NEW SYLLABUS

MACM 1 , CS

NEW SYLLABUS

MATC HMCCS

SHINGLEE PUBLISHERS PTE LTD

120 Hillview Avenue \#05-06/07
Kewalram Hillview Singapore 669594
Tel: 67601388 Fax: 67625684
email: info@shinglee.com.sg
http://www.shinglee.com.sg

©SHINGLEE PUBLISHERS PTE LTD

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the Publishers.

First Published 1982
Reprinted 1983, 1984, 1985, 1986
Second Edition 1987
Reprinted 1987, 1988, 1989, 1990, 1991, 1992, 1993
Third Edition 1994
Reprinted 1994, 1995, 1996, 1997
Fourth Edition 1998
Reprinted 1999, 2000
Fifth Edition 2001
Reprinted 2002, 2003, 2004, 2005, 2006, 2007
Sixth Edition 2008
Reprinted 2009, 2010, 2011, 2012, 2013, 2014
Seventh Edition 2015

ISBN 9789812379320

Acknowledgements

All licensed images purchased under standard license agreement with www.shutterstock.com

New Syllabus Mathematics (NSM)

is a series of textbooks specially designed to provide valuable learning experiences to engage the hearts and minds of students sitting for the GCE O-level examination in Mathematics. Included in the textbooks are Investigation, Class Discussion, Thinking Time, Journal Writing, Performance Task and Problems in Real-World Contexts to support the teaching and learning of Mathematics.

Every chapter begins with a chapter opener which motivates students in learning the topic. Interesting stories about Mathematicians, real-life examples and applications are used to arouse students' interest and curiosity so that they can appreciate the beauty of Mathematics in their surroundings.

The use of ICT helps students to visualise and manipulate mathematical objects more easily, thus making the learning of Mathematics more interactive. Ready-to-use interactive ICT templates are available at http://www.shinglee.com.sg/ StudentResources/

CHAPTER OPENER

Each chapter begins with a chapter opener to arouse students' interest and curiosity in learning the topic.

LEARNING OBJECTIVES

Learning objectives help students to be more aware of what they are about to study so that they can monitor their own progress.

RECAP

Relevant prerequisites will be revisited at the beginning of the chapter or at appropriate junctures so that students can build upon their prior knowledge, thus creating meaningful links to their existing schema.

WORKED EXAMPLE

This shows students how to apply what they have learnt to solve related problems and how to present their working clearly. A suitable heading is included in brackets to distinguish between the different Worked Examples.

PRACTISE NOW

At the end of each Worked Example, a similar question will be provided for immediate practice. Where appropriate, this includes further questions of progressive difficulty.

SIMILAR QUESTIONS

A list of similar questions in the Exercise is given here to help teachers choose questions that their students can do on their own.

EXERCISE

The questions are classified into three levels of difficulty - Basic, Intermediate and Advanced.

SUMMARY

At the end of each chapter, a succinct summary of the key concepts is provided to help students consolidate what they have learnt.

REVIEW EXERCISE

This is included at the end of each chapter for the consolidation of learning of concepts.

CHALLENGE YOURSELF

Optional problems are included at the end of each chapter to challenge and stretch high-ability students to their fullest potential.

REVISION EXERCISE

This is included after every few chapters to help students assess their learning.

Learning experiences have been infused into Investigation, Class Discussion, Thinking Time, Journal Writing and Performance Task.

Investigation

Activities are included to guide students to investigate and discover important mathematical concepts so that they can construct their own knowledge meaningfully.

Questions are provided for students to discuss in class, with the teacher acting as the facilitator. The questions will assist students to learn new knowledge, think mathematically, and enhance their reasoning and oral communication skills.

Journal Writing

Opportunities are provided for students to reflect on their learning and to communicate mathematically. It can also be used as a formative assessment to provide feedback to students to improve on their learning.

Performance Task

Mini projects are designed to develop research and presentation skills in the students.

MARGINAL NOTES

This contains important information that students should know.

This guides students on how to approach a problem.

This contains puzzles, fascinating facts and interesting stories about Mathematics as enrichment for students.

This contains certain mathematical concepts or rules that students have learnt previously.
 -

This includes information that may be of interest to students.

This guides students to search on the Internet for valuable information or interesting online games for their independent and self-directed learning.

:\%\%\%: Contents

CHANPTFR 1

Quadratic Equations
001
and Functions
1.1 Solving Quadratic Equations by 003
Completing the Square
1.2 Solving Quadratic Equations by 010using Formula
1.3 Solving Quadratic Equations by 012
Graphical Method
1.4 Solving Fractional Equations 017
that can be reduced to
Quadratic Equations
1.5 Applications of Quadratic 020
Equations in Real-World Contexts
1.6 Graphs of Quadratic Functions 027
Summary 036
Review Exercise 1 038

CHINPTEFR 2

Linear Inequalities

Linear Inequalities

Linear Inequalities

Linear Inequalities

Linear Inequalities

Linear Inequalities

Linear Inequalities 041 041 041 041 041 041 041

2.1 Inequalities

2.1 Inequalities

2.1 Inequalities

2.1 Inequalities

2.1 Inequalities

2.1 Inequalities

2.1 Inequalities 043 043 043 043 043 043 043

2.2 Problem Solving involving

2.2 Problem Solving involving 049 049 049 049 049 049 049 Inequalities Inequalities Inequalities Inequalities Inequalities Inequalities Inequalities

2.3 Solving Simultaneous Linear

2.3 Solving Simultaneous Linear 051 051 051 051 051 051 051 Inequalities Inequalities Inequalities Inequalities Inequalities Inequalities Inequalities
Summary
Summary
Summary
Summary
Summary
Summary
Summary 054 054 054 054 054 054 054
Review Exercise 2
Review Exercise 2 055 055 055 055 055 055 055
CHANPTEFR 3
Indices and Standard Form
Indices and Standard Form 057 057 057 057 057 057 057
3.1 Indices
3.1 Indices 059 059 059 059 059 059 059 059
3.2 Laws of Indices
3.2 Laws of Indices 060 060 060 060 060 060 060 060
3.3 Zero and Negative Indices
3.3 Zero and Negative Indices 069 069 069 069 069 069 069 069
3.4 Rational Indices
3.4 Rational Indices 075 075 075 075 075 075 075 075
3.5 Compound Interest
3.5 Compound Interest 081 081 081 081 081 081 081 081
3.6 Standard Form
3.6 Standard Form 086 086 086 086 086 086 086 086
Summary
Summary
Summary
Summary
Summary
Summary
Summary
Summary 094 094 094 094 094 094 094 094
Review Exercise 3
Review Exercise 3 095 095 095 095 095 095 095 095
Revision Exercise A
Revision Exercise A 097 097 097 097 097 097 097 097

Coordinate Geometry

 0994.1 Gradient of a Straight Line 101
4.2 Length of a Line Segment 107
4.3 Equation of a Straight Line 113
Summary 119
Review Exercise 4120

CHAPT다융

Graphs of Functions and 123Graphical Solution
5.1 Graphs of Cubic Functions 125
5.2 Graphs of Reciprocal Functions 128
5.3 Graphs of Exponential Functions 135
5.4 Gradient of a Curve 139
5.5 Applications of Graphs in 144
Real-World Contexts
Summary 162
Review Exercise 5 164
Revision Exercise B 167
CHMVPTIER B_{3}
Further Trigonometry 171
6.1 Sine and Cosine of Obtuse Angles 173
6.2 Area of Triangle 181
6.3 Sine Rule 187
6.4 Cosine Rule 197
Summary 205
Review Exercise 6 207

Applications of Trigonometry
 211

7.1 Angles of Elevation and 213
Depression
7.2 Bearings 219
7.3 Three-Dimensional Problems 227
Summary 240
Review Exercise 7 241

Arc Length, Area of Sector and 245
Radian Measure
8.1 Length of Arc 247
8.2 Area of Sector 256
8.3 Radian Measure 263
8.4 Arc Length and Area of Sector 272using Radian Measure
Summary 282
Review Exercise 8 283
Revision Exercise C 287

Congruence and Similarity Tests 291
9.1 Congruence Tests 293
9.2 Similarity Tests 309
9.3 Applications of Congruent and 324
Similar Triangles
Summary 328
Review Exercise 9 330

\square

[^0]\square

CHINPTIFIR 1 (0)

Area and Volume of Similar Figures 335
and Solids
10.1 Area of Similar Figures 337
10.2 Volume of Similar Solids 346
Summary 355
Review Exercise 10 355

Geometrical Properties of Circles359
11.1 Symmetric Properties of Circles 361
11.2 Angle Properties of Circles 380
Summary 401
Review Exercise 11 403
Revision Exercise D 407
Problems in Real-World Contexts 411
Practise Now Answers 417
Answers 421

Quadratic Equations and Functions

A ball is thrown over the net. What do you notice about the path of the ball? The path of the ball can be described by a quadratic function. We can use the formula $h=u t+\frac{1}{2} a t^{2}$ to find the height of the ball t seconds after leaving the hand. This idea is used in the study of mechanics.

Chapter One

LEARNING OBJECTIVES

At the end of this chapter, you should be able to:

- solve quadratic equations in one variable by
- completing the square for equations of the form $x^{2}+p x+q=0$,
- use of formula,
- graphical method,
- solve fractional equations that can be reduced to quadratic equations,
- formulate a quadratic equation in one variable to solve problems,
- sketch the graphs of quadratic equations of the form $y=(x-h)(x-k), y=-(x-h)(x-k), y=(x-p)^{2}+q$ and $y=-(x-p)^{2}+q$.

Solving Quadratic

1.) $\begin{aligned} & \text { Equations by } \\ & \text { Completing the Square }\end{aligned}$

:-:
::: Recap
In Book 2, we have learnt that a quadratic equation is of the form

$$
a x^{2}+b x+c=0, \text { where } a, b \text { and } c \text { are real numbers and } a \neq 0 .
$$

Solution:

```
    \(x^{2}-5 x-6=0\)
\((x-6)(x+1)=0\) (factorise by using the multiplication frame)
    \(x-6=0 \quad\) or \(\quad x+1=0\)
    \(x=6\)
    \(x=-1\)
\(\therefore x=6\) or \(x=-1\)
```


PRACTISE NOW 1

Solve each of the following equations.
(a) $x^{2}+7 x-8=0$
(b) $6 y^{2}+7 y-20=0$

$\because: \%$ Solving Quadratic Equations of the Form $(x+a)^{2}=b$

In Worked Example 1, we solved the equation by factorisation. However, the solutions of some quadratic equations cannot be obtained by factorisation. An example of this type of quadratic equation is $x^{2}+6 x-5=0$. If this equation can be written in the form $(x+a)^{2}=b$, where a and b are real numbers, then it can be solved easily by taking the square roots on both sides of the equation to obtain the solutions.

Worked (Solving a Quadratic Equation of the Form $(x+a)^{2}=b$) Example
 Solve the equation $(x+3)^{2}=14$.

Solution:

$$
\begin{array}{rlrl}
(x+3)^{2} & =14 & & \\
x+3 & = \pm \sqrt{14} \text { (take the square roots on both sides) } \\
x+3 & =\sqrt{14} \quad \text { or } & x+3 & =-\sqrt{14} \\
x & =\sqrt{14}-3 & x & =-\sqrt{14}-3 \\
& =0.742 \text { (to } 3 \text { s.f.) } & & =-6.74 \text { (to } 3 \text { s.f.) }
\end{array}
$$

$\therefore x=0.742$ or $x=-6.74$

PRACTISE NOW 2

Solve each of the following equations.
(a) $(x+7)^{2}=100$
(b) $(y-5)^{2}=11$

:\%:\% Completing the Square for a Quadratic Expression

To express a quadratic equation of the form $x^{2}+p x+q=0$ in the form $(x+a)^{2}=b$, we first need to learn how to complete the square for a quadratic expression $x^{2}+p x$.

Let us consider the expansion of $(x+3)^{2}$.
As shown in Book 2, we can use algebra discs to represent the expansion $(x+3)^{2}=x^{2}+6 x+9$ in the form of a square array (equal rows and columns of discs) as shown in Fig. 1.1(a) or a multiplication frame as shown in Fig. 1.1(b).

We observe that in the square array,

- the $\left(x^{2}\right)$ disc is in the top left-hand corner,
- the nine (1) discs are arranged as a 3 by 3 square at the bottom right-hand corner,
- the six \times discs are divided equally into 2 parts, i.e. $6 x$ is divided into 2 parts of $3 x$.

Fig 1.1

Quadratic expressions of the form $(x+a)^{2}$ can be arranged into a multiplication frame similar to the example in Fig. 1.1.

However, not all quadratic expressions can be expressed in the form $(x+a)^{2}$.
For example, the expression $x^{2}+6 x$ can only be arranged as shown in Fig. 1.2.

Fig. 1.2
Comparing Fig. 1.1 and Fig. 1.2, what number must be added to complete the square? We observe that 9 must be added to $x^{2}+6 x$ to make it into $(x+3)^{2}$.

However, $x^{2}+6 x \neq(x+3)^{2}$.

\neq

Since we add 9 to $x^{2}+6 x$, we must subtract 9 as follows:

$$
\begin{aligned}
x^{2}+6 x & =x^{2}+6 x+9-9 \\
& =(x+3)^{2}-9
\end{aligned}
$$

Pictorially, it looks like

Essentially, we add $9-9=0$ to $x^{2}+6 x$ so that the equality will still hold.

Investigation

Completing the Square for Quadratic Expressions of the Form $x^{2}+p x$

To make a quadratic expression of the form $x^{2}+p x$ into a perfect square $(x+a)^{2}$, we have to add a number, b, to $x^{2}+p x$. In this investigation, we will find a relationship between b and p.

Copy and complete Table 1.1. The second one has been done for you.

Table 1.1

1. What is the relationship between b and p ?
2. To express $x^{2}+p x$ in the form $(x+a)^{2}-b$, write down an expression of a and of b in terms of p.

From the investigation, on completing the square,

$$
\begin{aligned}
& \text { if } x^{2}+p x=(x+a)^{2}-b \text {, then } a=\frac{p}{2} \text { and } b=\left(\frac{p}{2}\right)^{2} \\
& \text { i.e. } x^{2}+p x=\left(x+\frac{p}{2}\right)^{2}-\left(\frac{p}{2}\right)^{2}
\end{aligned}
$$

For a quadratic expression of the form $x^{2}+p x+q$, we can express it as follows:

$$
\begin{aligned}
x^{2}+p x+q & =\left(x^{2}+p x\right)+q \\
& =\left(x+\frac{p}{2}\right)^{2}-\left(\frac{p}{2}\right)^{2}+q
\end{aligned}
$$

Worked
 Example

(Completing the Square for Quadratic Expressions)

Express each of the following expressions in the form $(x+a)^{2}+b$.
(a) $x^{2}+10 x$
(b) $x^{2}-5 x$
(c) $x^{2}+2 x+3$

Solution:

(a) The coefficient of x is 10 . Half of this is 5 .

$$
\begin{aligned}
\therefore x^{2}+10 x & =\left[x^{2}+10 x+(5)^{2}\right]-5^{2} \\
& =\left(x+(5)^{2}-25\right.
\end{aligned}
$$

(b) The coefficient of x is -5 . Half of this is $-\frac{5}{2}$.

$$
\begin{aligned}
\therefore x^{2}-5 x & =\left[x^{2}-5 x+\left(-\frac{5}{2}\right)^{2}\right]-\left(-\frac{5}{2}\right)^{2} \\
& =\left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}
\end{aligned}
$$

(c) $x^{2}+2 x+3=\left(x^{2}+2 x\right)+3$

The coefficient of x is 2 . Half of this is 1 .

$$
\begin{aligned}
x^{2}+2 x+3 & =\left[x^{2}+2 x+(1)^{2}\right]-1^{2}+3 \\
& =\left(x+(1)^{2}+2\right.
\end{aligned}
$$

PRACTISE NOW 3

Express each of the following expressions in the form $(x+a)^{2}+b$.
(a) $x^{2}+20 x$
(b) $x^{2}-7 x$
(c) $x^{2}+\frac{1}{5} x$
(d) $x^{2}+6 x-9$

In Worked Example 4, we will show how to solve a quadratic equation by completing the square.

Worked Example

Solution:

As $x^{2}+4 x-3$ cannot be easily factorised, we need to transform the equation $x^{2}+4 x-3=0$ into the form $(x+a)^{2}=b$ as follows:

$$
\begin{aligned}
x^{2}+4 x-3 & =0 \\
x^{2}+4 x & =3
\end{aligned} \quad \begin{aligned}
& \text { (rewrite the equation such that the constant term is } \\
& \text { on the RHS of the equation) }
\end{aligned}
$$

Alternatively, we can complete the square by:
$x^{2}+4 x-3=0$
$\left[x^{2}+4 x+\left(\frac{4}{2}\right)^{2}\right]-\left(\frac{4}{2}\right)^{2}-3=0$

$$
\left(x+\frac{4}{2}\right)^{2}-4-3=0
$$

$(x+2)^{2}=7$

$$
x+2= \pm \sqrt{7} \quad \text { (take the square roots on both sides) }
$$

$$
\begin{aligned}
& x+2=\sqrt{7} \quad \text { or } \quad x+2=-\sqrt{7} \\
& x=\sqrt{7}-2 \quad x=-\sqrt{7}-2 \\
& =0.65 \text { (to } 2 \text { d.p.) } \quad=-4.65 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

$\therefore x=0.65$ or $x=-4.65$

In general, the steps taken to solve a quadratic equation $x^{2}+p x+q=0$, where p and q are real numbers, by completing the square are as follows:

1. Solve each of the following equations, giving your answers correct to 2 decimal places.

Exercise 1A Questions 4(a)-(h), 5(a)-(d), 6
(a) $x^{2}+6 x-4=0$
(b) $x^{2}+7 x+5=0$
(c) $x^{2}-x-1=0$
2. Solve the equation $(x+4)(x-3)=15$.

Oyyercise 1A

BASIC LEVEL

1. Solve each of the following equations.
(a) $2 x^{2}+5 x-7=0$
(b) $4 x^{2}-5 x-6=0$
(c) $7 x+x^{2}-18=0$
(d) $4-3 x-x^{2}=0$
(e) $x(3 x-1)=2$
(f) $(7-3 x)(x+2)=4$
2. Solve each of the following equations, giving your answers correct to 2 decimal places where necessary.
(a) $(x+1)^{2}=9$
(b) $(2 x+1)^{2}=16$
(c) $(5 x-4)^{2}=81$
(d) $(7-3 x)^{2}=\frac{9}{16}$
(e) $(x+3)^{2}=11$
(f) $(2 x-3)^{2}=23$
(g) $(5-x)^{2}=7$
(h) $\left(\frac{1}{2}-x\right)^{2}=10$

INTERMEDIATE LEVEL

3. Express each of the following expressions in the form $(x+a)^{2}+b$.
(a) $x^{2}+12 x$
(b) $x^{2}-6 x+1$
(c) $x^{2}+3 x-2$
(d) $x^{2}+9 x-1$
(e) $x^{2}+\frac{1}{2} x$
(f) $x^{2}-\frac{2}{9} x$
(g) $x^{2}+0.2 x$
(h) $x^{2}-1.4 x$
4. Solve each of the following equations, giving your answers correct to 2 decimal places.
(a) $x^{2}+2 x-5=0$
(b) $x^{2}+17 x-30=0$
(c) $x^{2}-12 x+9=0$
(d) $x^{2}-5 x-5=0$
(e) $x^{2}+\frac{1}{4} x-3=0$
(f) $x^{2}-\frac{6}{7} x+\frac{2}{49}=0$
(g) $x^{2}+0.6 x-1=0$
(h) $x^{2}-4.8 x+2=0$
5. Solve each of the following equations.
(a) $x(x-3)=5 x+1$
(b) $(x+1)^{2}=7 x$
(c) $(x+2)(x-5)=4 x$
(d) $x(x-4)=2(x+7)$

ADVANCED LEVEL

6. Given the equation $y^{2}-a y-6=0$, where a is a constant, find the expressions for y in terms of a.

Solving Quadratic T) Equations by

The general form of a quadratic equation is $a x^{2}+b x+c=0$, where a, b and c are real numbers and $a \neq 0$. Now, we shall use the method of completing the square to derive a formula for the solution to all quadratic equations.

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x+\frac{c}{a} & =0 \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a}
\end{aligned}
$$

(divide throughout by a)

(rewrite the equation such that the constant term is on the RHS of the equation)

$$
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} \quad\left(\text { add }\left(\frac{b}{2 a}\right)^{2}\right. \text { to both sides of the equation to make }
$$

the LHS a perfect square)

$$
\begin{aligned}
\left(x+\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} \quad \text { (factorise the expression on the LHS } \\
& =\frac{b^{2}-4 a c}{4 a^{2}} \quad \text { the RHS) } \\
x+\frac{b}{2 a} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \quad \text { (take the square roots on both sides) } \\
& = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
x & =-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$\therefore x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ or $x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

In general,

$$
\begin{aligned}
& \text { if } a x^{2}+b x+c=0 \text {, where } a, b \text { and } c \text { are real numbers and } a \neq 0 \text {, then } \\
& \qquad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

The above formula for solving quadratic equations is usually used when the quadratic expression cannot be factorised easily.

Worked
Example
(Solving a Quadratic Equation by using Formula)
Solve the equation $3 x^{2}+4 x-5=0$.

Solution:

Comparing $3 x^{2}+4 x-5=0$ with $a x^{2}+b x+c=0$, we have $a=3, b=4$ and $c=-5$.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-4 \pm \sqrt{4^{2}-4(3)(-5)}}{2(3)}$
$=\frac{-4 \pm \sqrt{16-(-60)}}{6}$
$=\frac{-4 \pm \sqrt{16+60}}{6}$
$=\frac{-4 \pm \sqrt{76}}{6}$
$=0.786$ (to 3 s.f.) or -2.12 (to 3 s.f.)
$\therefore x=0.786$ or $x=-2.12$

PRACTISE NOW 5

Solve each of the following equations.
(a) $2 x^{2}+3 x-7=0$
(b) $5 x^{2}-8 x-1=0$
(c) $(x-1)^{2}=4 x-5$
(d) $(x+3)(x-1)=8 x-7$

Always ensure that the equation is in the form $a x^{2}+b x+c=0$ before substituting the values of a, b and c into the formula.

SIMILAR
 QUESTIONS

Exercise 1B Questions 1(a)-(f), 2(a)-(f), 3(a)-(f)

The equation $x^{2}-6 x+9=0$ has only 1 real solution $x=3$, i.e. 3 is the only real number that satisfies the equation.
The equation $x^{2}+9=0$ has no real solutions as there is no real number that satisfies the equation.

From the class discussion, we observe that

For a quadratic equation $a x^{2}+b x+c=0$,

- if $\boldsymbol{b}^{2}-\mathbf{4 a c}>\mathbf{0}$, the equation has two real solutions,
- if $b^{2}-4 a c=0$, the equation has one real solution,
- if $\boldsymbol{b}^{2}-4 a c<0$, the equation has no real solutions.

BASIC LEVEL

1. Solve each of the following equations.
(a) $x^{2}+4 x+1=0$
(b) $3 x^{2}+6 x-1=0$
(c) $2 x^{2}-7 x+2=0$
(d) $3 x^{2}-5 x-17=0$
(e) $-3 x^{2}-7 x+9=0$
(f) $-5 x^{2}+10 x-2=0$
2. Solve each of the following equations.
(a) $x^{2}+5 x=21$
(b) $10 x^{2}-12 x=15$
(c) $8 x^{2}=3 x+6$
(d) $4 x^{2}-7=2 x$
(e) $9-5 x^{2}=-3 x$
(f) $16 x-61=x^{2}$

intermediate level

3. Solve each of the following equations.
(a) $x(x+1)=1$
(b) $3(x+1)(x-1)=7 x$
(c) $(x-1)^{2}-2 x=0$
(d) $x(x-5)=7-2 x$
(e) $(2 x+3)(x-1)-x(x+2)=0$
(f) $(4 x-3)^{2}+(4 x+3)^{2}=25$
4. Solve each of the following equations if possible.
(a) $0.5\left(x^{2}+1\right)=x$
(b) $\frac{3}{4} x^{2}+2 x-\frac{1}{2}=0$
(c) $5 x-7=x^{2}$
(d) $3 x-4=(4 x-3)^{2}$

Solving Quadratic

In Sections 1.1 and 1.2, we have learnt how to solve quadratic equations by completing the square and by using the quadratic formula. Another method that can be used to find the solutions of the quadratic equation $a x^{2}+b x+c=0$ is by drawing the corresponding quadratic graph of $y=a x^{2}+b x+c$ and to find the x-coordinates of the points of intersection of this graph with the x-axis $(y=0)$.

When solving a pair of simultaneous equations
$y=a x^{2}+b x+c---(1)$
and $\quad y=0,---(2)$
we obtain the quadratic equation $a x^{2}+b x+c=0$.

(Solving a Quadratic Equation by Graphical Method)

The variables x and y are connected by the equation $y=2 x^{2}-5 x-6$.
(i) Complete the table for $y=2 x^{2}-5 x-6$.

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}							

(ii) Draw the graph of $y=2 x^{2}-5 x-6$ for $-2 \leqslant x \leqslant 4$.
(iii) Hence, solve the equation $2 x^{2}-5 x-6=0$.

Solution:

(i)

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}	12	1	-6	-9	-8	-3	6

(ii)

(iii) From the graph, the x-coordinates of the points of intersection of $y=2 x^{2}-5 x-6$ and the x-axis (i.e. $y=0$) are $x=-0.9$ and $x=3.4$.
\therefore The solutions of the equation $2 x^{2}-5 x-6=0$ are $x=-0.9$ and $x=3.4$.

The solution of a pair of simultaneous linear equations is given by the coordinates of the point of intersection of the graphs of the two equations.

For $2 x^{2}-5 x-6=0$, the value of $b^{2}-4 a c$ is $73>0$. Hence, there are two real solutions.

The answers obtained by the graphical method can only be accurate up to half of a small square grid. In Worked Example 6 , the solutions are accurate to the nearest 0.1 .

PRACTISE NOW 6

SIMILAR
QUESTIONS

Exercise 1C Questions 1, 2, 4, 5, 8, 9
(i) Complete the table for $y=2 x^{2}-4 x-1$.

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}							

(ii) Draw the graph of $y=2 x^{2}-4 x-1$ for $-2 \leqslant x \leqslant 4$.
(iii) Hence, solve the equation $2 x^{2}-4 x-1=0$.
2. By drawing the graph of $y=7-4 x-3 x^{2}$ for $-3 \leqslant x \leqslant 2$, solve the equation $7-4 x-3 x^{2}=0$ graphically.

Worked Example

(Solving a Quadratic Equation by Graphical Method)

The variables x and y are connected by the equation $y=x^{2}-4 x+4$.
(i) Complete the table for $y=x^{2}-4 x+4$.

\boldsymbol{x}	-1	0	1	2	3	4	5
\boldsymbol{y}							

(ii) Draw the graph of $y=x^{2}-4 x+4$ for $-1 \leqslant x \leqslant 5$.
(iii) Hence, solve the equation $x^{2}-4 x+4=0$.

Solution:

(i)

\boldsymbol{x}	-1	0	1	2	3	4	5
\boldsymbol{y}	9	4	1	0	1	4	9

(ii)

(iii) From the graph, the curve $y=x^{2}-4 x+4$ touches the x-axis (i.e. $y=0$) at $x=2$ only.
\therefore The solution of the equation $x^{2}-4 x+4=0$ is $x=2$.

Equations such as $x^{2}-4 x+4=0$ are usually solved by factorisation as they can be easily factorised.

For $x^{2}-4 x+4=0$, the value of $b^{2}-4 a c$ is 0 . Hence, there is only one real solution.

PRACTISE NOW 7

1. The variables x and y are connected by the equation $y=x^{2}-6 x+9$.
(i) Complete the table for $y=x^{2}-6 x+9$.

\boldsymbol{x}	-1	0	1	2	3	4	5	6
\boldsymbol{y}								

(ii) Draw the graph of $y=x^{2}-6 x+9$ for $-1 \leqslant x \leqslant 6$.
(iii) Hence, solve the equation $x^{2}-6 x+9=0$.
2. By drawing the graph of $y=8 x-x^{2}-16$ for $0 \leqslant x \leqslant 8$, solve the equation $8 x-x^{2}-16=0$ graphically.

Draw the graph of $y=2 x^{2}+4 x+3$ for $-2 \leqslant x \leqslant 4$.
(i) State the number of points of intersection between the graph and the x-axis.
(ii) How many real solutions are there to the equation $2 x^{2}+4 x+3=0$? Explain your answer.
(iii) Find the value of $b^{2}-4 a c$ for the equation $2 x^{2}+4 x+3=0$.
(iv) How does the value of $b^{2}-4 a c$ obtained in (iii) relate to the number of points of intersection of the graph with the x-axis?

Journal
 Writing

To solve a quadratic equation, you have learnt the following 4 methods:
(i) Factorisation
(ii) Completing the square
(iii) Use of the quadratic formula
(iv) Graphical method

Write down the advantages and disadvantages of using each method. When solving a quadratic equation, how would you choose which method to use?

BASIC LEVEL

1. The variables x and y are connected by the equation $y=2 x^{2}-5 x+1$.
(i) Complete the table for $y=2 x^{2}-5 x+1$.

\boldsymbol{x}	-1	0	1	2	3	4
\boldsymbol{y}						

(ii) Draw the graph of $y=2 x^{2}-5 x+1$ for $-1 \leqslant x \leqslant 4$.
(iii) Hence, solve the equation $2 x^{2}-5 x+1=0$.
2. The variables x and y are connected by the equation $y=7-5 x-3 x^{2}$.
(i) Complete the table for $y=7-5 x-3 x^{2}$.

\boldsymbol{x}	-3	-2	-1	0	1	2
\boldsymbol{y}						

(ii) Draw the graph of $y=7-5 x-3 x^{2}$ for $-3 \leqslant x \leqslant 2$.
(iii) Hence, solve the equation $7-5 x-3 x^{2}=0$.
3. The variables x and y are connected by the equation $y=x^{2}+6 x+9$.
(i) Complete the table for $y=x^{2}+6 x+9$.

\boldsymbol{x}	-5	-4	-3	-2	-1	0
\boldsymbol{y}						

(ii) Draw the graph of $y=x^{2}+6 x+9$ for $-5 \leqslant x \leqslant 0$.
(iii) Hence, solve the equation $x^{2}+6 x+9=0$.

INTERMEDIATE LEVEL

4. (i) Draw the graph of $y=3 x^{2}+4 x-5$ for $-3 \leqslant x \leqslant 2$.
(ii) Hence, solve the equation $3 x^{2}+4 x-5=0$ graphically.
5. By drawing the graph of $y=5-2 x-x^{2}$ for $-4 \leqslant x \leqslant 2$, solve the equation $5-2 x-x^{2}=0$ graphically.
6. (i) Draw the graph of $y=4 x^{2}+12 x+9$ for $-4 \leqslant x \leqslant 2$.
(ii) Hence, solve the equation $4 x^{2}+12 x+9=0$ graphically.
7. By drawing the graph of $y=10 x-25-x^{2}$ for $0 \leqslant x \leqslant 10$, solve the equation $10 x-25-x^{2}=0$ graphically.

ADVANCED LEVEL

8. The profit, $\$ P$ million, of a manufacturing company in its first 10 years of operation can be modelled by the equation $P=2-0.1(x-3)^{2}$, where x is the number of years of operation.
(a) Using a scale of 1 cm to represent 1 year, draw a horizontal x-axis for $0 \leqslant x \leqslant 10$. Using a scale of 2 cm to represent $\$ 1$ million, draw a vertical P-axis for $-4 \leqslant P \leqslant 3$. On your axes, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to find the value of x when the profit of the company is zero.
9. During an annual carnival, participants are each expected to throw a balloon filled with water from the top of a platform onto a sandpit. Points are allocated based on the horizontal distance from the foot of the platform to where the balloon lands. Huixian throws a balloon. During the flight, its height above ground level, $y \mathrm{~cm}$, is represented by the equation $y=200+7 x-6 x^{2}$, where x is the horizontal distance, in metres, from the foot of the platform.

The table shows some values of x and the corresponding values of y.

x	0	1	2	3	4	5	6
\boldsymbol{y}	200	201	190	167	132	85	26

(a) Using a scale of 1 cm to represent 1 m , draw a horizontal x-axis for $0 \leqslant x \leqslant 6$.
Using a scale of 2 cm to represent 50 cm , draw a vertical y-axis for $0 \leqslant y \leqslant 250$.
On your axes, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to find
(i) the positive solution of $200+7 x-6 x^{2}=0$,
(ii) the horizontal distance from the foot of the platform when the balloon is 50 cm above the ground.
(c) Given that the flight of the balloon above ground level can only be modelled by the equation $y=200+7 x-6 x^{2}$ for $0 \leqslant x \leqslant t$, state the value of t. Explain your answer.

Solving Fractional Equations that can
 be reduced to , Quadratic Equations

In Book 2, we have learnt that algebraic fractions are of the form $\frac{A}{B}$, where A and/or B are algebraic expressions, and $B \neq 0$. Equations that have one or more algebraic fractions are known as fractional equations. Examples of fractional equations are $\frac{2}{x+2}=5 x-1$ and $\frac{3}{x+2}+\frac{x-1}{x-5}=2$.

In this section, we will learn how to solve fractional equations that can be reduced to quadratic equations.

Solution:

$$
\begin{aligned}
\frac{2}{x+2} & =5 x-1 \\
\frac{2}{x+2} \times(x+2) & =(5 x-1) \times(x+2) \text { (multiply both sides by }(x+2)) \\
2 & =(5 x-1)(x+2) \\
2 & =5 x^{2}+10 x-x-2 \\
2 & =5 x^{2}+9 x-2 \\
0 & =5 x^{2}+9 x-4 \\
5 x^{2}+9 x-4 & \left.=0 \text { (rewrite the equation in the form } a x^{2}+b x+c=0\right)
\end{aligned}
$$

Comparing $5 x^{2}+9 x-4=0$ with $a x^{2}+b x+c=0$, we have $a=5, b=9$ and $c=-4$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-9 \pm \sqrt{9^{2}-4(5)(-4)}}{2(5)} \\
& =\frac{-9 \pm \sqrt{81-(-80)}}{10} \\
& =\frac{-9 \pm \sqrt{81+80}}{10} \\
& =\frac{-9 \pm \sqrt{161}}{10} \\
& =0.369 \text { (to } 3 \text { s.f.) or }-2.17 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore x=0.369$ or $x=-2.17$

PRACTISE NOW 8

SIMILAR

Exercise 1D Questions 1(a)-(f), 3(a),(b), 4, 14(a)

QUESTIONS
(a) $\frac{6}{x+4}=x+3$
(b) $\frac{3}{x+2}=3 x-1$
2. Solve the equation $\frac{4}{x}=2 x-3$.

In an equation, if $x=y$, then $y=x$. Hence, $0=5 x^{2}+9 x-4$ is equivalent to $5 x^{2}+9 x-4=0$.

Solve the equation $\frac{3}{x+2}+\frac{x-1}{x-5}=2$.

Solution:

$$
\begin{aligned}
& \frac{3}{x+2}+\frac{x-1}{x-5}=2 \\
& {\left[\frac{3}{x+2}+\frac{x-1}{x-5}\right] \times(x+2)(x-5) }=2 \times(x+2)(x-5)(\text { multiply both sides } \\
&\text { by }(x+2)(x-5)) \\
& \frac{3}{x+2} \times(x+2)(x-5)+\frac{x-1}{x-5} \times(x+2)(x-5)=2(x+2)(x-5) \\
& 3(x-5)+(x-1)(x+2)=2(x+2)(x-5) \\
& 3 x-15+x^{2}+2 x-x-2=2\left(x^{2}-5 x+2 x-10\right) \\
& x^{2}+4 x-17=2\left(x^{2}-3 x-10\right) \\
& x^{2}+4 x-17=2 x^{2}-6 x-20 \\
& 0=x^{2}-10 x-3 \\
& x^{2}-10 x-3=0 \text { (rewrite the equation in the form } \\
&\left.a x^{2}+b x+c=0\right)
\end{aligned}
$$

Comparing $x^{2}-10 x-3=0$ with $a x^{2}+b x+c=0$, we have $a=1, b=-10$ and $c=-3$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(-3)}}{2(1)} \\
& =\frac{10 \pm \sqrt{100-(-12)}}{2} \\
& =\frac{10 \pm \sqrt{100+12}}{2} \\
& =\frac{10 \pm \sqrt{112}}{2} \\
& =10.3 \text { (to } 3 \text { s.f.) or }-0.292 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore x=10.3$ or $x=-0.292$

1. Solve each of the following equations.

Exercise 1D Questions 5(a)-(h), 14(b)-(d)
(a) $\frac{1}{x-2}+\frac{2}{x-3}=5$
(b) $\frac{5}{x-3}-\frac{x-1}{x-2}=7$
2. Solve the equation $\frac{3}{x-2}-\frac{1}{(x-2)^{2}}=2$.

Lixin is given the following fractional equation to solve:

$$
\frac{7}{x-3}-\frac{4}{x}=\frac{21}{x(x-3)}
$$

Her working is as shown:

$$
\begin{aligned}
\frac{7}{x-3} \times x(x-3)-\frac{4}{x} \times x(x-3) & =\frac{21}{x(x-3)} \times x(x-3) \\
7 x-4(x-3) & =21 \\
7 x-4 x+12 & =21 \\
3 x & =9 \\
x & =3
\end{aligned}
$$

Verify if the solution $x=3$ is valid. Explain your answer.

Applications of $=5$ Quadratic Equations in Real-World Contexts

In order for quadratic equations to be applied to solve problems, we may have to formulate the quadratic equations first. Worked Examples 10 and 11 illustrate this.

On a map, a piece of land is in the shape of a right-angled triangle with sides of length $x \mathrm{~cm}$, $(x+6) \mathrm{cm}$ and $(2 x+5) \mathrm{cm}$.

(i) From the information given, formulate an equation and show that it simplifies to $2 x^{2}+8 x-11=0$.
(ii) Solve the equation $2 x^{2}+8 x-11=0$, giving both answers correct to 3 decimal places.
(iii) Hence, find the perimeter of the triangle.

Solution:

(i) Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2}+(x+6)^{2} & =(2 x+5)^{2} \\
x^{2}+x^{2}+12 x+36 & =4 x^{2}+20 x+25 \\
2 x^{2}+8 x-11 & =0 \text { (shown) }
\end{aligned}
$$

Polya's 4-step Problem Solving Model

1. Understand the problem.

- A right-angled triangle with 3 sides is given in terms of x.

2. Devise a plan.

- Use Pythagoras' Theorem to formulate an equation in x.

3. Implement the plan.

- Simplify and solve the equation.

4. Check your answers.

- For answers in 3 significant figures, intermediate answers must be given to at least 4 significant figures.
- Since length is positive, the negative value of x is rejected.
- Use the value of x to compute the perimeter.
(iii) Perimeter of the triangle $=x+(x+6)+(2 x+5)$

$$
\begin{aligned}
& =x+x+6+2 x+5 \\
& =4 x+11
\end{aligned}
$$

Since the length of a triangle cannot be a negative value, $x=1.082$.

$$
\begin{aligned}
\therefore \text { Perimeter of the triangle } & =4(1.082)+11 \\
& =15.3 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

The figure shows a right-angled triangle $A B C$ with dimensions as shown.

(i) If the perimeter of the triangle is 17 cm , write down an expression, in terms of x, for the length of $A B$.
(ii) Hence, formulate an equation in x and show that it simplifies to $2 x^{2}-18 x+17=0$.
(iii) Solve the equation $2 x^{2}-18 x+17=0$, giving both answers correct to 3 decimal places.
(iv) Hence, find the area of the triangle.

Worked Example 1

(Application of Quadratic Equations in Real-World Contexts)
A family decides to travel from Singapore to Kuala Lumpur, which are 315 km apart. The average speed of an aeroplane is $350 \mathrm{~km} / \mathrm{h}$ more than the speed of a car. Let the average speed of the car be $x \mathrm{~km} / \mathrm{h}$.
(i) Write down an expression, in terms of x, for the number of hours taken by the family if they choose to travel by aeroplane.
If they choose to travel by aeroplane instead of by car, they will be able to reach Kuala Lumpur 3 hours and 15 minutes earlier.
(ii) From the information given, formulate an equation in x and show that it reduces to

$$
13 x^{2}+4550 x-441000=0
$$

(iii) Solve the equation $13 x^{2}+4550 x-441000=0$, giving both your answers correct to 2 decimal places.
(iv) Find the time taken by the family to travel by aeroplane, giving your answer correct to the nearest minute.

Polya's 4-step Problem Solving Model

1. Understand the problem.

- The distance and average speed of the aeroplane and the difference in travel time are given.
- What are the assumptions made? The distance travelled by the car and the aeroplane is exactly the same.

2. Devise a plan.

- Use the algebraic method and the relationship between speed, distance and time to formulate an equation in x.

3. Implement the plan.

- What is the time taken by the aeroplane? $\frac{315}{x+350}$ hours
- What is the time taken by the car? $\frac{315}{x}$ hours
- Which has a larger value?
- Hence, the difference is $\frac{315}{x}-\frac{315}{x+350}=3 \frac{1}{4}$, because 3 hours 15 minutes $=3 \frac{1}{4}$ hours.

4. Check your answers.

- For answers in 3 significant figures, intermediate answers must be given to at least 4 significant figures.
- Since speed is positive, the negative value of x is rejected.
- Use the value of x to compute the time taken to travel by aeroplane.

Solution:

(i) Number of hours taken by the family to travel by aeroplane $=\frac{315}{x+350}$
(ii)

$$
\begin{aligned}
\frac{315}{x}-\frac{315}{x+350} & =3 \frac{15}{60} \\
\frac{315}{x}-\frac{315}{x+350} & =3 \frac{1}{4} \\
\frac{315}{x}-\frac{315}{x+350} & =\frac{13}{4} \\
\frac{315}{\not x} \times 4 \not x(x+350)-\frac{315}{x+350} \times 4 x(x+350) & \left.=\frac{13}{4} \times 4 x(x+350) \quad \text { (multiply both sides } \quad \text { by } 4 x(x+350)\right) \\
1260(x+350)-1260 x & =13 x(x+350) \quad \\
1260 x+441000-1260 x & =13 x^{2}+4550 x \\
0 & =13 x^{2}+4550 x-441000 \\
13 x^{2}+4550 x-441000 & =0 \text { (shown) }
\end{aligned}
$$

(iii) Comparing $13 x^{2}+4550 x-441000=0$ with $a x^{2}+b x+c=0$, we have $a=13$, $b=4550$ and $c=-441000$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4550 \pm \sqrt{4550^{2}-4(13)(-441000)}}{2(13)} \\
& =\frac{-4550 \pm \sqrt{43634500}}{26} \\
& =79.06 \text { (to } 2 \text { d.p.) or }-429.06 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

$\therefore x=79.06$ or $x=-429.06$
(iv) Since the speed of the car cannot be a negative value, $x=79.06$.
\therefore Number of hours taken by the family to travel by aeroplane $=\frac{315}{79.06+350}$

$$
\begin{aligned}
= & 0.7342 \text { hours } \\
= & 0.7342 \times 60 \\
= & 44 \text { minutes (to } \\
& \text { the nearest } \\
& \text { minute) }
\end{aligned}
$$

Convert 3 hours 15 minutes into hours.

Mr Lee drove from City P to City Q, which are 600 km apart. During his return journey, his average speed was increased by $7 \mathrm{~km} / \mathrm{h}$ and the time taken was 15 minutes less.

Exercise 1D Questions 2, 8-13, 15
(i) If he drove at an average speed of $x \mathrm{~km} / \mathrm{h}$ on his journey from City P to City Q, formulate an equation in x and show that it reduces to $x^{2}+7 x-16800=0$.
(ii) Solve the equation $x^{2}+7 x-16800=0$, giving both your answers correct to 2 decimal places.
(iii) Find the time taken for the return journey.

BASIC LEVEL

1. Solve each of the following equations.
(a) $\frac{8}{x}=2 x+1$
(b) $3 x-1=\frac{7}{x+4}$
(c) $\frac{x+1}{5-x}=x$
(d) $x+\frac{7}{x}=9$
(e) $2 x+1=\frac{x+1}{x-5}$
(f) $\frac{5 x}{x+4}=3 x+1$
2. The difference between two positive numbers, $\frac{12}{x+1}$ and $\frac{12}{x}$, is 1 .
(i) Form an equation in x and show that it reduces to $x^{2}+x-12=0$.
(ii) Solve the equation $x^{2}+x-12=0$.
(iii) Hence, find the two numbers.

INTERMEDIATE LEVEL

3. Solve each of the following equations.
(a) $\frac{2}{x+1}=\frac{5 x}{3-x}$
(b) $\frac{(x-2)(x-3)}{(x-1)(x+2)}=\frac{2}{3}$
4. Find the value(s) of x that satisfy the equation $\frac{x(x-3)}{(x+1)^{2}}=\frac{3}{5}$.
5. Solve each of the following equations.
(a) $\frac{x}{2}=\frac{4}{x}-1$
(b) $\frac{2}{x+5}=1-\frac{x+1}{5}$
(c) $\frac{x-2}{5}+\frac{1}{2 x-3}=1$
(d) $\frac{3}{x}+\frac{2}{x+1}=5$
(e) $\frac{1}{x+2}+\frac{1}{x-2}=\frac{3}{8}$
(f) $\frac{7}{x-1}-\frac{x+1}{x+3}=\frac{1}{2}$
(g) $\frac{5}{x-2}=2-\frac{4}{(x-2)^{2}}$
(h) $\frac{5}{x-1}+\frac{x}{(x-1)^{2}}=1$
6. The perimeter of a rectangle is 112 cm and its breadth is $x \mathrm{~cm}$.
(i) Find, in terms of x, an expression for the length of the rectangle.
(ii) Given that the area of the rectangle is $597 \mathrm{~cm}^{2}$, formulate an equation in x and show that it reduces to $x^{2}-56 x+597=0$.
(iii) Solve the equation $x^{2}-56 x+597=0$, giving both answers correct to 2 decimal places.
(iv) Hence, find the length of the diagonal of the rectangle.
7. The figure shows a triangle $A B C$ in which $A P=6 x \mathrm{~cm}, A B=(3 x+5) \mathrm{cm}, P Q=x \mathrm{~cm}$ and $B C=1 \mathrm{~cm} . P$ and Q are two points on the lines $A B$ and $A C$ respectively such that $\frac{A P}{A B}=\frac{P Q}{B C}$.

(i) Formulate an equation in x and show that it reduces to $3 x^{2}-x=0$.
(ii) Solve the equation $3 x^{2}-x=0$.
(iii) Find the length of $P B$.
8. There are 2 printers in a library. Printer A prints 60 pages every x minutes.
(i) Write down an expression, in terms of x, for the number of pages printed by Printer A in 1 minute.
(ii) Given that Printer B takes 2 minutes longer than Printer A to print 60 pages, write down an expression, in terms of x, for the number of pages printed by Printer B in 1 minute.
When both printers are in use, they are able to print a total of 144 pages in 1 minute.
(iii) Formulate an equation in x and show that it reduces to $6 x^{2}+7 x-5=0$.
(iv) Solve the equation $6 x^{2}+7 x-5=0$.
(v) Hence, find the time taken by Printer B to print 144 pages.
9. In January 2009, the price of rice in Singapore was $\$ x$ per kilogram. A food catering company spent an average of $\$ 350$ on rice each month.
(i) Write down an expression, in terms of x, for the average amount of rice that this food catering company ordered in January 2009.
In January 2012, the price of each kilogram of rice had increased by 15 cents.
(ii) Given that the company continued to spend $\$ 350$ on rice each month, write down an expression, in terms of x, for the average amount of rice ordered in January 2012.
(iii) If the difference in the amount of rice ordered is 30 kg , formulate an equation in x and show that it reduces to $20 x^{2}+3 x-35=0$.
(iv) Hence, find the price of each kilogram of rice in January 2012.
10. Rui Feng and Jun Wei represented their class in a 10 km race. They started running at the same speed of $x \mathrm{~km} / \mathrm{h}$. After 2 km , Rui Feng increased his speed by $1 \mathrm{~km} / \mathrm{h}$ and ran the remaining distance at a constant speed of $(x+1) \mathrm{km} / \mathrm{h}$. Jun Wei maintained his speed of $x \mathrm{~km} / \mathrm{h}$ throughout the race.
(i) Write down an expression, in terms of x, for the time taken by Rui Feng to complete the race.
(ii) Given that Rui Feng completed the race 40 minutes earlier than Jun Wei, formulate an equation in x and show that it reduces to $x^{2}+x-12=0$.
(iii) Solve the equation $x^{2}+x-12=0$. Explain why you reject one of the answers.
(iv) Hence, find the time taken by Rui Feng to complete the race, giving your answer in hours and minutes.
11. Amirah travels by coach from Singapore to Penang, which are 700 km apart, to visit her grandparents. She returns to Singapore by car at an average speed which is $30 \mathrm{~km} / \mathrm{h}$ greater than that of a coach.
(i) If the average speed of the car is $x \mathrm{~km} / \mathrm{h}$ and the time taken for the whole journey is 20 hours, formulate an equation in x and show that it reduces to $x^{2}-100 x+1050=0$.
(ii) Solve the equation $x^{2}-100 x+1050=0$, giving both your answers correct to 2 decimal places.
(iii) Find the time taken for the return journey.
12. A tank, when full, can contain 1500 litres of water. Pump A can fill water into the tank at a rate of x litres per minute.
(i) Write down an expression, in terms of x, for the number of minutes taken by Pump A to fill the tank completely.
Pump B can fill water into the tank at a rate of $(x+50)$ litres per minute.
(ii) Write down an expression, in terms of x, for the number of minutes taken by Pump B to fill the tank completely.
(iii) If Pump A takes 30 minutes longer than Pump B to fill the tank completely, formulate an equation in x to represent this information and show that it reduces to $x^{2}+50 x-150000=0$.
(iv) Solve the equation $x^{2}+50 x-150000=0$, giving both your answers correct to 2 decimal places.
(v) Find the time taken for Pump B to fill the tank completely, giving your answer in minutes and seconds, correct to the nearest second.
13. Two weeks before Nora went to New York for a holiday, she exchanged $\mathbf{S} \$ 2000$ into US dollars (US\$) at Samy's Money Exchange at a rate of US\$1 = S\$x.
(i) Write down an expression, in terms of x, for the amount of US\$ she received from Samy's Money Exchange.
One week before her holiday, she exchanged another S\$1000 into US\$ at Chan's Money Exchange at a rate of $\mathrm{US} \$ 1=\mathrm{S} \$(x+0.05)$.
(ii) Write down an expression, in terms of x, for the amount of US\$ she received from Chan's Money Exchange.
(iii) If Nora received a total of US\$2370 from the two Money Exchanges, formulate an equation in x and show that it reduces to

$$
237 x^{2}-288.15 x-10=0
$$

(iv) Solve the equation $237 x^{2}-288.15 x-10=0$, giving both your answers correct to 2 decimal places.
(v) Find the exchange rate between S\$ and US\$ offered by Chan's Money Exchange.

ADVANCED LEVEL

14. Solve each of the following equations.
(a) $\frac{4}{x-1}=\frac{x}{2 x^{2}+3 x-5}$
(b) $\frac{1}{x}+\frac{2}{x-1}+\frac{3}{x+1}=0$
(c) $\frac{1}{x^{2}-9}-\frac{2}{3-x}=1$
(d) $\frac{3}{x-3}+\frac{x+1}{x^{2}-5 x+6}=1$
15. During a test flight, an aircraft flies from Sandy Land to White City and back to Sandy Land. The distance between Sandy Land and White City is 450 km and the total time taken for the whole journey is 5 hours and 30 minutes. Given that there is a constant wind blowing from Sandy Land to White City and that the speed of the aircraft in still air is $165 \mathrm{~km} / \mathrm{h}$, find the speed of the wind. State the assumptions you have made to solve this problem.
Hint: Let the speed of the wind be $x \mathrm{~km} / \mathrm{h}$.

1 R Graphs of
 Quadratic Functions

: Recap

In Book 2, we have learnt how to draw the graphs of quadratic functions of the form $y=a x^{2}+b x+c$, where a, b and c are constants and $a \neq 0$.

(a) $a>0$

(b) $a<0$

Fig. 1.3
In this section, we will learn how to sketch the graphs of quadratic functions of the form $y=(x-h)(x-k)$ or $y=-(x-h)(x-k)$ and $y=(x-p)^{2}+q$ or $y=-(x-p)^{2}+q$.

Thinking Time

Determine which of the following sketches correspond to the quadratic functions $y=x^{2}+4 x-5$ and $y=-x^{2}-4 x+5$.

Graph 1

Graph 3

Graph 5

Graph 2

Graph 4

Graph 6

Graph 8

:\%? Graphs of the form $y=(x-h)(x-k)$ or $y=-(x-h)(x-k)$

Investigation

Graphs of $y=(x-h)(x-k)$ or $y=-(x-h)(x-k)$

1. Use a graphing software to plot the graph of $y=(x-3)(x-k)$ for $k=-2,-1,0$, 1 and 2.
2. Study the graphs and answer each of the following questions.
(a) Does the graph open upwards or downwards?
(b) Write down the coordinates of the point(s) where the graph cuts the x-axis, i.e. the x-intercepts.
(c) Write down the coordinates of the point where the graph cuts the y-axis, i.e. the y-intercept.
(d) What is the relationship between the x-intercepts and the line of symmetry?
(e) State the equation of the line of symmetry of the graph.
(f) Write down the coordinates of the maximum or the minimum point of the graph.
3. Repeat Steps 1 and 2 for $y=-(x-3)(x-k), y=(x-5)(x-k)$ and $y=-(x-5)(x-k)$.
4. By looking at the equation of each graph, how do you determine if it opens upwards or downwards?
5. By looking at the equation of each graph, how do you determine the coordinates of the points where the graph cuts the x-axis?
6. What can you say about the line of symmetry of each graph?

From the investigation, we observe that:

- For the equation $y=(x-h)(x-k)$, the graph opens upwards. The graph cuts the x-axis at $(h, 0)$ and $(k, 0)$. The graph is symmetrical about the vertical line that passes through the minimum point.
- For the equation $y=-(x-h)(x-k)$, the graph opens downwards. The graph cuts the x-axis at $(h, 0)$ and $(k, 0)$. The graph is symmetrical about the vertical line that passes through the maximum point.

$\underset{\text { Worked }}{\text { Wimple }} 2$
 (Sketching the Graph of $y=(x-h)(x-k))$
 Sketch the graph of $y=(x-1)(x-5)$.

Solution:

Since the coefficient of x^{2} is 1 , the graph opens upwards.

When $y=0$,

$$
\begin{array}{rlrlrl}
(x-1)(x-5) & =0 & & \\
x-1 & =0 & \text { or } & x-5 & =0 \\
x & =1 & & x & =5
\end{array}
$$

\therefore The graph cuts the x-axis at $(1,0)$ and $(5,0)$.

When $x=0$,

$$
\begin{aligned}
y & =(-1)(-5) \\
& =5
\end{aligned}
$$

\therefore The graph cuts the y-axis at $(0,5)$.

PRACTISE NOW 12

Sketch the graph of each of the following functions.
(a) $y=(x-2)(x-6)$
(b) $y=-(x-3)(x+1)$
(c) $y=(3-x)(x+5)$

$\because \because:$ Graphs of the form $y=(x-p)^{2}+q$ or $y=-(x-p)^{2}+q$

Investigation

Graphs of $y=(x-p)^{2}+q$ or $y=-(x-p)^{2}+q$

1. Use a graphing software to plot the graph of $y=(x-2)^{2}+q$ for $q=-4,-1,0,1$ and 4.
2. Study the graphs and answer each of the following questions.
(a) Does the graph open upwards or downwards?
(b) Write down the coordinates of the point(s) where the graph cuts the x-axis, i.e. the x-intercepts.
(c) Write down the coordinates of the point where the graph cuts the y-axis, i.e. the y-intercept.
(d) State the equation of the line of symmetry of the graph.
(e) Write down the coordinates of the maximum or the minimum point of the graph.
3. Repeat Steps 1 and 2 for $y=-(x-2)^{2}+q, y=(x+3)^{2}+q$ and $y=-(x+3)^{2}+q$.
4. By looking at the equation of each graph, how do you determine if it opens upwards or downwards?
5. By looking at the equation of each graph, how do you determine the coordinates of the maximum or the minimum point?
6. What can you say about the line of symmetry of each graph?

From the investigation, we observe that:

- For the equation $y=(x-p)^{2}+q$, the graph opens upwards. The coordinates of the minimum point of the graph are (p, q) and the graph is symmetrical about the line $x=p$.
- For the equation $y=-(x-p)^{2}+q$, the graph opens downwards. The coordinates of the maximum point of the graph are (p, q) and the graph is symmetrical about the line $x=p$.

The graph of a quadratic function is a parabola. When it opens upwards, we say it is concave upwards.
(Sketching the Graph of $y=-(x-p)^{2}+q$)
Given the quadratic function $y=-(x-1)^{2}+4$,
(i) find the coordinates of the x - and y-intercepts,
(ii) write down the coordinates of the maximum point of the graph,
(iii) sketch the graph,
(iv) state the equation of the line of symmetry of the graph.

Solution:

(i) Since the coefficient of x^{2} is -1 , the graph opens downwards.

When $y=0$,

$$
\begin{array}{rlrlrl}
-(x-1)^{2}+4 & =0 & & \\
-(x-1)^{2} & =-4 & & \\
(x-1)^{2} & =4 & & & \\
x-1 & =2 & \text { or } & x-1 & =-2 \\
x & =3 & & x & =-1
\end{array}
$$

\therefore The graph cuts the x-axis at $(3,0)$ and $(-1,0)$.

When $x=0$,

$$
\begin{aligned}
y & =-(-1)^{2}+4 \\
& =3
\end{aligned}
$$

\therefore The graph cuts the y-axis at $(0,3)$.
(ii) The coordinates of the maximum point are $(1,4)$.
(iii)

(iv) The equation of the line of symmetry is $x=1$.

PRACTISE NOW 13

1. Given the quadratic function $y=-(x-2)^{2}+9$,
(i) find the coordinates of the x - and y-intercepts,
(ii) write down the coordinates of the maximum point of the graph,
(iii) sketch the graph,
(iv) state the equation of the line of symmetry of the graph.
2. Given the quadratic function $y=(x+1)^{2}-1$,
(i) find the coordinates of the x - and y-intercepts,
(ii) write down the coordinates of the minimum point of the graph,
(iii) sketch the graph,
(iv) state the equation of the line of symmetry of the graph.

Step 1: State the coefficient of x^{2} to determine if the graph opens upwards or downwards.

Step 2: Since the equation is of the form $y=-(x-p)^{2}+q$, the coordinates of the maximum point are (p, q).

Step 3: Obtain the x-intercepts by substituting $y=0$ into the equation.
Step 4: Obtain the y-intercept by substituting $x=0$ into the equation.
Step 5: Sketch the graph.

SIMILAR
 QUESTIONS

Exercise 1E Questions 2(a)-(f), 9

1. In Worked Example 13, we sketched the graph of $y=-(x-1)^{2}+4$.

Express $y=-(x-1)^{2}+4$ in the factorised form $y=-(x-h)(x-k)$, and hence sketch the graph.
2. If we are given the following graph with x-intercepts at 1 and 3 and a minimum point at $(2,-1)$, can we express the equation of the curve in the form $y=(x-a)^{2}+b$?

(Sketching the Graph of $y=a x^{2}+b x+c$)
(i) Express $x^{2}-4 x+2$ in the form $(x-p)^{2}+q$.
(ii) Write down the coordinates of the minimum point of the graph.
(iii) Hence, sketch the graph of $y=x^{2}-4 x+2$.
(iv) State the equation of the line of symmetry of the graph.

Solution:

(i) $x^{2}-4 x+2=\left[x^{2}-4 x+\left(-\frac{4}{2}\right)^{2}\right]-\left(-\frac{4}{2}\right)^{2}+2$

$$
=(x-2)^{2}-2
$$

(ii) The coordinates of the minimum point are $(2,-2)$.
(iii) When $x=0$,

$$
y=2
$$

\therefore The graph cuts the y-axis at $(0,2)$.

(iv) The equation of the line of symmetry is $x=2$.

Since the equation is of the form $y=(x-p)^{2}+q$, the coordinates of the minimum point are (p, q).

PRACTISE NOW 14

1. (i) Express $x^{2}-6 x+6$ in the form $(x-p)^{2}+q$.
(ii) Write down the coordinates of the minimum point of the graph.
(iii) Hence, sketch the graph of $y=x^{2}-6 x+6$.
(iv) State the equation of the line of symmetry of the graph.
2. (i) Express $x^{2}+x+1$ in the form $(x+p)^{2}+q$.
(ii) Write down the coordinates of the minimum point of the graph.
(iii) Hence, sketch the graph of $y=x^{2}+x+1$.
(iv) State the equation of the line of symmetry of the graph.

Matching quadratic graphs with the corresponding functions

Work in pairs.
Match the graphs with their respective functions and justify your answers. If your classmate does not obtain the correct answer, explain to him what he has done wrong.

A: $y=-(x+1)(x+6)$	B: $y=(x+1)(x+6)$	C: $y=(x-1)(x+6)$	D: $y=-(x-1)(x-6)$
E: $y=x^{2}-7 x+6$	F: $y=-x^{2}-5 x+6$	G: $y=x^{2}-5 x-6$	H: $y=-x^{2}+5 x+6$

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

Graph 7

Graph 8

BASIC LEVEL

1. Sketch the graph of each of the following functions.
(a) $y=(x+1)(x+3)$
(b) $y=(x-2)(x+4)$
(c) $y=-(x+1)(x-5)$
(d) $y=-(x-1)(x+6)$
(e) $y=(3-x)(x+2)$
(f) $y=(2-x)(4-x)$
2. Sketch the graph of each of the following functions, stating the coordinates of the maximum or the minimum point and the equation of the line of symmetry.
(a) $y=x^{2}+2$
(b) $y=-x^{2}-6$
(c) $y=(x-3)^{2}+1$
(d) $y=(x+1)^{2}-3$
(e) $y=-(x+2)^{2}+3$
(f) $y=-(x-4)^{2}-1$

INTERMEDIATE LEVEL

3. (i) Factorise $x^{2}+\frac{3}{4} x$.
(ii) Hence, sketch the graph of $y=x^{2}+\frac{3}{4} x$.
4. Sketch the graph of $y=-\left(x^{2}-x\right)$.
5. (i) Factorise $x^{2}+x-6$ completely.
(ii) Hence, sketch the graph of $y=x^{2}+x-6$.
6. Sketch the graph of $y=x^{2}-4 x+3$.
7. (i) Express $x^{2}-8 x+5$ in the form $(x-p)^{2}+q$.
(ii) Hence, sketch the graph of $y=x^{2}-8 x+5$.
(iii) Write down the coordinates of the minimum point of the graph.
(iv) State the equation of the line of symmetry of the graph.
8. By first expressing $x^{2}+3 x+1$ in the form $(x+p)^{2}+q$, sketch the graph of $y=x^{2}+3 x+1$. Write down the coordinates of the minimum point of the graph.

ADVANCED LEVEL

9. The graph of $y=(x-h)^{2}+k$ has a minimum point at $\left(-\frac{1}{2}, \frac{3}{4}\right)$.
(i) State the value of h and of k.
(ii) Hence, sketch the graph of $y=(x-h)^{2}+k$, indicating the coordinates of the point of intersection of the graph with the y-axis.
10. It is given that $-x^{2}+10 x-4$ can be expressed in the form $-(x-p)^{2}+q$. By first finding the value of p and of q, sketch the graph of $y=-x^{2}+10 x-4$, indicating the coordinates of the maximum point of the graph.

11. A quadratic equation in one variable can be solved by

- completing the square,
- using formula,
- graphical method.

Completing the square	Using formula	Graphical method
To solve a quadratic equation in the form $x^{2}+p x+q=0$ by completing the square: - Rewrite the equation such that the constant term is on the RHS of the equation, i.e. $x^{2}+p x=-q$. - Add $\left(\frac{p}{2}\right)^{2}$ to both sides of the equation to form $\left(x+\frac{p}{2}\right)^{2}=\left(\frac{p}{2}\right)^{2}-q$. - Take the square roots on both sides of the equation to solve for x.	The formula for solving a quadratic equation in the form $a x^{2}+b x+c=0$ $\text { is } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} . \text { Note }$ that when $b^{2}-4 a c<0$, the equation has no real solutions.	To solve a quadratic equation in the form $a x^{2}+b x+c=0$ by graphical method: - Drawthegraph of $y=a x^{2}+b x+c$. - The solution(s) of the equation are given by the x-coordinate(s) of the point(s) of intersection of the graph with the x-axis.

2. Equations that have one or more algebraic fractions are known as fractional equations.

To solve a fractional equation:

- Multiply both sides of the equation by the LCM of the denominators.
- Reduce it to a quadratic equation.
- Solve the equation either by factorisation or by using the quadratic formula.

3. Graphs of quadratic functions of the form $y=(x-h)(x-k)$ or $y=-(x-h)(x-k)$

$$
y=-(x-h)(x-k)
$$

The line of symmetry passes through the midpoint of the x-intercepts.
4. Graphs of quadratic functions of the form $y=(x-p)^{2}+q$ or $y=-(x-p)^{2}+q$

1. Solve each of the following equations by completing the square.
(a) $x^{2}+8 x+5=0$
(b) $x^{2}+7 x-3=0$
(c) $x^{2}-11 x-7=0$
(d) $x^{2}+1.2 x=1$
2. By using the quadratic formula, solve each of the following equations.
(a) $2 x^{2}+6 x+1=0$
(b) $3 x^{2}-7 x-2=0$
(c) $-4 x^{2}+x+5=0$
(d) $3 x^{2}=5 x+1$
3. Solve each of the following equations.
(a) $(x-3)^{2}=\frac{4}{25}$
(b) $(4-x)^{2}=12$
(c) $(x-1)(x+3)=9$
(d) $x(x+4)=17$
4. (i) Solve the equation $2 x^{2}-7 x+4=0$, giving your answers correct to 2 decimal places.
(ii) Hence, find the values of y that satisfy the equation $2(y-1)^{2}-7(y-1)+4=0$.
5. Form a quadratic equation in the form $a x^{2}+b x+c=0$, where a, b and c are integers, given each of the following solutions.
(a) $x=2, x=\frac{6}{7}$
(b) $x=-\frac{1}{2}, x=-\frac{2}{3}$
6. Solve each of the following equations.
(a) $x-1=\frac{5}{x+7}$
(b) $\frac{x-1}{x+4}=\frac{2 x}{x-3}$
(c) $\frac{1}{x}-5 x=5$
(d) $\frac{5}{x}=3-\frac{x}{x-3}$
(e) $\frac{2}{x+1}+\frac{1}{x-3}=5$
(f) $\frac{x}{x+1}+\frac{1}{5}=\frac{3}{x-2}$
(g) $\frac{5}{x-2}-\frac{3}{x^{2}-4}=\frac{2}{7}$
(h) $\frac{1}{2 x+1}+\frac{x+3}{2 x^{2}-5 x-3}=2$
7. (i) Express $y=x^{2}-7 x+12$ in the form $y=(x-h)(x-k)$.
(ii) Hence, sketch the graph of $y=x^{2}-7 x+12$.
8. (i) Express $y=-x^{2}+5 x-4$ in the form

$$
y=-(x-p)^{2}+q .
$$

(ii) Hence, sketch the graph of $y=-x^{2}+5 x-4$.
9. The difference between the reciprocals of two consecutive positive integers is $\frac{1}{12}$. Find the two numbers.
10. In November 2013, the exchange rate between Australian dollars (A\$) and Singapore dollars (S\$) offered by a money changer was $\mathrm{A} \$ 100=\mathrm{S} \$ x$. In December 2013, the exchange rate offered was $\mathrm{A} \$ 100=\mathrm{S} \$(x-5)$. Mr Neo found that, for every S\$650 he exchanged in December 2013, he would receive A $\$ 20$ more than if he exchanged in November 2013.
(i) Formulate an equation in x.
(ii) Hence, find the amount of Singapore dollars Mr Neo received if he exchanged A\$1250 in November 2013.
11. Farhan travelled by car from Town A to Town B, 40 km apart, at an average speed of $x \mathrm{~km} / \mathrm{h}$.
(i) Write down an expression, in terms of x, for the time taken by Farhan to travel from Town A to Town B.
Khairul travelled by van from Town B to Town A at an average speed that was $30 \mathrm{~km} / \mathrm{h}$ less than that of the car.
(ii) Write down an expression, in terms of x, for the time taken by Khairul to travel from Town B to Town A.
(iii) Given that Farhan took 10 minutes less than Khairul to complete the journey, form an equation in x and show that it reduces to $x^{2}-30 x-7200=0$.
(iv) Solve the equation $x^{2}-30 x-7200=0$, giving both your answers correct to 2 decimal places.
(v) Find the time taken by Khairul to travel from Town B to Town A.
12. In November 2013, the price of petrol was x cents per litre.
(i) Write down an expression, in terms of x, for the number of litres of petrol that could be bought with \$60 in November 2013.
In December 2013, the price had increased by
10 cents per litre.
(ii) Write down an expression, in terms of x, for the number of litres of petrol that could be bought with $\$ 60$ in December 2013.
(iii) Given that an additional $1 \frac{3}{7}$ litres of petrol could be bought in November 2013 than in December 2013, form an equation in x and show that it reduces to $x^{2}+10 x-42000=0$.
(iv) Solve the equation $x^{2}+10 x-42000=0$.
(v) Find the number of litres of petrol that could be bought with $\$ 34$ in December 2013.
13. A rectangular function room has dimensions 35 m by 22 m . Part of the floor is covered with ceramic tiles, as shown by the shaded rectangle in the figure.

(i) Given that the part of the floor which is not covered by the tiles has a uniform width of $x \mathrm{~m}$, write down an expression, in terms of x, for the length and the breadth of the floor covered by the tiles.
(ii) Given that the floor area covered by the tiles is $400 \mathrm{~m}^{2}$, formulate an equation in x and show that it reduces to $2 x^{2}-57 x+185=0$.
(iii) Solve the equation $2 x^{2}-57 x+185=0$, giving both your answers correct to 2 decimal places.
(iv) State the width of the floor that is not covered by the tiles.
14. A stone was thrown from the top of a vertical tower into the sea. Its position during the flight is represented by the equation $y=60+25 x-x^{2}$, where y metres is the height of the stone above sea level and x metres is the horizontal distance from the foot of the tower.
(a) (i) Solve the equation $60+25 x-x^{2}=0$, giving both your answers correct to 1 decimal place.
(ii) Explain briefly what the positive solution in (a)(i) represents.
(b) The table shows some values of x and the corresponding values of y.

\boldsymbol{x}	0	2	4	6	8	10
\boldsymbol{y}	60	106	144	174	196	210

\boldsymbol{x}	12	14	16	18	20	22
\boldsymbol{y}	216	214	204	186	160	126

Using a scale of 2 cm to represent 5 m , draw a horizontal x-axis for $0 \leqslant x \leqslant 22$.
Using a scale of 2 cm to represent 20 m , draw a vertical y-axis for $0 \leqslant y \leqslant 220$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find
(i) the greatest height reached by the stone,
(ii) the horizontal distance from the foot of the tower when the stone is 180 m above sea level.
15. A water tank can be filled with water by two pipes in $11 \frac{1}{9}$ minutes. If the smaller pipe takes 5 minutes longer than the larger pipe to fill the tank, find the time taken by each pipe to fill the tank.
16. A boat travels 12 km upstream and back in 1 hour and 30 minutes. Given that the speed of the current is $5 \mathrm{~km} / \mathrm{h}$, find the speed of the boat in still water.
Hint: Let the speed of the boat in still water be $x \mathrm{~km} / \mathrm{h}$.

Challenge

1. A two-digit number is such that the sum of its digits is 6 while the product of its digits is $\frac{1}{3}$ of the original number. Find the original number.
Hint: Let x be one of the digits.
2. If $x=h$ and $x=k$ are the real solutions of the quadratic equation $a x^{2}+b x+c=0$, where a, b and c are constants and $a \neq 0$, we say that $x=h$ and $x=k$ are the roots of the equation. The sum of the roots, $h+k$, and the product of the roots, $h k$, can be expressed in terms of the coefficients a, b and c. Find an expression for $h+k$ and for $h k$ in terms of a, b and/or c.

Linear Inequalities

Postage rates to send postcards, letters and large parcels vary depending on the destinations and the mass of the items. How much more does it cost to send a small package to the United States than within the country?

Chapter Two

LEARNING OBJECTIVES

At the end of this chapter, you should be able to:

- solve linear inequalities in one variable and represent the solution on a number line,
- apply linear inequalities to solve word problems.

Recap

In Book 1, we have learnt how to solve a simple inequality in the form $a x>b$, $a x \geqslant b, a x<b$ and $a x \leqslant b$, where a and b are integers.
'To solve an inequality' means to find all the solutions that satisfy the inequality.

For example, if $4 x \geqslant 32$,
then $\quad x \geqslant 8$. (divide both sides by 4)

If $-5 y<20$,
then $5 y>-20$, (multiply both sides by -1 , change the inequality sign)
i.e. $y>-4$. (divide both sides by 5)

In general, to solve an inequality, we

- multiply or divide both sides by a positive number without having to reverse the inequality signs,
i.e. if $x \geqslant y$ and $c>0$, then $c x \geqslant c y$ and $\frac{x}{c} \geqslant \frac{y}{c}$.
- reverse the inequality sign if we multiply or divide both sides by a negative number,
i.e. if $x \geqslant y$ and $d<0$, then $d x \leqslant d y$ and $\frac{x}{d} \leqslant \frac{y}{d}$.

In this section, we will learn how to solve linear inequalities in one variable and represent the solution on a number line.

:Inequalities

Investigation

Inequalities

By considering a number line, fill in each blank with ' $>$ ' or ' $<$ '.

1. (a) (i) $6<12$
(ii) $6+2$ \square $12+2$
(iii) 6-4 12-4
(b) If $6<12$ and a is a real number, then $6+a \square 12+a$ and $6-a \square 12-a$.
(c) If $12>6$ and a is a real number, then $12+a \square 6+a$ and $12-a \square 6-a$.
2. (a) (i) -6 \square 12
(ii) $-6+2 \square 12+2$
(iii) $-6-4 \square 12-4$
(b) If $-6<12$ and a is a real number, then $-6+a \square 12+a$ and $-6-a \square 12-a$.
(c) If $12>-6$ and a is a real number, then $12+a \square-6+a$ and $12-a \square-6-a$.
3. (a)
(i) $6 \square-12$
(ii) $6+2 \square-12+2$
(iii) $6-4$ \square $-12-4$
(b) What do you observe about your answers in Question 3(a)?
4. Do the conclusions which you have drawn in Questions 1 to 3 apply to $6 \leqslant 12$? What about $12 \geqslant 6$?

From the investigation, we observe that when we add or subtract a positive or a negative number from both sides of an inequality, the inequality sign does not change,
i.e. if $x>y$, then $x+a>y+a$ and $x-a>y-a$.

If $x \geqslant y$, then $x+a \geqslant y+a$ and $x-a \geqslant y-a$.

Similarly, if $x<y$, then $x+a<y+a$ and $x-a<y-a$.

$$
\text { If } x \leqslant y \text {, then } x+a \leqslant y+a \text { and } x-a \leqslant y-a \text {. }
$$

One example of a real-life application of inequalities is the speed limit of vehicles travelling on expressways.
Can you think of other real-life applications of inequalities? Write down as many as you can.

Worked Example
 1

 (Solving Linear Inequalities)Solve each of the following inequalities, illustrating each solution on a number line.
(a) $x+4<3$
(b) $-4 y-5 \geqslant 11$

Solution:

(a) $x+4<3$ $x+4-4<3-4$ (subtract 4 from both sides) $x<-1$

(b) $-4 y-5 \geqslant 11$
$-4 y-5+5 \geqslant 11+5$ (add 5 to both sides)
$-4 y \geqslant 16$
$4 y \leqslant-16$ (multiply both sides by -1 and change the inequality sign)
$\frac{4 y}{4} \leqslant \frac{-16}{4}$ (divide by 4 on both sides)
$y \leqslant-4$

PRACTISE NOW 1

Solve each of the following inequalities, illustrating each solution on a number line.
(a) $x-3 \geqslant 7$
(b) $-2 y+4>3$

1. Given an equation in the form $a x+b=c$, where a, b and c are constants and $a>0$, list the steps you would take to find the value of x. Would the steps change if $a<0$?
2. Given an inequality in the form $a x+b>c$, where a, b and c are constants and $a>0$, list the steps you would take to find the range of values of x. How would the steps change if $a<0$?
3. Given an inequality in the form $a x+b \geqslant c$, where a, b and c are constants and $a>0$, list the steps you would take to find the range of values of x. How would the steps change if $a<0$?
For the inequalities $a x+b<c, a x+b \leqslant c, a x+b>c$ and $a x+b \geqslant c$, we say that the corresponding linear equation is $a x+b=c$.
4. How is the solution of each inequality related to that of the corresponding linear equation?

Worked Example

(Solving Linear Inequalities)

Solve the inequality $8-x>3$ and illustrate the solution on a number line.
(i) If x is a prime number, write down the largest possible value of x that satisfies the inequality.
(ii) Write down the positive integer values of x that satisfy the inequality.

Solution:

$8-x>3$
$8-8-x>3-8$ (subtract 8 from both sides)
$-x>-5$
$x<5$ (multiply both sides by -1 and change the inequality sign)

(i) Largest prime value of x is 3
(ii) Positive integer values of x are 1,2,3 and 4

PRACTISE NOW 2

Solve the inequality $5-x<-9$ and illustrate the solution on a number line.
(i) If x is a prime number, write down the smallest possible value of x that satisfies the inequality.
(ii) Given that x is a perfect cube, find the smallest possible value of x.

Worked
 Example

(Solving Linear Inequalities)

Solve each of the following inequalities.
(a) $3 x-2>2(1-x)$
(b) $\frac{y}{4} \leqslant \frac{y+1}{7}$

Solution:

(a)

$$
\begin{aligned}
3 x-2 & >2(1-x) \\
3 x-2 & >2-2 x \text { (expand the RHS) } \\
3 x-2+2 x & >2-2 x+2 x \text { (add } 2 x \text { to both sides) } \\
5 x-2 & >2 \\
5 x-2+2 & >2+2 \text { (add } 2 \text { to both sides) } \\
5 x & >4 \\
x & >\frac{4}{5}
\end{aligned}
$$

(b) $\quad \frac{y}{4} \leqslant \frac{y+1}{7}$

$$
\begin{aligned}
4 \times 7 \times \frac{y}{4} & \leqslant 4 \times 7 \times \frac{y+1}{7} \text { (multiply by } 4 \times 7 \text { on both sides) } \\
7 y & \leqslant 4(y+1) \\
7 y & \leqslant 4 y+4 \text { (expand the RHS) } \\
7 y-4 y & \leqslant 4 y+4-4 y \text { (subtract } 4 y \text { from both sides) } \\
3 y & \leqslant 4 \\
y & \leqslant \frac{4}{3} \\
y & \leqslant 1 \frac{1}{3}
\end{aligned}
$$

PRACTISE NOW 3

1. Solve each of the following inequalities.
(a) $15 x+1<5(3+x)$
(b) $\frac{16 y}{3} \geqslant \frac{y+1}{2}$
(c) $\frac{1}{2}(z-4) \leqslant \frac{1}{3}(z+1)+2$
2. Given that p satisfies the inequality $\frac{3}{4}(p-2)+\frac{1}{2}>\frac{1}{2}(p-1)$, find the smallest possible value of p if p is a perfect square.

The LCM of 4 and 7 is 4×7.

BASIC LEVEL

1. Fill in each box with ' $<$ ', ' $>$ ', ' \leqslant ' or ' \geqslant '.
(a) $5+h \square 7+h$, where h is a real number
(b) $5-k \square 7-k$, where k is a real number
2. Solve each of the following inequalities, illustrating each solution on a number line.
(a) $a+2<3$
(b) $b-3 \geqslant 4$
(c) $-c+3>5$
(d) $4-d \leqslant 4$
(e) $-2 e-1 \leqslant 2$
(f) $2+5 f<0$
(g) $g-7 \geqslant 1-g$
(h) $5 h>4(h+1)$
(i) $8 j+3<2(7-j)$
(j) $4 k+5 \geqslant 2(-2 k)$
(k) $2(m-5) \leqslant 2-m$
(l) $3(1-4 n)>8-7 n$
3. Solve the inequality $7+2 x \leqslant 16$ and illustrate the solution on a number line.
(i) If x is an integer, write down the largest possible value of x that satisfies the inequality.
(ii) Given that x is a perfect square, find the largest possible value of x.
4. Solve the inequality $3-4 x>3 x-18$ and illustrate the solution on a number line.
(i) If x is a prime number, write down the possible value(s) of x that satisfies the inequality.
(ii) Does $x=0$ satisfy the inequality? Explain your answer.

INTERMEDIATE LEVEL

5. Solve each of the following inequalities, illustrating each solution on a number line.
(a) $4(p+1)<-3(p-4)$
(b) $6-(1-2 q) \geqslant 3(5 q-2)$
6. Solve each of the following inequalities.
(a) $\frac{4 a}{3} \geqslant 2$
(b) $\frac{2 b-1}{3}>\frac{3 b}{5}$
(c) $\frac{c+4}{4}>\frac{c+1}{3}$
(d) $\frac{2-d}{2}<\frac{3-d}{4}+\frac{1}{2}$
(e) $\frac{1}{4}(e-2)+\frac{2}{3}<\frac{1}{6}(e-4)$
(f) $\frac{f+1}{2}+\frac{3 f+1}{4} \leqslant \frac{3 f-1}{4}+2$
(g) $\frac{1}{5}(3 g+4)-\frac{1}{3}(g+1) \geqslant 1-\frac{1}{3}(g+5)$
(h) $4\left(\frac{h}{3}+\frac{3}{4}\right)<3\left(\frac{h}{2}-5\right)$
7. Given that p satisfies the inequality
$\frac{1}{6}(2-p)-3 \geqslant \frac{p}{10}$, find the largest possible value of p.

ADVANCED LEVEL

8. Given that $\frac{1}{3}(2 x-7) \leqslant \frac{3 x+2}{2}$,
(i) solve the inequality,
(ii) find the smallest possible value of x^{2}.

＠）（®roblem Solving 10）involving Inequalities

In this section，we shall take a look at how inequalities are used to solve problems

Worked Example

（Problem Solving involving Inequalities）

Devi scored 66 marks for her first class test and 72 marks for her second class test．What is the minimum mark she must score for her third class test to meet her target of obtaining an average of 75 marks or more for the three tests？

Solution：

Let x be the marks scored by Devi in her third class test．

```
    \(\frac{66+72+x}{3} \geqslant 75\)
\(3 \times \frac{66+72+x}{3} \geqslant 3 \times 75\) (multiply by 3 on both sides)
    \(66+72+x \geqslant 225\)
        \(138+x \geqslant 225\)
\(138+x-138 \geqslant 225-138\) (subtract 138 from both sides)
    \(x \geqslant 87\)
```

\therefore Devi must score at least 87 marks for her third class test．

PRACTISE NOW 4

The minimum mark to obtain a Grade A is 75 ．Priya managed to achieve an average of Grade A for three of her Science quizzes．What is the minimum mark she scored in her first quiz if she scored 76 and 89 marks in her second and third quiz respectively？

SIMILAR
 QUESTIONS

Exercise 2B Questions 1，6， 7

Worked
 Example

(Problem Solving involving Inequalities)

An IQ test consists of 20 multiple choice questions. 3 points are awarded for a correct answer and 1 point is deducted for a wrong answer. No points are awarded or deducted for an unanswered question. Raj attempted a total of 19 questions and his total score for the IQ test was above 32. Find the minimum number of correct answers he obtained.

Solution:

Let x and y be the number of correct answers and incorrect answers respectively.
$x+y=19$
$3 \times x+(-1) \times y>32$
i.e. $\quad 3 x-y>32$

From (1),
$y=19-x$----------- (3)

Substitute (3) into (2):
$3 x-(19-x)>32$
$3 x-19+x>32$
$4 x-19+19>32+19$ (add 19 to both sides)
$4 x>51$
$x>\frac{51}{4}$ (divide by 4 on both sides)
$x>12.75$
\therefore Raj obtained at least 13 correct answers.

PRACTISE NOW 5

Vishal has 12 pieces of $\$ 10$ and $\$ 5$ notes in his wallet. If the total value of all the

> SIMILAR
> QUESTIONS notes is less than $\$ 95$, what is the maximum number of $\$ 10$ notes that he has?

(๑) Solving Simultaneous (0) Linear Inequalities

$\because: \%$ Simultaneous Linear Inequalities

To solve linear inequalities simultaneously, we find the solution(s) to each inequality separately, then we consider only the common solutions of the inequalities.

For example, given that $x \geqslant 5$ and $x \leqslant 8$, then the range of values of x which satisfies both inequalities is $5 \leqslant x \leqslant 8$.

Does $x=1$ satisfy both $3 x \leqslant x+6$ and $2 x+4<3 x+6$? Does $x=-3$ satisfy both $3 x \leqslant x+6$ and $2 x+4<3 x+6$?

Worked Example 0

(Solving Simultaneous Linear Inequalities)

Find the range of values of x for which $3 x \leqslant x+6$ and $2 x+4<3 x+6$.

Solution:

Solving the two linear inequalities separately,
$3 x \leqslant x+6$
and

$$
3 x-x \leqslant x+6-x
$$

$$
2 x \leqslant 6
$$

$$
x \leqslant \frac{6}{2}
$$

$$
x \leqslant 3
$$

$$
\begin{aligned}
2 x+4 & <3 x+6 \\
2 x+4-3 x & <3 x+6-3 x \\
-x+4 & <6 \\
-x+4-4 & <6-4 \\
-x & <2
\end{aligned}
$$

$$
x>-2
$$

Representing $x \leqslant 3$ and $x>-2$ on a number line,

\therefore The solutions satisfying both inequalities lie in the overlapping shaded region, i.e. $-2<x \leqslant 3$.

PRACTISE NOW 6

-2 is not a solution to the inequality.

Exercise 2B Questions 3(a),(b),
4(a),(b), 10

Worked Example

(Solving Simultaneous Linear Inequalities)

Solve the inequalities $4 x+14 \leqslant x+5<3 x-1$.

Solution:

Solving the two linear inequalities separately,

$$
\begin{aligned}
& 4 x+14 \leqslant x+5 \quad \text { and } \quad x+5<3 x-1 \\
& 4 x+14-x \leqslant x+5-x \\
& 3 x+14 \leqslant 5 \\
& x+5-3 x<3 x-1-3 x \\
& -2 x+5<-1 \\
& 3 x+14-14 \leqslant 5-14 \\
& 3 x \leqslant-9 \\
& x \leqslant-3 \\
& -2 x+5-5<-1-5 \\
& -2 x<-6 \\
& 2 x>6 \\
& x>3
\end{aligned}
$$

Representing $x \leqslant-3$ and $x>3$ on a number line,

\therefore The simultaneous linear inequalities have no solution.

PRACTISE NOW 7

1. Solve the inequalities $8 x+13 \leqslant 4 x-3<5 x-11$.
2. Solve the inequalities $\frac{y-2}{3}<\frac{2 y+1}{5} \leqslant 3$.

SIMILAR

QUESTIONS

Since there is no overlapping region on the number line, there is no solution that satisfies both inequalities.

Performance Task

The table shows the postage rates for letters and small packages to Malaysia offered by a local company.

Mass $(\boldsymbol{m} \mathbf{g})$	Postage (cents)
$0<m \leqslant 20$	45
$20<m \leqslant 50$	55
$50<m \leqslant 100$	85
$100<m \leqslant 200$	185
$200<m \leqslant 300$	285

Search on the Internet for the postage rates for parcels to Thailand, New Zealand and the United Kingdom, displaying your findings in a table similar to the above.

BASIC LEVEL

1. On weekends, a movie ticket costs $\$ 10.50$. Form an inequality and solve it to find the maximum number of tickets Kate can buy with $\$ 205$.
2. The length and breadth of a rectangle are $x \mathrm{~cm}$ and $y \mathrm{~cm}$ respectively. If the rectangle has an area of $24 \mathrm{~cm}^{2}$, state the possible pairs of integer values of x and y, where $x>y$.
3. Find the range of values of x which satisfy each of the following pairs of inequalities.
(a) $x-4 \leqslant 3$ and $3 x \geqslant-6$
(b) $2 x+5<15$ and $3 x-2>-6$
4. Find the integer values of x which satisfy each of the following pairs of inequalities.
(a) $5 x-1<4$ and $3 x+5 \geqslant x+1$
(b) $2 x-5 \geqslant 1$ and $3 x-1<26$
5. Solve each of the following pairs of inequalities, illustrating each solution on a number line.
(a) $-4 \leqslant 2 x \leqslant 3 x-2$
(b) $1-x<-2 \leqslant 3-x$
(c) $3 x-3<x-9<2 x$
(d) $2 x \leqslant x+6<3 x+5$

INTERMEDATE LEVEL

6. Mr Chua's car consumes petrol at an average rate of 8 litres daily. Before Mr Chua begins his journey, he tops up the petrol in his car to 100 litres. Given that he will next top up the petrol in his car when there are 20 litres left, form an inequality and solve it to find the maximum number of days he can travel before he has to top up the petrol in his car.
7. If the sum of three consecutive integers is less than 75 , find the cube of the largest possible integer.
8. In a Math Olympiad quiz, 5 points are awarded for a correct answer and 2 points are deducted for a wrong answer or if a question is left unanswered. Shirley attempted all 30 questions and her total score for the quiz was not more than 66. Find the maximum number of correct answers she obtained.
9. Ethan opened his piggy bank to find 50 pieces of $\$ 5$ and $\$ 2$ notes. If the total value of all the notes is more than $\$ 132$, find the minimum number of $\$ 5$ notes he has.
10. Given that x is a prime number, find the values of x for which $\frac{1}{2} x-4>\frac{1}{3} x$ and $\frac{1}{6} x+1<\frac{1}{8} x+3$.
11. An integer x is such that $x+2<5 \sqrt{17}<x+3$. State the value of x.
12. Given that x is a prime number, find the value of x for which $3 x-2 \geqslant 10 \geqslant x+4$.
13. Solve each of the following pairs of inequalities.
(a) $3-a \leqslant a-4 \leqslant 9-2 a$
(b) $1-b<b-1<11-2 b$
(c) $3-c<2 c-1<5+c$
(d) $3 d-5<d+1 \leqslant 2 d+1$
14. Solve each of the following pairs of inequalities.
(a) $\frac{a}{4}+3 \leqslant 4 \leqslant \frac{a}{2}+6$
(b) $\frac{b}{3} \geqslant \frac{b}{2}+1 \geqslant b-1$
(c) $2(1-c)>c-1 \geqslant \frac{c-2}{7}$
(d) $d-5<\frac{2 d}{5} \leqslant \frac{d}{2}+\frac{1}{5}$
15. Find the integer values of x which satisfy each of the following inequalities.
(a) $3 x-5<26 \leqslant 4 x-6$
(b) $3 x+2<19<5 x-4$
(c) $-4 \leqslant 7-3 x \leqslant 2$
(d) $-10<7-2 x \leqslant-1$
16. Given that $0 \leqslant x \leqslant 7$ and $1 \leqslant y \leqslant 5$, find
(a) the greatest possible value of $x+y$,
(b) the least possible value of $x-y$,
(c) the largest possible value of $x y$,
(d) the smallest possible value of $\frac{x}{y}$,
(e) the least and greatest possible values of x^{2}.
17. Given that $-4 \leqslant a \leqslant-1$ and $-6 \leqslant b \leqslant-2$, find
(a) the least possible value of $a+b$,
(b) the greatest possible value of $a-b$,
(c) the smallest possible value of $a b$,
(d) the largest possible value of $\frac{a}{b}$,
(e) the least and greatest possible values of a^{2},
(f) the largest value of $b^{2}-a$.

ADVANCED LEVEL

18. State whether each of the following statements is true or false. If your answer is 'false', offer an explanation to support your case.
(a) If $a>b$ and both a and b are negative, then $\frac{a}{b}>1$.
(b) If $a>b$ and both a and b are negative, then $a^{3}>b^{3}$.
(c) If $a>b$ and both a and b are negative, then $\frac{b}{a}-\frac{a}{b}>0$.

19. Solving a Linear Inequality

Case	Adding a number to both sides of the inequality	Subtracting a number from both sides of the inequality
$\boldsymbol{x}>\boldsymbol{y}$	$x+a>y+a$	$x-a>y-a$
$\boldsymbol{x} \geqslant \boldsymbol{y}$	$x+a \geqslant y+a$	$x-a \geqslant y-a$
$\boldsymbol{x}<\boldsymbol{y}$	$x+a<y+a$	$x-a<y-a$
$\boldsymbol{x} \leqslant \boldsymbol{y}$	$x+a \leqslant y+a$	$x-a \leqslant y-a$

Case	Multiplying a positive number \boldsymbol{c} to both sides of the inequality	Dividing a positive number \boldsymbol{c} from both sides of the inequality	Multiplying a negative number \boldsymbol{d} to both sides of the inequality	Dividing a positive number \boldsymbol{d} from both sides of the inequality
$\boldsymbol{x > y}$	$c x>c y$	$\frac{x}{c}>\frac{y}{c}$	$d x<d y$	$\frac{x}{d}<\frac{y}{d}$
$x \geqslant y$	$c x \geqslant c y$	$\frac{x}{c} \geqslant \frac{y}{c}$	$d x \leqslant d y$	$\frac{x}{d} \leqslant \frac{y}{d}$
$x<y$	$c x<c y$	$\frac{x}{c}<\frac{y}{c}$	$d x>d y$	$\frac{x}{d}>\frac{y}{d}$
$x \leqslant y$	$c x \leqslant c y$	$\frac{x}{c} \leqslant \frac{y}{c}$	$d x \geqslant d y$	$\frac{x}{d} \geqslant \frac{y}{d}$

When solving a linear inequality of the form $a x+b>c x+d$, apply the above guidelines to reduce the inequality to the form $x>k$ or $x<k$. This is called the solution of the inequality.
2. When solving a pair of simultaneous linear inequalities, we only consider the common solutions of the inequalities with the aid of a number line.

For example, to solve $2 x+1<x<1-x$, we have

$$
\begin{array}{rlrl}
2 x+1 & <x \\
x & <-1 & \text { and } & \\
& & & <1-x \\
& & x & <1 \\
& x & <\frac{1}{2}
\end{array}
$$

The common solution is $x<-1$.

1. Solve each of the following inequalities, illustrating each solution on a number line.
(a) $a-2 \leqslant 3$
(b) $2 b+1<5-4 b$
(c) $c \geqslant \frac{1}{2} c-1$
(d) $\frac{1}{2} d>1+\frac{1}{3} d$
(e) $2(e-3) \geqslant 1$
(f) $5(f-4) \leqslant 2 f$
(g) $-3-g>2 g-7$
(h) $18-3 h<5 h-4$
2. Solve each of the following inequalities.
(a) $3+\frac{a}{4}>5+\frac{a}{3}$
(b) $\frac{4 b}{9}-5<3-\frac{2 b}{3}$
(c) $\frac{4 c}{9}-\frac{3}{4} \geqslant c-\frac{1}{2}$
(d) $\frac{d-2}{3}<\frac{2 d+3}{5}+\frac{5}{8}$
(e) $\frac{1}{3}(e+2) \geqslant \frac{2}{3}+\frac{1}{4}(e-1)$
(f) $5-\frac{2 f-5}{6} \leqslant \frac{f+3}{2}+\frac{2(f+1)}{3}$
3. Solve each of the following pairs of inequalities.
(a) $5-a \leqslant a-6 \leqslant 10-3 a$
(b) $4-b<2 b-1<7+b$
(c) $4 c-1<\frac{1}{2} \leqslant 3 c+2$
(d) $2 d+1 \geqslant d>3 d-20$
4. Given that $x \leqslant 14 \frac{1}{2}$, state the largest possible value of x if x is
(a) an integer,
(b) a prime number,
(c) a rational number.
5. Given that $27-2 x \leqslant 8$, find
(a) the least value of x,
(b) the least integer value of x.
6. Find the integer values of x which satisfy each of the following inequalities.
(a) $5 x>69-2 x$ and $27-2 x \geqslant 4$
(b) $-10 \leqslant x<-4$ and $2-5 x<35$
7. Given that $-1 \leqslant x \leqslant 5$ and $2 \leqslant y \leqslant 6$, find the greatest and least values of
(a) $y-x$,
(b) $\frac{x}{y}$,
(c) $\frac{x^{2}}{y}$.
8. Given that $-3 \leqslant x \leqslant 7$ and $4 \leqslant y \leqslant 10$, find
(a) the smallest possible value of $x-y$,
(b) the largest possible value of $\frac{x}{y}$,
(c) the largest possible value of $x^{2}-y^{2}$,
(d) the smallest possible value of $x^{3}+y^{3}$.
9. The perimeter of a square is at most 81 cm . What is the greatest possible area of the square? Give your answer correct to 4 significant figures.
10. The masses of a sheet of writing paper and an envelope are 3 g and 5 g respectively. It costs 60 cents to send a letter with a mass not exceeding 20 g . Michael has 60 cents worth of stamps. If x is the number of sheets of writing paper, form an inequality in x and find the maximum number of sheets of writing paper that he can use.
11. Lixin is 3 years younger than Rui Feng. If the sum of their ages is at most 50 years, find the maximum possible age of Lixin 5 years ago.
12. Jun Wei has $16 \$ 1$ coins and some 20-cent coins in his pocket. Given that the total value of the coins in his pocket is at most $\$ 22$, find the maximum number of 20 -cent coins that he has.
13. In a set of 20 True/False questions, 2 points are awarded for a correct answer and 1 point is deducted for a wrong answer. No points are awarded or deducted for an unanswered question. Amirah answered 15 questions and left the remaining questions unanswered. If her total score is greater than 24 , find the maximum number of questions she answered wrongly.

14. It is given that $6 \leqslant x \leqslant 8$ and $0.2 \leqslant y \leqslant 0.5$. If $z=\frac{x}{y}$, find the limits in which z must lie.
15. Find the range of values of x for which $\frac{3 x-5}{x^{2}-14 x+49}>0, x \neq 7$. Explain your answer.

Indices and

Standard Form

The world population is estimated to be about 7000000000 in 2012.
The Bohr radius of a hydrogen atom is estimated to be about 0.000000000053 m .
As it is troublesome to write very large or very small numbers in this manner, they can be represented using standard form which involves indices.

In this chapter, we will learn about indices and standard form.

Cha
 oter
 Three

LEARNING OBJECTIVES

At the end of this chapter, you should be able to:

- state and apply the 5 laws of indices,
- state and use the definitions of zero, negative and rational indices,
- use the standard form to represent very large or very small numbers.

3.1

In Book 1, we have learnt how to represent $5 \times 5 \times 5 \times 5$ as 5^{4} (read as ' 5 to the power of 4^{\prime}). The digit 5 in 5^{4} is known as the base, and the digit 4 in 5^{4} is known as the index (plural: indices). 5^{4} is called the index notation of $5 \times 5 \times 5 \times 5$.

Write $3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ in index notation: \qquad

Investigation

Indices

"Dad, could you please give me an allowance of $\$ 10$ on the first day of this month, $\$ 20$ on the second day and $\$ 30$ on the third day, increasing by $\$ 10$ each day until the $31^{\text {st }}$ day of this month? Then I will promise not to ask for allowance ever again."

Calculate the amount of allowance the father has to give to his son on the $31^{\text {st }}$ day of the month.

From the investigation, 2^{30} cents may seem to be a small amount, but it is actually equal to 1073741824 cents or about $\$ 10.7$ million. This shows how 'powerful' the index 30 is!

Comparing Numbers written in Index Form

Work in pairs.

1. Describe in your own words the meaning of 2^{10} and 10^{2}.
2. Without using a calculator, explain whether 2^{10} or 10^{2} is greater.

Hint: $2^{10}=(\square)^{2} \square 10^{2}$ (Convert 2^{10} to a number with a different base but with index 2)
3. Without using a calculator, explain whether 3^{7} or 7^{3} is greater.

Hint: $3^{7}=3(3)^{6}=3(\square)^{3}$ \square 7^{3} (Convert 3^{7} to a number with a different base but with index 3)
4. If a and b are positive integers such that $b>a$, when will
(i) $a^{b}=b^{a}$,
(ii) $a^{b}<b^{a}$?

Hint: Use systematic listing, e.g. for $a=1$, tabulate values for a^{b} and b^{a} for integer values of b. Repeat for values of $a=2,3,4, \ldots$
5. In general, if a and b are positive integers such that $b>a$, then $a^{b}>b^{a}$ with some exceptions. Based on your work in Question 4, list the values of a and b for which the above statement is not true.

Investigation

Law 1 of Indices

Copy and complete the following.

1. $7^{2} \times 7^{3}=(7 \times 7) \times($

$$
\begin{aligned}
& =7 \times 7 \times \ldots \times 7 \\
& =7 \\
& =7^{2+}
\end{aligned}
$$

2. $6^{4} \times 6^{5}=($ \qquad

$$
\begin{aligned}
& =6 \times 6 \times \ldots \times 6 \\
& =6 \\
& =6^{4+}
\end{aligned}
$$

10^{100} is called a googol, while $10^{10^{100}}$, i.e. $10^{\left(10^{100}\right)}$, is called a googolplex. Hence, a googolplex has one googol (or 10^{100}) zeros. If one page of newspaper can print 30000 digits, you will need at least 10^{95} pages of newspaper. However, the whole universe is estimated to contain about 10^{78} to 10^{82} atoms, so it is not possible to print out all the zeros of a googolplex. If you think a googolplex is a very large number, search on the Internet for 'Graham's number', which is so much larger than the googolplex that a new notation has to be used to represent it.
3. $a^{3} \times a^{4}=(a \times a \times a) \times($)

$$
\begin{aligned}
& =a \times a \times \ldots \times a \\
& =a \\
& =a^{3+}
\end{aligned}
$$

$$
=a^{m+}
$$

In general, if a is a real number, and m and n are positive integers, then

$$
\text { Law } 1 \text { of Indices: } a^{m} \times a^{n}=a^{m+n}
$$

Worked Example
 1

 (Law 1 of Indices)Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $5^{8} \times 5^{9}$
(b) $(-2)^{3} \times(-2)$
(c) $6 b^{3} c^{5} \times 2 b c^{4}$

Solution:

(a) $5^{8} \times 5^{9}=5^{8+9} \quad($ Law 1$)$
(b) $(-2)^{3} \times(-2)=(-2)^{3+1} \quad($ Law 1)

$$
=(-2)^{4}
$$

(c) $6 b^{3} c^{5} \times 2 b c^{4}=12 b^{3+1} c^{5+4} \quad($ Law 1)

$$
=12 b^{4} c^{9}
$$

PRACTISE NOW 1

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $4^{7} \times 4^{5}$
(b) $(-3)^{6} \times(-3)$
(c) $a^{12} \times a^{8}$
(d) $2 x y^{4} \times 3 x^{5} y^{3}$

Investigation

Law 2 of Indices

Copy and complete the following. Assume $a \neq 0$.

1. $3^{5} \div 3^{2}=\frac{3 \times 3 \times 3 \times 3 \times 3}{}$

$$
\begin{aligned}
& =3 \\
& =3^{5-}
\end{aligned}
$$

2. $\frac{10^{6}}{10^{4}}=$

$$
\begin{aligned}
& =10 \\
& =10^{6}
\end{aligned}
$$

3. $a^{7} \div a^{3}=\frac{a \times a \times a \times a \times a \times a \times a}{}$

$$
\begin{aligned}
& =a \\
& =a^{7-}
\end{aligned}
$$

4. $a^{m} \div a^{n}=\frac{\overbrace{\text { a }}^{\substack{a \times a \times \ldots \times a \times a}}}{m \text { times }} \underbrace{a \times a \times \ldots \times a}_{\text {times }}$

$$
\begin{aligned}
& =\underbrace{a \times a \times \ldots \times a}_{m-} \\
& =a^{m-}
\end{aligned}
$$

In general, if a is a real number, and m and n are positive integers such that $m>n$, then

$$
\text { Law } 2 \text { of Indices: } a^{m} \div a^{n}=a^{m-n}, \text { if } a \neq 0
$$

Worked Example

(Law 2 of Indices)

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $7^{8} \div 7^{3}$
(b) $(-5)^{6} \div(-5)$
(c) $12 b^{6} c^{3} \div 6 b^{4} c^{2}$

Solution:

(a) $7^{8} \div 7^{3}=7^{8-3}$ (Law 2)

$$
=7^{5}
$$

(b) $(-5)^{6} \div(-5)=(-5)^{6-1} \quad($ Law 2)
$=(-5)^{5}$
(c) $12 b^{6} c^{3} \div 6 b^{4} c^{2}=\frac{12 b^{6} c^{3}}{6 b^{4} c^{2}} \quad$ (Law 2)

$$
\begin{aligned}
& =2 b^{6-4} c^{3-2} \\
& =2 b^{2} c
\end{aligned}
$$

PRACTISE NOW 2

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $9^{7} \div 9^{3}$
(b) $(-4)^{8} \div(-4)$
(c) $a^{10} \div a^{6}$
(d) $27 x^{9} y^{4} \div 9 x^{6} y^{3}$

Exercise 3A Questions 2(a)-(d), 5(d)-(f)

Investigation

Law 3 of Indices

Copy and complete the following.

1. $\left(2^{5}\right)^{2}=2^{5} \times 2^{5}$

$$
\begin{aligned}
& =2^{5+} \text { (using Law } 1 \text { of Indices) } \\
& =2^{5 \times}
\end{aligned}
$$

2. $\left(10^{4}\right)^{3}=10^{4} \times 10^{4} \times 10^{4}$

$$
\begin{aligned}
& =10^{4+}+\square \text { (using Law } 1 \text { of Indices) } \\
& =10^{4 \times}
\end{aligned}
$$

3. $\left(a^{m}\right)^{n}=(\underbrace{a^{m} \times a^{m} \times \ldots \times a^{m}}_{n \text { times }})$

$$
\begin{aligned}
& =\overbrace{m+m+\ldots+m}^{\text {times }} \\
& =a^{m \times}
\end{aligned}
$$

In general, if a is a real number, and m and n are positive integers, then

$$
\text { Law } 3 \text { of Indices: }\left(a^{m}\right)^{n}=a^{m n}
$$

Worked Example

(Laws of Indices)

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $\left(5^{7}\right)^{3}$
(b) $\left(h^{8}\right)^{2}$
(c) $\left(7^{p}\right)^{4} \times\left(7^{2}\right)^{p}$

Solution:

(a) $\left(5^{7}\right)^{3}=5^{7 \times 3} \quad($ Law 3)

$$
=5^{21}
$$

(b) $\left(h^{8}\right)^{2}=h^{8 \times 2} \quad($ Law 3$)$
$=h^{16}$
(c) $\left(7^{p}\right)^{4} \times\left(7^{2}\right)^{p}=7^{p \times 4} \times 7^{2 \times p} \quad($ Law 3)

$$
\begin{aligned}
& =7^{4 p} \times 7^{2 p} \\
& =7^{4 p+2 p}(\text { Law } 1) \\
& =7^{6 p}
\end{aligned}
$$

1. Simplify each of the following, leaving your answer in index notation where appropriate.

Exercise 3A Questions 3(a),(b), 6(a)-(c)
(a) $\left(6^{3}\right)^{4}$
(b) $\left(k^{5}\right)^{9}$
(c) $\left(3^{q}\right)^{6} \times\left(3^{4}\right)^{q}$
2. Given that $x^{8} \times\left(x^{3}\right)^{n} \div\left(x^{n}\right)^{2}=x^{10}$, find the value of n.

Investigation

Law 4 of Indices

Copy and complete the following.

1. $2^{3} \times 7^{3}=(2 \times 2 \times 2) \times(\square)$

$$
\begin{aligned}
& =(2 \times 7) \times(2 \times 7) \times(2 \times \square) \\
& =(2 \times \square)^{3}
\end{aligned}
$$

2. $(-3)^{2} \times(-4)^{2}=(-3) \times(-3) \times(\square) \times(\square)$

$$
\begin{aligned}
& =[(-3) \times(-4)] \times[(-3) \times(\square)] \\
& =[(-3) \times(\square)]
\end{aligned}
$$

3. $a^{n} \times b^{n}=(a \times a \times \ldots \times a) \times(b \times b \times \ldots \times b)$

In general, if a and b are real numbers, and n is a positive integer, then

$$
\text { Law } 4 \text { of Indices: } a^{n} \times b^{n}=(a \times b)^{n}
$$

Another useful version of Law 4 of Indices can be written as $(a \times b)^{n}=a^{n} \times b^{n}$ or $(a b)^{n}=a^{n} b^{n}$.

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $2^{4} \times 7^{4}$
(b) $\left(2 h^{2}\right)^{6}$
(c) $\left(x y^{2}\right)^{3} \times\left(-3 x^{2} y\right)^{4}$
(d) $\left(4 x^{2} y^{3}\right)^{3} \div\left(x y^{3}\right)^{2}$

Solution:

(a) $2^{4} \times 7^{4}=(2 \times 7)^{4} \quad($ Law 4$)$

$$
=14^{4}
$$

(b) $\left(2 h^{2}\right)^{6}=2^{6}\left(h^{2}\right)^{6}$ (Law 4)

$$
\begin{aligned}
& =64 h^{2 \times 6}(\text { Law } 3) \\
& =64 h^{12}
\end{aligned}
$$

(c) $\left(x y^{2}\right)^{3} \times\left(-3 x^{2} y\right)^{4}=x^{3} y^{2 \times 3} \times(-3)^{4} x^{2 \times 4} y^{4}$ (Law 4 and Law 3)

$$
\begin{aligned}
& =x^{3} y^{6} \times 81 x^{8} y^{4} \\
& =81 x^{3+8} y^{6+4} \quad(\text { Law } 1) \\
& =81 x^{11} y^{10}
\end{aligned}
$$

(d) $\left(4 x^{2} y^{3}\right)^{3} \div\left(x y^{3}\right)^{2}=4^{3} x^{2 \times 3} y^{3 \times 3} \div x^{2} y^{3 \times 2} \quad$ (Law 4 and Law 3)

$$
\begin{aligned}
& =64 x^{6} y^{9} \div x^{2} y^{6} \\
& =64 x^{6-2} y^{9-6} \quad(\text { Law } 2) \\
& =64 x^{4} y^{3}
\end{aligned}
$$

PRACTISE NOW 4

SIMILAR
 QUESTIONS

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $3^{7} \times 8^{7}$
(b) $\left(5 b^{4}\right)^{3}$
(c) $\left(-2 c^{2} d^{5}\right)^{5}$
(d) $\left(m^{2} n\right)^{4} \times\left(m^{4} n^{3}\right)^{5}$
(e) $\left(-p^{7} q^{5}\right)^{2} \div\left(3 p^{3} q^{2}\right)^{3}$

Simplification using the Laws of Indices

Work in pairs.
There are two ways of simplifying $\left(x y^{2}\right)^{4} \times\left(3 x^{2} y\right)^{4}$. Explain these two ways using the laws of indices.

Investigation

Law 5 of Indices
Copy and complete the following.

1. $8^{3} \div 5^{3}=\frac{8^{3}}{5^{3}}$

$$
\begin{aligned}
& =\frac{8 \times 8 \times 8}{\times \times} \\
& =\frac{8}{-} \times \frac{8}{8} \times \frac{8}{\square} \\
& =\left(\frac{8}{-}\right)^{3}
\end{aligned}
$$

2. $(-12)^{4} \div(-7)^{4}=\frac{(-12)^{4}}{(-7)^{4}}$

$$
\begin{aligned}
& =\frac{(-12) \times(-12) \times(-12) \times(-12)}{\times \times} \times \\
& =\frac{(-12)}{\square} \times \frac{(-12)}{\square} \times \frac{(-12)}{\square} \times \frac{(-12)}{\square} \\
& =\left[\frac{(-12)}{\square}\right]^{4}
\end{aligned}
$$

3. Consider $a^{n} \div b^{n}$, where $b \neq 0$.

$$
\begin{aligned}
a^{n} \div b^{n} & =\underbrace{\frac{\overbrace{\text { times }}^{\frac{n \times a \times \ldots \times a}{}} \underbrace{\times \ldots \times}_{n \text { times }}}{a}}_{\text {times }} \\
& =\underbrace{\frac{a}{a} \times \ldots \times \frac{a}{2}} \\
& =\left(\frac{a}{n}\right)^{n}
\end{aligned}
$$

In general, if a and b are real numbers, and n is a positive integer, then

$$
\text { Law } 5 \text { of Indices: } a^{n} \div b^{n}=\left(\frac{a}{b}\right)^{n} \text {, if } b \neq 0
$$

Another useful version of Law 5 of Indices can be written as $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$ if $\boldsymbol{b} \neq \mathbf{0}$.

Worked Example

(Laws of Indices)

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $10^{8} \div 2^{8}$
(b) $\left(\frac{2}{b}\right)^{5}$
(c) $\left(\frac{2 p^{2}}{q^{3}}\right)^{4} \div \frac{8 p^{3}}{q^{16}}$

Solution:

(a) $10^{8} \div 2^{8}=\left(\frac{10}{2}\right)^{8} \quad($ Law 5$)$
(b) $\left(\frac{2}{b}\right)^{5}=\frac{2^{5}}{b^{5}} \quad$ (Law 5)

$$
=5^{8}
$$

$$
=\frac{32}{b^{5}}
$$

(c) $\left(\frac{2 p^{2}}{q^{3}}\right)^{4} \div \frac{8 p^{3}}{q^{16}}=\frac{2^{4} p^{2 \times 4}}{q^{3 \times 4}} \times \frac{q^{16}}{8 p^{3}} \quad$ (Law 5 and Law 3)

$$
\begin{aligned}
& =\frac{16 p^{8}}{q^{12}} \times \frac{q^{16}}{8 p^{3}} \\
& =2 p^{8-3} q^{16-12} \quad(\text { Law } 2) \\
& =2 p^{5} q^{4}
\end{aligned}
$$

PRACTISE NOW 5

Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $21^{3} \div 7^{3}$
(b) $\left(26^{5}\right)^{3} \div 13^{15}$
(c) $\left(\frac{p^{2}}{q}\right)^{3} \div \frac{q^{7}}{p^{5}}$
(d) $\left(\frac{3 x^{2}}{x^{3}}\right)^{3} \div \frac{27 x^{7}}{x^{21}}$

Exercise 3A Questions 4(a)-(f), 6(f), 8(a)-(d)

Journal
 Writing

Nora and Farhan were asked to simplify $\left(\frac{2 x^{2}}{y}\right)^{3}$.
Nora wrote this: $\left(\frac{2 x^{2}}{y}\right)^{3}=\frac{2 x^{6}}{y^{3}}$
Farhan wrote this: $\left(\frac{2 x^{2}}{y}\right)^{3}=\frac{8 x^{5}}{y}$
Both Nora and Farhan obtained the wrong solutions.
(i) Highlight the possible misconceptions that Nora and Farhan might have.
(ii) Provide the correct solution.

Class Discussion

Is $(a+b)^{n}=a^{n}+b^{n}$? Is $(a-b)^{n}=a^{n}-b^{n}$?

Work in pairs.
We have learnt that $(a \times b)^{n}=a^{n} \times b^{n}$ and $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$.
Is it true that $(a+b)^{n}=a^{n}+b^{n}$?
How about $(a-b)^{n}=a^{n}-b^{n}$?
Discuss with your classmates. Provide some counterexamples if necessary.

BASIC LEVEL

1. Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $2^{3} \times 2^{7}$
(b) $(-4)^{6} \times(-4)^{5}$
(c) $x^{8} \times x^{3}$
(d) $\left(3 y^{2}\right) \times\left(8 y^{7}\right)$
2. Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $5^{8} \div 5^{5}$
(b) $(-7)^{11} \div(-7)^{4}$
(c) $6 x^{7} \div x^{3}$
(d) $\left(-15 y^{9}\right) \div 5 y^{4}$
3. Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $\left(9^{2}\right)^{4}$
(b) $\left(h^{2}\right)^{5}$
(c) $3^{14} \times\left(5^{2}\right)^{7}$
(d) $2^{3} \times 9^{3}$
(e) $\left(2 k^{6}\right)^{3}$
(f) $\left(-3 x^{6} y^{2}\right)^{4}$
4. Simplify each of the following, leaving your answer in index notation where appropriate.
(a) $14^{13} \div 7^{13}$
(b) $\left(9^{5}\right)^{4} \div 3^{20}$
(c) $\left(\frac{m}{2}\right)^{5}$
(d) $\left(\frac{3}{n^{2}}\right)^{3}$
(e) $\left(\frac{p^{4}}{q}\right)^{6}$
(f) $\left(-\frac{x}{y^{2}}\right)^{4}$

INTERMEDIATE LEVEL

5. Simplify each of the following.
(a) $h^{2} k \times h^{11} k^{9}$
(b) $\left(-m^{7} n^{3}\right) \times 4 m^{11} n^{9}$
(c) $11 p^{6} q^{7} \times 2 p^{3} q^{10}$
(d) $h^{9} k^{6} \div h^{5} k^{4}$
(e) $15 m^{8} n^{7} \div 3 m^{2} n$
(f) $\left(-10 x^{5} y^{6}\right) \div\left(-2 x y^{3}\right)$
6. Simplify each of the following.
(a) $\left(a^{2}\right)^{3} \times a^{5}$
(b) $\left(b^{3}\right)^{7} \times\left(b^{4}\right)^{5}$
(c) $\left(c^{6}\right)^{5} \div\left(-c^{2}\right)$
(d) $\left(-3 d^{3}\right)^{2} \div(2 d)^{3}$
(e) $\left(e^{3}\right)^{5} \div\left(-e^{2}\right)^{4}$
(f) $\left(4 f^{6}\right)^{3} \div\left(-2 f^{3}\right)^{3}$
7. Simplify each of the following.
(a) $\left(a b^{2}\right)^{3} \times\left(2 a^{2} b\right)^{3}$
(b) $c^{2} d^{2} \times\left(-5 c^{3} d^{3}\right)^{2}$
(c) $\left(8 e^{5} f^{3}\right)^{2} \div\left(e^{3} f\right)^{3}$
(d) $16 g^{8} h^{7} \div\left(-2 g^{3} h^{2}\right)^{3}$
8. Simplify each of the following.
(a) $\left(\frac{2 a^{2}}{b}\right) \times\left(\frac{a}{b^{2}}\right)^{2}$
(b) $\left(\frac{c}{d^{2}}\right)^{3} \times\left(\frac{c^{3}}{2 d}\right)^{2}$
(c) $\left(\frac{3 e^{3}}{f^{2}}\right)^{4} \div\left(\frac{27 e^{9}}{f^{11}}\right)$
(d) $\left(\frac{g^{2}}{h^{3}}\right)^{6} \div\left(\frac{-3 g^{5}}{2 h^{2}}\right)^{3}$

ADVANCED LEVEL

9. Simplify each of the following.
(a) $\frac{\left(2 x^{2} y\right)^{3}}{\left(10 x y^{3}\right)^{2}} \times \frac{\left(5 x y^{4}\right)^{3}}{4 x y}$
(b) $\frac{8 x^{8} y^{4}}{\left(2 x y^{2}\right)^{2}} \times \frac{\left(4 x^{2} y^{2}\right)^{2}}{(3 x y)^{2}}$
(c) $\frac{\left(2 x y^{2}\right)^{5}}{\left(4 x^{2} y\right)^{2}\left(x y^{3}\right)}$
(d) $\frac{4 x^{2} y^{4} \times 8 x^{4} y^{2}}{\left(4 x^{2} y^{2}\right)^{2}}$
10. Given that $\frac{\left(2 p^{3} q^{4}\right)^{4}}{\left(-3 q^{5}\right)^{2}} \div \frac{\left(4 p^{2} q\right)^{2}}{9}=\frac{p^{a+b}}{q^{a-b}}$, form a pair of simultaneous equations in a and b and hence find the value of a and of b.

๑) ๑) Zero and
 (1) 0 (U) Negative Indices

In Section 3.2, all the 5 laws of indices apply when the indices are positive integers. In this section, we will consider what happens if the indices are zero or negative integers.

Investigation

Zero Index

3^{4} means 3 multiplied by itself 4 times, i.e. $3 \times 3 \times 3 \times 3=81$. What does 3^{0} mean?

1. Fill in the values of 3^{2} and 3^{1} in Table 3.1.

Index Form	Value
3^{4}	81
3^{3}	27
3^{2}	
3^{1}	
3^{0}	

Table 3.1
2. What number must you divide 81 (i.e. 3^{4}) to get 27 (i.e. 3^{3})?
3. What number must you divide 27 (i.e. 3^{3}) to get the value of 3^{2} ?
4. What number must you divide 3^{2} to get the value of 3^{1} ?
5. (a) By continuing this pattern, what number must you divide 3^{1} to get the value of 3^{0} ?
(b) Complete the last row in Table 3.1.
6. Complete Table 3.2.

Index Form	Value
$(-2)^{4}$	16
$(-2)^{3}$	-8
$(-2)^{2}$	
$(-2)^{1}$	
$(-2)^{0}$	
$\div(-2)$	
$\div(-2)$	
$\div(-2)$	

Table 3.2
7. Does the pattern work for $0^{4}, 0^{3}, 0^{2}, 0^{1}$ and 0^{0} ? Explain your answer.

Since $5^{3} \div 5^{3}=\frac{5 \times 5 \times 5}{5 \times 5 \times 5}$

$$
=1
$$

and using the second law of indices,

$$
\begin{aligned}
5^{3} \div 5^{3} & =5^{3-3} \\
& =5^{0} .
\end{aligned}
$$

$\therefore 5^{0}=1$

Since $a^{4} \div a^{4}=\frac{a \times a \times a \times a}{a \times a \times a \times a}$

$$
=1
$$

and using the second law of indices,

$$
\begin{aligned}
a^{4} \div a^{4} & =a^{4-4} \\
& =a^{0} .
\end{aligned}
$$

$\therefore a^{0}=1$
\therefore For the second law of indices to apply for $n=0$, we define $a^{0}=1$, where a is a real number.

Definition 1: $a^{0}=1$, if $a \neq 0$

Worked Example 6

(Zero Indices)

Evaluate each of the following.
(a) 121^{0}
(b) $2 x^{0}$
(c) $(2 x)^{0}$

Solution:

(a) $121^{0}=1$
(b) $2 x^{0}=2 \times 1$

$$
=2
$$

(c) $(2 x)^{0}=1$

PRACTISE NOW 6

1. Evaluate each of the following.

Exercise 3B Questions 1(a)-(f),
(a) 2015^{0}
(b) $(-7)^{0}$
(c) $3 y^{0}$
(d) $(3 y)^{0}$
2. Find the value of each of the following.
(a) $3^{0} \times 3^{3} \div 3^{2}$
(b) $3^{0}+3^{2}$

Thinking Time

[^1]
:\% Negative Indices

Investigation

Negative Indices

Now that we know $3^{0}=1$, we want to find out what 3^{-1} and 3^{-2} are equal to.

1. Continuing the same pattern in the previous investigation, complete Table 3.3.

Index Form	Value
3^{2}	9
3^{1}	3
3^{0}	
3^{-1}	
3^{-2}	

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{3} \div 3 & =\frac{1}{3} \times \frac{1}{3} \\
& =\frac{1}{3 \times 3} \\
& =\frac{1}{3^{2}}
\end{aligned}
\end{aligned}
$$

Table 3.3
2. Continuing the same pattern in the previous investigation, complete Table 3.4.

Index Form	Value
$(-2)^{2}$	4
$(-2)^{1}$	-2
$(-2)^{0}$	
$(-2)^{-1}$	
$(-2)^{-2}$	
$\div(-2)$	
$\div(-2)$	
$\div(-2)$	

Table 3.4
3. What do you think 0^{-2} is equal to? Explain your answer.

Since $a^{4} \div a^{7}=\frac{a \times a \times a \times a}{a \times a \times a \times a \times a \times a \times a}$

$$
=\frac{1}{a^{3}},
$$

and using the second law of indices,

$$
\begin{aligned}
a^{4} \div a^{7} & =a^{4-7} \\
& =a^{-3} .
\end{aligned}
$$

$\therefore a^{-3}=\frac{1}{a^{3}}$
\therefore For the second law of indices to apply for negative indices, we define a^{-n} as $\frac{1}{a^{n}}$, where a is a real number and $a \neq 0$.

Definition 2: $a^{-n}=\frac{1}{a^{n}}$, if $a \neq 0$

Worked Example
(Negative Indices)
Evaluate each of the following.
(a) 4^{-3}
(b) $(-7)^{-1}$
(c) $\left(\frac{3}{5}\right)^{-2}$

Solution:

(a) $4^{-3}=\frac{1}{4^{3}}$
$=\frac{1}{64}$
(b) $(-7)^{-1}=\frac{1}{(-7)^{1}}$
$=-\frac{1}{7}$
(c) $\left(\frac{3}{5}\right)^{-2}=\frac{1}{\left(\frac{3}{5}\right)^{2}}$

$$
\begin{aligned}
& =1 \div \frac{3^{2}}{5^{2}}(\text { Law } 3 \text { and Law } 5) \\
& =1 \times \frac{5^{2}}{3^{2}} \\
& =\frac{25}{9} \\
& =2 \frac{7}{9}
\end{aligned}
$$

PRACTISE NOW 7

Evaluate each of the following.
(a) 6^{-2}
(b) $(-8)^{-1}$
(c) $\left(\frac{4}{5}\right)^{-3}$
(d) $\left(\frac{1}{9}\right)^{-1}$

:i:\%: Extension of Laws of Indices to Zero and Negative Indices

In Section 3.2, we have learnt that all the 5 laws of indices apply when the indices are positive integers. With the definitions of zero and negative indices, we can now extend all the 5 laws of indices to include all integer indices.

Thinking Time

Copy and complete the following

1. If a and b are real numbers, and m and n are integers, then

Law 1 of Indices: $a^{m} \times a^{n}=$ \qquad if $a \neq 0$

Law 2 of Indices: $a^{m} \div a^{n}=$ \qquad if $a \neq 0$

Law 3 of Indices: $\left(a^{m}\right)^{n}=$ \qquad if \qquad
Law 4 of Indices: $a^{n} \times b^{n}=$ \qquad if $a, b \neq 0$

Law 5 of Indices: $a^{n} \div b^{n}=$ \qquad if \qquad
2. Notice that some conditions on the bases a and b are now different.
(i) Why is it necessary for $a \neq 0$ in Law 1 ?
(ii) Why is it necessary for $a, b \neq 0$ in Law 4?
3. (i) What happens if $m=n$ in Law 2?
(ii) What happens if $m=0$ in Law 2?

Notice that it is no longer necessary for $m>n$ for Law 2 of Indices. Why is this so?
(Applications of Laws of Indices, Zero and Negative Indices)
Simplify each of the following, leaving your answer in positive index form.
(a) $a^{-7} \times a^{4} \div a^{-3}$
(b) $\frac{8 b^{-6} c^{3}}{\left(2 b^{2} c\right)^{3}}$
(c) $(2 d)^{0} \div\left(d^{2} e^{-4}\right)^{-1}$
(d) $3 a \div a^{-2}+a^{2} \times a-\frac{6 a^{-1}}{2 a^{-4}}$

Solution:

(a) $a^{-7} \times a^{4} \div a^{-3}=a^{-7+4-(-3)}$
(b) $\frac{8 b^{-6} c^{3}}{\left(2 b^{2} c\right)^{3}}=\frac{8 b^{-6} c^{3}}{8 b^{6} c^{3}}$

$$
=b^{-6-6} c^{3-3}
$$

$$
=b^{-12} c^{0}
$$

$=1$
$=\frac{1}{b^{12}}\left(\right.$ since $b^{-12}=\frac{1}{b^{12}}$ and $\left.c^{0}=1\right)$
(c) $(2 d)^{0} \div\left(d^{2} e^{-4}\right)^{-1}=1 \div \frac{1}{d^{2} e^{-4}}$
(d) $3 a \div a^{-2}+a^{2} \times a-\frac{6 a^{-1}}{2 a^{-4}}$
$=1 \times d^{2} e^{-4}$
$=3 a^{1-(-2)}+a^{2+1}-\frac{6 a^{-1-(-4)}}{2}$
$=3 a^{3}+a^{3}-3 a^{3}$
$=a^{3}$

PRACTISE NOW 8

Simplify each of the following, leaving your answer in positive index form.

Exercise 3B Questions 4(a)-(d), 10(a)-(h)
(a) $a^{-1} \times a^{3} \div a^{-2}$
(b) $\left(b^{-5} c^{2}\right)^{-3}$
(c) $\frac{16 d^{-2} e}{\left(2 d^{-1} e\right)^{3}}$
(d) $5 f^{0} \div 3\left(f^{-2}\right)^{2}$
(e) $18 g^{-6} \div 3\left(g^{-2}\right)^{2}$
(f) $\quad 6 h^{2} \div 2 h^{-2}-h \times h^{3}-\frac{4}{h^{-4}}$

$\because: \%$ Positive $n^{\text {th }}$ Root

In Book 1, we have learnt about the square root and the cube root of a number, e.g.

$$
\sqrt{9}=3 \text { since } 3^{2}=3 \times 3=9
$$

and $\sqrt[3]{27}=3$ since $3^{3}=3 \times 3 \times 3=27$.

Since $3^{4}=3 \times 3 \times 3 \times 3=81$, then we can define the positive $4^{\text {th }}$ root of 81 to be

$$
\sqrt[4]{81}=3
$$

In general,

> if a is a positive number such that $a=b^{n}$ for some positive number b, then b is the positive $n^{\text {th }}$ root of a, and we write $b=\sqrt[n]{a}$.

An expression that involves the radical sign $\sqrt[n]{ }$ is called a radical expression.

Worked Example

(Finding the Positive $n^{\text {th }}$ Root)

Evaluate each of the following without the use of a calculator.
(a) $\sqrt[4]{625}$
(b) $\sqrt[5]{243}$

Solution:

(a) By prime factorisation, $625=5 \times 5 \times 5 \times 5=5^{4}$.
$\therefore \sqrt[4]{625}=\sqrt[4]{5 \times 5 \times 5 \times 5}$

$$
=5
$$

(b) By prime factorisation, $243=3 \times 3 \times 3 \times 3 \times 3=3^{5}$.

$$
\begin{aligned}
\therefore \sqrt[5]{243} & =\sqrt[5]{3 \times 3 \times 3 \times 3 \times 3} \\
& =3
\end{aligned}
$$

PRACTISE NOW 9

Evaluate each of the following without the use of a calculator.
(a) $\sqrt[4]{256}$
(b) $\sqrt[5]{1024}$
(c) $\sqrt[3]{\frac{8}{27}}$

:\%\% Rational Indices

So far, all the indices that we have discussed are integers. What happens if the indices are non-integer rational numbers?
For example, what is $3^{\frac{1}{2}}$ equal to?

$$
\text { Let } \begin{aligned}
p=3^{\frac{1}{2}} . \text { Then } p^{2} & =\left(3^{\frac{1}{2}}\right)^{2} \\
& =3^{\frac{1}{2} \times 2} \text { (using Law } 3 \text { of Indices) } \\
& =3^{1} \\
& =3 \\
p & = \pm \sqrt{3}
\end{aligned}
$$

However, we define $3^{\frac{1}{2}}$ to be equal to the positive square root of 3 (and not the positive and negative square roots of 3) because we want $y=a^{\frac{1}{x}}$ to be a function, i.e. for every value of x, there should be exactly one value of y.

Hence, $3^{\frac{1}{2}}=\sqrt{3}$.

Rational Indices

Work in pairs.
Copy and complete the following.
What is $5^{\frac{1}{3}}$ equal to?
Let $p=5^{\frac{1}{3}}$. Then $p^{3}=$

$$
\begin{aligned}
& =5 \quad \times 3 \text { (using Law } 3 \text { of Indices) } \\
& =5^{1} \\
& =5 \\
\therefore p & =
\end{aligned}
$$

In this case, there is only one possible value of p.

Hence, $5^{\frac{1}{3}}=$ \qquad

In general, if n is a positive integer, we define
Definition 3: $a^{\frac{1}{n}}=\sqrt[n]{a}$, if $a>0$

Consider $a^{\frac{1}{n}}=\sqrt[n]{a}$.

1. What happens if $a<0$?
2. What happens if $a=0$?

Worked Example 10

(Rational Indices)

Rewrite each of the following in the radical form and hence evaluate the result without the use of a calculator.
(a) $16^{\frac{1}{2}}$
(b) $27^{-\frac{1}{3}}$

Solution:

(a) $16^{\frac{1}{2}}=\sqrt{16}$
$=4$
(b) $\quad 27^{-\frac{1}{3}}=\frac{1}{27^{\frac{1}{3}}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt[3]{27}} \\
& =\frac{1}{3}
\end{aligned}
$$

PRACTISE NOW 10

Rewrite each of the following in the radical form and hence evaluate the result without the use of a calculator.
(a) $36^{\frac{1}{2}}$
(b) $8^{-\frac{1}{3}}$
(c) $(-125)^{-\frac{1}{3}}$

Investigation

Rational Indices

Copy and complete the following.
What is $5^{\frac{2}{3}}$ equal to?
(a) $5^{\frac{2}{3}}=5^{2 \times \frac{1}{\square}}$
$=\left(5^{2}\right)^{\frac{1}{2}}$
(b) $5^{\frac{2}{3}}=5^{\frac{1}{-2}}$
$=\left(5^{\frac{1}{\square}}\right)^{2}$
$=\sqrt{5^{2}}$
$=(\sqrt{5})^{2}$

In general, if m and n are positive integers,

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { or }(\sqrt[n]{a})^{m}, \text { if } a>0
$$

(a) Evaluate $125^{\frac{2}{3}}$ without the use of a calculator.
(b) Simplify $\frac{1}{\sqrt{x^{n}}}$, expressing your answer in index form.

Solution:

(a) $125^{\frac{2}{3}}=(\sqrt[3]{125})^{2}$
(b) $\frac{1}{\sqrt{x^{n}}}=\frac{1}{x^{\frac{n}{2}}}$
$=5^{2}$
$=25$

$$
=x^{-\frac{n}{2}}
$$

PRACTISE NOW 11

1. Evaluate each of the following without the use of a calculator.
(a) $64^{\frac{2}{3}}$
(b) $32^{-\frac{3}{5}}$
(c) $100^{1.5}$
2. Simplify each of the following, expressing your answer in index form.
(a) $\sqrt[3]{a^{n}}$
(b) $\frac{1}{\sqrt[5]{x^{2}}}$

:i:\% Extension of Laws of Indices to Rational Indices

Earlier in this section, we have extended all the 5 laws of indices to include all integer indices. With the definition of rational indices, we can now extend all the 5 laws of indices to include all rational indices.

The denominator of the index is always the root.
You can think of it as 'below the ground'.

SIMILAR
 QUESTIONS

Exercise 3B Questions 6(d)-(f), 7(a)-(f)

Thinking Time

Copy and complete the following.

1. If a and b are real numbers, and m and n are rational numbers, then

Law 1 of Indices: $a^{m} \times a^{n}=$ \qquad if $a>0$
Law 2 of Indices: $a^{m} \div a^{n}=$ \qquad if $a>0$

Law 3 of Indices: $\left(a^{m}\right)^{n}=$ \qquad if \qquad
Law 4 of Indices: $a^{n} \times b^{n}=$ \qquad if $a, b>0$

Law 5 of Indices: $a^{n} \div b^{n}=$ \qquad if \qquad
2. Notice that some conditions on the bases a and b are now different.
(i) Why is it necessary for $a>0$ in Law 1?
(ii) Why is it necessary for $a, b>0$ in Law 4?
3. What happens if you do not take care of the conditions?

The following shows a ridiculous proof that conclude that $1=-1$.
Explain what is wrong with the proof.
$1=\sqrt{1}=\sqrt{(-1) \times(-1)}=\sqrt{-1} \times \sqrt{-1}=(\sqrt{-1})^{2}=(-1)^{\frac{1}{2} \times 2}=(-1)^{1}=-1$

Worked Emind

(Rational Indices)

Simplify each of the following, expressing your answers in positive index form.
(a) $\sqrt[3]{m} \times \sqrt[4]{m^{3}}$
(b) $\left(m^{\frac{1}{3}} n^{-2}\right)^{\frac{3}{5}}$
(c) $(m n)^{\frac{2}{3}} \div\left(m^{\frac{3}{4}} n^{\frac{1}{3}}\right)^{2}$

Solution:

(a) $\sqrt[3]{m} \times \sqrt[4]{m^{3}}=m^{\frac{1}{3}} \times m^{\frac{3}{4}}$
$=m^{\frac{1}{3}+\frac{3}{4}}$
(b) $\left(m^{\frac{1}{3}} n^{-2}\right)^{\frac{3}{5}}=m^{\frac{1}{3} \times \frac{3}{5}} n^{\left(-2 \times \frac{3}{5}\right)}$
$=m^{\frac{1}{5}} n^{-\frac{6}{5}}$
$=m^{\frac{13}{12}}$
$=\frac{m^{\frac{1}{5}}}{n^{\frac{6}{5}}}$
(c) $(m n)^{\frac{2}{3}} \div\left(m^{\frac{3}{4}} n^{\frac{1}{3}}\right)^{2}=m^{\frac{2}{3}} n^{\frac{2}{3}} \div m^{\left(\frac{3}{4} \times 2\right)} n^{\left(\frac{1}{3} \times 2\right)}$

$$
\begin{aligned}
& =m^{\frac{2}{3}} n^{\frac{2}{3}} \div m^{\frac{3}{2}} n^{\frac{2}{3}} \\
& =m^{\frac{2}{3}-\frac{3}{2}} n^{\frac{2}{3}-\frac{2}{3}} \\
& =m^{\frac{2}{3}-\frac{3}{2}} n^{0} \\
& =m^{-\frac{5}{6}}(1) \\
& =\frac{1}{m^{\frac{5}{6}}}
\end{aligned}
$$

PRACTISE NOW \uparrow 亿

Simplify each of the following, expressing your answers in positive index form.

Exercise 3B Questions 11(a)-(f), 12(a)-(f), 16(a)-(d)
(a) $\left(m^{2}\right)^{\frac{5}{6}} \times m^{\frac{1}{3}}$
(b) $\sqrt[5]{m} \div \sqrt[3]{m^{2}}$
(c) $\left(m^{-3} n^{5}\right)^{-\frac{1}{3}}$
(d) $\frac{m^{-\frac{1}{3}} n^{-\frac{1}{4}}}{\left(m^{2} n^{-\frac{1}{3}}\right)^{-2}}$
(e) $\left(25 m^{2} n^{-4}\right)^{\frac{1}{2}}\left(m^{3} n^{-\frac{2}{5}}\right)^{2}$
(f) $\left(m^{2} n^{-\frac{1}{7}}\right) \times \sqrt[5]{\left(m^{5} n^{-5}\right)}$

:\%: Equations involving Indices

To solve an equation such as $x^{2}=100$, we take the square root on both sides to obtain $x= \pm 10$. Similarly, to solve the equation $y^{3}=64$, we take the cube root on both sides to obtain $y=4$.

If we are given the equation $2^{x}=32$, how do we find the value of x ?

(Equations involving Indices)

Solve each of the following equations.
$\begin{array}{ll}\text { (a) } 2^{x}=32 & \text { (b) } 3^{y}=\frac{1}{9} \\ \text { (c) } 9^{z}=27 & \end{array}$
(c) $9^{z}=27$

Solve each of the following equations.
$\begin{array}{ll}\text { (a) } 2^{x}=32 & \text { (b) } 3^{y}=\frac{1}{9}\end{array}$
Solve each of the following equations.
$\begin{array}{ll}\text { (a) } 2^{x}=32 & \text { (b) } 3^{y}=\frac{1}{9} \\ \text { (c) } 9^{z}=27 & \end{array}$

Solution:

(a) $2^{x}=32$
$=2^{5}$
$x=5$
(b) $3^{y}=\frac{1}{9}$
$=\frac{1}{3^{2}}$
$=3^{-2}$
$y=-2$
(c) $\quad 9^{z}=27$
$\left(3^{2}\right)^{z}=3^{3}$
$3^{2 z}=3^{3}$
$2 z=3$
$z=\frac{3}{2}$
$=1 \frac{1}{2}$

PRACTISE NOW 13

Solve each of the following equations.
(a) $5^{x}=125$
(b) $7^{y}=\frac{1}{49}$
(c) $8^{z}=16$

(3) 0 (0) Compound Interest

In Book 1, we have learnt that the amount of simple interest one has to pay depends on the amount of money borrowed, i.e. the principal, the interest rate per annum and the loan period in years.

For simple interest, the interest earned every year is the same because it is calculated based on the original principal. Now what happens if the interest is compounded yearly? This means that after each year, the interest earned will be counted in the new principal to earn more interest.

Investigation

Simple Interest and Compound Interest

Mr Wong wants to place $\$ 1000$ in a bank as a fixed deposit for 3 years.
Bank A offers a simple interest rate of 2% per annum.

1. Calculate the interest earned and the total amount of money he will have after 3 years.

Bank B offers an interest rate of 2% per annum compounded yearly.
2. Copy and complete the following to find the interest earned and the total amount of money he will have at the end of each year.
$1^{\text {st }}$ year: Principal $P_{1}=\$ 1000$,
Interest $I_{1}=\$ 1000 \times 2 \%$
$=\$$ \qquad
Total amount at the end of the $1^{\text {st }}$ year, $A_{1}=P_{1}+I_{1}$

$$
\begin{aligned}
& =\$ 1000+\$ \\
& =\$ 1020
\end{aligned}
$$

$2^{\text {nd }}$ year: Principal $P_{2}=A_{1}=\$ 1020$,
Interest $I_{2}=\$$ \qquad $\times 2 \%$

$$
=\$
$$

\qquad
Total amount at the end of the $2^{\text {nd }}$ year, $A_{2}=P_{2}+I_{2}$

$$
=\$ 1020+\$
$$

$$
=\$
$$

\qquad
$3^{\text {rd }}$ year: Principal $P_{3}=A_{2}=\$$ \qquad ,

Interest $I_{3}=\$$ \qquad $\times 2 \%$
$=\$$ \qquad
Total amount at the end of the $3^{\text {rd }}$ year, $A_{3}=P_{3}+I_{3}$

$$
\begin{aligned}
& =\$ 1040.40+\$ \\
& =\$ \underline{\text { nearest cent })}
\end{aligned}
$$

3. Which bank offers a higher interest and by how much?

From the investigation, finding the compound interest for each year is very tedious. What happens if Mr Wong puts $\$ 1000$ in Bank B for 10 years? How do we calculate the compound interest at the end of 10 years?

Hence, there is a need to find a formula to calculate compound interest easily.

From the investigation, we observe the following:
Total amount at the end of the $1^{\text {st }}$ year, $A_{1}=P_{1}+I_{1}$

$$
\begin{aligned}
& =\$ 1000+\$ 1000 \times \frac{2}{100} \\
& =\$ 1000\left(1+\frac{2}{100}\right)
\end{aligned}
$$

Total amount at the end of the $2^{\text {nd }}$ year,
$A_{2}=P_{2}+I_{2}$
$=\$ 1000\left(1+\frac{2}{100}\right)+\$ 1000\left(1+\frac{2}{100}\right) \times \frac{2}{100}$
$=\$ 1000\left(1+\frac{2}{100}\right)\left(1+\frac{2}{100}\right)\left(\right.$ Extract common factor $\left.1000\left(1+\frac{2}{100}\right)\right)$
$=\$ 1000\left(1+\frac{2}{100}\right)^{2}$

Total amount at the end of the $3^{\text {rd }}$ year,

$$
\begin{aligned}
A_{3} & =P_{3}+I_{3} \\
& =\$ 1000\left(1+\frac{2}{100}\right)^{2}+\$ 1000\left(1+\frac{2}{100}\right)^{2} \times \frac{2}{100} \\
& =\$ 1000\left(1+\frac{2}{100}\right)^{2}\left(1+\frac{2}{100}\right)\left(\text { Extract common factor } 1000\left(1+\frac{2}{100}\right)^{2}\right) \\
& =\$ 1000\left(1+\frac{2}{100}\right)^{3}
\end{aligned}
$$

By looking at the pattern above, what do you think the total amount of money at the end of $4^{\text {th }}$ year will be? $\$$ \qquad

In general, the formula for finding compound interest is

$$
A=P\left(1+\frac{R}{100}\right)^{n}
$$

where \boldsymbol{A} is the total amount, \boldsymbol{P} is the principal, $\boldsymbol{R} \%$ is the interest rate per annum (or year) and n is the number of years.

Note that if the interest is compounded monthly, then $R \%$ is the interest rate per month and n is the number of months.

What happens if the interest is compounded daily instead of monthly or yearly?

What happens if the interest is compounded every hour? Every minute? Every second?
That is, what happens if interest is compounded continuously?

Then you will get this formula:

$$
A=P \mathrm{e}^{\frac{R n}{100}}
$$

where $\mathrm{e} \approx 2.718$ is a mathematical constant.

You may be tempted to think that interest compounded continuously will earn you a lot more interest.

Try using this formula in Worked Example 14 and you will observe that the interest earned is only a bit more. Why is this so?

Worked Example

(Compound Interest)

Find the compound interest on $\$ 5000$ for 7 years at 3% per annum, compounded annually.

Solution:

$P=\$ 5000, R=3, n=7$
At the end of 7 years, total amount accumulated is

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n} \\
& =\$ 5000\left(1+\frac{3}{100}\right)^{7} \\
& =\$ 6149.37 \text { (to the nearest cent) }
\end{aligned}
$$

Unlike the simple interest formula where the interest I can be found directly, the compound interest formula does not allow you to find I directly.

$$
\begin{aligned}
\therefore \text { Compound interest } I & =A-P \\
& =\$ 6149.37-\$ 5000 \\
& =\$ 1149.37
\end{aligned}
$$

PRACTISE NOW 14

1. Find the compound interest on $\$ 3000$ for 4 years at 5% per annum, compounded annually.
2. Find the compound interest on $\$ 1500$ for 2 years at 2% per annum, compounded (a) annually, (b) monthly.
3. Mrs Lee places $\$ 4000$ in a bank as a fixed deposit for 2 years. The bank offers an interest compounded yearly. At the end of 2 years, she receives a total of $\$ 4243.60$. Find the interest rate.

Exercise 3B Questions 9, 13-15, 17

For Question 2, find the interest rate per month first.

BASIC LEVEL

3. Evaluate each of the following.
(a) 7^{-3}
(b) $(-5)^{-1}$
(c) $\left(\frac{3}{4}\right)^{-2}$
(d) $\left(\frac{5}{3}\right)^{-1}$
4. Evaluate each of the following.
(a) $\left(7^{2}\right)^{-2} \div 7^{-4}$
(b) $5^{0}-5^{-2}$
(c) $\left(2^{15}\right)^{0}+\left(\frac{3}{5}\right)^{-1}$
(d) $\left(\frac{3}{4}\right)^{-2} \times 3^{2} \times 2015^{0}$
(a) $2^{0} \times 2^{4}$
(b) $7^{2} \times 7^{0} \div 7$
(c) $8^{0}-8^{2}$
(d) $6^{3}+6^{0}-6$
5. Evaluate each of the following without the use of a calculator.
(a) $\sqrt{196}$
(b) $\sqrt[3]{125}$
(c) $\sqrt[5]{\frac{1}{32}}$
(d) $\sqrt[4]{\frac{16}{81}}$
6. Rewrite each of the following in the radical form and hence evaluate the result without the use of a calculator.
(a) $81^{\frac{1}{2}}$
(b) $(-27)^{\frac{1}{3}}$
(c) $16^{-\frac{1}{4}}$
(d) $4^{1.5}$
(e) $8^{-\frac{5}{3}}$
(f) $(-1000)^{\frac{2}{3}}$
7. Simplify each of the following, expressing your answer in index form.
(a) $\sqrt[4]{a}$
(b) $\sqrt[3]{b^{2}}$
(c) $(\sqrt[5]{c})^{4}$
(d) $\frac{1}{\sqrt[6]{d}}$
(e) $\frac{1}{\sqrt[8]{e^{4}}}$
(f) $\frac{1}{(\sqrt[3]{f})^{5}}$
8. Solve each of the following equations.
(a) $11^{a}=1331$
(b) $2^{b}=\frac{1}{128}$
(c) $9^{c}=243$
(d) $10^{d}=0.01$
9. Kate places $\$ 5000$ in her bank account. The bank offers an interest of 8% per annum compounded yearly. Find the total interest in her account at the end of 3 years.

INTERMEDATE LEVEL

10. Simplify each of the following, expressing your answers in positive index form.
(a) $5 a^{4} \times 3 a^{2} \div a^{-3}$
(b) $-24 b^{-6} \div\left(3 b^{-3}\right)^{2}$
(c) $(3 c)^{0} \div\left(c^{-3} d^{5}\right)^{-2}$
(d) $\frac{\left(4 e^{-6} f^{3}\right)^{2}}{8 e^{12} f^{6}}$
(e) $\left(3 g^{-3} h^{-1}\right)^{2} \times\left(-4 g^{3} h^{-2}\right)^{2}$
(f) $\left(j^{2} k^{-1}\right)^{-3} \times\left(\frac{j^{2}}{k^{3}}\right)^{-3}$
(g) $\frac{\left(m^{5} n^{3}\right) \times\left(m^{2}\right)^{-2}}{\left(m^{-1} n\right)^{2}}$
(h) $(5 p)^{3}-10 p \times 7 p^{2}+\frac{6}{p^{-3}}$
11. Simplify each of the following, expressing your answer in positive index form.
(a) $\sqrt{a} \times \sqrt[3]{a}$
(b) $\sqrt[3]{b^{2}} \div \sqrt[6]{b}$
(c) $c^{\frac{4}{5}} \times c^{\frac{1}{2}} \div c^{-\frac{2}{5}}$
(d) $d^{\frac{1}{10}} \div d^{-\frac{1}{5}} \times d^{-\frac{3}{2}}$
(e) $\left(e^{-3} f^{4}\right)^{-\frac{1}{2}}$
(f) $\left(g^{\frac{2}{3}} h^{-\frac{4}{5}}\right)^{\frac{3}{2}}$
12. Simplify each of the following, expressing your answer in positive index form.
(a) $\left(a^{-2} b^{3}\right)^{\frac{1}{3}} \times\left(a^{4} b^{-5}\right)^{\frac{1}{2}}$
(b) $\left(c^{-3} d^{\frac{3}{5}}\right)^{-2} \times\left(c^{\frac{4}{5}} d^{-\frac{2}{5}}\right)^{5}$
(c) $\frac{e^{-\frac{1}{3}} f^{-\frac{1}{4}}}{\left(e^{2} f^{-\frac{1}{3}}\right)^{-2}}$
(d) $\left(\frac{g^{-2} h^{2}}{25}\right)^{-\frac{1}{2}}$
(e) $\left(4 j^{4} k\right)^{\frac{1}{2}} \div 2 h^{3} k^{-\frac{1}{2}}$
(f) $\left(m^{3} n^{-\frac{1}{4}}\right)^{4} \div \sqrt[5]{32 m^{4} n^{-8}}$
13. Rui Feng deposited $\$ 15000$ in an account that pays 5.68% compound interest per year. Find the total amount in the account after 6 years if the interest is compounded
(a) monthly,
(b) half-yearly.
14. Mr Tan invested $\$ 5000$ in an endowment fund for 5 years. The fund pays an interest compounded yearly. At the end of 5 years, he received a total of $\$ 5800$. Find the interest rate.
15. Mr Chua borrows a sum of money from the bank which charges a compound interest of 4.2% per annum, compounded quarterly. Given that Mr Chua had to pay $\$ 96.60$ in interest payments at the end of the first year, find the original sum of money borrowed, giving your answer correct to the nearest cent.

ADVANCED LEVEL

16. Simplify each of the following, expressing your answers in positive index form.
(a) $\left(\frac{x^{-4} y^{7} z^{-6}}{x^{3} y^{-1} z^{3}}\right)^{3} \times\left(\frac{x^{5} y^{2} z^{-6}}{x^{-3} y^{-5} z^{4}}\right)^{-4}$
(b) $\left(\frac{x^{3} y^{-4} z^{7}}{x^{-5} y^{2}}\right)^{3} \div\left(\frac{x^{-4} y z^{-5}}{x^{7} y^{-3}}\right)^{-2}$
(c) $\frac{a b^{n}}{b c} \times \frac{c^{n} d}{c d} \div \frac{b^{n+2}}{c^{n+3}}$
(d) $\frac{(a+b)^{n}}{b c^{2}} \div \frac{(a+b)^{n+3}}{a b c}$
17. Kate has $\$ 8000$ to invest in either Company A or Company B.

Company A: 4.9% per annum simple interest
Company B: 4.8% per annum compound interest, compounded half-yearly

Kate wishes to invest the money for a period of 4 years.
(i) Which company should she invest in? Explain your answer.
(ii) Calculate the difference in interest earned after 4 years.

(U) (0) Standard Form

Class
 Discussion

Standard Form

Work in pairs.
Table 3.5 shows some examples of measurements which involve very large or very small numbers.

		Ordinary Notation	Standard Form
(i)	Singapore's population in 2013	5300000	5.3×10^{6}
(ii)	Distance between Earth and the sun	149600000 km	$1.496 \times 10^{8} \mathrm{~km}$
(iii)	Mass of a dust particle	0.000000000753 kg	$7.53 \times 10^{-10} \mathrm{~kg}$
(iv)	Mass of an oxygen atom	0.000000000000000 000000000002656 kg	$2.656 \times 10^{-27} \mathrm{~kg}$
(v)	Number of grains of sand in a bag	29000	2.9×10
(vi)	Speed of light	$300000000 \mathrm{~m} / \mathrm{s}$	$3 \times 10 \quad \mathrm{~m} / \mathrm{s}$
(vii)	Wavelength of violet light	0.000038 cm	$3.8 \times 10 \quad \mathrm{~cm}$
(viii)	Mass of a water molecule	0.000000000000000 0000000299	$2.99 \times 10 \mathrm{~g}$

Table 3.5

1. The examples in (i)-(ii) involve very large numbers. What do you observe about the powers of 10 in each standard form?
2. The examples in (iii)-(iv) involve very small numbers. What do you observe about the powers of 10 in each standard form?
3. Complete the last column for (v)-(viii) in Table 3.5.

Table 3.6 shows numbers expressed in standard form and numbers not expressed in standard form.

	Standard Form	Not Standard Form
(i)	4.5×10^{4}	45×10^{3}
(ii)	2.06×10^{8}	0.206×10^{5}
(iii)	3.71×10^{21}	$3.71 \times 10^{21.2}$
(iv)	8.00×10^{-3}	$8.00 \times 10^{-3 \frac{1}{2}}$
(v)	9.25×10^{-10}	$92.5 \times 10^{-1.01}$
(vi)	1.0×10^{-16}	10×10^{-17}

Table 3.6
4. For a number in the form $A \times 10^{n}$ to be considered as standard form, what can you say about A and n ? Explain your answer.

The world population, estimated to be about 7000000000 in 2012, can be written as 7.0×10^{9}. The Bohr radius of a hydrogen atom is 0.000000000053 m , which can be written as $5.3 \times 10^{-11} \mathrm{~m}$.

Both 7.0×10^{9} and 5.3×10^{-11} are examples of numbers expressed in standard form.

In general, a number is said to be expressed in standard form, or scientific notation, when it is written as

$$
A \times 10^{n} \text {, where } 1 \leqslant A<\mathbf{1 0} \text { and } n \text { is an integer. }
$$

Worked 15 Example 15

(Standard Form)

Express each of the following numbers in standard form.
(a) 149600000
(b) 0.000038

Solution:

(a) $149600000=1.496 \times 10^{8}$ (move the decimal point 8 places to the left)
(b) $0.000038=3.8 \times 10^{-5}$ (move the decimal point 5 places to the right)

PRACTISE NOW 15

SIMILAR
 QUESTIONS

Exercise 3C Questions 1(a)-(d), 2(a)-(d)
(a) 5300000
(b) 600000000
(c) 0.000048
(d) 0.00000000021
2. Express each of the following as an integer or a decimal.
(a) 1.325×10^{6}
(b) 4.4×10^{-3}

:¿:\% Common Prefixes

Have you used an external hard disk with a capacity of 512 gigabytes?
Have you used a micrometer in the laboratory?

Prefixes are commonly used in our daily lives to denote certain powers of 10 . They are related to the special names in the SI system of units. Table 3.7 lists some of the common prefixes and their symbols used for very large and very small numbers.

Power of 10	Name	SI Prefix	Symbol	Numerical Value
10^{12}	trillion	tera-	T	1000000000000
10^{9}	billion	giga-	G	1000000000
10^{6}	million	mega-	M	1000000
10^{3}	thousand	kilo-	k	1000
10^{-3}	thousandth	milli-	m	$0.001=\frac{1}{1000}$
10^{-6}	millionth	micro-	μ	$0.000001=\frac{1}{1000000}$
10^{-9}	billionth	nano-	n	$0.000000001=\frac{1}{1000000000}$
10^{-12}	trillionth	pico-	p	$0.000000000001=\frac{1}{1000000000000}$

Table 3.7

Hence, 8.2×10^{9} is read as 8.2 billion. How do you read 3.7×10^{12} ? 5.6×10^{-6} is read as 5.6 millionth. How do you read $4.9 \times 10^{-9} ?$

The figure below shows a range of prefixes used in our daily lives.

Do you know that one billion is not always 10^{9} or one thousand million? In the 'long scale' used by most European countries (including the UK) in most of the $19^{\text {th }}$ and $20^{\text {th }}$ centuries, one billion means 10^{12} or one million million. In 1974, the UK switched to the 'short scale', which is used by the USA. In the 'short scale', one billion is 10^{9} or one thousand million. Search on the Internet for 'long and short scales' to find out more.

Search on the Internet for 'powers of 10^{\prime} to view a video starting from a picnic in Chicago to our galaxy 10^{24} metres away and then back to the picnic to within a proton at 10^{-16} metres.

\section*{| Worked 16 |
| :--- |
| Example |
| 16 |}

(Common Prefixes in our Daily Lives)

For each of the following, give your answer in standard form.
(a) A male African elephant can weigh as heavy as 7000 kilograms. Express this weight in grams.
(b) The average lifespan of a certain molecule is 0.5 nanoseconds.

Given that 1 nanosecond $=10^{-9}$ seconds, express this time in seconds.
(c) A steam power plant in Singapore has a capacity of 250 megawatts.
Given that 1 megawatt $=10^{6}$ watts, express this capacity in watts.

Solution:

$$
\text { (a) } \begin{aligned}
& 7000 \text { kilograms } \\
= & 7000 \times 10^{3} \text { grams } \\
= & 7 \times 10^{3} \times 10^{3} \text { grams } \\
= & 7 \times 10^{3+3} \text { grams } \\
= & 7 \times 10^{6} \text { grams }
\end{aligned}
$$

(c) 250 megawatts

$$
=250 \times 10^{6} \text { watts }
$$

$=2.5 \times 10^{2} \times 10^{6}$ watts
$=2.5 \times 10^{2+6} \mathrm{watts}$
$=2.5 \times 10^{8}$ watts

PRACTISE NOW 16

(b) 0.5 nanoseconds $=0.5 \times 10^{-9}$ seconds $=5 \times 10^{-1} \times 10^{-9}$ seconds $=5 \times 10^{-1+(-9)}$ seconds $=5 \times 10^{-10}$ seconds

For each of the following, give your answer in standard form.
(a) The diameter of a human hair is 25.4 micrometres.

Given that 1 micrometre $=10^{-6}$ metres, express this diameter in metres.
(b) A rain gauge measures rainfall over a period of time. The average annual rainfall in Singapore is 2340 mm . Express this measurement in centimetres.
(c) An external hard drive has a capacity of 4.0 terabytes .

Given that 1 terabyte $=10^{12}$ bytes, express this capacity in bytes.

Performance Task

If you are buying 1 thumbdrive with a capacity of 1 gigabyte (1 GB), are you getting exactly 1 billion bytes of computer space? Search on the Internet to find out how many bytes 1 GB is actually equal to. Why is it not possible for the manufacturer to produce a thumbdrive with exactly 1 billion bytes?
Hint: How does the number 2 in 2^{30} play a part here?
Search on the Internet to find out why computer storage systems always come in the form of $128 \mathrm{MB}, 256 \mathrm{MB}, 512 \mathrm{MB}$ and so on. Present your findings to your class.

Worked Example 17

(Applying the Orders of Operation in Standard Form)
With the use of a calculator, find the value of each of the following, giving your answer in standard form, correct to 3 significant figures.
(a) $\left(7.2 \times 10^{3}\right) \times\left(2.05 \times 10^{5}\right)$
(b) $\frac{4.5 \times 10^{-3}}{9 \times 10^{-1}}$
(c) $1.35 \times 10^{3}+2.37 \times 10^{4}$
(d) $\frac{2.58 \times 10^{-3}-4.19 \times 10^{-4}}{3.17 \times 10^{2}}$

Solution:

(a) $\left(7.2 \times 10^{3}\right) \times\left(2.05 \times 10^{5}\right)$

$($	7	.	2	$\times 10^{x}$	3	$)$	\times	$($	2	.	0	5	$\times 10^{x}$	5	$)$	$=$

$=1476000000$
$=1.48 \times 10^{9}$ (to 3 s.f.)
(b) $\frac{4.5 \times 10^{-3}}{9 \times 10^{-1}}$

$=$| $($ | 4 | \cdot | 5 | $\times 10^{x}$ | - | 3 | $)$ | \div | $($ | 9 | $\times 10^{x}$ | - | 1 | $)$ | $=$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$=5 \times 10^{-3}$
(c) $1.35 \times 10^{3}+2.37 \times 10^{4}$

1	.	3	5	$\times 10^{x}$	3	+	2	.	3	7	$\times 10^{x}$	4	
$=25050$													
$=2.5050 \times 10^{4}$													
$=2.51 \times 10^{4}$ (to $3 \mathrm{s.f}$.)													

(d) $\frac{2.58 \times 10^{-3}-4.19 \times 10^{-4}}{3.17 \times 10^{2}}$

PRACTISE NOW 17

With the use of a calculator, find the value of each of the following, giving your answer in standard form, correct to 3 significant figures.
(a) $\left(1.14 \times 10^{5}\right) \times\left(4.56 \times 10^{4}\right)$
(b) $\left(4.2 \times 10^{-4}\right) \times\left(2.6 \times 10^{2}\right)$
(c) $\left(2.4 \times 10^{8}\right) \div\left(6 \times 10^{4}\right)$
(d) $\frac{3.5 \times 10^{-5}}{1.4 \times 10^{8}}$
(e) $1.14 \times 10^{5}+4.56 \times 10^{4}$
(f) $4 \times 10^{4}-2.6 \times 10^{6}$
(g) $\frac{2.37 \times 10^{-3}+3.25 \times 10^{-4}}{4.1 \times 10^{5}}$
(h) $\frac{6.3 \times 10^{6}}{1.5 \times 10^{2}-3 \times 10^{-1}}$

SIMILAR
 QUESTIONS

Exercise 3C Questions 6(a)-(h), 7 (a)-(f), 8-11

Worked Example 18

(Applications of Standard Form)

The approximate mass of the moon is 7×10^{19} tonnes while the mass of the earth is approximately 6×10^{24} tonnes. Calculate the number of times that the earth is as heavy as the moon, giving your answer correct to the nearest 1000 .

Solution:

Number of times the earth is as heavy as the moon $=\frac{6 \times 10^{24}}{7 \times 10^{19}}$

$$
\begin{aligned}
& =\frac{6}{7} \times 10^{24-19} \\
& =\frac{6}{7} \times 10^{5} \\
& =86000 \text { (to the nearest } 1000 \text {) }
\end{aligned}
$$

PRACTISE NOW 18

A Secure Digital (SD) memory card has a capacity of 512 megabytes. Each photograph has a size of 640 kilobytes. Assuming that $1 \mathrm{MB}=10^{6}$ bytes and $1 \mathrm{kB}=10^{3}$ bytes, how many photographs can this memory card store?

Fill in the blanks to convert between ordinary notation and standard form.

1. The distance of the planet Mercury from the sun is about 57910000 km
\qquad $\times 10^{7} \mathrm{~km}$) while the distance of Pluto from the sun is about 5945900000 km (\qquad $\times 10-\mathrm{km}$).
2. The moon travels around the earth at a speed of about $3683000 \mathrm{~m} / \mathrm{h}$
\qquad $\times 10-\mathrm{km} / \mathrm{h}$).
3. If the diameter of an air molecule is about 0.0000000004 m (\qquad $\times 10-\mathrm{m})$ and there are 500000000000000000000000000 (\qquad $\times 10-$) molecules in a room, then the total volume of the air molecules in the room is
\qquad $\times 10 \mathrm{~m}^{3}$.
4. There are about 100 trillion (\qquad $\times 10 \longrightarrow$) cells in the human body. The human heart contains about \qquad million $\left(2 \times 10^{9}\right)$ cells and beats about 42000000 (\qquad $\times 10-$ times each year.

BASIC LEVEL

1. Express each of the following numbers in standard form.
(a) 85300
(b) 52700000
(c) 0.00023
(d) 0.000000094
2. Express each of the following as an integer or a decimal.
(a) 9.6×10^{3}
(b) 4×10^{5}
(c) 2.8×10^{-4}
(d) 1×10^{-6}
3. Microwaves are a form of electromagnetic radiation with frequencies between 300000000 Hz and 300 GHz . Giving your answer in standard form, express
(i) 300000000 Hz in MHz,
(ii) 300 GHz in MHz .
($1 \mathrm{MHz}=10^{6} \mathrm{~Hz}$ and $1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$)

INTERMEDIATE LEVEL

4. (i) A nitrogen atom has an atomic radius of a picometres (pm), where $a=70$ and $1 \mathrm{pm}=10^{-12} \mathrm{~m}$. Express this radius in metres. Give your answer in standard form.
(ii) An oxygen atom has an atomic radius of b nanometres (nm), where $b=0.074$ and $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$. Express this radius in metres. Give your answer in standard form.
(iii) Express $a: b$ as a ratio of two integers in its simplest form.
5. The mean distance from the earth to the sun is c megametres (Mm), where $c=1500$ and $1 \mathrm{Mm}=10^{6} \mathrm{~m}$. The mean distance from Pluto to the sun is d terametres (Tm), where $d=5.91$ and $1 \mathrm{Tm}=10^{12} \mathrm{~m}$. Express d as a percentage of c. Give your answer in standard form.
6. With the use of a calculator, find the value of each of the following, giving your answer in standard form, correct to 3 significant figures.
(a) $\left(2.34 \times 10^{5}\right) \times\left(7.12 \times 10^{-4}\right)$
(b) $\left(5.1 \times 10^{-7}\right) \times\left(2.76 \times 10^{-3}\right)$
(c) $\left(13.4 \times 10^{4}\right) \div\left(4 \times 10^{5}\right)$
(d) $\frac{3 \times 10^{-4}}{9 \times 10^{-8}}$
(e) $2.54 \times 10^{3}+3.11 \times 10^{4}$
(f) $6 \times 10^{5}-3.1 \times 10^{7}$
(g) $\frac{4.37 \times 10^{-4}+2.16 \times 10^{-5}}{3 \times 10^{-3}}$
(h) $\frac{2.4 \times 10^{-10}}{7.2 \times 10^{-6}-3.5 \times 10^{-8}}$
7. With the use of a calculator, find the value of each of the following, giving your answer in standard form, correct to 3 significant figures.
(a) $\left(1.35 \times 10^{-4}\right)^{3}$
(b) $6\left(3.4 \times 10^{3}\right)^{2}$
(c) $\sqrt{1.21 \times 10^{8}}$
(d) $\sqrt[3]{9.261 \times 10^{6}}$
(e) $\frac{2.3 \times 10^{-2} \times 4.7 \times 10^{3}}{2 \times 10^{3}}$
(f) $\frac{8 \times 10^{2}+2.5 \times 10^{3}}{2 \times 10^{-2}-3.4 \times 10^{-3}}$
8. Given that $P=7.5 \times 10^{3}$ and $Q=5.25 \times 10^{4}$, express each of the following in standard form.
(a) $2 P \times 4 Q$
(b) $Q-P$
9. Given that $x=2 \times 10^{-3}$ and $y=7 \times 10^{-4}$, evaluate $x+8 y$, giving your answer in standard form.
10. Given that $M=3.2 \times 10^{6}$ and $N=5.0 \times 10^{7}$, find the value of each of the following, giving your answer in standard form.
(a) $M N$
(b) $\frac{M}{N}$
11. Given that $R=\frac{M}{E I}$, find the value of R when $M=6 \times 10^{4}, E=4.5 \times 10^{8}$ and $I=4 \times 10^{2}$. Give your answer in standard form.
12. Light travels at a speed of $300000000 \mathrm{~m} / \mathrm{s}$.
(i) Express this speed in standard form.
(ii) Given that the mean distance from the sun to Jupiter is 778.5 million kilometres, find the time taken, in minutes and seconds, for light to travel from the sun to Jupiter.
13. On a journey from Planet P to Venus, a rocket is travelling at a constant speed. During this journey, the rocket travels past the moon in 4 days. The distance from Planet P to the moon is $4.8 \times 10^{5} \mathrm{~km}$.
(i) Find the distance travelled by the rocket in 12 days. Give your answer in standard form.
(ii) Given that the distance between Planet P and Venus is $4.8 \times 10^{7} \mathrm{~km}$, find the time taken, in days, for the journey.

ADVANCED LEVEL

14. The table shows the approximate population of the world in the past centuries.

Year	World population
1549	4.20×10^{8}
1649	5.45×10^{8}
1749	7.28×10^{8}
1849	1.17×10^{9}

Find

(i) the increase in population from 1549 to 1649,
(ii) the number of times that the population in 1849 is as large as that in 1649,
(iii) the number of times that the population of China is as large as that of the world in 1749, given that the population of China in year 2000 is approximately 1.23 billion, where 1 billion $=10^{9}$.

1. In index form, $a^{n}=\underbrace{a \times a \times \ldots \times a \times a}_{n \text { times }}$, where n is a positive integer.

2. Laws of Indices

Assume that a and b are real numbers and m and n are positive integers.

```
Law 1 of Indices: \(a^{m} \times a^{n}=a^{m+n}\)
Law 2 of Indices: \(a^{m} \div a^{n}=a^{m-n}\), if \(a \neq 0\)
Law 3 of Indices: \(\left(a^{m}\right)^{n}=a^{m n}\)
Law 4 of Indices: \(a^{n} \times b^{n}=(a \times b)^{n}\)
Law 5 of Indices: \(a^{n} \div b^{n}=\left(\frac{a}{b}\right)^{n}\), if \(b \neq 0\)
```

If m and n are integers, the conditions for the above 5 laws of indices are different (see page 74).
If m and n are rational numbers, the conditions for the above 5 laws of indices are again different (see pages 79-80).
3. Zero Indices

If a is a real number, we define $a^{0}=1$ if $a \neq 0$.
4. Negative Indices

If a is a real number, we define $a^{-n}=\frac{1}{a^{n}}$, if $a \neq 0$.

5. Rational Indices

If n is a positive integer, we define $a^{\frac{1}{n}}=\sqrt[n]{a}$ if $a>0$.
If m and n are positive integers, $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$, if $a>0$.
6. Compound Interest Formula

$$
A=P\left(1+\frac{R}{100}\right)^{n}
$$

where A is the total amount, P is the principal, $R \%$ is the interest rate per annum (or year) and n is the number of years
7. A number is said to be expressed in standard form, or scientific notation, when it is written as $\boldsymbol{A} \times \mathbf{1 0}^{n}$, where $1 \leqslant A<10$ and n is an integer.

Review

1. Simplify each of the following.
(a) $\left(a^{3} b\right) \times\left(a^{4} b^{3}\right)$
(b) $\left(6 a^{5} b^{4}\right) \div\left(2 a^{3} b^{2}\right)$
(c) $\left(-3 a^{3} b^{5}\right)^{3}$
(d) $\left(\frac{2 a^{2} b}{b^{3}}\right)^{3} \div\left(\frac{16 a^{5}}{a b^{7}}\right)$
2. Express each of the following as a power of 5 .
(a) $5^{24} \div 5^{8}$
(b) $\frac{1}{125}$
(c) $\sqrt[5]{5}$
3. Evaluate each of the following without the use of a calculator.
(a) $5^{2} \div 5^{-1} \times 5^{0}$
(b) $2^{-2}-3^{-2}$
(c) $3^{-2}+\left(\frac{1}{3}\right)^{-1}-(-3)^{0}$
(d) $\left(\frac{2}{5}\right)^{3} \div\left(\frac{9}{2}\right)^{-2}$
4. Evaluate each of the following without the use of a calculator.
(a) $\sqrt[4]{81}$
(b) $\sqrt[3]{\frac{27}{125}}$
(c) $16^{1.5}$
(d) $1024^{-\frac{3}{5}}$
5. Simplify each of the following, expressing your answer in positive index form.
(a) $\left(\frac{3}{x}\right)^{-4}$
(b) $3 \div x^{-3}$
6. Simplify each of the following, leaving your answer in positive index form.
(a) $\left(x^{3} y^{-2}\right) \times\left(x^{-3} y^{5}\right)$
(b) $\left(5 x^{2} y^{3}\right)^{0} \div\left(-2 x^{-3} y^{5}\right)^{-2}$
(c) $\left(\frac{x^{2}}{y^{-3}}\right)^{4} \div\left(\frac{x^{5}}{y^{7}}\right)^{3}$
(d) $\frac{\left(3 x^{-2} y^{5}\right)^{2} \times\left(-2 x^{3} y^{-2}\right)^{2}}{9 x^{4} y^{6}}$
7. Simplify each of the following, expressing the answers in positive index form.
(a) $\sqrt[5]{p^{3}} \times \sqrt[3]{8 p}$
(b) $\left(p^{-3} q^{\frac{3}{5}}\right)^{-\frac{2}{3}} \times\left(p^{\frac{4}{5}} q^{-\frac{2}{3}}\right)^{3}$
(c) $\frac{p^{\frac{2}{3}} q^{-\frac{2}{5}}}{\left(p^{2} q^{-\frac{1}{5}}\right)^{-3}}$
(d) $\left(p^{-\frac{1}{3}} q^{2}\right)^{5} \times \sqrt[3]{27\left(p^{-3} q^{2}\right)}$
8. (a) Given that $4^{-6} \times 4^{x}=1$, find the value of x.
(b) Find the value of x^{3} for which $x^{-3}=7$.
(c) If $5^{12} \times 5^{-2} \div 5^{x}=25$, find the value of x.
9. Solve each of the following equations.
(a) $16^{a}=8$
(b) $2015^{b}=1$
(c) $\frac{10^{c}}{10}=0.01$
(d) $\frac{2^{d-6}}{2}=2^{9}$
10. Nora deposited $\$ 15000$ in an account that pays 4.12% per annum compound interest. Find the total amount in the account after 3 years if the interest is compounded
(a) monthly,
(b) half-yearly.
11. A bank pays investors 4% per annum compound interest, compounded half-yearly. Find the original amount Rui Feng invested if he received $\$ 5800$ as interest at the end of 3 years. Leave your answer correct to the nearest dollar.
12. With the use of a calculator, evaluate each of the following, giving your answer in standard form, correct to 3 significant figures.
(a) $\left(6.4 \times 10^{6}\right) \times\left(5.1 \times 10^{-3}\right)$
(b) $\left(2.17 \times 10^{-5}\right) \div\left(7 \times 10^{4}\right)$
(c) $\left(3.17 \times 10^{4}\right)+\left(2.26 \times 10^{5}\right)$
(d) $\left(4.15 \times 10^{-3}\right)-\left(5.12 \times 10^{-4}\right)$
(e) $\frac{5.1 \times 10^{-6}-2.34 \times 10^{5}}{4.87 \times 10^{-3}+9 \times 10^{-2}}$
(f) $\frac{8.43 \times 10^{7}+6.8 \times 10^{8}}{\left(1.01 \times 10^{4}\right)^{3}}$
13. Given that $a=110000000, b=12100000$ and $c=0.000007$, find the value of each of the following, giving your answer in standard form.
(a) $a-b$
(b) $\sqrt[3]{a b}$
(c) $6 c^{2}$
(d) $\frac{a c}{b}$
14. The diameter of a circular microorganism is 7 nanometres (nm). Find the
(i) circumference in metres,
(ii) area in square metres,
of the microorganism. Give your answer in standard form. (Take $\pi=3.142$ and $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$.)
15. An astronomical unit (abbreviated as AU, au, a.u., or ua) is a unit of length defined as 149597870700 metres, which is roughly or exactly the mean distance between the earth and the sun. One astronomical unit (au) is estimated to be 150 gigametres (Gm).
(i) Express this astronomical unit in metres, correct to 4 significant figures. Give your answer in standard form.
(ii) The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How long does light take to travel a distance of 1 au? (Take $1 \mathrm{Gm}=10^{9} \mathrm{~m}$.)
16. The distance from 2 planets is 240 megametres $\left(1 \mathrm{Mm}=10^{6} \mathrm{~m}\right.$).
(i) Express this distance in metres. Give your answer in standard form.

A rocket travels a distance of one metre in 8000 nanoseconds (ns) and $1 \mathrm{~ns}=10^{-9} \mathrm{~s}$.
(ii) How long does the rocket take to travel from one planet to the other? Give your answer in seconds.
17. The mass of a hydrogen atom is approximately $1.66 \times 10^{-24} \mathrm{~g}$ and that of an oxygen atom is approximately $2.66 \times 10^{-23} \mathrm{~g}$.
(i) Find the mass of a water molecule which consists of two hydrogen and one oxygen atoms. Give your answer in standard form correct to 3 significant figures.
(ii) Find the approximate number of water molecules in a cup of water which has a mass of 280 g . Give your answer in standard form correct to 3 significant figures.

1. Use the numerals 2,3 and 4 to form a number as large as possible. Show that it is the largest.
2. What is the last digit of 3^{2015} ?
3. Find the exact value of $\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}$.

A1 Revision Exercise

1. Evaluate each of the following, without the use of a calculator.
(a) $\left(\frac{1}{2}\right)^{-3}$
(b) $0.04^{-1.5}$
(c) $\left(1 \frac{9}{16}\right)^{-\frac{1}{2}}$
(d) $9^{2.5} \div 27^{1 \frac{1}{3}}$
(e) $9^{\frac{1}{2}}-0.36^{-\frac{1}{2}}$
2. Simplify each of the following, expressing your answer in positive index form.
(a) $a^{5} \div a^{-2}$
(b) $b^{4} \div \sqrt{b} \times b^{-7}$
(c) $\left(\frac{c^{-3} d}{c^{2} d^{-2}}\right)^{-5}$
3. Solve each of the following equations.
(a) $7^{x}=2^{4} \div 4^{2}$
(b) $(2 y+3)^{\frac{1}{2}}=5$
4. (i) Solve the inequality $3-5 p>17$.
(ii) Hence, write down the greatest integer value of p which satisfies $17<3-5 p$.
5. When 5 is subtracted from twice a number, the resulting number is less than 12 . When 1 is subtracted from thrice the number, the resulting number is greater than 12. List the possible integer values of the number.
6. The diameter of a circular microorganism is 8.8 nanometres. Find the
(i) circumference in m,
(ii) area in m^{2},
of the microorganism.
Give your answers in standard form.
(Take $\pi=3.142$, 1 nanometre $=10^{-9}$ metres.)
7. The perimeter of a square exceeds that of another by 100 cm and the area of the larger square exceeds three times that of the smaller square by $325 \mathrm{~cm}^{2}$. Find the length of a side of each of the squares.
8. The distance between P and Q is 330 km . A train, A, travelling from P to Q at an average speed of $x \mathrm{~km} / \mathrm{h}$ takes half an hour less than another train, B, travelling from Q to P at an average speed of $(x-5) \mathrm{km} / \mathrm{h}$. Form an equation in x and find the time taken for each train to travel between P and Q.
9. In the figure, $P Q R S$ is a rectangle. The point A lies on $P Q$ and the point B lies on $Q R$ such that $\angle S A B=90^{\circ}$.

(i) Given that $P Q=8 \mathrm{~cm}, Q R=4 \mathrm{~cm}, Q B=3 \mathrm{~cm}$ and $P A=y \mathrm{~cm}$, write down expressions in terms of y for $A S^{2}$ and $A B^{2}$.
(ii) Form an equation in y and show that it reduces to $y^{2}-8 y+12=0$.
(iii) Solve the equation $y^{2}-8 y+12=0$ and hence find the two possible values of the area of $\triangle A B S$.
10. In the figure, the width of the border of the picture is $x \mathrm{~cm}$. The picture has an area of $160 \mathrm{~cm}^{2}$.

(i) Form an equation in x and show that it reduces to $x^{2}-18 x+40=0$.
(ii) Solve the equation $x^{2}-18 x+40=0$, giving both your answers correct to 2 significant figures.
(iii) Write down the width of the border, giving your answer correct to 2 significant figures.

A2
 Revision Exercise

1. Simplify each of the following, expressing your answer in positive index form.
(a) $\left(2 a b^{2}\right)^{3}$
(b) $c^{3} \times c^{-2} \div c^{0}$
(c) $\left(\frac{2}{d}\right)^{-2}$
(d) $2 \div 4 e^{-3}$
2. Given that $5^{-6} \div 5^{p}=125^{0}$, find the value of $\frac{1}{2^{p}}$.
3. Solve each of the following equations.
(a) $10^{2 x+3}=0.001$
(b) $y^{-2}=\frac{1}{81}$
(c) $(2 z-1)^{\frac{1}{3}}=2$
4. Given that $1 \leqslant x \leqslant 3$ and $3 \leqslant y \leqslant 6$, find
(a) the largest possible value of $x^{2}-y$,
(b) the smallest possible value of $\frac{x}{y}$.
5. Solve the inequality $-3 \leqslant 2 q+7<23$, illustrating the solution on a number line.
6. Given that $\frac{4 x}{5}-\frac{3}{10} \leqslant x-2 \frac{1}{4}$, find the smallest possible value of x such that
(a) x is a prime number,
(b) x is an integer,
(c) x is a rational number.
7. The figure shows a trapezium $P Q R S$ in which $S R$ is parallel to $P Q, \angle P Q R=90^{\circ}, P Q=(3 a+2) \mathrm{cm}$, $Q R=(a+1) \mathrm{cm}$ and $R S=(2 a+1) \mathrm{cm}$.

(i) Find an expression, in terms of a, for the area of the trapezium $P Q R S$.
(ii) Given that the area of the trapezium is $9 \mathrm{~cm}^{2}$, form an equation in a and show that it reduces to $5 a^{2}+8 a-15=0$.
(iii) Solve the equation $5 a^{2}+8 a-15=0$, giving both your answers correct to 2 decimal places.
(iv) Hence, find the length of $P Q$.
8. A water tank can be filled with water by two pipes in 1 hour and 20 minutes. If the smaller pipe takes 2 hours longer than the larger pipe to fill the tank, find the time taken by each pipe to fill the tank.
9. The figure shows three circles with centres at O, X and Y, P, Q and R are the points of contact.

Given that $X R=5 \mathrm{~cm}, Y R=4 \mathrm{~cm}, O P=r \mathrm{~cm}$ and $\angle X O Y=90^{\circ}$,
(i) write down an equation in r and show that it reduces to $r^{2}+9 r-20=0$,
(ii) find the length of $O X$ and of $O Y$.
10. Michael cycles from A to B, covering a total distance of 50 km . For the first 40 km of his journey, his average speed is $x \mathrm{~km} / \mathrm{h}$ but for the last 10 km , his average speed is $5 \mathrm{~km} / \mathrm{h}$ less. The total journey takes 2 hours and 40 minutes. Form an equation in x and solve it to find his average speed for the first 40 km of the journey.

Chapter Four

LEARNING OBJECTIVES

At the end of this chapter, you should be able to:

- find the gradient of a straight line given the coordinates of two points on it,
- find the length of a line segment given the coordinates of its end points,
- interpret and find the equation of a straight line N \quad graph in the form $y=m x+c$,

- solve geometry problems involving the use
of coordinates.
Eri

4.1
 Gradient of a Straight Line

\%:\%: Recap

In Book 1, we have learnt that a rectangular or Cartesian plane consists of two number lines intersecting at right angles at the point O, known as the origin. The horizontal and vertical axes are called the \boldsymbol{x}-axis and the \boldsymbol{y}-axis respectively.

Fig. 4.1
Each point P in the plane is located by an ordered pair (x, y). We say that P has coordinates (x, y).

Rene Descartes, a French philosopher in the early $17^{\text {th }}$ century invented the coordinate system. His use of (x, y) as ordered pairs enhanced the inter-relationship between geometrical curves and algebraic equations. He was also the first person to declare the words "I think, therefore I am."

:

In Book 1, we have also learnt that the gradient of a straight line is the ratio of the vertical change to the horizontal change.

Fig. 4.2

Finding the Gradient of a Straight Line

1. In Fig. 4.3 (a) and (b), A and B are two points on the line.

(a)

(b)

Fig. 4.3
(i) Find the gradient of each line segment.
(ii) Choose two other points that lie on each of the line segments and calculate the gradient of each line segment. Compare your answers with those obtained in (i). What do you notice? Explain your answer.
2. Given any two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, how would you find the gradient of the line passing through A and B ?
3. Using your answer in Question 2, find the gradient of the line passing through each of the following pairs of points.
(a) $(-1,4)$ and $(3,7)$
(b) $(-4,-3)$ and $(2,-11)$
(c) $(6,3)$ and $(-4,3)$
(d) $(2,-1)$ and $(2,8)$

Compare your answers with those obtained by your classmates.

From the class discussion, we observe that if $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are two points on a line, then

$$
\text { gradient of } A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text {. }
$$

Fig. 4.4

Thinking

 TimeInstead of writing the gradient of $A B$ as $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, we can also write it as $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$.
Is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$? Explain your answer.

Investigation

Gradient of a Straight Line

1. Using a suitable geometry software, draw a line segment with the end-points as $A(-2,1)$ and $B(0,5)$.
2. Find the gradient of the line segment $A B$ and record it in Table 4.1. Describe the gradient of the line segment $A B$ using one of the following terms: positive, negative, zero or undefined.
3. Write down the value of $y_{2}-y_{1}$ and of $x_{2}-x_{1}$ in Table 4.1.
4. Repeat Steps $1-3$ for each of the following pairs of points.
(a) $C(7,5)$ and $D(4,8)$
(b) $E(-2,6)$ and $F(-4,3)$
(c) $G(1,1)$ and $H(3,1)$
(d) $I(-4,3)$ and $J(-4,6)$

	Coordinates of End-points	Gradient of Line Segment	Sign of Gradient	$\boldsymbol{y}_{\mathbf{2}}-\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}-\boldsymbol{x}_{\mathbf{1}}$
(a)	$A(-2,1)$ and $B(0,5)$		positive	$5-1=\square$	$0-(-2)=$
(b)	$C(7,5)$ and $D(4,8)$				
(c)	$E(-2,6)$ and $F(-4,3)$				
(d)	$G(1,1)$ and $H(3,1)$				
(e)	$I(-4,3)$ and $J(-4,6)$				

Table 4.1
5. (a) When $y_{2}-y_{1}>0$ and $x_{2}-x_{1}<0$, what do you notice about the sign of the gradient?
(b) When $y_{2}-y_{1}<0$ and $x_{2}-x_{1}>0$, what do you notice about the sign of the gradient?
(c) When the signs of $y_{2}-y_{1}$ and $x_{2}-x_{1}$ are the same, what do you notice about the sign of the gradient?
(d) When $y_{2}-y_{1}=0$, what do you notice about the gradient of the line?
(e) When $x_{2}-x_{1}=0$, what do you notice about the gradient of the line?

From the investigation, we observe that

- the gradient of a straight line can be positive, negative, zero or undefined,
- if $y_{2}-y_{1}$ and $x_{2}-x_{1}$ have the same signs, the gradient of the straight line is positive,

- if $y_{2}-y_{1}$ and $x_{2}-x_{1}$ have opposite signs, the gradient of the straight line is negative,

- if $y_{2}-y_{1}=0$ or $y_{2}=y_{1}$, the gradient of a horizontal line is zero,

- if $x_{2}-x_{1}=0$ or $x_{2}=x_{1}$, the gradient of a vertical line is undefined.

When the gradient of the line is positive, as the value of x increases (from point A to point B), the value of y also increases.

value of x increases
$\xrightarrow{\left(x_{2}>x_{1} \text { or } x_{2}-x_{1}>0\right)} x$

Worked Example

Find the gradient of the line passing through each of the following pairs of points.
(a) $A(2,3)$ and $B(7,5)$
(b) $\quad P(-2,8)$ and $Q(1,-1)$

Solution:

(a) Gradient of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(\right.$ Let $\left(x_{1}, y_{1}\right)=(2,3)$ and $\left.\left(x_{2}, y_{2}\right)=(7,5)\right)$

$$
\begin{aligned}
& =\frac{5-3}{7-2} \\
& =\frac{2}{5}
\end{aligned}
$$

Alternatively,

$$
\text { Gradient of } \begin{aligned}
A B & =\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \\
& =\frac{3-5}{2-7} \\
& =\frac{-2}{-5} \\
& =\frac{2}{5}
\end{aligned}
$$

(b) Gradient of $P Q=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(\right.$ Let $\left(x_{1}, y_{1}\right)=(-2,8)$ and $\left.\left(x_{2}, y_{2}\right)=(1,-1)\right)$

$$
\begin{aligned}
& =\frac{-1-8}{1-(-2)} \\
& =\frac{-9}{3} \\
& =-3
\end{aligned}
$$

PRACTISE NOW 1

Find the gradient of the line passing through each of the following pairs of points.
(a) $C(3,1)$ and $D(6,3)$
(b) $H(5,-7)$ and $K(0,-2)$
(c) $M(-4,1)$ and $N(16,1)$

Worked 2 Example 2

(Using the Gradient to Determine the Coordinates of a Point on the Line)
If the gradient of the line joining the points $(k, 5)$ and $(2, k)$ is -2 , find the value of k.

Solution:

Gradient of line, $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-2$

$$
\begin{aligned}
\frac{k-5}{2-k} & =-2\left(\operatorname{Let}\left(x_{1}, y_{1}\right)=(k, 5) \text { and }\left(x_{2}, y_{2}\right)=(2, k)\right) \\
k-5 & =-2(2-k) \\
k-5 & =-4+2 k \\
-1 & =k
\end{aligned}
$$

$\therefore k=-1$

PRACTISE NOW 2

BASIC LEVEL

1. Find the gradient of the line passing through each of the following pairs of points.
(a) $A(0,0)$ and $B(-2,1)$
(b) $C(2,-3)$ and $D(1,7)$
(c) $E(-2,4)$ and $F(-5,8)$
(d) $G(-4,7)$ and $H(1,-8)$
(e) $I(-2,-5)$ and $J(2,6)$
(f) $K(-7,9)$ and $L(6,9)$
2. The points $A(0,1), B(7,1), C(6,0), D(0,5)$ and $E(6,4)$ are shown in the diagram.

Find the gradient of each of the line segments $A B, A E, D C$ and $D E$.
3. If the gradient of the line joining the points $(-3,-7)$ and $(4, p)$ is $\frac{3}{5}$, find the value of p.
4. The coordinates of A and B are $(3 k, 8)$ and $(k,-3)$ respectively. Given that the gradient of the line segment $A B$ is 3 , find the value of k.

INTERMEDIATE LEVEL

5. The gradient of the line joining the points $(9, a)$ and $(2 a, 1)$ is $\frac{2}{a}$, where $a \neq 0$. Find the possible values of a.
6. The points P, Q and R have coordinates ($6,-11$), ($k,-9$) and $(2 k,-3)$ respectively. If the gradient of $P Q$ is equal to the gradient of $P R$, find the value of k.
7. The points $P(2,-3), Q(3,-2)$ and $R(8, z)$ are collinear, i.e. they lie on a straight line. Find the value of z.
8. The line joining the points $A(2, t)$ and $B\left(7,2 t^{2}+7\right)$ has a gradient of 2 . Find the possible values of t.

ADVANCED LEVEL

9. The coordinates of the vertices of a square $A B C D$ are $A(0,6), B(2,1), C(7,3)$ and $D(5,8)$.
(i) Find the gradient of all 4 sides of $A B C D$.
(ii) What do you observe about the gradients of the opposite sides of a square?

(1) Length of

Consider the points $A(1,1)$ and $B(7,9)$ as shown in Fig. 4.5.

Fig. 4.5
$\triangle A B C$ is formed by drawing $A C$ parallel to the x-axis and $B C$ parallel to the y-axis. The coordinates of the point C are given by $(7,1)$.

Recall that a line segment is part of a line with two end-points. A line has no end-points so it does not have a length. However, a line segment has two end-points and so it has length.

$B C$ is vertical, i.e.
x-coordinate of $C=x$-coordinate of B.
$A C$ is horizontal, i.e.
y-coordinate of $C=y$-coordinate of A.

Hence, $A C=7-1=6$
and $\quad B C=9-1=8$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2} \\
& =6^{2}+8^{2} \\
& =100 \\
A B & =\sqrt{100} \\
& =10 \text { units }
\end{aligned}
$$

Consider any two points P and Q with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively. By completing the right-angled $\triangle P Q R$, we have the coordinates of R as $\left(x_{2}, y_{1}\right)$.

Hence, $P R=x_{2}-x_{1}$
and $\quad Q R=y_{2}-y_{1}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
P Q^{2} & =P R^{2}+Q R^{2} \\
& =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
\end{aligned}
$$

Fig. 4.6

In general, the length of any line segment $P Q$, where the coordinates of the points P and Q are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively, is

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Instead of writing the length of line segment $P Q$ as $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$, we can also write it as $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
Is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$? Explain your answer.

Worked
 Example

(Finding the Length of a Line Segment)
Given that the coordinates of the points A and B are $(-4,1)$ and $(6,-5)$ respectively, find the length of the line segment $A B$.

Solution:

$$
\text { Length of line segment } \begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[6-(-4)]^{2}+(-5-1)^{2}} \\
& =\sqrt{10^{2}+(-6)^{2}} \\
& =\sqrt{100+36} \\
& =\sqrt{136} \\
& =11.7 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 3

Find the length of the line segment joining each of the following pairs of points.
(a) $C(6,2)$ and $D(3,-2)$
(b) $\quad M(-1,5)$ and $N(6,-4)$
(c) $P(2,7)$ and $Q(8,7)$

Worked (Using the Length to Determine the Coordinates of a Example Point on the Line)
 Given that the coordinates of the points A and B are

 $(-3,2)$ and $(1,-6)$ respectively, find the coordinates of the point C that lies on the y-axis such that $A C=B C$.Hence, find the area of $\triangle A C O$, where O is the origin.

Solution:

Let the coordinates of C be $(0, k)$.

$$
\begin{aligned}
A C & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[0-(-3)]^{2}+(k-2)^{2}} \\
& =\sqrt{(0+3)^{2}+(k-2)^{2}} \\
& =\sqrt{9+(k-2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
B C & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-1)^{2}+[k-(-6)]^{2}} \\
& =\sqrt{(-1)^{2}+(k+6)^{2}} \\
& =\sqrt{1+(k+6)^{2}}
\end{aligned}
$$

Since $A C=B C$,

$$
\begin{aligned}
\sqrt{9+(k-2)^{2}} & =\sqrt{1+(k+6)^{2}} \\
\left(\sqrt{9+(k-2)^{2}}\right)^{2} & =\left(\sqrt{1+(k+6)^{2}}\right)^{2} \quad \text { (square both sides of the equation) } \\
9+(k-2)^{2} & =1+(k+6)^{2} \\
9+k^{2}-4 k+4 & =1+k^{2}+12 k+36 \\
k^{2}-4 k+13 & =k^{2}+12 k+37 \\
-16 k & =24 \\
16 k & =-24 \\
k & =-\frac{24}{16} \\
& =-\frac{3}{2} \\
& =-1 \frac{1}{2}
\end{aligned}
$$

\therefore Coordinates of C are $\left(0,-1 \frac{1}{2}\right)$
Area of $\triangle A C O=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times O C \times A D \\
& =\frac{1}{2} \times 1 \frac{1}{2} \times 3 \\
& =\frac{9}{4} \\
& =2 \frac{1}{4} \text { units }^{2}
\end{aligned}
$$

PRACTISE NOW 4

Given that the coordinates of the points C and D are $(4,-1)$ and $(-2,7)$ respectively, find
(a) the coordinates of the point E that lies on the y-axis such that $C E=D E$,
(b) the coordinates of the point F that lies on the x-axis such that $C F=D F$.

Hence, find the area of $\triangle O E F$, where O is the origin.

Worked Example

(Using the Length to show that a Triangle is Right-angled) A triangle has vertices $A(0,-5), B(-2,1)$ and $C(10,5)$. Show that $\triangle A B C$ is a right-angled triangle and identify the right angle.

Solution:

$$
\begin{aligned}
A B^{2} & =(-2-0)^{2}+[1-(-5)]^{2} \\
& =(-2)^{2}+6^{2} \\
& =4+36 \\
& =40
\end{aligned}
$$

$$
\begin{aligned}
B C^{2} & =[10-(-2)]^{2}+(5-1)^{2} \\
& =12^{2}+4^{2} \\
& =144+16 \\
& =160
\end{aligned}
$$

$$
\begin{aligned}
A C^{2} & =(10-0)^{2}+[5-(-5)]^{2} \\
& =10^{2}+10^{2} \\
& =100+100 \\
& =200
\end{aligned}
$$

$$
\text { Since } \begin{aligned}
A B^{2}+B C^{2} & =40+160 \\
& =200 \\
& =A C^{2},
\end{aligned}
$$

the triangle is a right-angled triangle with $\angle A B C=90^{\circ}$. (Converse of Pythagoras' Theorem)

PRACTISE NOW 5

1. A triangle has vertices $D(6,1), E(2,3)$ and $F(-1,-3)$. Show that $\triangle D E F$ is a right-angled triangle and identify the right angle.
2. A triangle has vertices $P(-3,1), Q(6,3)$ and $R(1,8)$. Determine if $\triangle P Q R$ is a right-angled triangle.

Check that the sum of squares of the two shorter sides is equal to the square of the longest side.

SIMILAR

Exercise 4B Questions 9-11

BASIC LEVEL

1. Find the length of the line segment joining each of the following pairs of points.
(a) $\quad A(2,3)$ and $B(9,7)$
(b) $C(3,6)$ and $D(-5,9)$
(c) $E(-1,4)$ and $F(8,-3)$
(d) $G(-10,2)$ and $H(-4,-7)$
2. If the distance between the points $A(p, 0)$ and $B(0, p)$ is 10 , find the possible values of p.

INTERMEDIATE LEVEL

3. Given that the coordinates of the points P and Q are $(-2,6)$ and $(9,3)$ respectively, find
(a) the coordinates of the point R that lies on the y-axis such that $P R=Q R$,
(b) the coordinates of the point S that lies on the x-axis such that $P S=Q S$.
4. A line segment has two end-points $M(3,7)$ and $N(11,-6)$. Find the coordinates of the point W that lies on the y-axis such that W is equidistant from M and from N.
Hint: The term 'equidistant' means 'same distance'.
5. The vertices of $\triangle A B C$ are $A(-4,-2), B(8,-2)$ and $C(2,6)$.

(i) Find the perimeter and the area of $\triangle A B C$.
(ii) Hence, find the length of the perpendicular from A to $B C$.
6. The diagram shows $\triangle A B C$ with vertices $A(-2,1)$, $B(1,1)$ and $C(3,4)$.

(i) Find the area of $\triangle A B C$.
(ii) Find the length of $A C$, giving your answer correct to 2 decimal places.
(iii) Given that $A B C D$ is a parallelogram, find the coordinates of D.
(iv) Given that K is the point $(t, 4)$ and the area of $\triangle B C K$ is 12 units 2, find the possible values of t.
7. The diagram shows $\triangle A B C$ with vertices $A(-1,1)$, $B(-1,-2)$ and $C(3,-1)$.

(i) Find the lengths of $A B, B C$ and $A C$.
(ii) Find the area of $\triangle A B C$.

The coordinates of a point E are $(3, k)$ and the area of $\triangle B C E$ is 14 units 2.
(iii) Find the possible values of k.
8. The distance between the points $(1,2 t)$ and $(1-t, 1)$ is $\sqrt{11-9 t}$. Find the possible values of t.
9. (i) Show that the points $A(-1,2), B(5,2)$ and $C(2,5)$ are the vertices of an isosceles triangle.
(ii) Find the area of $\triangle A B C$.
10. By showing that the points $P(3,4), Q(3,1)$ and $R(8,4)$ are the vertices of a right-angled triangle, find the length of the perpendicular from P to $Q R$.

ADVANCED LEVEL

11. The vertices of $\triangle P Q R$ are $P(1,3), Q(5,4)$ and $R(5,15)$. Find the length of the perpendicular from Q to $P R$.

Horizontal Lines

If a line is parallel to the x-axis and its distance from the x-axis is c, then every point on the line has the same y-coordinate.

The gradient of a horizontal line is 0 .
The equation of a horizontal line is $y=c$ or $y=-c$.

Vertical Lines

If a line is parallel to the y-axis and its distance from the y-axis is a, then every point on the line has the same x-coordinate.

The gradient of a vertical line is undefined.
The equation of a vertical line is $x=a$ or $x=-a$.

$\because: \%$ Equation of a Straight Line $y=m x+c$

In Book 1, we have learnt that the equation of a straight line is in the form $y=m x+c$, where the constant m is the gradient of the line and the constant c is the y-intercept.

Fig. 4.7
In Fig. 4.7, the straight line passes through the points $A(0, c)$ and $P(x, y)$. If the gradient of the line is m, then

Gradient of line $=m$

$$
\begin{aligned}
\frac{y-c}{x-0} & =m \\
y-c & =m x \\
\therefore y & =m x+c
\end{aligned}
$$

In general,
for a straight line passing through the point $(0, c)$ and with gradient m, the equation is

$$
y=m x+c .
$$

The equation $y=m x+c$ is known as the gradient-intercept form of the equation of a straight line. In this equation, m gives the gradient of the straight line, c gives the intercept on the y-axis and $(0, c)$ is the point where the line cuts the y-axis.

Worked Example 0

(Finding the y-intercept given the Gradient and Coordinates of a Point)
Given that $y=3 x+c$ passes through the point $(3,1)$, find the value of c.

Solution:

Since $(3,1)$ lies on the line $y=3 x+c$, the coordinates $(3,1)$ must satisfy the equation,

$$
\text { i.e. } \begin{aligned}
1 & =3(3)+c \text { (substitute } x=3 \text { and } y=1) \\
& =9+c \\
\therefore c & =-8
\end{aligned}
$$

PRACTISE NOW 6

1. Given that $y=5 x+a$ passes through the point $(-1,2)$, find the value of a.
2. The point $(6,8)$ lies on the line $y=-4 x+b$. Find the value of b.

Worked Example

(Finding the Equation of a Straight Line given the Coordinates of 2 Points)
Find the equation of the straight line passing through each of the following pairs of points.
(a) $A(1,2)$ and $B(3,7)$
(b) $C(2,3)$ and $D(7,3)$
(c) $E(5,1)$ and $F(5,6)$

Solution:

(a) Gradient of $A B=\frac{7-2}{3-1}$

$$
=\frac{5}{2}
$$

Equation of $A B$ is in the form $y=\frac{5}{2} x+c$
Since $(1,2)$ lies on the line,
$2=\frac{5}{2}(1)+c$
$c=-\frac{1}{2}$
\therefore Equation of $A B$ is $y=\frac{5}{2} x-\frac{1}{2}$
(b) $C(2,3)$ and $D(7,3)$ have the same y-coordinate of value 3 .
$\therefore C D$ is a horizontal line with equation $y=3$.
(c) $E(5,1)$ and $F(5,6)$ have the same x-coordinate of value 5 .
$\therefore E F$ is a vertical line with equation $x=5$.

PRACTISE NOW 7

Find the equation of the straight line passing through each of the following pairs of points.

Exercise 4C Questions 3(a)-(h), 4(a)-(f), 5-17
(a) $A(-2,1)$ and $B(5,3)$
(b) $C(6,4)$ and $D(-4,4)$
(c) $E(-3,5)$ and $F(-3,8)$

When we want to find the equation of a straight line, what information do we need?

Consider each of the cases below.

Case 1: Given the gradient m and the y-intercept c
Case 2: Given the gradient m and the coordinates of a point (a, b)
Case 3: Given the coordinates of two points (a, b) and (c, d)
For each case, describe how you would find the equation of the straight line.

BASIC LEVEL

1. Given that $y=-x+c$ passes through the point $(1,2)$, find the value of c.
2. The point $(-3,3)$ lies on the line $y=4 x+k$. Find the value of k.
3. Find the equation of the straight line passing through each of the following pairs of points.
(a) $A(0,0)$ and $B(1,-1)$
(b) $C(1,3)$ and $D(2,5)$
(c) $E(2,4)$ and $F(-2,3)$
(d) $G(-6,-5)$ and $H(4,4)$
(e) $I(-2,-4)$ and $J(1,-7)$
(f) $K(-7,-5)$ and $L(-1,-1)$
(g) $M(8,0)$ and $N(-9,0)$
(h) $O(0,0)$ and $P(0,7)$
4. Find the equation of each of the straight lines, given the gradient and the coordinates of a point that lies on it.
(a) $\frac{1}{3},(0,0)$
(b) $3,(1,1)$
(c) $-3,(2,-5)$
(d) $-\frac{1}{2},(5,7)$
(e) $0,(5,4)$
(f) $a,(0, a)$
5. Write down the equation of the straight line which passes through the origin and with gradient 2 .
6. In each of the following diagrams, find the gradient and the y-intercept of the line where possible. State the equation of each line.
(a)

(b)

(c)

(d)

INTERMEDIATE LEVEL

7. The diagram shows $\triangle A B C$ with vertices $A(1,1)$, $B(1,3)$ and $C(5,5)$.

(i) Find the area of $\triangle A B C$.
(ii) Find the gradient of the line passing through B and C.
(iii) Find the equation of the line passing through A and C.
8. The lines $2 x-5=k y$ and $(k+1) x=6 y-3$ have the same gradient. Find the possible values of k.
9. Given the line $\frac{x}{3}+\frac{y}{2}=1$,
(i) make y the subject of the formula $\frac{x}{3}+\frac{y}{2}=1$,
(ii) find the gradient of the line,
(iii) find the coordinates of the point at which the line cuts the x-axis.
10. (i) Find the equation of the straight line which passes through the point $(-3,5)$ and with gradient $-\frac{2}{3}$.
(ii) Given that the line in (i) also passes through the point $(p, 3)$, find the value of p.
11. Find the equation of the straight line passing through the point $(3,-2)$ and having the same gradient as the line $2 y=5 x+7$.
12. (i) Find the equation of the straight line which passes through the point $(3,1)$ and with gradient 3.
(ii) Hence, find the coordinates of the point of intersection of the line in (i) with the line $y=x$.
13. The line l has equation $5 x+6 y+30=0$. Given that P is the point $(3,-1)$, find
(i) the coordinates of the point where l crosses the x-axis,
(ii) the coordinates of the point of intersection of l with the line $x=2$,
(iii) the equation of the line passing through P and having the same gradient as l,
(iv) the equation of the line passing through P and having a gradient of 0 .
14. A straight line l passes through the points $A(0,3)$ and $B(3,12)$.
(a) Find
(i) the gradient of the line l,
(ii) the equation of the line l.
(b) The line $x=3$ is the line of symmetry of $\triangle A B C$. Find the coordinates of C.

ADVANCED LEVEL

15. If the line $m x=n y+2$ has the same gradient as the x-axis, find the value of m. State the condition for the line to be parallel to the y-axis instead.
16. The line l has equation $3 x+4 y=24$. It crosses the x-axis at the point A and the y-axis at the point B. Find
(i) the coordinates of A and of B,
(ii) the length of the line segment $A B$,
(iii) the coordinates of the point C that lies on the line l such that C is equidistant from the coordinate axes,
(iv) the equation of the line $O C$, where O is the origin.
17. The coordinates of the points P and Q are $(2,3)$ and $(9,5)$ respectively.
(i) Find the coordinates of the point where the line passing through P and Q intersects the x-axis.
(ii) Given that $y=5$ is the line of symmetry of $\triangle P Q R$, find the coordinates of R.
(iii) Calculate the length of $P Q$.
(iv) Hence, find the length of the perpendicular from R to $P Q$.

1.		Gradient If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are two points on a line, then gradient of $A B$ is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Length The length of any line segment $A B$, where the coordinates of the points A and B are $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) respectively is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
2.		Equation of an oblique line The equation of a straight line passing through the point $(0, c)$ and with gradient m is $y=m x+c$.
3.		Equation of a horizontal line The equation of a straight line that is parallel to the x-axis and which passes through the point (a, b) is $y=b$. It has a gradient of $\mathbf{0}$. Equation of a vertical line The equation of a straight line that is parallel to the y-axis and which passes through the point (a, b) is $x=a$. Its gradient is undefined.

1. A straight line has a gradient of 2 and passes through the point $(0,-3)$.
(i) Write down the equation of the straight line.
(ii) Given that the line also passes through the point $(4, k)$, find the value of k.
2. The equation of a straight line is $6 x+2 y=7$.
(i) Find the gradient of the line.

Another line with equation $y=m x+c$ has the same gradient as $6 x+2 y=7$ and passes through the point $(3,5)$.
(ii) Find the value of c.
3. The coordinates of the points A and B are $(1,5)$ and $(2,-3)$ respectively. Find the equation of the line passing through the origin and having the same gradient as $A B$.
4. The line l has equation $3 x-4 y=24$. It intersects the x-axis at A and the y-axis at B. Given that M is the point $(4,-3)$, find
(i) the gradient of l,
(ii) the length of $A B$,
(iii) the equation of the line passing through B and having the same gradient as $O M$, where O is the origin.
5. The coordinates of the points A and B are $(0,6)$ and $(8,0)$ respectively.
(i) Find the equation of the line passing through A and B.

Given that the line $y=x+1$ cuts the line $A B$ at the point M, find
(ii) the coordinates of M,
(iii) the equation of the line which passes through M and is parallel to the x-axis,
(iv) the equation of the line which passes through M and is parallel to the y-axis.
6. The diagram shows the line l passing through the points $A(-1,1)$ and $B(5,5)$.

Given that C is the point $(4,1)$, find
(i) the gradient of l,
(ii) the equation of l,
(iii) the area of $\triangle A B C$,
(iv) the length of $B C$, giving your answer correct to 2 decimal places.
7. The diagram shows the graph of $3 y=2 x+8$. The line cuts the x-axis at A and the point K lies on the line such that its distance from the x-axis is twice that from the y-axis.

Find
(i) the coordinates of the point A,
(ii) the coordinates of the point K,
(iii) the area of $\triangle A K H$, where H is the point $(4,0)$.
8. The diagram shows the points $A(-1,0)$ and $B(0,3)$.

(i) Find the equation of the line passing through A and B.
(ii) Given that the length of $A B$ is \sqrt{h} units, find the value of h.

The point $(-5, k)$ lies on $B A$ produced.
(iii) Find the value of k.
(iv) Given that $y=x+1$ is the line of symmetry of $\triangle A B C$, find the coordinates of C.
9. The equation of a straight line l_{1} is
$5 y+12 x-60=0$. It intersects the x-axis at P and the y-axis at Q.
(i) Write down the coordinates of P and of Q.
(ii) Find the length of $P Q$.

Another line l_{2} has the same gradient as l_{1} and passes through the point $(0,-2)$.
(iii) Find the equation of the line l_{2}.
(iv) Given that the y-axis is the line of symmetry of $\triangle P Q R$, find the coordinates of R.
10. The diagram shows a trapezium $A B C D$ in which $A B$ is parallel to $D C$ and the area of $A B C D$ is 84 units 2.

Given that the vertices are $A(-h, k), B(11,6), C(t, 0)$ and $D(-2,0)$, find an expression for t in terms of h.
11. In the diagram, C is the point $(0,-4)$ and A is a point on the y-axis. The line $A B$ meets the horizontal line through C at B.

(i) Write down the equation of the line passing through B and C.
(ii) Given that the equation of the line passing through A and B is $2 y-5 x=4$, find the area of $\triangle A B C$.
(iii) Given that the length of $A B$ is \sqrt{l} units, find the value of l.
(iv) Find the length of the perpendicular from C to $A B$.
(v) Given that the coordinates of D are $(2.4,2)$, show that $A B C D$ is a parallelogram.
12. A spring is suspended freely. When a mass of 20 g is attached to the spring, it has a length of 12 cm . When a mass of 50 g is attached to the spring, it has a length of 15 cm . The graph below shows how the length, $y \mathrm{~cm}$, of the spring, varies with the mass, $x \mathrm{~g}$, attached to it.

(i) Find an expression for y in terms of x.
(ii) State what the value of the y-intercept represents.

The diagram shows two points A and B on the graph of $y=x^{2}$. A line, drawn from the origin O and parallel to $A B$, intersects the graph at C. The coordinates of A, B and C are $\left(a, a^{2}\right),\left(b, b^{2}\right)$ and $\left(c, c^{2}\right)$ respectively. Show that $a+b=c$.

Chapter
 Five

LEARNING OBJECTIVES

At the end of this chapter, you should be able to:

- draw the graphs of simple sums of power functions $y=a x^{n}$, where $n=3,2,1,0,-1$ and -2 ,
- draw the graphs of exponential functions $y=k a^{x}$, where a is a positive integer,
- estimate the gradient of a curve by drawing a tangent
- interpret and analyse data from tables and graphs, including distance-time and speed-time graphs.

ㄷ․ Graphs of Cubic Functions

In Book 2, we have learnt how to draw the graphs of $y=a x^{2}+b x+c$, where a, b and c are constants and $a \neq 0$. In Chapter 1 of this book, we have learnt how to sketch graphs of the form $y=(x-h)(x-k)$ and $y=-(x-h)(x-k)$, where h and k are constants, and $y=(x-p)^{2}+q$ and $y=-(x-p)^{2}+q$, where p and q are constants.

In this section, we will learn how to draw the graphs of cubic functions.
In general, cubic functions are of the form $y=a x^{3}+b x^{2}+c x+d$, where a, b, c and d are constants and $a \neq 0$.

Investigation

Graphs of Cubic Functions

1. Using a graphing software, draw each of the following graphs.
(a) $y=x^{3}$
(b) $y=2 x^{3}$
(c) $y=5 x^{3}$
(d) $y=-x^{3}$
(e) $y=-2 x^{3}$
(f) $y=-5 x^{3}$
2. For the graph of $y=a x^{3}$, where a is a constant, how does the value of a affect the shape of the graph?
3. Using a graphing software, draw each of the following graphs.
(a) $y=x^{3}-x^{2}+1$
(b) $y=x^{3}+4 x^{2}-3$
(c) $y=x^{3}+x$
(d) $y=-x^{3}+x^{2}-2$
(e) $y=-x^{3}+2 x^{2}+1$
(f) $y=-x^{3}-0.5 x-1$
4. For each of the graphs in Question 3, how does the coefficient of x^{3} affect the shape of the graph?

From the investigation, we observe that for the graph of a cubic function of the form $y=a x^{3}$, the graph takes the shape in Fig. 5.1 (a) and (b) for positive and negative values of the coefficient of x^{3}.

(a) $y=a x^{3}$, where $a>0$

(b) $y=a x^{3}$, where $a<0$

Fig. 5.1

In general, the graph of a cubic function, i.e. a function of the form $y=a x^{3}+b x^{2}+c x+d$ would take the shape in Fig. 5.2 (but may not pass through the origin if $d \neq 0$).

(a) $y=a x^{3}+b x^{2}+c x+d$, where $a>0$

(b) $y=a x^{3}+b x^{2}+c x+d$, where $a<0$

Fig. 5.2

Worked Example 1

(Drawing the Graph of a Cubic Function)

Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 10 units on the y-axis, draw the graphs of $y=x^{3}+3$ and $y=-x^{3}-3$ for $-3 \leqslant x \leqslant 3$.
For each graph, find
(i) the value of y when $x=1.5$,
(ii) the value of x when $y=20$.

Solution:

\boldsymbol{x}	-3	-2	-1	0	1	2	3
$\boldsymbol{y}=\boldsymbol{x}^{3}+\mathbf{3}$	-24	-5	2	3	4	11	30
$\boldsymbol{y}=-\boldsymbol{x}^{3}-\mathbf{3}$	24	5	-2	-3	-4	-11	-30

Scale:

x-axis: 2 cm represent 1 unit y-axis: 2 cm represent 10 units

(i) Consider $y=x^{3}+3$.

From the graph, when $x=1.5, y=6.5$.
Consider $y=-x^{3}-3$.
From the graph, when $x=1.5, y=-6.5$.
(ii) Consider $y=x^{3}+3$.

From the graph, when $y=20, x=2.6$.
Consider $y=-x^{3}-3$.
From the graph, when $y=20, x=-2.85$.

PRACTISE NOW 1

Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 10 units on the y-axis, draw the graphs of $y=x^{3}+2$ and $y=-x^{3}-2$ for $-3 \leqslant x \leqslant 3$.
For each graph, find
(i) the value of y when $x=2.5$,
(ii) the value of x when $y=15$.

5.2) Graphs of
 Reciprocal Functions

$\because \because \because$ Graph of $y=\frac{a}{x}$

Investigation

Graphs of $y=\frac{a}{x}$
Using a graphing software, draw the graph of $y=\frac{a}{x}$ for $a=1, a=5, a=-1$ and $a=-3$.

1. (i) For $a>0$, which quadrants do the graphs lie in?
(ii) For $a<0$, which quadrants do the graphs lie in?
2. What can you say about the rotational symmetry of each of the graphs?
3. Do the graphs intersect the x-axis and the y-axis? Explain your answer.

The four quadrants on the Cartesian plane are labelled $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ as follows:

$$
\xrightarrow[3^{\text {rd }}]{\substack{\text { nd }}}{ }_{4}^{2^{\text {th }}} 1^{\text {st }} \longrightarrow
$$

The order of rotational symmetry about a particular point is the number of distinct ways in which a figure can map onto itself by rotation in 360°.

From the investigation, we observe that for the graph of $y=\frac{a}{x}$,

- when $x=0$, the function $y=\frac{a}{x}$ is not defined, i.e. there is a break when $x=0$,
- there is rotational symmetry of order 2 about the origin, i.e. it maps onto itself twice by rotation in 360°,
- if $a>0$, the graph would take the shape in Fig. 5.3(i),
if $a<0$, the graph would take the shape in Fig. 5.3(ii).

(i) $y=\frac{a}{x}$, where $a>0$

(ii) $y=\frac{a}{x}$, where $a<0$

Fig. 5.3

Consider the graph in Fig. 5.3(i) $y=\frac{a}{x}$, where $a>0$. The graph consists of two parts that lie in the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants. In the $1^{\text {st }}$ quadrant, we observe that:

- as x increases, y decreases;
- as x approaches zero, y becomes very large;
e.g. for $a=1, y=\frac{1}{x}$, if $x=0.000001, y=\frac{1}{0.000001}=1000000$;
- as x becomes very large, y approaches zero;

As the positive value of x decreases, the value of y increases rapidly and it gets very close to the y-axis. We say that the value of y approaches infinity, written as $y \rightarrow \infty$.
e.g. for $a=1, y=\frac{1}{x}$, if $x=1000000, y=\frac{1}{1000000}=0.000001$;

- the curve gets very close to the x-axis and y-axis but never touches them.

Can you describe the part of the graph that is in the $3^{\text {rd }}$ quadrant?

Can you describe the graph of $y=\frac{a}{x}$, where $a<0$?

Thinking
 Time

What are the equations of the lines of symmetry of the graph $y=\frac{a}{x}$ when
(a) $a>0$?
(b) $a<0$?

Worked Example 2

(Drawing the Graph of $y=\frac{a}{x}$)
Using a scale of 1 cm to represent 1 unit on the x-axis and 1 cm to represent 5 units on the y-axis, draw the graph of $y=\frac{6}{x}$ for $-5 \leqslant x \leqslant 5, x \neq 0$. Find
(i) the value of y when $x=1.4$,
(ii) the value of x when $y=-8$.

Solution:

\boldsymbol{x}	-5	-4	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3	4	5
\boldsymbol{y}	-1.2	-1.5	-2	-3	-6	-12	-20	20	12	6	3	2	1.5	1.2

For (i), although the answer is 4.2857... by calculation, the answer obtained from the graph can only be accurate up to half of a small square grid, which is 0.5 .
Similarly, for (ii), although $x=-0.75$ by calculation, the answer obtained from the graph is accurate to half of a small square grid, i.e. 0.1.
(ii) From the graph, when $y=-8, x=-0.8$.

PRACTISE NOW 2

```
SIMILAR
QUESTIONS
```

Using a scale of 1 cm to represent 1 unit on both axes, draw the graph of $y=\frac{3}{x}$ for $-5 \leqslant x \leqslant 5, x \neq 0$. Find
(i) the value of y when $x=2.5$,
(ii) the value of x when $y=-1.2$.

Investigation

Graphs of $y=\frac{a}{x^{2}}$
Using a graphing software, draw the graph of $y=\frac{a}{x^{2}}$ for $a=2, a=4, a=-1$ and $a=-3$.

1. (i) For $a>0$, which quadrants do the graphs lie in?
(ii) For $a<0$, which quadrants do the graphs lie in?
2. What can you say about the line symmetry of each of the graphs?
3. Do the graphs intersect the x-axis and the y-axis? Explain your answer.

From the investigation, we observe that for the graph of $y=\frac{a}{x^{2}}$,

- when $x=0$, the function $y=\frac{a}{x^{2}}$ is not defined, i.e. there is a break when $x=0$,
- if $a>0$, the values of y are always positive, i.e. the graph lies entirely above the x-axis;
if $a<0$, the values of y are always negative, i.e. the graph lies entirely below the x-axis.
- the graph is symmetrical about the y-axis, i.e. the y-axis is the line of symmetry,
- if $a>0$, the graph would take the shape in Fig. 5.4(i), if $a<0$, the graph would take the shape in Fig. 5.4(ii).

(i) $y=\frac{a}{x^{2}}$, where $a>0$

(ii) $y=\frac{a}{x^{2}}$, where $a<0$

Fig. 5.4
Consider the graph in Fig. 5.4(i) $y=\frac{a}{x^{2}}$, where $a>0$. The graph consists of two parts that lie in the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants. In the $1^{\text {st }}$ quadrant, we observe that:

- as x increases, y decreases;
- as x approaches zero, y becomes very large;
e.g. for $a=1, y=\frac{1}{x^{2}}$, if $x=0.001, y=\frac{1}{0.001^{2}}=1000000$;
- as x becomes very large, y approaches zero;
e.g. for $a=1, y=\frac{1}{x^{2}}$, if $x=1000, y=\frac{1}{1000^{2}}=0.000001$;
- the curve gets very close to the x-axis and y-axis but never touches them.

Can you describe the part of the graph that is in the $2^{\text {nd }}$ quadrant?
Can you describe the graph of $y=\frac{a}{x^{2}}$, where $a<0$?

Worked Example

(Drawing the Graph of $y=\frac{a}{x^{2}}$)
Using 1 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=\frac{1}{x^{2}}$ for $-4 \leqslant x \leqslant 4, x \neq 0$. Find
(i) the value of y when $x=1.6$,
(ii) the values of x when $y=3.5$.

Solution:

\boldsymbol{x}	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
\boldsymbol{y}	0.06	0.11	0.25	1	4	4	1	0.25	0.11	0.06

(i) From the graph, when $x=1.6, y=0.4$.
(ii) From the graph, when $y=3.5, x=0.6$ or $x=-0.6$.

PRACTISE NOW 3

Using 1 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=-\frac{2}{x^{2}}$ for $-4 \leqslant x \leqslant 4, x \neq 0$. Find
(i) the value of y when $x=1.5$,
(ii) the values of x when $y=-3.2$.

The accuracy of the answer can only be accurate up to half of a small square grid.

SIMILAR
QUESTIONS

Exercise 5A Questions 4, 9, 10, 13

BASIC LEVEL

1. The table below shows some values of x and the corresponding values of y, where $y=x^{3}$.

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}		-8			1		27

(a) Copy and complete the table.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-3 \leqslant x \leqslant 3$.
Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $-27 \leqslant y \leqslant 27$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find
(i) the value of y when $x=1.5$,
(ii) the value of x when $y=12$.
2. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place, where $y=2 x^{3}+3$.

\boldsymbol{x}	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
\boldsymbol{y}	-13	-3.8	1	p	3	3.3	5	9.8	19

(a) Find the value of p.
(b) Using a scale of 4 cm to represent 1 unit, draw a horizontal x-axis for $-2 \leqslant x \leqslant 2$.
Using a scale of 1 cm to represent 5 units, draw a vertical y-axis for $-15 \leqslant y \leqslant 20$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find
(i) the value of y when $x=-1.2$,
(ii) the value of x when $y=14$.
3. The table below shows some values of x and the corresponding values of y, where $y=\frac{4}{x}$.

\boldsymbol{x}	$\frac{1}{4}$	$\frac{1}{2}$	1	2	3	4	5
\boldsymbol{y}	16			2		1	

(a) Copy and complete the table.
(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph of $y=\frac{4}{x}$ for $\frac{1}{4} \leqslant x \leqslant 5$.
(c) Use your graph to find
(i) the value of y when $x=3.6$,
(ii) the value of x when $y=1.5$.
4. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place, where $y=\frac{10}{x^{2}}$.

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	10	2.5	a	0.6	b

(a) Find the value of a and of b.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=\frac{10}{x^{2}}$ for $1 \leqslant x \leqslant 5$.
(c) Use your graph to find
(i) the value of y when $x=2.8$,
(ii) the value of x when $y=4.4$.

INTERMEDIATE LEVEL

5. Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on the y-axis, draw the graph of $y=3 x-x^{3}$ for $-3 \leqslant x \leqslant 3$. Use your graph to find
(i) the value of y when $x=1.4$,
(ii) the values of x when $y=-6.6$.
6. Using a suitable scale, draw the graph of $y=x^{3}-6 x^{2}+13 x$ for $0 \leqslant x \leqslant 5$. Use your graph to find
(a) the value(s) of y when
(i) $x=1.5$,
(ii) $x=3.5$,
(iii) $x=4.45$.
(b) the value of x when
(i) $y=7$,
(ii) $y=15$,
(iii) $y=22$.
7. Using a scale of 4 cm to represent 1 unit on both axes, draw the graph of $y=-\frac{2}{x}-1$ for $\frac{1}{2} \leqslant x \leqslant 4$. Use your graph to find
(i) the value of y when $x=2.5$,
(ii) the value of x when $y=-1.6$.
8. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place, where $y=x-\frac{3}{x}$.

\boldsymbol{x}	0.5	1	2	3	4	5	6
\boldsymbol{y}	-5.5	-2	0.5	h	3.3	4.4	k

(a) Find the value of h and of k.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=x-\frac{3}{x}$ for $0.5 \leqslant x \leqslant 6$.
(c) Use your graph to find
(i) the value of y when $x=1.6$,
(ii) the value of x when $y=-2.5$.
9. Using a scale of 2 cm to represent 1 unit on the x-axis and 4 cm to represent 1 unit on the y-axis, draw the graph of $y=2-\frac{3}{x^{2}}$ for $1 \leqslant x \leqslant 6$. Use your graph to find
(i) the value of y when $x=1.5$,
(ii) the value of x when $y=1.5$.
10. Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=x+\frac{2}{x^{2}}$ for $1 \leqslant x \leqslant 6$. Use your graph to find
(i) the value of y when $x=5.4$,
(ii) the values of x when $y=3$.

ADVANCED LEVEL

11. Using a suitable scale, draw the graph of $y=x^{3}-2 x-1$ for $-3 \leqslant x \leqslant 3$.
(a) Use your graph to find the x-coordinates of the points of intersection of the curve with the x-axis.
(b) On the same axes, draw the straight line $y=x$ for $-3 \leqslant x \leqslant 3$.
(i) Write down the x-coordinates of the points at which the line $y=x$ meets the curve $y=x^{3}-2 x-1$.
(ii) Hence, state the solutions of the equation $x^{3}-2 x-1=x$. Explain your answer.
12. The variables x and y are connected by the equation $y=x+\frac{1}{2 x}-1$.
The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

\boldsymbol{x}	0.1	0.5	0.8	1	1.5	2	2.5	3	3.5	4
\boldsymbol{y}	4.1	0.5	0.4	0.5	0.8	1.3	p	2.2	2.6	3.1

(a) Calculate the value of p.
(b) Using a scale of 4 cm to represent 1 unit on both axes, draw the graph of $y=x+\frac{1}{2 x}-1$ for $0.1 \leqslant x \leqslant 4$.
(c) Use your graph to find the values of x in the range $0.1 \leqslant x \leqslant 4$ for which $x+\frac{1}{2 x}=1$.
13. Using a scale of 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph $y=\frac{1}{4} x^{2}+\frac{8}{x}-9$ for $0.5 \leqslant x \leqslant 7$.
(a) Use your graph to find the minimum value of y in the given range.
(b) By drawing suitable straight lines to the graph, solve each of the following equations, giving your answers correct to 1 decimal place.
(i) $\frac{1}{4} x^{2}+\frac{8}{x}=6$
(ii) $\frac{1}{4} x^{2}+\frac{8}{x}=x+4$
(iii) $\frac{1}{4} x^{2}+2 x=15-\frac{8}{x}$

๑) Graphs of Exponential Functions

Investigation

Graphs of $y=a^{x}$ and $y=k a^{x}$

1. Using a graphing software, draw each of the following graphs.
(a) $y=2^{x}$
(b) $y=3^{x}$
(c) $y=4^{x}$
(d) $y=5^{x}$
2. For each of the graphs in Question 1, answer the following questions.
(a) Write down the coordinates of the point where the graph intersects the y-axis.
(b) As x increases, what happens to the value of y ?
(c) Does the graph intersect the x-axis?
3. How does the value of a affect the shape of the graph of $y=a^{x}$?
4. Using a graphing software, draw each of the following graphs.
(a) $y=2^{x}$
(b) $y=3\left(2^{x}\right)$
(c) $y=5\left(2^{x}\right)$
(d) $y=-2^{x}$
(e) $y=-4\left(2^{x}\right)$
5. For each of the graphs in Question 4, answer the following questions.
(a) Write down the coordinates of the point where the graph intersects the y-axis.
(b) As x increases, what happens to the value of y ?
(c) Does the graph intersect the x-axis?
6. How does the value of k affect the shape of the graph of $y=k a^{x}$?

From the investigation, we observe that for the graph of $y=a^{x}$,

- the values of y are always positive, i.e. the graph lies entirely above the x-axis,
- the graph intersects the y-axis at $(0,1)$.

Fig. 5.5
As the positive value of x increases and tends to the right of the graph, the value of y increases very rapidly and approaches infinity. When x is negative and tends to the left of the graph, y becomes smaller as x becomes smaller. The curve gets very close to the x-axis but never touches it.
For the graph of $y=k a^{x}$,

- if $k>0$, the values of y are always positive, i.e. the graph lies entirely above the x-axis (see Fig. 5.6(i)),
if $k<0$, the values of y are always negative, i.e. the graph lies entirely below the x-axis (see Fig. 5.6(ii)),
- the graph intersects the y-axis at $(0, k)$.

Fig. 5.6

Writing
A newspaper article states that the growth in the number of members of a social network increased exponentially in its first year of operation and can be represented by the equation $y=28^{x}$, where x is the number of months and y is the number of members.

(i) Describe how the number of members of the social network changes with time.
(ii) Search on the Internet for more real-life applications of exponential graphs.

Worked Example

(Graph of $y=a^{x}$)

Using a scale of 4 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=2^{x}$ for $-1 \leqslant x \leqslant 2.5$. Use your graph to find
(i) the value of y when $x=1.8$,
(ii) the value of x when $y=4.6$.

Solution:

\boldsymbol{x}	-1	-0.5	0	0.5	1	1.5	2	2.5
\boldsymbol{y}	0.5	0.71	1	1.41	2	2.83	4	5.66

(i) From the graph, when $x=1.8, y=3.5$.
(ii) From the graph, when $y=4.6, x=2.2$.

PRACTISE NOW 4

Exercise 5B Questions 1-5
Using a scale of 4 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=3^{x}$ for $-2 \leqslant x \leqslant 2$. Use your graph to find
(i) the value of y when $x=-1$,
(ii) the value of x when $y=0.7$.

Matching Graphs of Power Functions with the Corresponding Functions

Work in pairs.

Match the graphs with their respective functions and justify your answers. If your classmate does not obtain the correct answer, explain to him what he has done wrong.

A: $y=2 x^{3}$	B: $y=-\frac{6}{x}$	C: $y=\frac{5}{2 x^{2}}$	D: $y=5^{x}$
E: $y=-\frac{3}{x^{2}}$	F: $y=-2\left(6^{x}\right)$	G: $y=\frac{1}{2 x}$	H: $y=-3 x^{3}$

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

Graph 7

Graph 8

(5). Gradient of a Curve

When a straight line touches a curve at a single point A, the line is called the tangent to the curve at the point A.

When a line l_{1} touches the curve at P, l_{1} is called the tangent to the curve at P. Similarly, when a line l_{2} touches the curve at Q, l_{2} is called the tangent to the curve at Q.

Fig. 5.7
The gradient of the curve at a point is defined as the gradient of the tangent to the curve at that point. Hence, the gradient of the curve at P in Fig. 5.7 is equal to the gradient of the line l_{1} and the gradient of the curve at Q is equal to the gradient of the line l_{2}.

(Gradient of a Curve)

The variables x and y are connected by the equation $y=\frac{1}{2}\left(5 x-x^{2}\right)$.
The table below shows some values of x and the corresponding values of y.

\boldsymbol{x}	$-\frac{1}{2}$	0	1	2	$2 \frac{1}{2}$	3	4	5
\boldsymbol{y}	a	0	2	3	b	3	2	0

(a) Find the value of a and of b.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=\frac{1}{2}\left(5 x-x^{2}\right)$ for $-\frac{1}{2} \leqslant x \leqslant 5$.
(c) By drawing a tangent, find the gradient of the curve at the point $(1,2)$.
(d) The gradient of the curve at the point (h, k) is zero.
(i) Draw the tangent at the point (h, k).
(ii) Hence, find the value of h and of k.

Solution:

(a) When $x=-\frac{1}{2}$,

$$
\begin{aligned}
& \quad y=\frac{1}{2}\left[5\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\right)^{2}\right] \\
& =-1 \frac{3}{8} \\
& \therefore a=-1 \frac{3}{8} \\
& =-1.375
\end{aligned}
$$

decimals for easy plotting of points.

Give the value of a and of b in

When $x=2 \frac{1}{2}$,

$$
\begin{aligned}
y & =\frac{1}{2}\left[5\left(2 \frac{1}{2}\right)-\left(2 \frac{1}{2}\right)^{2}\right] \\
& =3 \frac{1}{8}
\end{aligned}
$$

$\therefore b=3 \frac{1}{8}$

$$
=3.125
$$

(b)

(c) A tangent is drawn to the curve at the point $(1,2)$.

From the graph,

$$
\begin{aligned}
\text { Gradient } & =\frac{\text { vertical change }}{\text { horizontal change }} \\
& =\frac{1.5}{1} \\
& =1.5
\end{aligned}
$$

(d) A line parallel to the x-axis at the maximum point of the curve has a gradient equal to zero. From the graph and table, $h=2.5, k=3 \frac{1}{8}$.

A line parallel to the x-axis has a gradient equal to zero.

PRACTISE NOW 5

The variables x and y are connected by the equation $y=x^{2}-4 x$.
The table below shows some values of x and the corresponding values of y.

\boldsymbol{x}	-1	0	1	2	3	4	5
\boldsymbol{y}	a	0	-3	-4	b	0	5

(a) Find the value of a and of b.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=x^{2}-4 x$ for $-1 \leqslant x \leqslant 5$.
(c) By drawing a tangent, find the gradient of the curve at the point where $x=2.8$.
(d) The gradient of the curve at the point (h, k) is zero.
(i) Draw the tangent at the point (h, k).
(ii) Hence, find the value of h and of k.

BASIC LEVEL

1. The table below shows some values of x and the corresponding values of y, where $y=4^{x}$.

\boldsymbol{x}	-1	-0.5	0	0.5	1	1.5	2	2.5
\boldsymbol{y}	0.25		1	2	4			

(a) Copy and complete the table.
(b) Using a scale of 4 cm to represent 1 unit, draw a horizontal x-axis for $-1 \leqslant x \leqslant 2.5$.
Using a scale of 1 cm to represent 2 units, draw a vertical y-axis for $0 \leqslant y \leqslant 32$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find
(i) the value of y when $x=1.8$,
(ii) the value of x when $y=0.4$.
2. The variables x and y are connected by the equation $y=3\left(2^{x}\right)$.
The table below shows some values of x and the corresponding values of y correct to 1 decimal place.

\boldsymbol{x}	-1	-0.5	0	0.5	1	1.5	2	2.5
\boldsymbol{y}	1.5	2.1			6		12	17.0

(a) Copy and complete the table.
(b) Using a scale of 4 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph of $y=3\left(2^{x}\right)$ for $-1 \leqslant x \leqslant 2.5$.
(c) Use your graph to find
(i) the values of y when $x=0.7$ and $x=2.3$,
(ii) the values of x when $y=2.5$ and $y=7.4$.
3. Using a scale of 4 cm to represent 1 unit on the x-axis and 1 cm to represent 2 units on the y-axis, draw the graph of $y=-2\left(3^{x}\right)$ for $-2 \leqslant x \leqslant 2$. Use your graph to find
(i) the value of y when $x=1.2$,
(ii) the value of x when $y=-6.7$.

intermediate level

4. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place, where $y=2+2^{x}$.

\boldsymbol{x}	-1	-0.5	0	1	1.5	2	2.5	3
\boldsymbol{y}	a	2.7	3	4	4.8	6	b	10

(a) Find the value of a and of b.
(b) Using a scale of 4 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=2+2^{x}$ for $-1 \leqslant x \leqslant 3$.
(c) Use your graph to find
(i) the values of y when $x=-0.7$ and $x=2.7$,
(ii) the values of x when $y=5.3$ and $y=7.5$.
5. Using a scale of 4 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph of $y=3^{x}$ for $-2 \leqslant x \leqslant 2$.
(a) Use your graph to find the value of x when $y=5.8$.
(b) On the same axes, draw the graph of $y=\frac{1}{2} x-\frac{1}{x}, x \neq 0$.
(i) Write down the coordinates of the point at which the graph of $y=\frac{1}{2} x-\frac{1}{x}$ meets the curve $y=3^{x}$.
(ii) Hence, state the solution of the equation $3^{x}+\frac{1}{x}-\frac{1}{2} x=0$.
6. The sketch represents the graph of $y=k a^{x}$, where $a>0$.

Write down the value of k.
7. The table below shows some values of x and the corresponding values of y, where $y=(x+2)(4-x)$.

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}	0		8	9			0

(a) Copy and complete the table.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=(x+2)(4-x)$ for $-2 \leqslant x \leqslant 4$.
(c) By drawing a tangent, find the gradient of the curve at the point where $x=-1$.
(d) The gradient of the curve at the point (h, k) is zero.
(i) Draw the tangent at the point (h, k).
(ii) Hence, find the value of h and of k.
8. (a) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on the y-axis, draw the graph of $y=12+10 x-3 x^{2}$ for $-2 \leqslant x \leqslant 5$.
(b) Find the gradient of the curve when $x=4$.
(c) Find the gradient of the curve at the point where the curve intersects the y-axis.

ADVANCED LEVEL

9. Using a scale of 4 cm to represent 1 unit on the x-axis and 1 cm to represent 2 units on the y-axis, draw the graph of $y=2^{x}+\frac{1}{x^{2}}$ for $-2 \leqslant x \leqslant 3$.
(a) (i) On the same axes, draw the line $y=1-x$.
(ii) Hence, solve the equation

$$
2^{x}+\frac{1}{x^{2}}-1+x=0
$$

(b) Explain why the graph of $y=2^{x}+\frac{1}{x^{2}}$ will not lie below the x-axis for all real values of x.
10. (a) Using suitable scale, draw the graph of $y=1+\frac{1}{x}$ for $0.5 \leqslant x \leqslant 3$.
(b) On the same axes, draw the line $y=-x$.
(c) Hence, find the coordinates on the graph of $y=1+\frac{1}{x}$ at which the gradient of the curve is -1 .

Linear Distance-Time Graphs

Work in pairs.

Fig. 5.8 shows the graph of a cyclist's journey between 0800 and 1200. The graph can be divided into 4 sections - 0800 to 0900,0900 to 0930,0930 to 1030 and 1030 to 1200.

Fig. 5.8
Since the gradient of the graph from 0800 to $0900=\frac{20 \mathrm{~km}}{1 \mathrm{~h}}$

$$
=20 \mathrm{~km} / \mathrm{h} \text {, }
$$

the cyclist travels at a constant speed of $20 \mathrm{~km} / \mathrm{h}$ in the first hour.

1. Consider the section of the graph from 0900 to 0930 . Since the graph is a horizontal line, what is its gradient? State clearly what this gradient represents.
2. Find the gradient of the section of the graph from 0930 to 1030 . What does this gradient tell you about the motion of the cyclist?
3. Find the gradient of the section of the graph from 1030 to 1200 . What does the negative gradient represent? Describe briefly the motion of the cyclist.
4. Explain why the average speed of the cyclist cannot be calculated by using $\frac{20+0+30+50}{4} \mathrm{~km} / \mathrm{h}$. Hence, find the average speed of the cyclist for the whole journey.

The average speed of an object is defined as the total distance travelled by the object per unit time.

Thinking

Time
Match the scenarios with their respective graphs and justify your answers.

A: A few years ago, the exchange rate between Singapore dollars and Hong Kong dollars was S $\$ 1=$ HK $\$ 6$.	B: The height of water in a uniform cylindrical container increased at a constant rate from 10 cm to 60 cm .	C: Mr Neo was driving at a constant speed of $60 \mathrm{~km} / \mathrm{h}$ when he suddenly applied the brakes and came to a stop.
D: The battery level in a smartphone decreased non-uniformly from 60% to 15%.	E: The temperature of a substance in a freezer decreased uniformly from $60^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ in 20 minutes.	F: A plant grew slowly at a constant rate to a height of 15 cm when it was kept indoors for 4 weeks, then grew more quickly at a constant rate to a height of 60 cm when it was placed outdoors for the next 4 weeks.

Graph 1

Graph 3

Graph 5

Graph 2

Graph 4

Graph 6

Worked Example 6

(Distance-Time Curve)

A train started from station A and travelled to station B 8 km from A.

The table below shows the readings of the time, in minutes, since leaving station A and the corresponding distance, in km, from A.

Time (in minutes)	1	2	3	4	5	6	7	8
Distance (in km)	0.3	1.1	2.3	4.8	6.8	7.4	7.8	8.0

(a) Using a scale of 2 cm to represent 2 minutes on the horizontal axis and 2 cm to represent 2 km on the vertical axis, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to estimate the time taken to travel the first 4 km of the journey.
(c) By drawing a tangent, find the approximate speed of the train 5 minutes after it has left station A.
(d) By considering the gradient of the graph, compare and describe briefly the motion of the train during the first 4 minutes and the last 4 minutes of the journey.

Solution:

(a)

(b) From the graph, the train takes approximately 3.8 minutes to travel the first 4 km .
(c) The gradient of the tangent at the point 5 minutes after it left station A gives the speed at that particular point. It is called the instantaneous speed. A tangent is drawn to the curve at the point 5 minutes after it has left station A.

From the graph,

$$
\begin{aligned}
\text { Gradient } & =\frac{\text { vertical change }}{\text { horizontal change }} \\
& =\frac{4.5 \mathrm{~km}}{4 \text { minutes }} \\
& =\frac{4.5 \mathrm{~km}}{\frac{4}{60} \mathrm{~h}} \\
& =67.5 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

\therefore The speed of the train 5 minutes after it has left station A is approximately $67.5 \mathrm{~km} / \mathrm{h}$.
(d) During the first 4 minutes, the speed of the train increases as the gradient of the curve increases.

During the last 4 minutes, the speed of the train decreases as the gradient of the curve decreases.

PRACTISE NOW 6

A train started from station P and travelled to station $Q, 7.6 \mathrm{~km}$ from P.
The table below shows the readings of the time, in minutes, since leaving station P and the corresponding distance, in km , from P.

Time (in minutes)	1	2	3	4	5	6	7	8
Distance (in km)	0.2	0.8	2.6	5.0	6.5	7.2	7.5	7.6

(a) Using a scale of 2 cm to represent 2 minutes on the horizontal axis and 2 cm to represent 2 km on the vertical axis, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to estimate the time taken to travel the first 4 km of the journey.
(c) By drawing a tangent, find the approximate speed of the train 6 minutes after it has left station P.
(d) By considering the gradient of the graph, compare and describe briefly the motion of the train during the first 4 minutes and the last 4 minutes of the journey.

Thinking Time

Fig. 5.9 shows three containers, each of which is being filled with liquid at a constant rate from a tap to a height of $a \mathrm{~cm}$. The containers are initially empty.

The graph of Fig. 5.9(a) shows the height ($h \mathrm{~cm}$) of the liquid as the container is being filled in t seconds.

Fig. 5.9

1. Explain clearly why the graph of Fig. $5.9(\mathbf{a})$ is a straight line.
2. Complete the graphs in Fig. 5.9 (b) and (c). Explain the shape of each graph obtained.

Exercise 5C Questions 10, 19

Worked Example

(Speed-Time Graph)
The graph shows the speed of an object over a period of 10 seconds.

(i) Find the acceleration in the first 2 seconds,
(ii) Given that the distance travelled is given by the area under the speed-time graph, find the average speed during the whole journey.
(iii) Find the deceleration in the last 2 seconds.

Solution:

(i) Acceleration $=\frac{2 \mathrm{~cm} / \mathrm{s}}{2 \mathrm{~s}}$

$$
=1 \mathrm{~cm} / \mathrm{s}^{2}
$$

(ii) Total distance $=$ area under graph

$$
\begin{aligned}
& =\text { Area of }(A+B+C+D) \\
& =\left(\frac{1}{2} \times 2 \times 2\right)+(2 \times 2)+\frac{1}{2}(2+8) \times 2+\left(\frac{1}{2} \times 8 \times 4\right) \\
& =2+4+10+16 \\
& =32 \mathrm{~cm} \\
\text { Average speed } & =\frac{\text { Total distance }}{\text { Total time }} \\
& =\frac{32}{10} \\
& =3.2 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

For (i), the gradient can be found
by $\frac{\text { vertical change }}{\text { horizontal change }}$ or by using the formula $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Acceleration of an object
= rate of change of speed
$=$ gradient of a speed-time graph
If the gradient is negative, we say that the object is decelerating. The unit for acceleration is always of speed per unit time, i.e. if the unit of speed is cm / s, then the unit of acceleration is $\mathrm{cm} / \mathrm{s}^{2}$.
(iii) Deceleration in the last 2 seconds $=$ deceleration in the last 4 seconds

$$
\begin{aligned}
& =\frac{8-0}{10-6} \\
& =2 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

PRACTISE NOW 7

The graph shows the speed of an object over a period of 9 seconds.
Exercise 5C Questions 4, 5, 11, 12

(i) Find the acceleration in the first 3 seconds.
(ii) Given that the distance travelled is given by the area under the speed-time graph, find the average speed during the whole journey.
(iii) Find the deceleration in the last 3 seconds.

Worked Example

(Speed-Time Graph)

A particle moves along a straight line from A to B so that, t seconds after leaving A, its speed, $v \mathrm{~m} / \mathrm{s}$, is given by $v=3 t^{2}-15 t+20$.
The table below shows some values of t and the corresponding values of v.

\boldsymbol{t}	0	1	1.5	2	2.5	3	4	5
\boldsymbol{v}	20	8	a	2	b	2	8	20

(a) Find the value of a and of b.
(b) Using a scale of 2 cm to represent 1 second on the horizontal axis and 2 cm to represent $5 \mathrm{~m} / \mathrm{s}$ on the vertical axis, draw the graph of $v=3 t^{2}-15 t+20$ for $0 \leqslant t \leqslant 5$.
(c) Use your graph to estimate
(i) the value of t when the speed is $10 \mathrm{~m} / \mathrm{s}$,
(ii) the time at which the acceleration is zero,
(iii) the gradient at $t=4$, and explain what this value represents,
(iv) the time interval when the speed is less than $15 \mathrm{~m} / \mathrm{s}$.

Solution:

(a) When $t=1.5$,

$$
\begin{aligned}
v & =3(1.5)^{2}-15(1.5)+20 \\
& =4.25
\end{aligned}
$$

$\therefore a=4.25$

When $t=2.5$,

$$
\begin{aligned}
v & =3(2.5)^{2}-15(2.5)+20 \\
& =1.25
\end{aligned}
$$

$\therefore b=1.25$
(b)

(c) (i) From the graph, when $v=10$,
$t=0.8$ or $t=4.2$.
(ii) The acceleration is zero when the gradient of the curve is zero.

From the graph, the acceleration is zero at $t=2.5$.
(iii) A tangent is drawn to the curve at the point $t=4$.

From the graph,

$$
\begin{aligned}
\text { Gradient } & =\frac{\text { vertical change }}{\text { horizontal change }} \\
& =\frac{14.5}{1.65} \\
& \approx 9
\end{aligned}
$$

In (iii), the unit for acceleration is $\frac{\mathrm{m} / \mathrm{s}}{\mathrm{s}}$, i.e. $\mathrm{m} / \mathrm{s}^{2}$.
\therefore The acceleration of the particle at $t=4$ is approximately $9 \mathrm{~m} / \mathrm{s}^{2}$.
(iv) From the graph, when $v<15,0.35<t<4.65$.

A particle moves along a straight line from P to Q so that, t seconds after leaving P, its speed, $v \mathrm{~m} / \mathrm{s}$, is given by $v=2 t^{2}-9 t+12$.
The table below shows some values of t and the corresponding values of v.

\boldsymbol{t}	0	1	2	3	4	5
\boldsymbol{v}	12	5	a	3	8	b

(a) Find the value of a and of b.
(b) Using a scale of 2 cm to represent 1 second on the horizontal axis and 2 cm to represent $5 \mathrm{~m} / \mathrm{s}$ on the vertical axis, draw the graph of $v=2 t^{2}-9 t+12$ for $0 \leqslant t \leqslant 5$.
(c) Use your graph to estimate
(i) the values of t when the speed is $7 \mathrm{~m} / \mathrm{s}$,
(ii) the time at which the acceleration is zero,
(iii) the gradient at $t=4.5$, and explain what this value represents,
(iv) the time interval when the speed is less than $10 \mathrm{~m} / \mathrm{s}$.

:\%\%Other Graphs

Graphs can also be used in other real-world contexts such as in the calculation of postage rates, parking charges and labour costs.

Worked Example

(Graphs involving Rates)

The step-function graph below shows the local postage rates for letters, postcards and small packages offered by Company A.

Exercise 5C Questions 13-16 20-22
(a) Write down the postage to mail a letter with a mass of 80 g .
Company B offers the following postage rates: 60 cents for the first 50 g and 0.2 cents for each subsequent gram.
(b) Given that Huixian wishes to post a letter with a mass of 150 g , insert the graph corresponding to the rates offered by Company B and use your graph to determine which company offers a lower postage.

Solution:

(a) From the graph, the postage is 50 cents.
(b) For the first 50 g , the postage is 60 cents.

When the mass is 100 g , the postage is $60+0.2 \times(100-50)=70$ cents.
When the mass is 250 g , the postage is $60+0.2 \times(250-50)=100$ cents.

From the graph, for a mass of 150 g , both companies charge the same postage of 80 cents.

PRACTISE NOW 9

The step-function graph below shows the parking charges for the first 6 hours at Carpark X.

Carpark Y has the following charges:

> Free for the first 12 minutes
> 2.5 cents per minute thereafter

Insert the graph corresponding to the rates offered by Carpark Y and use your graph to determine which carpark Mr Wong should choose if he has to park for 2 hours.

The graph below shows the battery level of a smartphone. It had an initial level of 20%, increasing to 60% in half an hour while connected to the power supply. Farhan then removed the smartphone from the power supply to watch a 20 -minute long video clip, before connecting the smartphone to the power supply again.

(a) Find the battery level of the smartphone when Farhan was exactly halfway through the video clip.
(b) Find the rate of increase in the battery level of the smartphone when it was connected to the power supply again.

Solution:

(a) From the graph, the battery level was 50%.
(b) To find the rate of increase in the battery level, we need to calculate the gradient of the line from the $50^{\text {th }}$ minute to the $90^{\text {th }}$ minute.

$$
\begin{aligned}
\text { Gradient } & =\frac{100-40}{90-50} \\
& =1.5 \% / \text { minute }
\end{aligned}
$$

\therefore The rate of increase in the battery level is $1.5 \% /$ minute.

PRACTISE NOW 10

SIMILAR
 QUESTIONS

The graph below shows the heart rate, in beats per minute, of an adult who is at the park. He rests at the bench for the first 10 minutes, after which he begins to brisk walk for 10 minutes. He then slows down for 5 minutes, before brisk walking again for a further 5 minutes. He then jogs at a constant speed for 10 minutes, before gradually slowing down.

(a) Write down his resting heart rate.
(b) Find the rate of increase in his heart rate as he brisk walks for the first time.
(c) Find the rate of decrease in his heart rate as he slows down in the last 20 minutes.

BASIC LEVEL

1. A cyclist set out at 0900 for a destination 40 km away. He cycled at a constant speed of $15 \mathrm{~km} / \mathrm{h}$ until 1030. Then he rested for half an hour before completing his journey at a constant speed of $20 \mathrm{~km} / \mathrm{h}$.
(i) Draw the distance-time graph to represent the journey.
(ii) Hence, find the time at which the cyclist reached his destination, giving your answer to the nearest minute.
2. Raj starts a $30-\mathrm{km}$ journey at 0900 . He maintains a constant speed of $20 \mathrm{~km} / \mathrm{h}$ for the first 45 minutes and then stops for a rest. He then continues his journey at a constant speed of $30 \mathrm{~km} / \mathrm{h}$, finally arriving at his destination at 1120.
(i) Find the distance travelled in the first 45 minutes.
(ii) Draw the distance-time graph to represent the journey.
(iii) Hence, state the duration of his stop, giving your answer in minutes.
3. The figure shows the distance-time graph of a car

(i) Find the duration during which the car is not moving.
(ii) Find the average speed of the car in the first 2 hours of the journey.
(iii) Find the average speed of the car for the whole journey.
(iv) Draw the speed-time graph of the car for the whole journey.
4. The graph shows the speed-time graph of a car.

(i) Find the acceleration in the first 2 seconds.
(ii) Given that the distance travelled is given by the area under the speed-time graph, find the average speed during the whole journey.
5. The graph shows the speed, $v \mathrm{~m} / \mathrm{s}$, of a car after t seconds.

(i) State what the gradient of $O A$ represents.
(ii) Find the speed of the car when $t=15$.
6. A lift moves from ground level to a height of 60 metres in 10 seconds, stops for 10 seconds and then descends to the ground in 10 seconds. The table shows the height, $h \mathrm{~m}$, of the lift on the upward and downward journeys, t seconds after leaving ground level.

\boldsymbol{t} (in seconds)	0	2	4	6	8	10
\boldsymbol{h} (in m)	0	3	16	44	57	60

\boldsymbol{t} (in seconds)	20	22	24	26	28	30
\boldsymbol{h} (in m)	60	57	44	16	3	0

(i) Using a scale of 2 cm to represent 5 seconds, draw a horizontal t-axis for $0 \leqslant t \leqslant 30$.
Using a scale of 1 cm to represent 5 metres, draw a vertical h-axis for $0 \leqslant h \leqslant 60$.
On your axes, plot the points given in the table and join them with a smooth curve.
(ii) Find the gradient of the graph at $t=8$ and explain briefly what this gradient represents.
A construction worker, waiting at the 40 -metre level, starts to walk down at $t=5$.
(iii) Assuming that he descends at a steady speed of $0.8 \mathrm{~m} / \mathrm{s}$, use your graph to find the time when the worker and the lift are at the same height.
7. A company which manufactures automated vehicles is putting them on a test run. One of the vehicles starts from a point X and travels to a point $Y, 3 \mathrm{~km}$ away. The table shows the distance, $d \mathrm{~km}$, of the vehicle from X, t minutes after leaving X.

Time (in minutes)	0	1	2	3	4	5	6
Distance (in km)	0	0.2	0.7	1.8	2.5	2.9	3.0

(a) Using a scale of 2 cm to represent 1 minute on the horizontal axis and 4 cm to represent 1 km on the vertical axis, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to find
(i) the approximate time taken to travel the first 1 km ,
(ii) the gradient of the graph when $t=1 \frac{1}{2}$ and explain briefly what this value represents,
(iii) the time taken to travel the last 1 km .
8. Ethan and Michael start moving towards each other at the same time. The initial distance between them is 32 km .
(a) Given that Ethan is cycling at a constant speed of $20 \mathrm{~km} / \mathrm{h}$ and Michael is walking at a constant speed of $7 \mathrm{~km} / \mathrm{h}$, draw a distancetime graph to illustrate this information.
(b) Use your graph to find
(i) how long it will take for them to pass each other,
(ii) the times when they will be 5 km apart.
9. At 0900, Shirley travels to meet Kate, who stays 20 km away. Shirley travels at a uniform speed of $18 \mathrm{~km} / \mathrm{h}$ for half an hour. She rests for 20 minutes and then continues her journey at a uniform speed of $8 \mathrm{~km} / \mathrm{h}$.

At 0900, Kate sets off from home on the same road to meet Shirley and travels at a uniform speed of $7 \mathrm{~km} / \mathrm{h}$.
(a) Draw the distance-time graph for the above information.
(b) Use your graph to find
(i) the time at which Shirley and Kate meet,
(ii) the distance away from Kate's home when they meet.
10. The figure shows three containers, each with a height of 50 cm and a width of 10 cm . The other dimensions are as shown. The containers are initially empty and it takes 20 seconds to fill each container at a constant rate.

The diagram below shows the relationship between the depth, $d \mathrm{~cm}$, of the liquid and the time, t seconds, taken to fill container A.

On the same diagram, sketch the graph of the depth of the liquid against time for container B and container C.
11. The diagram shows the speed-time graph of an object which travels at a constant speed of $36 \mathrm{~m} / \mathrm{s}$ and then slows down at a rate of $12 \mathrm{~m} / \mathrm{s}^{2}$, coming to rest at time t seconds.

(i) Find the value of t.
(ii) Given that the distance travelled when the object is slowing down is 54 m , find the average speed for the whole journey.
12. The diagram shows the speed-time graph of a train.

(i) Find the acceleration of the train during the first 20 seconds.
(ii) Given that the train decelerates at a rate of $0.75 \mathrm{~m} / \mathrm{s}^{2}$, find the time taken for the whole journey.
13. A particle moves along a straight line from A to B so that, t minutes after leaving A, its speed, $v \mathrm{~m} / \mathrm{min}$, is given by $v=t^{2}-7 t+16$.

\boldsymbol{t} (minutes)	0	1	2	3	4	5	6
\boldsymbol{v} (m/min)	16	10	6	a	4	6	b

(a) Find the value of a and of b.
(b) Using a scale of 2 cm to represent 1 minute on the horizontal axis and 1 cm to represent $1 \mathrm{~m} / \mathrm{min}$ on the vertical axis, draw the graph of $v=t^{2}-7 t+16$ for $0 \leqslant t \leqslant 6$.
(c) Use your graph to estimate
(i) the value(s) of t when the speed is $7 \mathrm{~m} / \mathrm{min}$,
(ii) the time at which the speed is a minimum,
(iii) the gradient at $t=2$, and explain what this value represents,
(iv) the time interval when the speed is not more than $5 \mathrm{~m} / \mathrm{min}$.
14. The speed of a body, $v \mathrm{~m} / \mathrm{s}$, after time t seconds is given in the table.

$\boldsymbol{t}(\mathbf{s})$	0	2	4	6	8	10	12
$\boldsymbol{v}(\mathbf{m} / \mathbf{s})$	0	2	7	12	19	28	42

(i) Using a scale of 1 cm to represent 1 second on the horizontal axis and 1 cm to represent $5 \mathrm{~m} / \mathrm{s}$ on the vertical axis, plot the graph of v against t for $0 \leqslant t \leqslant 12$.
(ii) Use your graph to estimate the speed of the body when $t=5$ and when $t=11$.
(iii) By drawing two tangents, find the acceleration of the body when $t=4$ and when $t=10$.
15. Object P moves along a straight line from A to B so that, t hours after leaving A, its speed, $v \mathrm{~km} / \mathrm{h}$, is given by $v=3 t^{2}-17 t+30$.

$\boldsymbol{t}(\mathbf{h})$	0	1	2	3	4	5
$\boldsymbol{v}(\mathbf{k m} / \mathbf{h})$	30	16	h	6	k	20

(a) Find the value of h and of k.
(b) Using a scale of 2 cm to represent 1 hour on the horizontal axis and 2 cm to represent $5 \mathrm{~km} / \mathrm{h}$ on the vertical axis, draw the graph of $v=3 t^{2}-17 t+30$ for $0 \leqslant t \leqslant 5$.
(c) Use your graph to estimate
(i) the time at which the speed is a minimum,
(ii) the gradient at $t=4.5$, and explain what this value represents,
(iii) the time interval when the speed does not exceed $10 \mathrm{~km} / \mathrm{h}$.
Object Q moves along a straight line from A to B with a constant speed of $24 \mathrm{~km} / \mathrm{h}$.
(d) Use your graph to determine the value of t at which both objects have the same speed.
16. A taxi starts from rest and accelerates at a uniform rate for 45 seconds to reach a speed of $30 \mathrm{~m} / \mathrm{s}$. It then travels at this constant speed. Sketch the speed-time graph and use it to find the speed after 10 seconds.
17. The step-function graph below shows the postage rates to Malaysia for letters and small packages offered by Company A.

(a) Write down the postage to mail a letter with a mass of 50 g to Malaysia.
Company B offers the following postage rates to Malaysia: $\$ 1$ for the first 80 g and 1 cent for each subsequent gram.
(b) Given that Devi wishes to post a small package with a mass of 220 g to Malaysia, determine which company offers a lower postage. Show your working to support your answer.

INTERMEDIATE LEVEL

18. The graph below shows the speed of a coach as it ferried passengers from Blue Town to Summer City via the highway one afternoon. The coach made only one stop during the journey.

(a) Write down the duration of the stop.
(b) Find the initial acceleration of the coach.
(c) Given that the distance travelled is given by the area under the speed-time graph, explain why the distance between Blue Town and Summer City is less than 250 km .
(d) Determine the time when the coach reached Summer City.

ADVANCED LEVEL

19. The diagram below shows three containers of a fixed volume and varying cross-sectional areas, each with a height of 8 cm . The containers are initially empty. A tap is used to fill each of the containers at a constant rate.

Given that it takes 60 seconds to fill each of the containers, sketch the graph of the height ($h \mathrm{~cm}$) of the water level against time ($t \mathrm{~s}$) for each of the containers.
20. A toy car starts from a point A and moves towards a point B, which it reaches after 7 seconds. The speed, $v \mathrm{~cm} / \mathrm{s}$, after t seconds, is given in the table.

$\boldsymbol{t}(\mathbf{s})$	0	1	2	3	4	5	6	7
$\boldsymbol{v}(\mathbf{c m} / \mathbf{s})$	0	4.5	8	10.5	12	12.5	12	10.5

(a) Using a scale of 2 cm to represent 1 second on the horizontal axis and 2 cm to represent $2 \mathrm{~cm} / \mathrm{s}$ on the vertical axis, plot the graph of v against t for $0 \leqslant t \leqslant 7$.
(b) Use your graph to estimate
(i) the acceleration of the body when $t=2$ and when $t=6$,
(ii) the time interval when the speed is greater than $11 \mathrm{~m} / \mathrm{s}$.
(c) Given that this motion can be modelled by the equation $v=a t^{2}+b t+c$, where a, b and c are constants, find the values of a, b and c.
21. The graph shows the distance-time graph of a body during a period of 6 seconds.

Sketch the speed-time graph for the same journey.
22. The speed of an object, $v \mathrm{~m} / \mathrm{s}$, at time t seconds, is given by $v=6+2 t$.
(a) Sketch the speed-time graph for the motion.
(b) Find the speed when $t=3$.
(c) Sketch the acceleration-time graph for the motion.

1. Graphs of Power Functions $y=a x^{n}$
(a) $n=3, a>0, y=a x^{3}$

(b) $n=2, a>0, y=a x^{2}$

$$
n=2, a<0, y=a x^{2}
$$

(c) $n=1, a>0, y=a x$
$n=1, a<0, y=a x$

(d) $n=0, a>0, y=a$
$n=0, a<0, y=a$

(e) $n=-1, a>0, y=\frac{a}{x}$

$$
n=-1, a<0, y=\frac{a}{x}
$$

(f) $n=-2, a>0, y=\frac{a}{x^{2}}$

$$
n=-2, a<0, y=\frac{a}{x^{2}}
$$

2. Graph of $y=k a^{x}$, where $a>0$
$k>0, y=k a^{x}$

$$
k<0, y=k a^{x}
$$

3. Gradient of a Curve

The gradient of a curve at a point can be obtained by drawing a tangent to the curve at that point and finding the gradient of the tangent.

1. The table below shows some values of x and the corresponding values of y, where $y=x^{3}-3 x-10$.

\boldsymbol{x}	-3	-2	-1	0	1	2	3	4
\boldsymbol{y}	-28			-10			8	42

(a) Copy and complete the table.
(b) Using a scale of 1 cm to represent 1 unit, draw a horizontal x-axis for $-3 \leqslant x \leqslant 4$.
Using a scale of 1 cm to represent 5 units, draw a vertical y-axis for $-28 \leqslant y \leqslant 42$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find
(i) the value of y when $x=1.8$,
(ii) the value of x when $y=10$.
2. The variables x and y are connected by the equation $y=x(x-2)(x+2)$.
The table below shows some values of x and the corresponding values of y.

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	-15	0		0	-3		

(a) Copy and complete the table.
(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on the y-axis, draw the graph of $y=x(x-2)(x+2)$ for $-3 \leqslant x \leqslant 3$.
(c) Use your graph to find
(i) the value of y when $x=1.4$,
(ii) the value of x when $y=4.5$,
(iii) the solutions to the equation

$$
x(x-2)(x+2)=0
$$

3. Using a scale of 4 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=1-2 x-\frac{1}{x}$ for $-4 \leqslant x \leqslant-0.25$.
(a) Use your graph to find
(i) the value of y when $x=-0.75$,
(ii) the values of x when $y=4.5$.
(b) Write down the coordinates of the point on the curve where the tangent to the curve is a horizontal line.
4. Using a suitable scale, draw the graph of $y=3^{x}-2$ for $-1.5 \leqslant x \leqslant 2$. Using your graph,
(i) solve the equation $3^{x}=2$,
(ii) find the coordinates of the point on the graph of $y=3^{x}-2$ where the gradient of the tangent is 2 .
5. Using a scale of 4 cm to represent 1 unit on both axes, draw the graph of $y=x-2+\frac{3}{x}$ for $0.5 \leqslant x \leqslant 4$.
(i) State the minimum value of y and the corresponding value of x.
(ii) Find the range of values of x for which $y<2.2$.
(iii) By drawing a tangent, find the gradient of the graph at the point where $x=3$.
(iv) Using your graph, find the value of x for which $2 x+\frac{3}{x}=8$.
6. A coach travelled from the airport to the hotel in 20 minutes at a constant speed of $45 \mathrm{~km} / \mathrm{h}$. After stopping for half an hour, it travelled back to the airport at a constant speed of $60 \mathrm{~km} / \mathrm{h}$.
(i) Draw the distance-time graph to represent the journey.
(ii) Hence, find the average speed of the coach for the whole journey.
7. The graph shows the distance-time graph of a heavy goods vehicle.

(a) Find
(i) the time interval during which the vehicle stopped to unload goods,
(ii) the speed when $t=3$,
(iii) the maximum speed during the journey,
(iv) the average speed for the whole journey.
(b) Sketch the speed-time graph for the motion.
8. The intensity of illumination, I units, at a point on a screen a distance of $D \mathrm{~cm}$ from the light source is modelled by the equation $I=\frac{k}{D^{2}}$, where k is a constant.
(i) Using the data in the table, find the value of k.

Distance (D cm)	10		20	25		
Intensity (I units)		1250	800		294	200

(ii) Complete the table and use a suitable scale to draw the graph of I against D.
(iii) From the graph, find the intensity of illumination when the light source is 30 cm from the screen.
(iv) What can you say about the relationship between I and D^{2} ?
9. The graph below shows the temperature of soup as it was being heated in an electric cooker. Ten minutes later, Mrs Wong added some fresh vegetables from the refrigerator, continued to heat the soup until it reached a temperature of $90{ }^{\circ} \mathrm{C}$ and switched off the cooker after five minutes.

(a) Find the rate of increase in the temperature of the soup in the first ten minutes.
(b) Suggest why there is a drop in the temperature between the $10^{\text {th }}$ and the $11^{\text {th }}$ minute.
(c) Find the rate of decrease in the temperature of the soup after the cooker was switched off.

The graph shows an acceleration-time graph of an object travelling in a straight line.

Sketch a possible speed-time graph for the motion of the object. Explain your answer.

B1 Revision Exercise

1. Find the equation of the line joining the points $A(5,7)$ and $B(8,12)$.
2. The figure shows the points $A(-2,1), B(2,1)$ and $C(4,6)$.

Find
(i) the area of $\triangle A B C$,
(ii) the coordinates of the point D such that $A B C D$ is a parallelogram,
(iii) the coordinates of the point P such that $A C P B$ is a parallelogram.
3. The line $3 x+4 y=24$ cuts the x-axis and the y-axis at A and B respectively.

Find
(i) the coordinates of A and of B,
(ii) the area of $\triangle A B C$, where C is the point $(-5,0)$,
(iii) the gradient of $B C$,
(iv) the length of the perpendicular from C to $A B$.
4. The travel graphs below show the journeys of Rui Feng and Jun Wei. Rui Feng starts from the train station at 0800 and travels towards the airport, 40 km away. Jun Wei starts from the airport at 0900 and travels towards the train station.

From the graph, find
(i) Jun Wei's average speed for the whole journey,
(ii) the time when Rui Feng and Jun Wei meet and how far they are from the airport when they meet,
(iii) the time interval during which Rui Feng took a rest,
(iv) the distance between Rui Feng from the airport when Jun Wei reaches the train station.

81 Revision Exercise

5. The diagram shows the speed-time graph of a particle over a period of t seconds.

(i) Given that the acceleration of the particle during the first 8 seconds of its motion is $1.5 \mathrm{~m} / \mathrm{s}^{2}$, find the value of V.
(ii) Given that the retardation of the particle is $1 \mathrm{~m} / \mathrm{s}^{2}$, find the value of t.
6. The variables x and y are connected by the equation $y=\frac{12}{x}+x-6$.
The table below shows some values of x and the corresponding values of y.

\boldsymbol{x}	1	1.5	2	3	4	5	6	7	8
\boldsymbol{y}	7	h	2	1	1	1.4	2	k	3.5

(a) Find the value of h and of k.
(b) Using a scale of 2 cm to represent 1 unit on each axis, draw the graph of $y=\frac{12}{x}+x-6$ for $1 \leqslant x \leqslant 8$.
(c) Use your graph to find
(i) the value of y when $x=2.3$,
(ii) the minimum value of y.
(d) By drawing a tangent, find the gradient of the curve at the point where $x=5$.
(e) Use your graph to obtain one solution of the equation $x^{2}+12=10 x$.

B2
 Revision Exercise

1. Find the equation of the line passing through the point $(2,-5)$ and parallel to the line $5 x+7 y=46$.
2. The line $x-2 y=-4$ cuts the x-axis and the y-axis at P and Q respectively. M is a point on $P Q$ such that it is equidistant from the coordinate axes.

Find
(i) the coordinates of P and of Q,
(ii) the coordinates of M,
(iii) the area of $\triangle P M O$.
3. $A B C D$ is a trapezium in which $D C=\sqrt{13}$ units. The coordinates of B, C and D are $(a,-1),(a, 4)$ and $(0,6)$ respectively and the gradient of $A B$ is $\frac{2}{3}$.

Find
(i) the coordinates of the point C,
(ii) the coordinates of the point A,
(iii) the area of the trapezium $A B C D$,
(iv) the length of $A B$,
(v) the equation of $A B$.
4. A coach leaves Watertown for Sandcity 120 km away at 1100 and travels at a uniform speed of $50 \mathrm{~km} / \mathrm{h}$. An hour later, a car travelling at a uniform speed of $80 \mathrm{~km} / \mathrm{h}$ leaves Sandcity for Watertown by the same route.
(a) Draw the distance-time graph to represent the journey.
(b) Use your graph to find
(i) the time when the car meets the coach and the distance from Watertown at this instant,
(ii) the distance between the coach and the car at 1300 .
5. The diagram shows the speed-time graph of a car which decelerates uniformly from $45 \mathrm{~m} / \mathrm{s}$ to $27 \mathrm{~m} / \mathrm{s}$ in 30 seconds. It then travels at a constant speed of $27 \mathrm{~m} / \mathrm{s}$ for 30 seconds.

(i) Given that the car begins to decelerate uniformly at $0.6 \mathrm{~m} / \mathrm{s}^{2}$ until it comes to rest, find the total time taken for the journey. Give your answer in minutes and seconds.
(ii) Sketch the acceleration-time graph for the motion.

82 Revision Exercise

6. A string of length 15 cm is used to form a rectangle. Given that the area of the rectangle is $y \mathrm{~cm}^{2}$ and that one side of the rectangle is $x \mathrm{~cm}$ long, show that $y=\frac{1}{2} x(15-2 x)$.
The table below shows some values of x and the corresponding values of y.

\boldsymbol{x}	0.5	1	2	3	4	5	6	6.5
\boldsymbol{y}	3.5	6.5	11	13.5	14	12.5	9	p

(i) Find the value of p.
(ii) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $0 \leqslant x \leqslant 7$.
Using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $0 \leqslant y \leqslant 16$.
On your axes, plot the points given in the table and join them with a smooth curve.
(iii) Use your graph to find the solutions of the equation $x(15-2 x)=23$.
(iv) By drawing a tangent, find the gradient of the curve at the point $(5,12.5)$.
(v) Use your graph to find the maximum value of y and the corresponding value of x.
(vi) Hence, write down the dimensions of the rectangle when the area is a maximum. What can you say about your answer?

Further Trigonometry

Many measurements in this world are difficult or impossible to obtain directly. How do you measure the height of the Eiffel Tower or of Mount Everest? With the help of trigonometry, these measurements can be easily obtained

6. 1 Sine and Cosine of Obtuse Angles

:\%\%: Recap

In Book 2, we have learnt that the trigonometric ratios of an acute angle A are defined based on a right-angled triangle as follows:

$$
\begin{aligned}
& \sin A=\frac{\text { opp }}{\text { hyp }} \\
& \cos A=\frac{\text { adj }}{\text { hyp }} \\
& \tan A=\frac{\text { opp }}{\text { adj }}
\end{aligned}
$$

Fig. 6.1
What happens if A is an obtuse angle as shown below?

Fig. 6.2
In order to find the sides and angles of an obtuse-angled triangle, we will need to extend the definitions of trigonometric ratios. In this chapter, we will learn the trigonometric ratios of the sine and cosine of obtuse angles.

:at: Sine and Cosine of Obtuse Angles

Fig. 6.3(a) shows a circle with centre O and radius r units.
$P(x, y)$ is a point on the circle and $\triangle O P Q$ is a right-angled triangle. $\angle A$ is an acute angle.
$\therefore \sin A=\frac{\text { opp }}{\text { hyp }}=\frac{y}{r}$ and $\cos A=\frac{\text { adj }}{\text { hyp }}=\frac{x}{r}$
In other words, we have extended the definition of the sine and cosine of an angle A in terms of the coordinates of a point $P(x, y)$:

$$
\sin A=\frac{y}{r} \text { and } \cos A=\frac{x}{r}
$$

If A is an acute angle, then x, y and r are positive.
In other words, $\sin A$ and $\cos A$ are positive if A is acute.

(a) $\angle A$ is acute

(b) $\angle A$ is obtuse

Fig. 6.3
Fig. 6.3(b) shows a circle with centre O and radius r units.
$P(x, y)$ is a point on the circle and $\angle A$ is an obtuse angle.

Using the extended definitions,

$$
\sin A=\frac{y}{r} \text { and } \cos A=\frac{x}{r} .
$$

However, x is now negative, but y and r are still positive.
In other words, if A is an obtuse angle, then $\sin A$ is still positive but $\cos A$ is negative.

Use your calculator to find the value of $\sin 150^{\circ}$ and of $\cos 150^{\circ}$.
Which trigonometric ratio is positive and which one is negative?

Investigation

Relationship between Trigonometric Ratios of Acute and Obtuse Angles

Use your calculator to evaluate the sine and cosine of each of the following pairs of angles, leaving your answers correct to 3 significant figures where necessary.

	\boldsymbol{A}	$\mathbf{1 8 0}^{\circ}-\boldsymbol{A}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{A}$	$\boldsymbol{\operatorname { s i n }}\left(\mathbf{1 8 0 ^ { \circ }} \mathbf{- A)}\right.$	$\boldsymbol{\operatorname { c o s } A}$	$\boldsymbol{\operatorname { c o s }}\left(\mathbf{1 8 0}^{\circ}-\boldsymbol{A}\right)$
(a)	30°	150°				
(b)	76°	104°				
(c)	111°	69°				
(d)	167°	13°				

Table 6.1

1. What do you notice about $\sin A$ and $\sin \left(180^{\circ}-A\right)$?
2. What do you notice about $\cos A$ and $\cos \left(180^{\circ}-A\right)$?

In general, if A is acute or obtuse,

$$
\begin{aligned}
& \sin A=\sin \left(180^{\circ}-A\right) \\
& \cos A=-\cos \left(180^{\circ}-A\right)
\end{aligned}
$$

To prove the above relationship, consider Fig. 6.4 which shows a circle with centre O and radius r units. $P(x, y)$ is a point on the circle where $x<0$ and $y>0$.
$\angle A$ is an obtuse angle.

Fig. 6.4
Using the extended definitions,

$$
\sin A=\frac{y}{r} \text { and } \cos A=\frac{x}{r} .--(1)
$$

In the right-angled $\triangle O P Q$,
$O Q=-x$ (so that $O Q$ will be positive since $x<0)$
and $P Q=y($ since $y>0)$.

Since $180^{\circ}-A$ is an acute angle, we can use the definitions for acute angles:
$\sin \left(180^{\circ}-A\right)=\frac{\text { opp }}{\text { hyp }}=\frac{P Q}{O P}=\frac{y}{r}$
and $\cos \left(180^{\circ}-A\right)=\frac{\text { adj }}{\text { hyp }}=\frac{O Q}{O P}=\frac{-x}{r}---(2)$

Comparing (1) and (2),
$\sin A=\frac{y}{r}=\sin \left(180^{\circ}-A\right)$
but $\cos A=\frac{x}{r}=-\cos \left(180^{\circ}-A\right)$

Worked Example 1

(Relationship between Trigonometric Ratios of Acute

 and Obtuse Angles)Given that $\sin 55^{\circ}=0.819$ and $\cos 136^{\circ}=-0.719$ when corrected to 3 significant figures, find the value of each of the following without the use of a calculator.
(a) $\sin 125^{\circ}$
(b) $\cos 44^{\circ}$

Solution:

(a) $\sin 125^{\circ}=\sin \left(180^{\circ}-125^{\circ}\right)$

$$
\begin{aligned}
& =\sin 55^{\circ} \\
& =0.819
\end{aligned}
$$

(b) $\cos 44^{\circ}=-\cos \left(180^{\circ}-44^{\circ}\right)$

$$
\begin{aligned}
& =-\cos 136^{\circ} \\
& =-(-0.719) \\
& =0.719
\end{aligned}
$$

PRACTISE NOW 1

1. Given that $\sin 84^{\circ}=0.995$ and $\cos 129^{\circ}=-0.629$ when corrected to 3 significant figures, find the value of each of the following without the use of a calculator.

Exercise 6A Questions 1(a)-(f), 2(a),(b), 3(a)-(c)
(a) $\sin 96^{\circ}$
(b) $\cos 51^{\circ}$
2. Given that $\sin 172^{\circ}=0.139$ and $\cos 40^{\circ}=0.766$ when corrected to 3 significant figures, find the value of $\sin 8^{\circ}-\cos 140^{\circ}$ without the use of a calculator.

Worked Example
(Relationship between Trigonometric Ratios of Acute and Obtuse Angles)
In the figure, $D A B$ is a straight line, $\angle A B C=90^{\circ}$, $A B=15 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=17 \mathrm{~cm}$.

Find the value of each of the following.
(a) $\sin \angle D A C$
(b) $\cos \angle D A C$
(c) $\tan \angle A C B$

Solution:

(a) $\sin \angle D A C=\sin \left(180^{\circ}-\angle D A C\right)$

$$
\begin{aligned}
& =\sin \angle B A C \\
& =\frac{\text { opp }}{\text { hyp }}\left(\text { since } \sin A=\sin \left(180^{\circ}-A\right)\right) \\
& =\frac{B C}{A C} \\
& =\frac{8}{17}
\end{aligned}
$$

(b) $\cos \angle D A C=-\cos \left(180^{\circ}-\angle D A C\right)$

$$
=-\cos \angle B A C
$$

$$
=-\frac{\text { adj }}{\text { hyp }}\left(\text { since } \cos A=-\cos \left(180^{\circ}-A\right)\right)
$$

$$
=-\frac{A B}{A C}
$$

$$
=-\frac{15}{17}
$$

(c) $\tan \angle A C B=\frac{\mathrm{opp}}{\mathrm{adj}}$

$$
\begin{aligned}
& =\frac{A B}{B C} \\
& =\frac{15}{8} \\
& =1 \frac{7}{8}
\end{aligned}
$$

PRACTISE NOW 2

SIMILAR
 QUESTIONS

1. In the figure, $B C D$ is a straight line, $\angle A B C=90^{\circ}, A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.

Find the value of each of the following.
(a) $\sin \angle A C D$
(b) $\cos \angle A C D$
(c) $\tan \angle B A C$
2. The figure shows $\triangle A B C$ with vertices $A(-4,1), B(-4,6)$ and $C(8,1) . H(-4,8)$ and $K(10,1)$ lie on $A B$ produced and $A C$ produced respectively.

(a) Find the length of $B C$.
(b) State the value of each of the following.
(i) $\sin \angle H B C$
(ii) $\cos \angle B C K$
(iii) $\tan \angle A B C$

The scale for the x-axis and the y-axis must be the same for the trigonometric ratios of the angles to be correct. If the scale used is different, the lengths of the sides of the triangle would not match the distance between two points represented by coordinates.

Worked Example

(Solving Simple Trigonometric Equations)

Given that $0^{\circ} \leqslant x \leqslant 180^{\circ}$, find the possible values of x for each of the following equations.
(a) $\sin x=0.45$
(b) $\cos x=-0.834$

Solution:

(a) Since $\sin x$ is positive, x can either be an acute angle or an obtuse angle.

$$
\begin{aligned}
\sin x= & 0.45 \\
x= & \sin ^{-1} 0.45=26.7^{\circ} \text { (to } 1 \text { d.p.) } \\
& \text { or } 180^{\circ}-26.7^{\circ}=153.3^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

$$
\therefore x=26.7^{\circ} \text { or } 153.3^{\circ}
$$

Always leave your answer in degrees correct to 1 decimal place unless otherwise stated.

PRACTISE NOW 3

SIMILAR
 QUESTIONS

Given that $0^{\circ} \leqslant x \leqslant 180^{\circ}$, find the possible values of x for each of the following equations.

Exercise 6A Questions 6(a)-(d), 7 (a)-(d), 8(a)-(d), 9(a)-(f), 13, 14(a), (b)
(a) $\sin x=0.415$
(b) $\cos x=-0.234$
(c) $\cos x=0.104$

BASIC LEVEL

1. Express each of the following as a trigonometric ratio of the acute angle.
(a) $\sin 110^{\circ}$
(b) $\sin 176^{\circ}$
(c) $\sin 98^{\circ}$
(d) $\cos 99^{\circ}$
(e) $\cos 107^{\circ}$
(f) $\cos 175^{\circ}$
2. Given that $\sin 32^{\circ}=0.530$ and $\cos 145^{\circ}=-0.819$ when corrected to 3 significant figures, find the value of each of the following without the use of a calculator.
(a) $\sin 148^{\circ}$
(b) $\cos 35^{\circ}$
3. Given that $\sin 45^{\circ}=\cos 45^{\circ}=0.707$ when corrected to 3 significant figures, find the value of each of the following without the use of a calculator.
(a) $2 \cos 45^{\circ}+3 \sin 135^{\circ}$
(b) $3 \cos 135^{\circ}+4 \sin 135^{\circ}$
(c) $\cos 135^{\circ}-2 \sin 45^{\circ}$
4. In the figure, $A B C$ is a straight line, $\angle B C D=90^{\circ}$, $B C=6 \mathrm{~cm}, C D=8 \mathrm{~cm}$ and $B D=10 \mathrm{~cm}$.

Find the value of each of the following.
(a) $\sin \angle A B D$
(b) $\cos \angle D B A$
(c) $\tan \angle C B D$
5. In the figure, $Q R S$ is a straight line, $\angle P Q R=90^{\circ}$, $P Q=x \mathrm{~cm}, Q R=40 \mathrm{~cm}$ and $P R=41 \mathrm{~cm}$.

(a) Find the value of x.
(b) Find the value of each of the following.
(i) $\sin \angle P R S$
(ii) $\cos \angle P R S$
(iii) $\tan \angle P R Q$
6. Find an acute angle whose sine is
(a) 0.52,
(b) 0.75,
(c) 0.875,
(d) 0.3456 .
7. Find an obtuse angle whose sine is
(a) 0.52,
(b) 0.75,
(c) 0.875 ,
(d) 0.3456 .
8. Find an acute angle whose cosine is
(a) 0.67,
(b) 0.756,
(c) 0.5 ,
(d) 0.985 .
9. Given that $0^{\circ} \leqslant x \leqslant 180^{\circ}$, find the possible values of x for each of the following equations.
(a) $\sin x=0.753$
(b) $\sin x=0.952$
(c) $\sin x=0.4714$
(d) $\cos x=-0.238$
(e) $\cos x=-0.783$
(f) $\cos x=0.524$

INTERMEDIATE LEVEL

10. In the figure, $S R Q$ is a straight line, $\angle P Q R=90^{\circ}$, $P Q=8 \mathrm{~cm}$ and $Q R=15 \mathrm{~cm}$.

Find the value of each of the following.
(a) $\sin \angle P R S$
(b) $\cos \angle S R P$
(c) $\tan \angle P R Q$
11. The figure shows $\triangle A B C$ with vertices $A(-2,4)$, $B(2,1)$ and $C(6,1)$.

Find the value of each of the following.
(a) $\sin \angle A B C$
(b) $\cos \angle A B C$
(c) $\tan \angle A C B$
12. The figure shows $\triangle A B C$ with vertices $A(14,2)$, $B(2,-3)$ and $C(-13,-3)$.

Find the value of each of the following.
(a) $\sin \angle A B C$
(b) $\cos \angle A B C$
(c) $\tan \angle A C B$
13. Given that $\sin x^{\circ}=\sin 27^{\circ}$, where $0^{\circ}<x<180^{\circ}$, write down the possible values of x.

ADVANCED LEVEL

14. Given that $0^{\circ}<x<180^{\circ}$, find the possible values of x for each of the following equations.
(a) $\sin \left(x+10^{\circ}\right)=0.47$
(b) $\cos \left(x-10^{\circ}\right)=-0.56$

(0) S) Area of Triangle

In primary school, we have learnt that the area of a triangle is given by the formula:

$$
\text { Area of triangle }=\frac{1}{2} \times \text { base } \times \text { height or } \frac{1}{2} b h
$$

(a)

(b)

Fig. 6.5
What happens if the height of a triangle is not given?

In real life, if a farmer has a triangular field with a given base, it is not easy to find the height of the triangle.
For example, if he is to start measuring from the point B in Fig. 6.6(a), when he reaches D on $A C, \angle B D C$ may not be a right angle so $B D$ may not be the height.

In this chapter, we shall use small letters to denote the lengths of the sides facing the angles, which are correspondingly denoted by capital letters.
Hence, we label two triangles as follows:

Fig. 6.6

If the farmer is to choose a point E on $A C$ in Fig. $6.6(\mathbf{b})$ and he walks in the direction perpendicular to $A C$, he may not end up at B.

In other words, there is a need to find another formula for the area of a triangle.

Fig. 6.7 shows two triangles.
In Fig. 6.7(a), $\angle C$ is acute, while in Fig. 6.7(b), $\angle C$ is obtuse.

(a)

(b)

Fig. 6.7

In Fig. 6.7(a), consider $\triangle B C D$.
Then $\sin C=\frac{\text { opp }}{\text { hyp }}$

$$
\begin{aligned}
& =\frac{h}{a} \\
h & =a \sin C
\end{aligned}
$$

\therefore Area of $\triangle A B C=\frac{1}{2} b h$

$$
=\frac{1}{2} b(a \sin C)
$$

$$
=\frac{1}{2} a b \sin C
$$

In Fig. 6.7(b), consider $\triangle B C D$.

$$
\begin{aligned}
& \text { Then } \begin{aligned}
\sin C & =\frac{\text { opp }}{\text { hyp }} \\
& =\frac{h}{a}
\end{aligned} \\
& \begin{aligned}
\therefore \sin \angle A C B & =\sin \left(180^{\circ}-\angle A C B\right) \\
& =\sin \angle B C D \\
& =\frac{h}{a}
\end{aligned} \\
& \text { i.e. } h=a \sin \angle A C B \\
& =a \sin C
\end{aligned} \begin{aligned}
\therefore \text { Area of } \triangle A B C & =\frac{1}{2} b h \\
& =\frac{1}{2} a b \sin C
\end{aligned}
$$

By considering $\sin A$ and $\sin B$ in a similar way, we can show that:
Area of $\triangle A B C=\frac{1}{2} b c \sin A$ and $\frac{1}{2} a c \sin B$ respectively.

In general,

$$
\text { Area of } \triangle A B C=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} a c \sin B
$$

In the formula $\frac{1}{2} a b \sin C$, notice that the angle C is in between the two sides a and b, i.e. C is called the included angle.

Find the area of $\triangle A B C$, given that $A B=9.8 \mathrm{~cm}$, $B C=12.4 \mathrm{~cm}$ and $\angle A B C=43^{\circ}$.

Solution:

We have $a=12.4, c=9.8$ and $B=43^{\circ}$.

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} a c \sin B \\
& =\frac{1}{2} \times 12.4 \times 9.8 \times \sin 43^{\circ} \\
& =41.4 \mathrm{~cm}^{2}
\end{aligned}
$$

PRACTISE NOW 4

Find the area of $\triangle A B C$, given that $B C=31.8 \mathrm{~m}, A C=24.8 \mathrm{~m}$ and $\angle A C B=49^{\circ}$.

Exercise 6B Questions 1(a)-(f), 2-6, 8, 9

Worked Example
 (Problem involving Area of a Triangle)
 In $\triangle A B C, C A=5 x \mathrm{~cm}, C B=3 x \mathrm{~cm}$ and $\angle A C B=94^{\circ}$.

Given that the area of $\triangle A B C$ is $145 \mathrm{~cm}^{2}$, find the value of x.

Solution:

We have $a=3 x, b=5 x$ and $C=94^{\circ}$.
Area of $\triangle A B C=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
145 & =\frac{1}{2} \times 3 x \times 5 x \times \sin 94^{\circ} \\
& =7.5 x^{2} \sin 94^{\circ} \\
x^{2} & =\frac{145}{7.5 \sin 94^{\circ}} \\
x & =\sqrt{\frac{145}{7.5 \sin 94^{\circ}}} \text { (since } x \text { is positive) } \\
& =4.40 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

1. In $\triangle P Q R, P Q=2 x \mathrm{~cm}, P R=x \mathrm{~cm}$ and $\angle Q P R=104^{\circ}$.

Given that the area of $\triangle P Q R$ is $12.5 \mathrm{~cm}^{2}$, find the value of x.
2. In $\triangle X Y Z, X Y=5 \mathrm{~cm}, Y Z=6 \mathrm{~cm}$ and the area of $\triangle X Y Z$ is $12 \mathrm{~cm}^{2}$. Find $\angle X Y Z$.

In real life, a 'triangular' field is not always exactly a triangle. Therefore, a small error in measuring the included angle may result in a large error in the area of the triangle if we use the formula $\frac{1}{2} a b \sin C$. However, the error is usually not so large if we can use the lengths of the three sides of the triangle to find its area.

Heron of Alexandria (around AD 75) established a formula for finding the area of a triangle using the lengths of its sides only. The area of $\triangle A B C$ is given by $\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{a+b+c}{2}$ is half of the perimeter.

Verify that the above formula is correct for each of the following cases:
(a) $a=6 \mathrm{~cm}, b=8 \mathrm{~cm}$ and $c=10 \mathrm{~cm}$
(b) $a=8 \mathrm{~cm}, b=9 \mathrm{~cm}$ and $c=10 \mathrm{~cm}$
(c) $a=5 \mathrm{~cm}, b=3 \mathrm{~cm}$ and $c=7 \mathrm{~cm}$

Can you find a proof for this formula?

Exercise $6 B$

BASIC LEVEL

1. Find the area of each of the following figures.
(a)

(b)

(c)

(d)

(e)

(f)

2. Find the area of $\triangle A B C$, given that $A B=22 \mathrm{~cm}$, $A C=15 \mathrm{~cm}$ and $\angle B A C=45^{\circ}$.
3. In $\triangle P Q R, \angle P=72^{\circ}, q=152 \mathrm{~cm}$ and $r=125 \mathrm{~cm}$. Find the area of $\triangle P Q R$.
4. In $\triangle A B C, A B=32 \mathrm{~cm}, B C=43 \mathrm{~cm}$ and $\angle A B C=67^{\circ}$.

(i) Find the area of $\triangle A B C$.
(ii) Hence, find the perpendicular distance from A to $B C$.
5. The figure shows the plan of two neighbouring estates in the form of 2 triangles.

Calculate the area of the two estates.
6. In the figure, $\angle A D C=\angle A C B=90^{\circ}, \angle E A D=55.1^{\circ}$, $\angle C A B=40.4^{\circ}, A E=4.1 \mathrm{~cm}, A D=3.7 \mathrm{~cm}$ and $A C=8.0 \mathrm{~cm}$.

Find
(i) $\angle A C D$,
(ii) the length of $A B$,
(iii) the area of $\triangle A E D$.
7. In $\triangle A B C, A B=5 x \mathrm{~cm}, A C=4 x \mathrm{~cm}$ and $\angle B A C=68^{\circ}$.

Given that the area of $\triangle A B C$ is $97 \mathrm{~cm}^{2}$, find the value of x.

INTERMEDIATE LEVEL
8. In the figure, $A B=20 \mathrm{~cm}, \angle B A C=90^{\circ}, \angle A C B=30^{\circ}$ and $A D$ is perpendicular to $B C$.

Find
(i) $\angle B A D$,
(ii) $B D$,
(iii) the area of $\triangle A B C$.
9. The diagonals of a parallelogram have lengths 15.6 cm and 17.2 cm . They intersect at an angle of 120°. Find the area of the parallelogram.
10. In $\triangle P Q R, \angle P R Q=55^{\circ}, 3 Q R=4 P R$ and the area of $\triangle P Q R$ is $158 \mathrm{~cm}^{2}$.

Find the length of $Q R$.
11. Given that the area of a rhombus is $40 \mathrm{~cm}^{2}$ and that each side has a length of 15 cm , find the angles of the rhombus.

ADVANCED LEVEL

12. In quadrilateral $A B C D, A B=3.2 \mathrm{~cm}, B C=5.1 \mathrm{~cm}$, $\angle C B D=34.4^{\circ}$ and the length of the diagonal $B D$ is 7.5 cm . Given further that the area of $\triangle A B D$ is $11.62 \mathrm{~cm}^{2}$ and $\angle A B D$ is obtuse, find
(i) the area of $\triangle B C D$,
(ii) $\angle A B D$.

Investigation

Sine Rule

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry software template 'Sine Rule'.

Fig. 6.8 shows a triangle $A B C$ and a table of values.

Fig. 6.8

1. The labelling of the sides of the triangle with reference to the vertices is important. Copy and complete the following.
(a) The length of the side of the triangle opposite vertex A is labelled a.
(b) The length of the side of the triangle opposite vertex B is labelled \qquad _.
(c) The length of the side of the triangle opposite vertex C is labelled \qquad .
2. Click and drag each of the vertices A, B and C to get different types of triangles. To obtain special triangles such as a right-angled triangle, an isosceles triangle and an equilateral triangle, click on the respective buttons in the template. For each triangle, copy and complete Table 6.2.

No.	$\angle A$	$\angle B$	$\angle C$	a	b	c	$\frac{a}{\sin A}$	$\frac{b}{\sin B}$	$\frac{c}{\sin C}$
1.									
2.									
3.									
4.									
5.									
6.									

Table 6.2
3. What do you notice about the last 3 columns in Table 6.2?
4. Click on the button 'Show how to do animation' in the template and it will show you how to add 10 more entries to the table as the points A, B and C move automatically. What do you notice about the last 3 columns of the table in the template?
5. Hence, write down a formula relating the quantities in the last 3 columns of the table. This is called the Sine Rule. Notice that for each fraction, the side must be opposite the angle.
6. Do you think the relationship $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ is also true? Explain your answer.
7. Copy and complete the following:

The lengths of the sides of a triangle are p \qquad to the sine of the angles opposite the sides.

In a triangle,

- the largest angle is opposite the longest side,
- the smallest angle is opposite the shortest side.

From the investigation, we can conclude that:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text { or } \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

where A, B and C are the three interior angles of $\triangle A B C$ opposite the sides whose lengths are a, b and c respectively.

This is called the Sine Rule.
We can prove the sine rule using the formula for the area of a triangle obtained from the previous section, as shown on the next page.

For any triangle $A B C$,

$$
\frac{1}{2} b c \sin A=\frac{1}{2} a c \sin B=\frac{1}{2} a b \sin C .
$$

Dividing each side by $\frac{1}{2} a b c$,

$$
\frac{\frac{1}{2} b c \sin A}{\frac{1}{2} a b c}=\frac{\frac{1}{2} a c \sin B}{\frac{1}{2} a b c}=\frac{\frac{1}{2} a b \sin C}{\frac{1}{2} a b c}
$$

$\therefore \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

In $\triangle A B C, \angle A=67.6^{\circ}, \angle B=45.5^{\circ}$ and $A B=7.6 \mathrm{~cm}$. Find

(i) $\angle C$,
(ii) the length of $B C$,
(iii) the length of $A C$.

Solution:

(i) $\angle C=180^{\circ}-67.6^{\circ}-45.5^{\circ}(\angle$ sum of a $\triangle)$

$$
=66.9^{\circ}
$$

(ii) Using sine rule,

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{c}{\sin C} \\
\frac{a}{\sin 67.6^{\circ}} & =\frac{7.6}{\sin 66.9^{\circ}} \\
a & =\frac{7.6 \sin 67.6^{\circ}}{\sin 66.9^{\circ}} \\
& =7.64 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore B C=7.64 \mathrm{~cm}$
(iii) Using sine rule,

$$
\begin{aligned}
\frac{b}{\sin B} & =\frac{c}{\sin C} \\
\frac{b}{\sin 45.5^{\circ}} & =\frac{7.6}{\sin 66.9^{\circ}} \\
b & =\frac{7.6 \sin 45.5^{\circ}}{\sin 66.9^{\circ}} \\
& =5.89 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore A C=5.89 \mathrm{~cm}$

In $\triangle A B C, \angle B=58.3^{\circ}, \angle C=39.4^{\circ}$ and $B C=12.5 \mathrm{~cm}$. Find

Exercise 6C Questions 1(a)-(c), 2, 3, 7-11

(i) $\angle A$,
(ii) the length of $A B$,
(iii) the length of $A C$.

Worked Example

(Using Sine Rule when given 2 sides and 1 non-included angle)

In $\triangle A B C, \angle B=50^{\circ}, A B=7.5 \mathrm{~cm}$ and $A C=9.5 \mathrm{~cm}$. Find

(i) $\angle C$,
(ii) $\angle A$,
(iii) the length of $B C$.

Solution:

(i) Using sine rule,

$$
\begin{aligned}
& \frac{\sin C}{c}=\frac{\sin B}{b} \\
& \frac{\sin C}{7.5}=\frac{\sin 50^{\circ}}{9.5} \\
& \sin C=\frac{7.5 \sin 50^{\circ}}{9.5} \\
& =0.6048 \text { (to } 4 \text { s.f.) } \\
& \angle C=\sin ^{-1} 0.6048=37.21^{\circ} \text { (to } 2 \text { d.p.) } \\
& \text { or } 180^{\circ}-37.21^{\circ}=142.78^{\circ} \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

Since $c<b$, then $\angle C<\angle B$, hence $\angle C$ cannot be 142.78°.
$\therefore \angle C=37.2^{\circ}$ (to 1 d.p.)
(ii) $\angle \mathrm{A}=180^{\circ}-50^{\circ}-37.21^{\circ}(\angle$ sum of a $\triangle)$

$$
=92.8^{\circ} \text { (to } 1 \text { d.p.) }
$$

(iii) Using sine rule,

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{a}{\sin 92.79^{\circ}} & =\frac{9.5}{\sin 50^{\circ}} \\
a & =\frac{9.5 \sin 92.79^{\circ}}{\sin 50^{\circ}} \\
& =12.4 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore B C=12.4 \mathrm{~cm}$

PRACTISE NOW 7

SIMILAR

QUESTIONS

1. In $\triangle P Q R, \angle Q=42^{\circ}, P R=12 \mathrm{~cm}$ and $P Q=10.2 \mathrm{~cm}$. Find

Exercise 6C Questions 4(a)-(c), 5, 6, 12, 16
(i) $\angle R$,
(ii) $\angle P$,
(iii) the length of $Q R$.
2. In $\triangle A B C, \angle B A C=96.8^{\circ}, A C=12.4 \mathrm{~cm}$ and $B C=15.6 \mathrm{~cm}$. Find

(i) $\angle A B C$,
(ii) $\angle B C A$,
(iii) the length of $A B$.

Worked
 Example

(Ambiguous Case of Sine Rule)

In $\triangle A B C, \angle A B C=55^{\circ}, A B=16.3 \mathrm{~cm}$ and $A C=14.3 \mathrm{~cm}$. Find $\angle A C B, \angle B A C$ and the length of $B C$.

Solution:

Using sine rule,

$$
\begin{aligned}
\frac{\sin \angle A C B}{16.3} & =\frac{\sin 55^{\circ}}{14.3} \\
\sin \angle A C B & =\frac{16.3 \sin 55^{\circ}}{14.3} \\
& =0.9337 \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

```
\(\angle A C B=\sin ^{-1} 0.9337=69.02^{\circ}\) (to 2 d.p.)
or \(180^{\circ}-69.02^{\circ}=110.98^{\circ}\) (to 2 d.p.) (Since \(c>b\), then \(\angle C>\angle B\), i.e. \(\angle A C B>55^{\circ}\),
                                    hence both answers are possible.)
```

When $\angle A C B=69.02^{\circ}, \angle B A C=180^{\circ}-55^{\circ}-69.02^{\circ}$

$$
=55.98^{\circ}
$$

When $\angle A C B=110.98^{\circ}, \angle B A C=180^{\circ}-55^{\circ}-110.98^{\circ}$

$$
=14.02^{\circ}
$$

Notice that it is possible to construct two different triangles from the information above.

A set of information that will give two sets of solutions is said to be ambiguous. Hence, for ambiguous cases, two sets of solutions will be obtained.

Case 1: when $\angle A C B=69.02^{\circ}$ and $\angle B A C=55.98^{\circ}$

Using sine rule,

$$
\begin{aligned}
\frac{a}{\sin 55.98^{\circ}} & =\frac{16.3}{\sin 69.02^{\circ}} \\
a & =\frac{16.3 \sin 55.98^{\circ}}{\sin 69.02^{\circ}} \\
& =14.5 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore \angle A C B=69.0^{\circ}, \angle B A C=56.0^{\circ}$ and $B C=14.5 \mathrm{~cm}$

Case 2: when $\angle A C B=110.98^{\circ}$ and $\angle B A C=14.02^{\circ}$

Using sine rule,

$$
\begin{aligned}
\frac{a}{\sin 14.02^{\circ}} & =\frac{16.3}{\sin 110.98^{\circ}} \\
a & =\frac{16.3 \sin 14.02^{\circ}}{\sin 110.98^{\circ}} \\
& =4.23 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore \angle A C B=111.0^{\circ}, \angle B A C=14.0^{\circ}$ and $B C=4.23 \mathrm{~cm}$

If sides b, c and $\angle B$ (i.e. 2 sides and a non-included angle) are given, take note of each of the following cases.

Case 1: $b>c$
For example, construct $\triangle A B C$ such that $\angle A B C=52^{\circ}, A C=4.9 \mathrm{~cm}$ and $A B=4.5 \mathrm{~cm}$.

When $b>c$, one triangle can be constructed.
Therefore, there is only one value of $\angle A C B$.

Case 2: $b<c$
For example, construct $\triangle A B C$ such that $\angle A B C=52^{\circ}, A C=4 \mathrm{~cm}$ and $A B=4.5 \mathrm{~cm}$.

When $b<c$, two triangles can be constructed.
Therefore, there are two possible values of $\angle A C B$.

In $\triangle A B C, a$ is the side opposite to $\angle A, b$ is the side opposite to $\angle B$ and c is the side opposite to $\angle C$.

Case 3: $b<c \sin B$, where $c \sin B$ is the perpendicular distance from A to the line through B
For example, construct $\triangle A B C$ such that $\angle A B C=52^{\circ}, A B=4.5 \mathrm{~cm}$ and $A C=3 \mathrm{~cm}$.

When $b<c \sin B$, no triangle can be constructed.

PRACTISE NOW 8

In $\triangle A B C, \angle A B C=46^{\circ}, A B=9.8 \mathrm{~cm}$ and $A C=7.1 \mathrm{~cm}$. Find $\angle A C B, \angle B A C$ and the length of $B C$.

Exercise 6C Questions 13(a)-(f), 14(a)-(d), 15, 17

To solve a triangle means to find all the unknown sides and/or angles. From the worked examples, state the given conditions when sine rule can be used to solve a triangle.

BASIC LEVEL

1. For each of the following triangles, find the unknown angles and sides.

(b)

(c)

2. In $\triangle P Q R, Q R=7 \mathrm{~cm}, \angle P Q R=47^{\circ}$ and $\angle P R Q=97^{\circ}$. Find the length of $P Q$.
3. In $\triangle P Q R, \angle P=75^{\circ}, \angle Q=60^{\circ}$ and $q=14 \mathrm{~cm}$. Find the length of the longest side.
4. For each of the following triangles $A B C$, find the unknown angles and sides.

(a) $\angle A=92.0^{\circ}, b=6.93 \mathrm{~cm}$ and $a=15.3 \mathrm{~cm}$
(b) $\angle B=98.0^{\circ}, a=14.5 \mathrm{~m}$ and $b=17.4 \mathrm{~m}$
(c) $\angle C=35.0^{\circ}, b=8.7 \mathrm{~cm}$ and $c=9.5 \mathrm{~cm}$
5. In $\triangle P Q R, \angle P=101^{\circ}, P Q=13.4 \mathrm{~cm}$ and $Q R=20.8 \mathrm{~cm}$. Find

(i) $\angle R$,
(ii) $\angle Q$,
(iii) the length of $P R$.
6. In $\triangle A B C, \angle A B C=91^{\circ}, B C=7.4 \mathrm{~cm}$ and $A C=11.6 \mathrm{~cm}$. Find
(i) $\angle B A C$,
(ii) $\angle A C B$,
(iii) the length of $A B$.

intermediate level

7. The figure shows a metal framework in which $A D$ is horizontal with $B D=7.1 \mathrm{~m}, \angle B A D=25^{\circ}$, $\angle B D C=46^{\circ}, \angle D B C=103^{\circ}$ and the height of B above $A D$ is 5.3 m .

Find
(i) the length of the metal bar $A B$,
(ii) the angle that $B D$ makes with $B N$,
(iii) the length of the metal bar $C D$.
8. In the figure, A, C and D are three points along a straight road where $\angle A B C=62^{\circ}, \angle A C B=68^{\circ}$, $B C=6 \mathrm{~m}$ and $C D=7.5 \mathrm{~m}$.

Find
(i) the distance $A C$,
(ii) the area of the region enclosed by $A B, B D$ and $D A$.
9. An experiment is carried out to determine the extension of springs. Springs are attached to a horizontal bar at A, B and C and are joined to a mass D.

Given that $\angle A C D=40^{\circ}, \angle C A D=30^{\circ}, \angle A B D=80^{\circ}$ and $B D=5 \mathrm{~cm}$, find
(i) the distance between A and B,
(ii) the distance between B and C,
(iii) the vertical distance between the mass and the horizontal bar.
10. In the figure, $R S T$ is a straight line, $\angle P S T=90^{\circ}$, $\angle S P R=63^{\circ}, \angle P S Q=74^{\circ}, P S=4.3 \mathrm{~cm}$ and $S T=5.7 \mathrm{~cm}$.

(i) Determine if $Q S$ is parallel to $P T$.
(ii) Find the length of $P R$.
(iii) Find the length of $Q S$.
11. In the figure, $P Q R S$ is a nature reserve. A 5.7 km long walkway connects Q to S. It is given that $\angle Q R S=90^{\circ}, \angle S Q R=73^{\circ}, \angle P Q S=48^{\circ}$ and $\angle P S Q=55^{\circ}$.

Find the area of the nature reserve.
12. In the figure, $\angle P Q R=\angle P S R=90^{\circ}, \angle Q P R=27.6^{\circ}$, $\angle P T S=64.2^{\circ}, P R=5.7 \mathrm{~cm}, P S=3.2 \mathrm{~cm}$ and $P T=2.7 \mathrm{~cm}$.

Find
(i) the length of $Q R$,
(ii) $\angle S P R$,
(iii) $\angle P S T$.
13. For the data of each of the following triangles, determine whether it is an ambiguous case. Explain your answer.
(a) $\triangle A B C, \angle A=92^{\circ}, b=7.5 \mathrm{~cm}, a=8.5 \mathrm{~cm}$
(b) $\triangle D E F, \angle D=47^{\circ}, d=75 \mathrm{~m}, e=80 \mathrm{~m}$
(c) $\Delta G H I, g=37 \mathrm{~mm}, h=37 \mathrm{~mm}, \angle G=58^{\circ}$
(d) $\triangle J K L, j=19 \mathrm{~cm}, k=15 \mathrm{~cm}, \angle K=39^{\circ}$
(e) $\triangle M N O, n=80 \mathrm{~m}, o=67 \mathrm{~m}, \angle O=43^{\circ}$
(f) $\triangle P Q R, p=19 \mathrm{~mm}, q=25 \mathrm{~mm}, \angle Q=52^{\circ}$
14. Determine whether it is possible to construct each of the following triangles with the given conditions.
(a) $\triangle A B C, A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$, $\angle A B C=90^{\circ}$ and $\angle A C B=35^{\circ}$
(b) $\triangle P Q R, P Q=6 \mathrm{~cm}, P R=5 \mathrm{~cm}$, $\angle P Q R=30^{\circ}$ and $\angle P R Q=36.9^{\circ}$
(c) $\triangle L M N, L M=6.9 \mathrm{~cm}$ and $L N=7.8 \mathrm{~cm}$, $\angle L M N=42^{\circ}$ and $\angle L N M=57^{\circ}$
(d) $\triangle G H K, G H=6.4 \mathrm{~cm}$ and $G K=12.8 \mathrm{~cm}$, $\angle G H K=90^{\circ}$ and $\angle H G K=60^{\circ}$
15. In $\triangle A B C, \angle B A C=58^{\circ}, B C=14.0 \mathrm{~cm}$ and $A C=15.4 \mathrm{~cm}$. Find $\angle A B C, \angle A C B$ and the length of $A B$.

ADVANCED LEVEL

16. On a map whose scale is 8 cm to 1 km , an undeveloped plot of land is shown as a quadrilateral $A B C D$. The length of the diagonal $A C$ is $7 \mathrm{~cm}, \angle B A C=55^{\circ}, \angle B C A=77^{\circ}, \angle D A C=90^{\circ}$ and $\angle D C A=40^{\circ}$. Find
(i) the length, in cm , of the side $A B$ on the map,
(ii) the length, in km, which is represented by $A D$,
(iii) the area, in km^{2}, which is represented by $\triangle A D C$.
17. In $\triangle A B C, \angle A=35^{\circ}, B C=5 \mathrm{~cm}$ and $\sin B=\frac{4}{3} \sin A$.
(i) Calculate two possible values of $\angle B$.
(ii) Find the length of $A C$.

From the journal writing in Section 6.3, we have observed that the Sine Rule can be used to solve a triangle if the following are given:
(1) Two angles and the length of one side (see Worked Example 6); or
(2) The lengths of two sides and one non-included angle (see Worked Example 7).

What happens if the lengths of two sides and an included angle are given (see Fig. 6.9)? Can you try to use sine rule to solve the triangle?

Fig. 6.9

Investigation

Cosine Rule

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry software template 'Cosine Rule'.

Fig 6.10 shows a triangle $A B C$ and a table of values.

Cosine Rule

Fig 6.10

1. The labelling of the sides of the triangle with reference to the vertices is important. Copy and complete the following.
(a) The length of the side of the triangle opposite vertex A is labelled a.
(b) The length of the side of the triangle opposite vertex B is labelled \qquad .
(c) The length of the side of the triangle opposite vertex C is labelled \qquad .
2. Click and drag each of the vertices A, B and C to get different types of triangles. To obtain special triangles such as a right-angled triangle, an isosceles triangle and an equilateral triangle, click on the respective buttons in the template. For each triangle, copy and complete Table 6.3.

No.	$\angle A$	$\angle B$	$\angle C$	a^{2}	$b^{2}+c^{2}-2 b c \cos A$	b^{2}	$a^{2}+c^{2}-2 a c \cos B$	c^{2}	$a^{2}+b^{2}-2 a b \cos C$
1.									
2.									
3.									
4.									
5.									
6.									

Table 6.3

3. What do you notice about the last 6 columns in Table 6.3 ?
4. Click on the button 'Show how to do animation' in the template and it will show you how to add 10 more entries to the table as the points A, B and C move automatically. What do you notice about the last 6 columns of the table in the template?
5. Hence, write down a formula relating the quantities in the last 6 columns of the table. This is called the Cosine Rule. Notice that for each fraction, the side by itself must be opposite the angle.
6. For each of the formulae in Question 5, make the angle the subject of the formula.

From the investigation, we can conclude that:

$$
\begin{array}{lll}
a^{2}=b^{2}+c^{2}-2 b c \cos A & \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
b^{2}=a^{2}+c^{2}-2 a c \cos B & \text { or } & \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
c^{2}=a^{2}+b^{2}-2 a b \cos C & \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{array}
$$

where A, B and C are the three interior angles of $\triangle A B C$ opposite the sides whose lengths are a, b and c respectively.

This is called the Cosine Rule.

We can prove the cosine rule as follows. Without loss of generality, we will just prove $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

There are three cases: $\angle A$ is an acute angle, $\angle A$ is an obtuse angle and $\angle A$ is a right angle. We will show the case when A is acute.

Fig. 6.11
In $\triangle B C D$,

$$
\begin{aligned}
a^{2} & =h^{2}+(b-x)^{2} \text { (Pythagoras' Theorem) } \\
& =h^{2}+b^{2}-2 b x+x^{2} \\
& =b^{2}+\left(h^{2}+x^{2}\right)-2 b x---(1)
\end{aligned}
$$

In $\triangle B A D$,

$$
c^{2}=h^{2}+x^{2} \text { (Pythagoras' Theorem) --- (2) }
$$

and

$$
\cos A=\frac{x}{c}
$$

i.e. $\quad x=c \cos A$--- (3)

Substituting (2) and (3) into (1),

$$
\begin{aligned}
a^{2} & =b^{2}+\left(h^{2}+x^{2}\right)-2 b x \\
& =b^{2}+c^{2}-2 b c \cos A \text { (proven) }
\end{aligned}
$$

Thinking Time

1. Prove the Cosine Rule for Case 2 where $\angle A$ is an obtuse angle.
2. Let us consider Case 3 where $\angle A$ is a right angle.
(a) What happens to the formula for the Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ if $A=90^{\circ}$?
(b) Is this formula always true if $A=90^{\circ}$? Explain your answer.
3. Copy and complete the following:
\qquad Theorem is a special case of the Cosine Rule.

Worked Example

In $\triangle A B C, B C=8.8 \mathrm{~cm}, A C=10.4 \mathrm{~cm}$ and $\angle A C B=67^{\circ}$. Find

(i) the length of $A B$,
(ii) $\angle A B C$,
(iii) $\angle B A C$.

Solution:

(i) Using cosine rule,

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
A B^{2} & =8.8^{2}+10.4^{2}-2 \times 8.8 \times 10.4 \times \cos 67^{\circ} \\
& =114.1 \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$$
\therefore A B=\sqrt{114.1}
$$

$$
=10.7 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) Using sine rule,
$\frac{\sin \angle A B C}{A C}=\frac{\sin \angle A C B}{A B}$
$\frac{\sin \angle A B C}{10.4}=\frac{\sin 67^{\circ}}{10.68}$
$\sin \angle A B C=\frac{10.4 \sin 67^{\circ}}{10.68}$

$$
=0.8963 \text { (to } 4 \text { s.f.) }
$$

or $180^{\circ}-63.68^{\circ}=116.32^{\circ}$ (to 2 d.p.)

In order for the final answer to be accurate to three significant figures, any intermediate working must be correct to four significant figures, i.e. $A B \approx 10.68 \mathrm{~cm}$.

$$
\angle A B C=\sin ^{-1} 0.8963=63.68^{\circ} \text { (to } 2 \text { d.p.) }
$$

Since $A C<A B$, then $\angle B<\angle C$, hence $\angle B$ cannot be 116.32°.

$$
\therefore \angle A B C=63.7^{\circ} \text { (to } 1 \text { d.p.) }
$$

(iii) $\angle B A C=180^{\circ}-63.68^{\circ}-67^{\circ}(\angle$ sum of a $\triangle)$

$$
=49.3^{\circ} \text { (to } 1 \text { d.p.) }
$$

PRACTISE NOW 9

In $\triangle P Q R, P Q=10.8 \mathrm{~cm}, Q R=15.9 \mathrm{~cm}$ and $\angle P Q R=71^{\circ}$. Find

(i) the length of $P R$,
(ii) $\angle Q P R$,
(iii) $\angle P R Q$.

Worked 10 Example

(Using Cosine Rule when given 3 sides)
In $\triangle A B C, A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=9 \mathrm{~cm}$. Find the size of the smallest angle.

Solution:

The smallest angle is the angle opposite the shortest side, i.e. $\angle B A C$.
Using cosine rule,

$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{9^{2}+12^{2}-8^{2}}{2 \times 9 \times 12} \\
& =\frac{161}{216} \\
\angle A & =\cos ^{-1} \frac{161}{216}=41.8^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

\therefore The smallest angle is 41.8°.

In $\triangle P Q R, P Q=13 \mathrm{~cm}, Q R=18 \mathrm{~cm}$ and $P R=11 \mathrm{~cm}$.
Find the size of the largest angle.

Exercise 6D Questions 4-6, 11-17

Exercise

 6D
BASIC LEVEL

1. In $\triangle A B C, a=5 \mathrm{~cm}, b=7 \mathrm{~cm}$ and $\angle C=60^{\circ}$. Find c.
2. In $\triangle G H I, g=9 \mathrm{~cm}, i=7 \mathrm{~cm}$ and $\angle H=30^{\circ}$. Find h.
3. In $\triangle M N O, m=4.2 \mathrm{~cm}, n=5.8 \mathrm{~cm}$ and $\angle O=141.4^{\circ}$. Find o.
4. In $\triangle X Y Z, x=7 \mathrm{~m}, y=8 \mathrm{~m}$ and $z=9 \mathrm{~m}$. Find the unknown angles.
5. In $\triangle A B C, A B=6.7 \mathrm{~cm}, B C=3.8 \mathrm{~cm}$ and $A C=5.3 \mathrm{~cm}$. Find the size of the smallest angle.
6. In $\triangle P Q R, P Q=7.8 \mathrm{~cm}, Q R=9.1 \mathrm{~cm}$ and $P R=4.9 \mathrm{~cm}$. Find the size of the largest angle.

INTERMEDIATE LEVEL

7. In the figure, the point B lies on $A C$ such that $A B=8 \mathrm{~m}, B D=9 \mathrm{~m}, \angle A B D=125^{\circ}$ and $\angle B C D=55^{\circ}$.

Find
(i) the length of $C D$,
(ii) the length of $A D$.
8. The figure shows the cross section of the roof of an old cottage. It is given that $A P=5 \mathrm{~m}, P C=8 \mathrm{~m}$, $\angle A P C=60^{\circ}$ and $\angle A B C=45^{\circ}$.

Find
(i) the length of $A B$,
(ii) the length of $A C$.
9. In $\triangle A B C, B C=4 \mathrm{~cm} . M$ is the midpoint of $B C$ such that $A M=4 \mathrm{~cm}$ and $\angle A M B=120^{\circ}$. Find
(i) the length of $A C$,
(ii) the length of $A B$,
(iii) $\angle A C B$.
10. The figure shows the supports of the roof of a building in which $B D=5 \mathrm{~m}, A D=C D=12 \mathrm{~m}$, $B Q=7 \mathrm{~m}$ and $\angle P D A=50^{\circ}$.

Find
(i) $\angle B A D$,
(ii) the length of the support $P D$,
(iii) the length of the support $D Q$.
11. The figure shows a quadrilateral with the dimensions as shown.

Find
(i) the value of a,
(ii) θ.
12. In the figure, D is a point on $C B$ such that $A D=2 \mathrm{~cm}, A C=4.5 \mathrm{~cm}, C D=3.5 \mathrm{~cm}$ and $\angle A B D=50^{\circ}$.

Find
(i) $\angle A D B$,
(ii) the shortest distance from A to $C B$,
(iii) the length of $B D$.
13. On a map whose scale is 2 cm to 5 km , a farm is shown as a triangle $X Y Z$. Given that $X Y=9 \mathrm{~cm}$, $Y Z=12 \mathrm{~cm}$ and $X Z=8 \mathrm{~cm}$, find
(i) the length, in km, which is represented by $X Z$,
(ii) $\angle Y X Z$,
(iii) the area, in km^{2}, which is represented by $\triangle X Y Z$.
14. In a trapezium $A B C D, A B$ is parallel to $D C$, $A B=4.5 \mathrm{~cm}, B C=5 \mathrm{~cm}, C D=7.5 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$. The point X lies on $C D$ such that $B X$ is parallel to $A D$. Find $\angle B C X$ and the length of $B D$.

ADVANCED LEVEL

15. The figure shows two triangles $A B C$ and $A D E$.

(i) Determine if $\triangle A D E$ is an enlargement of $\triangle A B C$.
(ii) Find the value of $\cos \theta$.
(iii) Hence, find the value of x.
16. In the figure, the point P lies on $A B$ such that $A P=5 \mathrm{~cm}$ and $P B=3 \mathrm{~cm}$. The point Q lies on $A C$ such that $A Q=6 \mathrm{~cm}$ and $Q C=7 \mathrm{~cm}$.

Find the length of $P Q$.
16. In $\triangle A B C, A B=8 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $C A=6 \mathrm{~cm}$. $B C$ is produced to R so that $C R=3 \mathrm{~cm}$.
(i) Express $\cos \angle B C A$ in the form $\frac{p}{q}$, where p and q are integers.
(ii) Hence, find the length of $A R$.

1. For any angle A, the sine and cosine of an angle A are defined as follows:

$$
\sin A=\frac{y}{r} \text { and } \cos A=\frac{x}{r}
$$

where (x, y) are the coordinates of a point P on a circle with centre O and radius r as shown.

(a)

(b)
2. $\sin A=\sin \left(180^{\circ}-A\right)$
$\cos A=-\cos \left(180^{\circ}-A\right)$
3. Area of $\triangle A B C=\frac{1}{\mathbf{2}} a b \sin C$
4. Sine Rule

In any $\triangle A B C$,

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \text { or } \\
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} .
\end{aligned}
$$

The Sine Rule can be used to solve a triangle (i.e. find the unknown sides and angles) if the following are given:

- two angles and the length of one side; or
- the lengths of two sides and one non-included angle

5. Cosine Rule

In any $\triangle A B C$,

$$
\begin{array}{lll}
a^{2}=b^{2}+c^{2}-2 b c \cos A & \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
b^{2}=a^{2}+c^{2}-2 a c \cos B & \text { or } & \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
c^{2}=a^{2}+b^{2}-2 a b \cos C & \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{array}
$$

The Cosine Rule can be used to solve a triangle if the following are given:

- the lengths of all three sides; or
- the lengths of two sides and an included angle

1. In the figure, A is a point on $T B$ such that $A B=7 \mathrm{~cm}$ and C is a point on $B D$ such that $B C=24 \mathrm{~cm}$.

Given that $\angle T B D=90^{\circ}$, find
(a) $A C$,
(b) the value of each of the following.
(i) $\tan \angle A C B$
(ii) $\cos \angle A C D$
(iii) $\sin \angle T A C$
2. In the figure, $P Q R S$ is a straight line and $\angle Q T R=90^{\circ}$. It is also given that $Q T=35 \mathrm{~cm}$ and $T R=12 \mathrm{~cm}$.

(a) Find the length of $Q R$.
(b) Express each of the following as a fraction in its simplest form.
(i) $\sin \angle P Q T$
(ii) $\cos \angle P Q T$
(iii) $\tan \angle T Q R+\tan \angle T R Q$
3. The figure shows $\triangle A B C$ with vertices $A(3,5)$, $B(-3,2)$ and $C(-3,-3)$.

Find the value of each of the following.
(i) $\cos \angle A B C$
(ii) $\sin \angle A B C$
(iii) $\tan \angle A C B$
4. The figure shows the points $A(-3,-4), B(-3,-1)$ and $C(9,4)$

Find
(i) the length of $B C$ and of $A C$,
(ii) the value of $\sin \angle A B C$ and of $\cos \angle A B C$,
(iii) the area of $\triangle A B C$,
(iv) the length of the perpendicular from B to $A C$.
5. Given that $0^{\circ}<x<180^{\circ}$, find the possible values of x for each of the following equations.
(a) $\sin x=0.419$
(b) $\cos x=0.932$
(c) $\tan x=0.503$
(d) $\cos x=-0.318$
6. In $\triangle P Q R, P Q=12 \mathrm{~cm}, Q R=35 \mathrm{~cm}$ and $P R=37 \mathrm{~cm}$.

(a) Explain why $\angle P Q R$ is a right angle.
(b) $Q R$ is produced to S such that $R S=16 \mathrm{~cm}$. Find
(i) the value of $\cos \angle P R S$ and of $\sin \angle P R S$,
(ii) $\angle R P S$.
7. In the figure, $A B D$ is a straight line, $A B=7 \mathrm{~cm}$, $A C=11 \mathrm{~cm}$ and $\sin \angle C B D=\frac{3}{4}$.

Find
(i) $\sin \angle A C B$, giving your answer as a fraction in its simplest form,
(ii) $\angle B A C$,
(iii) the area of $\triangle A B C$,
(iv) the length of $B C$.
8. In the figure, $A B C D$ is a rectangular hoarding and $P Q, B P$ and $B Q$ are three pieces of wood nailed at the back to support the hoarding.

Given that $B P=5.7 \mathrm{~m}, B Q=4.8 \mathrm{~m}, \angle P B Q=26^{\circ}$ and $\angle C B Q=52^{\circ}$, find
(i) the width of the hoarding, $B C$,
(ii) the length of $A P$,
(iii) the area enclosed by the three pieces of wood, $\triangle P B Q$,
(iv) the length of $P Q$,
(v) $\angle B P Q$.
9. The figure shows a park $P Q R S$ where $P S=460 \mathrm{~m}$, $Q R=325 \mathrm{~m}, \angle P S Q=38^{\circ}, \angle Q P S=55^{\circ}$ and $\angle R Q S=32^{\circ}$.

(i) Find the length of $Q S$.
(ii) Find the length of $R S$.
(iii) What is the shortest distance between Q and $P S$?
(iv) Find the area occupied by the park.
10. Four children are standing in the field at the points A, B, C and D, playing a game of 'Catch Me^{\prime}. It is given that $A B=168 \mathrm{~cm}, A D=210 \mathrm{~cm}$, $C D=192 \mathrm{~cm}, \angle B A C=42^{\circ}$ and $\angle A B C=64^{\circ}$.

(i) Given that Huixian, who is standing at A, runs towards Lixin who is standing at C, find the distance $A C$ that Huixian has to run to reach Lixin.
(ii) Find $\angle A D C$.
(iii) Calculate the area of $A B C D$, giving your answer in m^{2}.
11. The figure shows a quadrilateral $P Q R S$. Given that $P Q=98 \mathrm{~m}, R S=68 \mathrm{~m}, \angle S Q R=62^{\circ}$, $\angle P Q S=43^{\circ}$ and $\angle S R Q=71^{\circ}$, find

(i) the area of $\triangle S Q R$,
(ii) the length of $P S$.
12. The figure shows a triangular park $A B C$ where $A B=470 \mathrm{~m}, A C=320 \mathrm{~m}$ and $\angle B A C=35^{\circ} . P$ is a lamp post inside the park such that $\angle B P C=118^{\circ}$ and $\angle P C B=24^{\circ}$.

Find
(i) the area of the park,
(ii) the distance between B and C,
(iii) the distance between P and C.

In the figure, $A B C D E F G H$ is a regular octagon with sides 8 cm and $A H I J K$ is a regular pentagon. Find
(a) the length of $H K$ and of $G K$,
(b) the area of $\triangle F G K$.

Chapter

LEARNING OBJECTIVES

At the end of this chapter, you should be able to:

- solve simple practical problems in two and three dimensions including those involving angles of elevation and depression and bearings.

: Recap

In Book 2, we have learnt that trigonometry can be used to find the heights of buildings and mountains. We have also learnt that a clinometer may be used to obtain the angle of elevation of the top of an object, as shown in Fig. 7.1.

Fig. 7.1
In this section, we will learn about angles of elevation and depression and how they may be used to solve simple problems.

: ind Angles of Elevation and Depression

Fig. 7.2 shows Khairul standing in front of a vertical wall $B C . A$ is the point where his eyes are and $A D$ is an imaginary horizontal line from his eyes to the wall.

Fig. 7.2
When Khairul looks at the top of the wall, B, the angle between the horizontal $A D$ and the line of sight $A B$, i.e. $\angle B A D$, is called the angle of elevation.

When Khairul looks at the bottom of the wall, C, the angle between the horizontal $A D$ and the line of sight $A C$, i.e. $\angle C A D$, is called the angle of depression.

Worked Example

(Problem involving Angle of Elevation)

A window of a building is 50 m above the ground. Given that the angle of elevation of the window from a point on the ground is 42°, find the distance of the point on the ground from the foot of the building.

Solution:

Let $x \mathrm{~m}$ be the distance of the point on the ground from the foot of the building.

$$
\begin{aligned}
\tan 42^{\circ} & =\frac{50}{x} \\
x \tan 42^{\circ} & =50 \\
x & =\frac{50}{\tan 42^{\circ}} \\
& =55.5 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The distance of the point on the ground from the foot of the building is 55.5 m .

PRACTISE NOW 1

1. The angle of elevation of the top of an office tower of height 43 m from a point on level ground is 34°. Find the distance of the point on the ground from the foot of the tower.

Exercise 7A Questions 1-3, 7-10, 13
2. A lighthouse $T L$ has a height of 50 m . The angles of elevation of the top of the lighthouse T from boat A and boat B are 48° and 38° respectively. Find the distance between boats A and B.

(Problem involving Angle of Depression)

A cliff is 65 m high. Given that the angle of depression of a boat from the top of the cliff is 32°, find the distance between the boat and the base of the cliff.

Solution:

Method 1:

$\angle R P Q=32^{\circ}$ (alt. $\angle \mathrm{s}, S R / / P Q$)
$\tan 32^{\circ}=\frac{65}{P Q}$
$\therefore P Q=\frac{65}{\tan 32^{\circ}}$

$$
=104 \mathrm{~m} \text { (to } 3 \mathrm{~s} . \mathrm{f} .)
$$

Method 2:

$\angle P R Q+32^{\circ}=90^{\circ}(\angle Q R S$ is a right angle. $)$
$\therefore \angle P R Q=90^{\circ}-32^{\circ}$

$$
=58^{\circ}
$$

$\tan 58^{\circ}=\frac{P Q}{65}$
$\therefore P Q=65 \tan 58^{\circ}$

$$
=104 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

\therefore The distance between the boat and the base of the cliff is 104 m .

PRACTISE NOW 2

SIMILAR
 QUESTIONS

1. The Singapore Flyer is an iconic giant observation wheel built on top of a terminal building. The diameter of the wheel is approximately 150 m and the highest point of the wheel is about 165 m above the ground. From the point A at the top of wheel, Nora observes that the angle of depression of a sports car C on the ground is 25°.

Find
(i) the distance of the sports car from a point B which is on ground level directly below A,
(ii) the angle of depression of the sports car from the centre of the wheel, W.
2. From the top of a cliff 52 m high, the angles of depression of two ships A and B due east of it are 36° and 24° respectively.

Calculate the distance between the two ships.

Exercise 7A Questions 4-6, 11, 12, 14

BASIC LEVEL

1. Lixin, standing at P, is flying a kite attached to a string of length 140 m . The angle of elevation of the kite K from her hand is 58°. Assuming that the string is taut, find the height of the kite above her hand.

2. Two buildings on level ground are 120 m and 85 m tall respectively. Given that the angle of elevation of the top of the taller building from the top of the shorter building is 33.9°, find the distance between the two buildings.
3. At a certain time in a day, a church spire $P Q, 44 \mathrm{~m}$ high, casts a shadow $R Q, 84 \mathrm{~m}$ long. Find the angle of elevation of the top of the spire from the point R.

4. A building is 41 m high. Given that the angle of depression of a fire hydrant from the top of the building is 33°, find the distance between the fire hydrant and the foot of the building.
5. A boat is 65.7 m away from the base of the cliff. Given that the angle of depression of the boat from the top of the cliff is 28.9°, find the height of the cliff.
6. A castle has a height of 218 m . Given that an unusual bird is 85 m away from the foot of the castle, find the angle of depression of the bird from the top of the castle.

INTERMEDIATE LEVEL

7. A clock tower has a height of 45 m . The angles of elevation of the top of the clock tower from two points on the ground are 42° and 37° respectively.

Find the distance between the two points.
8. A castle stands on top of a mountain. At a point on level ground which is 55 m away from the foot of the mountain, the angles of elevation of the top of the castle and the top of the mountain are 60° and 45° respectively. Find the height of the castle.
9. An overhead bridge has a height of 5.5 m . The angles of elevation of the top of the bridge from two points P and Q on the ground are x° and 23° respectively.

Given that the distance between P and Q is 5.1 m , find the value of x.
10. The Eiffel Tower in Paris has a height of 320 m . When Kate stands at the point A, the angle of elevation of the top of the tower is 38°. Kate walks x metres to a point B and observes that the angle of elevation of the top of the tower is now 58°.

Find the value of x.
11. From the top of a cliff 88 m high, the angles of depression of two boats due west of it are 23° and 18° respectively. Calculate the distance between the two boats.
12. A satellite dish stands at the top of a cliff. From the top of the satellite dish, the angle of depression of a ship which is 80 m away from the base of the cliff is 37°. From the foot of the satellite dish, the angle of depression of the same ship is 32°. Find the height of the satellite dish.

ADVANCED LEVEL

13. A flagpole of height 12.2 m is placed on top of a building of height h metres. From a point T on level ground, the angle of elevation of the base of the flagpole B is 26° and the angle of elevation of the top of the flagpole C is 35°.

Find the value of h.
14. A tower with a height of 27 m stands at the top of a cliff. From the top of the tower, the angle of depression of a guard house is 56°. From the foot of the tower, the angle of depression of the same guard house is 49°. Find
(i) the distance between the base of the cliff and the guard house,
(ii) the height of the cliff.

7(0) Bearings

Fig. 7.3 shows the positions of four points A, B, C and D relative to an origin O. N, E, S and W represent the directions north, east, south and west from O respectively.

Fig. 7.3
The bearing of A from O is an angle measured from the north, at O, in a clockwise direction and is always written as a three-digit number. Hence, the bearing of A from O is 070°.

The bearing of B from O is equal to $180^{\circ}-25^{\circ}$. Hence, the bearing of B from O is 155°.

The bearing of C from O is equal to $270^{\circ}-40.5^{\circ}$. Hence, the bearing of C from O is 229.5°.

What is the bearing of D from O ?

The bearing of N is taken as 000° or 360°. The bearing of E from O is 090°. Similarly, the bearing of S from O is 180°. What is the bearing of W from O ?

When reading compass bearings, directions are usually measured from either the north or the south. For example, 070° is written as $\mathrm{N} 70^{\circ} \mathrm{E}$ and 210° is written as $\mathrm{S} 30^{\circ} \mathrm{W}$. When reading true bearings, directions are given in terms of the angles measured clockwise from the north.

Worked Example

(Finding the Bearing)
Find the bearing of

(a) A from O,
(b) B from O,
(c) O from A,
(d) O from B.

Solution:

(a) Bearing of A from O is 055°

(b) The bearing of B from O is given by the reflex angle $\theta_{1^{\prime}}$, which is $\left(270^{\circ}+25^{\circ}\right)$.
\therefore Bearing of B from O is 295°
(c) The bearing of O from A is given by the reflex angle $\theta_{2^{\prime}}$, which is $\left(180^{\circ}+55^{\circ}\right)$.
\therefore Bearing of O from A is 235°

For (c), follow the steps as shown.
Step 1: Draw the north line from A.
Step 2: Draw the angle clockwise from the north line to $O A$.

Step 3: Find the angle θ_{2}.
(d) The bearing of O from B is given by the obtuse angle $\theta_{3^{\prime}}$, which is $\left(90^{\circ}+25^{\circ}\right)$.
\therefore Bearing of O from B is 115°

PRACTISE NOW 3

1. Find the bearing of
(a) A from O,
(b) B from O,
(c) O from A,
(d) O from B.

SIMILAR
 QUESTIONS

Exercise 7B Questions 1-3, 6-8
2. Find the bearing of
(a) P from O,
(b) Q from O,
(c) O from P,
(d) O from Q.

(Problem involving Bearings)

Three points A, B and C are on level ground such that B is due north of A, the bearing of C from A is 046° and the bearing of C from B is 125°. Given that the distance between A and B is 200 m , find the distance of C from A.

Solution:

Since the bearing of C from B is 125°,

$$
\text { i.e. } \begin{aligned}
\angle A B C & =180^{\circ}-125^{\circ}=55^{\circ} \\
& =180^{\circ}-46^{\circ}-55^{\circ}(\angle \text { sum of a } \triangle) \\
& =79^{\circ}
\end{aligned}
$$

Using sine rule,

$$
\begin{aligned}
\frac{A C}{\sin 55^{\circ}} & =\frac{200}{\sin 79^{\circ}} \\
A C & =\frac{200 \sin 55^{\circ}}{\sin 79^{\circ}} \\
& =167 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 4

SIMILAR
 QUESTIONS

1. Three points P, Q and R are on level ground such that P is due south of Q, the bearing of R from Q is 118° and the bearing of R from P is 044°. Given that the distance between Q and R is 150 m , find the distance of P from Q.

2. In the figure, A, B and C are points of an amusement park on level ground, with A due north of B. Given that $\angle B A C=68^{\circ}, A B=250 \mathrm{~m}$ and $\angle C B D=115^{\circ}$, find
(i) the bearing of B from C,
(ii) the length of $A C$ and of $B C$.

Worked
 Example

(Problem involving Bearings)

A boat sailed 20 km from a point P to an island Q, on a bearing of 150°. It then sailed another 30 km on a bearing of 50° to a lighthouse R. Find the distance and the bearing of the lighthouse from P.

Solution:

$\angle P Q R=30^{\circ}+50^{\circ}=80^{\circ}$

To find distance $P R$ using cosine rule, we need to find $\angle P Q R$ first.

To find the bearing of R from P, we need to find $\angle Q P R$ first.
$150^{\circ}-63.39^{\circ}=86.61^{\circ}$ (to 2 d.p.)
\therefore Bearing of the lighthouse from P is 086.6°

PRACTISE NOW 5

The figure shows three towns on level ground. Given that the bearing of B from A is 120°, the bearing of C from B is $238^{\circ}, A B=35 \mathrm{~km}$ and $B C=55 \mathrm{~km}$, find
(i) the distance between towns A and C,
(ii) the bearing of town C from town A.

Worked Example 6

 (Problem involving Bearings)The figure shows three points on level ground. The bearing of B from A is 117°, the bearing of A from C is $326^{\circ}, A B=48 \mathrm{~m}$ and $A C=63 \mathrm{~m}$. Calculate
(i) the length of $B C$,
(ii) the bearing of B from C,
(iii) the shortest distance from B to $A C$.

Exercise 7B Questions 10, 11
(ii) Using sine rule,

$$
\begin{aligned}
\frac{\sin \angle A C B}{48} & =\frac{\sin 29^{\circ}}{31.36} \\
\sin \angle A C B & =\frac{48 \sin 29^{\circ}}{31.36} \\
& =0.7421 \text { (to } 4 \text { s.f.) } \\
\angle A C B & =\sin ^{-1} 0.7421 \\
& =47.91^{\circ} \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

To find the bearing of B from C, i.e. $\theta_{2^{\prime}}$ which angles do we need to find?

What is the shortest distance from a point to a line?

SIMILAR
 QUESTIONS

Exercise 7B Questions 12, 13, 15
A, B, C and D are four points on level ground. The bearing of C from D is 118° and the bearing of A from C is 254°.

Given that $A B=2.6 \mathrm{~km}, C D=3.4 \mathrm{~km}, \angle A B D=126^{\circ}$ and $A B C$ is a straight line, find
(i) the bearing of B from D,
(ii) the distance between B and D,
(iii) the distance between A and D,
(iv) the shortest distance from B to $A D$.

$$
\begin{aligned}
\sin \angle B A C & =\frac{B K}{48} \\
B K & =48 \sin 29^{\circ} \\
& =23.3 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 6

BASIC LEVEL

1. The figure shows the positions of O, A, B, C and D.

Find the bearing of
(a) A from O,
(b) B from O,
(c) C from O,
(d) D from O.
2. The figure shows the positions of P, A, B and C.

Find the bearing of
(a) A from P,
(b) B from P,
(c) C from P,
(d) P from A,
(e) P from B,
(f) P from C.
3. The figure shows the positions of P, Q and R.

Find the bearing of
(a) Q from P,
(b) P from Q,
(c) R from P,
(d) P from R,
(e) Q from R,
(f) R from Q.
4. A point Q is 24 km from P and on a bearing of 072° from P. From Q, Vishal walks at a bearing of 320° to a point R, located directly north of P. Find
(a) the distance between P and R,
(b) the distance between Q and R.
5. A petrol kiosk P is 12 km due north of another petrol kiosk Q. The bearing of a police station R from P is 135° and that from Q is 120°. Find the distance between P and R.

INTERMEDIATE LEVEL

6. A, B, C and D are the four corners of a rectangular plot marked out on level ground. Given that the bearing of B from A is 040° and that the bearing of C from A is 090°, find the bearing of
(a) B from C,
(b) A from C,
(c) D from C.
7. P, Q and R are three points on level ground. Given that the bearing of R from P is 135°, $\angle P Q R=55^{\circ}$ and $\angle P R Q=48^{\circ}$, find the bearing of
(a) P from R,
(b) Q from R,
(c) P from Q.
8. A, B and C are three points on level ground. Given that the bearing of B from A is 122°, $\angle C A B=32^{\circ}$ and $\angle A B C=86^{\circ}$, find the possible bearing(s) of C from B.
9. A bus stop is 280 m due north of a taxi stand. Nora walks from the taxi stand in the direction 050°. Calculate how far she has to walk before she is
(a) equidistant from the bus stop and the taxi stand,
(b) as close as possible to the bus stop,
(c) due east of the bus stop.
10. A helicopter flies 30 km from a point P to another point Q on a bearing of 128°. It then flies another 25 km to a point R on a bearing of 295°. Find the distance between P and R.
11. In the figure, P, Q and R are points on level ground in a park. R is 600 m from Q and on a bearing of 305° from $Q . Q$ is 950 m from P and on a bearing of 078° from P.

Find
(i) the distance between P and R,
(ii) the bearing of R from P.
12. The figure shows four points on level ground. A is due north of D, B is due east of D and $\angle D B C=37^{\circ}$.

Given that $A D=34 \mathrm{~m}, A B=57 \mathrm{~m}$ and $B C=28 \mathrm{~m}$, find
(i) the bearing of B from A,
(ii) the shortest distance from C to $B D$,
(iii) the bearing of D from C.
13. A, B and C are three points on level ground. The bearing of B from A is 068° and the bearing of C from A is 144°.

Given that $A B=370 \mathrm{~m}$ and $A C=510 \mathrm{~m}$, find
(i) the distance between B and C,
(ii) $\angle A C B$,
(iii) the bearing of C from B,
(iv) the shortest distance from A to $B C$.
14. Two cruise ships P and Q leave the port at the same time. P sails at $10 \mathrm{~km} / \mathrm{h}$ on a bearing of 030° and Q sails at $12 \mathrm{~km} / \mathrm{h}$ on a bearing of 300°. Find their distance apart and the bearing of P from Q after 2 hours.
15. P, Q and R represent three ports. Q is 35 km from P and on a bearing of 032° from $P . R$ is 65 km from P and on a bearing of 108° from P.
(a) Find
(i) the distance between Q and R,
(ii) the bearing of R from Q.

A ship sets sail at 0930 from P directly to R at an average speed of $30 \mathrm{~km} / \mathrm{h}$ and reaches a point S due south of Q.
(b) Find the time when it reaches S.

-(ת) Three-Dimensional Problems

A plane is a flat surface like the floor or the surface of a whiteboard. It has two dimensions (2D) - length and breadth.
A solid has three dimensions (3D) - length, breadth and height/thickness/depth.

Investigation

Visualising 3D Solids

1. Look at your school desk or table. It has a rectangular top (ignore the rounded corners, if any). Fig. 7.4 shows a photo of a school desk viewed from the top. Measure the angles of the two corners of the rectangular top, $\angle A B C$ and $\angle B C D$. Do you get 90° for both angles?

Fig. 7.4
2. Fig. 7.5(a) shows a photo of the same desk viewed from the side. Measure $\angle A B C$ and $\angle B C D$ again. Do you get 90°, smaller than 90°, or larger than 90° ?

Fig. 7.5
In other words, drawing a 3D solid or object on a flat surface may make a right angle look smaller or larger than 90°.
3. Fig. 7.6(a) shows a plane with a few lines drawn on it.

Place a pencil perpendicular to the plane in Fig. 7.6(a), as shown in Fig. 7.6(b).
Use a set square to check whether the pencil is perpendicular to every line on the plane in Fig. 7.6(a).

Your pencil is called a normal to the plane since it is perpendicular to every line on the plane.
4. In Fig. 7.6(c), $\angle N O A$ looks like it is a 90° angle, but $\angle N O B$ does not look like a 90° angle. Is $\angle N O B=90^{\circ}$? Explain your answer.

The following figures show the top view and the front view of a structure.

Notice that there are no hidden lines. Draw the side view of the structure.
5. Fig. 7.7 shows a cuboid. Dotted lines represent lines that are hidden, i.e. you cannot see them from the front.

Fig. 7.7
There are two methods to determine whether a triangle in the above cuboid is a right-angled triangle.

Method 1: Find a rectangle

To determine whether $\triangle E F G$ and $\triangle C G H$ are right-angled triangles:
(a) $\triangle E F G$ lies on the plane $E F G H$. Is the plane $E F G H$ a rectangle? Explain your answer.
(b) Thus, is $\angle E F G=90^{\circ}$ and $\triangle E F G$ a right-angled triangle? Explain your answer.
(c) Using the same method as above, determine whether $\triangle C G H$ is a right-angled triangle by identifying the appropriate rectangle and the right angle of the triangle.

Method 2: Find a normal to a plane

To determine whether $\triangle C G E$ and $\triangle C H E$ are right-angled triangles:
(a) $E F G H$ is a horizontal plane. Is the vertical line $C G$ a normal to the plane $E F G H$? Explain your answer.
(b) Is the line $G E$ a line on the plane $E F G H$?
(c) Thus, is $\angle C G E=90^{\circ}$ and $\triangle C G E$ a right-angled triangle? Explain your answer.
(d) Using the same method as above, determine whether $\triangle C H E$ is a right-angled triangle by shading the appropriate plane, and identifying the corresponding normal and the right angle of $\triangle C H E$.

A normal to a plane is perpendicular to every line on the plane.

Worked Example

(Three-dimensional Problem)

The figure shows a pyramid with a rectangular base $P Q R S$ and vertex V vertically above R.

Given that $P Q=12 \mathrm{~cm}, Q R=5 \mathrm{~cm}$ and $V R=3 \mathrm{~cm}$, find
(i) $\angle V Q R$,
(ii) $\angle V P R$.

Solution:

(i) $\operatorname{In} \triangle V Q R$

$$
\begin{aligned}
\tan \angle V Q R & =\frac{3}{5} \\
\angle V Q R & =\tan ^{-1} \frac{3}{5} \\
& =31.0^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(ii) In $\triangle P Q R, \angle P Q R=90^{\circ}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
P R^{2} & =P Q^{2}+Q R^{2} \\
& =12^{2}+5^{2} \\
& =144+25 \\
& =169 \\
P R & =\sqrt{169} \\
& =13 \mathrm{~cm}
\end{aligned}
$$

In $\triangle V R P, \angle V R P=90^{\circ}(V R$ is the normal to the plane $P Q R S)$.

$$
\begin{aligned}
\tan \angle V P R & =\frac{3}{13} \\
\angle V P R & =\tan ^{-1} \frac{3}{13} \\
& \left.=13.0^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

The basic technique used in solving a three-dimensional problem is to reduce it to a problem in a plane.

(b)

Cut each shape along the dotted lines and use the pieces to form wo squares.

1. The figure shows a wedge with a horizontal base $A B C D$ and a vertical face $P Q C B$. $A P Q D$ is a rectangular sloping surface and $\triangle A B P$ and $\triangle D C Q$ are right-angled triangles in the vertical plane.

Given that $C Q=B P=8 \mathrm{~cm}, D C=A B=15 \mathrm{~cm}$ and $A D=B C=P Q=24 \mathrm{~cm}$, find
(i) $\angle B A C$,
(ii) $\angle A Q C$,
(iii) $\angle C D Q$.
2. The figure shows a photo frame which can be opened about $A B . A B C D$ and $A B Q P$ are rectangles. The frame is opened through 48° as shown.
Given that $A B=24 \mathrm{~cm}$ and $A P=A D=18 \mathrm{~cm}$, find
(i) the length of the straight line $C Q$,
(ii) $\angle C A Q$.

Worked Example

(Three-dimensional Problem)

The figure shows a cube of length $10 \mathrm{~cm} . M$ and N are the midpoints of $B F$ and $A E$ respectively.

Find
(i) $\angle M E N$,
(ii) $\angle E M N$,
(iii) $\angle M E F$,
(iv) $\angle H B D$.

Solution:

(i) In $\triangle M E N$,

$$
\begin{aligned}
\tan \angle M E N & =\frac{10}{5} \\
& =2 \\
\angle M E N & =\tan ^{-1} 2 \\
& \left.=63.4^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(ii) In $\triangle M E N$,

$$
\begin{aligned}
\tan \angle E M N & =\frac{5}{10} \\
& =\frac{1}{2} \\
\angle E M N & =\tan ^{-1} \frac{1}{2} \\
& =26.6^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iii) $\angle M E F=\angle E M N$ (alt. $\angle \mathrm{s}, E F / / N M)$

$$
\therefore \angle M E F=26.6^{\circ}
$$

(iv) In $\triangle B C D, \angle B C D=90^{\circ}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
D B^{2} & =B C^{2}+D C^{2} \\
& =10^{2}+10^{2} \\
& =100+100 \\
& =200 \\
D B & =\sqrt{200} \\
& =14.14 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

In $\triangle H B D, \angle H D B=90^{\circ}$.
$\tan \angle H B D=\frac{10}{14.14}$

$$
=0.7072 \text { (to } 4 \text { s.f.) }
$$

$$
\angle H B D=\tan ^{-1} 0.7072
$$

$$
=35.3^{\circ} \text { (to } 1 \text { d.p.) }
$$

In (ii), an alternative method to solve for $\angle E M N$ is to use the sum of angles in a triangle, i.e. $\angle E M N=180^{\circ}-\angle E N M-\angle M E N$.

Is it possible to construct each of the following three-dimensional objects?

(a)

(b)

(c)

PRACTISE NOW 8

1. The figure shows a cube of length 16 cm .

Given that $P H=Q K=6 \mathrm{~cm}$, find
(i) $\angle B C K$,
(ii) $\angle S B D$,
(iii) $\angle B D K$.
2. The figure shows a cuboid where $A B=12 \mathrm{~m}, B C=6 \mathrm{~m}$ and $C R=8 \mathrm{~m}$.

Find
(i) $\angle A B P$,
(ii) $\angle B C Q$,
(iii) $\angle C A R$.

Worked
Example

(Angle of Elevation in a Three-dimensional Problem)

Three points A, B and C are on level ground. B is due north of A, the bearing of C from A is 022° and the bearing of C from B is 075°.

(i) Given that A and B are 160 m apart, find the distance between B and C.
A vertical mast $B T$ stands at B such that $\tan \angle T A B=\frac{3}{16}$.
(ii) Find the angle of elevation of T from C.

Solution:

(i) $\angle B C A=75^{\circ}-22^{\circ}$ (ext. \angle of a $\Delta=$ sum of int. opp. $\angle \mathrm{s}$)

$$
=53^{\circ}
$$

Using sine rule,

$$
\begin{aligned}
\frac{B C}{\sin 22^{\circ}} & =\frac{160}{\sin 53^{\circ}} \\
B C & =\frac{160 \sin 22^{\circ}}{\sin 53^{\circ}} \\
& =75.0 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\operatorname{In} \triangle T A B$,

$$
\begin{aligned}
\tan \angle T A B & =\frac{3}{16} \\
\frac{B T}{160} & =\frac{3}{16} \\
B T & =\frac{3}{16} \times 160 \\
& =30 \mathrm{~m}
\end{aligned}
$$

In $\triangle T C B$,

$$
\begin{aligned}
\tan \angle T C B & =\frac{30}{75.05} \\
\angle T C B & =\tan ^{-1} \frac{30}{75.05} \\
& =21.8^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

\therefore The angle of elevation of T from C is 21.8°.

PRACTISE NOW 9

Three points A, B and C are on level ground. B is due south of A, the bearing of C from B is 032° and $\angle C A B=105^{\circ}$.

(i) Given that A and B are 120 m apart, find the distance between B and C.

A vertical mast $C T$ of height 25 m stands at C.
(ii) Find the angle of elevation of T from B.

Worked Example

(Angle of Depression in a Three-dimensional Problem) Priya is in a cable car P at a height of 80 m above the ground. She observes a statue at A and fountain at B. Given that the angles of depression of the statue and the fountain are 35° and 40° respectively and that $\angle A P B=55^{\circ}$, find the distance between A and B.

Solution:

In $\triangle A P Q, \angle A Q P=90^{\circ}$.
$\sin 35^{\circ}=\frac{80}{A P}$

$$
\begin{aligned}
A P & =\frac{80}{\sin 35^{\circ}} \\
& =139.5 \mathrm{~m} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

In $\triangle B P Q, \angle B Q P=90^{\circ}$.
$\sin 40^{\circ}=\frac{80}{B P}$

$$
\begin{aligned}
B P & =\frac{80}{\sin 40^{\circ}} \\
& =124.5 \mathrm{~m} \text { (to } 4 \text { s.f. })
\end{aligned}
$$

Using cosine rule,

$$
\begin{aligned}
A B^{2} & =A P^{2}+B P^{2}-2 \times A P \times B P \cos 55^{\circ} \\
& =139.5^{2}+124.5^{2}-2 \times 139.5 \times 124.5 \cos 55^{\circ} \\
& =15040 \text { (to } 4 \text { s.f.) } \\
A B & =\sqrt{15040} \\
& =123 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 10

Rui Feng is on the top T of an observation tower $O T$. The height of the tower is 54 m . He observes a car that has broken down at A, causing a traffic jam to B. Given that the angles of depression of A and B are 42° and 38° respectively and that $\angle A T B=48^{\circ}$, find the distance between A and B.

In $\triangle A B P$, in order to find $A B$, we first have to find $A P$ and $B P$. Since $\triangle A P Q$ and $\triangle B P Q$ are rightangled triangles, how can we find $A P$ and $B P$?

SIMILAR
 aUESTIONS

Exercise 7C Questions 12, 13, 17

Exercise $7 C$

BASIC LEVEL

1. The figure shows $\triangle A B C$, right-angled at B and lying in a horizontal plane. P is a point vertically above C.

Given that $A B=7 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A P=11 \mathrm{~cm}$, find
(i) $A C$,
(ii) $P C$,
(iii) $\angle P A C$,
(iv) the angle of elevation of P from B.
2. The figure shows a rectangular box in which $A B=3 \mathrm{~cm}, A D=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and $D H=12 \mathrm{~cm}$.

Find
(i) the length of $B H$,
(ii) $\angle B D C$,
(iii) $\angle H B D$
3. A rectangular block of sugar has a horizontal base $E F G H$. The corners C and D are vertically above E and H respectively. It is given that $D H=4 \mathrm{~cm}, G H=6 \mathrm{~cm}$ and $F G=8 \mathrm{~cm}$.

Find
(i) $\angle D G H$,
(ii) $H F$,
(iii) the angle of elevation of D from F.
4. The figure shows three points A, B and C on horizontal ground where $\angle A B C$ is a right angle. $A O C$ represents a vertical triangular wall with P as the foot of the perpendicular from O to $A C$.

Given that $\angle A P B=90^{\circ}, A B=10 \mathrm{~m}, B C=15 \mathrm{~m}$ and $O A=12 \mathrm{~m}$, find
(i) $\angle B A C$,
(ii) the length of $A P$,
(iii) the length of $O P$,
(iv) the angle of elevation of O from B.
5. In the figure, the angle of elevation of the top of a vertical tower $P Q$ from a point A is 30°.

Given that Q, the foot of the tower, is on the same horizontal plane as A and B, and that $A B=60 \mathrm{~m}, \angle B A Q=45^{\circ}$ and $\angle A B Q=75^{\circ}$, find the height of the tower.

INTERMEDATE LEVEL

6. $O A B C D$ is a pyramid. The square base $A B C D$ has sides of length 20 cm and lies in a horizontal plane. M is the point of intersection of the diagonals of the base and O is vertically above M.

Given that $O A=32 \mathrm{~cm}$, find
(i) the length of $A M$,
(ii) the height of the pyramid,
(iii) $\angle O A M$.
7. In the figure, $A B P Q$ is the rectangular sloping surface of a desk with $A B C D$ lying in a horizontal plane. Q and P lie vertically above D and C.

Given that $A B=P Q=90 \mathrm{~cm}, A Q=B P=75 \mathrm{~cm}$ and $\angle P B C=\angle Q A D=25^{\circ}$, find
(i) $A C$,
(ii) $\angle P A C$,
(iii) $\angle C A B$.
8. In the figure, a cuboid has a horizontal base $E F G H$ where $H G=15 \mathrm{~cm}, G F=8 \mathrm{~cm}$ and $B F=7 \mathrm{~cm} . X$ is a point on $A B$ such that $X B=4 \mathrm{~cm}$.

Find
(i) $\angle C E G$,
(ii) $\angle G X F$.
9. P is the centre of the upper face of the rectangular block with $A B C D$ as its base.

Find
(i) $\angle P A C$,
(ii) $\angle P A B$.
10. P, Q and R are three points on level ground with Q due east of P and R due south of P. A vertical mast $P T$ stands at P and the angle of elevation of the top T from Q is 3.5°. Given that $P Q=1000 \mathrm{~m}$ and $P R=750 \mathrm{~m}$, find
(i) the bearing of Q from R,
(ii) the height of the mast,
(iii) the angle of elevation of T from R.
11. The figure shows four points O, A, B and C which lie on level ground in a campsite. O is due north of A and B is due east of O.

(a) Given that $O A=28 \mathrm{~m}, O B=30 \mathrm{~m}, O C=50 \mathrm{~m}$ and $B C=70 \mathrm{~m}$, find
(i) the bearing of A from B,
(ii) $\angle C O B$,
(iii) the bearing of C from O.

A vertical flag pole stands at the point B such that the angles of elevation from O, A and C are measured.
(b) Given that the greatest of these 3 angles of elevation is 29°, calculate the height of the flag pole.
12. A, B, C and D are four points on horizontal ground. B is due south of A and the bearing of C from A is 090°.

(a) Given that $A B=60 \mathrm{~m}, A C=80 \mathrm{~m}$ and $C D=150 \mathrm{~m}$, find
(i) the bearing of C from B,
(ii) the bearing of D from A.

A vertical mast stands at A and the angle of depression of C from the top of the mast is 8.6°.
(b) Find the height of the mast and the angle of depression of D from the top of the mast.
13. A tree of height 24 m stands vertically at A on the ground of an island. Two boats are at B and C such that $\angle B A C=94^{\circ}, \angle A B C=47^{\circ}$ and $A B=240 \mathrm{~m}$.

(a) Find
(i) the distance between B and C,
(ii) the area of $\triangle A B C$,
(iii) the shortest distance from A to $B C$.

The boat at B sails in a straight line towards C.
(b) Find the greatest angle of depression of the boat from the top of the tree.

ADVANCED LEVEL

14. In the figure, $X Y Z$ is an equilateral triangle with sides of length of 6 cm lying in a horizontal plane. P lies vertically above Z, R is the midpoint of $X Y$ and $P X=P Y=10 \mathrm{~cm}$.

Find
(i) $\angle P Y Z$,
(ii) $\angle P R Z$.
15. The figure shows a block of wood in the shape of a cuboid with dimensions 10 cm by 8 cm by 6 cm . Huixian cuts the block into two pieces such that the cutting tool passes through the points A, B and C as shown.

Given that the triangular surface $A C B$ on one piece of the block is to be coated with varnish, find
(i) $\angle A B C$,
(ii) the area of the surface that is to be coated with varnish.
16. Amirah stands at a point B, due east of a vertical tower $O T$, and observes that the angle of elevation of the top of the tower T is 40°. She walks 70 m due north and finds that the angle of elevation of T from her new position at C is 25°.

Find the height of the tower and hence distance $O B$.
17. The figure shows a plot of land $A B C D$ such that B is due east of A and the bearing of C from A is 048°.

(i) Given that $A B=36 \mathrm{~m}, B C=58 \mathrm{~m}, B D=72 \mathrm{~m}$ and $C D=95 \mathrm{~m}$, find the bearing of C from B.
A vertical control tower of height 35 m stands at B. Shirley cycles from C to D and reaches a point P where the angle of depression of P from the top of the tower is the greatest.
(ii) Find the angle of depression of P from the top of the tower.

1. Angles of Elevation and Depression

	Angle of Elevation When a person looks at the top of the wall, B, the angle between the horizontal $A D$ and the line of sight $A B, ~ i . e . ~$ ling of elevation. is called the angle
Angle of Depression	
When a person looks at the bottom of the wall,	
C, the angle between the horizontal $A D$ and the	
line of sight $A C$, i.e. $\angle C A D$, is called the angle	
of depression.	

2. Bearings

The bearing of a point A from another point O is an angle measured from the north, at O, in a clockwise direction and it always written as a three-digit number.

The bearing of A from O is 050°.
The bearing of O from A is 230°.
3. The basic technique used in solving a three-dimensional problem is to reduce it to a problem in a plane.

1. Two points A and $B, 35 \mathrm{~m}$ apart on level ground, are due east of the foot of a castle. The angles of elevation of the top of the castle from A and B are 47° and 29° respectively. Find the height of the castle.
2. The angle of depression of a rabbit from the top of a cliff is 24°. After the rabbit hops a distance of 80 m horizontally towards the base of the cliff, the angle of depression of the rabbit from the top of the cliff becomes 32°. Find the height of the cliff.
3. The captain of a ship observes that the angle of elevation of a lighthouse is 12°. When he sails a further distance of 200 m away from the lighthouse, the angle of elevation becomes 10°. Find the height of the lighthouse.
4. $A B C$ is a triangle lying on a horizontal plane with $\angle B A C=90^{\circ}$ and $A B=14 \mathrm{~cm} . T$ is a point vertically above $A, T C=23 \mathrm{~cm}$ and the angle of elevation of T from C is 40°.

Find
(i) the height of $A T$,
(ii) the angle of elevation of T from B,
(iii) the length of $B C$.
5. $A B C T$ is a triangular pyramid with $\triangle A B C$ as its base and $B T$ as its height. It is given that $A C=24 \mathrm{~m}$, $B T=12 \mathrm{~m}, \angle T A B=35^{\circ}$ and $\angle A B C=90^{\circ}$, find

(i) the length of $A B$,
(ii) the length of $B C$,
(iii) the angle of depression of C from T.
6. The figure shows a roof in the shape of a right pyramid on a horizontal rectangular base $A B C D$, where $A B=12 \mathrm{~m}, B C=16 \mathrm{~m}$ and $V A=26 \mathrm{~m}$.

(i) Given that X is the midpoint of $A C$, find the height, $V X$, of the roof.
(ii) Find $\angle A V C$.

A passer-by notices a crack along $V P$, where P is the midpoint of $B C$.
(iii) Find the length of the crack.
7. Three points A, B and C lie on a horizontal ground. T is the top of a vertical tower standing on A. The bearings of B and C from A are 135° and 225° respectively and the bearing of C from B is 250°. If the distance between B and C is 50 m and the angle of elevation of T from B is 35°, calculate the height of the tower and the angle of elevation of T from C.

8. In the figure, A, B and C are three points on a horizontal field. A is due west of B, the bearing of B from C is $125^{\circ}, A B=430 \mathrm{~m}$ and $B C=460 \mathrm{~m}$.

(a) Find
(i) the distance between A and C,
(ii) $\angle A C B$,
(iii) the bearing of C from A,
(iv) the area of $\triangle A B C$.

At a certain instant, a hot air balloon is at a point which is directly above C.
(b) Given that the angle of elevation of the hot air balloon from B is 5.2°, find the angle of elevation of the hot air balloon from A.
9. The figure shows the positions of four points A, B, C and D on level ground. B is due east of A, the bearing of D from A is $226^{\circ}, \angle A B C=54^{\circ}$, $A C=520 \mathrm{~m}, A D=650 \mathrm{~m}$ and $C D=900 \mathrm{~m}$.

(a) Find
(i) $\angle C A D$,
(ii) the bearing of C from A,
(iii) the distance between B and C,
(iv) the shortest distance from A to $C D$.

A vertical tower of height 80 m stands at A. Devi walks from C to D and reaches a point P where the angle of elevation of the top of the tower from P is the greatest.
(b) Find the angle of elevation of the top of the tower from P.
10. The figure shows the position of a post office P and three train stations Q, R and $S . Q$ is due north of P, the bearing of R from P is $052^{\circ}, \angle P R S=134^{\circ}$, $P R=5.2 \mathrm{~km}$ and $R S=4.6 \mathrm{~km}$.

(i) Calculate the distance between P and S.
(ii) Find the bearing of S from R.
(iii) Given that the bearing of R from Q is 122°, find the distance between P and Q.
An office building of height 75 m stands at R.
(iv) Given that Huixian walks in a straight line along $P S$, calculate the greatest angle of elevation of the top of the building as she walks along PS.
A policeman is standing at a point due north of P such that he is equidistant from both P and R.
(v) Find the distance between the policeman and P.

Challenge

1. In the figure, $A B C D$ is horizontal and $A B P Q$ is a rectangular plane.

Given that $\angle P C A=\angle P C B=\angle Q D C=90^{\circ}, \angle P B C=\alpha, \angle A P B=\beta$ and $\angle P A C=\theta$, express $\sin \theta$ in terms of the trigonometric ratios of α and β only.
2. In the figure, $\triangle A B C$ is on horizontal ground and $C T$ is vertical.

Given that $\angle A C B=90^{\circ}, \angle B A C=\alpha, \angle T B C=\beta$ and $A C=h$ metres, express the length of $T B$ in terms of h and the trigonometric ratios of α and β.

The cross section of train tunnels may be in the shape of a major segment of a circle. What is meant by a 'major segment of a circle'? How do we find the cross-sectional area of such a train tunnel?
\square

LEARNING OBJECTIV

At the end of this chapter, you should be able to:

- find the arc length of a circle by expressing the arc length as a fraction of the circumference of the circle,
- find the area of the sector of a circle by expressing the area of a sector as a fraction of the area of the circle,
find the area of a segment of a circle,
convert angular measure from radians to degrees and vice versa,
use the formulae $s=r \theta$ and $A=\frac{1}{2} r^{2} \theta$ to solve problems involving arc length, area of a sector and area of a segment of a circle.

8.1 Length ofarc

(a)

(b)

(c)

Fig. 8.1
Fig. 8.1(a) shows a circle with centre O. The line $P Q$ is called a chord. $P R Q$ is part of the circumference which is called an arc. The arc $P R Q$ is called the minor arc and the $\operatorname{arc} P S Q$ is called the major arc.

The part of a circle enclosed by any two radii of a circle and an arc is called a sector. In Fig. 8.1 (b), the region enclosed by the radii $O P, O Q$ and the minor arc $P R Q$ is called a minor sector of the circle. The region enclosed by the radii $O P$, $O Q$ and the major arc $P S Q$ is called a major sector of the circle.

In Fig. 8.1 (c), the chord $P Q$ divides the circle into two segments. The region enclosed by the chord $P Q$ and the minor arc $P R Q$ is called a minor segment. The region enclosed by the chord $P Q$ and the major arc $P S Q$ is called the major segment.

Investigation

Arc Length

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Arc Length as shown.

1. The template shows a circle with $\angle A O B$ subtended by the (blue) arc $A B$ at the centre O.

Fig. 8.2
2. Click and drag point B to change the size of the (blue) arc $A B$. To change the radius of the circle, move point A. Copy and complete Table 8.1.

No.	Length of Blue Arc $A B$	Circumference of Circle	$\frac{\text { Length of Blue Arc } A B}{\text { Circumference of Circle }}$	$\angle A O B$	$\frac{\angle A O B}{\mathbf{3 6 0}^{\circ}}$
(a)					
(b)					
(c)					
(d)					
(e)					

Table 8.1
3. What do you notice about the third last column and the last column of Table 8.1?
4. Click on the button 'Show how to do animation' in the template and it will show you how to add 10 more entries to the table as the points A and B move automatically. What do you notice about the third last column and the last column of the table in the template?
5. Hence, write down a formula for finding the length of an arc of a circle.

From the investigation, we observe that

$$
\begin{aligned}
\text { arc length } & =\frac{x^{\circ}}{360^{\circ}} \times \text { circumference } \\
& =\frac{x^{\circ}}{360^{\circ}} \times 2 \pi r,
\end{aligned}
$$

where x° is the angle subtended by the arc at the centre of the circle of radius r.

Worked Example
 1

(Finding the Arc Length)

In the figure, O is the centre of a circle of radius 12 cm and $\angle A O B=124^{\circ}$.

Find
(i) the length of the minor arc $A X B$,
(ii) the perimeter of the major sector $O A Y B$.

Solution:

(i) Length of minor arc $A X C=\frac{124^{\circ}}{360^{\circ}} \times 2 \pi \times 12$

$$
=26.0 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) Perimeter of major sector $=$ length of arc $A Y B+O A+O B$

$$
\begin{aligned}
& =\frac{360^{\circ}-124^{\circ}}{360^{\circ}} \times 2 \pi \times 12+12+12 \\
& =73.4 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 1

Alternatively,
Length of arc $A Y B$
$=2 \pi r-$ length of $\operatorname{arc} A X B$.

1. In the figure, O is the centre of a circle of radius 25 cm and reflex $\angle A O B=228^{\circ}$.

Find
(i) the length of the major arc $A Y B$,
(ii) the perimeter of the minor sector $O A X B$.
2. In the figure, O is the centre of a circle of radius 9 cm and $\angle A O B=150^{\circ}$.

Find the perimeter of the shaded region, giving your answer in the form $a+b \pi$, where a and b are rational numbers.
3. The figure shows the design of a logo in which a sector has been removed from the circle, centre O and radius $r \mathrm{~cm}$.

Given that the length of the major arc $P X Q$ is 36 cm and $\angle P O Q=50^{\circ}$, find the value of r.

Worked Example

(Finding the Arc Length)
In the figure, O is the centre of a circle of radius 8 m . The points A and C lie on the circumference of the circle and $O C B$ is a straight line.

Given that $\angle A O B=45^{\circ}$ and $O A$ is perpendicular to $A B$, find the perimeter of the shaded region $A B C$.

Solution:

$$
\begin{aligned}
\angle A B C & =180^{\circ}-90^{\circ}-45^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

i.e. $\triangle A O B$ is isosceles and $A B=8 \mathrm{~m}$.

Length of $\operatorname{arc} A C=\frac{45^{\circ}}{360^{\circ}} \times 2 \pi \times 8$

$$
=2 \pi \mathrm{~m}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
O B^{2} & =8^{2}+8^{2} \\
O B & =\sqrt{8^{2}+8^{2}} \\
& =\sqrt{128} \\
& =11.31 \mathrm{~m} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$B C=O B-O C$
$=11.31-8$
$=3.31 \mathrm{~m}$
\therefore Perimeter of shaded region $A B C=A B+B C+$ length of arc $A C$

$$
\begin{aligned}
& =8+3.31+2 \pi \\
& =17.6 \mathrm{~m} \text { (to } 3 \mathrm{~s} . \mathrm{f} .)
\end{aligned}
$$

PRACTISE NOW 2

Given that $\angle Q O R=36.9^{\circ}$ and $O R$ is perpendicular to $Q R$, find the perimeter of the shaded region $P Q R$.
2. The figure shows a sector of a circle of radius 10 cm . Given that the angle at the centre of the circle is 80°, find the perimeter of the sector.

Worked Example 3

(Finding the Arc Length)

In the figure, $A Q B$ is the minor arc of a circle with centre O and radius $17 \mathrm{~cm} . A R B$ is a semicircle with $A B$ as its diameter and P as its centre. $\triangle O P B$ is a right-angled triangle with $\angle O P B=90^{\circ}$ and $\angle P O B=59^{\circ}$.

Find
(i) the length of $A B$,
(ii) the perimeter of the shaded region.

Solution:

(i) In $\triangle O P B$,

$$
\begin{aligned}
\sin \angle P O B & =\frac{P B}{O B} \\
\sin 59^{\circ} & =\frac{P B}{17} \\
P B & =17 \sin 59^{\circ} \\
& =14.57 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

In $\triangle O P B, P B$ is the side opposite $\angle P O B$ and $O B$ is the hypotenuse.

$$
\begin{aligned}
\therefore A B & =2 P B \\
& =2(14.57) \\
& =29.1 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $\angle A O B=2 \angle P O B$

$$
=2\left(59^{\circ}\right)
$$

$$
=118^{\circ}
$$

Length of arc $A Q B=\frac{118^{\circ}}{360^{\circ}} \times 2 \pi \times 17$

$$
=35.01 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
$$

Length of $\operatorname{arc} A R B=\frac{1}{2} \times 2 \pi \times 14.57$

$$
=45.77 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
$$

\therefore Perimeter of shaded region $=35.01+45.77$

$$
=80.8 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

In the figure, $P A Q$ is the minor arc of a circle with centre O and radius $35 \mathrm{~cm} . P B Q$ is a semicircle with $P Q$ as its diameter and R as its centre. $\triangle O R Q$ is a right-angled triangle with $\angle O R Q=90^{\circ}$ and $\angle R Q O=36^{\circ}$.

Find
(i) the length of $P Q$,
(ii) the perimeter of the shaded region.

BASIC LEVEL

1. Find the length of each of the following arcs $A X B$.
(a)

(b)

(c)

(d)

2. For each of the following circles, find
(i) the length of the minor arc $A X B$,
(ii) the perimeter of the major sector $O A Y B$.
(a)

(b)

(c)

3. Find the radius of each of the following circles.
(a)

Length of minor arc $=26.53 \mathrm{~cm}$
(b)

Length of major arc $=104.6 \mathrm{~cm}$
4. The radius of a circle is 14 m . Find the angle at the centre of the circle subtended by an arc of length
(a) 12 m ,
(b) 19.5 m ,
(c) 64.2 m ,
(d) 84.6 m ,
giving your answers correct to the nearest degree.
5. The hour hand of a large clock mounted on a clock tower travels through an angle of 45°. If the hour hand is 1.5 m long, how far does the tip of the hour hand travel?

INTERMEDIATE LEVEL

6. A piece of wire 32 cm long is bent to form a sector of a circle of radius 6 cm . Find the angle subtended by the wire at the centre of the circle.
7. Find the radius of each of the following circles.
(a)

Perimeter of minor sector $=77.91 \mathrm{~cm}$
(b)

Perimeter of major sector $=278.1 \mathrm{~cm}$
8. The figure shows two sectors $O A B$ and $O P Q$ with O as the common centre. The lengths of $O A$ and $O Q$ are 8 cm and 17 cm respectively.

Given that $\angle A O B=\angle P O Q=60^{\circ}$, find the perimeter of the shaded region, giving your answer in the form $a+b \pi$, where a and b are rational numbers.
9. In the figure, the length of the minor arc is $\frac{7}{24}$ of the circumference of the circle.

(i) Find $\angle A O B$.
(ii) Given that the diameter of the circle is 14 cm , find the length of the minor arc.
10. In the figure, O is the centre of a circle of radius 7.5 cm . The points A and B lie on the circumference of the circle and $O B P$ is a straight line.

Given that $P A=14 \mathrm{~cm}$ and $O A$ is perpendicular to $A P$, find
(i) $\angle P O A$,
(ii) the perimeter of the shaded region $P B A$.
11. The figure shows a circle with centre O and radius 26 cm . Triangles $O P R$ and $O Q R$ are congruent and $\angle O P R=\angle O Q R=90^{\circ}$.

Given that $\angle P O Q=138^{\circ}$, find
(i) the length of $Q R$,
(ii) the perimeter of the shaded region.
12. The figure shows a sector of a circle with centre O and radius 13 cm .

Given that the length of the chord $A B=22 \mathrm{~cm}$,
(i) show that $\angle A O B$ is approximately 115.6°,
(ii) find the perimeter of the shaded region.
13. In the figure, $A B D$ is the minor arc of a circle with centre O and radius $9 \mathrm{~cm} . A C D$ is the minor arc of a circle with centre P and radius 16 cm . The point X lies on $A P$ such that $A X=X P$.

Find
(i) $\angle A P B$,
(ii) $\angle A O B$,
(iii) the perimeter of the shaded region.

ADVANCED LEVEL

14. In the figure, O is the centre of a circle. The points A and B lie on the circumference of the circle such that $A B=\frac{15}{2} \sqrt{3} \mathrm{~cm}$ and $\angle O A B=30^{\circ}$.

Find the perimeter of the shaded region.
15. The figure shows a semicircle with centre O and diameter $S R . Q R$ is an arc of another circle with centre T and T lies on $R S$ produced.

Given that $T O=14 \mathrm{~cm}, \angle O T P=36^{\circ}$ and $O P$ is perpendicular to $P T$, find the perimeter of the shaded region.

Investigation

Area of Sector

Go to http：／／www．shinglee．com．sg／StudentResources／and open the geometry template Sector Area as shown below．
1．The template shows a circle with centre O and a（yellow）sector $O A B$ ．

| Sector Area | | O Shinglee Pte Ltd，2015 |
| :--- | :--- | :--- | :--- |

Fig． 8.3
2．Click and drag point B to change the size of the（yellow）sector $O A B$ ．To change the radius of the circle，move point A ．Copy and complete Table 8．2．

No．	Area of Shaded Sector $O A B$	Area of Circle	$\frac{\text { Area of Sector } O A B}{\text { Area of Circle }}$	$\angle A O B$	$\frac{\angle A O B}{\mathbf{3 6 0}^{\circ}}$
（a）					
（b）					
（c）					
（d）					
（e）					

Table 8.2
3. What do you notice about the third last column and the last column of Table 8.2?
4. Click on the button 'Show how to do animation' in the template and it will show you how to add 10 more entries to the table as the points A and B move automatically. What do you notice about the third last column and the last column of the table in the template?
5. Hence, write down a formula for finding the area of a sector of a circle.

From the investigation, we observe that

$$
\begin{aligned}
\text { area of a sector } & =\frac{x^{\circ}}{360^{\circ}} \times \text { area of the circle } \\
& =\frac{x^{\circ}}{360^{\circ}} \times \pi r^{2},
\end{aligned}
$$

where x° is the angle of the sector subtended at the centre of the circle of radius r.

In the figure, O is the centre of a circle of radius 26 cm . The length of minor arc $A Q B$ is 52 cm .

(i) Show that $\angle A O B$ is approximately 114.6°.
(ii) Hence, find the area of the major sector $O A P B$.

Solution:

(i) Since the length of minor arc $A Q B$ is 52 cm ,

$$
\begin{aligned}
\frac{\angle A O B}{360^{\circ}} \times 2 \pi \times 26 & =52\left(\text { use arc length }=\frac{x^{\circ}}{360^{\circ}} \times 2 \pi r\right) \\
\frac{\angle A O B}{360^{\circ}} & =\frac{52}{52 \pi} \\
& =\frac{1}{\pi} \\
\angle A O B & =\frac{1}{\pi} \times 360^{\circ} \\
& =114.6^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(ii) Reflex $\angle A O B=360^{\circ}-114.59^{\circ}(\angle \mathrm{s}$ at a point)

$$
=245.4^{\circ}
$$

Area of major sector $O A P B=\frac{245.4^{\circ}}{360^{\circ}} \times \pi \times 26^{2}$

$$
=1450 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

In the figure, O is the centre of a circle of radius 15 cm . The length of minor arc $A Q B$ is 33 cm .

(i) Show that $\angle A O B$ is approximately 126.1°.
(ii) Hence, find the area of the major sector $O A P B$.

Worked Example

(Finding the Area of a Sector)

In the figure, $A B C D$ is a trapezium in which $A D$ is parallel to $B C, A D=7 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and
$\angle A D C=\angle B C D=90^{\circ} . P X D$ is an arc of a circle centre A and $P Y C$ is an arc of a circle centre B.

(i) Show that $\angle B A D$ is approximately 100.2°.
(ii) Hence, find the area of the shaded region.

Exercise 8B Questions 1(a)-(f), 2(a)-(c), 3(a)-(d), 4(a)-(d), 5(a),(b), 6(a)-(d), 7-9

Solution:

(i) Draw a line $A T$ such that T lies on $B C$ and $A T$ is perpendicular to $B C$.

$$
\begin{aligned}
B T & =B C-T C \\
& =10-7 \\
& =3 \mathrm{~cm} \\
A B & =7+10(A B=A P+P B) \\
& =17 \mathrm{~cm}
\end{aligned}
$$

In $\triangle A T B$,
$\sin \angle B A T=\frac{3}{17}$

$$
\begin{aligned}
\angle B A T & =\sin ^{-1} \frac{3}{17} \\
& \left.=10.16^{\circ} \text { (to } 2 \mathrm{~d} . \text { p. }\right)
\end{aligned}
$$

In $\triangle A T B, B T$ is the side opposite $\angle B A T$ and $A B$ is the hypotenuse.

$$
\begin{aligned}
\angle B A D & =90^{\circ}+10.16^{\circ} \\
& =100.16^{\circ} \\
& \left.=100.2^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(ii) Using Pythagoras' Theorem,

$$
\begin{aligned}
& \begin{aligned}
A T^{2} & =17^{2}-3^{2} \\
A T & =\sqrt{17^{2}-3^{2}} \\
& =\sqrt{280} \\
& =16.73 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned} \\
& \begin{aligned}
\angle A B T & =180^{\circ}-90^{\circ}-10.16^{\circ} \\
& =79.84^{\circ} \text { (to } 2 \text { d.p.) }
\end{aligned}
\end{aligned}
$$

Area of shaded region
$=$ Area of trapezium $A B C D-$ area of sector $A P D-$ area of sector $B C P$
$=\frac{1}{2}(7+10)(16.73)-\frac{100.2^{\circ}}{360^{\circ}} \times \pi \times 7^{2}-\frac{79.84^{\circ}}{360^{\circ}} \times \pi \times 10^{2}$
$=29.7 \mathrm{~cm}^{2}$ (to 3 s.f.)

PRACTISE NOW 5

In the figure, $A B C D$ is a trapezium in which $A B$ is parallel to $D C, A B=19 \mathrm{~m}$, $D C=15 \mathrm{~m}$ and $\angle A B C=\angle D C B=90^{\circ} . P X B$ is an arc of a circle centre A and $P Y C$ is an arc of a circle centre D.

(i) Show that $\angle A D C$ is approximately 96.8°.
(ii) Hence, find the area of the shaded region.

BASIC LEVEL

1. Copy and complete the table for sectors of a circle.

	Radius	Angle at centre	Arc Iength	Area	Perimeter
(a)	7 cm	72°			
(b)	35 mm				136 mm
(c)		270°		$1848 \mathrm{~mm}^{2}$	
(d)		150°	220 cm		
(e)	14 m		55 m		
(f)		75°		$154 \mathrm{~cm}^{2}$	

2. For each of the following circles, find
(i) the perimeter,
(ii) the area,
of the minor sector.
(a)

(b)

(c)

3. The figure shows a circle with centre O and $\angle A O B=\theta^{\circ}$. The circumference of the circle is 88 cm .

Find the length of arc $A C B$ and the area of sector $O A C B$ for each of the following values of θ.
(a) 60
(b) 99
(c) 126
(d) 216
4. The figure shows a circle with centre O and $\angle P O Q=x^{\circ}$. The area of the circle is $3850 \mathrm{~cm}^{2}$.

Find the area of sector OPSQ and the length of $\operatorname{arc} P S Q$ for each of the following values of x.
(a) 36
(b) 84
(c) 108
(d) 198
5. Find the radius of each of the following circles.
(a)

Area of minor sector $=114 \mathrm{~cm}^{2}$
(b)

Area of major sector $=369 \mathrm{~cm}^{2}$
6. The diameter of a circle is 18 cm . Find the angle subtended by the arc of a sector with each of the following areas.
(a) $42.6 \mathrm{~cm}^{2}$
(b) $117.2 \mathrm{~cm}^{2}$
(c) $214.5 \mathrm{~cm}^{2}$
(d) $18.9 \mathrm{~cm}^{2}$

INTERMEDIATE LEVEL

7. The figure shows two sectors $O A B$ and $O D C$ with O as the common centre.

Given that $O A=r \mathrm{~cm}, O C=R \mathrm{~cm}$ and $\angle A O B=m^{\circ}$, find the perimeter and the area of the shaded region $A B C D$ for each of the following cases.
(i) $r=10, R=20, m=45$
(ii) $r=5, R=8, m=120$
(iii) $r=35, R=49, m=160$
8. In the figure, the area of the shaded sector $P O Q$ is $\frac{5}{18}$ of the area of the whole circle.

(i) Find $\angle P O Q$.
(ii) Given that the area of the shaded sector is $385 \mathrm{~cm}^{2}$, find the diameter of the circle.
9. During an Art lesson, students are required to make a shape in the form of a sector of a circle of radius 12 cm . If the perimeter of the shape is 38 cm , find the area of the paper used in making the shape.
10. The figure shows two circular discs of radii 11 cm and 7 cm touching each other at R and lying on a straight line MPQN.

(i) Show that $\angle P A B$ is approximately 77.2°.
(ii) Hence, find the area of the shaded region.
11. Two circular discs of radii $4 p \mathrm{~cm}$ and $p \mathrm{~cm}$ touch each other externally and lie on a straight line $A B$ as shown.

Find an expression, in terms of p, for the area enclosed by the two discs and the line $A B$.

ADVANCED LEVEL

12. In the figure, O is the centre of a circle with radius $16 \mathrm{~cm} . P Y B$ is the minor arc of a circle centre A and radius 32 cm . $O X$ divides $\triangle O A Q$ into two congruent triangles.

Given that $\angle O A Q=66^{\circ}$, find
(i) $\angle B O Q$,
(ii) the length of $A Q$,
(iii) the perimeter of the shaded region,
(iv) the area of the shaded region.
13. The figure shows a quadrant of a circle of radius 12 cm .

Given that B is the midpoint of the arc $A C$, find
(i) the length of $B D$,
(ii) the perimeter of the shaded region,
(iii) the area of the shaded region.

(2) S)
 (-) U Radian Measure

¿̊\% Conversion Between Degrees and Radians

So far we have been using the measurement of 360° to denote the angle for one complete revolution. However, this value is arbitrary and in some branches of mathematics, angular measurement cannot be conveniently done in degrees. Hence, a new unit, called the radian, is introduced to describe the magnitude of an angle.

Consider a circle with centre O and radius r units (see Fig. 8.4(a)).
Suppose the arc $A B$ has a length of r units.
Then the measure of the angle θ, subtended by the $\operatorname{arc} A B$ at the centre O, is defined to be one radian.
In other words, a radian is the size of the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle.

Fig. 8.4
In general, the angle θ, in radians, subtended at the centre of a circle with radius r units by an $\operatorname{arc} P Q$ of length s units, is equal to the ratio of the arc length to the radius:

$$
\theta(\text { in radians })=\frac{s}{r}
$$

Since $\frac{s}{r}$ is a ratio, θ has no units, i.e. radian is not a unit.
The abbreviation of 'radian' is 'rad'.

For example, if the radius of the circle is 2 cm and $\operatorname{arc} P Q=2 \mathrm{~cm}$, then $\theta=1 \mathrm{rad}$; if the radius of the circle is 2 cm and $\operatorname{arc} P Q=4 \mathrm{~cm}$, then $\theta=2 \mathrm{rad}$.

Investigation

Visualise the Size of an Angle of 1 radian

For this activity, you will require a sheet of paper, a pair of compasses and a piece of string (5 cm long).

1. On a sheet of paper, use a rule and a pair of compasses to draw a circle, centre O and with radius 5 cm .
2. Mark a point A on the circumference, as shown in Fig. 8.5.
3. Using a piece of string of length 5 cm , mark a point B on the circumference such that the length of arc $A B$ is 5 cm .
4. Consider the minor sector $A O B$. Notice that the radius is equal to the arc length. What is the value of θ in radians?
$\theta($ in radians $)=\frac{s}{r}$

Fig. 8.5
5. Repeat Step 3 to mark out $\operatorname{arcs} B C, C D, D E, \ldots$ of length 5 cm each around the circle.
6. (a) Estimate the size of the angle, in radians, subtended at the centre by
(i) a semicircle,
(ii) a circle.
(b) Using this estimate, what is the approximate size of $\angle A O B$ (1 radian) in degrees?
(c) Hence, what is an angle of 1 radian approximately equal to in degrees?
7. (a) Using the formula for the circumference of a circle, find the exact value of the angle at the centre of the circle in radians.
(b) Hence, find the exact value of an angle of 1 radian in degrees.

In general, for a circle of radius r units,
if $\operatorname{arc} P Q=r$, then $\theta=1 \mathrm{rad}$;
if $\operatorname{arc} P Q=2 r$, then $\theta=2$ rad;
if $\operatorname{arc} P Q=2 \pi r$, then $\theta=2 \pi \mathrm{rad}$.
When $\operatorname{arc} P Q=2 \pi r$, it means that the arm $O P$ has made one complete revolution, i.e. $O M$ has moved through an angle of 360°, i.e. $2 \pi \mathrm{rad}=360^{\circ}$.
$\pi \mathrm{rad}=180^{\circ}$
$1 \mathrm{rad}=\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$

The table gives a conversion table for some special angles.

Angle (${ }^{\circ}$)	Angle (rad)
30	$\frac{\pi}{6}$
45	$\frac{\pi}{4}$
60	$\frac{\pi}{3}$
90	$\frac{\pi}{2}$

$$
1^{\circ}=\frac{\pi}{180^{\circ}} \approx 0.01746 \mathrm{rad}
$$

Estimate the Size of Angles in Radians

Work in pairs.
Look at the figures below.

(a)

(c)

(e)

(b)

(d)

(f)

Identify which figure shows an angle θ of
(i) 1 radian,
(ii) 2 radians,
(iii) 3 radians,
(iv) 6 radians,
(v) 0.5 radians,
(vi) 1.5 radians.

Worked Example ?

(Converting from Radians to Degrees)

Convert each of the following angles from radians to degrees.
(a) $\frac{\pi}{12}$
(b) 2.8

Solution:

(a) Since π radians $=180^{\circ}$,

$$
\begin{aligned}
\frac{\pi}{12} \mathrm{rad} & =\frac{180^{\circ}}{12} \\
& =15^{\circ}
\end{aligned}
$$

(b) Since π radians $=180^{\circ}$,

$$
\begin{aligned}
1 \text { radian } & =\frac{180^{\circ}}{\pi} \\
2.8 \text { radians } & =2.8 \times \frac{180^{\circ}}{\pi} \\
& =160.4^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

PRACTISE NOW 6

Convert each of the following angles from radians to degrees.

Gottfried Wilhelm von Leibnitz (1646-1716) was a German genius who won recognition in law, philosophy, religion, literature, metaphysics and mathematics. He developed a method of calculating π without reference to a circle. He proved that $\frac{\pi}{4}$ could be determined to any desired degree of accuracy by the formula: $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots$
(a) $\frac{\pi}{15}$
(b) $\frac{3 \pi}{2}$
(c) 3.04
(d) 8

Worked Example

(Converting from Degrees to Radians)

Convert each of the following angles from degrees to radians.
(a) 27°
(b) 315°

Solution:

(a) Since $180^{\circ}=\pi$ radians,

$$
\begin{aligned}
27^{\circ} & =\frac{\pi}{180^{\circ}} \times 27^{\circ} \\
& =0.471 \text { radians (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) Since $180^{\circ}=\pi$ radians,

$$
\begin{aligned}
315^{\circ} & =\frac{\pi}{180^{\circ}} \times 315^{\circ} \\
& =\frac{7 \pi}{4} \\
& =5.50 \text { radians (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 7

SIMILAR
QUESTIONS

Exercise 8C Questions 2(a)-(d), 3(a)-(d)
(a) 36°
(b) 288°
(c) 197.5°
(d) 400°

\%\%:\% Use of Calculators

Worked Example

(Use of a Calculator)

Find the value of each of the following.
(a) $\sin 1.2$
(b) $\cos 0.879$
(c) $\tan 1.012$

Solution:

(a) To find the value of $\sin 1.2$, first set the calculator to the 'radian' mode.

Press $\sin 1 . .2 \operatorname{and}$ and display shows 0.932039086 ,
i.e. $\sin 1.2=0.932$ (to 3 s.f.)
(b) To find the value of $\cos 0.879$, press $\cos 0.6879=1$ 0.637921 564,
i.e. $\cos 0.879=0.638$ (to 3 s.f.)
(c) Press tan 1 1.012 = and the display shows 1.599298 86,
i.e. $\tan 1.012=1.60$ (to 3 s.f.)

PRACTISE NOW 8

Find the value of each of the following.
(a) $\sin 0.65$
(b) $\cos 0.235$
(c) $\tan 1.23$

Worked Example

(Use of a Calculator)

For each of the following, find the value of x in the range $0<x<\frac{\pi}{2}$.
(a) $\sin x=0.45$
(b) $\cos x=0.605$
(c) $\tan x=2.4$

SIMILAR
 QUESTIONS

Since $\frac{\pi}{2}$ radians $=90^{\circ}$,
$0<x<\frac{\pi}{2}$ means $0^{\circ}<x<90^{\circ}$,
i.e. x is an acute angle.

Solution:

(a) For $\sin x=0.45$, press $\sin ^{-1} 0.45 \square$ to get 0.466765339 ,
i.e. when $\sin x=0.45$, $x=0.467$ radians (to 3 s.f.)
(b) For $\cos x=0.605$, press $\cos ^{-1} 0.605=$ to get 0.921030459 ,
i.e. when $\cos x=0.605$,

$$
x=0.921 \text { radians (to } 3 \text { s.f.) }
$$

(c) For $\tan x=2.4$, press $\tan ^{-1} 2 \cdot 4=$ to get 1.176005 207, i.e. when $\tan x=2.4$,

$$
x=1.18 \text { radians (to } 3 \text { s.f.) }
$$

PRACTISE NOW 9

For each of the following, find the value of x in the range $0<x<\frac{\pi}{2}$.
(a) $\sin x=0.87$
(b) $\cos x=0.347$
(c) $\tan x=0.88$

Worked
 Example
 10

(Solving a Triangle in Radian Mode)

In $\triangle A B C, \angle A B C=\frac{\pi}{2}$. Given that $B C=8.4 \mathrm{~cm}$ and $\angle B A C=0.72$ radians, calculate the length of
(i) $A B$,
(ii) $A C$.

Solution:

(a) $\tan \angle C A B=\frac{\text { opp }}{\mathrm{adj}}=\frac{B C}{A B}$

$$
\begin{aligned}
\tan 0.72 & =\frac{8.4}{A B} \\
\therefore A B & =\frac{8.4}{\tan 0.72} \\
& =9.58 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) $\sin \angle C A B=\frac{\text { opp }}{\text { hyp }}=\frac{B C}{A C}$

$$
\begin{aligned}
\sin 0.72 & =\frac{8.4}{A C} \\
\therefore A C & =\frac{8.4}{\sin 0.72} \\
& =12.7 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

We can also use Pythagoras' Theorem to find the length of $A C$, i.e. $A C^{2}=A B^{2}+B C^{2}$

In $\triangle P Q R, \angle P Q R=\frac{\pi}{2}$. Given that $P Q=9.6 \mathrm{~cm}$ and $\angle Q P R=0.63$ radians, calculate the length of
(i) $Q R$,
(ii) $P R$.

\section*{| Worked |
| :--- |
| Example |}

(Solving a Triangle in Radian Mode)
In $\triangle P A C, P A=9.4 \mathrm{~cm}, P C=14.2 \mathrm{~cm}$ and $\angle P A C=\frac{\pi}{2}$.
B lies on $A C$ such that $\angle P B A=1.1$ radians.

Find
(i) $\angle A C P$ in radians,
(ii) the length of $A B$,
(iii) the length of $B C$.

Solution:

(i) In $\triangle P A C$,
$\sin \angle A C P=\frac{9.4}{14.2}$

$$
\begin{aligned}
\therefore \angle A C P & =\sin ^{-1}\left(\frac{9.4}{14.2}\right) \\
& =0.723 \text { radians (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) In $\triangle P A B$,
$\tan 1.1=\frac{9.4}{A B}$

$$
\begin{aligned}
A B & =\frac{9.4}{\tan 1.1} \\
& =4.78 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) Using Pythagoras' Theorem,

$$
\begin{aligned}
& P C^{2}=P A^{2}+A C^{2} \\
& 14.2^{2}=9.4^{2}+A C^{2} \\
& A C^{2}
\end{aligned}=14.2^{2}-9.4^{2} 9 \text { } \begin{aligned}
& =113.28 \\
A C & =\sqrt{113.28} \\
& =10.64 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$$
\therefore B C=A C-A B
$$

$$
=10.64-4.78
$$

$$
=5.86 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

PRACTISE NOW 11

In $\triangle A C K, K C=8.3 \mathrm{~cm}, A K=11.9 \mathrm{~cm}$ and $\angle A C K=\frac{\pi}{2}$. B lies on $A C$ such that $\angle K B C=1.2$ radians.

Find
(i) $\angle K A C$ in radians,

(ii) the length of $B C$,
(iii) the length of $A B$.

BASIC LEVEL

1. Convert each of the following angles from radians to degrees, giving your answer correct to 1 decimal place.
(a) $\frac{5 \pi}{6}$
(b) $\frac{\pi}{7}$
(c) 3.2
(d) 2.56
2. Convert each of the following angles from degrees to radians.
(a) 37.4°
(b) 78.9°
(c) 142°
(d) 308°
3. Convert each of the following angles from degrees to radians, leaving your answer in terms of π.
(a) 15°
(b) 18°
(c) 75°
(d) 225°
4. Find the value of each of the following, where all the angles are in radians.
(a) $\sin 0.8$
(b) $\cos 0.543$
(c) $\tan 1.5$
(d) $\sin \frac{\pi}{8}$
(e) $\cos 0.45 \pi$
(f) $\tan \frac{2 \pi}{5}$
5. For each of the following, find the value of x in the range $0<x<\frac{\pi}{2}$.
(a) $\sin x=0.74$
(b) $\cos x=0.17$
(c) $\tan x=0.48$
(d) $\sin x=0.147$
(e) $\cos x=0.769$
(f) $\tan x=1.256$
6. In $\triangle A B C, \angle A B C=\frac{\pi}{2}$. Given that $A B=8.7 \mathrm{~cm}$ and $\angle C A B=0.93$ radians, calculate the length of

(i) $B C$,
(ii) $A C$.
7. A point C on level ground is 12.7 m away from the foot B of a tree $A B$.

Given that $\angle B A C=1.08$ radians, find
(i) the height of the tree,
(ii) the distance between A and C.

INTERMEDATE LEVEL

8. The figure shows the cross section of a piece of cake $P Q R$, in which $P R=16.8 \mathrm{~cm}, \angle Q P R=0.98$ radians and $\angle P Q R=\frac{\pi}{2}$. The edges $P Q$ and $Q R$ are to be sprinkled with chocolate rice and icing sugar respectively.

Find the length of the cake which is
(i) to be sprinkled with chocolate rice,
(ii) to be sprinkled with icing sugar.
9. At Large Splash, there is a swimming pool with 2 water slides $S P$ and $S Q$.

Given that the points P, Q and R lie on the surface of the swimming pool such that $S P=13.9 \mathrm{~m}$, $S R=7.4 \mathrm{~m}$ and $\angle Q S R=0.85$ radians, find
(i) $\angle P S Q$, the angle between the slides,
(ii) the length of slide $S Q$,
(iii) $P Q$, the distance between the bottom of both slides.

ADVANCED LEVEL

10. Two points P and $Q, 11.9 \mathrm{~m}$ apart on level ground, are due east of the foot A of a tree $T A$.

Given that $\angle T P A=0.72$ radians and $\angle T Q A=1.3$ radians, find the height of the tree.

Arc Length and Q) Area of Sector using Radian Measure

From the investigation in Section 8.1 on the formula for arc length, we have discovered that

$$
\frac{\text { Length of arc } A B}{\text { Circumference }}=\frac{\angle A O B}{360^{\circ}}
$$

i.e. Length of $\operatorname{arc} A B=\frac{x^{\circ}}{360^{\circ}} \times$ Circumference

However, if $\angle A O B=\theta$ is measured in radians, then

$$
\begin{aligned}
\frac{\text { Length of arc } A B}{\text { Circumference }} & =\frac{\theta}{2 \pi} \\
\text { i.e. Length of } \operatorname{arc} A B & =\frac{\theta}{2 \pi} \times \text { Circumference } \\
& =\frac{\theta}{2 \pi} \times 2 \pi r \\
& =r \theta
\end{aligned}
$$

In general,

$$
s=r \boldsymbol{\theta}
$$

where s is the length of an arc of a circle of radius r units and θ, in radians, is the angle subtended by the arc at the centre of the circle.

Worked Example 12

 (Finding Arc Length using Radian Measure)In the figure, O is the centre of a circle of radius 8 cm and $\angle A O B=\frac{5 \pi}{6}$ radians.

Find the length of the major arc $A P B$.

Solution:

Reflex $\angle A O B=2 \pi-\frac{5 \pi}{6}\left(360^{\circ}=2 \pi\right)$

$$
=\frac{7 \pi}{6} \text { radians }
$$

Length of major arc $A P B=8 \times \frac{7 \pi}{6}$ (using $s=r \theta, \theta$ in radians)

$$
\begin{aligned}
& =\frac{28 \pi}{3} \\
& =29.3 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

PRACTISE NOW 12

In the figure, O is the centre of a circle of radius 6 cm and reflex $\angle A O B=\frac{7 \pi}{4}$ radians.
Find the length of the minor arc $A P B$.

From the investigation in Section 8.2 on the formula for area of a sector, we have discovered that

$$
\begin{aligned}
& \frac{\text { Area of sector } O A B}{\text { Area of circle }}=\frac{\angle A O B}{360^{\circ}} \\
& \text { i.e. Area of sector } O A B=\frac{x^{\circ}}{360^{\circ}} \times \text { Area of circle }
\end{aligned}
$$

However, if $\angle A O B=\theta$ is measured in radians, then

$$
\begin{aligned}
\frac{\text { Area of sector } O A B}{\text { Area of circle }} & =\frac{\theta}{2 \pi} \\
\text { i.e. Area of sector } O A B & =\frac{\theta}{2 \pi} \times \text { Area of circle } \\
& =\frac{\theta}{2 \pi} \times \pi r^{2} \\
& =\frac{1}{2} r^{2} \theta
\end{aligned}
$$

In general,

$$
A=\frac{1}{2} r^{2} \theta
$$

where A is the area of a sector of a circle of radius r units and θ, in radians, is the angle subtended by the arc at the centre of the circle.

Worked Example

(Finding Area of a Sector using Radian Measure)
The figure shows a sector $O A B$ of radius 8 cm and a perimeter of 23 cm . Find
(i) $\angle A O B$ in radians,
(ii) the area of the sector $O A B$.

Solution:

(i) Given that the perimeter $=23 \mathrm{~cm}$,

$$
\begin{aligned}
r+r+s & =23 \\
8+8+s & =23 \\
16+s & =23 \\
s & =23-16 \\
& =7 \mathrm{~cm}
\end{aligned}
$$

(ii) Area of sector $O A B$
$=\frac{1}{2} \times 8^{2} \times \frac{7}{8}$
$=28 \mathrm{~cm}^{2}$

Using $s=r \theta$,
$7=8 \theta$
$\theta=\frac{7}{8}$ radians
$\therefore \angle A O B=\frac{7}{8}$ radians

PRACTISE NOW $\uparrow 3$

1. The figure shows a sector $O A B$ of radius 12 m and a perimeter of 33 m .

Find
(i) $\angle A O B$ in radians,
(ii) the area of the sector $O A B$.
2. A circle of radius 5.5 cm has a sector with an area of $30.25 \mathrm{~cm}^{2}$.

Calculate the perimeter of this sector.

Exercise 8D Questions 2(a)-(d), 3, 4(a)-(f), 5-9, 20

Worked Example

(Finding Arc Length and Area of Sector using Radian Measure)
In the figure, $A B$ is an arc of a circle centre O and radius $16 \mathrm{~cm} . P$ is a point on $O B$ such that $A P$ is perpendicular to $O B$ and $\angle A O B=1.35$ radians.

(i) Show that $O P$ is approximately 3.50 cm .
(ii) Find the length of $A P$.
(iii) Find the area of the shaded region.

Solution:

(i) In $\triangle A O P$,

$$
\begin{aligned}
\cos 1.35 & =\frac{O P}{16} \\
\therefore O P & =16 \cos 1.35 \\
& =3.50 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) In $\triangle A O P$,

$$
\begin{aligned}
\sin 1.35 & =\frac{A P}{16} \\
\therefore A P & =16 \sin 1.35 \\
& =15.6 \mathrm{~cm}(\text { to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) Area of shaded region $=$ area of sector $O A B-$ area of $\triangle A O P$

$$
\begin{aligned}
& =\frac{1}{2} \times 16^{2} \times 1.35-\frac{1}{2} \times 3.504 \times 15.61 \\
& =145 \mathrm{~cm}^{2}
\end{aligned}
$$

PRACTISE NOW 14

In the figure, $A B$ is an arc of a circle centre O and radius $19 \mathrm{~m} . P$ is a point on $O B$ such that $A P$ is perpendicular to $O B$ and $\angle A O B=0.98$ radians.

Exercise 8D Questions 10-12, 21-23

(i) Show that $O P$ is approximately 10.6 m .
(ii) Find the length of $A P$.
(iii) Find the area of the shaded region.

Worked Example 5

(Problem involving Area of a Triangle)

In the figure, $O A B$ is a sector of a circle with centre O and radius 8 cm .

P is the midpoint of $O A$ and $\angle A O B=0.85$ radians. Find
(i) the length of the arc $A B$,
(ii) the area of the shaded region.

Solution:

(i) Length of arc $A B=r \theta$

$$
\begin{aligned}
& =0.85 \times 8 \\
& =6.8 \mathrm{~cm}
\end{aligned}
$$

(ii) Area of sector $O A B=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \times 8^{2} \times 0.85 \\
& =27.2 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle O P B & =\frac{1}{2} \times O P \times O B \times \sin \angle P O B \quad \text { (using formula Area }=\frac{1}{2} a b \sin C \text {) } \\
& =\frac{1}{2} \times 4 \times 8 \times \sin 0.85 \quad\left(O P=\frac{1}{2} O B\right) \\
& =12.02 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

\therefore Area of shaded region $=$ Area of sector $O A B-$ area of $\triangle O P B$

$$
\begin{aligned}
& =27.2-12.02 \\
& =15.2 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 15

SIMILAR
QUESTIONS
Exercise 8D Questions 13-16, 24

In the figure, $O A B$ is a sector of a circle with centre O and radius $12 \mathrm{~cm} . K$ is a point on $O B$ such that $K B=5.5 \mathrm{~cm}$ and $\angle A O B=1.08$ radians. Find

(i) the length of the arc $A B$,
(ii) the area of the shaded region.

Worked Example 6

(Finding Area of Segment using Radian Measure)
The figure shows the major segment $A B C$ representing the cross section of a train tunnel, centre O and radius 3.6 m , such that $\angle A O C=2.2$ radians.

(i) Show that $A C$ is approximately 6.42 m .
(ii) Find the length of the major arc $A B C$, giving your answer in terms of π.
(iii) Find the area of the cross section of the tunnel, i.e. area of major segment $A B C$.

Solution:

(i) Using cosine rule,

$$
\begin{aligned}
A C^{2} & =O A^{2}+O C^{2}-2(O A)(O C) \cos \angle A O C \\
& =3.6^{2}+3.6^{2}-2(3.6)(3.6) \cos 2.2 \\
& =41.17 \text { (to } 4 \text { s.f.) } \\
A C & =6.42 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Reflex $\angle A O C=(2 \pi-2.2)$ radians
\therefore Length of major arc $A B C=3.6 \times(2 \pi-2.2)$

$$
=(7.2 \pi-7.92) \mathrm{m}
$$

Area of triangle $=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{2} \times 3.6^{2} \times(2 \pi-2.2)+\frac{1}{2} \times 3.6^{2} \times \sin 2.2 \\
& =31.7 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Area of the cross section of the tunnel $=31.7 \mathrm{~m}^{2}$

PRACTISE NOW 16

SIMILAR
 QUESTIONS

The figure shows the major segment $A B C$ representing the cross section of a tunnel in a children's toy set, centre O and radius 4.8 cm , such that $\angle A O C=2.4$ radians.

(i) Show that $A C$ is approximately 8.95 cm .
(ii) Find the length of the major arc $A B C$, giving your answer in terms of π.
(iii) Find the area of the cross section of the tunnel, i.e. area of major segment $A B C$.

BASIC LEVEL

1. For each of the following sectors, find the arc length.

(a) $r=6 \mathrm{~cm}, \theta=1.6 \mathrm{rad}$
(b) $r=14 \mathrm{~cm}, \theta=0.25 \mathrm{rad}$
(c) $r=25 \mathrm{~m}, \theta=1.75 \mathrm{rad}$
(d) $r=12 \mathrm{~mm}, \theta=\frac{3}{4} \mathrm{rad}$
2. For each of the following sectors, find the area.

(a) $r=8 \mathrm{~cm}, \theta=2.2 \mathrm{rad}$
(b) $r=17 \mathrm{~cm}, \theta=0.46 \mathrm{rad}$
(c) $r=33 \mathrm{~m}, \theta=\frac{1}{5} \mathrm{rad}$
(d) $r=94 \mathrm{~mm}, \theta=0.6 \mathrm{rad}$
3. The figure shows a sector $O A B$ of radius 16 cm and a perimeter of 50 cm .

Find
(i) $\angle A O B$ in radians,
(ii) the area of the sector $O A B$.
4. Copy and complete the table for sectors of a circle.

	Radius	Angle at centre	Arc length	Area
(a)	4 cm	1.25 rad		
(b)	6 cm		9 cm	
(c)		0.8 rad	9.6 m	
(d)		1.2 rad		$60 \mathrm{~m}^{2}$
(e)	8 mm			$64 \mathrm{~mm}^{2}$
(f)			6 mm	$27 \mathrm{~mm}^{2}$

5. $O A B$ is a major sector of a circle centre O and radius 14 cm .

Given that reflex $\angle A O B=3.8$ radians, find
(i) the perimeter of major sector $O A B$,
(ii) the area of the minor sector $O A B$.

INTERMEDIATE LEVEL

6. Given that a sector $O A B$ of radius 10 cm has an area of $60 \mathrm{~cm}^{2}$, find the perimeter of the sector.

7. Given that a sector of radius 18 m has an area of $729 \mathrm{~m}^{2}$, find the perimeter of the sector.
8. A, B and C are points on a circle with centre O and radius 5 cm , with obtuse $\angle A O B=1.8$ radians.

(i) Find the area of minor sector $A O B$.
(ii) Write down an expression, in terms of π, for the size of reflex $\angle A O B$.
(iii) Find the length of major arc $A C B$, giving your answer in the form $a+b \pi$, where a and b are rational numbers.
9. Given that the perimeter of the sector $A O B$ is 18 cm and that the area is $8 \mathrm{~cm}^{2}$,
(i) form a pair of simultaneous equations involving r and θ,
(ii) find the value of r and of θ.

10. In the figure, $A B$ is an arc of a circle centre O and radius $18 \mathrm{~cm} . C$ is a point on $O B$ such that $A C$ is perpendicular to $O B$ and $\angle A O B=1.05$ radians.

Find
(i) the length of $A C$,
(ii) the area of the shaded region.
11. In the figure, $O A B$ is a sector of a circle centre O and radius $25 \mathrm{~cm} . A C$ is perpendicular to $O B$ and the length of minor arc $A B$ is 31 cm .

Find the area of the shaded region.
12. In the figure, $A P B$ is an arc of a circle centre O and radius $12 \mathrm{~cm} . A B Q$ is a semicircle with $A B$ as diameter. $\triangle A O B$ is an equilateral triangle and $\angle A O B=\theta$ radians.

(i) Write down the value of θ.
(ii) Find the length of the arc $A P B$.
(iii) Find the area of the shaded region.
13. In the figure, $O A B$ is a sector of a circle with centre O and radius $15 \mathrm{~cm} . K$ is a point on $O B$ such that $2 O K=3 B K$ and $\angle A O B=1.2$ radians.

Find
(i) the length of the arc $A B$,
(ii) the area of the shaded region.
14. The figure shows a sector of a circle $O A B$, with centre O and radius 8 cm . The point P lies on $O A$ such that $\frac{O P}{P A}=\frac{3}{2}$ and the point Q lies on $O B$ such that $O Q: Q B=3: 4$.

Given that $\angle A O B=0.8$ radians, find
(i) the length of the arc $A B$,
(ii) the area of the shaded region.
15. The figure shows a slice of an apple pie in the shape of a sector of a circle with centre O and radius 8 cm . A cut is made along $A B$ to remove some of the crust.

Given that $A B=7 \mathrm{~cm}$, find
(i) the maximum number of slices that can be obtained from one full pie,
(ii) the area of the shaded segment that has been removed.
16. In $\triangle A B C, A B=40 \mathrm{~cm}, B C=80 \mathrm{~cm}$ and $\angle A B C=\frac{\pi}{6}$. $X Y$ is an arc of a circle centre B and radius 10 cm .

Find
(i) the area of $\triangle A B C$,
(ii) the area of the shaded region.
17. The figure shows the major segment $A P B$ centre O and radius 6 m .

Given that the length of the major arc $A P B$ is 24 m , find
(i) reflex $\angle A O B$ in radians,
(ii) the length of $A B$,
(iii) the area of the major segment $A P B$.
18. The figure shows the cross section of a water pipe of radius 15 cm . Water flowing in the pipe has a height of $h \mathrm{~cm}$ and a horizontal width of 22 cm .

Find
(i) the value of h,
(ii) the area of the cross section which contains water.
19. The figure shows a minor segment of a circle centre O and radius $6 \mathrm{~cm} . P Q$ is a chord of the circle such that its distance from O is 3 cm .

Find
(i) obtuse $\angle P O Q$ in radians,
(ii) the area of the shaded segment.

ADVANCED LEVEL

20. An $\operatorname{arc} P Q$ of a circle, centre O, subtends an angle of 2 radians at the centre.

This sector is folded to form a right circular cone so that the arc $P Q$ becomes the circumference of the base. Find the height of the cone.
21. Two circles with centres P and Q touch each other externally at R. TABX is a common tangent to the two circles where $\angle B A P=\angle A B Q=\frac{\pi}{2}$ radians.

Given that the radii of the circles are 5 cm and 3 cm respectively and $\angle A P Q=\theta$ radians, find
(i) the value of θ,
(ii) the area of the shaded region.
22. In the figure, O is the centre of the circle whose radius is $8 \mathrm{~cm} . T P$ and $T Q$ are tangents to the circle such that $\angle O P T=\angle O Q T=\frac{\pi}{2}$ radians.

Given that $T P=14 \mathrm{~cm}$ and $\angle P T Q=\theta$ radians, find
(i) the value of θ,
(ii) the area of the shaded region.
23. In the figure, $A B C D$ is a square of side 10 cm .

Given that $H K$ is an arc of a circle centre A and radius $A K$ where $A K=12.5 \mathrm{~cm}$, find
(i) $\angle H A K$ in radians,
(ii) the area of the shaded region $H C K$.
24. The figure shows a circle centre O and radius 12 cm .

Given that $\angle P O Q=1.2$ radians and $P R$ is a tangent to the circle where $\angle O P R=\frac{\pi}{2}$ radians and the length of $P R$ is equal to that of the $\operatorname{arc} P S Q$, find
(i) the length of the arc $P S Q$,
(ii) the area of the segment $P S Q$,
(iii) the length of the chord $P Q$,
(iv) the area of the shaded region $P S Q R$.
25. The figure shows a quadrant of a circle centre O and radius $15 \mathrm{~cm} . Q$ is a point on the arc such that the lengths of $\operatorname{arcs} P Q$ and $Q R$ are in the ratio $4: 3$.

Given that $\angle Q O R=\theta$ radians, find
(i) the value of θ in terms of π,
(ii) the area of the shaded region.

1. A radian is the size of the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle.

$$
\begin{aligned}
\pi \text { radians } & =180^{\circ} \\
1 \text { radian } & =\frac{180^{\circ}}{\pi} \\
1^{\circ} & =\frac{\pi}{180^{\circ}} \text { radians }
\end{aligned}
$$

2. To find the arc length and area of a sector:

For a sector subtending an angle x° at the centre of a circle of radius r :	For a sector of a circle of radius r enclosed by two radii that subtend an angle of θ radians at the centre:
Arc length $A B=\frac{x^{\circ}}{360^{\circ}} \times 2 \pi r$	Arc length, $s=r \theta$
Area of sector $O A B=\frac{x^{\circ}}{360^{\circ}} \times \pi r^{2}$	Area of sector, $A=\frac{1}{2} r^{2} \theta$

1. In the figure, $B P A$ is the major arc of a circle centre O and radius 12 cm .

Given that $\angle B O A=120^{\circ}$, find
(i) the length of $\operatorname{arc} B P A$,
(ii) the area of the sector $O B P A$.
2. The figure shows a circle with centre O, radius 8 cm and $\angle P O Q=1.9$ radians.

Find
(i) the area of the minor sector $P O Q$,
(ii) reflex $\angle P O Q$ in terms of π,
(iii) the length of the major arc $P R Q$ in terms of π.
3. In the figure, O is the centre of a circle of radius 8 cm and $\triangle P Q R$ is an isosceles triangle.

Given that $\angle Q P R=\theta$ radians and $Q R=7 \mathrm{~cm}$, find
(i) the value of θ,
(ii) the area of the minor segment $Q S R$.
4. A log cake baked for a Christmas party has a circular cross section with centre O and radius 10 cm . The top section of the cake is sliced off along $A B$ and is to be replaced with cake toppings.

Given that $A B=14 \mathrm{~cm}$, find
(i) $\angle A O B$ in radians,
(ii) the cross-sectional area of the cake that is sliced off.
5. The figure shows the cross section of a drainage pipe. The shaded minor segment $P Q X$ of the circle centre O, represents the part of the pipe which contains mud.

Given that $\angle P O Q=2.2$ radians, express the area of the segment as a percentage of the area of the circle, giving your answer correct to the nearest integer.
6. A dart board is in the shape of a circle with centre O and radius $15 \mathrm{~cm} . \triangle O A B$ is shaded green such that $O A=O B=15 \mathrm{~cm}$. The major segment $O A C B$ is shaded purple such that reflex $\angle A O B=5.8$ radians.

(i) Show that the area of $\triangle O A B$ is approximately $52.3 \mathrm{~cm}^{2}$.
(ii) Given that the dart lands on the board, find the probability that it lands on the unshaded area, giving your answer in standard form.
7. In the figure, $O A B$ is a sector of a circle with centre O and radius $12 \mathrm{~cm} . A O C$ is a straight line such that $A C=30 \mathrm{~cm}$ and $\angle B O C=1.15$ radians.

Calculate

(i) the length of the arc $A B$,
(ii) the area of the shaded segment,
(iii) the area of $\triangle B O C$,
(iv) the length of $B C$.
8. In the figure, $O A B$ is a sector of a circle with centre O and radius $12 \mathrm{~cm} . C$ is a point on radius $O B$ such that $\angle O A C=0.6$ radians and $\angle O C A=1.2$ radians.

Find
(i) the length of $B C$ and of $A C$,
(ii) the area of the shaded region.
9. In the figure, $P Q R S$ is a semicircle with centre at O. Given that $P S=2 r \mathrm{~cm}$ and the lengths of arcs $P Q$, $Q R$ and $R S$ are equal, calculate the area of the shaded region, giving your answer in terms of r.

1. The figures below show various semicircles.

In each figure, all the semicircles are of the same size and $A B=14 \mathrm{~cm}$.

(a)

(c)

(b)

(d)

Find the perimeter of each figure, leaving your answer in terms of π. What do you observe? Can you generalise your observations?
2. The figure shows three semicircles each of radius 12 cm with centres at A, B and C in a straight line. A fourth circle with a centre at P and radius $r \mathrm{~cm}$ is drawn to touch the other three semicircles.

Given that $B P Q$ is a straight line, find
(i) the value of r,
(ii) $\angle P A C$ in radians,
(iii) the area of the shaded region.
3. The figure shows two identical circles of radius 5 cm touching each other externally. The two circles also touch a larger circle, centre O and radius 15 cm internally.

(i) Show that the perimeter of the shaded region is $\frac{35 \pi}{3} \mathrm{~cm}$.
(ii) Find the area of the shaded region.
4. In the figure, the circle $P Q R$ with centre T and with radius r is enclosed in the sector $O A B$ with centre at O and radius 48 cm .

Given that $\angle A O B=60^{\circ}$ and $\angle O P T=\angle O Q T=\frac{\pi}{2}$ radians, find
(i) the value of r,
(ii) the area of the shaded region.

C1 Revision Exercise

1. Given that $0 \leqslant x \leqslant 2 \pi$, find the values of x for which $\sin x=0.345$.
2. In the figure, $O A B$ is a sector of a circle of radius 8 cm and the length of $\operatorname{arc} A B=15.2 \mathrm{~cm}$.

Find
(i) $\angle A O B$ in radians,
(ii) the area of the sector.
3. The figure shows a semicircle $A O B P$ where O is the centre and $\triangle A P B$ is right-angled at P.

Given that $A B=16 \mathrm{~cm}$ and $\angle P A B=0.6$ radians, find
(i) the length of $A P$,
(ii) the area of $\triangle P A B$,
(iii) the area of the shaded region.
4. Find the value of a in the figure.

5. In the figure, $A B C D$ is a rectangle. The points P and Q lie on $A B$ and $B C$ respectively such that $P Q=4 \mathrm{~cm}, Q D=8 \mathrm{~cm}, \angle B P Q=70^{\circ}$ and $\angle C Q D=40^{\circ}$.

Find
(i) the length of $C D$,
(ii) $\angle A P D$,
(iii) the length of $A D$.
6. The figure shows a quadrilateral $A B C D$ in which $A B=A D=6 \mathrm{~cm}, B D=9 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $\angle C B D=60^{\circ}$.

Find
(i) $\angle B A D$,
(ii) the area of $\triangle A B D$,
(iii) the area of the quadrilateral $A B C D$,
(iv) $\angle A B C$,
(v) the length of $D C$.

C1 Revision Exercise

7. The figure shows a point B which lies 12 km due east of A. A straight road $B E$ makes an angle of 42° with $A B$. C and D are two points on the road such that $A D=A C=10 \mathrm{~km}$.

Find
(i) the bearing of C from A,
(ii) the bearing of D from A,
(iii) the distance between C and D.
8. The diagram shows a right triangular prism with $\angle A B P=90^{\circ}$ and $A B C D$ lying on a horizontal table.

Given that $A B=6 \mathrm{~cm}, A D=8 \mathrm{~cm}$ and $A P=12 \mathrm{~cm}$, find
(i) $\angle P A B$,
(ii) the length of $P B$,
(iii) $\angle P D B$.
9. From the top T of an observation tower, which is 20 m high, the angle of depression of a ship, A, which is due east of T, is 25.4°. Another ship, B, which is due west of T, finds the angle of elevation of T to be 54.7°. Calculate the distance between A and B.

C2 Revision Exercise

1. Given that $0 \leqslant x \leqslant 3$, find the value of x for which $\cos x=-0.5$.
2. Given that $\sin 40^{\circ}=0.643$ and $\cos 15^{\circ}=0.966$ when corrected to 3 significant figures, find the value of each of the following without the use of a calculator.
(a) $\sin 140^{\circ}$
(b) $\cos 165^{\circ}$
3. In the figure, the radius of the circle and of each arc is 4 cm .

Find the area of the shaded region.
4. Find the value of x and of y in the given triangle.

5. In the figure, $\triangle A B C$ is right-angled at B and M is the midpoint of $B C$.

Given that $B M=M C=5 \mathrm{~cm}$ and $\angle A C B=40^{\circ}$, find
(i) the length of $A M$,
(ii) the length of $A C$,
(iii) $\angle A M B$,
(iv) $\angle C A M$.
6. The figure shows a quadrilateral $A B C D$ in which $A D=4 \mathrm{~cm}, D C=5 \mathrm{~cm}, A B=10 \mathrm{~cm}, \angle A D C=120^{\circ}$ and $\angle A C B=60^{\circ}$.

Find
(i) the length of $A C$,
(ii) $\angle D A C$,
(iii) $\angle A B C$
(iv) the length of $B D$,
(v) the area of the quadrilateral $A B C D$.
7. During a junior sailing competition, the course of the race is in the form of a regular pentagon $A B C D E$, where B is due north of A and $A B=800 \mathrm{~m}$.

(a) Find the bearing of
(i) C from B,
(ii) E from A,
(iii) D from E.
(b) Calculate the area of $A B C D E$, giving your answer in standard form correct to 4 significant figures.

C2 Revision Exercise

8. $O P Q R$ is a triangular pyramid. M is the midpoint of $Q R, P Q=Q R=P R=6 \mathrm{~cm}$ and $O P=O Q=O R$ $=8 \mathrm{~cm}$.

(a) Find
(i) the height $O X$ of the pyramid,
(ii) $O P X$.
(b) Given that $P M: X M=2: 1$, find $\angle O M X$.
9. A vertical pole $V Q$ stands at one corner of a horizontal rectangular field.

Given that $S R=8 \mathrm{~m}, P S=6 \mathrm{~m}$ and the angle of elevation of V from P is 24°, find
(i) the distance between V and Q,
(ii) the distance between V and S,
(iii) the angle between $V S$ and $V Q$,
(iv) the angle of elevation of V from R.

Congruence and Similarity Tests

Radiation

$6 \mathrm{~cm}^{1} \quad x \mathrm{~cm}$
Geometry plays a very important role in radiation oncology (the study and treatment of tumours) when determining the safe level of radiation to be administered to spinal cords of cancer patients. The picture shows how far apart two beams of radiation must be placed so that they will not overlap at the spinal cord, or else a double dose of radiation will endanger the patient.

Chapter

Source S

Congruence Tests

: Recap

In Book 2, we have learnt that congruent figures have exactly the same shape and size; and they can be mapped onto one another under translation, rotation and reflection.

For congruent triangles, this would mean that all the corresponding lengths are equal and all the corresponding angles are equal.

For example, $\triangle A B C$ is congruent to $\triangle X Y Z$ (and we write $\triangle A B C \bullet \triangle X Y Z$) if and only if

$$
\begin{aligned}
A B & =X Y \\
B C & =Y Z \\
A C & =X Z \\
B \hat{A} C & =Y \hat{X} Z \\
A \hat{B} C & =X \hat{Y} Z \\
A \hat{C} B & =X \hat{Z} Y
\end{aligned}
$$

Fig. 9.1

Consider $\triangle E F G$, where

$$
E F=A B
$$

The vertices of the 2 triangles must match:

$$
\begin{aligned}
& A \leftrightarrow X \\
& B \leftrightarrow Y \\
& C \leftrightarrow Z
\end{aligned}
$$

$A \widehat{B} C$ can also be written as $\angle A B C$. Similarly, $X \hat{Y} Z$ can be written as $\angle X Y Z$.
$F G=B C$
$E G=A C$
$F \hat{E} G=B \hat{A} C$
$E \hat{F} G=A \hat{B} C$
$E \hat{G} F=A \widehat{C} B$

Fig. 9.2
$\triangle E F G$ is still congruent to $\triangle A B C$ even though $\triangle E F G$ is laterally inverted, because $\triangle E F G$ can be mapped onto $\triangle A B C$ by a reflection (and a translation if necessary).

In this section, we will investigate whether we need all the 6 conditions (i.e. 3 pairs of corresponding sides are equal and 3 pairs of corresponding angles are equal) to prove that two triangles are congruent.

:\%: SSS Congruence Test

Investigation

SSS Congruence Test

1. Cut 3 satay sticks so that the lengths of the sticks are $5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm .
2. Try to form a triangle using the 3 satay sticks in as many ways as possible, such that the lengths of the triangle correspond to the lengths of the 3 sticks.
(If you do not have satay sticks, you can try to construct the triangle using the three given lengths in as many ways as possible.)
3. Do you get the following triangle?

If you get a different triangle, flip it over and see if it fits onto this triangle.
Is it possible to get other triangles?

Fig. 9.3
4. Try using 3 other satay sticks of different lengths, such that the sum of the lengths of the two shorter sticks is greater than the length of the longest stick, and see if you always get a unique triangle (regardless of reflection) no matter how you try to form a triangle.
5. What can you conclude from this investigation?

From the investigation, we observe the following:

SSS Congruence Test: If the 3 sides of a triangle are equal to the 3 corresponding sides of another triangle, then the two triangles are congruent.

Worked Example

Prove that the following two triangles are congruent.

Solution:

$A \leftrightarrow X$
$B \leftrightarrow Z$
$C \leftrightarrow Y$
$A B=X Z=4 \mathrm{~cm}$
$B C=Z Y=9 \mathrm{~cm}$
$A C=X Y=7 \mathrm{~cm}$
$\therefore \triangle A B C \cdot \triangle X Z Y(\mathrm{SSS})$

PRACTISE NOW 1

1. Copy and complete the proof to show that the following two triangles are congruent.

Solution:
$A \leftrightarrow$ \qquad
$B \leftrightarrow$ \qquad
$C \leftrightarrow$ \qquad
$A B=$ \qquad $=5 \mathrm{~m}$
$B C=$ \qquad $=$ \qquad m
$A C=$ \qquad (given)
$\therefore \triangle A B C \cdot \Delta$ \qquad (

2. The diagram shows a kite $W X Y Z$.

Identify the two congruent triangles in the kite and prove that they are congruent.

: fl SAS Congruence Test

Investigation

SAS Congruence Test

Part 1

1. Try to construct $\triangle X Y Z$ such that $X Y=3 \mathrm{~cm}, Y Z=6 \mathrm{~cm}$ and $X \hat{Y} Z=50^{\circ}$ in as many ways as possible.
Compare the triangle you have drawn with those drawn by your classmates.
2. Do you get the following triangles (not drawn to scale)?

Both triangles are actually congruent to each other: you can map both triangles together by a reflection.
Is it possible to get other triangles?

Fig. 9.4
3. Try to construct $\triangle X Y Z$ for other dimensions, where $X Y$ and $Y Z$ have a fixed length and $X \hat{Y} Z$ is a fixed angle, in as many ways as possible and see if you always get a unique triangle (regardless of reflection).
4. Notice that the given $X \hat{Y} Z$ is between the two given sides $X Y$ and $Y Z: X \hat{Y} Z$ is called the included angle.
5. What can you conclude from part 1 of this investigation?

Part 2

6. Try to construct $\triangle A B C$ such that $A B=5 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and $A \hat{B} C=30^{\circ}$ in as many ways as possible.
7. Fig. 9.5 shows one possible $\triangle A B C$ that satisfies the given dimensions.

Fig. 9.5
Is it possible to construct a different $\triangle A B C$ (excluding a laterally inverted triangle)?
8. Notice that the given $A \hat{B} C$ is not in between the two given sides $A B$ and $A C$, i.e. $A \widehat{B C}$ is not the included angle.
9. What can you conclude from part 2 of this investigation?

From the investigation, we observe the following:

SAS Congruence Test: If 2 sides and the included angle of a triangle are equal to the 2 corresponding sides and the corresponding included angle of another triangle, then the two triangles are congruent.

If the given angle is not the included angle, then SSA may not be a congruence test.

For example, in the above investigation, there are two ways to construct $\triangle A B C$ as shown in Fig. 9.6.

Fig. 9.6
Since the two triangles are not congruent, then SSA is not a congruence test in general, although there are exceptions (see RHS Congruence Test later in this section).

Worked Example 2
 (Proving that Two Triangles are Congruent using the SAS Congruence Test)

Copy and complete the proof to show that the following two triangles are congruent.

Solution:

$P \leftrightarrow$
$Q \leftrightarrow$
$R \leftrightarrow$ \qquad
$P Q=$ \qquad $=9 \mathrm{~mm}$
$Q \widehat{P} R=$ \qquad $={ }^{\circ}{ }^{\circ}$
$P R=$ \qquad $=$ \qquad mm
$\therefore \triangle P Q R \cdot \Delta$ \qquad (SAS)

PRACTISE NOW 2

SIMILAR
 QUESTIONS

Exercise 9A Questions 1(b), 2(b), 3(b), 4(c),(d)
2. Determine whether the following triangles are congruent.

It is easier to match the vertices with the given angle first. Then match the vertex opposite either the 9 mm or 12 mm side for both triangles.

1. Prove that the following two triangles, where $P \hat{Q} R=S \hat{P} T$, are congruent.

In the diagram, $A O C$ and $B O D$ are straight lines, $O A=O C$, $O B=O D$ and $A B=7 \mathrm{~cm}$.

(i) Prove that $\triangle A O B$ is congruent to $\triangle C O D$.
(ii) Find the length of $C D$.

Solution:

(i) $A \leftrightarrow C$
$O \leftrightarrow O$
$B \leftrightarrow D$
$O A=O C$ (given)
$A \hat{O} B=C \hat{O} D$ (vert. opp. $\angle \mathrm{s}$)
$O B=O D($ given $)$
$\therefore \triangle A O B \cdot \triangle C O D(\mathrm{SAS})$
(ii) Since $\triangle A O B \bullet \triangle C O D$, then all the corresponding sides are equal.
$\therefore C D=A B$

$$
=7 \mathrm{~cm}
$$

PRACTISE NOW 3

SIMILAR
QUESTIONS

1. In the diagram, $A B C D$ is a rectangle, the two diagonals $A C$ and $B D$ intersect at O and $C \hat{A} B=25^{\circ}$.

(i) Prove that $\triangle A O B$ is congruent to $\triangle C O D$.
(ii) Find $B \hat{D} C$.
2. In the diagram, $P Q$ is equal and parallel to $S R, P S=7 \mathrm{~cm}$ and $Q \hat{R} S=140^{\circ}$.

(i) Identify two congruent triangles and prove that they are congruent.
(ii) Find the length of $Q R$ and $Q \hat{P} S$.

:¿̊: AAS Congruence Test

Investigation

AAS Congruence Test

Part 1

1. Try to construct $\triangle P Q R$ such that $P Q=7 \mathrm{~cm}, Q \hat{P} R=40^{\circ}$ and $P \hat{Q} R=60^{\circ}$ in as many ways as possible.
Compare the triangles you have drawn with those drawn by your classmates.

Fig. 9.7
2. Do you always get a unique triangle (regardless of reflection) as shown above (not drawn to scale)?
3. What can you conclude from part 1 of this investigation?

Part 2

4. Try to construct $\triangle A B C$ such that $A B=6 \mathrm{~cm}, B \hat{A} C=50^{\circ}$ and $A \hat{C} B=70^{\circ}$ in as many ways as possible.

An easier way to construct the vertex C is to find $A \widehat{B} C$ first, and then construct $A \widehat{B} C$.
5. Do you always get a unique triangle (regardless of reflection)?
6. What can you conclude from part 2 of this investigation?
7. Does it matter whether the given side of the triangle is between the 2 given angles (as in part 1) or if it is not between the 2 given angles (as in part 2)? Explain your answer.
Hint: See Problem Solving Tip for Question 4 in this investigation.

From the investigation, we observe the following:

AAS Congruence Test: If 2 angles and 1 side of a triangle are equal to the 2 corresponding angles and the corresponding side of another triangle, then the two triangles are congruent.

Since it does not matter whether or not the given side is between the two given angles, it does not matter whether we write AAS Congruence Test or ASA Congruence Test (unlike SAS Congruence Test where the given angle must be the included angle).

Worked Example

(Proving that Two Triangles are Congruent using the AAS Congruence Test)

Copy and complete the proof to show that the following two triangles are congruent.

Solution:

In $\triangle D E F, E \hat{F} D=180^{\circ}-80^{\circ}-30^{\circ}(\angle$ sum of a $\triangle)$

$$
=70^{\circ}
$$

$A \leftrightarrow$ \qquad
$B \leftrightarrow$
$C \leftrightarrow$
\qquad
\qquad
$A \hat{B} C=$ \qquad $=80^{\circ}$
$B \hat{A} C=$ \qquad $=$ \qquad
$B C=$ \qquad $=$ \qquad mm
$\therefore \triangle A B C \cdot \Delta$ \qquad (AAS)

PRACTISE NOW 4

In each part, prove that the following two triangles are congruent.
(a)

(b)

:\%\% RHS Congruence Test

Investigation

RHS Congruence Test

1. Try to construct $\triangle D E F$ such that $D \hat{E} F=90^{\circ}, D E=3 \mathrm{~cm}$ and $D F=5 \mathrm{~cm}$ in as many ways as possible.
Compare the triangles you have drawn with those drawn by your classmates.

Fig. 9.9
2. Do you always get a unique triangle (regardless of reflection) as shown above (not drawn to scale)?
3. What can you conclude from the above investigation?
4. Do you notice that the above congruence test is a special case of SSA where the given angle is a right angle?

From the investigation, we observe the following:
RHS Congruence Test: If the hypotenuse (H) and 1 side (S) of a
right-angled (R) triangle are equal to the hypotenuse and 1 side of another right-angled triangle, then the two right-angled triangles are congruent.

In general, SSA is not a congruence test, but there are exceptions, one of which is the RHS Congruence Test.

Exercise 9A Questions 1(c), 2(c), 3(c), 4(e),(f)

Worked
Example
(Proving that Two Triangles are Congruent using the RHS Congruence Test)
Copy and complete the proof to show that the following two triangles are congruent.

Solution:

By Pythagoras' Theorem,

$$
\begin{aligned}
S T & =\sqrt{T U^{2}+S U^{2}} \\
& =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{25} \\
& =5 \mathrm{~cm}
\end{aligned}
$$

$P \leftrightarrow$ \qquad
$Q \leftrightarrow$ \qquad
$R \leftrightarrow$
$P \hat{Q} R=$ \qquad $=$ \qquad ${ }^{\circ}$
$P R=$ \qquad $=$ \qquad cm
$Q R=$ \qquad $=$ \qquad cm
$\therefore \triangle P Q R \bullet \Delta$ \qquad (RHS)

PRACTISE NOW 5

SIMILAR
 QUESTIONS

Exercise 9A Questions 1(d), 2(d), 3(d), 4(g),(h)
(a)

(b)

Consolidation for Congruence Tests

Work in pairs.
In each diagram, identify a pair of congruent triangles and prove that they are congruent.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

BASIC LEVEL

1. Identify a pair of congruent triangles from the following triangles (not drawn to scale), based on each of the following congruence tests:
(a) SSS Congruence Test,
(b) SAS Congruence Test,
(c) AAS Congruence Test,
(d) RHS Congruence Test.
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

2. Copy and complete the proof to show that each of the following pairs of triangles are congruent.
(a)

$$
A \leftrightarrow
$$

$B \leftrightarrow$
$C \leftrightarrow$ \qquad
$A B=$ \qquad (given)
$B C=$ \qquad $=8 \mathrm{~cm}$
$A C=$ \qquad $=$ cm
$\therefore \triangle A B C \cdot \Delta$ \qquad
(b)

$F \leftrightarrow$
$D E=$ \qquad $=3 \mathrm{~m}$
$D \hat{E} F=$ \qquad $=70^{\circ}$
$E F=$ \qquad $=$ m
\qquad
\qquad)
(c)

$$
\begin{aligned}
& L \leftrightarrow \\
& M \leftrightarrow- \\
& N \leftrightarrow-\quad \\
& L \hat{M} N=-\quad=30^{\circ} \\
& L \hat{N} M=\square=\square . \\
& M N=\square=\square
\end{aligned}
$$

$\therefore \Delta$ \qquad - $\Delta U V W($ \qquad _)
(d)

$$
\begin{aligned}
& G \leftrightarrow \\
& H \leftrightarrow \\
& I \leftrightarrow \\
& G \hat{H} I=\quad=\quad . \quad . \\
& G I= \\
& =13 \mathrm{~mm} \\
& H I= \\
& = \\
& \text { mm }
\end{aligned}
$$

$\therefore \Delta$ \qquad - $\triangle S T U($ \qquad _)
$\therefore \triangle D E F \cdot \triangle$ \qquad
3. Determine whether each of the following pairs of triangles are congruent.
(a)

(b)

(c)

(d)

INTERMEDIATE LEVEL

4. In each diagram, identify a pair of congruent triangles and prove that they are congruent.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

5. In the diagram, RTV and STU are straight lines, $R T=V T, S T=U T, R S=4 \mathrm{~cm}$ and $S \hat{R} T=80^{\circ}$.

(i) Prove that $\triangle R S T$ is congruent to $\triangle V U T$.
(ii) Find the length of $U V$.
(iii) Find $U \hat{V} T$.
(iv) Hence, other than $R S=U V$, what can you conclude about the lines $R S$ and $U V$?
6. In the diagram, $G H=J I$ and $G I=J H$.

(i) Identify a triangle that is congruent to $\triangle G H I$ and prove that they are congruent.
(ii) If $H \hat{J I}=60^{\circ}$ and $G \hat{I} H=40^{\circ}$, find $G \hat{H I}$.

ADVANCED LEVEL

7. In each diagram, identify a pair of congruent triangles and prove that they are congruent.
(a)

(b)

(c)

(d)

(e)

(f)

8. The diagram shows a parallelogram $A B C D$.

Use three different ways to prove that $\triangle A B C$ and $\triangle C D A$ are congruent.

¿:\%Recap

In Book 2, we have learnt that similar figures have exactly the same shape but not necessarily the same size (i.e. congruence is a special case of similarity); and they can be mapped onto one another under enlargement.

For similar triangles, this would mean that all the corresponding angles are equal, and all the corresponding sides are proportional (i.e. all the ratios of the corresponding sides are equal).

For example, $\triangle A B C$ is similar to $\triangle X Y Z$ if and only if
$B \hat{A} C=Y \hat{X} Z$
$A \hat{B} C=X \hat{Y} Z$
$A \hat{C} B=X \hat{Z} Y$
$\frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{A C}{X Z}$

Fig. 9.10
In this section, we will investigate whether we need all the 6 conditions (i.e. 3 pairs of corresponding sides are equal and 3 ratios of corresponding sides are equal) to prove that two triangles are similar.

The vertices of the 2 triangles must match:

$$
\begin{aligned}
& A \leftrightarrow X \\
& B \leftrightarrow Y \\
& C \leftrightarrow Z
\end{aligned}
$$

:\% AA Similarity Test

Investigation

AA Similarity Test

1. Construct $\triangle A B C$ and $\triangle X Y Z$ of different sizes such that $B \hat{A} C=Y \hat{X} Z=30^{\circ}$ and $A \hat{B} C=X \hat{Y} Z=50^{\circ}$.

Fig. 9.11
2. Find $A \hat{C} B$ and $X \hat{Z} Y$ by using angle sum of triangle $=180^{\circ}$. Is $A \hat{C} B=X \hat{Z} Y$?
3. Measure the lengths of all the sides of the two triangles that you have constructed (not the ones shown in Fig. 9.11) and calculate the ratios $\frac{A B}{X Y}$, $\frac{B C}{Y Z}$ and $\frac{A C}{X Z}$ correct to 2 significant figures. Is $\frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{A C}{X Z}$?
4. From what you have learnt in Book 2 which you have recapped at the beginning of Section 9.2 , since all the corresponding angles of $\triangle A B C$ and $\triangle X Y Z$ are equal and all the 3 ratios of their corresponding sides are equal, are the two triangles similar?
5. It is very important to note that the above given conditions are 2 pairs of corresponding angles equal (i.e. $B \hat{A} C=Y \widehat{X} Z$ and $A \widehat{B} C=X \hat{Y} Z$). Are these given conditions enough to prove that the two triangles are similar?

From the investigation, we observe the following:
AA Similarity Test: If 2 angles of a triangle are equal to the 2 corresponding angles of another triangle, then the two triangles are similar.

Thinking

 Time1. Why is the AAA Similarity Test not necessary?
2. Do two congruent triangles satisfy the AA Similarity Test? Is congruence a special case of similarity?

Worked Example 0

(Proving that Two Triangles are Similar using the AA Similarity Test)
Copy and complete the proof to show that the following two triangles are similar.

Solution:

$$
\begin{aligned}
A \hat{C} B & =A \hat{B} C(\text { base } \angle \mathrm{s} \text { of isos. } \Delta) \\
& =70^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
Y \hat{X} Z & =Y \hat{Z} X \\
& =\frac{180^{\circ}-40^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \Delta) \\
& =70^{\circ}
\end{aligned}
$$

$A \leftrightarrow Y$

$B \leftrightarrow$

$C \leftrightarrow$

$A \hat{B} C=$
\qquad
$=70^{\circ}$

$A \widehat{C} B=$
\qquad
$=$
\qquad
-
$\therefore \triangle A B C$ is similar to \triangle \qquad (2 pairs of corr. \angle s equal).

PRACTISE NOW 6

1. In each part, determine whether the following two triangles are similar. Explain or prove your answers.
(a)

Sometimes there is a need to find the other unknown angles in both triangles.
(b)

(c)

(d)

2. In the figure, $B C$ is parallel to $D E, A B=6 \mathrm{~cm}, A C=8 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$.

(i) Show that $\triangle A B C$ is similar to $\triangle A D E$.
(ii) Find the length of $D E$ and of $B D$.
(iii) What can you conclude about the ratios $\frac{A B}{B D}$ and $\frac{A C}{C E}$ for such a figure?

:\%:\% SSS Similarity Test

Investigation

SSS Similarity Test

1. Construct $\triangle D E F$ such that $D E=2 \mathrm{~cm}, E F=3 \mathrm{~cm}$ and $D F=4 \mathrm{~cm}$.
2. Construct $\triangle P Q R$ such that $P Q=4 \mathrm{~cm}, Q R=6 \mathrm{~cm}$ and $P R=8 \mathrm{~cm}$.

Fig. 9.12 shows the two triangles (not drawn to scale).

Fig. 9.12
3. Calculate the ratios $\frac{D E}{P Q}, \frac{E F}{Q R}$ and $\frac{D F}{P R}$.

Is $\frac{D E}{P Q}=\frac{E F}{Q R}=\frac{D F}{P R}$?
4. Measure all the angles of the two triangles which you have constructed (not the ones shown in Fig. 9.12).
Are $E \hat{D} F=Q \hat{P} R, D \hat{E} F=P \hat{Q} R$ and $D \hat{F} E=P \hat{R} Q$?
5. From what you have learnt in Book 2 which you have recapped at the beginning of Section 9.2, since all the corresponding angles of $\triangle D E F$ and $\triangle P Q R$ are equal and all the 3 ratios of their corresponding sides are equal, are the two triangles similar?
6. It is very important to note that the above given conditions are 3 ratios of corresponding sides equal (i.e. $\frac{D E}{P Q}=\frac{E F}{Q R}=\frac{D F}{P R}$). Are these given conditions enough to prove that the two triangles are similar?

From the investigation, we observe the following:

SSS Similarity Test: If the 3 ratios of the corresponding sides of two triangles are equal, then the two triangles are similar.

What are the similarities and the differences between the SSS Congruence Test and the SSS Similarity Test?

Worked Example

```
(Proving that Two Triangles are Similar using the SSS Similarity Test)
```

Copy and complete the proof to show that the following two triangles are similar.

Solution:

$A \leftrightarrow T$
$B \leftrightarrow$ \qquad
$C \leftrightarrow$ \qquad
$\frac{A B}{T U}=\frac{7.5}{3}=2.5$
$\frac{A C}{T S}=-=$ \qquad
$\frac{B C}{6}=$ \qquad
$\therefore \triangle A B C$ is similar to \triangle \qquad (3 ratios of corr. sides equal).

Match the vertex opposite the longest side for both triangles first, i.e. $A \leftrightarrow T$. Then do the same for the vertex opposite the shortest side and so on.

In each part, determine whether the following two triangles are similar. Explain or prove your answers.
(a)

(b)

$2 \mathrm{~mm} \int_{T}^{S} 1.5 \mathrm{~mm}$

Exercise 9B Questions 1(b), 2(b), 3(b), 6
3. Calculate the ratios $\frac{P Q}{A B}$ and $\frac{Q R}{B C}$.

Is $\frac{P Q}{A B}=\frac{Q R}{B C}$?
4. Measure the length of $A C$ and of $P R$ in the two triangles which you have constructed (not the ones shown in Fig. 9.13). Then calculate $\frac{P R}{A C}$.
Is $\frac{P R}{A C}=\frac{P Q}{A B}=\frac{Q R}{B C}$?
5. Measure all the other unknown angles in the two triangles which you have constructed.
Are $B \hat{A} C=Q \hat{P} R$ and $A \hat{C} B=P \hat{R} Q$?
6. From what you have learnt in Book 2 which you have recapped the beginning of Section 9.2, since all the corresponding angles of $\triangle A B C$ and $\triangle P Q R$ are equal and all the 3 ratios of their corresponding sides are equal, are the two triangles similar?
7. It is very important to note that the above given conditions are 2 ratios of corresponding sides equal and the pair of included angles equal (i.e. $\frac{P Q}{A B}=\frac{Q R}{B C}$ and $P \hat{Q} R=A \hat{B} C$). Are these given conditions enough to prove that the two triangles are similar?

From the investigation, we observe the following:

SAS Similarity Test: If 2 ratios of the corresponding sides of two triangles are equal and the pair of included angles are also equal, then the two triangles are similar.

Thinking Time

1. What are the similarities and the differences between the SAS Congruence Test and the SAS Similarity Test?
2. Unlike the need for the AAS Congruence Test, why is the AAS Similarity Test not necessary?
3. Is there a RHS Similarity Test? Investigate and explain your answer.

The 3 similarity tests covered so far are not the only similarity tests. There are more, such as the RHS Similarity Test, which are not included in the syllabus.

Worked Example

(Proving that Two Triangles are Similar using the SAS Similarity Test)
Copy and complete the proof to show that the following two triangles are similar.

Solution:

$D \leftrightarrow$ \qquad
$E \leftrightarrow$ \qquad
$F \leftrightarrow$
$E \hat{D} F=$ \qquad (common angle)
$\frac{D E}{D G}=\frac{1}{2}$
$\frac{D F}{D H}=$
$\therefore \frac{D E}{D G}=\frac{D F}{D H}$
$\therefore \triangle D E F$ is similar to \triangle \qquad (2 ratios of corr. sides and included \angle equal).

PRACTISE NOW 8

In each part, determine whether the following two triangles are similar. Explain or prove your answers.
(a)

(b)

Worked Example

(Using Congruence Tests and Similarity Tests)

In the diagram, $G F$ is parallel to $A B, A B=C F=12 \mathrm{~cm}$, $B F=F G, D F=4 \mathrm{~cm}$ and $E B=7 \mathrm{~cm}$.

(i) Show that $\triangle A B F$ is congruent to $\triangle C F G$.
(ii) Show that $\triangle C D F$ is similar to $\triangle A D E$.
(iii) Find the length of $D E$.

Solution:

(i) $A \leftrightarrow C$
$B \leftrightarrow F$
$F \leftrightarrow G$
$A B=C F$ (given)
$A \hat{B} F=C \hat{F} G$ (corr. $\angle \mathrm{s}, A B / / G F)$
$B F=F G$ (given)
$\therefore \triangle A B F \bullet \triangle C F G(\mathrm{SAS})$
(ii) $C \leftrightarrow A$
$D \leftrightarrow D$
$F \leftrightarrow E$
$C \widehat{D} F=A \hat{D} E$ (vert. opp. $\angle \mathrm{s}$)

In (i), since $B F=F G$ (given), then the vertices opposite these sides must match, i.e. $A \leftrightarrow C$; similarly for $A B=C F$. Since only 2 pairs of equal sides are given, we may consider using the SAS Congruence Test.

In (ii), since the lengths of $\triangle A D E$ are not given, we may consider using the AA Similarity Test.

Since $\triangle C F G$ and $\triangle A B F$ are congruent,
then $F \hat{C} G=B \hat{A} F$,
i.e. $F \hat{C} D=E \hat{A} D$.
$\therefore \triangle C D F$ is similar to $\triangle A D E$ (2 pairs of corr. $\angle \mathrm{s}$ equal).
(iii) Since $A B=C F=12 \mathrm{~cm}$, then $A E=12-7=5 \mathrm{~cm}$.

Since $\triangle A D E$ and $\triangle C D F$ are similar, then

$$
\begin{aligned}
\frac{D E}{D F} & =\frac{A E}{C F} \\
\text { i.e. } \frac{D E}{4} & =\frac{5}{12} \\
\therefore \quad D E & =\frac{5}{12} \times 4 \\
& =1 \frac{2}{3} \mathrm{~cm}
\end{aligned}
$$

PRACTISE NOW 9

1. In the diagram, $B C$ is parallel to $E G, A C=E G=15 \mathrm{~cm}, B C=C G, C D=5 \mathrm{~cm}$ and $F G=9 \mathrm{~cm}$.

(i) Show that $\triangle A B C$ and $\triangle E C G$ are congruent.
(ii) Show that $\triangle A C D$ and $\triangle E F D$ are similar.
(iii) Find the length of $D F$.
2. The side $A B$ of $\triangle A B C$ is divided at X in the ratio 3:4. P and Q are points on $C A$ and $C B$ such that $X P$ and $X Q$ are parallel to $B C$ and $A C$ respectively.

Given that $X P=15 \mathrm{~cm}$ and $X Q=16 \mathrm{~cm}$, find the length of $B Q$ and of $A C$.

Exercise 9B

BASIC LEVEL

1. Identify a pair of similar triangles from the following triangles (not drawn to scale), based on in each of the following similarity tests:
(a) AA Similarity Test,
(b) SSS Similarity Test,
(c) SAS Similarity Test.
(i)

(ii)

(iii)

(iv)

(v)

(vi)

2. Copy and complete the proof to show that each of the following pairs of triangles are similar.
(a)

$$
S \hat{T} U=180^{\circ}-70^{\circ}-50^{\circ}(\angle \text { sum of a } \Delta)
$$

$$
=\ldots{ }^{\circ}
$$

$$
A \leftrightarrow .
$$

$B \leftrightarrow$ \qquad
$C \leftrightarrow$
$B \hat{A} C=$ \qquad $=70^{\circ}$
$A \widehat{B} C=$ \qquad
\qquad ${ }^{\circ}$
$\therefore \triangle A B C$ is similar to \triangle \qquad equal).
(b)

$X \leftrightarrow$
$Y \leftrightarrow$
$Z \leftrightarrow$
$\frac{X Y}{N M}=\frac{24}{}=$ \qquad
$\underline{X Z}=-=$ \qquad
$\underline{Y Z}=-=$ \qquad
$\therefore \triangle X Y Z$ and $\triangle \quad$ are similar
\qquad ratios of corr. \qquad equal).
(c)

$D \leftrightarrow$
$E \leftrightarrow$
$F \leftrightarrow$
$D \hat{E} F=$ \qquad
$\frac{D E}{G I}=-=$ \qquad
$\underline{E F}=-=$ \qquad
$\therefore \frac{D E}{G I}=\frac{E F}{}$
$\therefore \triangle D E F$ is similar to \triangle \qquad and \qquad angle equal). ratios of corr. \qquad (b)

INTERMEDIATE LEVEL

4. In each diagram, identify a pair of similar triangles and prove that they are similar.
(c)

(d)

5. In each of the following figures, identify the similar triangles and find the value of x and of y. All lengths are given in cm .
(a)
(b)

(c)

$A \hat{B} C=A \hat{E} D$
(d)

6. In the diagram, $A B=5 \mathrm{~cm}, A D=2 \mathrm{~cm}, B D=6 \mathrm{~cm}$, $C D=15 \mathrm{~cm}, B C=18 \mathrm{~cm}$ and $B \hat{D} C=110.5^{\circ}$.

(i) Prove that $\triangle A B D$ and $\triangle D C B$ are similar.
(ii) Find $D \hat{A} B$.
7. In the diagram, U divides $Y X$ in the ratio $2: 3$. $U V W X$ is a rhombus in which $U V=18 \mathrm{~cm}$.

Find the length of $X Y$ and of $W Z$.
8. In the diagram, the lengths of the sides of the squares PINK and NOTE are 5 cm and 9 cm respectively. Given that $P O B$ is a straight line, find the length of the side of the square $B L U E$.

9. In the diagram, $A \hat{B} C=B \hat{D} C=90^{\circ}, A D=3 \mathrm{~m}$ and $B D=4 \mathrm{~m}$.

(i) Identify 3 similar triangles and prove that they are similar.
(ii) Find the length of $B C$ and of $C D$.

ADVANCED LEVEL

10. In the diagram, $P Q, R S$ and $T U$ are parallel lines, $Q S=8 \mathrm{~cm}, S U=4 \mathrm{~cm}, Q R=12 \mathrm{~cm}$ and $R U=6 \mathrm{~cm}$.

(i) Find the length of $R T$ and of $P R$.
(ii) Calculate the ratio $P Q: T U$.
11. $R A T$ is a right-angled triangle with $A \hat{R} T=90^{\circ}$, $R A=6 \mathrm{~cm}$ and $R T=8 \mathrm{~cm}$. If the triangle is folded along the line $M N$, vertex A coincides with the vertex T.

(i) Prove that $M N$ is perpendicular to $A T$.
(ii) Name a pair of similar triangles and prove that they are similar.
(iii) Hence, find the length of $M N$.
12. In the quadrilateral $J A D E, A O=J O$ and $E O=D O$.

Explain why $\triangle A J D$ is congruent to $\triangle J A E$.

Applications of (1) S) Congruent and Similar Triangles

In this section, we will apply the concepts of congruent and similar triangles to solve problems in mathematics and in real life.

Worked Example
 10

 (Application of Congruent Triangles)In Book 1, we have learnt how to construct the bisector of a given angle as shown in the diagram. Prove that $O T$ is the angle bisector of $P \widehat{O} Q$.

Solution:

$R \leftrightarrow S$
$O \leftrightarrow O$
$T \leftrightarrow T$
$O R=O S$
$R T=S T$
$O T=O T$ (common side)
$\therefore \triangle R O T$ and $\triangle S O T$ are congruent (SSS Congruence Test).
$\therefore a=b$, i.e. $O T$ is the angle bisector of $P \hat{O} Q$.

PRACTISE NOW 10

In Book 1, we have learnt how to construct the perpendicular bisector of a given line segment as shown in the diagram. Prove that $P Q$ is the perpendicular bisector of $A B$.

Exercise 9C Questions 1, 2, 4, 5, 7

Draw arcs $A P, A Q, B P$ and $B Q$, where $A P=A Q=B P=B Q$.
Prove that $P Q$ is the perpendicular bisector of $A B$

The chapter opener mentions the importance of geometry in radiation oncology (the study and treatment of tumours). The diagram below shows how far apart two beams of radiation must be placed so that they will not overlap at the spinal cord, or else a double dose of radiation will endanger the patient.

Find the distance between the two radiation sources A and B.

Solution:

$A \leftrightarrow A$
$C \leftrightarrow E$
$D \leftrightarrow F$
$\frac{E F}{C D}=\frac{A E}{A C}$
$\frac{E F}{14}=\frac{90+6}{90}$
$E F=\frac{96}{90} \times 14$
$=14.93 \mathrm{~cm}$ (to 4 s.f.)
$\begin{aligned} \therefore A B & =2 \times E F \\ & =2 \times 14.93 \\ & =29.9 \mathrm{~cm} \text { (to } 3 \text { s.f.) }\end{aligned}$

$$
=29.9 \mathrm{~cm} \text { (to } 3 \mathrm{~s} . \mathrm{f} .)
$$

PRACTISE NOW 11

1. To estimate the width of a river, a man selects an object B at the far bank and stands at C such that $B C$ is perpendicular to the river bank (see diagram). He then walks perpendicular to $B C$ for 10 metres until he reaches A, where he plants a vertical pole. He continues to walk another 2 metres until point E, before he walks along $E D$ such that $A \hat{E} D=90^{\circ}$. He stops walking when he reaches D, where $D A B$ forms a straight line. He measures and finds that the length of $D E$ is 11.2 m . Find the length of $B C$.

2. To determine the height $A B$ of a tree, Michael places a mirror on the ground at E. From E, he walks backwards to a point D, where he is just able to see the top of the tree in the mirror. $C D, F E$ and $A B$ are perpendicular to the line $D E B$.

Given that $B E=18 \mathrm{~m}, E D=2.1 \mathrm{~m}$ and that his eyes at C are 1.4 m above the ground, find the height of the tree.

According to the Law of Reflection in Physics, the angle of incidence, $A \hat{E} F$, is equal to the angle of reflection, $C \hat{E} F$.

Exercise 9C

BASIC LEVEL

1. The diagram illustrates how the length $A B$ (which cannot be measured directly) of a pond is measured. Choose a point C and measure the length of $A C$ and the length of $B C$. Produce $A C$ and $B C$ to A^{\prime} and B^{\prime} respectively, so that $C A^{\prime}=A C$ and $C B^{\prime}=B C$. By measuring the length of $B^{\prime} A^{\prime}$, we will be able to find the length of $A B$. Why is this so?

2. To measure the width of the internal trough, $A B$, of a machine tool which cannot be measured directly, we make use of a device as shown in the diagram. The device is made up of two parts, $A A^{\prime}$ and $B B^{\prime}$, hinged halfway at O. By measuring the distance between A^{\prime} and B^{\prime}, we will be able to obtain the length of $A B$. Why is this so?

3. The figure shows a tree $S R$ and a pole $P Q$ casting shadows of lengths 30 m and 15 m respectively. If the height of the pole is 4 m , find the height of the tree.

INTERMEDIATE LEVEL

4. In the diagram, P lies on $O A$ and Q lies on $O B$ such that $O P=O Q$. Place a set square with one side along $P Q$ and another side passing through O, as shown in the diagram. Explain why $O C$ is the angle bisector of $A \widehat{O} B$.

5. The diagram shows Ethan standing at a point A along a river bank. He looks directly across to the opposite bank, adjusting his cap so that his line of vision $C B$ passes through the lowest point at the rim of his cap and falls on the point B. He then turns around without moving his head. His new line of vision $C B^{\prime}$ through the lowest point at the rim of his cap now falls on a point B^{\prime} on the same side of the river. State which measurement he can make in order to find the width $A B$ of the river. Explain your answer.

6. A candle is placed 15 cm from a lens and a screen is placed at a distance of $x \mathrm{~cm}$ from the lens as shown in the diagram. The image of the candle, $D E$, captured on the screen, is inverted and is 3 times the length of the candle. Find the value of x.

ADVANCED LEVEL

7. Using a set square, we can bisect a given angle. In the diagram, P and Q are marked along the arms, $O A$ and $O B$ of $A \hat{O} B$ respectively, such that $O P=O Q$. Move a $90^{\circ}-45^{\circ}-45^{\circ}$ set square away from O until the 45° edges coincide with P and Q as shown in the diagram. Explain why $O M$ is the angle bisector of $A \widehat{O} B$.

8. The following shows 4 congruence tests and 3 similarity tests.

Congruence Tests		Similarity Tests
SSS Congruence Test	\leftrightarrow	SSS Similarity Test
SAS Congruence Test	\leftrightarrow	SAS Similarity Test
AAS Congruence Test	\leftrightarrow	AA Similarity Test (Since AA is enough, there is no need to use the AAS Similarity Test.)

2. In general, SSA is not a congruence test.

An exception is the RHS congruence test.
3. Congruence Tests

SSS Congruence Test

3 corresponding sides are equal, i.e. $A B=X Y, B C=Y Z, A C=X Z$

AAS Congruence Test

1 corresponding side and 2 corresponding angles are equal, i.e. $B C=Y Z, A \widehat{B} C=X \hat{Y} Z, A \widehat{C} B=X \hat{Z} Y$

SAS Congruence Test

2 corresponding sides and the included angle are equal,
i.e. $A B=X Y, B C=Y Z, A \widehat{B} C=X \hat{Y} Z$

RHS Congruence Test

1 side and the hypotenuse of the right-angled triangle are equal, i.e. $B C=Y Z, A C=X Z, A \hat{B} C=X \hat{Y} Z=90^{\circ}$
4. Similarity Tests

1. Determine whether each of the following pairs of triangles are congruent. If they are congruent, state the congruence test.
(a)

(b)

(d)

2. Identify a pair of congruent triangles and state the congruence test.

3. Which of the following pairs of triangles are congruent? If they are congruent, state the congruence test and name the other three pairs of equal measurements.
(a)

(b)

(c)

(d)

(e)

(f)

4. Which of the following pairs of triangles are similar? If they are similar, state the reason for similarity. All lengths are given in cm .
(a)

(b)

(c)

(d)

331
(e)

(f)

5. In the diagram, $A O B$ and $C O D$ are straight lines, $A O=B O$ and $C O=D O$.

(i) Identify a pair of congruent triangles and state the congruence test.
(ii) Write down two pairs of equal angles.
6. In the diagram, $P Q$ is equal and parallel to $R S$, $P R=5 \mathrm{~cm}$ and $Q \hat{S} R=50^{\circ}$.

(i) Identify a pair of congruent triangles and state the congruence test.
(ii) Find the length of $Q S$ and $Q \hat{P} R$.
7. In the diagram, P and Q are points along the arms $O A$ and $O B$ of $A \hat{O} B$ respectively such that $O P=O Q$. A set square is used to construct perpendiculars to $O A$ and $O B$ at P and Q respectively. The perpendiculars meet at C. Explain why $O C$ is the angle bisector of $A \hat{O} B$.

8. In each of the following figures, find the value of each of the unknowns. All lengths given are in cm .
(a)

(b)

(c)

9. In the figure, the angle $Q P R$ is a right angle, $P S$ is perpendicular to $Q R, P Q=8 \mathrm{~cm}, P R=6 \mathrm{~cm}$ and $Q R=10 \mathrm{~cm}$.

(i) Name a triangle similar to $\triangle P Q S$.
(ii) Calculate the length of $Q S$.
10. In the diagram, $A B C, C D E F, F G H, B D H$ and $A E G$ are straight lines. $B H$ is parallel to $A G, A C$ is parallel to $F H, A B=10 \mathrm{~cm}, B C=6 \mathrm{~cm}, A E=16 \mathrm{~cm}$ and $D H=18 \mathrm{~cm}$.

(a) (i) Identify two triangles similar to $\triangle B C D$.
(ii) Calculate the length of $B D$.
(b) Find the length of $E G$ and of $F H$.
(c) Prove that $\triangle A C E$ and $\triangle H F D$ are similar.
11. In the diagram, $P L R$ and $Q L M N$ are straight lines, $P Q$ is parallel to $N R, S P$ is parallel to $R Q, Q L=8 \mathrm{~cm}$, $L M=P L=4 \mathrm{~cm}, M N=12 \mathrm{~cm}$ and $Q R=18 \mathrm{~cm}$.

(a) (i) Name a triangle similar to $\triangle P L Q$.
(ii) Calculate the length of $L R$.
(b) (i) Name the triangle similar to $\triangle N Q R$.
(ii) Calculate the length of $M S$.
(c) Name three other pairs of similar triangles.
12. In the diagram, $S T U, R T P$ and $R U Q$ are straight lines, $S U$ is parallel to $P Q, R \hat{P} Q=90^{\circ}, S R=S P=9 \mathrm{~cm}$, $T U=5 \mathrm{~cm}$ and $R U=7 \mathrm{~cm}$.

(i) Identify two triangles which are congruent.
(ii) Find the length of $U Q$ and of $P Q$.
13. In $\triangle C A T, M$ is the midpoint of $C T, C \hat{A} N=P \hat{A} N$ and $C P$ is a straight line that is perpendicular to $N A$.

(i) Explain why $\triangle C A N$ is congruent to $\triangle P A N$.
(ii) Hence, or otherwise, explain why MTAN is a trapezium.

Challenge

1. The figure shows a trapezium $Q R S T$, where $Q R=a$ units and $S T=b$ units. The height of the trapezium is h units.

By using similar triangles, show that the area of the trapezium is given by $\frac{1}{2}(a+b) h$.
2. In the diagram, $P \hat{Q} R=Q \hat{R} S=R \hat{S} T=90^{\circ}, P Q=Q R=R S=5 \mathrm{~cm}$ and $S T=1 \mathrm{~cm}$.

Given that PUT and $R S$ intersect at V, find the length of $Q U$.
3. In the diagram, $A B=A C, C B=C E, B D=B E, B C=9 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$.

Find the length of $A C$.

-1(1) $=1 \quad$ Area of Similar Figures

In Book 2, we have learnt about similar triangles. In this chapter, we will learn how to find the area of similar figures and the volume of similar solids.

Investigation

Areas of Similar Figures

1. Table 10.1 shows three squares. Are they similar? Explain your answer.

Table 10.1
2. Complete Table 10.1 to find the area of each square.
3. (a) The length of the second square is double that of the first square.

What is the relationship between their areas?
(b) The length of the third square is three times that of the first square.

What is the relationship between their areas?
4. Let the length and the area of a square be l_{1} and A_{1} respectively.

Let the length and the area of a second square be l_{2} and A_{2} respectively.
Note that the two squares are similar.
Express the following ratio of areas in terms of l_{1} and l_{2}.

$$
\frac{A_{2}}{A_{1}}=
$$

5. Is the formula in Question 4 always true?

Let us investigate what happens if we have similar triangles instead.

Table 10.2 shows three similar triangles.

Triangle			
Length of Corresponding Side of Triangle	1 unit	2 units	3 units
Area of Triangle	1 square unit		

Table 10.2
6. (a) The length of a side of the second triangle is double that of the corresponding side of the first triangle.
What is the relationship between their areas?
(b) The length of a side of the third triangle is three times that of the corresponding side of the first triangle.
What is the relationship between their areas?
7. Let the length and the area of a triangle be l_{1} and A_{1} respectively.

Let the length and the area of a second similar triangle be l_{2} and A_{2} respectively.
Express the following ratio of areas in terms of l_{1} and l_{2}.

$$
\frac{A_{2}}{A_{1}}=
$$

In general, the ratio of the areas of two similar figures is the square of the ratio of their corresponding lengths, i.e.

$$
\frac{A_{2}}{A_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{2}
$$

where A_{1} and l_{1} are the area and the length of the first figure respectively, and A_{2} and l_{2} are the area and the length of the second similar figure respectively.

Worked Example

(Finding the Area of Similar Figures)

Find the unknown area of each of the following pairs of similar figures.
(a)
$A_{2}=$?

(b) $\quad A_{1}=$?

$$
A_{2}=27 \mathrm{~m}^{2}
$$

$\stackrel{\rightharpoonup}{l_{2}=3 \mathrm{~m}}$

Solution:

(a) $\frac{A_{2}}{A_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{2}$

$$
\frac{A_{2}}{4}=\left(\frac{4.5}{3}\right)^{2}
$$

$$
=\frac{9}{4}
$$

$$
\therefore A_{2}=\frac{9}{4} \times 4
$$

$$
=9 \mathrm{~cm}^{2}
$$

(b) $\frac{A_{1}}{A_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}$

$$
\begin{aligned}
\frac{A_{1}}{27} & =\left(\frac{5}{3}\right)^{2} \\
& =\frac{25}{9} \\
\therefore A_{1} & =\frac{25}{9} \times 27 \\
& =75 \mathrm{~m}^{2}
\end{aligned}
$$

For (b), write the unknown A_{1} first. It will help in subsequent algebraic manipulations.

PRACTISE NOW 1

Exercise 10A Questions 1(a)-(f), 2, 3, 5-9

Worked Example

 (Finding the Length of Similar Figures)In the figure, $Q R$ is parallel to $X Y, P Q=6 \mathrm{~cm}$ and the areas of $\triangle P Q R$ and $\triangle P X Y$ are $9 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. Find the length of $Q X$.

Solution:

Since $Q R$ is parallel to $X Y, \triangle P Q R$ and $\triangle P X Y$ are similar.

$$
\begin{aligned}
\left(\frac{P X}{P Q}\right)^{2} & =\frac{\text { Area of } \triangle P X Y}{\text { Area of } \triangle P Q R} \\
\left(\frac{P X}{6}\right)^{2} & =\frac{64}{9} \\
\frac{P X^{2}}{36} & =\frac{64}{9} \\
P X^{2} & =\frac{64}{9} \times 36 \\
& =256 \\
P X & =\sqrt{256} \\
& =16 \mathrm{~cm}(-16 \text { is rejected because } P X>0)
\end{aligned}
$$

In $\triangle P Q R$ and $\triangle P X Y$, $\angle P$ is a common angle, $\angle P Q R=\angle P X Y($ corr. $\angle \mathrm{s})$ and $\angle P R Q=\angle P Y X$ (corr. $\angle \mathrm{s}$).

$$
\begin{aligned}
Q X & =P X-P Q \\
& =16-6 \\
& =10 \mathrm{~cm}
\end{aligned}
$$

(b)

PRACTISE NOW 2

In the figure, $B C$ is parallel to $D E, A B=8.4 \mathrm{~m}$ and the areas of $\triangle A B C$ and $\triangle A D E$ are $49 \mathrm{~m}^{2}$ and $100 \mathrm{~m}^{2}$ respectively. Find the length of $B D$.

Exercise 10A Questions 4(a)-(d), 10-12

Worked Example

(Problem involving Similar Figures)

In the figure, $S T$ is parallel to $R U, R U=4 \mathrm{~cm}, U Q=2 \mathrm{~cm}$, $P T=6 \mathrm{~cm}$ and $T U=2 \mathrm{~cm}$. Given that the area of $\triangle P U R$ is $12 \mathrm{~cm}^{2}$, find the area of
(i) $\triangle P Q U$,
(ii) $\triangle P T S$.

Solution:

(i) Notice that $\triangle P U R$ and $\triangle P Q U$ have a common height corresponding to the bases $R U$ and $U Q$ respectively.
Let the common height be $h \mathrm{~cm}$.
$\frac{\text { Area of } \triangle P Q U}{\text { Area of } \triangle P U R}=\frac{\frac{1}{2} \times U Q \times h}{\frac{1}{2} \times R U \times h}$
$=\frac{U Q}{R U}$
$\frac{\text { Area of } \triangle P Q U}{12}=\frac{2}{4}$
Area of $\triangle P Q U=\frac{2}{4} \times 12$

$$
=6 \mathrm{~cm}^{2}
$$

(ii) Since $S T$ is parallel to $R U, \triangle P S T$ and $\triangle P R U$ are similar.

$$
\begin{aligned}
\frac{\text { Area of } \triangle P T S}{\text { Area of } \triangle P U R} & =\left(\frac{P T}{P U}\right)^{2} \\
\frac{\text { Area of } \triangle P T S}{12} & =\left(\frac{6}{8}\right)^{2} \\
& =\frac{9}{16}
\end{aligned}
$$

Area of $\triangle P T S=\frac{9}{16} \times 12$

$$
=6.75 \mathrm{~cm}^{2}
$$

PRACTISE NOW 3

In the figure, $B C$ is parallel to $Q R, A B=5 \mathrm{~cm}, B Q=1 \mathrm{~cm}$, $P Q=1 \mathrm{~cm}$ and $Q R=3 \mathrm{~cm}$. Given that the area of $\triangle A Q R$ is $21 \mathrm{~cm}^{2}$, find the area of
(i) $\triangle A P Q$,
(ii) $\triangle A B C$.

From Worked Example 3, we can conclude that the ratio of the areas of two triangles having a common height h is equal to the ratio of the lengths of the bases of the two triangles, i.e.

$$
\frac{A_{1}}{A_{2}}=\frac{b_{1}}{b_{2}}
$$

where A_{1} and b_{1} are the area and the length of the base of the first triangle respectively, and A_{2} and b_{2} are the area and the length of the base of the second triangle respectively.

BASIC LEVEL

1. Find the unknown area of each of the following pairs of similar figures.
(a)

(b)

(c)
$A_{1}=125 \mathrm{~cm}^{2}$
$A_{2}=$?

(d)

(e)

(f)

$6 p \mathrm{~cm}$
2. Find the ratio of the areas of two circles whose radii are 4 cm and 7 cm .
3. A triangular plot of land $P Q R$ is such that $P T=6 \mathrm{~m}$ and $P R=10 \mathrm{~m} . S T$ and $Q R$ are two water pipes that are parallel to each other. The area of $\triangle P S T$ is $24 \mathrm{~m}^{2}$.

Find the area of the land occupied by
(i) $\triangle P Q R$,
(ii) $S Q R T$.
4. Find the unknown value in each of the following pairs of similar figures.
(a)

(b)

(c)

(d)

INTERMEDATE LEVEL

5. The perimeters of two similar regular hexagons are 10 m and 8 m . Given that the area of the larger hexagon is $200 \mathrm{~m}^{2}$, find the area of the smaller hexagon.
6. In the figure, $\triangle C A E$ is an enlargement of $\triangle C B D$ with a scale factor of $\frac{4}{3}$.

Given that the area of $\triangle C B D$ is $9 \mathrm{~cm}^{2}$, find the area of $A B D E$.
7. In a scale drawing of a house, the width, 150 cm , of a door is represented by a line 30 mm long. Find the actual land area, in square metres, occupied by the house if the corresponding area on the plan is $3250 \mathrm{~cm}^{2}$.
8. In the figure, $H G$ is parallel to $Q R, G F$ is parallel to $P Q$ and $Q F: F R=p: q$.

Find the ratio of the area of $\triangle P H G$ to that of $\triangle P Q R$ in terms of p and q.
9. Two solid cones are geometrically similar and the height of one cone is 1.5 times that of the other. Given that the height of the smaller cone is 12 cm and its surface area is $124 \mathrm{~cm}^{2}$, find
(i) the height,
(ii) the surface area, of the larger cone.
10. In the figure, $\triangle X Y Z$ is an enlargement of $\triangle X M N$.

Given that $X M=6 \mathrm{~cm}$ and that the areas of $\triangle X M N$ and MYZN are $14 \mathrm{~cm}^{2}$ and $22 \mathrm{~cm}^{2}$ respectively, find the length of $M Y$.
11. In the figure, $M N$ is parallel to $Q R$.

If the areas of $\triangle P M N$ and trapezium $M Q R N$ are in the ratio $9: 16$, find the ratio $M N: Q R$.
12. In the figure, $B C D$ is a straight line and $B A$ is parallel to $D E$. The areas of $\triangle A B C$ and $\triangle C D E$ are $25 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively.

Given further that $C D$ is 4.5 cm longer than $B C$, find the length of $B C$.
13. In the figure, $X Y$ is parallel to $R S, X Y=2 \mathrm{~cm}$, $Q R=6 \mathrm{~cm}$ and $R S=4 \mathrm{~cm}$.

Given that the area of $\triangle P X Y$ is $10 \mathrm{~cm}^{2}$, find the area of
(i) $\triangle P R S$,
(ii) $\triangle P Q R$.

ADVANCED LEVEL

14. In the figure, $A C$ is parallel to $Q P, A R=4 \mathrm{~cm}$, $Q A=3 \mathrm{~cm}, D Q=7 \mathrm{~cm}$ and $P D=4 \mathrm{~cm}$.

Find
(i) the length of $B C$,
(ii) the ratio of the area of $\triangle A R B$ to that of $\triangle B R C$,
(iii) the ratio of the area of $\triangle B R C$ to $A B D Q$.
15. In the figure, $P Q$ is parallel to $A C$.

Given that $B Q=4 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and the area of $\triangle B P Q$ is $8 \mathrm{~cm}^{2}$, find the area of
(i) $\triangle A B C$,
(ii) $\triangle P Q C$,
(iii) $\triangle A Q C$.

1(1).0 Volume of Similar Solids

In Section 10.1, we have learnt how to find the area of similar figures. In this section, we will learn how to find the volume of similar solids.

Investigation

Volume and Mass of Similar Solids

1. Table 10.3 shows three cubes. Are they similar? Explain your answer.

Table 10.3
2. Complete Table 10.3 to find the volume of each cube.
3. (a) The length of the second cube is double that of the first cube. What is the relationship between their volumes?
(b) The length of the third cube is three times that of the first cube.

What is the relationship between their volumes?
4. Let the length and the volume of a cube be l_{1} and V_{1} respectively.

Let the length and the volume of a second cube be l_{2} and V_{2} respectively.
Note that the two cubes are similar.
Express the following ratio of volumes in terms of l_{1} and l_{2}.

$$
\frac{V_{2}}{V_{1}}=
$$

5. Is the formula in Question 4 always true?

Let us investigate what happens if we have similar cylinders instead.
Fig. 10.1 shows two similar cylinders: they have exactly the same shape, i.e. the ratio of the corresponding lengths is a constant k, called the scale factor of the solids.

For example,

$$
\frac{h_{2}}{h_{1}}=k
$$

where h_{1} and h_{2} are the heights of the first and second cylinders respectively.

Fig. 10.1
The radii of the circular cross sections of the two cylinders are r_{1} and r_{2} respectively.
What is the value of $\frac{r_{2}}{r_{1}}$?
6. The volume of the first cylinder is $V_{1}=\pi r_{1}{ }^{2} h_{1}$.
(a) Find the volume of the second cylinder, V_{2}, in terms of r_{1} and h_{1}.
(b) Hence, find the volume of the second cylinder, V_{2}, in terms of V_{1}.
7. Express the following ratio of volumes in terms of k, then in terms of h_{1} and $h_{2^{\prime}}$ and then in terms of r_{1} and r_{2}.

$$
\frac{V_{2}}{V_{1}}=
$$

8. If two similar solids are made of the same material, what is the relationship between their masses m_{1} and m_{2} ?

Let the density of the material be d. Then

$$
d=\frac{m_{1}}{V_{1}}=\frac{m_{2}}{V_{2}},
$$

where V_{1} and V_{2} are the volumes of the solids respectively.

Express the following in terms of V_{1} and V_{2}.

$$
\frac{m_{2}}{m_{1}}=
$$

In general, the ratio of the volumes of two similar solids is the cube of the ratio of their corresponding lengths, and the ratio of their masses is equal to the ratio of their volumes, i.e.

$$
\frac{V_{2}}{V_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{3} \text { and } \frac{m_{2}}{m_{1}}=\frac{V_{2}}{V_{1}}
$$

where V_{1}, l_{1} and m_{1} are the volume, length and mass of the first solid respectively, and V_{2}, l_{2} and m_{2} are the volume, length and mass of the second similar solid respectively.

Worked Example 4

(Finding the Volume of Similar Solids)

The figure shows two toy blocks which take the shape of a pair of similar cuboids.

$l_{1}=2 \mathrm{~cm}$

$l_{2}=4 \mathrm{~cm}$

Find the volume, V_{1}, of the smaller block.

Solution:

$$
\begin{aligned}
& \frac{V_{1}}{V_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{3} \\
& \frac{V_{1}}{24}=\left(\frac{2}{4}\right)^{3} \\
&=\left(\frac{1}{2}\right)^{3} \\
&=\frac{1}{8} \\
& \begin{aligned}
\therefore V_{1} & =\frac{1}{8} \times 24 \\
& =3 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

1. The figure shows two chocolate hats which take the shape of a pair of similar cones.

Exercise 10B Questions 1(a)-(e), 2, 3, 4(a)-(d), 5, 9

$$
V_{1}=16.2 \mathrm{~cm}^{2}
$$

$$
V_{2}=?
$$

Find the volume, $V_{2^{\prime}}$ of the larger chocolate hat.
2. Find the unknown radius, r_{1}, for the following pair of similar cylinders.

Worked
 Example

(Finding the Mass of Similar Solids)

Two solid spheres of diameters 4 m and 5 m are made of the same material. Given that the smaller sphere has a mass of 120 kg , find the mass of the larger sphere.

Solution:

Let m_{1}, V_{1} and l_{1} be the mass, volume and diameter of the smaller sphere respectively, and m_{2}, V_{2} and l_{2} be the mass, volume and diameter of the larger sphere respectively.

$$
\begin{aligned}
\frac{m_{2}}{m_{1}} & =\frac{V_{2}}{V_{1}} \\
& =\left(\frac{l_{2}}{l_{1}}\right)^{3} \\
\frac{m_{2}}{120} & =\left(\frac{5}{4}\right)^{3} \\
m_{2} & =\left(\frac{5}{4}\right)^{3} \times 120 \\
& =234 \frac{3}{8}
\end{aligned}
$$

\therefore The mass of the larger sphere is $234 \frac{3}{8} \mathrm{~kg}$.

PRACTISE NOW 5

1. Two similar solid triangular prisms have heights 5 cm and 8 cm . Given that the smaller prism has a mass of 80 g , find the mass of the larger prism, giving your answer correct to the nearest integer.
2. The figure shows a statue with a height of 20 cm and a mass of 3 kg . Michael wishes to make a similar statue with a height of 2 m using the same material.

Find the mass of the statue made by Michael.

SIMILAR
QUESTIONS

Exercise 10B Questions 6-8, 10-12, 15

Worked Example 0

(Problem involving Similar Solids)

The figure shows an inverted conical container of height 4 cm . It contains a volume of water which is equal to one-eighth of its full capacity.

Find
(i) the depth of the water,
(ii) the ratio of the area of the top surface of the water to the area of the top surface of the container.

Solution:

(i) Let V_{1} and h_{1} be the volume and height of the smaller cone respectively, and V_{2} and h_{2} be the volume and height of the larger cone respectively.

$$
\begin{aligned}
\frac{V_{1}}{V_{2}} & =\left(\frac{h_{1}}{h_{2}}\right)^{3} \\
\frac{1}{8} & =\left(\frac{h_{1}}{4}\right)^{3}\left(\text { Since } V_{1}=\frac{1}{8} V_{2}, \text { then } \frac{V_{1}}{V_{2}}=\frac{1}{8} .\right) \\
\left(\frac{h_{1}}{4}\right)^{3} & =\frac{1}{8} \\
\frac{h_{1}}{4} & =\sqrt[3]{\frac{1}{8}} \\
& =\frac{1}{2} \\
h_{1} & =\frac{1}{2} \times 4 \\
& =2
\end{aligned}
$$

\therefore The depth of the water is 2 cm .
(ii) The top surface of the water and that of the container are circles.

Let r_{1} and r_{2} be the radii of the smaller circle and the larger circle respectively.

Using similar triangles,

$$
\begin{aligned}
\frac{r_{1}}{r_{2}} & =\frac{h_{1}}{h_{2}} \\
& =\frac{2}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

Let A_{1} and A_{2} be the areas of the smaller circle and larger circle respectively.

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\left(\frac{r_{1}}{r_{2}}\right)^{2} \\
& =\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{4}
\end{aligned}
$$

\therefore The ratio of the area of the top surface of the water to the area of the top surface of the container is $1: 4$.

PRACTISE NOW 6

The figure shows a container in the shape of an inverted right pyramid of
height 27 cm . It contains a volume of vegetable oil which is equal to one-sixth of its full capacity.

Find
(i) the depth of the vegetable oil,
(ii) the ratio of the area of the top surface of the vegetable oil to the area of the top surface of the container, giving your answer in the form $1: n$.

1. Two similar cones with slant heights are given as shown.

Express the ratio of the total surface area of the smaller cone to that of the larger cone in terms of l_{1} and l_{2}. Explain your answer.
2. The similarity ratio formulae, $\frac{A_{2}}{A_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{2}$ and $\frac{m_{2}}{m_{1}}=\frac{V_{2}}{V_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{3}$, have some real-life
implications.

For example, why is it not possible for a human to be a giant with a height of about 20 m ?

4
 Journal
 Writing

Search on the Internet to find out the locations of 5 different Merlions in Singapore which are recognised by the Singapore Tourism Board.
(a) Find the ratio of the heights of these 5 Merlions.
(b) Hence, find the ratio of
(i) the total surface area of these Merlions,
(ii) the volume of material used to construct these Merlions.

State any assumptions that you have made.

BASIC LEVEL

1. Find the unknown volume of each of the following pairs of similar solids.
(a)

(b)

(c)

$V_{2}=12 \mathrm{~cm}^{3}$

(d)

(e)

2. Find the ratio of the volumes of
(a) two similar solid cylinders of circumferences 10 cm and 8 cm ,
(b) two similar solid cones of heights 9 cm and 12 cm ,
(c) two solid spheres of radii 4 cm and 6 cm .
3. In a restaurant, a Junior glass has a height of 6 cm and a Senior glass has a height of 9 cm . Given that the capacity of a Senior glass is $540 \mathrm{~cm}^{3}$, find the capacity of the Junior glass.
4. Find the unknown value in each of the following pairs of similar solids.
(a)

(b)

(c)

(d)

5. The areas of the bases of two similar cones are in the ratio 9:16.
(i) Find the ratio of the heights of the cones.
(ii) Given that the volume of the larger cone is $448 \mathrm{~cm}^{3}$, find the volume of the smaller cone.
6. The masses of two spheres of the same material are 640 kg and 270 kg . Find the ratio of their diameters.
7. A certain brand of chilli flakes comes in similar bottles of two sizes - 'mini' and 'ordinary'. The 'mini' bottle has a mass of 280 g and a height of 15 cm . Given that the 'ordinary' bottle has a mass of 750 g , find its height.
8. Two similar solid candy canes have heights 4 cm and 7 cm .
(i) Find the ratio of the total surface areas of the candy canes.
(ii) Given that the smaller candy cane has a mass of 10 g , find the mass of the larger candy cane.

INTERMEDIATE LEVEL

9. The volume of one sphere is 4 times that of another sphere. Given that the radius of the smaller sphere is 3 cm , find the radius of the larger sphere.
10. The mass of a glass figurine of height 6 cm is 500 g . Find the mass of a similar glass figurine if it has a height of 4 cm .
11. A train is 10 m long and has a mass of 72 tonnes. A similar model, made of the same material, is 40 cm long. (1 tonne $=1000 \mathrm{~kg}$)
(i) Find the mass of the model.
(ii) Given that the tank of the model train contains 0.85 litres of water when it is full, find the capacity of the tank of the train, giving your answer correct to the nearest integer.
12. The masses of two similar plastic boxes are 8.58 kg and 4.29 kg . Given that the first box has a base area of $12.94 \mathrm{~m}^{2}$, find the base area of the second box.
13. The figure shows a container in the shape of an inverted right pyramid which contains some water. The area of the top surface of the container is $63 \mathrm{~cm}^{2}$ and the area of the top surface of the water is $28 \mathrm{~cm}^{2}$.

Find
(i) the depth of the water if its volume is $336 \mathrm{~cm}^{3}$,
(ii) the ratio of the depth of the water to the height of the container,
(iii) the capacity of the container.
14. The figure shows an inverted conical container of height 15 cm found in a laboratory. It contains a volume of mercury which is equal to $\frac{8}{27}$ of its full capacity.

Find
(i) the depth of the mercury,
(ii) the area of the mercury that is exposed to the air if the area of the top surface of the container is $45 \mathrm{~cm}^{2}$,
(iii) the capacity of the container.

ADVANCED LEVEL

15. A clay model has a mass of $x^{2} \mathrm{~kg}$ and a height of 30 cm . A similar clay model has a mass of $(x+0.3) \mathrm{kg}$ and a height of 20 cm . Find the value of x.

Volume of X is V_{1}

Volume of Y is V_{2}

If X and Y are two similar solids, then

- Ratio of their corresponding lengths is $\frac{l_{2}}{l_{1}}$
- Ratio of their areas, $\frac{A_{2}}{A_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{2}$
- Ratio of their volumes, $\frac{V_{2}}{V_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{3}$

1. Find the ratio of the areas of two similar triangles if the lengths of their corresponding sides are
(a) 3 cm and 5 cm ,
(b) 4.5 m and 9 m ,
(c) 2 mm and 3 mm .
2. Find the ratio of the areas of two similar triangles if their perimeters are 294 cm and 336 cm .
3. (i) If the length of each side of a regular pentagon is doubled, what will happen to its area?
(ii) Given that the length of each side of a pentagon, whose area is $25 \mathrm{~cm}^{2}$, is doubled, find the area of the enlarged pentagon.
(iii) If the length of each side of a regular n-sided polygon is tripled, what will happen to its area?
4. The volumes of two similar cylinders are in the ratio $8: 27$. Find the ratio of the base radii of the cylinders.
5. The volumes of two similar water jugs are in the ratio 27 : 64. Find
(i) the ratio of the heights of the jugs,
(ii) the ratio of the total surface areas of the jugs.
6. A model of a marble statue of height 3.2 m is made of the same material as the statue. Given that the height of the model is 40 cm and its mass is 12 kg , find the mass of the statue in tonnes.
$(1$ tonne $=1000 \mathrm{~kg})$
7. In the figure, the radii of the sectors $R A T$ and $R U N$ are 3 cm and 5 cm respectively.

Find the ratio of the area of the shaded region to that of the area of sector RUN.
8. Two artificial ponds are similar in every aspect. The perimeter of the surface of the larger pond is three times that of the smaller pond.
(i) Write down the ratio of their surface areas.
(ii) Given that the larger pond contains 10800 litres of water, find the amount of water contained in the smaller pond.
9. In the figure, $P Q R S$ is a parallelogram. $P L M$ and $S L Q$ are straight lines and M is the midpoint of $Q R$.

(a) Identify a triangle similar to $\triangle Q L M$.
(b) Write down the numerical value of
(i) $\frac{\text { area of } \triangle Q L M}{\text { area of } \triangle S L P}$,
(ii) $\frac{L S}{Q S}$,
(iii) $\frac{\text { area of } \triangle P L S}{\text { area of } \triangle P Q S}$.
10. In the figure, $X Y$ is parallel to $M N$ where $X Y=2 \mathrm{~cm}$ and $M N=5 \mathrm{~cm} . X N$ and $Y M$ meet at O.

(a) Find the value of $\frac{\text { area of quadrilateral } X M N Y}{\text { area of } \triangle L M N}$.
(b) (i) Identify a triangle similar to $\triangle X O Y$.
(ii) Write down the value of $\frac{Y O}{O M}$.
(iii) Show that the area of $\triangle X O Y$: area of $\triangle X O M$: area of $\triangle M O N=4: 10: 25$.
11. In the figure, $P L Q$ and $P M R$ are straight lines, $P L=4 \mathrm{~cm}, L Q=11 \mathrm{~cm}, P M=6 \mathrm{~cm}$ and $P R=10 \mathrm{~cm}$.

(i) Show that $\triangle P Q R$ and $\triangle P M L$ are similar.
(ii) Write down the value of $\frac{\text { area of } \triangle P Q R}{\text { area of } \triangle P M L}$.
(iii) Given that the area of $\triangle P M L$ is $6 \mathrm{~cm}^{2}$, find the area of the quadrilateral $L M R Q$.
12. In the figure, $X P=\frac{1}{2} P Q, Q Y=\frac{1}{3} P Q$ and $X R=\frac{2}{5} X Z$. Find the ratio of the area of $\triangle Q R Z$ to that of $\triangle Q Y Z$.

13. The figure shows a vertical section through the axis of a solid paper weight made in the shape of a right circular cone. Its height is 8 cm and the diameter of its base is 4 cm . The shaded portion is made of lead 2 cm thick while the unshaded portion is made of wood. The density of lead and wood are $11.3 \mathrm{~g} / \mathrm{cm}^{3}$ and $0.9 \mathrm{~g} / \mathrm{cm}^{3}$ respectively.

Find
(i) the total volume of the paper weight,
(ii) the volume of the wooden portion,
(iii) the total mass of the paper weight.
14. A right circular cone is divided into 4 portions, A, B, C and D, by planes parallel to the base. The height of each portion is a units.

Find
(i) the ratio of the volume of A to that of B,
(ii) the ratio of the volume of B to that of C,
(iii) the ratio of the sum of the volumes of A, B and C to that of D.

Challenge

1. In the figure, $B A T$ is a right-angled triangle with $A B=2 B T$. A square $B L U R$ is inscribed in $\triangle B A T$ such that L, U and R lie on the sides of $\triangle B A T$.
Hint: Let $B T=x$ and $B R=y$.

Find the ratio of the area of the square $B L U R$ to that of $\triangle B A T$.
2. In the figure, MATH is a parallelogram. BMH and BEST are straight lines, $B E=18 \mathrm{~cm}$ and $E S=32 \mathrm{~cm}$.

(i) Explain why $\triangle B M E$ and $\triangle B H T$ are similar.
(ii) Name 2 other pairs of similar triangles.
(iii) Find the length of $S T$.
(iv) Find the ratio of the areas of $\triangle B M E$ and $\triangle B H T$.
3. The diagram shows a right-angled triangle. The three shaded figures are similar. Their areas are A_{1}, A_{2} and A_{3} as indicated. Prove that $A_{1}=A_{2}+A_{3}$. This is called the Generalised Pythagoras' Theorem.

ㄱ․ 1 Symmetric Properties of Circles

In this section, we will learn four symmetric properties of circles - two of them on chords and the other two on tangents.

:\%:\%:\% Perpendicular Bisector of a Chord

Investigation

Circle Symmetric Property 1

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Symmetric Property 1 as shown below.

There are three conditions:
Condition A: The line l (or $O M$) passes through the centre O of the circle.
Condition B: The line l (or $O M$) is perpendicular to the chord $A B$.
Condition C : The line l (or $O M$) bisects the chord $A B$.
Note that the chord $A B$ must not be the diameter of the circle.

Bisect' means 'cut into two equal parts.'

In this investigation, you will learn that any two of the above three conditions will imply the third one.

Part 1

1. The template shows a circle with centre O and the line $O M$ perpendicular to the chord $A B$. Which two of the above three conditions are given?

Fig. 11.1
2. Click and drag point A or B to change the chord.

Click and drag point R to change the size of the circle.
(a) What do you notice about the length of $A M$ and of $M B$?
(b) What do you call the point M ?

Part 2

3. Click on the 'Next' button. The next page of the template shows a circle with centre O, and the line $O M$ bisecting the chord $A B$.
Which two of the three conditions on the previous page are given?

Fig. 11.2
4. Click and drag point A or B to change the chord.

Click and drag point R to change the size of the circle.
What do you notice about the size of $\angle A M O$ and $\angle B M O$?

Part 3

5. Use a sheet of paper to draw and cut out a circle. To find the centre of a circle, fold the circle into two equal halves, and then fold again into two equal halves as shown in Fig. 11.3(a).

Fig. 11.3(a)
Open up the paper as shown in Fig. 11.3(b), where the dotted lines indicate the lines obtained from the above paper folding.

Fig. 11.3(b)
Mark the centre of the circle as O in Fig. 11.3(b). Why is this the centre of the circle?
6. Using the same circle as in Question 5, fold along a chord $A B$ that is not a diameter of the circle and then fold it into two equal halves as shown in Fig. 11.3(c).

Fig. 11.3(c)
Open up the paper as shown in Fig. 11.3(d), where the dotted lines indicate the lines obtained from the above paper folding.

Fig. 11.3(d)
As the paper is folded into two equal halves, the line l bisects the chord $A B$ and $\angle A M B$. Since $\angle A M B=180^{\circ}, l$ is perpendicular to the chord $A B$.
(a) Which two of the three conditions on page 361 are satisfied?
(b) Does the line l pass through the centre O of the circle that you have marked in Question 5?

From the investigation, there are three parts to Circle Symmetric Property 1 (any two of the three conditions will imply the third one):
(i) If a line l passes through the centre of a circle and is perpendicular to a chord $A B$ (which is not the diameter) of the circle, then the line l bisects the chord $A B$.
(ii) If a line l passes through the centre of a circle and bisects a chord $A B$ (which is not the diameter) of the circle, then the line l is perpendicular to the chord $A B$.
(iii) If a line l bisects the chord $A B$ of a circle and is perpendicular to the chord $A B$ (i.e. l is the perpendicular bisector of the chord $A B$), then the line l passes through the centre of the circle. (This is also true if the chord is a diameter of the circle.)

1. If a line l passes through the centre of a circle and is perpendicular to a chord $A B$ (which is not the diameter) of the circle, by using congruent triangles, prove that the line l bisects the chord $A B$.
2. If a line l passes through the centre of a circle and bisects a chord $A B$ (which is not the diameter) of the circle, by using congruent triangles, prove that the line l is perpendicular to the chord $A B$.

Worked Example 1

(Application of Circle Symmetric Property 1)

In the figure, $A B$ and $P Q$ are chords of the circle with centre O. The point M lies on $A B$ such that $O M$ is perpendicular to $A B$ and the point N lies on $P Q$ such that $O N$ is perpendicular to $P Q$.

Given that $A B=12 \mathrm{~cm}, O M=7 \mathrm{~cm}$ and $O N=4 \mathrm{~cm}$, find the length of the chord $P Q$, giving your answer correct to 2 decimal places.

Solution:

$O M$ bisects $A B$ (perpendicular bisector of chord).

$$
\begin{aligned}
\therefore A M & =M B \\
& =\frac{12}{2} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

Consider $\triangle O M A$.

$$
\begin{aligned}
O A^{2} & =A M^{2}+O M^{2}(\text { Pythagoras' Theorem }) \\
& =6^{2}+7^{2} \\
& =85
\end{aligned}
$$

To find $P Q$, we first try to relate $P Q$ to the information given in the question, i.e. $O M, O N$, the perpendicular distance of chords from the centre and the length of chord $A B$.
Since $O P=O A$ (radii of circle) and we have two right-angled triangles $O M A$ and $O N P$, can we make use of Pythagoras' Theorem to find $P N$?

Since $O P=O A$ (radii of circle),
then $O P^{2}=O A^{2}=85$.

Consider $\triangle O N P$.
$O P^{2}=O N^{2}+P N^{2}($ Pythagoras' Theorem $)$
$O A^{2}=4^{2}+P N^{2}($ since $O A=O P$, radii of circle $)$

$$
85=16+P N^{2}
$$

$\therefore P N^{2}=85-16$

$$
=69
$$

i.e. $P N=\sqrt{69}$ (since length $P N>0$)
$O N$ bisects $P Q$. (perpendicular bisector of chord)
$\therefore P Q=2 \times P N$
$=2 \times \sqrt{69}$
$=16.61 \mathrm{~cm}$ (to 2 d. p.)

PRACTISE NOW 1

1. In the figure, $P Q$ and $X Y$ are chords of the circle with centre O. The point M lies on $P Q$ such that $O M$ is perpendicular to $P Q$ and the point N lies on $X Y$ such that $O N$ is perpendicular to $P Q$. Given that $X Y=26 \mathrm{~cm}$, $O M=8 \mathrm{~cm}$ and $O N=3 \mathrm{~cm}$, find the length of the chord $P Q$, giving your answer correct to 2 decimal places.

Exercise 11A Questions 1(a)-(c),
2-4, 6-8, 11
2. The figure shows a circle with centre O and radius 7 cm . The chords $A B$ and $P Q$ have lengths 11 cm and 13 cm respectively, and intersect at right angles at X. Find the length of $O X$.

Class Discussion

Application of Circle Symmetric Property 1

Work in pairs.

1. Construct a circle that passes through the three given points A, B and C.

2. The diagram shows the plan of a living room with a balcony (not drawn to scale). The living room is rectangular (6 m by 4 m) and the balcony is an arc of a circle (see dimensions in diagram). Using a scale of 2 cm to represent 1 m , draw an accurate scale drawing of the living room with the balcony.
Hint: Use the method in Question 1 to draw the arc of the balcony.

\%\%: Equal Chords

Investigation

Circle Symmetric Property 2
Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Symmetric Property 2 as shown below.

Part 1

1. The template shows a circle with centre O and two equal chords.

Circle Symmetric Property 2a
 Given Conditions: Equal chords, i.e. the chords AB and PQ have equal length. Move the point A or B to change the length of both chords.
 Move the point P until it coincides with A.

Fig. 11.3
2. Click and drag point A or B to change the lengths of both chords.

Click and drag point R to change the size of the circle.
Click and drag point P until it coincides with the point A.
What do you notice about the distance of both chords from the centre O ?
3. Copy and complete the following sentence.

In general, equal chords of a circle are \qquad from the centre of the circle.

Part 2

4. Click on the 'Next' button. The next page of the template shows two chords of a circle that are equidistant from its centre O.

Circle Symmetric Property 2b

Given Conditions: Chords that are equidistant from centre of circle.
Move the point \mathbf{M} to change distance of chord from centre \mathbf{O} of circle.
Move the point P until both chords coincide.

Previous

Fig. 11.4
5. Click and drag point M to change the distance of both chords from the centre O.

Click and drag point R to change the size of the circle.
Click and drag point P until both chords coincide.
What do you notice about the lengths of both chords?
6. Copy and complete the following sentence.

In general, chords that are equidistant from the centre of a circle are
\qquad in length.

From the investigation, there are two parts to Circle Symmetric Property 2:
(i) Equal chords of a circle are equidistant from the centre of the circle.
(ii) Chords that are equidistant from the centre of a circle are equal (in length).

Worked Example

(Application of Circle Symmetric Property 2)

The lengths of two parallel chords of a circle of radius 12 cm are 8 cm and 14 cm respectively. Find the distance between the chords.

Solution:

There are two possible cases about the positions of the two chords $A B$ and $X Y$ (equal chords). Let $A B=8 \mathrm{~cm}$ and $X Y=14 \mathrm{~cm}$.

Case 1: The chords are on opposite sides of the centre O.
In $\triangle A O N$

$$
\begin{aligned}
O N^{2} & =12^{2}-4^{2}(\text { Pythagoras' Theorem }) \\
& =128 \\
O N & =\sqrt{128} \\
& =11.31 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

In $\triangle Y O M$,

$$
\begin{aligned}
O M^{2} & =12^{2}-7^{2}(\text { Pythagoras' Theorem }) \\
& =95 \\
\text { OM } & =\sqrt{95} \\
& =9.747 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$$
\begin{aligned}
\text { Distance between the chords } & =M N \\
& =N O+O M \\
& =11.31+9.747 \\
& =21.1 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

Case 2: The chords are on the same side of the centre O.
Distance between the chords $=M N$

$$
\begin{aligned}
& =O N-O M \\
& =11.31-9.747 \\
& =1.56 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The distance between the chords can either be 21.1 cm
 or 1.56 cm .

PRACTISE NOW 2

SIMILAR
 QUESTIONS

The lengths of two parallel chords of a circle of radius 20 cm are 10 cm and 30 cm respectively. Find the distance between the chords.

Exercise 11A Questions 5(a),(b), 9, 10

Exyercise 11A

BASIC LEVEL

1. Given that O is the centre of each of the following circles, find the values of the unknowns.
(a)

(b)

(c)

2. $A B$ is a chord of a circle, centre O and with radius 17 cm . Given that $A B=16 \mathrm{~cm}$, find the perpendicular distance from O to $A B$.
3. A chord of length 24 m is at a distance of 5 m from the centre of a circle. Find the radius of the circle.
4. A chord of a circle of radius 8.5 cm is 5 cm from the centre. Find the length of the chord.
5. Given that O is the centre of each of the following circles, find the values of the unknowns.
(a)

(b)

INTERMEDIATE LEVEL

6. The figure shows the cross section of a circular water pipe. The shaded region shows the water flowing through the pipe.

Given that $P Q=9.6 \mathrm{~cm}$ and that the surface of the water is 3 cm below the centre O of the circle, find the cross-sectional area of the water pipe.
7. The perpendicular bisector of a chord $X Y$ cuts $X Y$ at N and the circle at P. Given that $X Y=16 \mathrm{~cm}$ and $N P=2 \mathrm{~cm}$, calculate the radius of the circle.
8. The figure shows two concentric circles with centre O. The points A and E lie on the circumference of the larger circle while the points B and D lie on the circumference of the smaller circle.

Given that $A B C D E$ is a straight line, $O B=9 \mathrm{~cm}$, $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A C=C E$, find
(i) the length of $O C$,
(ii) the length of $O E$.
9. The lengths of two parallel chords of a circle of radius 5 cm are 6 cm and 8 cm respectively. Find the distance between the chords.
10. Two parallel chords $P Q$ and $M N$ are 3 cm apart on the same side of a circle where $P Q=7 \mathrm{~cm}$ and $M N=14 \mathrm{~cm}$. Calculate the radius of the circle.

ADVANCED LEVEL

11. The radius of a circle is 17 cm . A chord $X Y$ lies 9 cm from the centre and divides the circle into two segments. Find the perimeter of the minor segment.

:\%:\%: Radius of a Circle and Tangent to a Circle

A straight line cutting a circle at two distinct points is called a secant.
In Fig. 11.5(a), $A B$ is a secant.

Fig. 11.5
If a straight line and a circle have only one point of contact, then that line is called a tangent.
In Fig. $11.5(\mathbf{b}), C D$ is a tangent and X is the point of contact.

Investigation

Circle Symmetric Property 3

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Symmetric Property 3 as shown below.

1. The template shows a circle with centre O and radius $O P$, which is perpendicular to the chord at A.

Circle Symmetric Property 3

From Symmetric Property 1a, 1 b or $1 \mathrm{c}, \mathrm{OP}$ is the perpendicular bisector of the chord. Click here to show or hide Secant
Move the point A until it reaches P. You can also move the points P and R.

Fig. 11.6
2. Click on the button 'Click here to show or hide Secant'. It will reveal a secant that coincides with the chord, i.e. the secant is also perpendicular to the radius $O P$. Unlike a chord which is a line segment with two end points, a secant is a line that cuts the circle at two different points.
3. Click and drag point P to move the radius $O P$ and the secant around the circle. Click and drag point R to change the size of the circle.
Click and drag point A until it coincides with with the point P.
(a) What do you notice about the secant? What has it become?
(b) What is the angle between the tangent at the point of contact P and the radius of the circle?
4. Copy and complete the following sentence.

In general, the tangent at the point of contact is \qquad to the radius of the circle.

From the investigation, Circle Symmetric Property 3 states that:
The tangent at the point of contact is perpendicular to the radius of the circle.

Worked Example

(Application of Circle Symmetric Property 3)

In the figure, $P X$ is a tangent to the circle, centre O.

Given that $P X=6.8 \mathrm{~cm}$ and $O X=4.3 \mathrm{~cm}$, find
(i) $\angle O P X$,
(ii) the length of $O P$,
(iii) the area of $\triangle O P X$.

Solution:

(i) $\angle O X P=90^{\circ}$ (tangent h radius)

In $\triangle O P X$,

$$
\begin{aligned}
& \begin{aligned}
\tan \angle O P X & =\frac{O X}{P X} \\
& =\frac{4.3}{6.8} \\
\angle O P X & =\tan ^{-1} \frac{4.3}{6.8} \\
= & 32.3^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
\end{aligned}
$$

(ii) In $\triangle O P X$,

$$
\begin{aligned}
O P^{2} & =6.8^{2}+4.3^{2}(\text { Pythagoras' Theorem }) \\
& =64.73 \\
O P & =\sqrt{64.73} \\
& =8.05 \mathrm{~cm} \text { (to } 3 \text { s.f. })
\end{aligned}
$$

(iii) Area of $\triangle O P X=\frac{1}{2} \times P X \times O X$ (use $\frac{1}{2} \times$ base \times height)

$$
\begin{aligned}
& =\frac{1}{2} \times 6.8 \times 4.3 \\
& =14.62 \mathrm{~cm}^{2}
\end{aligned}
$$

For (ii), trigonometric ratios may be used to find the length of $O P$, i.e. $\sin 32.31^{\circ}=\frac{4.3}{O P}$ before solving for $O P$.

PRACTISE NOW 3

1. In the figure, $P A$ is a tangent to the circle, centre O.

Given that $P A=10.5 \mathrm{~cm}$ and $O A=4.5 \mathrm{~cm}$, find
(i) $\angle O P A$,
(ii) the length of $O P$,
(iii) the area of $\triangle O P A$.
2. In the figure, $A B$ is a tangent to the circle, centre O.

Given that $A B=8 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $O A=x \mathrm{~cm}$, find
(i) the value of x,
(ii) $\angle A O B$,
(iii) the area bounded by $A B, B C$ and the minor arc $A C$.

Investigation

Circle Symmetric Property 4

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Symmetric Property 4 as shown below.

1. The template shows a circle with centre O and two tangents from an external point P touching the circle at A and B respectively.

Fig. 11.7
2. Click and drag point P to change the position of the external point, but P must remain outside the circle.
Click and drag point R to change the size of the circle.
(a) What do you notice about the length of $A P$ and of $B P$?
(b) What do you notice about $\angle O P A$ and $\angle O P B$?
3. Copy and complete the following sentences.

In general,
(a) tangents from an external point are \qquad (in length);
(b) the line from the centre of a circle to an external point \qquad the angle between the two tangents.
4. Prove the two results in Question 3.

Hint: For Question 3, how are $\triangle O A P$ and $\triangle O B P$ related?

From the investigation, there are two parts to Circle Symmetric Property 4:
(i) Tangents from an external point are equal (in length).
(ii) The line from the centre of a circle to an external point bisects the angle between the two tangents from the external point.

Worked Example

 (Application of Circle Symmetric Property 4)In the figure, $P A$ and $P B$ are tangents to the circle with centre O.

Given that $O A=8 \mathrm{~cm}$ and $\angle O P B=26^{\circ}$, find
(i) $\angle A O B$,
(ii) the length of $A P$,
(iii) the area of the quadrilateral $A P B O$.

Solution:

(i) $\angle O B P=\angle O A P=90^{\circ}$ (tangent ค radius)
$\angle O P A=\angle O P B=26^{\circ}$ (symmetric properties of tangents to circle)
$\angle A O B=360^{\circ}-\angle O A P-\angle O B P-\angle A P B$ (\angle sum of a quadrilateral)
$=360^{\circ}-90^{\circ}-90^{\circ}-\left(26^{\circ}+26^{\circ}\right)$
$=128^{\circ}$
(ii) In $\triangle O A P$,

$$
\begin{aligned}
\tan \angle A P O & =\frac{O A}{A P} \\
\tan 26^{\circ} & =\frac{8}{A P} \\
A P & =\frac{8}{\tan 26^{\circ}} \\
& =16.4 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

In Worked Example 4, $P A=P B$ (equal tangents).
(iii) Area of $\triangle O A P=\frac{1}{2} \times A P \times O A$ (use $\frac{1}{2} \times$ base \times height)

$$
\begin{aligned}
& =\frac{1}{2} \times 16.40 \times 8 \\
& =65.61 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of quadrilateral $A P B O=2 \times$ area of $\triangle O A P$

$$
\begin{aligned}
& =2 \times 65.61 \\
& =131 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

PRACTISE NOW 4

1. In the figure, $P A$ and $P B$ are tangents to the circle with centre O.

Exercise 11B Questions 4(a)-(f),

Given that $O A=14 \mathrm{~cm}$ and $\angle B O P=62^{\circ}$, find
(i) $\angle O P B$,
(ii) $\angle O A C$,
(iii) the length of $B P$,
(iv) the area of the quadrilateral $A P B O$.
2. In the figure, $P Q$ and $P T$ are tangents to the circle, centre O, at the points Q and T respectively. $P T$ produced meets $Q O$ produced at S.

Given that $\angle Q P T=64^{\circ}$, find $\angle S Q T$.

Oy Exercise 11B

BASIC LEVEL

1. In the figure, $B P$ is a tangent to the circle with centre O.

Given that $\angle A P O=33^{\circ}$, find $\angle P B A$.
2. In the figure, O is the centre of the circle passing through the points A and $B . T A$ is a tangent to the circle at A and $T O B$ is a straight line.

Given that $\angle A O T=64^{\circ}$, find
(i) $\angle A T B$,
(ii) $\angle T A B$.
3. In the figure, $A B$ is a tangent to the circle with centre $O . D$ is the midpoint of the chord $B C$.

Given that $\angle B A C=x$, find $\angle C O D$ in terms of x.
4. Given that $P A$ and $P B$ are tangents to each of the following circles with centre O, find the values of the unknowns.
(a)

(b)

(c)

(d)

(e)

(f)

INTERMEDIATE LEVEL

5. In the figure, $P A T$ is a tangent to the circle, centre O, at $A . C$ is a point on the circle such that $T B C$ is a straight line and $\angle A C B=44^{\circ}$.

Given that $\angle O B A=46^{\circ}$ and $\angle P A C=69^{\circ}$, find
(i) $\angle B A T$,
(ii) $\angle P T C$.
6. The figure shows a circle, centre $O . A C$ is a tangent to the circle at A and $O B C$ is a straight line.

Given that $A C=18 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$, find
(i) the radius of the circle,
(ii) $\angle A O B$,
(iii) the area of the shaded region.
7. $P Q$ is a chord of a circle with centre O. Given that $\angle P O Q=84^{\circ}$, find the obtuse angle between $P Q$ and the tangent at P.
8. The tangent from a point P touches a circle at N. Given that the radius of the circle is 5.6 cm and that P is 10.6 cm away from the centre, find the length of the tangent $P N$.
9. A point T is 9.1 m away from the centre of a circle. The tangent from T to the point of tangency is 8.4 m . Find the diameter of the circle.
10. In the figure, $A B$ and $A C$ are tangents to the circle at B and C respectively. O is the centre of the circle and $\angle A O D=122^{\circ}$.

Find $\angle B A C$.
11. The tangents from a point T touch a circle, centre O, at the points A and B. Given that $\angle A O T=51^{\circ}$, find $\angle B A T$.

ADVANCED LEVEL

12. Two concentric circles have radii 12 cm and 25.5 cm respectively. A tangent to the inner circle cuts the outer circle at the points H and K. Find the length of $H K$.

- 1 S) Angle Properties of Circles

In this section, we will learn the angle properties of circles.

:\%\%: Angles at Centre and Angles at Circumference

Fig. 11.8(a) shows a circle with centre O.
$\angle A O B$ is an angle subtended at the centre of the circle by the (blue) minor $\operatorname{arc} A X B$.
$\angle A P B$ is an angle subtended at the circumference of the circle by the same minor arc $A X B$.

Fig. 11.8(b) shows another circle with centre O.
$\angle A O B$ is an angle subtended at the centre of the circle by the (red) major arc $A Y B$.
$\angle A Q B$ is an angle subtended at the circumference of the circle by the same major arc $A Y B$.

Fig. 11.8
One way to recognise which angle is subtended by which arc is to look at the shape of the arc. For example, the shape of the blue arc indicating $\angle A P B$ in Fig. 11.8(a) is the same shape as that of the blue minor arc $A X B$ which subtends the angle; and the shape of the red arc indicating $\angle A O B$ in Fig. 11.8(b) is the same shape as that of the red major arc AYB which subtends the angle.

Consider Fig. 11.8(c). Can you identify the angle subtended the centre of the circle and the angle subtended at the circumference by the semicircle $A Z B$?

Identifying Angles at the Centre and at the Circumference

Work in pairs to identify each of the following by using a different coloured pencil or pen to draw the angle in each circle.
(a) Angle at centre subtended by the minor arc $A Q B$
(b) Angle at circumference subtended by the minor arc $A Q B$
(c) Angle at centre subtended by the major arc $A P B$
(d) Angle at circumference subtended by the major arc $A P B$

Investigation

Circle Angle Property 1

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Angle Property 1 as shown below.

1. The template shows a circle with centre $O . \angle A O B$ is an angle at the centre while $\angle A P B$ is an angle at the circumference subtended by the same (minor or major) arc $A B$.

Circle Angle Property 1: Angle at Centre

Given Condition: Angle at centre $\angle A O B$ and angle at circumference $\angle A P B$ subtended by same (minor or major) arc $A B$
|Set angle at centre $=60$ degrees Set angle at centre $=90$ degrees Set angle at centre $=120$ degrees
Set angle at centre $=145$ degrees Set angle at centre $=250$ degrees Set angle at centre $=320$ degrees

You can also move the points R and P .

Angle at circumference $\angle \mathrm{APB}=33.20^{\circ}$ (yellow angle)
Angle at centre $\angle \mathrm{AOB}=66.4^{\circ} \quad$ (pink angle)

Fig. 11.9
2. Click on the action buttons in the template to set $\angle A O B$ to the values below. You can also move the point R to change the size of the circle, and the point P to change $\angle A P B$. Copy and complete Table 11.1 below.

$\angle A O B$	60°	90°	120°	145°	250°	320°
$\angle A P B$						
$\frac{\angle A O B}{\angle A P B}$						

Table 11.1
3. What is the relationship between $\angle A O B$ and $\angle A P B$?
4. Copy and complete the following sentence.

In general, an angle at the centre of a circle is \qquad that of any angle at the circumference subtended by the same arc.

From the investigation, Circle Angle Property 1 states that:

An angle at the centre of a circle is twice that of any angle at the circumference subtended by the same arc.

To prove Circle Angle Property 1, we have to consider 4 cases.
The following proof applies to Case 1 and Case 2.

Case 1 and Case 2:

Fig. 11.10 shows Case 1 (angles subtended by minor arc $A B$) and Case 2 (angles subtended by major arc $A B$). The proofs for both cases are actually the same. Join P to O and produce $P O$ to cut the circle at X.

Let $\angle A P X=a$ and $\angle B P X=b$.

Case 1

Case 2

Fig. 11.10
Since $O A=O P$ (radii),
$\triangle A O P$ is an isosceles triangle.

Then $\angle O A P=\angle O P A$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=a
$$

$\therefore \angle A O X=\angle O A P+\angle O P A($ ext. \angle of $\triangle)$

$$
=2 a
$$

Similarly, $\triangle B O P$ is an isosceles triangle,
$\angle O B P=\angle O P B=b$ and $\angle B O X=2 b$.
$\therefore \angle A O B=\angle A O X+\angle B O X$

$$
\begin{aligned}
& =2 a+2 b \\
& =2(a+b) \\
& =2 \times(\angle A P X+\angle B P X) \\
& =2 \times \angle A P B \text { (proven) }
\end{aligned}
$$

The Thinking Time on the next page considers the next 2 cases.

Fig. 11.11 shows Case 3 and Case 4 (two special cases of angles subtended by minor $\operatorname{arc} A B$). In each case, prove Circle Angle Property 1.

Case 3

Case 4

Fig. 11.11

Worked Example

 (Application of Circle Angle Property 1)A, B, C and D are four points on a circle with centre O. Given that $A O D$ is a diameter of the circle and $\angle C A D=37^{\circ}$, find
(i) $\angle C O D$,
(ii) $\angle A B C$.

Solution:

(i) $\angle C O D=2 \times \angle C A D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\odot^{\text {ce }}\right)$

$$
\begin{aligned}
& =2 \times 37^{\circ} \\
& =74^{\circ}
\end{aligned}
$$

(ii) Reflex $\angle A O C=180^{\circ}+74^{\circ}$

$$
=254^{\circ}
$$

$\therefore \angle A B C=\frac{254^{\circ}}{2}\left(\angle\right.$ at centre $=2 \angle$ at $\left.\odot^{\text {ce }}\right)$

$$
=127^{\circ}
$$

1. $\quad P, Q, R$ and S are four points on a circle with centre O.

Exercise 11C Questions 1(a)-(h), 9, 10
Given that $P O S$ is a diameter of the circle and $\angle O P R=28^{\circ}$, find

(i) $\angle S O R$,
(ii) $\angle P Q R$.
2. Given that O is the centre of the circle and $\angle A B O=35^{\circ}$, find the angles marked x and y.

3. In the figure, O is the centre of the circle and A and B lie on the circumference such that $A B N$ is a straight line.

Given that C lies on the circumference such that $\angle N B C=73^{\circ}$, find the obtuse angle $A O C$.

:\% Angle in a Semicircle

Investigation

Circle Angle Property 2

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Angle Property 2 as shown below.

1. The template shows a circle with centre $O . \angle A O B$ is an angle at the centre while $\angle A P B$ is an angle at the circumference.

Fig. 11.12
2. Click on the action button in the template to set $\angle A O B=180^{\circ}$. You can also move the point R to change the size of the circle, and the point P to change $\angle A P B$.
(a) What is $\angle A P B$ equal to?
(b) What is the special name given to the sector $A P B$ when $\angle A O B=180^{\circ}$?
3. Copy and complete the following sentence.

In general, an angle in a semicircle is always equal to \qquad .
4. Prove the angle property in Question 3.

From the investigation, Circle Angle Property 2 states that:

An angle in a semicircle is always equal to 90°.

Worked Example 0

(Application of Circle Angle Property 2)

A, B, C and D are four points on a circle with centre O.
Given that $A O B$ is a diameter of the circle, $D C$ is parallel to $A B$ and $\angle D C A=29^{\circ}$, find the angles marked x, y and z.

Solution:

```
\(\angle A C B=90^{\circ}(\) rt. \(\angle\) in a semicircle \()\)
\(\angle C A B=29^{\circ}\) (alt. \(\angle \mathrm{s}, A B / / D C\) )
\(\therefore x=180^{\circ}-90^{\circ}-29^{\circ}(\angle\) sum of a \(\Delta)\)
    \(=61^{\circ}\)
```

```
\(y=2 \times \angle A C D\left(\angle\right.\) at centre \(=2 \angle\) at \(\left.\odot^{\text {ce }}\right)\)
```

$y=2 \times \angle A C D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\odot^{\text {ce }}\right)$
$=2 \times 29^{\circ}$
$=2 \times 29^{\circ}$
$=58^{\circ}$

```
    \(=58^{\circ}\)
```

$\angle A D O=\angle D A O$ (base \angle of isos. Δ)
$=\frac{1}{2}\left(180^{\circ}-58^{\circ}\right)$
$=61^{\circ}$
$\therefore z=\angle A D O-\angle C A B$
$=61^{\circ}-29^{\circ}$
$=32^{\circ}$

PRACTISE NOW 6

(i) $\angle O P R$,
(ii) $\angle Q O R$,
(iii) $\angle P X Q$.

Do you know how the centre of a circle can be determined? Follow the instructions given and discover the answer yourself.

1. Place a rectangular sheet of paper under a circle such that one of its corners touches the circle, say at the point A.

2. Join the two points, P and Q, as shown.

3. Move the same sheet of paper such that another of its corners touches the circle, say at the point B. Join the two points R and S as shown.

The result would show that the point of intersection of $P Q$ and $R S$ gives the centre of the circle. Explain why this is true.

\%\%: Angles in Same or Opposite Segments

Fig. 11.13(a) shows a circle with a chord $A B$ that divides the circle into two segments.
The larger segment $A P Q B$ is called the major segment (shaded blue) while the smaller segment $A X Y B$ is called the minor segment (shaded green). $\angle A P B$ and $\angle A Q B$ are angles subtended at the circumference of the circle by the same minor arc $A B$. Since $\angle A P B$ and $\angle A Q B$ lie in the same (major) segment, they are called angles in the same segment. $\angle A X B$ and $\angle A Y B$ are angles subtended at the circumference of the circle by the same major arc $A B$. Since $\angle A X B$ and $\angle A Y B$ lie in the same (minor) segment, they are called angles in the same segment.

Fig. 11.13
Fig. 11.13(b) shows a circle with a chord $A B$ that divides the circle into two segments. The segment $A Q B$ and the segment $A X B$ are called opposite segments (not different segments). $\angle A Q B$ and $\angle A X B$ are angles subtended at the circumference of the circle by the minor arc $A B$ and by the major arc $A B$ respectively. Since $\angle A Q B$ and $\angle A X B$ lie in opposite segments, they are called angles in opposite segments.

Opposite segments must be formed by the same chord.

Angles in Same or Opposite Segments

Work in pairs.
The figure on the right shows a circle with four angles labelled w, x, y and z. Work in pairs to identify which pairs of the four angles are in the same segment and which pairs of the four angles are in opposite segments. For each case, specify the chord that forms the segment(s). In particular, are $\angle w$ and $\angle y$ angles in opposite segments? Explain your answer.

Investigation

Circle Angle Property 3

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Angle Property 3 as shown below.

1. The template shows a circle with centre $O . \angle A P B$ and $\angle A Q B$ are angles in the same (minor or major) segment.

Circle Angle Property 3: Angles in Same Segment

Given Condition: Angles in same (minor or major) segment
Move the points A, B, R, P and Q. Make sure you explore the case when both angles are in a minor segment also. Why do you think the relationship is always true? Show Hint

$$
\text { Angle at circumference } \angle \mathrm{APB}=59.31^{\circ} \quad \text { (yellow angle) }
$$

$$
\text { Angle at circumference } \angle \mathrm{AQB}=59.31^{\circ} \text { (pink angle) }
$$

Fig. 11.14
2. Click and drag point A or B to change the size of $\angle A P B$ and of $\angle A Q B$.

Click and drag point R to change the size of the circle.
Click and drag point P or Q to change the position of $\angle A P B$ and of $\angle A Q B$.
What do you notice about $\angle A P B$ and $\angle A Q B$?
3. Copy and complete the following sentence.

In general, angles in the same segment are \qquad .
4. Prove the angle property in Question 3. You can also click on the button 'Show Hint' in the template.

To adjust $\angle A P B$ and $\angle A Q B$ until they are in the same minor segment, click and drag point A or B until arc $A P Q B$ is a minor arc.

From the investigation, Circle Angle Property 3 states that:
Angles in the same segment are equal.

Worked Example

(Application of Circle Angle Property 3)

In the figure, P, Q, R and S are points on the circumference of a circle. Given that $P R$ and $Q S$ intersect at the point $X, \angle R P S=20^{\circ}$ and $\angle P R Q=52^{\circ}$, find
(i) $\angle S Q R$,
(ii) $\angle Q S P$,

Solution:

(i) $\angle S Q R=\angle R P S$ ($\angle \mathrm{s}$ in same segment $)$

$$
=20^{\circ}
$$

(ii) $\angle Q S P=\angle P R Q(\angle \mathrm{~s}$ in same segment $)$

$$
=52^{\circ}
$$

(iii) $\angle P X Q=\angle S Q R+\angle P R Q$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
\begin{aligned}
& =20^{\circ}+52^{\circ} \\
& =72^{\circ}
\end{aligned}
$$

PRACTISE NOW 7

1. In the figure, A, B, C and D are points on the circumference of a circle. Given that $A C$ and $B D$ intersect at the point X, $\angle B A C=44^{\circ}$ and $\angle A C D=25^{\circ}$, find
(i) $\angle C D X$,
(ii) $\angle A B X$,
(iii) $\angle C X B$.

2. Given that O is the centre of the circle, find the angles marked x and y.

Exercise 11C Questions 3(a), (b), $4,5,14,15,23$
3. In the figure, $A B$ is a diameter of the circle with centre $O . A P Q$ and $R B Q$ are straight lines. Find $\angle B P R$.

Investigation

Circle Angle Property 4

Go to http://www.shinglee.com.sg/StudentResources/ and open the geometry template Circle Angle Property 4 as shown below.

1. The template shows a circle with centre $O . \angle A P B$ and $\angle A Q B$ are angles in opposite (minor or major) segments.

Circle Angle Property 4: Angles in Opposite Segments

Given Condition: Angles in opposite segments
Move the points A, B, R, P and Q.
Why do you think the relationship is always true? Show Hint

Angle at circumference $\angle \mathrm{APB}=59.85^{\circ} \quad$ (yellow angle)
Angle at circumference $\angle \mathrm{AQB}=120.15^{\circ}$ (pink angle)

Fig. 11.15
2. Click and drag the point A or B to change the size of $\angle A P B$ and of $\angle A Q B$.

Click and drag the point R to change the size of the circle.
Click and drag the point P or Q to change the position of $\angle A P B$ and of $\angle A Q B$.
What do you notice about $\angle A P B$ and $\angle A Q B$?
3. Copy and complete the following sentence.

In general, angles in opposite segments are supplementary, i.e. they add up to \qquad -.
4. Prove the angle property in Question 3. You can also click on the button 'Show Hint' in the template.

From the investigation, Circle Angle Property 4 states that:

Angles in opposite segments are supplementary, i.e. they add up to 180°.

Worked Example

(Application of Circle Angle Property 4)

In the figure, P, Q, R and S are points on the circumference of the circle. $P S T$ and $Q R T$ are straight lines, $\angle P Q R=74^{\circ}$ and $\angle Q R S=102^{\circ}$.

Find
(i) $\angle Q P S$,
(ii) $\angle R T S$,
(iii) $\angle R S T$.

Solution:

(i) $\angle Q P S=180^{\circ}-102^{\circ}(\angle \mathrm{s}$ in opp. segments)

$$
=78^{\circ}
$$

(ii) $\angle R T S=180^{\circ}-74^{\circ}-78^{\circ}(\angle$ sum of a $\Delta)$

$$
=28^{\circ}
$$

(iii) $\angle R S T=102^{\circ}-28^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
=74^{\circ}
$$

1. In the figure, A, B, C and D are points on the circumference of a circle. $P A B$, $Q C B, P D C$ and $Q D A$ are straight lines.

Exercise 11C Questions 6(a)-(d), $7,8,16,17,24$

Given that $\angle B P C=31^{\circ}, \angle A Q B=21^{\circ}$ and $\angle P B Q=x^{\circ}$, find
(i) $\angle B A D$ in terms of x,
(ii) $\angle B C D$ in terms of x,
(iii) the value of x,
(iv) $\angle P A D$.
2. In the figure, A, B, C and D are points on the circumference of the circle and $B C=C D$.

Given that $\angle B A D=68^{\circ}$, find $\angle B A C$.

Worked Example

(Application of Circle Properties)

In the figure, O is the centre of the smaller circle passing through the points P, S, R and T. The points P, Q, R and O lie on the larger circle.

Given that $\angle P Q R=42^{\circ}$, find $\angle P S R$.

Solution:

```
\anglePOR = 180 - 42 ( }\angle\textrm{s}\mathrm{ in opp. segments)
    = 138
```

Reflex $\angle P O R=360^{\circ}-138^{\circ}(\angle \mathrm{s}$ at a point $)$

$$
=222^{\circ}
$$

$$
\begin{aligned}
\angle P S R & =\frac{222^{\circ}}{2}\left(\angle \text { at centre }=2 \angle \text { at } \odot^{\mathrm{ce}}\right) \\
& =111^{\circ}
\end{aligned}
$$

PRACTISE NOW 9

SIMILAR
 QUESTIONS

In the figure, O is the centre of the smaller circle passing through the points A, D, C and K. The points A, B, C and O lie on the larger circle.

Given that $\angle A D C=114^{\circ}$, find $\angle A B C$.

In the figure, A, B, C and D are points on the circle. $P A B$ and $P D C$ are straight lines.

(i) Show that $\triangle P A D$ is similar to $\triangle P C B$.
(ii) Given also that $P A=12 \mathrm{~cm}, A D=7 \mathrm{~cm}$ and $P C=28 \mathrm{~cm}$, find the length of $B C$.

Solution:

(i) Let $\angle B C D=x$.

Then $\angle B A D=180^{\circ}-x$ ($\angle \mathrm{s}$ in opp. segments)
i.e. $\angle P A D=180^{\circ}-\left(180^{\circ}-x\right)$
$=x$

In $\triangle P A D$ and $\triangle P C B$,

$$
\begin{aligned}
& \angle P \text { is a common angle. } \\
& \angle P A D=\angle P C B
\end{aligned}
$$

$\therefore \triangle P A D$ is similar to $\triangle P C B$. (2 pairs of corr. $\angle \mathrm{s}$ equal)
(ii) Using similar triangles,

$$
\begin{aligned}
\frac{B C}{D A} & =\frac{P C}{P A} \\
\frac{B C}{7} & =\frac{28}{12} \\
B C & =\frac{28}{12} \times 7 \\
& =16 \frac{1}{3} \mathrm{~cm}
\end{aligned}
$$

PRACTISE NOW 10

SIMILAR

In the figure, A, P, B and Q are points on the circle. The chords $A B$ and $P Q$ intersect at right angles at X.
(i) Show that $\triangle A X Q$ is similar to $\triangle P X B$.
(ii) Given also that $A X=5 \mathrm{~cm}, Q X=10.5 \mathrm{~cm}$ and $P X=3.4 \mathrm{~cm}$, find the length of $B X$.

BASIC LEVEL

1. Given that O is the centre of each of the following circles, find the value of each of the unknowns.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

2. Given that O is the centre of each of the following circles, find the value of each of the unknowns.
(a)

(b)

(c)

(d)

3. Find the value of each of the unknowns.
(a)

(b)

4. In the figure, $\angle T P Q=100^{\circ}$ and $\angle P S Q=20^{\circ}$.

Find $\angle P Q T$.
5. In the figure, A, B, C and D are points on the circle such that $A D$ produced meets $B C$ produced at X.

Given that $\angle C D X=65^{\circ}$, find $\angle A B C$.
6. Find the values of the unknowns.
(a)

(b)

(c)

(d)

7. In the figure, A, B, C and D are points on the circle such that $A D$ produced meets $B C$ produced at X.

Given that $\angle A B C=80^{\circ}$ and $\angle A X B=30^{\circ}$, find
(i) $\angle B A D$,
(ii) $\angle X C D$.
8. In the figure, O is the centre of the circle.

Find the sum of $\angle P Q R, \angle P R S$ and $\angle P T S$.

INTERMEDIATE LEVEL

9. In the figure, O is the centre of the circle, $\angle A O C=144^{\circ}$ and $\angle A P C=145^{\circ}$.

Find $\angle B A D$.
10. In the figure, O is the centre of the circle, $\angle A B C=43^{\circ}$ and $\angle A C B=28^{\circ}$.

Find
(i) $\angle O B A$,
(ii) $\angle O C A$.
11. In the figure, O is the centre of the circle, $\angle S W R=26^{\circ} . W S$ is parallel to $P R$.

Find
(i) $\angle P W R$,
(ii) $\angle S P W$.
12. Given that O is the centre of the circle, find the value of x.

13. In the figure, $\angle B A D=90^{\circ}, B C=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$.

Find the area of the circle.
14. In the figure, A, Q, B and X are points on the circle. $A B$ is a diameter of the circle.

Given that $\angle B A P=24^{\circ}$ and $\angle B P A=35^{\circ}$, find $\angle B Q X$.
15. In the figure, $\angle A D B=54^{\circ}, \angle A C D=58^{\circ}$ and $\angle C B P=80^{\circ}$.

Find $\angle A P D$.
16. In the figure, O is the centre of the circle.

Given that $C D=D E$, find $\angle B A D$.
17. In the figure, $A B$ is a diameter of the circle.

Given that $\angle C A B=35^{\circ}$, find $\angle A D C$.
18. In the figure, two circles intersect at the points G and $H . G F$ is a diameter of the circle $G H F$ and $\angle G F H=35^{\circ} . E D$ is a chord in the larger circle and $E H F$ is a straight line.

Find
(i) $\angle E D G$,
(ii) $\angle D E F$.
19. In the figure, two circles intersect at the points Q and $R . O$ is the centre of the circle $S Q R, \angle R S Q=110^{\circ}$ and $P S R$ is a chord in the larger circle.

Find $\angle Q P S$.
20. In the figure, points P, A, B and X lie on the larger circle and Q, B, A and Y lie on the smaller circle. $P A Q$ and $X A Y$ are straight lines, $\angle B A X=58^{\circ}$, $\angle P B X=26^{\circ}$ and $\angle A B Y=23^{\circ}$.

Find
(i) $\angle A Q B$,
(ii) $\angle A Y Q$.
21. In the figure, O is the centre of the larger circle passing through the points A, C and D with $D O A$ as a diameter. P is the centre of the smaller circle through points O, B and A, with $O P A$ as a diameter.

(a) Show that $\triangle A B O$ is similar to $\triangle A C D$.
(b) Given also that $A P=4 \mathrm{~cm}$ and $O B=4.5 \mathrm{~cm}$, find the length of
(i) $O C$,
(ii) $C D$.
22. In the figure, A, B, C and D are points on the circle. $P A B$ and $P D Q C$ are straight lines. $Q B$ is parallel to $D A$.

(i) Show that $\triangle P A D$ is similar to $\triangle P B Q$.
(ii) Name another triangle that is similar to $\triangle P A D$. Explain your answer.

ADVANCED LEVEL

23. In the figure, A, B, E and C are points on the circle. $A E$ is the diameter of the circle and $A D$ is the height of $\triangle A B C$.

Given that $\angle C A D=18^{\circ}$, find $\angle B A E$.
24. In the figure, A, Q, C, P, B and R are points on the circle. $A P, B Q$ and $C R$ are the angle bisectors of $\angle A$, $\angle B$ and $\angle C$ respectively.

Given that $\angle A=50^{\circ}, \angle B=70^{\circ}$ and $\angle C=60^{\circ}$, find $\angle P, \angle Q$ and $\angle R$.
25. In the figure, $A O B$ is a diameter of the circle, centre O. C is a point on the circumference such that $C K$ is perpendicular to $A B$.
(i) Show that $\triangle A C K$ is similar to $\triangle C B K$.
(ii) Given also that $A K=12 \mathrm{~cm}$ and $C K=10 \mathrm{~cm}$, find the radius of the circle.

Symmetric Properties of Circle

Property 1:

Perpendicular bisector of chord

The perpendicular bisector of a chord of a circle passes through the centre of the circle, i.e. $A M=M B \Leftrightarrow O M$ Һ $A B$

Property 2:

Equal chords

Chords that are equidistant from the centre of a circle are equal in length, i.e. $P Q=A B \Leftrightarrow O M=O N$

Property 3:

Tangent perpendicular to radius

The tangent at the point of contact is perpendicular to the radius of a circle, i.e. $P Q$ Һ $O A$

Property 4:

Equal tangents

Tangents from an external point are equal in length.
The line from the centre of a circle to an external point bisects the angle between the two tangents from the external point, i.e. $P A=P B$.

Angle Properties of Circle

Property 1:

Angle at centre $=2 \times$ Angle at circumference

An angle at the centre of a circle is twice that of any angle at the circumference subtended by the same arc,
i.e. $\angle A O B=2 \times \angle A P B$

Property 3:

Angles in same segment are equal

Angles in the same segment are equal,
i.e. $\angle A P B=\angle A Q B=\angle A R B$

Property 2:

Right angle in semicircle

An angle is a semicircle is always equal to 90°, i.e. $A O B$ is a diameter $\Leftrightarrow \angle A P B=90^{\circ}$

Property 4:

Angles in opposite segments are supplementary

Angles in opposite segments are supplementary, i.e. $\angle D A B+\angle D C B=180^{\circ}$

Review

1. Given that $P A T$ is a tangent to each of the following circles with centre O, find the values of the unknowns.
(a)

(b)

(c)

(d)

(e)

(f)

2. Given that $P A$ and $P B$ are tangents to each of the following circles with centre O, find the values of the unknowns.
(a)

(b)

(c)

(d)

(e)

(f)

3. Given that O is the centre of each of the following circles, find the value of each of the unknowns.
(a)

(b)

(c)

(d)

(e)

(f)

4. Given that O is the centre of each of the following circles, find the values of the unknowns.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

5. In the figure, P, Q, R and S are points on the circle.

Express $\angle P Q R$ in terms of x and y.
6. In the figure, A, B, E and F are points on the circle. $A B$ is the diameter of the circle. $A B C D$ and $C E F$ are straight lines, $\angle B E C=40^{\circ}$ and $\angle F C D=150^{\circ}$.

Find $\angle E B F$.
7. In the figure, Q, A and C are points on the circle, centre $O . B O Q$ and $B C A$ are straight lines, $\angle O A C=66^{\circ}$ and $\angle O B C=32^{\circ}$.

Find
(i) $\angle C Q A$,
(ii) $\angle Q C A$.
8. Find the value of x and of y in the following figure.

9. The figure shows a circle with $A B$ as a diameter.

Given that $\angle A D E=\angle D C A$ and $\angle C B A=70^{\circ}$, find
(i) $\angle F E B$,
(ii) $\angle E F C$.
10. In the figure, O is the centre of the circle. $F E C$ and $A O B C$ are two straight lines. $B E$ is parallel to $O F$, $O B=B C=2 \mathrm{~cm}$ and $\angle C B E=y^{\circ}$.

Find
(i) the length of $B E$,
(ii) $\angle F A O$ in terms of y.
11. In the figure, $A B$ and $P Q$ are parallel chords in a circle, centre $O . H$ and K are the midpoints of $A B$ and $P Q$ respectively.

Given that $A B=26 \mathrm{~cm}, P Q=22 \mathrm{~cm}$ and $H K=4 \mathrm{~cm}$, find
(i) the length of OH ,
(ii) the radius of the circle.
12. $P A$ is a diameter of a circle and $P T$ is a tangent. S is a point on the circle such that $\angle S P T=46^{\circ}$.
(i) Find $\angle P A S$.
(ii) Hence, find $\angle P R S$, where R is any other point on the minor arc $P S$ of the circle.
13. L, M and N are three points on a circle. The tangents at L and M intersect at P. Given that $\angle L P M=58^{\circ}$, find $\angle L N M$.
14. In the figure, O is the centre of the circle passing through the points A, B, C and D. The points C, D, P and Q lie on the circumference of another circle. $A D P$ and $B C Q$ are straight lines and $\angle A O C=156^{\circ}$.

Find
(i) $\angle P D C$,
(ii) $\angle P Q C$.
15. The figure shows two circles $A B C D$ and $C D P Q$ intersecting at C and D.

Given that $A D P, A B R$ and $P Q R$ are straight lines, $\angle P A R=64^{\circ}$ and $\angle A R P=54^{\circ}$, find
(i) $\angle A P R$,
(ii) $\angle B C Q$.
16. In the figure, $C A D$ and $C B E$ are straight lines.

Given that $C A$ is a diameter of the circle $A B C$, determine if $\angle A D E$ is a right angle.

The figure shows the plan of a circular hall of a jewellery exhibition. C is a hidden video camera which scans an angle of 45°. How many more such video cameras must be installed on the walls of the hall so that they will cover the entire hall? Indicate the position where each video camera must be mounted.

How many video cameras are required if each one can scan an angle of
(a) 35° ?
(b) 60° ?
(c) 90° ?
(d) 100° ?

D1 Revision Exercise

1. In the figure, $P Q=P R$ and $\angle P S T=\angle P T S$.

Determine if $\triangle P Q S$ is congruent to $\triangle P R T$.
2. In the figure, $A R, S Q$ and the straight line $B P C$ are parallel. $B S A$ is a straight line and is parallel to $P Q R$.

(a) Show that $\triangle A S Q$ is congruent to $\triangle Q R A$.
(b) Name a triangle similar to $\triangle A B C$.
(c) Given that $A S=2 \mathrm{~cm}, S B=4 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$, find the length of $S Q$.
(d) Name two triangles similar to $\triangle P C Q$.
(e) Given that the area of $\triangle A B C$ is $36 \mathrm{~cm}^{2}$, find the area of
(i) $\triangle P C Q$,
(ii) $\triangle B P Q$,
(iii) quadrilateral $A S Q R$.
3. A scale model of a warehouse is 45 cm high whereas the actual warehouse has a height of 30 m .
(i) Find the scale of the model.
(ii) Given that the floor area of the model is $810 \mathrm{~cm}^{2}$, find the actual floor area of the house in m^{2}.
(iii) If the volume of one of the rooms in the model is $162 \mathrm{~cm}^{3}$, find the volume of the corresponding room in the actual house in m^{3}.
4. $\quad P A$ and $P B$ are tangents to the circle with centre O.

Given that $\angle A P B=48^{\circ}$ and $\angle O B C=18^{\circ}$, find
(i) $\angle B A C$,
(ii) $\angle A B C$.
5. A, B, C, D and E are points on a circle.

Given that $A B=A E, \angle A B E=26^{\circ}$ and $\angle A E D=118^{\circ}$, find
(i) $\angle B A E$,
(ii) $\angle B C D$.

D1 Revision Exercise

6. In the figure, $A B$ is a diameter of the circle with centre $O . B E F$ is a tangent to the circle at B, $\angle B A E=20^{\circ}$ and $\angle A F B=40^{\circ}$.

Find the angles u, v, w, x, y and z.
7. In the figure, $T P Q$ and $T S R$ are straight lines and $S R=Q R$.

Given that $\angle Q T R=a$ and $\angle Q P R=b$, express each of the following in terms of a and b.
(i) $\angle R Q S$
(ii) $\angle P R S$
(iii) $\angle P S T$
(iv) $\angle Q R S$
(v) $\angle P S Q$
8. The figure shows a wax candle in the shape of a right circular cone with base radius 5 cm and height 12 cm . It takes 1 hour 40 minutes to burn completely. After $12 \frac{1}{2}$ minutes of burning, the candle is reduced to a frustrum with a height of $h \mathrm{~cm}$.

Find
(i) the total surface area of the cone before burning starts,
(ii) the value of h,
(iii) the total surface area of the frustrum.

D2 Revision Exercise

1. In the figure, $\triangle P Q R$ is an equilateral triangle with sides of length $16 \mathrm{~cm} . A, B$ and C are points on $P Q, Q R$ and $P R$ respectively such that $P A=Q B=R C=4 \mathrm{~cm}$.

(i) Show that $\triangle A P C$ is congruent to $\triangle B Q A$.
(ii) Name the third triangle which is congruent to $\triangle A P C$ and $\triangle B Q A$ and show that $\triangle A B C$ is an equilateral triangle.
2. The figure shows two triangles $A B X$ and $P Q X$. $A B$ is parallel to $Q P, A B=4 \mathrm{~cm}, A X=3.6 \mathrm{~cm}$, $B X=4.2 \mathrm{~cm}$ and $Q P=7.2 \mathrm{~cm}$.

Find
(i) the length of $P X$ and of $Q X$,
(ii) the ratio of the area of $\triangle A B X$ to that of $\triangle P Q X$.
3. The surface area of two cups are in the ratio $9: 64$. If the smaller cup has a height of 25 cm and a volume of $2400 \mathrm{~cm}^{3}$, find
(i) the height of the larger cup,
(ii) the exact volume of the larger cup.
4. In the figure, $B C=8 \mathrm{~cm}, C X=4.8 \mathrm{~cm}, A C=8.5 \mathrm{~cm}$ and $Y Z=15 \mathrm{~cm} . B C$ is parallel to $Y Z$.

Find
(i) the length of $X Y$ and of $C Z$,
(ii) the ratio of the area of $\triangle A Y Z$ to the area of trapezium BCZY.
5. In the figure, $E B$ is the tangent to the circle with centre O at B.

Given that $\angle A B E=50^{\circ}$, find
(i) $\angle A O B$,
(ii) $\angle A C B$.
6. In the figure, $P A$ and $P B$ are tangents to the circle, centre O.

Given that the radius of the circle is 14 cm and $\angle A P B=56^{\circ}$, find the area of the shaded region.

D2 Revision Exercise

7. The tangents to a circle at P, Q and R intersect at A, B and C as shown.

Given that $\angle B A C=42^{\circ}$ and $\angle P Q B=56^{\circ}$, find
(i) $\angle A C B$,
(ii) $\angle P Q R$,
(iii) $\angle R P Q$.
8. The figure shows an empty inverted pyramid with a square base of length 12 cm and height 18 cm . A pipe can fill the pyramid with water in 4 minutes.

(i) Find the height of water in the pyramid after 30 seconds.
(ii) Calculate the ratio of the surface area in contact with the water to that of the surface area which is not in contact with the water after 30 seconds.

PROBLEM 1: The Singapore Sports Hub

The Singapore Sports Hub is a newly-built sports complex in Singapore. Standing at 82.5 m tall, the hub is built in the shape of a dome with a diameter of 310 m .

Consider the 2-dimensional shape of the dome. It is similar to that of a parabola, which can be modelled by a quadratic equation $y=a x^{2}+b x+c$, where $x \mathrm{~m}$ and $y \mathrm{~m}$ represent the horizontal and vertical distances respectively away from the point O (see Fig. (b)) and a, b and c are real numbers.
(a) Based on the information given, state the coordinates of two points (other than the point O) on the dome.
(b) Sketch the graph representing the dome and label the coordinates from your answer in (a).
(c) Using the general form of a quadratic function, $y=a x^{2}+b x+c$ and the coordinates stated in (a),
(i) write a system of three equations to solve for the three unknowns a, b and c,
(ii) find the values of a, b and c,
(iii) state the equation of the graph representing the dome.
(d) Suggest another way to orientate the coordinate axes to find the quadratic equation modelling the dome.

PROBLEM 2: Road Tax for Singapore-registered Vehicles

The road tax of a Singapore-registered car is calculated based on the car's engine capacity. The following table shows the formula of calculating the road tax per annum for petrol cars.

Engine Capacity (EC) in cc	6-Monthly Road Tax Formula (From 1 July 2008) in \$
$\mathrm{EC} \leqslant 600$	200×0.782
$600<\mathrm{EC} \leqslant 1000$	$[200+0.125 \times(\mathrm{EC}-600)] \times 0.782$
$1000<\mathrm{EC} \leqslant 1600$	$[250+0.375 \times(\mathrm{EC}-1000)] \times 0.782$
$1600<\mathrm{EC} \leqslant 3000$	$[475+0.75 \times(\mathrm{EC}-1600)] \times 0.782$
$\mathrm{EC}>3000$	$[1525+1 \times(\mathrm{EC}-3000)] \times 0.782$

(a) Calculate the 6-monthly road tax of a petrol car with an engine capacity of 1400 cc .
(b) How much road tax is payable per annum for a car with an engine capacity of 3000 cc ?
(c) Using a suitable scale, draw the graph of road tax against engine capacity.

PROBLEM 3: High-Speed Chase

During a routine operation along an expressway one night, a car drove through a police road block without stopping. The police signalled for the car to stop but it accelerated and the police gave chase.
The speed and the time of the speeding car and the police car during the 3-minute high-speed chase along the expressway are recorded in the table.

Time	Speed of Speeding Car $(\mathbf{k m} / \mathbf{h})$	Speed of Police Car $(\mathbf{k m} / \mathbf{h})$
$\mathbf{1}^{\text {st }}$ minute	110	95
$\mathbf{2}^{\text {nd }}$ minute	145	140
$\mathbf{3}^{\text {rd }}$ minute	160	185

(i) Based on the information given, using a distance-time graph, determine whether the police car will be able to overtake the speeding car and arrest the driver during the high-speed chase. Show how you arrive at your conclusion.
(ii) Are there any assumptions that you may have to make?

PROBLEM 4: Credit Card Debts

Many people have a credit card. Having a credit card allows people to track their expenses, enjoy promotions jointly offered by the merchant and the credit card companies and save them the hassle of having to carry a large amount of cash around. However, if the credit card is not being used wisely, an unpaid credit card bill may chalk up a debt that could snowball and cripple their finances.

Credit card companies typically impose a credit charge of 2% per month or 24% per annum for any unpaid bill plus a penalty of $\$ 50$ per month if the bill is not paid or not paid in full.

Suppose a man owed a credit card company \$100 at the beginning of January 2014 and did not pay a single cent to clear his debt.

The following table illustrates the working to obtain the amount of debt he owes at the end of 3 months. Complete the table using the formula given for each column below.

Month	Amount owed at the beginning of the month, \boldsymbol{A}	Additional fee, $(\boldsymbol{A}+\mathbf{5 0})$	Interest, $\boldsymbol{I}=\frac{\mathbf{2}}{\mathbf{1 0 0}}(\boldsymbol{A}+\mathbf{5 0})$	Amount owed at the end of the month, $\boldsymbol{D} \boldsymbol{A}+\mathbf{5 0}+\boldsymbol{I}$
January	$\$ 100.00$	$\$ 150.00$	$\$ 3.00$	$\$ 153.00$
February	$\$ 153.00$	$\$ 203.00$	$\$ 4.06$	$\$ 207.06$
March	$\$ 207.06$	$\$ 257.06$	$\$ 5.14$	$\$ 262.20$
April				
May				
June				

(a) Using the above set of data and a spreadsheet (as described below), obtain different functions for estimating the amount of debt that the man will owe at the end of
(i) 1 year,
(ii) 3 years.

Open a spreadsheet and type in 2 columns of data. For the first column, use $1,2,3,4,5$ and 6 to replace the months of January to June respectively. For the second column, enter the amount, $\$ D$, owed at the end of each of the months. Select the entire table and insert a scatterplot with only the markers (or points). Right-click on the points and add a trendline to model or best fit the data: choose one of the functions given, i.e. exponential, linear, etc. For the forecast, select forward 36 periods, and choose to display the equation of the trendline on the scatterplot.
Use the equation of the trendline to obtain the estimated values of D at the end of 1 year and 3 years.

Problems in Real-World Contexts

(b) The formula for D is given by

$$
D=A(1.02)^{n}+2550(1.02)^{n}-2550
$$

where A is the initial amount that the man owes the credit card company and n is the number of months that he did not pay a single cent to the company.

Use the formula to obtain the value of D at the end of
(i) 1 year,
(ii) 3 years.

Give your answers correct to the nearest cent.
(c) Compare the estimated values of D obtained using the different models in the spreadsheet with the actual values obtained using the formula. Which is a better model for the estimation of values for the different periods of time?

PROBLEM 5: Prices of Watermelons

A fresh fruit stall holder in a school canteen sells slices of watermelon or juice. The following table shows the sizes and prices of the watermelons that are on sale at a wholesale market.

Size			medium
			large
Diameter (cm)	24	28	32
Price (\$)	4.10	5.80	7.60

Which size of watermelon should the stall holder buy in order to maximise his profit? Show your working to support your answer and state any assumptions made.

PROBLEM 6: The Broken Plate

An archaeologist found a part of a broken circular plate, drawn to scale of 1 cm to represent 4 cm , as shown.

(i) Explain how you can help to find the diameter of the plate using geometrical properties of circles.
(ii) Using the method you have explained in (i), find the diameter of the original circular plate.
(iii) Hence, find the area of the original circular plate.

PROBLEM 7: Penalty Shootout

The figure shows a soccer field measuring 105 m by 68 m and a goal post on each side with a width of 7.32 m .

(i) For a penalty shootout, the ball is placed at a distance of 11 m from the centre of the goal post. Find the widest angle for shooting that the player can make before the ball misses the goal post.
Hint: Let O be the point at which the ball is placed, and P and Q be the two ends of the goal post. Find angle $P O Q$.
(ii) A winger dribbles a ball 8 m from the side of the field along the line $H B$. At which point along $H B$ should he strike the ball so that he will get the widest angle for shooting?
(iii) Explain how the angle for shooting varies as the winger strikes the ball at different points along $H B$.

Problems in Real-World Contexts

Problem 8: Constructing A 3-Dimensional Star

To raise funds for charity, your class has been tasked to make and sell star-shaped paper lanterns. You will have to design 3-dimensional stars by creating a 2-dimensional template of each star and determining the amount of materials that are required.

You may have to consider the following:

- Creation of a 2-dimensional template
- Materials for lantern, e.g. coloured paper, glue, string, lightbulbs
- Size and colour of paper to be used and amount of paper needed
- Amount of money to be raised

Guiding Questions:

1. How can we obtain the dimensions of the 2-dimensional template? Consider a star which is about 20 cm wide and 6 cm deep, with cross section and a 3-dimensional section $A P B H$ as shown in Fig. (a). $T A=B Q=8 \mathrm{~cm}, A B=4 \mathrm{~cm}$ and height of star above centre $O, O H=3 \mathrm{~cm}$. Note that $T A B Q$ is not a straight line. Fig. (b) shows the template used to make one part of the 3-dimensional star with cross section $O A P B$. You can fold the template along the lines and glue the flap on side $P A^{\prime}$ to $P A$ to make this part of the 3-dimensional star. You need to make 5 such parts and glue each to the other along the remaining 2 flaps to make the 3-dimensional star.

(a)

(b)
2. How do you calculate the amount of paper needed for each star? What size of paper is appropriate and available? How many sheets of paper would be needed?
3. What is the total cost of materials?
4. Propose a price for a lantern. Is the price proposed reasonable? How many lanterns have to be sold to raise the amount of money?

The depth of the star is 6 cm because $\mathrm{OH}=3 \mathrm{~cm}$ and $\mathrm{OH}^{\prime}=3 \mathrm{~cm}$, where H^{\prime} is the point directly below centre O on the other surface of the 3-dimensional star.

Practise Now Answers

CHAPTER 1

Practise Now 1
(a) -8 or 1
(b) $1 \frac{1}{3}$ or $-2 \frac{1}{2}$

Practise Now 2
(a) 3 or -17
(b) 8.32 or 1.68

Practise Now 3
(a) $(x+10)^{2}-100$
(b) $\left(x-\frac{7}{2}\right)^{2}-\frac{49}{4}$
(c) $\left(x+\frac{1}{10}\right)^{2}-\frac{1}{100}$
(d) $(x+3)^{2}-18$

Practise Now 4

1. (a) 0.61 or -6.61
(b) -0.81 or -6.19
(c) 1.62 or -0.62
2. 4.72 or -5.72

Practise Now 5
(a) 1.27 or -2.77
(b) 1.72 or -0.117
(c) 4.73 or 1.27
(d) 5.24 or 0.764

Practise Now 6

1. (i) $15,5,-1,-3,-1,5,15$
(iii) 2.2 or -0.2
2. -2.3 or 1

Practise Now 7

1. (i) $16,9,4,1,0,1,4,9$
(iii) 3
2. 4

Practise Now 8

1. (a) -1 or -6
(b) 0.703 or -2.37
2. 2.35 or -0.851

Practise Now 9

1. (a) 3.46 or 2.14
(b) 3.58 or 1.92
2. 3 or 2.5

Practise Now 10

(i) $(9-x) \mathrm{cm}$
(iii) 7.928 or 1.072
(iv) $4.25 \mathrm{~cm}^{2}$

Practise Now 11
(ii) 126.16 or -133.16 (iii) 4.51 h

Practise Now 13

1. (i) $(-1,0),(5,0) ;(0,5)$
(ii) $(2,9)$
(iv) $x=2$
2. (i) $(-2,0),(0,0) ;(0,0)$
(ii) $(-1,-1)$
(iv) $x=-1$

Practise Now 14

1. (i) $(x-3)^{2}-3$
(ii) $(3,-3)$
(iv) $x=3$
2. (i) $\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
(ii) $\left(-\frac{1}{2}, \frac{3}{4}\right)$
(iv) $x=-\frac{1}{2}$

CHAPTER 2

Practise Now 1
(a) $x \geqslant 10$
(b) $y<\frac{1}{2}$

Practise Now 2
$x>14$
(i) 17
(ii) 27

Practise Now 3

1. (a) $x<1 \frac{2}{5}$
(b) $y \geqslant \frac{3}{29}$
(c) $z \leqslant 26$
2. 4

Practise Now 4
60

Practise Now 5
6

Practise Now 6
$-1<x \leqslant 5$

Practise Now 7

1. no solution
2. $-13<y \leqslant 7$

CHAPTER 3

Practise Now 1
(a) 4^{12}
(b) $(-3)^{7}$
(c) a^{20}
(d) $6 x^{6} y^{7}$

Practise Now 2
(a) 9^{4}
(b) $(-4)^{7}$
(c) a^{4}
(d) $3 x^{3} y$

Practise Now 3

1. (a) 6^{12}
(b) k^{45}
(c) $3^{10 q}$
2. 2

Practise Now 4
(a) 24^{7}
(b) $125 b^{12}$
(c) $-32 c^{10} d^{25}$
(d) $m^{28} n^{19}$
(e) $\frac{p^{5} q^{4}}{27}$

Practise Now 5
(a) 3^{3}
(b) 2^{15}
(c) $\frac{p^{11}}{q^{10}}$
(d) x^{11}

Practise Now 6

1. (a) 1
(b) 1
(c) 3
(d) 1
2. (a) 3
(b) 10

Practise Now 7
(a) $\frac{1}{36}$
(b) $-\frac{1}{8}$
(c) $1 \frac{61}{64}$
(d) 9

Practise Now 8
(a) a^{4}
(b) $\frac{b^{15}}{c^{6}}$
(c) $\frac{2 d}{e^{2}}$
(d) $\frac{5 f^{4}}{3}$
(e) $\frac{6}{g^{2}}$

Practise Now 9
(a) 4
(b) 4
(c) $\frac{2}{3}$

Practise Now 10
(a) 6
(c) $-\frac{1}{5}$
(b) $\frac{1}{2}$

Practise Now 11

1. (a) 16
(c) 1000
2. (a) $a^{\frac{n}{3}}$

Practise Now 12
(a) m^{2}
(b) $\frac{1}{m^{\frac{7}{15}}}$
(c) $\frac{m}{n^{\frac{5}{3}}}$
(d) $\frac{m^{\frac{11}{3}}}{n^{\frac{11}{12}}}$
(e) $\frac{5 m^{7}}{n^{\frac{14}{5}}}$
(f) $\frac{m^{3}}{n^{\frac{8}{7}}}$

Practise Now 13
(a) 3
(b) -2
(c) $1 \frac{1}{3}$

Practise Now 14

1. $\$ 646.52$
2. (a) $\$ 60.60 \quad$ (b) $\$ 61.16$
3. 3%

Practise Now 15

1. (a) 5.3×10^{6}
(b) 6×10^{8}
(c) 4.8×10^{-5}
(d) 2.1×10^{-10}
2. (a) 1325000
(b) 0.0044

Practise Now 16
(a) $2.54 \times 10^{-5} \mathrm{~m}$
(b) $2.34 \times 10^{2} \mathrm{~cm}$
(c) 4.0×10^{12} bytes

Practise Now 17
(a) 5.20×10^{9}
(c) 4×10^{3}
(b) 1.09×10^{-1}
(e) 1.60×10^{5}
(g) 6.57×10^{-9}
(d) 2.5×10^{-13}
(f) -2.56×10^{6}
(h) 4.21×10^{4}

Practise Now 18
800

CHAPTER 4

Practise Now 1
(a) $\frac{2}{3}$
(b) -1
(c) 0

Practise Now 2
12

Practise Now 3
(a) 5 units
(c) 6 units

Practise Now 4
(a) $\left(0,2 \frac{1}{4}\right)$
$3 \frac{3}{8}$ units 2

Practise Now 5

1. $\angle D E F$
2. No

Practise Now 6

1. 7

Practise Now 7
(a) $y=\frac{2}{7} x+\frac{11}{7}$
(b) $y=4$
(c) $x=-3$

CHAPTER 5

Practise Now 1
(i) $17.5,-17.5$
(ii) $2.35,-2.55$

Practise Now 2
(i) 1.20
(ii) -2.5

Practise Now 3
(i) -0.9
(ii) 0.8 or -0.8

Practise Now 4
(i) 0.3
(ii) -0.3

Practise Now 5
(a) $a=5, b=-3$
(c) 1.6
(d) (ii) $h=2, k=-4$

Practise Now 6
(b) 3.5 minutes
(c) $27 \mathrm{~km} / \mathrm{h}$

Practise Now 7
(i) $2 \frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$
(ii) $4.89 \mathrm{~m} / \mathrm{s}$
(iii) $2 \mathrm{~m} / \mathrm{s}^{2}$

Practise Now 8
(a) $a=2, b=17$
(c) (i) 0.7 or 3.8
(ii) $t=2.25$
(iii) $9 \mathrm{~m} / \mathrm{s}^{2}$
(iv) $0.25<t<4.2$

Practise Now 9
Carpark X

Practise Now 10
(a) 60 beats/minute
(b) 6 beats/minute ${ }^{2}$
(c) 1 beat/minute ${ }^{2}$

CHAPTER 6

Practise Now 1

1. (a) 0.995
(b) 0.629
2. 0.905

Practise Now 2

1. (a) $\frac{3}{5}$
(b) $-\frac{4}{5}$
(c) $1 \frac{1}{3}$
2. (a) 13 units
(b) (i) $\frac{12}{13}$
(ii) $-\frac{12}{13}$
(iii) $2 \frac{2}{5}$

Practise Now 3
(a) 24.5° or 155.5°
(b) 103.5°
(c) 84.0°

Practise Now 4
$298 \mathrm{~m}^{2}$

Practise Now 5

1. 3.59

Practise Now 6
(i) 82.3°
(ii) 8.01 cm
(iii) 10.7 cm

Practise Now 7

1. (i) 34.7°
(ii) 103.3°
(iii) 17.5 cm
2. (i) 52.1°
(ii) 31.1°
(iii) 8.11 cm

Practise Now 8
$83.2^{\circ}, 50.8^{\circ}, 7.65 \mathrm{~cm}$ or $96.8^{\circ}, 37.2^{\circ}, 5.96 \mathrm{~cm}$

Practise Now 9
(i) 16.1 cm
(ii) 69.5°
(iii) 39.5°
2. 53.1°

Practise Now 10
96.8°

CHAPTER 7

Practise Now 1

1. 63.8 m

Practise Now 2

1. (i) 354 m
2. 45.2 m

Practise Now 3

1. (a) 050°
(b) 330°
(c) 230°
(d) 150°
2. (a) 123°
(b) 231°
(c) 303°
(d) 051°

Practise Now 4

1. 208 m
2. (i) 245°
(ii) $310 \mathrm{~m}, 317 \mathrm{~m}$

Practise Now 5

(i) 49.4 km
(ii) 199.3°

Practise Now 6
(i) 200°
(ii) 2.92 km
(iii) 4.92 km
(iv) 1.25 km

Practise Now 7

1. (i) 58.0°
(ii) 74.2°
(iii) 28.1°
2. (i) 14.6 cm
(ii) 28.3°

Practise Now 8

1. (i) 32.0°
(ii) 35.3°
(iii) 23.8°
2. (i) 33.7°
(ii) 53.1°
(iii) 30.8°

Practise Now 9
(i) 170 m
(ii) 8.4°

Practise Now 10 68.8 m

CHAPTER 8

Practise Now 1

1. (i) 99.5 cm
(ii) 108 cm
2. $\left(\frac{21}{2} \pi+18\right) \mathrm{cm}$
3. 6.65

Practise Now 2

1. 13.2 cm
2. 34.0 cm

Practise Now 3
(i) 56.6 cm
(ii) 155 cm

Practise Now 4
(ii) $459 \mathrm{~cm}^{2}$

Practise Now 5
(ii) $122 \mathrm{~m}^{2}$

Practise Now 6
(a) 12°
(b) 270°
(c) 174.2°
(d) 458.4°

Practise Now 7
(a) 0.628 rad
(b) 5.03 rad
(c) 3.45 rad
(d) 6.98 rad

Practise Now 8
(a) 0.605
(b) 0.973
(c) 2.82

Practise Now 9
(a) 1.06 rad
(c) 0.722 rad

Practise Now 10
(i) 7.00 cm
(ii) 11.9 cm

Practise Now 11
(i) 0.772 rad
(ii) 3.23 cm
(iii) 5.30 cm

Practise Now 12
4.71 cm

Practise Now 13

1. (i) 0.75 rad
(ii) $54 \mathrm{~m}^{2}$
2. 22 cm

Practise Now 14
(ii) 15.8 m
(iii) $93.4 \mathrm{~m}^{2}$

Practise Now 15
(i) 12.96 cm
(ii) $43.4 \mathrm{~cm}^{2}$

Practise Now 16
(ii) $(9.6 \pi-11.5) \mathrm{cm}$
(iii) $52.5 \mathrm{~cm}^{2}$

CHAPTER 9
Practise Now 1

1. $E, F, D ; E F, F D, 11, E D ; E F D, \mathrm{SSS}$
2. $\triangle W X Y \equiv \triangle W Z Y$

Practise Now 2
2. No

Practise Now 3

1. (ii) 25°
2. (i) $\triangle P Q S \equiv \triangle R S Q$
(ii) $7 \mathrm{~cm}, 140^{\circ}$

Practise Now 6

1. (a) Yes
(b) No
(c) Yes
(d) Yes
2. (ii) $D E=10.5 \mathrm{~cm}, B D=3 \mathrm{~cm}$ (iii) $\frac{A B}{B D}=\frac{A C}{C E}$

Practise Now 7
(a) Yes
(b) No

Practise Now 8
(a) Yes
(b) No

Practise Now 9

1. (iii) 2 cm
2. $B Q=20 \mathrm{~cm}, A C=28 \mathrm{~cm}$

Practise Now 11

1. 56 m
2. 12 m

CHAPTER 10

Practise Now 1
(a) $98 \mathrm{~cm}^{2}$
(b) $12.5 \mathrm{~m}^{2}$

Practise Now 2
3.6 m

Practise Now 3
(i) $7 \mathrm{~cm}^{2}$
(ii) $14.6 \mathrm{~cm}^{2}$

Practise Now 4

1. $75 \mathrm{~cm}^{3}$
2. 0.5 m

Practise Now 5

1. 328 g
2. 3000 kg

Practise Now 6
(i) 14.9 cm
(ii) $1: 3.30$

CHAPTER 11

Practise Now 1

1. 21.35 cm
2. 5.05 cm

Practise Now 2
32.6 cm or 6.14 cm

Practise Now 3

1. (i) 23.2°
(ii) 11.4 cm
(iii) $23.625 \mathrm{~cm}^{2}$
2. (i) 3.9
(ii) 64.0°
(iii) $7.10 \mathrm{~cm}^{2}$

Practise Now 4

1. (i) 28°
(ii) 59°
(iii) 26.3 cm
(iv) $369 \mathrm{~cm}^{2}$
2. 32°

Practise Now 5

1. (i) 56°
(ii) 118°
2. $x=110^{\circ}, y=55^{\circ}$
3. 146°

Practise Now 6
(i) 25°
(ii) 50°
(iii) 105°

Practise Now 7

1. (i) 44°
(ii) 25°
(iii) 69°
2. $x=50^{\circ}, y=25^{\circ}$
3. 20°

Practise Now 8

1. (i) $(159-x)^{\circ}$
(ii) $(149-x)^{\circ}$
(iii) 64
(iv) 85°
2. 34°

Practise Now 9
48°

Practise Now 10
(ii) 7.14 cm

Answers

CHAPTER 1

Exercise 1A

1. (a) 1 or $-3 \frac{1}{2}$
(b) 2 or $-\frac{3}{4}$
(c) 2 or -9
(d) 1 or -4
(e) 1 or $-\frac{2}{3}$
(f) 2 or $-1 \frac{2}{3}$
2. (a) 2 or -4
(b) $1 \frac{1}{2}$ or $-2 \frac{1}{2}$
(c) $2 \frac{3}{5}$ or -1
(d) $2 \frac{7}{12}$ or $2 \frac{1}{12}$
(e) 0.32 or -6.32
(f) 3.90 or -0.90
(g) 7.65 or 2.35
(h) 3.66 or -2.66
3. (a) $(x+6)^{2}-36$
(b) $(x-3)^{2}-8$
(c) $\left(x+\frac{3}{2}\right)^{2}-\frac{17}{4}$
(d) $\left(x+\frac{9}{2}\right)^{2}-\frac{85}{4}$
(e) $\left(x+\frac{1}{4}\right)^{2}-\frac{1}{16}$
(f) $\left(x-\frac{1}{9}\right)^{2}-\frac{1}{81}$
(g) $(x+0.1)^{2}-0.01$
(h) $(x-0.7)^{2}-0.49$
4. (a) 1.45 or -3.45
(b) 1.61 or -18.61
(c) 11.20 or 0.80
(d) 5.85 or -0.85
(e) 1.61 or -1.86
(f) 0.81 or 0.05
(g) 0.74 or -1.34
(h) 4.34 or 0.46
5. (a) 8.12 or -0.12
(b) 4.79 or 0.21
(c) 8.22 or -1.22
(d) 7.80 or -1.80
6. $y=\frac{a \pm \sqrt{a^{2}+24}}{2}$

Exercise 1B

1. (a) -0.268 or -3.73 (b) 0.155 or -2.15
(c) 3.19 or 0.314
(d) 3.36 or -1.69
(e) 0.922 or -3.25
(f) 1.77 or 0.225
2. (a) 2.72 or -7.72
(b) 1.96 or -0.764
(c) 1.07 or -0.699
(d) 1.60 or -1.10
(e) 1.67 or -1.07
(f) 9.73 or 6.27
3. (a) 0.618 or -1.62
(b) 2.70 or -0.370
(c) 3.73 or 0.268
(d) 4.54 or -1.54
(e) 2.30 or -1.30
(f) 0.468 or -0.468
4. (a) 1
(b) -2.90 or 0.230
(c) no real solution (d) no real solution

Exercise 1C

1. (i) $8,1,-2,-1,4,13$
(iii) 2.3 or 0.20
2. (i) $-5,5,9,7,-1,-15$
(iii) 0.90 or -2.55
3. (i) $4,1,0,1,4,9$ (iii) -3
4. (ii) 0.80 or -2.10
5. 1.45 or -3.45
6. (ii) -1.5
7. 5
8. (b) 7.5
9. (b) (i) 6.4
(ii) 5.6 m
(c) 6.4

Exercise 1D

1. (a) 1.77 or -2.27
(b) 0.818 or -4.48
(c) 3.73 or 0.268
(d) 8.14 or 0.860
(e) 5.54 or -0.541
(f) -2 or $-\frac{2}{3}$
2. (ii) -4 or 3
(iii) 3 and 4
3. (a) -2 or $\frac{3}{5}$
(b) 15.6 or 1.41
4. 10.6 or -0.141
5. (a) 2 or -4
(b) 2.70 or -3.70
(c) 6.5 or 2
(d) 0.775 or -0.775
(e) 6 or $-\frac{2}{3}$
(f) 6.43 or -2.43
(g) 5.14 or 1.36
(h) 7.16 or 0.838
6. (i) $(56-x) \mathrm{cm}$
(iii) 41.67 or 14.33
(iv) 44.1 cm
7. (ii) 0 or $\frac{1}{3}$
(iii) 4 cm
8. (i) $\frac{60}{x}$
(ii) $\frac{60}{x+2}$
(iv) $\frac{1}{2}$ or $-1 \frac{2}{3}$
(v) 6 minutes
9. (i) $\frac{350}{x}$
(ii) $\frac{350}{x+0.15}$
(iv) $\$ 1.40$
10. (i) $\frac{2}{x}+\frac{8}{x+1}$
(iii) -4 or 3
(iv) 2 hours 40 minutes
11. (ii) 88.08 or 11.92 (iii) 7.95 hours
12. (i) $(x-3)(x-4)$
13. (i) $-\left(x-\frac{5}{2}\right)^{2}+\frac{9}{4}$
14. 3 and 4
15. (i) $\frac{65000}{x-5}-\frac{65000}{x}=20$
(ii) $\$ 1625$
16. (i) $\frac{40}{x} \mathrm{~h}$
(ii) $\frac{40}{x-30} \mathrm{~h}$
(iv) 101.17 or -71.17
(v) 33.7 minutes
17. (i) $\frac{6000}{x}$
(ii) $\frac{6000}{x+10}$
(iv) 200 or -210
(v) 16.2
18. (i) $(35-2 x) \mathrm{m},(22-2 x) \mathrm{m}$ (iii) 24.76 or 3.74
(iv) 3.74 m
19. (a) (i) -2.2 or 27.2
(c) (i) 216 m
(ii) 6.5 m or 18.5 m
20. 20 minutes, 25 minutes
21. $17.4 \mathrm{~km} / \mathrm{h}$

Challenge Yourself

1. 15 or 24
2. $-\frac{b}{a}, \frac{c}{a}$

CHAPTER 2

Exercise 2A

1. (a) $<$
(b) $<$
2. (a) $a<1$
(b) $b \geqslant 7$
(c) $c<-2$
(d) $d \geqslant 0$
(e) $e \geqslant-1 \frac{1}{2}$
(f) $f<-\frac{2}{5}$
(g) $g \geqslant 4$
(h) $h>4$
(i) $j<1 \frac{1}{10}$
(j) $k \geqslant-\frac{5}{8}$
(k) $m \leqslant 4$
(l) $n<-1$
3. $x \leqslant 4 \frac{1}{2}$
(i) 4
(ii) 4
4. $x<3$
(i) 2
(ii) Yes
5. (a) $p<1 \frac{1}{7}$
(b) $q \leqslant \frac{11}{13}$
6. (a) $a \geqslant 1 \frac{1}{2}$
(b) $b>5$
(c) $c<8$
(d) $d>-1$
(e) $e<-10$
(f) $f \leqslant 2$
(g) $g \geqslant-1 \frac{8}{9}$
(h) $h>108$
7. -10
8. (i) $x \geqslant-4$
(ii) 0

Exercise 2B

1. 19
2. $x=24, y=1 ; x=12, y=2 ; x=8, y=3$;
$x=6, y=4$
3. (a) $-2 \leqslant x \leqslant 7$
(b) $-1 \frac{1}{3}<x<5$
4. (a) $-2,-1,0$
(b) $3,4,5,6,7,8$
5. (a) $x \geqslant 2$
(b) $3<x \leqslant 5$
(c) $-9<x<-3$
(d) $\frac{1}{2}<x \leqslant 6$
6. 10
7. 15625
8. 18
9. 11
10. $29,31,37,41,43,47$
11. 18
12. 5
13. (a) $3 \frac{1}{2} \leqslant a \leqslant 4 \frac{1}{3}$
(b) $1<b<4$
(c) $1 \frac{1}{3}<c<6$
(d) $0 \leqslant d<3$
14. (a) $-4 \leqslant a \leqslant 4$
(b) $b \leqslant-6$
(c) $\frac{5}{6} \leqslant c<1$
(d) $-2 \leqslant d<8 \frac{1}{3}$
15. (a) $8,9,10$
(b) 5
(c) 2,3
(d) $4,5,6,7,8$
16. (a) 12
(b) -5
(c) 35
(d) 0
17. $12 \leqslant z \leqslant 40$
18. $x>1 \frac{2}{3}$
(e) 0,49
19. (a) -10
(b) 5
(c) 2
(d) 2
(e) 1,16
(f) 40
20. (a) False
(b) True
(c) True

Review Exercise 2

1. (a) $a \leqslant 5$
(b) $b<\frac{2}{3}$
(c) $c \geqslant-2$
(d) $d>6$
(e) $e \geqslant 3 \frac{1}{2}$
(f) $f \leqslant 6 \frac{2}{3}$
(g) $g<1 \frac{1}{3}$
(h) $h>2 \frac{3}{4}$
2. (a) $a<-24$
(b) $b<7 \frac{1}{5}$
(c) $c \leqslant-\frac{9}{20}$
(d) $d>-28 \frac{3}{8}$
(e) $e \geqslant-3$
(f) $f \geqslant 2 \frac{4}{9}$
3. (a) no solution
(b) $1 \frac{2}{3}<b<8$
(c) $-\frac{1}{2} \leqslant c<\frac{3}{8}$
(d) $-1 \leqslant d<10$
4. (a) 14
(b) 13
(c) $14 \frac{1}{2}$
5. (a) $9 \frac{1}{2}$
(b) 10
6. (a) 10,11
(b) $-6,-5$
7. (a) $7,-3$
(c) $12 \frac{1}{2}, 0$
8. (a) -13
(b) $1 \frac{3}{4}$
(c) 33
(d) 37
9. $410.1 \mathrm{~cm}^{2}$
10. 5
11. 18 years
12. 30
13. 1

Challenge Yourself

CHAPTER 3

Exercise 3A

1. (a) 2^{10}	(b) $(-4)^{11}$
(c) x^{11}	(d) $24 y^{9}$
2. (a) 5^{3}	(b) $(-7)^{7}$
(c) $6 x^{4}$	(d) $-3 y^{5}$
3. (a) 9^{8}	(b) h^{10}
(c) 15^{14}	(d) 18^{3}
(e) $8 k^{18}$	(f) $81 x^{24} y^{8}$

(b) $(-4)^{11}$
(d) $24 y^{9}$
(a) 5^{3}
(b) $(-7)^{7}$
(b) h^{10}
(f) $81 x^{24} y^{8}$
4. (a) 2^{13}
(b) 3^{20}
(c) $\frac{m^{5}}{32}$
(d) $\frac{27}{n^{6}}$
(e) $\frac{p^{24}}{q^{6}}$
5. (a) $h^{13} k^{10}$
(c) $22 p^{9} q^{17}$
(e) $5 m^{6} n^{6}$
6. (a) a^{11}
(c) $-c^{28}$
(e) e^{7}
7. (a) $8 a^{9} b^{9}$
(c) $64 e f^{3}$
8. (a) $\frac{2 a^{4}}{b^{5}}$
(c) $3 e^{3} f^{3}$
9. (a) $\frac{5 x^{6} y^{8}}{2}$
(c) $2 y^{5}$
10. $a=2, b=6$

Exercise 3B

1. (a) 1
(b) 1
(c) 4
(e) 1
2. (a) 16
(c) -63
3. (a) $\frac{1}{343}$
(c) $1 \frac{7}{9}$
4. (a) 1
(c) $2 \frac{2}{3}$
5. (a) 14
(c) $\frac{1}{2}$
(d) $\frac{2}{3}$
6. (a) $\sqrt{81}, 9$
(b) $\sqrt[3]{-27},-3$
(c) $\frac{1}{\sqrt[4]{16}}, \frac{1}{2}$
(d) $(\sqrt{4})^{3}, 8$
(e) $\frac{1}{(\sqrt[3]{8})^{5}}, \frac{1}{32}$
(f) $(\sqrt[3]{-1000})^{2}, 100$
7. (a) $a^{\frac{1}{4}}$
(c) $c^{\frac{4}{5}}$
(b) $b^{\frac{2}{3}}$
(e) $e^{-\frac{1}{2}}$
(d) $d^{-\frac{1}{6}}$
(f) $f^{-\frac{5}{3}}$
8. (a) 3
(b) -7
(c) $2 \frac{1}{2}$
9. $\$ 1298.56$
10. (a) $15 a^{9}$
(c) $\frac{d^{10}}{c^{6}}$
(e) $\frac{144}{h^{6}}$
(g) $m^{3} n$
11. (a) $a^{\frac{5}{6}}$
(c) $c^{\frac{17}{10}}$
(e) $\frac{e^{\frac{3}{2}}}{f^{2}}$
12. (a) $\frac{a^{\frac{4}{3}}}{b^{\frac{3}{2}}}$
(c) $\frac{e^{\frac{11}{3}}}{f^{\frac{11}{12}}}$
(e) $\frac{j^{2} k}{h^{3}}$
(f) $\frac{m^{\frac{56}{5}} n^{\frac{3}{5}}}{2}$
13. (a) $\$ 21074.13$
(b) $\$ 20991.14$
14. 3.01%
15. $\$ 2264.09$
16. (a) $\frac{z^{13}}{x^{53} y^{4}}$
(b) $\frac{x^{2} z^{11}}{y^{10}}$
(c) $\frac{a c^{2 n+1}}{b^{3}}$
(d) $\frac{a}{c(a+b)^{3}}$
17. (i) Company B
(ii) $\$ 103.41$

Exercise 3C

1. (a) 8.53×10^{4}
(b) 5.27×10^{7}
(c) 2.3×10^{-4}
(d) 9.4×10^{-8}
2. (a) 9600
(b) 400000
(c) 0.00028
(d) 0.000001
3. (i) $3 \times 10^{2} \mathrm{MHz}$
(ii) $3 \times 10^{5} \mathrm{MHz}$
4. (i) $7 \times 10^{-11} \mathrm{~m}$
(ii) $7.4 \times 10^{-11} \mathrm{~m}$
(iii) $35: 37$
5. $3.94 \times 10^{5} \%$
6. (a) 1.67×10^{2}
(b) 1.41×10^{-9}
(c) 3.35×10^{-1}
(d) 3.33×10^{3}
(e) 3.36×10^{4}
(f) -3.04×10^{7}
(g) 1.53×10^{-1}
(h) 3.35×10^{-5}
7. (a) 2.46×10^{-12}
(b) 6.94×10^{7}
(c) 1.1×10^{4}
(d) 2.1×10^{2}
(e) 5.41×10^{-2}
(f) 1.99×10^{5}
8. (a) 3.15×10^{9}
(b) 4.5×10^{4}
9. 7.6×10^{-3}
10. (a) 1.6×10^{14}
(b) 6.4×10^{-2}
11. 3.33×10^{-7}
12. (i) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(ii) 43 minutes 15 seconds
13. (i) $1.44 \times 10^{6} \mathrm{~km} \quad$ (ii) 400 days
14. (i) 1.25×10^{8}
(ii) 2.15
(iii) 1.69

Review Exercise 3

1. (a) $a^{7} b^{4}$
(b) $3 a^{2} b^{2}$
(c) $-27 a^{9} b^{15}$
(d) $\frac{a^{2} b}{2}$
2. (a) 5^{16}
(b) 5^{-3}
(c) $5^{\frac{1}{5}}$
3. (a) 125
(b) $\frac{5}{36}$
(c) $2 \frac{1}{9}$
(d) $1 \frac{37}{125}$
4. (a) 3
(b) $\frac{3}{5}$
(c) 64
(d) $\frac{1}{64}$
5. (a) $\frac{x^{4}}{81}$
(b) $3 x^{3}$
6. (a) y^{3}
(b) $\frac{4 y^{10}}{x^{6}}$
(c) $\frac{y^{33}}{x^{7}}$
(d) $\frac{4}{x^{2}}$
7. (a) $2 p^{\frac{14}{15}}$
(b) $\frac{p^{\frac{22}{5}}}{q^{\frac{12}{5}}}$
(c) $\frac{p^{\frac{20}{3}}}{q}$
(d) $\frac{3 q^{\frac{32}{3}}}{p^{\frac{8}{3}}}$
8. (a) 6
(b) $\frac{1}{7}$
(c) 8
9. (a) $\frac{3}{4}$
(b) 0
(c) -1
(d) 16
10. (a) $\$ 16969.85$
(b) $\$ 16952.14$
11. $\$ 45972$
12. (a) $3.26 \times 10^{4} \quad$ (b) 3.1×10^{-10}
(c) 2.58×10^{5}
(d) 3.64×10^{-3}
(e) -2.47×10^{6}
(f) 7.42×10^{-4}
13. (a) 9.79×10^{7}
(b) 1.1×10^{5}
(c) 2.94×10^{-10}
(d) 6.36×10^{-5}
14. (i) $2.20 \times 10^{-8} \mathrm{~m}$
(ii) $3.85 \times 10^{-17} \mathrm{~m}^{2}$
15. (i) $1.496 \times 10^{11} \mathrm{~m}$
(ii) 499 s
16. (i) $2.4 \times 10^{8} \mathrm{~m}$
(ii) 1920 s
17. (i) 2.99×10^{-23}
(ii) 9.36×10^{24}

Challenge Yourself

1. $2^{3^{4}}$
2. 7
3. 2

REVISION EXERCISE A1

1. (a) 8
(b) 125
(c) $\frac{4}{5}$
(d) 3
(e) $1 \frac{1}{3}$
2. (a) a^{7}
(b) $\frac{1}{b^{3.5}}$
(c) $\frac{c^{25}}{d^{15}}$
3. (a) 0
(b) 11
4. (i) $p<-2.8$
(ii) -3
5. $5,6,7,8$
6. (i) $2.76 \times 10^{-8} \mathrm{~m}$
(ii) $6.08 \times 10^{-17} \mathrm{~m}^{2}$
7. $55 \mathrm{~cm}, 30 \mathrm{~cm}$
8. $5.5 \mathrm{~h}, 6 \mathrm{~h}$
9. (i) $y^{2}+16, y^{2}-16 y+73$
(iii) 2 or 6
(iv) $15 \mathrm{~cm}^{2}$ or $13 \mathrm{~cm}^{2}$
10. (ii) 15 or 2.6
(iii) 2.6 cm

REVISION EXERCISE A2

1. (a) $8 a^{3} b^{6}$
(b) c
(c) $\frac{d^{2}}{4}$
(d) $\frac{1}{2} e^{3}$
2. 64
3. (a) -3
(b) ± 9
(c) 4.5
4. (a) 6
(b) $\frac{1}{6}$
5. $-5 \leqslant q<8$
6. (a) 11
(b) 10
(c) $9 \frac{3}{4}$
7. (i) $\frac{1}{2}(a+1)(5 a+3) \quad$ (iii) 1.11 or -2.71 (iv) 5.32
8. $2 \mathrm{~h}, 4 \mathrm{~h}$
9. (ii) $6.84 \mathrm{~cm}, 5.84 \mathrm{~cm}$
10. $20 \mathrm{~km} / \mathrm{h}$

CHAPTER 4

Exercise 4A

1. (a) $-\frac{1}{2}$
(b) -10
(c) $-\frac{4}{3}$
(d) -3
(e) $\frac{11}{4}$
(f) 0
2. $0, \frac{1}{2},-\frac{5}{6},-\frac{1}{6}$
3. $-2 \frac{4}{5}$
4. $1 \frac{5}{6}$
5. -6 or 3
6. 9
7. 3
8. $1 \frac{1}{2}$ or -1
9. (i) $-\frac{5}{2}, \frac{2}{5},-\frac{5}{2}, \frac{2}{5}$
(ii) They are equal.

Exercise 4B

1. (a) 8.06 units
(b) 8.54 units
(c) 11.4 units
(d) 10.8 units
2. ± 7.07
3. (a) $\left(0,-8 \frac{1}{3}\right)$
(b) $\left(2 \frac{3}{11}, 0\right)$
4. $\left(0,-3 \frac{21}{26}\right)$
5. (i) 32 units, 48 units 2
(ii) 9.6 units
6. (i) 4.5 units 2
(ii) 5.83 units
(iii) $(0,4)$
(iv) 11 or -5
7. (i) 3 units, 4.12 units, 4.47 units
(ii) 6 units 2
(iii) 6 or -8
8. -2 or 1
9. (ii) 9 units 2
10. 2.57 units
11. 3.48 units

Exercise 4C

1. 3
2. 15
3. (a) $y=-x$
(b) $y=2 x+1$
(c) $y=\frac{1}{4} x+\frac{7}{2}$
(d) $y=\frac{9}{10} x+\frac{2}{5}$
(e) $y=-x-6$
(f) $y=\frac{2}{3} x-\frac{1}{3}$
(g) $y=0$
(h) $x=0$
4. (a) $y=\frac{1}{3} x$
(b) $y=3 x-2$
(c) $y=-3 x+1$
(d) $y=-\frac{1}{2} x+\frac{19}{2}$
(e) $y=4$
(f) $y=a x+a$
5. $y=2 x$
6. (a) 0,$1 ; y=1$
(b) undefined; no y-intercept, $x=1.5$
(c) $1,-1 ; y=x-1$
(d) $-\frac{1}{2}, 1 ; y=-\frac{1}{2} x+1$
7. (i) 4 units 2
(iii) $y=x$
8. -4 or 3
9. (i) $y=-\frac{2}{3} x+2$
(ii) $-\frac{2}{3}$
(iii) $(3,0)$
10. (i) $y=-\frac{2}{3} x+3$
(ii) 0
11. $y=\frac{5}{2} x-\frac{19}{2}$
12. (i) $y=3 x-8$
(ii) $(4,4)$
13. (i) $(-6,0)$
(ii) $\left(2,-6 \frac{2}{3}\right)$
$\begin{array}{ll}\text { (iii) } y=-\frac{5}{6} x+\frac{3}{2} & \text { (iv) } y=-1\end{array}$
14. (a) (i) 3
(ii) $y=3 x+3$
(b) $(6,3)$
15. $m=0 ; n=0$
16. (i) $A(8,0), B(0,6)$ (ii) 10 units
(iii) $\left(3 \frac{3}{7}, 3 \frac{3}{7}\right) \quad$ (iv) $y=x$
17. (i) $\left(-8 \frac{1}{2}, 0\right)$
(ii) $(2,7)$
(iii) 7.28 units
(iv) 3.85 units

Review Exercise 4

1. (i) $\begin{array}{ll}y=2 x-3 & \text { (ii) } 5\end{array}$
2. (i) -3
(ii) 14
3. $y=-8 x$
4. (i) $\frac{3}{4}$
(ii) 10 units
(iii) $y=-\frac{3}{4} x-6$
5. (i) $y=-\frac{3}{4} x+6$
(ii) $\left(2 \frac{6}{7}, 3 \frac{6}{7}\right)$
(iii) $y=3 \frac{6}{7}$
(iv) $x=2 \frac{6}{7}$
6. (i) $\frac{2}{3}$
(ii) $y=\frac{2}{3} x+\frac{5}{3}$
(iii) 10 units 2
(iv) 4.12 units
7. (i) $(-4,0)$
(ii) $(2,4)$
(iii) 16 units 2
8. (i) $y=3 x+3$
(ii) 10
(iii) -12
(iv) $(2,1)$
9. (i) $P(5,0), Q(0,12)$
(ii) 13 units
(iii) $y=-\frac{12}{5} x-2$
(iv) $(-5,0)$
10. $t=15-h$
11. (i) $y=-4$
(ii) 7.2 units 2
(iii) 41.76
(iv) 2.23 units
12. (i) $y=-0.1 x+10$

CHAPTER 5

Exercise 5A

1. (a) $-27,-1,0,8$
(c) (i) 3.5
(ii) 2.3
2. (a) 2.75
(c) (i) -0.5
(ii) 1.75
3. (a) $8,4,1.3,0.8$
(c) $(\mathbf{i}) 1.1$
(ii) 2.65
4. (a) $a=1.1, b=0.4$
(c) (i) 1.3
(ii) 1.5
5. (i) 1.5
(ii) 2.4
6. (a) (i) 9.5
(ii) 15
(iii) 27
(b) (i) 0.8
(ii) 3.5
(iii) 4.15
7. (i) -1.8
(ii) 3.35
8. (a) $h=2, k=5.5$
(c) (i) -0.3
(ii) 0.9
9. (i) 0.65
(ii) 2.45
10. (i) 5.5
(ii) $1,2.75$
11. (a) $-1,-0.6,1.6$
(b) (i) $-1.5,-0.35,1.9$
(ii) $-1.5,-0.35,1.9$
12. (a) 1.7
(c) no solution
13. (a) -4.2
(b) (i) 1.5 or 4
(ii) 1.6 or 5.8
(iii) 0.6 or 4.3

Exercise 5B

1. (a) $0.5,8,16,32$
(c) (i) 12
(ii) -0.65
2. (a) $3,4.2,8.5$
(c) (i) $4.9,14.8$
(ii) $-0.25,1.30$
3. (i) -7.4
(ii) 1.1
4. (a) $a=2.5, b=7.7$
(c) (i) $2.6,8.5$
(ii) $1.725,2.45$
5. (a) 1.6
(b) (i) $(-1.15,0.3)$
(ii) -1.15
6. 3
7. (a) $5,8,5$
(c) 4
(d) (ii) $h=1, k=9$
8. (b) -14
(c) 10
9. (a) (ii) -0.85
10. (c) $(1,2)$

Exercise 5C

1. (ii) 1153
2. (i) $15 \mathrm{~km} \quad$ (iii) 65 minutes
3. (i) 1 h
(ii) $30 \mathrm{~km} / \mathrm{h}$
(iii) $34.3 \mathrm{~km} / \mathrm{h}$
4. (i) $5 \mathrm{~m} / \mathrm{s}^{2}$
(ii) $7.5 \mathrm{~m} / \mathrm{s}$
5. (ii) $7 \mathrm{~m} / \mathrm{s}$
6. (ii) $3.54 \mathrm{~m} / \mathrm{s}$
(iii) $t=25.5$
7. (b) (i) 2.3 minutes
(ii) $0.44 \mathrm{~km} /$ minute
(iii) 2.75 minutes
8. (b) (i) 1 h 11 minutes
(ii) 1 h and 1 h 22 minutes
9. (b) (i) 1011
(ii) 8.3 km
10. (i) 9
(ii) $30 \mathrm{~m} / \mathrm{s}$
11. (i) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
(ii) 100 s
12. (a) $a=4, b=10$
(c) (i) $1.7,5.3$
(ii) 3.5 s
(iii) -3
(iv) $2.4<t<4.6$
13. (ii) $9.5 \mathrm{~m} / \mathrm{s}, 34 \mathrm{~m} / \mathrm{s}$
(iii) $2.5 \mathrm{~m} / \mathrm{s}^{2}, 5 \mathrm{~m} / \mathrm{s}^{2}$
14. (a) $h=8, k=10$
(c) (i) 2.8 s
(ii) $10 \mathrm{~km} / \mathrm{h}^{2}$
(iii) $1.65<t<4$
(d) 0.4
15. $6 \frac{2}{3} \mathrm{~m} / \mathrm{s}$
16. (a) 55 cents
(b) Company B
17. (a) 30 minutes
(b) $20 \mathrm{~km} / \mathrm{h}^{2}$
(d) 1648
18. (b) (i) $3 \mathrm{~cm} / \mathrm{s}^{2},-1 \mathrm{~cm} / \mathrm{s}^{2}$
(ii) $3.3<t<6.7$
(c) $a=-0.5, b=5, c=0$
19. (b) $12 \mathrm{~m} / \mathrm{s}$

Review Exercise 5

1. (a) $-12,-8,-12,-8$
(c) (i) -9.5
(ii) 3.1
2. (a) $3,0,15$
(c) (i) -2.75
(ii) 2.4
(iii) $-2,0,2$
3. (a) (i) $3.85 \quad$ (ii) $-0.375,-1.375$
(b) $(-0.7,3.8)$
4. (i) 0.625
(ii) $(0.55,-0.2)$
5. (i) $y=1.45, x=1.75$
(ii) $0.9<x<3.275$
(iii) 0.67
(iv) 3.575
6. (ii) $27.7 \mathrm{~km} / \mathrm{h}$
7. (a) (i) $1 \leqslant t \leqslant 2$ (ii) $13 \frac{1}{3} \mathrm{~km} / \mathrm{h}$ (iii) $40 \mathrm{~km} / \mathrm{h}$
(iv) $17.1 \mathrm{~km} / \mathrm{h}$
8. (i) 320000
(ii) $16,33,40 ; 3200,512$
(iii) 350 units
9. (a) $5^{\circ} \mathrm{C} /$ minute \quad (c) $2^{\circ} \mathrm{C} /$ minute

REVISION EXERCISE B1

1. $3 y=5 x-4$
2. (i) 10 units 2
(ii) $(0,6)$
(iii) $(8,6)$
3. (i) $A(8,0), B(0,6)$ (ii) 39 units 2
(iii) 1.2
(iv) 7.8 units
4. (i) $13 \frac{1}{3} \mathrm{~km} / \mathrm{h}$
(ii) $1030,20 \mathrm{~km}$
(iii) 1 h
(iv) 10 km
5. (i) 16
(ii) 24
6. (a) $h=3.5, k=2.7$
(c) (i) 1.5
(ii) 0.9
(d) 0.5
(e) 1.4

REVISION EXERCISE B2

1. $5 x+7 y+25=0$
2. (i) $P(-4,0), Q(0,2)$
(ii) $\left(-1 \frac{1}{3}, 1 \frac{1}{3}\right)$
(iii) $2 \frac{2}{3}$ units 2
3. (i) $(3,4)$
(ii) $(0,-3)$
(iii) 21 units 2
(iv) 3.61 units
(v) $3 y=2 x-9$
4. (b) (i) $1233,77 \mathrm{~km}$
(ii) 60 km
5. (i) 1 minute 35 seconds
6. (i) 6.5
(iii) 2.15 or 5.35
(iv) -2.5
(v) $y=14.1, x=3.75$
(vi) 3.75 cm by 3.75 cm , square

CHAPTER 6

Exercise 6A

1. (a) $\sin 70^{\circ}$
(b) $\sin 4^{\circ}$
(c) $\sin 82^{\circ}$
(d) $-\cos 81^{\circ}$
(e) $-\cos 73^{\circ}$
(f) $-\cos 5^{\circ}$
2. (a) 0.530
(b) 0.819
3. (a) 3.535
(b) 0.707
(c) -2.121
4. (a) $\frac{4}{5}$
(b) $-\frac{3}{5}$
(c) $1 \frac{1}{3}$
5. (a) 9
(b) (i) $\frac{9}{41}$
(ii) $-\frac{40}{41}$
(iii) $\frac{9}{40}$
6. (a) 31.3°
(b) 48.6°
(c) 61.0°
(d) 20.2°
7. (a) 148.7°
(b) 131.4°
(c) 119.0°
(d) 159.8°
8. (a) 47.9°
(b) 40.9°
(c) 60°
(d) 9.9°
9.

(a) 48.9° or 131.1°
(b) 72.2° or 107.8°
(c) 28.1° or 151.9°
(d) 103.8°
(e) 141.5°
(f) 58.4°
10. (a) $\frac{8}{17}$
(b) $-\frac{15}{17}$
(c) $\frac{8}{15}$
11. (a) $\frac{3}{5}$
(b) $-\frac{4}{5}$
(c) $\frac{3}{8}$
12. (a) $\frac{5}{13}$
(b) $-\frac{12}{13}$
(c) $\frac{5}{27}$
13. 27 or 153
14. (a) 18.0° or 142.0° (b) 134.1°

Exercise 6B

1. (a) $34.2 \mathrm{~cm}^{2}$
(b) $29.4 \mathrm{~cm}^{2}$
(c) $41.5 \mathrm{~m}^{2}$
(d) $31.7 \mathrm{~m}^{2}$
(e) $27.4 \mathrm{~cm}^{2}$
(f) $70.7 \mathrm{~m}^{2}$
2. $117 \mathrm{~cm}^{2}$
3. (i) $633 \mathrm{~cm}^{2}$
4. $9040 \mathrm{~cm}^{2}$
5. $23000 \mathrm{~m}^{2}$
6. (i) 27.5° (iii) $6.22 \mathrm{~cm}^{2}$
7. 3.23
8. (i) 30°
(ii) 10 cm
(iii) $346 \mathrm{~cm}^{2}$
9. $116 \mathrm{~cm}^{2}$
10. 22.7 cm
11. $10.2^{\circ}, 169.8^{\circ}$
12. (i) $10.8 \mathrm{~cm}^{2}$
(ii) 104.5°

Exercise 6C

1. (a) $\angle C=62^{\circ}, b=10.7 \mathrm{~cm}, c=9.76 \mathrm{~cm}$
(b) $\angle F=79.3^{\circ}, d=4.43 \mathrm{~m}, f=6.96 \mathrm{~m}$
(c) $\angle H=38^{\circ}, g=11.5 \mathrm{~mm}, i=5.29 \mathrm{~mm}$
2. 11.8 cm
3. 15.6 cm
4. (a) $\angle B=26.9^{\circ}, \angle C=61.1^{\circ}$,

$$
c=13.4 \mathrm{~cm}
$$

(b) $\angle A=55.6^{\circ}, \angle C=26.4^{\circ}, c=7.81 \mathrm{~m}$
(c) $\angle B=31.7^{\circ}, \angle A=113.3^{\circ}$, $a=15.2 \mathrm{~cm}$
5. (i) 39.2°
(ii) 39.8°
(iii) 13.6 cm
6. (i) 39.6°
(ii) 49.4°
(iii) 8.80 cm
7. (i) 12.5 m
(ii) 41.7°
(iii) 13.4 m
8. (i) 6.92 m
(ii) $40.1 \mathrm{~m}^{2}$
9. (i) 9.40 cm
(ii) 5 cm (iii) 4.92 cm
10. (i) No
(ii) 9.47 cm (iii) 5.62 cm
11. $14.7 \mathrm{~km}^{2}$
12. (i) 2.64 cm
(ii) 55.8° (iii) 49.4°
13. (a) No
(b) Yes
(c) No
(d) Yes
(e) Yes
(f) No
14. (a) Not possible
(b) Possible
(c) Not possible
(d) Possible
15. $\angle A B C=68.9^{\circ}, \angle A C B=53.1^{\circ}$, $A B=13.2 \mathrm{~cm}$ or $\angle A B C=111.1^{\circ}$, $\angle A C B=10.9^{\circ}, A B=3.12 \mathrm{~cm}$
16. (i) 9.18 cm
(ii) 0.734 km (iii) $0.321 \mathrm{~km}^{2}$
17. (i) 49.9° or 130.1° (ii) $6 \frac{2}{3} \mathrm{~cm}$

Exercise 6D

1. 6.24 cm
2. 4.57 cm
3. 9.45 cm
4. $\angle X=48.2^{\circ}, \angle Y=58.4^{\circ}, \angle Z=73.4^{\circ}$
5. 34.5°
6. 88.5°
7. (i) 9 m
(ii) 15.1 m
8. (i) 6.12 m
(ii) 7 m
9. (i) 3.46 cm
(ii) 5.29 cm (iii) 90°
10. (i) 22.6°
(ii) 4.84 m (iii) 6.86 m
11. (i) 7.94
(ii) 81.0°
12. (i) 73.4°
(ii) 1.92 cm
(iii) 2.18 cm
13. (i) 20 km
(ii) 89.6°
(iii) $225 \mathrm{~km}^{2}$
14. $93.8^{\circ}, 9.29 \mathrm{~cm}$
15. (i) No
(ii) $\frac{131}{144}$
(iii) 6.78
16. (i) $-\frac{1}{20}$
(ii) 6.57 cm
17. 7.09 cm

Review Exercise 6

1. (a) 25 cm
(b) (i) $\frac{7}{24}$
(ii) $-\frac{24}{25}$
(iii) $\frac{24}{25}$
2. (a) 37 cm
(b) (i) $\frac{12}{37}$
(ii) $-\frac{35}{37}$
(iii) $3 \frac{109}{420}$
3. (i) $-\frac{1}{\sqrt{5}}$ or -0.4472
(ii) $\frac{2}{\sqrt{5}}$ or 0.8944 (iii) $\frac{3}{4}$
4. (i) 13 units, 14.4 units
(ii) $\frac{12}{13},-\frac{5}{13}$
(iii) 18 units 2
(iv) 2.50 units
5. (a) 24.8° or 155.2°
(b) 21.3°
(c) 26.7°
(d) 108.5°
6. (b) (i) $-\frac{35}{37}, \frac{12}{37}$
(ii) 5.7°
7. (i) $\frac{21}{44}$
(ii) 20.1°
(iii) $13.2 \mathrm{~cm}^{2}$
(iv) 5.04 cm
8. (i) 2.96 m
(ii) 1.19 m
(iii) $6.00 \mathrm{~m}^{2}$
(iv) 2.52 m
(v) 56.6°
9. (i) 377 m
(ii) 200 m
(iii) 232 m
10. (i) 157 cm
(iv) $85900 \mathrm{~m}^{2}$
(iii) $2.33 \mathrm{~m}^{2}$
11. (i) $1810 \mathrm{~m}^{2}$
(ii) 66.8 m
12. (i) $43100 \mathrm{~m}^{2}$
(ii) 277 m
(iii) 193 m

Challenge Yourself

(a) $12.9 \mathrm{~cm}, 20.9 \mathrm{~cm}$
(b) $64.5 \mathrm{~cm}^{2}$

CHAPTER 7

Exercise 7A

1. 119 m
2. 52.1 m
3. 27.6°
4. 63.1 m
5. 36.3 m
6. 68.7°
7. 9.74 m
8. 40.3 m
9. 35.0°
10. 210
11. 63.5 m
12. 10.3 m
13. 28.0
14. (i) 81.3 m
(ii) 93.5 m

Exercise 7B

1. (a) 033°
(b) 118°
(c) 226°
(d) 321°
2. (a) 055°
(b) 165°
(c) 317°
(d) 235°
(e) 345°
(f) 137°
3. (a) 036°
(b) 216°
(c) 073°
(d) 253°
(e) 296°
(f) 116°
4. (a) 34.6 km
(b) 35.5 km
5. 40.2 km
6. (a) 310°
(b) 270°
(c) 220°
7. (a) 315°
(c) 238° or 032°
8. 028° or 216°
9. (a) 218 m
(c) 436 m
10. 7.97 km
11. (i) 696 m
12. (i) 126.6°
(iii) 305.8°
13. (i) 553 m
(iii) 184.5°
14. $31.2 \mathrm{~km}, 080.2^{\circ}$
15. (a) (i) 65.9 km
(ii) 139.0°

Exercise 7C

1. (i) 9.22 cm
(iii) 33.1°
2. (i) 13 cm
(ii) 6 cm
(iii) 67.4°
3. (i) 33.7°
(ii) 10 cm (iii) 21.8°
4. (i) 56.3° (iii) 10.6 m
5. 38.6 m
6. (i) 14.1 cm
(ii) 28.7 cm
(iii) 63.8°
7. (i) 113 cm
(ii) 15.7°
(iii) 37.1°
8. (i) 22.4°
(ii) 44.8°
9. (i) 26.6°
(ii) 57.5°
10. (i) 053.1°
(ii) 61.2 m
11. (a) (i) 227°
(ii) 120° (iii) 330°
(b) 16.6 m
12. (a) (i) 053.1°
(ii) 326.3°
(b) $12.1 \mathrm{~m}, 7.7^{\circ}$
13. (a) (i) 380 m
(ii) $33400 \mathrm{~m}^{2}$ (iii) 176 m
(b) 7.8°
14. (i) 53.1°
(ii) 57.0°
15. (i) 72.0°
(ii) $55.5 \mathrm{~cm}^{2}$
16. $39.3 \mathrm{~m}, 46.8 \mathrm{~m}$
17. (i) 023.5°
(ii) 38.6°

Review Exercise 7

1. 40.2 m
2. 207 m
3. (i) $14.8 \mathrm{~cm} \quad$ (ii) 46.6°
(iii) 22.5 cm
4. (i) 17.1 m
(ii) 16.8 m
(iii) 35.5°
5. (i) 24 m
(ii) 45.2°
(iii) 24.7 m
6. $14.8 \mathrm{~m}, 18.1^{\circ}$
7. (a) (i) 269 m
(ii) 66.5° (iii) 011.2°
(iv) $56700 \mathrm{~m}^{2}$
(b) 8.8°
8. (a) (i) 100°
(ii) 126°
(iii) 378 m
(iv) 370 m
(b) 12.2°
9. (i) 9.02 km
(ii) 098°
(iii) 5.76 km
(iv) 2.3°

Challenge Yourself

1. $\sin \alpha \cos \beta$
2. $\frac{h \tan \alpha}{\cos \beta}$

CHAPTER 8

Exercise 8A

1. (a) 11.4 cm
(b) 32.7 cm
(c) 63.5 cm
(d) 53.7 cm
2. (a) (i) 11.9 cm
(ii) 62.6 cm
(b) (i) 31.3 cm
(ii) 101 cm
(c) (i) 44.5 cm
(ii) 101 cm
3. (a) 16.0 cm
(b) 28.0 cm
4. (a) 49°
(c) 263°
(b) 80°
(d) 346°
5. 1.18 m
6. 191.0°
7. (a) 17.0 cm
(b) 37.0 cm
8. $\left(18+\frac{25}{3} \pi\right) \mathrm{cm}$
9. (i) 105°
(ii) 12.8 cm
10. (i) 61.8°
(ii) 30.5 cm
11. (i) 67.7 cm
(ii) 198 cm
12. (ii) 48.2 cm
13. (i) 27.3°
(ii) 54.5°
14. 44.4 cm
15. 43.0 cm

Exercise 8B

1. (a) $8.80 \mathrm{~cm}, 30.8 \mathrm{~cm}^{2}, 22.8 \mathrm{~cm}$
(b) $108.0^{\circ}, 66 \mathrm{~mm}, 1150 \mathrm{~mm}^{2}$
(c) $28.0 \mathrm{~mm}, 132 \mathrm{~mm}, 188 \mathrm{~mm}$
(d) $84.0 \mathrm{~cm}, 9240 \mathrm{~cm}^{2}, 388 \mathrm{~cm}$
(e) $225.1^{\circ}, 385 \mathrm{~m}^{2}, 83 \mathrm{~m}$
(f) $15.3 \mathrm{~cm}, 20.1 \mathrm{~cm}, 50.8 \mathrm{~cm}$
2. (a) (i) $17.7 \mathrm{~cm} \quad$ (ii) $12.8 \mathrm{~cm}^{2}$
(b) (i) 8.22 cm
(ii) $2.14 \mathrm{~cm}^{2}$
(c) (i) 26.7 cm
(ii) $44.0 \mathrm{~cm}^{2}$
3. (a) $14.7 \mathrm{~cm}, 103 \mathrm{~cm}^{2}$
(b) $24.2 \mathrm{~cm}, 169 \mathrm{~cm}^{2}$
(c) $30.8 \mathrm{~cm}, 216 \mathrm{~cm}^{2}$
(d) $52.8 \mathrm{~cm}, 370 \mathrm{~cm}^{2}$
4. (a) $385 \mathrm{~cm}^{2}, 22.0 \mathrm{~cm}$
(b) $898 \mathrm{~cm}^{2}, 51.3 \mathrm{~cm}$
(c) $1150 \mathrm{~cm}^{2}, 66.0 \mathrm{~cm}$
(d) $2120 \mathrm{~cm}^{2}, 121 \mathrm{~cm}$
5. (a) $9.33 \mathrm{~cm} \quad$ (b) 12.0 cm
6. (a) 60.3°
(b) 165.8°
(c) 303.5°
(d) 26.7°
7. (i) $43.6 \mathrm{~cm}, 118 \mathrm{~cm}^{2}$
(ii) $33.2 \mathrm{~cm}, 40.8 \mathrm{~cm}^{2}$
(iii) $263 \mathrm{~cm}, 1640 \mathrm{~cm}^{2}$
8. (i) 100°
(ii) 42.0 cm
9. $84 \mathrm{~cm}^{2}$
10. (ii) $32.5 \mathrm{~cm}^{2}$
11. $1.47 p^{2}$
12. (i) 132°
(iii) 92.7 cm
13. (i) 8.49 cm
(iii) $20.5 \mathrm{~cm}^{2}$

Exercise 8C

1. (a) 150°
(c) 183.3°
2. (a) 0.653 rad
(c) 2.48 rad
3. (a) $\frac{\pi}{12} \mathrm{rad}$
(c) $\frac{5 \pi}{12} \mathrm{rad}$
4. (a) 0.717
(c) 14.1
(e) 0.156
5. (a) 0.833
(c) 0.448
(e) 0.694
6. (i) 11.7 cm
7. (i) 6.79 m
8. (i) 9.36 cm
9. (i) 0.159 rad (iii) 3.34 m
10. 13.8 m

Exercise 8D

1. (a) 9.6 cm
(b) 3.5 cm
(c) 43.75 m
(d) 9 mm
2. (a) $70.4 \mathrm{~cm}^{2}$
(b) $66.47 \mathrm{~cm}^{2}$
(c) $108.9 \mathrm{~m}^{2}$
(d) $2650.8 \mathrm{~mm}^{2}$
3. (i) $1 \frac{1}{8} \mathrm{rad}$
4. (a) $5 \mathrm{~cm}, 10 \mathrm{~cm}^{2}$
(ii) $144 \mathrm{~cm}^{2}$
(c) $12 \mathrm{~m}, 57.6 \mathrm{~m}^{2}$
b) $1.5 \mathrm{rad}, 27 \mathrm{~cm}^{2}$
(d) $10 \mathrm{~m}, 12 \mathrm{~m}$
(e) $2 \mathrm{rad}, 16 \mathrm{~mm}$
(f) $9 \mathrm{~mm}, \frac{2}{3} \mathrm{rad}$
5. (i) 81.2 cm
(ii) $243 \mathrm{~cm}^{2}$
6. 32 cm
7. (i) $22.5 \mathrm{~cm}^{2}$
8. 117 m
(ii) $(2 \pi-1.8) \mathrm{rad}$
9. (i) $\frac{1}{2} r^{2} \theta=8,2 r+r \theta=18$
(ii) $r=8, \theta=\frac{1}{4}$
10. (i) 15.6 cm
(ii) $100 \mathrm{~cm}^{2}$
11. $292 \mathrm{~cm}^{2}$
12. (i) $\frac{\pi}{3}$
(ii) 12.6 cm
(iii) $43.5 \mathrm{~cm}^{2}$
13. (i) 18 cm
(ii) $72.1 \mathrm{~cm}^{2}$
14. (i) 6.4 cm
(ii) $19.7 \mathrm{~cm}^{2}$
15. (i) 6
(ii) $3.80 \mathrm{~cm}^{2}$
16. (i) $800 \mathrm{~cm}^{2}$
(ii) $774 \mathrm{~cm}^{2}$
17. (i) 4 rad
(ii) 10.9 m
(iii) $85.6 \mathrm{~m}^{2}$
18. (i) 4.80 cm
(ii) $73.0 \mathrm{~cm}^{2}$
19. (i) 2.09 rad
(ii) $22.1 \mathrm{~cm}^{2}$
20. 76.8 cm
21. (i) 1.32
(ii) $6.30 \mathrm{~cm}^{2}$
22. (i) 1.04
(ii) $44.7 \mathrm{~cm}^{2}$
23. (i) 0.284 rad
(ii) $2.83 \mathrm{~cm}^{2}$
24. (i) 14.4 cm
(ii) $19.3 \mathrm{~cm}^{2}$
(iv) $35.8 \mathrm{~cm}^{2}$
25. (i) $\frac{3}{14} \pi$
(ii) $164 \mathrm{~cm}^{2}$

Review Exercise 8

1. (i) 50.3 cm
(ii) $302 \mathrm{~cm}^{2}$
2. (i) $60.8 \mathrm{~cm}^{2}$
(ii) $(2 \pi-1.9) \mathrm{rad}$
(iii) $(16 \pi-15.2) \mathrm{cm}$
3. (i) 0.453
(ii) $3.80 \mathrm{~cm}^{2}$
4. (i) 1.55 rad
(ii) $27.6 \mathrm{~cm}^{2}$
5. 22%
6. (ii) 2.91×10^{-3}
7. (i) $23.9 \mathrm{~cm} \quad$ (ii) $77.7 \mathrm{~cm}^{2}$ (iii) $98.6 \mathrm{~cm}^{2} \quad$ (iv) 17.1 cm
8. (i) $4.73 \mathrm{~cm}, 12.5 \mathrm{~cm}$
(ii) $54.1 \mathrm{~cm}^{2}$
9. $0.433 r^{2}$
10. $50(\pi-1) \mathrm{cm}^{2}$
11. (a) (i) $17.6 \mathrm{~cm} \quad$ (ii) $141 \mathrm{~cm}^{2}$ (iii) $107 \mathrm{~cm}^{2}$
(b) $80.0 \mathrm{~cm}^{2}$

Challenge Yourself

1. (a) $(7 \pi+14) \mathrm{cm}$
(b) $(7 \pi+14) \mathrm{cm}$
(c) $(7 \pi+14) \mathrm{cm}$
(d) $(7 \pi+14) \mathrm{cm}$
2. (i) 3
(ii) 0.644 rad
(iii) $6.99 \mathrm{~cm}^{2}$
3. (ii) $22.1 \mathrm{~cm}^{2}$
4. (i) 16
(ii) $175 \mathrm{~cm}^{2}$

REVISION EXERCISE C1

1. $0.352,2.79$
2. (i) 1.9 rad
(ii) $60.8 \mathrm{~cm}^{2}$
3. (i) 13.2 cm
(ii) $59.7 \mathrm{~cm}^{2}$
(iii) $8.57 \mathrm{~cm}^{2}$
4. 35.3
5. (i) 5.14 cm
(ii) 69.1° (iii) 9.89 cm
6. (i) 97.2°
(ii) $17.9 \mathrm{~cm}^{2}$
(iii) $64.6 \mathrm{~cm}^{2}$
(iv) 101.4°
(v) 10.8 cm
7. (i) 005.4°
(ii) 078.6°
(iii) 11.9 km
8. (i) 60°
(ii) 10.4 cm
(iii) 46.1°
9. 56.3 m

REVISION EXERCISE C2

1. 2.09
2. (a) 0.643
(b) -0.966
3. $17.4 \mathrm{~cm}^{2}$
4. $x=7.37, y=6.52$
5. (i) 9.77 cm
(ii) 13.1 cm
(iii) 59.2°
(iv) 19.2°
6. (i) 7.81 cm
(ii) 33.7°
(iii) 42.6°
(iv) 12.0 cm
(v) $46.8 \mathrm{~cm}^{2}$
7. (a) (i) 072°
(ii) 108° (iii) 036°
(b) $1.101 \times 10^{6} \mathrm{~m}^{2}$
8. (i) 7.21 cm
(ii) 64.3°
(iii) 76.5°
9. (i) 3.56 m
(ii) 10.6 m
(iii) 70.4°
(iv) 30.7°

CHAPTER 9

Exercise 9A

1. (a) (ii) and (vii)
(b) (iii) and (v)
(c) (i) and (ix)
(d) (vi) and (viii)
2. (a) $P, Q, R ; P Q, Q R, P R, 6 ; P Q R, \mathrm{SSS}$
(b) $Z, Y, X ; Z Y, Z \hat{Y} X, Y X, 5 ; Z Y X$, SAS
(c) $W, V, U ; W \hat{V} U, W \hat{U} V, 70, V U, 7$; $N M L, A A S$
(d) $U, T, S ; U \widehat{T} S, 90, U S, T S, 5 ; \Delta I H G$, RHS
3. (a) No
(b) No
(c) No
(d) No
4. (a) $\triangle A B D \equiv \triangle C B D$
(b) $\triangle A B D \equiv \triangle C D B$
(c) $\triangle A B C \equiv \triangle E D C$
(d) $\triangle A B C \equiv \triangle C D A$
(e) $\triangle A D E \equiv \triangle C D B$
(f) $\triangle B C D \equiv \triangle E F D$
(g) $\triangle A B D \equiv \triangle C B D$
(h) $\triangle A B C \equiv \triangle C D A$
5. (ii) 4 cm
(iii) 80°
(iv) $R S$ is parallel to $U V$.
6. (i) $\triangle J I H \quad$ (ii) 80°
7. (a) $\triangle A B C \equiv \triangle C D A$
(b) $\triangle E F G \equiv \triangle G H E$
(c) $\Delta I J K \equiv \Delta K L I$
(d) $\triangle M N O \equiv \triangle O P M$
(e) $\triangle Q R S \equiv \triangle S T Q$
(f) $\Delta U V W \equiv \Delta W X U$

Exercise 9B

1. (a) (i) and (iii), (v) and (vii)
(b) (ii) and (vi)
(c) (iv) and (viii)
2. (a) $60 ; S, T, U ; T \hat{S} U, S \hat{T} U, 60 ; S T U$, $3, \angle \mathrm{~s}$
(b) $N, M, L ; 8,3 ; N L, \frac{21}{7}, 3 ; M L, \frac{15}{5}$, 3; $N M L, 3$, sides
(c) $G, I, H ; G \hat{I} H, 90 ; \frac{6}{9}, \frac{2}{3}, I H, \frac{4}{6}$, $\frac{2}{3} ; I H ; G I H, 2$, sides, included
3. (a) No
(b) No
(c) No
4. (a) $\triangle A B C$ and $\triangle E D C$
(b) $\triangle I J H$ and $\triangle I F G$
(c) $\triangle P Q R$ and $\triangle T S R$
(d) $\triangle U V W$ and $\triangle U X Y$
5. (a) $x=9, y=18$
(b) $x=4.8, y=7.5$
(c) $x=12, y=15$
(d) $x=3.2, y=7.5$
6. (ii) 110.5°
7. $X Y=30 \mathrm{~cm}, W Z=27 \mathrm{~cm}$
8. 16.2 cm
9. (i) $\triangle B A C, \triangle D B C$ and $\triangle D A B$
(ii) $B C=6 \frac{2}{3} \mathrm{~m}, C D=5 \frac{1}{3} \mathrm{~m}$
10. (i) $R T=6 \mathrm{~cm}, P R=12 \mathrm{~cm}$
(ii) $2: 1$
11. (ii) $\triangle A R T$ and $\triangle M N T$
(iii) 3.75 cm

Exercise 9C
3. 8 m
5. Length of $A B^{\prime}$
6. 45

Review Exercise 9

1. (a) Yes
(b) Yes
(c) No
(d) Yes
2. $\triangle D E F \equiv \triangle J L K, \mathrm{AAS}$
3. (a) $\triangle A B C \equiv \triangle D E C$ $A \widehat{C} B=D \hat{C} E, B C=E C, A C=D C$
(b) $\Delta F G H \equiv \triangle F I J$ $F \hat{G} H=F \hat{I J}, F G=F I, F H=F J$
(c) $\triangle K L N \equiv \triangle M N L$ $K \hat{L} N=M \hat{N} L, K \hat{N} L=M \hat{L} N, K L=M N$
(d) $\triangle S Q P \equiv \triangle R P Q$ $S \hat{Q} P=R \hat{P} Q, S Q=R P, S P=R Q$
(e) $\triangle E B F \equiv \triangle E C D$ $E \hat{B} F=E \hat{C} D, B F=C D, E F=E D$
(f) $\triangle F H G \equiv \triangle F I J$ $F \hat{H} G=F \hat{I J}, F H=F I, G H=J I$
4. (a) Yes
(b) No
(c) Yes
(d) No
(e) No
(f) Yes
5. (i) $\triangle O A D \equiv \triangle O B C$
(ii) $A \hat{O} D=B \hat{O} C, O \hat{A} D=O \hat{B} C$
6. (i) $\triangle P Q R \equiv \triangle S R Q, \mathrm{SAS}$
(ii) $5 \mathrm{~cm}, 50^{\circ}$
7. (a) $a=5.92$
(b) $b=15 \frac{5}{7}, c=12 \frac{4}{7}$
(c) $d=2 \frac{2}{3}, e=6 \frac{3}{4}$
8. (i) $\triangle R Q P$
(ii) 6.4 cm
9. (a) (i) $\triangle A C E$ and $\triangle G F E$
(ii) 6 cm
(b) $E G=8 \mathrm{~cm}, F H=18 \mathrm{~cm}$
10. (a) (i) $\triangle R L N$
(ii) 8 cm
(b) (i) $\triangle N M S$
(ii) 9 cm
(c) $\triangle P L M$ and $\triangle R L Q, \triangle P Q M$ and $\triangle S N M, \triangle P Q M$ and $\triangle R N Q$
11. (i) $\triangle S T R \equiv \triangle S T P$
(ii) $U Q=7 \mathrm{~cm}, P Q=10 \mathrm{~cm}$

Challenge Yourself
2. 3 cm
3. 13.5 cm

CHAPTER 10

Exercise 10A

1. (a) $4 \mathrm{~cm}^{2}$
(b) $2.4 \mathrm{~m}^{2}$
(c) $20 \mathrm{~cm}^{2}$
(d) $108 \mathrm{~cm}^{2}$
(e) $27 \mathrm{~m}^{2}$
(f) $6 \mathrm{~cm}^{2}$
2. $16: 49$
3. (i) $66 \frac{2}{3} \mathrm{~m}^{2}$
(ii) $42 \frac{2}{3} \mathrm{~m}^{2}$
4. (a) 6
(b) 15
(c) 20
(d) 4
5. $128 \mathrm{~m}^{2}$
6. $7 \mathrm{~cm}^{2}$
7. $812.5 \mathrm{~m}^{2}$
8. $\frac{p^{2}}{(p+q)^{2}}$
9. (i) 18 cm
(ii) $279 \mathrm{~cm}^{2}$
10. 3.62 cm
11. 3 : 5
12. 7.5 cm
13. (i) $40 \mathrm{~cm}^{2}$
(ii) $60 \mathrm{~cm}^{2}$
14. (i) $2 \frac{2}{7} \mathrm{~cm}$
(ii) $7: 4$
(iii) $64: 231$
15. (i) $50 \mathrm{~cm}^{2}$
(ii) $12 \mathrm{~cm}^{2}$
(iii) $30 \mathrm{~cm}^{2}$

Exercise 10B

1. (a) $576 \mathrm{~cm}^{3}$
(b) $162 \mathrm{~cm}^{3}$
(c) $324 \mathrm{~cm}^{3}$
(d) $38.5 \mathrm{~m}^{3}$
(e) $0.4 \mathrm{~m}^{3}$
(a) $125: 64$
(b) $27: 64$
(c) $8: 27$
2. $160 \mathrm{~cm}^{3}$
3. (a) 4
(b) 9
(c) 21
(d) 5
4. (i) $3: 4$
(ii) $189 \mathrm{~cm}^{3}$
5. $4: 3$
6. (i) $16: 49$
7. 20.8 cm
(ii) 53.6 g
8. 4.76 cm
9. 148 g
10. (i) 4.61 kg
(ii) $13281 l$
11. $8.15 \mathrm{~m}^{2}$
12. (i) 36 cm
(iii) $1134 \mathrm{~cm}^{2}$
13. (i) 10 cm (iii) $225 \mathrm{~cm}^{3}$
14. 3.65

Review Exercise 10

1. (a) $9: 25$
(b) $1: 4$
(c) $4: 9$
2. $49: 64$
3. (ii) $100 \mathrm{~cm}^{2}$
4. $2: 3$
5. (i) $3: 4$
(ii) $9: 16$
6. 6.144 tonnes
7. $16: 25$
8. (i) $9: 1$
(ii) $400 l$
9. (a) $\triangle S L P$
(b) (i) $\frac{1}{4}$
(ii) $\frac{2}{3}$
(iii) $\frac{2}{3}$
10. (a) $\frac{21}{25}$
$\begin{array}{ll}\text { (b) (i) } \triangle N O M & \text { (ii) } \frac{2}{5}\end{array}$
11. (ii) $\frac{25}{4}$
12. $27: 10$
13. (i) $33.5 \mathrm{~cm}^{3}$

(iii) 232 g	(ii) $14.1 \mathrm{~cm}^{3}$
14. (i) $1: 7$	(ii) $7: 19$
(iii) $27: 37$	

Challenge Yourself

1. $4: 9$
2. (ii) $\triangle E A S$ and $\triangle T H S, \triangle T S A$ and $\triangle B S H$ (iii) 40 cm
(iv) $1: 25$

CHAPTER 11

Exercise 11A

1. (a) $a=12, b=67.4$
(b) $c=11.0, d=61.9$
(c) $e=6, f=50.2$
2. 15 cm
3. 13 m
4. 13.7 cm
5. (a) $a=12, b=90$
(b) $x=11, y=90$
6. $18.0 \mathrm{~cm}^{2}$
7. 17 cm
8. (i) 5.66 cm
(ii) 14.2 cm
9. 1 cm or 7 cm
10. 8.39 cm
11. 63.3 cm

Exercise 11B

1. 24°
2. (i) 26°
(ii) 122°
3. $45^{\circ}+\frac{x}{2}$
4. (a) $a=49, b=14$
(b) $c=58, d=15$
(c) $e=34, f=14.8$
(d) $g=35, h=55$
(e) $i=8, j=67.4$
(f) $k=12.6, l=50.0$
5. (i) 44°
(ii) 25°
6. (i) 7.5 cm
(ii) 67.4°
(iii) $34.4 \mathrm{~cm}^{2}$
7. 138°
8. 9 cm
9. 7 m
10. 64°
11. 51°
12. 45 cm

Exercise 11C

1. (a) 80
(b) 30
(c) 40
(d) 115
(e) 125
(f) 50
(g) 35
(h) 28
2. (a) 50
(b) 45
(c) 30
(d) 60
3. (a) 50
(b) 12
4. 60
5. 65
6. (a) 40
(b) 36
(c) 47
(d) 130
7. (i) 70°
(ii) 70°
8. 270°
9. 37°
10. (i) 62°
(ii) 47°
11. (i) 64°
(ii) 64°
12. 70
13. $78.5 \mathrm{~cm}^{2}$
14. 31°
15. 32°
16. 45°
17. 125°
18. (i) 90°
(ii) 55°
19. 40°
20. (i) 35°
(ii) 131°
21. (b) (i) 8 cm
(ii) 9 cm
22. (ii) $\triangle P C B$
23. 18°
24. $\angle P=65^{\circ}, \angle Q=55^{\circ}, \angle R=60^{\circ}$
25. (ii) $10 \frac{1}{6} \mathrm{~cm}$

Review Exercise 11

1. (a) $x=50, y=25$
(b) $x=34, y=114$
(c) $x=28.5, y=16.5$
(d) $x=26, y=38$
(e) $x=26, y=148$
(f) $x=62, y=118$
2. (a) $x=70, y=35$
(b) $x=34, y=56$
(c) $x=132, y=114$
(d) $x=105, y=30$
(e) $x=6.43, y=25$
(f) $x=54, y=72$
3. (a) $x=62, y=118$
(b) $x=116, y=46$
(c) $x=115, y=57.5$
(d) $x=50$
(e) $x=72, y=28$
(f) $x=48, y=22$
4. (a) $x=41$
(b) $x=78, y=30$
(c) $x=108, y=144$
(d) $x=24, y=42$
(e) $x=29, y=59$
(f) $x=42, y=90$
(g) $x=103, y=45$
(h) $x=22.5, y=135$
5. $x+y$
6. 20°
7. (i) 24°
(ii) 49°
8. $x=74, y=103$
9. (i) 90°
(ii) 110°
10. (i) 1 cm
11. (i) 4 cm
(ii) 13.6 cm
12. (i) 46°
(ii) 134°
13. 61° or 119°
14. (i) 78°
(ii) 102°
15. (i) 62°
(ii) 126°
16. Yes

Challenge Yourself
(a) 6
(b) 3
(c) 2
(d) 2

REVISION EXERCISE D1

1. Yes
2.

(b) $\triangle A S Q$
(c) 5 cm
(d) $\triangle B C A, \triangle R A Q$
(e) (i) $16 \mathrm{~cm}^{2}$
(ii) $8 \mathrm{~cm}^{2}$
(iii) $8 \mathrm{~cm}^{2}$
3. (i) $3: 200$
(ii) $360 \mathrm{~m}^{2}$
(iii) $48 \mathrm{~m}^{3}$
4. (i) 72°
(ii) 42°
5. (i) 128°
(ii) 88°
6. $u=20^{\circ}, v=70^{\circ}, w=30^{\circ}, x=70^{\circ}$, $y=130^{\circ}, z=80^{\circ}$
7. (i) b
(ii) $b-a$
(iii) $2 b-a$
(iv) $180^{\circ}-2 b$
(v) $180^{\circ}+a-3 b$
8. (i) $283 \mathrm{~cm}^{2}$
(ii) 6
(iii) $251 \mathrm{~cm}^{2}$

REVISION EXERCISE D2

1. (ii) $\triangle C R B$
2. (i) $P X=6.48 \mathrm{~cm}, Q X=7.56 \mathrm{~cm}$
(ii) $25: 81$
3. (i) $66 \frac{2}{3} \mathrm{~cm}$
(ii) $45511 \frac{1}{9} \mathrm{~cm}^{3}$
4. (i) $9 \mathrm{~cm}, 7 \frac{7}{16} \mathrm{~cm}$
(ii) $225: 161$
5. (i) 50°
(ii) 100°
6. $157 \mathrm{~cm}^{2}$
7. (i) 70°
(ii) 69°
(iii) 55°
8. (i) 9 cm
(ii) $1: 3$

PROBLEMS IN REAL-WORLD

 CONTEXTS1. (a) $(310,0),(155,82.5)$
(c) (i) $c=0$,

$$
155^{2} a+155 b=82.5
$$

$$
310^{2} a+310 b=0
$$

(ii) $a=-\frac{33}{9610}, b=1 \frac{2}{31}, c=0$
(iii) $y=-\frac{33}{9610} x^{2}+1 \frac{2}{31} x$
2. (a) $\mathrm{S} \$ 312.80$
(b) $[\mathrm{S} \$ 475+0.75 \times(\mathrm{EC}-1600)] \times 0.782$; S\$2385.10
3. (i) Yes
4. (b) (i) $\$ 810.84$
(ii) $\$ 2855.70$
5. The large watermelon
6. (ii) $20 \mathrm{~cm} \quad$ (iii) $314 \mathrm{~cm}^{2}$
7. (i) 36.8°

New Syllabus Mathematics (NSM) is a series of textbooks where the inclusion of valuable learning experiences, as well as the integration of real-life applications of learnt concepts serve to engage the hearts and minds of students sitting for the GCE O-level examination in Mathematics. The series covers the MOE Syllabus for Mathematics implemented from 2013.

Special Features

- Chapter Opener to arouse students' interest and curiosity
- Learning Objectives for students to monitor their own progress
- Investigation, Class Discussion, Thinking Time, Journal Writing and Performance Task for students to develop requisite skills, knowledge and attitudes
- Worked Examples to show students the application of concepts
- Practise Now for immediate practice
- Similar Questions for teachers to choose questions that require similar application of concepts
- Exercise classified into Basic, Intermediate and Advanced to cater to students with different learning abilities
- Summary to help students consolidate concepts learnt
- Review Exercise to consolidate the learning of concepts
- Challenge Yourself to challenge high-ability students
- Revision Exercises to help students assess their learning after every few chapters

[^0]: \square
 \square

[^1]: Is $-5^{0}=(-5)^{0}$? Explain your answer.

