).
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3.1 Introduction

3.1.1 What is it About?

In 1860 Gustav Theodor Fechner published the two-volume Elemente der Psy-
chophysik. From this event one can date scientific psychology, firmly grounded
in mathematics and experimental evidence. One of the main ideas introduced in
Fechner’s book is that of measuring subjective differences between stimuli a and b
by means of summing (or integrating) just noticeable (or infinitesimal) differences
in the interval of stimuli separating a and b. For Fechner, stimuli of a given
kind are always represented by positive reals, so that the interval between them
is well-defined.

We use the term “Fechnerian scaling” to designate any method of computing
distances in a stimulus space by means of cumulating (summing, integrating)
values of a dissimilarity function for pairs of “neighboring” stimuli. The term
“dissimilarity cumulation” can be used as a synonym of “Fechnerian scaling” or
else as designating an abstract mathematical theory of which Fechnerian scaling is
the main application.

A stimulus space is a set of stimuli endowed with a structure imposed on this set
by an observer’s judgments. Thus, a set of all visible aperture colors such that for
each pair of colors we have a number indicating how often they appear identical to
an observer if presented side by side is an example of a stimulus space. Stimuli in
a stimulus space are referred to as its points, and generally are denoted by boldface
lowercase letters: xk,a,b(ω), etc. The dissimilarity function is a generalization of
the notion of a metric, mapping pairs of stimuli (x,y) into non-negative numbers
D (x,y). On a very general level, with minimal assumptions about the structure of a
stimulus space being considered, Fechnerian scaling is implemented by summing
pairwise dissimilarities D (x1,x2), D (x2,x3), etc. along finite chains of points
a = x1,x2, . . . ,xn−1 = b. The distance from a to b is then computed as the
infimum of these cumulated values over the set of all such chains. Thus obtained
distances from a to b and from b to a need not be the same, and to obtain a
conventional, symmetric distance, in Fechnerian scaling one adds these distances
together.

In more specialized stimulus spaces, finite chains can be replaced with contin-
uous or even continuously differentiable paths. In the latter case the cumulation
is replaced with integration along a path of a certain quantity, submetric function
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F (x,u), that depends on the location x of a point and the velocity u with which it
moves along the path. The submetric function is a measure of local discriminability
of x from its “immediate” neighbors x + udx, and it can be empirically estimated
by means of one of Fechner’s methods for measuring differential thresholds. The
original methods are based on one’s ability to compare stimuli in terms of “greater
than” with respect to some property (brightness, loudness, extent, etc.). In more
general situations, stimuli can be compared by a variety of methods based on one’s
ability to judge whether two stimuli are the same or different.

The structure defining a stimulus space on a set of stimuli is always imposed by
an observer’s judgments of the stimuli rather than by the way stimuli are measured
as physical objects. In this sense, the structure of stimulus space is a psychological
rather than a physical construct. For instance, a drawing of a human face has a
complex physical description, but if, for example, faces are compared in terms
of greater–less with respect to some property, such as “beauty,” then, provided
certain assumptions are satisfied, a set of all possible face drawings may form a
unidimensional continuum mappable on an interval of reals. However, physical
descriptions of the stimuli typically have some properties (e.g., order, closeness)
suggestive of the respective properties of the judgments. For instance, if a and b
have very similar physical descriptions, one can usually expect the results of their
comparisons with any stimulus c to also be very similar – the consideration we
use, for example, in constructing a differential–geometric version of Fechnerian
scaling.

3.1.2 Unidimensional Fechnerian Scaling

Various aspects of Fechner’s original theory are subject to competing interpreta-
tions because they are not presented in his writings with sufficient clarity. The
following therefore is not a historical account. Rather, it is a modern theory that
preserves the spirit of Fechner’s idea of cumulation of small differences.

Let us assume that stimuli of a particular kind are represented (labeled, encoded)
by values on an interval of positive real numbers [t,u[, where t is the absolute
threshold value, and u is an appropriately defined upper threshold, or infinity.
(Throughout this chapter, half-open or open intervals of reals will always be
presented in the form [t,u[, ]t,u], ]t,u[, using only square brackets.) The space
structure on [t,u[ is defined by a psychometric function γ (x,y) that gives us the
probability with which a stimulus y (represented by a value y ∈ [t,u[) is judged to
be greater than stimulus x (represented by a value x ∈ [t,u[). In this special case,
it is convenient to simply replace stimuli with their representations, and write x,y
in place of x,y:

γ (x,y) = Pr
[
y is judged to be greater than x

]
. (3.1)

We will make the simplifying assumption that

γ (y,x) = 1− γ (x,y) , (3.2)
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with the consequence

γ (x,x) = 1/2. (3.3)

This will allow us to proceed in this special case without introducing the notions
of observation areas and canonical transformations that are fundamental for the
general theory.

Next, we will make a relatively innocuous assumption that γ (x,y) is strictly
increasing in y in the vicinity of y = x, and that it is continuously differentiable in
y at y = x. That is, the derivative

F (x) = ∂γ (x,y)

∂y

∣∣∣∣
y=x

(3.4)

exists, is positive, and continuous in x. This is the slope of the psychometric
function at its median, and the intuitive meaning of the differential F (x) dx is that it
is proportional to the dissimilarity between x and its “immediate” neighbor, x+dx.
We can write this as

D (x,x+ dx) = cF (x) dx,

where c is a positive constant specific to a given stimulus space. The intuition
of cumulation of differences in this unidimensional setting is captured by the
summation property

D (a,b) = D (a,c)+ D (c,b) ,

for any a ≤ c ≤ b in stimulus set S. It follows that

D (a,b) = c
∫ b

a
F (x) dx. (3.5)

This quantity can be interpreted as the subjective distance between a and b for any
a ≤ b in S. We take the relations (3.4) and (3.5) for the core of the Fechnerian
scaling in stimulus continua (presented here with simplifying assumptions).

3.1.3 Historical Digression: Fechner’s Law

One can easily check that the logarithmic law advocated by Fechner,

D (t,x) = K log
x

t
,x ≥ t, (3.6)

where K is a positive constant, corresponds to

F (x) = K

x
, (3.7)

which can be viewed as a differential form of the so-called Weber’s law. Recall
that t designates absolute threshold.

This is an example of the so-called psychophysical law, the relationship between
a physical description of a stimulus x, and the value of D (x,t), referred to as
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the magnitude of sensation. In this chapter we attach little importance to this or
other psychophysical laws. In view of the generalization of Fechnerian scaling to
stimulus spaces with more complex descriptions than real numbers, such laws have
limited scope of applicability.

Nevertheless, it is appropriate to take a historical detour and look at how
Fechner’s law was justified by Fechner himself, in the second volume of his
landmark work Elemente der Psychophysik. The relationship (3.6) is referred to
by Fechner as the measurement formula (Massformel). More generally, Fechner’s
law can be written as

D (a,b) = D (t,b)− D (t,a) = K log
b

a
,b ≥ a ≥ t, (3.8)

for two stimulus magnitudes a,b. Fechner calls this the difference formula
(Unterschiedsformel).

In an addendum to his work Zen Avesta, Fechner describes how the idea of this
law occurred to him on the morning of October 22, 1950 (this date is nowadays
celebrated as the Fechner Day): he had an insight that an arithmetic progression
of sensation magnitude should correspond to a geometric progression of stimulus
magnitude. Fechner’s insight on that day is all one needs to derive the law, as
logarithm is the only function with non-chaotic behavior that can transform a
geometric progression into an arithmetic one. The derivation of the law, however,
had to wait 10 more years before it appeared in Volume 2 of the Elemente der
Psychophysik, in two different forms (Chapters 16 and 17).

Unfortunately, the second volume has not been translated into English. As we
learn from a letter written by E. G. Boring to S. Rosenzweig on February 23,
1968, “Just now I’m spending long hours working over translation into English of
the second volume of the Fechner’s Elemente, because put literally into English it
is about as dull and confusing and sometimes uninterpretable as it always was in
the German. Holt, Rinehart and Winston published the first volume and someday
we will get this second half done, but we do not have much help after NIH stopped
supporting translation. We have to get it done by little bits.” It seems that Boring
has not completed this work.

By a historical happenstance, one of Fechner’s derivations of his law was
criticized as mathematically incorrect, and the other simply forgotten. In addi-
tion, the law itself was criticized as empirically incorrect. However, by careful
examination of the premises of Fechner’s derivations the mathematical criticisms
can be deflected, while empirical falsifications of the law often involve empirical
procedures (e.g., direct estimation of sensation magnitudes) that go beyond those
Fechner would consider legitimate. In a paper of rejoinders published in 1877,
Fechner reacts to the criticisms known to him and makes a bold prediction
for the future: “The tower of Babel was never finished because the workers
could not reach an understanding on how they should build it; my psychophys-
ical edifice will stand because the workers will never agree on how to tear
it down.”
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The difficulty in understanding Fechner’s derivations of his logarithmic law is
that he uses the term “Weber’s law” in the meaning that is logically independent of
the empirical law established by Ernst Heinrich Weber (which Fechner, to add to
the confusion, also calls “Weber’s law”). According to Weber’s law, if x and x+	x
are separated by a just-noticeable difference, then

	x

x
= c∗, (3.9)

where c∗ is a constant with respect to x (but generally depends on the stimulus con-
tinuum used). In Fechner’s mathematical derivations, however, the term “Weber’s
law” stands for the following statement, essentially a form of his October 1850
insight:

the subjective dissimilarity D (t,b) − D (t,a) between stimuli with physical magni-
tudes a and b (provided t ≤ a ≤ b) is determined by the ratio of these magnitudes,
b/a.

We propose calling this statement the “W-principle” to disentangle it from
Weber’s law. The only relationship between the W-principle and Weber’s law can
be established through the so-called “Fechner’s postulate,” according to which all
just-noticeable differences 	x (within a given continuum) are subjectively equal:

D (x,x+	x) = c. (3.10)

Any two of the three statements, Fechner’s postulate, Weber’s law (in its usual
meaning), and the W-principle, imply the third.

In Chapter 17 of the Elemente, Fechner derives his law by using a novel (for his
time) method of functional equations. He presents the W-principle as

ψ (b)− ψ (a) = F

(
b

a

)
,

where ψ (x) denotes D (t,x), and observes that this implies

F
( c

b

)
+ F

(
b

a

)
= F

( c

a

)
,

for any t ≤ a ≤ b ≤ c. This in turn means that

F (x)+ F (y) = F (xy) ,

for any x,y ≥ 1. Fechner recognizes in this the functional equation introduced only
40 years earlier by Augustin-Louis Cauchy, who showed that its only continuous
solution is

F (x) = K log x,x ≥ 1.

It is now known (Aczél, 1987) that continuity can be replaced with many other
regularity assumptions, including monotonicity and non-negativity, and that it is
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sufficient to assume that these properties hold only in an arbitrarily small vicinity
of 1 (i.e., for very weak stimuli only). It follows that

ψ (b)− ψ (a) = K log
b

a
,b ≥ a ≥ t,

which is Fechner’s Unterschiedsformel.
In Chapter 16 of the Elemente, Fechner derives the same relationship in a

different way. He presents the functional equation as

ψ (b)− ψ (a) = G

(
b− a

a

)
,

and by assuming that G is differentiable at zero gets the differential equation

ψ ′ (x) dx = G′ (0)
dx

x
,

whose integration once again leads to Fechner’s logarithmic formula.
The novelty of the method of functional equations in the mid-nineteenth century

is probably responsible for the fact that the Chapter 17 derivation was univer-
sally overlooked by Fechner’s contemporaries (and then, as it seems, forgotten
altogether). The derivation in Chapter 16, through differential equations, was, by
contrast, common in Fechner’s time, which may be the reason Fechner placed it
first. This derivation has been criticized as mathematically or logically flawed by
Fechner’s contemporaries and modern authors alike. The common interpretation
has been that it is based on Fechner’s postulate

ψ (x+	x)− ψ (x) = c.

He is thought to have combined this with Weber’s law

	x

x
= c∗,

to arrive at

ψ (x+	x)− ψ (x) = c

c∗
	x

x
.

Finally, Fechner is thought to have invoked an “expediency principle” (Hülf-
sprinzip) to illegitimately replace the finite differences with differentials:

dψ = c

c∗
dx

x
.

The integration of this equation with the boundary condition ψ (x0) = 0 yields

ψ (x) = c

c∗
log

x

x0
.

It has been pointed out that this derivation is internally contradictory because it
implies

ψ (x+	x)− ψ (x) = c

c∗
log

x+	x

x
= c

c∗
log
(
1+ c∗

)
,
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which is not the same as the postulated

ψ (x+	x)− ψ (x) = c.

Boring’s characterization of Fechner’s book as “dull and confusing and some-
times uninterpretable” being true, it is not easy to refute this criticism. However, it
is clear that Fechner uses neither the Fechner postulate nor Weber’s law in deriving
his law, although he accepts the truth of both. As explained above, he makes use
of the W-principle (which he calls “Weber’s law”). It follows from his derivation
that if Weber’s law holds in addition to the W-principle, then

ψ (x+	x)− ψ (x) = K log
(
1+ c∗

) = c,

which is indeed a constant (Fechner’s postulate proved as a theorem). As Fechner
points out in a book of rejoinders, if the Weber fraction c∗ is sufficiently small,
the constant K approximately equals c/c∗, as in the criticized formula. The
“expediency principle” which Fechner’s critics especially disparage seems to be
nothing more than an inept and verbose explanation of the elementary fact (used
in the Chapter 16 derivation) that if a function f (x) is differentiable at zero, then
df (x) is proportional to dx.

3.1.4 Observation Areas and Canonical Transformation

The elementary but fundamental fact is that if an observer is asked to compare
two stimuli, x and y, they must differ in some respect that allows the observer to
identify them as two distinct stimuli. For instance, in the pair written as (x,y), the
first argument, x, may denote the stimulus presented chronologically first, followed
by y. Or x may always be presented above or to the left of y. In perceptual pairwise
comparisons, the stimuli must differ in their spatial and/or temporal locations,
but the defining properties of x and y in the pair (x,y) may vary. Thus, two line
segments to be compared in length may be presented in varying pairs of distinct
spatial locations, but one of the line segments may always be vertical (and written
first in the pair, x) and the other horizontal (written second, y).

Formally, this means that a stimulus space involves two stimulus sets rather than
one. Denoting them S��

1 (for x-stimuli) and S��
2 (for y-stimuli), we call them the

first and the second observation areas, respectively. The space structure is imposed
on the Cartesian product of these observation areas by a function

φ�� : S��
1 ×S��

2 → R, (3.11)

where R may be a set of possible responses, or possible probabilities of a particular
response.

We say that two stimuli x,x′ ∈ S��
1 are psychologically equal if

φ�� (x,y) = φ��
(
x′,y

)
for any y ∈ S��

2 . Similarly, y,y′ ∈ S��
2 are psychologically equal if

φ�� (x,y) = φ��
(
x,y′

)
,
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for any x ∈ S��
1 . One can always relabel the elements of the observation areas

by assigning identical labels to all psychologically equal stimuli. For instance, all
metameric colors may be encoded by the same RGB coordinates irrespective of
their spectral composition. Objects of different color but of the same weight will
normally be labeled identically in a task involving hefting and deciding which of
two objects is heavier.

Let us denote by S�
1 and S�

2 the observation areas in which psychologically
equal stimuli are equal. The function φ�� is then redefined into

φ� : S�
1 ×S�

2 → R. (3.12)

We will illustrate this transformation by a toy example. Let the original function be

φ∗ y1 y2 y3 y4 y5 y6 y7

x1 0.7 0.6 0.3 0.4 0.4 0.4 0.4
x2 0.5 0.3 0.4 0.2 0.2 0.2 0.2
x3 0.5 0.3 0.4 0.2 0.2 0.2 0.2
x4 0.2 0.1 0.5 0.3 0.3 0.3 0.3
x5 0.2 0.1 0.5 0.3 0.3 0.3 0.3
x6 0.1 0.3 0.8 0.6 0.6 0.6 0.6
x7 0.1 0.3 0.8 0.6 0.6 0.6 0.6

The first observation area, S��
1 , comprises stimuli {x1, . . . ,x7} (e.g., weights

placed on one’s left palm), the second observation area, S��
2 , comprises stimuli

{y1, . . . ,y7} (weights placed on one’s right palm), and the entries in the matrix
above are values of φ∗ (x,y), an arbitrary function mapping (x,y)-pairs into
real numbers (say, the probabilities of deciding that the two weights differ in
heaviness). If two rows (or columns) of the matrix are identical, then the two
corresponding x-stimuli (respectively, y-stimuli) are psychologically equal, and
can be labeled identically. Thus, the stimuli in {x2,x3}, in {x4,x5}, in {x6,x7}, and
in {y4,y5,y6,y7} are psychologically equal and they can be replaced by a single
symbol, respectively. The redefined spaces S�

1 and S�
1 are then as follows:

S��
1 : x1 x2 x3 x4 x5 x6 x7

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
S�

1 : xa xb xb xc xc xd xd

,

S��
2 : y1 y2 y3 y4 y5 y6 y7

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
S�:

2 ya yb yc yd yd yd yd

and the function φ∗ transforms into φ� accordingly:

φ� ya yb yc yd

xa 0.7 0.6 0.3 0.4
xb 0.5 0.3 0.4 0.2
xc 0.2 0.1 0.5 0.3
xd 0.1 0.3 0.8 0.6
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As another example, consider the function γ (x,y) of the previous section, and
assume that

S��
1 = [t1,u1[,S��

2 = [t2,u2[.

Assume that γ (x,y) is strictly increasing in y and strictly decreasing in x. Then
γ (x,y) = γ

(
x,y′
)

implies y = y′ and γ (x,y) = γ
(
x′,y
)

implies x = x′, so that in
this case

S��
1 = S�

1,S
��
2 = S�

2.

Staying with this example, γ (x,y) = 1/2 defines here the binary relation “is
matched by”: x ∈ S�

1 is matched by y ∈ S�
2 if and only if γ (x,y) = 1/2. The

relation “y ∈ S�
2 is matched by x ∈ S�

1” is defined by the same condition,
γ (x,y) = 1/2. The traditional psychophysical designation of this relation is that
y is the point of subjective equality (PSE) for x (and then x is the PSE for y). The
assumptions (3.2) and (3.3) made in the previous section do not hold generally.
In particular, the psychometric function γ , as a rule, has a nonzero constant error
(i.e., γ (x,y) = 1/2 does not imply x = y; see Figure 3.1).

With the monotonicity assumptions about γ made above, if we also assume
that the range of the function y �→ γ (x,y) for every x includes the value 1/2, and
that the same is true for the range of the function x �→ γ (x,y) for every y, then we
have the following properties of the PSE relation (see Figure 3.2):

1. the PSE for every x ∈ S�
1 exists and is unique;

2. the PSE for every y ∈ S�
2 exists and is unique;

3. y ∈ S�
2 is a PSE for x ∈ S�

1 if and only if x ∈ S�
1 is a PSE for y ∈ S�

2.

Figure 3.1 A “greater–less” psychometric function y �→ γ (x,y) defined on an
interval of real numbers. The function shows, for a fixed value of x = x0, the
probability with which y is judged to be greater than x0 with respect to some
designated property. The median value of y, one at which γ (x0,y) = 1

2 , is taken
to be a match, or point of subjective equality (PSE) for x0, and the difference
between x0 and its PSE defines constant error. (Note that showing γ (x,y) at a
fixed value of x does not mean that the value of x was fixed procedurally in an
experiment. The graph is simply a cross-section of γ (x,y) at x = x0.)
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Figure 3.2 An illustration, for the psychometric function γ (x,y), of the sym-
metry of the relation “to be a PSE for.” The upper panel shows the function
y �→ γ (x,y) at x = x0, and y0 denotes the PSE for x0. The lower panel shows
the function x �→ γ (x,y) at y = y0, and x0 then has to be the PSE for y0.
Conversely, if x0 denotes the PSE for y0 in the lower panel, then y0 has to be the
PSE for x0 in the upper panel. This follows from the fact that in both cases the
PSE is defined by γ (x,y) = 1

2 , and the assumption that both x �→ γ (x,y) and
y �→ γ (x,y) are monotone functions whose range includes the value γ = 1

2 .

We will assume that these properties generalize to any function φ� in (3.12). In
other words, we assume that φ� is associated with a bijective function h :S�

1 −→
S�

2 such that for all x ∈ S�
1 and y ∈ S�

2,

(P1) y is a PSE for x if and only if y = h (x);
(P2) x is a PSE for y if and only if x = h−1 (y).

This makes the relation of “being a PSE of” or “being matched by” symmetric. As
a result, one can always apply to the observation areas a canonical transformation

f :S�
1 −→ S,g :S�

2 −→ S,

with f and g arbitrary except for

h = g−1 ◦ f.

A canonical transformation redefines the function φ� into

φ : S×S −→ R,
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such that, for any ordered pair (x,y), one of the elements is a PSE for the other
element if and only if x = y. We say that the stimulus space and the space-forming
function φ here are in a canonical form.

Let us use the toy example above for an illustration. We assume that the PSE
for any x is defined here as y at which y �→ φ� (x,y) reaches its minimum; and
the PSE for any y is defined as x at which x �→ φ� (x,y) reaches its minimum.
The inspection of the matrix for φ� shows that the PSEs are well defined for both
x-stimuli and y-stimuli:

φ� ya yb yc yd

xa 0.7 0.6 0.3 0.4

xb 0.5 0.3 0.4 0.2

xc 0.2 0.1 0.5 0.3

xd 0.1 0.3 0.8 0.6

We also see that in each row the minimal value (shown boxed) is also minimal in
its column. That is, y is a PSE for x if and only if x is the PSE for y. The graph of
the bijective h-function in the formulations of the properties P1 and P2 is given by
the pairs

{(xa,yc) , (xb,yd) , (xc,yb) , (xd,ya)} .
Simple relabeling then allows us to have all PSE pairs on the main diagonal. Both
S�

1 and S�
1 can be mapped into one and the same set S, for example,

S�
1 : xa xb xc xd

⇓ ⇓ ⇓ ⇓
S : a b c d

,

S�
2 : yc yd yb ya

⇓ ⇓ ⇓ ⇓
S : a b c d

and φ� transforms into φ accordingly:

φ a b c d

a 0.3 0.4 0.6 0.7

b 0.4 0.2 0.3 0.5

c 0.5 0.3 1 0.2

d 0.8 0.6 0.3 0.1

To apply canonical transformation to our second example, the psychometric
function γ (x,y), let us assume that γ (x,y) = 1/2 holds if and only if y = h (x) for
some homeomorphic mapping h (i.e., such that both h and h−1 are continuous).
Since S∗1 = S�

1 = [t1,u1[ and S∗2 = S�
2 = [t2,u2[, S can always be chosen in the

form [t,u[, by choosing any two homeomorphisms

f : [t1,u1[→ [t,u[,g : [t2,u2[→ [t,u[,

such that g−1 ◦ f ≡ h. Note, however, that this only ensures compliance with (3.3),
but not with (3.2).
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Figure 3.3 A “same–different” psychometric function y �→ ψ� (x,y) defined on
an interval of real numbers. The function shows, for a fixed value of x = x0, the
probability with which y is judged to be different from x0 (generically or with
respect to a designated property). The value of y at which ψ� (x0,y) reaches its
minimum is taken to be a match, or point of subjective equality (PSE) for x0.

3.1.5 Same–Different Judgments

The greater–less comparisons are possible only with respect to a designated
characteristic, such as loudness or beauty. It is clear, however, that no such
characteristic can reflect all relevant aspects of the stimuli being compared.
Moreover, it is not certain that the characteristic’s values are always comparable
in terms of greater–less, given a sufficiently rich stimulus set. Thus, it may not be
clear to an observer which of two given faces is more beautiful, and even loudness
may not be semantically unidimensional if the sounds are complex. The same–
different comparisons have a greater scope of applicability, and do not have to
make use of designated characteristics. The role of the stimulus-space-defining
function φ∗ of the previous section in this case is played by

ψ∗ (x,y) = Pr
[
y is judged to be different from x

]
, (3.13)

with x ∈ S��
1 and y ∈ S��

2 . To be different here means to differ in any respect other
than the conspicuous difference between the two observation areas. Thus, if x is a
visual stimulus always presented to the left of y, this difference in spatial locations
does not enter in the judgments of whether x and y are different or the same.
Of course, it is also possible to ask whether the two stimuli differ in a particular
respect, such as color or shape.

The reduction of
(
ψ∗,S��

1 ,S��
2

)
to
(
ψ�,S�

1,S
�
2

)
, in which psychologically equal

stimuli are equal, is effected by assigning an identical label to any x,x′ ∈ S��
1

such that

ψ�� (x,y) = ψ��
(
x′,y

)
for all y ∈ S��

2 , and similarly for the second observation area.
The PSE relation for the function ψ� is defined as follows (see Figure 3.4):

y ∈ S�
2 is a PSE for x ∈ S�

1 if
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Figure 3.4 An illustration, for the psychometric function ψ� (x,y) in Figure
3.3, of the symmetry of the relation “to be a PSE for.” The upper panel shows
the function y �→ ψ� (x,y) at x = x0, and y0 denotes the PSE for x0. The lower
panel shows the function x �→ ψ� (x,y) at y = y0, and x0 is shown to be PSE for
y0. Conversely, if x0 denotes the PSE for y0 in the lower panel, then y0 is shown
to be the PSE for x0 in the upper panel. Unlike in the case of the “greater/less”
psychometric function (Figure 3.2), here the symmetry of the PSE relation is an
assumption rather than a consequence of other properties of the function ψ�.

ψ� (x,y) < ψ�
(
x,y′

)
for all y′ �= y.

Analogously, x ∈ S�
1 is a PSE for y ∈ S�

2 if

ψ� (x,y) < ψ�
(
x′,y

)
for all x′ �= x.

In accordance with the previous section, we assume the existence of a bijection
h :S�

1 −→ S�
2 such that

ψ� (x,h (x)) < ψ�(x,y) for all y �= h (x) ,

ψ�
(
h−1 (y) ,y

)
< ψ�(x,y) for all x �= h−1 (y) .

(3.14)

That is, we assume that the PSEs in the space
(
ψ�,S�

1,S
�
2

)
exist, are unique, and

that y is the PSE for x if and only if x is the PSE for y. We refer to this property
as the law of regular minimality. In this chapter it should be taken as part of the
definition of the functions we are dealing with rather than an empirical claim.

Now, any canonical transformation, as described above, yields a probability
function

ψ : S×S −→ [0,1], (3.15)
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such that, for any a,x,y ∈ S, if x �= a and y �= a, then

ψ (a,a) <

{
ψ (x,a)

ψ (a,y)
. (3.16)

We will assume in the following that the discrimination probability function ψ is
presented in this canonical form. This by no means implies that ψ (x,y) = ψ (y,x),
the order of the arguments continues to matter. We will continue to consider the
two arguments in ψ (x,y) as belonging to the first and second observation areas,
respectively.

3.2 Notation Conventions

We now introduce notation conventions for the rest of this chapter. They
in part codify and in part modify the notation used in the introductory section.

Let us agree that from now on real-valued functions of one or several points
of a stimulus set will be indicated by strings without parentheses: ψab in place
of ψ (a,b), Dabc in place of D (a,b,c), etc. Boldface lowercase letters denoting
stimuli are merely labels, with no implied operations between them, so this
notation is unambiguous. (In Section 3.8, lowercase boldface letters are also used
to denote direction vectors, in which case the string convention is not used.) If a
stimulus is represented by a real number we may conveniently confuse the two, and
write, for example, γ (x,y) instead of the more rigorous γ xy with x,y represented
by (or having values) x,y.

A finite sequence (or chain) (x1, . . . ,xn) of points in a stimulus set will be
presented as a string x1 . . . xn. If a chain of stimuli is to be referred to without
indicating its elements, then it is indicated by uppercase boldface letters. Thus X
may stand for abc, Y stand for y1 . . . yn, etc. If X = x1 . . . xk and Y = y1 . . . yl are
two chains, then

XY = x1 . . . xky1 . . . yl,

aXb = ax1 . . . xkb,

aXbYa = ax1 . . . xkby1 . . . yla,
etc.

The number of elements in a chain X is its cardinality |X|. Infinite sequences
{x1, . . . ,xn, . . .}, {x1, . . . ,xn, . . .}, {X1, . . . ,Xn, . . .} , etc., are almost always indi-
cated by their generic elements: numerical sequence {xn} , stimulus sequence {xn},
sequence of chains {Xn}, etc. Convergence of a sequence, such as xn → x, is
understood as conditioned on n → ∞. In a sequence of chains, the cardinality
|Xn| is generally changing.

As mentioned earlier, we indicate intervals of reals (closed, open, and half-
open) by square brackets: [a,b] , [a,b[ , ]a,b] , and ]a,b[ . Round-bracketed pairs
of numbers of stimuli, (a,b) or (a,b), always indicate an ordered pair.

Sets of stimuli are denoted by Gothic letters, S, S��
1 , s, etc. For sets of chains

and paths in stimulus spaces we use script letters, C,Pb
a , etc. For other types of
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sets we use blackboard and sans serif fonts on an ad hoc basis. The set of reals is
denoted, as usual, R.

3.3 Basics of Fechnerian Scaling

Using our new notation, and considering an at least two-element stimulus
space S in a canonical form, we have, for any distinct points x and y in S,

�(1)xy = ψxy− ψxx > 0,
�(2)xy = ψyx− ψxx > 0.

(3.17)

We call the quantities �(1)xy and �(2)xy psychometric increments of the first
and second kind, respectively. Both can be interpreted as ways of quantifying the
intuition of a dissimilarity of y from x. The order “from–to” is important here, as
�(i)yx �= �(i)yx (i = 1,2).

In Fechnerian scaling we use the psychometric increments to compute subjective
distances in the spirit of Fechner’s idea of cumulation of small dissimilarities.
We will see that this cumulation can assume different forms, depending on the
properties of a stimulus space. However, the general construction, applicable to all
spaces, is as follows.

3.3.1 Step 1

First, we assume that both �(1) or �(2) are dissimilarity functions, in accordance
with the following definition (to be explained and elaborated later on).

Definition 3.1. We say that D : S×S→ R is a dissimilarity function if it has
the following properties:
D1(positivity) Dab > 0 for any distinct a,b ∈ S;
D2 (zero property) Daa = 0 for any a ∈ S;
D3 (uniform continuity) for any ε > 0 one can find a δ > 0 such that, for any

a,b,a′,b′ ∈ S,

if Daa′ < δ and Dbb′ < δ, then
∣∣Da′b′ − Dab

∣∣ < ε;
D4 (chain property) for any ε > 0 one can find a δ > 0 such that for any

chain aXb,

if DaXb < δ, then Dab < ε.

For the chain property, we need to define DaXb.

Definition 3.2. Given a chain X = x1 . . . xk in S, its D-length (or just length
once D is specified) is defined as

DX =
{

Dx1x2 + · · · + Dxk−1xk if |X| > 1
0 if |X| ≤ 1

.
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Then, for a given pair of points a,b, the length of aXb is

DaXb =
{

Dax1 + DX+ Dxkb if |X| > 0
Dab if |X| = 0

.

3.3.2 Step 2

Next, we consider the set C of all (finite) chains in S,

C =
∞⋃

k=0

Sk,

and define

Gab = inf
X∈C

DaXb. (3.18)

We will see below that the function G : S×S→ R is a quasimetric dissimilarity,
in accordance with the following definition.

Definition 3.3. Function M : S×S→ R is a quasimetric dissimilarity function
if it has the following properties:

QM1 (positivity) Mab > 0 for any distinct a,b ∈ S;
QM2 (zero property) Maa = 0 for any a ∈ S;
QM3 (triangle inequality) Mab+Mbc ≥ Mac for all a,b,c ∈ S;
QM4 (symmetry in the small) for any ε > 0 one can find a δ > 0 such that

Mab < δ implies Mba < ε, for any a,b ∈ S.

To relate quasimetric dissimilarity to two familiar terms, a function satisfying
QM1–QM3 is called a quasimetric, and a quasimetric is called a metric if it
satisfies the property
M4 (symmetry) Mab = Mba, for any a,b ∈ S.
Quasimetric dissimilarity therefore can be viewed as a concept intermediate

between quasimetric and metric. More importantly, however, a quasimetric dis-
similarity (hence also a metric), as shown below, is a special form of dissimilarity,
whereas quasimetric generally is not (see Figure 3.5).

Metric
QM1-QM3,

M4
��

Quasimetric Dissimilarity
QM1-QM3,

QM4

Theorem 3.8

��

�� Quasimetric
QM1-QM3

Dissimilarity
D1-D4

Figure 3.5 Interrelations between metric-like concepts. Arrows between the
boxes stand for “is a special case of.”
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3.3.3 Step 3

The quasimetric dissimilarities

G(1)ab = inf
X∈C

�(1)aXb

and

G(2)ab = inf
X∈C

�(2)aXb

are generally different. However, we will see below that

G(1)ab+ G(1)ba = G(2)ab+ G(2)ba, (3.19)

and this quantity is clearly a metric. We will denote it
←→
G ab, and interpret it as

the Fechnerian distance between a and b in the canonical stimulus space S. The
double-arrow in

←→
G is suggestive of the following way of presenting this quantity:
←→
G ab = inf

X,Y∈C
�(1)aXbYa = inf

X,Y∈C
�(2)aXbYa, (3.20)

the aXbYa (equivalently, bYaXb) being a closed chain containing the points
a and b.

3.3.4 Subsequent Development

The function
←→
G is, in a sense, the ultimate goal of Fechnerian scaling. However,

the metric structure of a space is part of its geometry, and this is what a full theory
of Fechnerian scaling deals with. In discrete spaces, consisting of isolated points,
the general definition of

←→
G provides the algorithm for computing it. In more

structured spaces, however, the Fechnerian metric may be computed in specialized
ways. Rather than considering all possible chains, in some spaces one integrates
infinitesimal dissimilarities along continuous paths and seeks the shortest paths. In
still more structured spaces this leads to a generalized form of Finsler geometry,
where computations of distances are based on indicatrices or submetric functions.

The psychometric increments �(1) and �(2) are at the foundation of Fechnerian
scaling. In this chapter they are defined through the psychometric function ψ in
(3.13), which is usually associated with the same–different version of the method
of constant stimuli. In this method, same–different judgments are recorded for
repeatedly presented multiple pairs of stimuli, as indicated, for example, by the
open circles in Figure 3.3. However, virtually any pairwise comparison procedure
can be, in principle, used to define analogs of �(1) and �(2). For instance, if the
observer judges pairs of stimuli in terms of “greater–less” with respect to some
property, the psychometric function γ of Figure 3.1 (assuming it is in a canonical
form) can be converted into a ψ-like function by putting

ψxy =
{

γ xy if γ xy ≥ 1
2

1− γ xy if γ xy < 1
2

.
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Figure 3.6 An illustration of how a “greater–less” discrimination probability
function (on the left) can be redefined into a “same–different”-type discrimina-
tion probability function.

This is illustrated in Figure 3.6 for the case S is an interval of real numbers. The
psychometric increments then are defined as

�(1)xy =
∣∣∣∣γ xy− 1

2

∣∣∣∣ ,�(2)xy =
∣∣∣∣γ yx− 1

2

∣∣∣∣ .
Some experimental procedures may yield dissimilarity values Dab “directly.”

Thus, in one of the procedures of multidimensional scaling (MDS), observers are
presented pairs of stimuli and asked to numerically estimate “how different they
are.” Then, for every pair of stimuli a,b, some measure of central tendency of
these numerical estimates can be hypothesized to be an efficient estimator of a
dissimilarity function

�(1)ab = �(2)ba = Dab.

If one can establish that Daa = 0 for all stimuli and that Dab > 0 for distinct
a,b, then the stimulus space is in a canonical form, and the hypothesis that D
is a dissimilarity function cannot be falsified on any finite set of data. However,
given sufficient amount of data, one can usually falsify the hypothesis that Dab
is a quasimetric, by establishing that Dab violates the triangle inequality. In
such situations, MDS seeks a monotone transformation g ◦ D that would yield
a quasimetric. Dissimilarity cumulation offers an alternative approach, to use D to
compute by (3.18) a quasimetric dissimilarity G, and then symmetrize it by (3.20).
We will return to this situation in Section 3.9.

3.4 Dissimilarity Function

The properties D3 and D4 of Definition 3.1 are more conveniently
presented in terms of convergence of sequences. Let us introduce convergence in
a stimulus space.
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Definition 3.4. Given two sequences of points in S, {an} and {bn}, we say that
an and bn converge to each other, and write this an ↔ bn, if Danbn → 0. In the
special case bn ≡ b, we say that an converges to b, and write an → b.

The property D3 (uniform continuity) can then be presented as follows:

if an ↔ a′n and bn ↔ b′n, then Da′nb′n − Danbn → 0.

In other words, D is a uniformly continuous function (Figure 3.7).
It is clear that an ↔ an is true for any sequence {an} (because Danan = 0).

Assuming that an ↔ bn, we can use D3 to observe that

an ↔ bn and an ↔ an �⇒ Danan − Dbnan → 0⇐⇒ Dbnan → 0.

But Dbnan → 0 means bn ↔ an, and we obtain the following proposition.

Theorem 3.5 (symmetry in the small) For any {an} , {bn},
an ↔ bn iff bn ↔ an.

This justifies the terminology (convergence to each other) and notation in the
definition of an ↔ bn.

Property D4 (chain property) can be presented as follows: for any sequences
{an} , {bn} in S and {Xn} in C (the set of chains),

if DanXnbn → 0, then an ↔ bn. (3.21)

Figure 3.8 provides an illustration.
The properties D1–D4 are logically independent: none of them is a consequence

of the remaining three. This is proved by constructing examples, for each of these
properties, that violate this property while conforming to the others. For example,
to prove the independence of D4, consider S = R, and let Dxy = (x− y)2

(where x,y are the numerical values representing x,y, respectively). The function
D clearly satisfies D1–D3. However, for any points a,b, if the elements of a chain
Xn subdivide [a,b] into n equal parts, then

Figure 3.7 Illustration of the uniform continuity of D. The dissimilarities
Danbn and Da′nb′n converge to each other as an with a′n converge to each other
and bn with b′n converge to each other.
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Figure 3.8 Illustration of the chain property of D. If the overall length of the
chains Xn connecting bn to an tends to zero, then an and bn converge to each
other. This property is nontrivial only if |Xn|, the number of elements in the
chains, tends to infinity. If it is bounded, an ↔ bn is a consequence of the
transitivity of the↔ relation (not discussed in the text, but easily established).

DaXnb = n

(
b− a

n

)2

→ 0,

while the value of Dab remains equal to (b− a)2 .

3.5 Quasimetric Dissimilarity

We begin by establishing an important fact: the function G defined by
(3.18) and the dissimilarity D are equivalent in the small.

Theorem 3.6. For any {an} , {bn},
an ↔ bn iff Ganbn → 0.

To prove this, we first observe that Gab ≥ 0, as the infimum of non-negative
DaXb. If Danbn → 0, we have

0 ≤ Ganbn = inf
X∈C

DanXbn ≤ Danbn → 0,

and this implies Ganbn → 0. Conversely, infX∈C DanXbn → 0 means that for
some sequence of chains {Xn}, DanXnbn → 0. By the chain property then,
Danbn → 0.

Let us now see if G satisfies the properties defining a quasimetric dissimilarity,
QM1–QM4. We immediately see that it satisfies the triangle inequality (QM3):

Gab ≤ Gac+ Gcb,

for any a,b,c ∈ S. Indeed

Gac+ Gcb = inf
X∈C

DaXc+ inf
Y∈C

DcYb = inf
X,Y∈C

DaXcYb,

and the set of all possible aXb contains the set of all possible aXcYb chains. It is
also easy to see that the function G is symmetric in the small (QM4). Written in
convergence terms, the property is

if Ganbn → 0 then Gbnan → 0.
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It is proved by observing that, by the previous theorem, if Ganbn → 0 then
an ↔ bn, and then Gbnan → 0. Because we know that Gab is non-negative,
the properties QM1 and QM2 follow from

Gab = inf
X∈C

DaXb = 0 �⇒ DaXnb→ 0,

for some sequence of chains {Xn}. But this means, by the chain property, Dab = 0,
which is true if and only if a = b. We have established therefore

Theorem 3.7. The function G is a quasimetric dissimilarity.

It is instructive to see why, as mentioned earlier and as its name suggests,
any quasimetric dissimilarity, and G in particular, is a dissimilarity function. Let
M satisfy the properties QM1–QM4. Then D1 and D2 are satisfied trivially.
The property D3 (uniform continuity) follows from the fact that, by the triangle
inequality, {

Maa′ +Mb′b ≥ Mab−Ma′b′,
Ma′a+Mbb′ ≥ Ma′b′ −Mab.

By the symmetry in the small property,

Mana′n → 0⇐⇒ Ma′nan → 0,
Mb′nbn → 0⇐⇒ Mbnb′n → 0,

so these convergences imply∣∣Manbn −Ma′nb′n
∣∣→ 0.

The chain property, D4, follows from MaXb ≥ Mab, by the triangle inequality.
We have established therefore

Theorem 3.8. Any quasimetric dissimilarity (hence also any metric) is a dissimi-
larity function.

Let us now return to the definition of G(1), G(2), and
←→
G . We need to establish

(3.20), from which (3.19) follows. Given a chain X = x1x2 . . . xk, let us define the
opposite chain X† as xkxk−1 . . . x1. By straightforward algebra:

�(1)X =
k−1∑
i=1

�(1)xixi+1 =
k−1∑
i=1

(ψxixi+1 − ψxixi) ,

�(2)X† =
k−1∑
i=1

�(2)xi+1xi =
k−1∑
i=1

(ψxixi+1 − ψxi+1xi+1) .

It follows that

�(1)X−�(2)X† = ψxkxk − ψx1x1.

In particular, if the chain is closed, xk = x1, we have

�(1)X = �(2)X†.
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Figure 3.9 For any closed chain X containing points a,b, the value of �(1)X
is the same as the value of �(2)X†, the same chain traversed in the opposite
direction.

That is, the �(1)-length of a closed chain equals the �(2)-length of the same
chain traversed in the opposite direction (see Figure 3.9). Applying this to a chain
aXbYa,

�(1)aXbYa = �(2)aY†bX†a,

whence

inf
X,Y∈C

�(1)aXbYa = inf
Y†,X†∈C

�(2)aY†bX†a.

Clearly, the set of all possible pairs of chains (X,Y) is the same as the set of all
pairs

(
Y†,X†), and by simple renaming,

inf
X,Y∈C

�(1)aXbYa = inf
X,Y∈C

�(2)aXbYa.

This proves.

Theorem 3.9. For any a,b ∈S,

G(1)ab+ G(1)ba = G(2)ab+ G(2)ba =←→G ab.

The function
←→
G is a metric.

The last statement is an immediate corollary of Theorem 3.7.
One can think of other ways of combining quasimetric dissimilarities G(1)ab

and G(1)ba into a metric, such as

max
(

G(1)ab,G(1)ba
)
,
√

G(1)ab+ G(1)ba,etc.

Denoting a combination like this f
(
G(1)ab,G(1)ba

)
, the natural requirements

are that

(i) it should equal f
(
G(2)ab,G(2)ba

)
, and

(ii) f (x,x) ∝ x.

The latter requirement ensures that if G(1)ab always equals G(1)ba (i.e., it is
already a metric), then f

(
G(1)ab,G(1)ab

)
is just a multiple of G(1)ab. Clearly,

function
←→
G satisfies these requirements. In fact, up to a scaling coefficient, it is

the only such function.
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Theorem 3.10. Function f (x,y) satisfies (i) and (ii) above for all stimulus spaces
if and only if f (x,y) = k (x+ y).

For proof, consider a canonical space (ψ,S) with S = {a,b}. It is easy to
see that for any s,z ∈ ]0,1] one can find probabilities ψaa, ψab, ψba, ψbb
satisfying

G1ab = ψab− ψaa = s,
G1ba = ψba− ψbb = s,
G2ab = ψba− ψaa = 2s− z,
G2ba = ψab− ψbb = z.

Then the requirement (i) means that

f (s,s) = f (2s− z,z)

should hold for all s,z ∈ ]0,1]. That is, f (2s− z,z) depends on s only, and we have

f (x,y) = g (x+ y) .

Putting x = y = u
2 , it follows from the requirement (ii) that

g (x+ y) = g (u) = ku,

for some k > 0. So, our definition of
←→
G is not arbitrary, except for choosing k = 1.

3.6 Dissimilarity Cumulation in Discrete Spaces

3.6.1 Direct Computation of Distances

A discrete stimulus space (S,D) consists of isolated points, that is, for every x∈S,

inf
y∈S,y�=x

Dxy > 0. (3.22)

Although genuinely discrete and even finite stimulus spaces exist (e.g., the Morse
codes of letters and digits studied for their confusability), this special case is
important not so much in its own right as because any set of empirical data
forms a discrete (in fact, finite) space. This means, for example, that even if an
observer is asked to compare colors or sounds, the data will form a finite set of
pairs associated with some estimate of discriminability. If the data are sufficiently
representative, the results of applying Fechnerian scaling of discrete spaces to them
should provide a good approximation to the theoretical Fechnerian scaling using
dissimilarity cumulation along continuous or smooth paths, as described later in
this chapter.

As mentioned earlier, in discrete spaces the general definition of a Fechnerian
distance directly determines the algorithm of computing them: one tries all possible
chains leading from one point to another (with some obvious heuristics shrinking
this set), and finds their infimum or, in special cases, minimum. This is illustrated
in Figure 3.10.
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Figure 3.10 Dissimilarity cumulation in discrete spaces. One considers all
possible chains connecting a point a to a point b and seeks the infimum of their
D-lengths. In a finite space this infimum is the smallest among the D-lengths,
and it may be attained by more than one chain.

Let us return to the toy example presented in Section 3.1.4, and assume that the
function φ there is in fact the discrimination probability function ψ . The canonical
space (S = {a,b,c,d} ,ψ) is represented by the matrix that we reproduce here for
convenience:

ψ a b c d
a 0.3 0.4 0.6 0.7
b 0.4 0.2 0.3 0.5
c 0.5 0.3 0.1 0.2
d 0.8 0.6 0.3 0.1

We know that all computations can be performed with either �(1) or �(2); the final
result will be the same. Let us therefore compute �(1)xy by subtracting from each
entry ψxy the diagonal value in the same row, ψxx (because the row labels are
representing the stimuli in the first observation area). The result is
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�(1) a b c d
a 0 0.1 0.3 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d 0.7 0.5 0.2 0

(3.23)

Let us consider next all chains leading from a to d, and from d to a. We obviously
need not consider chains with loops in them (such as abcacd, containing loops cac
and abca):

from a to d �(1)-length
ad 0.4

abd 0.1+ 0.3
acd 0.3+ 0.1

abcd 0.1+ 0.1+ 0.1
acbd 0.3+ 0.2+ 0.3

,

from d to a �(1)-length
da 0.7

dba 0.5+ 0.2
dca 0.2+ 0.4

dcba 0.2+ 0.2+ 0.2
dbca 0.5+ 0.1+ 0.4

The shortest chains here are abcd and either of dca and dcba, their �(1)-lengths
being, respectively,

G(1)ad = 0.3,G(1)da = 0.6.

Thence
←→
G ad = 0.3+ 0.6 = 0.9.

Repeating this procedure for each other pair of stimuli, we obtain the following
complete set of G(1)-distances,

G(1) a b c d
a 0 0.1 0.2 0.3
b 0.2 0 0.1 0.2
c 0.4 0.2 0 0.1
d 0.6 0.4 0.2 0

(3.24)

and, by symmetrization, the complete set of Fechnerian distances

←→
G a b c d
a 0 0.3 0.6 0.9
b 0.3 0 0.3 0.6
c 0.6 0.3 0 0.3
d 0.9 0.6 0.3 0

(3.25)

The shortest chains are not generally unique, as we have seen in our toy example.
However, their infimum for any given pair of points (in the case of finite sets,
minimum) is always determined uniquely. (Note that it is only a numerical accident
that all

←→
G in our example are below 1, there is no general upper bound for

←→
G

computed from probability values.)
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Recall that a label in the canonical stimulus space, say, a, is a representation
of two different stimuli in the two observation areas. If one goes back to the
original stimulus spaces, the Fechnerian distance 0.6 between points b and d in
the canonical space S is in fact both

(i) the distance between either of the stimuli x2,x3 and either of the stimuli x6,x7

in the stimulus space S∗1 (first observation area); and
(ii) the distance between any of the stimuli y4,y5,y6,y7 and the stimulus y1 in the

stimulus space S∗2 (second observation area).

Indeed, any of the stimuli y4,y5,y6,y7 and either of x2,x3 are each other’s PSEs,
mapped into b in the canonical representation. Similarly, either of the stimuli x6,x7

and y1 are each other’s PSEs, mapped into d.
Let us emphasize that Fechnerian distances are always defined within obser-

vation areas rather than across them. This is the reason Fechnerian distance
←→
G

is a true metric, with the symmetry property. Within a single observation area the
order of two stimuli has no operational meaning, so

←→
G xy cannot be different from←→

G yx. The situation is different when we consider a discrimination probability
function ψ or a dissimilarity function D (e.g., �(1) or �(2)). In ψxy and Dxy the
first and second stimuli belong to, respectively, the first and second observation
areas, making them meaningfully asymmetric.

The quasimetric dissimilarity G (e.g., G(1)or G(2)) from which
←→
G is computed,

strictly speaking, is not interpretable before it is symmetrized. Gxy is merely a
component of

←→
G xy, the other component being Gyx. However, in the rest of this

paper we are focusing on G rather than
←→
G because the computation of G from

D is the nontrivial part of Fechnerian scaling, leaving one only the trivial step of
adding Gyx to Gxy.

3.6.2 Recursive Corrections for Violations of the Triangle Inequality

The procedure described in this section is not the only way to compute G from D.
Another way, known as the Floyd–Warshall algorithm, is based on the following
logic. If one considers in S all possible ordered triples xyz with pairwise distinct
elements, and finds out that all of them satisfy the triangle inequality

Dxz ≤ Dxy+ Dyz,

then D simply coincides with G. If therefore, in the general case, one could
“correct” all ordered triples xyz for violations of the triangle inequality, one would
transform D into G. The following is how this can be done for any finite stimulus
space (a generalization to be discussed in Section 3.9.3).

Let S contains k points, and let S3 denote the set of t = k (k − 1) (k − 2)

ordered triples of pairwise distinct points of S. We will call the elements of S3

triangles. For n = 0,1, . . ., let T(n) denote a sequence of the t triangles in S3 (in
an arbitrary order, as its choice will be shown to be immaterial for the end result).
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For each n, we index the triangles in T(n) by double indices (n,1) , (n,2) , . . . , (n,t),
and we order all such pairs lexicographically: the successor (n,i)′ of (n,i) is
(n,i+ 1) if i < t and (n,t)′ = (n+ 1,1). So the triangle indexed (n,i)′ is in T(n),
while the triangle indexed (n,t)′ is the first one in T(n+1).

Definition 3.11. Given a finite space (S,D) and the triangle sequences
T(0),T(1), . . ., the dissimilarity function M(n,i) for n = 0,1, . . . and i = 1,2, . . . ,t
is defined by induction as follows.

(i) M(0,i) ≡ D for i = 1,2, . . . ,t.
(ii) Let M(n,i) be defined for some (n,i) ≥ (0,t), and let abc be the triangle indexed

by (n,i)′. Then M(n,i)′xy = M(n,i)xy for all x,y ∈ S except, possibly, for
M(n,i)′ac, defined as

M(n,i)′ac = min
(

M(n,i)ac,M(n,i)ab+M(n,i)bc
)

.

(Note that in every triangle xyz the triangle inequality is tested only in the form
Dxz ≤ Dxy + Dyz, irrespective of whether any of the remaining five triangle
inequalities is violated, Dxy ≤ Dxz+ Dzy, Dzy ≤ Dzx+ Dxy, etc.)

The function M(n,i) for every (n,i) is clearly a dissimilarity function, and it is
referred to as the corrected dissimilarity function. If, at some (n,i), the function
M(n,i) is a quasimetric dissimilarity, it is called the terminal corrected dissimilarity
function.

It follows from Definition 3.11 that if (m,j) ≥ (n,i), then M(m,j)xy ≤ M(n,i)xy
for all x,y ∈ S. Therefore, if, for some n, M(n+1,t) ≡ M(n,t), then M(n+1,1) ≡
M(n,t), implying that M(n,t) is the terminal dissimilarity function. The converse
being obvious, we have

Lemma 3.12. M(n,i) is the terminal corrected dissimilarity function if and only if
M(n+1,t) ≡ M(n,t).

The next lemma provides a link between the algorithm being considered and the
use of chains in the definition of G. Recall that C denotes the set of all chains in S.

Lemma 3.13. For any n = 0,1, . . ., any i = 1,2, . . . ,t, and any a,b ∈ S, there is
a chain X ∈ C such that

M(n,i)ab = DaXb.

The proof obtains by induction on the lexicographically ordered (n,i). The
statement holds for n = 0, with X an empty chain. Let it hold for all double
indices up to and including (n,i) ≥ (0,t), and let abc be the triangle indexed
(n,i)′. Then the statement is clearly true for M(n,i)′ac whether it equals M(n,i)ac or
M(n,i)ab+M(n,i)bc, and it is true for all other xy because then M(n,i)′xy = M(n,i)xy.

Does a terminal dissimilarity function necessarily exist? Let us assume it does
not. Then, by Lemma 3.12, M(n+1,t) and M(n,t) do not coincide for all n = 0,1, . . ..
Since S × S is finite, there should exist distinct points a,b ∈ S and an infinite
sequence of positive integers n1 < n2 < . . . for which
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Dab �= M(n1,t)ab �= M(n2,t)ab �= . . . .

From Definition 3.11 it follows then that

Dab > M(n1,t)ab > M(n2,t)ab > . . . .

By Lemma 3.13, for every (ni,t) there should exist a chain Xi such that

M(ni,t)ab = DaXib, i = 1,2, . . . .

But a sequence of inequalities

Dab > DaXn1b > DaXn2b > . . .

is impossible in a finite set, because the set of chains with lengths below a given
value is finite. This contradiction proves the existence of a terminal dissimilarity
function. Let us denote it by M. Observe that for any a,b ∈ S and any chain X ∈ C,

DaXb ≥ MaXb.

But M satisfies the triangle inequality, whence

MaXb ≥ Mab,

whence

Mab ≤ DaXb.

By Lemma 3.13, this implies

Mab = min
X∈C

DaXb,

which equals Gab by definition. We have established therefore

Theorem 3.14. A terminal corrected dissimilarity function exists, and it coincides
with the quasimetric dissimilarity G induced by the initial dissimilarity function D.

It is worthwhile emphasizing that nowhere in the proof have we used a specific
order of the triangles in T(n).

We see that dissimilarities on finite sets can be viewed as “imperfect” quasi-
metric dissimilarities, and the dissimilarity cumulation procedure can be recast
as a series of recursive corrections of the dissimilarities for the violations of the
triangle inequality.

Let us illustrate the procedure on our toy example, starting with the matrix of
dissimilarities

�(1) = D a b c d
a 0 0.1 0.3 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d 0.7 0.5 0.2 0
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and using, for each T(n) the same sequence of t = 24 triangles

i = 1 2 3 . . . 23 24
acb adb abc . . . dac dbc

. (3.26)

It is obtained by cycling through the first element (4 values), subcycling through
the last element (3 values), and sub-subcycling through the middle element (2
values), in alphabetic order.

Testing the triangles in T(1) one by one, M(1,1)coincides with D because the
triangle indexed (1,1) is acb, and the triangle inequality in it is not violated.
Similarly, M(1,2) ≡ M(1,1) because the triangle inequality is not violated in the
triangle labeled (1,2). The first violation of the triangle inequality occurs in the
triangle indexed (1,3), abc:

0.3 = Dac > Dab+ Dbc = 0.1+ 0.1.

We “correct” the value of Dac therefore by replacing 0.3 with 0.2 (shown in
parentheses in matrix M(1,3) below):

D a b c d
a 0 0.1 0.3 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d 0.7 0.5 0.2 0

⇒

M(1,3) a b c d
a 0 0.1 (0.2) 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0.0 0.1
d 0.7 0.5 0.2 0.0

No violations occur until we reach the triangle indexed (1,20), so M(1,19) ≡
M(1,18) ≡ · · · ≡ M(1,3). In M(1,19), however, we have, for the triangle dca:

0.7 = M(1,19)da > M(1,19)dc+M(1,19)ca = 0.2+ 0.4.

We correct M(1,19)da from 0.7 to 0.6, as shown in the parentheses in matrix
M(1,20):

M(1,19) a b c d
a 0 0.1 0.2 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d 0.7 0.5 0.2 0

⇒

M(1,20) a b c d
a 0 0.1 0.2 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d (0.6) 0.5 0.2 0

We deal analogously with the third violation of the triangle inequality, in the
triangle dcb, indexed (1,22):

0.5 = M(1,21)db > M(1,21)dc+M(1,21)cb = 0.2+ 0.2.

So M(1,21) ≡ M(1,20) ≡ M(1,19), and

M(1,21) a b c d
a 0 0.1 0.2 0.4
b 0.2 0 0.1 0.3
c 0.4 20. 0 0.1
d 0.6 0.5 0.2 0

⇒

M(1,22) a b c d
a 0 0.1 0.2 0.4
b 0.2 0 0.1 0.3
c 0.4 20. 0 0.1
d 0.6 (0.4) 0.2 0
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With the remaining two triangles before the sequence T(1) has been exhausted
no violations occur, so M(1,24) ≡ M(1,23) ≡ M(1,22) is the matrix with which
the second sequence, T(2), begins. The first and only violation here occurs at the
triangle indexed (2,5), abd:

0.4 = M(2,4)ad > M(2,4)ab+M(2,4)bd = 0.1+ 0.2.

So M(2,4) ≡ · · · ≡ M(2,1) ≡ M(1,24), and

M(1,24) a b c d
a 0 0.1 0.2 0.4
b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d 0.6 0.4) 0.2 0

⇒

M(2,5) a b c d
a 0 0.1 0.2 (0.3)

b 0.2 0 0.1 0.3
c 0.4 0.2 0 0.1
d 0.6 0.4 0.2 0

One can verify that M(2,5) is a quasimetric dissimilarity on S = {a,b,c,d}, so that
M(2,6) and all higher-indexed matrices remain equal to M(2,5). The latter therefore
is the terminal corrected dissimilarity, and its comparison with (3.24) shows that
it coincides with G = G(1), the quasimetric induced by the initial dissimilarity
function D = �(1).

3.7 Dissimilarity Cumulation in Path-Connected Spaces

3.7.1 Chains-on-Nets and Paths

We now turn to dissimilarity cumulation in stimulus spaces (S,D) in which points
can be connected by paths. A path is a continuous function f : [a,b]→ S. Because
[a,b] is a closed interval of reals, this function is also uniformly continuous. The
latter means that f (x)↔ f (y) if x− y→ 0 (x,y ∈ [a,b]). We will present this path
more compactly as f| [a,b], and say that it connects f (a) = a to f (b) = b, where a
and b are allowed to coincide.

To introduce the notion of the length of the path f| [a,b], we need the following
auxiliary notions. A net on [a,b] is defined as a sequence of numbers

μ = (a = x0 ≤ x1 ≤ · · · ≤ xk ≤ xk+1 = b) ,

not necessarily pairwise distinct. The quantity

δμ = max
i=0,1...,k

(xi+1 − xi)

is called the net’s mesh. A net μ = (a,x1, . . . ,xk,b) can be elementwise paired
with a chain X = x0x1 . . . xkxk+1 to form a chain-on-net

Xμ = ((a,x0) , (x1,x1) , . . . , (xk,xk) , (b,xk+1)) .

Note that the elements of the chain X need not be pairwise distinct. The separation
of the chain-on-net Xμ from the path f| [a,b] is defined as

σ
(
f,Xμ

) = max
xi∈μ

Df (xi) xi.
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Figure 3.11 Chains-on-nets Xμ are converging to a path f| [a,b] as δ = δμ→
0 and σ = σ (f,Xμ) → 0. The length DX of the chains then has the limit
inferior that is taken for the length of the path f.

Definition 3.15. The D-length of path f| [a,b] is defined as

Df = lim inf
δμ→0,σ (f,Xμ)→0

DX.

The limit inferior stands here for

sup
ε1>0,ε2>0

inf
{
DX : δμ < ε1,σ

(
f,Xμ

)
< ε2

}
.

Let us agree to say that Xμ converges to f (and write Xμ → f) if δμ → 0 and
σ (f,Xμ)→ 0. We can then rewrite the definition above as

Df = lim inf
Xμ→f

DX. (3.27)

Using the properties of lim inf, for any path f, there exists a sequence
{
Xμn

n
}

of
chains-on-nets such that δμn → 0 and σ

(
f,Xμn

n
)→ 0, and DXn → Df.

Let us list some of the most basic properties of the D-length of a path.

Theorem 3.16. The length Df of any path f| [a,b] has the following properties:
L1 (non-negativity) Df ≥ 0;
L2 (zero property) Df = 0 if and only if f ([a,b]) is a single point;
L3 (additivity) for any c ∈ [a,b], Df| [a,b] = Df| [a,c]+ Df| [c,b].

Proofs of these statements are simple. Thus, to show the additivity of Df, add
the point c twice to all nets:

μ̃ =

⎧⎪⎨⎪⎩
α︷ ︸︸ ︷

a = x0 ≤ . . . ≤ xi ≤ c = c ≤ xi+1 ≤ . . . ≤ xk+1 = b︸ ︷︷ ︸
β

⎫⎪⎬⎪⎭ ,
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and two corresponding points c1,c2 to all chains:

X̃ =
Y︷ ︸︸ ︷

x0 . . . xic1c2xi+1 . . . xk+1︸ ︷︷ ︸
Z

.

Clearly

lim inf
X̃

μ̃→f|[a,b]
X̃ = lim inf

Yα→f|[a,c]
Y+ lim inf

Zβ→f|[c,b]
Z = Df| [a,c]+ Df| [c,b] .

For any sequence
{
Xμn

n
}

of chains-on-nets such that Xμn
n → f| [a,c], and DXn →

Df, we have X̃
μ̃n
n → f| [a,c] for the corresponding sequence

{
X̃

μ̃n
n

}
, assuming

c1
n → f (c) and c2

n → f (c). We also have

DX̃n = DXn +
(

Dxinc1
n + Dc1

nc2
n + Dc2

nxin+1 − Dxinxin+1

)
,

where each summand in the parentheses tends to zero by the uniform continuity of
f and D.

Note that Df is well-defined for any path f, but only on the extended set of
non-negative reals: the value of Df may very well be equal to ∞. This does
not invalidate or complicate any of the results presented in this chapter, but, for
brevity’s sake, we will tacitly assume that Df is finite.

The reader may wonder why, in the definition of Df, it is not sufficient to deal
with the inscribed chains-on-nets, with all elements of the chains belonging to
the path f. We will see later that this is indeed sufficient if D is a quasimetric
dissimilarity. However, in general, the inscribed chains-on-nets do not reach
the infimum of the D-lengths of the “meandering” chains-on-nets. Figure 3.12
provides an illustration. In this example, the stimuli are points in R

2, and, for
a = (a1,a2) and b = (b1,b2),

Figure 3.12 A demonstration of why for D-length computations we need the
“meandering” chains like in Figure 3.11 rather than just inscribed chains.
Here, Dab for a = (a1,a2) and b = (b1,b2) is defined as |a1 − b1| +
|a2 − b2| + min (|a1 − b1| , |a2 − b2|). All staircase chains X, irrespective of
the spacing of their elements, have the cumulated dissimilarity DX = 2, and 2
is the true D-length of the path between (1,0) and (0,1). All inscribed chains,
irrespective of the spacing of their elements, have the cumulated dissimilarity
3. Explanations are given in the text.
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Dab = |a1 − b1| + |a2 − b2| +min (|a1 − b1| , |a2 − b2|) .

It is easy to check that D is a dissimilarity function. Thus, D3 follows from the fact

Danbn → 0⇐⇒ |a− b| → 0,

where |a− b| is the usual Euclidean norm. Also, for any chain aXb,

DaXb ≥ |a1 − b1| + |a2 − b2| ,
whence DanXnbn → 0 implies Danbn → 0. That is, D satisfies D4. By the same
inequality, the length of the line segment f shown in Figure 3.12, connecting a =
(1,0) to b = (0,1), cannot be less than 2. (The domain interval for f can be chosen
arbitrarily, e.g., [0,1].) Consider now chains-on-nets Xμ with the staircase chains,
as in the left panel. By decreasing the mesh of μ and the spacing of the elements
of X, it can be made to converge to f, and since DX for all these chains equals 2,
Df = 2. At the same time, the inscribed chains, as in the right panel of the figure,
are easily checked to have the length 3.

3.7.2 Path Length through Quasimetric Dissimilarity

Different dissimilarity functions D lead to different quantifications of path length.
We know that the quasimetric dissimilarity G defined by (3.18) is a dissimilarity
function. However, in this case, since G is defined through D by (3.18), one should
expect, for consistency, that the path length will remain unchanged on replacing
D with G. This will indeed be established in Section 3.7.3. We need several
preliminary results first, however.

Using G in place of D to define the G-length of paths, we have

Gf = lim inf
Xμ G→f

GX.

The condition Xμ G→ f here means δμ→ 0 and

σG
(
f,Xμ

) = max
xi∈μ

Gf (xi) xi → 0.

But, by Theorem 3.6, the latter condition is equivalent to

σ
(
f,Xμ

) = max
xi∈μ

Df (xi) xi → 0.

Therefore Xμ G→ f and Xμ → f are equivalent, and we can formulate

Definition 3.17. The G-length of path f| [a,b] is

Gf = lim inf
Xμ→f

GX.

Consider now chains-on-nets Zν inscribed in f| [a,b], that is, those with

ν = {a = z0,z1, . . . ,zk,zk+1 = b}
and

Z = f (z0) . . . f (zk+1) = z0 . . . zk+1.
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Since σ (f,Zν) = 0, the condition Zν → f here reduces to δν → 0. Clearly

lim inf
δν→0

GZ ≥ lim inf
Xμ→f

GX = Gf, (3.28)

because inscribed chains-on-nets converging to f form a subset of all chains-on-
nets converging to f. We will see now that in fact the two quantities in (3.28) are
equal. By the additivity property,

Gf| [a,b] =
k∑

i=0

Gf| [zi,zi+1
]

.

Let Xμi
i be an arbitrary chain-on-net with μi ⊂

[
zi,zi+1

]
. By the same reasoning

as in the proof of the additivity property, if μi is changed into

μ̃i =
{

zi,
μi︷︸︸︷. . . ,zi+1

}
and Xi into

X̃i = ziXizi+1,

the conditions Xμi
i → f| [zi,zi+1

]
and X̃

μ̃i
i → f| [zi,zi+1

]
are equivalent. Denoting

by Xμ the concatenation of Xμi
i for i = 0, . . . ,k, and defining X̃

μ̃
analogously, we

have

Gf = lim inf
Xμ→f

GX = lim inf
X̃

μ̃→f
GX̃.

At the same time, by the triangle inequality,

Gzizi+1 ≤ GziXizi+1,

whence

GZ ≤ GX̃

and

lim inf
δν→0

GZ ≤ lim inf
X̃

μ̃→f
GX̃ = Gf. (3.29)

Together with (3.28), this establishes

Theorem 3.18. For any path f,

Gf = lim inf
δν→0

GZ,

where Zν are chains-on-nets inscribed in f.

In other words, to approximate Gf by G-lengths of chains-on-nets, one does not
need all possible chains converging to f; the inscribed ones only are sufficient.
Recall that the analogous statement is not correct for Df. The equality in Theorem
3.18 critically owes to the fact that G satisfies the triangle inequality.

We can further clarify Theorem 3.18 as follows.
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Theorem 3.19. For any path f,

Gf = sup GZ = lim
δν→0

GZ, (3.30)

where Zν are chains-on-nets inscribed in f.

In other words, Gf is the lowest upper bound for the lengths of all inscribed
chains-on-nets; and any sequence of the inscribed chains-on-nets converges to Gf
as their mesh decreases.

To prove the first equality, Gf = sup GZ, consider a chain-on-net Zν

with sup GZ − GZ arbitrarily small. For every pair of successive zi,zi+1 in
ν, one can find an inscribed chain-on-net Vμi

i such that μi = {zi, . . . ,zi+1}
and

∣∣GVi − Gf| [zi,zi+1
]∣∣ is arbitrarily small. By the additivity of G-length,

denoting by Vμ the concatenation of all Vμi
i , we can make |GV− Gf| [a,b]|

arbitrarily small. From the triangle inequality it follows that GV ≥ GZ, whence
Gf ≥ sup GZ. But GV ≤ sup GZ, whence we also have Gf ≤ sup GZ.

To prove that Gf = limδν→0 GZ, deny it, and assume that there is a sequence
of inscribed chains-on-nets Vμn

n such that δμn → 0 but GVn �→ Gf. Since
Gf = sup GZ across all possible inscribed chains-on-nets, GVn ≤ Gf for all n.
Then one can find a 	 > 0 and a subsequence of Vμn

n (which, with no loss of
generality, we can assume to be Vμn

n itself) such that

GVn → Gf−	.

Let Zν be an inscribed chain-on-net with

GZ > Gf−	/2.

For every zi in ν and every n, let vn
ki,n

,vn
ki,n+1 be two successive elements of μn

such that vn
ki,n
≤ zi ≤ vn

ki,n+1. For a sufficiently large n, δμn is sufficiently small
to ensure that zi is the only member of ν falling between vn

ki,n
and vn

ki,n+1 (without
loss of generality, we can assume that ν contains no identical elements). Denote
by ν � μn the nets formed by the elements of ν inserted into μn. Consider the
inscribed chains-on-nets Uν�μn . We have (denoting by l the cardinality of ν)

GU = GVn +
l∑

i=0

{
Gf
(

vn
ki,n

)
f (zi)+ Gf (zi) f

(
vn

ki,n+1

)
− Gf

(
vn

ki,n

)
f
(

vn
ki,n+1

)}
.

By the uniform continuity of f, the expression under the summation operator tends
to zero, whence

GU− GVn → 0,

and then

GU→ Gf−	.

But by the triangle inequality, for all n,

GU ≥ GZ > Gf−	/2.

This contradiction completes the proof.
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3.7.3 The Equality of the D-length and G-length of Paths

As mentioned previously, one can expect that path length should not depend on
whether one chooses dissimilarity D or the quasimetric dissimilarity G induced
by D.

Theorem 3.20. For any path f,

Df = Gf.

Comparing Definitions 3.15 and 3.17, since DX ≥ GX for any chain, we have
Df ≥ Gf. To see that Df ≤ Gf, we form a sequence of inscribed chains-on-nets Zνn

n

such that δνn → 0, and GZn → Gf. By the definition of G, one can insert chains
Xn

i between pairs of successive elements zn
i ,z

n
i+1 of Zn, so that

DUn − GZn ≤ 1

n
,

where

Un = zn
0Xn

0zn
1 . . . zn

kn
Xn

kn
zn

kn+1.

In other words, DUn → Gf. Let us now create a net μn for every Un as follows: if
zn

i ∈ νn is associated with zn
i ∈ Zn, we associate zn

i with every element of Xn
i . The

resulting chain-on-net is

Uμn
n =

(
. . . ,

(
zn

i ,z
n
i

)
,
(

zn
i ,x

i,n
1

)
, . . . ,

(
zn

i ,x
i,n
li,n

) (
zn

i+1,z
n
i+1

)
, . . .

)
.

We will show now that Uμn
n → f. Since δμn = δνn → 0, we have to show that

σ
(
f,Uμn

n
)→ 0. Let

(
zn

in
,mn

in

)
be an element of Uμn

n such that

σ
(
f,Uμn

n

) = Df
(
zn

in

)
mn

in = Dzn
inmn

in .

By the uniform continuity of f and G,

Gzn
inzn

in+1 = Gf
(
zn

in

)
f
(

zn
in+1

)
→ 0

as δμn = δνn → 0. By the construction of Un,

Dzn
in = Dzn

in

Xn
in︷ ︸︸ ︷

xin,n
1 . . . mn

in . . . xin,n
lin,n

zn
in+1 → 0,

implying

Dzn
inxin,n

1 . . . mn
in → 0.

By the chain property of dissimilarity functions,

σ
(
f,Uμn

n

) = Dzn
inmn

in → 0.

We have therefore a sequence of chains-on-nets Uμn
n → f with Gf as the limit point

of DUn, and then Gf ≥ Df because Df is the infimum of all such limit points. This
completes the proof.
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We see that although Dxy and Gxy are generally distinct for points x,y, when
it comes to paths f, the quantities Df and Gf can be used interchangeably. One
consequence of this result is that the properties of the D-length of paths can now
be established by replacing it with the G-length, the advantage of this being that
we acquire the powerful triangle inequality to use, and also restrict, chains-on-nets
to the inscribed ones, more familiar than the “meandering” chains in Figure 3.11.
However, the general definition of Df remains convenient in many situations. We
illustrate this on the important property of lower semicontinuity of the D-length.

Definition 3.21. A sequence of paths fn| [a,b] converges to a path f| [a,b] (in
symbols, fn → f) if

σ (f,fn) = max
x∈[a,b]

Df (x) fn (x)→ 0.

Consider any sequence of chains-on-nets Xμn
n → fn such that |DXn − Dfn| → 0.

By the uniform continuity of D,[
σ
(
fn,Xμn

n

)→ 0
]

and [σ (f,fn)→ 0] �⇒ σ
(
f,Xμn

n

)→ 0.

Then Xμn
n → f, whence lim infn→∞DXn ≥ Df. But lim infn→∞DXn =

lim infn→∞Dfn. This proves

Theorem 3.22 (Lower semicontinuity) For any sequence of paths fn| [a,b] →
f| [a,b],

lim inf
n→∞ Dfn ≥ Df.

3.7.4 Intrinsic Metrics and Spaces with Intermediate Points

In a path-connected space, a metric is traditionally called intrinsic if the distance
between two points is the greatest lower bound for the length of all paths
connecting the two points. For instance, in R

n endowed with the Euclidean
geometry, the Euclidean distance

Dab = |a− b|
between points a and b is intrinsic, because it is also the length of the shortest path
connecting these points, a straight line segment. By contrast

Dab =
√
|a− b|

is also a metric, but it is not intrinsic: the path length Df induced by this metric
is infinitely large for every path f. As an example of a non-intrinsic metric with a
finite path length function, consider

Dab = tan |a− b|
on the interval

[
0, π

2

[
, where a,b are the values of a,b, respectively. The length of

the (only) path connecting a to b here is |a− b| �= tan |a− b|.
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In this section we consider a generalization of the notion of intrinsic metric to
quasimetric dissimilarities.

Definition 3.23. The quasimetric dissimilarity G defined in a space (S,D) by
(3.18) is called intrinsic if, for any a,b ∈S,

Gab = inf
f∈Pb

a

Df,

where Pb
a is the class of all paths connecting a to b.

Figure 3.13 provides an illustration.
We know that in Definition 3.23 Df can be replaced with Gf. We also know that

Gf for any f ∈ Pb
a can be arbitrarily closely approximated by GaXb for some

inscribed chain-on-net Xμ. By the triangle inequality, Gab ≤ GaXb. Therefore,
in any space (S,D),

Gab ≤ inf
f∈Pb

a

Df. (3.31)

We now need to consider a special class of spaces in which this inequality can be
reversed.

Definition 3.24. A stimulus space (S,D) is said to be a space with intermediate
points if, for any distinct a,b, one can find an m such that m /∈ {a,b} and
Damb≤Dab.

Figure 3.14 provides an illustration. If D is a metric (or quasimetric dissimilar-
ity), the inequality Damb ≤ Dab can only have the form

Damb = Dab.

Figure 3.13 The metric G induced by dissimilarity D is intrinsic if the G-
distance from a to b equals the infimum of D-lengths (equivalently, G-lengths)
of all paths connecting a to b.
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Figure 3.14 If Damb ≤ Dab, the point m is said to be intermediate to a and
b. As a special case, if D is Euclidean distance (right picture), any m on the
straight-line segment connecting a and b is intermediate to a and b.

Figure 3.15 An informal illustration of Theorems 3.26 and 3.27: by adding
intermediate points for every pair of successive points one can create at the
limit a path connecting a to b, with its D-length not exceeding Dab. The infimum
of the D-lengths of all such paths equals Gab.

In this form the notion is known as Menger convexity.
A sequence x1,x2, . . . in (S,D) is called a Cauchy sequence if

lim
k→∞
l→∞

Dxkxl = 0,

that is, if for any ε > 0 one can find an n such that Dxkxl < ε whenever k,l > n.

Definition 3.25. A space (S,D) is called D-complete (or simply, complete) if
every Cauchy sequence in it converges to a point.

That is, in a complete space, for any Cauchy sequence x1,x2, . . ., there is a
point x ∈ S such that xn → x. For example, if stimuli are represented by points
in a closed region of Rn, and the convergence xn → x coincides with the usual
convergence of n-element vectors, then the space is complete.

The main mathematical fact we are interested in is as follows.

Theorem 3.26. In a complete space (S,D) with intermediate points, any point a
can be connected to any point b by a path f with

Df ≤ Dab.

A proof of this statement known to us is rather involved (see Section 3.10 for a
reference), and we will omit it here. Figure 3.15 provides an intuitive illustration.
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A consequence of this theorem that is of special importance for us is as follows.
In any sequence of chains Xn connecting a to b, with DXn → Gab, each link
xinxin+1 in each chain Xn can be replaced with a path fin connecting xin to xin+1,
such that Dfin ≤ Dxinxin+1. This would create a path fn connecting a to b, with
Dfn ≤ DXn. Hence

inf
f∈Pb

a

Df ≤ lim inf
n→∞ Dfn ≤ lim

n→∞DXn = Gab. (3.32)

Combining this with (3.31), we establish

Theorem 3.27. In a complete space (S,D) with intermediate points, the quasi-
metric dissimilarity G is intrinsic:

Gab = inf
f∈Pb

a

Df.

3.8 Dissimilarity Cumulation in Euclidean Spaces

3.8.1 Introduction

We are now prepared to see how the general theory of path length can be
specialized to a variant of (Finsler) differential geometry. We assume that in
the canonical space of stimuli (S,D), the set S is an open connected region of
the Euclidean n-space R

n. The Euclidean n-space is endowed with the global
coordinate system

x =
(

x1, . . . ,xn
)
,

and the conventional metric

Eab = |a− b| . (3.33)

Recall that the connectedness of S means that it cannot be presented as a union
of two open nonempty sets. In the Euclidean space this notion is equivalent to
path-connectedness: any two points can be connected by a path.

Among all paths we focus on continuously differentiable ones. We develop a
way of measuring the value F̂

(
f (x) , ḟ (x)

)
of the tangent vector ḟ (x) to the path

f| [a,b] at point x, by showing (under certain assumptions) that

F̂
(
f (x) , ḟ (x)

) = lim
s→0+

Gf (x) f (x+ s)

s
.

The D-length of the path is then computed as

b∫
a

F̂
(
f (x) , ḟ (x)

)
dx.

The idea is illustrated in Figure 3.16.
We begin now a systematic development.
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Figure 3.16 As the point on the path moves away from a position f (x), the
dissimilarity Df (x) f (y) increases from zero, and the rate of this increase,
dDf (x) f (x+ s) /ds|s=0+ is shown by the slope of the tangent line in the graph
of y �→ Df (x) f (y). This derivative then is integrated with respect to x from a
to b to obtain the length of the path f. If this derivative only depends on f (x)
and df (x) /dx (assuming the path is continuously differentiable), then it can be
viewed as a way of measuring the tangent vector to the path as a point moves
along it, F (f (x) ,df (x) /dx). The infimum of the lengths of all such smooth paths
connecting a to b is then taken for the value of Gab.

Definition 3.28. The tangent space Tp at a point p of S is the set {p} × U
n,

where U
n is the vector space{

u = x− p : x ∈ R
n,x �= p

}
endowed with the Euclidean vector norm |u| and the standard topology. The
n-vectors u ∈ U

n are referred to as directions, and the elements (p,u) of Tp as
line elements. The set of all line elements

T = S× U
n =

⋃
p∈S

Tp

is called the tangent bundle of the space S.

This definition deviates from the traditional one, which does not include the
point p explicitly, but it is more convenient for our purposes. In the more general
case of a differentiable manifold, the vector space U

n should be redefined. Note
that the vectors in U

n do not represent stimuli, but we still use boldface letters
to denote them. In the context of Euclidean spaces the boldface notation for both
stimuli and directions can simply be taken as indicating vectors.

For any u ∈ U
n the notation u will be used for the unit vector codirectional

with u:
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u = u
|u|, |u| = 1. (3.34)

3.8.2 Submetric Function

We make the following two assumptions about the space (S,D) and its relation to
(S,E).

(E1) The topologies of (S,D) and (S,E) coincide.

The coincidence of the D-topology and the Euclidean topology means that the
notion of convergence

an → a (3.35)

means simultaneously Dana → 0 and |an − a| → 0. As a result, all topological
concepts (openness, continuity, compactness, etc.) can be used without the prefixes
D, G, or E. In particular, dissimilarity Dxy and metric Gxy are continuous in (x,y)

with respect to the usual Euclidean topology.
Note, however, that the notions of uniform convergence in (S,D) and (S,E) are

not assumed to coincide. Thus, it is possible that Danbn → 0 but |an − bn| �→ 0,
or vice versa. In particular, dissimilarity Dxy and metric Gxy are not generally
uniformly continuous in the Euclidean sense.

(E2) For any x,an,bn ∈ S (an �= bn) and any unit vector u, if an → x,
bn → x, and bn − an → u (see Figure 3.17), then

Danbn

|bn − an|
tends to a positive limit, denoted F (x,u).

Putting an = x and bn − an = u in Assumption E2, and denoting bn = x+ us,
the function F (x,u) can be presented as

F (x,u) = lim
s→0+

Dx [x+us]

s
. (3.36)

Figure 3.17 An illustration for Assumption E2. Shown are a point x (open
circle), a direction u attached to it, and (in successive panels from left to
right) pairs of points (a1,b1), (a2,b2), . . . , (an,bn), . . . gradually converging
to x so that the dashed line connecting them (and directed from an to bn)
gradually aligns with the direction u. The assumption says that in this situation
the dissimilarity Danbn and the Euclidean distance |bn − an| are comeasurable
in the small: neither of them tends to zero infinitely faster than the other.
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We now generalize this function to apply to any vector u, not just the unit one.

Definition 3.29. The function

F : T ∪ {(x,0) : x ∈ S} → R

defined as

F (x,u) =
{

lims→0+ Dx[x+us]
s if u �= 0

0 if u = 0
, (3.37)

is called a submetric function.

The standard term for F (x,u) in differential geometry is “metric function.” It
can, however, easily be confused with a metric on the space of stimuli, such as
Gab. To prevent this confusion, we use the nonstandard term “submetric function.”

Theorem 3.30. F (x,u) is well-defined for any (x,u) ∈ T ∪ {(x,0) : x ∈ S}. It is
positive for u �= 0, continuous in (x,u), and Euler homogeneous in u.

Euler homogeneity in u means that for any k > 0, F (x,ku) = kF (x,u) . See the
Appendix to this chapter for a proof.

Assumption E2 can now be strengthened as follows.

Theorem 3.31. For any an,bn ∈ s ⊂ S, if s is compact and an ↔ bn (an �= bn),
then

Danbn

F (an,bn−an)
→ 1.

Indeed, rewrite

Danbn

F (an,bn−an)
= Danbn

F
(

an,bn − an

)
|bn − an|

,

and denote either lim inf or lim sup of this ratio by l. There is an infinite
subsequence of (an,bn) (without loss of generality, the sequence itself) for which

Danbn

F
(

an,bn − an

)
|bn − an|

→ l.

But within a compact set s one can always select from this sequence (an,bn) a
subsequence with an ↔ x, bn ↔ x, for some x; and due to the compactness
of the set u of all unit directions, one can always select a subsequence of this
subsequence with bn − an → u, for some u. In this resulting subsequence (again,
without changing the indexation for convenience):

F
(

an,bn − an

)
→ F (a,u) ,

whence
Danbn

|bn − an| → lF (a,u) .

By Assumption E2 then, l = 1. Since this result holds for both lim inf and lim sup
of the original ratio, the statement of the theorem follows.
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3.8.3 Indicatrices

Definition 3.32. The function

1 : T→ U
n

defined by

1 (a,u) = u
F (a,u)

is called the radius-vector function associated with (or corresponding to) the
submetric function F (a,u). The values of this function are referred to as radius-
vectors. For a fixed a ∈ S, the function u �→ 1 (a,u) is called the indicatrix
centered at (or attached to) the point a. The set

Ia =
{
u ∈ U

n : F (a,u) ≤ 1
}

is called the body of this indicatrix, and the set

δIa =
{
u ∈ U

n : F (a,u) = 1
}

is called its boundary.

Figure 3.18 provides an illustration for the relationship between F (a,u) and
1 (a,u).

Note that {a}× Ia is a subset of the tangent space Ta. Note also that the body (or
the boundary) of an indicatrix is a set of vectors in U

n emanating from a common
origin. The boundary should not be thought of as the set of the endpoints of the
radius-vectors: the latter set does not determine the indicatrix uniquely, as one
should also know the position of the origin within the boundary (see Figure 3.19).
Not all points within a given set of endpoints may serve as points of origin: by
definition, there can be no endpoint A on the boundary which is not connected to
the origin O by a vector

−→
OA ∈ δIa, and the boundary cannot have two codirectional

but nonidentical vectors
−→
OA and

−→
OB (see Figure 3.20): indeed, if

Figure 3.18 An indicatrix (right) attached to a point in plane (left). The value

of the submetric function F at this point and any vector
−→
OU is computed as the

ratio of
−→
OU to the codirectional radius-vector of the indicatrix,

−−→
OU0 (shown in

white).
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Figure 3.19 The two indicatrices are different (consist of different vectors)
although they have identical sets of endpoints.

Figure 3.20 This combination of a set of endpoints with a position of the origin
does not form an indicatrix, because a radius-vector from the origin (shown by
the open circle) intersects the boundary at more than one point.

−→
OA
−→
OB
= k �= 1,

then

F
(

a,
−→
OA
)

F
(

a,
−→
OB
) = k,

so one of the vectors
−→
OA and

−→
OB does not belong to δIa.

Figure 3.21 offers a geometric interpretation for measuring the length of a
smooth path, to be rigorously justified later.
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Figure 3.21 Geometric interpretation of how indicatrices measure tangents to
a smooth path: by centering the indicatrix If(x) at each point f (x), one measures
the magnitude of the tangent at this point by relating it to the codirectional
radius-vector of the indicatrix, as explained in Figure 3.18. The length of the
path f| [a,b] is then obtained by integrating this magnitude from a to b. For the
conventional Euclidean length all indicatrices are unit-radius circles.

We now list basic, almost obvious, properties of the unit vector function and the
corresponding indicatrices.

Theorem 3.33. The following statements hold true:
(i) 1 (a,u) is continuous;
(ii) 1 (a,ku) = 1 (a,u) for all (a,u) ∈ T and all k > 0 (Euler homogeneity in u

of order zero);
(iii) for any a ∈ S, the mapping u �→ 1 (a,u) is a homeomorphism;
(iv) Ia is a compact set in U

n;
(v) δIa is a compact set in U

n;
(vi) for any a ∈ S, there are two positive reals ka,Ka such that

ka ≤ |1 (a,u)| ≤ Ka

for all u ∈ U, and the values ka,Ka are attained by 1 (a,u) at some u.

The proof of Propositions (i) and (ii) follows from the continuity and Euler
homogeneity of F (a,u). Denoting 1 (a,u) by ũ, Proposition (iii) follows from the
relations
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Figure 3.22 A planar indicatrix (whose origin point O is attached to a point

a in S) is sandwiched between two concentric circles of radii
∣∣∣−→OA

∣∣∣ = Ka and∣∣∣−→OB
∣∣∣ = ka.

ũ

|̃u| = u

and

ũ = u
F (a,u)

,

because both these functions are injective and continuous. The continuous function
u �→ ũ induces the continuous function ku �→ k̃u for all k ∈ [0,1], and (iv)–
(v) then follow from the compactness of the unit Euclidean ball {ku : k ∈ [0,1]}
and the unit Euclidean sphere {u}. The continuous mapping u �→ 1 (a,u) of the
compact unit Euclidean sphere should attain a maximum value Ka and a minimum
value ka, and we get (vi) due to (ii).

Based on Theorem 3.33, we can think of an indicatrix boundary as a homeo-
morphically “deformed” Euclidean (n− 1)-sphere “sandwiched” between two
concentric Euclidean (n− 1)-spheres of radii ka > 0 and Ka ≥ ka. Figure 3.22
illustrates this for n = 2.

3.8.4 Convex Combinations and Hulls

To further investigate the properties of indicatrices, we need to recall certain
notions from linear algebra. In the vector space U

n, a linear combination

u = λ1v1 + · · · + λmvm, m ≥ 1 (3.38)

is called a convex combination of v1, . . . ,vm if λi ≥ 0 for i = 1, . . . ,m, and

λ1 + · · · + λm = 1.
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Figure 3.23 Illustration for Lemma 3.34: a direction within the cone formed
by v1,v2,v3 first crosses the lower facet and then the higher facet.

From a geometric point of view, the set of convex combinations of v1, . . . ,vm

forms an (m− 1)-dimensional facet with vertices v1, . . . ,vm. The following
therefore is obviously true.

Lemma 3.34. If αu is a convex combination of a1v1, . . . ,amvm and βu is a convex
combination of b1v1, . . . ,bmvm, with ai ≥ bi for i = 1, . . . ,m and at least one
inequality being strict, then α > β.

Figure 3.23 provides an illustration.
Vectors v1, . . . ,vm are called affinely dependent if, for some γ1, . . . ,γm, not all

zero:

γ1v1 + · · · + γmvm = 0
γ1 + · · · + γm = 0

. (3.39)

If u is a convex combination of affinely dependent vectors, we have simultaneously{
λ1v1 + · · · + λmvm = u
γ1v1 + · · · + γmvm = 0

,

where {
λ1 + · · · + λm = 1
γ1 + · · · + γm = 0

,

all λs are non-negative and some γ s are nonzero (which means that at least one of
them is positive and at least one negative). To exclude trivial cases, let v1, . . . ,vm

be pairwise distinct and let λi > 0 for i = 1, . . . ,m. Let c be the minimum∣∣∣λi
γi

∣∣∣ among all negative ratios λi
γi

. Then at least one of the coefficients in the

representation

u = (λ1 + cγ1) v1 + · · · + (λm + cγm) vm
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is zero, while all other coefficients are non-negative and sum to 1. This means that
u is a convex combination of at most m− 1 elements of {v1, . . . ,vm}, and we have

Lemma 3.35. If u∈Un is a convex combination of affinely dependent v1, . . . ,vm ∈
U

n, then u is a convex combination of some m′< m elements of v1, . . . ,vm.

The following corollary of the lemma is known as a Carathéodory theorem.

Corollary 3.36. If u,v1, . . . ,vm ∈ U
n, m > n+1, and u is a convex combination of

v1, . . . ,vm, then u is a convex combination of at most n+1 elements of v1, . . . ,vm.

This follows from the fact that if m > n + 1, any v1, . . . ,vm in U
n are

affinely dependent. Indeed, since rank (v1, . . . ,vm) ≤ n, there should exist reals
α1, . . . ,αm, not all zero, such that the system of n+ 1 linear equations{

α1v1 + · · · + αmvm = 0
α1 + · · · + αm = 0

is satisfied.
A subset V of Un is said to be convex if it contains any convex combination

λx+ (1− λ)y, λ ∈ [0,1] ,

of any two of its elements x,y. By induction from 2 to (n+1)-element subsets of V
(which is sufficient by Corollary 3.36), we see that a convex set X ⊂ U

n contains
all convex combinations of all finite subsets of V.

For any X ⊂ U
n the set of all convex combinations of all (n+ 1)-tuples of

elements of V is called the convex hull of V and is denoted convV. Again, convV
is, clearly, the set of all convex combinations of all finite subsets of V, and it is the
smallest convex subset of Un containing V.

Consider now an indicatrix Ia and its convex hull. The following is obvious.

Lemma 3.37. For any indicatrix Ia, convIa is compact in U
n.

Let now u ∈ convIa. Then, for some v1, . . . ,vm ∈ Ia and some non-negative
reals λ1, . . . ,λm that sum to 1,

u = λ1v1 + · · · + λmvm.

But then

|u| = |λ1v1 + · · · + λmvm| ≤ λ1 |v1| + · · · + λm |vm|
≤ (λ1 + · · · + λ) Ka = Ka,

where Ka denotes maxu∈Ia |u| (whose existence is stated in Theorem 3.33(v)). We
have therefore

Lemma 3.38. For any a ∈ S,

max
u∈convIa

|u| = max
u∈Ia
|u| .
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Definition 3.39. For any (a,u) ∈ T, the quantity

κ (a,u) = max {α > 0 : α1(a,u) ∈ convIa}
is called the maximal production factor for u in Ia, and the vector κ (a,u) 1(a,u)

is called the maximal production of (or maximally produced) u in Ia.

This is clearly a well-defined function, because it follows from the compactness
of convIa that

Lemma 3.40. For any a ∈ S, every u ∈ U
n has its maximal production in Ia.

The following statement holds because αu and u have one and the same maximal
production in Ia.

Lemma 3.41. The function κ (a,u) is Euler homogeneous of zero order:

κ (a,αu) = κ (a,u) .

Finally, we need to observe the following.

Lemma 3.42. For any (a,u) ∈ T, the maximal production of u in Ia can be
presented as a convex combination of n (not necessarily distinct) radius-vectors
v1, . . . ,vn ∈ δIa.

See the Appendix for a proof.
Figure 3.24 provides an illustration for this lemma on three-dimensional indi-

catrices. (It also illustrates the useful notion of the degree of flatness for a radius
vector within the body of the indicatrix.)

3.8.5 Minimal Submetric Function and Convex Hulls of Indicatrices

In this section we consider the problem of finding a geodesic in the small, a shortest
path connecting stimuli a and a+ us as s→ 0. It will be established later (Section
3.8.6) that Ga (a+ us) in S ⊆ R

n can be approximated by concatenation of
m ≤ n straight-line segments with lengths F (a,ui) s for some vectors u1, . . . ,um

summing to u. So we begin with investigating the minimal value for certain sums
of F (a,ui).

Definition 3.43. A sequence of vectors (u1, . . . ,um) in U
n, m ≥ 1, is said to

form a minimizing vector chain for a line element (a,u) ∈ T if

u = u1 + · · · + um

and

F (a,u1)+ · · · + F (a,um) = min {F (a,v1)+ · · · + F (a,vk)} ,
where the minimum is taken over all k ≥ 1 and all finite sequences (v1, . . . ,vk) in
U

n such that

u = v1 + · · · + vk.
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Figure 3.24 Two indicatrices in U
3 (left) and their cross-sections (right)

showing the position of the origin (white dots). The maximal productions of
two vectors are shown in each of the indicatrices, as parts of the vectors
between the origin to the farthest black dot. The number attached to a vector
v shows the degree of flatness r − 1 of the indicatrix in the direction v, where
r is the maximum number of linearly independent radius-vectors whose convex
combination equals the maximum production of v in the body of the indicatrix.

Note that this definition does not require that u1, . . . ,um be pairwise distinct,

so a minimizing chain for (a,u) may, for example, be
{

1
n u, . . . , 1

n u
}

(which is

equivalent to u alone being a minimizing vector chain for (a,u) too). Note also,
that if (u1, . . . ,um) is a minimizing chain, then so is any permutation thereof.

Theorem 3.44. A minimizing chain for any (a,u) ∈ T exists and consists of n (not
necessarily distinct) nonzero vectors u1, . . . ,un, such that

F (a,u1)+ · · · + F (a,un) = F (a,u)

κ (a,u)
,

where κ (a,u) is the maximal production factor for u in Ia.
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To prove this, we fix κ (a,u) = κ as we deal with a fixed (a,u). Consider the
maximal production κ1 (a,u) of u. By Lemma 3.42, it can be presented as a convex
combination of some n radius-vectors ṽ1, . . . ,ṽn in δIa:

κ1 (a,u) = λ1ṽ1 + · · · + λnṽn,

where all coefficients are non-negative and sum to 1. Then, denoting

vi = λi

κ
ṽi, i = 1, . . . ,n,

we have

1 (a,u) = v1 + · · · + vn

and

F (a,v1)+ · · · + F (a,vn) = 1

κ
.

We prove now that for any w1, . . . ,wm in U
n, if

1 (a,u) = w1 + · · · + wm,

then

F (a,w1)+ · · · + F (a,wm) = δ ≥ 1

κ
.

Indeed, we have

1 (a,u) = F (a,w1) 1 (a,w1)+ · · · + F (a,wm) 1 (a,wm)

and

1

δ
1 (a,u) = F (a,w1)

δ
1 (a,w1)+ · · · + F (a,wn+1)

δ
1 (a,wm) .

That is, 1
δ
1 (a,u) is a convex combination of m radius-vectors of δIa. But then

1

δ
≤ κ .

It follows that (v1, . . . ,vn) is a minimizing vector chain for (a,1 (a,u)), with

F (a,v1)+ · · · + F (a,vm) = 1

κ
.

The statement of the theorem obtains by putting ui = F (a,u) vi, i = 1, . . . ,n.
We introduce now one of the central notions of the theory.

Definition 3.45. For any (a,u) ∈ T∪ {(x,0) : x ∈ S}, the function

F̂ (a,u) =
{

F(a,u)
κ(a,u)

if u �= 0
0 if u = 0

is called the minimal submetric function.
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Clearly

F̂ (a,u) ≤ F (a,u) .

Theorem 3.46. The minimal submetric function F̂ (a,u) has all the properties of a
submetric function: it is positive for u �= 0, Euler homogeneous, and continuous.

See the Appendix for a proof.

Theorem 3.47. The indicatrix at a ∈ S associated with F̂ (a,u),

u �→ 1̂ (a,u) = u

F̂ (a,u)
,

has the body

Îa =
{
u ∈ U

n : F̂ (a,u) ≤ 1
} = convIa,

where Ia is the body of the indicatrix u �→ 1 (a,u) associated with F (a,u). The
boundary

δ̂Ia =
{
u ∈ U

n : F̂ (a,u) = 1
}

of the indicatrix u �→ 1̂ (a,u) is the set of all maximally produced radius-vectors
of the indicatrix u �→ 1 (a,u).

This is essentially a summary of the results established so far. To prove the
second statement of the theorem, by Lemma 3.40 and Theorem 3.44, the maximal
production κ (a,u) 1 (a,u) of u in Ia exists for every u, and

F̂ (a,1 (a,u)) = 1

κ (a,u)
.

It follows that F̂ (a,u) = 1 if and only if

u = κ (a,u) 1 (a,u).

To prove the first statement of the theorem, by Lemma 3.42, κ (a,u) 1 (a,u) is a
convex combination of some vectors v1, . . . ,vn in Ia. But then cκ (a,u) 1 (a,u) is
a convex combination of cv1, . . . ,cvn ∈ Ia for any c ∈ [0,1]. It is clear then that
convIa consists of all vectors

u = cκ (a,u) 1 (a,u), c ∈ [0,1] .

But these are precisely the vectors satisfying F̂ (a,u) ≤ 1. This completes the
proof.

It follows from this theorem that 1̂ (a,u), Îa, and δ̂Ia have all the properties
listed in Theorem 3.33. If δIa is a homeomorphically deformed Euclidean sphere
sandwiched between two Euclidean spheres of radii ka and Ka, then δ̂Ia is a
homeomorphically deformed (but convex) Euclidean sphere sandwiched between
two Euclidean spheres of radii k∗a and Ka (where k∗a ≥ ka and Ka is the same for δIa

and δ̂Ia, as stated in Lemma 3.38). Figure 3.25 illustrates this using the indicatrix
shown in Figure 3.22. Figure 3.26 shows the convex hulls of the indicatrices shown
in Figure 3.24.
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Figure 3.25 The convex hull of the indicatrix body shown in Figure 3.22 is

sandwiched between
∣∣∣−→OA

∣∣∣ = Ka (the same as for the indicatrix itself) and∣∣∣−−→OB∗
∣∣∣ = k∗a which is greater than

∣∣∣−→OB
∣∣∣ = ka.

3.8.6 Length and Metric in Euclidean Spaces

Definition 3.48. A submetric function F (a,u) is called convex if for any a ∈ S

and u1,u2 ∈ U
n,

F (a,u1 + u2) ≤ F (a,u1)+ F (a,u2) .

Assume, excluding the trivial case, that u1,u2 are not both zero. If Ia is convex,
then the vector

F (a,u1)

F (a,u1)+ F (a,u2)
1 (a,u1)+

F (a,u2)

F (a,u1)+ F (a,u2)
1 (a,u2) ∈ Ia. (3.40)

This is equivalent to

F

(
a,

F (a,u1)

F (a,u1)+ F (a,u2)
1 (a,u1)+

F (a,u2)

F (a,u1)+ F (a,u2)
1 (a,u2)

)
≤ 1.

But the left-hand side expression equals

F (a,u1 + u2)

F (a,u1)+ F (a,u2)
,

whence we see that F (a,u) is convex. Conversely, if the expression above is ≤ 1,
then (3.40) holds. Since it holds for any u1,u2, it also holds for λu1, (1− λ) u2 for
0 ≤ λ ≤ 1. But, as λ changes from 0 to 1, the expression

F (a,λu1)

F (a,λu1)+ F (a,u2)
= λF (a,u1)

λF (a,λu1)+ (1− λ) F (a, (1− λ) u2)

runs through all values from 0 to 1 too. Since

1 (a,λu1) = 1 (a,u1) ,1 (a, (1− λ) u2) = 1 (a,u2) ,
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Figure 3.26 The convex hulls of the indicatrices shown in Figure 3.24. The
degree of flatness of codirectional radius-vectors remains unchanged.

we have

θ1 (a,u1)+ (1− θ) 1 (a,u2) ∈ Ia,

for any 0 ≤ θ ≤ 1. This means that Ia is convex, and we have proved

Theorem 3.49. F (a,u) is convex if and only if the body of the associated indicatrix
Ia at any point a is convex.

From this and Theorem 3.47 we immediately have

Corollary 3.50. For every submetric function F,
(i) the corresponding minimal submetric function F̂ is convex;
(ii) F ≡ F̂ if and only if F is convex.

We also have
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Corollary 3.51. If a submetric function F is convex, then {u} is a minimizing vector
chain for any line element (a,u) ∈ T.

This follows from F (a,u) = F̂ (a,u).
Of course, if F is convex, the following are also minimizing vector chains for

u ∈ U
n :
{

1
2 u, 1

2 u
}

,
{

1
3 u, 2

3 u
}

,
{

1
n u, . . . , 1

n u
}

, etc. Moreover, if F is not strictly

convex (i.e., the inequality in Definition 3.48 may be equality for some u1,u2),
there may very well be minimizing chains involving vectors that are not collinear
with u.

We have now arrived at one of the central theorems in the theory.

Theorem 3.52. The distance G (x,x+ us) is differentiable at s = 0+ for any
(x,u) ∈ T, and

dG (x,x+ us)

ds+
∣∣∣∣
s=0
= lim

s→0+
G (x,x+ us)

s
= F̂ (x,u) .

See the Appendix for a proof.
An important corollary to this theorem is as follows. Let f| [a,b] be a continu-

ously differentiable path. Consider

Gf (t) f (τ )

F̂ (f (t) ,f (τ )−f (t))
,t < τ .

By presenting it as

Gf (t)
(

f (t)+ f(τ )−f(t)
τ−t (τ − t)

)
F̂
(

f (t) , f(τ )−x(t)
τ−t f (τ − t)

) = Gf (t)
(
f (t)+ ḟ (θ) (τ − t)

)
F̂
(
f (t) , ḟ (θ) f (τ − t)

) ,

with t ≤ θ ≤ τ , we see that if τ−t→ 0+ on [a,b], the ratio tends to 1 (by Theorem
3.52 and because all functions involved are uniformly continuous on [a,b]). This
establishes

Corollary 3.53. For any smooth path f| [a,b] and [t,τ ] ⊂ [a,b],

lim
τ−t→0+

Gf (t) f (τ )

F̂ (f (t) ,f (τ )−f (t))
= 1.

We are now ready to formulate the standard differential-geometric computation
of the length of a continuously differentiable path by integration of the submetric
function applied to its points and tangents.

Theorem 3.54. For any continuously differentiable path f| [a,b],

Df| [a,b] =
∫ b

a
F̂
(
f (t) , ḟ (t)

)
dt.

Indeed, by definition,

Df| [a,b] = lim
δμ→0

∑
Gf (ti) f (ti+1)
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across all nets μ= {. . . ,ti,ti+1 . . .} partitioning [a,b]. This limit can be pre-
sented as

lim
δμ→0

∑
F̂ (f (ti) ,f (ti+1)− f (ti))

Gf (ti) f (ti+1)

F̂ (f (ti) ,f (ti+1)− f (ti))
.

By Corollary 3.53,

lim
δμ→0

Gf (ti) f (ti+1)

F̂ (f (ti) ,f (ti+1)− f (ti))
= 1.

Then

Df| [a,b] = lim
δμ→0

∑
F̂ (f (ti) ,f (ti+1)− f (ti))

= lim
δμ→0

∑
F̂

(
f (ti) ,

f (ti+1)− f (ti)

ti+1 − ti

)
(ti+1 − ti) .

But

lim
δμ→0

F̂

(
f (ti) ,

f (ti+1)− f (ti)

ti+1 − ti

)
= F̂

(
f (t) , ḟ (t)

)
and F̂

(
f (t) , ḟ (t)

)
is uniformly continuous on [a,b]. Hence

Df| [a,b] = lim
δμ→0

∑
F̂
(
f (ti) , ḟ (ti)

)
(ti+1 − ti) =

∫ b

a
F̂
(
f (t) , ḟ (t)

)
dt,

completing the proof.
Since

lim
τ−t→0+

∫ τ

t F̂
(
f (x) , ḟ (x)

)
dx

F̂
(

f (t) , f(τ )−f(t)
τ−t

)
(τ − t)

= 1,

we also have

Corollary 3.55. For any continuously differentiable path f| [a,b], and [t,τ ] ⊂
[a,b],

lim
τ−t→0+

Gf (t) f (τ )

Df| [t,τ ]
= 1.

3.8.7 Continuously Differentiable Paths and Intrinsic Metric G

Before proceeding, we need an auxiliary observation. The space (S,E) being open,
each point p in S can be enclosed in a compact Euclidean ball

B (p,r) = {x ∈ R
n : |x− p| ≤ r

} ⊆ S,

and we can associate with any p the ball B (p,r) with the supremal value of rsup (p)

(including∞). The observation is that, given any compact subset s of S,

inf
p∈s rsup (p) = min

p∈s rsup (p) > 0.
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A straight-line segment is defined as

s (x) = a+ ux, x ∈ [a,b] , (a,u) ∈ T.

If x and y are within any ball B (p,r), they can be connected by the straight-line
segment

s (x) = x+ y− x
b− a

(x− a) , x ∈ [a,b] .

Concatenations of straight-line segments form piecewise linear paths, about which
we have the following result.

Theorem 3.56. For every path h| [a,b] connecting a to b one can find a piecewise
linear path from a to b which is arbitrarily close to h| [a,b] pointwise and in its
length.

See the Appendix for a proof.
The straight-line segments are not indispensable in such an approximation.

In fact, we can use the following “corner-rounding” procedure to replace any
piecewise linear path with a continuously differentiable path. It is illustrated in
Figure 3.27.

Let two adjacent straight-line segments be presented as

p (t) =
{

a+ u1t if t ∈ [−a,0]
a+ u2t if t ∈ [0,b]

,

with a,b > 0. On a small interval [−s,s],

Dp| [−s,s] =
∫ 0

−s
F̂ (a+ u1t,u1) dt +

∫ s

0
F̂ (a+ u2t,u2) dt.

Figure 3.27 An illustration for the corner-rounding procedure. The piecewise
linear path is shown as a mapping of the interval [−a,b] into Euclidean plane
(gray area). At 0 the two segments meet, and around this point they are replaced
by the path shown by the dotted line of an arbitrarily close length.
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Corner-rounding consists of replacing p| [−s,s] with a continuously differen-
tiable path

q (t) = a+ u (t) t, t ∈ [−s,s] , (3.41)

such that

u (−s) = u1,u (s) = u2

u̇ (−s) = u̇ (s) = 0
(3.42)

and

lim
s→0+

Dx| [−s,s] = 0. (3.43)

The requirements (3.42) ensure that the modified path r| [−a,b] defined by

r (t) =
{

p (t) if t �∈ [−s,s]
q (t) if t ∈ [−s,s]

is continuously differentiable. The requirement (3.43) ensures that the difference

|Dp| [−a,b]− Dr| [−a,b]|

can be made arbitrarily small by choosing s sufficiently small. One example of
(3.41) is given by

u (t) = u1 + u2

2
+
( t

s

)3 − 3
( t

s

)
4

(u1 − u2) .

We can now reformulate Theorem 3.56 as follows.

Theorem 3.57. For every path h| [a,b] connecting a to b one can find a
continuously differentiable path from a to b which is arbitrarily close to h| [a,b]
pointwise and in its length.

As an immediate consequence, we have the following.

Theorem 3.58. If G in (S,D) is an intrinsic metric, then, for any a,b in S,

Gab = inf
∫ b

a
F̂
(
f (t) , ḟ (t)

)
dt,

where the infimum is taken across all continuously differentiable paths (or
piecewise continuously differentiable, if more convenient) connecting a to b.

Recall that G is defined as intrinsic if Gab is the infimum of the length of
all paths connecting a to b. This property is not derivable from the assumptions
E1 and E2 we made about the relationship between (S,D) and (S,E). It should
therefore be stipulated as an additional assumption or derived from other additional
assumptions, such as that (S,D) is a complete space with intermediate points.
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3.9 Dissimilarity Cumulation: Extensions and Applications

In this section we give a few examples of extensions of the dissimilarity
cumulation theory aimed at broadening the scope of its applicability.

3.9.1 Example 1: Observational Sorites “Paradox”

The issue of pairwise discrimination is the main application of Fechnerian scaling
and the original motivation for its development. As we know from Sections 3.1.4
and 3.1.5, it is a fundamental fact that two stimuli being compared must belong
to distinct observation areas, say, one being on the left and the other on the right
in the visual field, or one being first and the other second in time. Without this
one would not be able to speak, for example, of a stimulus with value x being
compared to a stimulus with the same value, because then we would simply have a
single stimulus. Similarly, without the distinct observation areas there would be no
operational meaning in distinguishing (x,y) from (y,x). Throughout this chapter
the observation areas in our notation were implicit: for example, we assumed that
the stimulus written first in (x,y) belongs to the first observation area, or that x
always denotes a stimulus in the first observation area. Here, however, we will
need to indicate observation areas explicitly: v(o) means a stimulus with value v in
observation area o. If we assume that the observation areas are fixed, we can denote
them 1 and 2, so that every value v may be part of the stimuli v(1) and v(2). Note
that with this notation any pair

{
x(1),y(2)

}
can be considered unordered, because{

y(2),x(1)
}

represents the same pair.
There is an apparent “paradox” related to pairwise comparisons that seems so

compelling that many describe it as a well-known empirical fact. Quoting from R.
Duncan Luce (1956):

It is certainly well known from psychophysics that if “preference” is taken to mean
which of two weights a person believes to be heavier after hefting them, and if
“adjacent” weights are properly chosen, say a gram difference in a total weight
of many grams, then a subject will be indifferent between any two “adjacent”
weights. If indifference were transitive, then he would be unable to detect any weight
differences, however great, which is patently false.

In other words, one can have a sequence of weights in which every two successive
weights subjectively match each other, but the first and the last one do not. In
philosophy, this seemingly paradoxical situation is referred to as observational
sorites. The term “sorites” means “heap” in Greek, and the paradox is traced back
to the Greek philosopher Eubulides (fourth century BCE). In fact, Eubulides dealt
with another form of the paradox, one in which stimuli are mapped into one of two
categories one at a time. This form of sorites requires a different analysis. In our
case, we have pairs of stimuli mapped into categories “match” or “do not match.”
The resolution of this paradox is based on two considerations:
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1. The relationship “x(1) matches y(2)” (or vice versa) is computed from an ensem-
ble of responses rather than observed as an individual response. Individual
responses to the same pair

{
x(1),y(2)

}
vary, and the pair can only be associated

with a probability of a response, say

ψ∗
(

x(1),y(2)
)
= Pr

[
x(1) is judged to be different from y(2)

]
. (3.44)

2. Stimuli v(1) and v(2) have the same value v but they are different. To repeat the
same stimulus, it should be presented in the same observation area in addition
to having the same value.

Applying these considerations to the above quotation from Luce, let

w1,w2,w3,w4, . . . ,wn

be the sequence of weights about which Luce (and many others) think as one
in which wk−1 and wk match (for k = 2, . . . ,n) but w1 and wn do not. Such
a sequence is called a (comparative) soritical sequence. Let us, however, assign
these weights to observation areas, as they should be. One can, for instance, place
one weight in an observer’s left hand and another weight in her right hand to
be hefted simultaneously, in which case w(1) = w(left) and w(2) = w(right). Or
the observer can heft one weight first and the other weight after a short interval,
in which case w(1) = w(first) and w(2) = w(second). Whichever the case, since
two adjacent weights in our sequence are to be compared, they should belong to
different observation areas:

w(1)
1 ,w(2)

2 ,w(1)
3 ,w(2)

4 , . . . ,w(2)
n .

The last and the first stimuli also should belong to different observation areas
if they are to be compared, so n must be an even number. Assuming that the
discrimination here is of the “greater–less” variety, we have a function

γ
(

x(1),y(2)
)
= Pr

[
x(1) is judged to be lighter than y(2)

]
,

and the match is determined by

γ
(

x(1),y(2)
)
= 1

2
.

So we have

γ
(

w(1)
1 ,w(2)

2

)
= γ

(
w(2)

2 ,w(1)
3

)
= γ

(
w(1)

3 ,w(2)
4

)
= · · · = γ

(
w(1)

n−1,w
(2)
n

)
= 1

2
.

It is not obvious now that we can have w1 < w2 < w3 < w4 < · · · < wn. In fact,
if we accept the usual model of a psychometric function γ , as in Figures 3.1 and
3.2, wk is uniquely determined as a match for wk−1, and, moreover:

w(1)
1 = w(1)

3 = · · · = w(1)
n−1,

w(2)
2 = w(2)

4 = · · · = w(2)
n .
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The sequence clearly is not soritical, because w(1)
1 and w(2)

n (for an even n)
necessarily match.

Generalizing, if one explicitly considers observation areas as part of stimuli’s
identity, the idea of soritical sequences becomes unfounded. If one further accepts
the principles stipulated in Section 3.1.4, enabling one to construct a canonical
space (S,D), then soritical sequences become impossible. Essentially we are
dealing with the problem of a reasonable definition of a match (PSE). We
outline below an axiomatic scheme that defines stimulus spaces in which soritical
sequences are impossible.

Not to be constrained to just two fixed observation areas, we consider a union of
stimulus spaces indexed by observation areas:

S =
⋃
α∈�

S∗ω.

We indicate the elements of S∗ω by the corresponding superscript, say x(ω). The
set S is endowed with a binary relation x(α)My(β) (read as “x in α is matched by y
in β”). The most basic property of M is

x(α)My(β) �⇒ α �= β. (3.45)

Definition 3.59. Given a space (S,M), we call a sequence x(ω1)
1 , . . . ,x(ωn)

n well-
matched if

ωi �= ωj �⇒ x(ωi)
i Mx

(ωj)

j (3.46)

for all i,j ∈ {1, . . . ,n}. The stimulus space (S,M) is well-matched if, for any
sequence α,β,γ ∈ � and any a(α) ∈ S, there is a well-matched sequence
a(α),b(β),c(γ ).

In particular, in a well-matched space, for any a(α) and any β ∈ �, one can find
a b(β) ∈ S such that a(α)Mb(β) and b(β)Ma(α).

Definition 3.60. Two stimuli a(ω),b(ω) in (S,M) are called equivalent, in
symbols a(ω)Eb(ω), if for any c(ι) ∈ S,

c(ι)Ma(ω) ⇐⇒ c(ι)Mb(ω). (3.47)

(S,M) is a regular space if, for any a(ω),b(ω),c(ω′) ∈ S with ω �= ω′,

a(ω)Mc(ω′) ∧ b(ω)Mc(ω′) �⇒ a(ω)Eb(ω). (3.48)

This is a generalization of the notion of psychological equality introduced in
Section 3.1.4.

Definition 3.61. Given a space (S,M), a sequence x(ω1)
1 , . . . ,x(ωn)

n with x(ωi)
i ∈ S

for i = 1, . . . ,n, is called soritical if

1. x(ωi)
i Mx(ωi+1)

i+1 for i = 1, . . . ,n− 1,
2. ω1 �= ωn,

3. but it is not true that x(ω1)
1 Mx(ωn)

n .

https://doi.org/10.1017/9781108902724.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.004


Fechnerian Scaling: Dissimilarity Cumulation Theory 143

Well-matchedness and regularity can be shown to be independent properties. Our
interest is in the spaces that are both regular and well-matched. It can be proved that

Theorem 3.62. In a regular well-matched space it is impossible to form a soritical
sequence.

3.9.2 Example 2: Thurstonian-Type Representations

Consider now the special case of the regular well-matched spaces, when the match-
ing (PSE) relation is defined through minima of a same–different discrimination
probability function ψ� : S�

1 × S�
2 → [0,1] in (3.44). The question we pose

is whether ψ� can be “explained” by a random-utility (or Thurstonian) model,
according to which each stimulus is mapped into a random variable in some
perceptual space, and the decision “same” or “different” is determined by the
values of these random variables for the stimuli x(1) and y(2).

Let us assume that both S�
1 × S�

2 are open connected regions of Rn, and let
us present the property of regular minimality (3.14) in the following special form:
there is a homeomorphism h : S�

1 → S�
2 (a continuous function with a continuous

h−1) such that {
arg miny ψ� (x,y) = h (x) ,

arg minx ψ� (x,y) = h−1 (y) .
(3.49)

Here we once again drop the superscripts in x(1) and y(2). The function
arg minai f (a1, . . . ,an) indicates the value of the argument ai at which f reaches
its minimum (at fixed values of the remaining arguments). Empirical studies show
that generally the minimum-level function ψ� (x,h (x)) varies with x:

ψ� (x,h (x)) �= const. (3.50)

Equivalently written,

ψ�
(

h−1 (y),y
)
�= const.

We call this property nonconstant self-dissimilarity of ψ�.
Rather than using regular minimality (3.49) to bring the stimulus space to a

canonical form, we will use the following construction. Consider a point (p,h (p))

in S�
1 ×S�

2 and a direction u in

U
n = {u = x− p : x ∈ R

n,x �= p
}

.

For (x,y) ∈ [−a,a]2, where a is a small positive number, the function

λ (x,y) = ψ� (p+ ux,h (p+ uy))

is called a patch of the function ψ� (x,y) at (p,h (p)). Note that the (p,h (p)) itself
corresponds to (x = 0,y = 0), and the graph of the PSE function (x,h (x)) in the
vicinity of x = p is mapped into the diagonal {(x,y) : x = y}. We have therefore
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Figure 3.28 A typical patch (left) and an atypical patch (right) on a small
square [−a,a]2.

the following “patch-wise” version of the regular minimality and nonconstant self-
dissimilarity: {

arg miny λ (x,y) = x,
arg minx λ (x,y) = y,

and

λ (x,x) �= const.

for (x,y) ∈ [−a,a]2. We will call a patch typical if λ (x,x) is nonconstant for all
sufficiently small positive a. Figure 3.28 illustrates the notion.

In a Thurstonian-type model (called so in honor of Leon Thurstone who
introduced such models in psychology in the 1920s), there is some internal space of
images P, and each stimulus x ∈ S�

1 (hence also any x representing x in a patch) is
mapped into a random variable A with values in P, and, similarly, y ∈ S�

2 (hence
also any y representing y in a patch) is mapped into a random variable B with
values in P. We will denote these random variables A (x) and B (y), and their sets of
possible values a and b, respectively. We will consider first the case when A (x) and
B (y) are stochastically independent. According to the model, there is a function

d : a× b→ {same, different} ,
determining which response will be given in a given presentation of the stimuli. In
complete generality, with no constraints imposed, such a model is not falsifiable.

Theorem 3.63. Any psychometric function ψ� : S�
1 × S�

2 → [0,1] can be
generated by a Thurstonian-type model with stochastically independent random
variables A (x) and B (y).

This is not, however, very interesting, because one normally would want to
deal only with sufficiently “well-behaved” Thurstonian-type models. The intuition
here is that, as x and y continuously change, the random variables A (x) and
B (y) change sufficiently smoothly. Consider, for example, Figure 3.29, depicting a
common way of modeling same–different comparisons. If the patch variables x and
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Figure 3.29 A schematic representation of a Thurstonian-type model. The
stimuli are represented by their patch variables x and y, and their perceptual
effects are points in an interval of reals. The response “same” is given if and
only if both random variables A (x) and B (y) fall within the area between the
two dashed lines.

y change by a small amount, one should expect that the shapes of the probability
density functions do not change in an abrupt way. To formalize this intuition,
denote, for any A-measurable set a in the perceptual space,

Ax (a) = Pr [A (x) ∈ a] ,

and analogously, for any B-measurable set b in the perceptual space,

By (b) = Pr
[
B (y) ∈ b

]
.

Definition 3.64. Given a patch λ (x,y), a Thurstonian-type model generating it is
said to be well-behaved if, for every A-measurable set a and B-measurable set b,
the left-hand and right-hand derivatives

dAx (a)
dx± ,

dBy (b)

dy±
exist, and are bounded across all measurable sets.

The latter means that there is a constant c such that∣∣∣∣dAx (a)
dx±

∣∣∣∣ < c,

∣∣∣∣dBy (b)

dy±
∣∣∣∣ < c

for all measurable a and b. The “textbook” distributions (such as normal, Weibull,
etc.) with parameters depending on x and y in a piecewise differentiable way will
always satisfy this definition.
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Definition 3.65. A patch λ (x,y) is called near-smooth if the left-hand and right-
hand derivatives

∂λ (x,y)

∂x±
exist and are continuous in y; and similarly

∂λ (x,y)

∂y±
exist and are continuous in x.

It turns out that, perhaps not surprisingly,

Theorem 3.66. A well-behaved Thurstonian representation can only generate
near-smooth patches.

A critical point in the development is created by the following fact.

Theorem 3.67. No near-smooth patch can be typical, i.e., satisfy simultaneously
the regular minimality and nonconstant self-dissimilarity properties.

This means that for Thurstonian-type modeling of discrimination probabil-
ities one cannot use well-behaved models, which in turn means the models
should be quite complex mathematically (or else one should reject either regular
minimality or nonconstant self-dissimilarity). With appropriate modifications of
the definitions, this conclusion has been extended to Thurstonian models with
stochastically interdependent (but selectively influenced) random variables, and
to Thurstonian models in which the mapping of perceptual effects into responses
is probabilistic too.

3.9.3 Example 3: Universality of Corrections for Violations
of the Triangle Inequality

In Section 3.6 we described the Floyd–Warshall algorithm for finite stimulus
spaces. It turns out that it can be extended to arbitrary sets, generally infinite and
not necessarily discrete. This is done by using the Axiom of Choice of the set
theory to index all triangles in a stimulus set by ordinals. An ordinal is a set α

such that each β ∈ α is a set, and β ⊆ α. Thus

∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}, . . . (3.51)

are (finite) ordinals. For any two ordinals α and β, one and only one of the
following is true: α = β, α ∈ β, or β ∈ α. The ordinals are ordered in the
following way: if α ∈ β, we write α < β; if either α ∈ β or α = β, we write
α ≤ β. For each ordinal α, α∪{α} is also an ordinal, called the successor of α and
denoted α + 1. There are two types of ordinals:

1. successor ordinals α, such that α is the successor of another ordinal;
2. limit ordinals, those that do not succeed other ordinals.
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Thus, we can identify ∅ in (3.51) with 0, and identify n ∪ {n} with n + 1 for
any ordinal identified with n. We have then that 0 is a limit ordinal, and each of
1,2,3, . . . is a successor ordinal. The ordinal

ω = {0,1,2,3, . . .}
is the smallest limit ordinal after 0, and the smallest infinite ordinal. The ordinals
ω + 1,ω + 2, etc. are again successor ordinals, ω + ω is a limit ordinal, and so
on. Theorems involving ordinals are often proved by transfinite induction: if a
certain property holds for 0, and it holds for any ordinal α whenever it holds for all
ordinals β < α, then this property holds for all ordinals. Similarly, definitions of a
property of ordinals can be given by means of transfinite recursion: if it is defined
for 0, and if, having defined it for all β < α, we can use our definition to define
it for α, then we define it for all ordinals. Thus, in Definition 3.11, the procedure
of correcting dissimilarity functions for violations of the triangle inequalities is
described by means of the usual mathematical induction. It can be replaced with
transfinite recursion as follows. We index the triangles xyz with pairwise distinct
elements by ordinals, so that for every ordinal α there is an ordinal β > α indexing
the same triangle. In other words, each triangle occurs an infinite number of times.

Definition 3.68. Define for each ordinal α a function M(α) : S × S → R as
follows:

(i) M(0) ≡ D;
(ii) for any successor ordinal α = β + 1, and for all a,b ∈ S,

M(α)ab =
{

min{M(β)ab,M(β)ax+M(β)xb} if axb is indexed by β,

M(β)ab otherwise;
(iii) if α is a limit ordinal, then, for all a,b ∈ S,

M(α)ab = inf
β<α

M(β)ab.

It turns out that all results presented in Section 3.6 have their transfinite analogous
in this generalization. In particular, “eventually” (i.e., at some ordinal α) the
procedure is terminated with M(α) coinciding with the quasimetric dissimilarity
G, as defined in (3.18).

3.9.4 Example 4: Data Analysis

Multidimensional scaling (MDS) and clustering are among the widely used tools
of data analysis and data visualization. The departure point of MDS is a matrix{

dij : i,j = 1,2, . . . ,n
}

whose entries are values of a dissimilarity function on the set of objects S =
{1,2, . . . ,n}. This requires that, for all i �= j,

dii = 0 and dij > 0.
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If this is not the case, but regular minimality is satisfied, the matrix can be brought
first to a canonical form, so that dii is the smallest value both in the ith row and in
the ith column. Then one can replace dij with

δ
(1)
ij = dij − dii,

or with

δ
(2)
ij = dji − dii.

The choice between the two corresponds to the choice between psychometric
increments of the first and second kind. We know that this choice is immaterial in
Fechnerian scaling, but in MDS it is immaterial only if the matrix is symmetrical:

dij = dji.

If this is not the case, one usually uses in MDS some symmetrization procedure:
for example, one can replace each dij with

δij = dij + dji − dii − djj =
{

δ
(1)
ij + δ

(1)
ji

δ
(2)
ij + δ

(2)
ji

,

proposed by Roger Shepard in the 1950s for so-called confusion matrices (we
will refer to it as Shepard symmetrization, SS). Following these or similar
modifications, the matrix δij can be viewed as a symmetric dissimilarity function.

If in addition the entries of the matrix satisfy the triangle inequality, the matrix
represents a true metric on the set S = {1,2, . . . ,n}. In such a case one can apply
a procedure of metric MDS (mMDS), that consists in embedding the n elements
of S in an R

k so that the distances 	ij between the points are as close as possible
to the corresponding δij. The quality of approximation is usually estimated by a
measure called stress, one variant of which is⎛⎝∑i,j

(
	ij − δij

)2∑
i,j δ

2
ij

⎞⎠1/2

.

Since one of the goals of MDS is to help one to visualize the data, the distance in
R

k is usually chosen to be Euclidean, and k chosen as small as possible (preferably
2 or 3).

However, in most applications δij does not satisfy the triangle inequality, because
of which MDS is used in its nonmetric version (nmMDS): here one seeks an
embedding into a low-dimensional Rk in which the Euclidean distances match
as closely as possible not δij but some monotonically increasing transformation of
δij. The stress measure then has the form⎛⎝∑i,j

(
	ij − g

(
δij
))2∑

i,j g
(
δ2

ij

)
⎞⎠1/2

,

minimized across all possible monotone functions g.
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Figure 3.30 A sample of faces presented two at a time with the question
whether they represent the same emotion or different emotions.

Dissimilarity cumulation offers a different approach to the same problem, one
that does not require any transformations. Once the original matrix dij is brought

to a canonical form and replaced with δ
(1)
ij or δ

(2)
ij , one computes from either

of them the Fechnerian distances
←→
G ij. Since these are true distances, one can

apply to them the metric version of MDS to seek a low-dimensional Euclidean
embedding. For illustration, consider an experiment reported in Dzhafarov and
Paramei (2010). Images of faces shown in Figure 3.30 were presented two at a
time, and the observer was asked to determine whether they exhibited the same
emotion or different emotions. The data dij were estimates of the probabilities
of the response “different emotions.” Figure 3.31 shows the value of stress as a
function of k in the embedding space R

k (so-called scree plots). The comparison
of the two procedures

(DC-mMDS) metric MDS applied to the results of dissimilarity cumulation, and
(SS-nmMDS) nonmetric MDS applied to Shepard-symmetrized data

shows that the former seems to better identify the minimal dimensionality of the
embedding space. In DC-mMDS, an acceptably small value of stress is achieved
at k = 2 or 3, and stress drops very slowly afterwards, whereas in SS-nmMDS,
the deceleration of the scree plot is less pronounced. Having chosen, say, k = 3,
the results of both procedures can be further subjected to cluster analysis, which
groups the points in R

3 into a designated number of clusters (the K-means
procedure) or constructs their dendrogram (hierarchical cluster analysis). We do
not discuss these procedure, as our goal is to merely point out that Fechnerian
scaling allows one to base all of them on true distances, without resorting to

https://doi.org/10.1017/9781108902724.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.004


150 e. n. dzhafarov and h. colonius

Figure 3.31 Scree plots of mMDS following Fechnerian scaling (left) and
nmMDS following Shepard’s symmetrization. The optimal number of dimen-
sions is usually chosen as one at which the scree plot visibly decelerates
(exhibits a “knee”).

an unconstrained search of a monotone transformation. The example in the next
section describes an alternative to the dissimilarity cumulation approach that
results in a cluster analysis representation.

There are two public-domain programs that perform MDS and clustering
of the results of dissimilarity cumulation. One of them is the Matlab-based
software package FSCAMDS (stands for Fechnerian Scaling – Clustering – and –
Multidimensional Scaling), the other is the R-language package fechner (see
the next section for references). These data-analytic programs have a variety of
options, of which we will mention the following.

It is sometimes the case, especially if the data are probabilities, or if they
are sampled from a path-connected space, that large values of dissimilarity are
unreliable, and the cumulation is to be restricted only to smaller values. The
software packages allow one to set a value above which a dissimilarity Dab is
replaced with infinity, removing thereby the link ab from the cumulation process
(because the latter seeks the smallest cumulated value).

It is sometimes the case that regular minimality in the original data set is
violated. The software packages allow one to choose between the following
options:

1. to “doctor” the data by designating the pairs of PSE and, following the canonical
transformation, to replace negative values of dij − dii with zero;
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2. to perform Fechnerian scaling separately for the two observation areas, obtain-
ing thereby

←→
G1 and

←→
G2 distances, not equal to each other.

The justifiability of the second option depends on one’s position with respect to
the empirical status of the regular minimality law. As mentioned in Section 3.1.5,
regular minimality in this chapter is not taken as an empirical claim. Rather, it has
been part of the definition of the functions we have dealt with in our mathematical
theory.

3.9.5 Example 5: Ultrametric Fechnerian Scaling

There is a more direct way to obtain a representation of dissimilarities by
hierarchical clusters (dendrogram or rooted tree). The basic idea consists in
replacing “dissimilarity cumulation” by a “dissimilarity maximization” procedure.

Given a chain X = x1 . . . xn and a binary (real-valued) function F, the notation
	FX stands for

max
i=1,...,n−1

Fxixi+1,

again with the obvious convention that the quantity is zero if n is 1 or 0.
A dissimilarity function M on a finite set S is called a quasi-ultrametric if it
satisfies the ultrametric inequality

max{Mab,Mbc} ≥ Mac (3.52)

for all a,b,c ∈ S.
The ultrametric inequality is rather restrictive: it is equivalent to postulating that,

for any triple of elements, two dissimilarities have to be equal and not smaller than
the third.

Definition 3.69. Given a dissimilarity D on a finite set S, the quasi-ultrametric
G∞ induced by D is defined as

G∞ab = min
X∈C

	DaXb, (3.53)

for all a,b ∈ S.

Thus, the value of G∞ab is obtained by taking the minimum, across all chains X
from a to b, of the maximum dissimilarity value of the chain. That G∞ is a quasi-
ultrametric is easy to prove. A reasonable symmetrization procedure, yielding a
metric, is

G∞
∗
ab = max{G∞ab,G∞ba}, (3.54)

called the overall Fechnerian ultrametric on S.
The ultrametric inequality is often violated in empirical data. However, in

analogy to recursive corrections for violations of the triangle inequality, it can
be shown that a corresponding series of recursive corrections on the dissimilarity
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values for violations of the ultrametric inequality would yield the induced quasi-
ultrametric distances. This is in contrast to applying the different standard hier-
archical cluster algorithms (like single-link, combined-link, etc.) to one and the
same data set: when violations exist, these algorithms will typically result in rather
different ultrametrics.

One can consider procedures intermediate between cumulation and maximiza-
tion of dissimilarities by defining, for any dissimilarity function D, the length of a
chain X = x1, . . . xn by

DX = ((Dx1x2)
k + · · · + (Dxn−1xn)

k)1/k. (3.55)

For k → ∞ this would result in the ultrametric approach outlined above.
For finite k, the procedure is generalizable to arbitrary dissimilarity spaces. This
follows from the fact that the use of (3.55) is equivalent to the use of the
original dissimilarity cumulation procedure in which one first redefines D into Dk

(which yields another dissimilarity function), and then redefines the quasimetric G
induced by Dk into G1/k (which yields another quasimetric).

3.10 Related Literature

Fechner’s original theory is presented in the Elemente der Psychophysik
(Fechner, 1860), but important additions and clarifications can be found in a
later book (Fechner, 1877), and in a paper written shortly before Fechner’s
death (Fechner, 1887). A detailed modern account of Fechner’s original theory,
especially the ways he derived his logarithmic psychophysical law, can be found
in Dzhafarov and Colonius (2011). For related interpretations of Fechner’s theory,
see Creelman (1967), Falmagne (1971), Krantz (1971), and Pfanzagl (1962). A dif-
ferent interpretation of Fechner’s theory, one that finds it lacking in mathematical
coherence and with which we disagree, is presented in Luce and Edwards (1958)
and Luce and Galanter (1963).

The theory of dissimilarity cumulation is presented in Dzhafarov and Colonius
(2007) and elaborated in Dzhafarov (2008a) (see also Dzhafarov 2009). The
geometric aspects of this theory are close to those of the distance and geodesics
theory developed in Blumenthal (1953), Blumenthal and Menger (1970), and
Busemann (2005). To better understand the topology and uniformity aspects of
dissimilarity cumulation, one can consult, for example, Hocking and Young (1961)
and Kelly (1955). A proof of Theorem 3.10 can be found in Dzhafarov and
Colonius (2007). A proof of Theorem 3.26 is presented in Dzhafarov (2008a).

For stimuli spaces defined on regions of Rn, the mathematical theory essentially
becomes a generalized form of Finsler geometry, as presented in Dzhafarov
(2008b). A more detailed presentation, however, and one closer to this chapter,
is found in earlier work (Dzhafarov & Colonius, 1999, 2001). This part of
the theory has its precursors in Helmholtz (1891) and Schrödinger (1920/1970,
1926/1970), both of whom, in different ways, used Fechner’s cumulation of
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infinitesimal differences to construct a Riemannian geometry (a special case of
Finsler geometry) of color space.

In this chapter we have entirely omitted the important topic of invariance of
length and distance under homeomorphic (for general path-connected spaces) and
diffeomorphic (for Rn-based spaces) transformations of space and reparameteri-
zations of paths. These topics are discussed in Dzhafarov (2008b) and Dzhafarov
and Colonius (2001). We have also ignored the difference between paths and arcs,
discussed in detail in Dzhafarov (2008b).

Dissimilarity cumulation in discrete stimulus spaces is described in Dzhafarov
(2010a) and Dzhafarov and Colonius (2006a, 2006b). The generalization of the
Floyd–Warshall algorithm to arbitrary spaces (Section 3.9.3) is described in
D. D. Dzhafarov and Dzhafarov (2011).

The notion of separate observation area in stimulus comparisons, as well as
the regular minimality law, have been initially formulated in Dzhafarov (2002)
and elaborated in Kujala and Dzhafarov (2008, 2009a). The application of the
regularity and well-matchedness principles to the comparative sorites “paradox”
is presented in Dzhafarov and Dzhafarov (2010), with a proof of Theorem 3.62,
and in Dzhafarov and Perry (2014).

The application of these principles, together with nonconstant self-dissimilarity
to Thurstonian-type modeling, is presented in Dzhafarov (2003a, 2003b), where
one can find proofs of the theorems in Section 3.9.2. This part of the theory has
been generalized and greatly extended in Kujala and Dzhafarov (2008, 2009a,
2009b).

For multidimensional scaling see, for example, Borg and Groenen (1997). Clus-
tering procedures, hierarchical and K-means, are described in standard textbooks
of multivariate statistics (e.g., Everitt et al., 2011). The ultrametric Fechnerian
scaling approach is presented in Colonius and Dzhafarov (2012).

The link and instructions to the R language software package fechner mentioned
in Section 3.9.4 are available in Ünlü, Kiefer, and Dzhafarov (2009). The link and
instructions to the software package FSCAMDS are available in Dzhafarov (2010).

Appendix: Select Proofs
Theorem 3.30. F (x,u) is well-defined for any (x,u) ∈ T ∪ {(x,0) : x ∈ S}. It is
positive for u �= 0, continuous in (x,u), and Euler homogeneous in u.

Proof. We first show that F (x,u) is continuous in (x,u) . By Assumptions E2, for
any ε > 0 there is a δ = δ (x,u,ε) > 0 such that

max
{
|a− x| , |b− x| ,

∣∣∣b− a− u
∣∣∣} < δ (x,u,ε) �⇒

∣∣∣∣ Dab
|b− a| − F (x,u)

∣∣∣∣ < ε.

Consider a sequence (xn,un)→ (x,u) , and let (an,bn) , an �= bn, be any sequence
satisfying

max
{
|an−xn| , |bn−xn| ,

∣∣∣bn − an − un

∣∣∣} < min

{
δ

(
xn,un,

1

n

)
,

1

2
δ (x,u,ε)

}
.
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Clearly

Danbn

|bn − an| − F (xn,un)→ 0.

At the same time, for all sufficiently large n,

max {|xn−x| , |un − u|} < 1

2
δ (x,u,ε) ,

implying

max
{
|an−x| , |bn−x| ,

∣∣∣bn − an − u
∣∣∣} < δ (x,u,ε) .

But then ∣∣∣∣ Danbn

|bn − an| − F (x,u)

∣∣∣∣ < ε,

and, as ε can be chosen arbitrarily small, we have

Danbn

|bn − an| − F (x,u)→ 0.

The convergence

F (xn,un)→ F (x,u)

follows, establishing the continuity of F (x,u). Now, for u �= 0, denoting u = |u|u,

F (x,u) = lim
s→0+

Dx [x+us]

s
= |u| lim

|u|s→0+
Dx [x+u |u| s]

|u| s = |u|F (x,u) .

It immediately follows that F (x,u) exists, that it is positive and continuous,
and that

F (x,u) = |u|F (x,u) .

So, for k > 0,

F (x,ku) = k |u|F (x,u) = kF (x,u) .

Finally, since any convergence of (xn,un)→ (x,0) with un �= 0 can be presented
as (xn, |un| un)→ (x,0) with |un| → 0, we have

F (xn,un) = |un|F (xn,un)→ 0,

because within a small ball around x and on a compact set of unit vectors the
function F (xn,un) does not exceed some finite value. Thus F (xn,un) extends to
F (x,0) = 0 by continuity. �

Lemma 3.42. For any (a,u) ∈ T, the maximal production of u in Ia can be
presented as a convex combination of n (not necessarily distinct) radius-vectors
v1, . . . ,vn ∈ δIa.
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Proof. With no loss of generality, let u ∈ δIa, and let κ stand for κ (a,u). By
Corollary 3.36, for some v1, . . . ,vn+1 ∈ Ia, the system of n+ 1 linear equations{

κu = λ1v1 + · · · + λn+1vn+1

λ1 + · · · + λn+1 = 1

has a solution λ1, . . . ,λn+1 ∈ [0,1]. Assume that λ1, . . . ,λn+1 are all positive (if
some of them are zero, the theorem’s statement holds). If the determinant of the
matrix of coefficients for this system were nonzero, then, for any ε, the modified
system {

[κ + ε] u = λ1v1 + · · · + λn+1vn+1

λ1 + · · · + λn+1 = 1

would also have a solution λ′1, . . . ,λ
′
n+1, and choosing ε positive and sufficiently

small, this solution (by continuity) would also satisfy λ′1 > 0, . . . ,λ′n+1 > 0.
But this would mean that [κ + ε] u belongs to the convex hull of Ia, which is
impossible since κu is the maximal production of u. Hence

det

[
v1 · · · vn+1

1 · · · 1

]
= 0,

where we treat v1, . . . ,vn+1 as n-element columns. But this means that, for some
γ1, . . . ,γn+1, not all zero,

γ1

[
v1

1

]
+ · · · + γn+1

[
vn+1

1

]
= 0,

which indicates the affine dependence of v1, . . . ,vn+1. It follows from Lemma
3.35 that u can be presented as a convex combination of some m < n + 1 (not
necessarily distinct) nonzero vectors in v1, . . . ,vn+1 ∈ Ia. Let them be the first m
vectors in the list, v1, . . . ,vm. We now have the system{

κu = λ1v1 + · · · + λmvm

λ1 + · · · + λm = 1

with a solution λ1 > 0, . . . ,λm > 0 (zero values here would simply decrease m).
Rewriting it as {

κu = λ1c1ṽ1 + · · · + λmcmṽm

λ1 + · · · + λm = 1
,

where ṽi ∈ δIa is codirectional with vi (i = 1, . . . ,m), it is clear by Lemma 3.34
that for κ to have a maximal possible value, all ci should have maximal possible
values. In Ia these values are c1 = · · · = cm = 1, that is, all vectors v1, . . . ,vm are
radius-vectors. This completes the proof. �

Theorem 3.46. The minimal submetric function F̂ (a,u) has all the properties of a
submetric function: it is positive for u �= 0, Euler homogeneous, and continuous.
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Proof. We only prove the continuity, as the other properties follow trivially from
the definition of F̂ and the analogous properties of F. Consider a sequence of line
elements

(ak,uk)→ (a,u) .

Let (v1, . . . ,vn) be a minimizing chain for (a,u) (or a sequence of n zero vectors
if u = 0). For every k, consider the sequence v1 + (uk − u) ,v2, . . . ,vn, which
differs from the minimizing chain in the first element only. Its elements sum to uk,
because of which

F (ak,v1 + (uk − u))+ F (ak,v2)+ · · · + F (ak,vn) ≥ F̂ (ak,uk) .

At the same time, by continuity of F,

F (ak,v1 + (uk − u))+ F (ak,v2)+ · · · + F (ak,vn)

→ F (ak,v1)+ F (ak,v2)+ · · · + F (ak,vn) = F̂ (a,u) ,

whence it follows that

lim sup
k→∞

F̂ (ak,uk) ≤ F̂ (a,u) .

To prove that at the same time

lim inf
k→∞

F̂ (ak,uk) ≥ F̂ (a,u) ,

let (v1k, . . . ,vnk) be a minimizing chain for (ak,uk), for every k, and consider the
sequence v1k + (u− uk) ,v2k, . . . ,vnk, which differs from the minimizing chain in
the first element only. Its elements sum to u, because of which

F (a,v1k + (u− uk))+ F (a,v2k)+ · · · + F (a,vnk) ≥ F̂ (a,u) .

We will arrive at the desired inequality for lim inf if we show that

[F (a,v1k + (u− uk))+ F (a,v2k)+ · · · + F (a,vnk)]− F̂ (ak,uk)→ 0.

The left-hand side difference here is

[F (a,v1k + (u− uk))+ F (a,v2k)+ · · · + F (a,vnk)]

− [F (ak,v1k)+ F (ak,v2k)+ · · · + F (ak,vnk)]

= [F (a,v1k + (u− uk))− F (ak,v1k)]+ [F (a,v2k)− F (ak,v2k)]

+ · · · + [F (a,vnk)− F (ak,vnk)] ,

where

F (a,v1k + (u− uk))− F (ak,v1k)

= (|v1k + (u− uk)| − |v1k|) F
(
a,v1k + (u− uk)

)
+ |v1k|

[
F
(
a,v1k + (u− uk)

)− F (ak,v1k)
]
,

and

F (a,vik)− F (ak,vik) = |vik| [F (a,vik)− F (ak,vik)] ,i = 2, . . . ,n.
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Since uk → u, ak → a, and F is uniformly continuous and bounded on the
compact set of unit vectors, we have

|v1k + (u− uk)| − |v1k| → 0,
F
(
a,v1k + (u− uk)

)− F (ak,v1k)→ 0,
(|v1k + (u− uk)| − |v1k|) F

(
a,v1k + (u− uk)

)→ 0,
F (a,vik)− F (ak,vik)→ 0.

To see that

F (a,v1k + (u− uk))− F (ak,v1k)→ 0,
F (a,vik)− F (ak,vik)→ 0, i = 2, . . . ,n,

it remains to show that |vik| is bounded for i = 2, . . . ,n. But this follows from the
fact that

F (ak,v1k)+ · · · + F (ak,vnk) ≤ F (ak,uk)→ F (a,u) ,

because of which

F (ak,vik) = |vik|F (ak,vik) ≤ F (a,u)+ C,

where C is some positive constant. �

Theorem 3.52. The distance G (x,x+ us) is differentiable at s = 0+ for any
(x,u) ∈ T, and

dG (x,x+ us)

ds+
∣∣∣∣
s=0
= lim

s→0+
G (x,x+ us)

s
= F̂ (x,u) .

Proof. We prove first that

lim sup
s→0+

G (x,x+ us)

sF̂ (x,u)
≤ 1.

Let (u1, . . . ,un) be a minimizing vector chain for (x,u), so that

F̂ (x,u) = F (x,u1)+ · · · + F (x,un) .

Consider the chain of points

x [x+ u1s] [x+ (u1 + u2) s] . . . [x+ (u1 + · · · + un) s] ,

in which the last point coincides with x + us. We will generically refer to a point
in this chain as

x+ (u1 + · · · + ui) s, i = 0,1, . . . ,n,

with the obvious convention for i = 0. For all sufficiently small s, all these points
belong to a compact ball in S centered at x. Then, by Theorem 3.31 and the
continuity of F, we have, as s→ 0+,
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D [x+ (u1 + · · · + ui) s]
[
x+ (u1 + · · · + ui+1) s

]
sF (x,ui+1)

= D [x+ (u1 + · · · + ui) s]
[
x+ (u1 + · · · + ui+1) s

]
F (x+ (u1 + · · · + ui) s,ui+1s)

× sF (x+ (u1 + · · · + ui) s,ui+1)

sF (x,ui+1)
→ 1,

whence

Dx [x+ u1s] . . . [x+ us]

sF̂ (x,u)

=
∑n−1

i=0 D [x+ (u1 + · · · + ui) s]
[
x+ (u1 + · · · + ui+1) s

]
s
∑n

i=1 F (x,ui)
→ 1.

But then

lim sup
s→0+

G (x,x+ us)

sF̂ (x,u)
= lim sup

s→0+
G (x,x+ us)

Dx [x+ u1s] . . . [x+ us]
≤ 1,

by the definition of G. We prove next that

lim inf
s→0+

G (x,x+ us)

sF̂ (x,u)
≥ 1.

Consider a sequence of chains

x [x+ v1ksk] [x+ (v1k + v2k) sk] . . .
[
x+ (v1k + · · · + vmkk

)
sk
]
, k = 1,2, . . . ,

such that

sk → 0+ ,

v1k + · · · + vmkk = u, k = 1,2, . . . ,

and

Dx [x+ v1ksk] . . . [x+ usk]

G (x,x+ us)
→ 1.

Again, it is easy to see that for all k sufficiently large (i.e., sk sufficiently small)
all these chains fall within a compact ball in S centered at x. Then, for i =
0,1, . . . ,mk − 1, by Theorem 3.31 and the continuity of F, as k→∞,

D [x+ (v1k + · · · + vik) sk]
[
x+ (v1k + · · · + vi+1,k

)
sk
]

skF
(
x,vi+1,k

)
= D [x+ (v1k + · · · + vik) sk]

[
x+ (v1k + · · · + vi+1,k

)
sk
]

F
(
x+ (v1k + · · · + vik) sk,vi+1,ksk

)
× skF

(
x+ (v1k + · · · + vik) sk,vi+1,k

)
skF

(
x,vi+1,k

) → 1
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uniformly across all choices of
(
v1k + · · · + vmkk

)
. It follows that

Dx [x+ v1ksk] . . . [x+ usk]

sk
∑mk

i=1 F (x,vik)

=
∑mk−1

i=0 D [x+ (v1k + · · · + vik) sk]
[
x+ (v1k + · · · + vi+1,k

)
sk
]

sk
∑mk

i=1 F (x,vik)
→ 1.

But then

lim inf
s→0+

G (x,x+ us)

sF̂ (x,u)
= lim inf

k→∞
Dx [x+ v1ksk] . . . [x+ usk]

skF̂ (x,u)

= lim inf
k→∞

∑mk
i=1 F (x,vik)

F̂ (x,u)
≥ 1,

by the definition of F̂ in terms of minimizing chains. This establishes

lim
s→0+

G (x,x+ us)

sF̂ (x,u)
= 1,

and the theorem is proved. �

Theorem 3.56. For every path h| [a,b] connecting a to b one can find a piecewise
linear path from a to b which is arbitrarily close to h| [a,b] pointwise and in its
length.

Proof. Let

μn =
{
a = tn0, . . . ,tni,tn,i+1, . . . ,tn,kn+1 = b

}
be a sequence of nets with δμn → 0. Since the set h ([a,b]) is compact, n can be
chosen sufficiently large so that any two successive h (α = tni) and h

(
β = tn,i+1

)
can be connected by a straight-line segment

sni (t) = h (α)+ h (β)− h (α)

β − α
(t − α) .

Then n can further be increased to ensure

1− ε <
Gh (α) h (β)

F̂ (h (α) ,h (β)−h (α))
< 1+ ε

and

1− ε <
Dsni| [α,β]

F̂ (h (α) ,h (β)−h (α))
< 1+ ε.

The latter follows from

Dsni| [α,β] =
∫ β

α

F̂
(
h (x) ,ḣ (x)

)
dx = F̂

(
h (ξ) ,

h (β)−h (α)

β − α

)
(β − α),
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for some α ≤ ξ ≤ β. Combining the two double-inequalities, for any δ > 0 and
all sufficiently large n,

1− δ <
Gh (tni) h

(
tn,i+1

)
Dsni|

[
tni,tn,i+1

] < 1+ δ,

whence

1− δ <

∑kn
i=0 Gh (tni) h

(
tn,i+1

)
Dsn| [a,b]

< 1+ δ,

where sn| [a,b] is the piecewise linear path concatenating together sni|
[
tni,tn,i+1

]
,

i = 0, . . . ,kn. By the definition of Dh| [a,b], we have then

lim
n→∞Dsn| [a,b] = Dh| [a,b] .

Since it is obvious that, as n → ∞, sn| [a,b] tends to h| [a,b] pointwise, the
theorem is proved. �
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4.1 Early Models of Human Learning

Many early learning theories were seeded by the seminal work of
Thorndike. In his famous “puzzle box” experiments, Thorndike placed an animal
inside a box with a door that could be opened via a latch accessible to the animal.
When the animal learned to operate the latch correctly, the door opened, and
it was free to consume a reward placed near the box. Thorndike measured the
amount of time it took animals to solve such puzzle boxes and found that the
escape time tended to decrease with each trial – that is, the animals learned. From
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these observations, Thorndike (1927) postulated the law of effect, which states that
behavior is driven by associations between stimuli and responses, and that these
associations are strengthened when a response is followed by a satisfying effect
and weakened when followed by a discomforting effect. With this, the field of
associative learning was born. Already apparent in this early work are its clear
connections to modern-day reinforcement learning (RL) theory.

Russian physiologist Pavlov (1927) pioneered one still-modern approach to
studying associative learning called classical conditioning. His famous experi-
ments studying how the salivation response of dogs could be conditioned to occur
to a previously neutral stimulus gave the field a standardized paradigm and a new
nomenclature (e.g., unconditioned stimulus [US], unconditioned response [UR],
conditioned stimulus [CS], and conditioned response [CR]) that drove research
in the field forward. Later, Skinner (1938) pioneered many more of the standard
methods in use today for the investigation of associative learning. He created
operant conditioning chambers – popularly known as the Skinner box – that were
equipped with both a manipulandum (e.g., a lever) and a tool to record lever pulls
so that cumulative operant behavior (e.g., pulling the lever) could be measured
over an experimental session. This approach came to be known as operant or
instrumental conditioning.

Watson and Guthrie followed many of the basic tenets of associative learning
formulated by Thorndike, but each introduced novel refinements (e.g., Guthrie,
1935; Watson, 1913). Unlike Thorndike, neither thought that reinforcement (i.e.,
neither a satisfying nor a discomforting effect) was necessary for associative
learning. Rather, they thought that mere temporal contiguity between stimulus and
response was sufficient. Later in this chapter, we will see how this notion is related
to a form of two-factor synaptic plasticity proposed by Hebb (1949).

An important theoretical alternative to the dominant theories of instrumental
conditioning came from Tolman (1948), who advocated that animals learned
“cognitive maps” and used these maps to make flexible and goal-directed actions.
This view gained relatively little traction in Tolman’s lifetime, but is renewed today
by modern model-based RL accounts of learning.

The first attempts to formalize theories of learning focused on building math-
ematical equations that could fit learning curves from a variety of different con-
ditioning experiments (Gulliksen, 1934; Hull, 1943; Thurstone, 1919). The most
systematic attempts were by Hull (1943), who embraced Thorndike’s fundamental
ideas on associative learning – although he spoke of habits instead of stimulus–
response associations. More importantly, he expressed his views in the form of
explicitly stated assumptions. The resulting equations clearly expressed what Hull
believed were driving factors of an animal’s behavior (e.g., habit strength, drive
reduction, etc.).

In the 1950s, mathematical models of learning began to focus less on curve
fitting and more on the psychological processes that mediate the learning. This
change in focus began with two Psychological Review articles on mathematical
learning theory that appeared in quick succession – Estes’ (1950) introduction
of stimulus-sampling theory and Bush and Mosteller’s (1951) description of the

https://doi.org/10.1017/9781108902724.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.005


Mathematical Models of Human Learning 165

linear-operator model. Both of these contributions were hugely influential, partly
because they were among the first process models in psychology and, as such,
they spurred others to develop their own process models. The excitement created
by these efforts played a key role in the birth of modern mathematical psychology.
But both articles were also influential in their own right. In particular, the linear-
operator model inspired the Rescorla–Wagner model (Rescorla & Wagner, 1972),
which is now ubiquitous in the learning literature, and more than a half century
later, stimulus-sampling theory continues to motivate new research (e.g., Fanselow
et al., 2014; Soto & Wasserman, 2010).

Mathematical learning theory played a huge role in the field of mathematical
psychology during its first formal decade of existence. Stimulus-sampling theory
and the linear-operator model were both elaborated, and a large number of Markov
chain models were proposed that assumed learning was a process of moving
between discrete states of knowledge. During the 1960s, interest in cognitive
processes saw a shift to models of concept learning, which today would be called
rule-based learning, and a new focus on the cognitive components of learning,
including attention, storage, and retrieval (e.g., Greeno & Bjork, 1973). Much
of this work is reviewed in the classic text by Atkinson, Bower, and Crothers
(1965).

Today, mathematical models of learning are developed and tested in a wide
range of different fields, including, for example, machine learning (e.g., Alpaydin,
2020; Mohri, Rostamizadeh, & Talwalkar, 2018) and learning in simple species
such as Drosophila (e.g., Kennedy, 2019) and zebrafish (e.g., Ninkovic & Bally-
Cuif, 2006). A review of all this work is outside the scope of any one chapter.
Instead, our focus will be on mathematical models of human learning. In some
cases, we will consider developments in machine learning and research with
nonhuman animals, but in all cases the focus will be on how such work has
contributed to our understanding of human learning.

4.2 Neuroscience Breakthroughs

Mathematical modeling of human learning began to languish in the late
1960s, partly because of the cognitive revolution that turned interest to other
phenomena, and partly because it became apparent that the best existing models
were valid for only a narrow and limited set of learning-related phenomena.
Furthermore, models that succeeded in different domains often bore little similarity
to each other. This landscape remained largely unchanged for the next several
decades, until two breakthroughs in neuroscience offered a clear path forward.
The first was the discovery of long-term potentiation and long-term depression,
which served as promising models of learning at the cellular level. The second
breakthrough was the discovery that humans have multiple learning and memory
systems that for the most part are functionally and anatomically distinct, and that
each control behavior under different experimental conditions. As a result, it is
likely that no single mathematical model can describe all human learning. Instead,
qualitatively different models are needed for different learning systems.
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4.2.1 Discovery of LTP and LTD

In his classic 1949 book entitled Organization of Behavior: A Neuropsychological
Theory, Donald Hebb proposed a neural mechanism that he thought might mediate
learning and memory. Specifically, he postulated:

Let us assume then that the persistence or repetition of a reverberatory activity (or ‘trace’)
tends to induce lasting cellular changes that add to its stability. The assumption can be
precisely stated as follows: When an axon of cell A is near enough to excite a cell B and
repeatedly and persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.
(Hebb, 1949, p. 62)

Hebb’s hypothesis is now widely known as Hebbian learning.
Several decades later, this exact type of neural plasticity was discovered

at synapses in the hippocampus (Bliss & Lømo, 1973). Specifically, brief,
high-frequency presynaptic activation was found to cause a persistent (at least
1 hour) increase in the postsynaptic response – a phenomenon known
as long-term potentiation (LTP). Then, 9 years later, the opposite phenomenon
of long-term depression (LTD) was discovered, in which prolonged, but weak,
presynaptic activation causes a persistent (at least 1 hour) decrease in the
postsynaptic response (Ito, Sakurai, & Tongroach, 1982). LTP and LTD have
now been observed and closely studied in many different brain regions and in
many different cell types. Furthermore, they are known to occur under a plethora
of diverse conditions, and to be driven by numerous intracellular signalling cascade
mechanisms. Although a review of the current literature on LTP and LTD is well
beyond the scope of this chapter, a noncontroversial conclusion of this literature is
that it is now widely accepted that LTP and LTD form the neural basis of learning
and memory (e.g., Martin, Grimwood, & Morris, 2000; Nicoll, 2017).

4.2.2 Discovery of Multiple Learning and Memory Systems

Early mathematical models of learning assumed that all human learning occurs in
the same way, which suggests that all learning should depend on the same neural
network and be consolidated into the same memory system. This assumption
was inconsistent with the growing body of evidence that began to accumulate
in the 1960s showing that the best models seemed valid for only a narrow
range of experimental tasks, and this led many mathematical psychologists to
turn away from the study of learning. A resurgence in mathematical models of
learning was ushered in by the discovery that humans have multiple learning and
memory systems that for the most part are functionally and anatomically distinct,
that evolved at different times and for different purposes, that are ideally suited
to learning different types of information, and that thrive under very different
environmental conditions.

The first step in this process was to realize that humans have multiple memory
systems (e.g., Eichenbaum & Cohen, 2001; Poldrack et al., 2001; Squire, 2004;

https://doi.org/10.1017/9781108902724.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.005


Mathematical Models of Human Learning 167

Tulving & Craik, 2000). After overwhelming evidence in support of multiple
memory systems was documented, it was an easy inference to conclude that
humans must therefore also have multiple learning systems. After all, learning is
the acquisition of a skill or some form of knowledge, and memory is the storage
and/or expression of what was learned. So learning and memory are closely related.
Mathematical models of learning focus on how the memory traces are established
and consolidated, whereas models of memory focus on the nature of those traces
and how they are accessed to produce memory-dependent behaviors (e.g., see
Chapter 5 in this volume). For this reason, an obvious hypothesis is that there are
as many learning systems as there are memory systems (e.g., Ashby & Maddox,
2005; Ashby & O’Brien, 2005).

As soon as the multiple-systems hypothesis was formulated, work began to
identify the networks that mediate learning in each system and to study the
properties of the various systems (for a review, see e.g., Ashby & Valentin, 2017).
This body of research made it clear that no single model was likely to account
for all human learning. For example, basal-ganglia-mediated procedural learning
is incremental, whereas prefrontal-cortex-mediated rule learning is mostly all-or-
none (e.g., J. D. Smith & Ell, 2015).

4.3 Modern Approaches to Modeling Human Learning

The birth of mathematical psychology coincided with the first attempts
to build process models of learning. The reinterest in learning that occurred with
the neuroscience breakthroughs described in the previous section coincided with
the development of new types of learning models, and also with the first ever
implementational-level models – that is, models that attempt to describe the neural
circuits that implement the algorithms described by process models. This section
briefly introduces these more modern approaches to building mathematical models
of learning, and then the rest of the chapter examines these trends in more detail.

4.3.1 Descriptive- and Process-Level Approaches

Current descriptive and process models of human learning are dominated by two
different, but converging, approaches – one rooted in the statistics literature and
one rooted in the machine-learning and computer-science literatures (as described,
e.g., by Alpaydin, 2020; Sutton & Barto, 1998). Both attempt to build models that
optimize some aspect of learning – the former by following principles of Bayesian
statistics, and the latter by assuming that human learning depends on some popular
machine-learning algorithms.

Normative models have a long history in psychology. For example, ideal
observer models have played an important role in psychophysics and signal
detection theory since the 1950s (e.g., Green & Swets, 1966). Similarly, during
the 1980s and 1990s, human classification performance was carefully compared
to the performance of optimal classifiers (e.g., Ashby & Alfonso-Reese, 1995;
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Ashby & Maddox, 1998). Comparing human performance to the performance of
an optimal device is a valuable step in the evolution of model building in any
area of psychology. Humans are highly skilled in many behaviors, so an optimal
model will often provide a reasonably good fit to human data. Better fits are usually
possible by adding certain suboptimal components to the model, such as various
types of noise. Carefully documenting which types of added suboptimalities
allow the model to provide the best fit provides invaluable information about the
underlying processes that mediate the behavior. In the case of human learning, the
Bayesian models are objectively optimal, in the sense that they assume the learner
chooses the response most likely to be correct, and that these choice probabilities
are updated trial-by-trial according to Bayes’ theorem. In this class of models,
learning is typically equivalent to Bayesian updating.

An alternative approach, which is perhaps even more popular and looks very
different on the surface, is to build models that assume human learning follows
algorithms that were developed in the computer-science, machine-learning, and
artificial-intelligence literatures. In this approach, the models are typically some
form of neural network, and learning is a process of adjusting the connection
strengths or weights between units. These algorithms fall into one of three general
classes: unsupervised, RL, and supervised (e.g., Alpaydin, 2020). Unsupervised
learning algorithms, which include Hebbian learning as a prominent special case,
modify all learning-related weights using the same algorithm and without regard to
feedback. RL algorithms also apply the same learning algorithm to every weight,
but the algorithm applied depends on the type of feedback that was delivered (e.g.,
reward vs. non reward). Finally, supervised learning algorithms attempt to compute
the unique error of the output unit associated with every modifiable weight in
the network, and they then tune that weight according to this unique error. The
most prominent examples, such as backpropagation and the delta rule, attempt to
implement a gradient descent optimization procedure. Unsupervised learning and
RL are global learning rules because they apply the same rule to every learning-
related weight, whereas supervised learning is a local learning rule because it uses
a different error to modify every weight.

Early models imported from computer science assumed that learning followed
gradient descent trajectories, as implemented, for example, by the delta rule and
backpropagation. More recently, a large subset of these models apply one of
the many RL algorithms that are described in the influential text of Sutton and
Barto (1998). Included in this list are temporal-difference learning, actor–critic
architectures, Q learning, and SARSA (State–Action–Reward–State–Action).

The models in this class are not objectively optimal, at least not in the sense
of the Bayesian models, which try to maximize response accuracy. Even so, the
learning algorithms they assume were all developed in attempts to maximize the
learning abilities of some artificial system. Therefore, if not objectively optimal,
many of them are among the most efficacious learning algorithms ever invented.
In this sense, models in this class are similar to the normative models that are
constructed using Bayesian statistics.
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4.3.2 Implementational-Level Approaches

Implementational-level models require extensive knowledge about brain func-
tion and behavior. Despite this high standard, they date back at least to early
work by Marr (e.g., Marr, 1969) and Grossberg (e.g., Grossberg, 1972). One
remarkable aspect of these early models is that they predate the discovery of the
forms of synaptic plasticity that they postulated. Despite this early and seminal
work, until recently, there were relatively few implementational-level models in
psychology.

During the past two decades, the field of neuroscience has exploded, and the
number of implementational-level models in psychology has grown commensu-
rately. As these models became more popular, new methods were developed to
build and test them, and collectively this new field is known as computational
cognitive neuroscience (Ashby, 2018; O’Reilly et al., 2012). The goal here is to
first identify the neural network that mediates the behavior and then build a model
that mimics neural activity in this network. In the case of learning, the model
should display learning-related synaptic plasticity in accord with what is observed
in the biological system being modeled. Such models are generally more computa-
tionally intractable than their process counterparts, and therefore require extensive
computer simulation to fit and test. Even so, despite this cost, implementational
models have many advantages over more traditional process models (e.g., see
Ashby, 2018). For example, whereas process models can generally be tested only
against response time and accuracy data, computational cognitive neuroscience
models can be tested against virtually any dependent measure between behavior at
the highest level and single-unit recordings at the lowest level, including, for exam-
ple, response times, accuracies, single-neuron recordings, fMRI blood oxygen-
level dependent (BOLD) responses, and EEG recordings. Another advantage is
that if two computational cognitive neuroscience models are built and validated
that each account for different types of behaviors, then because each should be
faithful to the underlying neuroanatomy, it should be possible to link the two in a
plug-and-play fashion to create a new composite model that is consistent with all
the behavioral and neuroscience data that are consistent with either model alone
(as done, e.g., by Cantwell et al., 2017).

Implementational models attempt to model activity in the actual neural circuits
that mediate the behavior under study. And rather than borrow learning algorithms
from Bayesian statistics or machine learning, they directly model the types
of synaptic plasticity thought to occur during LTP and LTD. Thus, whereas
implementational models directly model the structures and processes thought to
mediate learning, Bayesian models and models based on machine-learning notions
of RL are examples of modeling by analogy – in the sense that they are based on
algorithms developed for other purposes (statistics or machine learning). Modeling
by analogy has a long history in psychology (‘the brain is like a telephone
switchboard’; ‘the brain is like a computer’), and comparing human behavior to
other devices can be a useful exercise because it can expose uniquely human
characteristics. Implementational models should be the ultimate goal, but they
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require far more knowledge to build, and for many behavioral phenomena, this
high threshold has not yet been reached.

Whereas it was always obvious that ‘the brain is like a telephone switchboard’
is an analogy, as the analogies became more sophisticated, they also became
more difficult to recognize. This is especially true with models based on machine-
learning RL algorithms. After all, RL has been a central focus of research within
psychology for more than a century. Furthermore, it was quickly noted that
synaptic plasticity in the striatum has properties that are similar to several popular
machine-learning RL algorithms (e.g., Doya, 2000; Houk, Adams, & Barto, 1995).
Because of this similarity, learning models based on machine-learning notions of
RL can be especially useful. Ultimately, though, we should expect that synaptic
plasticity, and therefore learning, will have some uniquely human properties that
require their own uniquely human models to capture completely.

4.4 Descriptive and Process Models of Human Learning

4.4.1 Reinforcement Learning

In computer science, RL is a general approach to building decision-making agents
that learn to maximize rewards. The standard approach (Sutton & Barto, 1998) is
to model the environment as a Markov decision process and to assume that the
agent moves through a set of discrete states S = {s1,s2, . . . ,sn} by choosing among
a set of possible actions A = {a1,a2, . . . ,am}. The decision rule that determines
the probability of each possible action, given a particular state, is called the action
policy π .

A state can be almost anything. The one requirement is that since we assume
a Markov decision process, the states, as defined by the model, must satisfy the
Markov property, in the sense that knowledge of the current state alone should be
enough to compute the predicted probability of reward and this probability should
not depend on the path the agent took to reach the current state. So, for example,
a state could be the position of a rat in a maze. If the rat is in an arm that is not
baited with reward, then the probability of imminent reward is low, whereas if the
animal is in a baited arm, then the probability of imminent reward is high.

The action policy π determines the probability that the state will change from
si to sk, for any i and k. Since each state has some true probability of imminent or
future reward that is determined by the environment, the actions selected by the
agent therefore also determine current and future reward probabilities. Thus, the
agent must learn to take actions that cause transitions to the most rewarding states.
This requires that the agent learns the value of each state. Value is formalized in the
state-value function Vπ (s), which equals the expected value of all rewards – both
current and future – that the agent can expect if the state is s and future actions
are selected according to policy π .1 Let rt denote the value of a reward received

1 Sutton and Barto (1998) define the value function as the expected value of all future rewards.
Therefore, in their formulation, the current reward does not contribute to the value function. This
definition implies that the value to an animal of reaching a baited goal box when exploring a maze is
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t time units in the future, and let R denote the total value of all current and future
rewards. Then RL models assume

R =
∞∑

t=0

γ trt, (4.1)

where 0 < γ ≤ 1 is a temporal discounting parameter that serves to reduce the
value of rewards the more distant they occur in the future. The value function is
then defined as

Vπ (s) = E[R|π,s]

= E

[ ∞∑
t=0

γ trt|π,s

]
. (4.2)

Different methods use the estimated value function in different ways to select
the best actions, and a complete description of all these methods is beyond the
scope of this chapter. However, one major dimension on which different methods
are classified is whether or not the agent directly estimates the state transition
probabilities (i.e., the probability that the state will transition from si to sk when
action aj is selected). Methods that estimate these transition probabilities are called
model-based, whereas methods that do not are called model-free.

Model-Free RL Approaches
The iterative sample mean. As we have seen, the goal of many RL models
and algorithms is to estimate a state-value function. For example, the Rescorla–
Wagner model estimates the expected reward value of a cue in a classical
conditioning paradigm, temporal-difference learning estimates the expected value
of all future rewards given some fixed action policy, and Q learning estimates a
similar value for different state–action pairs. The standard statistical approach to
parameter estimation assumes a sample of fixed size. RL algorithms, however,
apply to an agent operating in real time through an environment that presents
successive opportunities to receive rewards. Therefore, the agent must continually
update value estimates when moving through the environment. For this reason,
parameter estimation must be iterative (e.g., as in dynamic programming). This is
a straightforward and well-known statistical problem. For example, a population
mean can be estimated iteratively as follows.

Theorem 4.1. Consider a set of successive samples X1,X2, . . . ,Xn that are all
drawn from some population. Then the sample mean equals

Xn = 1

n

n∑
i=1

Xi = Xn−1 + 1

n
(Xn − Xn−1), (4.3)

where X0 = 0. Furthermore, note that Xn is the current sample and Xn−1 is the
best guess of Xn after n − 1 samples have been collected (i.e., in the sense of the

zero. For this reason, we chose to define the value function as the expected value of all current and
future rewards.
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law of large numbers). As a result, Xn − Xn−1 is the prediction error – call it PE.
So Equation (4.3) is equivalent to

Xn = Xn−1 + 1

n
PE. (4.4)

Proof. See, for example, Ashby (2018). �

In other words, the standard, batch estimate of the population mean, Xn, can be
efficiently computed in real time by updating the old estimate by an amount that
is proportional to the prediction error. If the newest sample is larger than expected
(i.e., if Xn > Xn−1) then the mean estimate is increased, and if the newest sample
is smaller than expected (i.e., if Xn < Xn−1) then the mean estimate is decreased.

As we will see, the most popular RL algorithms are all based on Equation
(4.4). They differ mainly in how they define Xn, although in all RL algorithms
the goal is to estimate some reward-related value. In such cases, the prediction
error in Equation (4.4) becomes a reward prediction error (RPE), which in general
is defined as obtained reward minus expected reward.

Because the iterative estimate of the mean is mathematically equivalent to the
standard, batch estimate, it possesses the same statistical properties. Therefore,
note that this iterative estimate is the uniformly minimum variance unbiased
estimator of the population mean if the Xi are independent and identically
distributed (i.i.d.) samples from some population, and the sample size n is known
ahead of time. In many real-world environments, of course, the samples are not
i.i.d., and if the sampling is done in real time, the final sample size is often
unknown. The standard RL solution to these problems is to replace the constant
1/n with some constant α that can be adjusted or set in a way that depends on the
environment. For example, a standard approach is to set α in a way that causes
temporal discounting, so that recent samples are weighted more heavily than early
samples.2 In fact, this form of temporal discounting occurs whenever α > 1/n.
Therefore, when applied to nonstationary data, the iterative sample mean is

Xn = Xn−1 + α(Xn − Xn−1) = Xn−1 + αPE. (4.5)

The parameter α is commonly referred to as the learning rate because increases in
α cause Xn to change more quickly.

Another advantage of the iterative sample mean, relative to the batch estimate,
is that it is easier to incorporate prior beliefs into the estimate of the population
mean. For example, consider a simple coin-tossing experiment in which the goal
is to estimate the probability of a heads [i.e., where we assign a value of 1 to
each heads and 0 to each tails, and then use Equations (4.5) to estimate the true
probability of a heads]. A natural prior belief might be that the coin is fair, which
is easily incorporated into Equation (4.5) by setting X0 = 0.5.

2 Note that we have now introduced two different temporal discounting parameters. The parameter γ

discounts future rewards and the parameter α discounts distant samples.
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Temporal-difference learning. Temporal-difference learning estimates the
state-value function under the assumption that the action policy is fixed. A popular
paradigm that satisfies this constraint is classical conditioning, in which some cue
may or may not be followed some time later by a reward or perhaps by multiple
rewards. The goal of the agent in this case, is to learn that the cue predicts a future
reward. Note that there is no action to produce here and so in this special case,
we can omit the subscript π in our notation. And although temporal-difference
learning applications to classical conditioning are free to define the states in any
way that satisfies the Markov property, the most common definition, by far, is to
define the states as time points that begin with the cue and end with the last possible
reward.

Therefore, define the state st = t, where t equals the number of time steps since
cue presentation, and let rn(t) equal the value of the reward received at time t on
trial n. Then the total value of all future rewards on trial n at time t equals

Rn(t) =
T∑

i=t

γ i−trn(i), (4.6)

where T equals the time of the last possible reward on each trial. As in other RL
algorithms, the goal of temporal-difference learning is to estimate the state-value
function – that is, the expected value of Rn(t):

Vn(t) = E[Rn(t)]. (4.7)

Now, because Vn(t) is a population mean, our best estimate is the sample mean of
the Ri(t) across previous trials:

V̂n(t) = 1

n

n∑
j=1

Rj(t). (4.8)

This sample mean can be estimated efficiently via term-by-term substitution into
the iterative sample mean defined in Equation (4.5) to produce

V̂n(t) = V̂n−1(t)+ α[Rn(t)− V̂n−1(t)]. (4.9)

The problem with this estimate is that Rn(t) includes the immediate reward rn(t),
plus all future rewards that will be obtained on trial n – that is

Rn(t) = rn(t)+
T∑

i=t+1

γ i−trn(i)

= rn(t)+ γ

T∑
i=t+1

γ i−(t+1)rn(i) (4.10)

and unfortunately, all reward-related terms on the right except rn(t) are unknow-
able since they occur in the future. Temporal-difference learning estimates the
unknowable part – that is, the expression defined by the summation sign – by using
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the iterative sample mean of all rewards that occurred after time t on previous trials
[i.e., via V̂n−1(t + 1)]. This results in the following estimate:

R̂n(t) = rn(t)+ γ V̂n−1(t + 1). (4.11)

Substituting this estimate into Equation (4.9) for Rn(t) produces the final form of
temporal-difference learning:

V̂n(t) = V̂n−1(t)+ α[rn(t)+ γ V̂n−1(t + 1)− V̂n−1(t)]. (4.12)

Note that, despite initial appearances, the expression in square brackets equals the
prediction error (or more specifically, the RPE), just as in Equation (4.5). The first
term in square brackets is the immediately obtained reward and the second term is
the best guess of the (discounted) value of all future rewards expected on trial n.
The sum of the first two terms is therefore the agent’s estimate of the total obtained
rewards on trial n given that we are t time units into the trial. The last term is the
predicted value of this quantity that was made before the trial began. Therefore,
the sum of the first two terms represents obtained reward, whereas the last term
represents predicted reward.

As an application of temporal-difference learning, consider a simple classical-
conditioning task in which the same CS (e.g., a light or tone) is followed T time
steps later by a reward. On the first presentation of the CS, the subsequent reward
is unexpected, but as the CS–reward pairing is repeated, the agent will eventually
learn that the CS is paired with future reward. The standard temporal-difference
learning application to this task assumes that initially, all states have zero value
[i.e., V0(t) = 0, for all t] because the CS has never before been paired with reward.
On trial 1, the CS is presented and then the agent unexpectedly receives a reward
at time T . Suppose the value of this reward is r. Then temporal-difference learning
predicts that

V̂1(T) = V̂0(T)+ α[r1(T)+ γ V̂0(T + 1)− V̂0(T)]. (4.13)

Note that, by our assumptions about initial conditions, all V0 terms equal 0.
However, r1(T) = r because the agent receives a reward on each trial at time T .
Therefore

V̂1(T) = αr. (4.14)

Now consider the value that temporal-difference learning assigns to the state that
is one time unit earlier than reward delivery on trial 2:

V̂2(T − 1) = V̂1(T − 1)+ α[r2(T − 1)+ γ V̂1(T)− V̂1(T − 1)]. (4.15)

Note that V̂1(T − 1) = 0 because at time T − 1 of trial 1 the agent has not yet
received any rewards. Furthermore, r2(T − 1) = 0 because rewards are delivered
at time T , not at time T − 1. However, as we saw, V̂1(T) = αr. Therefore

V̂2(T − 1) = α2γ r. (4.16)
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In other words, the RPE that occurred at time T on trial 1 has propagated back
on trial 2 to the immediately preceding state (i.e., T − 1). Similarly, on trial 3,
the positive value associated with state T − 1 will propagate back to state T − 2.
In this way, the value associated with earlier and earlier states will increase. This
propagation will continue until it eventually reaches the time of cue presentation –
that is, until Vn(0) > 0, for some value of n. It will not propagate to earlier times
than this, however, so long as cue presentation times are unpredictable.

Temporal-difference learning is popular, in part because it shares some proper-
ties with the firing properties of dopamine (DA) neurons. In particular, in this same
classical-conditioning experiment, DA neurons will eventually begin to fire to any
cue that predicts a future reward. We will consider temporal-difference learning as
a model of DA neuron firing in more detail in a later section.

Q-learning. Q-learning is a model-free RL algorithm to learn actions that
maximize current and future rewards. It is similar to temporal-difference learning,
but it learns the value of state–action pairs, instead of states independently of
the selected action. The resulting value function, denoted by Qn(s,a) (i.e., “Q”
for quality), gives the value of taking action a from state s on trial n, under the
assumption that all actions after a are optimal with respect to the estimated action-
value function – that is, that all future actions are selected so as to maximize
total reward. The policy that always chooses the action that maximizes reward
is called the greedy policy. So Q learning updates the value function under the
assumption that a greedy policy will be used, even when the agent follows some
nongreedy policy. Algorithms that estimate the value function using a policy that
is different from the one that is currently being followed are called off-policy
algorithms.

Let st denote the state at time t and at denote the action taken at time t. Let
Rn(at|st) denote the total current and future rewards obtained on trial n if the state
is st, action at is immediately taken, and all subsequent actions are greedy. Then
term-by-term substitution into the iterative sample mean produces

Q̂n(st,at) = Q̂n−1(st,at)+ α[Rn(at|st)− Q̂n−1(st,at)]. (4.17)

As with temporal-difference learning, Rn is unknowable since it depends on future
rewards. So Q learning estimates Rn via

R̂n(at|st) = rn(t)+ γ max
a

Q̂n−1(st+1,a); (4.18)

that is, by adding the immediate reward to the discounted (iterative sample) mean
of the best rewards produced by any sequence of past actions that started from the
state that results from taking action at from state st. Combining these two equations
produces the final form of Q learning:

Q̂n(st,at) = Q̂n−1(st,at)+ α
{

rn(t)+ γ [max
a

Q̂n−1(st+1,a)]− Q̂n−1(st,at)
}

.

(4.19)
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A common assumption is that all initial Q values equal 0 [i.e., Q0(s,a) = 0, for all
s and a]. Once these initial values are all set, Equation (4.19) is used to update the
Q estimates beginning on trial 1.

The Q values are often used to define action policies. For example, as we already
saw, the greedy action policy is to always choose the action with the maximum
Q value. Although, at first glance, this policy sounds appealing, note that it fails
to explore the set of all possible actions. Unless the optimal policy is discovered
early on by chance, then the greedy policy is unlikely to ever discover this optimal
policy. Therefore, many action policies trade off exploration and exploitation. One
way to do this is via an ε-greedy algorithm that selects an action randomly with
probability ε and uses a greedy policy with probability 1 − ε. Another popular
choice is to compute the action selection probabilities by passing the Q values
through a softmax function:

P(ai|s) = eQ(s,ai)∑
j eQ(s,aj)

. (4.20)

Note that since this policy depends on the Q values, updating or changing the
estimates of Q changes the policy.

To make the discussion concrete, consider an agent in a maze in which one
or more arms are baited with reward. In this case, we can consider the states to
be locations within the maze, and the actions to be movements that carry the agent
from one location to another. Before any learning has occurred, if state si is one step
before a baited arm, then the action that moves the animal one step forward (i.e.,
towards the reward) will be rewarded and Q(si,aforward) will gain positive value.

Model-Based RL Approaches
Model-based RL approaches build a model of the environment by estimating the
value function [e.g., Vπ (s) or Q(s,a)], and the state-transition function T(sk|aj,si),
which specifies the probability that taking action aj will transition the agent from
state si to state sk. Once accurate estimates of these functions are available, action
selection is a matter of solving directly for the action sequence that maximizes
reward.

Daw, Niv, and Dayan (2005) proposed a dual-controller model that assumes
the brain includes both model-free and model-based RL algorithms, with behavior
determined by the system that is most confident in its predictions (i.e., has the
lowest uncertainty). The model includes a striatal-mediated, model-free cache
system that implements habit learning and a prefrontal-cortex-mediated model-
based tree-search system that implements goal-directed learning. Both systems use
a form of Q learning. Traditional Q learning [i.e., Equation (4.19)] does not track
uncertainty, so Daw, Niv, and Dayan (2005) proposed a Bayesian version (i.e.,
based on Dearden, Friedman, & Russell, 1998), in which both systems attempt
to estimate a distribution of Q values across trials. If we assume that rewards are
Bernoulli distributed, then a convenient prior distribution of Q values is the beta
distribution (because the beta distribution is a conjugate prior for the Bernoulli
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distribution). This prior is then updated through Bayes’ rule to obtain model-free
and model-based posterior distributions of Q values.

The model-based system consists of a Bayesian tree-search algorithm in which
the agent uses experience in its environment to estimate the distribution of reward
values R(aj|si) and state-transition probabilities T(sk|aj,si). The model assumes
a beta distribution for the prior on rewards and a Dirichlet distribution for the
prior on the state transitions. These distributions are then updated according to
Bayes’ rule by counting up the obtained rewards and state transitions. Since both
systems estimate distributions of Q values, the variances from these two estimates
are compared and the system with the lowest uncertainty controls the response of
the agent.

The model successfully accounts for a variety of instrumental conditioning
phenomena, including, for example, the effects of reward devaluation (Dickinson
& Balleine, 2002). In these experiments, an animal is trained to lever press
(for example) and at some point in training, the reward is devalued prior to the
session, typically either by providing free access to food or administering a drug
that causes ingestion of the reward to induce illness. Early in training, reward
devaluation reduces the frequency of the instrumental behavior, but after extensive
overtraining, the behavior becomes immune to the devaluation. Furthermore, the
degree to which the animal is sensitive to devaluation is proportional to the
complexity of the task and the temporal proximity of the action to the reward.
The dual-controller model accounts for these phenomena by proposing that the
model-based tree-search system controls responding early in training, but that
control is passed to the model-free cache system after overtraining. Furthermore,
the amount of training required for the transfer of control is assumed to increase
with the complexity of the task.

Early in training, new information immediately influences action values at all
states in the tree-search system. In contrast, the cache system takes significantly
longer to propagate new information to other states. Additionally, in more complex
tasks, the tree-search system takes control because it is more data efficient – in
more complex tasks there is less data available for each state–action pair. Finally,
the tree-search system performs better for actions more proximate to reward
due to its superior data efficiency, whereas the cache system performs better for
actions more distal to reward due to its lower sensitivity to computational noise.
Since the tree-search system has a model of the task and access to the long-term
consequences of its actions at each time step, it can adapt its policy in response
to reward devaluation. Alternatively, the cache system estimates the value of each
action directly, and reward devaluation is insufficient to reverse the cumulative
effects of the many positive rewards that were received earlier in training.

4.4.2 Bayesian Modeling of Human Learning Under Uncertainty

The RL models described in the previous section are arguably more popular than
Bayesian models of learning, at least partly because they are computationally
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simpler to implement. Traditional Bayesian approaches require numerical evalua-
tion of complex multiple integrals. This section reviews the hierarchical Gaussian
filter (Mathys et al., 2011, 2014), which attempts to overcome this limitation by
deriving computationally simple, interpretable, and efficient update equations –
similar to those used in RL models – except from normative Bayesian principles.
Conveniently, these update equations also enable the estimation of agent-specific
parameters that allow each individual to be modeled as subjectively optimal with
respect to minimizing the agent’s surprise (i.e., free energy) when unexpected
events occur.3 Furthermore, the form of these update equations is similar to a
version of the iterative sample mean [Equation (4.5)] in which the learning rate,
α, is modulated by various forms of uncertainty. Accordingly, the benefits of
the hierarchical Gaussian filter extend past the Bayesian framework by providing
a normative foundation for the sequential updating equations of heuristic RL
algorithms.

As a context for describing the model, consider an (A, not A) categorization task
in which an agent is asked to report whether or not a presented stimulus belongs
to category A (e.g., by responding YES or NO). Suppose the stimuli in category
A vary on one stimulus dimension, call it w, and are normally distributed on this
dimension with mean μA and variance π−1

A ; that is

w ∼ N (μA, π−1
A ), (4.21)

where πA is the precision of the category A samples (not to be confused with
action policies as defined in the RL literature). Suppose that on “not A” trials,
the stimuli are uniformly distributed on dimension w over all physically realizable
values. Therefore, the optimal decision strategy is to respond YES if the presented
stimulus is close to μA on dimension w and NO if it is far away. Consider the
simplest possible case in which the agent knows πA but not μA. Then the optimal
strategy requires the agent to estimate μA.

An agent trying to estimate μA could do so by computing the iterative sample
mean [Equation (4.5)]. Instead, however, consider a Bayesian approach. Suppose
the agent assumes that the prior distribution of μA is

μA ∼ N (μ0, π−1
0 ), (4.22)

where π0 is the precision of the agent’s knowledge of the task. Suppose further that
on trial n the stimulus has value wn on the relevant dimension and the feedback
informs the agent that this stimulus belonged to category A. Then a Bayesian
approach indicates that the posterior likelihood that the true orientation is μA is:

p(μA|wn) = p(wn|μA)p(μA)∫
p(wn|μ)p(μ)dμ

∼ N
(
μμA|wn

, π−1
μA|wn

)
. (4.23)

3 See Ashby (2019), Friston et al. (2007), or Penny (2012) for a description of free-energy
minimization in the context of model selection, and Friston (2010) for a description of free-energy
minimization as a general principle of brain function.
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Equation (4.23) illustrates the traditional problem of Bayesian approaches – the
integral in the denominator is often computationally intractable. As a model of
human learning, Equation (4.23) would be more attractive if it included a plausible
hypothesis about how humans could approximate such integrals sequentially in
real time. As a start, it turns out that the posterior mean and precision can be
rewritten (e.g., see Kruschke, 2011 for a derivation) as

μμA|wn
= μμA|wn−1

+ πA

π0 + πA
(wn − μμA|wn−1

) (4.24)

and

πμA|wn
= π0 + πA. (4.25)

Note that Equation (4.24) is in the same form as the iterative sample mean
[Equation (4.5)], except that α is replaced with the ratio of the precision of the
category A samples, πA, to the sum of the category A precision plus the agent’s
precision about the task, π0. Therefore, if category A precision is low (relative to
π0), then the learning rate is small. This makes sense intuitively – if we trust our
model of the environment (i.e., π0 is large), then we should be conservative about
updating that model on the basis of noisy observations. On the other hand, if we
have poor knowledge about the environment (i.e., π0 is small) and there is not
much variation in the samples (i.e., πA is large), then we should use those samples
to rapidly update our model of the environment.

This Bayesian formulation is beneficial for ensuring that prediction errors are
precision-weighted according to their informativeness in a stable environment.
However, this formulation will perform poorly in a nonstationary environment
because the learning rate will not adapt to the environmental changes. For
example, suppose the experimenter periodically changes the category A mean.
The hierarchical Gaussian filter provides an efficient method for adapting to such
changes in the environment by iteratively adjusting its estimate of μA using a
variational Bayesian procedure (Mathys et al., 2011, 2014).

The hierarchical Gaussian filter estimates μA in a hierarchical fashion. Let x1(n)

denote the current estimate of μA on trial n [i.e., so on trial n, μ̂A = x1(n)]. Then
the agent’s model of category A on trial n is that

wn ∼ N [x1(n), π−1
A ], (4.26)

since again, we are considering the simple case where πA is known. This is
the lowest level of the hierarchy. The next level up (i.e., level 2) estimates
the distribution of the mean, x1(n). Specifically, the hierarchical Gaussian filter
assumes that

x1(n) ∼ N {x1(n− 1), exp[κ1x2(n− 1)+ ω1]} , (4.27)

where κ1 and ω1 are constants, with κ1 > 0, and x2(n) is a new random variable.
The exponential function was chosen as a mathematically convenient form via
which to estimate the variance of x1(n) (see, e.g., Mathys et al., 2014). Because
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κ1 > 0, note that the variance of x1(n) increases with x2(n). The standard deviation
of x1(n) is often referred to as volatility (Behrens et al., 2007; Bland & Schaefer,
2012; Nassar et al., 2010; Payzan-LeNestour & Bossaerts, 2011; R. C. Wilson,
Nassar, & Gold, 2013), so x2(n) increases with volatility.

Level 3 of the hierarchy estimates the variance of x1(n) by assuming that

x2(n) ∼ N {x2(n− 1), exp[κ2x3(n− 1)+ ω2]} , (4.28)

where x3(n) is a new random variable that increases with the variance of volatility.
In other words, x3(n) is measuring how much volatility is changing in the
environment. In principle, this hierarchy can continue indefinitely. At each new
level, the variance is defined in terms of a new random variable that is itself defined
at the next higher level. So, for example, level 4 would define x3(n) as normally
distributed with a variance that depends on a new random variable x4(n− 1).

Another critical feature of the hierarchical Gaussian filter is that it specifies trial-
by-trial update equations for the mean and precision parameters at each level of
the hierarchy. These updates, which were all derived using a variational Bayesian
procedure, are in the same general form as Equation (4.24), with the notable
exception that the learning rates [i.e., the analog of πA/(π0 + πA) in Equation
(4.24)] are sensitive to changes in the environment, including, for example,
volatility and changes in volatility. For example, the update equations specify that
when the environment becomes more volatile, the learning rate on μA increases.
This makes sense intuitively because in a more volatile environment, deviations
from our expectations may indicate that environmental events driving our sensory
data have changed and learning should therefore proceed more rapidly.

The hierarchical Gaussian filter update equations enable real-time estimation of
states and are optimal in the sense that they minimize variational free energy – an
upper bound on an agent’s surprise given its model of the world. The hierarchical
Gaussian filter has a number of advantages over more traditional Bayesian
models. First, it avoids the need to evaluate intractable integrals. Second, by
placing different subject-specific priors on the κi and ωi parameters, it provides
a convenient method for modeling individual differences across agents. Third,
it provides a foundation for RL-style update equations and firmly grounds RL
models within the foundations of probability theory. Finally, the hierarchical
Gaussian filter has also had considerable success at accounting for a wide variety
of empirical phenomena, including impulsivity in healthy individuals (Paliwal
et al., 2014) and Parkinson’s patients with deep brain implants (Paliwal et al.,
2018), reward-based decision-making in schizophrenia (Deserno et al., 2020),
social learning (Diaconescu et al., 2017), perceptual learning (Weilnhammer et al.,
2018), and sensory learning (Iglesias et al., 2013).

4.4.3 Supervised-Learning Models of Sensorimotor Adaptation

Models based on supervised learning are also popular. As described above,
supervised learning is a local learning rule that uniquely changes each modifiable
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weight or connection strength in the model. The most popular versions, which
include backpropagation and the delta rule, implement a form of gradient descent
(e.g., Rumelhart & McClelland, 1986). Consider a general model in which some
unit i projects to some unit j. Let xi denote the output of unit i, yj denote the
output of unit j, and denote the connection strength between units i and j by the
parameter ωi,j. Then supervised learning algorithms change each ωi,j differently.
The most common approach, which is followed, for example, by gradient descent
algorithms, is to modify ωi,j according to the error between the desired output y∗j of
unit j and the observed output yj. This error is typically referred to as δj = y∗j − yj.

Gradient descent algorithms modify ωi,j in a way that causes δj to decrease
as quickly as possible at each time step. Specifically, if we let F represent the
mathematical transformation that unit j performs on its input, then yj = F(xi | ωi,j).
Gradient descent algorithms modify ωi,j according to

	ωi,j ∝ − ∂δj

∂ωi,j
, (4.29)

that is, in proportion to the negative of the gradient on the error surface. Here, we
can see that the key feature of a supervised learning system is that (1) the system
is provided a teaching signal in the form of a desired output, and (2) the error
signal (i.e., the difference between actual and desired output) is differentiable with
respect to the parameters of the model. Equation (4.29) describes a local learning
rule because every output unit in the model has its own unique desired output.
Because of this, in response to an error signal at time t, some parameters will be
increased, and others will be decreased. This property also strongly distinguishes
supervised learning from RL, in which all active weights are either strengthened
or weakened in accord with the presence or absence of unexpected rewards.

One prominent class of supervised-learning models uses linear dynamical
systems to model the sensorimotor learning that causes adaptive changes in motor
outputs in response to changing sensory inputs (Baddeley, Ingram, & Miall, 2003;
Cheng & Sabes, 2006; Donchin, Francis, & Shadmehr, 2003; Scheidt, Dingwell, &
Mussa-Ivaldi, 2001; Thoroughman & Shadmehr, 2000). Such changes are essential
for coordinated and efficient execution of action selection and motor control.
For example, as muscles are fatigued they require greater neural impulses to
be activated, and therefore the motor commands that achieve some goal before
muscle fatigue need to be scaled up to achieve that same goal after fatigue has
accumulated. Sensorimotor learning also allows agents to adjust for noisy and
dynamic environments. For example, the brakes on a rental car only feel foreign
and jerky for a short while before we adapt our motor commands to smoothly
operate them.

In the lab, sensorimotor learning is commonly studied with visuomotor adapta-
tion experiments (Cunningham, 1989; Krakauer et al., 2000; Martin et al., 1996a,
1996b; Redding, Rossetti, & Wallace, 2005; Von Helmholtz, 1925). The agent’s
objective in such tasks is typically to reach from a start location to a target location
as quickly, smoothly, and accurately as possible. After a baseline or familiarization
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phase, the visual feedback provided by the moving hand is perturbed to introduce
a mismatch between the actual and perceived hand position. Early experiments
of this nature used prism glasses to induce lateral shifts, but recently the most
common approach has been to use crude virtual-reality environments to impose
visuomotor rotations such that movements beginning at the centre of a work
space and traveling in a given direction generate on-screen cursor trajectories that
match the radial distance from the reach origin but are rotated by some amount.
People readily learn to compensate for a range of perturbations, quickly becoming
proficient at moving to a target with relatively normal kinematics (Welch, 1986).

Since the early 2000s, linear dynamical systems endowed with supervised
learning algorithms have provided a popular general model of sensorimotor
learning, including behavior observed in visuomotor adaptation tasks (Baddeley,
Ingram, & Miall, 2003; Cheng & Sabes, 2006; Donchin, Francis, & Shadmehr,
2003; Scheidt, Dingwell, & Mussa-Ivaldi, 2001; Thoroughman & Shadmehr,
2000). This is usually done by defining the state of the dynamical system as a
sensorimotor transformation – that is, as an intermediate mapping from sensory
input to motor output. Sensorimotor learning is then modeled as adaptive changes
that reduce the errors in each state, and for this reason, models that employ this
method are often referred to as state-space models.

As an example, consider a simple reaching task in which participants make
center-out reaches to a single target. After some baseline phase in which partici-
pants are afforded the opportunity to familiarize themselves with the apparatus, the
visual feedback is perturbed by a rotation. Further suppose that feedback is only
given at the end of each reach, so that any adaptive change in the sensorimotor
mapping occurs exclusively between trials. A simple and common state-space
model of this task is described on trial n by the following equations:

δn = y∗n − yn,

xn+1 = βxn + αδn,

yn = xn + θn, (4.30)

where δn is the error (i.e., the angular distance between the reach endpoint and
the target location), y∗n is the desired output (e.g., the angular position of the reach
target), yn is the output and corresponds to the angle of the movement that will be
generated when trying to reach to the target (i.e., it is a readout of the sensorimotor
state), xn is the state of the system (i.e., the sensorimotor transformation), β is a
retention rate that describes how much is retained from the value of the state at the
previous trial, α is a learning rate that describes how quickly states are updated in
response to errors, and θn is the imposed rotation.

If we assume that in the absence of visuomotor rotations, the system is calibrated
such that δn = 0, and that this state corresponds to xn = 0, then in the presence
of a rotation θn+1 �= 0, the system will experience the error δn+1 = −θn+1, and
will adjust xn+2 in a direction that would reduce the experienced error if the same
rotation was applied on the next trial. For example, if θn+1 is in a clockwise
direction, then Equation (4.30) leads to xn+2 = βxn+1 − αθn+1. This means that
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adaptation to a clockwise rotation occurs by adjusting the sensorimotor state to
generate more counter-clockwise movements. If β < 1, then on each trial the state
will respond to errors in the way just described, but will also return to baseline by
some increment. Thus, in the absence of reach errors, the system has a tendency to
reset itself. Because the goal of learning is to reduce the state error – that is, δn –
this model is based on a form of supervised learning known as the delta rule or the
Widrow–Hoff rule (Widrow & Hoff, 1960).

Another key feature of linear dynamical systems as models of sensorimotor
learning is that they are easily modified to accommodate considerably more
complexity than the simple version described above. For example, Cheng and
Sabes (2006) outlined a more general form for these models governed by the
following equations:

xn = Axn−1 + Bδn−1 + ηn−1,

yn = Cxn + Dωn + γ n, (4.31)

where xn is a state vector of sensory transformations, δn is the vector of errors – that
is, the differences between the desired and actual states, ηn is a random vector that
models noise in the learning process and is typically assumed to have a multivariate
normal distribution with mean vector 0 and variance–covariance matrix �, yn is
a vector of motor outputs (e.g., angle and distance of movement), ωn is a vector
of inputs to the system (e.g., θn in the simple example above), γn is a random
vector that models noise in the output process (again typically assumed to have a
multivariate normal distribution), and A, B, C, and D are all matrices of constant
values. Note that this model modifies each state according to its own unique error,
which is a hallmark of supervised learning (and of the delta rule).

In this form, it is easy to see that linear dynamical systems can be flexibly
applied to a variety of sensorimotor learning scenarios in which the factors relevant
to sensorimotor learning (stored in δn) can be stated independently of the factors
relevant to sensorimotor output (stored in ωn). The result is a convenient yet
powerful framework that can be used to generate predictions about sensorimotor
learning on a trial-by-trial basis, or even on a moment-to-moment basis if adaptive
changes are thought to occur on that timescale. This approach is therefore well
suited to modeling behavioral learning phenomena that change appreciably on
these fast timescales.

4.5 Implementational Models of Human Learning

Implementational-level models explicitly state how neural circuits drive
behavior, and how changes in connection weights within these circuits drive
learning. Thus, at the core of these models are clear statements about the brain
regions and networks that drive a behavior, and the forms of synaptic plasticity that
govern changes in connection weights between neurons in constituent regions. We
now know that synaptic plasticity comes in many different forms. For instance,
it operates by different computational principles in different brain regions and
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between different cell types (Doya, 2000; Feldman, 2009), and it is governed
physiologically by different molecular mechanisms and intracellular signaling
cascades. A complete review of both the physiological and computational under-
pinnings of every form of synaptic plasticity is well beyond the scope of this
chapter. Instead, we focus on three forms of synaptic plasticity that are deeply
understood from a physiological perspective, and are at the core of both classic
and contemporary computational models of learning. In particular, we will discuss
two-factor synaptic plasticity in the cerebral cortex and the hippocampus that is
similar to Hebbian learning, three-factor DA-dependent synaptic plasticity in the
basal ganglia that is similar to RL (Doya, 2000; Houk et al., 1995), and a form of
synaptic plasticity in the cerebellum that resembles supervised learning.

4.5.1 Physiology of DA-Dependent Two- and Three-Factor
Synaptic Plasticity

The most common excitatory neurotransmitter in the brain is glutamate, and LTP
at glutamatergic synapses is well understood. Glutamate binds to a number of
different receptors, but the most important for LTP is NMDA. The biochemical
details are not important for our purposes, except to note that NMDA requires
partial depolarization to become activated, and so it has a higher threshold for
activation than non-NMDA glutamate receptors. NMDA-receptor activation initi-
ates a number of chemical cascades that can increase synaptic efficacy. Because
of its high threshold, however, activation of NMDA receptors on the postsynaptic
membrane requires strong presynaptic activation. If presynaptic activation either
fails to activate or only weakly activates NMDA receptors, then a variety of
evidence suggests that the long-term efficacy of the synapse is weakened (i.e.,
LTD occurs; Bear & Linden, 2001; Kemp & Bashir, 2001).

DA plays a critical modulatory role in these processes because it can potentiate
synaptic efficacy if it is above baseline when NMDA receptors are activated,
but synaptic weakening occurs if DA is below baseline during NMDA receptor
activation (Calabresi et al., 1996; Reynolds & Wickens, 2002; Yagishita et al.,
2014). A large literature shows that DA neurons in the ventral tegmental area
and substantia nigra pars compacta increase their firing above baseline following
unexpected rewards, and decrease their firing below baseline following the failure
to receive an expected reward (e.g., Hollerman & Schultz, 1998; Mirenowicz &
Schultz, 1994; Schultz, 1998). Thus, this form of DA-enhanced LTP should be
in effect following an unexpected reward in any brain region that is a target of
DA neurons. This includes the basal ganglia, the hippocampus, the amygdala, and
all of the frontal cortex. In contrast, there is virtually no DA projection to visual
or auditory cortex. In these regions, however, there is evidence that acetylcholine
may play a modulatory role similar to DA in LTP and LTD (e.g., Gu, 2003; McCoy,
Huang, & Philpot, 2009).

Although the biochemistry that mediates the modulatory role that DA plays in
synaptic plasticity is similar in all DA target regions, the functional role of this
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plasticity is qualitatively different in the striatum and the frontal cortex. Within the
striatum, DA is quickly cleared from synapses by DA active transporter and, as a
result, the temporal resolution of DA in the striatum is high enough for DA to serve
as an effective trial-by-trial reinforcement-learning signal. For example, if the first
response in a training session receives positive feedback and the second response
receives negative feedback, then the elevated DA levels in the striatum that result
from the positive feedback on trial 1 should have decayed back to baseline levels by
the time of the response on trial 2. Unlike the striatum, however, the concentration
of DA active transporter in the frontal cortex is low (e.g., Seamans & Robbins,
2010). As a result, cortical DA levels change slowly. For example, the delivery
of a single food pellet to a hungry rat increases DA levels in the prefrontal
cortex above baseline for approximately 30 min (Feenstra & Botterblom, 1996).
Thus, the first rewarded behavior in a training session is likely to cause frontal
cortical DA levels to rise, and the absence of DA active transporter will cause
DA levels in the frontal cortex to remain high throughout the training session.
As a result, all synapses that are activated during the session are likely to be
strengthened, regardless of whether the associated behavior is appropriate or not.
Thus, although DA may facilitate LTP in the frontal cortex, it appears to operate
too slowly to serve as a frontal-cortical trial-by-trial reinforcement training signal
(Lapish et al., 2007).

From a computational perspective, the high temporal resolution of the striatal
DA signal means that whether a synapse is strengthened or weakened depends on
three factors: the amount of presynaptic activation, the amount of postsynaptic
activation, and whether DA is above or below baseline. As a result, synaptic
plasticity in the striatum is said to follow the three-factor learning rule (Wickens,
1993). In contrast, in the cortex, DA levels will change only slowly over time, so
only two factors are needed to predict whether a synapse will be strengthened or
weakened – the amount of pre- and postsynaptic activation. As a result, plasticity
in the cortex follows the two-factor learning rule.

4.5.2 Models Based on Two-Factor Plasticity

Models of Two-Factor Plasticity
The structural changes at the synapse that accompany LTP and LTD are complex
and highly diverse. For example, changes in synaptic plasticity might be mediated
by changes in the number of receptors, their distribution, the type of receptors,
or their sensitivity. But plasticity changes could also occur because of changes
in the size and/or shape of dendritic spines. If our goal is to model learning-
related changes in human behavior, then the molecular and cellular mechanisms
that mediate changes in synaptic plasticity are irrelevant. We only need an accurate
model of how much the efficacy of the synapse changes from one behavioral
measurement to the next.

The structural changes at the synapse unfold continuously in time, but
unless the behavioral measurements are continuous, there is no need to build a
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continuous-time model. In particular, if the data have a discrete trial-by-trial
structure, as is common in many cognitive-behavioral experiments, then a discrete-
time model of changes in synaptic efficacy is often sufficient. Typically, such a
model would be constructed from difference equations, where the index is trial
number, so the implicit time interval is the duration of one trial. A continuous-time
learning model (e.g., that uses differential equations) is typically required only
when modeling a continuous-time behavioral task.

The simplest and original form of Hebbian learning predicts that between trials n
and n+1, the strength of the synapse between units i and j, denoted by wij(n+1), is

wij(n+ 1) = wij(n)+ αAi(n)Aj(n), (4.32)

where Ai(n) and Aj(n) are the total activations in units i and j on trial n and α is
the learning rate. This model has two significant weaknesses. First, all terms in
Equation (4.32) are positive, so this model includes no mechanism to weaken a
synapse, and as a result, it cannot account for LTD. Second, note that it predicts
that all synaptic strengths will eventually increase to infinity. For these reasons, a
variety of alternative models of Hebbian learning have been proposed.

One model of two-factor plasticity, which can be seen as a generalization of
classical Hebbian learning, assumes that (Ashby, 2018)

wij(n+ 1) = wij(n)

+ α 	 H
[
Aj(n)− θNMDA

]
Ai(n)

{
1− e−λ[Aj(n)−θNMDA]

}
[1− wij(n)]

− β H
[
θNMDA − Aj(n)

]
Ai(n) e−λ[θNMDA−Aj(n)]wij(n). (4.33)

The positive term describes conditions that strengthen the synapse and the negative
term describes conditions that cause the synapse to be weakened. Ignore the
constant 	 for now (i.e., assume 	 = 1). The function H[g(x)] is the Heaviside
function that equals 1 when g(x) > 0 and 0 when g(x) ≤ 0. The constant
θNMDA represents the threshold for NMDA-receptor activation. Note that the
synaptic strengthening term is positive only on trials when the postsynaptic
activation exceeds the threshold for NMDA-receptor activation, and that the
amount of strengthening depends on the product of the presynaptic activation and
an exponentially increasing function of the postsynaptic activation. The [1−wij(n)]
term is a rate-limiting term that prevents wij(n + 1) from exceeding 1.0, and the
constant λ scales the postsynaptic activation.

Note that the synapse is weakened only when the postsynaptic activation is
below the NMDA threshold. Also note that the exponential term reaches its
maximum when postsynaptic activation is near the NMDA threshold and decreases
as the postsynaptic activation gets smaller and smaller. This is consistent with
the neurobiology. For example, in the absence of any postsynaptic activation, we
do not expect any synaptic plasticity. The wij(n) at the end prevents wij(n + 1)

from dropping below 0. Figure 4.1 shows predicted changes in synaptic strength
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Figure 4.1 Change in synaptic strength predicted by the two-factor learning
model described in Equation (4.33) as a function of amount of postsynaptic
activation (here scaled from 0 to 1). Predictions are shown for early in learning
[i.e., when wij(n) = 0.2] and late in learning [i.e., when wij(n) = 0.8].

[i.e., wij(n + 1) − wij(n)] for this model as a function of the magnitude of
postsynaptic activation during both early [when wij(n) = 0.2] and late [when
wij(n) = 0.8] learning.

The Equation (4.33) model of two-factor learning assumes that any activation in
postsynaptic unit j was caused by activation in presynaptic unit i. This assumption
is really only plausible in simple feedforward models. If unit j receives input from
many other units, then Equation (4.33) could strengthen inappropriate synapses.
In the mammalian brain, the magnitude and even the direction of plasticity
at a synapse depends not only on the magnitude of the pre- and postsynaptic
activations, but also on their timing – a phenomenon known as spike-timing-
dependent plasticity. Considerable data show that if the postsynaptic neuron fires
just after the presynaptic neuron then synaptic strengthening (i.e., LTP) occurs,
whereas if the postsynaptic neuron fires first then the synapse is weakened (e.g., Bi
& Poo, 2001; Sjöström et al., 2008). Furthermore, the magnitude of both effects
seems to fall off exponentially as the delay between the spikes in the pre- and
postsynaptic neurons increases. Let Tpre and Tpost denote the time at which the pre-
and postsynaptic units fire, respectively. Then a popular model of spike-timing-
dependent plasticity (e.g., Zhang et al., 1998) assumes that the amount of change
in the synaptic strength is

	 =
{

e−θ+(Tpost−Tpre), if Tpost > Tpre

eθ−(Tpost−Tpre), if Tpost < Tpre
, (4.34)
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Figure 4.2 Amount of change in synaptic strength predicted by spike-timing-
dependent plasticity as a function of the difference in time between firing in the
postsynaptic neuron (i.e., Tpost) and the presynaptic neuron (i.e., Tpre).

where θ+ and θ− are parameters that determine the decay rates of synaptic
strengthening and weakening, respectively. Figure 4.2 shows an example of this
function.

To incorporate spike-timing-dependent plasticity into two-factor learning, the
first step is to compute 	 from Equation (4.34) anytime the pre- and postsynaptic
units both fire. Next this value is inserted into Equation (4.33) to compute
w(n+ 1).

Models of Human Learning that Incorporate Two-Factor Plasticity
Hasselmo and Wyble (1997) proposed a model that includes two-factor plasticity
in the hippocampus to account for the effects of scopolamine, an acetylcholine
anatagonist, on free recall and recognition. They tested this model against data
from an experiment reported by Ghoneim and Mewaldt (1975), in which par-
ticipants studied lists of 16 words each and were then tested on their ability
to recall and recognize the studied words. Recall and recognition were both
intact when scopolamine was administered between study and test. In con-
trast, the administration of scopolamine before study impaired recall, but not
recognition.

Figure 4.3 shows the neural architecture of the Hasselmo and Wyble (1997)
model. Neural activation in each region was modeled by firing-rate models (e.g.,
see Ashby, 2018). The hippocampus contains two subfields, the cornus ammonis
and the dentate gyrus, each of which receives input from the entorhinal cortex,
which in turn is driven by widespread input from the neocortex. The network is
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Figure 4.3 The neural architecture of the Hasselmo and Wyble (1997) hip-
pocampal model. EC2, EC3, and EC4 denote different subregions in the
entorhinal cortex, whereas CA1 and CA3 denote different subregions in the cor-
nus ammonis. Two-factor learning occurs at virtually all synapses, except at
the synapses between dentate gyrus and CA3 and between CA1 and medial
septum.

characterized by sparse encoding and many feedback loops, and the behavior of
the model is governed largely by how the resulting network dynamics approach
attractor states.

The network has two global states (encoding and retrieval) that are controlled
by the concentration of acetylcholine. The encoding mode is triggered by elevated
acetylcholine and is characterized by potentiated two-factor learning at all plastic
synapses (hence encoding), and also by inhibited output from EC4 back to neocor-
tex (hence no retrieval). Acetylcholine can also reduce excitatory transmission,
limiting the effects of recurrent collaterals and making the network primarily
sensitive to external inputs. This is good for learning because it helps reduce
interference between new items and previously stored items. The retrieval mode
is triggered by depressed acetylcholine and is characterized by reduced two-factor
learning at plastic synapses (hence no encoding) and also by potentiated output
from EC4 to neocortex (hence retrieval). Low acetylcholine also allows excitatory
transmission via the network’s recurrent collaterals, making the network sensitive
to stored representations.

The form of two-factor learning used in the model is essentially the same as in
Equation (4.33), but with the addition of providing a model of how the α and β

parameters change with concentrations of acetylcholine. The model successfully
simulates recall when context (i.e., cues associated with the word list) is presented
to the network and it outputs words associated with that context. Additionally, the
model successfully simulates recognition when it is presented with words and it
outputs the context associated with the words. Hasselmo and Wyble (1997) showed
that in the presence of scopolamine, the network has no difficulty retrieving inputs
learned prior to scopolamine administration, whereas recall of inputs encoded in
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the presence of scopolamine is disrupted and recognition of these inputs is spared.
For a full explanation of the network dynamics that enable the model to account
for these phenomena, see Hasselmo and Wyble (1997).

Here we only focus on the synaptic effects of acetylcholine on the hippocampus.
However, Hasselmo and Wyble (1997) also explored the effects on depolarization
and adaptation of neurons. Furthermore, the model was also shown to account for
the list length and list strength effects (Murdock & Kahana, 1993; Murdock Jr.,
1962; Murnane & Shiffrin, 1991; Ratcliff, Clark, & Shiffrin, 1990; Roberts,
1972) in addition to making predictions about the effects of scopolamine on
paired-associate tasks (Caine et al., 1981; Crow & Grove-White, 1973; Ostfeld
& Aruguete, 1962). The Hasselmo and Wyble (1997) model provides a good
illustration of how relatively simple two-factor plasticity rules can be incorporated
into sophisticated implementational-level models that account for neuropharmaco-
logical and behavioral phenomena.

4.5.3 Models Based on DA-Dependent Three-Factor Plasticity

Models of DA-Dependent Three-Factor Plasticity
In the striatum, DA reuptake is fast, so plasticity follows the three-factor rule. In
other words, three factors are needed to strengthen a synapse: strong presynaptic
activation, strong postsynaptic activation, and DA above baseline. If any of these
factors are missing, then the synapse is weakened. A discrete-time model of three-
factor learning is as follows:

wij(n+ 1) = wij(n)

+ α H
[
Aj(n)− θNMDA

]
H[D(n)− Dbase]

× Ai(n)
{

1− e−λ[Aj(n)−θNMDA]
}

[D(n)− Dbase][1− wij(n)]

− β H
[
Aj(n)− θNMDA

]
H[Dbase − D(n)]

× Ai(t)
{

1− e−λ[Aj(n)−θNMDA]
}

[Dbase − D(n)]wij(n)

− γ H
[
θNMDA − Aj(n)

]
Ai(n) e−[θNMDA−Aj(n)]wij(n), (4.35)

where D(n) is the amount of DA released on trial n and Dbase is the baseline DA
level (Ashby, 2018).

Recall that H(x) is the Heaviside function, which equals 0 if x ≤ 0 and 1 if x > 0.
Therefore, the positive LTP term equals 0 except when presynaptic activation
exceeds the postsynaptic NMDA threshold [i.e., Aj(n) > θNMDA] and DA exceeds
baseline [i.e., D(n) > Dbase]. Thus, synaptic strengthening requires three condi-
tions – strong presynaptic activation, postsynaptic activation above the threshold
for NMDA-receptor activation, and DA above baseline. Once these conditions
are met, synaptic strengthening is the same as in the Equation (4.33) two-factor
learning model. Two different conditions cause the synapse to be weakened. The
second [the last γ term in Equation (4.35)] is the same as in the two-factor model.
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The first (i.e., the β term), however, is unique to striatal-mediated three-factor
plasticity. Cortical–striatal synapses are weakened if postsynaptic activation is
strong and DA is below baseline – a condition that would occur, for example,
on trials when feedback indicates the trial n response was incorrect.

The Equation (4.35) model of three-factor plasticity requires that we specify
the amount of DA released on every trial in response to the feedback signal [the
D(n) term]. The more that DA increases above baseline (Dbase), the greater the
increase in synaptic strength, and the more it falls below baseline, the greater
the decrease.

Although there are a number of powerful models of DA release, Equation (4.35)
requires only that we specify the amount of DA released to the feedback signal on
each trial. The key empirical results are (e.g., Schultz, Dayan, & Montague, 1997;
Tobler, Dickinson, & Schultz, 2003): (1) midbrain DA neurons fire tonically, and
therefore have a nonzero baseline (i.e., spontaneous firing rate); (2) DA release
increases above baseline following unexpected reward, and the more unexpected
the reward the greater the release, and (3) DA release decreases below baseline
following unexpected absence of reward, and the more unexpected the absence,
the greater the decrease. One common interpretation of these results is that over a
wide range, DA firing is proportional to the reward prediction error (RPE) – that
is, to the difference between obtained reward and predicted reward. If we denote
the obtained reward on trial n by rn and the predicted reward by Pn, then the RPE
on trial n is defined as

RPEn = rn − Pn. (4.36)

So positive prediction errors occur when the reward is better than expected, and
negative prediction errors when the reward is worse than expected. Note that either
a positive or negative prediction error is a signal that learning is incomplete.

A simple model of DA release can be built by specifying how to compute (1)
obtained reward, (2) predicted reward, and (3) exactly how the amount of DA
release is related to the RPE. A straightforward solution to these three problems is
as follows (Ashby & Crossley, 2011). First, in tasks that provide positive feedback,
negative feedback, or no feedback on every trial and where reward magnitude never
varies, a simple model can be used to compute obtained reward. Specifically, define
the obtained reward rn on trial n as +1 if correct or reward feedback is received, 0
in the absence of feedback, and −1 if error feedback is received.

Second, following an old tradition (Bush & Mosteller, 1951), predicted reward
can be computed using the iterative sample mean [i.e., Equation (4.5)]:

Pn+1 = Pn + αp(rn − Pn), (4.37)

where αp is the learning rate.4

4 The subscript p is to distinguish this learning rate parameter from the learning rate α in Equation
(4.35).
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The final step is to compute the amount of DA released for any specific value
of RPE. A simple model, which is consistent with the single-unit recording data
reported by Bayer and Glimcher (2005), assumes that

D(n) =
⎧⎨⎩

1, if RPE > 1
0.8 RPE + 0.2, if −0.25 < RPE ≤ 1
0 if RPE < 0.25

. (4.38)

Note that this model assumes a baseline DA level of 0.2 [i.e., D(n) on trials when
RPE = 0]. Positive RPEs increase DA release above this baseline, and negative
RPEs depress it below baseline.

Figure 4.4 shows predicted changes in synaptic strength [i.e., wij(n+1)−wij(n)]
for this model as a function of the magnitude of postsynaptic activation, separately
for early [when wij(n) = 0.2] and late learning [when wij(n) = 0.8], and following
correct and incorrect responses. Note that synaptic plasticity following correct
(rewarded) responses is similar to plasticity in the two-factor model (compare the
top panel of Figure 4.4 with Figure 4.1). The only real difference is that plasticity is
attenuated more during late learning in the three-factor model. This is because DA
fluctuations decrease as rewards become more predictable. Note also that errors
have a greater effect on synaptic plasticity late in learning. This is because errors
are expected early in learning, so DA fluctuations are small. Late in learning,
however, when accuracy is high, errors are unexpected, which causes a large DA
depression and therefore a large decrease in synaptic efficacy.

Relationship of Three-Factor Plasticity to Psychological
Constructs of RL
Three-factor plasticity may – in some respects – be seen as a possible neural
implementation of the many SR association learning models that were inspired
by Thorndike’s (1927) law of effect. The obvious analogy maps presynaptic
activity onto the stimulus component, postsynaptic activity onto the response
component, and DA onto the reinforcement signal. A step further, and we might
expect the stimulus component to be encoded by a primary sensory neuron, the
response unit to be encoded by a primary motor neuron, and the reinforcement
signal to strengthen or weaken the synapse between these two neurons. Although
human neuroanatomy supports the existence of direct projections from sensory
to motor areas, the evidence suggests that these synapses are not strengthened
via a DA-mediated reinforcement signal, because DA reuptake in the cortex is
too slow. Rather, the available evidence suggests that sensory and motor neurons
are indirectly wired together via a DA-mediated reinforcement signal in the
basal ganglia. Here, stimulus–response associations can be learned at cortical–
striatal synapses, with the striatum projecting via a multisynaptic pathway to the
motor neurons representing the response component of the association. From this
perspective, the anatomy and physiology of cortical–basal ganglia–DA interactions
may provide a plausible neural substrate for the classic psychological constructs of
stimulus–response learning originally posed by Thorndike. However, the anatomy
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Figure 4.4 Changes in synaptic strength predicted by the model of three-
factor plasticity described in Eq. 4.35 as a function of amount of postsynaptic
activation (here scaled from 0 to 1). Predictions are shown for early in learning
[i.e., when wA,B(n) = 0.2] and late in learning [i.e., when wA,B(n) = 0.8], and
following feedback that the response was correct or incorrect. (α = 2, β = 4,
γ = 1.)

also suggests that the association mechanism is more indirect and complex than in
the original proposals of direct reinforcement of stimulus–response components.

Relationship of Three-Factor Plasticity to Machine-Learning
Constructs of RL
Three-factor plasticity in the basal ganglia may also offer a plausible bio-
logical substrate for various machine-learning constructs of RL. In this view,
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cortical–striatal synaptic weights implement a value function, and DA neurons
provide the reinforcement signal – a role motivated by the finding that DA neuron
firing reflects an RPE (Glimcher, 2011; Schultz, Dayan, & Montague, 1997). This
arrangement could be seen as compatible with a range of specific RL algorithms,
including temporal-difference learning, Q learning, and actor–critic architectures,
although the mapping does not seem perfect for any of these.

To be compatible with temporal-difference learning, cortical–striatal synaptic
weights would need to encode a value function that depends exclusively on sensory
states (i.e., is independent of action). This sort of value function encoding may be
characteristic of the ventral striatum (e.g., nucleus accumbens). The value function
would also need to be used to generate prediction errors, which is consistent with
one of the roles sometimes ascribed to the ventral striatum. However, the value
function would also need to operate under the assumption of a fixed action policy
and, at present, it is unclear whether the ventral striatum learns different value
functions for different policies. Another feature of temporal-difference learning,
which makes it a problematic model of DA neuron firing, is that, as we saw earlier,
the temporal-difference signal propagates back one time step every trial, until it
reaches the cue, at which point the propagation ends. DA neurons initially fire to
the reward, and eventually, after learning occurs, they begin to fire to the cue. But
there is no evidence that the propagation backwards is incremental – that is, there
is never a DA response to an intermediate time point between cue and reward.5

To be compatible with Q learning, cortical–striatal synaptic weights would need
to encode a value function that combines both sensory states and actions. This
sort of value function encoding may be characteristic of the dorsal striatum. Parts
of the dorsal striatum have quite direct access to motor areas of cortex, so it is
plausible that they could also directly implement the action-selection components
of Q learning. However, DA-encoded RPEs would also need to be derived from the
value estimates provided by the dorsal striatum. At present, it is unclear to what
degree such prediction errors factor in information about action.

In actor–critic RL models, an actor system implements an action selection
policy, and a critic system estimates the value of different states and uses these
estimates to generate prediction errors, which are then used to update the critic’s
value estimates and the actor’s selection policy. Of all the machine-learning RL
algorithms, these models may most easily map onto three-factor plasticity in the
basal ganglia (Houk, Adams, & Barto, 1995; Joel et al., 2002; Sutton & Barto,
1998). In this view, the critic is implemented by the DA system and the actor is
implemented by cortical–striatal projections through the dorsal striatum. Since the
critic is a separate module from the actor, there is no need for cortical–striatal
synaptic weights (part of the actor) to be used to compute prediction errors.
However, this view does not say where and how the value function is implemented.
One possibility is the ventral striatum (Takahashi, Schoenbaum, & Niv, 2008).

5 This problem can be solved by replacing the temporal-difference learning algorithm with a version
that includes an eligibility trace, which allows the error to propagate backwards by more than a single
state per step (Sutton & Barto, 1998).
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Figure 4.5 The neural architecture of the COVIS model of procedural learning
for a two-alternative forced-choice task with responses A and B (SMA =
supplementary motor area, PreSMA = presupplementary motor area, VL =
ventral lateral nucleus of the thalamus, VA = ventral anterior nucleus of the
thalamus, CM/Pf = centromedian and parafascicular nuclei of the thalamus,
GPi = internal segment of the globus pallidus, TAN = tonically active neuron,
SNPC = substantia nigra pars compacta, MSN = medium spiny neuron of the
striatum).

Models of Human Learning that Incorporate Three-Factor Plasticity
The COVIS procedural-learning model incrementally learns arbitrary stimulus–
response associations via a model of three-factor plasticity that is essentially
identical to Equation (4.35). Figure 4.5 shows the architecture of the model
(Ashby et al., 1998; Ashby & Crossley, 2011; Ashby & Waldron, 1999; Cantwell,
Crossley, & Ashby, 2015). The key structure is the striatum, a major input region
within the basal ganglia that includes the caudate nucleus and the putamen. In
primates, all of the extrastriate visual cortex projects directly to the striatum,
with a cortical–striatal convergence ratio of approximately 10,000 to 1 (e.g.,
C. J. Wilson, 1995). The model assumes that, through a procedural-learning
process, each striatal medium spiny neuron associates a motor goal (e.g., press
the button on the left) with a large group of visual cortical neurons (i.e., all that
project to it). Much evidence supports the hypothesis that procedural learning is
mediated within the basal ganglia, and especially at cortical–striatal synapses,
which exhibit three-factor plasticity (Ashby & Ennis, 2006; Houk, Adams, &
Barto, 1995; Mishkin, Malamut, & Bachevalier, 1984; Willingham, 1998). The
COVIS procedural-learning model is a formal instantiation of these ideas.
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Note that the model includes two loops through the basal ganglia (Cantwell,
Crossley, & Ashby, 2015). One loop projects from the visual cortex through the
body and tail of the caudate nucleus and terminates in the presupplementary motor
area, and the second loop projects from the presupplementary motor area through
the putamen and terminates in the supplementary motor area. Because this second
loop terminates in the premotor cortex, COVIS predicts that the associations
that are learned are between stimuli and motor goals. Both loops rely on three-
factor learning at cortical–striatal synapses. The first loop learns which stimuli
are associated with the same response and the second loop learns what motor
response is associated with each of these stimulus clusters. In a novel task, both
types of learning are required. However, note that if we train agents to make
accurate classification responses and then switch the responses associated with
the two stimulus classes, then the classes remain unchanged – only the response
mappings must be relearned. So COVIS predicts that reversing the locations of the
response keys will interfere with procedural classification performance, but that
recovery from such a reversal should be easier than novel classification learning – a
prediction that has been supported in several studies (Cantwell, Crossley, & Ashby,
2015; Kruschke, 1996; Maddox et al., 2010; Sanders, 1971; Wills et al., 2006).

COVIS uses a biologically accurate model of spiking in individual neurons
proposed by Izhikevich (2003). Let Vi(t) and Vj(t) denote the intracellular voltages
of the pre- and postsynaptic neurons, respectively, at time t. Then the Izhikevich
(2003) model assumes that the intracellular voltage of the postsynaptic neuron on
trial n is described by the following differential equations:

dVj(t)

dt
= wij(n)f [Vi(t)]+ β + γ

[
Vj(t)− Vr

] [
Vj(t)− Vt

]− θUj(t),

dUj(t)

dt
= λ

[
Vj(t)− Vr

]− ωUj(t), (4.39)

where β, γ , Vr, Vt, θ,λ, and ω are constants that are adjusted to produce dynamical
behavior that matches the neural population being modeled. Uj(t) is an abstract
regulatory term that is meant to describe slow recovery in the postsynaptic neuron
after an action potential is generated. Equation (4.39) produces the upstroke of an
action potential via its own dynamics. To produce the downstroke, Vj(t) is reset to
Vreset when it reaches Vpeak, and at the same time, Uj(t) is reset to Uj(t) + Ureset,
where Vreset, Vpeak, and Ureset are free parameters.

The model has many free parameters and therefore can fit a wide variety of
dynamical behavior. Izhikevich (2003) identified different sets of parameter values
that allow the model to mimic the spiking behavior of approximately 20 different
types of neurons. For example, one set of parameter values allows the model
to mimic the firing properties of the striatal medium spiny neurons shown in
Figure 4.5 (including, e.g., their up and down states), and another set of values
allows the model to mimic the regular spiking neurons that are common in the
cortex. Furthermore, Ashby and Crossley (2011) modified the Izhikevich model to
account for the unusual dynamics of the striatal cholinergic interneurons (which
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produce a pronounced pause in their high-tonic firing rate following excitatory
input). In all these cases, the parameters are fixed by fitting the model to single-unit
recording data from the neural population being modeled. Once set, the parameter
values that define the models of each individual neuron type then remain fixed
throughout all applications. Therefore, when testing the model against behavioral
or neuroimaging data, the models of each neuron type have zero free parameters.

The function f [Vi(t)] in Equation (4.39) models the input from the presynaptic
neuron i. In particular, it uses a simple model called the alpha function to mimic
the temporal delays of spike propagation and the temporal smearing that occurs at
the synapse (Rall, 1967). Specifically, the alpha function assumes that every time
the presynaptic neuron spikes, the following input is delivered to the postsynaptic
neuron (with spiking time t = 0):

α(t) = t

δ
exp

(
δ − t

δ

)
, (4.40)

where δ is a constant. This function has a maximum value of 1.0 and it decays
to 0.01 at t = 7.64δ. Thus, δ can be chosen to model any desired temporal
delay. Suppose the presynaptic neuron i produces N spikes that occur at times t1,
t2, . . . ,tN . Then the function f in Equation (4.39) is

f [Vi(t)] =
N∑

k=1

[α(t − tk)]
+ , (4.41)

where

[α(t − tk)]
+ =

{
α(t − tk) if t > tk
0 if t ≤ tk

. (4.42)

Finally, synaptic plasticity, and therefore learning, is modeled by the wij(n)

multiplier on f [Vi(t)] in Equation (4.39). The value of this term is adjusted trial-by-
trial, either via the two-factor [Equation (4.33)] or three-factor [Equation (4.35)]
models of synaptic plasticity. COVIS assumes that the procedural learning in
the striatum is mediated by three-factor plasticity at cortical–striatal synapses.
Therefore, the presynaptic neuron i in Equation (4.39) would be in the cortex
(either visual cortex or presupplementary motor area), the postsynaptic neuron j
would be a medium spiny neuron in the striatum, and wij(n) would be adjusted
trial-by-trial by Equation (4.35). For a complete description of this type of
mathematical modeling, called computational cognitive neuroscience, see Ashby
(2018).

COVIS uses the Izhikevich (2003) model [i.e., Equation (4.39)] to model spiking
in all neuron types shown in all brain regions illustrated in Figure 4.5, and it
uses the alpha function [Equation (4.41)] to model synaptic transmission between
all connected neurons. The supplementary motor area in the model includes as
many simulated neurons as there are response alternatives in the task under study.
Figure 4.5 shows the architecture of the model when applied to a two-alternative
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forced-choice task with responses A and B. To generate a motor behavior, a
response threshold is set on the integrated alpha function of each supplementary
motor area unit [i.e., the integral of Equation (4.41)]. The first unit to exceed its
threshold initiates its associated motor response. The lateral inhibition between
competing supplementary motor area units causes the units to display the type
of push–pull activity identified in many premotor regions of the cortex (e.g., as
in Shadlen & Newsome, 2001). Formally, this architecture – that is, separate
accumulators with lateral inhibition – mimics a drift diffusion process, but of
course it is more easily extended to tasks with more than two response alternatives
(Bogacz et al., 2007; P. L. Smith & Ratcliff, 2004; Usher & McClelland, 2001).

Note that COVIS predicts that synaptic strengthening can only occur when
the visual trace of the stimulus and the postsynaptic effects of DA overlap in
time. More specifically, synaptic plasticity in the striatum is strongest when the
intracellular signaling cascades driven by NMDA receptor activation and DA D1
receptor activation coincide (Lisman, Schulman, & Cline, 2002). The further apart
in time these two cascades peak, the less effect DA will have on synaptic plasticity.
For example, Yagishita et al. (2014) reported that synaptic plasticity was best
(i.e., greatest increase in spine volume on striatal medium spiny neurons) when
DA neurons were stimulated 600 ms after medium spiny neurons. When the DA
neurons were stimulated before or 5 s after the medium spiny neurons, then no
evidence of any plasticity was observed. In a task mediated by procedural learning,
activation of the medium spiny neurons should occur just before the motor
response, and activation of the DA neurons should occur just after the feedback.
So COVIS predicts that feedback delays during procedural learning should have
effects that are similar to those observed by Yagishita et al. (2014). In fact, many
studies have confirmed this prediction in a form of category learning thought
to depend on procedural learning (i.e., the information-integration categorization
task; Dunn, Newell, & Kalish 2012; Maddox, Ashby, & Bohil 2003; Maddox &
Ing, 2005; Worthy, Markman, & Maddox, 2013). Valentin, Maddox, and Ashby
(2014) showed that the COVIS procedural-learning model can accurately account
for the effects of all these feedback delays. In contrast, the same studies showed
that delays up to 10 s have no effect on rule-based category learning that is thought
to be mediated primarily in the prefrontal cortex.

Ashby and Crossley (2011) proposed that the striatal cholinergic interneurons
serve as a context-sensitive gate between cortex and striatum (see also Crossley,
Ashby, & Maddox, 2013, 2014; Crossley et al., 2016). The idea, which is supported
by a wide variety of neuroscience evidence, is that the striatal cholinergic interneu-
rons tonically inhibit cortical input to striatal medium spiny neurons (e.g., Apicella,
Legallet, & Trouche, 1997; Pakhotin & Bracci, 2007). The striatal cholinergic
interneurons are driven by neurons in the centremedian–parafascicular nuclei of
the thalamus, which in turn are broadly tuned to features of the environment. In
rewarding environments, the cholinergic interneurons learn to pause to stimuli
that predict reward, which releases the cortical input to the striatum from inhi-
bition. This allows striatal output neurons to respond to excitatory cortical input,
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thereby facilitating cortical–striatal plasticity. In this way, cholinergic interneuron
pauses facilitate the learning and expression of striatal-dependent behaviors.
When rewards are no longer available, the cholinergic interneurons cease to
pause, which prevents striatal-dependent responding and protects striatal learning
from decay.

Extending the COVIS procedural-learning system to include striatal cholinergic
interneurons allows the model to account for many new phenomena – some
of which have posed difficult challenges for previous learning theories. One
of these is that the reacquisition of an instrumental behavior after it has been
extinguished is considerably faster than during original acquisition (Ashby &
Crossley, 2011). The model accounts for this ubiquitous phenomenon because
the withholding of rewards during the extinction period causes the cholinergic
interneurons to stop pausing to sensory cues in the conditioning environment
(since they are no longer associated with reward). This closes the gate between
the cortex and the striatum, which prevents further weakening of the cortical–
striatal synapses. When the rewards are reintroduced, the cholinergic interneurons
relearn to pause, and the behavior immediately reappears because of the preserved
synaptic strengths.

4.5.4 Models Based on Plasticity that Mimics Supervised Learning

The cerebellum is commonly thought to provide a neural substrate for supervised
learning (Doya, 1999) and there is a rich basis of implementational-level models
in support of this view, beginning with the seminal work of Marr (1969). For this
reason, the following sections are focused on learning in the cerebellum.

Learning in the Cerebellum
The cerebellum is anatomically arranged into multisynaptic loops with the cerebral
cortex (Ramnani, 2006). Influence over the cerebellum is orchestrated through
the pons, which receives widespread inputs from cortical and peripheral sites –
including those associated with proprioception (Sawtell, 2010), haptics (Ebner
& Pasalar, 2008; Shadmehr & Krakauer, 2008; Weiss & Flanders, 2011), and
ongoing motor commands (Schweighofer et al., 1998) – and gives rise to the
mossy fiber inputs to cerebellar granule cells. Granule cells give rise to parallel
fibers, which provide one of two major inputs to the Purkinje cells of the cerebellar
cortex, which are the only projection neurons in the cerebellar cortex. The second
input to the Purkinje cells comes from climbing fibers, which originate in the
inferior olive. Purkinje cells project to the cerebellar deep nuclei, which in turn
are relayed to the thalamus, and ultimately back to the cortex, thereby closing the
anatomical loop.

Classic theories proposed that the cerebellum uses a form of supervised learning
to control and coordinate motor function (Albus, 1971; Ito, 1984; Marr, 1969). In
essence, these theories viewed the cerebellum as a biological implementation of
a perceptron (Rosenblatt, 1958; see Figure 4.6), with distributed inputs provided
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Figure 4.6 Simplified neuroanatomy of the cerebellum when viewed as a
three-layer perceptron. Purkinje cell output is inhibitory. All other illustrated
projections are excitatory. See text for further details.

by the mossy fibers, error signals communicated by the climbing fibers, and
supervised learning carried out by synaptic plasticity at the synapses between
parallel fibers and Purkinje cells (either LTP as originally proposed by Marr, 1969
or LTD as originally proposed by Ito, 1984). Ito and colleagues played pivotal
roles in establishing the biological plausibility of this synaptic plasticity (e.g., Ito,
1984).

The anatomy of the cerebellum is unique in a few ways that probably played a
large role in the development of these models. First, granule cells constitute more
than half the neurons in the mammalian cerebellum (Eccles, Ito, & Szentágothai,
1967; Palay & Chan-Palay, 2012), so mossy fiber input seems like a plausible
biological substrate for the distributed input representations commonly used
with perceptrons. Second, each Purkinje neuron receives input from exactly one
climbing fiber, and each fiber makes extensive synaptic contact with the dendritic
tree of its target Purkinje neuron (Eccles, Ito, & Szentágothai, 1967; Palay & Chan-
Palay, 2012). The most effective training methods for artificial neural networks
rely on supervised learning algorithms that implement some form of gradient
descent (e.g., backpropagation), which require the system to have fine-grained
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access to errors that occur at every synapse. The one-to-one correspondence
between Purkinje neurons and climbing fibers may be a biologically plausible way
of projecting these errors into the cerebellum.

Later physiological discoveries also fall roughly in line with this classic view of
the cerebellum. For instance, in Purkinje neurons, the shape of the spike evoked by
activation of parallel fibers (i.e., “simple spike”) is different from the shape of the
spike evoked by inferior olive activation (i.e., “complex spike”). Simple spikes
encode parameters of movement such as trajectory, velocity, and acceleration
(Gomi et al., 1998; Shidara et al., 1993), whereas complex spikes encode errors
in movement (Kitazawa, Kimura, & Yin, 1998; Kobayashi et al., 1998), which
is compatible with their involvement in a learning process. Furthermore, the
granule cell/Purkinje cell synapse is highly plastic (e.g., it exhibits LTP and
LTD both presynaptically and postsynaptically), and climbing fiber signals can
control the direction of plasticity (e.g., LTP vs. LTD) at granule cell/Purkinje cell
synapses (Coesmans et al., 2004; Lev-Ram et al., 2003). Much is known about
the intracellular signalling cascades that drive this plasticity (van Woerden et al.,
2009), but the details are beyond the scope of this chapter.

The mechanisms of synaptic plasticity at parallel fiber/Purkinje cell synapses do
not fall neatly into the network architectures assumed by two-factor and three-
factor learning rules. The two-factor learning rule describes synaptic plasticity
when only two neurons are connected (i.e., a presynaptic neuron and a post-
synaptic neuron), and the three-factor learning rule describes plasticity when a
presynaptic neuron and a dopaminergic input converge on a postsynaptic neuron.
In contrast, plasticity at parallel fiber/Purkinje neuron synapses is determined
by the convergence of parallel fibers and climbing fibers – both of which are
excitatory glutamatergic projections – onto Purkinje neurons. Thus, synaptic
plasticity at parallel fiber/Purkinje cell synapses follows its own unique learn-
ing rule. In particular, LTD is induced with (1) strong presynaptic activation
from input 1, (2) strong presynaptic activation from input 2, and (3) strong
postsynaptic activation. In contrast, LTP is induced with (1) weak presynaptic
activation from input 1, (2) weak or absent activation from presynaptic input 2,
and (3) weak postsynaptic activation. A further difference is that, in the two-
factor learning rule, strong presynaptic activation (i.e., above the threshold for
NMDA receptor activation) leads to LTP, and weak presynaptic activation leads
to LTD. At parallel-fiber/Purkinje neuron synapses, these roles are reversed: weak
activation of presynaptic Purkinje neurons leads to LTP, and strong activation
leads to LTD.

Finally, we now know that there is synaptic plasticity at a multitude of synapses
within the cerebellar circuit beyond those postulated by the classic model (e.g.,
between mossy fibers, between Purkinje cells and deep cerebellar nuclei, between
various interneuron types, etc.), and we understand much of the cellular and
molecular mechanisms at play. A complete review of these forms of plasticity and
their mechanisms is outside the scope of this chapter, but see D’Angelo (2014) for
a review.
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Example Models of Supervised Learning in the Cerebellum
Classic models view the cerebellum as a neural implementation of a supervised-
learning machine (Albus, 1971; Ito, 1984; Marr, 1969). In this conception, sensory
input signals are carried by the mossy fibers, transformed into a more expansive
basis set by the greatly divergent projections to the granule neurons, and ultimately
transformed into the output signal by the granule neuron projections to Purkinje
neurons. The ω parameters of Equation (4.29) denote the synaptic strengths of the
connections between granule and Purkinje neurons in this system. Climbing fibers
from the inferior olive are thought to provide a supervised error or teaching signal
that dictates plasticity at the granule neuron/Purkinje neuron synapse.

Owing largely to the homogeneity of anatomical circuitry across the cerebel-
lum, this basic model has been proposed to apply to essentially every domain
of cognition and action (Schmahmann et al., 2019). However, likely because
of the cerebellum’s early association with motor function, the most clearly
developed class of cerebellar-based supervised-learning models include models
of motor planning and motor control – especially for arm-reaching movements
(Schweighofer, Arbib, & Kawato, 1998; Schweighofer et al., 1998; Wolpert, Miall,
& Kawato, 1998). In this case, all signals in Equation (4.29) are considered to vary
continuously in time, with output signals yj(t) conceived of as motor commands
(i.e., muscle activation or joint torques), and input signals xi(t) conceived of as
desired trajectories (i.e., position, velocity, and acceleration). In addition, the ωi,j

parameters represent synaptic weights between the granule cell and Purkinje cell
layer, and the inferior olive is hypothesized to transmit a supervised error signal
(actual trajectory minus desired trajectory).

4.5.5 Models of Human Learning that Include Multiple
Forms of Plasticity

After long periods of practice, almost any behavior can be executed quickly,
accurately, and with little or no conscious deliberation. At this point, we say that
the behavior has become automatic. A strong case can be made that most behaviors
performed by adults are automatic. When we sit in a chair, pick up a cup of coffee,
or swerve to avoid a pothole, our actions are almost always automatic.

Automaticity could be viewed as the asymptotic state of learning. Ashby, Ennis,
and Spiering (2007) proposed that skills learned procedurally are mediated entirely
within the cortex after they become automatized, and that the development of
automaticity is associated with a gradual transfer of control from the striatum
to cortical–cortical projections from the relevant sensory areas directly to the
premotor areas that initiate the behavior. So in Figure 4.5, the cortical–cortical
projections from the visual cortex to the supplementary motor area eventually
mediate the expression of automatic behaviors without any assistance from the
subcortical loops through the basal ganglia. Therefore, according to this account,
a critical function of the basal ganglia is to train purely cortical representations
of automatic behaviors. Kovacs et al. (2021) proposed a similar account of how
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rule-guided behaviors are automatized in which the prefrontal cortex trains the
cortical circuits that implement the automatic behaviors.

The Ashby et al. (2007) model was motivated by the observation that because
cortical synaptic plasticity follows two-factor learning rules, the purely cortical
circuits are incapable of learning any behavior that requires trial-by-trial feedback.
Such behaviors require the three-factor plasticity of the basal ganglia. Ashby et al.
(2007) proposed that the basal ganglia use DA-mediated three-factor learning (i.e.,
at cortical–striatal synapses) to gradually activate the correct postsynaptic targets
in the supplementary motor area, which thereby enables two-factor plasticity at
cortical–cortical synapses to learn the correct associations (i.e., because there will
be more postsynaptic activation at the correct synapses than at synapses leading
to incorrect responses). As a result, in the full version of the Figure 4.5 model,
plasticity at cortical–striatal synapses is modeled via three-factor learning rules [as
in Equation (4.35)], whereas plasticity at cortical–cortical synapses is modeled via
two-factor learning rules [as in Equation (4.33)].

This model accounts for many results that are problematic for other theories
of automaticity. For example, it correctly predicts that people with Parkinson’s
disease, who have DA reductions and striatal dysfunction, are impaired in initial
procedural learning (Soliveri et al., 1997; Thomas-Ollivier et al., 1999), but rela-
tively normal in producing automatic skills (Asmus et al., 2008). It also correctly
predicts that blocking all striatal output to cortical motor and premotor targets
does not disrupt the ability of monkeys to fluidly produce an overlearned motor
sequence (Desmurget & Turner, 2010). Similarly, a neuroimaging study reported
that activation in the putamen was correlated with performance of a procedural
skill early in training but not after automaticity developed (Waldschmidt & Ashby,
2011). Instead, automatic performance was only correlated with activity in cortical
areas (i.e., presupplementary motor area and supplementary motor area).

4.6 Empirical Testing

Of course, any psychological theory or model must eventually be tested
against empirical data. In the case of learning models, this is especially challenging
because, by definition, learning data are nonstationary. In fact, in some cases, the
human learner could be in a different state on every trial of the experimental task.
If so, then accurate estimation of that state is virtually impossible. In other words,
learning data often provide, at best, a highly noisy sample of the learner’s true
state. As a result, model mimicry is perhaps a greater problem with models of
learning than with models of other types of psychological phenomena – that is,
learning data are often noisy enough that a less valid model could be statistically
indistinguishable from a more valid model, based on goodness-of-fit alone. For
these reasons, some extra steps are often needed to test models of learning.

One advantage of building models in which learning is mediated by the synaptic
plasticity algorithms described in the previous sections, is that because of their
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biological constraints, such models tend to be mathematically rigid (Ashby, 2018).
In other words, they tend to make a narrow set of predictions, regardless of how
their free parameters are set. Because of this, in many cases, parameter-free a priori
predictions are possible. For example, any model that assumes learning is based
on DA-mediated synaptic plasticity that mimics reinforcement-learning algorithms
must predict that omitting trial-by-trial feedback or even delaying feedback by just
a few seconds should have devastating effects on learning.

Even if a model does not make a priori predictions in a given task, it may predict
only a limited set of possible outcomes. If one of those outcomes is observed in an
experiment, then a model predicting that this is one of the few outcomes possible
should be favored over a model that can account for a wider variety of possible
outcomes by manipulating free parameters in a post hoc manner. The method of
parameter-space partitioning was designed to address this issue (Pitt et al., 2006).
In particular, parameter-space partitioning estimates the volume of parameter
space throughout which a model is consistent with a certain qualitative pattern
of data. A parameter-space partitioning analysis is valuable with all kinds of
modeling, but especially so with learning models because of the challenges their
nonstationary nature presents to standard goodness-of-fit testing.

Other good model-fitting practices are also recommended. For example, the
models should be validated by simulating data under a variety of different
parameter settings and then investigating under what conditions the generating
parameter values can be recovered during the parameter estimation process.

When learning models are fit to behavioral data, the most common choice is to
fit them to some form of empirical learning curve – most often a forward-learning
curve, which plots proportion correct against trial or block number. As with all
modeling, the most effective tests compare the fit of the model under investigation
to some other established model from the literature. In the case of forward learning
curves, a good choice for comparison is the exponential learning curve

Pn = P∞ − (P∞ − P0) e−λn, (4.43)

where Pn is the probability correct on trial n, P∞ and P0 are asymptotic and
initial accuracy, respectively, and λ is the learning rate. This model was proposed
more than 100 years ago (Thurstone, 1919), and remains popular today (e.g.,
Heathcote, Brown, & Mewhort, 2000; Leibowitz et al., 2010). As an example
of how this model might be used, Cantwell et al. (2017) compared the fits of
the exponential model and a biologically detailed model that assumes learning
in procedural-memory-mediated tasks depends on three-factor plasticity (i.e., the
model described in Figure 4.5) to learning curves from two separate experiments.
In both cases, the biologically detailed model fit better than the exponential model.

Different learning strategies can produce qualitatively different learning curves.
Procedural learning and instrumental conditioning predict incremental learning
and gradual learning curves. In contrast, rule-guided learning predicts discrete
and abrupt jumps in accuracy as the learner switches rules trial-by-trial. In many
tasks, incorrect rules cause accuracy to be near chance, whereas the correct rule
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predicts perfect accuracy. In these cases, rule-learning strategies predict all-or-none
learning curves.

Although incremental and all-or-none learning curves might seem easy to
distinguish empirically, it has long been known that these differences can be
obscured if the data are averaged across learners (Estes, 1956, 1964). In fact,
it is well documented that averaging can change the psychological structure of
many different types of data (Ashby, Maddox, & Lee, 1994; Maddox, 1999).
As a result, averaging is typically inappropriate when testing models of how
individuals learn. For example, if every learner’s accuracy jumps from 50% to
100% correct on one trial, but the trial on which this jump occurs varies across
participants, then the resulting averaged learning curve will be incremental – not
all-or-none (Estes, 1956). The top panel of Figure 4.7 illustrates this phenomenon.
This panel shows the traditional (forward) learning curve (i.e., mean accuracy
across all participants on every trial) for 1,000 simulated participants who each
display all-or-none learning. Specifically, each participant responds randomly with
a probability correct of 0.5 until the correct strategy is discovered on some random
trial (between 5 and 85), after which they respond perfectly. Note that the all-or-
none nature of learning is completely obscured by the averaging process.

Hayes (1953) proposed the backward learning curve as a solution to this
problem. Backward learning curves are most effective at discriminating between
incremental and all-or-none learning in experiments where perfect accuracy is
possible. The first step is to define a learning criterion, which is conservative
enough to rule out guessing or partial learning. For example, consider a two-
alternative task, like the one illustrated in Figure 4.7, in which the probability
correct by guessing is 0.5 on each trial. Then a criterion of 10 consecutive correct
responses is possible by guessing with a probability of less than 0.001. A backward
learning curve can only be estimated for participants who reach the criterion, so the
second step is to separate participants who reached the criterion from those who
did not. The most common analysis for nonlearners is to compare the proportion
of nonlearners across conditions. The remaining steps proceed for all participants
who reached the criterion. Step 3 is to identify for each learner the trial number
of the first correct response in the sequence of 10 correct responses that ended
the learning phase. Let Ni denote this trial number for learner i. Then note that
the response on trial Ni and the ensuing 9 trials were all correct. But also note that
the response on the immediately preceding trial (i.e., trial Ni−1) was necessarily an
error. Step 4 is to renumber all the trial numbers so that trial Ni becomes trial 1 for
every participant. Thus, for every participant, trials 1–10 are all correct responses
and trial 0 is an error. The final step is to estimate a learning curve by averaging
across learners. The bottom panel of Figure 4.7 shows the backward learning curve
that results from this reanalysis of the data plotted in Figure 4.7a.

Because of our renumbering system, the mean accuracy for trials 1–10 will be
100% correct, and the mean accuracy for trial 0 will be 0% correct. Thus, if every
learner shows a dramatic one-trial jump in accuracy, then the averaged accuracy
on trial−1 should be low, even if the jump occurred on a different trial number for
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Figure 4.7 (a) Forward learning curve, which plots mean proportion correct
on each trial for 1,000 simulated participants who are all characterized by one-
trial learning in which accuracy jumps from 0.5 to 1 on one trial, but who all
make this jump on a different random trial. (b) Backward learning curve of the
same data.

every participant (according to the original numbering system). In the Figure 4.7
example, all participants had perfect all-or-none, one-trial learning and note that
the mean accuracy for all trials preceding trial 0 is at chance (i.e., 0.5). In contrast,
if participants incrementally improve their accuracy then the averaged accuracy
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on trial −1 should be significantly higher than chance. So if one is interested in
discriminating between strategies that predict incremental learning and strategies
that predict all-or-none learning, then backward learning curves should be used
rather than the more traditional forward learning curves.

Backward learning curves are more problematic in tasks where most participants
do not achieve perfect accuracy, because in these cases, it is usually impossible
to define a learning criterion that ensures learning has terminated. Even so, if
estimated with care, backward learning curves can be useful even in these more
ambiguous cases (J. D. Smith & Ell, 2015).

4.7 Conclusions

Mathematical models of human learning have progressed enormously
during the last century. After an initial period of intense activity that dominated
experimental psychology during the first half of the twentieth century, the field
entered a lull that lasted for several decades. As we have described, several
neuroscience breakthroughs reinvigorated the study of learning and the subsequent
progress has been dramatic. Even so, the study of learning has not recaptured its
formally prominent place within experimental psychology. For example, none of
the leading textbooks on cognitive neuroscience currently include any chapters
on learning. Learning is a fundamental component of the human experience, and
we believe that the recent progress described in this chapter should re-establish
the foundational role of learning, not only in mathematical psychology, but more
generally within the cognitive sciences.

4.8 Related Literature

Many articles and texts review mathematical learning theory as it existed
during the early years of mathematical psychology, including Atkinson, Bower,
and Crothers (1965), Bush and Estes (1959), and Laming (1973). No recent texts
provide a similar comprehensive coverage. Even so, there are a variety of more
specialized recent reviews. In the case of machine learning, the classic text on
reinforcement learning is Sutton and Barto (1998), whereas Neal (2012) covers
Bayesian approaches. A number of computational neuroscience reviews include
sections on learning, including Dayan and Abbott (2001) and Ashby (2018). For
a review of the neurobiological foundations of learning (e.g., synaptic plasticity),
see Rudy (2020).
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Human babies, while adorable, are remarkably incompetent. They know essen-
tially no facts about the world, are unable to perform any but the simplest motor
actions, and perform very poorly on behavioral assays of memory. Memory
researchers evaluate memory in adults with a variety of behavioral paradigms, such
as cued recall, in which the participant is given a series of pairs (e.g., absence–
hollow, pupil–river, campaign–helmet). The participants’ task is to produce
the correct associate when given a cue word. For instance, after being probed with
pupil, the correct response is river. After being presented with a list of words for
a cued-recall test, a human baby is more likely to emit curdled milk than a correct
response. Over the course of a lifetime, normally developing humans learn many
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facts about their world, acquire complicated motor skills, and can bring to mind
vivid recollections of many events from their lives. Because all of these abilities
must be learned, they can be understood as forms of memory.

Viewed in this light, the task of a memory theorist seems daunting. How can
one possibly construct a theory that can make sense of the ability to recall that
Paris is the capital of France, the ability to ride a bike without falling over, and
the ability to vividly remember a birthday party well enough to bring a smile
to one’s face after decades? The strategy taken by cognitive neuroscientists in
the latter part of the twentieth century (and continuing to the present day) is to
carve up the set of abilities and skills that differentiate a baby from an adult into
different “kinds” of memory, each associated with distinct parts of the brain. For
instance, many memory researchers would say that retrieving facts about the world
depends on semantic memory, being able to ride a bicycle is a consequence of
implicit memory, and vivid recollection of specific events from one’s life relies on
episodic memory. This strategy of dividing learning and memory phenomena into
different “kinds of memory” has been extremely productive. However, throughout
the history of psychology, there has been an urge towards developing unified
theories of learning and memory.

5.0.1 Associations in the Mind and Brain

Radical behaviorists (most famously B. F. Skinner) attempted to understand the
rich repertoire of memory phenomena as special cases of stimulus–response asso-
ciations. Pavlov’s dogs learned to associate the sound of a bell with the delivery of
food, so that the sound of the bell by itself leads to an overt response (salivation).
Experimentalists learned that animals (in particular rats and pigeons) can be trained
to perform complex sequences of behaviors in response to appropriate training
experiences. According to behaviorists’ conceptions of learning, even complex
behaviors could be described as complex chains of simple associations.

Mathematical psychologists have developed formal models of association to
provide quantitative models of behavior in a variety of experimental paradigms.
Early work focused on animal conditioning experiments. In this case the behavioral
measure is typically a scalar value that describes the probability or magnitude of
a conditioned response; for instance, the amount of saliva produced by Pavlov’s
dog (or, more typically, the proportion of time the animal spends freezing in a fear
conditioning experiment). But later work also applied similar ideas to memory
experiments with humans using lists of words as stimuli. In the cued-recall task
described above, it is straightforward to write down a model that constructs simple
associations between neural representations of the words (e.g., associate absence
to hollow) such that probing the memory with the stimulus absence causes a
pattern like hollow to be produced as an output. These models can produce many
distinct responses in response to many different cues.

Associations can be understood neurally as a consequence of changes in the
connection strength between neurons. The mammalian brain contains a great
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number of specialized cells called neurons. Neurons are known to communicate
information between one another by means of their electrical activity. The
connections between individual neurons are referred to as synapses. The strength
of synapses can be modified by experience. These facts are sufficient to write
down a very crude neural model of Pavlovian conditioning. If one identifies the
set of neurons that changes its firing in response to the sound of the bell, and
the set of neurons responsible for salivation, one could in principle understand
the association learned by Pavlov’s dog as an increase in the strength of the
synapses connecting the “bell” neurons to the “drool” neurons. These assumptions
can be formalized in tractable mathematical models that are (at least) neurally
reasonable. Extending this idea to models of more elaborate tasks, such as human
cued recall, requires mapping each of the stimuli that will be part of the experiment
(i.e., each of the words in the list) to a pattern of activation over neurons. This is
typically done by mapping each word to a vector in a space of neurons. In this case,
the synapses between the neurons can be understood as a matrix. With appropriate
assumptions, many results can be derived and a particular set of assumptions can
be compared to behavior.

5.0.2 Cognitive Models of Memory

The basic theoretical stance of behaviorism is that we should construct psycholog-
ical theory without reference to the internal state of the organism. This approach is
difficult to reconcile with many human laboratory memory tasks. For instance,
a radical behaviorist model of the free-recall task is untenable. In free recall,
participants are presented with a sequential experience (e.g., a list of words)
and later asked to verbally report their memory for the experience. What is the
“cue” in free recall? Participants can report many different experiences and can
report on different aspects of their experience. It is difficult to make sense of
these phenomena without simply assuming that the participant has some internal
experience of their memory that they then describe.

Cognitive models make a hypothesis about the internal state of the organism and
use that hypothesis to predict behavior. Radical behaviorists explicitly eschewed
any reference to the internal experience of the behaving organism in the belief that
such theorizing was underconstrained and cannot lead to a satisfactory scientific
theory. However, advances in modern neuroscience have made this concern
largely obsolete. In principle, cognitive models can simultaneously describe the
observable behavior of an organism and neural observables from the brain during
performance of that behavior. In this way, cognitive models can be constrained by
comparison to activity of neurons in the brain.

A broad class of cognitive models proceed by building simple associations
between stimuli mediated by a hypothesized internal state. For instance, short-term
memory models hypothesize the existence of a short-term store that holds informa-
tion about recently presented stimuli. According to one influential approach, asso-
ciations between stimuli can only be formed among stimuli that are simultaneously
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active in the short-term store (Atkinson & Shiffrin, 1968; Raaijmakers & Shiffrin,
1980). Another widely used approach assumes the existence of a “temporal
context” that mediates associations between items (Polyn, Norman, & Kahana,
2009; Sederberg, Howard, & Kahana, 2008). Temporal-context models assume
that the brain maintains a representation at each moment of the recent past. This
temporal context changes gradually. When a person remembers a specific instance
from their past (like vividly remembering a particular event such as a birthday), this
cognitive event is accompanied by a recovery of temporal context. These models
make specific neural predictions. Short-term memory models and temporal-context
models predict that it ought to be possible to examine the activity of neurons in the
brain (using electrodes or noninvasive methods such as EEG or fMRI) and decode
the content of recent experiences. Cognitive models of this class are introduced in
Section 5.2.

5.0.3 Beyond Associations: Representing Temporal Relationships
in the Mind and Brain

Although associations have been an extremely productive idea in the mathematical
psychology of memory, there is no question that simple associations as understood
by behaviorists are insufficient to describe the richness of human memory.
Associations that can be described by a scalar value are extremely limited. If the
association between stimulus x and stimulus y is some specific number, say 2.38,
and the association between x and z is 0.35, we can say that the x→ y association
is stronger than the x→ z association. Operationally, if we probe memory with x,
memory returns “more” y than z. However, human memory can learn and express
many different kinds of relationships. For instance, x might be 2 m to the east
of y, or x might be a member of the category z, or y and z might be married to
one another. In order to express these kinds of relationships, a richer formalism is
required.

The mammalian brain contains neurons that can express metric relationships
between stimuli. For instance, consider neurons referred to as “time cells” in
the rodent hippocampus during performance of a behavioral task (Eichenbaum,
2017). After presentation of a stimulus (e.g., ringing a bell), these time cells fire
in a sequence such that each neuron fires for a circumscribed period of time (see
Figure 5.6 later). Because the sequence is reliable across different presentations of
the same stimulus, it is possible to look at which time cell is firing and decode
how far in the past the triggering stimulus was experienced. As we will see, the
information about the time in the past at which the bell was presented written
across this population of neurons can be used to learn temporal relationships
between the presentation of the bell and other stimuli. This class of models
has been used to develop cognitive models of relatively complex behavioral
tasks and at the same time the properties of time cells can be evaluated against
experiments recording from populations of neurons in mammals. To the extent
that this hypothesis is consistent with both behavioral and neurophysiological data,
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it makes sense to take the equations seriously. As we will see, the formalism is
quite rich, providing an opportunity to do meaningful theoretical work on physical
models of memory.

5.0.4 A Brief History of Mathematical Models of Memory

This chapter covers a tiny proportion of the work in mathematical models of human
memory. To provide at least pointers to the topics that are missing, and to properly
contextualize the topics that are covered, this subsection provides a very concise
history of mathematical models of memory.

Descriptive quantitative models of behavior date back to the very beginning
of modern memory research. Ebbinghaus conducted early empirical studies of
human memory, testing himself on serial recall of nonsense syllables and including
quantitative descriptions of many of the phenomena he studied (Ebbinghaus,
1885/1913). For instance, Ebbinghaus introduced the power law of forgetting to
describe his findings relating the persistence of memory to the passage of time. In
the early part of the twentieth century, radical behaviorism led many researchers
to focus on simple stimulus–response associations. Quantitative models of these
data attempted to describe observable phenomena with as few assumptions as
possible. Hull (1939) provides an excellent example of the spirit of this work,
fitting equations to observed empirical relationships.

The 1950s saw the first process models of memory. Process models, in contrast
to descriptive models, make hypotheses about internal mechanisms that cause
observable behavior. Stimulus-sampling theory (Bush & Mosteller, 1951; Estes,
1950) provides an early example of such a process model. Stimulus-sampling
theory introduced a number of ideas that are still extremely influential today (see
Section 5.1).

The 1960s and 1970s saw memory research divide into a set of subfields as
the cognitive revolution dramatically changed the kinds of theories that were
acceptable in psychology. There were two major developments in mathematical
models of memory during this era that had long-lasting effects over the next
several decades. First, building on a long tradition of mathematical models of con-
ditioning, the Rescorla–Wagner model (Rescorla & Wagner, 1972) successfully
accounted for essentially everything that was known about classical conditioning
up to that time. The Rescorla–Wagner model is built on a really simple idea – that
change in an association between a cue and a response depends on how well the
outcome is predicted. Second, the 1960s saw the development of the first models
of short-term memory building on early ideas from Miller (1956). The two-store
memory model of Atkinson and Shiffrin (1968) provided a conceptually simple
description of an immense amount of data (see Section 5.2). This was also perhaps
the first influential mathematical model of memory to make use of computer
simulations to test its predictions. These two very different models spawned entire
fields of research in psychology and neuroscience that continue to this day.
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The Rescorla–Wagner model led directly to reinforcement learning (Sutton &
Barto, 1981). Reinforcement learning has been extremely influential in neuro-
science, where the connection between these models and the dopamine system in
the brain (Schultz, Dayan, & Montague, 1997) has spawned an immense amount
of work that continues to the present day (e.g., see Chapter 4 in this volume).
Reinforcement learning has also been extremely influential in artificial-intelligence
research, including very high-profile papers building models to achieve human-
level performance in video games and the game of go (Mnih et al., 2015; Silver
et al., 2016).

The Atkinson and Shiffrin (1968) model also led to a great deal of work in
psychology and neuroscience. The model coincided with the discovery of patients
with brain damage that showed problems with short-term memory but not long-
term memory, and vice versa. Baddeley and Hitch (1977) further subdivided the
short-term store and mapped these components onto distinct brain circuits. This
kind of model – with many components that map onto different parts of the brain –
was well suited for posing the kinds of questions that could be answered with
early cognitive neuroimaging techniques such as PET and univariate fMRI. Math-
ematical models of short-term memory continue to be influential in contemporary
cognitive neuroscience (see Trutti et al., 2021 for a recent review).

In the 1980s and 1990s, a great deal of attention was focused on a class of
mathematical models of memory that were collectively known as distributed
memory models. These models focused on human memory experiments, primarily
experiments that would be understood today as episodic memory tasks. Models
that fall into this class include TODAM (Murdock, 1982), CHARM (Metcalfe,
1985), SAM (Gillund & Shiffrin, 1984), MINERVA-2 (Hintzman, 1987), the
matrix model (Humphreys, Bain, & Pike, 1989), and REM (Shiffrin & Steyvers,
1997). Although these models differed in many details, there were some common
assumptions. First, they represented studied items as a distributed set of features,
building on early work by Anderson (1972, 1973). Section 5.1 also adopts this
convention. Second, the distributed memory models were all associative. It was
implicit that short-term memory controlled which items and associations were
stored in memory. An important conceptual contribution of these models was the
introduction of quantitative models for context (see especially Murdock, 1997) that
we build on in Section 5.2. The temporal context models discussed in Section 5.2
grew out of this tradition.

The early distributed memory models did not make a connection to neuro-
science. In contrast, connectionist models of memory (see Hasselmo & McClel-
land, 1999 for a review of early work) paid close attention to neuroscience. For the
most part, these models did not focus on detailed behavioral data from human
memory experiments (but see Hasselmo & Wyble, 1997; Norman & O’Reilly,
2003). Rather, these models focused more on problems, such as amnesia and sleep,
that had a clear connection to neural processes. For instance, in one very influential
paper, McClelland, McNaughton, and O’Reilly (1995) postulated that behavioral
patterns observed in amnesia patients – for instance the ability to remember events
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from early in one’s life but not more recent events – were attributable to separate
memory stores that learned associations with different statistics. Connectionist
memory models were developed in parallel with advances in artificial neural
networks that are fundamental to contemporary AI.

One very important development in the early part of the twentieth century was
that models of conditioning made contact with models of timing behavior. Scalar
expectancy theory (Gibbon, 1977) provided an excellent model of behavioral
experiments where animals had to use their sense of time to receive a reward
(see also Killeen & Fetterman, 1988). Gallistel and Gibbon (2000) constructed
a mathematical model out of scalar expectancy theory that described a range
of findings from conditioning experiments. The hypothesis was that behavioral
associations fundamentally result from learning about the temporal relationships
between the stimulus and response. Balsam and Gallistel (2009) provide an elegant
overview of this idea. Notably, because timing behavior has the same properties
over a range of time scales, models of conditioning built on this assumption can
naturally accommodate scale invariance in memory, which is discussed further in
Section 5.2.6.

Section 5.3 draws on work over the last decade or so that synthesizes aspects
of many of these approaches. The scale-invariant temporal history was originally
proposed to address limitations in temporal context models (Shankar & Howard,
2010). As such, it is continuous with the distributed memory models and can be
used to build models of similar tasks. At the same time, because neuroscientific
considerations place such strong constraints on these models, it is similar in spirit
to the connectionist models of memory. Finally, because memory traces are formed
using a population that contains information about the time at which events took
place, this approach is closely related to (and in actual fact was very much inspired
by) work pursuing a close relationship between timing and conditioning.

5.1 “Simple” Associations in the Mind and Brain

In this section we will introduce a formalism to describe mathematical
models based on simple associations. We will suppose that learning consists of
forming and accessing associations between a set of “items.” These items can
correspond to words in a cued-recall experiment, in which we attempt to describe
the association between two words (e.g., absence–hollow above). Or we could
use the same formalism to describe the association between a tone that serves as a
conditioned stimulus and an unconditioned response, such as salivation in the case
of Pavlov’s dog.

Distributed memory models (DMMs) assume that each item is described by a
vector over some high-dimensional space. We will write vectors as lower-case bold
letters, v = {v1,v2, . . . ,vn}T , where n is some “large” integer. We can envision the
vector as a list of numbers that describes the activity over a large population of
neurons. If a particular item v represents a word, we might understand v as the
“pattern of activity” over a population of neurons that are caused by presentation
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of that word. A different word would produce a different pattern of activity. If a
particular item corresponds to a response, such as salivation, we might understand
v as the pattern of activity in a particular population that is necessary for salivation
rather than some other response (such as freezing).

5.1.1 Hebbian Learning

As an illustration of the distributed-memory model approach, let us consider a
simple model of cued recall. We map all of the words that could possibly be
presented in an experiment onto a set of vectors within the same space. We assume
further that the overwhelming majority of entries in each vector v are zero and the
remainder are some small positive number and that the number of entries n is large.
Suppose that we randomly choose vectors corresponding to two different words vi

and vj�=i. We can take the inner product between any two vectors as a measure of
their “similarity.” With these assumptions, the inner product of a vector with itself,
vT

i vi or vT
j vj, will tend to be much greater than the inner product between different

words vT
i vj, because the entries of these are not perfectly correlated. We might

even suppose that related words (e.g., couch and sofa) correspond to vectors that
are more similar to one another than unrelated words (e.g., couch and rutabaga).
To keep the arithmetic simple, let us suppose that we have chosen the entries in the
vectors to ensure that the expected value of vT

i vj is 1 if i = j and effectively 0
otherwise.

Let us flesh this model out sufficiently to model a simple cued-recall experiment.
Let us describe a list of word pairs by denoting the cue of the pair presented at
time t with a vector ft and the response member of the pair with a vector gt. So, if
we had a list of two pairs, absence–hollow and pupil–river, we would refer to
the vector corresponding to absence as f1, the vector corresponding to hollow
as g1, the vector corresponding to pupil as f2 and river as g2.

Now, we can model associations between the words as an outer product matrix
between the vectors corresponding to the cue and response of each pair. Let us
assume that the matrix M is initialized as an n × n matrix of zeros before the list.
Then as each item is presented, M is updated as

	Mt = gtfT
t (5.1)

so that after learning the entire list:

M =
∑

t

gtfT
t , (5.2)

where the sum is over all of the pairs presented in the experiment.
To understand the role of the outer product, let us imagine we have a one-pair

list so that M = gfT (Figure 5.1). Any particular entry Mij = gifj gives the product
of the activity in “neuron i” in pattern g and “neuron j” in pattern f. The product is
nonzero if both gi and fj are both nonzero. The anatomical structure that connects
the axon of one neuron to the dendrite of another is referred to as a synapse. These
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Figure 5.1 Graphic illustration of the equation M = gfT. Here, f is a vector
that is zero except for entries 4 and 7; g is a vector that is zero except for entries
1 and 5. The outer product matrix M is zero except for entries where both f and
g had nonzero values. Probing as Mf gives back g multiplied by the squared
length of f.

connections can be strengthened or weakened based on the activity of the pre- and
postsynaptic neurons through a variety of molecular processes. Hebbian learning
(originally proposed by Donald Hebb in 1948) is a learning rule in which synapses
are strengthened if both the pre- and postsynaptic neurons are active at the same
time (see Chapter 4 in this volume for more details). Informally, Hebbian learning
is often summarized by the slogan “neurons that fire together, wire together.”
Hebbian learning has been demonstrated experimentally in a number of brain
regions and a number of species.

To understand why this is referred to as an association, let us probe M with a
probe word, which we denote as fp. Then we find that Mfp =

(
gfT
)

fp = g
(
fTfp

)
.

That is, probing M with a probe vector fp returns g weighted by the similarity
between the probe vector and the studied cue vector. If the probe vector fp is the
same as the studied cue f, the output is g multiplied by a large number. If fp is
not the same as f, the output is g mutiplied by a small number. Returning to the
situation where there are many pairs in the list, we find (exploiting the linearity of
matrix addition and commutativity of multiplication by a scalar)

Mfp =
[∑

t

gtfT
t

]
fp (5.3)

=
∑

t

(
fT
t fp
)

gt. (5.4)
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That is, after probing memory with a specific word fp, the output is the vector
sum of the response words gt weighted by the similarity of the probe word to
the cue that was paired with that response. Because the similarity of the probe
words to themselves is much greater than between different words, this sum gives
a large number for the appropriate response and much smaller numers for the
other possible responses. If one probes M with fABSENCE, the output is “mostly”
gHOLLOW; if one probes with fPUPIL, the output is mostly gRIVER. By adding
assumptions that map the output of the associative memory onto a probability
of successfully recalling the appropriate response, one can construct relatively
elaborate models of behavior.

If each component of f and g can be thought of as a neuron, then each entry in
M can be understood as a synapse. The entire matrix M can thus be understood as
the set of synapses connecting the two populations. The outer product learning
rule in Equation (5.1) can thus be understood as a simple hypothesis for how
populations of neurons can store information via Hebbian learning. Although
this is undoubtedly a grotesque oversimplification of what happens in the brain,
this framework is sufficiently simple that one can write out tractable models of
behavioral experiments.

To actually compare this model to behavioral data, it’s necessary to specify
some means to map the strength of the association onto behavioral observables,
for instance probability of recall. Having said that, this simple Hebbian mechanism
responds appropriately to many experimental manipulations in a sensible way. For
instance, suppose that some pairs in the list are repeated. Adding additional terms
with the same vectors to Equation (5.2) results in a stronger association between
those items (this follows from linearity).1 Similarly, one can compare recall of a
particular pair in lists of various lengths. Examining Equation (5.4), we see that
the effect of including additional pairs is to add noise to the output of memory.
That is, after probing with fi, the output of memory is gj times a big number plus
all of the other items in the list weighted by small numbers. As one adds pairs
to the list, this second component grows more important, acting like background
noise for retrieval of the target response. Similarly, one could imagine that attention
fluctuates from moment-to-moment and model that by multiplying Equation (5.1)
by a factor that estimates the current amount of attention. Distributed memory
models pursued questions along these lines and carefully compared the results to
behavioral experiments.

5.1.2 Forgetting

The Hebbian outer-product model sketched above has several problems, many of
which are addressed by subsequent work described in the remainder of this chapter.
Here we discuss ways to enable the model to forget. We discuss two approaches

1 One can easily construct a similar argument for the effect of increasing the study time for some of
the pairs in the list.
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to forgetting. Perhaps the most obvious way to implement forgetting is to allow
the weights to decrease in amplitude. A less obvious way to implement forgetting
is to assume that the cue itself is not constant over time. That is, although an
experimenter may take care to present the word absence several times in the
same font, in the same location of the screen, for precisely the same duration
of time, this does not ensure that this stimulus activates the same set of neurons
in the brain on each presentation. There are many other possible approaches to
forgetting and different mechanisms may contribute differentially to forgetting in
different experimental paradigms. This chapter focuses on these two mechanisms
for forgetting because they lend themselves to concise mathematical descriptions
and are conceptually distinct from one another.

Forgetting via Changes in the Weight Matrix
One simple way to augment Equation (5.1) to enable forgetting is to allow the
weights to decay exponentially as a function of time:

Mt+1 = ρMt + gtfT
t , (5.5)

where 0 < ρ < 1. Each additional time step results in an additional power of ρ, so
that the output caused by a memory probe decreases the longer it has been available
in memory. After studying L items, we find

MLfp =
∑

t

ρL−t (fT
t fp
)

gt. (5.6)

The last term shows that the strength of the association stored in M decays
exponentially as a function of how far in the past the association was learned.

One of the longest-standing questions in memory research is whether we forget
over time due to the passage of time per se or due to intervening events. To make an
analogy, suppose one leaves an iron bar outside in the northeastern United States
and measures the amount of rust on the bar once per year. One will find that the
amount of rust on the bar increases with each passing year. Knowing nothing of
chemistry, one might be tempted to conclude that rust is caused by the passage
of time per se. In the case of the iron bar, we know this account is incorrect;
had the bar been kept in a vacuum, it would not rust at all no matter how long
one waits.

In the case of memory, there is little question that many factors affect forgetting
above and beyond any effect due to time per se. One could adapt Equation (5.5)
to accommodate these factors by allowing ρ to change as a function of variables
available at time t. Considering M as a set of synapses, one might also construct
alternative rules for forgetting that allow effects specific to a particular cue and/or
a particular response. However, as we will see, there are more fundamental issues
with this simple conception of memory as association, so we will not dwell further
on this point here.
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Forgetting via Stimulus Sampling
Weakening of associations, operationalized as a gradual decrease in the strength
of synapses, is not the only way to instantiate forgetting in a simple neural
network. Consider Equation (5.6). The term due to weakening of the synapses,
ρL−t, appears with a term relating the similarity of the probe fp to each of the
cue stimuli in the list ft. If one provided a probe stimulus that was similar but
not identical to one of the cue stimuli in the list, one would expect this to have
a measurable effect on memory. For instance, suppose the cue stimulus in an
animal conditioning experiment is a pure tone of 440 Hz. One would expect the
set of features caused by a similar tone (e.g., 441 Hz) to be greater than the set of
features caused by a less similar tone (e.g., 550 Hz). Because this would manifest
as changes in the fT

t fp terms in Equations (5.4) and (5.6), we would expect this to
result in more conditioned responding to probes similar to the studied conditioned
stimulus. Indeed, it has long been known that one can observe this phenomenon,
referred to as stimulus generalization, in animal conditioning experiments
(Hull, 1947).

One can use stimulus generalization to construct associative models of forget-
ting. Stimulus-sampling theory (Estes, 1950, 1955a, 1955b) makes a distinction
between the “nominal stimulus” that the experimenter provides and the “functional
stimulus” that the research participant experiences. To be more concrete, consider
a simple conditioning experiment in which the conditioned stimulus is a 440 Hz
tone. The nominal stimulus is the tone itself. A careful experimenter can ensure
that the nominal stimulus on each presentation is physically identical. However, no
matter how careful the experimenter may be, the functional stimulus experienced
by the participant may be meaningfully different from one presentation to the
next. For instance, an animal in a Skinner box may have a slightly different
posture from one presentation of the nominal stimulus to the next. Or perhaps the
animal is more or less attentive to different properties of the nominal stimulus
from one presentation to the next. In stimulus-sampling theory the nominal
stimulus presented by the experimenter specifies a set of features that could be
experienced by the participant. On a particular trial, the participant samples from
that set of stimulus features to obtain the functional stimulus, which is used to
support learning.

It has been said (in a quotation that is often attributed to Heraclitus), that “It
is impossible to step into the same river twice.” The identity and position of the
molecules of water changes continuously from moment to moment. Suppose one
steps into a river on two occasions, t1 and t2. Although the river at t1 is not
identical to the river at t2, it is reasonable to say that the similarity of the two rivers,
all else equal, is a decreasing function of t2 − t1. Estes (1955b) proposed that, all
else equal, the functional stimulus caused by presentations of the same nominal
stimulus at t1 and t2 is also a monotonically decreasing function of t2 − t1. Let us
write the functional stimulus caused by nominal stimulus α at time t as fα,t. One
can incorporate this assumption into an associative model to enable an account of
forgetting without a decrease in the strength of learned associations. Suppose one
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learns an association gfT
α,t1 . Probing with fα,t2 thus gives g times a function that

decreases with t2 − t1.
Remarkably, the assumption of gradually changing stimulus features from

stimulus-sampling theory from the 1950s has received support from recent neu-
rophysiological studies, at least for some kinds of stimuli. For instance, recent
recordings from mouse piriform cortex studied the set of neurons activated by
odors during conditioning (Schoonover et al., 2021). The piriform cortex is the
first cortical region that receives input from the olfactory bulb, making it roughly
analogous to the primary visual cortex for visual images or the primary auditory
cortex for auditory stimuli.2 Because it is so closely related to the sensory receptor
itself, it makes sense to think of the activation across the piriform cortex as a direct
representation of the sensory stimulus.

The particular recording method that Schoonover et al. (2021) used allows for
stable recordings of the same neurons over weeks and months. At each stage of
the experiment, different odors evoked distinct neural populations. However, the
populations that each odor evoked changed continuously over every time period
studied. That is, at each time t, one could distinguish fα,t from fβ,t. However,
fT
α,t1fα,t2 was a decreasing function of t2 − t1 for all pairs of times considered.

Recalling Heraclitus, one might say that the mouse could not smell the same odor
twice. This neural phenomenon, referred to as representational drift, is a topic of
ongoing research (Mau, Hasselmo, & Cai, 2020; Rule, O’Leary, & Harvey, 2019).
Representational drift has been reported, at least under some circumstances, in the
visual cortex (Deitch, Rubin, & Ziv, 2021), posterior parietal cortex (Rule et al.,
2020), hippocampus (Cai et al., 2016; Mankin et al., 2012; Manns, Howard, &
Eichenbaum, 2007; Rubin et al., 2015), and prefrontal cortex (Hyman et al., 2012),
as well as piriform cortex.

5.2 Short-Term Memory and Temporal Context Models

The Hebbian associative model from the previous section describes
associations between pairs of stimuli. Given a probe stimulus, the model provides
a response as output. Although simple and tractable, this model glosses over
some fundamental questions about human memory. This section studies models
developed largely in response to the free-recall task, which has been an important
driver of models of human memory since the 1960s.

In free recall, the participant is presented with a list of stimuli – typically words –
one at a time. The participant’s task is to recall as many stimuli as possible from
the list. In the free-recall task, the participant may recall the words in the order
they come to mind (this is in contrast to serial recall where the stimuli must be

2 One may even argue that the piriform cortex is more peripheral than these regions. Information from
the retina projects to the visual cortex only after passing through a brain region called the thalamus,
which receives information from many sensory modalities. For instance, information from the ear
passes through the thalamus on the way to the auditory cortex. In contrast, the piriform cortex is
directly connected to the olfactory bulb.
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recalled in the order in which they were presented). There are many variants of the
free-recall task. In delayed free recall, a distractor task of up to a minute intervenes
between the last item in the list and the beginning of the recall period. In the list-
before-last paradigm, the participant does not recall the most recent list, but the
previous list. In some experiments, participants are given a final free-recall task at
the end of the experimental session in which the participant is instructed to recall
as many words as possible from all of the preceding lists.

The first problem for the simple Hebbian model that free recall presents is how
the task is accomplished at all. The Hebbian model requires a probe to generate
a response. What is the probe in free recall? Because the instructions are so
general, whatever prompts recall must be internal to the participant. The second
challenge for the simple Hebbian model is overwhelming evidence that functional
associations are not limited to adjacent items, but are instead distributed very
broadly over many items. These findings – reviewed in the next subsection – have
led to a very different conception of memory. Rather than a collection of items
and associations among them, models originating from the free-recall task have
postulated temporally sensitive memory representations that carry information
about many items extended over macroscopic periods of time.

5.2.1 The Recency Effect and Two-Store Models

The recency effect refers to the finding that, all else equal, memory is better for
information that was presented more recently. In free recall, this manifests as an
increase in the tendency to initiate recall at the end of the list (see Figure 5.3 below)
as well as higher probability of recall overall. The recency effect can be observed
in all of the experimental paradigms that people study with human participants.

The recency effect is especially pronounced in immediate free recall, in which
the recall test proceeds just after the last item in the list (Murdock, 1962). In
delayed free recall, a delay interval is included during which participants typically
perform a distractor task (to prevent them from simply repeating the items in the
list to themselves) prior to recalling the words from the list. In delayed free recall
the recency effect is sharply attenuated. However, the probability of recall of early
items from the list is barely affected relative to immediate free recall (Glanzer
& Cunitz, 1966; Postman & Phillips, 1965). In contrast, many other variables
(e.g., presenting the words faster or slower, choosing words that are semantically
related, having medial temporal lobe amnesia) have a big effect on recall of items
from the beginning and middle of the list, but barely any effect on the recency
effect (Glanzer, 1972). These observations led researchers to propose that the
recency effect draws on a specialized memory store, referred to as short-term
store (STS) or short-term memory (Atkinson & Shiffrin, 1968; Raaijmakers &
Shiffrin, 1980).

The view that memory was divided into distinct stores was hugely influential
in the 1970s and 1980s and remains so today. The basic idea (Figure 5.2a) is that
STS can store a small number of items with very high accuracy. Items that are
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Figure 5.2 Schematic diagrams for short-term/long-term memory and tem-
poral context models. (a) Models based on a distinction between short-term
memory and long-term memory assign different properties to these different
stores. The short-term store consists of a rehearsal buffer that contains a small
integer number of items with high precision. The long-term store holds a very
large number of memory traces with less precision. After Atkinson and Shiffrin
(1968). (b) In temporal context models, the currently experienced item activates
a set of features on the item layer (bottom). After an item is presented, it
activates features that remain active in a gradually changing state of temporal
context (top). The context layer cues retrieval via context-to-item associations.
The item layer can cause recovery of a previous state of temporal context
associated with that item (not shown). After Polyn and Kahana (2008).

in STS at the time of test are recalled rapidly and with high precision. In addition,
a subset of items are passed from STS to a long-term store (LTS). LTS does not
have capacity limitations and can store information for a much longer duration.
The longer an item spends in STS during study, the greater the probability it is
transferred to LTS. A key property of STS is that it is subject to strategic control
according to the goals of the participant. For instance, if participants are rewarded
based on how many words starting with the letter q they correctly recall, we might
assume that words that start with a different letter are less likely to enter STS and
would be forgotten very quickly.

If one specifies a strategy for retaining information in STS it is straightforward
to work out (or simulate, if the strategy is very complicated) the probability
that an item remains in STS at the time of test. For instance, suppose that each
item in a long list enters STS with certainty displacing a random item in STS.
If the short-term store can hold N items, where N is much smaller than the
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Figure 5.3 The recency and contiguity effects in free recall. In the free-recall
task, participants are presented with a series of stimuli, usually words, and
are then asked to recall as many words from the list as possible in the order
they come to mind. (a) The recency effect measured by the probability of first
recall. The x-axis plots serial position within a list of 10 words. The y-axis gives
the probability that the first word the participants said came from each position
within the list. In this experiment there is a dramatic recency effect – words from
the end of the list are much more likely to be recalled first than words from the
beginning or middle of the list. After Howard, Youker, and Venkatadass (2008).
(b) The contiguity effect in free recall. Given that a participant has just recalled
word i from the list, what is the probability that the next word recalled comes
from position i + lag? All else equal, participants show a robust tendency to
recall words from nearby positions within the list together in recall. The data in
this figure is averaged over many experiments. After Kahana (2012).

number of items in the list, then the probability that an item already in STS
is replaced by an incoming item is 1/N. The probability that the item already
in STS persists in STS after a new item enters STS is thus 1 − 1/N. At the
end of a list of L items, the probability that the ith item is still in STS at the
time of test is (1− 1/N)L−i, leading to a recency effect. Note that although
this function decays exponentially, recency due to STS has different properties
than recency due to exponential weight decay [Equation (5.6)]. First, the quantity
that is decaying is a probability rather than a strength per se. This probability
gives the proportion of trials where the item is available for recall from STS;
on trials where the item is not available, there is zero probability of retrieval
from STS. This is distinct from a situation where the weights give a small but
reliable signal. Second, although the probability of any one item remaining in
STS may be a decreasing function, it should be kept in mind that the number
of items in STS depends only on its capacity N (assuming the list has more
than N items).
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One can similarly work out probabilities for the amount of time a word
spends in STS (recall that the probability of transfer to LTS goes up with time
spent in STS). Coupled with a specfication of LTS one can make predictions
for many observable properties of memory retrieval, resulting in a very detailed
description of immediate and delayed free recall, including but not limited to the
recency effect.

A major challenge to the two-store account of recency came from a modification
to the free recall paradigm referred to as continual distractor free recall (CDFR).
Recall that in immediate free recall the recall test follows shortly after the last
item in the list. According to STS-based accounts, the recency effect in immediate
free recall happens because the items from the end of the list are still available in
STS. In delayed free recall, a distractor task follows the last item on the list before
the recall test. The recency effect is attenuated in delayed free recall. According
to STS-based accounts, this is a consequence of the distractor task pushing list
items out of STS. In CDFR, a distractor task follows each item in the list, not
only the last item. Perhaps surprisingly, there is a pronounced recency effect in
continual distractor free recall relative to delayed free recall (Bjork & Whitten,
1974; Glenberg et al., 1980). This finding was not predicted by the STS-based
account of recency and is difficult to reconcile with an account of recency solely
based on STS (Davelaar et al., 2005; Lehman & Malmberg, 2012).

5.2.2 The Contiguity Effect Across Delays

As a thought experiment, try the following memory experiment on yourself.
Answer the following question: What did you most recently have for
breakfast?3 Most people, when answering this question, do not merely generate
a verbal response (e.g., “toast”) but experience a vivid recollection of the event in
the process of answering the question. For instance, while writing this (in the after-
noon), in answering the question about breakfast, I spontaneously remembered
where I sat down (kitchen table with the window to my right), the hopeful look
on my dog’s face, and the news I read on my phone. I can take another moment
and search my memory to vividly remember events that happened shortly before
eating breakfast (putting the coffee on the stove, putting bread in the toaster) and
shortly after (finishing my coffee in the backyard with my dog).

The “kind of memory” that supports vivid recollection of events from one’s life
is referred to as episodic memory (Tulving, 1983). Episodic memory has been
extensively studied over the last several decades. For the present purposes we note
that episodic memory is believed to be closely related to a phenomenon referred to
as the contiguity effect. In free recall, the contiguity effect (Figure 5.3b) manifests
as the finding that (all else equal) if a participant has just recalled a word from the
list, the next word that participant recalls tends to come from a nearby position in

3 If you are eating breakfast while reading this you can substitute the question What did you most
recently have for dinner?
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the list (Kahana, 1996). In memory experiments with a probe (e.g., cued recall),
the contiguity effect manifests as the finding that the probe tends to bring to mind
other items that were close together in time. For instance, in cued recall, when
a participant recalls a word that was not the correct response to the probe, that
erroneous word tends to come from a pair that was presented nearby in the list.
The contiguity effect is not limited to experiments with words as stimuli and is
indeed quite general (Healey, Long, & Kahana, 2018).

Note that the episodic memory for today’s breakfast illustrates the contiguity
effect. Sitting down at the table, giving my dog a piece of sausage and reading
about terrible events unfolding overseas were not actually simultaneous but
were relatively close together in time (probably tens of seconds). The other
events I retrieved – putting the bread in the toaster and finishing the coffee in
the backyard – were each separated by several minutes from breakfast per se.
Consistent with this intuition, the contiguity effect is observed in the laboratory
in CDFR experiments where the items are separated by tens of seconds. The
contiguity effect can also be observed over much longer time scales – hundreds
of seconds in final free recall (Howard, Youker, & Venkatadass, 2008), hours in
experiments using mobile phones to administer a list as participants went through
their daily lives (Mack et al., 2017) and even much longer periods of time in
retrieving news events (Uitvlugt & Healey, 2019).

One may think of the contiguity effect as analogous to the recency effect, but
taken from a different temporal reference frame. The recency effect describes
the availability of items in memory as a function of their temporal proximity to
the present. In contrast, the contiguity effect describes the availability of items in
memory as a function of their temporal proximity to a remembered moment from
the past. This analogy between recency and contiguity suggested a different class
of models for memory, which we turn to in the next subsection.

5.2.3 Temporal Context Models

In this subsection we describe the memory representations of a class of models
referred to as temporal context models (TCMs, Howard & Kahana, 2002; Seder-
berg, Howard, & Kahana, 2008; Polyn, Norman, & Kahana, 2009). These models
were originally developed to account for recency and contiguity effects in free
recall. TCMs have since been applied to other episodic memory tasks, and even
memory tasks that are not considered to tap episodic memory (Logan, 2021). In
this subsection we will describe the basic properties of these models and how they
result in properties of memory. We will discuss neuroscientific work inspired by
TCMs before describing some fundamental limitations that follow from the form
of temporal context.

Temporal context models make three important conceptual changes relative
to the models we have considered thus far in this chapter. First, these models
hypothesize a vector representation of temporal context that changes gradually
from moment to moment. We will specify this in more detail below. For now,
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we note that the temporal context vector shares at least some features with the
content of short-term store. Second, temporal context models do not attribute
behavioral associations between items – such as the contiguity effect – to direct
connections formed between item representations [as in Equation (5.1)]. Rather,
functional associations in temporal context models are mediated by items’ effects
on temporal context and a temporal context’s ability to cue retrieval of items. Third,
temporal context models assume that it is possible to reinstate a previous state of
temporal context. This “jump back in time” is hypothesized to be associated with
the experience of episodic memory.

Two Interacting Vector Spaces: Items and Contexts
In TCMs, there are two interconnected vector spaces (Figure 5.2b). One vector
space, which we will sometimes refer to as the item space, is activated by items
that are currently available, either by virtue of having been presented by the
experimenter or by virtue of having been recalled by the participant. We refer to the
cognitive representation of specific items as vectors f and the vector corresponding
to the item presented at time step t as ft. The other vector space, which we will
sometimes refer to as the context space, maintains a state of temporal context.
We will refer to the state of temporal context at time t as ct. Temporal context
is affected by items; the input at time t, cIN

t , is caused by ft, the item available
at time t.

Temporal context evolves gradually, retaining information contributed by recent
items:

ct = ρct−1 + cIN
t . (5.7)

That is, at each time step t, the new state of temporal context is given by ρ times
the previous state of temporal context, plus the input caused by ft, cIN

t . As before,
0 < ρ < 1 so that in some formulations, ρ is allowed to vary as a function of
time (for instance to normalize the context vector) and/or can vary for different
components of the context vector as attention to different features changes (e.g.,
due to different encoding tasks). We assume that on the initial presentation of an
item in a randomly assembled list of words, the inputs caused by each item cIN are
uncorrelated with one another and treat them as random vectors. Equation (5.7)
shows that information caused by a particular item persists after it is presented.
Recursively unwinding Equation (5.7), we find

ct =
∞∑

τ=0

ρt−τ cIN
t−τ . (5.8)

That is, the input pattern cIN caused by an item decays exponentially as additional
items are presented.

At any particular moment, recall is cued by the current state of temporal context
via an associative matrix MCF that connects the context layer (containing context
vectors c) to the item layer (containing item vectors f). Analogous to our simple
Hebbian model [Equation (5.1)], the basic formulation provides an outer product
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association between the context available prior to presentation of the current item
and the item itself:

	MCF = ftcT
t−1. (5.9)

This shift in indices ensures that the temporal context that cues ft does not include
information cIN

t that the item itself caused.
Equation (5.9) resembles Equation (5.1) in that it associates two patterns via an

outer product. However, rather than associating two items f and g, MCF associates
a context vector to an item vector. The context-to-item association means that
a probe context activates each item in the list to the extent the probe context
resembles that item’s encoding context. By analogy to Equation (5.4):

MCFcp =
∑

t

(
cT

t−1cp
)

ft. (5.10)

Because context changes gradually, this typically results in a weighted sum of
many items. Temporal context models use a retrieval rule to probabilistically
select an item for recall. These mechanisms are sometimes quite elaborate; the key
feature they share is that the probability of recalling a particular item at a particular
retrieval attempt depends not only on the degree to which it is activated, but also
on the activation of the other items in the list. That is to say, items compete to be
retrieved.

Recency Effect
We are in a position at this stage to understand why TCMs predict recency
effects in immediate and delayed free recall. Combining Equations (5.8) and (5.10)
we find, under the assumption that the cIN during initial study of a random list are
orthogonal to one another, that probing with the context available at the end of the
list, cL, gives back the items from the list weighted exponentially:

MCFcL ∝
∑

t

ρL−t+1ft. (5.11)

The exponential decay clearly provides a large advantage to items from the end of
the list, leading naturally to a robust recency effect. Introducing a delay D takes
cL → ρDcL + distractors, where the distractors ought to be orthogonal to the list
items. This reduces the difference in activation between the last items in the list
and earlier items, resulting in a decrease in the magnitude of the recency effect.

5.2.4 Contiguity Effect

Thus far we have considered only the case where the input patterns cIN caused by
the items in the list are orthogonal to one another. In this subsection we study the
effects of relaxing this assumption. To make the ideas clear, let’s repeat an item at
the end of a very long list of unrepeated items and see how the resulting context
cues the neighbors of the repeated item. We consider two possibilities. In the first
case, the repeated item simply causes the same input that it did during the initial
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presentation of the list. In the second case, we consider the case that the repeated
item recovers the temporal context available when it was intially presented; that the
repeated item causes a jump back in time. We will find that these two hypotheses
result in very different qualitative properties.

Let us label the time index at which an item is repeated as r, the position at
which the repeated item was initially presented as i, and study the ability of cIN

r to
cue items near i, fi+lag. We assume that r is far in the future so that we can neglect
cT

i+lagcr−1 and restrict our attention to fT
i+lagMCFcIN

r . Suppose that the repeated
item simply causes the same input at time step r that it did when it was initially
presented at time step i. Because cIN

i persisted after time step i [see Equations (5.7)
and (5.8)], this results in similarity to the context states that followed time step i.
This similarity decreases exponentially with lag > 0. Put another way, because
temporal context contains information from recently presented items, cIN

i is similar
to the temporal context of items for which i was in the recent past. However, the
same is not true for items that preceded item i. For lag ≤ 0, information retrieved
by item i is not in the recent past – item i has not been presented yet and there is
no way the participant should be able to predict a word in a random list. Putting
these considerations together, we find that if cIN

r = cIN
i :

fT
i+lagMCFcIN

i =
{

0, lag ≤ 0

ρlag, lag > 0
. (5.12)

That is, if at time step r, the item at time step i simply recovers the same input
it caused during encoding, cIN

r = cIN
i , this results in an asymmetric functional

association to its neighbors.
Now let’s consider the case in which the repeated item recovers the state of

context available when it was initially presented, cIN
r = ci−1. This context includes

information caused by the items that preceded item i. This information also persists
in the temporal context after item i was presented. Noting that the inner product is
symmetric, vTu = uTv, we conclude that in this case

fT
i+lagMCFci ∝ ρ|lag|. (5.13)

That is to say, retrieving the previous state of temporal context results in a
symmetric association that falls off exponentially as a function of |lag|.

In most free-recall experiments, the shape of the contiguity effect includes
a contiguity effect in both the backward and forward direction, with a reliable
advantage for forward transitions (Figure 5.3b is representative). In TCMs, the
pattern retrieved by item i when it is re-experienced at time step r is a mixture of
these two patterns:

cIN
r = (1− γ ) cIN

i + γ ci. (5.14)

The value of γ can be estimated from the data and is believed to vary not only from
participant to participant but also from one retrieval to the next. This makes sense
of the finding that episodic memory retrieval – presumably related to the recovery
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of a previous state of temporal context – does not always succeed. This property of
episodic memory is familiar to anyone who has bumped into a familiar person in
a public place (e.g., a grocery store) . . . but been unable to actually remember any
details of the person’s identity.

5.2.5 Neural Evidence for Temporal Context Models

Temporal context models have benefited from a relatively close connection to
work in cognitive neuroscience. After all, if the long-term goal of this kind of
modeling is to develop a more-or-less literal model of the computations that take
place in the brain during memory encoding and retrieval, it is essential to compare
hypotheses to the activity of neurons in the brain. We briefly point to three pieces
of evidence that speak to the utility of TCMs in making sense of human and also
animal neuroscience.

First, the division of cIN into two components with distinct properties [see
Equation (5.14)] has been very productive in explaining otherwise isolated findings
in neuropsychology and cognitive neuroimaging. To take a simple example,
imagine if it were possible to alter γ across experimental groups. A group with
a lower value of γ ought to have difficulties with vivid episodic memory recall,
but also show a more asymmetric contiguity effect in free recall. This finding
has been observed with patients with medial temporal lobe amnesia (Palombo
et al., 2019), electrical stimulation to the entorhinal cortex (Goyal et al., 2018), and
participants who are experiencing cognitive declines with aging, perhaps leading
to Alzheimer’s disease (Quenon et al., 2015; Talamonti et al., 2021). Moreover,
according to the models, retrieved temporal context ought to be preferentially
involved in particular sorts of memory. Consider an experiment where participants
learn pairs separated by long periods of time, absence hollow . . . hollow
pupil. If the second presentation of hollow can cause recovery of its previous
context (i.e., the cIN caused by absence), then absence in effect becomes part of
the temporal context for pupil. If γ = 0, the model can still learn the pairwise
associations using the forward part of the contiguity effect. Indeed, normal human
participants generalize absence pupil associations even though absence and
pupil were never experienced nearby in time. As it turns out, lesions to a brain
region called the hippocampus – which is believed to be important in episodic
memory – cause a deficit in these bridging or “transitive” associations in rodents
while leaving the pairwise associations unaffected (Bunsey & Eichenbaum, 1996),
just as if the hippocampus is responsible for causing a recovery of temporal
context. A number of neuroimaging studies have looked at similar experimental
paradigms in humans, showing that the hippocampus and hippocampal–prefrontal
interactions are important in these transitive associations (Zeithamova, Dominick,
& Preston, 2012).

One can also measure direct neural predictions from TCMs. The most charac-
teristic prediction is the existence of a temporal context vector c, which should
show temporal autocorrelation extending over macroscopic periods of time – at
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least tens of seconds. One can construct a vector of brain activity using many
different methods. For instance, it is practical to record simultaneously from many
individual neurons at once. Taking the number of spikes for each of N neurons
averaged over, say, a one second interval gives an N-dimensional vector. One can
then compute a temporal autocorrelation function by comparing response vectors
from neighboring time points. This type of analysis has shown robust evidence
for signals that are autocorrelated over seconds, minutes, and even hours or days
in a number of brain regions, notably the hippocampus and prefrontal cortex (Cai
et al., 2016; Hyman et al., 2012; Mankin et al., 2012). These studies have focused
on rodents because of the array of systems neuroscience tools that can be brought
to bear in rodents, but analogous results have been found with human fMRI
(Hsieh et al., 2014).

The most characteristic prediction of TCMs is that the state of temporal context
should be recovered when an episodic memory is retrieved [see Equation (5.13)].
When item i is repeated at some later time step r, and causes an episodic memory,
the context at time step r should resemble the context prior to the context at
time step i. This is nontrivial; any neural information that was caused by item i
during study can only be observed after its original presentation. There is evidence
from invasive human recordings of this phenomenon in several human memory
paradigms (Folkerts, Rutishauser, & Howard, 2018; Manning et al., 2011; Yaffe
et al., 2014), fMRI studies of free recall (Chan et al., 2017), and real-world
memory extended over hours and days and weeks (Nielson et al., 2015).

5.2.6 Memory is Scale-Invariant; Exponential Functions are Not

In our discussion of models of short-term memory, we noted that the failure of
short-term memory models to account for the long-term recency effect and long-
term contiguity effects was a serious problem for those models. It is true that
TCMs are better able to account for those phenomena. In STS-based models, the
probability that an item is perfectly represented in STS falls off exponentially. As
time passes, STS provides zero information about the item on an increasingly high
proportion of trials. In contrast, in TCMs the information about an item falls off
exponentially with time, but is reliable across trials. With a bit of resourcefulness
and a few free parameters, one can exploit this property to provide a reasonable fit
to experimental data from continuous distractor free recall. But this account is still
theoretically unsatisfactory, as we shall see shortly.

As discussed above, a great deal of evidence suggests that recency and contigu-
ity effects not only persist across a delay interval in CDFR, but are observable at an
extremely wide range of time scales (Figure 5.4c provides a particularly striking
example). This suggests that the memory representations governing recency and
contiguity effects are scale-invariant (Chater & Brown, 2008). A function is said
to be scale-invariant if it is unaffected by rescaling the input up to a scaling factor.
That is, a function y(x) is said to be scale-invariant if stretching or compressing
its input by a constant, x → ax, results in the same function up to a constant
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Figure 5.4 Scale-invariant memory. Consider taking a variable x and rescaling
it x→ ax. (a) An exponential function e−x zoomed in over different ranges of x.
(b) A power-law function x−1 zoomed in over different ranges of x. Starting from
the middle panel, where x is shown over the range 0 to 1, the left panels show
the functions rescaled by zooming in on x by a factor of 100; the right panels
show the functions zoomed out by a factor of 100. Note that the exponential
function has very different properties across scales. In contrast, the power-
law function has the same shape up to a scaling factor (note the change in
the y-axis) regardless of the scale over which it is examined. (c) The recency
effect in human memory persists across time scales. Left: Memory tested on the
scale of seconds. Right: Memory tested on the scale of minutes. Participants
studied lists of words. The left panel shows the probability that the first word
that came to mind in a free-recall task came from each position within the list.
After learning 48 lists, participants were asked to recall all the words they could
remember from all the lists in the experimental session. The right panel plots the
probability that the first word they recalled came from each list in the session.
Note that the function has a similar shape across very different time scales.
After Howard, Youker, and Venkatadass (2008).
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term that depends only on a: y(ax) = f (a)y(x). This property is true of power-
law functions that govern, say, electrical potential as a function of distance from a
charged particle, or the gravitational field as a function of distance from a massive
object in Newtonian gravity. We can easily convince ourselves of this property
by noting that if y(x) = x−1, then y(ax) = a−1y(x), satisfying the constraint.
Figure 5.4b illustrates this property for y(x) = x−1 by rescaling the x-axis.

The exponential functions generated by TCMs are decidedly not scale-invariant.
Note that ρx = e−x if we choose ρ = 1/e. More generally, ρx = e−sx if ρ = e−s

so that s = − log ρ. Thus, choosing a ρ is equivalent to specifying a rate constant s
(or a time constant 1/s) for an exponentially decaying function. Figure 5.4a shows
the function y(x) = e−x rescaled over the same range of values as the power-
law function. When x is much less than one (left panel), the exponential function
appears linear. This follows from the Taylor series expansion of the exponential
function:

e−	 = 1−	+ · · · , (5.15)

where additional terms include higher powers of 	 multiplied by e−x. As we
zoom out (right panel), the exponential function comes to approximate a delta
function centered at zero. Note that in both of these two regimes x� 1 and x 1,
the exponential function is useless for expressing a recency effect. Mapping x to
recency, when x is small, there is no forgetting because all points are associated
with a high nearly constant value. When x is large, almost all points (excluding
zero) are mapped to a low nearly constant value.

This rescaling is not an academic exercise. CDFR approximates rescaling of
experience. Insertion of a delay of duration D between each item and at the end
of the list approximates taking ρ → ρD, so that the relative delay between serial
positions relative to the time of retrieval becomes effectively larger. From this it is
clear that, although one may be able to approximate experimental data in restricted
cases, the machinery of the temporal context vector specified by Equation (5.7) will
eventually break down.

5.3 Scale-Invariant Temporal History

Thus far, we have considered models based on more or less complicated
implementations of the idea of association. In the case of the Hebbian association
model, the association is distributed across the entries in a matrix corresponding
roughly to the set of synapses between items. In temporal context models,
associations between items are mediated by temporal context, a representation
of the recent past in which previous events decay gradually. These models share
an implicit assumption that the goal of memory is to express relationships as a
scalar value. That is, we can talk about the relationship between, say, absence
and hollow only in terms of the magnitude of the connection between them.
Given two pairs, absence–hollow and pupil–river, the simple Hebbian model
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does not have any mechanism to convey information about whether one pair was
learned before or after the second pair. Yes, one might note that the absence–
hollow association is stronger than the pupil–river association and use this to
infer that absence–hollow was more recent, but this inference would break down
if, for instance, the participant was paying less attention when pupil–river was
presented, or if absence–hollow was presented multiple times.

Similar arguments apply to TCMs. Although temporal relationships can be
inferred indirectly from the magnitude of the associations between multiple words,
there is no explicit information about the direction of time contained in ct. Consider
two context vectors ct and ct+lag. The direction of the difference between these
two vectors, ct+lag − ct, depends on the particular choice of items presented
during the interval specified by lag rather than the time per se. Moreover, as with
simple Hebbian models, repeated items can make even the magnitude of these
vectors ambiguous. The goal of the representation used in this section is to build
a replacement for the temporal context vector. We desire that this representation
carries explicit information about temporal relationships. We also desire that this
representation can be used to build scale-invariant models of memory.

Understanding vectors as activated populations of neurons, the simple Hebbian
model and temporal context vectors distribute “what” information about the stimuli
that are experienced across populations of neurons. Different basis vectors of
the space correspond to different properties of stimuli. The temporal context
vector provides decaying “what” information “smeared” over the recent past.
The strategy of this approach is to construct a population of neurons that not
only represent information about what has happened in the recent past, but to
distribute information about when it happened across different neurons. That
is, our computational goal is to estimate the recent past as a function of time.
Figure 5.5 provides an illustration and introduces notation. In this section we
describe a specific solution to this problem that has found considerable empirical
support from data from both psychology and neuroscience.

Let us suppose that the world provides a continuous stream of input f (t).
Like the set of vectors corresponding to a list of words, f is in general vector-
valued but we will suppress vector notation for now. Consider the problem of an
observer having examined f up to a particular point t. We will refer to the history
leading up to this moment t as ft(τ ), where τ runs from zero to ∞ and τ = 0
corresponds to the present. Our goal is to construct an estimate of the history

leading up to time t as f̃ t(
∗
τ). We desire that this estimate approximates reality –

with an error that is comparable across time scales – and is also a computation
that could be implemented by neural circuits. The next subsection introduces a
specific method that has these properties (proposed by Shankar & Howard, 2012).
Subsequent subsections demonstrate that it is straightforward to build not only
temporal context models out of this form of representation, but also other more
“cognitive” models as well. Finally, we touch on a wealth of neuroscience work

that suggests populations of neurons like those proposed for f̃ t(
∗
τ).
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a b

Figure 5.5 Scale-invariant temporal history. (a) Cartoon illustrating the goal
of the scale-invariant temporal history. At time t, the history leading up to
the present is given by ft(τ ). The argument τ runs from 0 to∞. The goal of the
representation of temporal history is to construct at each moment a record of the
recent past as a scale-invariant temporal history. This history is compressed in
that it has less temporal resolution for events further in the past. (b) Schematic
of the temporal history at a single moment shortly following presentation of a
list g k l n t x h. Each box gives the activation of a “unit” at time t. Lighter
boxes indicate higher activation. Black boxes indicate zero activation. Top: As
in TCMs, the input pattern f (t) is a vector over items. Here we assume that
each item has an orthogonal representation; the features are sorted on their
order of past presentation for ease of visualization. Because we take t to be
shortly after presentation of the last item in the list, there is no activation in
f (t). Bottom: The scale-invariant representation retains information about the
past leading up to the present. Here “columns” are organized so that they
correspond to the same features as in f (t). Columns correspond to “what”
information. Rows correspond to “when” information. For instance, in the top
row, only the column corresponding to h, the last item in the list, is active. For
rows representing information further in the past, several items are active (note
that the peaks for k and l overlap). The curvature in the peak of activation
across the list items is a consequence of the logarithmic compression of the
internal time axis. The grayscale changes across rows for ease of visualization.
In actuality, the peak of a stimulus a time τ in the past goes down like τ−1.
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5.3.1 Estimating Temporal Relationships Using
the Laplace Transform

This section describes a method for estimating f̃ t(
∗
τ) based on Laplace transforms

that was proposed by Shankar and Howard (2012). First let us write a continuous
version of Equation (5.7). For reasons that will become clear, we change notation
such that the temporal context vector ct is written as F(t) and the input to the
context vector cIN

t is written as f (t). We take both of these to be vector-valued but
will suppress the vector notation for present. Defining s = − log ρ, this is just a
continuous version of Equation (5.7):

dF

dt
= −sF + f (t). (5.16)

Solving Equation (5.16) we find, in the general case:

Ft(s) =
∫ ∞

0
e−sτ ft(τ )dτ . (5.17)

Comparing this to Equation (5.8) we see a close correspondence between ct and
Ft if we make the identification ρ = e−s. In contrast to the TCMs we discussed
in Section 5.2.3, we do not understand s as a parameter to be estimated from the
data of a particular experiment, but as a continuous variable. To be concrete, we
can imagine that we have an ensemble of units, each with a different value of s.

Continuous s Enables Information About Continuous Time
Treating s as a continuous variable allows us to reconstruct information about
the value of ft(τ ) at different values of τ . With any particular value s1, Ft(s1)

captures information about the past history ft(τ ) up to a time scale on the order of
τ1 = 1/s1. If we chose a different value s2, Ft(s2) would capture information up
to τ2 = 1/s2. For simplicity, let’s assume that τ1 < τ2. Consider the properties
of the exponential function illustrated in Figure 5.4. For values of τ much less
than τ1, both Ft(s1) and Ft(s2) weight ft(τ ) by similar amounts. Similarly, for
values of τ much greater than τ2, both of the exponential functions have decayed
to zero and neither Ft(s1) nor Ft(s2) carries information about f (τ ) in that interval.
However, consider how the two values of F vary as τ increases from τ1 to τ2 (recall
that τ1 < τ2). As τ passes through τ1, the contribution of ft(τ ) to Ft(s1) rapidly
decreases. However, the exponential for Ft(s2) decays less steeply in this region,
so that the contribution of these values to Ft(s2) is greater. We conclude that one
can infer something about the values of ft(τ ) in a region specified by τ1 and τ2 by
observing the difference between Ft(s1) and Ft(s2). Given many values of s we
can infer ft(τ ) at many values of τ .

More formally, we can note that Ft(s) from Equation (5.17) describes the real
Laplace transform of ft(τ ). The Laplace transform is invertible; if we know the
value of Ft(s) precisely with every real value of s from 0 to∞, then we can specify
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ft(τ ) precisely for every value of τ from 0 to∞. We will restrict our attention to
real positive values of s.4

Approximately Inverting the Laplace Transform
Now that we’ve established that Ft(s) carries information about the time of past
events ft(τ ), we need to determine how to extract that information. Knowing that
Ft(s) is the real Laplace transform of ft(τ ) suggests a strategy – simply invert
the Laplace transform. That is, Ft(s) provides a memory for the past leading up
to the present ft(τ ). After inverting the Laplace transform, we would obtain an

estimate of the actual history, which we write as f̃ t(
∗
τ). Over the years, many

methods for the inverse Laplace transform have been proposed. We focus on the
Post approximation (Post, 1930), which is relatively straightforward to implement
in neural circuits and has some computational properties that are advantageous in
describing psychological and neurophysiological results.

To approximately invert the transform, we define a mapping
∗
τ ≡ k/s, where k

is an integer to be approximated from the data. At each moment, the value of f̃ at

each value of
∗
τ is computed as

f̃ t(
∗
τ) ≡ L−1

k Ft(s) = Cksk+1 dk

dsk
Ft(s). (5.18)

The derivative on the right-hand side is to be taken in the neighborhood of the

value of s = k/
∗
τ . Ck is a constant that ensures that the sign and magnitude of

f̃ t(
∗
τ) corresponds to the sign and magnitude of ft(τ ). The operator L−1

k includes a
computation of the kth derivative with respect to s.5 In the limit as k→∞, the Post

approximation becomes the inverse transform and f̃ t(
∗
τ = τ) = ft(τ ). However, for

finite k, there is a temporal blur introduced. f̃ t(
∗
τ) is equal to an average of ft(τ ) in

the neighborhood around τ = ∗
τ . Suppose ft(τ ) is a delta function at a particular

time τo in the past. Then

f̃ t(
∗
τ) = Ck sk+1 dk

dsk
e−sτo (5.19)

= Ck sk+1τ k
o e−sτo (5.20)

= Ck
1
∗
τ

(
τo
∗
τ

)k

e
−k

(
τo∗
τ

)
. (5.21)

The constant Ck includes a factor of −1k so that the right-hand side of this
expression is positive for all k. The function on the right-hand side of Equation
(5.21) is a product of a growing power law and a decreasing exponential, resulting

4 Negative real values of s would be neurally unreasonable. We ignore complex s for simplicity.

5 Given a discrete set of s values, L−1
k can be understood as a matrix Lij that maps F(sj) onto f̃ (

∗
τ i),

with a matrix implementation of the discrete derivative.
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in a function that has a single peak. Freezing time at a particular τo and looking

across all
∗
τ , the peak comes at

∗
τ = τo

k
k+1 . Fixing a particular

∗
τ and observing

it through time as τo changes, the peak comes at τo = ∗
τ . The most important

property of this expression is that the right-hand side depends on the time τo only

through ratio τo/
∗
τ . Because of the linearity of Equation (5.17) and the linearity of

L−1
k , we can write an expression for any history ft(τ ) as

f̃ t(
∗
τ) =

∫ ∞
0

Ck
1
∗
τ

(
τ
∗
τ

)k

e
−k τ∗

τ ft(τ ) dτ (5.22)

=
∫ ∞

0

1
∗
τ

k

(
τ
∗
τ

)
ft(τ ) dτ (5.23)

=
∫ ∞

0
k(x) ft

(∗
τx
)

dx, (5.24)

where we have defined k(x) ≡ xke−kx and changed variables to x ≡ τ
∗
τ

in the last

line.

A Note on Biological Realism
As we will see later, these equations provide a reasonable description not only
of a memory representation that can be used to describe behavior in a range
of memory tasks, but also of neurophysiological data from a number of brain
regions. The equations are in principle computable by neurons – Equation (5.16)
simply requires slow time constants and it has long been known that the brain
can compute derivatives needed to implement L−1

k . How literally should one take
these equations? There is certainly a level of precision at which these equations are
not a correct description of the firing rate of neurons. The author of this chapter
encourages the reader to take these equations seriously, but not literally.

For instance, Equation (5.16) describes an instantaneous reaction to an input
in continuous time. If one understands f (t) as a stimulus under external control,
this cannot be literally true. Moreover, there are a number of ways in which
the brain could implement the slow rate constants in Equation (5.16), including
recurrent connections, metabotropic glutamate receptors (Guo et al., 2021), and
feedback loops between spiking and intrinsic currents (Egorov et al., 2002; Tiganj,
Hasselmo, & Howard, 2015). These mechanisms would all have slightly different
properties that would deviate from Equation (5.16). However, the larger point
that firing for a population of neurons decays roughly exponentially following a
triggering stimulus with a broad range of time constants may still be true.

Similarly, the inverse operator L−1
k cannot be literally true. One major issue is

that L−1
k is a linear operator. Taken literally, linearity of the right-hand side of

Equation (5.18) would require that every bit of information about the change in

f (t) is reflected, at least a little bit, in f̃ (
∗
τ), which seems unreasonable. Another
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serious problem is that empirical values of k estimated from neural data can be
quite high (Cao et al., 2021). This is a computational problem in that computing
the kth derivative becomes more and more sensitive to noise as k increases
(Shankar & Howard, 2012). In real cortical circuits, recurrent feedback involving
networks of inhibitory interneurons works to dampen noise (Ferster & Miller,
2000). Nonetheless, L−1

k captures some important phenomena of neural firing that
should be taken seriously. First, the weights of L−1

k do not reflect any type of
learning or experience with the stimuli. They only extract information embedded
in a population with different decay rates. Second, the shape of the receptive fields
L−1

k predicts for f̃ seems to agree reasonably well with experiment (Howard et al.,
2014), at least in cases with a few discrete stimuli presented widely separated in
time. Third, the idea of using derivatives with respect to s as a signal to infer the
time of a stimulus presentation is a sound idea, even if the brain doesn’t literally
use the Post approximation with k = 38 (or some other very large value of k) to
extract this information.

A Logarithmic Scale for Past Time
Note that although Equation (5.23) is written as an integral transform of ft(τ ), it
is not necessary to retain a detailed memory of ft(τ ). Updating Equation (5.16)
requires only the preceding value Ft−dt(s) and the momentary value f (t); there
is no need to retain prior values of f above and beyond the information present in

Ft(s). Moreover, f̃ t(
∗
τ) can be computed from Ft(s). We thus have a choice to make

about how much information to retain in Ft(s). That is, the brain can’t actually have
an infinite number of values of s. And there is no reason a priori to assume that the

s values that are sampled should be evenly spaced. Because
∗
τ ≡ k/s, choosing how

to distribute the s also specifies how to distribute the
∗
τ . Equations (5.23) and (5.24)

suggest a specific choice for sampling
∗
τ .

Consider f̃ at two nearby values of
∗
τ , which we’ll refer to as

∗
τ o and

∗
τ o + ε. If

we observe f̃ t(
∗
τ o) and find that it is at a high value, we know that f̃ t(

∗
τ o+ ε) is also

likely to be at a high value. Conversely, if we observe that f̃ t(
∗
τ o) is close to zero,

we know that f̃ t(
∗
τ o+ ε) is also likely to be close to zero. Because they are affected

by nearby points in time, these two values of f̃ are correlated with one another.

Each value of
∗
τ we sample costs us something (e.g., metabolic energy for a brain,

availability of RAM in a computer simulation, etc.). In the limit as ε → 0, there
is no benefit to measuring f̃ at a second value. As ε increases from zero, the two
values of f̃ provide different information about the past and there is some benefit

to counteract the cost of sampling a second value of
∗
τ . However, the benefit from

a particular number ε depends on the choice of the first
∗
τ . To get an intuition into

why this is so, suppose that we start with a specific
∗
τ and specific ε, then we vary

∗
τ

while keeping ε fixed. As we increase
∗
τ , the impact of a fixed value of ε becomes

less and less. This is true because  in Equation (5.23) depends only on the ratio
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τ
∗
τ

and the difference between τ
∗
τ

and τ
∗
τ+ε

grows smaller as
∗
τ increases for all τ . If

we adopt the strategy of choosing ε so that each additional value of
∗
τ provides the

same benefit, we arrive at a sampling strategy where the difference between adja-

cent values of
∗
τ goes up linearly with the value

∗
τ . One can formalize this further.6

Setting the spacing between adjacent samples of
∗
τ to be proportional to the

starting value of
∗
τ leads immediately to several properties. First, the ratio between

adjacent values must be a constant:

∗
τ n+1 − ∗τ n = c

∗
τ n �⇒

∗
τ n+1
∗
τ n

= 1+ c. (5.25)

Second, the number of units one observes with a particular value of
∗
τ should go

down with that value of
∗
τ :

dn

d
∗
τ
= 1
∗
τ

. (5.26)

This expression diverges at zero, which is obviously not physical. One solution is

to fix some minimum value of
∗
τ that can be sampled,

∗
τmin.7 Third, the samples of

∗
τ are evenly spaced as a function of the logarithm of

∗
τ :

∗
τ n = (1+ c)n ∗τmin, (5.27)

n = log1+c
∗
τ n − log1+c

∗
τmin. (5.28)

This cluster of properties is quite theoretically satisfying. Many sensory recep-
tors in the mammalian brain sample continuous dimensions at logarithmically
spaced intervals. For instance, the density of receptors on the retina has long
been known to decrease linearly with distance from the center of the retina
[as in Equation (5.26)], a property that appears to be respected throughout early
stages of the visual system in the brain. Psychologically, the logarithmic sampling
of time [Equation (5.28)] provides a close correspondence with the Weber–Fechner
law from psychophysics, which states that the magnitude of a perceptual variable
goes up linearly with the logarithm of the physical stimulus that causes it. The
Weber–Fechner law holds (at least approximately over some range) for a number
of simple stimulus dimensions (e.g., loudness of a tone, pitch of a tone, length
of lines, etc.) and has been argued to hold for perception of temporal intervals as
well. It would be quite elegant if the brain distributes receptors along a time axis
using the same mathematical expression as receptors along the retina, resulting
in similar perceptual properties. It is especially satisfying that the arguments
leading to logarithmic distribution of “time receptors” made no reference to

6 For instance, it can be shown that if f̃ is driven by white noise, the mutual information between two

values of f̃ sampled over time depends on the ratio of their
∗
τ s (see Appendix A.1 of Shankar &

Howard, 2013).
7 If it is important to sample zero, one could use some other sampling scheme for values below some

threshold in order to arrive at zero (Howard & Shankar, 2018).
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these data. Rather, Equations (5.25)–(5.28) were derived from a property of the
Post approximation coupled with the argument that the brain ought to equalize
redundancy among the receptors.

5.3.2 Behavioral Models Using Scale-Invariant Temporal History

The scale-invariant temporal history described in Section 5.3.1 can be used to
construct a wide variety of behavioral models of memory. It is straightforward

to extend temporal context models by using f̃ t(
∗
τ) in place of ct. The primary

result is that one obtains scale-invariant recency and contiguity effects (Figure 5.4).

However, the temporal history f̃ t(
∗
τ) can also be used to construct computational

models of very different tasks that cannot be readily modeled using temporal
context models. Some of these tasks are believed to rely on different “kinds of
memory” than free recall.

Scale-Invariant Temporal Context Models
TCMs rely on the temporal autocorrelation of the temporal context vector in order
to generate recency and contiguity effects – that is, even in a list of random words,
the expectation of cT

t ct+lag falls off gradually like ρlag. However, exponential
functions set a strong scale. One can readily build a temporal context model using

f̃ t(
∗
τ) in place of ct. Rather than MCF associating context vectors to items, one

constructs an associative matrix for each
∗
τ :

dM(
∗
τ)

dt
= f (t)f̃ t

T(
∗
τ). (5.29)

Recall that F(s) at a particular s is essentially a temporal context vector with
ρ = e−s. If one imagines MCF(s) as the MCF matrix one would get for each

value of s as a function of s, then M(
∗
τ) is just that matrix-valued function

of s, but with the inverse transform applied.8 One may visualize M(
∗
τ) for a

particular
∗
τ as a set of connections between a particular row in Figure 5.5b and

the vector f . One obtains a probe as fIN ≡ ∑
n M(

∗
τ n)f̃ p(

∗
τ n). Each list item is

activated to the extent that the units in the temporal history when it was presented
are also active in the probe. One may visualize this operation with respect to
Figure 5.5b as follows. When a particular item is activated in f (t), there is a

particular pattern f̃ t(
∗
τ). That item is activated according to the match between

f̃ t(
∗
τ) and the probe f̃ p(

∗
τ), summing over rows (corresponding to the inner product)

and columns (corresponding to the sum over
∗
τ n). In the case of a long list of

nonrepeating words, it can be shown that this association falls off like a power-
law function (Howard et al., 2015). This property makes TCMs built in this way

8 The transform here would be applied from the right: M(
∗
τ) =MCF(s)

[
L−1

k

]T
.

https://doi.org/10.1017/9781108902724.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.006


Formal Models of Memory Based on Temporally-Varying Representations 251

scale-invariant. It is thus straightforward to build genuinely scale-invariant recency
and contiguity effects.

TCMs built from a scale-invariant temporal history also have qualitatively
different properties than TCMs that use only a single-scale temporal context vector.
Consider a situation in which two items, a and b, are presented at a temporal
separation of τ seconds. The temporal context for b has a presented τ seconds
in the past. Let us repeat a and observe the prediction for b as a recedes into the
past. First, in the case of a single temporal context vector, the temporal context
for b is just ρτ cIN

A . When a is repeated (neglecting retrieval of temporal context)
it again contributes a cIN

A term to the temporal context vector and b is cued by an
amount proportional to ρτ . But now consider what happens in the time after a was
repeated. In the time following repetition of a, the magnitude of the cIN

A component
of the temporal context vector decreases exponentially. As a consequence, b is cued
less and less as a recedes into the past after its repetition. The behavior is very

different if temporal context is constructed from f̃ (
∗
τ). As before, the temporal

context that cues b is the representation of a presented τ seconds in the past.

However, this corresponds to an f̃ in which units triggered by a with
∗
τ near τ

are active. When a is repeated (again neglecting recovery of temporal context),

it again triggers a sequence of cells. A time t after repeating a, the units with
∗
τ

near t are active. But if t � τ , these are different units than the ones that cue b.
As the repetition of a recedes into the past, b is cued more as t approaches τ and
then less as the sequence passes through the units that form the temporal context
for b. Although the consequences of this property on models of free recall would
be expected to be relatively subtle (there are many items composing the temporal
context and retrieval of temporal context), this property could be extremely useful
in other behavioral applications (e.g., serial recall).

Probing a Representation of What Happened When
The simple Hebbian model described in Section 5.1 is a special case of a class of
distributed memory models called global match models. The name “global match”
refers to the property that the probe is compared to one composite memory M
that contains a mixture of information from all of the items in memory. Other
distributed memory models made different assumptions. For instance, multitrace
models (e.g., Hintzman, 1984; Shiffrin & Steyvers, 1997) assumed that memory is
composed of a list of traces which can be selectively accessed based on the probes
one provides as part of a query of memory. Each trace is a set of features stored at
a particular time, closely analogous to ft in the simple Hebbian model and TCMs.

The temporal context model sketched above using f̃ p(
∗
τ) as a probe has the spirit

of a global match model. One builds an associative M(
∗
τ n) and then takes a sum

over both what and when information in constructing the output of memory, fIN =∑
n M(

∗
τ n)f̃ p(

∗
τ n). However, there are other ways one might query f̃ (

∗
τ) to construct

behavioral models of different memory tasks. Multitrace models keep different
elements of memory separate in a list. Because it maintains separable information
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about what happened when, one can understand f̃ t(
∗
τ) as a multitrace model,

albeit one where the traces become more blurred together as time recedes into
the past (Figure 5.5b). Behavioral modeling work has shown that by querying this
representation in different ways, it’s possible to construct quantitative behavioral
models of different working memory tasks.

It is well established that people and animals can direct attention to a restricted
region of visual space. Suppose that a participant maintains fixation at a particular
spot in a visual display for a few seconds (in experiments a small spot is usually
provided). Now suppose that the participant learns that something important will
be presented in a particular region above and to the left of the location that is being
fixated. It can be shown that the ability to perceive visual information is greater if a
stimulus is presented in that region relative to a region where nothing in particular
is expected. This increased perceptual and neural gain is referred to as “attention.”

One can model attention, directed to particular regions of past time; this
capability is important in constructing behavioral models of working memory
tasks. Let us suppose that one can direct attention to particular regions of the
timeline and then compute a vector-valued output like so:

fo =
∑

n

f̃ (
∗
τ n)G(

∗
τ n). (5.30)

Here, G(
∗
τ) is an attentional weight that can highlight the contributions of items

at different points in the past. It is not reasonable to suppose that attention can

take the form of any arbitrary function over
∗
τ . Let us suppose three constraints on

the form of attention. First, attention can point at only one circumscribed region
at a time. The function for attention should have one peak at a particular index
n. Second, attention can be deployed over a wide region or a more narrow region
depending on the task demands. To be concrete, given that attention is directed
to a particular index n, one may imagine that the participant can control whether
attention extends to many nearby indices, falling off gradually, or only extends to a
few nearby indices, falling off more sharply. Notice that because of the spread in 

over
∗
τ (e.g., see Figure 5.5b), even if attention was nonzero for exactly one index

∗
τ n, this would still allow information from nearby time points to contribute to fo.
These simple assumptions allow us to construct very different behavioral models
from the same memory representation.

This flexibility is useful in modeling working memory tasks. Working memory
is a term used to describe a form of memory that stores information with high
precision for a short time. Working memory is an intellectual descendent of
computational models based on STS and is believed to rely on brain regions
distinct from the regions responsible for episodic memory tasks like delayed
and continuous distractor free recall. The first of these working memory tasks is
referred to as probe recognition; the second is judgment of recency (JOR). In both
tasks, the participant is presented with a short list of highly memorable stimuli –
to be concrete let’s assume that the stimuli are letters of the alphabet presented
visually on a computer screen. In both tasks, the lists are relatively short (say
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10 items) and the memory test is given immediately. In both tasks, the stimuli
are repeated many times over an experimental session lasting tens of minutes. In
both tasks, the participant is given a probe consisting of letters for the memory test.
The only (important) way the tasks differ is in the judgment the participant must
make in response to the memory probe. In probe recognition, the participants’ job
is to press a button to indicate whether a probe stimulus was in the most recent list
or not. Because the stimuli are repeated across many lists, the task is really to judge
whether the probe was presented in a relatively broad region of time. In the short-
term JOR task, participants are given a pair of probe stimuli and asked to select
the probe stimulus that was presented more recently. Because both of the probe
items came from the most recent list, short-term JOR requires more fine-grained
judgments of the temporal record of the probe stimuli.

Although the details are beyond the scope of this chapter (Tiganj, Cruzado,
& Howard, 2019), a careful study of accuracy and the amount of time it takes
participants to respond shows that although both tasks show a robust recency effect,
the manner in which memory is accessed is quite different. The findings from both
experiments can be accommodated by models in which one makes a decision based
on how well a probe overlaps with fo, fT

p fo. The important difference between the
model for probe recognition and JOR is how attention is deployed. In the model
of probe recognition, attention is deployed broadly such that it’s constant over the
list. The overlap with the probe is thus stronger for more recent items and this
strength falls off like a power law [Equation (5.23)]. This provides a respectable
model of probe recognition (see especially Donkin & Nosofsky, 2012). In short-
term JOR the pattern of results has long suggested that participants use what’s
called a self-terminating serial scanning model. We can build a serial scanning
model over the scale-invariant temporal memory by supposing that the participant

first sets attention to the recent present, such that only G(
∗
τ 1) is one. The participant

then compares this output to the memory probes. After some very brief time,

attention is shifted to a slightly less recent time point, for instance only G(
∗
τ 2)

is nonzero. The decision terminates when a match is found. One can visualize
this process with the help of Figure 5.5b. After studying the list g k l n t x h,
suppose the correct answer is x. The participant will not find a match for x looking
at the first several rows. The amount of time it takes to find a match and initiate
a decision depends on how far in the past x was presented. If instead the correct
answer was t, one would have to scan over a longer distance to find information
about that probe, predicting a correspondingly longer response time. There are
many more detailed quantitative predictions that follow from these models that
can be worked out.

The important point here is that it is only possible to construct such distinct

behavioral models because f̃ t(
∗
τ) has separable information about what happened

when. If the information about the time of past events was stored as a single
number, as in the temporal context vector, it is much more difficult to imagine
an attentional model, and certainly not one that aligns as well to our current
understanding of visual attention.
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Figure 5.6 So-called “time cells” are neurons that fire in sequence following
a triggering stimulus. (a) Three time cells recorded from the hippocampus
following the beginning of the delay period in a memory experiment. The top
cell fires consistently over trials early in the delay. The middle and bottom cells
also fire consistently, but at progressively later delays. After MacDonald et al.
(2011). (b) A set of time cells in the hippocampus recorded during the delay
interval sorted on their time of peak firing. Note that the population tiles the
delay. This set of time cells could be used to determine the time within the delay.
Note further that more cells fire earlier in the delay than later. This implies that
there is greater resolution to the representation of time within the delay early in
the delay period rather than later in the delay period. After Mau et al. (2018).
(c) Time cells from the medial prefrontal cortex (mPFC). Note the scale of the
x-axis extends out 60 s. After Bolkan et al. (2017).

5.3.3 Evidence for Scale-Invariant Temporal History in the Brain

Taken literally, f̃ t(
∗
τ) specifies the properties of a population of neurons. There

is now extensive evidence for these predictions; populations of neurons referred
to as “time cells” behave much as one might expect if they were implementing

f̃ t(
∗
τ) (see Figure 5.6). Let us take f̃ t(

∗
τ) literally – as a description of the

firing rate of a population of neurons, each indexed by a particular value of
∗
τ . Time cells have now been observed in rodents (MacDonald et al., 2011;
Mello, Soares, & Paton, 2015; Pastalkova et al., 2008; Tiganj et al., 2017)
and nonhuman primates (Cruzado et al., 2020; Jin, Fujii, & Graybiel, 2009;
Tiganj et al., 2018) and been observed in studies in humans (Schonhaut et al.,
2022). Although the label “time cells” is most frequently applied to neurons in
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the hippocampus, populations with similar properties have been observed in a
variety of prefrontal regions as well as the striatum. These regions are believed to
support different forms of memory. For instance, the hippocampus is believed
to support episodic memory, prefrontal regions are believed to support working
memory, and the striatum is believed to support implicit memory. If indeed
different regions supporting different kinds of memory show firing consistent with

properties of f̃ t(
∗
τ), then this supports the hypothesis that behavioral models for

different kinds of memory rely on the same form of representation.

Consider how cells representing f̃ t(
∗
τ) would change their firing as a function of

time following a delta function input at t = 0. Each cell would start with a firing

rate near zero. As t approaches each cell’s value of
∗
τ , the firing rate of that cell

would begin to increase, and then decrease again as t becomes much larger than

that cell’s
∗
τ . Different cells have different values of

∗
τ , so cells in the population

would fire in sequence. The duration each cell spends firing depends linearly on

its value of
∗
τ ; cells that fire later in the sequence should also fire for a longer

time. Moreover,
∗
τ s are sampled evenly over log rather than linear time, resulting

in a decreasing number of cells that peak later in the sequence. Moreover, if the
population carries information about what happened when, different stimuli should
trigger distinguishable sequences. All of these properties have been quantitatively
demonstrated in multiple brain regions, including the hippocampus and prefrontal
regions in monkey and rodent. Moreover, time cells are observed in a wide variety
of behavioral tasks (Cruzado et al., 2020; Jin, Fujii, & Graybiel, 2009; MacDonald
et al., 2011; Mello, Soares, & Paton, 2015; Tiganj et al., 2017, 2018), including in
cases where the animal is given no task at all, but simply passively observes stimuli
(Goh, 2021).

More recently, populations of neurons with properties like those predicted for
Ft(s) have been observed in a brain region called the entorhinal cortex (Bright
et al., 2020; Tsao et al., 2018). Because they so closely resemble components
of the temporal context vector [Equation (5.7)], these kinds of cells have been
dubbed temporal context cells (see Figure 5.7). The entorhinal cortex provides the
major projection to the hippocampus, where time cells were initially characterized.
Decades of neurophysiology, neuropsychology, and cognitive neuroscience have
implicated the entorhinal cortex and hippocampus in human episodic memory. For
instance, the famous amnesia patient Henry Molaison (known prior to his death
as H.M.) had bilateral damage to both the hippocampus and entorhinal cortex.
Thus, a population of temporal context cells, which resemble Ft(s), project to

a population of time cells, which resemble f̃ t(
∗
τ) in regions essential to human

episodic memory.

5.3.4 Going Forward

The convergence between theoretical considerations (Section 5.3.1), behavioral
models of memory (Section 5.3.2), and neurophysiological findings (Section 5.3.3)
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Figure 5.7 Laplace transform of the past captures properties of temporal
context cells and time cells. Left: Given a signal f (t) as input, one can encode
the real Laplace transform of the function leading up to the present using a
bank of leaky integrators with rate constants s. Given a delta function input at
time zero, each integrator in F(s) rises to one and then decays exponentially.
Each unit decays at a slightly different rate depending on that unit’s value of
s. The leaky integrators provide input to another population f̃ constructed by
approximating the inverse Laplace transform via an operator L−1

k . Units in
f̃ fire sequentially, with each cell peaking at a time controlled by the value
of s that provides input to it. Middle: The two populations F(s) (top) and f̃
(bottom) shown as heatmaps as a function of time to facilitate comparison
with neurophysiological data. Right: These representations resemble so-called
“temporal context cells” in the entorhinal cortex (top) and time cells in the
hippocampus (bottom). Top after Bright et al. (2020). Bottom after Cao et al.
(2021). Ian Bright and Rui Cao helped with this figure.

seems very unlikely to happen by chance. This formalism could provide a
foundation on which to build models of behavior and cognition that are more or
less literal descriptions of the computations taking place in the brain. Although
a foundation may exist, the work of constructing a complete theory of memory
in the brain has barely begun. Thus far, the behavioral models that have been
developed are sketches of important effects. A complete theory would require that
these models be fleshed out to provide a detailed description of behavior (like the
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models in Section 5.2). Development of such a theory would also require careful
neuroscientific studies across species and tasks informed by these quantitative
models of behavior. Theoretically, the formalism for encoding and inverting the
Laplace transform of functions of time can be extended to representing functions
over other variables. In this way it may prove possible to connect computational
models of memory to well-developed computational models for spatial navigation,
perception and simple decision-making informed by neurobiological data.

5.4 Related Literature

This chapter necessarily touched on only a tiny fraction of the data and
computational models that have been used to understand human memory over
the years. Kahana (2012) provides a thorough introduction to behavioral models
of memory and important quantitative data from all the major human memory
paradigms.

Stimulus-sampling theory is much more rich than decribed in this chapter. It was
rigorously developed by many researchers, with Stanford University providing a
focal point in the 1960s. Students interested in stimulus-sampling theory should
consider the following papers: Atkinson and Estes (1962), Bower (1967).

Atkinson and Shiffrin (1968) is a modeling tour de force applying STS-based
behavioral models to many variants of cued and free recall. It should be considered
required reading for mathematical psychologists interested in modeling behavioral
memory data. Raaijmakers and Shiffrin (1980) is a remarkably detailed desription
of serial position effects in free recall that relies heavily on “fixed list context,” an
important concept in models of this era that is not discussed here (see also Criss &
Shiffrin, 2005).

Howard (2018) provides a high-level review of cognitive and neural data related
to the scale-invariant temporal history discussed in Section 5.3 (see also Howard &
Hasselmo, 2020). Howard et al. (2015) built a number of simple cognitive models
of behavioral tasks corresponding to different “kinds of memory” and note how
this representation relates to distributed memory models. Lashley (1951) provides
an eloquent critique of the limitations of simple associations in describing memory

that seems to anticipate many of the properties of f̃ (
∗
τ) (see also James, 1890).

There are also interesting connections between the logarithmic temporal scale
derived for time here and measurement theory in mathematical psychology (for
an overview, see Luce & Suppes, 2002) and exponential generalization (Shepard,
1987).
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6.1 Introduction

In 2002, Estes referred to signal detection theory (SDT) as “the most
towering achievement of basic psychological research in the last half century”
(p. 15). SDT is, by far, the most dominant model in psychophysics, and its
multidimensional generalization has become the default approach for defining
and studying perceptual interactions. The name “signal detection theory” refers
to applications of the theory to tasks in which only one stimulus dimension is
relevant, and the most common version requires participants to detect a signal
embedded in noise. Tasks that require attention to more than one stimulus
dimension typically require a decision more complex than simple detection –
for example, the participant may be required to identify the presented stimulus
uniquely, or assign it to a predetermined category. In such cases, the same statistical
model is more appropriately called general recognition theory (GRT). We refer to
both approaches by the term statistical decision theory.

265
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This chapter reviews statistical decision theory, beginning with its origins, laying
out its foundations in one dimension and its extension to two or more dimensions.
We describe applications of the theory to identification and classification tasks,
to the perception of configurality and holism, to the modeling of response
times (RTs), and finally we consider extensions to neuroscience. An overarching
theme of this chapter is that statistical decision theory provides a consistently
evolving, general and powerful approach to modeling decision processes involved
in sensation, perception, and cognition.

6.2 Historical Precedents

Statistical decision theory emerged when two simple propositions were
applied to a new experimental paradigm that eventually formed the foundation
of psychophysics and much of experimental psychology. The first of these is the
proposition that one can experience the qualia of a known stimulus (such as light)
even in the absence of that stimulus. Perhaps the most famous example of this is
the Helmholtz (1867) thought experiment on phosphenes: mechanical pressure on
the eye causes the subjective experience of patterns of light even in a dark room.1

Similarly, one can fail to experience the qualia of a known stimulus even when
that stimulus is present (e.g., a light is on, but may be too dim to see). It appears
that thinking about such possibilities was at the root of the classic two-alternative
forced-choice design, and that thoughts about these possibilities are evident in
work by both Fechner and Thurstone (Fechner, 1860; Link, 1994; Wixted, 2020).

The second of the two simple propositions is the idea that encoded psychological
information may be a combination of a fixed value and random error. The formal
notion of this possibility in human measurement can be traced at least to the
work of Gauss (Dunnington, Gray, & Dohse, 2004), and the general notion of
random variation in subjective human experience dates at least to the work of
Cattell (Fullerton & Cattell, 1892) and Thurstone (Thurstone, 1927a, 1927b).
However, the formal treatment of randomness in support of decision-making, as
it has come to be expressed in statistical decision theory, emerged from the (at
times contentious) debates that Fisher had with Neyman and Pearson (Fisher,
1955; Neyman & Pearson, 1933). In particular, Neyman and Pearson’s distinction
between Type I and Type II errors – corresponding to false alarms and misses,
respectively – was offered as a refinement to Fisher’s notion of a p-value, which
itself had originally been proposed as an objective, though informal, index of the
level of trust in a null hypothesis (Lenhard, 2006).

The initial linking of these two simple propositions occurred in early work on
radar and sonar and other areas of electronics and electrical engineering. It appears
that the basic vocabulary of SDT – hits, misses, false alarms, and correct rejec-
tions – emerged from the World War II need, for example, to determine whether to

1 Curiosity about phosphenes predates Helmholtz, as sketches of phosphenes can be found in Newton’s
notes (http://cudl.lib.cam.ac.uk/view/MS-ADD-0397).

https://doi.org/10.1017/9781108902724.007 Published online by Cambridge University Press

http://cudl.lib.cam.ac.uk/view/MS-ADD-0397
https://doi.org/10.1017/9781108902724.007


Statistical Decision Theory 267

drop a bomb or a depth charge on a possible enemy submarine (Marcum, 1947).
Likewise, as noted by Wixted (2020), the idea that the probabilistic behavior
of photographic film and television tubes might provide a model for the human
visual system had already been considered in electrical engineering (Rose, 1942,
1948). The explicit merging of these ideas and their application to the analysis of
both human behavior and the performance of engineered systems appears to have
occurred at about the same time at MIT and the University of Michigan (Creelman,
2015; Peterson & Birdsall, 1953; Peterson, Birdsall, & Fox, 1954; Van Meter &
Middleton, 1954).

In each of these contexts, the canonical experiment includes trials in which a
stimulus or signal is or is not present and the observer or system is required to
respond that the signal is present or absent. This task inspired the name “signal
detection theory,” and almost all modern applications of SDT are either to this task
or to the logically equivalent two-stimulus identification task, which we consider
in detail in the next section. In fact, Link (1994) rightly noted that the use of this
canonical task goes back at least to Fechner’s foundational work on psychophysics.
As we will see, this simple experiment provides a powerful and general framework
for understanding how signals are processed – either by biological or engineered
systems.

To illustrate the power and generality of this accomplishment (and to reflect
on Estes’ evaluation), we obtained rough estimates of the number of publications
that used SDT in audition and vision, in 5-year increments between 1955 and early
2020.2 We contrasted these data with the number of PhDs awarded in experimental,
cognitive, and human factors psychology, along with the number of PhDs awarded
in electrical, electronics, and communications engineering for that same range of
years.3

Figure 6.1a plots the cumulative number of publications in audition and vision
that include SDT, along with the number of PhDs awarded in psychology and
engineering. This presentation is somewhat misleading, so Figure 6.1b plots the
same data in terms of relative cumulative number (i.e., dividing the value of each
data series at time t by the value at the starting point, 1960). It becomes apparent
that the increase in the use of SDT is not simply due to an increase in the number
of scientists who could potentially use SDT. This powerfully underscores Estes’
estimate of SDT as a towering achievement. With this historical context in mind,
we now consider the details.

2 Searches were performed using Google Scholar. The search for publications in audition was
performed using “auditory OR audition OR perception signal detection theory -vision -visual” and
the search in vision was performed using “vision OR visual OR perception signal detection theory
-auditory -audition.”

3 National Science Foundation, National Center for Science and Engineering Statistics, Survey of
Earned Doctorates.
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Figure 6.1 (a) Cumulative publications citing signal detection theory in
audition and vision, relative to cumulative PhDs awarded in sub-disciplines of
psychology and engineering, 1960–2020. (b) Relative increase in publications
citing signal detection theory in audition and vision, and relative increase in
PhDs awarded in sub-disciplines of psychology and engineering, 1960–2020.

6.3 One Dimension: Signal Detection Theory

The most common application of SDT is to a two-stimulus identification
task – that is, a task with two stimuli and two uniquely identifying responses.4

4 See Macmillan and Creelman (2005) for an excellent comprehensive treatment of the practicalities
of using signal detection theory.
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Figure 6.2 The normal, equal-variance, SDT model.

On each trial, the observer’s task is to identify the single presented stimulus by
emitting the appropriate response. In the original applications, the two stimuli were
pure noise (N) and a signal of some type embedded in noise (SN). The observer’s
task was to indicate whether or not a signal was presented by responding YES
or NO.

The standard SDT model for this YES–NO detection task is illustrated in
Figure 6.2. The model assumes that performance in this task is based on a single
sensory value, denoted by X. As described earlier, a fundamental assumption is that
all sensations are inherently noisy, and thus X is a random variable. In the YES–NO
detection task where the stimuli are N and SN, X represents sensory magnitude –
for example, loudness with auditory stimuli, or brightness with visual stimuli. The
probability density function (pdf) describing the distribution of sensory values on
N trials is denoted by fN(x) and fSN(x) describes this distribution on SN trials.
In Figure 6.2, both of these distributions are normal with the same variance.
This normal, equal-variance model is the most commonly used model in signal
detection analysis, but any distributions are possible.

Another fundamental assumption of SDT is that there is no fixed threshold on
sensation that determines whether or not an observer will detect a signal. Instead,
the observer is assumed to set a criterion value, denoted by XC, and then use the
following decision rule:

Respond YES if X > XC; otherwise, respond NO. (6.1)

Unlike the classical notion of a fixed threshold, the SDT criterion is under the
observer’s control. The observer is assumed to choose the value of XC in a way that
is typically assumed to depend on the costs of the two types of errors (i.e., misses
and false alarms), the benefits of the two types of correct responses (i.e., hits and
correct rejections), and on the N and SN base rates. Thus, in SDT, control of the
criterion is relegated to decision processes, whereas the classical account assumed
a fixed threshold for sensation that was a feature of sensory systems.
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The response accuracy data are typically reported in a confusion matrix that
includes a row for every stimulus and a column for each response. The entry
in row i and column j is the number of stimulus i trials for which the observer
responded j. When there are only two stimuli and two responses, then the confusion
matrix is 2 × 2. The entries in row i add to the number of stimulus i trials in
the experiment, and therefore do not depend on the data. As a result, each row
includes only one degree of freedom (i.e., only one independent data value), so
no information is lost if only one entry in each row is reported. The standard is to
report the entries in the column associated with the YES response. These are used
to estimate the probability of a false alarm (i.e., responding YES on N trials) and
the probability of a hit (responding YES on SN trials). From Figure 6.2 it is easily
seen that

P(FA) = 1− FN(XC), (6.2)

where FN(XC) is the cumulative distribution function of the N distribution,
evaluated at XC. Similarly:

P(H) = 1− FSN(XC). (6.3)

In any two-stimulus identification task, the data have two degrees of freedom
[e.g., P(H) and P(FA)]. The SDT model shown in Figure 6.2 has two free
parameters – the location of the response criterion, denoted by XC, and the distance
between the means of the N and SN distributions in standard deviation units,
denoted by d′. If the normal, equal-variance model is assumed, then XC and d′ can
be estimated by inverting Equations (6.2) and (6.3). Specifically, XC is estimated
by inverting Equation (6.2) to produce

X̂C = −1
[
1− P̂(FA)

]
, (6.4)

where −1 is the inverse-Z transformation [i.e., −1(p) is the Z-value that has
area to the left equal to p] and P̂(FA) is the observed proportion of false alarms.
Note from Figure 6.2 that d′ equals the standardized distance from the mean of the
N distribution to XC (i.e., XC) plus the distance from XC to the mean of the SN
distribution. Therefore

d̂′ = X̂C −−1
[
1− P̂(H)

]
. (6.5)

Note also that d′ is the standardized distance between the means (i.e., the mean
difference divided by the common standard deviation). As a result, the common
variance is not identifiable, in the sense that any combination of mean differences
and standard deviations that combine to produce the same d′ will make identical
predictions. As a result, we can set the common standard deviation to 1 without
loss of generality.

The two degrees of freedom in the data can be used to estimate XC and d′, but
then there are no data left to test the model’s goodness-of-fit. Given that the model
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can perfectly fit any observed values of P(H) and P(FA), an obvious question
is why fit this model to two-stimulus identification data? The most common
reason, which has been confirmed in thousands of applications, is that SDT is
highly successful at separating perceptual and decisional effects. In particular,
manipulations that should only affect sensory magnitude – such as increasing
or decreasing signal intensity – mostly cause d′ to change but not XC, whereas
manipulations that should only affect the observer’s decision about how to act on
their sensory experience – such as changing the costs and benefits associated with
the various possible outcomes – mostly cause XC to change but not d′. In contrast,
any of these changes are likely to cause accuracy to change, so without SDT, it is
generally impossible to know whether a change in accuracy is due to a change in
perception or a change in decision strategy. SDT offers a highly effective method
for solving this problem.

6.3.1 The Receiver Operating Characteristic

A standard way to summarize the results of a YES–NO detection experiment is
via the receiver operating characteristic (ROC), which plots P(H) (on the ordinate)
against the probability of a false alarm P(FA) (on the abscissa). The standard
approach is to plot data from a variety of conditions that cause XC to change, but
not d′. Examples are shown in Figure 6.3. Because each point on any one curve
is associated with a different value of XC but the same value of d′, these are iso-
sensitivity contours. Technically, other kinds of curves could be plotted in the same
space (e.g., iso-bias curves), but because iso-sensitivity contours are so common,
this is almost always what is meant by an ROC curve. For any positive value of d′,
the iso-sensitivity curve must fall completely in the upper left half of the plot. The
main diagonal, in which P(H) = P(FA) (denoted by the dotted line), corresponds
to d′ = 0. Any curve (or point) below this diagonal indicates a negative d′. Since
pure guessing should produce d′ = 0, a (significantly) negative d′ should only
occur because of participant deception or because the observer is using a highly
suboptimal decision rule.

There are several popular experimental designs that are used to estimate iso-
sensitivity curves. One approach is to include a variety of conditions in which the
stimulus characteristics remain fixed, but different payoffs are used to encourage
participants to change their criterion for responding YES. Another approach,
which uses the same N and SN trials but is experimentally more efficient, is to
ask observers to rate the intensity of the signal on each trial. Given an r-point
rating scale, r− 1 points on an iso-sensitivity curve can be estimated by assuming
that observers construct r − 1 criteria, denoted by X1,X2, . . . ,Xr−1, and respond
with rating i if and only if Xi−1 < X ≤ Xi, where X0 = −∞ and Xr = ∞. The ith
point on the curve is then estimated via

P̂(FAi) = P̂(R > i|N) (6.6)
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Figure 6.3 An ROC showing iso-sensitivity contours for three different values
of d′.

and

P̂(Hi) = P̂(R > i|SN), (6.7)

where R is the observer’s rating.
The optimal decision strategy in any two-stimulus identification task depends

on the likelihood ratio

L(x) = fSN(x)

fN(x)
. (6.8)

In particular, if the goal is to maximize the probability of a correct decision, then
the optimal decision rule is to

Respond YES if L(X) >
P(N)

P(SN)
; otherwise, respond NO, (6.9)

where P(N) and P(SN) are the probabilities that N and SN, respectively, are
presented on each trial (i.e., the stimulus base rates). Thus, if SN and N are equally
likely, then the optimal strategy is to respond YES if the current sensory magnitude
is more likely to be a sample from the SN distribution than from the N distribution.
If the sample is more likely from the N distribution, then the NO response should
be given. This is the scenario in Figure 6.2. If there are more N trials than SN trials,
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then the Equation (6.9) decision rule indicates that stronger evidence is required
before responding YES.

In some applications, the different types of errors may incur different penalties
and the different types of correct decisions may bring different benefits. Let VI,J

denote the value (either positive or negative) of responding J (e.g., YES or NO) on
trials when stimulus I was presented (e.g., SN or N). Then the decision rule that
maximizes value is (e.g., Green & Swets, 1966)

Respond YES if L(X) >
(VN,NO + VN,YES)P(N)

(VSN,YES + VSN,NO)P(SN)
; otherwise, respond NO.

(6.10)

Note that according to this rule, if the only change in the outcomes is to increase the
reward for a correct rejection – that is to increase the (positive) value of VN,NO –
then the observer should increase the criterion, since this will ensure more NO
responses. In contrast, if the only change is to increase the penalty for a false
alarm – that is to decrease the (negative) value of VN,YES – then the observer should
decrease the criterion, since this will ensure fewer YES responses.

Because of the important role that the likelihood ratio plays in optimal respond-
ing, the Equation (6.1) decision rule is sometimes reformulated in terms of the
likelihood ratio:

Respond YES if L(X) > β; otherwise, respond NO. (6.11)

In this version of the theory, β can be interpreted as the value of the likelihood
ratio at the criterion XC – that is

β = L(XC) = fSN(XC)

fN(XC)
. (6.12)

As with XC, the criterion β is assumed to be under the observer’s control. Setting
β = P(N)/P(SN) maximizes accuracy [i.e., see Equation (6.9)], but the observer
is free to set β at some other value. For example, the optimal value of β must
be learned, and during this learning process, suboptimal values of β are to be
expected.

Note that the Equation (6.1) and Equation (6.11) decision rules are equivalent if
the likelihood ratio increases monotonically with X. The Equation (6.1) decision
rule responds NO to any X < XC and YES to any X > XC, but if the likelihood
ratio increases monotonically with X, then the likelihood ratio is less than β for
any X < XC and greater than β for any X > XC, so under these conditions, the two
decision rules always give the same response. This raises the obvious question of
how one could tell from empirical data whether the likelihood ratio of the SN and N
sensory distributions is or is not monotonically increasing with sensory magnitude.
The key to answering this question is provided by the following result.

Theorem 6.1. For any differentiable ROC curve, the likelihood ratio

L(x) = fSN(x)

fN(x)
(6.13)
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is a monotonically increasing function of x (i.e., sensory magnitude) if and only if
the ROC is concave down.

Proof. By definition, a differentiable function is concave down if and only if its
slope is monotonically decreasing. The slope of the ROC curve is

dP(H)

dP(FA)
= d[1− FSN(x)]

d[1− FN(x)]
= fSN(x)

fN(x)
= L(x). (6.14)

Therefore, the slope of the ROC curve equals the likelihood ratio, which proves
the theorem. �

If the likelihood ratio increases monotonically with sensory magnitude, then the
more intense the sensation, the greater the confidence that a signal was presented
(i.e., SN). This makes sense, so we would expect empirical ROCs to be concave
down, and in fact, the evidence strongly supports this prediction (Green & Swets,
1966). In other words, the empirical evidence supports the assumption that the
likelihood ratio of the SN and N sensory distributions increases monotonically
with sensory magnitude. These data rule out many alternative models of the N
and SN distributions in which the likelihood ratio is not monotonic. Perhaps the
best-known model in this class is the normal, unequal-variance model, which is
illustrated in Figure 6.4. The top panel shows an N distribution with small variance
and two alternative SN distributions, both with larger variances. The bottom panel
shows the ROC curves predicted by this model under the assumption that the
observer uses the Equation (6.1) decision rule.

Figure 6.4 displays several features worth noting. First, the likelihood ratio
is not monotonically increasing. Note that, as expected, the SN distribution
has higher likelihood for large sensory magnitudes, but non-intuitively, it also has
higher likelihood for small magnitudes (i.e., magnitudes below the mean of the
N distribution). Therefore, as sensory magnitude increases, the likelihood ratio
is initially large (i.e., greater than 1), is then small (less than 1), and finally
becomes large again (greater than 1). Because of this non-monotonicity, the
Equation (6.1) decision rule is not optimal. Instead, the optimal strategy [i.e.,
described by Equation (6.11)] is to respond YES to small and large sensory
magnitudes [when L(X) > 1] and NO only for magnitudes of intermediate value
[when L(X) < 1].

Second, note that the ROC curves shown in Figure 6.4B are not concave
down. Instead, the upper right portion of both curves displays a pronounced
violation of concavity. Furthermore, note that both ROCs dip below the main
diagonal, which, as mentioned earlier, reflects suboptimal decision making. This
is because the predicted ROC curves shown in Figure 6.4 were generated under
the assumption that the observer is using the Equation (6.1) decision rule, which is
highly suboptimal for small sensory magnitudes.

Third, neither ROC curve in Figure 6.4B is symmetric around the negative
diagonal. In fact, many empirical ROCs, albeit concave down, are skewed in this
same manner (Green & Swets, 1966), and this is the main reason that the normal,

https://doi.org/10.1017/9781108902724.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.007


Statistical Decision Theory 275

Figure 6.4 (A) The normal, unequal-variance model of SDT. The N distribution
is normal with mean 0 and variance 1. Two alternative SN distributions are
shown. The pdf in black is normal with mean 1.5 and standard deviation 2,
whereas the pdf in gray is normal with mean 1 and standard deviation 3. (B) The
ROC showing the iso-sensitivity contours predicted by the two models shown in
panel A. Both curves assume the N distribution is normal with mean 0 and
variance 1. The black curve assumes the SN distribution has mean 1.5 and
standard deviation 2, whereas the gray curve assumes the SN distribution has
mean 1 and standard deviation 3.
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unequal-variance model is popular. In other words, this model accounts for the
many reports that empirical ROC curves are skewed, but it is inconsistent with the
ubiquitous finding that empirical ROCs are concave down.

Finally, note that the standard measure of sensitivity, namely d′, is not defined in
this model. Traditionally, d′ is defined as the distance between the N and SN means
divided by the common standard deviation. In the normal, unequal-variance model,
however, there is no common standard deviation, so the traditional d′ is undefined.
This is also a common problem with multivariate extensions of SDT.

In summary, empirical ROC curves are concave down and are either approxi-
mately symmetric about the negative diagonal or skewed in the direction shown in
Figure 6.4. The normal, equal-variance model accounts for symmetric ROCs that
are concave down, but as it turns out, so do many other models. Killeen and Taylor
(2004) describe the necessary conditions on the N and SN distributions for an SDT
model to predict symmetric ROCs.5 In addition, many SDT models account for
skewed ROCs that are concave down. Included in this list, for example, are models
in which the N and SN distributions are both exponential or Rayleigh distributions.

6.3.2 Application to Other Tasks

Although the original applications of SDT in psychology were to YES–NO
detection tasks, the theory has also been applied to a variety of other tasks.
First, applications to any two-stimulus identification task are identical except for
relabeling of the stimuli and responses. For example, suppose the stimuli are “A”
and “B” and their identifying responses are “a” and “b.” If A and B are different
stimuli then they must differ in some way. If they differ on some quantitative (i.e.,
prothetic) dimension, then associate the stimulus with the smaller value with N and
its associated response with NO. If they differ on some qualitative (i.e., metathetic)
dimension, then the association of A and B to N and SN is arbitrary. Either way,
once the associations are complete, the SDT model is identical to the model for the
YES–NO detection task.

In addition, SDT has been applied to a variety of different types of experiments
that include multiple stimuli. The most widely used is probably the two-sample,
two-alternative forced-choice task. On each trial, two stimuli are presented – one
N and one SN (or one A and one B), and the observer’s task is to identify which
one is SN (or e.g., B). SDT assumes that exposure to the two stimuli produces two
sensory magnitudes – one that is a random sample from the N distribution and one
randomly sampled from the SN distribution – and that the observer identifies the
larger of these as SN. A well-known result, described in the following proposition,
is that the probability correct in this task equals the area under the ROC that results
from the YES–NO detection task (Green, 1964; Green & Swets, 1966).

5 Specifically, the ROC is symmetric if the SN cumulative distribution function is generated by
applying a strictly decreasing involution to the survivor function of the N distribution (Killeen &
Taylor, 2004). An involution is a transformation that is its own inverse. So, for example, if T is an
involution then T{T[1− F(x)]} = 1− F(x).
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Theorem 6.2. SDT predicts that the area under the ROC curve (AUC) equals the
probability correct in a two-sample, two-alternative forced-choice task.

Proof. If we let w = P(FA) and define the function g such that g(w) = P(H) then

AUC =
∫ 1

0
g(w)dw

=
∫ 1

0
[1− FSN(XC)] d [1− FN(XC)]

=
∫ −∞
+∞

[1− FSN(XC)]
d [1− FN(XC)]

dXC
dXC (6.15)

=
∫ −∞
+∞

[1− FSN(XC)]
[−fN(XC)

]
dXC

=
∫ +∞
−∞

fN(XC) [1− FSN(XC)] dXC (6.16)

= P(XSN > XN).

The limits in Equation (6.15) are from +∞ to −∞ because P(FA) = 0 when
XC = +∞ and P(FA) = 1 when XC = −∞. The last equality holds because
the integrand in Equation (6.16) gives the likelihood that the sample from the N
distribution equals XC and the sample from the SN distribution is greater than this
value. �

AUC is a widely used measure of bias-free classifier performance. For example,
compared to d′, it has a number of distinct advantages. Perhaps the most important
is that AUC is a nonparametric measure that makes no assumptions about the
underlying N and SN distributions. In contrast, d′ is unambiguously defined only
when the N and SN distributions have variances that are equal.

The two-sample, two-alternative, forced-choice task is closely related to
multiple-look experiments, in which the observer is presented with r independent
samples of either N or SN on each trial (e.g., Green & Swets, 1966). As in the
YES–NO detection task, the observer’s task is to respond YES or NO, depending
on whether the r samples were all SNs or Ns. Another well-known result relates the
performance of an ideal observer in the multiple-look experiment to performance
in the YES–NO detection task.

Theorem 6.3. Suppose an ideal observer with perfect memory participates in a
multiple-look experiment in which r independent samples of N or SN are presented
on each trial. Denote the d′ of this observer in the YES–NO detection task as d′YN
and the d′ in the multiple-look experiment as d′r. Then the normal, equal-variance
model predicts that

d′r =
√

r d′YN. (6.17)

Proof. In the multiple-look experiment, each of the r N or SN samples generates
its own sensory value. Denote the ith of these by xi, and the collection of all r
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by the vector x′ = [x1,x2, . . . ,xr]. Under the assumptions of the proposition, note
that on N trials, x has an r-dimensional multivariate Z distribution, and on SN
trials it has an r-dimensional multivariate normal distribution with mean vector
μ′ = [d′YN,d′YN, . . . ,d′YN] and variance–covariance matrix equal to the identity.
Since the variance equals 1 in all directions, the standardized distance between the
N and SN means is

d′r =
√

(d′YN − 0)2 + (d′YN − 0)2 + · · · + (d′YN − 0)2

=
√

r d′ 2YN

= √r d′YN.
�

Estimation of d′r for human observers shows that it increases with r, but more
slowly than predicted by Equation (6.17) (Green & Swets, 1966). The most likely
reason is that human observers do not have perfect memory, and thus are unable to
take full advantage of all r stimulus samples.

6.3.3 Extensions

Marr (1982) famously proposed the hierarchical classification of mathematical
models as computational, algorithmic, or implementational. In mathematical
psychology, Marr’s algorithmic-level models are often referred to as process
models. SDT provides a computational-level description of decision making,
since it makes no attempt to describe the underlying algorithms or perceptual or
cognitive processes that mediate decision-making. During the 1970s, great efforts
were devoted to developing process models of decision-making, and currently
there are several different process interpretations of SDT. Perhaps the most popular
is provided by the drift-diffusion model (Link & Heath, 1975; Ratcliff, 1978),
which is illustrated in Figure 6.5. The idea is that instead of representing the
sensory effects of the stimulus on each trial with a single random sample from the
N or SN distributions, as in classical SDT, the observer is assumed to repeatedly
sample the presented stimulus as long as it is available. Each sample X is compared
to the criterion XC by computing the difference X − XC, and these differences
are accumulated. The sampling and accumulating processes continue until the
resulting sum (or integral) first exceeds an upper criterion A or falls below a lower
criterion −B (i.e., see Figure 6.5b). Sampling terminates with a YES response in
the former case, and with a NO response in the latter case.

This version of the drift-diffusion model includes the d′ and XC parameters of
SDT plus the response criteria A and B. However, in addition to predicting accu-
racy data, the diffusion model also predicts RTs because closed-form expressions
exist for first-passage times (i.e., time when the process first crosses a response
threshold). As a result, there are more data to fit, and therefore more degrees
of freedom available for parameter estimation. Several computer packages are
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Figure 6.5 (a) The normal, equal-variance model in which d′ = 1. (b) A drift-
diffusion model in which the drift is determined by random sampling from the N
or SN distribution. Samples larger than XC push the drift up, whereas samples
smaller than XC push it down. Sample paths are shown for six hypothetical
trials – three SN trials (in black) and three N trials (in gray).

available that automate this parameter estimation process (Vandekerckhove &
Tuerlinckx, 2007; Wiecki, Sofer, & Frank, 2013).

Note that the drift-diffusion model can represent a response bias in two different
ways. One is to place XC at some point where the likelihood ratio is different from
1 (assuming equal base rates and payoffs), and another is to set A �= B. Of course,
the classical SDT model can account for bias only by adjusting XC. Consider a
condition in which the observer adopts a conservative criterion and therefore is
biased towards responding NO. Thus, according to SDT, XC is set at some point
where the likelihood ratio is greater than 1 (i.e., β > 1). Now consider trials in that
condition where the sensory value falls at some point where the likelihood ratio is
greater than 1 but less than β. According to SDT, the observer will respond NO on
this trial, even though the evidence objectively favors a YES response (because
the likelihood ratio is greater than 1). Balakrishnan (1999) presented evidence
against this prediction. In particular, he described results of several experiments
that suggested that observers always respond with the alternative that is most likely
to be correct, even if they are biased towards one response and against the other.
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Unfortunately, there is no way to represent this state of affairs in classical SDT.
In contrast, the drift-diffusion model offers an elegant resolution to this apparent
paradox. Balakrishnan’s results suggest that XC is set at the point for which β = 1
in all applications (e.g., as in Figure 6.5). A bias towards a NO response can then
be implemented by setting A > B. Thus, according to this account, the evidence
is always judged objectively. Evidence that objectively favors SN always makes a
YES response more likely and evidence that favors N always makes a NO response
more likely. Therefore, a bias towards responding NO does not color the observer’s
view of the world. Instead, the observer is simply willing to stop and respond NO
on the basis of less overall evidence than they are willing to stop and respond YES.
This more reasonable view of response bias is among the greatest advantages that
the drift-diffusion model provides over and above classical SDT.

6.4 Two or More Dimensions: General Recognition Theory

SDT is useful for understanding behavior in any task in which the
observer’s decision is based on a single sensory dimension. Most real-world
stimuli vary on multiple dimensions, however, and many perceptual decisions
require attention to more than one dimension. For example, there is no single
sensory dimension that allows accurate face identification. For this reason, there
is obvious value in extending SDT to multiple stimulus dimensions.

At first glance, this seems like a straightforward exercise. An obvious place to
begin is by replacing the unidimensional probability distributions that are used to
represent the sensory effects of a stimulus in SDT with multivariate probability
distributions. But complications quickly arise even in the case of two sensory
dimensions. First, some sensory dimensions interact, and the perceptual literature
includes a bewildering number of terms that have been proposed to describe
these interactions, including perceptual independence, separability, integrality,
holism, configurality, sampling independence, dimensional orthogonality, and
performance parity. How should these different types of sensory interactions be
modeled? And how are they all related to each other? Second, how should the
decision process be modeled? In SDT, the sensory space is a line, and in two-
alternative tasks, the observer is typically assumed to divide the line into two
regions – one associated with each response alternative. Fortunately, there are only
a few ways to do this. In fact, a standard lecture in courses on SDT is to show
that almost any decision strategy is equivalent to the Equation (6.1) decision rule.
However, if there are two sensory dimensions, then the sensory space is a plane,
and there are an infinite number of qualitatively different ways to divide a plane
into two regions.

Not surprisingly, the first attempt to generalize SDT to multiple stimulus
dimensions, by Tanner in 1956, ignored most of these issues. Specifically, Tanner
(1956) allowed for only one simple type of perceptual interaction and he assumed
that observers always use an optimal decision rule. Despite these simplifying
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assumptions, Tanner’s contribution was significant because he was the first to
consider multiple sensory dimensions. Even so, it was another 30 years before
a more useful multidimensional version of SDT was developed. During the late
1980s, a flurry of articles significantly generalized Tanner’s approach. The title of
Tanner’s (1956) article was “Theory of recognition.” To pay homage to his contri-
butions, Ashby and Townsend (1986) called their more general approach, general
recognition theory (GRT). GRT quickly developed: Ashby and Townsend (1986)
proposed a GRT-based theory of perceptual interactions, Ashby and Gott (1988)
studied decision rules in multidimensional perceptual spaces, and Ashby and
Perrin (1988) used GRT to develop a unified theory of similarity and identification.

6.4.1 Identification versus Categorization

GRT has been applied to a wide variety of tasks. But two tasks – identification
and categorization – have emerged as the most popular, and which one is used
depends on the goals of the research. In particular, identification tasks are used
if the primary goal is to study perceptual representations, whereas categorization
tasks are used if the primary goal is to study decision processes.

In identification tasks, there are M stimuli and M unique identifying responses.
On each trial, one of the stimuli is presented, and the observer’s task is to identify
the stimulus by emitting the appropriate response. The data are collected in an
M×M confusion matrix, in which the entry in row i and column j is the frequency
with which the observer gave response j on trials when stimulus i was presented.
Because the number of stimulus presentations is known, there is one constraint
on each row of the confusion matrix. As a result, every confusion matrix has
M × (M − 1) degrees of freedom. Note that the YES–NO detection task is a
special case of this identification task in which M = 2 and the two stimuli to
be identified are N and SN.

The most useful information in identification tasks is in the confusions that
observers make, so experimental conditions are selected to guarantee errors. This
is usually accomplished by using highly similar stimuli, but sometimes brief expo-
sure durations or noise masks are used instead. Anytime one stimulus is confused
for another, an error occurs. Therefore, misidentifications are most commonly
made because of errors in perception, rather than because of a suboptimal decision
strategy. As a result, identification tasks are a good choice if the goal is to study
perceptual representations. Of course, observers can also make errors if they fail
to remember which response button is associated with which stimulus. Therefore,
feedback is usually provided to help observers learn these associations, and some
training trials are included that are excluded from the data analysis.

In the most widely used identification tasks, the stimuli are constructed by fac-
torially combining a small number of discrete values on two sensory dimensions.
The most common choice is to factorially combine two values on two dimensions
to create a total of four stimuli. Each confusion matrix collected from such a 2× 2
factorial design includes 12 degrees of freedom (4 × 3) for parameter estimation
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and model testing. If we call the two stimulus dimensions A and B, then we
can denote the stimulus in which dimension or component A is at level i and
component B is at level j by AiBj, and the corresponding response by aibj.

Categorization experiments are identical to identification experiments, except
they include fewer response alternatives than stimuli. In a categorization exper-
iment, one of N stimuli is presented on each trial and the observer’s task is to
assign it to one of M categories, where M < N. The confusion matrix is therefore
N×M, and it contains N× (M−1) degrees of freedom. The most common choice
is M = 2. Note that in this case, the data include N degrees of freedom. In most
cases the categories are novel, in the sense that they were created specifically to
use in the experiment. As a result, accurate responding requires the observer to
learn the structure of these categories, most commonly via trial-by-trial feedback
provided by the experimenter. Errors are most likely to occur because the observer
is using a suboptimal strategy to assign stimuli to categories. Misperceptions are
just as likely as in identification experiments, but they tend to have little effect on
accuracy. For example, confusing one stimulus with another in the same category
does not change the response, and therefore has no observable effect on behavior.
For these reasons, categorization experiments are a good choice if the goal is to
study decision processes.

6.4.2 Modeling Perceptual and Decisional Interactions

One of the foundational motivations for the generalization of SDT to multiple
dimensions was to model perceptual interactions in a theoretically rigorous way
(Ashby & Townsend, 1986). For much of the middle portion of the twentieth
century, this issue was addressed almost completely in terms of operational
definitions (e.g., Garner & Felfoldy, 1970; Garner, Hake, & Eriksen, 1956; Garner
& Morton, 1969).6 Ashby and Townsend (1986) created GRT principally as a
theoretical structure to define perceptual independence, perceptual separability,
and decisional separability. These definitions are now standard in the field.
They also showed how these theoretical primitives relate to a variety of other
independence-related terms that were popular in the literature.

A GRT model of the 2 × 2 factorial identification experiment is shown in
Figure 6.6. The ellipses denote the contours of equal likelihood for the four bivari-
ate perceptual distributions, where fij(x1,x2) denotes the perceptual distribution
associated with stimulus AiBj. Note that the marginal distributions associated
with this stimulus are denoted by gij(x1) and gij(x2) for dimensions x1 and x2,
respectively. Also shown are the decision bounds that divide the perceptual plane
into four response regions.

According to GRT, stimulus components A and B satisfy perceptual inde-
pendence in stimulus AiBj if and only if the perceived value of component

6 Use of the term “operational” is not to be confused here with the logic of operationism or converging
operations (Bridgman, 1945; Von Der Heide et al., 2018).
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Figure 6.6 A GRT model of the 2 × 2 factorial identification experiment. The
ellipses denote the contours of equal likelihood for the four bivariate perceptual
distributions.

A is statistically independent of the perceived value of component B on trials
when stimulus AiBj is presented. More specifically, perceptual independence of
components A and B holds in stimulus AiBj if and only if

fij(x1,x2) = gij(x1)gij(x2), (6.18)

for all values of x1 and x2. If perceptual independence is violated, then components
A and B are perceived dependently.

Note that perceptual independence is a property of a single stimulus, in the
sense, for example, that perceptual independence could hold for one stimulus
and be violated for all others. In the Figure 6.6 example, the distributions are
all bivariate normal, so independence is equivalent to zero correlation. Note
that perceptual independence appears to be satisfied in all stimuli except A2B1,
which displays a positive correlation between perceived values of the A and B
stimulus components.
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Component A is perceptually separable from component B if the observer’s
perception of A does not change when the level of B is varied. In other words,
if components A and B are perceptually separable, then it is easy to attend to
one and ignore the other. If this is impossible – that is, if the perception of
A changes when B changes, then component A is perceptually integral with
component B. Classic separable dimensions are color and shape, whereas classic
integral dimensions are the saturation and brightness of a color patch. In GRT, all
information about the perception of component A on trials when stimulus AiBj is
presented is contained in the marginal distribution gij(x1). Therefore, component
A is perceptually separable from B if and only if

g11(x1) = g12(x1) and g21(x1) = g22(x1), for all values of x1. (6.19)

Equation (6.19) guarantees that the perception of component A1 is the same
regardless of whether it appears with B1 or B2, and that the same invariance
holds for component A2. In the Figure 6.6 example, note that component A is
perceptually separable from component B, but component B is not perceptually
separable from component A. In particular, changing the level of B does not
change the perception of A, but increasing the level of A from A1 to A2 increases
the perceived value of component B. Note that unlike perceptual independence,
perceptual separability is a property of multiple stimuli (i.e., all that share a
common value on one stimulus dimension).

Finally, decisional separability holds on dimension x1 if the decision about
whether component A is at level 1 or level 2 does not depend on the perceived value
of component B. Mathematically, this condition holds if and only if the observer
uses the following decision rule to determine the level of component A:

The level of component A is 1 if X1 ≤ X1; otherwise, the level is 2, (6.20)

for some constant criterion X1. This decision rule is equivalent to using a decision
bound on dimension x1 that is parallel to the x2-axis (and therefore orthogonal to
the x1-axis). In the Figure 6.6 example, note that decisional separability holds on
dimension x1, but not on dimension x2.

GRT has also been used successfully to formalize and study the notion of
holistic or configural perception or processing (e.g., see discussions in Piepers
& Robbins, 2012; Richler & Gauthier, 2014). GRT was first used to model
the potential perceptual and decisional interactions that constitute holistic or
configural perception by O’Toole, Wenger, and Townsend (2001), and it was first
applied to the holistic or configural perception of faces by Wenger and Ingvalson
(2002, 2003). More recently, Townsend and Wenger (2015) used GRT to propose
a set of working axioms for holistic or configural perception.

As an example of how GRT has been used to study holistic processing,
consider face perception, and more specifically, the composite face effect (Young,
Hellawell, & Hay, 1987), which is frequently cited as a hallmark of holistic
perception (Murphy, Gray, & Cook, 2017). The composite face illusion occurs in
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tasks where observers are presented with an image of a face, divided into top and
bottom portions roughly at the nose. Observers are asked to identify either the top
or bottom half while ignoring the other half. The top and bottom portions can be
drawn from either the same or different faces, the faces can be either familiar (e.g.,
famous) or unfamiliar, and the two halves can be either aligned or misaligned. The
composite face effect is that identification of one half is impaired when the top and
bottom halves are from different faces, and this impairment is greatest when the
two halves are from different familiar identities.

The first step in modeling the composite face effect with GRT is to represent
the space of perceptual evidence supporting identification of the two halves. For
simplicity, consider the simplest case in which the top and bottom halves are
always aligned. Let component A denote the top half face and component B denote
the bottom half, with the subscript denoting the identity of the face. So in stimuli
A1B1 and A2B2, the top and bottom halves are from the same face, whereas in
stimuli A1B2 and A2B1, the two halves are from different faces.

The next step is to construct a null model that does not display any type of holism
or configurality. We do this by assuming perceptual independence for all stimuli,
perceptual and decisional separability on both dimensions, and that all variances
are equal. In this model, which is illustrated in Figure 6.7a, the identity of the top
half of the stimulus does not affect the perceptual representation or the decision
made about the bottom half.

The final step is to build a model that assumes holistic perception when the top
and bottom halves are from the same face, but not when they mismatch. There
are several ways to do this. One is to assume a positive perceptual dependence
when the two halves match and a negative dependence when they mismatch.
This model, which is illustrated in Figure 6.7b, corresponds to the type of
within-stimulus relationships that are implied in the vernacular use of holism,
configurality, or Gestalt (O’Toole, Wenger, & Townsend, 2001; Townsend &
Wenger, 2015). A second way is to change the marginal means of the distributions
such that confusability increases when the bottom and top are mismatched and
decreases when they are matched (Figure 6.7c). The same effect could be obtained
by the third possible way of modeling holism: by shifting the decision bounds
(Figure 6.7d). Of course, these possibilities could also be combined in a variety
of ways.

Two significant points have been made by applying GRT to the issue of holism.
The first is that, just as there are varieties of independence in perception (Ashby &
Townsend, 1986), there are a variety of ways to obtain patterns of data from which
one can infer holism or configurality. The second is that analysis of a task by way
of GRT can provide important insights into the extent to which the task is capable
of testing a hypothesis. For example, GRT simulations reported by Richler et al.
(2008) demonstrated that the standard method of testing the composite face effect
(see discussions in Richler & Gauthier, 2013; Rossion, 2013) does not provide
data that would allow for testing the strong hypothesis that holism is a within-
stimulus effect.
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Figure 6.7 Alternative GRT models of the holism or configurality thought
to underlie the composite face effect: (a) lack of holism or configurality;
(b) positive perceptual dependencies when the halves match and negative
perceptual dependencies when they mismatch; (c) shifting the perceptual means
to model increased accuracy when the halves match and decreased accuracy
when they mismatch; (d) accounting for increased accuracy when the halves
match by shifting the decision bounds.

6.4.3 Applications to Categorization Tasks

In principle, the application of GRT to categorization tasks is the same as its
application to identification. In both cases, the data are summarized in a confusion
matrix, and the primary focus is on the pattern of errors made by observers.
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One important statistical difference however, is that, for the same number of
stimuli, categorization data have fewer degrees of freedom – often far fewer.
For example, the most common categorization experiments include two cate-
gories. Therefore, with M stimuli, an identification confusion matrix includes
M×(M−1) degrees of freedom and the corresponding categorization confusion
matrix includes only M degrees of freedom (i.e., since the confusion matrix has
order M×2). Because the data include fewer degrees of freedom, GRT applications
to categorization tasks include simplifying assumptions that reduce the number of
free parameters, relative to GRT applications to identification data.

In fact, when applied to categorization data, the most common assumption is that
all perceptual representations are multivariate normally distributed with known
means and with variance–covariance matrix equal to σ 2I, where σ 2 is the common
noise variance on each dimension and I is the identity matrix. Thus, only one free
parameter is typically assigned to model all perceptual representations (i.e., σ 2),
and all other parameters are used to model decision bounds. This choice reflects
the assumption that in categorization experiments, errors are more likely caused by
suboptimal decision strategies than by faulty perception. Allocating the lion’s share
of parameters to the decision bounds provides the best opportunity to characterize
these suboptimalities.

The mean of each perceptual distribution describes the mean perceived value of
each stimulus. In some cases, these could come from previous multidimensional
scaling or psychophysical modeling of the stimuli. For example, in the case
of sine-wave gratings (such as Gabor patches) that vary in spatial frequency
and orientation, a psychophysical model that describes the transformation from
stimulus space to perceptual space was provided by Treutwein, Rentschler, and
Caelli (1989). Another possibility, especially for dimensions that are perceptually
separable, is to use Stevens’ exponent. For example, the Stevens exponent for
brightness is 0.33, so the mean brightness of each stimulus could be computed from
kI0.33, where I is the physical intensity of the stimulus and k is an arbitrary constant
that can be set for convenience. When GRT models are fit to categorization
data under these assumptions about the perceptual representations, they are often
referred to as decision bound models. One advantage they have over GRT models
with more complex perceptual representations, which is illustrated in the next
result (due to Ashby & Maddox, 1993), is that no numerical integration is needed
to fit any of the most common models.

Theorem 6.4. Consider a categorization task with two categories, A and B, and a
decision-bound model with one linear boundary. Let the random vector Xi denote
the perceived value of stimulus Si. Assume that Xi has a multivariate normal
distribution with known mean μ

i
and variance–covariance matrix σ 2I. Then the

decision bound is the set of all points that satisfy

h(Xi) = b′Xi + c = 0, (6.21)

for some vector of constants b and constant c. This model, called the general linear
classifier, predicts that
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P(A|Si) = 

(
b′μ

i
+ c

σ
√

b′b

)
, (6.22)

where  is the cumulative distribution function of a standard normal (i.e., Z)
distribution.

Proof. Under the conditions of the proposition, the decision rule of the general
linear classifier is “Respond A if h(Xi) > 0; otherwise, respond B.” Therefore

P(A|Si) = P
[
h(Xi) > 0|Si

]
. (6.23)

Now Xi has a multivariate normal distribution with mean vector μ
i

and variance–

covariance matrix σ 2I. As a result, h(Xi) has a univariate normal distribution with
mean b′μ

i
+ c and variance σ 2b′b. The result follows immediately from these

observations. �

Since the μ
i
are assumed to be known, the parameters of the model are the noise

variance σ 2 and the decision-bound parameters b and c. If there are r perceptual
dimensions, then b has order r × 1. However, without loss of generality, one entry
in b can be set arbitrarily, so b has only r − 1 free parameters.7 Therefore, if the
perceptual space is two-dimensional, this model has three free parameters (i.e., one
slope parameter, the decision-bound intercept c, and the noise variance σ 2).

Predictions for the decision-bound model that assumes a quadratic decision
bound, called the general quadratic classifier, were derived by Ashby and Maddox
(1993). Predictions for models that assume some form of decisional separability
can be found in Ashby and Valentin (2018). For these models, the decision bound
is compatible with an explicit rule that is easily verbalized. For example, the
rule: “Respond A if X1 > c1 and X2 > c2; otherwise, respond B” is equivalent
to the conjunction rule “Respond A if the stimulus is large on both dimensions;
otherwise, respond B.” Ashby and Valentin (2018) also described predictions of
models that assume the participant guesses randomly on every trial.

Criterial noise can be added to decision-bound models by assuming that the
decision rule is “Respond A if h(X) > εc; otherwise, respond B,” where εc

is normally distributed with mean 0 and variances σ 2
c . If the decision bound

is linear, then it is straightforward to show that perceptual and criterial noise
are not separately identifiable (Ashby & Maddox, 1993). Instead, only the sum
of the perceptual and criterial noise variances is estimable. For this reason, it
makes no difference whether we assume that the noise is perceptual or decisional
(or some combination of the two). Once predicted probabilities are computed, the

7 For example, assume r = 2. Then note that at least one of b1 and b2 (i.e., the entries in b) must be
nonzero. Note that the decision rule “Respond A if h(X) > 0” is unchanged if we divide both sides

by a positive constant. Therefore, without loss of generality, we can divide both sides by
√

b2
1 + b2

2.
Note that the sum of the squared entries in the revised b vector now equals 1. As a result, we can

always replace b2 with
√

1− b2
1.

https://doi.org/10.1017/9781108902724.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.007


Statistical Decision Theory 289

parameters can be estimated by finding the numerical values that maximize the
likelihood-related statistic L∗ in Equation (6.33) below.

6.4.4 Applications to Identification Tasks

GRT has been used to analyze data from identification confusion matrices in two
different ways. One approach is to compute certain summary statistics from the
empirical confusion matrix and then to check whether these satisfy conditions
that are characteristic of perceptual independence, perceptual separability, or
decisional separability. The other approach is to fit GRT models to the entire
confusion matrix. To test various assumptions about perceptual and decisional
processing – for example, to test whether perceptual independence holds – a
version of the model that assumes perceptual independence is fit to the data as
well as a version that makes no assumptions about independence. This latter
version contains the former version as a special case (i.e., in which all covariance
parameters are set to zero), so it can never fit worse. After fitting these two models,
we conclude that perceptual independence is violated if the more general model
fits significantly better than the more restricted model that assumes perceptual
independence (Ashby & Perrin, 1988; Thomas, 2001).8 Because these approaches
are so different, we discuss each in turn.

It is important to note, however, that regardless of which method is used, there
are certain non-identifiabilities in GRT models that could limit the conclusions that
are possible to draw from any such analyses (e.g., Menneer, Wenger, & Blaha,
2010; Silbert & Thomas, 2013). The problems are most severe when GRT is
applied to identification data from 2× 2 factorial designs (i.e., with stimuli A1B1,
A1B2, A2B1, and A2B2). For example, Silbert and Thomas (2013) showed that
in 2 × 2 applications where there are two intersecting linear decision bounds that
do not satisfy decisional separability, there always exists an alternative model that
makes the exact same empirical predictions and satisfies decisional separability
(and these two models are related by a linear transformation). Thus, in standard
applications of GRT to identification experiments that use a 2× 2 factorial design,
decisional separability is not testable, nor are the slopes of the decision bounds
uniquely estimable. It turns out, however, that for a variety of reasons, these non-
identifiabilities are not catastrophic.

First, there are no identifiability problems if the perceptual dimensions are
known. Obviously, the linear transformation that rotates intersecting linear bounds
so that one is vertical and one is horizontal also rotates the perceptual dimensions.
So although decisional separability holds in the new model, the separability
is with respect to novel dimensions. In other words, one interpretation of the
identifiability problem is that if the best-fitting GRT model to some single

8 Note that many of the statistical packages written for estimating GRT models provide estimates of
parameter variability and/or confidence intervals, allowing one to determine whether (for example)
a parameter estimate can be inferred to be reliably different from 0.
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confusion matrix collected in an experiment that used a 2 × 2 factorial design
assumes intersecting linear bounds that violate decisional separability, then there
is always an alternative GRT model that fits equally well and assumes that the
observer made decisions by selectively attending to some different perceptual
dimensions. With complex stimuli, such as faces, this will often be difficult to
rule out. However, with many simple stimuli, this possibility is straightforward to
reject. For example, consider sine-wave gratings (e.g., such as Gabor patches) that
are created by factorially combining two spatial frequencies (bar widths) and two
(bar) orientations. An enormous visual perception literature tells us that humans
treat these two dimensions as primary (e.g., DeValois & De Valois, 1990). So any
conclusions about decisional separability drawn from a GRT analysis should be
immune to identifiability problems because the mathematically equivalent model
that makes different assumptions about decisional separability must assume that
the observer perceived the stimuli in a way that is incompatible with the visual
perception literature.

Second, the problems do not generally exist with 3× 3 or larger factorial
designs (as used e.g., by Ashby et al., 2001). In the 3 × 3 case, the GRT model
with linear bounds requires at least four decision bounds to divide the perceptual
space into nine response regions (e.g., in a tic-tac-toe configuration). Typically,
two will have a generally vertical orientation in the two-dimensional perceptual
space and two will have a generally horizontal orientation. Linear transformations
will rotate the vertical-tending bounds by the same amount, and the horizontal-
tending bounds by the same amount. Therefore, unless the two vertical-tending
bounds are parallel and the two horizontal-tending bounds are parallel, there
is no linear transformation that guarantees decisional separability for all four
bounds. For example, if the two vertical-tending bounds are not parallel, then the
linear transformation that makes one perfectly vertical (guaranteeing decisional
separability) will leave the other oblique to the abscissa (causing a violation of
decisional separability). Thus, in 3× 3 (or higher) designs, decisional separability
is typically identifiable and testable.

Third, there are simple experimental manipulations that can be added to the
basic 2 × 2 identification experiment to test for decisional separability. Currently,
more than 30 different qualitative differences have been identified in the learning
and performance of tasks in which observers use strategies that satisfy versus
violate decisional separability (for a review of most of these, see Ashby & Valentin,
2017). For example, switching the locations of the response buttons interferes with
performance if decisional separability fails more than if decisional separability
holds (Ashby, Ell, & Waldron, 2003; Maddox, Bohil, & Ing, 2004), and delaying
feedback by a few seconds has a similar effect, but on learning, rather than
performance (Crossley & Ashby, 2015; Dunn, Newell, & Kalish, 2012; Maddox,
Ashby, & Bohil, 2003; Maddox & David, 2005).

Fourth, one could analyze the 2× 2 data using GRT-wIND (GRT with INDivid-
ual differences; Soto et al., 2015), which was inspired by the INDSCAL model of
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multidimensional scaling (Carroll & Chang, 1970). Like INDSCAL, GRT-wIND
is fit to the data from all individuals simultaneously. All observers are assumed to
share the same group perceptual distributions (see Silbert & Thomas, 2017 for a
discussion of this assumption), but different observers are allowed different linear
bounds and they are assumed to allocate different amounts of attention to each
perceptual dimension. The model does not suffer from the identifiability problems
identified by Silbert and Thomas (2013), even in the 2 × 2 case, because with
different linear bounds for each observer, there is no linear transformation that
simultaneously makes all these bounds satisfy decisional separability.

Summary Statistics Approach
The first approach that used GRT to test perceptual and decisional assumptions
was based on parametric and nonparametric summary statistics that were derived
from the identification–confusion matrix (see, e.g., Figure 11, p. 172 of Ashby &
Townsend, 1986). This later evolved to an approach known as multidimensional
signal detection analysis (MSDA; Kadlec, 1995; Kadlec & Townsend, 1992a,
1992b), which extended the concepts originally presented by Ashby and Townsend
(1986) and combined those equalities with tests of equalities on Gaussian SDT
parameters. This was later both simplified and refined, as summarized by Silbert
and Hawkins (2016), under the strong assumption that decisional separability
always holds (see also Silbert & Thomas, 2013).

The most popular summary statistics tests use measures called marginal
response invariance and report independence to draw inferences about perceptual
separability and perceptual independence. Marginal response invariance holds at
the ith level of the first dimension if the following equality holds:

P(ai|AiB1) = P(aib1|AiB1)+ P(aib2|AiB1)

= P(aib1|AiB2)+ P(aib2|AiB2)

= P(ai|AiB2), (6.24)

where, as before, P(akbm|AiBj) is the probability that the participant responded
akbm on trials when stimulus AiBj was presented. Marginal response invariance
provides information about perceptual separability so long as decisional separabil-
ity holds. If decisional separability does hold, then a failure of marginal response
invariance at any level of a given dimension implies that perceptual separability
fails on that dimension (Ashby & Townsend, 1986). If the marginal d′s are also
unequal on that dimension, then our conclusion that perceptual separability fails is
further bolstered.

Before GRT, the most popular method for assessing separability was via a
categorization task called the filtering task, which uses the same stimuli as the
2× 2 identification task, but asks observers to report the level of component A or
the level of component B, rather than identifying the stimulus uniquely. Ashby and
Maddox (1994) proposed an RT version of marginal response invariance for this
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task that they called marginal RT invariance. Specifically, for i = 1 or 2, marginal
RT invariance holds for component A if

P(RT ≤ t|AiB1,ai) = P(RT ≤ t|AiB2,ai), for all t > 0, (6.25)

where RT is the RT and ai indicates that the observer responded that the level
of component A was i. Ashby and Maddox (1994) showed that if decisional
separability holds and if RT decreases with the distance from the percept to
the decision bound – an assumption called the RT–distance hypothesis – then
perceptual separability holds if and only if marginal RT invariance is satisfied for
both correct and incorrect responses.

Ashby and Maddox (1994) only investigated tasks with two response alter-
natives (i.e., the filtering and redundancy tasks popularized by Garner, 1974).
Townsend, Houpt, and Silbert (2012) applied a similar approach to the 2 × 2
identification task. They defined an RT invariance condition similar to marginal
RT invariance that they called timed marginal response invariance. This condition
holds in the 2× 2 identification task for level i of component A if, for all t > 0:

P(aib1,RT ≤ t|AiB1)+ P(aib2,RT ≤ t|AiB1)

= P(aib1,RT ≤ t|AiB2)+ P(aib2,RT ≤ t|AiB2). (6.26)

Rather than assume the RT–distance hypothesis, Townsend, Houpt, and Silbert
(2012) investigated predictions of a general class of models that assumed process-
ing of the two stimulus components occurs in parallel. Within this class of models,
they showed that if perceptual and decisional separability hold then timed marginal
response invariance must also hold.9

The parallel models considered by Townsend, Houpt, and Silbert (2012) are
grounded on the assumptions of stochastic linear systems, in which the activation
in a channel is proportional to the magnitude of its input (Townsend & Wenger,
2004; Wenger & Townsend, 2006). There is a channel for each level of every
stimulus component, and each channel accumulates evidence that the relevant
stimulus component is at the level to which the channel is tuned. In GRT and
signal detection theory, if the likelihood ratio is monotonic, then evidence increases
with distance from the boundary (or criterion). For this reason, the parallel models
considered by Townsend, Houpt, and Silbert (2012) are closely related to the
models that Ashby and Maddox (1994) considered, which satisfy the RT–distance
hypothesis.

Given this similarity, it is not surprising that marginal RT invariance and timed
marginal response invariance are closely related. First, note that

P(aib1,RT ≤ t|AiBj)+ P(aib2,RT ≤ t|AiBj) = P(ai,RT ≤ t|AiBj). (6.27)

9 Note that this result is weaker than the if and only if result that is possible if the RT–distance
hypothesis is assumed to hold in the filtering task.
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Next note that marginal RT invariance is equivalent to assuming that for all t > 0:

P(ai,RT ≤ t|AiB1)

P(ai|AiB1)
= P(ai,RT ≤ t|AiB2)

P(ai|AiB2)
. (6.28)

Now Townsend, Houpt, and Silbert (2012) showed that if timed marginal response
invariance holds then so does marginal response invariance [i.e., Equation (6.24)].
Therefore, if the joint probabilities in the numerators of Equation (6.28) are equal
for all t, then the probabilities in the denominators are also equal. Therefore, when
applied to the filtering task, marginal RT invariance and timed marginal response
invariance are equivalent.

The summary statistics described so far are targeted at testing for perceptual
separability. Another set of statistics targets perceptual independence. Report
independence (called sampling independence in the early literature) is assessed for
each individual stimulus and provides information about perceptual independence,
again assuming that decisional separability holds. Report independence holds in
the 2× 2 identification task for stimulus AiBj if:

P(aibj|AiBj) = P(ai|AiBj)× P(bj|AiBj)

= [P(aib1|AiBj)+ P(aib2|AiBj)
]

× [P(a1bj|AiBj)+ P(a2bj|AiBj)
]

. (6.29)

Ashby and Townsend (1986) showed that if decisional separability holds, then a
failure of report independence implies a violation of perceptual independence.

Townsend, Houpt, and Silbert (2012) also proposed an RT-invariance condition
that is similar to report independence. Specifically, timed report independence
holds for the response aibj with stimulus AkBm if for all times t > 0:

P(RT ≤ t|AkBm,aibj)× P(RT ≤ t|AkBm)

= P(RT ≤ t|AkBm,ai)× P(RT ≤ t|AkBm,bj). (6.30)

Townsend, Houpt, and Silbert (2012) showed that, within the class of parallel mod-
els they were considering, if decisional separability and perceptual independence
both hold then timed report independence must hold.

Summary statistics approaches are complemented by the model-fitting approach
described next. Indeed, since at least the work of Thomas (2001), there has
been a focus on combining summary statistics and Gaussian model-fitting as
complementary sources of converging evidence in supporting inferences (Cornes
et al., 2011; Von Der Heide et al., 2018; Wenger & Rhoten, 2020).

Fitting the Gaussian Model to Identification Data
As mentioned earlier, a second approach for analyzing data from identification
experiments is to fit a variety of different GRT models to the confusion matrices.
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Assumptions about perceptual interactions and decision processes can be tested by
comparing model fits of nested models in which the restricted model makes some
specific assumption, such as perceptual separability, and the more general model
does not (Ashby & Perrin, 1988; Thomas, 2001). The primary advantage of this
approach over the summary statistics approach is that, although it is parametric, it
makes fewer assumptions about perceptual and decisional processes, and therefore
should be less prone to false conclusions. The trade-off though is that it is more
computationally intensive, since it often requires numerical integration.

This model-fitting approach is necessarily parametric since numerical predic-
tions are possible only if a specific functional form is specified for the perceptual
distributions. All previous applications of this approach have assumed that the
perceptual distributions are multivariate normal. Furthermore, all applications have
assumed that there are only two relevant sensory dimensions. In principle, the
fitting algorithms (described below) are straightforward to extend to more than
two dimensions, but such models could include many more free parameters and
therefore significantly increased computation time. Thus, to date, applications
that have fit GRT models to identification confusion matrices have assumed that
the sensory distributions are bivariate normal pdfs, and the response regions are
defined on a plane. A variety of different assumptions about decision processes are
possible. Figure 6.8 illustrates six of these.

In an identification experiment with M stimuli, the resulting confusion matrix
includes M×(M−1) degrees of freedom. As a result, this value fixes the maximum
number of parameters that can be estimated. A bivariate normal distribution has
a maximum of five free parameters – a mean and variance on both dimensions,
and a covariance. Therefore, the smallest value of M for which the most general
possible GRT model can be estimated is M = 6. In this case, the 6 × 6 confusion
matrix has 30 degrees of freedom, and the six perceptual distributions needed
to model the perceptual effects of the six stimuli have 30 parameters. However,
the origin and unit of measurement on each perceptual dimension are arbitrary.
Therefore, without loss of generality, the means on both dimensions can be set to
0 in any one perceptual distribution (to set the origin) and the variances in that
distribution can be set to 1 (to set the unit of measurement). This reduces the
number of free parameters to 26 (i.e., to 5M − 4), which leaves a maximum of
four parameters to model the decision-bounds and assess the validity of the model.
The fact that only four degrees of freedom remain rules out some decision models
(e.g., the general quadratic classifier), but not all. For example, in Figure 6.8,
the minimum distance and optimal classifiers have no free decision parameters,
and the model that assumes decisional separability has only two free parameters
(i.e., the two intercepts).

As the order of the confusion matrix increases above six, the degrees of freedom
increases faster than the number of free parameters in the full GRT model. As a
result, the larger the matrix, the more extra degrees of freedom there are to estimate
decision-bound parameters and to test the validity of the model. For example,
Ashby et al. (2001) fit the full model to a variety of different 9 × 9 confusion
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Figure 6.8 Different types of decision bounds used in GRT modeling. (a) Deci-
sional separability is satisfied on both dimensions. (b) Decisional separability
is satisfied on dimension 2, but not on dimension 1. (c) Decision bounds of the
minimum distance classifier. (d) Decision bounds of the general linear classifier.
(e) Decision bounds of the general quadratic classifier. (f) Decision bounds of
the optimal classifier.

matrices, which each have 72 degrees of freedom, and with nine stimuli the full
model has only 41 free perceptual parameters.

On the other hand, note that the 2×2 factorial design, which as previously men-
tioned is the most popular identification experiment, includes only four stimuli.
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Therefore, the full model includes 16 free perceptual parameters (i.e., 5 × 4 − 4)
and each confusion matrix includes only 12 degrees of freedom (i.e., 4 × 3). As
a result, the full GRT model is not estimable in these experiments. So when GRT
models are fit to single confusion matrices from 2 × 2 factorial designs, some
assumptions must be made to reduce the number of free parameters.

When fitting any GRT model to identification data, parameter estimation is
accomplished via the method of maximum likelihood. Denote the M stimuli
by S1,S2, . . . ,SM and the corresponding M responses by R1,R2, . . . ,RM . Let
nij denote the entry in row i and column j of the confusion matrix – that is,
the frequency with which the observer responded Rj on trials when stimulus
Si was presented. Note that the nij are random variables, and the entries in
each row of the confusion matrix have a multinomial distribution. In particular,
if P(Rj|Si) is the true probability that response Rj is given on trials when
stimulus Si is presented, then the probability of observing the response frequencies
ni1,ni2, . . . ,niM in row i is

P(ni1,ni2, . . . ,niM|Si)

= Ni!

ni1! ni2! · · · niM!
P(R1|Si)

ni1P(R2|Si)
ni2 · · ·P(RM|Si)

niM, (6.31)

where Ni is the total number of stimulus Si presentations (i.e., so Ni =
∑

j nij). The
probability or likelihood of observing the entire confusion matrix is the product of
the probabilities of observing each row:

L =
M∏

i=1

P(ni1,ni2, . . . ,niM|Si). (6.32)

In all Gaussian GRT models, P(Rj|Si) is computed by integrating a multivariate
normal pdf over some response region, but different models make different
assumptions about the pdf and about the shape of the region. The maximum
likelihood parameter estimates are the numerical values of all model parameters
that maximize the likelihood L of Equation (6.32).

Two simplifications are common. First, some of the P(Rj|Si)
nij could be very

small numbers, so it is common to find parameter values that maximize log L
rather than L. Since log is a monotonic transformation, the parameter values
that maximize L will also maximize log L. Second, note that the factorial terms
in Equation (6.31) do not depend on the values of any model parameters, and
therefore they are typically excluded from the parameter estimation process.
Therefore, the common practice is to find the maximum likelihood estimates of
all parameters by maximizing the monotonically related term

L∗ =
M∑

i=1

M∑
j=1

nij log P(Rj|Si), (6.33)
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where as already mentioned, the predicted probabilities P(Rj|Si) are computed by
integrating under the multivariate normal pdf that models the sensory representa-
tion of stimulus Si over the Rj response region.

The difficulty of computing the integrals required to maximize L∗ depends on
the nature of the decision bounds assumed by the model. Decisional separability
simplifies things considerably because then the integral under a bivariate normal
pdf reduces to the integral under a univariate normal marginal pdf. Under these
conditions, Wickens (1992) derived the first and second derivatives necessary to
estimate parameters of the model quickly using the Newton–Raphson method.
In models that do not assume decisional separability, the integrals are under the
bivariate normal pdf over irregularly shaped regions of the plane. As a result,
numerical integration is required.

Ennis and Ashby (2003) proposed an efficient algorithm for evaluating these
integrals that can be used to estimate the parameters of virtually any GRT model
via standard minimization software. This algorithm was described in detail by
Ashby and Soto (2015). Briefly, however, the algorithm, which is described in
Figure 6.9, includes the following five steps.

(1) A set of D Z-values are preloaded into an array. Each Z-value is chosen to be
the center of an interval that has equal area under the Z distribution (i.e., under the
pdf of a normal distribution with mean 0 and variance 1). The Cartesian product of
this array with itself creates a grid of points in multidimensional space that are each
the center of a rectangle (or hyper-rectangle) that all have equal volumes under the
multidimensional Z pdf (i.e., the gray points on the right side of Figure 6.9). If the
GRT model assumes r perceptual dimensions then after this step there will be Dr

grid points. For example, to fit two-dimensional GRT models, Ashby et al. (2001)
set D = 100, which creates a grid of 10,000 points in bivariate Z-space, each of
which is the center of a rectangle with volume 0.0001 (i.e., 0.012).

(2) Note that GRT assumes that all entries in each row of a confusion matrix are
computed by integrating under the same perceptual distribution. Different columns
are associated with different response regions. The algorithm works row-by-row.
The idea is to transform the perceptual distribution associated with the current
row to a multivariate Z-distribution. This can always be accomplished via an
affine transformation in which the linear transformation is based on the Cholesky
factorization of the distribution’s variance–covariance matrix. The second step is
to compute this affine transformation.

(3) Apply this affine transformation to the decision bounds. Since affine
transformations preserve linearity, this step will convert linear bounds in perceptual
space to linear bounds in Z-space.

(4) Step through all Dr grid points and for each one, identify its associated
response region. Each bound defines a discriminant function that assigns positive
values to all points on one side and negative values to all points on the other side.
With multiple bounds, each response region is characterized by a unique set of
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Figure 6.9 Schematic illustration of how numerical integration is performed in
the multivariate normal GRT model via Cholesky factorization.

positive and negative discriminant values. So the response region of a point can be
identified by examining its pattern of positive and negative discriminant values of
all decision bounds after they have been transformed to Z-space.

(5) Suppose the current grid point is identified as belonging to response region J.
The final step is to increment the integral associated with response J by 1/Dr.

The problems caused by insufficient degrees of freedom in 2× 2 factorial
designs disappear if GRT-wIND (Soto et al., 2015) is used instead of the traditional
GRT model. GRT-wIND is fit simultaneously to the individual confusion matrices
of all observers. Soto et al. (2017) developed an R package that fits this model
using only a few commands. GRT-wIND assumes that all observers share the same
group perceptual representation, which is described by the full GRT model, even in
2×2 factorial designs. Thus, GRT-wIND assumes that basic perceptual properties,
such as perceptual separability and perceptual independence, or their violations,
are shared by all observers. The model assumes that different observers produce
different confusion matrices for two reasons – they allocate different amounts of
attention to the two perceptual dimensions, and they use different decision bounds.
Thus, fitting the model returns estimates of (1) the group perceptual representation
(i.e., the full GRT perceptual model), (2) the total amount of attention allocated
to the task by each observer, (3) the proportion of attention allocated to the two
perceptual dimensions by each observer, and (4) unique decision bounds for each
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observer. Soto et al. (2015) fit GRT-wIND to the confusion matrices of 24 different
observers in a face identification experiment that used a 2 × 2 factorial design
in which the four stimulus faces were created by crossing two facial identities
with two emotional expressions. The 24 matrices included a total of 288 degrees
of freedom (i.e., 24 × 12). The GRT-wIND model included an average of 6.67
free parameters for each individual confusion matrix, which is less than typical
applications of traditional GRT models to 2 × 2 designs. GRT-wIND accounted
for 99.52% of the variance in the 24 confusion matrices. Even more impressively,
GRT-wIND provided a better fit than the best-fitting traditional GRT model to
the data of 18 of the 24 participants.10 Furthermore, GRT-wIND suggested that
in this group of 24 observers, emotional expression was perceptually separable
from facial identity, but identity was not separable from expression. In contrast, a
traditional GRT analysis could only report how many of the individual participants
showed this pattern.

GRT accounts of identification data have been spectacularly successful. For
most of the last four decades of the twentieth century, the most successful model of
identification, by far, was the Luce–Shepard choice model (Luce, 1963; Shepard,
1957), which assumes that

P(Rj|Si) = ηijβj∑M
k=1 ηikβk

, (6.34)

where ηij is the similarity between stimuli Si and Sj and βj is the bias toward
response Rj (without loss of generality, one can set ηii = 1 for all values of i
and

∑
βj = 1). To ensure that the model is testable, similarity is assumed to be

symmetric (i.e., so that ηij = ηji for all values of i and j). The Luce–Shepard choice
model was so successful that for many years, it was the standard against which
competing models were compared. For example, in 1992, J. K. Smith summarized
its performance by concluding that it “has never had a serious competitor as a
model of identification data. Even when it has provided a poor model of such data,
other models have done even less well” (J. K. Smith, 1992, p. 199). Even so, the
model was never considered completely satisfactory – primarily because a good fit
provides little insight into the psychological processes of the observer producing
the data. The model merely says that the probability of confusing stimulus Sj for
Si is proportional to the product of the similarity between the two stimuli and the
bias toward response Rj [the denominator in Equation (6.34) is just a normalizing
constant]. Also, note that the model makes no predictions about how a decision is
reached. It simply predicts the proportion of Rj responses to expect over the course
of a large number of Si trials.

GRT provided the first models that ended the dominance of the Luce–Shepard
choice model, at least for identification data collected from experiments with
stimuli that differed on only a couple of stimulus dimensions. In virtually every

10 This is because the full traditional-GRT model is not estimable in 2× 2 designs, but the full GRT-
wIND model is estimable.
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such comparison, the GRT model provided a substantially better fit than the Luce–
Shepard choice model, in many cases with fewer free parameters (Ashby et al.,
2001). Even so, it is important to note that the Luce–Shepard choice model is still
valuable, especially in the case of identification experiments in which the stimuli
vary on many unknown stimulus dimensions.

6.4.5 Extensions to Response Time

Like SDT, GRT was originally developed to account exclusively for accuracy
data. Even so, there have been a number of extensions of the theory that attempt
also to account for RTs. These are generally of two types. One approach is to
add assumptions to GRT that allow the theory to make RT predictions but are
not detailed enough to account for psychological process. Thus, like the original
version of GRT (and SDT), the resulting models are descriptive, or in the language
of Marr (1982), computational. The other approach is to add enough structure
to GRT to model psychological process – thereby producing models that Marr
identified as algorithmic. We briefly review both types in turn.

Computational-Level Accounts of RT
The principle example of this approach was to add an assumption called the RT–
distance hypothesis to GRT, which simply assumes that RT decreases with the
distance between the percept and the decision bound. This assumption was first
investigated in SDT (e.g., Murdock, 1985). The idea is that if decisions are made
by comparing a percept to a decision bound or criterion, then the greater the
distance between the two, the easier, and hence the faster, the decision. This simple
assumption has received considerable empirical support (Ashby, Boynton, & Lee,
1994; Murdock, 1985). As noted earlier, Ashby and Maddox (1994) showed that if
the RT–distance hypothesis holds, then strong nonparametric RT tests of perceptual
separability are possible.

Process Models of RT
This has been the more popular approach. Ashby (2000) generalized the drift-
diffusion model described earlier to multiple perceptual dimensions. In this
version, the perceptual representations are the same as in classical GRT. Like
the drift-diffusion model, application was restricted to tasks with two response
alternatives. On each trial, the observer’s experience with the stimulus was
assumed to produce repeated samples from the relevant perceptual distribution.
Each sample is compared to the decision bound and a signed distance is computed,
which equals distance-to-bound if the percept is in the A region and minus
distance-to-bound if it is in the B region. At this point, the model is identical
to the drift-diffusion model – that is, the signed distances are cumulated, and
sampling continues until the sum crosses an upper or lower barrier (exactly as
in Figure 6.5, except with an “A” response replacing “YES” and a “B” response
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replacing “NO”). Ashby (2000) showed that this model includes the static version
of GRT as a special case, and showed that the variance–covariance matrices
estimated in classical applications of GRT are corrupted by decisional influences.
For example, consider two conditions in which the task is identical but participants
are pressed to respond more quickly in one than the other. In general, we expect
more errors in the condition with speed stress. Fitting the static GRT model to these
data would suggest that perceptual noise increases with speed stress. In contrast,
the stochastic version of GRT accounts for these data by reducing the distance
to the response barriers in the speeded condition (i.e., the numerical values of A
and B in Figure 6.5), but not changing perceptual noise.

More recently, P. L. Smith (2019) proposed a similar model, except based on
a circular diffusion process. The model can be applied to a variety of different
tasks, but consider its application to the 2 × 2 factorial identification experiment
with stimuli A1B1, A1B2, A2B1, and A2B2. As mentioned earlier, in static GRT
models of this task, the origin of the perceptual space is arbitrary. Suppose we
define the origin as the center point of the four perceptual means (i.e., the mean
of the means), and the drift is determined by cumulating random samples from
the perceptual distribution associated with the presented stimulus (e.g., scaled
by some multiplicative constant). Then the drift will generally be outwards and
in the direction of the perceptual mean of the stimulus. P. L. Smith (2019)
assumed a single circular absorbing barrier that is divided into four quadrants –
one associated with each response alternative. The accumulation process continues
until absorption occurs, at which point the associated response is given. A response
bias toward or against a particular response can be implemented by setting the
angle of the response quadrant associated with that response to be greater or
less than 90◦, respectively. Because this task includes more than two response
alternatives, the stochastic GRT model proposed by Ashby (2000) is not even
defined in this case. So in this sense, Smith’s model has a considerable advantage
over the model proposed by Ashby. On the other hand, the circular-diffusion model
does not include decision bounds, so it is unclear how the model would account
for performance differences that arise, for example, when the participant switches
to or away from bounds that satisfy decisional separability.

As noted earlier, Townsend and colleagues (Townsend, Houpt, & Silbert, 2012;
Townsend & Wenger, 2004; Wenger & Townsend, 2006) interpreted GRT within
the framework of stochastic linear dynamical systems. These models assume
the stimulus dimensions or components are processed by parallel channels that
are potentially interactive (Townsend et al., 2020). Activation in each channel
is accumulated until it reaches a criterion level, and the outputs of the different
channels are then passed to decisional operators (e.g., Boolean AND or OR gates).
Like the drift-diffusion interpretations of GRT, these models make simultaneous
accuracy and RT predictions. They have also been used to model configurality
(Wenger & Townsend, 2006) and to derive new RT summary statistics that can be
used to test for perceptual separability and perceptual independence.
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6.4.6 Extensions to Neuroscience

GRT was developed before the cognitive neuroscience revolution that began
in the 1990s. As a result, for its first several decades of existence, GRT was
a purely perceptual and cognitive theory. But during the past several decades
there has been progress on two fronts. First, much has been learned about the
architecture and functioning of the neural circuits that implement the perceptual
and decision processes hypothesized by GRT. Second, GRT analyses have recently
been extended to neuroscience data, in particular to data from neuroimaging
experiments. This section briefly reviews these trends. For more details, see Ashby
and Soto (2016) and Soto, Vucovich, and Ashby (2018).

There is now overwhelming evidence that humans have multiple learning
systems that for the most part are neuroanatomically and functionally distinct (e.g.,
Ashby & Maddox, 2005; Eichenbaum & Cohen, 2001; Squire, 2004). The most
complete description of two of the most important learning systems is arguably
provided by the COVIS theory (Ashby & Valentin, 2017; Ashby et al., 1998).
COVIS assumes separate explicit-reasoning and procedural-learning systems that
compete for access to response production. The explicit-reasoning system uses
executive attention and working memory to learn explicit rules, and is mediated
by a broad neural network that includes the prefrontal cortex, anterior cingulate,
head of the caudate nucleus, and the hippocampus. In contrast, the procedural
system uses dopamine-mediated reinforcement learning when the optimal strategy
is difficult or impossible to describe verbally, and key structures include the
striatum and premotor cortex.

Knowing which learning system participants are using can facilitate a subse-
quent GRT analysis because the explicit system is constrained to use bounds that
satisfy decisional separability (at least locally), whereas the procedural system is
not. The explicit system learns and applies explicit rules that can be described
using Boolean algebra. More specifically, it makes independent decisions about
the level of the stimulus (e.g., high vs. low) on one or more dimensions and then
combines the outcomes of these separate decisions using simple logical operators,
such as “and” to produce conjunction rules and “or” to produce disjunctions.
When translated into decision bounds, the resulting response regions can always
be separated by piecewise linear bounds, in which each piece is a vertical or
horizontal line segment. Thus, each piece satisfies decisional separability. In
contrast, the procedural system implements less constrained decision strategies
that are compatible with any of the decision bounds that are used when fitting
GRT models. For these reasons, if decisional separability is assumed, then
it is vital to select experimental conditions that favor explicit reasoning over
procedural learning.

Soto et al. (2018) extended GRT analysis to neuroimaging data in the context of
a study examining the relationship between facial identity and perceived emotion.
When a visual stimulus is presented to an observer, it causes activation in many
areas within the visual system. The perceptual representation modeled in GRT
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likely depends on activation in some higher-level visual area. If this representation
violates perceptual separability (or perceptual independence), then an obvious and
important question is when and where separability (or independence) was first
violated within the processing stream? To address this question, Soto et al. (2018)
first defined the concepts of encoding separability and encoding independence. If
a stimulus dimension is encoded in some brain region of interest in exactly the
same way when an irrelevant dimension is varied, then the former shows encoding
separability from the latter. Similarly, if the neural representations of two stimulus
dimensions are statistically independent in some region of interest, then they
satisfy encoding independence. Next, Soto et al. (2018) proposed empirical tests of
these constructs that are based on summary statistics derived from applying pattern
classifiers to fMRI data. For example, the first step might be to construct a support
vector machine that classifies the level of stimulus dimension A in some brain
region of interest as 1 or 2 (following methods described, e.g., by Ashby, 2019).
Decoding separability holds if the distributions of decoded values of dimension A
are invariant across changes in a second, irrelevant dimension B.11

Similarly, Wenger and Rhoten (2020) demonstrated that it was possible to use
the timing of a feature in EEG data to draw inferences regarding independence
and separability in a study of visual perceptual learning. Specifically, they used
the onset time of the lateralized readiness potential (LRP). The LRP is a negative-
going waveform, measured in central electrodes contralateral to the motor response
that it precedes, and is interpreted as indicating that sufficient processing has been
completed in order to program the motor response. The onset time of the LRP was
shown to be strongly correlated with observable RT. Consequently, when those
onset times were analyzed with respect to timed marginal response invariance
and timed report independence (see the subsection entitled “Summary Statistics
Approach”), they were found to support inferences that were consistent with the
inferences drawn from the response frequencies.

6.5 Concluding Remarks

The power and generality of statistical decision theory – SDT in one
dimension and GRT in multiple dimensions – should confirm Estes’ evaluation
that SDT is “. . . the most towering achievement of basic psychological research in
the last half century” (Estes, 2002, p. 15). One would be hard-pressed to name a
sub-discipline of the behavioral sciences (cognitive neuroscience included) that
does not concern themselves with aspects of identification and categorization
(classification). This fact, along with the fact that SDT “scales” to dealing with

11 Operationally, this can be tested in the following way. Consider an identification experiment with
stimuli A1B1, A1B2, A2B1, and A2B2. First, compute the distance of each activity vector to the
classifier hyperplane. Second, estimate the distributions of the A1 and A2 distances separately when
B is at level 1 and at level 2. Finally, compare the A1 distributions when B is at level 1 and at level
2, and also compare the A2 distributions when B is at level 1 and level 2.
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neurophysiological data, perhaps reinforces Wixted’s opinion that “. . . it should
not be possible to earn a Ph.D. in experimental psychology without having
some degree of proficiency in signal detection theory” (Wixted, 2020, p. 225).
Along with these kinds of advances, we should note that a critical strength of
the community of researchers associated with SDT and GRT is the unflinching
willingness to tackle difficult problems, such as the identifiability issues discussed
here. Investigators have added and continue to develop novel and improved
methods for framing hypotheses and connecting theory and data.

6.6 Related Literature

Link (1994) and Wixted (2020) provide excellent historical overviews of
the antecedents to SDT and to its early years. The original classic text on SDT was
by Green and Swets (1966). It remains relevant today, especially for its treatment of
ideal observer theory. For more recent texts, see Macmillan and Creelman (2005)
or Wickens (2002).

There is no text on GRT, although this topic is briefly covered by Macmillan
and Creelman (2005). Even so, there are a few recent GRT tutorials, including
by Ashby and Soto (2015) and Silbert and Hawkins (2016). For a review of the
mathematical foundations of GRT, see Fukunaga (2013).
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7.1 Response Inhibition and the Stop-Signal Task

The notion of response inhibition refers to an organism’s ability to
suppress unwanted impulses, or actions and responses that are no longer required
or have become inappropriate. This ability is considered a case of cognitive
control, those cognitive faculties that allow information processing and behavior to
vary adaptively from moment to moment depending on current goals, rather than
remaining rigid and inflexible. At this time, the field of cognitive control flourishes
like never before (Logan, 2017, p. 875).1

The simple fact that cognitive control takes time makes subjects’ behavior
amenable to the advanced methods of response time analysis and modeling
developed in cognitive psychology over many years. In the stop-signal paradigm,
participants typically perform a go task (e.g., press left when an arrow pointing
to the left appears, and press right when an arrow pointing to the right appears),
but on a minority of the trials, a stop signal (e.g., an acoustic stimulus) appears
after a variable stop-signal delay, instructing the participant to suppress the
imminent go response (see Figure 7.1). This paradigm has become the main
workhorse being used in laboratory settings across various human populations
(e.g., clinical vs. nonclinical, different age groups) as well as nonhuman ones
(primates, rodents, etc.).

The stop-signal task provides three types of observable data: (i) reaction
times (RTs) to the go signal in go trials; (ii) RTs in stop trials (when response
inhibition failed); and (iii) the frequency of responses given in spite of the stop
signal. Unlike the latency of go responses, response-inhibition latency cannot be
observed directly (as successful response inhibition results in the absence of an
observable response). This is a problem, in particular because the time to cancel
a response is widely considered to be an appropriate indicator of the level of
response inhibition of an individual, and it must be addressed by any model of the
stop-signal task.

The main goal of this chapter is to present results in the formal modeling of
behavioral data from the stop-signal paradigm and some of its variants. Given that
there exist a number of comprehensive literature reviews of both empirical and
modeling results (see Section 7.10 on related literature), we primarily present a
general formal framework allowing us to incorporate most current models and,
at the same time, expose a number of open or only partially solved problems.
In order to keep the chapter self-contained, we start by presenting some typical

1 Gordon Logan emphasizes that “Cognitive control addresses core issues in basic and applied
psychology, from free will and the nature of intention to practical strategies for improving our own
control and treating deficient control in our clients.” According to Web of Science (10/2020), there
were about 200 papers and 10,000 citations in 2019 for “stop-signal task.”
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Figure 7.1 Depiction of the sequence of events in a stop-signal task. In this
example, participants respond to the direction of the small arrows (by pressing
the corresponding arrow key) in the go task. On a quarter of the trials, the
arrow is replaced by “XX” after a variable stop-signal delay (FIX = fixation
duration; SSD = stop-signal delay; MAX.RT = maximum reaction time;
ITI = intertrial interval) (from Verbruggen et al., 2019).

data patterns. Then, the general race model is introduced including estimation
methods for the nonparametric case (Section 7.3). More detailed presentations
of parametric independent (Section 7.4) and dependent (Section 7.5) race mod-
els follow. Some related, but non-race, models are discussed in Section 7.6.
Section 7.7 introduces the class of semi-parametric race models based on the
copula concept. It also contains the race model with perfect negative depen-
dence. Variants of the stop-signal paradigm, the problems of trigger failures, and
sequential effects are sketched in Section 7.8. We conclude with a brief discussion
contrasting parametric versus nonparametric approaches and a look into the future
of stop-signal modeling. A list of abbreviations used in the chapter is found
in Table 7.1.
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Table 7.1 Abbreviations used in the chapter.

Acronym Meaning

ARI anticipated response inhibition
CI context independence
FEF frontal eye field
FGM Farlie–Gumbel–Morgenstern (copula)
IT inhibition time
LATER linear approach to threshold with ergodic rate (model)
MCMC Markov chain Monte Carlo
PND perfect negative dependency
PTC pause-then-cancel (model)
RT response (or reaction) time
SC superior colliculus
SI saccadic inhibition
SOA stimulus-onset asynchrony
SSD stop-signal delay
SSRT stop-signal reaction time

7.2 Some Typical Data Patterns in the Stop-Signal Paradigm

Given the popularity of the stop-signal task, the amount of data is
enormous and, unsurprisingly, there is a lot of diversity in the findings due to dif-
ferences in design, instruction, and the specific subpopulation tested. Nonetheless,
many results only differ with respect to their specific numerical values observed for
reaction times and inhibition probabilities, while some general qualitative features
of the inhibition function and RT distributions are typically retained.

7.2.1 Inhibitions Function

Inhibitions functions depict the probability of a response in spite of a stop signal
as a function of stop-signal delay (SSD).2 When the stop signal occurs soon after
the go signal, participants have a high chance of withholding a response, so the
inhibition function has a small value. With SSD increasing, this chance diminishes
more and more, up to a point where the probability to respond approaches 1.
The top panel of Figure 7.2 depicts classic data from three subjects reported in
Logan and Cowan (1984). While these inhibition functions are somewhat similar
in shape, subjects clearly differ: for mid-range SSD values, the probability of a
response can vary enormously. Does this imply that, e.g., participant J.M. (lower
curve) is much better in controlling the response than the other two? Unfortunately,
interpretation of inhibition functions is not straightforward. Although J.M.’s

2 Strictly speaking, it should be called “non-inhibition function,” but the terminology used here is
common.
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Figure 7.2 Classic data reported in Logan and Cowan (1984). Top panel:
Inhibition functions from three subjects plotted as a function of stop-signal
delay. Bottom panel: Inhibition probability for the same three subjects replotted
as a function of mean go response time minus stop-signal delay (SSD) (from
Logan et al., 2014).
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Figure 7.3 Saccadic reaction times to a visual target with N = 2144 (from
Özyurt, Colonius, & Arndt, 2003, subject P.T.).

inhibitory performance may in fact be best, it could also be the result of J.M.
voluntarily slowing responses to the go signal in most trials, so that there is always
“enough” time to stop the response. Even if one persuades participants to not delay
their response, it has still been shown that various parameters of the distribution of
responses to the go signal, like variance, may have a strong effect on the inhibition
functions. Suggestions to remove these problems by a standardized transformation
of the inhibition function remain controversial, however. The bottom panel of
Figure 7.2 shows the probability of inhibition plotted against the difference
between mean go RT and stop-signal delay for the same subjects. Under some
simplifying assumptions, this difference is interpretable as a measure of the time
that is available to detect the stop signal and to cancel a response.3 In sum, this
issue calls for developing a formal model within which the level of performance
can be gauged exactly by some parameter estimated from the data.

7.2.2 Reaction Times to Go and Stop Signal

The distribution of reaction times on go trials (i.e., without a stop signal) is often
more or less right-skewed, as is typical for RT distributions in general. Figure 7.3
depicts the histogram of 2144 saccadic reaction times to a visual target, occurring
either to the left or right of the fixation point, in a stop-signal task with auditory
stop signals (Özyurt, Colonius, & Arndt, 2003). Responses on unsuccessful stop
trials (signal-respond RT) are on average faster than go RT on trials with no stop
signal and faster for shorter stop-signal delays than for longer ones. Note that this
latter observation is to be expected assuming that the process of inhibition evolves
over a possibly variable time interval. This feature (often called “fan effect”),
illustrated in Figure 7.4 by another study on saccadic RTs to a visual target with an
auditory stop signal (Colonius, Özyurt, & Arndt, 2001), motivated the development
of so-called race models to be discussed below.

3 Note that the functions for J.C. and G.L. align better than the function for J.M. because J.M. had
greater variability in go RT than the other two.
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Figure 7.4 Empirical (signal-respond) distribution functions of saccadic RTs
to a visual target with an auditory stop signal presented at different SSD
values [ms] (in parentheses: number of observations). Dotted line: 150 (14);
dashes: 200 (58); thin line: 230 (122); dots/dashes: 250 (147); medium line:
270 (170); thick line: go condition (2919) (from Colonius, Özyurt, & Arndt,
2001, subject D.L.).

7.3 Modeling the Stop-Signal Task

Many features of typical data in the stop-signal task are consistent with
modeling responses as the outcome of a race between processing of the go
signal and the stop signal: if the latter terminates earlier than the former, subjects
succeed in inhibiting a response, otherwise they respond in spite of the stop signal.
Although “race” is the predominant modeling approach, let us first take a step back
and consider the situation from a more general point of view.

When only the go signal is presented, denoted as context GO, reaction time
Tgo, say, represents the time to process that signal, including possible pre- and
motor components. In order to account for some variability across trials, Tgo is
considered a random variable taking on non-negative values. In contrast, when the
go signal is followed by presentation of a stop signal, denoted as context STOP,
the two alternative outcomes – either a response is given or there is no response –
are the result of (somehow) processing both signals. Race models hold that, in
addition to Tgo, there is a separate random processing time for the stop signal,
Tstop, say, and the outcome is determined by min{Tgo,Tstop + SSD}. Alternatively,
instead of claiming a separate processing time Tstop, one could assume that the stop
signal modulates processing of the go signal in a way that is qualitatively consistent
with two fundamental empirical observations. First, RTs in context STOP tend to
be faster than in context GO; thus, according to this alternative view, the stop
signal speeds up processing time Tgo for the go signal. Second, the probability
of inhibition decreases with SSD; thus, the later the stop signal is presented, the
shorter the time it can modify processing time Tgo. We will sketch such non-race
models in Section 7.6.

Nonetheless, a glance over the stop-signal literature strongly suggests that the
race model is the “main game in town,” especially when certain generalizations
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Figure 7.5 Parametric, nonparametric, and semi-parametric subclasses of
the general race model with either independent or dependent Tgo and Tstop

processing times.

and extensions of the notion of “race” are included, like interdependent processing
or certain across-trial strategies for optimizing responses. Therefore, the chapter’s
focus is on this model class. The next section provides a formal introduction of the
race model and its subclasses.

7.3.1 The General Race Model

One important distinction in classifying race models is whether they are parametric
or nonparametric, that is, if specific distributional assumptions concerning Tgo and
Tstop are made. Another is whether these random variables are considered to be
statistically independent or not (see Figure 7.5). Although semi-parametric race
models actually contain both parametric and nonparametric instances, they are
listed here as a separate subclass for conceptual reasons. They are based on the
definition of a copula and will be discussed in Section 7.7.

For context STOP, we postulate a bivariate cumulative distribution function
(cdf), denoted H, for Tgo and Tstop:

H(s,t) = P [Tgo ≤ s,Tstop ≤ t], (7.1)

defined for all real numbers s and t, with s,t ≥ 0. Moreover, Tgo and Tstop are
assumed to be continuous random variables.4 Sometimes Tstop is referred to as
stop-signal reaction time (SSRT). The marginal cdfs of H(s,t) are denoted as

Fgo(s) = P [Tgo ≤ s,Tstop <∞] and

Fstop(t) = P [Tgo <∞,Tstop ≤ t].

In context STOP, the go signal triggers realization of random variable Tgo and the
stop signal triggers realization of random variable Tstop. In context GO, however,
only processing of the go signal occurs. Thus, the two different experimental
conditions in the paradigm, GO and STOP, imply the existence of two different

4 That is, H possesses a bivariate density.
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sample spaces in the statistical modeling of the task. In principle, the distribution
in context GO, F∗go(s), say, could be different from the marginal distribution Fgo(s)
in context STOP.

However, the general race model rules this out by adding the important
assumption of context independence, also known as context invariance.5

Context independence (CI) In context GO, the distribution of go-signal process-
ing time is assumed to be

F∗go(s) ≡ Fgo(s) = P [Tgo ≤ s,Tstop <∞] (7.2)

for all s, i.e., it is identical to the marginal distribution Fgo(s) in context STOP.
Note that, in order to be more precise, context STOP would have to be indexed

by the specific value of SSD, td, say, with td ≥ 0, and the same holds for H(s,t)
and Fstop(t). In the following, however, we will tacitly assume that SSD invariance
holds, meaning that we can drop the index td throughout without consequences
while keeping it as a given (design) parameter. Moreover, Tstop is set equal to zero
for t ≤ td, with probability one.

From these assumptions, the probability of observing a response (r) to the go
signal given a stop signal was presented with SSD = td [ms] after the go signal, is
defined by the race assumption

pr(td) = P [Tgo < Tstop + td]. (7.3)

In addition, according to the model, the probability of observing a response to the
go signal no later than time t, given the stop signal was presented with delay td, is
given by the (conditional) distribution function

Fsr(t | td) = P [Tgo ≤ t | Tgo < Tstop + td], (7.4)

also known as signal-respond RT (sr) distribution.
The main interest in modeling the race is to derive information about the

distribution of the non-observable stop signal processing time, Tstop, or about
some of its parameters given sample estimates of Fgo(t), Fsr(t | td), and pr(td).
For example, the independent race model presented in Section 7.3.2 is parameter-
free, i.e., no parameters have to be estimated in order to make predictions. Later,
we will discuss both fully parameterized models and semi-parametric versions. In
the latter, no specific distributions are postulated but only a parameter assessing
the degree of stochastic dependency.

The most simple version of the race model, sometimes referred to as indepen-
dent horse race model, assumes the non-observable time Tstop = SSRT to be a
constant k, k ≥ 0. Thus, pr(td) becomes simply

pr(td) = P [Tgo ≤ td + k].

5 Context invariance seems a more fitting term but to avoid confusion, we keep the familiar context
independence.
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Figure 7.5 is the standard depiction of this specific model. It illustrates how the
probability to respond given a stop signal (the area under the curve to the left
of the vertical line) depends on (i) SSD (thus generating the inhibition function),
(ii) the go RT distribution, and (iii) the stop-signal processing time (SSRT).

Assuming constant stop-signal processing time is not realistic and may impair
model predictions (Verbruggen & Logan, 2009), but it simplifies estimation of
SSRT enormously. In fact, a popular estimation method for SSRT, the integration
method, requires it (see below).

7.3.2 The (Complete) Independent Race Model

The most common version of the race model is the (complete) independent
race model6 introduced by Logan and Cowan (1984); it postulates stochastic
independence between Tgo and Tstop:

Stochastic independence.

H(s,t) = P [Tgo ≤ s]× P [Tstop ≤ t] = Fgo(s)× Fstop(t), (7.5)

for all s,t (s,t ≥ 0).

From this, we have

pr(td) = P [Tgo < Tstop + td]

=
∫ ∞

0
fgo(t)[1− Fstop(t − td)] dt, (7.6)

with fgo(t) denoting the probability density function (pdf) for Tgo. Moreover, the
signal-respond distribution is

Fsr(t | td) = P [Tgo ≤ t | Tgo < Tstop + td]

= 1

pr(td)

t∫
0

fgo(t
′)[1− Fstop(t

′ − td)] dt′, (7.7)

for all t > td and pr(td) > 0.7

The predominance of the independent model is due to the fact that its predictions
are mostly consistent with the empirical observations presented above. First,
increasing td in Equation (7.6) monotonically increases the expression under the
integral, thus increasing the probability of a response and approaching 1 in the limit

6 The attribute “complete” is sometimes used to distinguish this model from the one with constant
SSRT.

7 One can define Fsr(t | td) for t ≤ td as well: Equation (7.7) then results in

Fsr(t | td) = min

{
Fgo(t)

pr(td)
,1

}
.

It is the probability of an anticipatory response (given even before the stop signal is presented), but
these responses are usually removed.
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Figure 7.6 Schematic of the simplified race model: the probability to respond
given a stop signal (the area under the curve to the left of the vertical line)
depends on td = SSD (panel b), go RT distribution (panel c), and stop-signal
processing time (SSRT = k) (panel d) (from Verbruggen & Logan, 2008).
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for td → +∞, as observed in Figure 7.2 (top panel). Second, letting td → +∞
in Equation (7.7) implies Fsr(t | td) to approach Fgo(t), for any fixed t (Figure 7.4).
As an additional test, the signal-respond distribution has been shown to have an
upper and a lower bound (Colonius, Özyurt, & Arndt, 2001):

Fgo(t) ≤ Fsr(t | td) ≤ Fgo(t)/pr(td) (7.8)

for all t. The lower bound implies, in particular, that

E[Tgo | Tgo < Tstop + td] ≤ E[Tgo],

i.e., mean stop-failure responses should be faster than mean go-signal responses.
Writing fsr(t | td) for the pdf of Fsr(t|td), it follows (Colonius, 1990) that

fsr(t | td) = fgo(t) [1− Fstop(t − td)]/pr(td). (7.9)

From that, an explicit expression for the distribution of unobservable stop-signal
processing time (Tstop) follows after rearrangement:

Fstop(t − td) = 1− fsr(t | td)pr(td)

fgo(t)
. (7.10)

Unfortunately, simulation studies revealed that gaining reliable estimates for the
stop-signal distribution using Equation (7.10) requires unrealistically large num-
bers of observations (Band, van der Molen, & Logan, 2003; Matzke et al., 2013).
As long as one is satisfied with obtaining just an estimate of some parameter of
the stop-signal distribution, like the mean, two common “nonparametric” methods
are available. If the entire distribution is of interest, a parametric model assuming
a distributional family, like the ex-Gaussian, is called for. Both alternatives will be
discussed.

7.3.3 Nonparametric Estimation of Stop-Signal Distribution
under Independence

We first describe the underlying theoretical assumptions of the methods, followed
by some practical considerations for their usage.

Mean method. Rewriting the probability of a response given the stop signal is
presented at SSD = td as

pr(td) = P [Tgo − Tstop < td],

it can be interpreted formally as the cdf of a random variable Td, say, taking values
td, see Logan and Cowan (1984) and illustrated by the shape of Figure 7.2 (bottom
panel). It follows that Tgo − Tstop and Td are equal-in-distribution.8 In particular,
we get

8 This means they have the same distribution but are not (necessarily) defined on the same sample
space; see Chapter 1 in Volume 1 (p. 10) for definitions.
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E[Tstop] = E[Tgo]− E[Td] (7.11)

for the mean and

Var[Tstop] = Var[Td]− Var[Tgo] (7.12)

for the variance of Td, the latter following due to stochastic independence of Tgo

and Tstop.

Integration method. In contrast to the mean method, here stop-signal processing
time is taken to be a constant, tstop, say. Thus

Fstop(t) =
{

0, if t < td + tstop

1, if t ≥ td + tstop
. (7.13)

Inserting in Equation (7.6) yields

pr(td) =
∫ ∞

0
fgo(t)[1− Fstop(t − td)] dt

=
∫ td+tstop

0
fgo(t)dt

= Fgo(td + tstop) (7.14)

and inserting in Equation (7.7) yields

Fsr(t | td) = 1

pr(td)

t∫
0

fgo(t
′)[1− Fstop(t

′ − td)] dt′

=
{ Fgo(t)

Fgo(td+tstop)
, if t < td + tstop

1, if t ≥ td + tstop
.

The value of tstop is obtained via Equation (7.14) by determining the quantile of
the go-signal distribution, F−1

go (td + tstop), and subtracting the corresponding SSD
value td (see Figure 7.5).

Some practical considerations. Whether the mean or integration method should
be used depends in part on the way the stop-signal delays are set. First, one can
simply choose a fixed number of SSDs such that the range of the probability
of responding, pr(td), is sufficiently covered. The second method adjusts SSDs
dynamically using a tracking procedure (mostly, one-up/one-down), as described,
e.g., in Matzke, Verbruggen, and Logan (2018).9 At convergence, this results in
an approximate value of SSD (td) such that pr(td) = 0.5, but step size should be
optimized to avoid slow or no convergence. The tracking method typically results

9 “At the beginning of the experiment, stop-signal delay is set to a specific value (e.g., 250 ms) and
is then constantly adjusted after stop-signal trials, depending on the outcome of the race. When
inhibition is successful, stop-signal delay increases (e.g., by 50 ms); when inhibition is unsuccessful,
stop-signal delay decreases (e.g., by 50 ms).”
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in a sufficiently varied set of SSD values so that E[Tstop] can be estimated easily
by subtracting mean SSD from mean RT on go trials corresponding to Equation
(7.11), making the mean method the most popular estimation method.

Applying the integration method with a fixed number of SSDs involves rank-
ordering the go RTs for each td and selecting the nth go RT where n is the number
of go RTs multiplied pr(td). Stop-signal delay is then subtracted to arrive at an
estimate of tstop [cf. Equation (7.14)]. Estimates from different stop-signal delays
are averaged to arrive at a single estimate for each participant, also when the
tracking procedure is being used. Simulation results reported in Verbruggen et al.
(2019) suggest that the integration method produces the most reliable and least
biased nonparametric SSRT estimates under the condition that go omissions (i.e.,
go trials on which the participant did not respond before the response deadline) and
premature responses on unsuccessful stop trials (i.e., responses executed before
the stop-signal is presented) should be included in the estimation procedure. Due
to numerous recommendations in the literature on how to conduct stop-signal
experiments (Logan, 1994; Matzke, Verbruggen, & Logan, 2018; Verbruggen
et al., 2019), applying nonparametric race models has become a more or less
routine task.

7.4 Parametric Independent Race Models

One reason for adopting a parametric distributional family for go and stop
signal processing times is the desire to obtain additional measures of inhibition
performance, like variance or skew, in order to differentiate, for example, between
clinical subpopulations. Another motive is trying to reveal the mechanisms that
implement going and stopping and to predict effects of experimental manipulations
on stop-signal performance in the context of a substantive process model of
response inhibition. A selected set of independent parametric models will be
considered here.

In principle, assuming some parametric form for the distributions of Tgo and
Tstop and inserting them into the equations for the go and stop-signal distributions
[Equations (7.6)–(7.9)] is straightforward, but obtaining closed-form expressions
is often not achievable. The signal-respond distribution can be written as

Fsr(t | td;θgo;θstop) = P [Tgo ≤ t | Tgo < Tstop + td;θgo;θstop]

= 1

pr(td,θgo,θstop)

t∫
0

fgo(t
′ | θgo)[1− Fstop(t

′ − td | θstop)] dt′,

(7.15)

with θgo and θstop denoting parameters, or vectors of parameters, for the go and
stop-signal distribution, respectively.
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A number of different estimation methods for parametric models have been
developed. Parameter estimation via maximum likelihood requires the likelihood
functions for both go and stop-signal conditions that can be written as follows.

Let {tg}g=1,...,G denote a sample of G response times collected in context GO.
The log-likelihood function becomes

log L(θgo | {tg}) =
G∑

g=1

fgo(tg | θgo). (7.16)

For context STOP, we must distinguish stop-signal responses and inhibitions: let
{tr}r=1,...,R denote the signal-respond times for a given SSD = td. This implies the
following log-likelihood function:

log L(θgo,θstop | {tr},td) =
R∑

r=1

fgo(tr | θgo)[1− Fstop(tr − td | θstop)]. (7.17)

Turning to the inhibitions, let {ti}i=1,...,I denote the successful inhibition (stop-
signal) times. Because the tis are not observable, the likelihood of winning at each
possible time point must be considered (by integration). For a given SSD = td, the
log-likelihood function is thus given by (Matzke et al., 2013)

log L(θgo,θstop | {ti},td) =
I∑

i=1

∞∫
td

{fstop(ti − td | θstop)[1− Fgo(ti | θgo)]} dti.

(7.18)

7.4.1 Exponential Model

We start with the exponential model as an illustrative example permitting closed-
form predictions. Several more prominent models will follow, including informa-
tion about suitable parameter estimation methods.

Let Tgo and Tstop follow exponential distributions; the bivariate cdf is

H(s,t) = P [Tgo ≤ s]× P [Tstop ≤ t]

= (1− exp[−λgo s])× (1− exp[−λstop t]),

for all s,t ≥ 0 with positive real-valued parameters λgo and λstop. Then

pr(td) =
∫ ∞

0
fgo(t)[1− Fstop(t − td)] dt

=
∫ td

0
fgo(t) dt +

∫ ∞
td

fgo(t) [1− Fstop(t − td)]

= 1− λstop

λstop + λgo
exp[−λgotd].
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The pdf of the signal-response distribution is given, for t > td, by

fsr(t | td) = fgo(t) [1− Fstop(t − td)]/pr(td)

= λgo exp[−λgot] exp[−λstop(t − td)](
1− λstop

λstop + λgo
exp[−λgotd]

)
= 1

K
(λgo + λstop) exp[−(λgo + λstop)(t − td)],

with K = exp[λgo td](1 + λstop/λgo) − λstop/λgo. For td = 0, we have K = 1
and the signal-respond density is identical to an exponential pdf for an independent
race between Tstop and Tgo, with parameter λgo + λstop and pr(td) = λgo/(λgo +
λstop).

For t ≤ td, the density simplifies to

fsr(t | td) = fgo(t)/pr(td)

= (λstop + λgo) exp[−λgo(t)].

Computation of the expected value of signal-response RTs yields

E[Tgo | Tgo < Tstop + td] =
∞∫

0

t fsr(t | td)dt

= λgo [1+ (λgo + λstop)td]

(λgo + λstop){exp[λgo td](λgo + λstop)− λstop} .

In particular, for td = 0, we obtain E[Tgo |Tgo < Tstop + 0] = 1/(λgo + λstop),
consistent with the density we mentioned above for this value of the stop-signal
delay.

The exponential distribution does not possess a plausible shape as RT dis-
tribution, but it is a special case of the Weibull distribution that has just one
more parameter. The Weibull is often considered to approximate empirical RT
distributions, but the Weibull model has not yet been considered for stop-signal
modeling, to our knowledge.

7.4.2 Ex-Gaussian Model

This model, explored by Matzke and colleagues (Matzke et al., 2013), relies on
the convolution of an exponential and a normal distribution (ex-Gaussian). The
ex-Gaussian distribution is described by three parameters: μ and σ the mean and
standard deviation of the Gaussian component, and τ the mean of the exponential
component.10 It has a positively skewed unimodal shape with μ and σ reflecting
the leading edge and τ the tail of the distribution (see Figure 7.7). It often produces
an excellent fit to empirical RT distributions.

10 Note that here τ is the inverse of the λ parameters in the previous model where the exponential
mean was 1/λ.
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Figure 7.7 Dependence of ex-Gaussian distributional shape on parameter
changes. The parameter sets used to generate the distributions are (A) μ = 0.5,
σ = 0.05, τ = 0.3 (default parameter set); (B) μ = 1, σ = 0.05, τ = 0.3
(increasing μ); (C) μ = 0.5, σ = 0.2, τ = 0.3 (increasing σ ); and (D) μ = 0.5,
σ = 0.05, τ = 0.8 (increasing τ ) (from Matzke & Wagenmakers, 2009).

The pdf of the ex-Gaussian is

f (t;μ,σ,τ) = 1

τ
exp

[
μ− t

τ
+ σ 2

2τ 2

]


[
t − μ

σ
− σ

τ

]
, (7.19)

where  is the standard normal cdf and σ > 0,τ > 0. Moreover, as a sum of two
random variables, the expected value equals μ+τ and, by stochastic independence
of the component distributions, the variance is σ 2 + τ 2. Skewness is determined
solely by the exponential component and is equal to 21/3τ (see also Figure 7.7).
The ex-Gaussian model has the theoretical defect of predicting negative RTs with
positive probability, but this probability can be made arbitrarily small by shifting
the distribution to the right.

The ex-Gaussian stop-signal model assumes separate parameter sets for the Tgo

and Tstop distributions, (μgo,σgo,τgo) and (μstop,σstop,τstop). Due to the normal
component, no closed-form expressions for Fsr(t) and pr(td) are available, but
simulation is simple by sampling from the two component distributions and adding
the values.

Parameter estimation. While model parameter estimates can be obtained via
standard maximum likelihood methods, Matzke and colleagues (Matzke et al.,
2013) have also developed a Bayesian estimation method to fit the model to both
individual and group data.

First, a uniform prior distribution is assumed for the six parameters of the Tgo

and Tstop distributions. These priors are informative in the sense that they cover a
wide but realistic range of values informed by results from the stop-signal literature
(Band et al., 2003). The prior distributions are then updated by the data to yield
the posterior distributions, according to Bayes’ rule (without marginal likelihood):

posterior ∝ likelihood× prior.

https://doi.org/10.1017/9781108902724.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.008


328 h. colonius and a. diederich

Figure 7.8 The histograms in the top panel show the posterior distribution of
the stop-signal parameters (synthetic data set). The corresponding thick gray
lines indicate the fit of a nonparametric density estimator to the posterior
samples. The horizontal black lines at the bottom show the prior distribution
of the parameters. The horizontal black lines at the top show the 95% Bayesian
confidence interval. The solid, dashed, and dotted lines in the bottom panel
represent the different sequences of values (i.e., MCMC chains) sampled from
the posterior distribution of the parameters (Gibbs sampling) (from Matzke
et al., 2013).

For each parameter, the mean, median, or mode of the posterior distribution is
taken as a point estimate of the parameter, while the dispersion of the posterior
distribution, quantified by the standard deviation or the percentiles, yields infor-
mation about the precision of the parameter estimates. The larger the posterior
standard deviation, the greater the uncertainty of the estimated parameter. The
posterior distribution for each parameter is approximated via Gibbs sampling
(Geman & Geman, 1984), a Markov chain Monte Carlo (MCMC) algorithm for
obtaining a sequence of observations when direct sampling is difficult (for details,
see Matzke et al., 2013). Figure 7.8 illustrates the result for the three parameters
of the posterior stop-signal pdf.

The Bayesian parametric approach can also handle group data via hierarchical
modeling (Gelman & Hill, 2007). Individual parameters are assumed to be
drawn from group-level distributions that specify how the individual parameters
are distributed in the population. Given that in stop-signal experiments often
relatively few observations per participant are available, the hierarchical approach
is especially valuable here. For further details about the estimation procedure and
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Figure 7.9 The go process (solid line) and the stop process (dotted line) race
independently toward their respective thresholds (dashed horizontal line). The
thresholds for both processes coincide only for ease of illustration. In stop
trials, the stop process is evoked after the go process has begun. Left panel: The
go and stop stimuli each trigger a signal rising linearly toward a threshold;
if, as here, the stop process rises so fast that it overtakes the go process and
reaches the threshold first, the saccade is successfully inhibited. Right panel: If
the go process reaches the threshold first, the saccade fails to be countermanded
(from Hanes & Carpenter, 1999).

accompanying software, we must refer to the original sources (Matzke, 2013;
Matzke et al., 2013).

The ex-Gaussian model yields precise information about the unobservable stop-
signal times but does not attach a specific substantive meaning to the choice of the
distribution. In contrast, the following models motivate their distributional form by
certain processing assumptions in the stop-signal task.

7.4.3 Hanes–Carpenter Race Model

The model is based on the linear approach to threshold with ergodic rate
(LATER) model purporting to describe the neural mechanism controlling the
latency between the appearance of a visual target and the start of a saccadic eye
movement to the target (Carpenter & Williams, 1995). Introduced in Hanes and
Carpenter (1999), it assumes that the competing go and stop processes rise in a
linear fashion to a fixed response threshold. Assuming a fixed response threshold
θ , stochastic variability is built into the model by postulating a normally distributed
random rate of rise for going and stopping.

The LATER model assumes a linear rise r of the go process to a fixed threshold,
starting from an initial activity level s0, i.e., s0 + r × t = θ (see Figure 7.9).
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Assuming r to be the realization of a normally distributed random variable R with
mean μgo and variance σ 2

go, the above equation leads, after rearrangement, to an
expression for the go-process random variable Tgo:

Tgo = (θ − s0)/R.

Since the distribution of R is given, the pdf of Tgo follows as (see Colonius, Özyurt,
& Arndt, 2001)

fgo(t) = θ − s0

σgo
√

2π t2
exp

[
−
(

θ − s0

t

)2

/(2σ 2
go)

]
. (7.20)

An analogous pdf is assumed for the stop process Tstop with mean μstop and
variance σ 2

stop and predictions from the Hanes–Carpenter model are obtained by
inserting these distributions into the expression for the signal-respond distribution
[Equation (7.15)] and the analogous expression for pr(td). The model has been
tested in several studies. Hanes and Carpenter (1999) reported that the model
correctly predicted the probability of successful saccade inhibition as a function of
the stop-signal delay as well as the signal-respond distributions. Colonius, Özyurt,
& Arndt (2001) found results paralleling those of the nonparametric Logan–Cowan
model applied to the same data set, and showed that saccade inhibition is more
efficient in response to auditory stop signals than visual stop signals.

Parameter estimation has been performed by minimizing sum-of-squares devi-
ations between observed and predicted data using expressions for the pdfs,
by maximum likelihood estimation and by Monte Carlo simulations (see, e.g.,
Colonius, Özyurt, & Arndt, 2001).

7.4.4 Diffusion Race Model Including its Extension to Choice RT

In the Hanes–Carpenter model, stochastic variability is implemented across trials
by the random rise of activity in going and stopping, but once started, activation
accumulates in a linear deterministic fashion within the trial. In contrast, the
diffusion race model developed in Logan et al. (2014) assumes that both processes
are governed by diffusion processes that race against each other until the first one
reaches a fixed threshold. The concept of a stochastic diffusion (Wiener) process
has arguably become the most important component of modeling response times
in a wide variety of tasks (e.g., Busemeyer & Townsend, 1993; Diederich, 1995;
Ratcliff, 1978; Smith & Ratcliff, 2009; van Zandt, Colonius, & Proctor, 2000); for
details, see Diederich and Mallahi-Karai (2018) and Smith (2000).

The diffusion race model assumes a Wiener diffusion process with drift rate ξ ,
a starting point of zero activation, and a threshold (absorbing boundary) at z. The
first-passage time is given by the inverse Gaussian (or Wald) distribution; for the
go-process pdf, we get

fgo(t) = z(2π t3)−0.5 exp

[
− 1

2t
(ξ t − z)2

]
, (7.21)
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and for the stop process pdf

fstop(t) = z(2π(t − td)
3)−0.5 exp

[
− 1

2(t − td)
(ξ(t − td)− z)2

]
(7.22)

for t > td, and zero otherwise.
The model actually tested in Logan et al. (2014) was an extended version of

the above, reintroducing across-trial variability by assuming the threshold to be a
uniform random variable Z ranging from z − a to z + a, with a mean of z and a
variance of a2/3. For example, the finishing time of the go process unconditioned
over the variable threshold Z results in a go pdf

ggo(t | z,ξ) = (2a)−1
∫ z+a

z−a
fgo(t | z′,ξ) dz′.

The context for this model extension was that the authors were interested in
modeling a more general paradigm, where participants’ go response was a decision
among stimuli from a set A of possible response alternatives. In this paradigm,
participants also produce error RTs (choosing the wrong alternative), and it is well
known that the diffusion model with constant threshold cannot predict the often
observed “fast error” RT distributions (Smith, 2000).

The diffusion race model is an instantiation of what Logan and colleagues
call the general independent race model. The latter assumes a double race, first,
between a set A of possible go responses and second, between the winner of the
first race and the stop process. Assuming stochastic independence throughout, this
implies for the probability that go response i (i ∈ A) will occur given SSD = td:

P [response i | td] =
∫ ∞

0
fi(u)

∏
j∈A,j�=i

(1− Fj(u)) (1− Fstop(u− td)) du,

where Fj(t) and fj(t) (j ∈ A) are the cdf and pdf, respectively, for go response j.
The probability that the stop process wins the race is

pstop(td) =
∫ ∞

0
fstop(u− td)

∏
i∈A

(1− Fi(u)) du;

thus, pr(td) = 1− pstop(td).
For the pdf of RTs conditioned on response i, we get the signal-respond

distribution

f (t|i,td) =
⎡⎣fi(t)(1− Fstop(t))

∏
j∈A,j�=i

(1− Fj(t))

⎤⎦ /pr(td).

The pdf for Tgo, the RT to give some response when no stop signal is present, is

fgo(t) =
∑
i∈A

fi(t)
∏

j∈A,j�=i

(1− Fj(t)).
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In analogy to Equation (7.9), the signal-respond pdf can be calculated using

fsr(t | td) =
⎡⎣∑

i∈A

fi(t)
∏

j∈A,j�=i

(1− Fj(t))(1− Fstop(t − td))

⎤⎦ /pr(td).

This model clearly generalizes the Logan–Cowan race model in covering choice
RT paradigms as well. As such, it could be studied further as a nonparametric
model, e.g., with an additional assumption of constant SSRT.

However, Logan et al. (2014) were specifically interested in issues of processing
capacity. For example, do stop and go processes share capacity, or is processing
capacity unlimited in the stop-signal paradigm? To answer this question, they
systematically varied the number of response alternatives and estimated parameters
of the race diffusion model. They hypothesized that, under limited capacity, the
rate parameter for the stop process should decrease with the number of alternative
responses, just as the rate parameters for the go process do. This is basically what
they found using a series of model variants with certain parameters fixed and
others free to vary. Moreover, the threshold parameter for the go task increased
slightly with the number of alternatives, which is interpreted as subjects adjusting
the threshold strategically to compensate for the increased noise.

7.5 Parametric Dependent Race Models

7.5.1 Evidence Against Independence: The Paradox

All models considered up to here were based on assuming both context and
stochastic independence. Nevertheless, some recent findings, adding to some
earlier ones, have raised serious doubts about the ubiquitous validity of the
independence assumptions. A specific independence test is to check that mean
signal-respond RTs are monotonically increasing with stop-signal delay and that
corresponding distribution functions are ordered accordingly (see Figure 7.10,
left panel). In earlier work, we have found some violations of this ordering at
short SSDs (e.g., Colonius, Özyurt, & Arndt, 2001; Özyurt, Colonius, & Arndt,
2003; see Figure 7.10, right panel) but evidence remained weak because, typically,
observations are sparse at short SSDs. Moreover, Band, van der Molen, and Logan
(2003), investigating the consequences of violations of both context and stochastic
independence on stop-signal processing estimates via simulation, found severe bias
effects on SSRT estimates under some conditions. Recently, in a large-scale survey
analyzing 14 experimental studies, Bissett et al. (2021) found serious violations of
context independence specifically at short SSDs (i.e., less than 200 ms).

Such violations are commonly interpreted as refuting context independence, but
it seems difficult to tell apart violations of stochastic independence from violations
of context independence by experimental tests of behavior. Thus, violations of the
former, in addition to or in place of violations of context independence cannot be
ruled out.
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Figure 7.10 Distribution function (cdf) prediction of IND model. Left panel:
Prediction for signal-respond cdfs ordered by SSD size (from Verbruggen &
Logan, 2009). Right panel: Observed violation for short SSD = 90 ms (from
Colonius, Özyurt, & Arndt, 2001). In both panels, the solid line represents the
go-signal RT distribution.

Strong evidence against independence comes from seminal findings on the
neural underpinnings of response inhibition, and the main impetus for developing
race models with dependency arguably comes from these investigations. Studies
in the frontal eye fields (FEFs) and superior colliculus (SC) of macaque monkeys
performing a countermanding task with saccadic eye movements have shown that
the neural correlates of go and stop processes produce eye movement behavior
through a network of interacting gaze-shifting and gaze-holding neurons (Brown
et al., 2008; Hanes, Patterson, & Schall, 1998; Hanes & Schall, 1995; Middle-
brooks et al., 2020; Paré & Hanes, 2003). Specifically, Hanes and colleagues
(Hanes & Schall, 1995) showed, first, that macaque monkey behavior in saccade
countermanding corresponded to that of human performance in manual stop-signal
tasks consistent with the independent model. Then, recording from FEFs they
isolated neurons involved in gaze shifting and gaze holding that represent a larger
circuit of such neurons that extends from the cortex through the basal ganglia and
SC to the brainstem (see Figure 7.11).

The question thus arises: How can interacting circuits of mutually inhibitory
neurons instantiate stop and go processes with (context or stochastically) indepen-
dent finishing times? Although it can be argued that behavioral and neural data
provide a description on different levels of processing (see Section 7.5.3 below),
this discrepancy has widely been perceived as a paradox (Boucher et al., 2007;
Matzke, Verbruggen, & Logan, 2018; Schall & Godlove, 2012; Schall, Palmeri, &
Logan, 2017).

In an effort to resolve the paradox, a number of neurally inspired, computa-
tionally explicit models have been proposed that will be considered here and in
the following section. In Section 7.7, we will present some further behaviorally
oriented approaches based on recent concepts of statistical dependence.

https://doi.org/10.1017/9781108902724.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.008


334 h. colonius and a. diederich

Figure 7.11 Schematic diagram: Activation of the GO unit (upper) and the
STOP unit (lower) for trials with no stop signal (dashed lines) and trials with
a stop signal that successfully canceled the saccade (solid lines). Saccades
are produced when inhibition of the STOP unit is released and the activation
of a GO unit reaches a threshold (topmost dashed line). In response to the
stop signal (left vertical line), the STOP unit becomes active, interrupting
the accumulation of GO unit activation. This interruption occurs immediately
before the stop-signal reaction time (SSRT) (right vertical line), a measure of
STOP process duration derived from the independent race model (from Schall,
Palmeri, & Logan, 2017).

7.5.2 Interactive Race Model

Boucher and colleagues (Boucher et al., 2007) developed a relatively simple neural
network model, the interactive race model, consisting of a go (or move) and
a stop (or fixation) unit that accumulate stochastic evidence and race toward a
common threshold (arbitrarily set to one). Whichever unit reaches the threshold
first determines whether a stop signal trial is signal-inhibit or signal-respond.

The approach, based on a version of the leaky, competing accumulator model
(Bogacz et al., 2006; Usher & McClelland, 2001), is defined by two stochastic
differential equations:

dago(t) = dt

τ
[μgo − k ago(t)− βstop astop(t)]+

√
dt

τ
ξgo; (7.23)

dastop(t) = dt

τ
[μstop − k astop(t)− βgo ago(t)]+

√
dt

τ
ξstop. (7.24)
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Figure 7.12 Interactive race model. Left panel: Timing of events (including
afferent delays Dgo and Dstop) (adapted after Logan et al., 2015). Right panel:
Go and stop unit interaction (with leakage parameter k dropped) (adapted after
Boucher et al., 2007).

These equations describe the change in activation of the go and stop units, ago(t)
and astop(t), within (an infinitely small) time step dt. Parameters μgo and μstop

denote mean growth rates (drift rates) for the go and stop unit, respectively.
The leakage parameter, k, prevents the activation from increasing without bound.
Interaction between the units is controlled by the inhibition parameters βgo and
βstop (see Figure 7.12, right panel). The amount of mutual inhibition depends on
the instantaneous activation levels, ago(t) and astop(t), causing a unit with a low
activation to have a small inhibitory effect on the other unit. Finally, ξgo and ξstop

are Gaussian noise terms with mean zero and variance σ 2
go and σ 2

stop, respectively.
Other parameters in the model capture the non-decision time stages of process-

ing. Stimulus encoding that occurs before go unit and stop unit activation was
instantiated is represented as constant delay: Dgo denotes afferent processing time
after the go stimulus is presented, Dstop is the latent time after SSD and before
the stop unit begins to inhibit the go unit (see Figure 7.12, left panel). Boucher
et al. (2007) studied simultaneously recorded behavioral and neural data from two
monkeys performing the saccadic stop-signal task (Hanes, Patterson, & Schall,
1998). Because the above model equations do not possess closed-form solutions,
they simulated the model searching for optimal parameter values to minimize
deviations of predictions from the data. In order to fit neurophysiological data,
they first had to decide which parts of the neural populations should correspond to
the stop and go units of the interactive model. They noticed:

The stop-signal task is ideal for investigating the neural control of movement
initiation because it specifies the criteria a neuron must meet to be identified as
contributing to controlling saccade initiation. First, the activity in trials when a
saccade is made (no-stop-signal or signal-respond trials) must be different from
that in trials when no saccade is made (signal-inhibit trials). Second, in stop-signal
trials, the activity should begin along the trajectory that would lead to saccade
initiation, but on presentation of the stop signal, the activity must be modulated
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away from that trajectory, and this modulation must occur within the SSRT. Neurons
with movement-related and fixation-related activity in frontal eye field and superior
colliculus satisfy both of these requirements. (Boucher et al., 2007, p. 380)11

Second, go-unit activation was compared with movement neuron activity and
stop-unit activation was compared with fixation neuron activity. Specifically, for
both neurons and model units, activation on signal-inhibit or signal-respond trials
was compared with the activity of a subset of latency-matched no-stop-signal trials.
No-stop-signal trials with response time longer than SSD + SSRT were compared
with signal-inhibit trials, because according to the race model, the saccade would
have been inhibited had the stop signal been presented. No-stop-signal trials with
response time shorter than SSD + SSRT were compared with signal-respond trials
because, according to the race model, the saccade would have been initiated even
if the stop signal had occurred. Cancel time was defined as the time at which
activation on signal-inhibit trials significantly diverged from the activation on
no-stop-signal trials relative to SSRT12 (for further details, refer to Boucher et al.,
2007, p. 386).

In probing the model, Boucher and colleagues first evaluated the ability of
the independent race model to account for the observed data. Setting inhibition
parameters βgo and βstop to zero turns the model into a stochastically independent
version, and this resulted in good fits to the behavioral data (inhibition functions,
go RT, and signal-respond RT distributions). However, since it has no mechanism
to shut off the go process so that it does not reach the threshold on signal-inhibit
trials when the stop process wins, it could not account for the neural data. On the
other hand, letting parameters free to vary and utilizing some additional model
simulations to estimate go and stop-signal cancel times, the authors showed that
the interactive model can be fitted simultaneously to both neural and behavioral
data. Moreover, by constraining the model parameters in different ways, it turned
out that a good model fit depended on two restrictions: (i) activation of the stop
unit has to be delayed for a substantial amount of time after the stop signal occurs,
i.e., Dstop must be rather large (50–70 ms) and (ii) the stop unit must inhibit the go
unit much more than vice versa, i.e., βstop has to be much larger (i.e., by an order
of magnitude) than βgo.

What are the consequences of these findings for the interpretation of SSRT,
as measured in the Logan–Cowan independent race model? The parameterized
interactive race model implies an additive partition of SSRT. First, the stop-signal

11 As the authors point out, determining the quantitative details is a rather subtle task. First, neural
activation functions derived from spike trains are converted to spike density functions, as described
in Hanes, Patterson, and Schall (1998). Although a neural population with a specific function
should respond in generally the same way, each neuron may have some idiosyncrasies. Thus, before
averaging across neurons, they first had to normalize the spike density function of each neuron by
dividing its activity by the peak firing rate in the interval from 20 ms before to 50 ms after saccade
initiation on no-stop-signal trials.

12 Cancel time is important in neuroscience because it is an essential criterion for determining whether
modulation of neural activity happens early enough to participate in response inhibition (Logan
et al., 2015, p. 123).
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encoding time, Dstop, was between 51 and 67 ms with a small standard deviation
(10–20 ms). Second, the interval from SSD+Dstop until cancel time (interruption
of go-unit accumulation), called stopinterrupt, is only about 22 ms, effectively
instantaneous. Adding the ballistic interval preceding initiation of the movement
(Logan & Cowan, 1984), denoted as goballistic (about 10 ms), results in the
following SSRT decomposition:

SSRT = Dstop + stopinterrupt + goballistic. (7.25)

With SSRT estimates from behavioral data in the range of 80–95 ms, this equation
means that most of SSRT is occupied by Dstop, during which the go unit is not
affected by the stop unit. Boucher et al. (2007) conclude that stopping is a two-
stage process consisting of a (relatively long) encoding stage with no interaction
and a brief interruption stage during which response preparation is inhibited. This
model has been postulated to be a resolution of the above-mentioned paradox of
an independent race at the level of RTs and mutual inhibition at the level of neural
activation between gaze-holding and gaze-shifting units (see also Schall et al.,
2017).

7.5.3 Linking Propositions

The general race model and most of its subclasses do not make a commitment
to the underlying computational or neural processes that generate the processing
times Tgo and Tstop. The interactive race model, however, has been developed with
the aim of connecting go and stop-signal processing to the underlying physiology.
Given the good understanding of how saccade production is controlled by a circuit
of neurons extending from the cortex through the basal ganglia and superior
colliculus to the brainstem, the model links the go unit to movement-related
neurons and the stop unit to fixation-related neurons in frontal eye fields and
superior colliculus (Boucher et al., 2007).

Such linking propositions specifying the nature of the mapping between par-
ticular cognitive states and neural states have a long history (e.g., Teller, 1984)
and they have recently become more popular under the heading of model-based
cognitive neuroscience (e.g., Forstmann & Wagenmakers, 2015). One motivation
for developing linking propositions is the hope to solve the general problem of non-
identifiability and model mimicry (see Jones & Dzhafarov, 2014), that exists for
behavioral models of choice RT, by identifying the underlying neurophysiology.
In the context of the stop-signal task, Schall and colleagues have thoroughly
investigated linking propositions between processing times (Tgo, Tstop) and single-
neuron discharges in the frontal eye field, superior colliculus, and ocular motor
neurons leading to the interactive race model of Section 7.5.2 and related models
(Schall, 2004, 2019; Schall & Godlove, 2012). Unfortunately, as recently described
in Schall (2019), finding a one-to-one mapping between parameters of neural
activity and those describing abstract stochastic accumulators (like in race models)
seems out of reach at the moment (see also Schall & Paré, 2021).
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7.6 Related (Non-race) Models

7.6.1 Blocked-Input Model

Starting from the interactive model, Logan and colleagues (Logan et al., 2015)
suggested an alternative view on how stopping occurs: the stop unit does not
directly inhibit growth of activation of the go unit; rather, the stop signal activates a
top-down process outside the gaze control network that, once reaching a threshold
early enough, blocks input to the go unit. Within the dynamics of the interactive
model, this means setting the go drift rate to zero so that it will not reach its
threshold.

The authors defined the units more neutrally as fixation (fix) and movement
(move) units because they linked them to gaze-holding and gaze-shifting neurons
in a general network, extending from the cerebral cortex to the brain stem and
being in active balance already at the start of a trial. Modeling steady-state fixation
activity implied that eye movements can only occur if activation in the move unit
(μmove) and inhibition from the move unit to the fix unit (βmove) are large enough
to overcome steady-state activation in the fix unit, and if simultaneously inhibition
from the fix unit to the move unit (βfix) is not large enough to suppress move
activation entirely. For the monkey FEF data from Hanes, Patterson, and Schall
(1998), these constraints led to equivalent predictions of physiological data for
the interactive and the blocked-input model, but the latter model provided a better
account of the behavioral data.

By letting certain model parameters vary freely and keeping others fixed,
Logan et al. (2015) compared fits of different versions of the interactive and
blocked-input models. Although these models differed strongly with respect to
the temporal dynamics of inhibition, they did not show substantial differences in
goodness of fit. The authors refer to this result as an instance of “model mimicry”
of blocking and inhibiting which can only partially be resolved by considering
neurophysiological data.

7.6.2 DINASAUR Model

A recent neural network model by Bompas and colleagues (Bompas, Campbell,
& Sumner, 2020) tackles the problem of modeling rapid saccadic countermanding
from a different background. Their model had originally been developed for the
well-known phenomenon of saccadic inhibition (SI) (Bompas & Sumner, 2009;
Reingold & Stampe, 2002; Walker & Benson, 2013).

SI occurs in a paradigm that is, or can be made to be, identical to the stop-signal
task in all aspects except for the instruction: instead of inhibiting the response
upon appearance of a (stop) signal, the participant is instructed to just ignore it
and perform the saccade to the target stimulus. The SI effect is manifest as a
decrease in the number of saccades observed shortly after (distractor) stimulus
onset, compared with baseline conditions (with no signal), with a maximum
inhibitory influence occurring around 70–90 ms later (see Figure 7.13).
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Figure 7.13 Saccadic stop-signal task (panel A) and saccadic inhibition
(panel B) paradigms. Both paradigms involve a stimulus jump from center to
periphery, sometimes followed by the onset of a central signal (right subpanels
above, black lines below), sometimes not (left subpanels, gray lines). The signal
onset time is indicated by the vertical lines and the delay between the target
jump and the signal is referred to as the stimulus onset asynchrony (SOA). The
two tasks differ in the instruction associated with the signal onset: withhold the
saccade vs. ignore the signal and perform the saccade. Panel A: Instructions
to stop remove slower responses from the RT distribution, but fast responses
escape. Panel B: The same visual events associated with an ignore instruction
typically produce a dip in the latency distribution, where saccades are delayed
and subsequently recover, so that the total number of saccades is about the same
between signal present and no-signal distributions (adapted after Bompas,
Campbell, & Sumner, 2020).

The authors start from the observation that in the stop-signal paradigm, as
in SI, fixation and movement neurons receive inputs tightly tied to the visual
stimuli (targets and stop signals), with onsets and offsets leading to step changes
some 35–50 ms later, preceding inputs from control neurons whose role is to
cancel the action plan (Bompas, Campbell, & Sumner, 2020, p. 528). The first
part of rapid saccadic countermanding is initially entirely automatic, with slower,
top-down endogenous signals built on top of rapid automatic disruption. Their
model refers to an approach originally developed by Trappenberg and colleagues
(Trappenberg et al., 2001) describing the dynamics of saccadic decision with basic
characteristics of exogenous and endogenous neural signals and lateral inhibition
in the intermediate layers of the superior colliculus (SC).
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A specific instantiation of Bompas et al.’s model, called 200N-DINASAUR,
possesses n = 200 nodes representing the horizontal dimension of the visual field,
and the average spiking rate Ai of neuron i is a logistic function of its internal
state ui:

Ai(t) = 1/(1+ exp[−β ui(t)]).

Similar to leaky competing accumulators models, the dynamics of ui(t) across
time depends on normally distributed noise and two types of input received, either
external to the map (endogenous or exogenous) or internal via lateral connections
(cf. Trappenberg et al., 2001):

τ
dui

dt
= −k ui(t)+ 1

n

∑
j

ωij Aj(t)+ Iexo
i (t)+ Iendo

i (t)+ N(0,η). (7.26)

The authors emphasize the distinction between visual events triggering exogenous
inputs (i.e., transients tied to visual changes: targets, distractors, or stop signals) not
affected by instructions, and endogenous signals (i.e., later, sustained, and linked
to the instructions) (Bompas, Campbell, & Sumner, 2020, p. 529). Endogenous
inputs vary as step functions, while exogenous inputs are transient, reaching their
maximal amplitude (aexo) at t = tonset + δvis, and then decreasing exponentially as
a function of time, according to the following equation:

τon
dIexo

i

dt
= −Iexo

i (t)+ aexo.

Following the Trappenberg et al. model, all inputs have Gaussian spatial profiles
(with standard deviation σ ). They are maximal at the targeted nodes but also
affect nearby nodes. Lateral connections show a Gaussian spatial profile that
changes from positive (excitation) at short distance to negative (inhibition) at
longer distance according to connection weights ωij (see Bompas, Campbell, &
Sumner, 2020, p. 530).

In the no-signal condition, a single exogenous (visual) transient onset occurs δvis

after target onset, shortly followed by a switch of endogenous support from fixation
to target δendo after target onset. The signal-ignore condition differs from the no-
signal condition solely by the presence of a second visual transient, triggered by
the signal appearing. When generalizing the model from signal-ignore to signal-
stop conditions, only the endogenous input should differ because the visual display
is identical and only the instructions differ. As in the blocked-input model, the
endogenous input to the target is switched off (blocked) δendo after the stop-signal,
while the endogenous input to the fixation is switched on again.

Bompas, Campbell, and Sumner (2020) validate the DINASAUR model in
several steps via both simulation and experiment. While the model features a large
number of parameters (up to 16), by taking all but two of the parameters from the
model fit for the SI paradigm in Bompas and Sumner (2009), their simulation was
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Figure 7.14 Simulated RT distributions for blocked input (left panels) and
200N-DINASAUR (right panels) model for ignore-signal (upper panels) and
stop-signal condition (lower panels). The DINASAUR model (with blocked
input for stopping) captures well the typical pattern of results obtained in
both paradigms. Blocked input 2.0 (with adding automatic fixation activity for
ignore conditions) is not able to produce the sharp dips expected from the
saccadic inhibition literature. Both models predict a perfect alignment across
instructions of the time when the signal RT distribution (black) departs from the
no-signal RT distribution (gray), indicated by the dots (T0) and highlighted by
the long vertical bars (adapted after Bompas, Campbell, & Sumner, 2020).

able to reproduce well the typical pattern of results obtained in both paradigms13

(see Figure 7.14).
The model makes two important predictions. Work on SI by Bompas and

Sumner (2011) had indicated that dip onset, the time point T0 where latency

13 Bompas, Campbell, and Sumner (2020) compare their model with the blocked-input model in much
more detail, but we do not go into this here.
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distributions diverge, matches the sum of sensory delay δvis and motor output delay
δout so that T0−SOA reflects non-decision time. Moreover, following Boucher et al.
(2007), a large portion of SSRT is devoted to non-decision time (the independent
processing part, followed by rapid and late inhibition). Thus, Bompas et al. argue
that SSRT “. . . likely behaves like T0, and therefore we expect the early part of the
interference from stop-signals and distractors should be very similar in saccadic
inhibition and countermanding” (Bompas, Campbell, & Sumner, 2020, p. 536).
Therefore, the first strong prediction of DINASAUR is that the time point at which
the RT distribution diverges from the no-signal distribution should be the same
under the ignore-signal and the stop-signal instruction (see point T0 in Figure 7.14,
top and bottom right panels).

The second prediction follows from separating exogenous (visual) delay δvis

from endogenous delay δendo, and from parsimoniously assuming the latter value
to be the same in all phases: (a) endogenous support for the target following target
onset; (b) the removal of endogenous support for fixation following target onset;
(c) the removal of endogenous support for the target following the signal under
the stop instruction; and (d) endogenous support returning to fixation following
the stop instruction. The prediction then is that extracting these parameters
from the no-signal and signal-ignore conditions permits predicting stopping
behavior without the need for additional top-down countermanding parameters.

Bompas, Campbell, and Sumner (2020) found support in three experiments
geared toward probing these predictions, but only after adding two amendments
to improve fits to the no-signal distribution. The first is to introduce a holding
period in order to account for the participants’ strategic slowing down in the stop
task (proactive inhibition). Second, in order to predict “late errors” in the stop-
signal condition, they had to add a parameter for the probability of not following
the stop instruction. This corresponds to the probability of “trigger failures” (see,
e.g., Band, van der Molen, & Logan, 2003 and Section 7.8.2 below).

7.6.3 Diffusion-Stop Model

This model does not implement a race concept either and is related to the blocked-
input model closely enough to be mentioned here. In an unpublished paper
(Colonius & Diederich, 2001/2021), we address the paradox mentioned at the
start of this section by suggesting a diffusion model approach based on Diederich
(1997).

The diffusion-stop model assumes a variable growth to a fixed threshold.
Rather than claiming separate growths of go and stop-signal-related activities, it
assumes a single diffusion process unfolding over time between two fixed criterion
thresholds. The onset of the go signal triggers a growth process represented by a
stochastic trajectory drifting toward the upper boundary, threshold (θgo). In the
absence of a stop signal, the average trajectory (indicated by the line in Figure
7.15, left panel) has a positive slope resulting in mean saccadic response time
determined by the time point corresponding to the crossing of the go threshold.
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Figure 7.15 Three hypothetical trajectories in the activation space simulated
by the diffusion-stop model. Left: In go trials, the drift rate is constant.
A saccade is initiated when the trajectory crosses the upper threshold θgo for the
first time. The line presents the average trajectory. Right: In stop-signal trials,
the drift rate switches with presentation of a stop signal at SSD. The saccade is
inhibited with certainty once the lower threshold θstop has been crossed the first
time. The average trajectory switches slope from positive to negative at SSD.

On the other hand, crossing the stop threshold (θstop) results in a permanent
cancellation of the planned movement to the go signal. Figure 7.15 illustrates this
mechanism. Presentation of a stop signal at point SSD after the go signal shifts the
slope of the linear drift to a negative value. Trajectories that have not yet crossed
the upper boundary will then tend in the direction of stop criterion θstop. Due to
stochastic variability, however, individual trajectories may still cross the upper
boundary, resulting in a response in spite of the stop signal. Note that, like the
race model, the diffusion model does not predict different rates of rise in activity
for responses in non-canceled trials and in latency-matched no-stop-signal trials.
Moreover, consistent with empirical data, the later the stop signal is presented, the
less likely a successful inhibition of the saccade becomes.

Specifically, the growth process in the diffusion-stop model is represented by a
standard Brownian motion (or Wiener) process A(t) with drift rate μ(t) and two
absorbing barriers θgo and θstop. The process is time-inhomogeneous because the
drift rate changes with the occurrence of the stop signal at t = SSD:

μ(t) =
{

μgo, if t ≤ SSD

μstop, if t > SSD
.

The first-passage times are defined as

Tgo = inf{t : A(t) ≥ θgo and A(τ ) ≥ θstop for all τ < t} and

Tstop = inf{t : A(t) ≤ θstop and A(τ ) ≤ θgo for all τ < t},
with θstop < A(0) < θgo.
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Figure 7.16 Observed data (squares) and predictions (diamonds) from
diffusion-stop model for one subject. Left: Stop failure probability as a function
of stop-signal delay. Rightmost point refers to no-stop-signal condition. Right:
Mean saccadic response time as a function of stop-signal delay.

The model was fit to the data of one subject reported in Colonius, Özyurt, &
Arndt (2001) using the finite-state Markov chain approximation of the diffusion
process (Diederich, 1997). The observable saccadic reaction time was taken as
SRT = Tgo + c (with c a sensorimotor constant) and observable inhibition
probability as P (Tgo < Tstop + SSD). Assuming no bias, A(0) was set to zero.
Estimated parameters are the drift rate values μgo and μstop, the distance between
the go and the stop threshold θgo − θstop, and constant c. The model fit (seven data
points and four parameters) is depicted in Figure 7.16. Note that the diffusion-
stop model, in contrast to independent race models, is able to account for the
nonmonotonic relation between mean response time and stop-signal delay.

Measuring the speed of the stop process differs strongly from race models. We
define inhibition time (IT) as the interval from presentation of the stop signal until
the trajectory reaches the stop criterion (lower bound). Thus, IT depends on the
momentary level of activity towards the go threshold (represented by the trajectory
location) at the time the stop signal is presented. It implies that the average time
to cancel a saccade increases with stop signal delay. For example, estimates of
IT were 530, 570, and 580 ms for stop signal delays of 70, 100, and 130 ms,
respectively. Even if one subtracts some 30 ms for the latency of the response
to the stop signal, the resulting estimates are one-half order of magnitude larger
than the estimates for SSRT under the race model (100 ms in this case). This
discrepancy reflects an important difference between the diffusion-stop and the
race model: while both IT and SSRT are initiated by the presentation of a stop
signal, termination of IT in the diffusion-stop model indicates that inhibition of the
saccade has become certain, whereas termination of SSRT in the race model means
that stop-signal processing is finished, but actual inhibition of the saccade only
occurs if go-signal processing has not been terminated earlier. Estimates for IT of
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about 500 ms in the diffusion-stop model may appear implausible, but it should be
noted that this includes the time to suppress the go-signal activity completely. If,
for example, the go and stop signal are presented nearly simultaneously, resulting
in a very high probability of successful inhibition, then estimates for IT can go
down strongly, depending on the relative values of the drift parameters.

Subjects have considerable leeway in performing the countermanding task
(proactive inhibition). In the diffusion-stop model, a bias in favoring either
stopping performance or response speed is easily accounted for by letting a
trajectory in the activation space start from a level closer to the stop criterion or to
the go criterion, respectively. Introducing this bias parameter also allows the model
to predict sequential effects like a higher probability of canceling a saccade if the
movement had failed to be canceled on the previous trial (see Section 7.8).

7.7 Semi-parametric Race Models

The assumption of context independence is fundamental to the general
race model (Section 7.3.1). In addition, stochastic independence has been assumed
in all race models discussed so far, with the exception of the interactive race model
(Section 7.5.2). Given that this latter model is fully parameterized, one may wonder
whether other race models with stochastically dependent “races” can be developed
without making strong assumptions about the distributions of Tgo and Tstop.

7.7.1 The Role of Copulas

It turns out that the concept of a copula is a natural tool to investigate such
dependent race models. Briefly, a copula is a function that specifies how a
multivariate distribution is related to its one-dimensional marginal distributions.14

For stop-signal modeling, this means that the bivariate distribution H can be
written as15

H(t,s) = P [Tstop ≤ t,Tgo ≤ s] = C(Fstop(t),Fgo(s)), (7.27)

where C is a bivariate copula that is determined uniquely assuming continuous
marginal distributions. Note that a copula specifies the dependency structure
without the need to commit to a given distributional family for the marginals, here
Fgo and Fstop. For example, letting u = Fstop(t) and v = Fgo(s), copula

CIND(u,v) ≡ u v

defines stochastically independent race models. Because of the generality of
the copula definition, the class of race models based on copulas obviously
encompasses all race models with specified marginal distributions.

14 For precise definitions of, and an introduction to, copulas refer to Durante and Sempi (2016), Joe
(2015), Nelsen (2006); for an introduction in psychological contexts, see Colonius (2016).

15 Note that in Section 7.7 (only) we write H with the order of marginals switched.
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Example: Farlie–Gumbel–Morgenstern Copula. The Farlie–Gumbel–Morgen-
stern (FGM) copula is defined as

CFGM(u,v) = u v[1+ δ(1− u) (1− v)] (7.28)

with parameter δ a real-valued constant. It defines a stochastically dependent semi-
parametric race model with bivariate distribution function

HFGM(t,s) = CFGM(Fstop(t),Fgo(s))

= Fstop(t)Fgo(s)[1+ δ(1− Fstop(t))(1− Fgo(s))], (7.29)

with parameter δ determining the strength of dependence between Tgo and Tstop.
Setting δ = 0 corresponds to the independent race model, negative and positive
values of δ to negative or positive dependent models, respectively. It is known that
the FGM copula only allows for moderate levels of dependence (e.g., Kendall’s
tau, τ ∈ [−2/9,2/9]).16

By inserting specific marginal distributions into a copula, fully parameterized
models can be created. For example, with ex-Gaussian marginals with parameters
μ and σ for the Gaussian and λ for the exponential component, this results in the
ex-Gaussian version of the FGM copula:

HFGM(t,s)=Fstop(t;θ stop) Fgo(s;θgo)[1+ δ(1− Fstop(t;θ stop))(1− Fgo(s;θgo))],

where θ stop = (μstop,σstop,λstop) and θgo = (μgo,σgo,λgo) are parameter vectors,
adding up to a total of seven model parameters including δ.

7.7.2 Equivalence with Dependent Censoring

Many alternative copula families with relatively simple dependency structures
exist and could be investigated. The specific challenge for stop-signal race models
is, of course, that Fstop is unobservable. Fortunately, it turns out that the problem
of determining the distribution of non-observable stopping time Tstop in the race
model is formally equivalent to a problem studied in actuarial science concerned
with the time of failure of some entity (human, machine, etc.). Recall that
censoring is a condition in which the failure time is only partially known. For
example, left censoring occurs if a data point is below a certain value but it is
unknown by how much. If the value of the censoring is a random variable, the
random censoring time is usually assumed to be statistically independent of the
failure time. More recently, however, the determination of failure times under
dependent random censoring has been considered as well (Hsieh & Chen, 2020;
Wang et al., 2012).

Dependent censoring. In medical experiments on tumorigenicity, for example,
the failure time of interest, T , is usually the time to tumor onset, which is
commonly not observed. Instead, only (i) the death (or sacrifice) time of an animal,

16 FGM copula extensions with a larger dependency range exist but require additional parameters.

https://doi.org/10.1017/9781108902724.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.008


Modeling Response Inhibition in the Stop-Signal Task 347

serving as the observation time X here, is observed and (ii) whether or not T
exceeds the observation time X (at that time, one knows the absence or presence
of the tumor). Thus, one can directly estimate the following two functions:

G(x) = P(X ≤ x) and p2(x) = P(X ≤ x,T < X) (0 ≤ x ≤ ∞)

by their empirical estimates. With F(t) and G(x) the distribution functions of T
and X, respectively, one assumes a copula C

C(F(t),G(x))

to specify the dependence between failure time and observation time. Importantly,
it has been shown that, under weak assumptions and given the copula, the marginal
distribution function F is uniquely determined by G(x) and p2(x) (Wang et al.,
2012).

To show the formal equivalence with the dependent race model, we equate
distribution G(x) with Fgo(s) and F(t) with Fstop(t). Thus, p2(x) = P(X ≤ x,
T < X) corresponds to P(Tgo ≤ s,Tstop + td < Tgo). Since the latter is not
observable, we use the following equality:

P(Tgo ≤ s)− P(Tgo ≤ s,Tstop + td < Tgo)

= P(Tgo ≤ s,Tgo < Tstop + td)

= P(Tgo ≤ s |Tgo < Tstop + td) P(Tgo < Tstop + td)

= Fsr(s | td) [1− pr(td)],

showing a one-to-one correspondence between the observable quantities in depen-
dent censoring and the stop-signal race model; note that we made use of the
correspondence of p2(∞) with P(Tstop + td < Tgo) ≡ pr(td).

Consequently, the uniqueness result in dependent censoring implies that Fstop(t)
is uniquely determined in the general race model with a specified copula and that
the distribution is amenable to nonparametric estimation methods developed in
actuarial science (e.g., Titman, 2014 for a maximum likelihood method). This
result is very general and applies to any dependent model, e.g., the FGM model
defined in Equation (7.29). Unfortunately, however, a further well-known result
from that theory implies that the numerical value of the dependence parameter,
e.g., δ in the case of the FGM model, is not identifiable in general and thus
cannot be estimated without specifying the marginals (Betensky, 2000; Titman,
2014). Nevertheless, a sensitivity analysis can be quite revealing about the impact
of dependency (Wang et al., 2012). In the FGM model, this involves taking a
range of dependency parameter values, like δ = 0, ± 0.1, ± 0.2, . . . , ± 0.5, and
probing how much the predictions generated for the stop-signal distribution vary as
a function of these values. An application of these results to empirical stop-signal
data has not yet been undertaken, however.

We conclude this section with a model featuring extreme stochastic dependency
not requiring any numerical parameters.
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7.7.3 Perfect Negative Dependency Race Model

In order to resolve the paradox described above, of interacting circuits of mutually
inhibitory neurons instantiating stop and go processes in spite of stochastically
independent finishing times, we have suggested a race model with negative
dependency between go and stop-signal processing times (Colonius & Diederich,
2018). It is based on the countermonotonicity copula expressing perfect negative
dependence (PND) between Tgo and Tstop and is completely parameter-free. The
bivariate distribution is defined as

H−(s,t) = max{Fgo(s)+ Fstop(t)− 1,0} (7.30)

for all s,t (s,t ≥ 0). It follows that the marginal distributions of H−(s,t) are the
same as before, that is, Fgo(s) and Fstop(t). Moreover, it can be shown that Equation
(7.30) implies that

Fstop(Tstop) = 1− Fgo(Tgo) (7.31)

holds almost surely, that is, with probability 1. Thus, for any Fgo percentile
we immediately obtain the corresponding Fstop percentile as complementary
probability and vice versa, which expresses perfect negative dependence between
Tgo and Tstop.17

Colonius and Diederich (2018) show that the PND race model is consistent
with the empirical data patterns of the stop-signal task (Section 7.2) and that one
can test the model, at least in principle, against stochastically independent race
models. However, experimental studies of the model are not yet available. The
PND model arguably constitutes the most direct implementation of the notion of
“mutual inhibition” observed in neural data: any increase of inhibitory activity
(speed-up of Tstop) elicits a corresponding decrease in “go” activity (slow-down of
Tgo) and vice versa.

7.8 Miscellaneous Aspects

7.8.1 Variants of the Stop-Signal Paradigm

Early on, some variants of the standard stop-signal task have been developed in
an attempt to gain further insight into response inhibition mechanisms (Logan &
Burkell, 1986). Data obtained from these studies are mainly discussed against the
background of the independent or the interactive race model. Formal modeling
approaches geared toward the specific task variants are rare, however. Here we
sketch some results and point out future research goals.

Stop-change paradigm. In stop-change tasks, subjects are instructed to stop the
originally planned go response and execute an alternative “change” response

17 The relation in Equation (7.31) is also interpretable as “Tstop is (almost surely) a decreasing function
of Tgo.”
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(or “go2” task) when a signal occurs. A number of experimental and modeling
studies suggest that subjects cannot stop and replace a response by simply
activating an alternative response. A stop process must inhibit the first go response
before the go2 response can be executed. For some modeling efforts within the
multitasking context, we refer to Verbruggen, Schneider, and Logan (2008).

Selective-stop paradigm. There are two variants of the selective stop task: in
stimulus-selective stopping tasks, different signals can be presented and subjects
must stop if one of them occurs (valid signal), but not if the others occur (invalid
signals); in motor-selective stop tasks, subjects must stop some of their responses
(e.g., finger press) but not others (e.g., foot press).

For the stimulus-selective task, there are three different types of trials: (i) only
the go signal is presented; (ii) both the go signal and the stop signal are presented;
and (iii) both the go signal and the ignore signal are presented. Mainly, two
alternative strategies for stimulus-selective stopping have been discussed within
the race model framework: “Stop then Discriminate” and “Discriminate then Stop”
(Bissett & Logan, 2014). Given that stop and ignore signals are never presented
within one and the same trial, it is not obvious that discriminating between stop
and ignore signals can naturally be represented as a race. It has been suggested
that in the “Discriminate then Stop” strategy discrimination interferes with go
processing, violating the context independence assumption of the independent
race model. For this paradigm, further theoretical and experimental work is
clearly called for.

Anticipated response inhibition. In anticipated response inhibition (ARI) tasks,
participants are required to make a planned response that coincides with a
predictably timed event (typically a vertically filling bar) at a predefined stationary
target (e.g., horizontal line on the bar). This predefined target requires participants
to consistently prepare and initiate movement and is supposed to avoid the
“strategic slowing” often observed in the ordinary stop-signal task even when
subjects are asked to “respond as soon as possible.” Experimental comparisons of
ARI tasks with the ordinary stop-signal task suggest indeed that SSRT estimates
show less bias with this version of response inhibition task (Leunissen et al., 2017).
However, a recent study finds violations of context independence due to the nature
of the task and suggests a parametric model to take those into account (Matzke
et al., 2021).

7.8.2 Modeling Trigger Failures

All race models assume that go processing (Tgo) is triggered by presenting
the go signal, and stop processing (Tstop) by occurrence of the stop signal.
However, sometimes no response is registered before the response deadline. These
“go omissions” may be due, e.g., to distraction or a lack of attention. For the
nonparametric independent race model, a recommendation by Verbruggen et al.
(2019), based on extensive simulations, is to assign the maximum observed RT
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in order to compensate for the lacking responses, when the integration method of
estimating SSRT is used.

A more difficult problem arises if the stop signal fails to trigger the stopping
process. Simulations have shown that nonparametric estimation methods will
overestimate SSRT when trigger failures are present on stop trials (Band, van der
Molen, & Logan, 2003). If the probability to respond in stop signal trials (the
inhibition function) is larger than zero for small or zero SSDs, this suggests the
presence of trigger failures. Unfortunately, there are typically only rather few
observations available for very small SSDs, making estimates for this probability
unreliable. As a pragmatic solution, Verbruggen et al. (2019) suggest researchers
include extra stop signals that occur at the same time as the go stimulus but not
include these trials in estimating SSRT.

At this time, there is no general solution available for nonparametric race models
to estimate the probability of trigger failures in stop-signal trials. On the other
hand, recent variants of parametric modeling methods provide an estimate of
the probability of such trigger failures using a distribution-mixture approach (for
details, see Matzke et al., 2019).

7.8.3 Sequential (After Effects) Effects

In a large variety of action control tasks like the stop-signal paradigm, partici-
pants typically slow down after an error (“post-error slowing”). Several distinct
behavioral and physiological explanations have been offered for this observation
(Ullsperger, Danielmeier, & Jocham, 2014), but quantitative models are scarce
(though see Dutilh et al., 2012 for a diffusion model approach). One hypothesis
attributes slowing to the “executive system”: when it detects an error, it increases
control by adjusting the parameters of the perceptual and response system to
reduce the likelihood of committing future errors. Consistent with this, subjects
often slow down after an unsuccessful stopping in the stop-signal task. However,
slowing has been observed after successful stopping as well (Verbruggen & Logan,
2008). Bissett and Logan (2012) suggested that the presentation of the stop signal
encourages subjects to shift priority from the go task to the stop task, producing
longer response latencies after a signal trial and reducing the latency of the stop
process. A formal approach has been undertaken by Soltanifar and colleagues
(Soltanifar et al., 2019). They estimate SSRT separately depending on whether
the preceding trial has been a go or a stop trial and then develop a two-state
mixture model for the SSRT distribution. They find clear effects of trial type, but
further research along these lines is called for.18 In an earlier development, Yu and
colleagues suggested a comprehensive Bayesian inference-based, optimal-control
theory for sequential effects (Ma & Yu, 2016) where a control system computes,
at any given trial, the probability of a stop signal occurring in the next trial.

18 Unfortunately, in this and later papers, these authors always use parametric model versions only.
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7.9 Concluding Remarks

In this chapter, we have aimed at characterizing the formal structure of
quantitative models for the stop-signal task. Possible extensions and generaliza-
tions of currently available models have been discussed as well, e.g., the class
of semi-parametric race models. Given the rapid increase of experimental studies
in this area, presenting the empirical success (or failure) of the various models
remains outside the reach of this chapter, however.

A recurring theme concerning model building is the issue of parametric versus
nonparametric approaches. On the one hand, the independent, nonparametric
race model of Logan and Cowan (1984) (Section 7.3.2), with its straightforward
estimation methods for SSRT, has clearly dominated empirical studies up to now,
notwithstanding numerous reports of violations of some of its assumptions. On
the other hand, the availability of software packages for parameter estimation and
model simulation is currently generating a broader usage of parametric race models
in applied fields. Increased information about stop-signal processing time (beyond
the mean), the possibility to more adequately deal with errors in choice paradigms
that require discrimination between go signals, and the handling of stop-signal
trigger failures have been listed among the benefits of the parametric approach
(Matzke et al., 2019). It should be mentioned for completeness, though, that it
also faces some challenges. There is some arbitrariness involved in the choice of
a specific family of distributions for go and stop-signal processing times (and,
for Bayesian methods, in the choice of priors). For example, the commonly used
ex-Gaussian distribution has some features that seem problematic: (i) it has an
increasing hazard function, whereas most RT distributions exhibit an increasing
and then decreasing (to some constant) hazard function (e.g., Luce, 1986, p. 439);
and (ii) it predicts a nonzero probability of realizing negative values. The fact that
ex-Gauss distributions often yield good empirical fits does not automatically mean
that the ex-Gaussian parameters of the stop-signal distribution can be taken as
valid description of the inhibitory process. Alternative distribution families have
been considered, like the log-normal or the Wald distribution, but detailed studies
have sometimes revealed broad parameter identifiability failures for these families
(Matzke, Logan, & Heathcote, 2020).

It is difficult to predict what type of behavioral modeling will prevail in the
future. In any case, it is obvious that the different variants of the paradigm, like
selective stopping, will require going beyond the simple “race” scheme. Further
insight from neurophysiology may suggest more complex mechanisms. A case
in point is the two-stage pause-then-cancel (PTC) model by Schmidt and Berke
(2017), based on subcortical rodent recordings. As described in Diesburg and
Wessel (2021), the first stage is defined by a short-latency “Pause” process that
actively delays the go process; it is followed by a slower “Cancel” process, which
shuts off ongoing invigoration of the go response. This way, the PTC model
tries to disentangle attentional orienting from motor inhibition. The model is
clearly at odds with standard, independent race models and calls for an augmented
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mathematical formalization with more sophisticated quantitative measures for the
strength of inhibition.

7.10 Related Literature

While there are a number of early references to the stop-signal paradigm
(e.g., Lappin & Eriksen, 1966), the first completely developed modeling approach
is found in Logan and Cowan (1984). Over the years, a number of review articles
have appeared, with different emphases (Band, van der Molen, & Logan, 2003;
Logan, 1994; Logan et al., 2014; Matzke et al., 2018; Verbruggen & Logan, 2009;
Verbruggen et al., 2019). Platform-independent software to correctly execute the
standard stop-signal task by F. Verbruggen is found on GitHub (https://github
.com/fredvbrug/STOP-IT). For the anticipated response inhibition task, an open-
source program (OSARI) is presented in He et al. (2021).
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8.1 Introduction

As mathematical psychology has evolved from the development of math-
ematical representations of psychological experience and mathematical relation-
ships between these representations and behavior (Coombs, Dawes, & Tversky,
1970; Krantz et al., 1971) to computational models of behavior and brain function
and the relationships between them (Farrell & Lewandowski, 2018; Liu et al.,
2020), the systems of analyses employed to analyze data and fit and test models
have evolved to meet the increased demands of computation and complexity.
A consequence of this complexity is reflected in the increased difficulty involved
in using standard methods such as maximum likelihood to fit models to data.
One powerful and straightforward way to circumvent these difficulties is Bayesian
hierarchical modeling.

Bayesian modeling, as described in Rouder, Morey, and Pratte (2017), focuses
attention on model parameters given a set of data. Its power, especially in the
context of mathematical psychology, is in its ability to provide statements about
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psychologically motivated parameters in the context of a theoretically interesting
model. With a model stating that a vector of data Y = y should follow some
distribution f (y | θ), where the form of f and the model parameters θ are
dictated by psychological theory, and with some initial assumptions about the prior
distribution π(θ) of the parameters θ , we update our understanding of θ by

π(θ | y) ∝ f (y | θ)π(θ), (8.1)

where the model’s probability density function (pdf) or likelihood f (y | θ) is
(roughly) the probability of the data set Y = y arising under the parameter θ and
the posterior distribution π(θ | y) is found by Bayes’ rule.

A standard Bayesian analysis therefore requires that we are able to write
down a function f (y | θ) that describes the random behavior of the data Y . This
analysis often also assumes that for a random data set Y = {Y1,Y2, . . . ,YN} =
{y1,y2, . . . ,yN}, we write

L(θ | y) =
n∏

i=1

f (yi | θ), (8.2)

or that the sample Y = y is independent and identically distributed (i.i.d.): each
Yi is drawn from the same distribution (described by f (y | θ)) and is independent
from every other Yj, j �= i.

8.1.1 Increasing Sophistication of Models

Consider for a moment some of the hidden assumptions behind the i.i.d. assump-
tion. First, we must assume that the data-generating process f is fixed in time.
Neither the structure of the process (dictating the likelihood or distribution family
f ) nor its parameters (θ) change as a person gains experience or becomes bored
with a task. Second, we assume that there are no serial position effects. Errors or
slips on trial i have no effect on the execution of the process on trial i + 1. Third,
we assume that all measurements come from the same process f ; there are no
contaminants from extraneous events, such as sneezing or hitting the wrong key.
Fourth, we assume that everyone is the same: all individuals in the experiment do
the task in exactly the same way, using the process f , perhaps also with exactly the
same values of the parameter θ .

Many Bayesian models have also used a simplifying assumption of linearity, or
that Y = β0 + β1X1 + · · · + βKXK + ε for K predictor variables Xi and error ε

that follows some distribution (usually Gaussian). This assumption brings with it
a number of mathematical conveniences, such as the existence of conjugate priors
and the direct relationships to methods of least squares.

The important contribution of the i.i.d. and linearity assumptions is that they
usually result in a tractable form for Equation (8.2). The resulting models are
useful, but oversimplified to the extent that the interpretation of the models’
parameters is compromised (Haaf & Rouder, 2019). The Bayesian approach,
however, is powerful enough that many of these assumptions are not necessary.
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It is possible, using modern computing resources, to build and test models that
are far more complex and realistic, as long as an explicit likelihood function
L(θ | Y) can be formulated. Numerical methods based in Markov chain Monte
Carlo sampling procedures exploit the theory of Markov processes, which assures
that, under general conditions, simulating sequences of random numbers that
have been accepted or rejected as potential samples from the desired posterior
distribution will approach a sample from that posterior given enough time.

Such methods have been extensively addressed elsewhere (e.g., Gelman et al.,
2014; Rouder & Lu, 2005). The focus of this chapter is on situations in which
the model of interest is so complex that the likelihood function L(θ | Y) is very
difficult to determine or, indeed, doesn’t exist at all. In this situation approximate
Bayesian methods can be used to estimate the posterior distribution for parameters
of models with no explicit likelihood L(θ | Y).

8.1.2 Statement of the Problem

There are a number of important, psychologically interesting models that do not
have explicit likelihoods. For example, consider nonstationary models, in which
the distribution of the observed data Y changes when the process that produces
the data is shifted in time. This implies that θ(t), the model parameters, vary
with time t. One example of a model like this is Usher and McClelland’s leaky
competing accumulator (LCA; Usher & McClelland, 2001). This model is based
on a diffusion process framework in which the rate of evidence accumulation or
drift changes as a function of the amount of evidence accumulated. As time passes,
more evidence is accumulated, and so the drift rate changes. The LCA’s drift rate is
not constant within a trial and the resulting nonstationarity of the diffusion process
means the data do not have an explicit likelihood.1

Models like the LCA are described by systems of nonlinear dynamic equations
(see also the Orstein–Uhlenbeck process; e.g., Doob, 1942). Like neural network
models, they must be simulated to determine their long-run behavior. Although
such models have parameters θ that can be written down and given psychological
interpretations (Busemeyer & Townsend, 1993), they do not have a likelihood
f (x | θ) describing the random behavior of their outputs that can be analytically
determined. Without a likelihood, how can we perform inference on model
parameters, evaluate model fit, or contrast models to one another?

In what follows, we present approximate Bayesian analysis, the solution for
models with no explicit likelihood. As a motivating example, we will consider a
model for conflict tasks (described below), the activation-suppression race (ASR)
model (Miller & Schwarz, 2021). Many models of conflict tasks, such as the
diffusion model for conflict tasks (DMC; Ulrich et al., 2015), are nonstationary and

1 Note that it is the dependence of the LCA model’s parameters on time that makes the LCA
nonstationary and eliminates the closed form of the model’s likelihood function. The model produces
i.i.d. observations.
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do not have likelihoods. The ASR model does have a likelihood, so we can contrast
standard MCMC methods with the approximate Bayesian methods to demonstrate
the accuracy with which parameters can be estimated. We will describe the kinds
of tasks that this model was designed to explain, and demonstrate, on simulated
data, how the model can be fit to data and evaluated using approximate Bayesian
analysis.

8.1.3 A Motivating Example: The Activation-Suppression
Race Model of Conflict

A number of experimental paradigms in psychology make use of conflict tasks.
The stimuli in such tasks are two-dimensional, carrying two sources of informa-
tion. Each source contains information that is consistent with one of two possible
responses. One example of a conflict task is the classic Stroop task (Stroop, 1935).
Stroop stimuli are words of colors (“red,” “green”) printed in different inks. The
participant’s task is to identify the color of the ink. If the word “green” is printed
in red ink, the correct response is “red,” and the two sources of information in the
stimulus are in conflict. If the word “red” is printed in red ink, the correct response
is “red,” and the two sources of information do not conflict. Participants respond
faster and more accurately to stimuli without conflict than to stimuli with conflict.

The three most common conflict tasks are the Stroop task, the Eriksen flanker
task (B. A. Eriksen & Eriksen, 1974), and the Simon task (Simon & Rudell, 1967).
The flanker task uses a number of characters such as left- or right-pointing arrows
arranged in a row or a column. Only the character in the center determines the
response. If all the characters in the stimulus array point in the same direction,
indicating the same response, then the two sources of information do not conflict;
if the characters surrounding the critical central character indicate the opposite
response, then the two sources of information conflict. One interesting feature
of the flanker task is that the degree of conflict can be modulated by increasing
or decreasing the separation between the characters, increasing or decreasing the
number of flanking characters that are in conflict with the central character, and
by increasing or decreasing the distance between the central character and the
conflicting flankers (C. W. Eriksen & Hoffman, 1974; C. W. Eriksen & Schultz,
1977, 1978).

The Simon task asks that participants respond with a left keypress to a stimulus
of one color (e.g., red) and a right keypress to a stimulus of a different color (e.g.,
green). In this task, conflict arises from the location of the stimulus relative to some
central point (e.g., a central fixation cross) and the location of the desired response.
If a red stimulus appears to the left of center, the two locations are not in conflict. If
a green stimulus appears to the left of center, the two locations conflict. The degree
of conflict can again be modulated by the distance of the stimulus from the center
point. The more distal the stimulus, the faster participants’ responses are to stimuli
that conflict, and the slower they are to stimuli that don’t conflict.
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Miller and Schwarz (2021) proposed the ASR model to explain response times
(RTs) in conflict tasks. The structure of the model is quite simple: two processes,
A and B, are executed in parallel. The identification process B takes some amount
of time TB to determine the relevant information in a stimulus with or without
conflict. The suppression process A takes some amount of time TA to suppress
information that is irrelevant for the correct response. When process B is finished,
a third process C begins that selects and executes the response associated with the
information that process B identified. Response selection and execution takes some
amount of time TC. The effect of conflict is observed on the response process C.
If process A does not finish before process B, any irrelevant response information
inhibits the response selection process C and prolongs the response by a duration
λinh. Therefore

RT =
{

TB + TC if TA < TB, otherwise
TB + TC + λinh if TA > TB and the stimulus conflicts.

(If A finishes after B and the stimulus doesn’t conflict there is no inhibition because
there is no irrelevant response information in the stimulus.)

Letting TA and TB be exponentially distributed with rates α and β, respectively,
and letting TC be distributed as a Gaussian with mean μC and variance σ 2, the
conditional likelihood for the RT is distributed as an ex-Gaussian variable with a
mean that depends on the outcome of the race between A and B and the stimulus
type. Noting that the probability p that B finishes before A is

p = β/(α + β),

then, from Miller and Schwarz’s (2021) expressions, the conditional RT distribu-
tions are

RT | no conflict ∼ fN(t | θ) = exG(β,μC,σ ) and

RT | conflict ∼ fC(t | θ) = p exG(α + β,μC + λinh,σ )

+ (1− p)
[
(1+ β/α)exG(β,μC,σ )

− (β/α)exG(α + β,μC,σ )
]
,

where exG(α,μC,σ ) is the ex-Gaussian density, the sum of an exponential (α)
and a Gaussian (μC,σ ) random variable, and θ = {α,β,μC,σ,λinh}. Let an RT be
denoted as the variable T ∈ (0,∞) and conflict as C ∈ {0,1}, such that Ci = 0 if
the stimulus presented on trial i does not conflict and 1 otherwise. Given n trials
with and without conflict yielding a sample of RTs T ={T1,T2, . . . ,T2n}, the ASR
likelihood is

L(θ | T) =
2n∏

i=1

(1− Ci)fN(Ti | θ)+ (Ci fC(Ti | θ)) . (8.3)

Because we can write down the ASR likelihood, we have no need to use
likelihood-free methods. However, there are (common) situations where the
likelihood is sufficiently complex that approximate Bayesian methods are easier to
implement, either because it is difficult to code the likelihood or faster to simulate
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the model. Models derived from stationary diffusion processes are examples of
models with explicit likelihoods that are difficult to implement. For our purposes,
we will perform both approximate and exact Bayesian computations for the
ASR model to demonstrate that approximate Bayesian computations can result
in accurate inference of model parameters.

8.2 Approximate Bayesian Computation

In 1984, Rubin discussed the need for applied statisticians to move beyond
models incorporating simplifying assumptions, and to exploit modern computing
resources to perform Bayesian analysis of less tractable models. While not strictly
Bayesian, procedures that were “Bayesianly justifiable” were embraced by Rubin
for their abilities to expand the range of models that could be applied to more
complex problems. A simple simulation-based procedure for estimating posterior
distributions, which he called “superpopulation frequency simulation,” is now
recognized as an example of approximate Bayesian computation (ABC).

Approximate Bayesian procedures were formalized by geneticists who were
interested in the problem of determining how long ago the evolution of two species
diverged from a common ancestor (Beaumont, Zhang, & Balding, 2002; Fu & Li,
1997; Pritchard et al., 1999; Tavaré et al., 1997; Weiss & von Haeseler, 1998).
Representing the two species’ genotypes as binary vectors, the locations and types
of mutations along the vectors for each generation of the species must be explained
by a model. There is no likelihood to describe the vector configurations over time,
because the accumulation of possible mutations increases exponentially over time,
and the length of the vectors and possible mutation sites increase as well.

Approximate methods that allowed for estimation of posterior distributions for
the parameters of these models were reviewed by Beaumont, Zhang, and Balding
(2002). Following publication of this review, the use of approximate Bayesian
methods expanded from genetics to other disciplines, including psychology
(Turner & Van Zandt, 2012). A comprehensive treatment of approximate Bayesian
methods in cognitive modeling can be found in Palestro et al. (2018).

In what follows, we first outline the conceptual basis of approximate Bayesian
analysis. Using the ASR as a motivating example, we then demonstrate three
approaches for estimating the posterior distributions of the model’s parameters
and contrast those approaches with a standard Bayesian analysis. We outline the
strengths and weaknesses of each approach.

8.2.1 Conceptual Basis

Rather than evaluating an explicit likelihood f (x | θ) for a data set T , approximate
Bayesian methods depend on a comparison between an observed data set T and
a data set T∗ obtained by simulating the model of interest using a proposed set
of parameters θ∗. We must define a distance metric d(T,T∗) that quantifies the
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discrepancies between T and T∗. While a true Bayesian posterior distribution
is defined as π(θ | T) as in Equation (8.1), the approximate Bayesian posterior
distribution is defined as π(θ | d(T,T∗) ≤ ε) for some small ε > 0. If d(T,T∗)
≤ ε for proposed parameters θ∗, we may retain θ∗ as a sample from the desired
posterior distribution of θ , otherwise we may discard it and select a new θ∗,
simulate a new T∗, and repeat the process. Much depends on the magnitude of
ε and how the distance d(T,T∗) is defined. At its most precise definition, we could
measure the Euclidean distance between the observed and simulated data vectors√√√√ n∑

i=1

(Ti − T∗i )2,

and set ε = 0. This would require each observation to be exactly reproduced in
the simulation in the order in which it appeared, even if the Tis are an i.i.d. sample
and order doesn’t matter. The resulting sample of θ would come from the desired
posterior distribution (an exact sample), but obtaining those samples would be
computationally very expensive.

Recognizing that it is not necessarily the actual observations T∗ that are required
but some summary statistic(s) S(T) of the sample that is required, the distance
d(T,T∗) can be redefined as d(S(T),S(T∗)). When deciding which summary
statistic(s) to use, it would be theoretically optimal if the statistics used were
sufficient for the model parameters θ . The sufficiency principle states that a
sufficient statistic S(T) provides as much information about a model parameter as
the entire sample does. Examples of sufficient statistics include the sample mean

T = 1

n

n∑
i=1

Ti

and variance

s2 = 1

n

n∑
i=1

(
Ti − T

)2
,

which are jointly sufficient for the mean μT and variance σ 2
T of T .

Formally, S(T) is sufficient for θ if the conditional distribution of the sample T
given the value of the statistic S(T),

n∏
i=1

f (Ti | S(T)),

does not depend on θ .
Wilkinson (2013) demonstrated that exact samples from the desired posterior

distribution can be obtained using approximate Bayesian methods so long as
measurement error is additive and d(T,T∗) is defined using sufficient statistics.
However, if the model of interest does not have a likelihood f (x | θ), we won’t be
able to determine whether any given statistic S(T) is sufficient for its parameters.
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There is no guaranteed way around this problem, although certain techniques have
been proposed (e.g., Fearnhead & Prangle, 2012). The most common approach is
to use a larger number of statistics that accurately and adequately capture the shape
of the likelihood distribution f (x | θ), such as the quantiles of T , keeping in mind
that the more summary statistics we use, the more computation will be required to
compute and evaluate the distance d(T,T∗).

8.2.2 How it Works

Approximate Bayesian algorithms follow five general steps (Palestro et al., 2018):

1. Generate a proposed value θ∗ for θ . While the values of θ∗ might be drawn
from the prior distribution π(θ), this may not be the best choice, especially if
the prior distribution is uninformative. The proposal distribution from which θ∗
is drawn should not be too far away from the desired posterior distribution.

2. Simulate a data set T∗ using θ∗. This step is computationally the most
expensive. A data set must be simulated for every value of θ∗ generated.

3. Compute the summary statistics of T∗. These could be sample moments,
quantiles, or (in the case of the PDA algorithm discussed below) an estimate
of the likelihood function.

4. Compare the summary statistics of T∗ to those of T . This comparison may arise
as computation of a distance d, or in some other, algorithm-specific way.

5. Weight θ∗ according to how close T∗ is to T . Because the simulation step is
expensive, it is not always preferable to simply reject a θ∗ when it produces
T∗ that is dissimilar to T . Instead, we might choose to assign a weight w to θ∗
that indicates its fitness. How this weight is computed and translated into the
posterior distribution will be determined by the algorithm selected.

Palestro et al. (2018) provide a comprehensive treatment of the choices that must
be made in the implementations of a number of approximate Bayesian algorithms.
Other treatments may be found in, e.g., Beaumont (2010); Cranmer, Brehmer, and
Louppe (2020); Csilléry et al. (2010); Didelot et al. (2011). In this chapter we
will present three of the most commonly used approximate Bayesian algorithms:
rejection ABC, population Monte Carlo (PMC) sampling, and probability density
approximation (PDA).

In what follows, we will use the notation identified in Table 8.1. All of the
discussion will use the ASR model and RTs as measurements. The graphical ASR
model is shown in Figure 8.1. All parameters were estimated on the log scale with
Gaussian or improper uniform prior distributions. Table 8.2 gives the values of the
Gaussian prior distributions.

To demonstrate the likelihood-free algorithms, we generated simulated data
from the ASR. It is sufficient to discuss fits to a single simulated “participant”
to demonstrate the key features of these algorithms. This participant’s data were
generated from a model with parameters equal to the values of the parameters in
Table 8.2.
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Table 8.1 Notation used in the text.

Symbol Meaning

α Rate parameter for the suppression process
β Rate parameter for the identification process
λinh The delay in response selection processing time

induced by irrelevant information
μC Mean of response selection processing time
σ 2 Variance of response selection processing time
θ Vector-valued set of model parameters
θ∗ Set of proposed model parameters
θi A sample of θ from its posterior distribution
w A weight given to a proposed parameter value θ

T Sample of n observed RTs
T∗ Sample of simulated RTs
S(T) A statistic computed from the sample T
n The length of the data vector T
Model(θ) The implicit conditional distribution of T

observed through simulating a model with parameters θ ,
which takes the place of the likelihood function

d(T,T∗) Distance between T and T∗
ε A tolerance level for distance d(T,T∗)
π(θ) The prior distribution of θ

π(θ | T) The posterior distribution of θ

N The number of iterations, corresponding to the
number of samples of θ obtained
from the estimated posterior distribution

f (t | θ) The density function of observation t for a model,
also the likelihood for a single observation t

L(θ | T) The likelihood function for the data set T

Table 8.2 Values of the parameters for the proper prior distributions of the
ASR model.

Parameter Prior Parameter Prior

ln(α) N (ln 100,0.75) ln(β) N (ln 100,0.75)

ln(μC) N (ln 300,0.3) ln(σ ) N (ln 60,0.3)

ln(λinh) N (ln 75,1.0)

Each simulated RT was generated by first simulating durations for processes
A and B by sampling values from exponential distributions with rate parameters
α and β, respectively. Next, if the duration of process A was less than that of
process B and/or the stimulus did not conflict, the duration for process C was
simulated by sampling a value from a Gaussian distribution with mean μC and
standard deviation σ . Finally, if the duration of process A was greater than that of
process B and the stimulus conflicted, the duration of process C was simulated by
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Figure 8.1 Graphical model representation of the ASR model. Shaded shapes
are observable variables, rectangles are integers, and circles are continuous
quantities. Arrows represent dependencies, and plates represent repetition over
trials (j) and individuals (i). The outermost plate (individuals) is dotted to
indicate that this part of the graph is important for a hierarchical model, but
we did not implement a hierarchical model for this exercise.

sampling a value from a Gaussian distribution with mean μC + λinh and standard
deviation σ .

8.2.3 Likelihood-Informed Markov Chain Monte Carlo

Before discussing the approximate Bayesian methods, we present the results from
a standard Metropolis–Hastings MCMC algorithm (Martin, Quinn, & Park, 2011)
to estimate the posterior distributions of the ASR parameter vector θ given a
sample of 2,500 observations from a single simulated participant. The observations
were generated for 1,250 stimuli that did have and 1,250 stimuli that did not have
conflict. We computed the estimates using the MCMCmetrop1R() function from
the R MCMCpack package.

Each parameter was modeled with an improper flat prior distribution on the log
scale. That is

π (ln θ) ∼ 1

for ln θ ∈ R. The prior distribution is improper because it does not integrate to
one, and the use of such a prior is equivalent to using no prior at all, placing all the
importance on the data in the estimate of the posterior distribution. Because

π (ln θ) ∝ L(θ | X),

the posterior mode (the maximum a posteriori probability, or MAP estimate) is
the maximum likelihood estimate of the parameter, and thus the usual caveats
and concerns must be applied to the estimated posterior distributions (Bassett &
Deride, 2019; Berger, 1985; Gelfand & Sahu, 1999; Hobert & Casella, 1996). In
our case, the estimated posterior distributions are proper. We chose the improper
flat prior where possible to put the different algorithms on footings that were as
equal as possible. However, for certain algorithms a prior distribution must be
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Data T , Model T ∼Model(θ);
prior distribution π(θ), tolerance ε;
Number of iterations N;
Initialize distance d← a big number;
for i ≤ N do

Sample θ∗ ∼ π(θ);
Generate T∗ from Model(θ∗);
Compute d← d(T,T∗);
if d < ε then

Perform a Metropolis–Hastings accept/reject step;
end
Set θi ← θ∗ if accepted;

end

Algorithm 1 The rejection-based ABC algorithm to sample values of the
parameter vector θ from its estimated posterior π(θ | T).

imposed and in these cases we employed the same diffuse prior distributions. In
practice, improper (and indeed, non-informative) priors should be avoided unless
considerable care is taken (Jaynes, 2003, Chapter 15), and researchers should
perform sensitivity analyses (fitting a model with different priors) to evaluate the
effects of the prior choice.

Figure 8.2 shows the estimated posterior distributions for the ASR parameters
on the log scale, together with the improper priors shown as horizontal lines at 1.0.
The true values of the parameters used to simulate the data are shown as vertical
lines, and the 95% equal-tail credible sets are shown as the bars under the x-axis.
The estimated exponential, delay, and Gaussian parameter posterior distributions
are all centered close to the true value of the parameters that generated the data,
and the true values are contained within the 95% credible sets.

We will use these estimated posterior distributions to evaluate the posterior
distributions estimated using ABC methods.

8.3 Three ABC Algorithms

In this section, we present the three ABC algorithms that we selected to
demonstrate the approximate Bayes concept. We begin with simple rejection, then
a more complex population Monte Carlo procedure, and finally the probability
density approximation algorithm. The results from each exercise demonstrate that
the probability density approximation method yields the best approximation to the
estimated posterior distributions recovered using the explicit likelihood function.

8.3.1 Rejection ABC

The easiest ABC algorithm to understand is the rejection algorithm, originally
proposed by Pritchard et al. (1999) and shown in Algorithm 1. It is very easy
to code, but can be very inefficient. It is also easy to extend to hierarchical models.
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Figure 8.2 Estimated posterior distributions (solid lines) and priors (horizon-
tal gray lines) for the logged ASR parameters (α, β, λinh, μC, and σ , filled left to
right, top to bottom) obtained using likelihood-informed Markov chain Monte
Carlo. Values of the parameters used for simulation are shown as vertical dotted
lines. Heavy horizontal lines at 0 show the 95% credible sets.
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To begin, we must first select the distance function d(T,T∗) and a tolerance
value ε. As we discussed earlier, these decisions are not necessarily easy to make,
and most of the effort that goes into implementing the algorithm lies in figuring out
what distance d(T,T∗) and tolerance ε are most appropriate for a given Model(θ).
Because d(T,T∗) should ideally be a function of statistics sufficient for θ , and
given that the entire sample is itself a sufficient statistic, one approach is to use
distances that employ representations of the distribution of the sample such as
quantiles. In this chapter, we use the χ-squared statistic by computing the quantiles
Q of the observed (simulated) data (from 5% to 95%) and counting the number of
observations in the proposal data T∗ that fall in the bins defined by the quantiles Q.
So, letting f ∗i (T∗,Q) be the frequency of observations in T∗ falling in the interval
[Qi−1,Qi):

d(T,T∗) =
10∑

i=1

(fi(T∗,Q)− Oi)
2

Oi

= (f1(T∗,Q)− 0.05n)2

0.05n
+

9∑
i=2

(fi(T∗,Q)− 0.1n)2

0.1n

+ (f10(T∗,Q)− 0.05n)2

0.05n
,

where Q0 = 0 and Q10 = ∞.
Selecting the tolerance value ε will require some exploration of the range of

the model’s predictions. Frequently we will select ε such that the proportion of
rejected/accepted proposals is neither too high nor too low.2 It may be difficult to
find initial values of θ∗ that produce samples T∗ to satisfy the tolerance criterion
ε. For this reason it may be more efficient to start with a large value for ε and then
gradually reduce it to some minimum value.

Because the distance d(T,T∗) is a function of θ∗, it will also be efficient to
select values of θ∗ that are close to those that satisfy stricter and stricter criteria
(as tolerance ε is reduced). We can accomplish this by incorporating an MCMC
sampling step (Robert & Casella, 2014). For example, we might apply a random
walk that moves the samples of θ through the parameter space according to a
Markov chain. So, for sample j:

θ∗ ∼ N (θj−1,σ
∗),

where N is the Gaussian distribution, θj−1 is the most recently sampled value for
θ , and σ ∗ is a tuning parameter that balances the need to search the parameter

2 Another alternative is to determine what the range of values of d(T,T∗) will be when the model is
true and select ε on that basis. This may be accomplished by simulating a data set T from the model
using a set of parameters θ , and then simulating a large number of other data sets (call them T(i), i =
1, . . . ,n) using θ . For each simulated data set we can compute d(T,T(i)) to obtain a distribution for
d(T,T∗). The tolerance value ε should not be smaller than the smallest of those values observed in
the distribution of d(T,T∗). This can be difficult if the distribution of d(T,T∗) changes greatly with
different values of θ∗.
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space with the need to stay close to values of θ that satisfy the tolerance criterion
ε. A good rule of thumb is to set σ ∗ equal to a value that produces an acceptance
rate that is neither too high nor too low: around 23% (Roberts, Gelman, & Gilks,
1997).

We implemented the rejection ABC algorithm to estimate the ASR model’s
parameters. The starting values for each parameter were initialized at the means
of their independent diffuse prior distributions:

ln(α) = ln(β) = 100,

ln(μC) = 300, ln(σ ) = 60,and

ln(λinh) = 75.

Following this initialization, on iteration i, new proposals were drawn from an
independent Gaussian proposal distribution q(θ∗ | θi) with variance parameter
σ = 1.3. The function q is often called a transition kernel. A kernel is a symmetric,
non-negative function that integrates to 1, and the transition takes values of θi to
values of θi+1.

We set the tolerance ε to 65. If a proposal θ∗ produced a value of d(T,T∗)
that was less than ε, we evaluated it with a standard Metropolis–Hastings step,
otherwise we rejected it. First we calculated the distance d(T,T∗), and then

a =
⎧⎨⎩ min

(
1,

π(θ∗)q(θi | θ∗)
π(θi)q(θ∗ | θi)

)
if d(T,T∗) ≤ ε

0 otherwise.
(8.4)

The value of a gives the (Bernoulli) probability of accepting θ∗ given that d(T,T∗)
was less than ε. If θ∗ was accepted, then θi+1 = θ∗. We repeated the procedure
and generated a chain of 1,000,000 samples of θ from its estimated posterior
distribution.

As before, Figure 8.3 shows the estimated posterior distributions for the ASR
parameters on the log scale together with their prior distributions. The true values
for the parameters used to simulate the data are shown as vertical lines, and the
95% equal-tailed credible sets are shown as bars under the x-axis.

The estimated exponential, delay, and Gaussian parameter posteriors are all
centered close to the true value of the parameters that generated the data, and
the true values are contained within the 95% credible sets. However, the estimated
posteriors are much broader that those resulting from the standard MCMC method.
There could be many reasons for this discrepancy, including the value of the
tolerance ε.

Theoretically, if ε = 0, the approximations of the posterior distributions would
be exact if the distance d(T,T∗) is defined with sufficient statistics. If ε is too
large, the estimated posterior variance will be large (as observed), because many
more proposed values for θ that are distant from the MAP estimate will satisfy the
tolerance criterion. If the quantile statistics defining d(T,T∗) are not sufficient, the
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Figure 8.3 Estimated posterior (solid lines) and prior (gray lines) distributions
for the logged ASR parameters (α, β, λinh, μC, and σ , filled left to right,
top to bottom) obtained using rejection Markov chain Monte Carlo. Values of
the parameters used for simulation are shown as vertical dotted lines. Heavy
horizontal lines at 0 show the 95% credible sets.
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estimates will also be inaccurate but it is difficult to predict how that inaccuracy
would manifest. For the present exercise, it was impractical to set ε much smaller
than 65; the samples that produced values of d(T,T∗) less than 65 were rare,
resulting in extraordinarily long estimation times.

Although the rejection algorithm is easy to implement and easy to understand,
it has at least three significant drawbacks. First, it can be computationally very
expensive if the prior distributions are far from the posterior, or if the tolerance
criterion ε is poorly chosen. Second, the accuracy of the posterior estimate depends
on the minimum value of ε selected and the sufficiency of the statistics defining
d(T,T∗). It may not be possible to achieve distances less than very small ε values.
There is therefore a significant computational load versus accuracy tradeoff that
may be difficult to resolve in an optimal way. The larger the minimum value of
ε, the greater the variance of the estimated posterior distributions will be. Third,
the MCMC sampler used to generate values of θ∗ must be chosen with care.
An improperly tuned sampler with a poorly chosen transition kernel will also
contribute to inaccurate estimates.

Finally, it is far more difficult to fit hierarchical models using rejection ABC.
The problem again rests with the tolerance criteria: values of ε must be set for each
individual, given that different samples may result in larger distances. It becomes
highly likely that the parameter chains for individuals become “stuck” in local
minima, requiring adjustments to the ε values that are difficult to optimize in an
automatic way (Turner & Van Zandt, 2014). Palestro et al. (2018) recommend
block sampling of hyperparameter posterior distributions using (for example)
Gibbs sampling, followed by sampling of individual parameters.

Nonetheless, if all that is required is a MAP estimate of a parameter, the rejection
ABC method could be used to quickly obtain one that is reasonably close to the
true MAP estimate (though with potentially high expected prediction error).

8.3.2 Population Monte Carlo

The PMC algorithm (see Algorithm 2) is based on a technique called particle
filtering (Gordon, Salmond, & Smith, 1993). Instead of starting with a single initial
value for θ , particle filtering algorithms generate a large set of values (a popu-
lation). On each iteration of the algorithm, each value, or particle, is perturbed,
evaluated for fitness, and accepted or rejected (filtered). The perturbation takes
the form of a transition kernel, as described for the rejection algorithm. Fitness
of each particle is evaluated using a distance function d(T,T∗), and, based on that
fitness, an importance weight is computed that determines the particle’s probability
of being accepted for the next iteration. Particles that are less fit have importance
weights that, over time, become small, resulting in the particle being dropped out
of the population. At the end of the algorithm, the population of particles that
remain are a sample from an estimate of the desired posterior distribution (Cappé
et al., 2004).

Implementing the PMC algorithm requires a decision about how the importance
weights w are to be computed. On the first iteration, all weights are equal to
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Data T , Model T∗ ∼Model(θ);
prior distribution π(θ), tolerance ε1:N ;
Number of iterations N, number of particles M;
Iteration j← 1;
Initialize distance d← a big number;
for 1 ≤ i ≤ M do

while d > ε1 do
Sample θ∗ from the prior π(θ);
Generate T∗ from Model(θ∗);
Compute d← d(T,T∗);

end
Set θi,1 ← θ∗;
Set wi,1 ← 1/M;

end
for 2 ≤ j ≤ N do

for 1 ≤ i ≤ M do
while d > εj do

Sample θ∗ from the pool θ with weights w;
Perturb θ∗ by sampling θ∗∗ ∼ N (θ∗,σ ∗);
Generate T∗ from Model(θ∗∗);
Compute d← d(T,T∗);

end
θi,j ← θ∗∗;
Calculate wi,j;

end
end

Algorithm 2 Population Monte Carlo sampling algorithm.

1/M and so all particles have an equal chance of being selected. On all following
iterations, denote the weight given to particle i on iteration t, θi,t, as wi,t, where

wi,t = π(θi,t)/

M∑
j=1

wj,t−1q(θj,t−1 | θi,t,σt−1)

and

σ 2
t−1 = 2

M∑
i=1

(θi,t − θt−1)
2/M,

with

θt =
M∑

i=1

θi,t/M.
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So σ 2
t−1 is twice the sample variance of the population θt−1. This weighting scheme

results in a transition kernel that minimizes the Kullback–Leibler distance between
the posterior distribution and the proposal distribution, optimizing the acceptance
probability (Douc et al., 2007).

We chose the same prior distributions as in the rejection algorithm described
above. We selected a Gaussian distribution with variance σ 2

t−1 for the transition
kernel q(θ∗ | θ). An initial population of M = 100 particles was selected from
the prior distribution that produced data T∗ that gave an initial distance less than
ε1 = 100. Using the χ-squared distance metric, we iterated through the population
1,000 times while linearly decreasing the distance metric to ε1,000 = 25.

Figure 8.4 shows the estimated posterior distributions for the ASR parameters
(α and β, and the delay parameter λinh, top row, and μC and σ , bottom row). The
true values for the parameters used to simulate the data are shown as vertical lines,
and the 95% equal-tailed credible sets are shown as bars under the x-axis.

In contrast to the rejection algorithm, the PMC algorithm is more difficult
to implement. In addition, it has a number of disadvantages. First, there is
no guarantee that populations will not get trapped in a local minima, as our
example makes quite clear. The multimodal nature of the estimates of the posterior
distributions is indicative of the populations’ tendency to get trapped in different
areas of the parameter space. Second, there is much trial and error in selecting both
an appropriate population size and the function that determines how the tolerance
ε decreases. Third, as in the rejection methods, decreasing tolerance ε results in an
increase in computation time. Fourth, like rejection ABC, extending the algorithm
to a hierarchical structure will increase computation time.

A practical advantage of PMC over rejection methods is that at any time in
the filtering process the currently accepted population is an approximation to
the desired posterior distribution. This approximation will improve with further
iterations, but can be used to monitor changes in the estimate of the posterior
distribution as the algorithm iterates.

8.3.3 Probability Density Approximation

The probability density approximation (PDA) procedure (Turner & Sederberg,
2014) is unique among ABC algorithms in that it does not depend on computing
a distance between an observed and a simulated data set. Instead, it uses a
nonparametric estimate of the likelihood in the form of the empirical density
estimate computed from the simulated data. This density estimate might take a
number of forms depending on the nature of the data, such as a histogram or a
kernel estimate (Silverman, 1986). For a sample T∗ of size n, we write

f̂ (t | T∗) = 1

hn

n∑
i=1

K

(
t − T∗i

h

)
,

for a function K (the kernel) and a tuning parameter h. The function K weights the
values of T∗ according to their distance from t. The tuning parameter h determines
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Figure 8.4 Estimated posteriors (solid lines) and priors (gray lines) for the
logged ASR parameters (α, β, λinh, μC, and σ , filled left to right, top to bottom)
obtained using the population Monte Carlo algorithm. Values of the parameters
used for simulation are shown as vertical dotted lines. Heavy horizontal lines
at 0 show the 95% credible sets.
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Data T , kernel function K; prior distribution π(θ);
Number of iterations N; Initialize θ1;
for 2 ≤ i ≤ N do

θ∗ ∼ π(θ);
T∗ ∼ Model(θ∗);
Compute h∗;
Compute f̂ (t | T∗);
Perform a Metropolis–Hastings accept/reject step;
If accepted: Set θi ← θ∗
Else: Set θi ← θi−1;

end

Algorithm 3 Probability density approximation.

how far a value of T∗ can be from t and still influence the estimate of the density at
the point t. There are a number of “plug-in” equations for h, and the most popular
is Silverman’s rule of thumb:

h = 0.9 min

(
sT∗,

IQR

1.34

)
n−1/5,

where sT∗ is the (sample) standard deviation of T∗ and IQR is the interquartile
range of T∗.

The PDA algorithm is outlined in Algorithm 3. For each proposal θ∗, we
simulated a data set T∗ and constructed an empirical density estimate f̂ (t | T∗).
Given the prior distribution π(θ), we then performed a Metropolis–Hastings step
by computing

a = min

(
1,

π(θ∗)f̂ (t | t∗)q(θi−1 | θ∗)
π(θi−1)f̂ (t | T∗i−1)q(θ∗ | θi−1)

)
.

Noting that f̂ (t | T∗) is an estimate of the likelihood f (t | θ∗), for a symmetric
transition kernel q(θi−1 | θ∗) the numerator of a is an estimate of the marginal
probability of the data T under θ∗, and the denominator is an estimate of the
marginal probability of the data under θi−1. If the marginal probability of the data
is greater under θ∗ than under θi, then the new value of θ∗ is accepted. If the
marginal probability of the data is less, then the new value of θ∗ is accepted with a
probability that decreases as a function of how much less the marginal probability
of T is under θ∗.

As in the likelihood-based MCMC estimation, we chose to use flat, improper
priors to implement the PDA algorithm. The chain for θ was initialized at the
values of the means in Table 8.2 and iterated 50,000 times.

Figure 8.5 shows the estimated posterior distributions for the logged exponential
parameters (α and β) and the logged delay parameter (λinh, top row), and the
estimated posterior distributions for the logged Gaussian parameters μC and σ

(bottom row), together with the model’s prior distributions. The true values for
the parameters used to simulate the data are shown as vertical lines, and the 95%
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Figure 8.5 Estimated posterior (solid lines) and prior (gray lines) distributions
for the logged ASR parameters (α, β, λinh, μC, and σ , filled left to right,
top to bottom) obtained using probability density approximation. Values of
the parameters used for simulation are shown as vertical dotted lines. Heavy
horizontal lines at 0 show the 95% credible sets.
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equal-tailed credible sets are shown as bars under the x-axis. Each credible set
contains the true parameter value, and the posteriors are centered close to these
true values.

8.3.4 Summary Results

Figure 8.6 is a violin plot of the estimated posterior distributions for the logged
exponential parameters α and β, and the logged delay parameter λinh (top row) and
the logged Gaussian parameters μC and σ (bottom row). Each violin corresponds
to the posterior distribution estimated under each algorithm, identified on the
x-axis.

To more precisely evaluate the ability of the PDA method to recover the posterior
distributions estimated using standard MCMC methods, Figure 8.7 shows the
quantile–quantile plots contrasting the posterior distributions of the ASR model
obtained using MCMC and an explicit likelihood to those obtained using the
PDA method. The top row of the figure contrasts the quantiles of the logged
exponential parameters α and β and the logged delay parameter, and the bottom
row contrasts the posterior quantiles of the logged Gaussian parameters μC and
σ . While relatively obvious from Figure 8.6, these plots show that the results
from the likelihood-informed MCMC approach are best approximated by the PDA
algorithm, compared to the other algorithms we explored. In addition, the posterior
mean of log σ is closer to the true parameter value using the PDA algorithm
than the likelihood-based MCMC algorithm. This does not say anything about
which estimates are more accurate, however, as the location of the posterior mean
depends both on the data and the prior distributions. Thus the difference between
the posterior mean and the value of the parameter that generated the data is not a
complete picture of how accurate the posterior estimate is.

8.4 Conclusions

In this chapter we have discussed the approximate Bayesian method,
and demonstrated three different algorithms, each a representative of a major
ABC approach (rejection, particle filtering, and a probability density estimation
technique). Each approach has strengths and weaknesses, ranging from ease of
coding, computation time, and estimation accuracy.

Rejection approaches are easy to code. The accuracy of the final estimates of
the posterior distributions obtained with rejection methods depend on the distance
measure and tolerance criterion ε chosen. High accuracy with these methods
usually requires a large sacrifice in computation time. As ε goes to zero, it is very
difficult to find parameter values that generate data that can satisfy that criterion.
If the criterion is too high, computation time can be very fast, but the estimated
posterior distributions will be over-dispersed.

Particle filtering methods are more difficult to code, but can result in more
accurate estimates for some applications (Cappé, Godsill, & Moulines, 2007).
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Figure 8.6 Estimated posterior distributions for the logged ASR parameters
(α, β, λinh, μC, and σ , filled left to right, top to bottom) obtained for each
algorithm. The algorithm is shown on the x-axis.
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Figure 8.7 Quantile–quantile plots of the estimated posterior distributions for
the logged ASR parameters (α, β, λinh, μC, and σ , filled left to right, top
to bottom), contrasting the likelihood-based MCMC and probability density
approximation algorithms. The dotted line is the identity.
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The PMC method we demonstrated in this chapter is optimal in the sense that
it results in an estimated posterior distribution that is as close (in the Kullback–
Leibler sense) to the proposal distribution, giving high acceptance rates. However,
the method is highly dependent on the distance metric chosen and the sufficiency
of the statistics that determine the distance. Our implementation of the PMC
method produced highly inaccurate estimates despite making reasonable choices,
and stands as an example of how an ABC algorithm can unexpectedly fail (see also
Jaynes, 2003).

Finally, PDA can produce quite accurate estimates of the posterior distributions
without as many choices to be made about distance metrics, tolerance criteria, and
so forth. Because a distance does not need to be computed for this algorithm, the
issue of sufficient statistics is moot. This is in contrast to the rejection and particle
filtering algorithms where sufficient statistics are crucial.

While the selection of a particular estimation method will depend on the
application involved and the programming skill of the researcher, the PDA method
is the most reliable of those we have investigated in this chapter. It must be noted
that there is no guarantee of estimation accuracy for any of the methods presented
here (including standard likelihood-informed MCMC methods).

For additional resources, interested readers should consult the number of
references describing ABC methods, including Palestro et al. (2018). All code
used to generate the estimates discussed in this chapter may be found at https://
github.com/noahmthomas-nmt/ABC_Chapter.
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9.1 Introduction

In recent years, a family of psychometric models has been developed
for classifying examinees against a number of discrete attributes. In this context,
attributes are construed as latent categorical variables that can refer to skills,
competencies, tasks, or cognitive processes, among others. These models are
ideal in situations where the primary goal of assessment is to identify or classify
examinees’ statuses with respect to a set of attributes. Mathematically, the attribute
of examinee i is represented by αi = {αi1,αi2, . . . ,αiK}′, where K is the number
of attributes of interest. The most common of these models leads to dichotomous
classifications, as in αik ∈ {0,1}, to indicate whether or not the examinee has
mastered attribute k.

This family of psychometric models has come to be known as cognitive diag-
nostic models (CDMs). These models emerge in response to a clamour to obtain
formative and actionable feedback from test data, which can be difficult to achieve
from traditional psychometric models designed to rank-order individuals on a
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single continuum. Diagnosis is typically carried out as a first step in determining
appropriate interventions or remedial actions. Specifically, in educational contexts,
these models have been designed to give diagnostic feedback about students’
weaknesses and strengths that thereafter can be used by teachers to inform their
instruction or by students to direct their own learning. In this respect, CDMs
represent a new psychometric framework to extract diagnostic information from
test data.

This chapter aims to present the developments in the area in the past decade. In
this sense, it intends to complement previous reviews carried out in the 2000s.
The structure of the chapter bears some correspondence with the steps in the
application of CDMs. First, a correspondence matrix is constructed between the
items and the attributes being measured, which is evaluated theoretically and
empirically (Sections 9.1.1 and 9.2). Second, a set of appropriate models is
selected, according to absolute and relative fit information (Section 9.3). Third,
the estimated parameters for the selected models are interpreted (Sections 9.1.1
and 9.1.2). Fourth, as with any psychometric model, evidence of reliability and the
valid use of the estimated parameters is sought (Section 9.4). Finally, future trends
in the area are discussed (Section 9.5).

9.1.1 Basic Ideas

The term “attribute” in the CDM literature is used analogously with ability in item
response theory (IRT). As in conventional IRT, attributes in cognitive diagnosis
modeling are construed as latent constructs and are represented by latent variables.
Let the response vector of examinee i, i = 1,2, . . . ,I to J items be denoted by
Y i = (Yi1,Yi2, . . . ,YiJ). Like IRT models, CDMs require an I × J binary item
response matrix Y as input; however, unlike most IRT models, CDMs additionally
require a J × K binary Q-matrix. The rows of the Q-matrix pertain to the items,
and the columns the attributes. The 1s in the jth row of the Q-matrix identify
the attributes required for item j. This is similar to the cognitive model of test
specifications that also uses a two-way matrix to establish content and skill
groupings to obtain a representative sample of items during test construction from
a defined achievement domain. Using such a model, test items are then generated
to represent each combination of content and skill in the matrix. In this regard,
the test specifications function as a cognitive model that reflects the knowledge
and skills examinees are expected to use to answer test items correctly. These
tests are typically designed to measure many different behaviors within a short
time. Similarly, the Q-matrix must include a representative sample of items for the
assessment to be able to generate the desired diagnostic information.

Table 9.1 gives the Q-matrix for three items similar to those in the often-
used fraction-subtraction data. For illustration purposes, we examine the test
specification for item 2. To be able to solve the problem 5

8 − 3
8 =?, students

must know how to subtract basic fractions (attribute 1) and reduce the result to
the simplest form (attribute 2). Thus, the substantive model requires that students
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Table 9.1 Q-matrix for three fraction-subtraction items.

Correct Attribute

Item Problem Response 1 2 3

1
6

8
=?

3

4
0 1 0

2
5

8
− 3

8
=?

1

4
1 1 0

3 4
1

4
− 2

3

4
=? 1

1

2
1 1 1

Note: The attributes are 1 = performing basic fraction-subtraction operation,
2 = simplifying/reducing, 3 = converting mixed numbers to fractions.

possess two specific attributes to have a high probability of answering the problem
correctly.

In the unrestricted case, a total of L = 2K latent classes can result from K
dichotomous attributes. The items in Table 9.1 measure K = 3 dichotomous
attributes, thus, L = 23 = 8. The different CDMs express the conditional success
probability on item j given the latent class αl, as in P(Yj = 1|αl), which we can
write as P(αl) when there is no confusion. More often than not, an item measures
only a subset of the attributes. Accordingly, αl can be simplified by collapsing
across irrelevant attributes such that the resulting latent groups have homogeneous
within-group success probabilities. Let K∗j be the number of attributes measured
by item j. Additionally, for notational convenience, we will assume that the first K∗j
attributes are required. The associated collapsed attribute vector can be denoted by
α∗jl, and, in the most general case, it can differentiate between 2K∗j latent groups.
Without any constraints, a unique success probability (i.e., probability that cannot
be derived from other probabilities) is associated with each latent group. A CDM
is considered saturated when the number of parameters equals the number of latent
groups.

In addition to saturated or general models, there exist several reduced or
specific CDMs in the literature. Different classification schemes have been used to
differentiate the different CDMs. Models are said to be conjunctive (disjunctive)
if all (one or more) of the required attributes are necessary to answer the item
successfully. Alternatively, models are said to be compensatory (noncompen-
satory) if the absence of a required attribute can (cannot) be made up for by
the presence of other attributes. For the most part, these two CDM classification
schemes have been used interchangeably. Specifically, conjunctive models are also
deemed noncompensatory, and disjunctive models compensatory. Note, however,
that depending on how the terms are defined, the two classification schemes may
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Conjunctive, Noncompensatory Not Conjunctive, Noncompensatory

Disjunctive, Compensatory Not Disjunctive, Compensatory

Neither Conjunctive nor Disjunctive, Not Fully Compensatory

Figure 9.1 Representation of the different possible CDM types that can
be formed considering the conjunctive–disjunctive and compensatory–
noncompensatory dimensions. From left to right, the x-axis indicates the latent
groups α∗jl = (00), (10), (01), and (11); the y-axis represents the probability of
success for examinees in the latent groups represented on the x-axis.

not be identical. Figure 9.1 represents the different possible combinations of these
classification schemes.

One example of a conjunctive and noncompensatory CDM is the deterministic
input, noisy AND gate (DINA) model. This is the most popular CDM in empirical
applications according to a recent review, possibly because of its simplicity. The
DINA model only differentiates between two latent groups for item j – those
examinees who mastered all the required attributes, (ηij = I[α′iq j = q ′jq j] = 1),
and those lacking at least one of them, (ηij = I[α′iq j = q ′jq j] = 0). The model
has two parameters per item, guessing and slip, where the former is defined as
gj = P(Yij = 1|ηij = 0), and the latter as sj = P(Yij = 0|ηij = 1). Therefore, the
item response function (IRF) of the model can be written as

P(Yij = 1|αi) = P(αi) = g
1−ηij
j (1− sj)

ηij . (9.1)

The complement of the DINA model is the deterministic input, noisy OR gate
(DINO) model, which is a disjunctive and compensatory model. The formulation
of this model is very similar to that of the DINA model, with the peculiarity
that the DINO model differentiates only those who mastered at least one of the
required attributes, (η∗ij = I[α′iq j ≥ 0] = 1), from those who did not master any,
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(η∗ij = I[α′iq j ≥ 0] = 0). Aside from the straightforward interpretation, the two
models have been widely studied because of their relative simplicity – the number
of parameters per item is always two regardless of the number of attributes that
the item measures, making these models relatively easy to estimate. However, it
should be borne in mind that these models invoke very strong assumptions about
the underlying process. For example, in the DINA model for an item measuring
three attributes, the latent groups α∗lj = (000), (100), (001), (001), (110), (101),
and (011) are assumed to have the same success probability. That is, examinees
who have mastered none, one, or two out of the three required attributes are
considered indistinguishable. In some contexts (e.g., having partial knowledge is
better than no knowledge), this assumption may not be reasonable. To increase
the generalizability, and hence applicability, of CDMs, models with less stringent
assumptions have been proposed.

One such model is the generalized DINA (G-DINA) model, which can be
viewed as a generalization of the DINA model. Instead of only two latent groups,
the G-DINA model partitions the latent classes into 2K∗j latent groups. Each latent
group represents one reduced attribute vector α∗lj and has its own associated success
probability, denoted as P(α∗jl). For the identity link, the success probability under
the G-DINA model is written as

P(α∗jl) = δj0 +
K∗j∑

k=1

δjkαlk +
K∗j∑

k′=k+1

K∗j −1∑
k=1

δjkkαlkαlk′ + · · · + δj12+···K∗j

K∗j∏
k=1

αlk,

(9.2)

where δj0 is the intercept (baseline probability), δjk is the main effect due to αk,
δjkk′ is the interaction effect due to αk and αk′ , and δj12...K∗j is the interaction effect

due to α1, . . . ,αK∗j . The G-DINA model has 2K∗j parameters for item j.
In its unconstrained form, the G-DINA model is equivalent to other general

CDMs (e.g., the general diagnostic model; the loglinear cognitive diagnosis
model). The G-DINA model can also be expressed using the logit and log links.
The log-odds (also, log-linear) CDM is

logit[P(α∗jl)] = λj0 +
K∗j∑

k=1

λjkαlk +
K∗j∑

k′=k+1

K∗j −1∑
k=1

λjkkαlkαlk′ + · · · + λj12+c...K∗j

K∗j∏
k=1

αlk;

(9.3)

and the log CDM is

log[P(α∗jl)] = vj0+
K∗j∑

k=1

vjkαlk+
K∗j∑

k′=k+1

K∗j −1∑
k=1

vjkkαlkαlk′ + · · ·+ vj12...K∗j

K∗j∏
k=1

αlk.

(9.4)

Several commonly encountered CDMs, including the above-mentioned DINA
and DINO models, can be shown to be special cases of the G-DINA model. When
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all the coefficients in Equation (9.2) except for δ0 and δj12...K∗j are set to zero, the
G-DINA model reduces to the DINA model. The DINO model can be written as

P(α∗jl) =
{

δj0, if α∗jl = 0Kj∗
δj0 + δjk, otherwise

. (9.5)

This is the G-DINA model with the constraint δjk=−δjk′k′′ = · · · =
(−1)

(K∗j +1)
δj12···K∗j . Finally, when all the interaction terms are dropped, the

G-DINA model in the identity link reduces to the additive CDM (A-CDM; de
la Torre, 2011), which indicates that mastering attribute k increases the success
probability on item j by δjk, independent of the contributions of other attributes.
Thus, this model is neither disjunctive nor fully compensatory. The A-CDM has
K∗j + 1 parameters for item j. The linear logistic model (LLM) and the reduced
reparameterized unified model (RRUM) are also additive models under the logit
and log links, respectively. Incidentally, models with additive nature can be viewed
as another scheme of classifying CDMs.

The G-DINA model, which includes the reduced CDMs it subsumes, offers
a framework for dichotomous attributes in conjunction with dichotomous data.
However, other CDMs in the same vein that cover different attribute and response
types exist. Here we cover four of them: CDMs for polytomous attributes,
multiple-choice (MC) data, continuous data, and ordinal and nominal data. First,
the polytomous G-DINA (pG-DINA) model is an extension of the G-DINA model
to accommodate polytomous attributes. Its corresponding Q-matrix has been
extended as follows: qjk = 0,1, . . . ,Mk − 1, where Mk represents the number of
levels of αk. When qjk > 0, αk is required for item j, and its value represents
the minimum attribute level needed to answer the item correctly. By invoking
the specific attribute level mastery (SALM) assumption, the pG-DINA model
dichotomizes the polytomous attributes required for the items, as in α∗∗k = I[αk ≥
qjk], for qjk > 0 and k = 1, . . . ,K∗j . By reducing the number of latent groups that
can be formed and allowing the G-DINA model to be used with the dichotomized
reduced attribute vector α∗∗, the SALM assumption facilitates the estimation of
the pG-DINA model. In its current formulation, the required attribute levels are
specified a priori by subject-matter experts.

The second extension takes into account the fact that, in many instances,
dichotomous data arise from multiple-choice tests when responses are coded only
as either correct or incorrect. This coding procedure can limit the diagnostic utility
of MC tests because it ignores information that can be found in the distractors,
which may be useful in further differentiating certain latent classes. To maximize
the diagnostic value of MC tests, the MC-DINA model has been proposed. In
this setup, the correct option and some distractors are coded (i.e., designed to
correspond to some latent classes); the remaining distractors are deemed noncoded.
The model assumes that coded distractors measure a subset of the attributes
measured by the key. Let Hj and H∗j represent the number of options and number

of coded options of item j, respectively. Based on the H∗j coded options, the 2K
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latent classes are partitioned into H∗j + 1 latent groups, where the additional group
consists of latent classes that do not correspond to any of the coded options. The
MC-DINA model specifies the conditional probability of a latent group choosing
option h, h = 1, . . . ,Hj. Thus, the number of parameters equals (H∗j +1)×(Hj−1),
which grows with the number of options, as well as the number of coded options.
A variant of the MC-DINA model that substantially reduces the number of
parameters under certain assumptions has also been proposed.

Third, another source of information or response type is response time, which
nowadays is more readily available due to the proliferation of computer-based
assessments. One CDM that can be used with continuous response is the continu-
ous DINA (cDINA) model. Like the DINA model, the cDINA model partitions
the examinees into two latent groups – examinees who have all the required
attributes for an item and those who do not. However, instead of the slip and
guessing parameters, the cDINA models the log-response time distribution of a
latent group for each item. Specifically, the cDINA model estimates the mean
(μjη) and variance (σ 2

jη) of the log-response time distribution for latent group η.
To address the strong assumptions of the cDINA model, the continuous G-DINA
model, which can accommodate 2K∗j latent groups, was introduced. With more
latent groups come additional parameters to be estimated, as in from 2 to 2× 2K∗j .

Fourth, a final example of CDM extension allows these models to be used with
constructed-response items. This type of item is typically scored polytomously,
yielding graded response data with ordered categories. The sequential G-DINA
model is designed to handle multi-category response, where the required attributes
may vary across the categories. Thus, instead of a single item–attribute association,
the model requires multiple category–attribute associations for an item. In addition
to the category–attribute association feature, the model assumes that solving an
item consists of a number of sequential steps, and an examinee’s scores are based
on the number of steps they have correctly answered. Table 9.2 provides examples
of category–attribute associations for a fraction-subtraction item. The Q-matrix
represented in Table 9.2 is said to be restricted because the attributes required for
the different categories are not identical. An unrestricted version of the Q-matrix
is involved when more than one category–attribute association is used across the
different steps. The probability of an examinee with latent group αc answering
category h of item j correctly, given that they have successfully completed category
h−1, is called the processing function of category h, and denoted by Sj(h|αc). The
probability of scoring h on item j for examinees with the attribute vector αc can be
expressed as

P(Yj = h|αc) = [1− Sj(h+ 1|αc)]
h∏

y=0

Sj(y|αc) (9.6)

subject to the constraint that
∑Hj

h=0 P(Yj = h|αc) = 1. In this flexible formulation,
any dichotomous CDM can be used as the processing function, and a different
CDM can be associated with each category. Moreover, the unrestricted sequential
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Table 9.2 Sequential steps in solving a fraction-subtraction item.

Attribute

Step Category 1 2 3

1
1

4
− 3

4
0 0 0 0

5

4
− 3

4
1 0 0 1

2

4
2 1 0 0

1

2
3 0 1 0

Note: The attributes are 1 = performing basic fraction-subtraction
operation; 2 = simplifying/reducing, 3 = converting mixed numbers
to fractions.

G-DINA model can be used with nominal-response data, and can be shown to
be equivalent to the nominal-response diagnostic model and the partial-credit
DINA model. In addition to model extensions, other recent developments include
a general framework for polytomous responses, a diagnostic tree model for
polytomous responses and multiple strategies, and a model that combines attribute
classification and misconceptions.

9.1.2 Model Estimation

The complete CDM formulation requires the specification of the distribution of
the attribute vector α. Let p(αl) denote the joint distribution of the attributes,
P(Yj = yj|αl) the conditional probability of response (i.e., the CDM), and
P(Yj = yj) the marginal probability of response. There are different approaches
to model the joint distribution of the attributes. The first option is to use the
saturated model, which involves the 2K possible α vectors, and requires 2K − 1
parameters to be estimated. Consequently, the number of parameters of the
saturated model grows exponentially with K. When K is relatively large, say
greater than 15, implementation can be extremely slow, if not computationally
problematic. Another approach is to use a higher-order latent trait formulation to
model the relationships among the attributes. A higher-order latent trait θ is posited
such that the components of α are assumed to be independent conditional on θ . The
higher-order model can be formulated as a linear logistic model, as in

P(αk = 1|θ) = exp(λ0k + λ′1kθ)

1+ exp(λ0k + λ′1kθ)
, (9.7)

which is the probability of mastering αk given θ . The number of parameters in
the higher-order model is linear in K. For example, when θ is assumed to be
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Figure 9.2 Two general types of hierarchies that impose constraints on the
attribute distribution.

unidimensional, which is typically the case, the model has 2K parameters when
a two-parameter logistic model is involved.

Alternatively, the attribute structure can be constrained based on a particular
learning theory or curriculum that dictates the sequence by which the attributes
are mastered. To illustrate this, Figure 9.2 gives two attribute structures for a
test measuring five attributes. In the linear attribute structure, (mastery of) α1 is
a prerequisite to (mastery of) α2, which in turn is a prerequisite to α3, and so
forth; in the divergent structure, α1 is a prerequisite to α2 and α4, which in turn
are prerequisites to α3 and α5, respectively. In this example, there are 25 = 32
possible attribute vectors under the saturated attribute structure, and this number
dramatically reduces to six and nine under the linear and divergent structures,
respectively.

Markov chain Monte Carlo (MCMC) has been used with the higher-order
models. In addition to the DINA model, other CDMs estimated with this model
specification include the DINO model and the log-linear CDM. Although this
estimation algorithm can easily be used even when the model is more complex
or K is large, it can be computationally intensive. In contrast, the marginalized
maximum likelihood (MML) estimation method has been used with saturated
attribute distributions in conjunction with models such as the plain, continuous,
and G-DINA models. When the CDMs are straight forward to estimate, MML
estimation is generally very efficient up to moderate-sized K, but becomes
inefficient as K gets larger. MML estimation has also been used when the attributes
are constrained to be of a particular structure. On the one hand, constraining the
attribute structure can lead to a more efficient estimation, but on the other hand,
item parameter estimates and attribute classification can be very poor when an
incorrect structure is used.

There are currently two general R packages that allow estimation of CDMs, as
well as implementing other CDM-based methodologies (e.g., data simulation, Q-
matrix validation, model-data fit assessment), namely, the CDM and the GDINA
R packages. Other related R packages include cdcatR to conduct cognitive
diagnosis computerized adaptive testing, simcdm to simulate CDM-based data
simulation, and NPCD to implement nonparametric methods. The Bayesian estima-
tion of the DINA model and the RRUM is possible through the dina and rrum
packages. Although it is still commonplace for custom-built codes to be used in
CDM research, the availability of these packages has made the implementation
of these models greatly more accessible, particularly to applied researchers.
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More general statistical software packages such as Mplus and the JAGS program
can also be used to estimate CDMs, for which tutorials are available.

In the following, we illustrate the two estimation approaches with two examples.
First, we discuss the MCMC estimation of the higher-order DINA model. In addi-
tion to the conditional distribution of Y given an attribute vector α (i.e., a CDM),
we also need the joint distribution of α. For the conditional distribution, we will
use the DINA model; for the joint distribution specification, we will use the higher-
order latent trait formulation. We will use MCMC to estimate the higher-order
DINA model parameters. The IRF of the DINA model follows Equation (9.1), and
the joint distribution of α conditionally independent given unidimensional θ and
with a common discrimination parameter can be formulated as

P(α|θ,λ) =
K∏

k=1

P(αk|θ,λ0k,λ1) =
K∏

k=1

exp [1.7λ1(θ − λ0k)]

1+ [exp 1.7λ1(θ − λ0k)]
. (9.8)

The higher-order model lends itself to a hierarchical Bayesian formulation. To
complete the model formulation, the prior distributions of λ, α, θ , s, and g can be
defined as

λ0k ∼ N(μλ0,σ
2
λ0

),

λ1 ∼ N(μλ1,σ
2
λ1

),

θi ∼ [N(μθ,σ
2
θ ),(θi − λ0k)]

−1,

αik|θi,λ0k,λ1 ∼ Ber({1+ exp[−1.7λ1(θi − λ0k)]}−1),

gj ∼ 4-Beta(vg,ωg,ag,bg), and

sj ∼ 4-Beta(vs,ωs,as,bs).

Invoking the conditional independence of Y given α, and α given θ , the joint
posterior distribution of λ, α, θ , s, and g given Y is

P(λ,θ,α,s,g|Y ) ∝ L(α,s,g)× P(α|λ,θ)× P(λ)× P(θ)× P(s)× P(g),

where L(α,s,g) is the likelihood of the data. Although the joint posterior distribu-
tion is complicated, it can be sampled using MCMC, especially Gibbs sampling.
The full conditional distributions of λ, α, θ , s, and g are

P(λ|Y,θ,α,s,g) ∝ P(α|λ,θ)P(λ),

P(θ |Y,λ,α,s,g) ∝ P(α|λ,θ)P(θ),

P(α|Y,θ,λ,s,g) ∝ L(α,s,g)P(α|λ,θ), and

P(s,g|Y,λ,θ,α) ∝ L(α,s,g)P(s)P(g).

It can be noted that none of the full conditional distributions can be sampled
directly. Hence, the Metropolis–Hasting method within Gibbs can be used with
these distributions.

In the following we mainly cover the MML estimation of the DINA model
with the saturated model for the joint distribution, where L= 2K possible attribute

https://doi.org/10.1017/9781108902724.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.010


Cognitive Diagnosis Models 395

vectors, p(αl), are considered. Assuming randomly sampled examinees and con-
ditional independence of the responses given the attribute vector, the conditional
likelihood of the observed data Y can be written as

L(Y | α) =
I∏

i=1

L(Y i | αi)

=
I∏

i=1

J∏
j=1

Pj(αi)
Yij[1− Pj(αi)

1−Yij]. (9.9)

The item parameters β and the attribute vectors α can be simultaneously
estimated using joint ML estimation (JMLE). However, as in traditional IRT,
joint maximization of the structural parameter β and the incidental parameter α

can lead to inconsistent β̂. To arrive at consistent item parameter estimates, the
latent variable can be integrated out of the conditional likelihood to obtain the
marginalized likelihood of the data β̂ as follows:

L(Y ) =
I∏

i=1

L(Y i) =
I∏

i=1

2K∑
l=1

L(Y i | αl)p(αl). (9.10)

To obtain the maximum likelihood estimate of β jη, where βj0 = gj and βj1 = sj,
maximize

l(Y ) = log
I∏

i=1

L(Y i) =
I∑

i=1

log L(Y i) (9.11)

with respect to β jη:

∂l(Y )

∂β jη
=

N∑
i=1

1

L(Y i)

2K∑
l=1

p(αl)
∂L(Y i | αl)

∂β jη
. (9.12)

It can be shown that this maximization simplifies to solving for gj and sj in

1

gj(1− gj)
[R(0)

jl − gjI
(0)
jl ] = 0, and

1

(1− sj)sj
[R(1)

jl − (1− sj)I
(1)
jl ] = 0,

where I(0)
jl is the expected number of examinees lacking one or more of the

attributes required for item j, and R(0)
jl is the expected number of examinees among

I(0)
jl correctly answering the item; I(1)

jl and R(1)
jl carry the same interpretation, but

they pertain to the examinees with all the attributes required for item j. Finally, the
MML estimators are computed as ĝj = R(0)

jl /I(0)
jl and 1− ŝj = R(1)

jl /I(1)
jl .
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The same algorithm can easily be extended to estimate the G-DINA model
parameters. The MML estimates of P(α∗jl) are

P̂(α∗jl) =
Rα∗jl
Iα∗jl

=
∑I

i=1 Yijp(α∗jl|Y i)∑I
i=1 p(α∗jl|Y i)

, (9.13)

where p(α∗jl|Y i) represents the posterior probability that examinee i is in latent
group α∗jl. The denominator represents the expected number of examinees in latent
group α∗jl, whereas the numerator represents the expected number of examinees in
latent group α∗jl that will answer item j correctly.

There are different ways the standard errors for the item parameter estimates can
be calculated. A simple way of computing the standard errors consists of taking the
second derivative of l(Y ) with respect to P(α∗jl). It involves computing

I [P(α∗jl)] = −
I∑

i=1

{
p(α∗jl|Y i)

Yij − P(α∗jl)
P(α∗jl)[1− P(α∗jl)]

}{
p(α∗l′j|Y i)

Yij − P(α∗l′j)
P(α∗l′j)[1− P(α∗l′j)]

}
.

(9.14)

Using the MML estimates to evaluate Equation (9.14), an approximation of the
information matrix for the parameters of item j can be obtained (i.e., I [P̂(α∗jl)]).
The standard errors are found by taking the square root of the values on the main
diagonal of I−1[P̂(α∗jl)].

Without prior information, the joint attribute distribution can be initiated as
p(αl) ∼ Uniform. Thereafter, empirical Bayes’ estimates can be obtained by
updating the prior values of p(αl). Specifically, at iteration t, it can be updated as

p(t)(αl) = 1

I

I∑
i=1

p(t−1)(αl | Y i). (9.15)

The estimation of reduced models can be carried out within the G-DINA model
framework using design and weight matrices. Given that the DINA and DINO
models have closed-form solutions, their parameters can be obtained as linear
combinations of the G-DINA model parameter estimates. In contrast, additive
models (i.e., A-CDM, LLM, RRUM) do not have closed-form solutions, hence,
their parameters require optimization techniques to be obtained.

The MML algorithm described above has been modified to estimate other
models. For example, to estimate CDMs with a hierarchical attribute structure,
the prior probabilities of impermissible attribute vectors can be set to zero.
Moreover, the G-DINA model can similarly be estimated by maximizing the
derivative of Equation (9.11) with respect to the 2K∗j parameters. To obtain
consistent item parameter estimates using JMLE, the procedure has been modified
by incorporating a consistent estimator of the attribute patterns. To close this
subsection, we briefly discuss two issues related to model estimation.

Model identifiability. One important topic related to model estimation is model
identification, which is the set of minimum requirements for the model parameters
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(e.g., item and person parameters) to be estimable from the observed data. In
addition to the DINA and DINO models, the conditions for the identification
for general models (e.g., G-DINA) have been established. For simpler models,
it is necessary that the Q-matrix is complete. This implies that there is a single-
attribute item measuring each attribute. This is a sufficient and necessary condition
of identifiability of p(αl). With unknown p(αl) and β, completeness is not enough
to guarantee model identifiability. An additional requirement is that each attribute
is measured by at least three items. In more recent work, different necessary
and sufficient conditions have been provided for two-parameter and more general
CDMs to be strictly or generically identified, which is consistent with the findings
that a complete Q-matrix is not a prerequisite for less constrained CDMs to be
identified.

Nonparametric methods. Depending on the models involved, reliable estimation
of CDM parameters requires sufficiently large sizes. Such sample sizes may not
be available in typical school settings, which can impede the CDM application
where it is needed most. Nonparametric methods that bypass the estimation of
model parameters to directly classify examinees have been developed to address
this issue. These methods have been shown to provide more accurate attribute
classification under very small sample size conditions (i.e., N ≤ 100). Two
nonparametric methods that have received some attention in recent years are the
nonparametric classification (NPC) method and its generalization, the general
NPC method. In the NPC method, the Hamming distance is used to compute the
discrepancy between the observed and ideal response patterns following either a
deterministic conjunctive (i.e., DINA-like) or disjunctive (i.e., DINO-like) rule.
However, due to the restrictive nature of the DINA and DINO models, their
fit to the data cannot always be guaranteed. To extend the practicability of the
nonparametric methods, the GNPC was proposed. The GNPC, which is based on
weighted ideal response patterns, is a more general method that can accommodate
situations including and beyond the DINA and DINO models.

9.1.3 CDM Applications

It is not surprising that most CDM applications have been in the area of education,
where these models first emerged. One of the first applications was in the
domain of mixed-number subtraction. The same data set has been used by many
researchers in the CDM context. A recent review of CDM applications found that
23 out of 74 papers focused on applied data analysis. A large majority of these
papers (i.e., 86%) are in the areas of mathematics and reading, which indicates
that CDM applications remain predominantly in the field of education. These
applications include educational surveys for reading and mathematics assessments
such as the National Assessment in Educational Progress (NAEP) and TIMSS;
TOEFL and mock TOEFL; fraction arithmetic assessment; proportional reasoning;
reading and listening comprehension; and spatial reasoning in the context of
student learning.
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Although scarce, applications in other areas also exist. Perhaps one of the most
promising areas of CDM application is in diagnosing psychological disorders. The
DINO model has been used to diagnose pathological gambling based on DSM-
III, whereas the G-DINA model has been used to diagnose anxiety, somatoform,
thought disorder, and major depression based on MCMI-III. In addition to existing
measures, new instruments have been developed or validated from a CDM
framework, and these include questionnaires to diagnose Internet gaming disorder
based on DSM-V, and extroversion, neuroticism, callous unemotionality, and overt
expressions of anger.

More recently, CDMs have also been applied in other domains. One of the first
applications in the area of industrial-organizational psychology involves the use of
CDMs to evaluate work competencies. In addition to an application of CDMs to
measure entrepreneurial competencies, both dichotomous and polytomous CDMs
have been used with situational judgment tests (SJTs) data.

A number of characteristics of empirical CDM applications have been docu-
mented. For example, the number of attributes these applications measured varied
from four to 23, with four and eight being the mode and the mean, respectively.
The sample size was greater than 1,000 in 61% of the studies examined. Finally,
the most common CDMs were the DINA model and variations of the RUM, and
approximately one-third of the studies estimated a general CDM, with the G-DINA
model as the most frequently used model.

9.2 Q-Matrix Specification

Most, if not all CDMs, both general and specific, require a Q-matrix
to identify the specific subset of attributes measured by each item. In most
CDM applications, Q-matrix specification relies heavily on subject-matter or
domain experts, and hence involves subjective judgments. Potential Q-matrix
misspecifications resulting from the subjective nature of the Q-matrix construction
process have raised serious validity concerns among researchers and practitioners.
These misspecifications can degrade the quality of model parameter estimates,
and, ultimately, the accuracy of the examinee attribute classifications. To minimize
this problem, empirically based validity evidence must be gathered to examine the
extent to which expert or theoretically based Q-matrix specifications are deemed
acceptable. In the following subsection, we describe these two stages involved in
constructing a Q-matrix.

9.2.1 Initial Q-Matrix Specification

Q-matrix construction is typically the first step in a CDM application. To this
end, an initial list of attributes is drawn and the Q-matrix is specified based on
these attributes. Prior research, relevant theories, expert rating tasks, and think-
aloud protocols have been employed for these initial steps. In a prototypical expert
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rating task, several domain experts are presented with the list of attributes and the
corresponding operational definitions for their review and critique. To generate
the initial Q-matrix, the experts are asked to identify the attribute/s required for
each item. In some cases, the initial list of attributes or their definitions may be
modified during this stage. To recognize the inherent uncertainty associated with
these judgments, a modified coding scheme can be used. Specifically, qjk can be
coded as 1 (or 0) if it is certain that the attribute is required (or not required )
and as 1∗ if it is not clear whether the attribute is required or not. The Delphi
method can then be implemented iteratively for several rounds. For example, one
study involved three rounds, where experts identified the required attributes for
each item in the first round, were anonymously provided with the results from
the first round in the second round, and met in person to discuss the remaining
discrepancies in the final round. To evaluate the degree of expert agreement in
each round, the Fleiss’ Kappa statistic was used. The above discussion assumes
an extant assessment that can be used for diagnostic purposes. In situations where
diagnostic assessments need to be built from scratch, the steps involved require
a few modifications to accommodate developing new items that measure a wider
range of attribute combinations.

After the initial or provisional Q-matrix has been determined, the next step is to
assess its fit to the empirical data, once they become available, using procedures
specifically designed for this purpose. Before discussing a method for validating
a provisional Q-matrix, it should be noted that recent developments have opened
the possibility for a fully exploratory approach, where the Q-matrix, and possibly
the number of attributes, is directly estimated or learned from the data. Expert-
defined Q-matrices, when available, can also be leveraged and used as priors
in estimating the Q-matrix from the data. However, for meaningful results that
conform to theoretical expectations, the same, if not greater, rigor and care need to
be taken in developing the assessment and collecting the data.

9.2.2 Empirical Q-Matrix Validation

As noted in the previous subsection, the provisional Q-matrix may contain
misspecifications that, if left unaddressed, can affect the valid use of the test scores.
It is important to recognize that the Q-matrix is a component of the complete model
specification. Thus, any model fit analysis should include the verification of the
Q-matrix specifications. In recent years, various methods have been developed to
assess this provisional Q-matrix based on the empirical evidence available. These
methods have been called empirical Q-matrix validation methods.

The current literature includes various methods that use model fit information,
hypothesis testing approaches, and nonparametric methods. Arguably, one of the
more popular methods is that based on the general discrimination index (GDI)
ς2

j , which can be used in conjunction with the G-DINA model and the models it
subsumes. Based on the rationale that appropriate q-vectors will yield latent groups
that have homogeneous success probabilities, the index can be used to identify
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and change incorrectly specified q-entries of item j. From among the appropriate
q-vectors, the q-vector that leads to the highest variability of probabilities of
success given the most parsimonious subset of attributes is deemed correct.

Given the specification q l, the associated ς2
jl represents the (posterior) weighted

variance of the probabilities of success of different latent groups, and is com-
puted as

ς2
jl =

2
K∗j∑

l′=1

p(α∗jl′)[P(α∗jl′)− P̄(α∗j )]
2, (9.16)

where α∗jl′ is a q l-implied latent group, p(α∗jl′) is the weight of the latent group

l′, and P̄(α∗j ) =
∑K∗j

l′=1 p(α∗jl′)P(α∗jl′) is the mean success probability. To identify

the correct q-vector, a q-vector with a particular ς2
jl will be replaced by a q-vector

that produces a higher ς2
jl′ . Theoretically, all q-vectors that contain the required

attributes for the item will achieve the maximum ς2
jl , and a unique solution is

arrived at by choosing the q-vector that excludes attributes that are irrelevant for
the item.

When estimation error is involved, the highest variance is uniquely attained
when q jL = 1, as in the saturated q-vector (i.e., all attributes are required) is
specified. All the other possible q jl are compared against the saturated q-vector
by computing the proportion of variance accounted for, PV AFjl = ς2

jl/ς
2
jL. The

suggested q jl∗ for item j is the most parsimonious q-vector with PVAFjl ≥ ε. The
performance of this method in terms of true positive rate and true negative rate for
different cutoff values of ε was evaluated, and it was found that the optimal results
can be obtained when the data conditions are considered in determining ε.

For the final q-vectors for item j to be deemed meaningful, the suggested
q jl∗ needs to be judged based on their theoretical support. To reach this goal,
the GDINA package includes a graphical tool called the mesaplot to facilitate in
the decision-making process. The mesaplot represents the PVAF associated with
each q-vector. For simplicity, only the q-vector with the highest PVAF is usually
represented for each complexity group determined by K∗j = 1, . . . ,K. Figure 9.3
provides an illustrative example for a simulated data set, where the true q-vector for
item 10 q10 = (00001), was used in data generation and the overspecified q-vector,
q10 = (00011), in data calibration. Using the default cutoff ε = 0.95, all the q-
vectors that include α5 have PVAF > ε. From among these q-vectors, (00001),
the correct q-vector, is suggested because it contains the fewest specifications.
Incidentally, the name “mesaplot” reflects the ideal condition where the incorrect
q-vectors are separated from the appropriate q-vectors to form a mesa, and the
correct q-vector sits at the edge of the mesa.

It should be noted that the procedure described above for arriving at the
suggested q-vectors assumes that the provisional Q-matrix is true for the purpose
of estimating the item parameters and the posterior distribution, which are the
bases for computing ς2

jl . Results based on a non-iterative validation procedure are

https://doi.org/10.1017/9781108902724.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.010


Cognitive Diagnosis Models 401

0

0.9818 0.9832 0.9872 0.9929 1
eps = 0.864

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

00000 00001 00011 10101 10111 11111

q−Vector

P
V

A
F

Figure 9.3 Mesaplot for item 10: q10 = (00001) was used in the data
generation and q10 = (00011) was used in the model calibration.

suboptimal because of the contamination resulting from the misspecifications in
the provisional Q-matrix. This issue has been addressed in the context of the GDI
by employing an iterative procedure. At a particular iteration, only the suggested
q-vector corresponding to the largest 	PVAF is accepted. The validation process
is repeated by recalibrating the model using the updated provisional Q-matrix, and
terminated when no further suggestions are made. This iterative procedure has
been shown to remain robust even with relatively large proportions of provisional
Q-matrix misspecifications.

9.3 Model Fit Evaluation

Models are useful only to the extent they fit data. When different
CDMs are available, they can be compared based on their fit to the data. Model
comparison can be carried out at the item or test levels. At the item level, the
residuals between the observed and expected moments, in particular the correlation
and log-odds ratio between item pairs, can be compared. In addition to model
selection, item-level residual analysis can be performed to evaluate the fit of a
single model. Different CDMs can also be compared at the test level using the
deviance (i.e., −2LL), the Akaike information criterion (AIC), and the Bayesian
information criterion (BIC), as well as the Bayes factor and deviance information
criterion (DIC) when the analysis is done using MCMC. These comparisons are
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done without formally testing one model against another. Nevertheless, given that
all reduced models are nested within the G-DINA model, the likelihood ratio test
can be performed to statistically examine the adequacy of fit of a reduced model
against that of the G-DINA model.

9.3.1 Absolute Fit

Absolute fit evaluation examines how well the model fits the data at hand. The
most common absolute fit indices are residual-based. Appropriate models should
result in estimates that predict essential characteristics of the data (e.g., inter-item
correlations), thus producing small residuals. The most common way to assess
absolute adjustment has been to assess item-level adjustment statistics. However,
before discussing these statistics, we note that the M2, a test-level statistic, is an
exception to this. It has been shown that M2, which compares residuals by item
pairs and can be obtained from the GDINA R package, has adequate Type I error
rates and statistical power. It also has a descriptive measure called RMSEA2, for
which the cutoff points 0.045 and 0.030 have been suggested as indications of
adequate and excellent fit, respectively.

At the item level, three residual-based statistics, namely, the proportion of
correct individual items (p), the correlations (r), and the log-odds ratio of item
pairs (l), have been introduced. In all three cases, the fitted model is used
to simulate model-based item responses using a large generated sample size
I∗. Of the three, r and l had very similar performance, and can detect CDM
or Q-matrix misspecifications at a high rate. Due to their similarity, only the
r statistic is discussed here. The observed and predicted response vectors for
item j are indicated by the column vectors Y j = {Y1j, . . . ,Yij, . . . ,YIj}′ and
Ỹ j = {Ỹ1j, . . . ,Ỹ ij, . . . ,ỸI∗j}′, respectively. The r-statistic for items j and j′ is
computed as

rjj′ =| Z[Corr(Y j,Y j′)]− Z[Corr(Ỹ j,Ỹ j′)] | , (9.17)

where Corr(·) is Pearson’s product-moment correlation and Z[·] is the Fisher
transformation. The approximate standard error of this statistic is given by
SE[rjj′] =

√
[I − 3]. If the model is adequate for the data, this statistic is expected

to equal zero for all items. Given the large number of comparisons involved (i.e.,
J(J − 1)/2), the authors recommended examining only the largest statistic and
adjusting the significance level using the Bonferroni correction. In Figure 9.4,
heatmaps generated using the GDINA package are shown for the residuals from
fitting the DINA and DINO models to DINA-generated data. It can be observed
that multiple residuals are found to be significant in the incorrect model to indicate
that the DINO model is not appropriate for these data, whereas the DINA model
provides an acceptable fit.

Another popular measure of item fit is the root mean square error of approxima-
tion (RMSEA). The RMSEA for item j can be computed as
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Figure 9.4 Heatmaps of the item-pair correlation residuals for data generated
using the DINA model. Cells in black indicate various degrees of significant
residuals.

RMSEAj =
√√√√ L∑

l=1

p(αl)[Pobs(αl)− Pexp(αl)]2, (9.18)

where Pexp(αl) and Pobs(αl) are the expected and observed success probabilities
for examinees in latent class αl, and p(αl) is the size of the latent class.
The observed success probabilities are obtained using the estimated latent class
memberships. The cutoffs 0.05 and 0.10 have been suggested as a general guideline
to evaluate the size of the misfit. The S − X2 statistic can be used to compare the
expected and observed frequencies. This statistic is computed as

S− X2
j =

J−1∑
s=1

Is
(Ojs − Ejs)

2

Ejs(1− Ejs)
, (9.19)

where s denotes an observed score group based on the sum scores, Is is the number
of examinees in group s, and Ojs and Ejs are the observed and predicted proportions
of correct responses for item j. This statistic is assumed to be χ2-distributed with
J − 1 − P degrees of freedom, where P is the number of item parameters. The
model-predicted probabilities are computed as

P(yij = 1 | Si = s) =
∑2K

l=1 P(yij = 1 | αl)P(Sj
i = s− 1 | αl)p(αl)∑2K

l=1 P(Si = s | αl)p(αl)
, (9.20)

where P(Sj
i = s− 1 | αl) denotes the probability of obtaining the sum score s− 1

in the test composed of all items except item j. The two statistics above can be
computed using the CDM package. A study has shown that the performance of the
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item fit statistics can be expected to improve by adjusting for the measurement
error in αl; however, such adjustments have yet to be implemented in existing
software packages.

9.3.2 Relative Fit

Relative to the saturated G-DINA model, reduced CDMs provide worse absolute
fit to the data. To determine which of the models that provide good absolute fit
to use, relative fit statistics can be used. These statistics are generally calculated
from the maximum likelihood function that is obtained from the estimated ML
parameters given in Equation (9.10).

As noted above, saturated CDMs (e.g., the G-DINA model), which have greater
complexity, are theoretically expected to provide better fit to the data than reduced
CDMs. However, saturated CDMs are not always to be preferred because they
require a larger sample size to be well estimated. Moreover, reduced CDMs are
simpler and easier to interpret, and when appropriate, lead to higher attribute
classification accuracy. To choose between saturated and reduced CDMs, relative
fit statistics that can compensate for model complexity are needed. Examples of
these statistics are AIC and BIC, which can be computed as follows:

AIC = −2 log L(Y )+ 2P, and (9.21)

BIC = −2 log L(Y )+ P log (I), (9.22)

where lower values indicate a better balance between model-data fit and model
complexity, and these statistics can be used for non-nested models. Results of
a study examining the performance of these statistics generally supported the
use of BIC, and to some extent, AIC, for evaluation of model or Q-matrix
misspecifications. When nested models are involved (i.e., G-DINA model vs.
reduced CDMs), formal tests can be performed to examine the adequacy of the
fit of simpler models relative to that of a more complex model. Let S and R be the
saturated and reduced models, respectively. The likelihood ratio (LR) statistic for
comparing R and S is computed as

LR = 2[log L(S)(Y )− log L(R)(Y )], (9.23)

and is asymptotically χ2-distributed with degrees of freedom equal to the differ-
ence of model parameters. In addition to the test-level comparison, saturated and
reduced models can also be compared at the item level (i.e., one item at a time),
and the LR test has been applied for this purpose. The direct implementation
of the method would require estimating JK∗j >1 × NR + 1 models, where NR is
the number of reduced models being considered. To allow for a more efficient
implementation, the reduced model parameters can be estimated by maximizing
the likelihood of the reduced parameters involved (ψ j) given I j = {Iα∗jl} and Rj =
{Rα∗jl}, the G-DINA estimates of number of examinees and correct responses in the

latent group α∗jl, respectively. Recall that the ML estimator for the item parameters
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in the saturated model is equal to P(α∗jl) = Rα∗jl/Iα∗jl . This approximation has been
referred to as the two-step likelihood ratio test, and is computed as

2LRj = 2[log L(P j | Rj,I j)− log L(ψ j | Rj,I j)], (9.24)

where P j = {P(α∗jl)}. This approach requires that the data be calibrated once only
using the G-DINA model; the remaining computations involve deriving ψ j NR

times for the JK∗j >1 multi-attribute items.
The Wald statistic has also been introduced to compare saturated and reduced

models at the item level. This statistic is computed as

Wj = [R × P j]
′[R × Var(P j)×R′]−1[R × P j], (9.25)

where R is a (2K∗j −P)× 2K∗j matrix of restrictions that make the reduced model a
special case of the saturated model. For example, for the A-CDM and K∗j = 3, R

is equal to

R4×8 =

⎡⎢⎢⎣
1 −1 −1 0 1 0 0 0
1 −1 0 −1 0 1 0 0
1 0 −1 −1 0 0 1 0
−1 1 1 1 −1 −1 −1 1

⎤⎥⎥⎦ , (9.26)

where each row represents a particular constraint and each column one of the eight
latent groups that can be formed with K∗j = 3. This restriction matrix implies the
following constraints to the IRF of the G-DINA model in Equation (9.2): δ12 =
δ13 = δ23 = δ123 = 0 (i.e., all the interaction terms are equal to 0). As with the
item-level LR test, this method only requires a single calibration using the G-DINA
model. In addition, estimates of the reduced models are not needed to compute the
Wald statistic. Studies have shown that the two statistics produce acceptable Type
I error and power rates.

9.4 Examinee Classification, Reliability, and Validity

9.4.1 Examinee Classification

As in IRT, the person parameter estimates in CDM (i.e., α̂i) can be based on
ML estimation, maximum a posteriori (MAP), or expected a posteriori (EAP)
methods. Recall that for examinee i, the likelihood L(Y i | αl) is defined as

L(Y i | αl) =
J∏

j=1

P(Y j = 1 | αl)
Yij[1− P(Y j = 1 | αl)]

1−Yij . (9.27)

The ML, MAP, and EAP estimators of αi are given by

ML(αi) = arg max αl[L(Y i | αl)], (9.28)

MAP(αi) = arg max αl[P(αl | Y i)], and (9.29)
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EAP(αi) = {P(αik | Y i)} =
{

L∑
l=1

P(αl | Y i)αlk

}
, (9.30)

where P(αl | Y i) and p(αl) are the posterior and prior probabilities of αl,
respectively. It can be noted that ML(αi) = MAP(αi) when p(αl) is flat,
and ML(αi) and MAP(αi) are binary vectors, whereas EAP(αi) is a vector of
probabilities. When classifying an examinee to one of the latent classes is of
interest, the probabilities can be converted to 1s and 0s using certain rules (e.g.,
αik = 1 if P(αik | Y i) ≥ 0.50). In some applications, a more stringent rule
can be implemented such that a probability is converted to 0 (or 1) only when
the P(αik | Y i) is sufficiently small (or large); the remaining probability values
(e.g., [0.3,0.7]) comprise the uncertainty region, where no conversions are made.
Finally, when P(αl | Y i) is multimodal, for example, due to an incomplete
Q-matrix, ML(αi) and MAP(αi) may not be unique.

Due to the effort expended in defining the attributes, CDM scores are generally
interpretable. Assume that the CDM application takes place in the school class-
room context. In addition to providing the students with their attribute profiles that
will allow them to identify their individual strengths and weaknesses, the teacher
might also be interested in obtaining information about the performance of the
class as a whole to better determine how the instructional materials can be designed
or scaffolded to target the specific needs of the class. Figure 9.5 shows an example
of output that provides diagnostic information on three attributes at the student and
classroom levels. The top panels of the figure display the attribute profiles of two
students, and the bars and shades represent the EAP estimates for each attribute.
The figure shows that student A has clearly mastered attributes 2 and 3, but the
mastery status of attribute 1 is uncertain; in contrast, the panel shows that student
B has clear mastery statuses for the three attributes – the student has definitely
mastered attribute 3, but not attributes 1 and 2. The bottom left panel of the figure
gives the percentage of students who have mastered each of the three attributes.
At a glance, the teacher can easily note that attribute 3 has the highest mastery
prevalence, whereas attribute 1 has the lowest. Perhaps subsequent instructions
should focus on helping more students master attributes 1 and 2. Lastly, the bottom
right panel disaggregates the three mastery prevalances into eight latent classes
to better understand the prevalences of the different mastery profiles. It shows
that α = (0,0,1) and α = (1,0,0) are the largest and smallest latent classes,
respectively.

9.4.2 Reliability

The extent to which subsequent actions must be pursued may depend on how
well the person parameters have been estimated. In CDM, reliability of the
person parameter estimates, which is typically referred to as attribute classification
accuracy, has been evaluated in many ways. A procedure for evaluating reliability
is the Monte Carlo approach, which consists of the following steps:
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Figure 9.5 Examples of CDM reports at the examinee and classroom levels

1. First, the calibrated model (i.e., β̂) is used to generate a large simulated data
set (e.g., I∗ = 10,000). Ideally, this model is chosen after evaluating its fit to the
data, as discussed in Sections 9.2 and 9.3.

2. Second, the same model is used to estimate the person parameters from the
simulated data.

3. The agreement rates between the true and estimated person parameters are
evaluated at the attribute vector and attribute levels by computing

PCV = 1

I

I∗∑
i=1

I[αi = α̂i], and (9.31)
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PCA = 1

I

I∗∑
i=1

K∑
k=1

I[αik = α̂ik], (9.32)

respectively, where I∗ is the number of simulated examinees and I[·] is the
indicator function. These two indices provide an estimate of the attribute
classification accuracy in the empirical data set.

Other, more analytical procedures for computing reliability have also been
proposed, and some of them have been implemented in the GDINA and CDM
packages. One of the first methods, which is based on the P̂a index, evaluates
the classification accuracy at the test level. In contrast, the indices τ̂ and τ̂k

have been introduced to evaluate test- and attribute-level reliabilities, respectively.
Incidentally, τ̂ -based indices require much simpler calculations compared to
P̂a. The τ indices can be estimated from the examinees’ posterior distributions
[i.e., P(αl | Y i)], and this approach has two important advantages. Firstly, the
calculations are very simple as they are obtained directly from information already
available from the estimation process. And secondly, it provides information at
the latent class level, which can then be marginalized to obtain indicators at the
attribute (τ̂k) and test τ̂ levels. This approach involves the calculation of a 2K × 2K

matrix of conditional classification error probabilities given by

P(αs|αl,Y ) =
∑N

i=1 P(αl | Y i)I[αs = αl]∑N
i=1 P(αl | Y i)

. (9.33)

The main diagonal of P(αs|αl,Y ) contains the classification accuracy estimator
at the latent class level (τ̂l). The sum of the 2K elements contained in the
main diagonal weighted by the estimated latent class proportions [i.e., P̂(αl]
results in τ̂ . These values can also be marginalized for each individual attribute,
obtaining an estimate for τ̂k. The CA() function in the GDINA package is based
on these developments. As an alternative, a new estimator of the classification
accuracy, which is the basis for the cdm.est.class.accuracy() function in the
CDM package, has been developed by extending the above indices. Given their
similarities, the three procedures [i.e., the Monte Carlo approach, CA(), and
cdm.est.class.accuracy()] are expected to yield similar values. As illustrated in
Figure 9.6, the classification accuracy estimates at the attribute and attribute vector
levels are highly comparable. Thus, all appear to be viable procedures. It should
be noted that several other reliability indices exist.

9.4.3 Validity

As with any test scores, proper use of CDM scores requires not only ensuring
adequate reliability, but also evidence of validity to be provided. Since the 1999
edition of the Standards for Educational and Psychological Testing, the validation
process has been understood as a continuous process in which different types
of evidence are sought. A large part of what has been said in Sections 9.2 and
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Figure 9.6 Accuracy estimates for a test composed of 30 highly discrimi-
nating DINA items. true: True accuracy (i.e., PCA and PCV with respect to
the generating attribute patterns). montecarlo: Monte Carlo PCA and PCV
estimates based on a sample of 10,000 examinees. GDINA package: Estimates
by the CA() function of the GDINA package. CDM package: Estimates by the
cdm.est.class.accuracy() function of the CDM package.

9.3 in relation to the evaluation of the Q-matrix and the selection of the CDM
pertains to possible validity evidence of content, internal structure, and response
processes. That is, the Q-matrix should be representative of the item population
that represents the constructs it is intended to measure. It also establishes the
relationships between these constructs (i.e., the attributes) and the different items.
Finally, different CDMs reflect different response processes (e.g., compensatory or
noncompensatory). Thus, information obtained from validating the Q-matrix and
evaluating the model fit must be formulated in terms of a validity argument.

Another important aspect of CDM for which empirical support can be sought is
determining the number of dimensions the test intends to measure. This issue has
not been addressed in-depth, but seminal work has been started. Furthermore, to
determine the distinctiveness of the different attributes being considered, correla-
tions between the attributes need to be reported. Ideally, this should be done on the
basis of previous hypotheses. A review of the empirical applications available to
date found that most studies (72%) did not report these correlations. Of the remain-
ing 28%, almost all reported correlations greater than 0.90, which is an artifact of
fitting a multidimensional model (i.e., CDM) to largely unidimensional data.
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In addition to the validity evidence discussed thus far, the importance of pro-
viding external validity evidence has been highlighted. For example, in examining
an SJT that measures four attributes in a sample of university students, the grade-
point average, scores on an advanced progressive matrices test, and NEO Five-
Factor Inventory domain scores were used as criterion variables to validate the
CDM scores. The results showed that the CDM scores obtained higher validity
coefficients, compared to the SJT sum score. This is similar to a finding that,
compared to traditional MCMI-III scores, CDM scores correlated more highly with
a psychiatrist’s diagnosis.

Finally, work has also been done on methods to obtain evidence pertaining to
test fairness. In particular, methods to evaluate differential item functioning (DIF)
have been developed. In the CDM context, an item is said to exhibit DIF when
two examinees with identical attribute pattern (e.g., αA = αB), but from different
groups (e.g., gender, ethnicity) have different success probabilities on the item, as
in P(Yj = 1 | αA) �= P(Yi = 1 | αB). One of the first works to address this
issue in the CDM context involved the adaptation of the Mantel–Haenszel (MH)
procedure, where the estimated latent class was used as the conditioning variable.
Later work includes the use of the Wald test as a DIF detection procedure and
formulating the problem from a Bayesian framework. A recent review noted that a
number of scenarios can give rise to DIF. In particular, DIF can occur when: (1) the
item parameters vary across groups; (2) different Q-matrices are involved; and (3)
the underlying processes differ across groups. However, existing studies thus far
focused only on the first scenario. An exhaustive simulation study found that using
the MH statistic in conjunction with a purification procedure produced satisfactory
Type I error and statistical power across the various DIF scenarios.

9.5 Discussion and Future Directions

This chapter attempts to summarize the main developments in CDMs over
the last decade. However, due to space constraints it is not possible to include
all the developments that have taken place during this period of time. For this
reason, other developments – such as models for multiple strategies, testlets, and
multi-level analysis – were not covered. This is undoubtedly a very active area
of research, where interesting new work can be expected to emerge on a regular
basis. Thus, in this final section we would like to highlight three lines of ongoing
research that may attract the attention of more researchers in the near future. Below
is a brief description of these research lines.

1. Cognitive diagnostic computerized adaptive testing (CD-CAT). CD-CAT seeks
to combine the specific feedback from CDMs with the efficiency of adaptive
applications. In recent years, a number of developments related to item selection
rules and optimal criteria, stopping rules and control of exposure, and content
balancing have emerged. However, real applications and further studies exam-
ining other aspects of CD-CAT (e.g., designs to optimize the initial calibration
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of the item bank) have been lagging behind. A recent study that partially fills
this gap sought to explore the impact of specifying only a subset of the possible
q-vectors. Related topics, such as optimal test assembly and multistage adaptive
testing, have received much less attention beyond the few studies that currently
exist. Given the critical role of CAT in facilitating the implementation of CDMs,
it is not difficult to see that this area will continue to develop in the coming
years.

2. Exploratory CDMs. The parametric models discussed in the chapter require
the availability of a completely or partially correct provisional Q-matrix.
Very recently, models that do not require a provisional Q-matrix have been
developed. These models have come to be called exploratory CDMs, and
are particularly useful in situations where there is no theoretical evidence or
resources are limited to establish a provisional Q-matrix. This line of research
takes the conditions for identifiability of the DINA model as the starting point.
At present, models for dichotomous data (e.g., the exploratory DINA model,
exploratory RRUM) and ordinal data are available. When warranted, these
models are sufficiently flexible to allow for some elements of the Q-matrix to
be fixed. Moreover, the number of attributes can also be learned from the data.
Given the recent results on the identifiability conditions that apply to a wider
range of CDMs, more general exploratory CDMs may be on the horizon.

3. Measurement of learning. With the school setting as the prototypical application
context of CDMs, one vital function of these models is to measure and track
learning. One of the first studies to address this issue in the context of CDMs
examined the application of different sequential methods for change-point
detection (i.e., Shiryaev, Shiryaev–Roberts, CUSUM, and M-in-a-row) as a
means to detect learning. Subsequent developments in the area include various
learning models with or without covariates, as well as different estimation
algorithms and strategies. To be more practically viable, future research in this
area should include more realistic but challenging scenarios such as measuring
a large number of attributes at multiple time points, as well as a closer
examination of how technology can be harnessed not only to measure, but also
to facilitate learning.

To conclude, we concur with a recent review that, although CDM research to
date has produced a large number of methodological advances, it has not yet
fulfilled its promise of facilitating formative assessment in the school context.
Fully developing the three lines of research discussed above, together with the
current advances, can pave the way for CDM to have a real impact on everyday
teaching and learning. A glimpse of this possibly can be found in a small quasi-
experimental study, where an online tutoring program that generated individual-
ized remedial learning materials in conjunction with a CDM diagnostic report
was evaluated. The experimental group had a remedial class in the multimedia
classroom using the tutoring program the week after the pretest, whereas the
control group received the traditional group-based remedial instruction in their
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classroom from teachers who were also given the same diagnostic report. When
both groups were assessed again, students in the experimental group outperformed
those in the control group, which corroborates the findings of a similar study.
More importantly, the individualized instruction was more beneficial for medium-
and low-achieving students – this finding has important equity implications for
many students who do not have access to quality teachers. More empirical studies
involving assessments specifically designed to be cognitively diagnostic, that
highlight the practical benefits of CDM, need to be carried out. Not only will such
studies spur further applications of CDM, they will also generate new lines of
research as novel problems emerge from these applications.

9.6 Related Literature

In the first decade of this century, several reviews and books were
published documenting the progress made in the area of CDM. These include
DiBello, Roussos, and Stout (2006) and Rupp and Templin (2008), among others.
Much of the content of these reviews is still relevant today. However, the purpose
of this chapter was to summarize the more recent developments since their
publication. For this purpose, the work by Sorrel et al. (2016), which documents
the important steps in CDM applications from the Q-matrix development to
gathering reliability and validity evidences, was taken as a reference point. There
have also been several articles discussing the usefulness of CDM as a measurement
tool for providing diagnostic feedback in education. The interested reader can refer
to de la Torre (2012), de la Torre and Minchen (2014), Leighton and Gierl (2007),
and Nichols, Chipman, and Brennan (1995), among others. In addition to education
(e.g., Tjoe & de la Torre, 2014; Wu, 2019), as discussed in the chapter, other
empirical applications have emerged in areas such as clinical psychology (e.g.,
de la Torre, van der Ark, & Rossi, 2018; Templin & Henson, 2006) or industrial-
organization psychology (e.g., Bley, 2017; J. Chen & Zhou, 2017). These papers
provide an overview of how CDMs are being applied in the real world. Much of the
empirical work available was reviewed by Sessoms and Henson (2018), which is a
good starting point to understand characteristics of practical applications of CDMs.

There is a large number of articles dedicated to the development of new models.
The interested reader may refer to de la Torre (2009b) for a didactic introduction
to the DINA model and its estimation using MML, where the G-DINA model is a
natural extension (de la Torre, 2011). The G-DINA model is a general framework
that subsumes several of the most popular CDMs available for dichotomous data
and attributes. The framework has been extended to the case of polytomous
attributes (J. Chen & de la Torre, 2013), polytomous data (de la Torre, 2009a;
Ma & de la Torre, 2016; Ozaki, 2015), and continuous response (Minchen &
de la Torre, 2018; Minchen, de la Torre, & Liu, 2017). Other general CDMs, such
as the general diagnostic model (von Davier, 2005) and the log-linear cognitive
diagnosis model (Henson, Templin, & Willse, 2009), also exist. Works related to
hierarchical attribute structures can be found in Akbay and de la Torre (2020)
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and Tu et al. (2019). For some of the latest developments in MML estimation
in the CDM context, see Ma and Jiang (2021). A number of works have been
published on model identifiability in recent years. Authors wishing to extend what
has been discussed in this chapter can find more information in Chiu, Douglas, and
Li (2009), Gu and Xu (2021), Xu (2017), among others. Finally, for an introduction
to MCMC estimation, see de la Torre and Douglas (2004), Henson, Templin, and
Willse (2009), and Liu and Johnson (2019). Readers interested in nonparametric
approaches can refer to the original article by Chiu and Douglas (2013) and the
generalization of the method in Chiu, Sun, and Bian (2018).

Accurate attribute classification hinges on the correct specification of the
Q-matrix (de la Torre, Hong, & Deng, 2010; Nájera, Sorrel, & Abad, 2019).
Discussions on theory-based Q-matrix development can be found in Li and Suen
(2013), Sorrel et al. (2016), and Tjoe and de la Torre (2014); in contrast, the
exploratory or empirically based Q-matrix development procedures are discussed
in Y. Chen et al. (2015, 2018a), Culpepper (2019), and Liu, Xu, and Ying (2012).
Researchers have also started looking into the determination of the number of
attributes (Nájera, Abad, & Sorrel, 2021; Robitzsch & George, 2019; Xu &
Shang, 2018) as test measures. Several procedures for improving provisional
Q-matrices have been proposed, and these include the method based on the general
discrimination index (de la Torre & Chiu, 2016), a sequential method using the
Wald test (Ma & de la Torre, 2020a), and the more recent Hull method (Nájera
et al., 2020). Other methods, such as the nonparametric method (Chiu, 2013) or
those based on model fit information (e.g., Chen, 2017; Kang, Yang, & Zeng,
2019), have also been developed.

With respect to the literature on model fit evaluation, the study by Chen, de la
Torre, and Zhang (2013) explores several statistics for evaluating both absolute fit
and relative fit. Readers can also refer to Hansen et al. (2016), Liu, Tian, and Xin
(2016), and Sorrel et al. (2017a) for works related to absolute fit evaluation, and
de la Torre and Lee (2013), Ma, Iaconangelo, and de la Torre (2016), and Sorrel
et al. (2017b) for relative fit evaluation at the item and test levels.

Huebner and Wang (2011) discussed various approaches for classifying indi-
viduals. A growing literature focussing on assessing the reliability of these
classifications has been growing lately. Initial ideas on this topic are discussed in
Cui, Gierl, and Chang (2012), Templin and Bradshaw (2013), and W. Wang et al.
(2015). More recent proposals on assessing reliability can be found in Iaconangelo
(2017) and Sinharay and Johnson (2019), and a summary of the approaches in
Johnson and Sinharay (2020). With respect to validity evidence as it pertains to
test fairness, a number of works, which include the use of traditional fit statistics
(e.g., Hou, de la Torre, & Nandakumar, 2014; Qiu, Li, & Wang, 2019), as well
as Bayesian approaches (X. Li & Wang, 2015), have been published. In addition
to routine analysis, the need for empirical studies to gather evidence to support
the valid use of CDM scores has been emphasized (Sessoms & Henson, 2018).
Examples of these studies that include validity evidence can be found in de la
Torre, van der Ark, and Rossi (2018), Ren et al. (2021), and Sorrel et al. (2016).
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With respect to CD-CAT, one of the first available works is that of Cheng (2009).
Several studies have continued the development of CD-CAT methodologies – new
item selection rules and optimal criteria (e.g., Kaplan, de la Torre, & Barrada,
2015; Xu, Wang, & Shang, 2016; H. D. Yigit, Sorrel, & de la Torre, 2019),
stopping rules (e.g., Guo & Zheng, 2019; Hsu, Wang, & Chen, 2013), and control
of exposure and content balancing procedures (e.g., C. Wang, Chang, & Douglas,
2012; C. Wang, Chang, & Huebner, 2011; C. Zheng & Wang, 2017) have been
proposed. Other studies have explored aspects related to item bank calibration
(e.g., Huang, 2018; Sorrel, Abad, & Nájera, 2021) or procedures for updating item
banks (e.g., P. Chen et al., 2012; Wang, Cai, & Tu, 2020). Regarding a related
topic (i.e., optimal test assembly), the interested reader can consult the works of
Finkelman et al. (2010), Finkelman, de la Torre, and Karp (2020), Kuo, Pai, and
de la Torre (2016), and Lin, Gong, and Zhang (2017). The literature related to the
measurement of learning in the context of CDM remains scant to date. Examples
of works in this area include Y. Chen et al. (2018b), S. Wang et al. (2018), Ye et al.
(2016), H. Yigit and Douglas (2021), and Zhang and Chang (2020).

Finally, the available references that specifically address the existing software
packages will be discussed, most of which are in the form of R packages (R Core
Team, 2013). Two general packages, namely, GDINA (Ma & de la Torre, 2020b)
and CDM (George et al., 2016), are specifically designed for CDM analyses.
Other more specific packages have also been developed: cdmTools deals with
dimensionality determination and Q-matrix specification (Nájera, Abad, & Sorrel,
2021); dina (Culpepper & Balamuta, 2015) and rrum (Culpepper, Hudson,
& Balamuta, 2019), which are based on Culpepper (2015) and Culpepper and
Hudson (2018), respectively, can be used for the Bayesian estimation of the DINA
model and the RRUM. Classification based on nonparametric methods can be
carried out using NPCD (Y. Zheng & Chiu, 2019). Readers wishing to estimate
CDMs using software other than R can refer to Templin and Hoffman (2013)
and Zhan et al. (2019) for tutorials on how CDM analysis can be implemented
in Mplus (Muthén & Muthén, 1998–2017) and the JAGS program (Plummer,
2003), respectively. Several of these programs have been compared in terms of
usability, analysis types, and output, among others (Sen & Terzi, 2020). Finally,
the R package cdcatR presented in Sorrel, Abad, and Nájera (2021) can be used
to perform CD-CAT studies.
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10.1 Introduction

One of the greatest barriers to progress in mathematical psychology is
model mimicry. In almost every domain of cognitive modeling, there are compet-
ing models that assume qualitatively different perceptual and cognitive processes,
yet are able to mimic the behavioral predictions of each other. One reason for
this is that although competing models may make very detailed predictions about
psychological processes, historically those processes have been unobservable and,
as a result, the models are tested only against crude dependent measures, such as
response accuracy and response time.

Within the past few decades, a wide variety of new neuroimaging technologies
have been developed that allow levels of observability into human brain function
that seemed unimaginable when many currently popular mathematical models
in psychology were first proposed. Included in this list are functional magnetic
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resonance imaging (fMRI), positron emission tomagraphy (PET), magnetoen-
cephalography (MEG), functional near-infrared spectroscopy (fNIRS), electrocor-
ticography (ECoG), and high-resolution electroencephalography (EEG). Although
these methods all have limitations, they nevertheless have the potential to allow
unprecedented observability into the perceptual and cognitive processes predicted
to underlie competing mathematical models of perception and cognition. As a
result, testing models against neuroimaging data in addition to the more traditional
response accuracies and response times offers an exciting possible solution to the
model mimicry problems that plague mathematical psychology.

Despite their promise, neuroimaging data are infrequently used to test mathe-
matical models of the type that are common in mathematical psychology. There
are several reasons for this. First, neuroimaging is still a relatively new technology
and neuroimaging data analysis is still in a period of rapid development. Second,
all of these neuroimaging technologies were developed outside of mathematical
psychology. Third, most models in mathematical psychology make few, if any,
neuroscience predictions. At first glance, the latter of these reasons seems the
most limiting, but in fact, several data analysis methods that were developed
to analyze fMRI data can be used to test models that make no neuroscience
assumptions. Included in this list are model-based fMRI and representational
similarity analysis (RSA).

All neuroimaging technologies work in a similar way. In all cases, recordings are
collected at discrete times and locations in the brain while the subject is engaged in
some perceptual or cognitive task. The recordings are directly (e.g., ECoG, EEG)
or indirectly (e.g., fMRI, PET) related to neural activation. The spatial resolution
varies. ECoG can sometimes measure action potentials in single neurons, whereas
each EEG electrode is influenced by millions of neurons. Temporal resolution
also varies, with ECoG, EEG, and MEG at one extreme (with resolutions near
1 ms) and PET at the other (with resolutions of 5–10 s). State-of-the-art functional
MRI scanners, with multi-band slice acquisition, have a temporal resolution of
about 500 ms and a spatial resolution of 1–2 mm (i.e., limited by the point-spread
function of the blood oxygen level-dependent, or BOLD response; Fracasso,
Dumoulin, & Petridou, 2021).

In general, neuroimaging data analysis techniques can be classified as either
encoding or decoding methods. Encoding methods use knowledge of the experi-
mental design and stimuli to build a model that predicts the neural activation that
should be generated at each recording site on every trial. Decoding methods refer
to approaches that make inferences in the opposite direction – that is, they use
the observed recordings to make predictions about stimuli and other events in the
experiment (Haynes & Rees, 2006; Naselaris et al., 2011; Norman et al., 2006;
Pereira, Mitchell, & Botvinick, 2009). The idea is that if a brain region of interest
(ROI) responds differently to two different stimulus attributes then that ROI might
be processing those attributes differently. The most widely used decoding method
is known as pattern classification or even more commonly as multivoxel pattern
analysis (MVPA).
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Encoding models are similar to traditional models in mathematical psychology.
To model behavior in a task, a mathematical psychologist will typically combine
assumptions about the underlying perceptual and cognitive processes with knowl-
edge of the task to write equations that predict the participant’s accuracy and/or
response time. To build an encoding model, assumptions about the underlying
neural processes are combined with knowledge of the task and the type of
neuroimaging technique being used to write equations that predict values of
the dependent variable that is measured at each recording site. For example, an
encoding model of fMRI data would predict the observed BOLD response at each
voxel in response to each stimulus presentation. Forward inferences of this type are
used for two primary purposes. First, they can be used to identify brain regions that
are sensitive to specific attributes of the stimulus events. For example, when natural
scenes are described by the outputs of many phase-invariant Gabor filters, simple
fMRI encoding models accurately predict the BOLD response in early visual areas,
but not in high-level areas of the visual cortex (Kay et al., 2008; Naselaris et al.,
2009). In contrast, when the same scenes are described using semantic category
labels, encoding models accurately predict activation in high-level visual areas but
not in the early visual cortex (Mitchell et al., 2008; Naselaris et al., 2009). Second,
encoding models can be used to test theories of cognitive and neural processing.
If a theory accurately describes the cognitive and neural processing that occurs
during a specific task, then it should be possible to use that theory to construct an
encoding model that accurately predicts the dependent variables recorded in a set
of pre-specified ROIs.

Because these two goals are somewhat different, it is not surprising that a
diverse set of encoding models have been proposed (e.g., Ashby, 2019). The most
widely used fMRI encoding model is the familiar general linear model (GLM)
from statistics, which is used most commonly to identify brain regions that are
sensitive to the simplest possible attribute of a stimulus event – namely, its presence
or absence. All other encoding models are more ambitious. Arguably the next
most popular fMRI encoding approach is dynamic causal modeling (DCM), which
identifies a candidate set of brain regions that mediate event processing, along with
all of their functional interconnections (Ashby, 2019; Friston, Harrison, & Penny,
2003). DCM is also more complex than other encoding models, partly because it
uses a nonlinear model relating the BOLD response to neural activation and partly
because it uses a variational Bayesian approach for model selection.

The vast majority of encoding models were developed to be tested against fMRI
data. Even so, for the most part, the models can all be applied to any neuroimaging
technology. The only significant difference from one technology to another is in
the interface that converts predicted activation in a neural population to values
of the dependent variable that the technology measures. For example, in the case
of fMRI data, one needs to model the transformation from neural activation to
the BOLD response recorded in fMRI experiments. With EEG data, one needs to
include a head model that accounts for electromagnetic properties of the head and
of the sensor array. But in all cases, the model of each neural population and of how
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the population activations are combined is roughly the same. However, because the
models we discuss were developed for application to fMRI data, we will assume an
fMRI application in the rest of this chapter. For most of the chapter, this just means
that we will refer to a recording site as a voxel, and the time between recordings as
the TR (repetition time; the amount of time it takes the scanner to measure BOLD
responses from all voxels in the brain). Except for this nomenclature, the only
part of the chapter unique to fMRI is discussed in the subsection entitled “Linking
Neural Activation to the BOLD Response,” which considers the interface between
the neural activations predicted by the models and the dependent variable most
commonly measured in fMRI experiments.

10.2 Voxel-Based Encoding Models

Encoding models fall into two general classes: those that were constructed
specifically to analyze fMRI data, and models that were originally designed for
other purposes. The former class are often called voxel-based encoding models.
The latter class can take many forms – from purely cognitive models of the type
that are common in mathematical psychology to models with considerable biologi-
cal detail (a branch of modeling called computational cognitive neuroscience; e.g.,
Ashby, 2018). FMRI data are used along with a variety of other data types to test
and refine these models. The process of testing such models against fMRI data is
known as model-based fMRI. We consider model-based fMRI later in the chapter.
This section describes voxel-based encoding models.

Voxel-based encoding models encompass a variety of different models, but
they all share enough features to be characterized within a single framework.
As we will see in this section, all current voxel-based encoding models include
an encoding model that predicts how every hypothesized neural population
responds to each stimulus, and a measurement model that first transforms neural
population responses into aggregate neural activity and then into values of the
dependent variable being measured (e.g., the fMRI BOLD response). While most
encoding models include a highly nonlinear transformation from stimulus to neural
response, the measurement model is usually linear, and such models are often
referred to as linearized encoding models. This means that most voxel-based
encoding models can be seen as instances of linear regression with basis functions
(Hastie, Tibshirani, & Friedman, 2009).

10.2.1 Encoding Model

Encoding models begin with a mathematical description of the relation between
a set of stimuli Si, with i = 1,2, . . . ,Ns, and the response of a neural channel rc,
with c = 1,2, . . . ,Nc. Neural channels can represent either a single neuron or a
population of neurons with similar properties, with the latter option being more
common in the computational neuroimaging literature. Most encoding models
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assume that the channel response depends on the identity of the stimulus Si,
certain channel tuning parameters, various state variables, and properties of the
neural noise. The tuning parameters, which are collected in the vector θ , include,
for example, constants that determine the channel’s maximum possible response,
and its preferred stimulus. The state variables, collected in the vector x, include
other variables that could affect the channel response, including, for example, the
responses of other channels in the population. Given these definitions, the standard
approach is to first define the mean channel response

E [rc|Si] = fc
(
Si,θc,x

)
, (10.1)

where E denotes expected value, and fc is the channel tuning function, which
is specified as part of the model. Tuning functions are discussed in more detail
below, but it is important to note that in many applications, the alternative encoding
models that are tested against data are identical, except for their tuning functions.

Most encoding models assume that channels operate in the presence of noise,
but they differ in how that noise is modeled. One approach is to assume that the
response of channel c to presentation of stimulus Si is

rc(Si) = fc
(
Si,θc,x

)+ εc, (10.2)

where εc is zero-mean noise (e.g., Pouget, Dayan, & Zemel, 2000). A common
choice is to assume Gaussian noise with some fixed variance. Note that this model
predicts that the variance of the channel response does not change as the mean
response increases. There is support for this assumption in channels that include a
large population of neurons (Y. Chen, Geisler, & Seidemann, 2006), but in single
neurons, the variance of the spike count tends to increase in proportion to the mean
(e.g., Tolhurst, Movshon, & Dean, 1983). Therefore, the fixed-variance Gaussian
model is most appropriate when modeling channels of many neurons. A popular
approach to modeling channels in which the variance of the response increases
with the mean is to assume that rc is Poisson distributed with mean fc

(
Si,θc,x

)
(e.g., Zemel, Dayan, & Pouget, 1998). Therefore, this model assumes that the
channel response has probability density function

P[rc|Si] =
fc
(
Si,θc,x

)rc e−fc(Si,θc,x)

rc!
. (10.3)

Because the variance of a Poisson distribution equals its mean, this model predicts
that the variance of the channel response increases with the mean response. Note
that Equations (10.2) and (10.3) both assume that the mean channel response
satisfies Equation (10.1).

Most models include multiple channels, each described by a version of Equa-
tions (10.1) and (10.2) or Equations (10.1) and (10.3), and which are combined into
a random vector of responses r = [r1,r2, . . . ,rNc

]
that describe the response of all

Nc channels to the presented stimulus. This is known as a population encoding
model (Pouget, Dayan, & Zemel, 2000, 2003), and r is usually referred to as
a population response. In particular, voxel-based encoding models assume that
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every voxel includes a mixture of various populations of neurons, and that each
population is tuned to a different attribute of the stimulus. The populations are
commonly referred to as channels. For example, the most primitive visual encoding
model might assume that each population or channel is tuned to a Gabor patch of
a certain spatial frequency and orientation. But the populations could be tuned to
anything. At the opposite extreme, they might be tuned to semantic category labels,
such as rock, ocean, table, chair, or lamp. Voxel-based encoding models are most
commonly used to identify brain regions that are sensitive to these attributes, so it
is not unusual to build multiple encoding models for the same data that are each
sensitive to a different set of stimulus attributes.

We can make this more concrete with an example of what has been termed the
standard model of dimension encoding (Pouget, Dayan, & Zemel, 2000, 2003).
This model is typically restricted to applications in which the stimuli vary on a
single dimension. Suppose the numerical value of stimulus Si on this dimension is
si. The model assumes Gaussian tuning functions, so in this case it predicts that

fc
(
si,θc,x

) = rmax
c exp

[
−1

2

(
si − sc

ωc

)2
]

, (10.4)

where rmax
c represents the maximum response for channel c, sc represents the

value of the channel’s preferred stimulus (i.e., the value of the stimulus that
produces the channel’s largest response), and ωc represents the width of the tuning
function. Many applications assume that all tuning functions have the same width
(i.e., ωc=ω, for all c), which is known as the homogeneous standard model. In
all versions of the model, however, the channel tuning parameters are gathered
together in the vector θ"c =

[
rmax

c ,sc,ωc
]", where " denotes transpose. Note that

in this case, the state vector x is empty. Also note that this model makes it possible
to predict the mean channel responses as soon as the stimuli are selected, and
therefore, before data collection begins.

Figure 10.1a shows the tuning functions of a large collection of channels from a
typical application of this standard one-dimensional model. Note that all channels
have identical shape (rmax

c = rmax and ωc = ω) and that the preferred stimuli for
the various channels are evenly spaced on the stimulus dimension (sc = sc−1 + k,
for some small constant k). The shape of the tuning functions for all channels is
therefore characterized by a single canonical tuning curve.

Now imagine presenting a specific stimulus Si to the model and recording the
response of all Nc channels in the population response vector r. A convenient
way to describe these responses is via a population response plot, in which
neural responses are plotted on the ordinate and the numerical values of each
channel’s preferred stimulus are plotted on the abscissa. Figure 10.1b shows the
population response of the model in Figure 10.1a to a stimulus with value 0. Each
solid dot shows the response of a different channel in the absence of noise, and
each open dot denotes a possible response of the same channels in the presence
of noise.
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Figure 10.1 The standard model of dimension encoding. Panel (a) shows the
tuning curves of the various channels included in the model. The peak of each
tuning curve is centered at the channel’s preferred stimulus value. Panel (b)
shows the population response plot of this model on a hypothetical trial when
a stimulus with value 0 is presented. Each solid dot shows the response of a
different channel in the absence of noise, and each open dot denotes a possible
response of the same channels in the presence of noise.

Note that, because all channels have the same width and are equally spaced
on the stimulus dimension, the expected population response has the same shape
as the canonical tuning function. This property of the standard encoding model
is a continuous source of confusion for both experimentalists and modelers,
who sometimes confuse population response plots with tuning functions in their
interpretation of encoding models. A population response function with the same
shape as the canonical tuning function is not a general property of encoding
models, but arises specifically from the homogeneous model (i.e., in which all
tuning functions are identical, except for their preferred stimulus).

Channel noise distributions have been estimated empirically, and there is evi-
dence that humans use knowledge of this uncertainty during perceptual decision-
making (Van Bergen et al., 2015). Even so, it is common in the cognitive
neuroscience literature to find applications in which channel noise is not modeled,
with responses being described simply by Equation (10.1). Within the general
framework presented here, those applications implicitly assume Equation (10.2)
and Gaussian noise with a variance that is invariant across channels. When channel
noise is modeled, a common assumption is that the noise is independently and
identically distributed across multiple channels. In contrast, as mentioned earlier,
some approaches model the channel response as Poisson distributed [i.e., as in
Equation (10.3)], which scales the noise variance up with the mean channel
response.

Of course, there are a variety of ways to construct more complex models.
First, the model is easily extended to multidimensional stimuli. For example, in
vision research it is common to represent images as two-dimensional matrices
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of pixel values, with each channel’s tuning function being defined in that space.
Many models represent the operation of primary visual cortex, or V1, through
a large population of channels in which the tuning function of each channel
is a Gabor wavelet tuned to a certain specific spatial location, orientation, and
spatial frequency (e.g., Kay et al., 2008; Naselaris et al., 2009). In their structural
encoding model, Naselaris et al. (2009; see also Kay et al., 2008) assumed a total
of 10,921 such channels.

The Gabor wavelet model of tuning functions is based on years of research on
the response properties of neurons in V1. The tuning properties of channels in
higher visual areas are less well understood. As a result, in applications that depend
on a participant’s perceptual or cognitive impressions of a set of images, a more
generic tuning function might be more appropriate. The Gaussian tuning function
of Equation (10.4) is easily generalized to any arbitrary multidimensional stimuli.
For example, consider a set of stimuli that vary on multiple dimensions and a
channel in which the preferred stimulus is Sc. Then a multidimensional analog of
Equation (10.4) assumes that the channel response to stimulus Si is

fc
(
Si,θc,x

) = rmax
c exp

[
−1

2

(
	(Si,Sc)

ωc

)2
]

, (10.5)

where 	(Si,Sc) is the distance in perceptual space between the representations of
stimuli Si and Sc. Equation (10.5), which is an example of a radial basis function
(e.g., Buhmann, 2003), is a popular method for modeling the receptive fields
of sensory units in many different modeling approaches (e.g., Ashby, Ennis, &
Spiering, 2007; Kruschke, 1992).

A second approach to building a more complex model is to express channel
tuning via a composite function: fc

(
Si,θc,x

) = gc2
[
gc1
(
Si,θc,x

)]
. For example,

in the Naselaris et al. (2009) model, the channel response is determined by
applying a compressive nonlinearity to the output of the Gabor wavelet. If we
denote the response of Gabor wavelet c to image Si as gc(Si), then according to
this model the response of channel c is

fc
(
Si,θc,x

) = log[gc(Si)+ 1]. (10.6)

The +1 just ensures that the channel response is never negative. Because log is a
negatively accelerating function, this transformation models response compression
at the neural level.

A third common generalization of the standard model is to assume that the
channel response depends on state variables indexed in the vector x. For example,
x might include the responses of other channels in the population. In this case, a
popular approach is to use these other responses to normalize the response of each
channel:

fc
(
Si,θc,x

) = gc (Si)
ν

κν +
√∑

j αj[gj (Si)]ν
. (10.7)
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This is called divisive normalization, and it is a ubiquitous computation in cortical
circuits (Carandini & Heeger, 2012). In this model, the channel response is
normalized by a weighted sum of the response of all channels. The weights αj

represent the level to which other channels suppress the response of channel c,
ν increases competition among channels for activation, and κ prevents division
by zero.

10.2.2 Measurement Model

The encoding models discussed so far describe activity in each channel. However,
in most applications, the individual channel responses are assumed to be unobserv-
able. For example, in applications to fMRI, the BOLD response recorded in each
voxel is assumed to be a mixture of many channel responses. Therefore, to test
encoding models against empirical data, a model interface is required that specifies
how the channels combine to determine the value of the dependent variable of
interest (see Van Bergen et al., 2015). This interface is called the measurement
model.

The measurement model must solve two separate problems. First, even with
state-of-the-art high-resolution MRI scanners, each voxel includes many neurons,
and therefore presumably many different neural channels. Therefore, the first
problem is to model how the various hypothesized channels combine to determine
the amplitude of the neural activation that drives the BOLD response in each voxel.

Second, in the encoding models considered so far, the channel response rc(Si)

is a single value that is presumed to represent the amplitude of neural activation in
channel c when stimulus Si is presented. In contrast, the BOLD response recorded
from each voxel when stimulus Si is presented is a time series that persists for
30 s or so and depends in a complicated way on concentrations of oxygenated
and deoxygenated hemoglobin, cerebral blood flow, and venous blood volume
(Buxton, 2013). Neural activation increases the BOLD response, but the BOLD
response is only an indirect measure of neural activation (Ogawa et al., 1990a,
1990b). So the second problem in applications of encoding models to fMRI data is
to link the neural activation values predicted by the models to the observed BOLD
time series recorded in fMRI experiments.

This section considers each of these problems in turn.

Aggregating Channel Responses
Each voxel in an fMRI experiment will include several hundred thousand neurons.
As a result, any voxel-based encoding model that includes multiple channels will
assume that every voxel in the ROI could potentially contain all of the hypothesized
channels. This is true no matter how the channels are defined, although most
models assume that the number of channels, and the number of neurons within
each channel, are unknown. The most popular assumption is that the neural
activation produced in a task-sensitive voxel in response to a stimulus presentation
is a weighted linear combination of all the channels represented in that voxel,
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where the weights are presumed to reflect the number of neurons within the
voxel that contribute to each channel. Models in this class are often referred to
as linearized encoding models because the measurement model assumes that the
voxel-level neural activation is a weighted linear combination of the individual
channel responses. When combined with a linear model of the relationship
between neural activation and the observed BOLD response, such models can use
the GLM for parameter estimation – that is, to estimate the values of the unknown
weights that allow the model to give the best fits to the observed BOLD responses
collected from that voxel on all TRs.

We can formalize these ideas as follows. Let ak(Si) denote the aggregate neural
activity in voxel k to presentation of stimulus Si, and let wck denote the contribution
of channel c to this activity. Then the voxel-based (or linearized) encoding model
assumes that

ak(Si) = w1k +
Nc∑
j=2

wjk rj(Si)+ εm,k, (10.8)

where w1k is the response of one channel in voxel k that gives the same constant
response to all stimuli (to account for baseline activation that might occur in a voxel
containing none of the hypothesized channels), and εm,k is the measurement error
on channel k. The most common assumption is that εm,k is normally distributed
with mean 0 and variance σ 2

m. This is called a linearized encoding model because it
makes the simplifying assumption of a linear relation between channel responses
and voxel activity. Note that this model predicts that the voxel activity ak(Si) is
normally distributed or approximately normally distributed (in the Poisson case)
with mean

E[ak(Si)] = w1k +
Nc∑
j=2

wjkfc(Si,θc,x) (10.9)

and in the case where the channels are independent, with variance

Var[ak(Si)] = σ 2
m +

Nc∑
j=2

w2
jkVar[rj(Si)], (10.10)

where Var[rj(Si)] either equals σ 2
c in the case of the Equation (10.2) Gaussian

model or fc(Si,θc,x) in the case of the Equation (10.3) Poisson model.
Note that this model accounts for the separate contributions of the channel noise

and the measurement noise [εm,k in Equation (10.8)] to the variability in ak(Si).
In almost all cases, however, these will not be separately estimable. In fact, in
linear models, it is well known that they are nonidentifiable. Instead, only the sum
of these separate variances can be estimated (e.g., Ashby, 1992). As a result, in
most applications, a single noise variance will be estimated and the source of the
noise will be impossible to identify. Nevertheless, we include both noise sources
for completeness.
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Of course, there is a separate equation like Equation (10.8) for every stimulus
in the ensemble. In all of these, the weights are identical because the weights are
presumed to reflect the dominance of each channel within the voxel, which does
not depend on what stimulus is presented. In contrast, the channel responses reflect
the dominance of each feature within the stimulus, so these will change when the
stimulus changes, but should be the same in all voxels. The standard way to keep
track of all this is in matrix form. For example, consider an experiment with Ns

different stimuli or events. The first step is to collect all channel responses – one
for every channel – in an Ns × Nc channel-response matrix R defined as

R =

⎡⎢⎢⎢⎣
r(S1)

"
r(S2)

"
...

r(SNs)
"

⎤⎥⎥⎥⎦ . (10.11)

So row i of R lists the population response to presentation of stimulus Si, and
column c lists the response of channel c to the presentation of each stimulus.
If channel noise is modeled, then R is a random matrix. In most linearized
encoding models, however, channel noise is not included and thus each channel
is characterized by its mean response, computed as in Equation (10.1).

Encoding models assume that the channels and their tuning functions are known,
so the mean channel response matrix E[R] can be computed as soon as the stimulus
set is selected, and therefore before the experiment begins. Voxel-based encoding
models are therefore not used to estimate channel responses, because these are
assumed to be known beforehand. Applying a voxel-based encoding model to
neuroimaging data instead answers three different questions. First, it can identify
the ROIs where the voxel activity most closely resembles the responses predicted
by the set of presumed channels. Second, it provides an estimate of the relative
frequency of each channel within every voxel. And third, for any single ROI it
can tell whether the observed voxel activities are more consistent with one set of
presumed channels or with another set.

The channel-response matrix described in Equation (10.11) accounts for the
channel responses. The full set of model predictions can then be written in matrix
form as ⎡⎢⎢⎢⎣

ak(S1)

ak(S2)
...

ak(SNs)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

r(S1)
"

r(S2)
"

...
r(SNs)

"

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w1k

w2k
...

wNck

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

εm,1

εm,2
...

εm,Ns

⎤⎥⎥⎥⎦ ,

or in shorthand form as

ak = Rwk + εm, (10.12)

where the random vector εm has a multivariate normal distribution with mean
vector 0 and variance–covariance matrix �m. Most applications assume that

https://doi.org/10.1017/9781108902724.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.011


432 f. a. soto and f. g. ashby

�m= σ 2
mI, where I is the identity matrix, and they also ignore channel noise, in

which case R is replaced by E[R]. In these cases, the only free parameters in the
model are the weights w1k,w2k, . . . ,wNck and σ 2

m. Note that under these conditions,
Equation (10.12) has exactly the same form as the GLM in statistics, which is
usually stated as y = Xβ + ε. As a result, if we assume that ak is linearly related
to the observed BOLD response, then we can estimate the unknown weights in wk
by solving the normal equations of the GLM (more on this shortly).

Equation (10.12) applies the encoding model to activity values from a single
voxel. It is straightforward to extend the model to multiple voxels in an ROI.
Adding more voxels does not change E[R] since all voxels are exposed to the same
stimulus events on every TR. Even so, the model allows two voxels to respond
differently to the same stimulus because the channels might have different relative
frequencies in the two voxels. So for every new voxel that is added, a new set of
weights must be estimated. Mathematically, this is easily done by replacing the
vector of weights w with a matrix W in which column k contains the weights
associated with voxel k. The vector of voxel activities ak is expanded to a matrix
A in which column k contains ak and we also need to add a new noise vector for
each new voxel. These changes lead to the multivariate encoding model[

a1 a2 · · · aNv

] = R
[
w1 w2 · · · wNv

]+ [εm,1 εm,2 · · · εm,Nv

]
,

or in shorthand form

A = RW+ Em. (10.13)

When channel noise is ignored, this model is identical to the multivariate GLM.
While each column of A represents a different activity profile (i.e., the vector of
activities of a single voxel across stimulus conditions), each row of A represents
a different activity pattern, or the vector of activities across multiple voxels in
response to a single stimulus condition (Diedrichsen & Kriegeskorte, 2017). The
distinction between activity profile and activity pattern at the level of voxels is
analogous to the distinction between tuning function and population response at
the level of neural channels.

Linking Neural Activation to the BOLD Response
As mentioned previously, the BOLD response is a time series. Active brain areas
consume more oxygen than inactive areas, so when neural activity increases in an
area, metabolic demands rise, and, as a result, oxygenated hemoglobin rushes into
the area. Neural activity causes an immediate oxygen debt, and the resulting rush of
oxygenated hemoglobin into the area causes the BOLD signal to rise quickly until
it eventually reaches a peak at around 6 s after the neural activity that elicited these
responses. After this peak, the BOLD signal gradually decays back to baseline over
a period of 20–25 s (with the decay typically including a brief dip below baseline).

In contrast, the encoding models considered so far are static, in the sense that the
predicted aggregate neural activity ak(Si) to presentation of stimulus Si is a single
value. All static encoding models make the same simplifying assumption that the
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amplitude of the BOLD response in a voxel is proportional to the aggregated
neural activation that occurs in that voxel. This enormously simplifies the problem
of linking the aggregate activity predicted by the model to the observed BOLD
response recorded in the experiment. The only remaining problem is to estimate
a single amplitude of response from the BOLD time series. Furthermore, in most
experiments, each stimulus will be presented multiple times, so there will be more
than one such time series for stimulus Si. Therefore, to apply a static encoding
model, a single value that represents the amplitude of the BOLD response to
stimulus Si in voxel k must be estimated from these data. This problem is known
in the neuroimaging literature as deconvolution or unmixing, and a solution to it is
also required in decoding methods, such as multivoxel pattern analysis (MVPA).
Not surprisingly, many alternative estimators have been proposed (e.g., Mumford
et al., 2012; Pedregosa et al., 2015; B. O. Turner et al., 2012).

In rapid event-related designs, which are the norm in modern fMRI research,
stimuli are presented within 5 s or so of each other, as they are in most laboratory
experiments. Since the BOLD response to neural activity might persist for 30 s,
this means that the BOLD signals elicited by successive stimulus presentations
will overlap in time. This overlap complicates the unmixing process. Mumford
et al. (2012) proposed an efficient solution to this problem that they called least
squares – separate (LSS). If there are NE separate stimulus presentations, then LSS
reruns the standard GLM regression analysis NE separate times on the data from
each voxel. In the ith of these NE runs, the GLM includes two parameters – one
regressor for the single trial on which the ith stimulus was presented and a second
nuisance regressor that models the response to all other stimuli. The regression
weight associated with the ith stimulus in this analysis is used as an estimate of
the amplitude of the BOLD response in voxel k to the presentation of stimulus Si.
We will denote the BOLD time series in voxel k as bk(t) and the amplitude of this
time series on trials when stimulus Si is presented as b̃k(Si). This LSS method was
the most effective of a variety of alternative estimation methods investigated by
Mumford et al. (2012).

After the values of b̃k(Si) are estimated for all stimuli, these can be used to pop-

ulate a vector b̃
"
k = [b̃k(S1),b̃k(S2), . . . ,b̃k(SNs)]

" that describes the amplitude of
the BOLD response in voxel k to all NS stimuli used in the experiment. Similarly,
after repeating this process for all voxels, we form the matrix

B̃ = [b̃1,b̃2, . . . ,b̃Nv
]. (10.14)

The assumption that the BOLD response is proportional to aggregate neural
activity means that there exists some constant λ, such that b̃k = λak and B̃ = λA,
where ak and A are the aggregate activity vector and matrix from Equations (10.12)
and (10.13), respectively. Note from those equations that the voxel-based encoding
model therefore predicts that

b̃k = λak = R(λwk)+ λεm (10.15)
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and

B̃ = λA = R(λW)+ λEm. (10.16)

Therefore, the constant λ can be absorbed into the weights and error variance. In
other words, the weights and error variance include an unidentifiable constant of
proportionality. This causes no problems, however, because the primary interest is
not in the absolute value of the weights, but rather in their relation to each other.
For example, note that if one weight in a voxel is twice as large as another weight,
then this 2-to-1 ratio holds for any value of λ. As a result, without loss of generality,
we can ignore λ during parameter estimation, which means that the multivariate
voxel-based encoding model can be described by

B̃ = RW+ Em. (10.17)

As mentioned previously, most applications either ignore channel noise or
assume zero-mean, additive Gaussian noise. In either case, R = E[R], Em

describes the sum of channel and measurement noise, and the weight matrix W can
be estimated from the normal equations of the multivariate version of the GLM. In
most applications, the stimuli are presented far enough apart in time that it is safe to
assume that the BOLD responses to separate stimuli are statistically independent.
For this reason, and because it is common to assume homogeneity of variance
[i.e., that each εm,k in Equation (10.13) has a multivariate normal distribution with
variance–covariance matrix � = σ 2

mI], the Gauss–Markov theorem applies, and
therefore the uniformly minimum variance, unbiased estimator of W is

Ŵ = (R"R)−1R"B̃. (10.18)

Note that Equation (10.18) requires that R"R is nonsingular. This is possible
only if Ns > Nc , where Ns is the number of stimuli or events and Nc is the number
of hypothesized channels. So the encoding model can only be tested against
data in which there are more stimulus events than hypothesized channels. This
makes sense, because in each voxel, there are unknown free weight parameters.
To estimate these parameters uniquely, we need more data points than parameters.
Each stimulus presentation produces one data point, so unique estimation of the
weights requires that Ns > Nc. If this condition is not possible, then an alternative
is to introduce extra constraints into the estimation procedure – a technique known
in statistics as regularization (e.g., Bickel & Li, 2006). For example, this is the
method used by Naselaris et al. (2009).

From a Bayesian perspective, regularization is accomplished by placing a prior
on W, so that some weight estimates are favored over others. This point is
important, because regularization biases inference in favor of one Ŵ over many
others that predict the same distribution of observed activity profiles B̃. Some
researchers have argued that, more than a simple technicality, this is an important
theoretical decision and should be considered an important aspect of the final
model (Diedrichsen, 2020; Diedrichsen & Kriegeskorte, 2017).
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Figure 10.2 Hypothetical data from one voxel along with theoretical predic-
tions of the standard encoding model. Each open circle in the top half depicts a
hypothetical response from this voxel on one trial of an experiment in which the
stimuli vary on a single physical dimension. The scatterplot of data is called
the activity profile of this voxel, and the dotted line is its mean. The channel
tuning functions from the standard encoding model are shown at the bottom,
each scaled by its corresponding weight parameter. The solid line in the top half
is the predicted activity profile of the standard encoding model, which equals
the sum of the weighted tuning functions.

Mathematically, the combination of an encoding model for r(Si) and a linear
measurement model is equivalent to regression by linear combination of basis
functions (Hastie, Tibshirani, & Friedman, 2009). More specifically, the model
captures the nonlinear relation between stimuli Si and BOLD responses by using a
set of nonlinear basis functions fc

(
Si,θc,x

)
to transform the stimuli, and then uses

a linear model on the transformed space to predict the amplitude of the observed
BOLD response b̃k.

Figure 10.2 shows this more clearly with an example using the standard
encoding model discussed earlier. The figure depicts hypothetical data from one
voxel along with theoretical predictions of the standard encoding model that has
been linked to the linear measurement model described in Equation (10.8). The
hypothetical data are from an experiment in which a stimulus is presented on each
trial that is a random sample from some ensemble that varies on a single physical
dimension. Each open circle in the cloud of points shown in the top half of the
figure depicts a hypothetical response recorded in this voxel on one trial. The value
of each data point on the abscissa identifies the stimulus value on that trial. We call
this scatterplot the activity profile of this voxel (following the nomenclature of
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Figure 10.3 Mean activity profiles estimated by Serences et al. (2009).

Diedrichsen & Kriegeskorte, 2017), and the dotted line represents the mean of this
activity profile (sometimes called the voxel tuning function). The channel tuning
functions from the standard encoding model are represented at the bottom, each
scaled by its corresponding weight parameter wck. So note that in this hypothetical
voxel, the most under-represented channels are centered at the stimulus values−35
and +50. The sum of these scaled functions is represented by the solid line at the
top, which accurately approximates the observed mean activity profile. In practice,
the channel weights are estimated by fitting the solid-line prediction of the model
to the observed data – a process known in statistics as linear regression with radial
basis functions.

While more complex stimulus spaces and encoding models make the resulting
model more difficult to interpret, the principle is the same: the activity profile of
voxel k is modeled as a linear combination of basis functions. One issue with
encoding modeling is that, in many cases, the set of basis functions will overfit
the data. The reason is that the complexity and number of basis functions is
selected either arbitrarily or based on theoretical considerations (e.g., the number
of populations thought to underlie the voxel activity). In contrast, mean activity
profiles are likely to be smooth and could probably be approximated by a small
number of basis functions. For example, Figure 10.3 shows examples of mean
activity profiles estimated by Serences et al. (2009). Note that the profiles are all
unimodal and smooth, and each could probably be approximated with a single
radial basis function. Although the profiles shown in this figure were averaged
across many voxels, it is unlikely that much more structured variability would
be found in single-voxel activity profiles, or at least not variability that can be
distinguished from high levels of measurement noise common in fMRI.

Dynamic Encoding Models
All models considered so far are static, in the sense that they only predict
the amplitude of the BOLD response to each stimulus. In contrast, many other
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encoding models are dynamic, including, for example, dynamic causal modeling
(DCM; Friston, Harrison, & Penny, 2003). These models predict changes in
neural activity over time – not just because of decay in the BOLD response, but
also because of dynamic changes in neural, perceptual, and cognitive processing.
Dynamic encoding models require a more detailed model, not only of how neural
activity changes with time, but also of how the BOLD response depends on neural
activity. In particular, they require a model that predicts the entire time-course of
the BOLD response, rather than just its overall amplitude.

To begin, consider the differences between static and dynamic models in their
predictions about channel responses and aggregate neural activity. Many dynamic
encoding models, including DCM, do not assume that aggregate neural activity is
driven by a population of separate channels. Instead, in these models, aggregate
neural activity is the fundamental construct. DCM compensates for this simpler
account of activation within any single voxel, by using different equations to
predict neural activity in different voxels – especially voxels that are in different
brain regions. In contrast, voxel-based encoding models typically apply the same
model (and model equations) to all voxels. The goal in this case is to identify
voxels in which the observed BOLD response agrees with these predictions.

To test any encoding model against data, we first generate a predicted activity
vector for each voxel in the ROI. Let the NTR × 1 vector aD

k denote the predicted
neural activity in voxel k on every TR of the experiment. The superscript D (for
dynamic) is to distinguish this vector from the static activity vector ak described in
Equation (10.12). The two vectors are similar, in that they both describe aggregate
activity in a voxel, but note that ak has NS rows, whereas aD

k has NTR rows. The
number of TRs in an experiment cannot be less than the number of stimuli that are
presented, and in most experiments NTR will be much greater than NS. Therefore, in
almost all applications aD

k will have many more rows than ak. Row i of ak describes
the predicted aggregate activity to stimulus Si in voxel k. In contrast, row i of aD

k
describes the predicted aggregate activity in voxel k on TR i. The static vector
ak includes an entry for every unique stimulus that predicts the same aggregate
activity every time that stimulus is presented. The dynamic vector aD

k includes an
entry that predicts the aggregate neural activity on every TR of the experiment. So
if stimulus Si is presented 10 times, then ak includes one value that predicts the
same neural activity on each of these 10 presentations, whereas aD

k will predict the
effects of these 10 separate presentations on every TR of the experiment.

To test a dynamic encoding model against data from multiple voxels, we first
generate predicted activity vectors for each of the Nv voxels in the ROI. The next
step is to form the NTR×Nv activity matrix AD that includes aD,j as column j. Note
that this matrix is similar, but not identical, to the matrix A in Equation (10.13).
They both describe aggregate activity in a set of voxels, but the columns of AD are
the dynamic activity vectors aD,j, whereas the columns of A are the static activity
vectors aj.

If the model postulates an underlying population of channels that drive the
aggregated neural activity, then a similar generalization is used to define the
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channel responses. In particular, the model is used to form the NTR × NC channel
response matrix RD that contains the predicted response of channel c on every TR
of the experiment in column c and the predicted response of all channels on TR
i in row i. Note that the relationship between RD and the static channel response
matrix R of Equation (10.11) is similar to the relationship between AD and A.
Given this dynamic channel response matrix, aggregate neural activity is predicted
using a dynamic version of Equation (10.12):

aD
k = RDwk + εD,m, (10.19)

where the NTR × 1 random vector εD,m has a multivariate normal distribution
with mean vector 0 and variance–covariance matrix �D,m. Note that the weight
vector wk is identical in the static and dynamic models. In both cases, it specifies
the relative contribution of each channel to the aggregate activity. The multivoxel
version of Equation (10.19) is

AD = RDW+ ED,m, (10.20)

where W is defined exactly as in Equation (10.13).
The next problem is to model the effects of dynamic changes in aggregate neural

activity on TR-by-TR changes in the BOLD response. This is a problem that has
received enormous attention in the fMRI literature. Almost all current applications
of fMRI assume that the transformation from neural activation to BOLD response
can be modeled as a linear, time-invariant system. Although a detailed examination
clearly shows that the transformation is, in fact, nonlinear (e.g., Boynton et al.,
1996), it also appears that the departures from linearity are not severe if the stimuli
are of high contrast and brief exposure durations are avoided (Vazquez & Noll,
1998). These two conditions are commonly met in fMRI studies of high-level
cognition.

Any linear, time-invariant system is completely characterized by its impulse
response function, h(t), which is the output of the system to an input that is an
idealized impulse. More specifically, let a(t) and b(t) denote the (continuous-time)
input and output of a dynamical system at time t, respectively. Then if the system
is linear and time-invariant:

b(t) = a(t) ∗ h(t) =
∫ ∞

0
a(τ )h(t − τ)dτ, (10.21)

for any input and for all time t (e.g., C. T. Chen, 1970).
In dynamic encoding models, the input a(t) is aggregate neural activity, the

output b(t) is the BOLD response, and the impulse response function h(t) is
commonly referred to as the hemodynamic response function (hrf). There are a
variety of different methods for selecting a functional form for the hrf (e.g., Ashby,
2019). Common choices include a gamma function or a difference of gamma
functions. Some researchers have also used boxcar functions with one or more ones
around the peak of the hrf and zeros elsewhere (e.g., Çukur et al., 2013; Huth et al.,
2012; Nishimoto et al., 2011). In all cases, however, parameters are chosen so that
the resulting hrf peaks at around 6 s and then decays back to 0 after 30 s or so.
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Dynamic encoding models make dynamic predictions about how neural acti-
vation a(t) changes moment-by-moment. Therefore, in such models, Equation
(10.21) is used to convert model predictions to values of the observed dependent
variable – that is, to values of the BOLD response b(t).

Equation (10.21) assumes that the BOLD response is measured in continuous
time. In practice, however, the BOLD response is measured only at discrete time
points separated by a fixed amount of time equal to the TR. So rather than a
continuous-time integral, the Equation (10.21) convolution is done in discrete time.
This can be accomplished using simple matrix multiplication by loading values of
the hrf into the appropriate Toeplitz matrix.1

The Toeplitz matrix, which has order NTR×NTR, includes a time-lagged discrete
representation of the hrf in each column. To build the matrix, we begin by
discretizing the hrf in a way that is similar to how we discretized the neural
predictions of the model. The only difference is that any reasonable model of the
hrf will include nonzero values only for 30 s or so, whereas the functional run
is likely to last 5 min or longer. Suppose we assume that the BOLD response to
an impulse of neural activation persists for at most Nh TRs (since the hrf is an
impulse response function). Then our discretized version of the hrf will be a vector
h" = [h1,h2, . . . ,hNh

]", where hi = h(t = i × TR). Next, we use h to build the
appropriate Toeplitz matrix:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 0 . . . 0
h2 h1 0 . . . 0
h3 h2 h1 . . . 0
...

...
...

...
hNh hNh−1 hNh−2 . . . 0
0 hNh hNh−1 . . . 0
0 0 hNh . . . 0
...

...
...

...
0 0 0 . . . hNh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.22)

Given this matrix, the discrete-time version of the Equation (10.21) integral
reduces to the simple matrix multiplication

b = a (t) ∗ h (t) = HaD. (10.23)

Therefore, note that the dynamic encoding model predicts that the observed BOLD
response in voxel k on each TR equals bk = HaD,k.

The dynamic version of the voxel-based encoding model, which assumes that
aggregate activity is driven by a population of channels, is generalized from
Equation (10.20) by noting that the predicted aggregate activity matrix AD=RDW
and therefore the predicted NTR × Nv BOLD response matrix B = HAD.
Combining these produces the multivoxel, dynamic voxel-based encoding model

1 A Toeplitz matrix is any matrix in which all descending diagonals are filled with the same value.
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B = HRDW+ ED, (10.24)

where ED is now a combination of noise at the level of neural channels, voxel
activities, and BOLD responses.

The traditional GLM analysis of fMRI data, which is typically implemented
in the popular fMRI data analysis software packages SPM and FSL, can be
considered a special case of Equation (10.24) (van Gerven, 2017), in which
different channels respond to different stimulus events (e.g., each different type
of stimulus, the participant’s response, feedback, etc.), and each channel response
is a boxcar function of zeros and ones, representing the absence and presence,
respectively, of that event on each TR. Therefore, the true contribution of encoding
models is not in the linearized measurement model, which was already available
in the standard GLM approach, but rather in the much more detailed models of the
possible computations performed by each channel.

The models we have considered so far all assume that the transformation from
neural activity to BOLD response can be modeled as a linear, time-invariant
system. More detailed models attempt to account for nonlinearities in the BOLD
response. The most popular is the balloon model (Buxton, Wong, & Frank, 1998),
which models key biomechanical properties of the brain’s vasculature. The balloon
model accounts for the conflicting effects of dynamic changes in both blood
oxygenation and blood volume and assumes that the blood flow out of the system
depends on a balloon-like pressure within the vasculature. For example, when the
blood flow is high, the walls of the blood vessels are under greater tension, and as
a result they push the blood out with greater force, which reduces the rate at which
oxygen is extracted from the hemoglobin. DCM, as implemented in the fMRI
software package SPM (i.e., DCM10/SPM8), converts predicted neural activations
to BOLD responses via a generalization of the balloon model. In contrast, most
encoding models settle for a linear systems approach, and therefore instead convert
predicted neural activations to BOLD responses via the convolution integral of
Equation (10.21).

10.2.3 Population Receptive Fields

The population receptive field (pRF) of a voxel is a description of the region of the
visual field where stimulus presentations produce an fMRI response (Dumoulin &
Wandell, 2008; Wandell & Winawer, 2015). For example, panel (a) in the right
column of Figure 10.4 shows the pRF of the traditional approach, which assumes
that the pRFs of all individual neurons in a voxel can be described by a single
population-level pRF.

In its traditional implementation, the presented stimulus is represented by an
indicator function s(x,y) = {0,1}, where the values 0 and 1 denote the absence and
presence, respectively, of any part of a stimulus at spatial coordinates (x,y). The
pRF is modeled by a two-dimensional isotropic Gaussian in the same space:

g(x,y) = exp

[
(x− x0)

2 + (y− y0)
2

2ς2

]
, (10.25)
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Figure 10.4 The population receptive field (pRF) method can be seen as an
application of encoding modeling. (a) In the traditional approach, the pRFs of
all individual neurons in a voxel can be described by a single population-level
pRF (Dumoulin & Wandell, 2008). (b) Mixture pRFs assume the voxel includes
channels with different receptive fields (Sprague & Serences, 2013). (c) pRF
topography assumes that the receptive field of each channel in the voxel is a
Kronecker delta function (Lee et al., 2013).

where (x0,y0) is the center (i.e., mean) and ς the spread (i.e., standard deviation)
of the receptive field. The predicted response of a voxel in which the pRFs of
all neurons can be described by this single population-level pRF is computed by
location-by-location multiplication of the stimulus value and the voxel pRF and
then summing all these responses:

r(si) =
∫ xU

xL

∫ yU

yL

si(x,y)g(x,y)dxdy, (10.26)

where xL, xU , yL, and yU represent the lower (L) and upper (U) boundaries of
the visual field along the x and y coordinates. As in most applications, the model
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implicitly assumes that r(si) includes additive Gaussian neural noise. The voxel
activity is assumed to be a scaled version of the population response

ak(si) = w r(si), (10.27)

and the BOLD response is modeled as described in the previous section. Estimat-
ing the pRF of a voxel is done by finding the values of the parameters x0, y0,
and ς that allow the model to provide the best possible fit to the observed BOLD
response.

The pRF technique is usually considered an alternative to the linearized
encoding modeling that is the focus of this chapter, but it can also be seen as a
special case of the general encoding model framework. As shown in Figure 10.4a,
the problem of estimating a pRF can be recast as an encoding modeling problem.
First, one creates an encoding model with a large number of channels, each having
a receptive field with a slightly different position and size, as illustrated in the
left column of Figure 10.4. Second, to mimic the traditional pRF approach, one
constrains all channel weights to be zero except for one, in order to accommodate
the assumption that the pRFs of all neurons in the voxel can be modeled by
one population-level pRF, and therefore that the data from each voxel can be
modeled by a single channel. The traditional pRF approach is therefore equivalent
to assuming a large number of channels that densely cover the space of possible
size and location parameters, and then finding the single nonzero weight that
provides the best fit to the data. The single channel with a nonzero weight has
the position and size of the traditional pRF.

Of course, a more traditional encoding model that includes many channels
also could be used to describe the pRF (see Figure 10.4b). This model would
include nonzero weights for multiple channels, with each channel characterized
by a receptive field of different position and size. Sprague and Serences (2013)
used such a mixture model to study the effects of spatial attention on neural
representations in visual cortex. After the model is fitted to data, the pRF is
equivalent to the predicted mean activity profile (the solid line curve in the top half
of Figure 10.2). The resulting pRF is likely to be similar to the one obtained by
assuming a single channel, but this encoding modeling approach has the advantage
of more transparently reflecting the empirical observation that the voxel pRF is a
mixture of multiple neural receptive fields of smaller size (Dumoulin & Wandell,
2008).

Other advantages of describing pRFs as applications of encoding modeling are
that it encompasses other techniques proposed to obtain pRFs, it facilitates the
understanding of how different techniques relate to one another, and suggests new
techniques that could be useful in research. Because the linearized encoding model
can be understood as linear regression with basis functions, alternative pRF models
are easily obtained simply by changing the basis functions or the constraints
used to estimate weights. For example, Lee et al. (2013) proposed an alternative
method for estimating pRFs, illustrated in Figure 10.4c, which uses Kronecker
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delta functions (i.e., impulses) as the basis set. In this approach, the pattern of
estimated weights directly models the pRF topography.

Insights obtained from the pRF approach could also benefit encoding modeling
more generally. In particular, pRFs are defined in the stimulus space and their
parameters have interpretable units, which allows researchers to make meaningful
comparisons across participants, conditions, and measurement instruments (Wan-
dell & Winawer, 2015). As discussed in the next section, the parameters of a fitted
encoding model can be difficult to interpret. The pRF approach, however, allows
researchers instead to focus on characterizing, for each voxel, the mean activity
profile predicted by a fitted encoding model (solid curve in the top half of Figure
10.2). Most commonly this means estimating the mode and spread of the mean
activity profile, but other features of the function (support, derivatives, etc.) may
also be informative. Unlike the traditional pRF approach, an encoding modeling
approach could describe selectivity along any stimulus dimension, not only spatial
sensitivity within visual field space.

10.2.4 Feature Spaces and Model Interpretation

The development so far is quite general, in the sense that it encompasses voxel-
based encoding models, the standard GLM approach to constructing a statistical
parametric map, population receptive fields, and model-based fMRI (developed
in more detail below). What is common to these different approaches is the use
of a linear measurement model with Gaussian noise (i.e., the GLM). They differ
mainly in how they define a channel and a channel response [i.e., rc(Si)]. The
space of channel responses is sometimes called feature space (e.g., Diedrichsen,
2020), and the power and flexibility of the encoding modeling approach lies in the
possibility of choosing among many different feature spaces.

For example, Naselaris et al. (2009) constructed one voxel-based encoding
model in which each channel was a Gabor wavelet and another in which each
channel responded to a different semantic category of objects – for example, birds,
fish, or vehicles. Whereas the Gabor wavelet encoding model gave good accounts
of BOLD responses in low-level visual cortical areas, the semantic encoding
model gave good accounts in high-level association areas. So an encoding model
approach can be used to identify brain regions that are sensitive to whatever
features are hypothesized to drive the channel responses. A model based on
features that do not match any set of channels in the brain should provide a poor
account of BOLD responses in all ROIs.

The Gabor wavelet model was motivated by a long line of vision research on
the sensitivity of V1 neurons to spatial frequency and orientation. In the case of
high-level visual areas, however, the decision about how to define the channels is
often more arbitrary. For example, in the case of the semantic-encoding model,
the decision was made to include channels that respond to the presence of certain
categories of natural objects (e.g., birds and fish), but not others, and the object
classes that were chosen had to be hand coded in every image by human observers
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(e.g., does this image contain a bird?). More recently, there have been a number
of attempts to identify features, and therefore to define the underlying channels,
by using artificial neural networks (e.g., Eickenberg et al., 2017; Güçlü & van
Gerven, 2015). The general approach is to construct a multilayer neural network –
commonly a deep convolutional neural network – and then train it to classify a
database of natural images. After training, the output of each layer is interpreted as
a different possible set of channel responses, and these are compared to the BOLD
responses from different ROIs within the visual system.

For example, Güçlü and van Gerven (2015) trained a deep neural network that
included five convolutional and three fully connected layers to classify images into
1 of 1,000 different object categories. The network was trained on a database of
around 1.2 million natural images using a supervised learning algorithm. After
training was complete, each of the eight layers of the network were used to define
eight different possible sets of channels, and therefore eight different encoding
models. Each of these eight models was then tested against the fMRI data reported
by Naselaris et al. (2009) by using an output model similar to Equation (10.12).
Overall, the models gave good accounts of visual responses across the entire
ventral stream. Furthermore, the BOLD responses in early visual areas were
best accounted for by early network layers, whereas in higher-level (i.e., down-
stream) visual areas, the BOLD responses were best fit by higher-level network
layers.

The neural network used in this application included some features that were
inspired by neural processing in the human brain (e.g., convolutional layers).
But the model has much closer ties to the machine-learning literature than to
neuroscience. Essentially, it can be viewed as an attempt to build an optimal model
of object classification. The fact that it gives a good account of BOLD responses
in visual cortex as humans view images of natural scenes suggests that the human
visual system may have evolved to optimize object classification.

In sum, the feature space can be the response of filters to images, the responses
of units in a deep neural network, variables in an abstract cognitive model, labels
applied by researchers to their stimuli, etc. This flexibility allows researchers to
propose multiple competing feature spaces to explain neural activity in a particular
brain region, and use model selection techniques (Zucchini, 2000) to choose one
that describes the data best without overfitting. Ideally, the set of competing
models would include only feature spaces that are theoretically relevant, preferably
supported by evidence from past research.

Unfortunately, the flexibility and power of encoding models also leads to a
number of issues of model interpretation. The first problem is that sometimes
it is unclear whether the feature space is a representation of the stimuli Si or
of the neural channel responses rc. Many encoding models provide a separate
notation for stimuli and channel responses, together with equations indicating
how to compute channel responses given the presentation of a stimulus. On the
other hand, some applications have used a set of hand-coded stimulus labels as
the feature set (e.g., Çukur et al., 2013; Huth et al., 2012), with binary indicator
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variables used to represent such labels. In this case, it is unclear whether those
variables are assumed to represent the presence of a stimulus or the response of a
channel that is dedicated to the detection of that stimulus. If one assumes that the
feature space is a representation of the stimuli, then the linear measurement model
assumes a linear mapping, not only from channels to measurements, but also from
stimuli to neural responses. Both would be described by the estimated parameter
matrix Ŵ [i.e., from Equation (10.18)]. On the other hand, if one assumes that
the labels are a representation of channel responses (i.e., populations of neurons
that are active when the stimulus feature is presented), then there is an unknown
transformation between Si and rc, which is likely nonlinear and is not explicitly
modeled. The way in which most researchers discuss their results suggests that
the latter interpretation is most common. For example, when Naselaris et al.
(2009) compared the Gabor wavelet model against the semantic model that was
constructed by hand coding labels in each image, they implicitly assumed that
both models were identical except for the type of features to which the underlying
channels were tuned. What this type of comparison does not take into account
is the quality of the encoding models themselves. For example, only the Gabor
wavelet model provides an explicit mechanistic description of how each channel
responds to any possible stimulus.

The second issue has to do with the interpretation of the weight matrix Ŵ.
It is tempting to interpret estimated weights as providing information about the
relative importance of different channels in the activity of a given voxel. This was
the interpretation we assigned each weight when building the model [e.g., see
Equation (10.8)]. However, those were forward inferences, whereas interpreting
entries in Ŵ after model fitting is a backward inference. And in the case of
encoding models at least, backward inferences are tricky. There are multiple
reasons why the entries in Ŵ might not provide the expected weight information
(Kriegeskorte & Douglas, 2019). For example, in most cases, channels are not
chosen to provide responses that are independent of each other, so multicollinearity
among the channel responses may occur. Under these circumstances, weights
are difficult to interpret because they do not reflect the effect of each channel
independently from all others. In addition, some models are over-parameterized, in
the sense that many different weight matrices describe the data equally well [i.e.,
so R"R in Equation (10.18) is singular]. In practice, such identifiability problems
are solved using regularization, but this reflects the choice of a particular prior
over weights (Diedrichsen & Kriegeskorte, 2017). A channel with a large weight
under one prior could have no weight under a different prior, so interpretation of
weights should take into account what assumptions about the measurement model
are implemented by the chosen prior.

A third, related issue has to do with interpreting the success of an encoding
model to describe data from a given voxel as evidence that the feature space
of the model is represented in the voxel. This is called the feature fallacy error
because, for any given feature space used to describe voxel activities, there are an
infinite number of other feature spaces that will make the exact same predictions,
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given that the matrix of weights Ŵ is modified accordingly (e.g., by choice of an
appropriate prior; Diedrichsen, 2020; Diedrichsen & Kriegeskorte, 2017).

Gardner and Liu (2019) recently showed why this is the case for the standard
linearized encoding model described by Equation (10.13). For example, consider
a model, call it Model 1, in which the predicted activity matrix A equals

A = R1W1, (10.28)

where R1 is the expected value of the channel response matrix. Now consider
a second model, Model 2, that postulates a different set of expected channel
responses R2 that are linearly related to the Model 1 responses via

R2 = R1P, (10.29)

where P is some Nc × Nc nonsingular matrix. Therefore, note that the predicted
aggregated activity matrix for Model 2 is

A2 = R2W2 = R1PW2. (10.30)

Now if W2 = P−1W1, it follows that

A2 = R1PP−1W1 = R1W1 = A1, (10.31)

and therefore, both models predict exactly the same aggregated activity matrix,
even though they postulate different channel responses and different weights.
Diedrichsen and Kriegeskorte (2017) argued that similar model identifiability
problems arise even when weights are estimated using regularization rather than
by solving the normal equations [as in Equation (10.18)].

The identifiability and model mimicry problems that are endemic to encoding
models are likely not restricted to models that span the exact same linear subspace.
This becomes clear if we refer back to the Figure 10.2 example, which we used
to illustrate that encoding models are a form of linear regression with radial basis
functions. The radial basis functions illustrated in the bottom part of Figure 10.2
are not the only ones that could provide a good fit to the activity profile shown
in the top part of the figure. Given enough channels, a model in which the basis
functions are polynomials, splines, or even simple step functions could provide an
arbitrarily good fit (see Hastie, Tibshirani, & Friedman, 2009).

What all this means is that one must be extremely careful when interpreting the
success of an encoding model in terms of its basis functions or features. Sometimes
a particular set of features is theoretically important, neurobiologically motivated,
or simply easier to interpret. All of these are good reasons to prefer one basis set
over others. At the same time, however, it is essential to acknowledge that the fit
and predictive performance of a model do not guarantee, by themselves, that an
ROI encodes stimuli using that specific basis set.
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10.3 Model Inversion

Although encoding models provide the best opportunity to make causal
inferences from fMRI data (Weichwald et al., 2015), decoding methods offer
their own distinct advantages (e.g., Naselaris et al., 2011). One is that they allow
decoding accuracy to be compared directly to human behavioral performance in
each ROI. For example, D. B. Walther et al. (2009) compared the confusions
that human observers made when categorizing natural scenes with the confusions
made by an MVPA classifier in a variety of different visual ROIs. Although
the human observers made fewer errors, the pattern of confusions made by the
MVPA classifier in the parahippocampal place area was similar to the pattern of
confusions made by the humans, whereas the pattern of confusions made by the
classifier in V1 was not correlated (at least, not significantly) with the pattern made
by the humans. Thus, this result supports a model in which the parahippocampal
place area plays a key role in scene classification behavior.

Carlson and colleagues extended this approach by assuming that the observer’s
response time on each trial is related to the distance of the activity pattern
to the best-fitting linear bound of an MVPA classifier (Carlson et al., 2013;
Grootswagers, Cichy, & Carlson, 2018; Ritchie & Carlson, 2016; Ritchie, Tovar,
& Carlson, 2015). The assumption that response time is inversely related to
the distance between the percept and a decision bound has a long history in
mathematical psychology (e.g., Ashby & Maddox, 1994; Murdock, 1985; Chapter
6 of this volume). Thus, if a particular brain region stores information that is
extracted for behavioral performance, then it is likely that distances-to-bound
obtained from a classifier trained on data from that region will correlate with
response times and similar behavioral measures. Using this approach, the Carlson
group has shown that brain regions that provide information that is read out for
behavior are only a subset of the brain regions that contain decodable information.

Decoding methods are also popular because they provide the basis of the popular
claims that fMRI can be used for mind reading (Haynes & Rees, 2006). In these
applications, the BOLD responses are decoded to predict the stimulus event that
occurred. Many exciting possibilities have been proposed – from communicating
with patients who were diagnosed to be in a vegetative state, to lie detection, to
enabling people to control external devices via thought (DeCharms, 2008).

Researchers who develop and test encoding models can exploit many of the
advantages of decoding approaches via model inversion, which is the process of
constructing a decoding scheme by inverting an encoding model. Perhaps the most
immediate benefit of this process is that it allows unique tests of the encoding
model that would otherwise be impossible. For example, a valid encoding model
that accurately predicts how the BOLD response differs when different stimuli
are presented should also be able to predict which stimulus was presented simply
by examining the BOLD response on each trial. In mathematical psychology, the
validity of a model is typically assessed by examining its ability to predict what
response was made (and perhaps also the response time), given knowledge of the
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stimulus. An inverted encoding model allows tests in the opposite direction – that
is, it allows a test of the model’s ability to predict what stimulus was presented,
given knowledge of the response.

An encoding model predicts the aggregate activity in a voxel given knowledge
of the stimulus [e.g., see Equation (10.8)]. More specifically, a complete encoding
model should predict the probability density function of aggregate activity in voxel
k on trials when stimulus Si is presented – that is, P(ak|Si). In this approach, Bayes’
rule is used to invert the model:

P(Si|ak) ∝ P(ak|Si)P(Si), (10.32)

where P(Si) is the prior probability that stimulus Si is presented. When stimuli are
modeled in a physical stimulus space, such as the pixel space used to construct each
stimulus, model inversion allows for full reconstruction of the presented stimulus.
Of course, decoding is possible without the use of an explicit encoding model, as
in MVPA, by training machine-learning algorithms to extract information about
stimuli from activity patterns (see Pereira, Mitchell, & Botvinick, 2009).

The Equation (10.32) decoding scheme operates directly on the model’s pre-
dicted aggregate activities. As we saw earlier, however, many models predict that
aggregate activity is determined by the responses of a population of underlying
channels [e.g., as in Equation (10.8)]. These hypothesized channels have important
consequences for model inversion. In particular, in addition to using the observed
BOLD response to make inferences about what stimulus was presented (i.e.,
stimulus decoding), model inversion often makes it possible to use the observed
BOLD response to make inferences about the channel responses, which typically
are unobservable. Estimating the channel responses from a decoding scheme is a
form of population response reconstruction.

Of course, if the channel responses are observable, then they could also be used
for stimulus decoding. In other words, one could predict the presented stimulus
either from the aggregated activity (i.e., the BOLD response) or from the channel
responses. It is very important, however, to keep the distinction between these
two forms of stimulus decoding in mind when interpreting the results of encoding
and decoding studies. For example, the act of perception is a form of stimulus
decoding because the brain must use neural activity to make inferences about the
presented stimulus. But this decoding process must use channel responses. In fMRI
experiments, the aggregate activity is the total neural activity in tens of thousands
of neurons located in an arbitrarily defined cube of the brain. The neurons in this
cube likely project to a variety of different targets, and therefore the downstream
neurons are driven by the channels, not by the aggregated activity. Conversely,
note that the fMRI experimenter has indirect access to the aggregated activity
(i.e., via the BOLD response), but typically has no access to the responses of
individual channels. Therefore, whereas the brain can only decode the stimulus
from the channel responses, the experimenter can only decode the stimulus from
the aggregated activity. Despite this important difference, it is common to find
conflation of r (the channel response to stimulus Si) and ai (the aggregate activity
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in response to stimulus Si; e.g., Bobadilla-Suarez et al., 2020; Diedrichsen &
Kriegeskorte, 2017), which may lead to incorrect theoretical conclusions.

During model inversion, researchers usually distinguish between training and
testing data. The standard approach is to first use a set of training data from
some ROI to fit the encoding model (i.e., estimate all free parameters). Next, the
encoding model is inverted to create a decoding scheme. Finally, the decoding
method is tested against new validation data from the same ROI.

To begin, let B̃train and B̃test denote the data matrices collected in the ROI
during training and testing, respectively. Both matrices have order Ns ×Nv and, as
described by Equation (10.14), they contain the amplitude of the BOLD response
to all NS stimuli in all Nv voxels. Row i summarizes the BOLD response to
stimulus Si in every voxel, and column k summarizes the response in voxel k
to every stimulus. Now consider encoding models in which aggregate activity is
assumed to depend on responses from an underlying population of channels. In
these models, the channel-response matrix R depends on exactly which stimuli are
presented and on their order of presentation. The training and testing data might
come from trials that present the same stimuli, but even in this case the order of
stimulus presentation will typically differ. Therefore the channel-response matrices
for training and testing will differ. Denote these two matrices by Rtrain and Rtest,
respectively. Although encoding models assume the expected values of these two
matrices will differ, they assume that the matrix of channel weights W will be
the same during training and testing. This is because W depends on the relative
frequencies of the different channels in the voxels within the search set, but not on
the stimuli that are presented [i.e., see Equation (10.13)].

10.3.1 Population Response Reconstruction

Given that the population responses of the hypothesized channels are not directly
observable with fMRI, an interesting application of model inversion is to estimate
these responses (Brouwer & Heeger, 2009). In fact, this one application is what
researchers in the literature usually refer to as “inverted encoding modeling” or
IEM (e.g., Gardner & Liu, 2019; Liu, Cable, & Gardner, 2018; Sprague, Boynton,
& Serences, 2019; Sprague et al., 2018).

According to the multivariate encoding model described in Equation (10.17),

the predicted (i.e., mean) BOLD amplitude during training is ̂̃Btrain = E[Rtrain]Ŵ.

Note that ̂̃Btrain and B̃train are different. The former is the predicted BOLD response
according to the model, whereas the latter is the observed BOLD response. Now
to fit the encoding model to the training data, we first compute E[Rtrain] from
the model, and then use B̃train to compute Ŵ [from Equation (10.18)]. Our goal
now is to use the Ŵ matrix we estimated from the training data and the observed
voxel activities during testing (i.e., B̃test) to estimate the matrix of expected
population responses E[Rtest], which we abbreviate as R̂test. If we know these
channel responses then we can infer which stimulus was presented simply by
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comparing the estimated channel responses (i.e., the rows of R̂test) to each row
of the original expected channel-response matrix E[Rtrain] [see Equation (10.14)]
– assuming that the stimuli presented during testing were all presented one or more
times during training.

At testing, the encoding model predicts that the BOLD responses should bễBtest = R̂testŴ. (10.33)

Our goal is to solve for R̂test. Unfortunately, however, since at this stage of the

analysis R̂test is unknown, so is ̂̃Btest. If we did know ̂̃Btest, then we could just solve

for R̂test. Ester, Sprague, and Serences (2015) proposed estimating ̂̃Btest with the
observed data B̃test, and then solving the resulting equation for R̂test. This process
produces the following estimator:2

R̂test = ̂̃BtestŴ"
(

ŴŴ"
)−1

. (10.37)

Note that Ŵ has order Nc × Nv, so
(
ŴŴ")−1

exists only if Nv ≥ Nc – that
is, only if there are at least as many voxels in the ROI or searchlight as there are
channels. Adding more voxels to the ROI adds more data (i.e., each new voxel
adds a column to B), but the size of the search volume does not affect the size of
R (since R has order Ns × Nc). So the more voxels there are in the search volume,
the more data we have to estimate the rows of E[Rtest].

As an example of how Equation (10.37) is applied, Ester, Sprague, and Serences
(2015) used this approach to study visual representations during the delay period
of a working-memory task in which subjects had to remember the orientation of
a briefly presented Gabor pattern. The encoding model assumed nine different
orientation channels. They used a leave-one-run-out cross-validation procedure
(e.g., see Ashby, 2019) in which they fit the encoding model to the data from
all but one functional run by estimating the weight matrix W from these data using
Equation (10.18). Next, they used the data from the single withheld functional run
to invert the encoding model – that is, to estimate E[Rtest] from Equation (10.37),
which provided an estimate of the channel responses during the delay period of
each trial of the withheld run. In brain regions that maintain a visual representation
of the stimulus during the delay period, the estimated channel responses should
peak at the to-be-remembered orientation, whereas in any other region, the channel

2 If we estimate the predicted matrix ̂̃Btest with the observed data matrix B̃test, then Equation (10.33)
becomes

B̃test = R̂testŴ. (10.34)

Multiplying both sides by Ŵ"(ŴŴ")−1 produces

B̃test[Ŵ"(ŴŴ")−1] = R̂testŴ[Ŵ"(ŴŴ")−1], (10.35)

which implies

R̂test(ŴŴ")(ŴŴ")−1 = B̃testŴ"(ŴŴ")−1, (10.36)

from which Equation (10.37) easily follows.
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responses should all be roughly the same. Using this approach, Ester, Sprague,
and Serences (2015) were able to identify a broad network of frontal, parietal, and
occipital regions that maintained a high-fidelity visual representation during the
delay period.

This method has also been used to study how psychological factors such as
attention (Garcia, Srinivasan, & Serences, 2013; Sprague & Serences, 2013),
working memory (Ester et al., 2013), or learning (Byers & Serences, 2014; Ester,
Sprague, & Serences, 2020) influence population responses. In these studies, Ŵ is
estimated from training data, and then separate population responses are estimated
from data collected in two or more test conditions [using Equation (10.37)], each
run under different levels of the psychological factor (e.g., with and without
attention). Finally, these separate estimates are all compared.

Recall that row i of R lists the response of each channel in the population to
presentation of stimulus Si. If the tuning functions all have the same shape during
both training and testing (i.e., the model is homogeneous), then each row of R
should peak at the channel most sensitive to Si and then decay as predicted by
the channel tuning function fc(Si,θc,x) [i.e., see Equation (10.1)]. To estimate this
function, it is common to shift the rows in R̂test so that the peak of the response is in
the same place across all channels (this is usually facilitated by the use of circular
dimensions, such as orientation or color), followed by averaging of responses
across rows. However, this method will fail if tuning is not homogeneous, which
could happen, for instance, if the test condition influences some channels more
than others (Hays & Soto, 2020).

There has been much recent controversy regarding the correct interpretation
of population responses that are estimated by inverting an encoding model (e.g.,
Gardner & Liu, 2019; Liu, Cable, & Gardner, 2018; Sprague et al., 2018). What
does it mean to find, for example, that attention narrows the estimated population
responses, or that it increases their amplitude? When the standard encoding
model is assumed, a change in the channel tuning function fc(Si,θc,x) produces
a corresponding change in the population responses. However, the converse is not
necessarily true: if Equation (10.37) is used to estimate the population responses,
then a change in those estimates across conditions does not imply a corresponding
change in the channel tuning functions.

For example, Liu, Cable, and Gardner (2018) reported evidence that the
Equation (10.37) estimates of the population responses can be biased by noise.
They ran an experiment in which gratings were presented at one of two different
contrasts. Single-unit electrophysiology shows that orientation tuning is contrast
invariant, so the width of the orientation channels should be the same for the
two contrasts. Therefore, the population responses estimated via Equation (10.37)
should be contrast invariant. In violation of this prediction, Liu, Cable, and Gardner
(2018) found that the estimated population response widths were greater for
the low-contrast gratings and they reported results of simulations supporting the
hypothesis that this apparent bias was the result of decrements in signal-to-noise
ratio that occur when contrast is reduced.
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Sprague et al. (2018) defended the inverted encoding model approach of
Equation (10.37) by correctly pointing out that its goal is to make inferences
about population responses r, not about individual tuning functions fc(Si,θc,x).
However, there seems to be a lack of clarity regarding the correct interpretation of
an estimated population response. In terms of brain processing, channel responses
are important because they are the input for downstream neurons that are part
of the decoding network that makes perception possible (and more generally,
any behavior). Any narrowing of the tuning function that might be caused, for
example, by attention, therefore provides more precise downstream information
for decoding. For this reason, Liu, Cable, and Gardner (2018) are also correct
when they point out that the information available for stimulus decoding is better
characterized by the posterior distribution over stimuli P(Si|ak) [i.e., see Equation
(10.32)] than by any reference to population responses (Van Bergen et al., 2015).

A focus on P(Si|ak) would also avoid a common issue in the literature, which
is that many researchers interpret estimated population responses by reference
and comparison to tuning functions from single-cell recordings, rather than by
focusing on what population responses would mean for downstream processing.
This is likely the result of how foreign the concept of a population response
is to an experimental neuroscientist. Electrophysiologists rarely measure the
response of multiple neurons or populations to a single stimulus. Instead, they
typically measure the response of a single neuron or small number of neurons
to many stimuli. For this reason, when Sprague et al. (2018) discuss population
responses, a casual reader could misinterpret their use of “population-level channel
response functions” as something like the channel tuning functions fc(Si,θc,x),
rather than their intended meaning as a pattern of distributed activity across
channels (i.e., r).

On the other hand, a focus on P(Si|ak) does not solve all the issues with model
inversion highlighted by the Liu, Cable, and Gardner (2018) results. In particular,
inversion of an encoding model that does not capture some of the data-generating
mechanisms will often lead to the wrong conclusions. In the Liu, Cable, and
Gardner (2018) study, the mechanism left out of the model was the influence of
contrast on signal-to-noise ratio. Unfortunately, whether one inverts the model to
obtain estimates of r or P(Si|ak), such estimates will be biased when the encoding
model is grossly incorrect.

Although Equation (10.37) provides biased estimates of channel tuning func-
tions, it nevertheless is widely used because an important goal of experimental neu-
roscience is to make inferences about channel tuning functions from neuroimaging
data. The obvious way to do this would be to estimate the parameters of the tuning
functions via model fitting to the data (e.g., using adaptive basis functions), and
then make these the target of inference rather than the population responses. A
problem with this solution is that encoding models are already complex, so adding
free parameters is likely to increase the identifiability problems that already exist.
Sadil, Huber, and Cowell (2021) recently addressed this issue by constraining the
one-dimensional encoding model [see Equation (10.4)] in multiple ways. First,
they assumed that tuning functions for all channels are identical except for their
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preferred stimulus (i.e., homogeneous population code). Second, they avoided the
many free weight parameters that characterize standard encoding models [as in
the Equation (10.13) model] by assuming that the weights in each voxel follow
a Gaussian-like curve centered at the stimulus value (e.g., orientation) that is
preferred by the dominant channel in that voxel. Third, they limited the number
of ways that the model predictions could be modified by some psychological or
experimental factor (e.g., reducing stimulus contrast). In addition, they adopted a
Bayesian framework that allowed them to introduce inferential biases through their
chosen prior.

Inverted encoding modeling also falls victim to the feature fallacy error
(Diedrichsen, 2020; Diedrichsen & Kriegeskorte, 2017). As explained earlier,
an infinite number of channel response matrices can be chosen that produce
exactly the same fit to the data (Gardner & Liu, 2019). Although these different
channel responses all predict the same aggregate activity [see Equations (10.28)–
(10.31)], their population response profiles can have dramatically different shapes.
This highlights the fact that inverted encoding is only useful when the obtained
estimates of the population responses are interpreted with specific reference to
the tuning functions and other features of the model that was inverted (Sprague,
Boynton, & Serences, 2019).

10.3.2 Stimulus Decoding and Reconstruction

The most common application of model inversion is not to estimate population
responses, but either to decode stimulus values or to provide a full reconstruction
of the presented stimulus. For example, the Equation (10.37) decoding scheme is
easily extended to stimulus decoding – that is, from the problem of estimating
the expected population response matrix E[R] to the problem of testing the ability
of the model to identify the stimuli that were presented during the test phase. The
rows of the R̂test matrix that results from applying Equation (10.37) will not exactly
equal any of the rows of the expected channel-response matrix E[Rtrain] that we
constructed when building the Equation (10.13) encoding model (e.g., because
of noise). So to use Equation (10.37) to complete the loop back to the stimulus,
we need a classification scheme that will assign a single stimulus to each row of
R̂test. Under the assumption that the noise vector εm in Equation (10.12) has a
multivariate normal distribution in every voxel with mean vector 0 and variance–
covariance matrix � = σ 2I, it turns out that for each row in R̂test, the optimal
classification strategy is to compute the correlation with every row in E[Rtrain]
and then associate that row in R̂test with the row in E[Rtrain] where the correlation
is highest [assuming that the prior probabilities P (Si) are equal for all stimuli;
e.g., Fukunaga, 2013]. Row i of E[Rtrain] contains the expected response of each
channel to the presentation of stimulus Si. Therefore, we can denote this row by
rtrain(Si)

" [i.e., see Equation (10.12)]. Row m of R̂test was generated by the mth
event, but of course, we do not know which stimulus caused this event. So denote
row m of R̂test by r̂test(Em)". Then the optimal decoding scheme uses the following
classification rule.
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Classify the mth event of the testing data as a stimulus Si event if

corr [̂rtest(Em),rtrain(Si)] = max
j=1,Ns

corr
[̂
rtest(Em),rtrain(Sj)

]
. (10.38)

As indicated earlier, an encoding model is not necessary to perform stimulus
decoding from fMRI data. This can also be achieved by training a machine-
learning algorithm to extract information about stimuli from activity patterns. This
type of nonparametric decoding appears in the literature more frequently than
decoding by inverting an encoding model, but it has been argued that machine-
learning approaches provide more limited opportunities to make inferences about
underlying computational mechanisms (Kriegeskorte & Douglas, 2019; Naselaris
et al., 2011). In other words, a common assumption in the field is that although
nonparametric decoding analyses can reveal what information is encoded in a
given brain region, they cannot reveal information about how that information is
encoded. On the other hand, experimental and modeling work reveals this to be at
least partially incorrect.

For example, an important question in sensory neuroscience is whether a
neural population encodes a stimulus property in a way that is invariant to
some irrelevant stimulus change; that is, with encoding being the same across
changes in an irrelevant feature. The opposite of such invariant encoding would
be context-specific or configural encoding, in which the way a stimulus property
is encoded by a population depends on the value of a second property. Both
invariant and configural representations are important for discussions of how
the brain represents objects and generalizes knowledge about them. Cognitive
neuroscientists have used a variation of decoding analyses, called cross-decoding
(or cross-classification, see Allefeld & Haynes, 2014; Anzellotti & Caramazza,
2014; Kaplan, Man, & Greening, 2015), to attempt to make inferences about
invariant encoding in particular brain regions. The first step in cross-decoding is
to train a classifier to decode a particular stimulus feature, such as the shape of an
object, from patterns of fMRI activity observed across voxels. The second step is
to test the trained classifier with new patterns of fMRI activity, this time obtained
from presentation of the same stimuli, but changed in an irrelevant property, such
as rotation in depth.

Theoretical and modeling work has shown that cross-decoding can indeed be
used to make valid inferences about how stimuli are encoded in a particular
area from neuroimaging data, without making any assumptions about specific
aspects of the encoding model (Soto, Vucovich, & Ashby, 2018). However,
cross-decoding provides evidence against the null hypothesis of context-specific
encoding (i.e., generalization of decoding performance shows that encoding is not
completely context-specific), and not evidence for the alternative of invariance. In
addition, the test is prone to false positives because the measurement model can
increase invariance in the transformation from neural to voxel space. Testing the
null hypothesis of invariance in addition to cross-decoding allows one to reach
more precise and valid conclusions about the underlying representations. These
theoretical insights have been verified through experimental and simulation work
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(Soto & Narasiwodeyar, 2021). It is likely that other general features of encoding
can be inferred using nonparametric decoding, but more research is needed in
this area.

In addition to simple decoding of the identity of a stimulus, model inversion
can also be used for full stimulus reconstruction, thereby providing a method
to visualize what has been encoded in the brain on a given trial. For example,
Naselaris et al. (2009) used the structural model illustrated in Figure 10.1 and a
Bayesian framework to reconstruct an image with the maximum posterior proba-
bility of having produced the measured BOLD activity. Their Bayesian framework
allowed them to compare reconstruction under a variety of prior distributions over
the images [P(Si) in Equation (10.32)]. They found that reconstruction with a flat
prior, which uses only information from voxel activities captured in the encoding
model, was insufficient to reveal the identity of objects in the reconstructed images.
A more informative prior that included some well-known statistical information
about natural images (a 1/f amplitude spectrum and sparsity in the Gabor-wavelet
domain) produced more natural-looking images, but still was unable to provide
information about object identity. Finally, they attempted to better capture the prior
distribution over natural images by sampling from it: they used a database of six
million images as a prior, so that each image in the set had a prior probability of(
6× 106

)−1
, and any image outside this set had a prior probability of zero. This

prior enabled them to reconstruct both the spatial structure and semantic content of
the original images. A similar approach was used to reconstruct videos presented
to participants from fMRI data (Nishimoto et al., 2011).

More recent research in this area leverages the power of deep learning for image
reconstruction, achieving reconstructions that could be recognized by humans
without the need to sample explicitly from some pool of natural images (e.g., Ren
et al., 2021; Seeliger et al., 2018; Shen et al., 2019).

10.4 Representational Similarity Analysis

Representational similarity analysis (RSA) is a multivariate method
that extracts similarity structures from BOLD activity (Kriegeskorte, Mur, &
Bandettini, 2008). It identifies activation patterns that are similar and others that
are dissimilar. A fundamental assumption is that two data sets that exhibit a
comparable similarity structure must share a deeper homology in how the systems
that generated those data represent and process events in the world. Perhaps the
greatest strength of RSA is that a common approach can be used to extract
similarity structures from many different modalities, allowing links to be drawn
between vastly different levels of analysis. For example, consider a mathematical
model of some perceptual or cognitive task that makes no neuroscience predictions
per se, but instead assumes that performance depends on some hypothetical
intervening variable, such as working memory load, attention, or reward prediction
error. Next, suppose that for each pair of possible trial types, we use the model
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to compute a predicted similarity by comparing its predicted values on the
intervening variable on the two types of trials. We can then compare these predicted
similarities to the similarity structure that RSA extracts from the BOLD data. If
the similarities predicted by the model and the similarity structure derived from
the BOLD responses in some ROI are qualitatively similar, then RSA concludes
that this ROI may play a key role in computing the value of the hypothesized
intervening variable.

RSA is conceptually simple. The first step is to compute a representational
dissimilarity matrix (RDM), which includes a row and column for every event,
condition, ROI, or task, depending on what type of similarity structure we want
to construct. For the present purposes, there are three obvious possibilities. One
is that the RDM will include dissimilarities between all possible pairs of activity
patterns estimated from a voxel-based encoding model (i.e., rows of Â). Another
possibility is that the RDM is estimated directly from the BOLD data in some ROI
for the same events that were used to create the activity patterns. Finally, a third
possibility is that the RDM is constructed from some other type of mathematical
model – for example, a traditional model of perceptual or cognitive processing
from the mathematical psychology literature. However the RDM is created, it is
assumed to include numerical data that define the similarity structure describing
how the various events are related.

The RDM is sometimes used to build a similarity structure using some form of
multidimensional scaling. But in most applications, two RDMs of the same task
are directly compared. For example, RSA is often used to test the validity of an
encoding model by testing statistically whether the RDM predicted by the model
is consistent with an empirical RDM estimated in some ROI from our fMRI data.

10.4.1 Estimating an RDM

An RDM is estimated by computing the dissimilarity in the model predictions or
data for all possible pairs of stimulus types (or more generally, event types). If there
are NS different stimuli, then these dissimilarities are collected in an RDM of order
NS × NS. The entry in row i and column j is the observed (in the case of BOLD
data) or predicted (in the case of a model) dissimilarity between the response to
stimulus types i and j. Denote this dissimilarity by d(Si,Sj).

In the case of BOLD data, d(Si,Sj) is computed by comparing rows of the BOLD
activity matrix B̃. Recall that B̃ is an NS × Nv matrix in which row i and column k
contains the estimated amplitude of the BOLD response to stimulus Si in voxel k of
the ROI. Therefore, row i is a vector describing the response of the ROI to stimulus
Si. In the case of voxel-based encoding models, the predicted aggregate activity
vector A replaces B̃. In the case of more traditional mathematical psychology
models, the RDM is computed by comparing predictions of the model – usually
on the intervening variable of interest – on all possible pairs of stimulus trials.

Let a"i denote the ith row of the aggregate activity matrix A predicted by some
voxel-based encoding model. Then d(Si,Sj) is an estimate of the dissimilarity of ai
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and aj. The concept of similarity is fundamentally important in almost every scien-
tific field. And across these different fields, similarity and dissimilarity are defined
in many different ways. In RSA, the choice of the best dissimilarity measure is
still an area of active research (Bobadilla-Suarez et al., 2020). Most applications,
however, have used one of three different measures: one minus the Pearson
correlation, a Euclidean-distance measure, or a Mahalanobis-distance measure.

As the name suggests, one minus the Pearson correlation equals

dP(Si,Sj) = 1− r(ai,aj), (10.39)

where r(ai,aj) is the Pearson correlation between the entries in ai and aj. The
Euclidean measure is defined as the squared Euclidean distance between ai and aj:

dE(Si,Sj) = (ai − aj)
"(ai − aj). (10.40)

Mahalanobis dissimilarity is based on the assumption that the underlying data are
samples from a multivariate normal distribution. The Mahalanobis dissimilarity
between activity vectors ai and aj, which is defined as the squared Mahalanobis
distance between the vectors, equals

dM(Si,Sj) = (ai − aj)
" �̂

−1
(ai − aj), (10.41)

where �̂−1 is the inverse of the estimated (spatial) variance–covariance matrix of
the activity vectors.

One weakness of all these measures is that if two activity vectors are identical
at the population level, and therefore their distance apart is zero, then noise can
only increase the distance between them. Therefore, under the null hypothesis that
two event types elicit identical activity patterns, all of these distance measures
will produce biased estimates of the true difference. One solution to this problem
is to use cross-validated Mahalanobis distance, or crossnobis distance (Allefeld
& Haynes, 2014). The crossnobis distance is computed by dividing the data into
Q independent partitions, and using a leave-one-partition-out scheme. Let ai(q)

denote the ith activity pattern computed from the data in partition q, and ai(¬q)

denote the same activity computed from the data in all partitions other than q.
Then the cross-validated Mahalanobis distance – that is, the crossnobis distance –
between the activity vectors associated with stimuli Si and Si is

dCN(Si,Sj) = 1

Q

Q∑
q=1

[ai(q)− aj(q)]" �̂
−1

[ai(¬q)− aj(¬q)]. (10.42)

Note that because [ai(k) − aj(k)] and [ai(¬k) − aj(¬k)] are computed from
different data partitions, the crossnobis distance dCN(Si,Sj) could be either positive
or negative. In contrast, of course, regular Euclidean and Mahalanobis distance
must both always be non-negative. The advantage of crossnobis distance is that it
eliminates bias. More specifically, under the null hypothesis that two events elicit
the same pattern of activation, the mean crossnobis distance between the resulting
activity vectors is zero, whereas with regular Euclidean or Mahalanobis distance,
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this mean is greater than zero (Allefeld & Haynes, 2014). Furthermore, A. Walther
et al. (2016) compared all of these measures on simulated and real fMRI data.
The most reliable method was crossnobis distance. Even so, the choice of the best
dissimilarity measure is still an area of active research. While crossnobis distance
has the appealing property of being unbiased and has been shown to be more
reliable than other measures, some researchers have recently argued that the one-
minus-Pearson-correlation measure is preferable (Bobadilla-Suarez et al., 2020).

10.5 Testing Encoding Models Against Behavioral Data

The introduction to this chapter claimed that many of the identifiability
problems that plague computational models of behavior could be alleviated by
extending tests of the models to fMRI data. However, we also saw that encoding
models have their own identifiability problems that complicate their interpretation.
Even so, it now seems clear that an integrative approach, in which behavioral
and neuroimaging data are both addressed within the same modeling framework,
would be beneficial in both mathematical psychology and computational neu-
roimaging (Soto, 2019).

There are at least three ways in which encoding models can be tested against
behavioral data. First, we can use encoding models that are grounded in neu-
roscience to predict behavioral data. Second, we can fit a cognitive model to
behavioral data, build an encoding model in which the encoding channels compute
the intervening variables hypothesized by the cognitive model, and then test the
resulting encoding model against fMRI data. This approach is known as model-
based fMRI (O’Doherty, Hampton, & Kim, 2007). Third, we can jointly model
fMRI and behavioral data in a truly integrative approach that constrains inferences
about a single model with both types of data. We now briefly describe each of these
approaches.

10.5.1 Encoding/Decoding Observer Models

One way to build an encoding model that makes simultaneous neural and
behavioral predictions is to generalize any of the voxel-based encoding models
described earlier in a way that allows them to make behavioral predictions. In all of
those models, the population neural response vector r is assumed to be available to
downstream neurons to decode useful behavioral information about the stimulus.
So to make behavioral predictions, two additional problems must be solved. First,
a choice must be made about which of a variety of possible decoding schemes is
incorporated into the model (e.g., Lehky, Sereno, & Sereno, 2013; Pouget et al.,
1998; Salinas & Abbott, 1994; Seung & Sompolinsky, 1993). Second, assumptions
must be made about how the model uses the decoded stimulus information to select
a response. We refer to encoding models that add a decoding scheme and response
selection assumptions as encoding/decoding observer models.
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As an illustration of this approach, consider a simple identification task in which
the stimuli vary on a single physical dimension [e.g., as in Equation (10.4)]. For
example, the stimuli might all be Gabor patterns that vary only on orientation or
spatial frequency. The question of which decoding scheme to use is complicated
somewhat by the fact that some schemes lead to an inherent ambiguity in whether
an observed behavioral change is due to encoding versus decoding changes (Gold
& Ding, 2013). Confronted with this dilemma, many modelers have assumed
optimal decoding via maximum likelihood estimation (e.g., Dakin, Mareschal, &
Bex, 2005; Deneve, Latham, & Pouget, 1999; Hays & Soto, 2020; Ling, Liu,
& Carrasco, 2009; May & Solomon, 2015; Paradiso, 1988; Series, Stocker, &
Simoncelli, 2009; Soto et al., 2021). This assumption leads to the decoding scheme
in which observation of the neural response vector r causes the model to infer that
the value of the presented stimulus was ŝ, where

ŝ = arg maxsP̂(s|r,θ), (10.43)

and as usual, θ is a vector of channel tuning parameters.
If neural noise is independent across channels, then

P(s|r,θ) =
Nc∏

c=1

P(s|rc,θ), (10.44)

and therefore, the log-likelihood is maximized when

ŝ = arg maxs

Nc∑
c=1

ln P̂(s|rc,θ). (10.45)

There is usually a single optimal solution for a well-posed statistical problem
such as this, which therefore avoids the ambiguities mentioned above about
whether behavioral changes are caused by encoding or decoding mechanisms.
An additional advantage is that the asymptotic properties of maximum likelihood
estimators are well known. In particular, maximum likelihood estimators are
asymptotically normal, and if noise is independent and identically distributed
across channels, then the maximum likelihood estimator ŝ of the true stimulus
value s0 has an asymptotic normal distribution with mean s0 and variance

σ 2
ŝ = [n I(s0)]

−1,

where I(s0) is the Fisher information, and n is the number of channels (e.g., Van der
Vaart, 2000).

Note that this variance can be directly computed if an analytical form for the
Fisher information is known, which is the case for the standard encoding model
with Gaussian tuning functions that all have identical width ω [i.e., see Equation
(10.4)]. When, in addition, neural noise is Poisson and independent, the Fisher
information is given by (Dayan & Abbott, 2001; Pouget et al., 1998; Seung &
Sompolinsky, 1993):
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I (s) =
N∑

c=1

[
f ′c (s)

]2
fc (s)

=
N∑

c=1

rmax (s− sc)
2

ω4
exp

[
−1

2

(
s− sc

ω

)2
]

, (10.46)

where fc(s) is the Gaussian tuning function of Equation (10.4) and f ′c(s) is its
derivative with respect to s. For Gaussian neural noise with fixed variance σ 2

r ,
the Fisher information is given by (Pouget et al., 1998):

I (s) = 1

σ 2
r

N∑
c=1

f ′c (s)2

= 1

σ 2
r

N∑
c=1

rmax (s− sc)
2

ω4
exp

[
−
(

s− sc

ω

)2
]

. (10.47)

When I (s) is unknown, which is likely to be the case for many encoding
models, σ 2

ŝ can be directly estimated through Monte Carlo simulation (e.g., Dakin,
Mareschal, & Bex, 2005; Hays & Soto, 2020; Ling, Liu, & Carrasco, 2009).

Another advantage of assuming that decoding is optimal is that it allows
encoding/decoding observer models to be linked to psychophysical measures in
a straightforward manner. For example, the distribution of ŝ could be interpreted
as the distribution of perceptual evidence assumed by Gaussian signal detection
theory (Ashby & Wenger, Chapter 6 of this volume; Green & Swets, 1966;
Macmillan & Creelman, 2005), which links the encoding/decoding observer model
to popular measures such as d′ and sensory thresholds. For example, consider a
two-stimulus identification task with stimuli that have values s1 and s2. Suppose
we use these asymptotic results to compute the mean μŝ and variance σ 2

ŝ of the
distribution of estimates for each stimulus, either through analytical expressions
or Monte Carlo simulation. From these values, it is easy to compute the model’s
predicted d′ for the identification task (Soto et al., 2021):

d′ = μŝ1 − μŝ2√
0.5
(
σ 2

ŝ1
+ σ 2

ŝ2

) .

Note that I (s) is a function of the stimulus value, so the variance of decoded val-
ues might change when different stimuli are presented. However, most researchers
assume that it remains the same across values of the decoded variable, in line with
the equal-variance signal detection model.

The methods used to create encoding/decoding observer models allow behav-
ioral predictions to be generated from almost any encoding model that has either
been fitted to neural data or constrained by it. For example, Goris et al. (2013)
showed that an encoding/decoding observer model constrained by what is known
about encoding of spatial frequency in primary visual cortex does an excellent job
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at predicting pattern detection behavior. In principle, any well-defined encoding
model can serve as a model of behavior with relatively minor adjustments.

Equations (10.28)–(10.31) showed that many different sets of encoding channels
make identical predictions. This can make it difficult to draw strong inferences
about why some change occurred in a population response. One way to resolve
these ambiguities is to explore various alternatives by formulating them as
hypotheses that make distinct behavioral predictions in some psychophysical task.
Simulation work has shown that when combined with inverted encoding modeling,
only a couple of psychophysical experiments are sufficient to arbitrate between
major hypotheses about changes in neural encoding (Hays & Soto, 2020).

Signal detection theory has been an invaluable model, not only in perceptual
tasks, but also in cognitive tasks such as recognition memory (e.g., Wixted, 2007),
causal and contingency learning (e.g., Siegel et al., 2009), generalization (e.g.,
Blough, 1967), and metacognition (e.g., Maniscalco & Lau, 2012, 2014). For this
reason, the methods that have been successfully used to link encoding models to
psychophysics in the vision literature might prove useful in other research areas
as well.

10.5.2 Model-Based FMRI

All of the encoding models considered so far were designed specifically with
the goal of modeling fMRI data. But fMRI data can also be used to provide
unique tests of cognitive-based mathematical models that are more traditional
within mathematical psychology. The methods that have been developed to test the
validity of purely behavioral computational models against fMRI data are known
as model-based fMRI (O’Doherty, Hampton, & Kim, 2007).

Purely behavioral models are those that make no neuroscience predictions.
Instead, they typically make predictions about how a participant will respond to
a stimulus by appealing to some hypothetical constructs or latent (intervening)
variables, such as, for example, memory, attention, or similarity. The models are
tested against behavioral data by examining their ability to account for dependent
variables such as response accuracy and response time. A good fit provides
only indirect support for the model and its hypothesized latent variables – in
part, because of the identifiability problems described earlier. Model-based fMRI
provides an opportunity to improve model identifiability by offering a method to
examine the latent variables more directly. The basic idea is to estimate the free
parameters of the model by fitting it to the available behavioral data – in exactly
the same way that the model is typically applied. Next, the parameter estimates
that result are used to derive predictions from the model about one or more
latent variables, and finally these predictions are compared to the observed BOLD
responses from various brain regions (e.g., by using the GLM). For example,
consider an exemplar model that predicts trial-by-trial categorization responses are
determined by certain specific similarity computations. In model-based fMRI, the
critical similarity value predicted by the model is computed on every trial and then
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correlated with trial-by-trial observed BOLD responses, either across the whole
brain or in specific brain regions. Finding a region where the correlation is high
accomplishes two goals. First, it provides empirical support for the model that is
impossible with purely behavioral data because it suggests that changes in neural
activity in some brain region are consistent with changes in a latent variable that
the model predicts is critical to the task under study. Second, a good fit identifies
brain regions that might possibly mediate the processes hypothesized by the model.
Since the models are perceptual or cognitive, this allows an important first step in
extending them to the neural level.

In the ideal application, the constructs that are tested against fMRI data change
significantly from trial to trial. For example, consider a model that assumes
participants compare the presented stimulus to some internally constructed deci-
sion criterion and give one response if the criterion is exceeded and a different
response if it is not (e.g., as in signal detection theory). A model that predicts the
numerical value of this criterion on every trial could be tested against fMRI data
by correlating the predicted criterion value against the BOLD response observed in
different brain regions. However, if the experimental design is such that the model
predicts only slow changes in the criterion during the scanning session, then these
correlations will not provide strong tests of the model because the predicted BOLD
responses in criterion-setting regions will be similar to the BOLD responses in
task-inactive brain regions.

After some model-predicted hypothetical constructs are selected that vary
significantly from trial to trial, a typical model-based fMRI analysis would include
the following steps. First, the model is fit to the behavioral data collected during
the functional run separately for each participant. The primary purpose of this
step is to estimate the free parameters in the model. Since the model being tested
is purely behavioral, it makes no predictions about neural activations or BOLD
responses, and as a result, its parameters should only be estimated by fitting to
behavioral data.

The second step is to use the parameter estimates from step one to compute
numerical values of the intervening variables from the model that were identified
earlier to test against the fMRI data. The goal here is to identify brain regions in
which changes in the BOLD responses are predicted by changes in the variables. In
the case of the exemplar model, obvious candidates include the predicted summed
similarity of the presented stimulus to each of the contrasting categories.

Step three is to construct a model of the BOLD response from each of the
selected model variables. The standard approach is to first construct a boxcar
function of square waves for each variable. The height of this function is set to zero
when the variable is predicted to be inactive and to the value of the variable when
it is active. For example, in the case of the exemplar model’s predicted summed
similarity to some category A, the boxcar function would equal zero between trials
and its height would equal the predicted summed similarity to exemplars from
category A during the time beginning with each stimulus onset and ending with
the participant’s response. After this boxcar function is built, predicted BOLD
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responses are computed by convolving the boxcar function with some model of
the hrf [as in Equation (10.21)].

Step four is to correlate each of these predicted BOLD responses with the
observed BOLD response in every voxel via the GLM. Voxels where the corre-
lation is high are identified as being sensitive to that variable (for a more thorough
description of all these steps see, e.g., Ashby, 2019).

In summary, a model-based fMRI analysis of this type: (1) tests the model
against a new dependent variable (i.e., the BOLD response); (2) potentially makes
the model’s latent variables observable; (3) identifies brain regions sensitive to
the model’s latent variables; and (4) provides valuable data that could be used to
develop a neurocomputational version of the model.

10.5.3 Joint Neural and Behavioral Modeling

Encoding/decoding observer models are neural models in which some assumptions
are added that allow tests against behavioral data. In contrast, model-based fMRI
is an approach in which assumptions are added to purely behavioral models that
allow tests against fMRI data. A third way in which encoding models can be
tested against behavioral data is to build models that directly account for both
neuroscience and behavioral data. There are two general approaches to joint
modeling of this kind – one based in neuroscience and one based in statistics.
Their main advantage is that they use variation in both behavioral and neural data
to jointly and equally constrain inferences about encoding models.

The neuroscience approach comes from the emerging field of computational
cognitive neuroscience (CCN), which is a new field that lies at the intersection
of computational neuroscience, machine learning, and neural network theory (i.e.,
connectionism) (Ashby, 2018; O’Reilly & Munakata, 2000). The goal here is to
build biologically detailed neural network models in which the simulated regions
and their interconnections are faithful to known neuroanatomy. The units that
define the network are either simulated spiking neurons or populations of similar
neurons (e.g., a cortical column), in which case the primary dependent variables
are the firing rates of each population. Theoretically at least, CCN models can
account for all levels of a behavioral phenomenon from single-neuron spiking up
to behavior. In particular, a good CCN model should predict how neural activity
changes in a variety of different brain regions as the subject performs the task
under study, and at the same time make predictions about the most widely studied
behavioral dependent variables, including response accuracy and response time. In
general, testing CCN models against fMRI data follows the same basic steps as
in model-based fMRI. For a description of the special issues that arise due to the
extra neuroscience details of CCN models, see Ashby (2019).

The statistical approach to joint modeling uses a hierarchical Bayesian inferen-
tial framework to model the statistical relations between neural and behavioral
measures directly within a single model (Palestro et al., 2018; Turner, 2015;
Turner et al., 2013). To keep the presentation concrete, consider an identification

https://doi.org/10.1017/9781108902724.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.011


464 f. a. soto and f. g. ashby

experiment in which participants are presented with one of two stimuli on
each trial, S1 and S2, and their task is to report which of the two stimuli
was presented. Model performance in this task will depend on the specific
stimuli that are presented and their base rates, which can be collected in the set
S ={S1,S2,P(S1),P(S2)}. The neural dependent variables are the amplitudes of
the BOLD responses to the two stimuli, collected in the 2 × 1 vector b̃, and the
behavioral dependent variables are the proportion of correct responses on S1 trials
and on S2 trials, which can be collected in a 2 × 1 vector o. Finally, we assume
that the BOLD responses are related to the channel responses according to the
linearized encoding model of Equation (10.15).

To build a joint model, we begin by computing the likelihood of the fMRI
data, P(b̃|R,β,S), where β represents a vector of parameters from the neural
measurement model. For example, in the linearized encoding model, β would
include the weight parameters in w as well as the variance–covariance matrix of
measurement noise �m. Second, we compute the likelihood of the behavioral data,

P
(

o|R,γ ,S
)

, where γ is a vector of parameters from the behavioral measurement

model. Both of these likelihoods depend directly on the random population
response R, which has a distribution P

(
R|θ,S) specified either by Equation (10.2)

or (10.3), and that depends on the encoding model parameters and the stimulus
set S (we omit state variables for simplicity). Finally, the model should formalize
prior distributions over all the parameters included in θ , β, and γ , which would
depend on hyperparameters . With this, the model is fully specified and the joint
posterior distribution of the model parameters can be expressed as

P
(
θ,β,γ | b̃,o

)
∝ P

(
b̃ |R,β,S

)
P
(

o |R,γ ,S
)

P
(
R |S,θ

)
P
(
θ,β,γ |

)
.

(10.48)

In general, this distribution can be approximated using any of a wide range of
available sampling algorithms (see Gilks et al., 1996).

Under the assumption that the BOLD responses are related to the channel
responses according to the linearized encoding model of Equation (10.15), the

likelihood of the BOLD amplitude P
(

b̃t|R,β,S
)

is multivariate Gaussian with

mean E[R] w [i.e., see Equation (10.15)] and variance–covariance matrix �m. The
priors over w and �m can be chosen to match the regularization algorithms used in
past applications of encoding modeling (Diedrichsen & Kriegeskorte, 2017), or to
be conjugate for the likelihood function, which facilitates inference. The likelihood

of the behavioral data P
(

o |R,γ ,S
)

can be obtained by linking the encoding

model to signal detection theory in the way described earlier in this section. In this
approach, an optimal decoder is used to obtain estimates of the noise in the decoded
stimuli. With the addition of a threshold parameter, one can obtain the likelihood
of each possible response on a given trial from the cumulative normal distribution.
As before, priors can be chosen following previous applications of signal detection
theory that have used a Bayesian framework, or to be conjugate to the likelihood
function. Finally, the distribution of population responses P

(
R |S,θ

)
will depend

on our choice of tuning functions and neural noise, and priors can be chosen to be
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conjugate to that distribution, or based on previous applications (Sadil, Huber, &
Cowell, 2021; Van Bergen et al., 2015).

10.6 Conclusions

Mathematical psychologists build and test mathematical models of per-
ceptual, cognitive, and motor behaviors. A common goal is to develop models
that describe the underlying processes that are presumed to mediate the behavior
under study. When tested in the traditional way – that is, against behavioral
measures such as response accuracy and response time – these processes are almost
always unobservable. One common barrier that limits progress in this field is
that models postulating very different psychological processes can often provide
a similarly good quantitative fit to the behavioral data. For example, because of
such nonidentifiabilities, many subfields are still debating the validity of competing
models that were proposed 40 and 50 years ago.

Testing these models against fMRI BOLD data offers the hope of greatly
improving model identifiability. And, because of methods such as RSA and
model-based fMRI, this is true even for models that include no neuroscience
detail. For example, any model that makes predictions about psychological
processes that are unobservable with behavioral data could benefit from
testing via model-based fMRI, at least so long as those predictions change
significantly trial-by-trial. In particular, if two competing models account
for behavioral data about equally well, then we should favor the model
that makes predictions about trial-by-trial changes in some psychological
process that track changes in the BOLD response of some brain region,
over the model that makes process predictions that are not mirrored by
BOLD data.

As an example of how RSA might benefit cognitive modeling, suppose some
cognitive theory predicts that the same perceptual and cognitive processes mediate
performance in two different tasks. Then this theory should predict similar patterns
of activation in an fMRI study of the two tasks, even if the theory makes no
predictions about what those activation patterns should look like. If an RSA
concludes that the activation patterns in the two tasks are qualitatively different,
then the theory probably needs some significant revision.

Although the number likely decreases every year, there are still many cognitive
scientists who are deeply skeptical of fMRI – some even characterizing it as a new
form of phrenology (Dobbs, 2005; Uttal, 2001). Even so, recent methodological
advancements, such as model-based fMRI and RSA, show that fMRI can provide
useful and powerful new tests of models – even purely cognitive models – that
would have been considered a fantasy just a few decades ago.

10.7 Related Literature

For a thorough description of virtually all statistical methods for analyzing
fMRI BOLD data – including traditional GLM approaches, as well as encoding
and decoding methods, RSA, and DCM – see Ashby (2019).
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An introduction to encoding and decoding from a computational neuroscience
perspective can be found in Pouget, Dayan, and Zemel (2003) and Dayan
and Abbott (2001). For an introduction to applications of encoding models to
neuroimaging, see van Gerven (2017).

Decoding analyses of neuroimaging data using machine-learning algorithms
(e.g., MVPA) rather than explicit encoding modeling are covered by Pereira,
Mitchell, and Botvinick (2009). Kriegeskorte and Diedrichsen (2019) summarize
recent work on RSA and its relation to encoding modeling (see also Diedrichsen
& Kriegeskorte, 2017). May and Solomon (2015) describe encoding/decoding
observer modeling in detail, and O’Doherty et al. (2007) does the same for model-
based fMRI. Palestro et al. (2018) give a tutorial introduction to joint modeling of
neural and behavioral data using a hierarchical Bayesian framework.
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χ -squared, 369, 374

absolute fit evaluation, 402
absorptance, 10
action policy, 170, 173
activation-suppression race, 359–362, 364,

366–368, 370, 371, 374, 375, 377–380
graphical model, 364

activity profile, 432, 435, 436, 442
actor–critic model, 194
alpha function, 197
anticipated response inhibition, 349
attribute, 386
attribute joint distribution, 392
autofocus, 7
automaticity, 202–203

backpropagation, 168, 181
balloon model, 440
basal ganglia, 193–199
Bayes, 2, 23, 24, 26, 28, 31, 32, 34

likelihood, 24–26, 32–34
posterior, 24–26
prior, 24–26, 31–34

Bayesian, 358, 362, 394
approximate methods, 359–364, 366, 367,

374, 378, 381
approximate posterior, 363
conjugate priors, 358
hierarchical, 357, 366, 367, 372, 374
model, 358
modeling, 357
population Monte Carlo, 364, 367, 372–375,

381
probability density approximation, 364, 367,

374, 376–378, 380, 381
rejection, 364, 367, 370–372, 374,

378, 381
Bayesian learning models, 168, 176–180
Bayesian methods, 434, 455, 463–465
behaviorism, 219
Boole’s inequality, 56

cancel time, 336
Carathodory theorem, 129
categorization task, 281–282, 286–289

identification-confusion matrix, 286
Cauchy sequence, 119
CDM types, 387
cerebellum, 199–202
chain, 94

length of, 96
minimizing vector, 130

chain-on-net, 110
channel response

compressive nonlinearity, 428
channel tuning function, 425, 435, 436, 451, 452
Cholesky factorization, 297
classical conditioning, 164, 173–175
coactivation models, 67
cognitive diagnostic computerized adaptive

testing, 410
color matching, 3

functions, 13
composite face effect, 284
computational cognitive neuroscience, 169, 197,

424, 463
computational model, 7, 9, 12, 17, 18, 22, 31,

357
computational observer, 30
cone

density, 20
fundamental, 11, 12
mosaic, 8
outer segment, 11

configural perception, 284
conflict task, 359–361

Eriksen flanker, 360
Simon, 360
Stroop, 360
sTROOP, 360

confusion matrix, 148, 281–282, 293–300
context independence, 319
context invariance, 50, 56
contiguity effect, 234

473

https://doi.org/10.1017/9781108902724.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.012


474 Index

continual distractor free recall, 234
contrast sensitivity, 23, 27–29
convergence

to a path, 111, 117
convex

combination, 127
hull, 129
subset, 129

convolution, 16, 17
copula, 345

countermonotonicity, 348
Farlie–Gumbel–Morgenstern (FGM), 346

countermanding, 333
coupling, stochastic, 49
COVIS, 195–199, 302
criterial noise, 289
crossmodal, 45
crossmodal response enhancement (CRE), 45

detection accuracy, 58
diffusion model, 69
on distributions, 73
Poisson superposition model, 68
reaction times, 46, 54
signal detection, 59
spike numbers, 46, 50
TWIN model, 71

da Vinci, 5
decision bound models, 287
decisional separability (DS), 282, 284, 289

testing for, 290
decoding methods, 447–455

cross-decoding, 454
stimulus decoding, 453, 455

deconvolution, 433
deep neural network, 444, 455
delta rule, 168, 181
dependent censoring, 346
derivative, 22, 23, 27, 34
dichromatic, 20
diffusion, 359, 362
diffusion coefficent, 68
diffusion model, 68
DINA model, 388
DINO model, 388
display, 7, 8, 14, 17, 25, 32
dissimilarity cumulation

in discrete spaces, 103
in Euclidean spaces, 120
in path-connected spaces, 110

dissimilarity function, 81, 95, 98, 101, 106–108,
110, 113, 147, 148, 151, 152

corrected, 107
quasimetric, 96, 100

distance, 362–365, 369, 370, 372–374, 378,
381

Kullback–Leibler, 374, 381
distribution

ex-Gaussian, 322
exponential, 325
inverse Gaussian (Wald), 330
Weibull, 326

divisive normalization, 429
dopamine, 184–185, 190–199
dopamine active transporter, 185
drift rate, 68
drift-diffusion model, 278–280, 300–301

parameter estimation, 279
dual-controller model, 176
dynamic causal modeling (DCM), 423, 437, 440
dynamic encoding models, 436–440
dynamical system, 180

EEG, 303
empirical applications, 397
encoding independence, 303
encoding separability, 303
encoding/decoding observer models, 458–461
enhancement

auditory, 60
visual, 60

episodic memory, 234
Euclidean space, 120
Euler homogeneity, 123, 126, 153
examinee classification, 405
exploratory cognitive diagnosis models, 411

facilitation, 44
feature fallacy error, 445, 453
feature space, 443–446
Fechnerian distance, 97
Fechnerian scaling, 64, 81, 82, 95, 97, 103,

148–150, 153
ultrametric, 151

filtering task, 291
Finsler geometry, 120, 152
Fisher information, 459
Floyd–Warshall algorithm, 106, 146
fMRI, 303
focused attention paradigm, 54
Fourier, 2, 36
fovea, 19, 20, 33, 34
Fréchet inequalities, 51
free energy, 178, 180
function

radius-vector, 124
unit vector, 126

functional magnetic resonance imaging (fMRI),
422–466

BOLD response, 429, 432–440
encoding versus decoding, 422
multivoxel pattern analysis (MVPA), 422, 433

https://doi.org/10.1017/9781108902724.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.012


Index 475

rapid event-related design, 433
TR (repetition time), 424
voxel, 424, 432

G-DINA model, 389
G-DINA model extensions, 390
Gabor, 2
Gauss–Markov theorem, 434
Gaussian, 14, 15, 25, 31–33
general linear classifier, 287
general linear model (GLM), 423, 430, 432–434,

440, 463
general recognition theory, 265, 280–303

decision rule, 288
decisional separability, 291
Gaussian model, 293–300
hierarchical model fitting, 289
model identifiability, 289–291
neuroscience extensions, 302
response time models, 300–301
summary statistics approach, 289, 291–293

Gibbs sampling, 328, 372, 394, 405
global learning rule, 168
go task, 312
goal-directed learning, 176
gradient-descent learning algorithms, 168, 181
Grassmann, 3
greedy action policy, 175
GRT-wIND, 290, 298

habit, 164, 176
Hebbian learning, 166, 185–190, 202–203,

225–227
Helmholtz, 4, 22, 23
hemodynamic response function (hrf), 438
hierarchical Gaussian filter, 178–180
hippocampus, 188–190
holistic perception, 284–285

ideal observer, 26–30
identification task, 281–282, 293–300

2× 2 factorial identification task, 281, 282,
295, 301

i.i.d., 358, 363
image reconstruction, 31, 34
implementational models of learning, 169–170,

183–184
importance weight, 364, 365, 372, 373
independent components analysis, 2
indicatrix, 124
inequality

triangle, 96, 98, 100, 101, 106–109, 114, 115,
117, 118, 146, 148, 151

ultrametric, 151
information theory, 2
inhibition, 44

inhibition function, 314
instrumental conditioning, 164, 177
integration efficiency (IE), 61

d-prime, 62
detection rate, 62
Fechnerian scaling, 65

integration method, 323
inverse effectiveness, 47, 61, 68
irradiance, 3, 4, 7, 8, 14, 22, 23
iso-sensitivity curve, see ROC curve, 271
iterative sample mean, 171, 178
Izhikevich spiking model, 196–197

judgment of recency, 252

kernel, 370, 374, 376
transition, 370, 372, 374, 376

Laplace transform
approximate inverse via Post approximation,

247
memory for time of past events, 245
relationship to temporal context, 245

latent classes, 387
LATER model, 329
law of effect, 164, 192
leaky competing accumulator, 359
leaky competing accumulator model, 334
learning curve, 204

backward, 205
exponential, 204
forward, 204
incremental versus all-or-none, 205

least squares, 358
least squares – separate (LSS), 433
light field, 5, 6

incident, 5–8
light ray, 4, 6
likelihood, 358–365, 367, 374, 376, 378, 380,

381, 394, 405
linear method, 2, 4
linear regression with basis functions, 424, 435,

436, 442, 446
linear system, 9, 10, 14, 16

homogeneity, 9
superposition, 9, 10

linear–nonlinear cascade, 2
linear-operator model, 165
linearized encoding model, 424, 430, 431, 442,

446, 464
linking proposition, 337
local learning rule, 168
logarithmic temporal memory, 248

optimality, 249
long-term recency effect, 234
long-term depression (LTD), 165, 166, 185, 185
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long-term potentiation (LTP), 165, 166, 184–185
long-term store, 232
Luce–Shepard choice model, 299–300

machine learning, 3, 27, 34
marginal response invariance, 291
marginal RT invariance, 292
marginalized maximum likelihood estimation,

394
Markov chain, 369
Markov chain Monte Carlo, 328, 359, 360, 366,

368–372, 376, 378, 380, 381, 394
Markov chain Monte Carlo estimation, 394
Markov decision process, 170
Markov process, 359
maximal negative dependency, 52
maximum likelihood, 357, 366
maximum likelihood estimation, 296–297, 395
maximum a posteriori probability, 405
Maxwell, 13
mean method, 323
measurement of learning, 411
Menger convexity, 119
metric, 64, 81, 96, 106, 118, 148, 151

Euclidean, 120
Fechnerian, 97
intrinsic, 117, 137, 139

Metropolis–Hastings, 366, 370, 376
microlens, 7
model

blocked-input, 338
diffusion-stop, 342
DINASAUR, 338
pause-then-cancel, 352

model identifiability, 396
model inversion, 447–455
model mimicry, 421, 446, 452, 458, 465
model-based fMRI, 422, 424, 458, 461–463
multicollinearity, 445
multidimensional scaling (MDS), 147

metric, 148
nonmetric, 148, 149

multiple learning systems, 166–167
multiple-look experiments, 277
multisensory integration (MI), 42, 48

audiovisual speech identification, 59
definition, 43
in focused attention paradigm, 57
in redundant signals paradigm, 54
in single neurons, 49
measure based

on accuracy, 58
on modeling of RTs, 67

measure of, 44
rules of, 46
spatial rule, 46
temporal rule, 47

multisensory neuron, 53
multitrace models, 251

net, 110
mesh of, 110

neural channel, 424, 429, 444
neural contiguity effect, 240
neural network, 2, 34
neural network models, 359
neural recency effect, 240
neurons, 220
Newton, 3
NMDA receptors, 184, 186, 190, 198
noise, 2, 14, 15, 25, 30
nonconstant self-dissimilarity, 143
nonparametric methods, 397
nonstationary, 359
normative learning models, 167

observation area, 87, 88, 92, 104, 106, 140,
153

operant conditioning, 164
optics, 2, 4, 8, 16, 17, 28, 31

cornea, 12, 14, 18, 19
lens, 2, 8, 14, 18, 19

Ornstein–Uhlenbeck process (OUP), 69
outer product association, 225
overtraining, 177

parameter-space partitioning, 204
particle filtering, 372, 378, 381
patch

near-smooth, 146
typical, 144

path, 110
D-length of, 111
G-length of, 113

path connectedness, 120
perceptron, 199
perceptual independence (PI), 282
perceptual integrality, 284
perceptual interactions, 282
perceptual separability (PS), 282, 284
phosphene, 5
photocurrent, 10
photodetector, 7
photon, 6
photopigment, 3, 4, 8, 10, 13

excitation, 10, 12, 20
photoreceptor, 4, 7, 8, 17, 19

cone, 8
rod, 9

pigment
inert, 3
macular, 8, 11

pinhole camera, 5, 6
plenoptic, 6
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point of subjective equality (PSE), 89
point spread function, 16–21, 30
Poisson, 6, 14, 15, 27, 31, 32
Poisson superposition model, 67
population encoding model, 425
population receptive field, 440–443
population response, 425–429, 431, 442,

448–453
posterior distribution, 358, 359, 362–368,

370–372, 374, 376–381, 408
maximum a posteriori probability, 366, 370,

372
mode, 366
proper, 366

prelabeling model of integration (PRE), 62
principal components, 2
principle of univariance, 10
prior distribution, 358, 364–366, 370–374,

376–378, 394
diffuse, 367, 370
improper, 364, 366, 367, 376

proactive inhibition, 342
probability density function, 358
probability summation (PS), 43, 49

in spike numbers, 49
hypothesis, 50
in reaction times, 55
in redundant signals paradigm, 55
maximal negative dependence, 52, 53

process models of learning, 167
proposal distribution, 364, 370, 374, 381
psychological equality, 87
psychometric function, 82, 89, 97
pupil, 6, 8, 14, 19

Q learning, 175–176, 194
Q-matrix, 386
Q-matrix construction, 398
Q-matrix empirical validation, 399
quasi-ultrametric, 151
quasimetric, 96

race assumption, 319
race model, 55, 71

dependent, 332
diffusion, 330
ex-Gaussian, 326
exponential, 325
general, 318
Hanes–Carpenter, 329
independent, 56, 320
interactive, 334
nonparametric independent, 324
perfect negative dependency, 348
semi-parametric, 345, 346

race-model inequality (RMI), 56

radial basis function, 428
radiance, 7, 22, 24–26
recency effect, 231
redundant signals paradigm, 54
regular minimality, 93, 144, 148
regularization, 434, 445, 446, 464
reinforcement learning, 168, 170–177, 192, 193,

195, 202–203
model-based, 171, 176–177
model-free, 171–176
off-policy algorithms, 175

relative fit evaluation, 404
reliability assessment, 406
report independence, 293
representational drift in cortex, 230
representational similarity analysis (RSA), 422,

455–458
crossnobis distance, 457
Mahalanobis distance, 457
one-minus-Pearson dissimilarity, 457
representational dissimilarity matrix (RDM),

456–457
Rescorla–Wagner model, 165
response bias, 279–280
response inhibition, 312
retinal image, 3, 4, 8, 16, 17, 20, 23
reward devaluation, 177
reward prediction error (RPE), 172, 174, 191,

193–194
ROC curve, 271–276

area under the ROC (AUC), 276
concave, 273–276
confidence ratings, 272
guessing, 271
payoffs, 271

RT-distance hypothesis, 292, 300
Rushton, 10

saccadic inhibition, 338
same–different judgments, 92, 143
scree plot, 150
selective stop paradigm, 349
semicontinuity

lower, 117
sequential effects, 350
serial position effects, 358
Shepard symmetrization (SS), 148
shift-invariance, 16, 17
short-term store, 231–234
signal detection theory, 265–280, 460–461

β, 273
d′, 270, 276, 278
applications, 276–278
assumptions, 266
confusion matrix, 270
decision rule, 269, 272, 273
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signal detection theory (Cont.)
false alarm, 270
history, 266–267
hit, 270
identification vs. categorization, 281
impact, 267
likelihood ratio, 276
multidimensional generalization, 280
normal, equal-variance model, 269–278
normal, unequal-variance model, 274, 274
optimality, 272
payoffs, 273
receiver operating characteristic, 271
relations to Type I and Type II errors, 266
response criterion (XC), 270, 278
response time models, 278–280
technological precedents, 266
two-stimulus identification, 268
YES–NO detection task, 269

signal detection theory (SDT), 58
signal-respond RT, 316, 319
software, 393
sorites paradox, 140
soritical sequence, 141
spike numbers, 46
spike-timing-dependent plasticity, 187, 188
SSD invariance, 319
statistical decision theory, 265–304
statistical facilitation effect, 71
stimulus onset asynchrony (SOA), 54
stimulus space, 81, 82, 87, 91, 95, 98, 106,

143
D-complete, 119
discrete, 103
in canonical form, 91, 97, 98, 106
well-matched, 142
with intermediate points, 118

stimulus-sampling theory, 164, 229
stochastic independence, 320
stop-change paradigm, 348
stop-signal

delay, 312
paradigm, 312

stopping time, 68
stress measure, 148
submetric function, 81, 122–124, 133, 136,

155
convex, 134
minimal, 130, 132, 133, 135, 155

sufficiency principle, 363
summary statistic, 363–365

sufficient, 363, 369, 370, 372, 381
superadditivity, 61, 65
supervised learning, 168, 180–183, 199–202

symmetry in the small, 99
synapses, 220

tangent
bundle, 121
space, 121

temporal context cells, 255
temporal context model, 235

contextual drift, 236
contiguity effect, 238
item-to-context matrix, 237
neuropsychological evidence, 239
recency effect, 237

temporal discounting, 171
temporal order judgment (TOJ), 72
temporal-difference learning, 173–175, 194
three-factor learning, 185, 190–199, 202–203
threshold, 26, 28, 31
Thurstonian model, 143

well-behaved, 145
time cells, 254
time-window-of-integration (TWIN) model, 69
timed marginal response invariance, 292
timed report independence, 293
Toeplitz matrix, 439
tolerance, 369, 370, 372–374, 378, 381
transfinite induction, 147
trichromatic, 8, 20
trigger failures, 349
two-alternative forced-choice task, 266, 267, 276
two-factor learning, 185–190, 202–203

uniform continuity, 99
unisensory imbalance, 47
unsupervised learning, 168

validity assessment, 408
value function, 170, 171
vector

affinely dependent, 128
maximal production, 130
space, 127

visuomotor adaptation, 180–183
volatility, 180
von Kries, 2, 22
voxel-based encoding model, 424–446

measurement model, 424, 429–440, 443, 445,
454, 464

Weber–Fechner law, 249
Wiener process, 68

YES–NO detection task, 269, 271, 276
Young, 3, 12
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